WorldWideScience

Sample records for atmospheric reaction products

  1. Studies of the Atmospheric Chemsitry of Energy-Related Volatile Organic Compounds and of their Atmospheric Reaction Products

    Energy Technology Data Exchange (ETDEWEB)

    Roger Atkinson; Janet Arey

    2007-04-14

    The focus of this contract was to investigate selected aspects of the atmospheric chemistry of volatile organic compounds (VOCs) emitted into the atmosphere from energy-related sources as well as from biogenic sources. The classes of VOCs studied were polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs, the biogenic VOCs isoprene, 2-methyl-3-buten-2-ol and cis-3-hexen-1-ol, alkenes (including alkenes emitted from vegetation) and their oxygenated atmospheric reaction products, and a series of oxygenated carbonyl and hydroxycarbonyl compounds formed as atmospheric reaction products of aromatic hydrocarbons and other VOCs. Large volume reaction chambers were used to investigate the kinetics and/or products of photolysis and of the gas-phase reactions of these organic compounds with hydroxyl (OH) radicals, nitrate (NO3) radicals, and ozone (O3), using an array of analytical instrumentation to analyze the reactants and products (including gas chromatography, in situ Fourier transform infrared spectroscopy, and direct air sampling atmospheric pressure ionization tandem mass spectrometry). The following studies were carried out. The photolysis rates of 1- and 2-nitronaphthalene and of eleven isomeric methylnitronaphthalenes were measured indoors using blacklamp irradiation and outdoors using natural sunlight. Rate constants were measured for the gas-phase reactions of OH radicals, Cl atoms and NO3 radicals with naphthalene, 1- and 2-methylnaphthalene, 1- and 2-ethylnaphthalene and the ten dimethylnaphthalene isomers. Rate constants were measured for the gas-phase reactions of OH radicals with four unsaturated carbonyls and with a series of hydroxyaldehydes formed as atmospheric reaction products of other VOCs, and for the gas-phase reactions of O3 with a series of cycloalkenes. Products of the gas-phase reactions of OH radicals and O3 with a series of biogenically emitted VOCs were identified and quantified. Ambient atmospheric measurements of the concentrations of a

  2. Pressure Effects on Product Channels of Hydrocarbon Radical-Radical Reactions; Implications for Modelling of Planetary Atmospheres

    Science.gov (United States)

    Fahr, A.; Halpern, J.; N'doumi, M.

    2011-10-01

    Previously we had studied the kinetics and product channels of small unsaturated hydrocarbon radical (C2 and C3s) reactions relevant to planetary atmospheric modelling. Reactions of C2 radicals (such as vinyl, H2CCH and ethynyl C2H) and C3 radicals (such as propargyl, HCCCH2 and allyl, H2CCCH3) can affect the abundances of a large number of stable observable C3, C4, C5, C6 and larger molecules, including linear, aromatic and even poly aromatic molecules. We have experimentally determined pressuredependent product yields for self- and cross-radical reactions performed at 298 K and at selected pressures between ~4 Torr (0.5 kPa) and 760 Torr (101 kPa). Final products were determined by gas chromatograph with mass spectrometry/flame ionization detection (GC/MS/FID). In some cases complementary computational studies extended the pressure and temperature range of the observations and provided valuable information on complex reaction mechanisms. These studies provide a systematic framework so that important energetic and structural parameters for radical-radical reactions can be assessed. Here we report a compilation of our earlier results relevant to planetary atmospheres in addition to recent ones for allyl radical (H2CCCH3) reactions.

  3. Reaction products and mechanisms for the reaction of n-butyl vinyl ether with the oxidants OH and Cl: Atmospheric implications

    Science.gov (United States)

    Colmenar, Inmaculada; Martín, Pilar; Cabañas, Beatriz; Salgado, Sagrario; Tapia, Araceli; Martínez, Ernesto

    2015-12-01

    A reaction product study for the degradation of butyl vinyl ether (CH3(CH2)3OCHdbnd CH2) by reaction with chlorine atoms (Cl) and hydroxyl radicals (OH) has been carried out using Fourier Transform Infrared absorption spectroscopy (FTIR) and/or Gas Chromatography-Mass Spectrometry with a Time of Flight analyzer (GC-TOFMS). The rate coefficient for the reaction of butyl vinyl ether (BVE) with chlorine atoms has also been evaluated for the first time at room temperature (298 ± 2) K and atmospheric pressure (708 ± 8) Torr. The rate coefficient obtained was (9.9 ± 1.5) × 10-10 cm3 molecule-1 s-1 and this indicates the high reactivity of butyl vinyl ether with Cl atoms. However, this value may be affected by the dark reaction of BVE with Cl2. The results of a qualitative study of the Cl reaction show that the main oxidation products are butyl formate (CH3(CH2)3OC(O)H), butyl chloroacetate (CH3(CH2)3OC(O)CH2Cl and formyl chloride (HCOCl). Individual yields in the ranges ∼16-40% and 30-70% in the absence and presence of NOx, respectively, have been estimated for these products. In the OH reaction, butyl formate and formic acid were identified as the main products, with yields of around 50 and 20%, respectively. Based on the results of this work and a literature survey, the addition of OH radicals and Cl atoms at the terminal C atom of the double bond in CH3(CH2)3OCHdbnd CH2 has been proposed as the first step in the reaction mechanism for both of the studied oxidants. The tropospheric lifetime of butyl vinyl ether is very short and, as a consequence, it will be rapidly degraded and will only be involved in tropospheric chemistry at a local level. The degradation products of these reactions should be considered when evaluating the atmospheric impact.

  4. Chemical Growth Processes in Titan's Atmosphere: Theoretical Rates and Product Distributions for Reactions between C2H and R1R2C=CR3R4 Species

    Science.gov (United States)

    Woon, D. E.; Park, J.-Y.

    2004-11-01

    The ethynyl radical (C2H) can attack unsaturated carbon-carbon bonds with no activation barrier, making such reactions very favorable under the low temperature and pressure conditions in Titan's upper atmosphere, where tholin production generates the satellite's distinctive haze layers. We have used density functional theory to characterize reactions between C2H and R1R2C=CR3R4 species ranging from ethylene to tetramethyl ethylene. Outcomes include multi-channel addition-elimination reactions and H abstraction. We will discuss trends in the reaction rates and product distributions as a function of temperature and pressure. Support for this work by the NASA Planetary Atmospheres program (grant NAG5-12305) is gratefully acknowledged.

  5. Double Pion Production Reactions

    CERN Document Server

    Oset, E; Cano, F; Hernández, E; Kamalov, S S; Nacher, J C; Tejedor, J A G

    1999-01-01

    We report on reactions producing two pions induced by real and virtual photons or nucleons. The role of different resonances in these reactions is emphasized. Novel results on coherent two pion photoproduction in nuclei are also reported.

  6. Atmospheric Chemistry of cis-CF3CH=CHF: Kinetics of reactions with OH radicals and O3 and products of OH radical initiated oxidation

    DEFF Research Database (Denmark)

    Nilsson, Elna Johanna Kristina; Nielsen, Ole John; Johnson, Matthew Stanley;

    2009-01-01

    which are indistinguishable from 100%. The atmospheric lifetime of cis-CF3CH@CHF is determined by its reaction with OH and is approximately 10 days. cis-CF3CH@CHF has an integrated IR absorption cross section (600–2000 cm1) of (1.71 ± 0.09) 1016 cm molecule1 and a global warming potential...... of approximately 3 (100 year time horizon). Quoted uncertainties reflect two standard deviations from least squares regression analyses....

  7. LSM-YSZ Reactions in Different Atmospheres

    DEFF Research Database (Denmark)

    Chen, Ming; Liu, Yi-Lin; Hagen, Anke;

    2009-01-01

    The influences of the oxygen partial pressure and the LSM/YSZ ratio on the LSM-YSZ interface reactions at 1,000 °C were investigated. Both pellets and diffusion couples were employed in the study. The equilibrium thermodynamics of the LSM-YSZ reactions was clarified based on the pellet study......-powder reaction. LSM reacts differently with YSZ in different atmospheres. In air, m-ZrO2 (monoclinic) is formed; while in N2, SrZrO3 and/or La2Zr2O7 are formed depending on the initial LSM/YSZ ratio. The reactions are reversible with varying P(O2) i.e. treating the sample in air after the heat treatment in N2...... results in a decomposition of the formed La- and Sr-zirconates. The de-stabilisation of the LSM-YSZ interface under long-term annealing at 1,000 °C originates mainly from the inter-diffusion across the interface. Under reduced P(O2), the Mn diffusion from LSM into YSZ is enhanced. High P(O2) (0.21 atm...

  8. Meson production in + reactions

    Indian Academy of Sciences (India)

    H Machner; M Betigeri; J Bojowald; A Budzanowski; A Chatterjee; J Ernst; L Freindl; D Frekers; W Garske; K Grewer; A Hamacher; J Ilieva; L Jarczyk; K Kilian; S Kliczewski; W Klimala; D Kolev; T Kutsarova; J Lieb; H Machner; A Magiera; H Nann; L Pentchev; H S Plendl; D Protić; B Razen; P Von Rossen; B J Roy; R Siudak; J Smyrski; R V Srikantiah; A Strzałkowski; R Tsenov; K Zwoll

    2001-08-01

    Total and differential cross sections for the reactions $p+d → 3He + 0 with = ; and + → 3H + + were measured with the GEM detector at COSY for beam momenta between threshold and the maximum of the corresponding baryon resonance. For both reactions a strong forward–backward asymmetry was found. The data were compared with model calculations. The aspect of isospin symmetry breaking is studied.

  9. Reaction product imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, D.W. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    Over the past few years the author has investigated the photochemistry of small molecules using the photofragment imaging technique. Bond energies, spectroscopy of radicals, dissociation dynamics and branching ratios are examples of information obtained by this technique. Along with extending the technique to the study of bimolecular reactions, efforts to make the technique as quantitative as possible have been the focus of the research effort. To this end, the author has measured the bond energy of the C-H bond in acetylene, branching ratios in the dissociation of HI, the energetics of CH{sub 3}Br, CD{sub 3}Br, C{sub 2}H{sub 5}Br and C{sub 2}H{sub 5}OBr dissociation, and the alignment of the CD{sub 3} fragment from CD{sub 3}I photolysis. In an effort to extend the technique to bimolecular reactions the author has studied the reaction of H with HI and the isotopic exchange reaction between H and D{sub 2}.

  10. Atmospheric chemistry of CF3CHCH2 and C4F9CHCH2: Products of the gas-phase reactions with Cl atoms and OH radicals

    DEFF Research Database (Denmark)

    Nakayama, T.; Takahashi, K.; Matsumi, Y.;

    2007-01-01

    +/- 5% and 6.2 +/- 0.5 respectively. Reaction with Cl atoms proceeds via addition to the > CC Reaction with O-2 and decomposition via C-C bond scission...... presence of NOx gives CxF2x+1CHO in a yield of 88 +/- 9 Reaction with OH radicals proceeds via addition to the > CC atmospheric fate of CF3CHClCH2O radicals is reaction with O-2 to give CF3CHClCHO. The OH radical initiated oxidation of CxF2x+1CHCH2 (x = 1 and 4) in 700 Torr of air in the...

  11. Atmospheric science and power production

    Energy Technology Data Exchange (ETDEWEB)

    Randerson, D. (ed.)

    1984-07-01

    This is the third in a series of scientific publications sponsored by the US Atomic Energy Commission and the two later organizations, the US Energy Research and Development Adminstration, and the US Department of Energy. The first book, Meteorology and Atomic Energy, was published in 1955; the second, in 1968. The present volume is designed to update and to expand upon many of the important concepts presented previously. However, the present edition draws heavily on recent contributions made by atmospheric science to the analysis of air quality and on results originating from research conducted and completed in the 1970s. Special emphasis is placed on how atmospheric science can contribute to solving problems relating to the fate of combustion products released into the atmosphere. The framework of this book is built around the concept of air-quality modeling. Fundamentals are addressed first to equip the reader with basic background information and to focus on available meteorological instrumentation and to emphasize the importance of data management procedures. Atmospheric physics and field experiments are described in detail to provide an overview of atmospheric boundary layer processes, of how air flows around obstacles, and of the mechanism of plume rise. Atmospheric chemistry and removal processes are also detailed to provide fundamental knowledge on how gases and particulate matter can be transformed while in the atmosphere and how they can be removed from the atmosphere. The book closes with a review of how air-quality models are being applied to solve a wide variety of problems. Separate analytics have been prepared for each chapter.

  12. Crossed molecular beam studies of atmospheric chemical reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jingsong

    1993-04-01

    The dynamics of several elementary chemical reactions that are important in atmospheric chemistry are investigated. The reactive scattering of ground state chlorine or bromine atoms with ozone molecules and ground state chlorine atoms with nitrogen dioxide molecules is studied using a crossed molecular beams apparatus with a rotatable mass spectrometer detector. The Cl + O{sub 3} {yields} ClO + O{sub 2} reaction has been studied at four collision energies ranging from 6 kcal/mole to 32 kcal/mole. The derived product center-of-mass angular and translational energy distributions show that the reaction has a direct reaction mechanism and that there is a strong repulsion on the exit channel. The ClO product is sideways and forward scattered with respect to the Cl atom, and the translational energy release is large. The Cl atom is most likely to attack the terminal oxygen atom of the ozone molecule. The Br + O{sub 3} {yields} ClO + O{sub 2} reaction has been studied at five collision energies ranging from 5 kcal/mole to 26 kcal/mole. The derived product center-of-mass angular and translational energy distributions are quite similar to those in the Cl + O{sub 3} reaction. The Br + O{sub 3} reaction has a direct reaction mechanism similar to that of the Cl + O{sub 3} reaction. The electronic structure of the ozone molecule seems to play the central role in determining the reaction mechanism in atomic radical reactions with the ozone molecule. The Cl + NO{sub 2} {yields} ClO + NO reaction has been studied at three collision energies ranging from 10.6 kcal/mole to 22.4 kcal/mole. The center-of-mass angular distribution has some forward-backward symmetry, and the product translational energy release is quite large. The reaction proceeds through a short-lived complex whose lifetime is less than one rotational period. The experimental results seem to show that the Cl atom mainly attacks the oxygen atom instead of the nitrogen atom of the NO{sub 2} molecule.

  13. CRITICAL REVIEW OF N, N{sup +}, N{sup +} {sub 2}, N{sup ++}, And N{sup ++} {sub 2} MAIN PRODUCTION PROCESSES AND REACTIONS OF RELEVANCE TO TITAN'S ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Dutuit, Odile; Thissen, Roland; Vuitton, Veronique [Institut de Planetologie et d' Astrophysique de Grenoble, UJF-Grenoble 1/CNRS-INSU, UMR 5274, F-38041 Grenoble (France); Carrasco, Nathalie [Laboratoire Atmospheres, Milieux, Observations Spatiales, CNRS, UVSQ/UPMC, F-78280 Guyancourt (France); Alcaraz, Christian; Pernot, Pascal [Laboratoire de Chimie Physique, CNRS/UPS UMR 8000, Bat.349, F-91405 Orsay Cedex (France); Balucani, Nadia; Casavecchia, Piergiorgio [Dipartimento di Chimica, Universita degli Studi di Perugia, Via Elce di Sotto, 8, I-06123 Perugia (Italy); Canosa, Andre; Picard, Sebastien Le [Departement de Physique Moleculaire, Universite de Rennes 1, Institut de Physique de Rennes, UMR 6251 CNRS Universite, Campus de Beaulieu-Bat 11C, F-35042 Rennes Cedex (France); Loison, Jean-Christophe [Institut des Sciences Moleculaires, Universite Bordeaux 1/CNRS, UMR 5255, 351 cours de la Liberation, F-33405 Talence Cedex (France); Herman, Zdenek; Zabka, Jan [J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejskova 3 CZ-182 23 Prague 8 (Czech Republic); Ascenzi, Daniela; Tosi, Paolo [Dipartimento di Fisica, Universita di Trento, Via Sommarive 14, I-38123 Trento (Italy); Franceschi, Pietro [Biostatistics and Data Management, IASMA Research and Innovation Centre, Fondazione E. Mach, Via E. Mach, 1 I-38010 S. Michele all' Adige (Italy); Price, Stephen D. [Department of Chemistry, UCL, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Lavvas, Panayotis, E-mail: roland.thissen@obs.ujf-grenoble.fr [Groupe de Spectrometrie Moleculaire et Atmospherique, CNRS, UMR 6089, Campus Moulin de la Housse-BP 1039, Universite Reims Champagne-Ardenne, F-51687 Reims (France)

    2013-02-15

    This paper is a detailed critical review of the production processes and reactions of N, N{sup +}, N{sup +} {sub 2}, N{sup ++}, and N{sup ++} {sub 2} of relevance to Titan's atmosphere. The review includes neutral, ion-molecule, and recombination reactions. The review covers all possible active nitrogen species under Titan's atmospheric conditions, specifically N{sub 2} (A {sup 3}{Sigma}{sup +} {sub u}), N ({sup 4} S), N ({sup 2} D), N ({sup 2} P), N{sup +} {sub 2}, N{sup +} ({sup 3} P), N{sup +} ({sup 1} D), N{sup ++} {sub 2}, and N{sup ++} species, and includes a critical survey of the reactions of N, N{sup +}, N{sup +} {sub 2}, N{sup ++}, and N{sup ++} {sub 2} with N{sub 2}, H{sub 2}, D{sub 2}, CH{sub 4}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}, C{sub 3}H{sub 8} and the deuterated hydrocarbon analogs, as well as the recombination reactions of N{sup +} {sub 2}, N{sup +}, N{sup ++} {sub 2}, and N{sup ++}. Production processes, lifetimes, and quenching by collisions with N{sub 2} of all reactant species are reviewed. The N ({sup 4} S) state is reactive with radicals and its reactions with CH{sub 2}, CH{sub 3}, C{sub 2}H{sub 3}, and C{sub 2}H{sub 5} are reviewed. Metastable states N{sub 2} (A {sup 3}{Sigma}{sup +} {sub u}), N ({sup 2} D), and N ({sup 2} P) are either reactive or quenched by collisions with the target molecules reviewed. The reactions of N{sup +} ({sup 1} D) have similar rate constants as N{sup +} ({sup 3} P), but the product branching ratios differ significantly. Temperature effects and the role of the kinetic energy content of reactants are investigated. In all cases, experimental uncertainties of laboratory data are reported or estimated. Recommended values with uncertainties, or estimated values when no data are available, are given for rate constants and product branching ratios at 300 K and at the atmospheric temperature range of Titan (150-200 K for neutral reactions and 150 K for ion reactions).

  14. Positron production within our atmosphere

    Science.gov (United States)

    Dwyer, Joseph

    2016-04-01

    Positrons are commonly produced within our atmosphere by cosmic rays and the decay radioactive isotopes. Energetic positrons are also produced by pair production from the gamma rays generated by relativistic runaway electrons. Indeed, such positrons have been detected in Terrestrial Electron Beams (TEBs) in the inner magnetosphere by Fermi/GBM. In addition, positrons play an important role in relativistic feedback discharges (also known as dark lightning). Relativistic feedback models suggest that these discharges may be responsible for Terrestrial Gamma-ray Flashes (TGFs) and some gamma-ray glows. When producing TGFs, relativistic feedback discharges may generate large, lightning-like currents with current moments reaching hundreds of kA-km. In addition, relativistic feedback discharges also may limit the electric field that is possible in our atmosphere, affecting other mechanisms for generating runaway electrons. It is interesting that positrons, often thought of as exotic particles, may play an important role in thunderstorm processes. In this presentation, the role of positrons in high-energy atmospheric physics will be discussed. The unusual observation of positron clouds inside a thunderstorm by the ADELE instrument on an NCAR/NSF Gulfstream V aircraft will also be described. These observations illustrate that we still have much to learn about positron production within our atmosphere.

  15. A laboratory flow reactor with gas particle separation and on-line MS/MS for product identification in atmospherically important reactions

    Directory of Open Access Journals (Sweden)

    J. F. Bennett

    2009-06-01

    Full Text Available A system to study the gas and particle phase products from gas phase hydrocarbon oxidation is described. It consists of a gas phase photochemical flow reactor followed by a diffusion membrane denuder to remove gases from the reacted products, or a filter to remove the particles. Chemical analysis is performed by an atmospheric pressure chemical ionization (APCI triple quadrupole mass spectrometer. A diffusion membrane denuder is shown to remove trace gases to below detectable limits so the particle phase can be studied. The system was tested by examining the products of the oxidation of m-xylene initiated by HO radicals. Dimethylphenol was observed in both the gas and particle phases although individual isomers could not be identified. Two furanone isomers, 5-methyl-2(3Hfuranone and 3-methyl-2(5Hfuranone were identified in the particulate phase, but the isobaric product 2,5 furandione was not observed. One isomer of dimethyl-nitrophenol was identified in the particle phase but not in the gas phase.

  16. A laboratory flow reactor with gas particle separation and on-line MS/MS for product identification in atmospherically important reactions

    Directory of Open Access Journals (Sweden)

    J. F. Bennett

    2009-12-01

    Full Text Available A system to study the gas and particle phase products from gas phase hydrocarbon oxidation is described. It consists of a gas phase photochemical flow reactor followed by a diffusion membrane denuder to remove gases from the reacted products, or a filter to remove the particles. Chemical analysis is performed by an atmospheric pressure chemical ionization (APCI triple quadrupole mass spectrometer. A diffusion membrane denuder is shown to remove trace gases to below detectable limits so the particle phase can be studied. The system was tested by examining the products of the oxidation of m-xylene initiated by HO radicals. Dimethylphenol was observed in both the gas and particle phases although individual isomers could not be identified. Two furanone isomers, 5-methyl-2(3Hfuranone and 3-methyl-2(5Hfuranone were identified in the particulate phase, but the isobaric product 2,5 furandione was not observed. One isomer of dimethyl-nitrophenol was identified in the particle phase but not in the gas phase.

  17. Possible atmospheric lifetimes and chemical reaction mechanisms for selected HCFCs, HFCs, CH3CCl3, and their degradation products against dissolution and/or degradation in seawater and cloudwater

    Science.gov (United States)

    Wine, P. H.; Chameides, W. L.

    1990-01-01

    For a wide variety of atmospheric species including CO2, HNO3, and SO2, dissolution in seawater or cloudwater followed by hydrolysis or chemical reaction represents a primary pathway for removal from the atmosphere. In order to determine if this mechanism can also remove significant amounts of atmospheric chlorofluorocarbons (HCFC's), fluorocarbons (HFC's), and their degradation products, an investigation was undertaken as part of the Alternative Fluorocarbons Environmental Acceptability Study (AFEAS). In this investigation, the rates at which CHCl2CF3 (HCFC-123), CCl2FCH3 (HCFC-141b), CClF2CH3 (HCFC-142b), CHClF2 (HCFC-22), CHClFCF3 (HCFC-124) CH2FCF3 (HFC-134a) CHF2CH3 (HFC-152a), CHF2CF3 (HFC-125), and CH3CCl3 can be dissolved in the oceans and in cloudwater were estimated from the species' thermodynamic and chemical properties using simple mathematical formulations to simulate the transfer of gases from the atmosphere to the ocean or cloudwater. The ability of cloudwater and rainwater to remove gas phase degradation products of these compounds was also considered as was the aqueous phase chemistry of the degradation products. The results of this investigation are described.

  18. Atmospheric oxidation of 1,3-butadiene: characterization of gas and aerosol reaction products and implications for PM2.5

    Science.gov (United States)

    Jaoui, M.; Lewandowski, M.; Docherty, K.; Offenberg, J. H.; Kleindienst, T. E.

    2014-12-01

    Secondary organic aerosol (SOA) was generated by irradiating 1,3-butadiene (13BD) in the presence of H2O2 or NOx. Experiments were conducted in a smog chamber operated in either flow or batch mode. A filter/denuder sampling system was used for simultaneously collecting gas- and particle-phase products. The chemical composition of the gas phase and SOA was analyzed using derivative-based methods (BSTFA, BSTFA + PFBHA, or DNPH) followed by gas chromatography-mass spectrometry (GC-MS) or high-performance liquid chromatography (HPLC) analysis of the derivative compounds. The analysis showed the occurrence of more than 60 oxygenated organic compounds in the gas and particle phases, of which 31 organic monomers were tentatively identified. The major identified products include glyceric acid, d-threitol, erythritol, d-threonic acid, meso-threonic acid, erythrose, malic acid, tartaric acid, and carbonyls including glycolaldehyde, glyoxal, acrolein, malonaldehyde, glyceraldehyde, and peroxyacryloyl nitrate (APAN). Some of these were detected in ambient PM2.5 samples, and could potentially serve as organic markers of 13BD. Furthermore, a series of oligoesters were detected and found to be produced through chemical reactions occurring in the aerosol phase between compounds bearing alcoholic groups and compounds bearing acidic groups. SOA was analyzed for organic mass to organic carbon (OM /OC) ratio, effective enthalpy of vaporization (Δ Hvapeff), and aerosol yield. The average OM /OC ratio and SOA density were 2.7 ± 0.09 and 1.2 ± 0.05, respectively. The average Δ Hvapeff was -26.08 ± 1.46 kJ mol-1, a value lower than that of isoprene SOA. The average laboratory SOA yield measured in this study at aerosol mass concentrations between 22.5 and 140.2 μg m-3 was 0.025 ± 0.011, a value consistent with the literature (0.021-0.178). While the focus of this study has been examination of the particle-phase measurements, the gas-phase photooxidation products have also been

  19. Reaction Profiles and Molecular Dynamics Simulations of Cyanide Radical Reactions Relevant to Titan's Atmosphere

    Science.gov (United States)

    Trinidad Pérez-Rivera, Danilo; Romani, Paul N.; Lopez-Encarnacion, Juan Manuel

    2016-10-01

    Titan's atmosphere is arguably the atmosphere of greatest interest that we have an abundance of data for from both ground based and spacecraft observations. As we have learned more about Titan's atmospheric composition, the presence of pre-biotic molecules in its atmosphere has generated more and more fascination about the photochemical process and pathways it its atmosphere. Our computational laboratory has been extensively working throughout the past year characterizing nitrile synthesis reactions, making significant progress on the energetics and dynamics of the reactions of .CN with the hydrocarbons acetylene (C2H2), propylene (CH3CCH), and benzene (C6H6), developing a clear picture of the mechanistic aspects through which these three reactions proceed. Specifically, first principles calculations of the reaction profiles and molecular dynamics studies for gas-phase reactions of .CN and C2H2, .CN and CH3CCH, and .CN and C6H6 have been carried out. A very accurate determination of potential energy surfaces of these reactions will allow us to compute the reaction rates which are indispensable for photochemical modeling of Titan's atmosphere.The work at University of Puerto Rico at Cayey was supported by Puerto Rico NASA EPSCoR IDEAS-ER program (2015-2016) and DTPR was sponsored by the Puerto Rico NASA Space Grant Consortium Fellowship. *E-mail: juan.lopez15@upr.edu

  20. Evaluation of the Atmospheric Chemical Entropy Production of Mars

    Directory of Open Access Journals (Sweden)

    Alfonso Delgado-Bonal

    2015-07-01

    Full Text Available Thermodynamic disequilibrium is a necessary situation in a system in which complex emergent structures are created and maintained. It is known that most of the chemical disequilibrium, a particular type of thermodynamic disequilibrium, in Earth’s atmosphere is a consequence of life. We have developed a thermochemical model for the Martian atmosphere to analyze the disequilibrium by chemical reactions calculating the entropy production. It follows from the comparison with the Earth atmosphere that the magnitude of the entropy produced by the recombination reaction forming O3 (O + O2 + CO2 ⥦ O3 + CO2 in the atmosphere of the Earth is larger than the entropy produced by the dominant set of chemical reactions considered for Mars, as a consequence of the low density and the poor variety of species of the Martian atmosphere. If disequilibrium is needed to create and maintain self-organizing structures in a system, we conclude that the current Martian atmosphere is unable to support large physico-chemical structures, such as those created on Earth.

  1. Reactions between the (SO·4-) radical and some common anions in atmospheric aqueous droplets

    Institute of Scientific and Technical Information of China (English)

    OUYANG Bin; FANG Hao-jie; ZHU Cheng-zhu; DONG Wen-bo; HOU Hui-qi

    2005-01-01

    The rate constants of reactions between the SO4·- radical and some common anions in atmospheric aqueous droplets e.g. Cl-,NO3-, HSO3- and HCO3- were determined using the laser flash photolysis technique. Absorption spectra of SO4·- and the product radicals were also reported. The chloride ion was evaluated among all the anions to be the most efficient scavenger of SO4·- . The results may supply useful information for a better understanding of the vigorous radical-initiated reactions in atmospheric aqueous droplets such as clouds, rains or fogs.

  2. Atmospheric degradation of 3-methylfuran: kinetic and products study

    Directory of Open Access Journals (Sweden)

    A. Tapia

    2010-10-01

    Full Text Available A study of the kinetics and products obtained from the reactions of 3-methylfuran with the main atmospheric oxidants has been performed. The rate coefficients for the gas-phase reaction of 3-methylfuran with OH and NO3 radicals have been determined at room temperature and atmospheric pressure (air and N2 as bath gases, using a relative method with different experimental techniques. The absolute rate coefficients obtained for these reactions were (in units cm3 molecule−1 s−1: kOH=(1.13±0.22×10−10 and kNO3=(1.26±0.18×10−11. These rate coefficients have been compared with those available in the literature. The products from the reaction of 3-methylfuran with OH, NO3 and Cl atoms in the absence and in the presence of NOx species have also been determined. The main reaction products obtained were chlorinated methylfuranones and hydroxy-methylfuranones for the reaction of 3-methylfuran with Cl atoms, 2-methylbutenedial, 3-methyl-2,5-furanodione and hydroxy-methylfuranones for the reaction of 3-methylfuran with OH and NO3 radicals and also nitrated compounds for the reaction with NO3 radicals. The results indicate that in all cases the main reaction path is the addition to the double bond of the aromatic ring followed by ring opening in the case of OH and NO3 radicals. The formation of 3-furaldehyde and hydroxy-methylfuranones (in the reactions of 3-methylfuran with Cl atoms and NO3 radicals confirmed the H-atom abstraction from the methyl group and from the aromatic ring, respectively. This study represents the first product determination for both Cl atoms and the NO3 radical in reactions with 3-methylfuran. The reaction mechanisms and atmospheric implications of the reactions under consideration are also discussed.

  3. Reaction Kinetics of Meteoric Sodium Reservoirs in the Upper Atmosphere.

    Science.gov (United States)

    Gómez Martín, J C; Garraway, S A; Plane, J M C

    2016-03-10

    The gas-phase reactions of a selection of sodium-containing species with atmospheric constituents, relevant to the chemistry of meteor-ablated Na in the upper atmosphere, were studied in a fast flow tube using multiphoton ionization time-of-flight mass spectrometry. For the first time, unambiguous observations of NaO and NaOH in the gas phase under atmospheric conditions have been achieved. This enabled the direct measurement of the rate constants for the reactions of NaO with H2, H2O, and CO, and of NaOH with CO2, which at 300-310 K were found to be (at 2σ confidence level): k(NaO + H2O) = (2.4 ± 0.6) × 10(-10) cm(3) molecule (-1) s(-1), k(NaO + H2) = (4.9 ± 1.2) × 10(-12) cm(3) molecule (-1) s(-1), k(NaO + CO) = (9 ± 4) × 10(-11) cm(3) molecule (-1) s(-1), and k(NaOH + CO2 + M) = (7.6 ± 1.6) × 10(-29) cm(6) molecule (-2) s(-1) (P = 1-4 Torr). The NaO + H2 reaction was found to make NaOH with a branching ratio ≥ 99%. A combination of quantum chemistry and statistical rate theory calculations are used to interpret the reaction kinetics and extrapolate the atmospherically relevant experimental results to mesospheric temperatures and pressures. The NaO + H2O and NaOH + CO2 reactions act sequentially to provide the major atmospheric sink of meteoric Na and therefore have a significant impact on the underside of the Na layer in the terrestrial mesosphere: the newly determined rate constants shift the modeled peak to about 93 km, i.e., 2 km higher than observed by ground-based lidars. This highlights further uncertainties in the Na chemistry cycle such as the unknown rate constant of the NaOH + H reaction. The fast Na-recycling reaction between NaO and CO and a re-evaluated rate constant of the NaO + CO2 sink should be now considered in chemical models of the Martian Na layer. PMID:25723735

  4. Atmospheric production rate of {sup 36}Cl

    Energy Technology Data Exchange (ETDEWEB)

    Parrat, Y.; Hajdas, W.; Baltensperger, U.; Synal, H.A.; Kubik, P.W.; Gaeggeler, H.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Suter, M. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Using experimental cross sections, a new calculation of the atmospheric production rate of {sup 36}Cl was carried out. A mean production rate of 20 atoms m{sup -2}s{sup -1} was obtained, which is lower than mean {sup 36}Cl deposition rates. (author) 2 figs., 7 refs.

  5. Carbon compounds in the atmosphere and their chemical reactions

    OpenAIRE

    Martišová, Petra

    2013-01-01

    The essay dissert on compounds of carbon in the atmosphere and its reaction. The most important are carbon dioxide, carbon monoxide and methane. Included among important compounds of carbon are volatile organic substances, polycyclic aromatic hydrocarbon and dioxin. Carbon dioxide and methane representing greenhouse gases have also indispensable meaning. As they, together with water vapour, nitrogen monoxide and other gases are causing the major part of greenhouse effect. Primarily because of...

  6. Insights into secondary reactions occurring during atmospheric ablation of micrometeoroids

    Science.gov (United States)

    Court, Richard W.; Tan, Jonathan

    2016-06-01

    Ablation of micrometeoroids during atmospheric entry yields volatile gases such as water, carbon dioxide, and sulfur dioxide, capable of altering atmospheric chemistry and hence the climate and habitability of the planetary surface. While laboratory experiments have revealed the yields of these gases during laboratory simulations of ablation, the reactions responsible for the generation of these gases have remained unclear, with a typical assumption being that species simply undergo thermal decomposition without engaging in more complex chemistry. Here, pyrolysis-Fourier transform infrared spectroscopy reveals that mixtures of meteorite-relevant materials undergo secondary reactions during simulated ablation, with organic matter capable of taking part in carbothermic reduction of iron oxides and sulfates, resulting in yields of volatile gases that differ from those predicted by simple thermal decomposition. Sulfates are most susceptible to carbothermic reduction, producing greater yields of sulfur dioxide and carbon dioxide at lower temperatures than would be expected from simple thermal decomposition, even when mixed with meteoritically relevant abundances of low-reactivity Type IV kerogen. Iron oxides were less susceptible, with elevated yields of water, carbon dioxide, and carbon monoxide only occurring when mixed with high abundances of more reactive Type III kerogen. We use these insights to reinterpret previous ablation simulation experiments and to predict the reactions capable of occurring during ablation of carbonaceous micrometeoroids in atmospheres of different compositions.

  7. Atmospheric Production of Perchlorate on Earth and Mars

    Science.gov (United States)

    Claire, M.; Catling, D. C.; Zahnle, K. J.

    2009-12-01

    Natural production and preservation of perchlorate on Earth occurs only in arid environments. Isotopic evidence suggests a strong role for atmospheric oxidation of chlorine species via pathways including ozone or its photochemical derivatives. As the Martian atmosphere is both oxidizing and drier than the driest places on Earth, we propose an atmospheric origin for the Martian perchlorates measured by NASA's Phoenix Lander. A variety of hypothetical formation pathways can be proposed including atmospheric photochemical reactions, electrostatic discharge, and gas-solid reactions. Here, we investigate gas phase formation pathways using a 1-D photochemical model (Catling et al. 2009, accepted by JGR). Because perchlorate-rich deposits in the Atacama desert are closest in abundance to perchlorate measured at NASA's Phoenix Lander site, we start with a study of the means to produce Atacama perchlorate. We found that perchlorate can be produced in sufficient quantities to explain the abundance of perchlorate in the Atacama from a proposed gas phase oxidation of chlorine volatiles to perchloric acid. These results are sensitive to estimated reaction rates for ClO3 species. The feasibility of gas phase production for the Atacama provides justification for further investigations of gas phase photochemistry as a possible source for Martian perchlorate. In addition to the Atacama results, we will present a preliminary study incorporating chlorine chemistry into an existing Martian photochemical model (Zahnle et al. JGR 2008).

  8. Novel Haloperoxidase Reaction: Synthesis of Dihalogenated Products

    OpenAIRE

    Geigert, John; Neidleman, Saul L.; Dalietos, Demetrios J.; DeWitt, Susanne K.

    1983-01-01

    The enzymatic synthesis of vicinal, dihalogenated products from alkenes and alkynes is described. The enzymatic reaction required an alkene or alkyne, dilute hydrogen peroxide, a haloperoxidase, and molar amounts of halide ions. Vicinal dichloro, dibromo, and diiodo products could be formed. A hydroxyl group on the carbon adjacent to the carbon-carbon double or triple bond lowered the halide ion concentration needed to produce the dihalo product. This reaction offers one explanation for the o...

  9. Secondary aerosol formation from atmospheric reactions of aliphatic amines

    Directory of Open Access Journals (Sweden)

    S. M. Murphy

    2007-01-01

    Full Text Available Although aliphatic amines have been detected in both urban and rural atmospheric aerosols, little is known about the chemistry leading to particle formation or the potential aerosol yields from reactions of gas-phase amines. We present here the first systematic study of aerosol formation from the atmospheric reactions of amines. Based on laboratory chamber experiments and theoretical calculations, we evaluate aerosol formation from reaction of OH, ozone, and nitric acid with trimethylamine, methylamine, triethylamine, diethylamine, ethylamine, and ethanolamine. Entropies of formation for alkylammonium nitrate salts are estimated by molecular dynamics calculations enabling us to estimate equilibrium constants for the reactions of amines with nitric acid. Though subject to significant uncertainty, the calculated dissociation equilibrium constant for diethylammonium nitrate is found to be sufficiently small to allow for its atmospheric formation, even in the presence of ammonia which competes for available nitric acid. Experimental chamber studies indicate that the dissociation equilibrium constant for triethylammonium nitrate is of the same order of magnitude as that for ammonium nitrate. All amines studied form aerosol when photooxidized in the presence of NOx with the majority of the aerosol mass present at the peak of aerosol growth consisting of aminium (R3NH+ nitrate salts, which repartition back to the gas phase as the parent amine is consumed. Only the two tertiary amines studied, trimethylamine and triethylamine, are found to form significant non-salt organic aerosol when oxidized by OH or ozone; calculated organic mass yields for the experiments conducted are similar for ozonolysis (15% and 5% respectively and photooxidation (23% and 8% respectively. The non-salt organic aerosol formed appears to be more stable than the nitrate salts and does not quickly repartition back to the gas phase.

  10. Atmospheric Reactions of a Series of Hexenols with OH Radical and Ozone

    Science.gov (United States)

    Gai, Yanbo; Lin, Xiaoxiao; Ma, Qiao; Yang, Chengqiang; Zhao, Weixiong; Zhang, Weijun

    2016-04-01

    C6 hexenols are one of the most significant groups of biogenic volatile organic compounds (BVOCs). Because of their antibacterial properties, C6 hexenols can be emitted by a wide number of plants in response to changes in the ambient environment. The oxidation of these compounds in the atmosphere is involved in the formation of tropospheric ozone and secondary organic aerosols (SOA), thus causing significant effects on atmospheric chemistry and the climate. The lack of corresponding kinetic parameters and product information of their oxidation reactions will result in incomplete atmospheric chemical mechanisms and models. In this paper, we will overview our recent research progress on the study of the atmospheric reactions of a series of C6 hexenols with OH radicals and ozone. A series of studies were conducted using both experimental and theoretical methods. Corresponding rate constants were obtained, and reaction mechanisms were also analyzed. It could be concluded that both the nature of the substituent and its position play a fundamental role in the reactivity of the C6 hexenols toward OH radicals and O3. An activating effect of the -OH group in OH radical reactions was found, thus making the H-abstraction channel non-negligible in reactions of these unsaturated alcohols with OH radicals. The removal of these C6 hexenols by ozone also showed great importance and could be competitive with the major recognized sinks by OH radicals. These studies are of great significance for understanding the mechanism of atmospheric chemical reactions of hexenols and improving the atmospheric chemistry model. Experimental detail and corresponding results will be presented. Acknowledgements. This work was supported by the National Natural Science Foundation of China (21307137, 41575125 and 91544228), and the Natural Science Foundation of Anhui Province (1508085J03).

  11. Reaction products of chlorine dioxide.

    OpenAIRE

    Stevens, A A

    1982-01-01

    Inspection of the available literature reveals that a detailed investigation of the aqueous organic chemistry of chlorine dioxide and systematic identification of products formed during water disinfection has not been considered. This must be done before an informed assessment can be made of the relative safety of using chlorine dioxide as a disinfectant alternative to chlorine. Although trihalomethanes are generally not formed by the action of chlorine dioxide, the products of chlorine dioxi...

  12. Snake antivenoms: adverse reactions and production technology

    Directory of Open Access Journals (Sweden)

    VM Morais

    2009-01-01

    Full Text Available Antivenoms have been widely used for more than a century for treating snakebites and other accidents with poisonous animals. Despite their efficacy, the use of heterologous antivenoms involves the possibility of adverse reactions due to activation of the immune system. In this paper, alternatives for antivenom production already in use were evaluated in light of their ability to minimize the occurrence of adverse reactions. These effects were classified according to their molecular mechanism as: anaphylactic reactions mediated by IgE, anaphylactoid reactions caused by complement system activation, and pyrogenic reactions produced mainly by the presence of endotoxins in the final product. In the future, antivenoms may be replaced by humanized antibodies, specific neutralizing compounds or vaccination. Meanwhile, improvements in antivenom quality will be focused on the obtainment of a more purified and specific product in compliance with good manufacturing practices and at an affordable cost.

  13. Metal catalyzed atmospheric oxidation reactions. A challenge to coordination chemists

    Energy Technology Data Exchange (ETDEWEB)

    Coichev, N. (Sao Paulo Univ., SP (Brazil). Inst. de Quimica); Van Eldik, R. (Universitaet Witten/Herdecke (Germany))

    1994-01-01

    Oxidation reactions of SO[sub x] and NO[sub y] species in the aqueous phase can play an important role in atmospheric chemistry and are of major environmental concern. The auto-oxidation processes are known to be catalyzed by trace metal ions and complexes. An overview of the most important reactions in metal catalyzed autoxidation processes is presented. Attention is given to the oxidation of the SO[sub x] and NO[sub y] species separately, as well as to the combined chemistry that results from the interaction of SO[sub x] and NO[sub y] species in the absence and presence of metal ions. Our work has revealed a fascinating redox cycling of the metal ions and complexes during such autoxidation processes, which has turned out to present quite a challenge to coordination chemists. (authors). 118 refs., 4 figs., 1 tab.

  14. Chemical Characterization and Reactivity of Fuel-Oxidizer Reaction Product

    Science.gov (United States)

    David, Dennis D.; Dee, Louis A.; Beeson, Harold D.

    1997-01-01

    Fuel-oxidizer reaction product (FORP), the product of incomplete reaction of monomethylhydrazine and nitrogen tetroxide propellants prepared under laboratory conditions and from firings of Shuttle Reaction Control System thrusters, has been characterized by chemical and thermal analysis. The composition of FORP is variable but falls within a limited range of compositions that depend on three factors: the fuel-oxidizer ratio at the time of formation; whether the composition of the post-formation atmosphere is reducing or oxidizing; and the reaction or post-reaction temperature. A typical composition contains methylhydrazinium nitrate, ammonium nitrate, methylammonium nitrate, and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. Thermal decomposition reactions of the FORP compositions used in this study were unremarkable. Neither the various compositions of FORP, the pure major components of FORP, nor mixtures of FORP with propellant system corrosion products showed any unusual thermal activity when decomposed under laboratory conditions. Off-limit thruster operations were simulated by rapid mixing of liquid monomethylhydrazine and liquid nitrogen tetroxide in a confined space. These tests demonstrated that monomethylhydrazine, methylhydrazinium nitrate, ammonium nitrate, or Inconel corrosion products can induce a mixture of monomethylhydrazine and nitrogen tetroxide to produce component-damaging energies. Damaging events required FORP or metal salts to be present at the initial mixing of monomethylhydrazine and nitrogen tetroxide.

  15. Kinetic and mechanistic study of the atmospheric reaction of MBO331 with Cl atoms

    Science.gov (United States)

    Rodríguez, Diana; Rodríguez, Ana; Garzón, Andrés; Granadino-Roldán, José M.; Soto, Amparo; Aranda, Alfonso; Notario, Alberto

    2012-12-01

    The present work deals with the reaction of 3-methyl-3-buten-1-ol (MBO331) with Cl atoms, which has been investigated by gas chromatography with flame ionization detection (GC-FID) at atmospheric pressure in N2 or air, using the relative rate technique. The rate constant reaction at 298 ± 1 K was found to be (5.01 ± 0.70) × 10-10 cm3 molecule-1 s-1, using cyclohexane, octane and 1-butene as a reference compounds. The temperature dependence for the reaction was studied within the 298-333 K range. Additionally, a product identification under atmospheric conditions has been performed for the first time by GC-MS, with 3-methyl-3-butenal, methacrolein and chloroacetone being observed as degradation products. A theoretical study on the reaction at the QCISD(T)/6-311G**//MP2/6-311G** level was also carried out to obtain more information on the mechanism. From the theoretical study it can be predicted that Cl addition to the double bond proceeds through lower energy barriers than H-abstraction pathways and therefore is energetically favoured. Finally, atmospheric implications of the results obtained are discussed.

  16. Dynamical Model of Weak Pion Production Reactions

    CERN Document Server

    Sato, T; Lee, T S H

    2003-01-01

    The dynamical model of pion electroproduction has been extended to investigate the weak pion production reactions. The predicted cross sections of neutrino-induced pion production reactions are in good agreement with the existing data. We show that the renormalized(dressed) axial N-$\\Delta$ form factor contains large dynamical pion cloud effects and this renormalization effects are crucial in getting agreement with the data. We conclude that the N-$\\Delta$ transitions predicted by the constituent quark model are consistent with the existing neutrino induced pion production data in the $\\Delta$ region.

  17. Acid-catalyzed reactions of hexanal on sulfuric acid particles: Identification of reaction products

    Science.gov (United States)

    Garland, Rebecca M.; Elrod, Matthew J.; Kincaid, Kristi; Beaver, Melinda R.; Jimenez, Jose L.; Tolbert, Margaret A.

    While it is well established that organics compose a large fraction of the atmospheric aerosol mass, the mechanisms through which organics are incorporated into atmospheric aerosols are not well understood. Acid-catalyzed reactions of compounds with carbonyl groups have recently been suggested as important pathways for transfer of volatile organics into acidic aerosols. In the present study, we use the aerodyne aerosol mass spectrometer (AMS) to probe the uptake of gas-phase hexanal into ammonium sulfate and sulfuric acid aerosols. While both deliquesced and dry non-acidic ammonium sulfate aerosols showed no organic uptake, the acidic aerosols took up substantial amounts of organic material when exposed to hexanal vapor. Further, we used 1H-NMR, Fourier transform infrared (FTIR) spectroscopy and GC-MS to identify the products of the acid-catalyzed reaction of hexanal in acidic aerosols. Both aldol condensation and hemiacetal products were identified, with the dominant reaction products dependent upon the initial acid concentration of the aerosol. The aldol condensation product was formed only at initial concentrations of 75-96 wt% sulfuric acid in water. The hemiacetal was produced at all sulfuric acid concentrations studied, 30-96 wt% sulfuric acid in water. Aerosols up to 88.4 wt% organic/11.1 wt% H 2SO 4/0.5 wt% water were produced via these two dimerization reaction pathways. The UV-VIS spectrum of the isolated aldol condensation product, 2-butyl 2-octenal, extends into the visible region, suggesting these reactions may impact aerosol optical properties as well as aerosol composition. In contrast to previous suggestions, no polymerization of hexanal or its products was observed at any sulfuric acid concentration studied, from 30 to 96 wt% in water.

  18. Snake antivenoms: adverse reactions and production technology

    OpenAIRE

    VM Morais; H Massaldi

    2009-01-01

    Antivenoms have been widely used for more than a century for treating snakebites and other accidents with poisonous animals. Despite their efficacy, the use of heterologous antivenoms involves the possibility of adverse reactions due to activation of the immune system. In this paper, alternatives for antivenom production already in use were evaluated in light of their ability to minimize the occurrence of adverse reactions. These effects were classified according to their molecular mechanism ...

  19. Reactions analysis of di-pions production

    International Nuclear Information System (INIS)

    After a discussion of ambiguities in the methods used to obtain informations on the ππ diffusion from the reaction π-p→π+π-n with unpolarized targets, a model-independent method is proposed to determine experimentally the cross section for the S-wave production in the reaction π+p→π+π-Δ++. Comparing the S-wave di-pion production in the ζ-mass region from the recent experimental results on the reactions π+p→π=π-Δ++ and π-p→π-π+n on a polarized target, it is found that the amount of S-wave production is generally consistent with the lower bound obtained from the di-pion decay moments

  20. High energy photons production in nuclear reactions

    International Nuclear Information System (INIS)

    Hard photon production, in nucleus-nucleus collisions, were studied at beam energies between 10 and 125 MeV. The main characteristics of the photon emission are deduced. They suggest that the neutron-proton collisions in the early stage of the reaction are the main source of high energy gamma-rays. An overview of the theoretical approaches is given and compared with experimental results. Theoretical attempts to include the contribution of charged pion exchange currents to photon production, in calculations of proton-nucleus-gamma and nucleus-nucleus-gamma reactions, showed suitable fitting with experimental data

  1. Ion-ion reactions for charge reduction of biopolymer at atmospheric pressure ambient

    Institute of Scientific and Technical Information of China (English)

    Yue Ming Zhou; Jian Hua Ding; Xie Zhang; Huan Wen Chen

    2007-01-01

    Extractive electrospray ionization source (EESI) was adapted for ion-ion reaction, which was demonstrated by using a linear quadrupole ion trap mass spectrometer for the first ion-ion reaction of biopolymers in the atmospheric pressure ambient.

  2. Neutrinos from charm production in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Enberg, Rikard [Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala (Sweden)

    2014-11-18

    Atmospheric neutrinos are produced in interactions of cosmic rays with Earth's atmosphere. At very high energy, the contribution from semi-leptonic decays of charmed hadrons, known as the prompt neutrino flux, dominates over the conventional flux from pion and kaon decays. This is due to the very short lifetime of the charmed hadrons, which therefore do not lose energy before they decay. The calculation of this process is difficult because the Bjorken-x at which the parton distribution functions are evaluated is very small. This is a region where QCD is not well understood, and large logarithms must be resummed. Available parton distribution functions are not known at such small x and extrapolations must be made. Theoretically, the fast rise of the structure functions for small x ultimately leads to parton saturation. This contribution describes the 'ERS' [1] calculation of the prompt neutrino flux, which includes parton saturation effects in the QCD production cross section of charm quarks. The ERS flux calculation is used by e.g. the IceCube collaboration as a standard benchmark background. We are now updating this calculation to take into account the recent LHC data on the charm cross section, as well as recent theoretical developments in QCD. Some of the issues involved in this calculation are described.

  3. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

    Science.gov (United States)

    Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ.

  4. Atmospheric Processing Module for Mars Propellant Production

    Science.gov (United States)

    Muscatello, A.; Devor, R.; Captain, J.

    2014-01-01

    The multi-NASA center Mars Atmosphere and Regolith COllector/PrOcessor for Lander Operations (MARCO POLO) project was established to build and demonstrate a methaneoxygen propellant production system in a Mars analog environment. Work at the Kennedy Space Center (KSC) Applied Chemistry Laboratory is focused on the Atmospheric Processing Module (APM). The purpose of the APM is to freeze carbon dioxide from a simulated Martian atmosphere containing the minor components nitrogen, argon, carbon monoxide, and water vapor at Martian pressures (approx. 8 torr) by using dual cryocoolers with alternating cycles of freezing and sublimation. The resulting pressurized CO(sub 2) is fed to a methanation subsystem where it is catalytically combined with hydrogen in a Sabatier reactor supplied by the Johnson Space Center (JSC) to make methane and water vapor. We first used a simplified once-through setup and later employed a H(sub 2)CO(sub 2) recycling system to improve process efficiency. This presentation and paper will cover (1) the design and selection of major hardware items, such as the cryocoolers, pumps, tanks, chillers, and membrane separators, (2) the determination of the optimal cold head design and flow rates needed to meet the collection requirement of 88 g CO(sub 2) hr for 14 hr, (3) the testing of the CO(sub 2) freezer subsystem, and (4) the integration and testing of the two subsystems to verify the desired production rate of 31.7 g CH(sub 4) hr and 71.3 g H(sub 2)O hr along with verification of their purity. The resulting 2.22 kg of CH(sub 2)O(sub 2) propellant per 14 hr day (including O(sub 2) from electrolysis of water recovered from regolith, which also supplies the H(sub 2) for methanation) is of the scale needed for a Mars Sample Return mission. In addition, the significance of the project to NASAs new Mars exploration plans will be discussed.

  5. Atmospheric deuterium fractionation: HCHO and HCDO yields in the CH2DO + O2 reaction

    Directory of Open Access Journals (Sweden)

    M. D. Hurley

    2007-11-01

    Full Text Available The formation of formaldehyde via hydrogen atom transfer from the methoxy radical to molecular oxygen is a key step in the atmospheric photochemical oxidation of methane, and in the propagation of deuterium from methane to molecular hydrogen. We report the results of the first investigation of the branching ratio for HCHO and HCDO formation in the CH2DO + O2 reaction. Labeled methoxy radicals (CH2DO were generated in a photochemical reactor by photolysis of CH2DONO. HCHO and HCDO concentrations were measured using FTIR spectroscopy. Significant deuterium enrichment was seen in the formaldehyde product, from which we derive a branching ratio of 88.2±1.1% for HCDO and 11.8±1.1% for HCHO. The implications of this fractionation on the propagation of deuterium in the atmosphere are discussed.

  6. Aqueous Phase Photo-Oxidation of Succinic Acid: Changes in Hygroscopic Properties and Reaction Products

    Science.gov (United States)

    Hudson, P. K.; Ninokawa, A.; Hofstra, J.; de Lijser, P.

    2013-12-01

    Atmospheric aerosol particles have been identified as important factors in understanding climate change. The extent to which aerosols affect climate is determined, in part, by hygroscopic properties which can change as a result of atmospheric processing. Dicarboxylic acids, components of atmospheric aerosol, have a wide range of hygroscopic properties and can undergo oxidation and photolysis reactions in the atmosphere. In this study, the hygroscopic properties of succinic acid aerosol, a non-hygroscopic four carbon dicarboxylic acid, were measured with a humidified tandem differential mobility analyzer (HTDMA) and compared to reaction products resulting from the aqueous phase photo-oxidation reaction of hydrogen peroxide and succinic acid. Reaction products were determined and quantified using gas chromatography-flame ionization detection (GC-FID) and GC-mass spectrometry (GC-MS) as a function of hydrogen peroxide:succinic acid concentration ratio and photolysis time. Although reaction products include larger non-hygroscopic dicarboxylic acids (e.g. adipic acid) and smaller hygroscopic dicarboxylic acids (e.g. malonic and oxalic acids), comparison of hygroscopic growth curves to Zdanovskii-Stokes-Robinson (ZSR) predictions suggests that the hygroscopic properties of many of the product mixtures are largely independent of the hygroscopicity of the individual components. This study provides a framework for future investigations to fully understand and predict the role of chemical reactions in altering atmospheric conditions that affect climate.

  7. Evaluation of the atmospheric significance of multiphase reactions in atmospheric secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    Gelencsér

    2005-01-01

    Full Text Available In a simple conceptual cloud-aerosol model the mass of secondary organic aerosol (SOA that may be formed in multiphase reaction in an idealized scenario involving two cloud cycles separated with a cloud-free period is evaluated. The conditions are set to those typical of continental clouds, and each parameter used in the model calculations is selected as a mean of available observational data of individual species for which the multiphase SOA formation route has been established. In the idealized setting gas and aqueous-phase reactions are both considered, but only the latter is expected to yield products of sufficiently low volatility to be retained by aerosol particles after the cloud dissipates. The key variable of the model is the Henry-constant which primarily determines how important multiphase reactions are relative to gas-phase photooxidation processes. The precursor considered in the model is assumed to already have some affinity to water, i.e. it is a compound having oxygen-containing functional group(s. As a principal model output an aerosol yield parameter is calculated for the multiphase SOA formation route as a function of the Henry-constant, and has been found to be significant already above H~103 M atm-1. Among the potential precursors that may be eligible for this mechanism based on their Henry constants, there are a suite of oxygenated compounds such as primary oxidation products of biogenic and anthropogenic hydrocarbons, including, for example, pinonaldehyde. Finally, the analogy of multiphase SOA formation to in-cloud sulfate production is exploited.

  8. Feasibility Study of Venus Surface Cooling Using Chemical Reactions with the Atmosphere

    Science.gov (United States)

    Evans, Christopher

    2013-01-01

    A literature search and theoretical analysis were conducted to investigate the feasibility of cooling a craft on Venus through chemical reformation of materials from the atmosphere. The core concept was to take carbon dioxide (CO2) from the Venus atmosphere and chemically reform it into simpler compounds such as carbon, oxygen, and carbon monoxide. This process is endothermic, taking energy from the surroundings to produce a cooling effect. A literature search was performed to document possible routes for achieving the desired reactions. Analyses indicated that on Venus, this concept could theoretically be used to produce cooling, but would not perform as well as a conventional heat pump. For environments other than Venus, the low theoretical performance limits general applicability of this concept, however this approach to cooling may be useful in niche applications. Analysis indicated that environments with particular atmospheric compositions and temperatures could allow a similar cooling system to operate with very good performance. This approach to cooling may also be useful where the products of reaction are also desirable, or for missions where design simplicity is valued. Conceptual designs for Venus cooling systems were developed using a modified concept, in which an expendable reactant supply would be used to promote more energetically favorable reactions with the ambient CO2, providing cooling for a more limited duration. This approach does not have the same performance issues, but the use of expendable supplies increases the mass requirements and limits the operating lifetime. This paper summarizes the findings of the literature search and corresponding analyses of the various cooling options.

  9. Feasibility Study of Venus Surfuce Cooling Using Chemical Reactions with the Atmosphere

    Science.gov (United States)

    Evans, Christopher

    2013-01-01

    A literature search and theoretical analysis were conducted to investigate the feasibility of cooling a craft on Venus through chemical reformation of materials from the atmosphere. The core concept was to take carbon dioxide (CO2) from the Venus atmosphere and chemically reform it into simpler compounds such as carbon, oxygen, and carbon monoxide. This process is endothermic, taking energy from the surroundings to produce a cooling effect. A literature search was performed to document possible routes for achieving the desired reactions. Analyses indicated that on Venus, this concept could theoretically be used to produce cooling, but would not perform as well as a conventional heat pump. For environments other than Venus, the low theoretical performance limits general applicability of this concept, however this approach to cooling may be useful in niche applications. Analysis indicated that environments with particular atmospheric compositions and temperatures could allow a similar cooling system to operate with very good performance. This approach to cooling may also be useful where the products of reaction are also desirable, or for missions where design simplicity is valued. Conceptual designs for Venus cooling systems were developed using a modified concept, in which an expendable reactant supply would be used to promote more energetically favorable reactions with the ambient CO2, providing cooling for a more limited duration. This approach does not have the same performance issues, but the use of expendable supplies increases the mass requirements and limits the operating lifetime. This paper summarizes the findings of the literature search and corresponding analyses of the various cooling options

  10. Measuring OH Reaction Rate Constants and Estimating the Atmospheric Lifetimes of Trace Gases.

    Science.gov (United States)

    Orkin, Vladimir; Kurylo, Michael

    2015-04-01

    Reactions with hydroxyl radicals and photolysis are the main processes dictating a compound's residence time in the atmosphere for a majority of trace gases. In case of very short-lived halocarbons their reaction with OH dictates both the atmospheric lifetime and active halogen release. Therefore, the accuracy of OH kinetic data is of primary importance for the comprehensive modeling of a compound's impact on the atmosphere, such as in ozone depletion (i.e., the Ozone Depletion Potential, ODP) and climate change (i.e., the Global Warming Potential, GWP), each of which are dependent on the atmospheric lifetime of the compound. We have demonstrated the ability to conduct very high accuracy determinations of OH reaction rate constants over the temperature range of atmospheric interest, thereby decreasing the uncertainty of kinetic data to 2-3%. The atmospheric lifetime of a well-mixed compound due to its reaction with tropospheric hydroxyl radicals can be estimated by using a simple scaling procedure that is based on the results of field observations of methyl chloroform concentrations and detailed modeling of the OH distribution in the atmosphere. The currently available modeling results of the atmospheric fate of various trace gases allow for an improved understanding of the ability and accuracy of simplified semi-empirical estimations of atmospheric lifetimes. These aspects will be illustrated in this presentation for a variety of atmospheric trace gases.

  11. Graphene Metal Adsorption as a Model Chemistry for Atmospheric Reactions

    OpenAIRE

    Ortiz, Y. P.; A. F. Jalbout

    2013-01-01

    We propose a mechanism by which chloromethane and dichloromethane decomposition reaction occurs on the surfaces of graphene. To this end we have performed calculations on the graphene surface with metal adsorption on the sheet on the opposite side of reactions to reduce the formation of free-radical intermediates.

  12. First steps towards the reaction kinetics of HMDSO in an atmospheric pressure plasma jet in argon

    Science.gov (United States)

    Loffhagen, Detlef; Becker, Markus M.; Foest, Rüdiger; Schäfer, Jan; Sigeneger, Florian

    2014-10-01

    Hexamethyldisiloxane (HMDSO) is a silicon-organic compound which is often used as precursor for thin-film deposition by means of plasma polymerization because of its high deposition rate and low toxicity. To improve the physical understanding of the deposition processes, fundamental investigations have been performed to clarify the plasma-chemical reaction pathways of HMDSO and their effect on the composition and structure of the deposited film. The current contribution represents the main primary and secondary plasma-chemical processes and their reaction products in the effluent region of an argon plasma jet at atmospheric pressure. The importance of the different collision processes of electrons and heavy particles are discussed. Results of numerical modelling of the plasma jet and the Ar-HMDSO reaction kinetics indicate that the fragmentation of HMDSO is mainly initiated by collisions with molecular argon ions, while Penning ionization processes play a minor role for the reaction kinetics in the effluent region of the jet. The work has been supported by the German Research Foundation (DFG) under Grant LO 623/3-1.

  13. Assessment and Requirements of Nuclear Reaction Databases for GCR Transport in the Atmosphere and Structures

    Science.gov (United States)

    Cucinotta, F. A.; Wilson, J. W.; Shinn, J. L.; Tripathi, R. K.

    1998-01-01

    The transport properties of galactic cosmic rays (GCR) in the atmosphere, material structures, and human body (self-shielding) am of interest in risk assessment for supersonic and subsonic aircraft and for space travel in low-Earth orbit and on interplanetary missions. Nuclear reactions, such as knockout and fragmentation, present large modifications of particle type and energies of the galactic cosmic rays in penetrating materials. We make an assessment of the current nuclear reaction models and improvements in these model for developing required transport code data bases. A new fragmentation data base (QMSFRG) based on microscopic models is compared to the NUCFRG2 model and implications for shield assessment made using the HZETRN radiation transport code. For deep penetration problems, the build-up of light particles, such as nucleons, light clusters and mesons from nuclear reactions in conjunction with the absorption of the heavy ions, leads to the dominance of the charge Z = 0, 1, and 2 hadrons in the exposures at large penetration depths. Light particles are produced through nuclear or cluster knockout and in evaporation events with characteristically distinct spectra which play unique roles in the build-up of secondary radiation's in shielding. We describe models of light particle production in nucleon and heavy ion induced reactions and make an assessment of the importance of light particle multiplicity and spectral parameters in these exposures.

  14. Atmospheric reaction of Cl + methacrolein: a theoretical study on the mechanism, and pressure- and temperature-dependent rate constants.

    Science.gov (United States)

    Sun, Cuihong; Xu, Baoen; Zhang, Shaowen

    2014-05-22

    Methacrolein is a major degradation product of isoprene, the reaction of methacrolein with Cl atoms may play some roles in the degradation of isoprene where these species are relatively abundant. However, the energetics and kinetics of this reaction, which govern the reaction branching, are still not well understood so far. In the present study, two-dimensional potential energy surfaces were constructed to analyze the minimum energy path of the barrierless addition process between Cl and the C═C double bond of methacrolein, which reveals that the terminal addition intermediate is directly formed from the addition reaction. The terminal addition intermediate can further yield different products among which the reaction paths abstracting the aldehyde hydrogen atom and the methyl hydrogen atom are dominant reaction exits. The minimum reaction path for the direct aldehydic hydrogen atom abstraction is also obtained. The reaction kinetics was calculated by the variational transition state theory in conjunction with the master equation method. From the theoretical model we predicted that the overall rate constant of the Cl + methacrolein reaction at 297 K and atmospheric pressure is koverall = 2.3× 10(-10) cm(3) molecule(-1) s(-1), and the branching ratio of the aldehydic hydrogen abstraction is about 12%. The reaction is pressure dependent at P pressure limit at about 100 Torr. The calculated results could well account for the experimental observations.

  15. Reactions of uranium hexafluoride photolysis products

    Science.gov (United States)

    Lyman, John L.; Laguna, Glenn; Greiner, N. R.

    1985-01-01

    This paper confirms that the ultraviolet photolysis reactions of UF6 in the B band spectral region is simple bond cleavage to UF5 and F. The photolysis products may either recombine to UF6 or the UF5 may dimerize, and ultimately polymerize, to solid UF5 particles. We use four methods to set an upper limit for the rate constant for recombination of kr<2.0×10-12cm3 molecule-1 s-1. We measure the rate constant for UF5 dimerization to be kd=(1.0±0.2)×10-11 cm3 molecule-1 s-1. The principal method employed in these studies is the use of diode lasers to monitor, in real time, the changes in density of the species UF6 and UF5 after laser photolysis of the UF6 gas sample.

  16. a New Spectroscopic Window on Hydroxyl Radicals and Their Association Reactions of Significance in the Atmosphere

    Science.gov (United States)

    Lester, Marsha I.

    2012-06-01

    The weakly bound hydrogen trioxy radical (HOOO), produced in the association reaction of the hydroxyl radical (OH) with molecular oxygen (O_2), has been postulated to play an important role in atmospherically relevant reactions. Experimental studies in this laboratory have utilized infrared action spectroscopy to probe the structure, vibrational frequencies, and stability of this weakly bound species. Recent experimental and theoretical results on HOOO will be presented, and used in assessing its significance in the atmosphere. Most studies of the hydroxyl radical and its association products utilize laser-induced fluorescence on the well-characterized OH A^2Σ^+ - X^2π band system for detection. This laboratory has recently demonstrated a new photoionization scheme combining initial UV excitation on the A^2Σ^+ - X^2π band system with subsequent fixed-frequency VUV ionization via autoionizing Rydberg states. The photoionization mechanism as well as the applicability of this quantum state-selective photoionization scheme will be presented. footnote C. Murray, E. L. Derro, T. D. Sechler, and M. I. Lester, Acc. Chem. Res. 42, 419-427 (2009). J. M. Beames, M. I. Lester, C. Murray, M. E. Varner, and J. F. Stanton, J. Chem. Phys. 134, 044304 (2011). J. M. Beames, M. I. Lester, C. Murray, M. E. Varner, and J. F. Stanton, J. Chem. Phys. 134, 044304 (2011). J. M. Beames, F. Liu, M. I. Lester, and C. Murray, J. Chem. Phys. 134, 241102 (2011).

  17. Kinetics of Thermochemical Reactions Important in the Venus Atmospheric Sulfur Cycle

    Science.gov (United States)

    Fegley, Bruce, Jr.

    1997-01-01

    The purpose of this project was to experimentally measure the rates of several thermochemical gas-solid reactions between sulfur gases in the Venus atmosphere and reactive minerals on the hot Venus surface. Despite the great importance of these reactions for the maintenance of significant amounts of sulfur gases (and thus for the maintenance of the global cloud cover) in the atmosphere of Venus, essentially no kinetic data are currently available for them.

  18. Transfer of atmospheric caesium to agricultural products

    International Nuclear Information System (INIS)

    A huge quantity of radioactive rubble was generated by the Great East Japan Earthquake. The Japanese government is considering incineration processing of such rubble in waste incinerators which have suitable equipment, and the government is urged to manage appropriately the radiation exposure of residents living in the vicinity of incinerators by inhalation and ingestion of food. In this study, we developed a model describing plant uptake of atmospheric caesium by direct deposition and root-absorption via soil. Analysis using our model has suggested that wet deposition contributes to transfer to a plant most, when caesium exists in the atmosphere. (author)

  19. Effect of Pozzolanic Reaction Products on Alkali-silica Reaction

    Institute of Scientific and Technical Information of China (English)

    WEI Fengyan; LAN Xianghui; LV Yinong; XU Zhongzi

    2006-01-01

    The effect of fly ash on controlling alkali-silica reaction (ASR) in simulated alkali solution was studied. The expansion of mortar bars and the content of Ca(OH)2 in cement paste cured at 80 ℃ for 91 d were measured. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) were employed to study the microstructure of C-S-H. TEM/energy dispersive spectroscopy (EDS) was then used to determine the composition of C-S-H. The pore structure of the paste was analyzed by mercury intrusion porosimetry (MIP). The results show that the contents of fly ash of 30% and 45% can well inhibit ASR. And the content of Ca(OH)2 decreases with the increase of fly ash. That fly ash reacted with Ca(OH)2 to produce C-S-H with a low Ca/Si molar ratio could bind more Na+ and K+ ions, and produce a reduction in the amount of soluble alkali available for ASR. At the same time, the C-S-H produced by pozzolanic reaction converted large pores to smaller ones (gel pores smaller than 10 nm) to densify the pore structure. Perhaps that could inhibit alkali transport to aggregate for ASR.

  20. Molecule-based approach for computing chemical-reaction rates in upper atmosphere hypersonic flows.

    Energy Technology Data Exchange (ETDEWEB)

    Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert

    2009-08-01

    This report summarizes the work completed during FY2009 for the LDRD project 09-1332 'Molecule-Based Approach for Computing Chemical-Reaction Rates in Upper-Atmosphere Hypersonic Flows'. The goal of this project was to apply a recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary nonequilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological non-equilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, the difference between the two models can exceed 10 orders of magnitude. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates. Extensions of the model to reactions typically found in combustion flows and ionizing reactions are also found to be in very good agreement with available measurements, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates.

  1. Inhibition of zinc-dependent peptidases by Maillard reaction products

    OpenAIRE

    Missagia de Marco, Leticia

    2015-01-01

    The Maillard reaction is a network of different non-enzymatic reactions between carbonyl groups of reducing sugars and amino groups from amino acids, peptides, or proteins, which progresses in three major stages and originates a very heterogeneous mixture of reaction products. It is also known as non-enzymatic browning, due to the brown macromolecular pigments formed in the final stage of the reaction. The chemistry underlying the Maillard reaction is complex. It encloses not only one reactio...

  2. Production, properties and application of steels resistant to atmospheric corrosion

    International Nuclear Information System (INIS)

    Steels, resistant to atmospheric corrosion, applied in the USSR and abroad, are reviewed. The influence of alloying elements (Cu, P, Cr, Si, Ni, Mo, Mn, As etc) upon resistance against atmospheric corrosion and mechanical properties of rolled steel is discussed. Technological properties, fields of the above steels application as well as the data on the range of product, are presented

  3. Middle atmosphere heating by exothermic chemical reactions involving odd-hydrogen species

    Science.gov (United States)

    Mlynczak, Martin G.; Solomon, Susan

    1991-01-01

    The rate of heating which occurs in the middle atmosphere due to four exothermic reactions involving members of the odd-hydrogen family is calculated. The following reactions are considered: O + OH yields O2 + H; H + O2 + M yields HO2 + M; H + O3 yields OH + O2; and O + HO2 yields OH + O2. It is shown that the heating rates due to these reactions rival the oxygen-related heating rates conventionally considered in middle-atmosphere models. The conversion of chemical potential energy into molecular translational energy (heat) by these odd-hydrogen reactions is shown to be a significant energy source in the middle atmosphere that has not been previously considered.

  4. Dietary Maillard reaction products: implications for human health and disease

    OpenAIRE

    Ames, Jenny

    2009-01-01

    When foods are heat processed, the sugars and lipids react with the proteins they contain via the Maillard and related reactions to form a wide range of products. As a result, the sensory, safety, nutritional and health-promoting attributes of the foods are affected. Reaction products include advanced glycation/lipoxidation endproducts (AGE/ALEs), acrylamide and heterocyclic amines (HAA), all of which may impact on human health and disease. Furthermore, some Maillard reaction products affect ...

  5. Fractionation of Stable Isotopes in Atmospheric Aerosol Reactions

    DEFF Research Database (Denmark)

    Meusinger, Carl

    reactions and undergo complex chemical and physical changes during their lifetimes. In order to assess processes that form and alter aerosols, information provided by stable isotopes can be used to help constrain estimates on the strength of aerosol sources and sinks. This thesis studies (mass......-independent) fractionation processes of stable isotopes of C, N, O and S in order to investigate three different systems related to aerosols: 1. Post-depositional processes of nitrate in snow that obscure nitrate ice core records 2. Formation and aging of secondary organic aerosol generated by ozonolysis of X...... as required. The kndings provide important results for the studies' respective felds, including a description of the isotopic fractionation and quantum yield of nitrate photolysis in snow, equilibrium fractionation in secondary organic aerosol and fractionation constants of different oxidation pathways of SO2....

  6. Step Towards Modeling the Atmosphere of Titan: State-Selected Reactions of O+ with Methane

    Science.gov (United States)

    Hrušák, J.; Paidarová, I.

    2016-04-01

    Methane conversion and in particular the formation of the C-O bond is one of fundamental entries to organic chemistry and it appears to be essential for understanding parts of atmospheric chemistry of Titan, but, in broader terms it might be also relevant for Earth-like exoplanets. Theoretical study of the reactions of methane with atomic oxygen ion in its excited electronic states requires treating simultaneously at least 19 electronic states. Development of a computational strategy that would allow chemically reasonable and computationally feasible treatment of the CH4 (X)/O+ (2D, 2P) system is by far not trivial and it requires careful examination of all the complex features of the corresponding 19 potential energy surfaces. Before entering the discussion of the rich (photo) chemistry, inspection of the long range behavior of the system with focus on electric dipole transition moments is required. Our calculations show nonzero probability for the reactants to decay before entering the multiple avoided crossings region of the [CH4 + O → products]+ reaction. For the CH4/O+ (2P) system non-zero transition moment probabilities occur over the entire range of considered C-O distances (up to 15 Å), while for the CH4/O+ (2D) system these probabilities are lower by one order of magnitude and were found only at C-O distances smaller than 6 Å.

  7. Maillard reaction products in pet foods

    OpenAIRE

    Rooijen, van, J.

    2015-01-01

    Pet dogs and cats around the world are commonly fed processed commercial foods throughout their lives. Often heat treatments are used during the processing of these foods to improve nutrient digestibility, shelf life, and food safety. Processing is known to induce the Maillard reaction, in which a reducing sugar binds to a free reactive amino group of an amino acid. In intact proteins, the ε-amino group of lysine is the most abundant free amino group. The reaction reduces the bioavail...

  8. Heavy quark production in neutrino-nucleon reactions

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, C.E.M. de; Simoes, J.A.M. (Rio de Janeiro Univ. (Brazil). Inst. de Fisica); Garcia Canal, C.A. (La Plata Univ. Nacional (Argentina))

    1982-05-01

    The heavy quark production (charm and bottom) in neutrino-nucleon reactions is discussed. The greater interest is in the leptonic channels, in particular in the production of two charged leptons in the final state.

  9. Studies of Atmospheric Chemistry and Reaction Mechanisms Using Optical Spectroscopy and Mass Spectrometry

    OpenAIRE

    Liu, Yingdi

    2011-01-01

    This thesis mainly focuses on (1) development and applications of cavity ringdown spectroscopy (CRDS) to study atmospheric trace gases; (2) reactive intermediates in the alkene ozonolysis reactions using photoionization time-of-flight mass spectrometry (TOFMS); and (3) development of new methods using CRDS for thin film studies.Specifically, CRDS based instruments are developed to measure and characterize peroxy radicals in atmosphere. By combining the chemical amplification detection of pero...

  10. Stream of Reaction Products behind the Detonation Wave Front

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Embedded copper foils in a high explosive charge allow to see the stream of the reaction products behind the detonation front. With three individual firings in front of FXR it can be shown that the reaction products behind the detonation front are immediately going in the direction of the detonation front. But then the rarefaction fans are influencing strongly the further displacements.

  11. Atmospheric chemistry of perfluorinated carboxylic acids: Reaction with OH radicals and atmospheric lifetimes

    DEFF Research Database (Denmark)

    Hurley, MD; Andersen, Mads Peter Sulbæk; Wallington, TJ;

    2004-01-01

    Relative rate techniques were used to study the kinetics of the reactions of OH radicals with a homologous series of perfluorinated acids, F(CF2)(n)COOH (n = 1, 2, 3, 4), in 700 Torr of air at 296 +/- 2 K. For n > 1, the length of the F(CF2)(n) group had no discernible impact on the reactivity of...

  12. Reactions of CF3O radicals with selected alkenes and aromatics under atmospheric conditions

    DEFF Research Database (Denmark)

    Kelly, C.; Sidebottom, H.W.; Treacy, J.;

    1994-01-01

    Rate data for the reactions of CF3O radicals with alkenes and aromatic compounds have been determined at 298 K using a relative rate method. The data are analyzed in terms of structure-reactivity relationships, and their importance to the atmospheric chemistry of CF3O discussed.......Rate data for the reactions of CF3O radicals with alkenes and aromatic compounds have been determined at 298 K using a relative rate method. The data are analyzed in terms of structure-reactivity relationships, and their importance to the atmospheric chemistry of CF3O discussed....

  13. Maillard reaction products in pet foods

    NARCIS (Netherlands)

    Rooijen, van C.

    2015-01-01

    Pet dogs and cats around the world are commonly fed processed commercial foods throughout their lives. Often heat treatments are used during the processing of these foods to improve nutrient digestibility, shelf life, and food safety. Processing is known to induce the Maillard reaction, in which a r

  14. A review of the rates of reaction of unirradiated uranium in gaseous atmospheres

    International Nuclear Information System (INIS)

    The review collates available quantitative rate data for the reaction of unirradiated uranium in dry and moist air, steam and carbon dioxide based atmospheres at temperatures ranging from room temperature to above the melting point of uranium. Reactions in nitrogen and carbon monoxide are also considered. The aim of the review is to provide a compilation of base data for the hazard analysis of fault conditions relating to Magnox fuel. (author)

  15. High energy gamma-ray production in nuclear reactions

    International Nuclear Information System (INIS)

    Experimental techniques used to study high energy gamma-ray production in nuclear reactions are reviewed. High energy photon production in nucleus-nucleus collisions is discussed. Semi-classical descriptions of the nucleus-nucleus gamma reactions are introduced. Nucleon-nucleon gamma cross sections are considered, including theoretical aspects and experimental data. High energy gamma ray production in proton-nucleus reactions is explained. Theoretical explanations of photon emission in nucleus-nucleus collisions are treated. The contribution of charged pion currents to photon production is mentioned

  16. Production, modification, and consumption of atmospheric trace gases by microorganisms

    OpenAIRE

    Schlegel, Prof. Dr. H. G.

    2011-01-01

    Some trace gases are contained in the atmosphere in appreciable amounts: methane, carbon monoxide, hydrogen, nitrous oxide. The bulk of these gases is of biological origin. Hydrogen is a primary product of microbial metabolism under anaerobic conditions. However, before reaching the atmosphere, it is converted by methane bacteria to methane, by nitrate reducing bacteria to nitrogen and to nitrous oxide and by sulfate reducing bacteria to hydrogen sulfide. Carbon monoxide is produced from cert...

  17. Adsorption and reaction of trace gas-phase organic compounds on atmospheric water film surfaces: a critical review.

    Science.gov (United States)

    Donaldson, D J; Valsaraj, Kalliat T

    2010-02-01

    The air-water interface in atmospheric water films of aerosols and hydrometeors (fog, mist, ice, rain, and snow) presents an important surface for the adsorption and reaction of many organic trace gases and gaseous reactive oxidants (hydroxyl radical (OH(.)), ozone (O(3)), singlet oxygen (O(2)((1)Delta(g))), nitrate radicals (NO(3)(.)), and peroxy radicals (RO(2)(.)). Knowledge of the air-water interface partition constant of hydrophobic organic species is necessary for elucidating the significance of the interface in atmospheric fate and transport. Various methods of assessing both experimental and theoretical values of the thermodynamic partition constant and adsorption isotherm are described in this review. Further, the reactivity of trace gases with gas-phase oxidants (ozone and singlet oxygen) at the interface is summarized. Oxidation products are likely to be more water-soluble and precursors for secondary organic aerosols in hydrometeors. Estimation of characteristic times shows that heterogeneous photooxidation in water films can compete effectively with homogeneous gas-phase reactions for molecules in the atmosphere. This provides further support to the existing thesis that reactions of organic compounds at the air-water interface should be considered in gas-phase tropospheric chemistry. PMID:20058916

  18. Adsorption and reaction of trace gas-phase organic compounds on atmospheric water film surfaces: a critical review.

    Science.gov (United States)

    Donaldson, D J; Valsaraj, Kalliat T

    2010-02-01

    The air-water interface in atmospheric water films of aerosols and hydrometeors (fog, mist, ice, rain, and snow) presents an important surface for the adsorption and reaction of many organic trace gases and gaseous reactive oxidants (hydroxyl radical (OH(.)), ozone (O(3)), singlet oxygen (O(2)((1)Delta(g))), nitrate radicals (NO(3)(.)), and peroxy radicals (RO(2)(.)). Knowledge of the air-water interface partition constant of hydrophobic organic species is necessary for elucidating the significance of the interface in atmospheric fate and transport. Various methods of assessing both experimental and theoretical values of the thermodynamic partition constant and adsorption isotherm are described in this review. Further, the reactivity of trace gases with gas-phase oxidants (ozone and singlet oxygen) at the interface is summarized. Oxidation products are likely to be more water-soluble and precursors for secondary organic aerosols in hydrometeors. Estimation of characteristic times shows that heterogeneous photooxidation in water films can compete effectively with homogeneous gas-phase reactions for molecules in the atmosphere. This provides further support to the existing thesis that reactions of organic compounds at the air-water interface should be considered in gas-phase tropospheric chemistry.

  19. Aqueous-Phase Reactions of Isoprene with Sulfoxy Radical Anions as a way of Wet Aerosol Formation in the Atmosphere

    Science.gov (United States)

    Kuznietsova, I.; Rudzinski, K. J.; Szmigielski, R.; Laboratory of the Environmental Chemistry

    2011-12-01

    Atmospheric aerosols exhibit an important role in the environment. They have implications on human health and life, and - in the larger scale - on climate, the Earth's radiative balance and the cloud's formation. Organic matter makes up a significant fraction of atmospheric aerosols (~35% to ~90%) and may originate from direct emissions (primary organic aerosol, POA) or result from complex physico-chemical processes of volatile organic compounds (secondary organic aerosol, SOA). Isoprene (2-methyl-buta-1,3-diene) is one of the relevant volatile precursor of ambient SOA in the atmosphere. It is the most abundant non-methane hydrocarbon emitted to the atmosphere as a result of living vegetation. According to the recent data, the isoprene emission rate is estimated to be at the level of 500 TgC per year. While heterogeneous transformations of isoprene have been well documented, aqueous-phase reactions of this hydrocarbon with radical species that lead to the production of new class of wet SOA components such as polyols and their sulfate esters (organosulfates), are still poorly recognized. The chain reactions of isoprene with sulfoxy radical-anions (SRA) are one of the recently researched route leading to the formation of organosulfates in the aqueous phase. The letter radical species originate from the auto-oxidation of sulfur dioxide in the aqueous phase and are behind the phenomenon of atmospheric acid rain formation. This is a complicated chain reaction that is catalyzed by transition metal ions, such as manganese(II), iron(III) and propagated by sulfoxy radical anions . The presented work addresses the chemical interaction of isoprene with sulfoxy radical-anions in the water solution in the presence of nitrite ions and nitrous acid, which are important trace components of the atmosphere. We showed that nitrite ions and nitrous acid significantly altered the kinetics of the auto-oxidation of SO2 in the presence of isoprene at different solution acidity from 2 to 8

  20. Mutagenicity in Salmonella of a Simulated Urban-Smog Atmosphere Generated Using a Mobile Reaction Chamber

    Science.gov (United States)

    The EPA Mobile Reaction Chamber (MRC) is a 24-foot trailer containing a 14.3-m3 Teflon lined photochemical chamber used to generate simulated urban atmospheres. Photochemistry in the MRC is catalyzed by 120 fluorescent bulbs evenly mixed with black light bulbs and UV bulbs (300 &...

  1. Oxidation and nitration of tyrosine by ozone and nitrogen dioxide: reaction mechanisms and biological and atmospheric implications.

    Science.gov (United States)

    Sandhiya, L; Kolandaivel, P; Senthilkumar, K

    2014-04-01

    The nitration of tyrosine by atmospheric oxidants, O3 and NO2, is an important cause for the spread of allergenic diseases. In the present study, the mechanism and pathways for the reaction of tyrosine with the atmospheric oxidants O3 and NO2 are studied using DFT-M06-2X, B3LYP, and B3LYP-D methods with the 6-311+G(d,p) basis set. The energy barrier for the initial oxidation reactions is also calculated at the CCSD(T)/6-31+G(d,p) level of theory. The reaction is studied in gas, aqueous, and lipid media. The initial oxidation of tyrosine by O3 proceeds by H atom abstraction and addition reactions and leads to the formation of six different intermediates. The subsequent nitration reaction is studied for all the intermediates, and the results show that the nitration affects both the side chain and the aromatic ring of tyrosine. The rate constant of the favorable oxidation and nitration reaction is calculated using variational transition state theory over the temperature range of 278-350 K. The spectral properties of the oxidation and nitration products are calculated at the TD-M06-2X/6-311+G(d,p) level of theory. The fate of the tyrosine radical intermediate is studied by its reaction with glutathione antioxidant. This study provides an enhanced understanding of the oxidation and nitration of tyrosine by O3 and NO2 in the context of improving the air quality and reducing the allergic diseases.

  2. The Influence of CO2 Admixtures on the Product Composition in a Nitrogen-Methane Atmospheric Glow Discharge Used as a Prebiotic Atmosphere Mimic

    Science.gov (United States)

    Mazankova, V.; Torokova, L.; Krcma, F.; Mason, N. J.; Matejcik, S.

    2016-11-01

    This work extends our previous experimental studies of the chemistry of Titan's atmosphere by atmospheric glow discharge. The Titan's atmosphere seems to be similarly to early Earth atmospheric composition. The exploration of Titan atmosphere was initiated by the exciting results of the Cassini-Huygens mission and obtained results increased the interest about prebiotic atmospheres. Present work is devoted to the role of CO2 in the prebiotic atmosphere chemistry. Most of the laboratory studies of such atmosphere were focused on the chemistry of N2 + CH4 mixtures. The present work is devoted to the study of the oxygenated volatile species in prebiotic atmosphere, specifically CO2 reactivity. CO2 was introduced to the standard N2 + CH4 mixture at different mixing ratio up to 5 % CH4 and 3 % CO2. The reaction products were characterized by FTIR spectroscopy. This work shows that CO2 modifies the composition of the gas phase with the detection of oxygenated compounds: CO and others oxides. There is a strong influence of CO2 on increasing concentration other products as cyanide (HCN) and ammonia (NH3).

  3. The Influence of CO2 Admixtures on the Product Composition in a Nitrogen-Methane Atmospheric Glow Discharge Used as a Prebiotic Atmosphere Mimic

    Science.gov (United States)

    Mazankova, V.; Torokova, L.; Krcma, F.; Mason, N. J.; Matejcik, S.

    2016-04-01

    This work extends our previous experimental studies of the chemistry of Titan's atmosphere by atmospheric glow discharge. The Titan's atmosphere seems to be similarly to early Earth atmospheric composition. The exploration of Titan atmosphere was initiated by the exciting results of the Cassini-Huygens mission and obtained results increased the interest about prebiotic atmospheres. Present work is devoted to the role of CO2 in the prebiotic atmosphere chemistry. Most of the laboratory studies of such atmosphere were focused on the chemistry of N2 + CH4 mixtures. The present work is devoted to the study of the oxygenated volatile species in prebiotic atmosphere, specifically CO2 reactivity. CO2 was introduced to the standard N2 + CH4 mixture at different mixing ratio up to 5 % CH4 and 3 % CO2. The reaction products were characterized by FTIR spectroscopy. This work shows that CO2 modifies the composition of the gas phase with the detection of oxygenated compounds: CO and others oxides. There is a strong influence of CO2 on increasing concentration other products as cyanide (HCN) and ammonia (NH3).

  4. A new transitory product in the ozonolysis of trans-2-butene at atmospheric pressure

    Science.gov (United States)

    Horie, O.; Moortgat, G. K.

    1989-03-01

    A previously unidentified transitory species, tentatively assigned as hydroxyethyl formate, CH 3CH (OH)-O-CHO, was formed as a major product in the ozonolysis of trans-2-butene at atmospheric pressure. A continuous stirred-tank reactor was used to analyze reaction products via molecular-beam sampling and matrix isolation FTIR spectroscopy. CH 3CHO, HCHO, CO 2, CO, CH 3OH, CH 4 and H 2O were the main, HCOOH and CH 2CO the minor, products. CH 3COOH and propene ozonide were detected as trace components.

  5. Resonance production in γγ reactions

    International Nuclear Information System (INIS)

    Experimental results on the exclusive production of resonances in γγ collisions are reviewed. These include new measurements of the radiative widths of the pseudoscalar (eta,eta') and the tensor mesons (f, A2, f'). A comparison of these results with SU(3) is made. Upper limits for other states than f in γγ -> ππ are given. The searches for γγ production of the states iota and theta as well as etasub(c) are presented and upper limits are given. Finally a limit is given for the rare decay f -> π+π-2π0. (orig.)

  6. A product study of the isoprene+NO3 reaction

    Directory of Open Access Journals (Sweden)

    A. Hansel

    2009-02-01

    Full Text Available Oxidation of isoprene through reaction with NO3 is a significant sink for isoprene that persists after dark. The products of the reaction are multifunctional nitrates. These nitrates constitute a significant NOx sink in the nocturnal boundary layer and they likely play an important role in formation of secondary organic aerosol. Products of the isoprene+NO3 reaction will, in many locations, be abundant enough to affect nighttime radical chemistry and to persist into daytime where they may represent a source of NOx. Product formation in the isoprene+NO3 reaction was studied in a smog chamber at Purdue University. Isoprene nitrates and other hydrocarbon products were observed using Proton Transfer Reaction-Mass Spectrometry (PTR-MS and reactive nitrogen products were observed using Thermal Dissociation–Laser Induced Fluorescence (TD-LIF. The organic nitrate yield is found to be 62±6% and the combined yield of MACR+MVK is found to be ~10%. Additional hydrocarbon products, thought to be primarily C4 and C5 carbonyl compounds, were observed by the PTR-MS at various m/z ratios and their yields quantified. These other oxidation products are used as additional constraints on the reaction mechanism.

  7. A product study of the isoprene+NO3 reaction

    Directory of Open Access Journals (Sweden)

    R. C. Cohen

    2009-07-01

    Full Text Available Oxidation of isoprene through reaction with NO3 radicals is a significant sink for isoprene that persists after dark. The main products of the reaction are multifunctional nitrates. These nitrates constitute a significant NOx sink in the nocturnal boundary layer and they likely play an important role in formation of secondary organic aerosol. Products of the isoprene+NO3 reaction will, in many locations, be abundant enough to affect nighttime radical chemistry and to persist into daytime where they may represent a source of NOx. Product formation in the isoprene + NO3 reaction was studied in a smog chamber at Purdue University. Isoprene nitrates and other hydrocarbon products were observed using Proton Transfer Reaction-Mass Spectrometry (PTR-MS and reactive nitrogen products were observed using Thermal Dissociation–Laser Induced Fluorescence (TD-LIF. The organic nitrate yield is found to be 65±12% of which the majority was nitrooxy carbonyls and the combined yield of methacrolein and methyl vinyl ketone (MACR+MVK is found to be ∼10%. PTR-MS measurements of nitrooxy carbonyls and TD-LIF measurements of total organic nitrates agreed well. The PTR-MS also observed a series of minor oxidation products which were tentatively identified and their yields quantified These other oxidation products are used as additional constraints on the reaction mechanism.

  8. Products of the Benzene + O(3P) Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Taatjes, Craig A.; Osborn, David L.; Selby, Talitha M.; Meloni, Giovanni; Trevitt, Adam J.; Epifanovsky, Evgeny; Krylov, Anna I.; Sirjean, Baptiste; Dames, Enoch; Wang, Hai

    2009-12-21

    The gas-phase reaction of benzene with O(3P) is of considerable interest for modeling of aromatic oxidation, and also because there exist fundamental questions concerning the prominence of intersystem crossing in the reaction. While its overall rate constant has been studied extensively, there are still significant uncertainties in the product distribution. The reaction proceeds mainly through the addition of the O atom to benzene, forming an initial triplet diradical adduct, which can either dissociate to form the phenoxy radical and H atom, or undergo intersystem crossing onto a singlet surface, followed by a multiplicity of internal isomerizations, leading to several possible reaction products. In this work, we examined the product branching ratios of the reaction between benzene and O(3P) over the temperature range of 300 to 1000 K and pressure range of 1 to 10 Torr. The reactions were initiated by pulsed-laser photolysis of NO2 in the presence of benzene and helium buffer in a slow-flow reactor, and reaction products were identified by using the multiplexed chemical kinetics photoionization mass spectrometer operating at the Advanced Light Source (ALS) of Lawrence Berkeley National Laboratory. Phenol and phenoxy radical were detected and quantified. Cyclopentadiene and cyclopentadienyl radical were directly identified for the first time. Finally, ab initio calculations and master equation/RRKM modeling were used to reproduce the experimental branching ratios, yielding pressure-dependent rate expressions for the reaction channels, including phenoxy + H, phenol, cyclopentadiene + CO, which are proposed for kinetic modeling of benzene oxidation.

  9. Pion Production in High-Energy Neutrino Reactions with Nuclei

    CERN Document Server

    Mosel, Ulrich

    2015-01-01

    [Background] A quantitative understanding of neutrino interactions with nuclei is needed for precision era neutrino long baseline experiments (MINOS, NOvA, LBNE) which all use nuclear targets. Pion production is the dominant reaction channel at the energies of these experiments. [Purpose] Investigate the influence of nuclear effects on neutrino-induced pion production cross sections and compare predictions for pion-production with available data. [Method] The Giessen Boltzmann--Uehling--Uhlenbeck (GiBUU) model is used for the description of all incohrent channels in neutrino-nucleus reactions. [Results] Differential cross sections for charged and neutral pion production for the MINER$\

  10. Fluctuation theorem for entropy production in a chemical reaction channel

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Fluctuation theorem for entropy production in a mesoscopic chemical reaction network is discussed. When the system size is sufficiently large, it is found that, by defining a kind of coarse-grained dissipation function, the entropy production in a reversible reaction channel can be approximately described by a type of detailed fluctuation theorem. Such a fluctuation relation has been successfully tested by direct simulations in a linear reaction model consisting of two reversible channels and in an oscillatory model wherein only one channel is reversible.

  11. Modelling of OH production in cold atmospheric-pressure He–H2O plasma jets

    International Nuclear Information System (INIS)

    Results of the modelling of OH production in the plasma bullet mode of cold atmospheric-pressure He–H2O plasma jets are presented. It is shown that the dominant source of OH molecules is related to the Penning and charge transfer reactions of H2O molecules with excited and charged helium species produced by guided streamers (plasma bullets), in contrast to the case of He–H2O glow discharges where OH production is mainly due to the dissociation of H2O molecules by electron impact. (paper)

  12. Reactions of substituted benzene anions with N and O atoms: Chemistry in Titan's upper atmosphere and the interstellar medium

    Science.gov (United States)

    Wang, Zhe-Chen; Bierbaum, Veronica M.

    2016-06-01

    The likely existence of aromatic anions in many important extraterrestrial environments, from the atmosphere of Titan to the interstellar medium (ISM), is attracting increasing attention. Nitrogen and oxygen atoms are also widely observed in the ISM and in the ionospheres of planets and moons. In the current work, we extend previous studies to explore the reactivity of prototypical aromatic anions (deprotonated toluene, aniline, and phenol) with N and O atoms both experimentally and computationally. The benzyl and anilinide anions both exhibit slow associative electron detachment (AED) processes with N atom, and moderate reactivity with O atom in which AED dominates but ionic products are also formed. The reactivity of phenoxide is dramatically different; there is no measurable reaction with N atom, and the moderate reactivity with O atom produces almost exclusively ionic products. The reaction mechanisms are studied theoretically by employing density functional theory calculations, and spin conversion is found to be critical for understanding some product distributions. This work provides insight into the rich gas-phase chemistry of aromatic ion-atom reactions and their relevance to ionospheric and interstellar chemistry.

  13. Kaon production in heavy ion reactions at intermediate energies

    CERN Document Server

    Fuchs, C

    2006-01-01

    The article reviews the physics related to kaon and antikaon production in heavy ion reactions at intermediate energies. Chiral dynamics predicts substantial modifications of the kaon properties in a dense nuclear environment. The status of the theoretical predictions as well as experimental evidences for medium effects such as repulsive/attractive mass shifts for $K^+/K^-$ are reviewed. In the vicinity of the thresholds, and even more pronounced below threshold, the production of strangeness is a highly collective process. Starting from elementary reaction channels the phenomenology of $K^+$ and $K^-$ production, i.e. freeze-out densities, time scales etc. as derived from experiment and theoretical transport calculations is presented. Below threshold kaon production shows a high sensitivity on the nuclear compression reached in heavy ion reactions. This allows to put constraints on the nuclear equation-of-state which are finally discussed.

  14. Reactions of SIV species with organic compounds: formation mechanisms of organo-sulfur derivatives in atmospheric aerosols

    Science.gov (United States)

    Passananti, Monica; Shang, Jing; Dupart, Yoan; Perrier, Sébastien; George, Christian

    2015-04-01

    Secondary organic aerosol (SOA) have an important impact on climate, air quality and human health. However the chemical reactions involved in their formation and growth are not fully understood or well-constrained in climate models. It is well known that inorganic sulfur (mainly in oxidation states (+IV) and (+VI)) plays a key role in aerosol formation, for instance sulfuric acid is known to be a good nucleating gas. In addition, acid-catalyzed heterogeneous reactions of organic compounds has shown to produce new particles, with a clear enhancement in the presence of ozone (Iinuma 2013). Organosulfates have been detected in tropospheric particles and aqueous phases, which suggests they are products of secondary organic aerosol formation process (Tolocka 2012). Originally, the production of organosulfates was explained by the esterification reaction of alcohols, but this reaction in atmosphere is kinetically negligible. Other formation pathways have been suggested such as hydrolysis of peroxides and reaction of organic matter with sulfite and sulfate radical anions (SO3-, SO4-) (Nozière 2010), but it remains unclear if these can completely explain atmospheric organo-sulfur aerosol loading. To better understand the formation of organo-sulfur compounds, we started to investigate the reactivity of SIV species (SO2 and SO32-) with respect to specific functional groups (organic acids and double bonds) on atmospherically relevant carboxylic acids and alkenes. The experiments were carried out in the homogeneous aqueous phase and at the solid-gas interface. A custom built coated-wall flow tube reactor was developed to control relativity humidity, SO2 concentration, temperature and gas flow rate. Homogeneous and heterogeneous reaction kinetics were measured and resulting products were identified using liquid chromatography coupled with an orbitrap mass spectrometer (LC-HR-MS). The experiments were performed with and without the presence of ozone in order to evaluate any

  15. Thermochemical Reactions for Solar Energy Storage and Fuel Production

    OpenAIRE

    Roeb, Martin; Sattler, Christian

    2013-01-01

    Thermochemical multistep processes are promising options to face future energy problems. Such reactions can be used to enhance the availability of solar energy in terms of energy transport, of energy demand/supply management and of potential energy related applications. Coupling concentrated sunlight to suitable sequences of thermochemical reaction enables the production of hydrogen, syngas and other fuels derived from those precursors by water- and CO2-splitting as well as the storage of sol...

  16. [Allergic reaction to products made of natural rubber].

    Science.gov (United States)

    Antczak, M; Kuna, P; Cieślewicz, G

    In the previous few years, there has been a startling escalation in intraoperative and radiologic anaphylactic episodes, some of them lethal, that have been assigned to rubber exposure. Immediate hypersensitivity reactions to natural rubber pose a significant risk to patient with spina bifida and urogenital abnormalities, health care workers, and rubber industry workers. It has been estimated that 2% to 10% of physicians and nursing personnel are latex allergic. The clinical syndromes associated with reactions to latex may be divided into three broad categories a) contact dermatitis--limited to skin directly in contact with latex, b) contact urticaria syndrome a broad spectrum of contact reactions including not only immediate wheal and flare reactions, but also dyshidrotic vesiculation, and accelerated contact reactions including erythema, burning or pruritus occurring within 10-30 minutes after contact, c) systemic allergic reactions-including generalized urticaria or pruritus, rhinoconjunctivitis or asthma, as well as the multiple presentations of anaphylaxis. Contact dermatitis reactions are thought to be a T-cell mediated type IV reaction, systemic reactions to latex appear to be an IgE-mediated phenomenon. Contact urticaria syndrome seems to be a heterogeneous group of reactions. Diagnosis of latex allergy is made on clinical grounds, however, history alone is insufficient to recognize all patients at risk, and conscientious testing materials are not yet available. Prick tests utilizing extracts from latex gloves or from raw latex preparation can be used but the specificity of this test remains unknown. Skin prick testing must be considered experimental and should be only done by experienced physician. Serologic testing for latex allergy remains a safe alternative, although the sensitivity and specificity of this procedure is still undefined. Prophylactic regimes to avoid rubber exposure and decrease the antigen content of natural rubber products by the rubber

  17. Particulate and gas-phase products from the atmospheric degradation of chlorpyrifos and chlorpyrifos-oxon

    Science.gov (United States)

    Borrás, Esther; Ródenas, Milagros; Vázquez, Mónica; Vera, Teresa; Muñoz, Amalia

    2015-12-01

    The phosphorothioate structure is highly present in several pesticides. However, there is a lack of information about its degradation process in air and the secondary pollutants formed. Herein, the atmospheric reactions of chlorpyrifos, one of the most world-used insecticide, and its main degradation product - chlorpyrifos-oxon - are described. The photo-oxidation under the presence of NOx was studied in a large outdoor simulation chamber for both chlorpyrifos and chlorpyrifos-oxon, observing a rapid degradation (Half lifetime < 3.5 h for both compounds). Also, the photolysis reactions of both were studied. The formation of particulate matter (aerosol mass yield ranged 6-59%) and gaseous products were monitored. The chemical composition of minor products was studied, identifying 15 multi-oxygenated derivatives. The most abundant products were ring-retaining molecules such as 3,5,6-trichloropyridin-2-ol and ethyl 3,5,6-trichloropyridin-2-yl hydrogen phosphate. An atmospheric degradation mechanism has been amplified based on an oxidation started with OH-nucleophilic attack to Pdbnd S bond.

  18. Kinetics and Product Yields of the Gas-Phase Reactions of Isoprene Hydroxynitrates and Isoprene Carbonynitrates

    Science.gov (United States)

    Abdelhamid, A.; Addala, R.; Vizenor, N.; Scruggs, A.; Tyndall, G. S.; Orlando, J. J.; Le, T.; Cardenas, E.; Maitra, S.; Hasson, A. S.

    2013-12-01

    Isoprene nitrates are formed in the troposphere from the reactions of isoprene with OH in the presence of NOx during the day and with NO3 during the night. Depending on their subsequent reactions, these compounds may be reservoirs or sinks for NOx, and may contribute to secondary organic aerosol formation. In this work, two isoprene hydroxynitrates (CH2=CHC(ONO2)(CH3)CH2OH, 1,2-IHN and CH2OHCH(ONO2)C(CH3)=CH2, 4,3-IHN ) and one isoprene carbonyl nitrate (CH2=CHC(ONO2)(CH3)CHO, ICN)) were synthesized. The kinetics and product yields from their reaction with O3, OH, NO3 and Cl were then investigated in a photochemical reactor using a combination of long-path Fourier transform infra-red spectroscopy, proton transfer reaction mass spectrometry and gas chromatography with flame ionization detection. Measured rate coefficients are consistent with reaction with OH and NO3 as the major chemical sinks for these compounds. Measured product yields imply that NOx is not released from these compounds in their reactions with atmospheric oxidants.

  19. Interplay between diffusion, accretion and nuclear reactions in the atmospheres of Sirius and Przybylski's star

    CERN Document Server

    Yushchenko, A; Goriely, S; Shavrina, A; Kang, Y W; Rostopchin, S; Valyavin, G; Mkrtichian, D; Hatzes, A; Lee, B C; Kim, C; Yushchenko, Alexander; Gopka, Vera; Goriely, Stephane; Shavrina, Angelina; Kang, Young Woon; Rostopchin, Sergey; Valyavin, Gennady; Mkrtichian, David; Hatzes, Artie; Lee, Byeong-Cheol; Kim, Chulhee

    2006-01-01

    The abundance anomalies in chemically peculiar B-F stars are usually explained by diffusion of chemical elements in the stable atmospheres of these stars. But it is well known that Cp stars with similar temperatures and gravities show very different chemical compositions. We show that the abundance patterns of several stars can be influenced by accretion and (or) nuclear reactions in stellar atmospheres. We report the result of determination of abundances of elements in the atmosphere of hot Am star: Sirius A and show that Sirius A was contaminated by s-process enriched matter from Sirius B (now a white dwarf). The second case is Przybylski's star. The abundance pattern of this star is the second most studied one after the Sun with the abundances determined for about 60 chemical elements. Spectral lines of radioactive elements with short decay times were found in the spectrum of this star. We report the results of investigation on the stratification of chemical elements in the atmosphere of Przybylski's star ...

  20. Methyl chavicol: characterization of its biogenic emission rate, abundance, and oxidation products in the atmosphere

    Science.gov (United States)

    Bouvier-Brown, N. C.; Goldstein, A. H.; Worton, D. R.; Matross, D. M.; Gilman, J. B.; Kuster, W. C.; Welsh-Bon, D.; Warneke, C.; de Gouw, J. A.; Cahill, T. M.; Holzinger, R.

    2009-03-01

    We report measurements of ambient atmospheric mixing ratios for methyl chavicol and determine its biogenic emission rate. Methyl chavicol, a biogenic oxygenated aromatic compound, is abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol was detected simultaneously by three in-situ instruments - a gas chromatograph with mass spectrometer detector (GC-MS), a proton transfer reaction mass spectrometer (PTR-MS), and a thermal desorption aerosol GC-MS (TAG) - and found to be abundant within and above Blodgett Forest. Methyl chavicol atmospheric mixing ratios are strongly correlated with 2-methyl-3-buten-2-ol (MBO), a light- and temperature-dependent biogenic emission from the ponderosa pine trees at Blodgett Forest. Scaling from this correlation, methyl chavicol emissions account for 4-68% of the carbon mass emitted as MBO in the daytime, depending on the season. From this relationship, we estimate a daytime basal emission rate of 0.72-10.2 μgCg-1 h-1, depending on needle age and seasonality. We also present the first observations of its oxidation products (4-methoxybenzaldehyde and 4-methyoxy benzene acetaldehyde) in the ambient atmosphere. Methyl chavicol is a major essential oil component of many plant species. This work suggests that methyl chavicol plays a significant role in the atmospheric chemistry of Blodgett Forest, and potentially other sites, and should be included explicitly in both biogenic volatile organic carbon emission and atmospheric chemistry models.

  1. Measurement of exclusive eta' production in γγ reactions

    International Nuclear Information System (INIS)

    We observe γγ->eta' production in the reaction e+e- -> e+e-π+π-γ. We measure the product GAMMAsub(γγ)(eta')B(eta' -> rho0γ) to be 1.14+-0.08+-0.11 keV. A first measurement of the γγ->eta' transition form factor is made for Q2 up to 1 GeV2. (orig.)

  2. Stochastic aspects of multiparticle production in relativistic nuclear reactions

    International Nuclear Information System (INIS)

    Midrapidity multiparticle production process in ordinary hadron and heavy-ion induced reactions at sufficiently high incident energies are analyzed. It is shown that stochastic aspects of multiparticle production process in relativistic range plays a dominating role in understanding the observable phenomena. The basic idea and the main results of the multisource model for hadron-nucleus and nucleus-nucleus collisions are shown. The concept of the NES (number of effective sources) scaling is discussed. 16 refs.; 7 figs

  3. Biodiesel production via injection of superheated methanol technology at atmospheric pressure

    International Nuclear Information System (INIS)

    Highlights: • Non-catalytic superheated methanol for biodiesel production is developed. • Crude Jatropha curcas oil with high FFA can be directly used as oil feedstock. • High content of biodiesel can be produced. • Separation of FAME and glycerol from the sample product is easy. - Abstract: In this high demand of renewable energy market, biodiesel was extensively produced via various catalytic and non-catalytic technologies. Conventional catalytic transesterification for biodiesel production has been shown to have limitation in terms of sensitivity to high water and free fatty acid, complicated separation and purification of biodiesel. In this study, an alternative and innovative approach was carried out via non-catalytic superheated methanol technology to produce biodiesel. Similar to supercritical reaction, the solvent need to be heated beyond the critical temperature but the reactor pressure remained at 0.1 MPa (atmospheric pressure). Transesterification reaction with superheated methanol was carried out at different reaction temperature within the limit of 270–300 °C and at different methanol flow rate ranging from 1 ml/min to 3 ml/min for 4 h. Results obtained showed that the highest biodiesel yield at 71.54% w/w was achieved at reaction temperature 290 °C and methanol flow rate at 2 ml/min with 88.81% w/w FAME content, implying the huge potential of superheated technology in producing FAME

  4. Strangeness production and hypernucleus formation in antiproton induced reactions

    CERN Document Server

    Feng, Zhao-Qing

    2015-01-01

    Formation mechanism of fragments with strangeness in collisions of antiprotons on nuclei has been investigated within the Lanzhou quantum molecular dynamics (LQMD) transport approach combined with a statistical model (GEMINI) for describing the decays of excited fragments. Production of strange particles in the antiproton induced nuclear reactions is modeled within the LQMD model, in which all possible reaction channels such as elastic scattering, annihilation, charge exchange and inelastic scattering in antibaryon-baryon, baryon-baryon and meson-baryon collisions have been included. A coalescence approach is developed for constructing hyperfragments in phase space after de-excitation of nucleonic fragments. The combined approach could describe the production of fragments in low-energy antiproton induced reactions. Hyperfragments are formed within the narrower rapidities and lower kinetic energies. It has advantage to produce heavier hyperfragments and hypernuclides with strangeness s=-2 (double-$\\Lambda$ fra...

  5. Direct reactions involving pion production in hot nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Voskresenskii, D.N.; Kolomeitsev, E.E. [Moscow Institute of Engineering Physics (Russian Federation)

    1995-01-01

    Probabilities and differential cross sections for the production of {pi}{sup {minus}} mesons in direct NN {yields} NN{pi}{sup {minus}lk} reactions are calculated with allowance for a change in the NN interaction in nuclear matter. The results are obtained in an analytic form for arbitrary temperatures of matter and arbitrary energies and momenta of pions. 13 refs.

  6. Gas-Phase Reactions of Methoxyphenols with NO3 Radicals: Kinetics, Products, and Mechanisms.

    Science.gov (United States)

    Zhang, Haixu; Yang, Bo; Wang, Youfeng; Shu, Jinian; Zhang, Peng; Ma, Pengkun; Li, Zhen

    2016-03-01

    Methoxyphenols, a group of important tracers for wood smoke, are emitted to the atmosphere in large quantities, but their transformations are rarely studied. In this study, the kinetics and products of the gas-phase reactions of eugenol and 4-ethylguaiacol with NO3 radicals were investigated online using a vacuum ultraviolet photoionization gas time-of-flight mass spectrometer. The rate coefficients of the gaseous reactions of eugenol and 4-ethylguaiacol with NO3 radicals were (1.6 ± 0.4) × 10(-13) and (1.1 ± 0.2) × 10(-12) cm(3) molecule(-1) s(-1) (at 298 K), indicating that the atmospheric lifetimes of the NO3 radicals were 3.5 and 0.5 h, respectively. With the aid of gas-chromatography-mass-spectrometry analysis, several types of degradation products were identified with nitro derivatives as the major products. The configurations of the nitro-product isomers and their formation mechanisms were determined via theoretical calculations. On the basis of these products, degradation pathways of the methoxyphenols with NO3 radicals were proposed. This study determines the degradation rates and mechanisms of the methoxyphenols at night and implies the significant NO3 nighttime chemistry. PMID:26845070

  7. Atmospheric chemistry of CF3COOH. Kinetics of the reaction with OH radicals

    DEFF Research Database (Denmark)

    Møgelberg, T.E.; Nielsen, O.J.; Sehested, J.;

    1994-01-01

    Two different experimental techniques were used to study the kinetics of the reaction of OH radicals with trifluoroacetic acid, CF3COOH. Using a pulse radiolysis absolute rate technique, rate constants at 315 and 348 K were determined to be (1.6 +/- 0.4) x 10(-13) and (1.5 +/- 0.2) x 10(-13) cm3...... molecule-1 s-1, respectively. Using a long path-length FTIR relative rate technique a rate constant of (1.7 +/- 0.5) x 10(-13) cm3 molecule-1 s-1 was obtained at 296 K. In the atmosphere, reaction with OH radicals in the gas phase is estimated to account for 10%-20% of the loss of CF3COOH. The major fate...... of CF3COOH is rainout....

  8. The characterization of atmospheric aerosols: Application to heterogeneous gas-particle reactions

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, J.M.; Henson, B.F.; Wilson, K.R. [Los Alamos National Lab., NM (United States); Prather, K.A.; Noble, C.A. [Univ. of California, Riverside, CA (United States)

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project of the Los Alamos National Laboratory (LANL). The objective of this collaborative research project is the measurement and modeling of atmospheric aerosols and heterogeneous (gas/aerosol) chemical reactions. The two major accomplishments are single particle characterization of tropospheric particles and experimental investigation of simulated stratospheric particles and reactions thereon. Using aerosol time-of-flight mass spectrometry, real-time and composition measurements of single particles are performed on ambient aerosol samples. This technique allows particle size distributions for chemically distinct particle types to be described. The thermodynamics and chemical reactivity of polar stratospheric clouds are examined using vapor deposited thin ice films. Employing nonlinear optical methods, as well as other techniques, phase transitions on both water and acid ices are monitored as a function of temperature or the addition of gases.

  9. Atmospheric chemistry of CF3O radicals: Reaction with H2O

    DEFF Research Database (Denmark)

    Wallington, T.J.; Hurley, M.D.; Schneider, W.F.;

    1993-01-01

    Evidence is presented that CF3O radicals react with H2O in the gas phase at 296 K to give CF3OH and OH radicals. This reaction is calculated to be exothermic by 1.7 kcal mol-I implying a surprisingly strong CF3O-H bond energy of 120 +/- 3 kcal mol-1. Results from a relative rate experimental study...... suggest that the rate constant for the reaction of CF3O radicals with H2O lies in the range (0.2-4.0) X 10(-17) cm3 molecule-1 s-1. Implications for the atmospheric chemistry of CF3O radicals are discussed....

  10. Optimization of the production of ethyl esters by ultrasound assisted reaction of soybean oil and ethanol

    Directory of Open Access Journals (Sweden)

    S. Rodrigues

    2009-06-01

    Full Text Available Biodiesel is a renewable liquid fuel that can be produced by a transesterification reaction between a vegetable oil and an alcohol. This paper evaluates and optimizes the production of ethyl esters (biodiesel from soybean oil and ethanol. The reaction was carried out by applying ultrasound under atmospheric pressure and ambient temperature. Response surface methodology was used to evaluate the influence of alcohol to oil molar ratio and catalyst concentration on the yield of conversion of soybean oil into ethyl esters. The process resulted in a maximum yield of 91.8% after 30 minutes of reaction. The process variables alcohol to oil ratio and catalyst to oil ratio were statistically significant regarding the yield of ethyl esters. The optimal operating condition was obtained applying an alcohol to oil molar ratio of 10.2 and a catalyst to oil weight ratio of 0.0035.

  11. Gas Sensor Evaluations in Polymer Combustion Product Atmospheres

    Science.gov (United States)

    Delgado, Rafael H.; Davis, Dennis D.; Beeson, Harold D.

    1999-01-01

    Toxic gases produced by the combustion or thermo-oxidative degradation of materials such as wire insulation, foam, plastics, or electronic circuit boards in space shuttle or space station crew cabins may pose a significant hazard to the flight crew. Toxic gas sensors are routinely evaluated in pure gas standard mixtures, but the possible interferences from polymer combustion products are not routinely evaluated. The NASA White Sands Test Facility (WSTF) has developed a test system that provides atmospheres containing predetermined quantities of target gases combined with the coincidental combustion products of common spacecraft materials. The target gases are quantitated in real time by infrared (IR) spectroscopy and verified by grab samples. The sensor responses are recorded in real time and are compared to the IR and validation analyses. Target gases such as carbon monoxide, hydrogen cyanide, hydrogen chloride, and hydrogen fluoride can be generated by the combustion of poly(vinyl chloride), polyimide-fluoropolymer wire insulation, polyurethane foam, or electronic circuit board materials. The kinetics and product identifications for the combustion of the various materials were determined by thermogravimetric-IR spectroscopic studies. These data were then scaled to provide the required levels of target gases in the sensor evaluation system. Multisensor toxic gas monitors from two manufacturers were evaluated using this system. In general, the sensor responses satisfactorily tracked the real-time concentrations of toxic gases in a dynamic mixture. Interferences from a number of organic combustion products including acetaldehyde and bisphenol-A were minimal. Hydrogen bromide in the products of circuit board combustion registered as hydrogen chloride. The use of actual polymer combustion atmospheres for the evaluation of sensors can provide additional confidence in the reliability of the sensor response.

  12. Open charm and beauty production in hadron reactions

    Energy Technology Data Exchange (ETDEWEB)

    Lykasov, G.I.; Lyubushkin, V.V.; Bednyakov, V.A. [Joint Institute for Nuclear Research, 141980, Dubna, Moscow region (Russian Federation)

    2010-01-15

    The production of charmed and beauty hadrons in proton-proton and proton-antiproton collisions at high energies is analyzed within the modified quark-gluon string model (QGSM) including the internal motion of quarks in colliding hadrons. It is shown that using both the QGSM and NLO QCD one can describe these experimental data rather successfully in a wide region of transverse momenta. We also present some predictions for the future experiments on the beauty baryon production in pp collisions at LHC energies and on the charmed meson production in p-bar p reactions at GSI energies.

  13. Meson productions in heavy ion reactions in CSR energy region

    CERN Document Server

    Jiang Huan Qing

    2002-01-01

    It is important to measure meson productions in heavy ion collisions in order to understand the dynamics of heavy ion reactions and the properties of nuclear matter. The authors review the characteristic and present status of meson productions near the threshold energies in heavy ion collisions. Especially the pion and K sup + productions are discussed. The authors point out that it is meaningful and possible to carry out the experimental studies at the CSR. It is necessary to carry out timely the experimental and the relevant theoretical studies

  14. Reactions of ethynyl radicals as a source of C 4 and C 5 hydrocarbons in Titan's atmosphere

    Science.gov (United States)

    Stahl, F.; Schleyer, P. v. R.; Schaefer, H. F., III; Kaiser, R. I.

    2002-06-01

    Crossed molecular beam experiments augmented by electronic structure computations of neutral-neutral reactions of the ethynyl radical (C 2H, X 2Σ+) with the unsaturated hydrocarbons acetylene (C 2H 2), methylacetylene (CH 3CCH), and allene (H 2CCCH 2) are reviewed briefly. All reactions are characterized by a C 2H versus H atom exchange and in the case of the C 2H/C 2H 2 system by an additional molecular hydrogen (H 2) elimination pathway. The attack of the ethynyl radical onto the π-electron density of the unsaturated hydrocarbons has no entrance barrier and initializes each reaction. Consecutive hydrogen atom migrations may precede the exit channels. Diacetylene (HCCCCH), the butadiynyl radical (HCCCC), methyldiacetylene (CH 3CCCCH), ethynylallene (H 2CCH(C 2H)), and penta-4-diyne (HCC(CH 2)C 2H) were identified as products of which only diacetylene has yet been observed in Titan's atmosphere. Our results, however, strongly suggest the presence of all these species on Titan, and the Cassini-Huygens mission is likely to detect these upon arrival in the Saturnian system in 2004.

  15. Sorption enhanced reaction process (SERP) for production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Sircar, S.; Anand, M.; Carvill, B. [Air Products and Chemicals, Inc., Allentown, PA (United States)] [and others

    1995-09-01

    Sorption Enhanced Reaction (SER) is a novel process that is being developed for the production of lower cost hydrogen by steam-methane reforming (SMR). In this process, the reaction of methane with steam is carried out in the presence of an admixture of a catalyst and a selective adsorbent for carbon dioxide. The consequences of SER are: (1) reformation reaction at a significantly lower temperature (300-500{degrees}C) than conventional SMR (800-1100{degrees}C), while achieving the same conversion of methane to hydrogen, (2) the product hydrogen is obtained at reactor pressure (200-400 psig) and at 99+% purity directly from the reactor (compared to only 70-75% H{sub 2} from conventional SMR reactor), (3) downstream hydrogen purification step is either eliminated or significantly reduced in size. The early focus of the program will be on the identification of an adsorbent/chemisorbent for CO{sub 2} and on the demonstration of the SER concept for SMR in our state-of-the-art bench scale process. In the latter stages, a pilot plant will be built to scale-up the technology and to develop engineering data. The program has just been initiated and no significant results for SMR will be reported. However, results demonstrating the basic principles and process schemes of SER technology will be presented for reverse water gas shift reaction as the model reaction. If successful, this technology will be commercialized by Air Products and Chemicals, Inc. (APCI) and used in its existing hydrogen business. APCI is the world leader in merchant hydrogen production for a wide range of industrial applications.

  16. Atmospheric chemistry of CF3C(O)O2 radicals. Kinetics of their reaction with NO2 and kinetics of the thermal decomposition of the product CF3C(O)O2NO2

    DEFF Research Database (Denmark)

    Wallington, T.J.; Sehested, J.; Nielsen, O.J.

    1994-01-01

    A pulse radiolysis technique has been used to measure a rate constant of (6.6 +/- 1.3) x 10(-12) cm3 molecule-1 s-1 for the association reaction between CF3C(O)O2 radicals and NO2 at 295 K and one atmosphere total pressure of SF6 diluent. A FTIR/smog chamber system was used to study the thermal...... decomposition CF3C(O)O2NO2. The rate of decomposition of CF3C(O)O2NO2 was independent of the total pressure of N2 diluent over the range 100-700 Torr and was fit by the expression k-1 = (1.9(-1.5)+7.6) x 10(16) exp[(-14000 +/- 480)/T] s-1. Implications for the atmospheric chemistry of CFC replacements...

  17. Non-thermal production and escape of OH from the upper atmosphere of Mars

    CERN Document Server

    Gacesa, Marko; Kharchenko, Vasili

    2016-01-01

    We present a theoretical analysis of formation and kinetics of hot OH molecules in the upper atmosphere of Mars produced in reactions of thermal molecular hydrogen and energetic oxygen atoms. Two major sources of energetic O considered are the photochemical production, via dissociative recombination of O$_{2}^{+}$ ions, and energizing collisions with fast atoms produced by the precipitating Solar Wind (SW) ions, mostly H$^+$ and He$^{2+}$, and energetic neutral atoms (ENAs) originating in the charge-exchange collisions between the SW ions and atmospheric gases. Energizing collisions of O with atmospheric secondary hot atoms, induced by precipitating SW ions and ENAs, are also included in our consideration. The non-thermal reaction O + H$_2(v,j) \\rightarrow$ H + OH$(v',j')$ is described using recent quantum-mechanical state-to-state cross sections, which allow us to predict non-equilibrium distributions of excited rotational and vibrational states $(v',j')$ of OH and expected emission spectra. A fraction of pr...

  18. Yields of O2(b 1 Sigma g +) from reactions of HO2. [in planetary atmospheres

    Science.gov (United States)

    Keyser, L. F.; Choo, K. Y.; Leu, M. T.

    1985-01-01

    The production of O2(b 1 Sigma g +) has been monitored for several reactions of the HO2 radical at 300 K using a discharge-flow apparatus with resonance fluorescence and chemiluminescence detection. In all cases, the resulting quantum efficiencies were found to be less than 0.03. O2(b) was observed when F atoms were added to H2O2 in the gas phase. The signal strengths of O2(b) were proportional to initial concentrations of HO2 formed by the F + H2O2 reaction. Observed /O2(b)/, /HO2/, and /OH/ vs /F/0 were analyzed using a simple three-step mechanism and a more complete computer simulation with 22 reaction steps. The results indicate that the F + HO2 reaction yields O2(b) with an efficiency of (3.6 + or - 1.4) x 10 to the -3rd. Yields from the O + OH2 reaction were less than 0.02, indicating that this reaction cannot be a major source of the O2(b) emission observed in the earth's nightglow.

  19. Syngas Production from Propane Using Atmospheric Non-thermal Plasma

    CERN Document Server

    Ouni, Fakhreddine; Cormier, Jean Marie; 10.1007/s11090-009-9166-2

    2009-01-01

    Propane steam reforming using a sliding discharge reactor was investigated under atmospheric pressure and low temperature (420 K). Non-thermal plasma steam reforming proceeded efficiently and hydrogen was formed as a main product (H2 concentration up to 50%). By-products (C2-hydrocarbons, methane, carbon dioxide) were measured with concentrations lower than 6%. The mean electrical power injected in the discharge is less than 2 kW. The process efficiency is described in terms of propane conversion rate, steam reforming and cracking selectivity, as well as by-products production. Chemical processes modelling based on classical thermodynamic equilibrium reactor is also proposed. Calculated data fit quiet well experimental results and indicate that the improvement of C3H8 conversion and then H2 production can be achieved by increasing the gas fraction through the discharge. By improving the reactor design, the non-thermal plasma has a potential for being an effective way for supplying hydrogen or synthesis gas.

  20. Pressure Dependent Product Formation in the Photochemically Initiated Allyl + Allyl Reaction

    Directory of Open Access Journals (Sweden)

    Thomas Zeuch

    2013-11-01

    Full Text Available Photochemically driven reactions involving unsaturated radicals produce a thick global layer of organic haze on Titan, Saturn’s largest moon. The allyl radical self-reaction is an example for this type of chemistry and was examined at room temperature from an experimental and kinetic modelling perspective. The experiments were performed in a static reactor with a volume of 5 L under wall free conditions. The allyl radicals were produced from laser flash photolysis of three different precursors allyl bromide (C3H5Br, allyl chloride (C3H5Cl, and 1,5-hexadiene (CH2CH(CH22CHCH2 at 193 nm. Stable products were identified by their characteristic vibrational modes and quantified using FTIR spectroscopy. In addition to the (re- combination pathway C3H5+C3H5 → C6H10 we found at low pressures around 1 mbar the highest final product yields for allene and propene for the precursor C3H5Br. A kinetic analysis indicates that the end product formation is influenced by specific reaction kinetics of photochemically activated allyl radicals. Above 10 mbar the (re- combination pathway becomes dominant. These findings exemplify the specificities of reaction kinetics involving chemically activated species, which for certain conditions cannot be simply deduced from combustion kinetics or atmospheric chemistry on Earth.

  1. A kinetic study of the reaction of ozone with ethylene in a smog chamber under atmospheric conditions

    Institute of Scientific and Technical Information of China (English)

    XU Yongfu; JIA Long; GE Maofa; DU Lin; WANG Gengchen; WANG Dianxun

    2006-01-01

    Ozone is one of the key species in the processes of atmospheric chemistry, which can be taken as an indicator of oxidation capacity in the troposphere, The reaction of ozone with reactive gases is an important process in the troposphere. Experimental simulation equipment of smog chamber for atmospheric reactions is used to study the reaction of ozone with ethylene in real atmospheric environment with ozone concentrations of 100-200 ppb. The concentrations of ozone and ethylene were monitored during the reaction with the combination of Model 49C-O3 Analyzer and GC-FID. A rate constant of 1.01×10-18 (cm3.mol-1.s-1) was obtained at 286.5 K,under condition of which the half-life of ozone was 88 min. The results obtained from our experiments are in excellent agreement with those reported previously by other researchers under extremely Iow pressure in terms of matrix-isolation technology. This demonstrates that our equipment of smog chamber for atmospheric reactions is reliable, which can be used for further research of the processes of atmospheric reactions.

  2. Dual Position Sensitive MWPC for tracking reaction products at VAMOS++

    CERN Document Server

    Vandebrouck, Marine; Rejmund, Maurycy; Fremont, Georges; Pancin, Julien; Navin, Alahari; Michelagnoli, Caterina; Goupil, Johan; Spitaels, Charles; Jacquot, Bertrand

    2015-01-01

    The characteristics and performance of a Dual Position Sensitive Multi-Wire Proportional Counter (DPS-MWPC) used to measure the scattering angle, interaction position on the target and the velocity of reaction products, detected in the VAMOS++ magnetic spectrometer, are reported. The detector consists of a pair of position sensitive low pressure MWPCs and provides both fast timing signals, along with the two-dimensional position coordinates required to define the trajectory of the reaction products. A time-of-flight resolution of 305(11) ps (FWHM) was measured. The measured resolutions (FWHM) were 2.5(3) mrad and 560(70) {\\mu}m for the scattering angle and the interaction point at the target respectively. The subsequent improvement of the Doppler correction of the energy of the gamma-rays, detected in the gamma-ray tracking array AGATA in coincidence with isotopically identified ions in VAMOS++, is also discussed.

  3. Effect of atmospheric oxidative plasma treatments on polypropylenic fibers surface: Characterization and reaction mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Nisticò, Roberto, E-mail: roberto.nistico@unito.it [University of Torino, Department of Chemistry and NIS Centre of Excellence, Via P. Giuria 7, 10125 Torino (Italy); Magnacca, Giuliana [University of Torino, Department of Chemistry and NIS Centre of Excellence, Via P. Giuria 7, 10125 Torino (Italy); Faga, Maria Giulia; Gautier, Giovanna [CNR-IMAMOTER, Strada delle Cacce 73, 10135 Torino (Italy); D’Angelo, Domenico; Ciancio, Emanuele [Clean-NT Lab, Environment Park S.p.A., Via Livorno 60, 10144 Torino (Italy); Lamberti, Roberta; Martorana, Selanna [Herniamesh S.r.l., Via F.lli Meliga 1/C, 10034 Chivasso (Italy)

    2013-08-15

    Atmospheric pressure plasma-dielectric barrier discharge (APP-DBD, open chamber configuration) was used to functionalize polypropylene (PP) fibers surface in order to generate oxidized-reactive groups such as hydroperoxides, alcohols and carbonyl species (i.e. ketones and others). Such a species increased the surface polarity, without causing material degradation. Three different types of plasma mixture (He, He/O{sub 2}, He/O{sub 2}/H{sub 2}O) under three different values of applied power (750, 1050, 1400 W) were investigated. The formed plasma species (O{sub 2}{sup +}, O single atom and OH radical) and their distribution were monitored via optical emission spectrometry (OES) measurements, and the plasma effects on PP surface species formation were followed by X-ray photoemission spectroscopy (XPS). Results allowed to better understand the reaction pathways between plasma phase and PP fibers. In fact, two reaction mechanisms were proposed, the first one concerning the plasma phase reactions and the second one involving material surface modifications.

  4. Common inorganic ions are efficient catalysts for organic reactions in atmospheric aerosols and other natural environments

    Science.gov (United States)

    Nozière, B.; Dziedzic, P.; Córdova, A.

    2009-01-01

    In this work, inorganic ammonium ions, NH4+, and carbonate ions, CO32-, are reported for the first time as catalysts for organic reactions in atmospheric aerosols and other natural environments at the Earth's surface. These reactions include the formation of C-C and C-O bonds by aldol condensation and acetal formation, and reveal a new aspect of the interactions between organic and inorganic materials in natural environments. The catalytic properties of inorganic ammonium ions, in particular, were not previously known in chemistry. The reactions were found to be as fast in tropospheric ammonium sulfate composition as in concentrated sulfuric acid. The ubiquitous presence and large concentrations of ammonium ions in tropospheric aerosols would make of ammonium catalysis a main consumption pathway for organic compounds in these aerosols, while acid catalysis would have a minor contribution. In particular, ammonium catalysis would account quantitatively for the aging of carbonyl compounds into secondary ''fulvic'' compounds in tropospheric aerosols, a transformation affecting the optical properties of these aerosols. In general, ammonium catalysis is likely to be responsible for many observations previously attributed to acid catalysis in the troposphere.

  5. Common inorganic ions are efficient catalysts for organic reactions in atmospheric aerosols and other natural environments

    Directory of Open Access Journals (Sweden)

    B. Nozière

    2009-01-01

    Full Text Available In this work, inorganic ammonium ions, NH4+, and carbonate ions, CO32−, are reported for the first time as catalysts for organic reactions in atmospheric aerosols and other natural environments at the Earth's surface. These reactions include the formation of C–C and C–O bonds by aldol condensation and acetal formation, and reveal a new aspect of the interactions between organic and inorganic materials in natural environments. The catalytic properties of inorganic ammonium ions, in particular, were not previously known in chemistry. The reactions were found to be as fast in tropospheric ammonium sulfate composition as in concentrated sulfuric acid. The ubiquitous presence and large concentrations of ammonium ions in tropospheric aerosols would make of ammonium catalysis a main consumption pathway for organic compounds in these aerosols, while acid catalysis would have a minor contribution. In particular, ammonium catalysis would account quantitatively for the aging of carbonyl compounds into secondary ''fulvic'' compounds in tropospheric aerosols, a transformation affecting the optical properties of these aerosols. In general, ammonium catalysis is likely to be responsible for many observations previously attributed to acid catalysis in the troposphere.

  6. Distribution of products in the reaction 20Ne + Al

    International Nuclear Information System (INIS)

    The measurement and preliminary analysis of the distribution of products with Z between 2 and 21 and A between 3 and 43 from 118- and 167-MeV reactions of 20Ne with Al are reported. Experimental conditions were adequate to allow resolution of individual isotopes over this entire range, and measurements were made at several angles for each bombarding energy. Measured relative cross sections of the heavier products were compared with predictions of a statistical-model evaporation calculation. The overall agreement between experiment and theory was rather good; however, certain discrepancies between calculation and experiment for low Z and A at 167 MeV may be troublesome. 3 figures

  7. Influence of transesterification reaction temperature on biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Pighinelli, Anna Leticia Montenegro Turtelli; Zorzeto, Thais Queiroz; Park, Kil Jin [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], E-mail: annalets@agr.unicamp.br; Bevilaqua, Gabriela [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica

    2008-07-01

    Brazilian government policy has authorized the introduction of biodiesel into the national energy matrix, law no.11.097 of January 13th, 2005. It is necessary, like any new product, to invest in research which is able to cover its entire production chain (planting of oilseeds, vegetable oils extraction and chemical reactions), providing data and relevant information in order to optimize the process and solve critical issues. The objective of this work was to study the effects of temperature on crude sunflower transesterification reaction with ethanol. A central composite experimental design with five variation levels (25 deg, 32 deg, 47.5 deg, 64 deg and 70 deg C) was used and response surface methodology applied for the data analysis. The statistical analysis of the results showed that the production suffered the influence of temperature (linear and quadratic effects) and reaction time (linear and quadratic). The generated models did not show significant regression. The model generated was not well suited to the experimental data and the value of the coefficient of determination (R{sup 2}=0.52) was low. Consequently it was not possible to build the response surface. (author)

  8. Theoretical study on the mechanism of CH3NH2 and O3 atmospheric reaction

    Indian Academy of Sciences (India)

    Samira Valehi; Morteza Vahedpour

    2014-07-01

    Reaction pathways of methylamine with ozone on the singlet potential energy profile have been investigated at the RB3LYP/6-311++G (3df-3pd) computational level. Calculated results reveal that six kinds of products P1 (CH3NO + H2O2), P2 (CH3NH + OH + O2), P3 (NH2CH + HO2+ OH), P4 (CH2NH + H2O +O2), P5 (NH2CH2OH + O2), P6 (NH3+ CH2O +O2) are obtained through variety of transformation of one reactant complex C1. Cleavage and formation of the chemical bonds in the reaction pathways have been discussed using the structural parameters. Based on the calculations, the title reaction leads to NH3+ CH2O + O2 as thermodynamic adducts in an exothermic process by −76.28 kcal/mol in heat realizing and spontaneous reaction by −86.71 kcal/mol in standard Gibbs free energy. From a kinetic viewpoint, the production of CH3NH + OH + O2 adducts with one transition state is the most favoured path.

  9. Multi-Strangeness Production in Hadron Induced Reactions

    CERN Document Server

    Gaitanos, T; Lalazissis, G A; Lenske, H

    2016-01-01

    We discuss in detail the formation and propagation of multi-strangeness particles in reactions induced by hadron beams relevant for the forthcoming experiments at FAIR. We focus the discussion on the production of the decuplett-particle $\\Omega$ and study for the first time the production and propagation mechanism of this heavy hyperon inside hadronic environments. The transport calculations show the possibility of $\\Omega$-production in the forthcoming \\panda-experiment, which can be achieved with measurable probabilities using high-energy secondary $\\Xi$-beams. We predict cross sections for $\\Omega$-production. The theoretical results are important in understanding the hyperon-nucleon and, in particular, the hyperon-hyperon interactions also in the high-strangeness sector. We emphasize the importance of our studies for the research plans at FAIR.

  10. Multi-strangeness production in hadron induced reactions

    Science.gov (United States)

    Gaitanos, T.; Moustakidis, Ch.; Lalazissis, G. A.; Lenske, H.

    2016-10-01

    We discuss in detail the formation and propagation of multi-strangeness particles in reactions induced by hadron beams relevant for the forthcoming experiments at FAIR. We focus the discussion on the production of the decuplet-particle Ω and study for the first time the production and propagation mechanism of this heavy hyperon inside hadronic environments. The transport calculations show the possibility of Ω-production in the forthcoming P ‾ANDA-experiment, which can be achieved with measurable probabilities using high-energy secondary Ξ-beams. We predict cross sections for Ω-production. The theoretical results are important in understanding the hyperon-nucleon and, in particular, the hyperon-hyperon interactions also in the high-strangeness sector. We emphasize the importance of our studies for the research plans at FAIR.

  11. VIIRS Atmospheric Products in the Community Satellite Processing Package (CSPP)

    Science.gov (United States)

    Cureton, G. P.; Gumley, L.; Mindock, S.; Martin, G.; Garcia, R. K.; Strabala, K.

    2012-12-01

    The Cooperative Institute for Meteorological Satellite Studies (CIMSS) has a long history of supporting the Direct Broadcast (DB) community for various sensors, recently with the International MODIS/AIRS Processing Package (IMAPP) for the NASA EOS polar orbiters Terra and Aqua. CIMSS has continued this effort into the NPP/JPSS (previously NPOESS) era with the development of the Community Satellite Processing Package (CSPP), supporting the VIIRS, CrIS and ATMS sensors on the Suomi National Polar-orbiting Partnership (Suomi NPP) spacecraft. In time it is intended that CSPP will support GOES-R, JPSS and other geostationary and polar orbiting platforms. Here we focus on the implementation and usage of the Visible Infrared Imaging Radiometer Suite (VIIRS) atmospheric product sub-packages within CSPP, which are based on the Interface Data Processing Segment (IDPS) code as implemented by Raytheon in the Algorithm Development Library (ADL). The VIIRS atmospheric algorithms available in CSPP include the Cloud Mask, Active Fires, Cloud Optical Properties, Cloud Top Parameters, and the Aerosol Optical Thickness algorithms. Each ADL sub-package consists of a binary executable and a series of configuration XML files. A series of python scripts handle ancillary data retrieval and preparation for ingest into ADL, manage algorithm execution, and provide a variety of execution options which are of utility in operational and algorithm development settings. Examples of these options, applied to operational and direct-broadcast VIIRS SDR data, are described.

  12. Temperature- and pH-dependent aqueous-phase kinetics of the reactions of glyoxal and methylglyoxal with atmospheric amines and ammonium sulfate

    Science.gov (United States)

    Sedehi, Nahzaneen; Takano, Hiromi; Blasic, Vanessa A.; Sullivan, Kristin A.; De Haan, David O.

    2013-10-01

    Reactions of glyoxal (Glx) and methylglyoxal (MG) with primary amines and ammonium salts may produce brown carbon and N-containing oligomers in aqueous aerosol. 1H NMR monitoring of reactant losses and product appearance in bulk aqueous reactions were used to derive rate constants and quantify competing reaction pathways as a function of pH and temperature. Glx + ammonium sulfate (AS) and amine reactions generate products containing C-N bonds, with rates depending directly on pH: rate = (70 ± 60) M-1 s-1fAld [Glx]totfAm [Am]tot, where fAld is the fraction of aldehyde with a dehydrated aldehyde functional group, and fAm is the fraction of amine or ammonia that is deprotonated at a given pH. MG + amine reactions generate mostly aldol condensation products and exhibit less pH dependence: rate = 10[(0.36 ± 0.06) × pH - (3.6 ± 0.3)] M-1 s-1fAld [MG]tot [Am]tot. Aldehyde + AS reactions are less temperature-dependent (Ea = 18 ± 8 kJ mol-1) than corresponding amine reactions (Ea = 50 ± 11 kJ mol-1). Using aerosol concentrations of [OH] = 10-12 M, [amine]tot = [AS] = 0.1 M, fGlx = 0.046 and fMG = 0.09, we estimate that OH radical reactions are normally the major aerosol-phase sink for both dicarbonyl compounds. However, reactions with AS and amines together can account for up to 12 and 45% of daytime aerosol-phase glyoxal and methylglyoxal reactivity, respectively, in marine aerosol at pH 5.5. Reactions with AS and amines become less important in acidic or non-marine aerosol, but may still be significant atmospheric sources of brown carbon, imidazoles, and nitrogen-containing oligomers.

  13. Influences of Reaction Parameters on the Product of a Geothermite Reaction: A Multi-Component Oxidation-Reduction Reaction Study

    OpenAIRE

    Faierson, Eric J.

    2009-01-01

    This study investigated an oxidation-reduction reaction involving a mixture of minerals, glass, and aluminum that exhibited thermite-type reaction behavior. Thermite reactions are a class of Self-propagating High-temperature Synthesis (SHS) reactions. Chemical reactions between raw minerals and a reducing agent, which exhibit thermite-type reaction behavior, are termed geothermite reactions by the author. Geothermite reactions have the potential for use in In-Situ Resource Utilization (ISRU...

  14. Atmospheric Chemistry of Six Methyl-perfluoroheptene-ethers Used as Heat Transfer Fluid Replacement Compounds: Measured OH Radical Reaction Rate Coefficients, Atmospheric Lifetimes, and Global Warming Potentials

    Science.gov (United States)

    Jubb, A. M.; Gierczak, T.; Baasandorj, M.; Waterland, R. L.; Burkholder, J. B.

    2013-12-01

    Mixtures of methyl-perfluoroheptene-ethers (C7F13OCH3, MPHEs) are currently in use as a replacement for perfluorinated alkane (PFC) and polyether mixtures (both persistent greenhouse gases with atmospheric lifetimes >1000 years) used as heat transfer fluids. Currently, the atmospheric fate of the MPHE isomers are not well characterized, however, reaction with the OH radical is expected to be a dominant tropospheric loss process for these compounds. In order to assess the atmospheric lifetimes and environmental implications of MPHE use, rate coefficients for MPHE isomers' reaction with OH radicals are desired. In the work presented here, rate coefficients, k, for the gas-phase reaction of the OH radical with six MPHEs commonly used in commercial mixtures (isomers and stereoisomers) and their deuterated analogs (d3-MPHE) were determined at 296 K using a relative rate method with combined gas-chromatography/IR spectroscopy detection. A range of OH rate coefficient values was observed, up to a factor of 20× different, between the MPHE isomers with the (E)-stereoisomers exhibiting the greatest reactivity. The measured OH reaction rate coefficients for the d3-MPHE isomers were lower than the observed MPHE values although a large range of k values between isomers was still observed. The reduction in reactivity with deuteration signifies that the MPHE + OH reaction proceeds via both addition to the olefinic C=C bond and H-abstraction from the methyl ester group. OH addition to the C=C bond was determined to be the primary reaction channel. Atmospheric lifetimes with respect to the OH reaction for the six MPHE isomers were found to be in the range of days to months. The short lifetimes indicate that MPHE use will primarily impact tropospheric local and regional air quality. A MPHE atmospheric degradation mechanism will be presented. As part of this work, radiative efficiencies and global warming potentials (GWPs) for the MPHE isomers were estimated based on measured

  15. Atmospheric pressure photoionization mass spectrometry as a tool for the investigation of the hydrolysis reaction mechanisms of phosphite antioxidants

    Science.gov (United States)

    Papanastasiou, M.; McMahon, A. W.; Allen, N. S.; Johnson, B. W.; Keck-Antoine, K.; Santos, L.; Neumann, M. G.

    2008-08-01

    The hydrolysis reaction mechanism of phosphite antioxidants is investigated by liquid chromatography-mass spectrometry (LC/MS). The phosphites were chosen because they differed in chemical structure and phosphorus content. Dopant assisted-atmospheric pressure photoionization (DA-APPI) is chosen as the ion source for the ionization of the compounds. In our previous work, DA-APPI was shown to offer an attractive alternative to atmospheric pressure chemical ionization (APCI) since it provided background-ion free mass spectra and higher sensitivity [M. Papanastasiou, et al., Polymer Degradation and Stability 91 (11) (2006) 2675-2682]. In positive ion mode, the molecules are generally detected in their protonated form. In negative ion mode, the phosphites are unstable and only fragment ions are observed; these however, are characteristic of each phosphite and may be used for the identification of the analytes in complex mixtures. The analytes under investigation are exposed to accelerated humid ageing conditions and their hydrolytic pathway and stability is investigated. Different substituents around the phosphorus atom are shown to have a significant effect on the stability of the phosphites, with phenol substituents producing very hydrolytically stable structures. Alkanox P24 and PEP-36 follow a similar hydrolytic pathway via the scission of the first and then the second POphenol bonds, eventually leading to the formation of phenol, phosphorous acid and pentaerythritol as end products. HP-10 exhibits a rather different structure and the products detected suggest scission of either the POhydrocarbon or one of the POphenol bonds. A phenomenon similar to that of autocatalysis is observed for all phosphites and is attributed to the formation of dialkyl phosphites as intermediate products.

  16. Mass balance of reaction products from irradiated TCE vapor

    International Nuclear Information System (INIS)

    Trichloroethylene (TCE) vapor, at a concentration of 3,000 ppmv in synthetic air, was sealed in Tedlar bags and irradiated with a 3.7 MeV electron beam. Bags of dry vapor and vapor at 90% relative humidity were irradiated. Doses up to 11 megarads (11 MR) were applied. Each bag was chemically analyzed for reaction products and a mass balance of the chlorine and carbon was obtained within the 11 MR dose range. The results of these radiolysis experiments and chemical analysis show that, given the proper treatment, the TCE concentration is reduced to below detection limit and the reaction products of the organic carbon and chlorine are carbon monoxide (CO), carbon dioxide (CO2), chlorine gas (Cl2) and hydrochloric acid (HCl). No detectable amounts of dichloroacetyl chloride (DCAC) or phosgene (PG) remained in the sample after proper treatment. DCAC and PG were found only as intermediary oxidation products of the TCE. High energy ionizing radiation, as electron beams and bremsstrahlung, is a new treatment technology for destroying toxic compounds and hazardous wastes. A demonstration of complete destruction of organic products, using this treatment at standard temperature and pressure, is expected to help implement the use of this technology

  17. TOPICAL REVIEW: Nucleation and aerosol processing in atmospheric pressure electrical discharges: powders production, coatings and filtration

    Science.gov (United States)

    Borra, Jean-Pascal

    2006-01-01

    This review addresses the production of nano-particles and the processing of particles injected in atmospheric pressure electrical discharges (APED). The mechanisms of formation and the evolution of particles suspended in gases are first presented, with numerical and experimental facilities. Different APED and related properties are then introduced for dc corona, streamer and spark filamentary discharges (FD), as well as for ac filamentary and homogeneous dielectric barrier discharges (DBD). Two mechanisms of particle production are depicted in APED: when FD interact with the surface of electrodes or dielectrics and when filamentary and homogeneous DBD induce reactions with gaseous precursors in volume. In both cases, condensable gaseous species are produced, leading to nano-sized particles by physical and chemical routes of nucleation. The evolution of the so-formed nano-particles, i.e. the growth by coagulation/condensation, the charging and the collection are detailed for each APED, with respect to fine powders production and thin films deposition. Finally, when particles are injected in APED, they undergo interfacial processes. Non-thermal plasmas charge particles for electro-collection and trigger heterogeneous chemical reactions for organic and inorganic films deposition. Heat exchanges in thermal plasmas enable powder purification, shaping, melting for hard coatings and fine powders production by reactive evaporation.

  18. Nucleation and aerosol processing in atmospheric pressure electrical discharges: powders production, coatings and filtration

    International Nuclear Information System (INIS)

    This review addresses the production of nano-particles and the processing of particles injected in atmospheric pressure electrical discharges (APED). The mechanisms of formation and the evolution of particles suspended in gases are first presented, with numerical and experimental facilities. Different APED and related properties are then introduced for dc corona, streamer and spark filamentary discharges (FD), as well as for ac filamentary and homogeneous dielectric barrier discharges (DBD). Two mechanisms of particle production are depicted in APED: when FD interact with the surface of electrodes or dielectrics and when filamentary and homogeneous DBD induce reactions with gaseous precursors in volume. In both cases, condensable gaseous species are produced, leading to nano-sized particles by physical and chemical routes of nucleation. The evolution of the so-formed nano-particles, i.e. the growth by coagulation/condensation, the charging and the collection are detailed for each APED, with respect to fine powders production and thin films deposition. Finally, when particles are injected in APED, they undergo interfacial processes. Non-thermal plasmas charge particles for electro-collection and trigger heterogeneous chemical reactions for organic and inorganic films deposition. Heat exchanges in thermal plasmas enable powder purification, shaping, melting for hard coatings and fine powders production by reactive evaporation. (topical review)

  19. Chemical kinetic studies of atmospheric reactions using tunable diode laser spectroscopy

    Science.gov (United States)

    Worsnop, Douglas R.; Nelson, David D.; Zahniser, Mark S.

    1993-01-01

    IR absorption using tunable diode laser spectroscopy provides a sensitive and quantitative detection method for laboratory kinetic studies of atmospheric trace gases. Improvements in multipass cell design, real time signal processing, and computer controlled data acquisition and analysis have extended the applicability of the technique. We have developed several optical systems using off-axis resonator mirror designs which maximize path length while minimizing both the sample volume and the interference fringes inherent in conventional 'White' cells. Computerized signal processing using rapid scan (300 kHz), sweep integration with 100 percent duty cycle allows substantial noise reduction while retaining the advantages of using direct absorption for absolute absorbance measurements and simultaneous detection of multiple species. Peak heights and areas are determined by curve fitting using nonlinear least square methods. We have applied these techniques to measurements of: (1) heterogeneous uptake chemistry of atmospheric trace gases (HCl, H2O2, and N2O5) on aqueous and sulfuric acid droplets; (2) vapor pressure measurements of nitric acid and water over prototypical stratospheric aerosol (nitric acid trihydrate) surfaces; and (3) discharge flow tube kinetic studies of the HO2 radical using isotopic labeling for product channel and mechanistic analysis. Results from each of these areas demonstrate the versatility of TDL absorption spectroscopy for atmospheric chemistry applications.

  20. Production mechanism of superheavy nuclei in massive fusion reactions

    Institute of Scientific and Technical Information of China (English)

    FENG Zhao-Qing; JIN Gen-Ming; LI Jun-Qing; Werner Scheid

    2009-01-01

    Within the concept of the dinuclear system (DNS), a dynamical model is proposed for describing the formation of superheavy nuclei in complete fusion reactions by incorporating the coupling of the relative motion to the nucleon transfer process. The capture of two heavy colliding nuclei, the formation of the compound nucleus and the de-excitation process are calculated by using an empirical coupled channel model, solving a set of microscopically derived master equations numerically and applying statistical theory, respectively.Fusion-fission reactions and evaporation residue excitation functions of synthesizing superheavy nuclei (SHN) are investigated systematically and compared them with available experimental data. The possible factors that affecting the production cross sections of SHN are discussed in this workshop.

  1. Polynuclear aromatic hydrocarbon degradation by heterogeneous reactions with N 2O 5 on atmospheric particles

    Science.gov (United States)

    Kamens, Richard M.; Guo, Jiazhen; Guo, Zhishi; McDow, Stephen R.

    The degradation of particulate polynuclear aromatic hydrocarbons (PAH) on atmospheric soot particles in the presence of gas phase dinitrogen pentoxide (N 2O 5) was explored. Dilute diesel and wood soot particles containing PAH were reacted with˜10ppm of N 2O 5 in a 200 ℓ continuous stirred tank reactor (CSTR). To provide a stable source of particles for reaction in the CSTR, diesel or wood soot particles were injected at night into a 25 m 3 Teflon outdoor chamber. The large chamber served as a reservoir for the feed aerosol, and the aerosol could then be introduced at a constant flow rate into the CSTR. PAH-N 2O 5 heterogeneous rate constants for wood soot at 15°C ranged from2 × 10 -18to5 × 10 -18 cm 3 molecules -1 s -1. For diesel soot the rate constants at 16°C were higher and ranged from5 × 10 -18to30 × 10 -18 cm 3 molecules -1 s -1. Comparisons with other studies suggest that sunlight is the most important factor which influences PAH decay. This is followed by ozone, NO 2, N 2O 5 and nitric acid. The rate constants of nitro-PAH formation from a parent PAH and N 2O 5 were of the order of1 × 10 -19-1 × 10 -18 molecules -1s -1. The uncertainty associated with all of these rate constants is± a factor of 3. Given, however, the small magnitude of the rate constants and the low levels of N 2O 5 present in the atmosphere, we concluded that PAH heterogeneous reactions with gas phase N 2O 5 degrade particle-bound PAH or to form nitro-PAH from PAH are not very important. (Direct application of the specific rate constants derived in this study to ambient atmospheres should not be undertaken unless the ambient particle size distributions and chemical composition of the particles are similar to the ones reported in this study.)

  2. Computational study of the reaction mechanism and kinetics of ethyl acrylate ozonolysis in atmosphere

    Science.gov (United States)

    Sun, Yanhui; Cao, Haijie; Han, Dandan; Li, Jing; He, Maoxia; Wang, Chen

    2012-06-01

    The reaction mechanism for the ozonolysis of ethyl acrylate (EA) has been investigated at the CCSD(T)/6-31G(d)+CF//B3LYP/6-31+G(d,p) level of theory. The profile of the potential energy surface (PES) is constructed. Ozone adds to EA via a cyclic transition state to produce a highly unstable primary ozonide which can decompose readily. Over the temperature range of 200-2000 K, the total and individual rate constants are obtained by employing multichannel Rice-Ramsperger-Kassel-Marcus (RRKM) theory. The calculated rate constants are 1.37 × 10-18 cm3 molecule-1 s-1 at 294 K and 1.65 × 10-18 cm3 molecule-1 s-1 at 298 K under the pressure of 760 Torr. The main products of the reactions are ethyl glyoxylate and formaldehyde. These results are in good agreement with the previous experimental data. Several experimental uncertain products are identified. The branching ratios of main reaction paths are also discussed at different temperatures and pressures.

  3. Products of the OH radical-initiated reactions of 2- and 3-hexyl nitrate

    Science.gov (United States)

    Aschmann, Sara M.; Arey, Janet; Atkinson, Roger

    2012-01-01

    Products of the gas-phase reaction of OH radicals with 2-hexyl nitrate (containing 13% 3-hexyl nitrate) have been investigated by gas chromatography with mass spectral and flame ionization detection, and by direct air sampling atmospheric pressure ionization tandem mass spectrometry. The products identified and quantified from 2-hexyl nitrate were: 2-hexanone (8.6 ± 1.3%), propanal (3.4 ± 0.8%), butanal (2.3 ± 0.6%) and 5-hydroxy-2-hexanone (25%), where the molar yields are given in parentheses. 3-Hexanone was observed from the 3-hexyl nitrate reaction, with a molar formation yield of 9.5 ± 2.1%. Organic nitrates of molecular weight 133, 161, 177 and 208 were also observed, and these are attributed to C 4-carbonyl nitrate(s), C 6-carbonyl-nitrates, C 6-hydroxycarbonyl-nitrates and C 6-dinitrates, respectively, and are expected to account for all or most of the non-quantified reaction products from OH + 2- and 3-hexyl nitrate. 5-Hydroxy-2-hexanone formation indicates that the CH 3CH(ONO 2)CH 2CH 2CH(O rad )CH 3 alkoxy radical dominantly reacts by isomerization.

  4. Methyl chavicol: characterization of its biogenic emission rate, abundance, and oxidation products in the atmosphere

    Directory of Open Access Journals (Sweden)

    N. C. Bouvier-Brown

    2008-11-01

    Full Text Available We report measurements of ambient atmospheric mixing ratios for methyl chavicol and determine its biogenic emission rate. Methyl chavicol, a biogenic oxygenated aromatic compound, is abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol was detected simultaneously by three in-situ instruments – a gas chromatograph with mass spectrometer detector (GC-MS, a proton transfer reaction mass spectrometer (PTR-MS, and a thermal desorption aerosol GC-MS (TAG – and found to be abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol atmospheric mixing ratios are strongly correlated with 2-methyl-3-buten-2-ol (MBO, a light- and temperature-dependent biogenic emission from the ponderosa pine trees at Blodgett Forest. Scaling from this correlation, methyl chavicol emissions account for 4–68% of the carbon mass emitted as MBO in the daytime, depending on the season. From this relationship, we estimate a daytime basal emission rate of 0.72–10.2 μgCg−1h−1, depending on needle age and seasonality. We also present the first observations of its oxidation products (4-methoxybenzaldehyde and 4-methyoxy benzene acetaldehyde in the ambient atmosphere. Methyl chavicol is a major essential oil component of many plant species. This work suggests that methyl chavicol plays a significant role in the atmospheric chemistry of Blodgett Forest, and potentially other sites, and should be included explicitly in both biogenic volatile organic carbon emission and atmospheric chemistry models.

  5. UF6- production from surface reactions of uranium and fluorine

    International Nuclear Information System (INIS)

    The production of UF6- by reaction of a collimated stream of fluorine gas with a resistively heated uranium wire was studied at temperatures from 870 to 10200C and pressures less than 10-3 torr. At these temperatures below the uranium melting point, the formation of UF3 intermediate on the uranium surface resulted in low UF6- yields. The kinetic energy of the UF6- ion was on the order of thermal energies. The work function of uranium was measured to be 4.20 +- 0.14 eV

  6. Two-pion production in photon-induced reactions

    Indian Academy of Sciences (India)

    S Schadmand

    2006-05-01

    Differences in the photoproduction of mesons on the free proton and on nuclei are expected to reveal changes in the properties of hadrons. Inclusive studies of nuclear photoabsorption have provided evidence of medium modifications. However, the results have not been explained in a model independent way. A deeper understanding of the situation is anticipated from a detailed experimental study of meson photoproduction from nuclei in exclusive reactions. In the energy regime above the (1232) resonance, the dominant double pion production channels are of particular interest. Double pion photoproduction from nuclei is also used to investigate the in-medium modification of meson–meson interactions.

  7. Study on influence of native oxide and corrosion products on atmospheric corrosion of pure Al

    International Nuclear Information System (INIS)

    Highlights: •Corrosion products layer is only formed in coastal atmosphere. •In coastal atmosphere, rate controlling step is diffusion process. •In rural atmosphere, rate controlling step is charge transfer process. •Pitting area increases greatly in coastal site, but slightly in rural site. -- Abstract: Effects of native oxide and corrosion products on atmospheric corrosion of aluminium in rural and coastal sites were studied by electrochemical impedance spectroscopy (EIS), open-circuit potential (OCP) and scanning electron microscope (SEM) techniques after outdoor exposure. In the rural atmosphere, only the compact, adhesive native oxide layer exists, and the rate controlling step is diffusion process, while in the coastal atmosphere, another loose, inadhesive corrosion products layer exists, and a charge transfer process controls the corrosion process. The pitting area in the coastal atmosphere increases over time more obviously than that in the rural atmosphere

  8. Experimental measurements of low temperature rate coefficients for neutral-neutral reactions of interest for atmospheric chemistry of Titan, Pluto and Triton: reactions of the CN radical.

    Science.gov (United States)

    Morales, Sébastien B; Le Picard, Sébastien D; Canosa, André; Sims, Ian R

    2010-01-01

    The kinetics of the reactions of cyano radical, CN (X2sigma+) with three hydrocarbons, propane (CH3CH2CH3), propene (CH3CH=CH2) and 1-butyne (CH[triple band]CCH2CH3) have been studied over the temperature range of 23-298 K using a CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in Uniform Supersonic Flow) apparatus combined with the pulsed laser photolysis-laser induced fluorescence technique. These reactions are of interest for the cold atmospheres of Titan, Pluto and Triton, as they might participate in the formation of nitrogen and carbon bearing molecules, including nitriles, that are thought to play an important role in the formation of hazes and biological molecules. All three reactions are rapid with rate coefficients in excess of 10(-10) cm3 molecule(-1) s(-1) at the lowest temperatures of this study and show behaviour characteristic of barrierless reactions. Temperature dependences, different for each reaction, are compared to those used in the most recent photochemical models of Titan's atmosphere. PMID:21302546

  9. Wind Turbine Power Production and Annual Energy Production Depend on Atmospheric Stability and Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    St. Martin, Clara M.; Lundquist, Julie K.; Clifton, Andrew; Poulos, Gregory S.; Schreck, Scott J.

    2016-06-17

    Using detailed upwind and nacelle-based measurements from a General Electric [GE] 1.5 sle model with a 77 m rotor diameter, we calculated power curves and annual energy production (AEP) and explored their sensitivity to different atmospheric parameters. This work provides guidelines for the use of stability and turbulence filters in segregating power curves to gain a clearer picture of the power performance of a turbine. The wind measurements upwind of the turbine include anemometers mounted on a 135 m meteorological tower and lidar vertical profiles. We calculated power curves for different regimes based on turbulence parameters such as turbulence intensity (TI) and turbulence kinetic energy (TKE), as well as atmospheric stability parameters such as Bulk Richardson number (RB). AEP was also calculated with and without these atmospheric filters and differences between these calculations are highlighted in this article. The power curves for different TI and TKE regimes revealed that, at the U.S. Department of Energy (DOE) National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL), increased TI and TKE undermined power production at wind speeds near rated, but increased power production at lower wind speeds. Similarly, power curves for different RB regimes revealed that periods of stable conditions produced more power at wind speeds near rated and periods of unstable conditions produced more power at lower wind speeds. AEP results suggest that calculations done without filtering for these atmospheric regimes may be overestimating the AEP. Because of statistically significant differences between power curves and AEP calculated with these turbulence and stability filters for this turbine at this site, we suggest implementing an additional step in analyzing power performance data to take atmospheric stability and turbulence across the rotor disk into account.

  10. Production of energetic light fragments in spallation reactions

    International Nuclear Information System (INIS)

    Different reaction mechanisms contribute to the production of light fragments (LF) from nuclear reactions. Available models cannot accurately predict emission of LF from arbitrary reactions. The cascade-exciton model (CEM) and the Los Alamos version of the quark-gluon string model (LAQGSM), as implemented in the CEM03.03 and LAQGSM03.03 event generators used in the Los Alamos Monte Carlo transport code MCNP6, describe quite well the spectra of fragments with sizes up to 4He across a broad range of target masses and incident energies. However, they do not predict high-energy tails for LF heavier than 4He. The standard versions of CEM and LAQGSM do not account for preequilibrium emission of LF larger than 4He. The aim of our work is to extend the preequilibrium model to include such processes. We do this by including the emission of fragments heavier than 4He at the preequilibrium stage, and using an improved version of the Fermi Break-up model, providing improved agreement with various experimental data

  11. Production of Energetic Light Fragments in Spallation Reactions

    Directory of Open Access Journals (Sweden)

    Mashnik Stepan G.

    2014-03-01

    Full Text Available Different reaction mechanisms contribute to the production of light fragments (LF from nuclear reactions. Available models cannot accurately predict emission of LF from arbitrary reactions. However, the emission of LF is important formany applications, such as cosmic-ray-induced single event upsets, radiation protection, and cancer therapy with proton and heavy-ion beams, to name just a few. The cascade-exciton model (CEM and the Los Alamos version of the quark-gluon string model (LAQGSM, as implemented in the CEM03.03 and LAQGSM03.03 event generators used in the Los Alamos Monte Carlo transport code MCNP6, describe quite well the spectra of fragments with sizes up to 4He across a broad range of target masses and incident energies. However, they do not predict high-energy tails for LF heavier than 4He. The standard versions of CEM and LAQGSM do not account for preequilibrium emission of LF larger than 4He. The aim of our work is to extend the preequilibrium model to include such processes. We do this by including the emission of fragments heavier than 4He at the preequilibrium stage, and using an improved version of the Fermi Break-up model, providing improved agreement with various experimental data.

  12. Removal of triclosan via peroxidases-mediated reactions in water: Reaction kinetics, products and detoxification.

    Science.gov (United States)

    Li, Jianhua; Peng, Jianbiao; Zhang, Ya; Ji, Yuefei; Shi, Huanhuan; Mao, Liang; Gao, Shixiang

    2016-06-01

    This study investigated and compared reaction kinetics, product characterization, and toxicity variation of triclosan (TCS) removal mediated by soybean peroxidase (SBP), a recognized potential peroxidase for removing phenolic pollutants, and the commonly used horseradish peroxidase (HRP) with the goal of assessing the technical feasibility of SBP-catalyzed removal of TCS. Reaction conditions such as pH, H2O2 concentration and enzyme dosage were found to have a strong influence on the removal efficiency of TCS. SBP can retain its catalytic ability to remove TCS over broad ranges of pH and H2O2 concentration, while the optimal pH and H2O2 concentration were 7.0 and 8μM, respectively. 98% TCS was removed with only 0.1UmL(-1) SBP in 30min reaction time, while an HRP dose of 0.3UmL(-1) was required to achieve the similar conversion. The catalytic performance of SBP towards TCS was more efficient than that of HRP, which can be explained by catalytic rate constant (KCAT) and catalytic efficiency (KCAT/KM) for the two enzymes. MS analysis in combination with quantum chemistry computation showed that the polymerization products were generated via CC and CO coupling pathways. The polymers were proved to be nontoxic through growth inhibition of green alga (Scenedesmus obliquus). Taking into consideration of the enzymatic treatment cost, SBP may be a better alternative to HRP upon the removal and detoxification of TCS in water/wastewater treatment. PMID:26921508

  13. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl amino substituted triazine amino... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato...

  14. Atmospheric CO2 uptake throughout bio-enhanced brucite-water reaction at Montecastelli serpentinites (Italy)

    Science.gov (United States)

    Bedini, Federica; Boschi, Chiara; Ménez, Benedicte; Perchiazzi, Natale; Zanchetta, Giovanni

    2014-05-01

    In the last several years, interactions between microorganisms and minerals have intrigued and catched the interest of the scientific community. Montecastelli serpentinites (Tuscany, Italy) are characterized by CO2-mineral carbonation, an important process which leads to spontaneous formation of carbonate phases uptaking atmospheric CO2. In the studied areas carbonate precipitates, mainly hydrated Mg-carbonates, are present in form of crusts, coating and spherules on exposed rock surfaces, and filling rock fractures. Petrographic and mineralogical observations revealed that Tuscan brucite-rich serpentinites hosts preserve their original chemical compositions with typical mesh-textured serpentine (± brucite) after olivine, magnetite-rich mesh rims and relicts of primary spinel. Representative hydrated carbonate samples have been collected in three different areas and analyzed to investigate the role of biological activity and its influence in the serpentine-hydrated Mg-carbonates reaction. The different types of whitish precipitates have been selected under binocular microscope for XRD analyses performed at the Dipartimento di Scienze della Terra (University of Pisa, Italy): their mineralogical composition consists of mainly hydromagnesite and variable amount of other metastable carbonate phases (i.e. nesquehonite, manasseite, pyroaurite, brugnatellite and aragonite). Moreover, the crystallinity analysis of whitish crust and spherules have been carried out by detailed and quantitative XRD analyses to testify a possible biologically controlled growth, inasmuch as the crystal structure of biominerals could be affected by many lattice defects (i.e. dislocations, twinning, etc.) and this observation cause low crystallinity of the mineral. The presence of microbial cells and relicts of organic matter has already been detected by confocal laser scanning microscopy (CLSM) combined with Raman spectromicroscopy in a previous study (Bedini et al., 2013). The presence of

  15. [Preservation of bread and pastry products in a controlled atmosphere].

    Science.gov (United States)

    Manchon, P

    1978-01-01

    Industrial soft pastries and the various breads are cereals products containing a humidity which is favorable to the development of mouldiness. Different or various methods of conservation has been attempted. One interesting approach to the problem is packaging in controlled atmosphere. It requires adequate machinery and suitable conditioning materials. Jardry-Buquet and Hayssen's machines are rapidly described as well as some of the packing film used for making air-tight bags. Bad results were observed with nitrogen, argon and a mixture of nitrogen-carbon dioxide. The satisfactory results obtained with the nitrous oxide for cakes (especially fruit-cakes) and for the bread with a mixture of ethylene oxide-carbon dioxide are: a good conservation for a period of 4 to 6 months in both cases. Organoleptic qualities of the products are not significantly diminished after eight weeks of preservation. The gases contained on the bags are analysed at different periods and the progressive disappearance of the nitrous oxide as well as the athylene dioxide was measured. The compounds derivated from these gases were researched on different extracts. No derivatives of the nitrous oxide were observed. From the ethylene oxide, the derivatives found in the bread are diethylene glycol and 2-chloroethanol; their concentrations are respectively 100 and 300 ppm in the case of 85 : 15 mixture, but decrease to a mere trace and 45 ppm in the case of 98 : 2 mixture. The measure of humidity, of peroxides and of the staleness of crumb are favourable for a good conservation. PMID:707931

  16. Reaction products in mass spectrometry elucidated with infrared spectroscopy.

    Science.gov (United States)

    Polfer, Nick C; Oomens, Jos

    2007-08-01

    Determining the structure and dynamics of large biologically relevant molecules is one of the key challenges facing biology. Although X-ray crystallography (XRD) and nuclear magnetic resonance (NMR) yield accurate structural information, they are of limited use when sample quantities are low. Mass spectrometry (MS) on the other hand has been very successful in analyzing biological molecules down to atto-mole quantities and has hence begun to challenge XRD and NMR as the key technology in the life sciences. This trend has been further assisted by the development of MS techniques that yield structural information on biomolecules. Of these techniques, collision-induced dissociation (CID) and hydrogen/deuterium exchange (HDX) are among the most popular. Despite advances in applying these techniques, little direct experimental evidence had been available until recently to verify their proposed underlying reaction mechanisms. The possibility to record infrared spectra of mass-selected molecular ions has opened up a novel avenue in the structural characterization of ions and their reaction products. On account of its high pulse energies and wide wavelength tunability, the free electron laser for infrared experiments (FELIX) at FOM Rijnhuizen has been shown to be ideally suited to study trapped molecular ions with infrared photo-dissociation spectroscopy. In this paper, we review recent experiments in our laboratory on the infrared spectroscopic characterization of reaction products from CID and HDX, thereby corroborating some of the reaction mechanisms that have been proposed. In particular, it is shown that CID gives rise to linear fragment ion structures which have been proposed for some time, but also yields fully cyclical ring structures. These latter structures present a possible challenge for using tandem MS in the sequencing of peptides/proteins, as they can lead to a scrambling of the amino acid sequence information. In gas-phase HDX of an amino acid it is shown

  17. Effect of reaction atmosphere on particle morphology of TiO{sub 2} produced by thermal decomposition of titanium tetraisopropoxide

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Gil; Park, Kyun Young [Kongju National University, Department of Chemical Engineering (Korea, Republic of)], E-mail: kypark@kongju.ac.kr

    2006-04-15

    Thermal decomposition of titanium tetraisopropoxide (TTIP) was carried out in varying reaction atmospheres: nitrogen, oxygen, and nitrogen plus water vapor. The effect of reaction atmosphere on the morphology, size, and crystalline structure of produced TiO{sub 2} particles was studied. The reactor used was similar to the microreactor proposed earlier by Park et al. (2001, J. Nanopart. Res., 3, 309-319), but for a modification in the precursor evaporator. The reactor temperature was varied from 300 to 700 deg. C and the TTIP concentration in the evaporator from 1.0 to 7.0 mol%, holding the reactor residence time at 0.7 s. The primary-particle size was in the range 25-250 nm, varying with operating condition. The crystalline structure was amorphous in nitrogen, a mixture of rutile and anatase in nitrogen plus water vapor, and anatase in oxygen atmospheres. In nitrogen, agglomerates composed of very small particles whose individual boundaries are not clearly distinguished were produced. In oxygen, the particles composing an agglomerate became larger and were clearly spherical. As the atmosphere was varied to the nitrogen plus water vapor, the particle size increased further. The variation of primary particle size with reaction atmosphere was discussed in comparison with previous experimental data.

  18. Atmospheric Chemistry of CF3CF=CH2: Reactions With Cl Atoms, OH Radicals and Ozone

    Science.gov (United States)

    Sulbaek Andersen, M. P.; Javadi, M. S.; Nielsen, O. J.; Hurley, M. D.; Wallington, T. J.; Singh, R.

    2006-12-01

    The detrimental effects of chlorine chemistry on stratospheric ozone levels are well established. Consequently, there has been a concerted international effort to find replacements for chlorofluorocarbons (CFCs) used previously as electronic equipment cleaners, heat transfer agents, refrigerants, and carrier fluids for lubricant deposition. The replacements for CFCs, hydrofluorocarbons (HFCs) and hydrofluorochlorocarbons (HCFCs), have found widespread industrial use over the past decade. Unsaturated fluorinated hydrocarbons are a new class of compounds which have been developed to replace CFCs and HFCs in air condition units. Prior to any large-scale industrial use an assessment of the atmospheric chemistry, and hence environmental impact, of these compounds is needed. To address this need the atmospheric chemistry of CF3CF=CH2 was investigated. Smog chamber/FTIR techniques were used to determine the following properties for this compound: (i) kinetics of reactions with chlorine atoms (ii) kinetics of reactions with hydroxyl radicals (iii) kinetics of reactions with ozone, (iv) atmospheric lifetimes, (v) atmospheric degradation mechanism, and (vi) global warming potentials. The results are discussed with regard to the environmental impact of CF3CF=CH2 and the atmospheric chemistry of unsaturated fluorinated hydrocarbons.

  19. POLYCHLORINATED DIBENZO-P-DIOXINS AND DIBENZOFURANS: GAS-PHASE HYDROXYL RADICAL REACTIONS AND RELATED ATMOSPHERIC REMOVAL. (R825377)

    Science.gov (United States)

    Gas-phase reactions with the hydroxyl radical (OH) areexpected to be an important removal pathway of polychlorinated dibenzo-p-dioxins and dibenzofurans(PCDD/F)in the atmosphere. Our laboratory recently developeda system to measure the rate constants of ...

  20. 40 CFR 721.4461 - Hydrofluoric acid, reaction products with octane (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrofluoric acid, reaction products... New Uses for Specific Chemical Substances § 721.4461 Hydrofluoric acid, reaction products with octane... identified generically as a hydrofluoric acid, reaction products with octane (PMN P-99-0052) is subject...

  1. 40 CFR 721.4385 - Hydrofluoric acid, reaction products with heptane.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrofluoric acid, reaction products... Specific Chemical Substances § 721.4385 Hydrofluoric acid, reaction products with heptane. (a) Chemical... hydrofluoric acid, reaction products with heptane (PMN P-98-1036; CAS No. 207409-71-0) is subject to...

  2. INFLUENCE OF REACTION TEMPERATURE AND REACTION TIME ON PRODUCT FROM HYDROTHERMAL TREATMENT OF BIOMASS RESIDUE

    Directory of Open Access Journals (Sweden)

    Jakaphong Kongpanya

    2014-01-01

    Full Text Available Thailand is facing with problems associated with biomass residue such as palm oil residues (oil palm trunks, oil palm fronds, empty fruit bunches, shells and fibers. Biomass is promising source for the production of an array of energy-related produts including, liquid, solid and gaseous fuels, heat, chemicals electricity and other materials. Therefore, the use of biomass for energy is not still fully utilization due to the high moisture content, lower heating value of the energy unit or low bulk density and the problems withtar. While Thailand has high potential because the reisa lot of biomass that has not been utilizedfor example biomass residues from palm oil industry. About 2 million tons of empty fruit bunches in Thailand have great potential. This amount will continue increase with the rapid growth in the Thailand, the largest crude palm oil producer in the world. This amount will continue increase with the rapid growth in the Thailand palm oil industry. Therefore, a better method to manage such biomass residues is highly desired. One of the potential ways for alternative utilization of biomass is thermo-chemical process. Hydrothermal treatment is a process for making a homogenizinged, carbon rich and energy-dense solid fuel, called hydrochar. The objective of the study was to identify the effect of reaction temperature and reaction time for hydrothermal treatment of Empty Fruit Bunches (EFB. Influence of temperature 100°C, 150°C and 200°C for 30 to 90 min and active biogas process on 1.00-15.538 bars, within 1,000 mL stainless steel 316 batch-type reactor with a stirrer and there is an automatic temperature controller. Results showed that the highest chemical and physical properties of hydrochar product was achieved when operated on 200°C for 90 min. Maximum heating value was found that 5678 cal/g for EFB9. The result showed that the chemical and physical properties increased progressively with higher temperature. The results was

  3. Evaluation of Neutron Induced Reactions for 32 Fission Products

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeong Il

    2007-02-15

    Neutron cross sections for 32 fission products were evaluated in the neutron-incident energy range from 10{sup -5} eV to 20 MeV. The list of fission products consists of the priority materials for several applications, extended to cover complete isotopic chains for three elements. The full list includes 8 individual isotopes, {sup 95}Mo, {sup 101}Ru, {sup 103}Rh, {sup 105}Pd, {sup 109}Ag, {sup 131}Xe, {sup 133}Cs, {sup 141}Pr, and 24 isotopes in complete isotopic chains for Nd (8), Sm (9) and Dy (7). Our evaluation methodology covers both the low energy region and the fast neutron region.In the low energy region, our evaluations are based on the latest data published in the Atlas of Neutron Resonances. This resource was used to infer both the thermal values and the resolved resonance parameters that were validated against the capture resonance integrals. In the unresolved resonance region we performed the additional evaluation by using the averages of the resolved resonances and adjusting them to the experimental data.In the fast neutron region our evaluations are based on the nuclear reaction model code EMPIRE-2.19 validated against the experimental data. EMPIRE is the modular system of codes consisting of many nuclear reaction models, including the spherical and deformed Optical Model, Hauser-Feshbach theory with the width fluctuation correction and complete gamma-ray emission cascade, DWBA, Multi-step Direct and Multi-step Compound models, and several versions of the phenomenological preequilibrium models. The code is equipped with a power full GUI, allowing an easy access to support libraries such as RIPL and CSISRS, the graphical package, as well the utility codes for formatting and checking. In general, in our calculations we used the Reference Input Parameter Library, RIPL, for the initial set model parameters. These parameters were properly adjusted to reproduce the available experimental data taken from the CSISRS library. Our evaluations cover cross

  4. Reaction of carbon tetrachloride with methane in a non-equilibrium plasma at atmospheric pressure, and characterisation of the polymer thus formed.

    Science.gov (United States)

    Gaikwad, Vaibhav; Kennedy, Eric; Mackie, John; Holdsworth, Clovia; Molloy, Scott; Kundu, Sazal; Stockenhuber, Michael; Dlugogorski, Bogdan

    2014-09-15

    In this paper we focus on the development of a methodology for treatment of carbon tetrachloride utilising a non-equilibrium plasma operating at atmospheric pressure, which is not singularly aimed at destroying carbon tetrachloride but rather at converting it to a non-hazardous, potentially valuable commodity. This method encompasses the reaction of carbon tetrachloride and methane, with argon as a carrier gas, in a quartz dielectric barrier discharge reactor. The reaction is performed under non-oxidative conditions. Possible pathways for formation of major products based on experimental results and supported by quantum chemical calculations are outlined in the paper. We elucidate important parameters such as carbon tetrachloride conversion, product distribution, mass balance and characterise the chlorinated polymer formed in the process.

  5. Kinetics and products of the gas-phase reactions of acenaphthylene with hydroxyl radicals, nitrate radicals and ozone

    Science.gov (United States)

    Zhou, Shouming; Wenger, John C.

    2013-08-01

    A series of simulation chamber experiments has been performed on the gas-phase atmospheric oxidation of acenaphthylene with the hydroxyl (OH) radical, ozone (O3) and the nitrate (NO3) radical. Using a relative rate technique the following rate coefficients (in cm3 molecule-1 s-1) were determined at (293 ± 3) K in 1 atm of purified air: (1.09 ± 0.07) × 10-10, (3.99 ± 0.15) × 10-16 and (4.42 ± 0.32) × 10-12 for the reactions with OH, O3 and NO3 respectively. The results indicate that all three oxidants effectively contribute to the removal of acenaphthylene from the atmosphere. A denuder-filter sampling system coupled with off-line analysis by gas chromatography - mass spectrometry (GC-MS) was used to determine the gas- and particle-phase products of these reactions. The major products identified in the reaction with OH were naphthalene-1,8-dicarbaldehyde, 1,8-naphthalic anhydride and a 10 carbon ring-opened dialdehyde. The products identified in the reaction with NO3 and O3 were predominantly oxygenated compounds arising from reaction at the Cdbnd C bond in the cylcopenta-fused ring of acenaphthylene. The formation of hydroxylated and nitro-PAHs appears to be a very minor reaction pathway. Acenaphthenequinone, a compound known to generate reactive oxygen species at the cellular level, was formed from the reactions of acenaphthylene with OH and NO3. The majority of the oxidation products were found to be distributed between the gas and particle phases, with only acenaphthylenol and oxaacenaphthylen-2-one, relatively more abundant in the particle phase.

  6. Maillard reaction products as antimicrobial components for packaging films.

    Science.gov (United States)

    Hauser, Carolin; Müller, Ulla; Sauer, Tanja; Augner, Kerstin; Pischetsrieder, Monika

    2014-02-15

    Active packaging foils with incorporated antimicrobial agents release the active ingredient during food storage. Maillard reaction products (MRPs) show antimicrobial activity that is at least partially mediated by H2O2. De novo generation of H2O2 by an MRP fraction, extracted from a ribose/lysine Maillard reaction mixture by 85% ethanol, was monitored at three concentrations (1.6, 16.1, and 32.3g/L) and three temperatures (4, 25, and 37 °C) between 0 and 96 h, reaching a maximum of 335 μM H2O2 (32.3g/L, 37 °C, 96 h). The active MRP fraction (16.1g/L) completely inhibited the growth of Escherichia coli for 24h and was therefore incorporated in a polyvinyl acetate-based lacquer and dispersed onto a low-density polyethylene film. The coated film generated about 100 μM H2O2 and resulted in a log-reduction of >5 log-cycles against E. coli. Thus, MRPs can be considered as active ingredients for antimicrobial packaging materials.

  7. Mechanism and kinetics of the reaction of 1,4-thioxane with O3 in the atmosphere - A theoretical study

    Science.gov (United States)

    Sandhiya, L.; Kolandaivel, P.; Senthilkumar, K.

    2012-02-01

    A theoretical investigation of the atmospheric oxidation of a cyclic organosulfur compound 1,4-thioxane by O3 is performed. The pathways for the reaction of 1,4-thioxane with O3 have been modeled using B3LYP, M06-2X, MPW1K and MP2 level of theories with 6-31G(d,p), 6-311G(d,p) and 6-31+G(d,p) basis sets. The reaction is initiated by the formation of a primary ozonide, followed by a biradical, which on subsequent reactions with other atmospheric species produces hydroxyl radical, hydrogen peroxides and organic peroxides. The results obtained from DFT calculations were subsequently used to perform canonical variational transition-state theory calculations to determine the rate constant. The calculated rate constant is in good agreement with the available experimental data.

  8. In vivo effects of Maillard reaction products derived from biscuits.

    Science.gov (United States)

    Patrignani, Mariela; Rinaldi, Gustavo Juan; Lupano, Cecilia Elena

    2016-04-01

    The antioxidant activity, antihypertensive effect and prebiotic activity of Maillard reaction products (MRPs) derived from biscuits were investigated in Wistar rats. Animals were fed the following diets for 6 weeks: control (AIN-93 diet); Asc-diet (AIN-93 diet with ascorbic acid in the drinking water); HT-B diet (containing high amount of MRP derived from biscuits) and LT-B diet (containing negligible amounts of biscuit MRP). Serum antioxidant activity (FRAP, ABTS), as well as lipid peroxidation (TBARS) were determined at the end of the experiment. Results showed that dietary MRP reduced the food efficiency, increased the antioxidant activity of serum, increased the ratio between lactic and total aerobic bacteria, increased water-holding capacity of faeces and reduced blood pressure, but did not reduce mineral absorption. Therefore, the biscuit MRP functional claims could be demonstrated by an in vivo study. PMID:26593484

  9. Sorption enhanced reaction process (SERP) for the production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Hufton, J.; Mayorga, S.; Gaffney, T.; Nataraj, S.; Rao, M.; Sircar, S. [Air Products and Chemicals, Inc., Allentown, PA (United States)

    1998-08-01

    The novel Sorption Enhanced Reaction Process has the potential to decrease the cost of hydrogen production by steam methane reforming. Current effort for development of this technology has focused on adsorbent development, experimental process concept testing, and process development and design. A preferred CO{sub 2} adsorbent, K{sub 2}CO{sub 3} promoted hydrotalcite, satisfies all of the performance targets and it has been scaled up for process testing. A separate class of adsorbents has been identified which could potentially improve the performance of the H{sub 2}-SER process. Although this material exhibits improved CO{sub 2} adsorption capacity compared to the HTC adsorbent, its hydrothermal stability must be improved. Single-step process experiments (not cyclic) indicate that the H{sub 2}-SER reactor performance during the reaction step improves with decreasing pressure and increasing temperature and steam to methane ratio in the feed. Methane conversion in the H{sub 2}-SER reactor is higher than for a conventional catalyst-only reactor operated at similar temperature and pressure. The reactor effluent gas consists of 90+% H{sub 2}, balance CH{sub 4}, with only trace levels (< 50 ppm) of carbon oxides. A best-case process design (2.5 MMSCFD of 99.9+% H{sub 2}) based on the HTC adsorbent properties and a revised SER process cycle has been generated. Economic analysis of this design indicates the process has the potential to reduce the H{sub 2} product cost by 25--31% compared to conventional steam methane reforming.

  10. Production of secondary Deuterium in the atmosphere at various latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Papini, P. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Grimani, C. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); Stephens, S.A. [Tata Institute of Fundamental Research, Bombay (International Commission on Radiation Units and Measurements)

    1995-09-01

    Secondary deuterium in the atmosphere are produced in interactions by primary cosmic rays. The shape of their energy spectrum depends on the primary cosmic ray spectrum incident at the top of the atmosphere. At high energies, the spectral shape depends on the primary spectrum of helium and heavy nuclei. However, at very low energies, specially below the geomagnetic cut-off, the spectral shape depends on the evaporation and recoil processes and hence almost independent of the spectral shape of the primary radiation. It is undertaken a calculation of the secondary deuterium spectrum at small atmospheric depths at various latitudes and the results will be presented.

  11. Heterogeneous chemistry and reaction dynamics of the atmospheric oxidants, O3, NO3, and OH, on organic surfaces.

    Science.gov (United States)

    Chapleski, Robert C; Zhang, Yafen; Troya, Diego; Morris, John R

    2016-07-01

    Heterogeneous chemistry of the most important atmospheric oxidants, O3, NO3, and OH, plays a central role in regulating atmospheric gas concentrations, processing aerosols, and aging materials. Recent experimental and computational studies have begun to reveal the detailed reaction mechanisms and kinetics for gas-phase O3, NO3, and OH when they impinge on organic surfaces. Through new research approaches that merge the fields of traditional surface science with atmospheric chemistry, researchers are developing an understanding for how surface structure and functionality affect interfacial chemistry with this class of highly oxidizing pollutants. Together with future research initiatives, these studies will provide a more complete description of atmospheric chemistry and help others more accurately predict the properties of aerosols, the environmental impact of interfacial oxidation, and the concentrations of tropospheric gases.

  12. Sorption Enhanced Reaction Process (SERP) for production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Anand, M.; Hufton, J.; Mayorga, S. [Air Products and Chemicals, Inc., Allentown, PA (United States)] [and others

    1996-10-01

    Sorption Enhanced Reaction Process (SERP) is a novel process that is being developed for the production of lower cost hydrogen by steam-methane reforming (SMR). In this process the reaction of methane with steam is carried out in the presence of an admixture of a catalyst and a selective adsorbent for carbon dioxide. The key consequences of SERP are: (i) reformation reaction is carried out at a significantly lower temperature (300-500{degrees}C) than that in a conventional SMR reactor (800-1100{degrees}C), while achieving the same conversion of methane to hydrogen, (ii) the product hydrogen is obtained at reactor pressure (200-400 psig) and at 98+% purity directly from the reactor (compared to only 70-75% H{sub 2} from conventional SMR reactor), (iii) downstream hydrogen purification step is either eliminated or significantly reduced in size. The first phase of the program has focused on the development of a sorbent for CO{sub 2} which has (a) reversible CO{sub 2} capacity >0.3 mmol/g at low partial pressures of CO{sub 2} (0.1 - 1.0 atm) in the presence of excess steam (pH{sub 2}O/pCO{sub 2}>20) at 400-500{degrees}C and (b) fast sorption-desorption kinetics for CO{sub 2}, at 400-500{degrees}C. Several families of supported sorbents have been identified that meet the target CO{sub 2} capacity. A few of these sorbents have been tested under repeated sorption/desorption cycles and extended exposure to high pressure steam at 400-500{degrees}C. One sorbent has been scaled up to larger quantities (2-3 kg) and tested in the laboratory process equipment for sorption and desorption kinetics of CO{sub 2}. The CO{sub 2}, sorption and desorption kinetics are desirably fast. This was a critical path item for the first phase of the program and now has been successfully demonstrated. A reactor has been designed that will allow nearly isothermal operation for SERP-SMR. This reactor was integrated into an overall process flow diagram for the SERP-SMR process.

  13. Measurement of atmospheric sesquiterpenes by proton transfer reaction-mass spectrometry (PTR-MS

    Directory of Open Access Journals (Sweden)

    A. Guenther

    2009-04-01

    Full Text Available The ability to measure sesquiterpenes (SQT; C15H24 by a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS was investigated. SQT calibration standards were prepared by a capillary diffusion method and the PTR-MS-estimated mixing ratios were derived from the counts of product ions and proton transfer reaction constants. These values were compared with mixing ratios determined by a calibrated Gas Chromatograph (GC coupled to a Flame Ionization Detector (GC-FID. Product ion distributions from soft-ionization occurring in a selected ion drift tube via proton transfer were measured as a function of collision energies. Results after the consideration of the mass discrimination of the PTR-MS system suggest that quantitative SQT measurements within 20% accuracy can be achieved with PTR-MS if two major product ions (m/z 149+ and 205+, out of seven major product ions (m/z 81+, 95+, 109+, 123+, 135+, 149+ and 205+, are accounted for. Considerable fragmentation of bicyclic sesquiterpenes, i.e. β-caryophyllene and α-humulene, cause the accuracy to be reduced to 50% if only the parent ion (m/z 205+ is considered. These findings were applied to a field dataset collected above a deciduous forest at the PROPHET (Program for Research on Oxidants: Photochemistry, Emissions, and Transport research station in 2005. Inferred average daytime ecosystem scale mixing ratios (fluxes of isoprene, sum of monoterpenes (MT, and sum of SQT exhibited values of 15 μg m−3 (4.5 mg m−2 h−1, 1.2 μg m−3 (0.21 mg m−2 h−1, and 0.0016 μg m−3 (0.10 mg m−2 h−1, respectively. A range of MT and SQT reactivities with respect to the OH radical was calculated and compared to an earlier study inferring significantly

  14. Measurement of atmospheric sesquiterpenes by proton transfer reaction-mass spectrometry (PTR-MS

    Directory of Open Access Journals (Sweden)

    S. Kim

    2008-12-01

    Full Text Available The ability to measure sesquiterpenes (SQT; C15H24 by a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS was investigated with SQT standards, prepared by a capillary diffusion method, and the estimated mixing ratios, derived from the counts of product ions and proton transfer reaction constants were intercompared with measured mixing ratios, measured by a complementary Gas Chromatograph (GC coupled to a Flame Ionization Detector (GC-FID. Product ion distributions due to soft-ionization occurring in a selected ion drift tube via proton transfer were measured as a function of collision energies. Results after the consideration of the mass discrimination of the PTR-MS system suggest that quantitative SQT measurements within 20% accuracy can be achieved with PTR-MS if two major product ions (m/z 149+ and 205+ out of seven major product ions (m/z 81+, 95+, 109+, 123+, 135+, 149+ and 205+ are accounted for. Bicyclic sesquiterpenes, i.e. β-caryophyllene and α-humulene, showed considerable fragmentation causing the accuracy of their analysis to be reduced to 50% if only the parent ion (m/z 205 is considered. These findings were applied to a field dataset collected above a deciduous forest at the PROPHET (Program for Research on Oxidants: Photochemistry, Emissions, and Transport research station in 2005. Inferred Average daytime ecosystem scale mixing ratios (fluxes of isoprene, sum of monoterpenes (MT, and sum of SQT exhibited values of 15 μg m−3 (4.5 mg m−2 h−1, 1.2 μg m−3 (0.21 mg m−2 h−1 and 0.0016 μg m−3 (0.10 mgm−2 h−1 respectively. A range of MT and SQT reactivities with respect to the OH radical was calculated and compared to an earlier study inferring significantly underestimated OH

  15. Solar Thermochemical Hydrogen Production via Terbium Oxide Based Redox Reactions

    Directory of Open Access Journals (Sweden)

    Rahul Bhosale

    2016-01-01

    Full Text Available The computational thermodynamic modeling of the terbium oxide based two-step solar thermochemical water splitting (Tb-WS cycle is reported. The 1st step of the Tb-WS cycle involves thermal reduction of TbO2 into Tb and O2, whereas the 2nd step corresponds to the production of H2 through Tb oxidation by water splitting reaction. Equilibrium compositions associated with the thermal reduction and water splitting steps were determined via HSC simulations. Influence of oxygen partial pressure in the inert gas on thermal reduction of TbO2 and effect of water splitting temperature (TL on Gibbs free energy related to the H2 production step were examined in detail. The cycle (ηcycle and solar-to-fuel energy conversion (ηsolar-to-fuel efficiency of the Tb-WS cycle were determined by performing the second-law thermodynamic analysis. Results obtained indicate that ηcycle and ηsolar-to-fuel increase with the decrease in oxygen partial pressure in the inert flushing gas and thermal reduction temperature (TH. It was also realized that the recuperation of the heat released by the water splitting reactor and quench unit further enhances the solar reactor efficiency. At TH=2280 K, by applying 60% heat recuperation, maximum ηcycle of 39.0% and ηsolar-to-fuel of 47.1% for the Tb-WS cycle can be attained.

  16. Measurement of Charmed Particle Production in Hadronic Reactions

    CERN Multimedia

    2002-01-01

    The aim of the experiment is to measure the production cross-section for charmed particles in hadronic reactions, study their production mechanism, and search for excited charmed hadrons.\\\\ \\\\ Charmed Mesons and Baryons will be measured in @p and p interactions on Beryllium between 100 and 200 GeV/c. The trigger will be on an electron from the leptonic decay of one charmed particle by signals from the Cerenkov counter (Ce), the electron trigger calorimeter (eCal), scintillation counters, and proportional wire chambers. The accompanying charmed particle will be measured via its hadronic decay in a two-stage magnetic spectrometer with drift chambers (arms 2, 3a, 3b, 3c), two large-area multicell Cerenkov counters (C2, C3) and a large-area shower counter (@g-CAL). The particles which can be measured and identified include @g, e, @p@+, @p|0, K@+, p, @* so that a large number of hadronic decay modes of charmed particles can be studied. \\\\ \\\\ A silicon counter telescope with 5 @mm spatial resolution will measure se...

  17. Mass identification of the neutral products generated in the plasma treatment of polluted atmospheres

    Science.gov (United States)

    Seymour, David

    2013-09-01

    Plasmas produced using Dielectric Barrier Discharge (DBD) devices are very effective in the abatement of air pollution resulting from, for example, the emission of volatile organic compounds (VCOs) by a range of industrial and agricultural processes. The development and monitoring of effective DBD systems can be investigated by advanced mass spectrometric methods specifically configured for analysis at high and atmospheric pressures The present work involves the operation of a small DBD reactor which uses either a helium or nitrogen carrier gas to sustain the plasma to which may be added reactive gases, such as oxygen, as well as samples of pollutants such as chlorinated hydrocarbons, including trichloroethylene. The mass spectrometric analysis was performed using a specially configured system manufactured by Hiden Analytical Ltd. The DBD source may also be combined with a catalyst for plasma-enhanced catalysis. The neutral products of the reactions proceeding in the plasma at atmospheric pressure are sampled through the capillary sampling system which also reduces the pressure of the gas mixture delivered to the ionisation source of the quadrupole mass spectrometer. The ions produced are subsequently mass identified. We describe typical data and comment on the advantages of this technique.

  18. Chemical Reaction and Flow Modeling in Fullerene and Nanotube Production

    Science.gov (United States)

    Scott, Carl D.; Farhat, Samir; Greendyke, Robert B.

    2004-01-01

    The development of processes to produce fullerenes and carbon nanotubes has largely been empirical. Fullerenes were first discovered in the soot produced by laser ablation of graphite [1]and then in the soot of electric arc evaporated carbon. Techniques and conditions for producing larger and larger quantities of fullerenes depended mainly on trial and error empirical variations of these processes, with attempts to scale them up by using larger electrodes and targets and higher power. Various concepts of how fullerenes and carbon nanotubes were formed were put forth, but very little was done based on chemical kinetics of the reactions. This was mainly due to the complex mixture of species and complex nature of conditions in the reactors. Temperatures in the reactors varied from several thousand degrees Kelvin down to near room temperature. There are hundreds of species possible, ranging from atomic carbon to large clusters of carbonaceous soot, and metallic catalyst atoms to metal clusters, to complexes of metals and carbon. Most of the chemical kinetics of the reactions and the thermodynamic properties of clusters and complexes have only been approximated. In addition, flow conditions in the reactors are transient or unsteady, and three dimensional, with steep spatial gradients of temperature and species concentrations. All these factors make computational simulations of reactors very complex and challenging. This article addresses the development of the chemical reaction involved in fullerene production and extends this to production of carbon nanotubes by the laser ablation/oven process and by the electric arc evaporation process. In addition, the high-pressure carbon monoxide (HiPco) process is discussed. The article is in several parts. The first one addresses the thermochemical aspects of modeling; and considers the development of chemical rate equations, estimates of reaction rates, and thermodynamic properties where they are available. The second part

  19. Inhibitory Effect of Maillard Reaction Products on Growth of the Aerobic Marine Hyperthermophilic Archaeon Aeropyrum pernix

    OpenAIRE

    Kim, Kee Woung; Lee, Sun Bok

    2003-01-01

    It was found that the growth of Aeropyrum pernix was severely inhibited in a medium containing reducing sugars and tryptone due to the formation of Maillard reaction products. The rate of the Maillard browning reaction was markedly enhanced under aerobic conditions, and the addition of Maillard reaction products to the culture medium caused fatal growth inhibition.

  20. Reaction of carbon tetrachloride with methane in a non-equilibrium plasma at atmospheric pressure, and characterisation of the polymer thus formed

    Energy Technology Data Exchange (ETDEWEB)

    Gaikwad, Vaibhav [Process Safety and Environment Protection Research Group, School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); Kennedy, Eric, E-mail: Eric.Kennedy@newcastle.edu.au [Process Safety and Environment Protection Research Group, School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); Mackie, John [Process Safety and Environment Protection Research Group, School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); Holdsworth, Clovia [Centre for Organic Electronics, Chemistry Building, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308 (Australia); Molloy, Scott; Kundu, Sazal; Stockenhuber, Michael [Process Safety and Environment Protection Research Group, School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); Dlugogorski, Bogdan [School of Engineering and Information Technology, Murdoch University, Murdoch, WA 6150 (Australia)

    2014-09-15

    Highlights: • CCl{sub 4} remediation using non-equilibrium plasma and non-oxidative conditions is proposed. • The reaction mechanism relies on experimental data and quantum chemical analysis. • Comprehensive mass balance for the reaction is provided. • CCl{sub 4} is converted to an environmentally benign and potentially useful polymer. • Characterisation of the polymer structure based on NMR and FTIR analyses is presented. - Abstract: In this paper we focus on the development of a methodology for treatment of carbon tetrachloride utilising a non-equilibrium plasma operating at atmospheric pressure, which is not singularly aimed at destroying carbon tetrachloride but rather at converting it to a non-hazardous, potentially valuable commodity. This method encompasses the reaction of carbon tetrachloride and methane, with argon as a carrier gas, in a quartz dielectric barrier discharge reactor. The reaction is performed under non-oxidative conditions. Possible pathways for formation of major products based on experimental results and supported by quantum chemical calculations are outlined in the paper. We elucidate important parameters such as carbon tetrachloride conversion, product distribution, mass balance and characterise the chlorinated polymer formed in the process.

  1. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV – gas phase reactions of organic halogen species

    Directory of Open Access Journals (Sweden)

    R. Atkinson

    2008-08-01

    Full Text Available This article, the fourth in the series, presents kinetic and photochemical data sheets evaluated by the IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. It covers the gas phase and photochemical reactions of organic halogen species, which were last published in 1997, and were updated on the IUPAC website in 2006/07. The article consists of a summary sheet, containing the recommended kinetic parameters for the evaluated reactions, and four appendices containing the data sheets, which provide information upon which the recommendations are made.

  2. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species

    Directory of Open Access Journals (Sweden)

    R. Atkinson

    2006-01-01

    Full Text Available This article, the second in the series, presents kinetic and photochemical data evaluated by the IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. It covers the gas phase and photochemical reactions of Organic species, which were last published in 1999, and were updated on the IUPAC website in late 2002, and subsequently during the preparation of this article. The article consists of a summary table of the recommended rate coefficients, containing the recommended kinetic parameters for the evaluated reactions, and eight appendices containing the data sheets, which provide information upon which the recommendations are made.

  3. Characterization of corrosion products formed on steels in the first months of atmospheric exposure

    OpenAIRE

    Antunes Renato Altobelli; Costa Isolda; Faria Dalva Lúcia Araújo de

    2003-01-01

    The corrosion products of carbon steel and weathering steel exposed to three different types of atmospheres, at times ranging from one to three months, have been identified. The steels were exposed in an industrial site, an urban site (São Paulo City, Brazil), and a humid site. The effect of the steel type on the corrosion products formed in the early stages of atmospheric corrosion has been evaluated. The corrosion products formed at the various exposure locations were characterized by Raman...

  4. Kinetics and products of the gas-phase reactions of acenaphthene with hydroxyl radicals, nitrate radicals and ozone

    Science.gov (United States)

    Zhou, Shouming; Wenger, John C.

    2013-06-01

    A series of simulation chamber experiments has been performed on the atmospheric oxidation of acenaphthene at (293 ± 3) K in 1 atm of purified air. Rate coefficients for reaction with hydroxyl (OH) radicals, nitrate (NO3) radicals and ozone have been determined using the relative rate technique. The values obtained for reaction with OH and O3 were (in units of cm3 molecule-1 s-1) (9.89 ± 0.51) × 10-11 and (1.79 ± 0.10) × 10-19 respectively. The rate coefficient for reaction with NO3 was found to be dependent on NO2 concentration and is given by (4.16 ± 0.70) × 10-13 + (3.45 ± 1.73) × 10-27[NO2] cm3 molecule-1 s-1. A denuder-filter sampling system coupled with off-line GC-MS analysis was used to collect and identify gas- and particle-phase products of the OH and NO3 initiated oxidation of acenaphthene. For the OH reaction, a range of ring-retaining and ring-opening products were identified in both phases, although some species, including nitroacenaphthene and 1,8-naphthalic anhydride, were found exclusively in the particle phase. In particular, the identification of 1-acenaphthenone and naphthalene-1,8-dicarbaldehyde amongst the products indicates that H-atom abstraction from the cyclopenta-fused ring is an important reaction pathway, along with OH addition to the aromatic ring. For the NO3 reaction, 1-acenaphthenone and nitroacenaphthene were identified as the major gas- and particle-phase products respectively. Possible reaction mechanisms for the formation of these products are proposed.

  5. Mathematical Modeling of Complex Reaction Systems for Computer-Aided Control and its Illustration on Atmospheric Chemistry

    Science.gov (United States)

    Amiryan, A.

    2015-12-01

    Modeling of sequential process has its own importance in Atmospheric Chemistry. Numerical calculations which allow to predict separate stages and components of chemical reaction make possible the reaction management, such is the new and perspective direction in chemical researches. Chemical processes basically pass multiple simple stages where various atoms and radicals participate. The complex chain of chemical reactionary systems complicates their research and the research is impossible without new methods of mathematical simulation and high technologies which allow not only to explain results of experiments but also to predict dynamics of processes. A new program package is suggested for solving research problems of chemical kinetics. The program is tested on different illustrative examples on Atmospheric Chemistry and installed in various scientific and educational institutions.

  6. Atmospheric chemistry of HFC-134a. Kinetic and mechanistic study of the CF3CFHO2 + NO2 reaction

    DEFF Research Database (Denmark)

    Møgelberg, T.E.; Nielsen, O.J.; Sehested, J.;

    1994-01-01

    A pulse radiolysis system was used to study the kinetics of the reaction of CF3CFHO2 with NO2. By monitoring the rate of the decay of NO2 using its absorption at 400 nm the reaction rate constant was determined to be k = (5.0 +/- 0.5) x 10(-12) cm3 molecule-1 s-1. A long path length Fourier......-transform infrared technique was used to investigate the thermal decomposition of the product CF3CFHO2NO2. At 296 K in the presence of 700 Torr of air, decomposition of CF3CFHO2NO2 was rapid (greater than 90% decomposition within 3 min). The results are discussed in the context of atmospheric chemistry of CF3CFH2...

  7. KRATTA, a versatile triple telescope array for charged reaction products

    CERN Document Server

    Łukasik, J; Budzanowski, A; Czech, B; Skwirczyńska, I; Brzychczyk, J; Adamczyk, M; Kupny, S; Lasko, P; Sosin, Z; Wieloch, A; Kiš, M; Leifels, Y; Trautmann, W

    2013-01-01

    A new detection system KRATTA, Krak\\'ow Triple Telescope Array, is presented. This versatile, low threshold, broad energy range system has been built to measure the energy, emission angle, and isotopic composition of light charged reaction products. It consists of 38 independent modules which can be arranged in an arbitrary configuration. A single module, covering actively about 4.5 msr of the solid angle at the optimal distance of 40 cm from the target, consists of three identical, 0.500 mm thick, large area photodiodes, used also for direct detection, and of two CsI(1500 ppm Tl) crystals of 2.5 and 12.5 cm length, respectively. All the signals are digitally processed. The lower identification threshold, due to the thickness of the first photodiode, has been reduced to about 2.5 MeV for protons (~0.065 mm of Si equivalent) by applying a pulse shape analysis. The pulse shape analysis allowed also to decompose the complex signals from the middle photodiode into their ionization and scintillation components and...

  8. Plant Glutathione Biosynthesis: Diversity in Biochemical Regulation and Reaction Products

    Directory of Open Access Journals (Sweden)

    Ashley eGalant

    2011-09-01

    Full Text Available In plants, exposure to temperature extremes, heavy metal-contaminated soils, drought, air pollutants, and pathogens results in the generation of reactive oxygen species that alter the intracellular redox environment, which in turn influences signaling pathways and cell fate. As part of their response to these stresses, plants produce glutathione. Glutathione acts as an antioxidant by quenching reactive oxygen species, and is involved in the ascorbate-glutathione cycle that eliminates damaging peroxides. Plants also use glutathione for the detoxification of xenobiotics, herbicides, air pollutants (sulfur dioxide and ozone, and toxic heavy metals. Two enzymes catalyze glutathione synthesis: glutamate-cysteine ligase (GCL, and glutathione synthetase (GS. Glutathione is a ubiquitous protective compound in plants, but the structural and functional details of the proteins that synthesize it, as well as the potential biochemical mechanisms of their regulation, have only begun to be explored. As discussed here, the core reactions of glutathione synthesis are conserved across various organisms, but plants have diversified both the regulatory mechanisms that control its synthesis and the range of products derived from this pathway. Understanding the molecular basis of glutathione biosynthesis and its regulation will expand our knowledge of this component in the plant stress response network.

  9. On-line measurements of α-pinene ozonolysis products using an atmospheric pressure chemical ionisation ion-trap mass spectrometer

    Science.gov (United States)

    Warscheid, Bettina; Hoffmann, Thorsten

    An on-line technique to investigate complex organic oxidation reactions in environmental chamber experiments is presented. The method is based on the direct introduction of the chamber air into an atmospheric pressure ion source of a commercial ion-trap mass spectrometer. To demonstrate the analytical potential of the method (atmospheric pressure chemical ionisation/mass spectrometry, APCI/MS), the ozonolysis of α-pinene was investigated in a series of experiments performed in various sized reaction chambers at atmospheric pressure and 296 K in synthetic air. Investigations were focussed on the influence of the water vapour concentration on the formation of the predominant oxidation product, pinonaldehyde, derived from the α-pinene/ozone reaction. Quantification of pinonaldehyde was achieved by conducting a standard addition technique. The molar yield of pinonaldehyde was found to depend strongly on the actual water vapour concentration between ozonide, indicating a branching ratio of 0.35/0.65.

  10. An assessment of potential degradation products in the gas-phase reactions of alternative fluorocarbons in the troposphere

    Science.gov (United States)

    Niki, Hiromi

    1990-01-01

    Tropospheric chemical transformations of alternative hydrofluorocarbons (HCF's) and hydrochlorofluorocarbons (HCFC's) are governed by hydroxyl radical initiated oxidation processes, which are likely to be analogous to those known for alkanes and chloroalkanes. A schematic diagram is used to illustrate plausible reaction mechanisms for their atmospheric degradation, where R, R', and R'' denote the F- and/or Cl-substituted alkyl groups derived from HCF's and HCFC's subsequent th the initial H atom abstraction by HO radicals. At present, virtually no kinetic data exist for the majority of these reactions, particularly for those involving RO. Potential degradation intermediates and final products include a large variety of fluorine- and/or chlorine-containing carbonyls, acids, peroxy acids, alcohols, hydrogen peroxides, nitrates and peroxy nitrates, as summarized in the attached table. Probably atmospheric lifetimes of these compounds were also estimated. For some carbonyl and nitrate products shown in this table, there seem to be no significant gas-phase removal mechanisms. Further chemical kinetics and photochemical data are needed to quantitatively assess the atmospheric fate of HCF's and HCFC's, and of the degradation products postulated in this report.

  11. Kinetic regimes and limiting cases of gas uptake and heterogeneous reactions in atmospheric aerosols and clouds: a general classification scheme

    Directory of Open Access Journals (Sweden)

    T. Berkemeier

    2013-01-01

    Full Text Available Heterogeneous reactions are important to atmospheric chemistry and are therefore an area of intense research. In multiphase systems such as aerosols and clouds, chemical reactions are usually strongly coupled to a complex sequence of mass transport processes and results are often not easy to interpret.

    Here we present a systematic classification scheme for gas uptake by aerosol or cloud particles which distinguishes two major regimes: a reaction-diffusion regime and a mass-transfer regime. Each of these regimes includes four distinct limiting cases, characterized by a dominant reaction location (surface or bulk and a single rate-limiting process: chemical reaction, bulk diffusion, gas-phase diffusion or mass accommodation.

    The conceptual framework enables efficient comparison of different studies and reaction systems, going beyond the scope of previous classification schemes by explicitly resolving interfacial transport processes and surface reactions limited by mass transfer from the gas phase. The use of kinetic multi-layer models instead of resistor model approaches increases the flexibility and enables a broader treatment of the subject, including cases which do not fit into the strict limiting cases typical of most resistor model formulations. The relative importance of different kinetic parameters such as diffusion, reaction rate and accommodation coefficients in this system is evaluated by a quantitative global sensitivity analysis. We outline the characteristic features of each limiting case and discuss the potential relevance of different regimes and limiting cases for various reaction systems. In particular, the classification scheme is applied to three different data sets for the benchmark system of oleic acid reacting with ozone. In light of these results, future directions of research needed to elucidate the multiphase chemical kinetics in this and other reaction systems are discussed.

  12. Kinetic regimes and limiting cases of gas uptake and heterogeneous reactions in atmospheric aerosols and clouds: a general classification scheme

    Directory of Open Access Journals (Sweden)

    T. Berkemeier

    2013-07-01

    Full Text Available Heterogeneous reactions are important to atmospheric chemistry and are therefore an area of intense research. In multiphase systems such as aerosols and clouds, chemical reactions are usually strongly coupled to a complex sequence of mass transport processes and results are often not easy to interpret. Here we present a systematic classification scheme for gas uptake by aerosol or cloud particles which distinguishes two major regimes: a reaction-diffusion regime and a mass transfer regime. Each of these regimes includes four distinct limiting cases, characterised by a dominant reaction location (surface or bulk and a single rate-limiting process: chemical reaction, bulk diffusion, gas-phase diffusion or mass accommodation. The conceptual framework enables efficient comparison of different studies and reaction systems, going beyond the scope of previous classification schemes by explicitly resolving interfacial transport processes and surface reactions limited by mass transfer from the gas phase. The use of kinetic multi-layer models instead of resistor model approaches increases the flexibility and enables a broader treatment of the subject, including cases which do not fit into the strict limiting cases typical of most resistor model formulations. The relative importance of different kinetic parameters such as diffusion, reaction rate and accommodation coefficients in this system is evaluated by a quantitative global sensitivity analysis. We outline the characteristic features of each limiting case and discuss the potential relevance of different regimes and limiting cases for various reaction systems. In particular, the classification scheme is applied to three different datasets for the benchmark system of oleic acid reacting with ozone in order to demonstrate utility and highlight potential issues. In light of these results, future directions of research needed to elucidate the multiphase chemical kinetics in this and other reaction systems

  13. Red clouds in reducing atmospheres. [polymer production by UV irradiation in planetary atmospheres

    Science.gov (United States)

    Khare, B. N.; Sagan, C.

    1973-01-01

    A dark reddish-brown high-molecular weight polymer is produced by long wavelength ultraviolet irradiation of abundant gases in reducing planetary atmospheres. The polymer is examined by paper chromatography, mass spectrometry, and infrared, visible, and ultraviolet spectroscopy. High carbon-number straight-chain alkanes with NH2 and, probably, OH and C = O groups are identified, along with amino acids. There are chemical similarities between this polymer and organic compounds recovered from carbonaceous chondrites and precambrian sediments. The visible and near-ultraviolet transmission spectrum of the polymer shows its absorption optical depth to be redder than lambda(-2) and perhaps similar in coloration to the clouds of Jupiter, Saturn, and Titan. The nitrile content is small, and the polymer should be semitransparent in the 5 micrometer atmospheric window. Such polymers may be a common constituent of clouds in the outer solar system and on the early earth.

  14. Corrosion product formation during NaCl induced atmospheric corrosion of magnesium alloy AZ91D

    Energy Technology Data Exchange (ETDEWEB)

    Joensson, Martin [Corrosion and Metals Research Institute (KIMAB), Drottning Kristinas vaeg 48, SE-114 28 Stockholm (Sweden)]. E-mail: martin.jonsson@kimab.com; Persson, Dan [Corrosion and Metals Research Institute (KIMAB), Drottning Kristinas vaeg 48, SE-114 28 Stockholm (Sweden); Thierry, Dominique [Institut de la Corrosion, 220 Rue Rivoalon, 29200 Brest (France)

    2007-03-15

    Magnesium alloy AZ91D was exposed in humid air at 95% relative humidity (RH) with a deposition of 70 {mu}g/cm{sup -2} NaCl. The corrosion products formed and the surface electrolyte were analysed after different exposure times using ex situ and in situ FTIR spectroscopy, X-ray diffraction and Ion Chromatography. The results show that magnesium carbonates are the main solid corrosion products formed under these conditions. The corrosion products identified were the magnesium carbonates hydromagnesite (Mg{sub 5} (CO{sub 3}){sub 4} (OH){sub 2}4H{sub 2}O) and nesquehonite (MgCO{sub 3} 3H{sub 2}O). The corrosion attack starts with the formation of magnesite at locations with higher NaCl contents. At 95% RH, a sequence of reactions was observed with the initial formation of magnesite, which transformed into nesquehonite after 2-3 days. Long exposures result in the formation of pits containing brucite (Mg(OH{sub 2})) covered with hydromagnesite crusts. The hydromagnesite crusts restrict the transport of CO{sub 2} and O{sub 2} to the magnesium surface and thereby favour the formation of brucite. Analysis of the surface electrolyte showed that the NaCl applied on the surface at the beginning was essentially preserved during the initial corrosion process. Since the applied salt was not bound in sparingly soluble corrosion products a layer of NaCl electrolyte was present on the surface during the whole exposure. Thus, Na{sup +} and Cl{sup -} ions can participate in the corrosion process during the whole time and the availability of these species will not restrict the atmospheric corrosion of AZ91D under these conditions. It is suggested that the corrosion behaviour of AZ91D is rather controlled by factors related to the microstructure of the alloy and formation of solid carbonate containing corrosion products blocking active corrosion sites on the surface.

  15. Corrosion product formation during NaCl induced atmospheric corrosion of magnesium alloy AZ91D

    International Nuclear Information System (INIS)

    Magnesium alloy AZ91D was exposed in humid air at 95% relative humidity (RH) with a deposition of 70 μg/cm-2 NaCl. The corrosion products formed and the surface electrolyte were analysed after different exposure times using ex situ and in situ FTIR spectroscopy, X-ray diffraction and Ion Chromatography. The results show that magnesium carbonates are the main solid corrosion products formed under these conditions. The corrosion products identified were the magnesium carbonates hydromagnesite (Mg5 (CO3)4 (OH)24H2O) and nesquehonite (MgCO3 3H2O). The corrosion attack starts with the formation of magnesite at locations with higher NaCl contents. At 95% RH, a sequence of reactions was observed with the initial formation of magnesite, which transformed into nesquehonite after 2-3 days. Long exposures result in the formation of pits containing brucite (Mg(OH2)) covered with hydromagnesite crusts. The hydromagnesite crusts restrict the transport of CO2 and O2 to the magnesium surface and thereby favour the formation of brucite. Analysis of the surface electrolyte showed that the NaCl applied on the surface at the beginning was essentially preserved during the initial corrosion process. Since the applied salt was not bound in sparingly soluble corrosion products a layer of NaCl electrolyte was present on the surface during the whole exposure. Thus, Na+ and Cl- ions can participate in the corrosion process during the whole time and the availability of these species will not restrict the atmospheric corrosion of AZ91D under these conditions. It is suggested that the corrosion behaviour of AZ91D is rather controlled by factors related to the microstructure of the alloy and formation of solid carbonate containing corrosion products blocking active corrosion sites on the surface

  16. Cold Atmospheric Plasma: methods of production and application in dentistry and oncology

    OpenAIRE

    Hoffmann, Clotilde; Berganza, Carlos; Zhang, John

    2013-01-01

    Cold Atmospheric Plasma is an ionized gas that has recently been extensively studied by researchers as a possible therapy in dentistry and oncology. Several different gases can be used to produce Cold Atmospheric Plasma such as Helium, Argon, Nitrogen, Heliox, and air. There are many methods of production by which cold atmospheric plasma is created. Each unique method can be used in different biomedical areas. In dentistry, researchers have mostly investigated the antimicrobial effects produc...

  17. Quantum mechanical investigation of the atmospheric reaction CH3O2 + NO.

    Science.gov (United States)

    Lesar, Antonija; Hodoscek, Milan; Drougas, Evangelos; Kosmas, Agnie M

    2006-06-29

    The important stationary points on the potential energy surface of the reaction CH(3)O(2) + NO have been investigated using ab initio and density functional theory techniques. The optimizations were carried out at the B3LYP/6-311++G(d,p) and MP2/6-311++G(d,p) levels of theory while the energetics have been refined using the G2MP2, G3//B3LYP, and CCSD(T) methodologies. The calculations allow the proper characterization of the transition state barriers that determine the fate of the nascent association conformeric minima of methyl peroxynitrite. The main products, CH(3)O + NO(2), are formed through either rearrangement of the trans-conformer to methyl nitrate and its subsequent dissociation or via the breaking of the peroxy bond of the cis-conformer to CH(3)O + NO(2) radical pair. The important consequences of the proposed mechanism are (a) the allowance on energetic grounds for nitrate formation parallel to radical propagation under favorable external conditions and (b) the confirmation of the conformational preference of the homolytic cleavage of the peroxy bond, discussed in previous literature. PMID:16789778

  18. Sporicidal effects of iodine-oxide thermite reaction products

    Science.gov (United States)

    Russell, Rod; Bless, Stephan; Blinkova, Alexandra; Chen, Tiffany

    2012-03-01

    Iodine pentoxide-aluminum thermite reactions have been driven by impacts at 1000 m/s on steel plates 3 mm or thicker. This reaction releases iodine gas that is known to be a sporicide. To test the impact reactions for sporicidal effects, reactions took place in closed chambers containing dried Bacillus subtilis spores. The reduction in colony-forming units was dependent on the exposure time; long exposure times resulted in a 105 decrease in germination rate. This was shown to be due to the gas exposure rather than the heat or turbulence. Sporicidal effectiveness was increased by adding neodymium and saran resin.

  19. Gas-phase and particulate products from the atmospheric degradation of the organothiophosphorus insecticide chlorpyrifos-methyl.

    Science.gov (United States)

    Borrás, Esther; Tortajada-Genaro, Luis Antonio; Ródenas, Milagros; Vera, Teresa; Coscollá, Clara; Yusá, Vicent; Muñoz, Amalia

    2015-11-01

    The phosphorothioate structure is highly present in several organophosphorus pesticides. However, there is insufficient information about its degradation process after the release to the atmosphere and the secondary pollutants formed. Herein, the atmospheric reaction of chlorpyrifos-methyl (o,o-dimethyl o-(3,5,6-trichloropyridin-2-yl) phosphorothioate), is described for semi-urban or rural locations. The photo-oxidation under low NOx conditions (5-55 ppbV) was reproduced in a large outdoor simulation chamber, observing a rapid degradation (lifetime<3.5 h). The formation of gaseous products and particulate matter (aerosol yield 2-8%) was monitored. The chemical composition of minor products (gaseous and particulate) was studied, identifying 15 multi-oxygenated derivatives. The most abundant products were ring-retaining molecules such as o,o-dimethyl o-(3,5,6-trichloropyridin-2-yl) phosphorothioate, dimethyl 3,5,6-trichloropyridin-2-yl phosphate, o-methyl o-(3,5,6-trichloropyridin-2-yl) hydrogen phosphorothioate, 3,5,6-trichloropyridin-2-yl dihydrogen phosphate, 3,5,6-trichloropyridin-2-ol, and 3,5,6-trichloropyridine-2,4-diol. An atmospheric degradation mechanism has been proposed based on an oxidation started with OH-nucleophilic attack to P=S bond. The results have been extrapolated to other organothiophosphorus molecules, such as malathion, parathion, diazinon and methidathion, among many others, to estimate their photo-oxidative degradation and the expected products. PMID:25548033

  20. A COMBINED REACTION/PRODUCT RECOVERY PROCESS FOR THE CONTINUOUS PRODUCTION OF BIODIESEL

    Energy Technology Data Exchange (ETDEWEB)

    Birdwell, J.F., Jr.; McFarlane, J.; Schuh, D.L.; Tsouris, C; Day, J.N. (Nu-Energie, LLC); Hullette, J.N. (Nu-Energie, LLC)

    2009-09-01

    Oak Ridge National Laboratory (ORNL) and Nu-Energie, LLC entered into a Cooperative Research And Development Agreement (CRADA) for the purpose of demonstrating and deploying a novel technology for the continuous synthesis and recovery of biodiesel from the transesterification of triglycerides. The focus of the work was the demonstration of a combination Couette reactor and centrifugal separator - an invention of ORNL researchers - that facilitates both product synthesis and recovery from reaction byproducts in the same apparatus. At present, transesterification of triglycerides to produce biodiesel is performed in batch-type reactors with an excess of a chemical catalyst, which is required to achieve high reactant conversions in reasonable reaction times (e.g., 1 hour). The need for long reactor residence times requires use of large reactors and ancillary equipment (e.g., feed and product tankage), and correspondingly large facilities, in order to obtain the economy of scale required to make the process economically viable. Hence, the goal of this CRADA was to demonstrate successful, extended operation of a laboratory-scale reactor/separator prototype to process typical industrial reactant materials, and to design, fabricate, and test a production-scale unit for deployment at the biodiesel production site. Because of its ease of operation, rapid attainment of steady state, high mass transfer and phase separation efficiencies, and compact size, a centrifugal contactor was chosen for intensification of the biodiesel production process. The unit was modified to increase the residence time from a few seconds to minutes*. For this application, liquid phases were introduced into the reactor as separate streams. One was composed of the methanol and base catalyst and the other was the soy oil used in the experiments. Following reaction in the mixing zone, the immiscible glycerine and methyl ester products were separated in the high speed rotor and collected from separate

  1. A COMBINED REACTION/PRODUCT RECOVERY PROCESS FOR THE CONTINUOUS PRODUCTION OF BIODIESEL

    International Nuclear Information System (INIS)

    Oak Ridge National Laboratory (ORNL) and Nu-Energie, LLC entered into a Cooperative Research And Development Agreement (CRADA) for the purpose of demonstrating and deploying a novel technology for the continuous synthesis and recovery of biodiesel from the transesterification of triglycerides. The focus of the work was the demonstration of a combination Couette reactor and centrifugal separator - an invention of ORNL researchers - that facilitates both product synthesis and recovery from reaction byproducts in the same apparatus. At present, transesterification of triglycerides to produce biodiesel is performed in batch-type reactors with an excess of a chemical catalyst, which is required to achieve high reactant conversions in reasonable reaction times (e.g., 1 hour). The need for long reactor residence times requires use of large reactors and ancillary equipment (e.g., feed and product tankage), and correspondingly large facilities, in order to obtain the economy of scale required to make the process economically viable. Hence, the goal of this CRADA was to demonstrate successful, extended operation of a laboratory-scale reactor/separator prototype to process typical industrial reactant materials, and to design, fabricate, and test a production-scale unit for deployment at the biodiesel production site. Because of its ease of operation, rapid attainment of steady state, high mass transfer and phase separation efficiencies, and compact size, a centrifugal contactor was chosen for intensification of the biodiesel production process. The unit was modified to increase the residence time from a few seconds to minutes*. For this application, liquid phases were introduced into the reactor as separate streams. One was composed of the methanol and base catalyst and the other was the soy oil used in the experiments. Following reaction in the mixing zone, the immiscible glycerine and methyl ester products were separated in the high speed rotor and collected from separate

  2. Research on OH(A) Production Mechanism of an Atmospheric He-Water Plasma Jet

    Science.gov (United States)

    Liu, Jingjing; Hu, Xiao

    2015-09-01

    Hydroxyl radicals produced by atmospheric liquid containing plasmas play important role on bacteria killing and wound healing. A He-H2O plasma jet can produce abundant OH radicals with low gas temperature. At present, some possible reactions to produce OH(A) are concluded, however, the main mechanism to produce OH(A) and the influence of plasma working mode and water vapor concentration on OH(A) generation are still not clear. It is generally regarded that the accurate measurements of electron density and electron temperature play key role on the analysis of OH production mechanism. In this paper, the main generation and loss mechanisms of OH(A) will be found out by both experimental measurements of time-spatial distribution of OH(A) emission intensity, electron density and electron temperature and neutral gas/plasma fluid simulation at different working modes and water vapor concentrations. The influence of plasma working mode and water vapor concentration on OH(A) production and its flux arriving on the substrate is also investigated to optimize the He-H2O plasma jet for bio-medical application.

  3. Critical Evaluation of Chemical Reaction Rates and Collision Cross Sections of Importance in the Earth's Upper Atmosphere and the Atmospheres of Other Planets, Moons, and Comets

    Science.gov (United States)

    Huestis, David L.

    2006-01-01

    We propose to establish a long-term program of critical evaluation by domain experts of the rates and cross sections for atomic and molecular processes that are needed for understanding and modeling the atmospheres in the solar system. We envision data products resembling those of the JPL/NASA Panel for Data Evaluation and the similar efforts of the international combustion modeling community funded by US DoE and its European counterpart.

  4. Accumulation of Maillard reaction products in skin collagen in diabetes and aging.

    OpenAIRE

    Dyer, D G; Dunn, J A; Thorpe, S R; Bailie, K E; Lyons, T. J.; McCance, D. R.; Baynes, J W

    1993-01-01

    To investigate the contribution of glycation and oxidation reactions to the modification of insoluble collagen in aging and diabetes, Maillard reaction products were measured in skin collagen from 39 type 1 diabetic patients and 52 nondiabetic control subjects. Compounds studied included fructoselysine (FL), the initial glycation product, and the glycoxidation products, N epsilon-(carboxymethyl) lysine (CML) and pentosidine, formed during later Maillard reactions. Collagen-linked fluorescence...

  5. Minimizing the Entropy Production of the Methanol Producing Reaction in a Methanol Reactor

    OpenAIRE

    Kjelstrup, Signe; Bedeaux, Dick; Johannessen, Eivind; Rosjorde, Audun; Nummedal, Lars

    2000-01-01

    The entropy production of the reaction that produces methanol in a methanol reactor, has been minimized. The results show that the entropy production of the reaction can be reduced by more than 70%. The optimal path through the reactor is characterized by a driving force for the chemical reaction that is close to constant. The entropy production due to heat transfer across the reactor walls in this state is large, however. Variations of the reactor design show that it is possible to accomplis...

  6. Accessing reaction rate constants in on-column reaction chromatography: an extended unified equation for reaction educts and products with different response factors.

    Science.gov (United States)

    Trapp, Oliver; Bremer, Sabrina; Weber, Sven K

    2009-11-01

    An extension of the unified equation of chromatography to directly access reaction rate constants k(1) of first-order reaction in on-column chromatography is presented. This extended equation reflects different response factors in the detection of the reaction educt and product which arise from structural changes by elimination or addition, e.g., under pseudo-first-order reaction conditions. The reaction rate constants k(1) and Gibbs activation energies DeltaG(double dagger) of first-order reactions taking place in a chromatographic system can be directly calculated from the chromatographic parameters, i.e., retention times of the educt E and product P (t(R)(A) and t(R)(B)), peak widths at half height (w(A) and w(B)), the relative plateau height (h(p)) of the conversion profile, and the individual response factors f(A) and f(B). The evaluation of on-column reaction gas chromatographic experiments is exemplified by the evaluation of elution profiles obtained by ring-closing metathesis reaction of N,N-diallytrifluoroacetamide in presence of Grubbs second-generation catalyst, dissolved in polydimethylsiloxane (GE SE 30).

  7. Chemical Characterization and Reactivity Testing of Fuel-Oxidizer Reaction Product (Test Report)

    Science.gov (United States)

    1996-01-01

    The product of incomplete reaction of monomethylhydrazine (MMH) and nitrogen tetroxide (NTO) propellants, or fuel-oxidizer reaction product (FORP), has been hypothesized as a contributory cause of an anomaly which occurred in the chamber pressure (PC) transducer tube on the Reaction Control Subsystem (RCS) aft thruster 467 on flight STS-51. A small hole was found in the titanium-alloy PC tube at the first bend below the pressure transducer. It was surmised that the hole may have been caused by heat and pressure resulting from ignition of FORP. The NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) was requested to define the chemical characteristics of FORP, characterize its reactivity, and simulate the events in a controlled environment which may have lead to the Pc-tube failure. Samples of FORP were obtained from the gas-phase reaction of MMH with NTO under laboratory conditions, the pulsed firings of RCS thrusters with modified PC tubes using varied oxidizer or fuel lead times, and the nominal RCS thruster firings at WSTF and Kaiser-Marquardt. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), accelerating rate calorimetry (ARC), ion chromatography (IC), inductively coupled plasma (ICP) spectrometry, thermogravimetric analysis (TGA) coupled to FTIR (TGA/FTIR), and mechanical impact testing were used to qualitatively and quantitatively characterize the chemical, thermal, and ignition properties of FORP. These studies showed that the composition of FORP is variable but falls within a limited range of compositions that depends on the fuel loxidizer ratio at the time of formation, composition of the post-formation atmosphere (reducing or oxidizing), and reaction or postreaction temperature. A typical composition contains methylhydrazinium nitrate (MMHN), ammonium nitrate (AN), methylammonium nitrate (MAN), and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. The thermal decomposition

  8. Atmospheric heteroseneous reaction of acetone: Adsorption and desorption kinetics and mechanisms on SiO2 particles

    Institute of Scientific and Technical Information of China (English)

    JIE ChongYu; CHEN ZhongMing; WANG HongLi; HUA Wei; WANG CaiXia; LI Shuang

    2008-01-01

    Acetone plays an important role in photooxidation processes in the atmosphere. Up to date, little is known regarding the heterogeneous fate of acetone. In this study, the adsorption and desorption processes of acetone on SiO2 particles, which are the major constituent of mineral dust in the atmos-phere, have been investigated for the first time under the simulated atmospheric conditions, using in situ transmission Fourier transform infrared spectroscopy. It is found that acetone molecules are ad-sorbed on the surfaces of SiO2 particles by van der Waals forces and hydrogen bonding forces in a nonreactive and reversible state. The rates of initial adsorption and initial desorption, initial uptake coefficients and adsorption concentrations at equilibrium have been determined at different relative humidity. The presence of water vapor cannot result in the formation of new substances, but can de-crease the adsorption ability by consuming or overlapping the isolated OH groups on the surfaces of SiO2 particles. In the desorption process, a considerable amount of acetone molecules will remain on SiO2 particles in dry air, whereas acetone molecules are almost completely desorbed at a high relative humidity. In order to evaluate the role of heterogeneous reactions of acetone and other carbonyl compounds in the atmosphere, a new model fitting the atmospheric conditions is needed.

  9. Version 5 product improvements from the atmospheric infrared sounder (AIRS)

    Science.gov (United States)

    Pagano, Thomas S.; Aumann, Hartmut H.; Chahine, Moustafa T.; Manning, Evan; Friedman, Steve; Broberg, Steven E.; Licata, Stephen J.; Elliott, Denis A.; Irion, Fredrick W.; Kahn, Brian H.; Fishbein, Evan; Olsen, Edward; Granger, Stephanie; Susskind, Joel; Keita, Fricky; Blaisdell, John; Strow, Larrabee; DeSouza-Machado, Sergio; Barnet, Chris

    2006-12-01

    The AIRS instrument was launched in May 2002 into a polar sun-synchronous orbit onboard the EOS Aqua Spacecraft. Since then we have released three versions of the AIRS data product to the scientific community. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy on a global scale, as well as water vapor profiles and trace gas amounts. The first version of software, Version 2.0 was available to scientists shortly after launch with Version 3.0 released to the public in June 2003. Like all AIRS product releases, all products are accessible to the public in order to have the best user feedback on issues that appear in the data. Fortunately the products have had exceptional accuracy and stability. This paper presents the improvement between AIRS Version 4.0 and Version 5.0 products and shows examples of the new products available in Version 5.0.

  10. Quantum dynamical study of the O({sup 1}D) + CH{sub 4} → CH{sub 3} + OH atmospheric reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ben Bouchrit, R.; Ben Abdallah, D.; Jaidane, N. [Laboratoire de Physique Atomique et Moléculaire et Applications, Département de Physique, Faculté des Sciences, Université Tunis-El Manar, 1060 Tunis (Tunisia); Jorfi, M. [Institut de Chimie des Milieux et des Matériaux de Poitiers, UMR CNRS 6503, Université de Poitiers, 86022 Poitiers Cedex (France); González, M. [Departament de Química Física and IQTC, Universitat de Barcelona, C/Martí i Franqués 1, 08028 Barcelona (Spain); Bussery-Honvault, B. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université de Bourgogne, 21078 Dijon Cedex (France); Honvault, P., E-mail: pascal.honvault@univ-fcomte.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université de Bourgogne, 21078 Dijon Cedex (France); UFR Sciences et Techniques, Université de Franche-Comté, 25030 Besançon Cedex (France)

    2014-06-28

    Time independent quantum mechanical (TIQM) scattering calculations have been carried out for the O({sup 1}D) + CH{sub 4}(X{sup 1}A{sub 1}) → CH{sub 3}(X{sup 2}A{sub 2}″) + OH(X{sup 2}Π) atmospheric reaction, using an ab initio ground potential energy surface where the CH{sub 3} group is described as a pseudo-atom. Total and state-to-state reaction probabilities for a total angular momentum J = 0 have been determined for collision energies up to 0.5 eV. The vibrational and rotational state OH product distributions show no specific behavior. The rate coefficient has been calculated by means of the J-shifting approach in the 10–500 K temperature range and slightly depends on T at ordinary temperatures (as expected for a barrierless reaction). Quantum effects do not influence the vibrational populations and rate coefficient in an important way, and a rather good agreement has been found between the TIQM results and the quasiclassical trajectory and experimental ones. This reinforces somewhat the reliability of the pseudo-triatomic approach under the reaction conditions explored.

  11. Products and Mechanisms of Aerosol Formation from Reactions of OH Radicals with Linear and Branched Alkenes in the Presence of NOx (Invited)

    Science.gov (United States)

    Ziemann, P. J.; Matsunaga, A.

    2009-12-01

    The chemical and physical processes involved in the formation of secondary organic aerosol (SOA) are complex and can include reactions of volatile organic compounds with a number of atmospheric oxidants (the major ones are O3, and OH and NO3 radicals), as well as surface and condensed-phase reactions, homogeneous nucleation, and gas-particle partitioning. It should come as no surprise that understanding and accurately modeling these processes is a major challenge that has not yet been fully addressed. Alkenes emitted from vegetation are the largest source of non-methane hydrocarbons to the global atmosphere and consist mostly of isoprene (C5H8), monoterpenes (C10H16), and sesquiterpenes (C15H24), compounds with a large range of sizes and molecular structures. Their atmospheric oxidation is initiated primarily by reactions with hydroxyl radicals and can lead to a variety of products, some of which can form SOA. Because of the complexity of terpene reactions and the large numbers of products that are formed, there are advantages to studying the chemistry of simpler alkenes in order to gain insights that can be applied to more complex reaction systems. This is the approach we have taken, and in this talk I will report results of studies of the products, SOA yields, and mechanisms of SOA formation from reactions of a variety of linear and branched alkenes with hydroxyl radicals in the presence of nitrogen oxides. Products consist of a large array of multifunctional compounds, including oligomers, containing carbonyl, hydroxy, carboxyl, and nitrate groups. I will demonstrate some of the ways in which changes in molecular structure can alter both gas and SOA products, including those formed through condensed-phase reactions, and also SOA yields, and suggest explanations for these effects based on current understanding of chemical reaction mechanisms.

  12. Processing of Aluminum Alloys Containing Displacement Reaction Products

    OpenAIRE

    Stawovy, Michael Thomas

    1998-01-01

    Aluminum and metal-oxide powders were mixed using mechanical alloying. Exothermic displacement reactions could be initiated in the powders either by mechanical alloying alone or by heat treating the mechanically alloyed powders. Exponential relationships developed between the initiation time of the reaction and the mechanical alloying charge ratio. The exponential relationships were the result of changes in the intensity and quantity of collisions occurring during mechanical alloying. Di...

  13. Free-radical production and oxidative reactions of hemoglobin.

    OpenAIRE

    Winterbourn, C C

    1985-01-01

    Mechanisms of autoxidation of hemoglobin, and its reactions with H2O2, O2-, and oxidizing or reducing xenobiotics are discussed. Reactive intermediates of such reactions can include drug free radicals, H2O2, and O2-, as well as peroxidatively active ferrylhemoglobin and methemoglobin-H2O2. The contributions of these species to hemoglobin denaturation and drug-induced hemolysis, and the actions of various protective agents, are considered.

  14. Thermochemical hydrogen production via a cycle using barium and sulfur - Reaction between barium sulfide and water

    Science.gov (United States)

    Ota, K.; Conger, W. L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653-866 C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. An expression was derived for the rate of hydrogen formation.

  15. Atmospheric hydroxyl radical production from electronically excited NO2 and H2O.

    Science.gov (United States)

    Li, Shuping; Matthews, Jamie; Sinha, Amitabha

    2008-03-21

    Hydroxyl radicals are often called the "detergent" of the atmosphere because they control the atmosphere's capacity to cleanse itself of pollutants. Here, we show that the reaction of electronically excited nitrogen dioxide with water can be an important source of tropospheric hydroxyl radicals. Using measured rate data, along with available solar flux and atmospheric mixing ratios, we demonstrate that the tropospheric hydroxyl contribution from this source can be a substantial fraction (50%) of that from the traditional O(1D) + H2O reaction in the boundary-layer region for high solar zenith angles. Inclusion of this chemistry is expected to affect modeling of urban air quality, where the interactions of sunlight with emitted NOx species, volatile organic compounds, and hydroxyl radicals are central in determining the rate of ozone formation.

  16. Atmospheric hydroxyl radical production from electronically excited NO2 and H2O.

    Science.gov (United States)

    Li, Shuping; Matthews, Jamie; Sinha, Amitabha

    2008-03-21

    Hydroxyl radicals are often called the "detergent" of the atmosphere because they control the atmosphere's capacity to cleanse itself of pollutants. Here, we show that the reaction of electronically excited nitrogen dioxide with water can be an important source of tropospheric hydroxyl radicals. Using measured rate data, along with available solar flux and atmospheric mixing ratios, we demonstrate that the tropospheric hydroxyl contribution from this source can be a substantial fraction (50%) of that from the traditional O(1D) + H2O reaction in the boundary-layer region for high solar zenith angles. Inclusion of this chemistry is expected to affect modeling of urban air quality, where the interactions of sunlight with emitted NOx species, volatile organic compounds, and hydroxyl radicals are central in determining the rate of ozone formation. PMID:18356524

  17. Propellant and Terrestrial Fuel Production from Atmospheric Carbon Dioxide Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Build and test in a relevant environment a Mars propellant production plant of an appropriate scale for an initial demonstration on Mars. It will produce sufficient...

  18. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V – heterogeneous reactions on solid substrates

    Directory of Open Access Journals (Sweden)

    J. N. Crowley

    2010-09-01

    Full Text Available This article, the fifth in the ACP journal series, presents data evaluated by the IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. It covers the heterogeneous processes on surfaces of solid particles present in the atmosphere, for which uptake coefficients and adsorption parameters have been presented on the IUPAC website in 2010. The article consists of an introduction and guide to the evaluation, giving a unifying framework for parameterisation of atmospheric heterogeneous processes. We provide summary sheets containing the recommended uptake parameters for the evaluated processes. Four substantial appendices contain detailed data sheets for each process considered for ice, mineral dust, sulfuric acid hydrate and nitric acid hydrate surfaces, which provide information upon which the recommendations are made.

  19. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VI – heterogeneous reactions with liquid substrates

    Directory of Open Access Journals (Sweden)

    M. Ammann

    2013-08-01

    Full Text Available This article, the sixth in the ACP journal series, presents data evaluated by the IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation. It covers the heterogeneous processes involving liquid particles present in the atmosphere with an emphasis on those relevant for the upper troposphere/lower stratosphere and the marine boundary layer, for which uptake coefficients and adsorption parameters have been presented on the IUPAC website since 2009. The article consists of an introduction and guide to the evaluation, giving a unifying framework for parameterisation of atmospheric heterogeneous processes. We provide summary sheets containing the recommended uptake parameters for the evaluated processes. The experimental data on which the recommendations are based are provided in data sheets in separate appendices for the four surfaces considered: liquid water, deliquesced halide salts, other aqueous electrolytes and sulfuric acid.

  20. Dynamical Effects and Product Distributions in Simulated CN + Methane Reactions.

    Science.gov (United States)

    Preston, Thomas J; Hornung, Balázs; Pandit, Shubhrangshu; Harvey, Jeremy N; Orr-Ewing, Andrew J

    2016-07-14

    Dynamics of collisions between structured molecular species quickly become complex as molecules become large. Reactions of methane with halogen and oxygen atoms serve as model systems for polyatomic molecule chemical dynamics, and replacing the atomic reagent with a diatomic radical affords further insights. A new, full-dimensional potential energy surface for collisions between CN + CH4 to form HCN + CH3 is developed and then used to perform quasi-classical simulations of the reaction. Coupled-cluster energies serve as input to an empirical valence bonding (EVB) model, which provides an analytical function for the surface. Efficient sampling permits simulation of velocity-map ion images and exploration of dynamics over a range of collision energies. Reaction populates HCN vibration, and energy partitioning changes with collision energy. The reaction cross-section depends on the orientation of the diatomic CN radical. A two-dimensional extension of the cone of acceptance for an atom in the line-of-centers model appropriately describes its reactivity. The simulation results foster future experiments and diatomic extensions to existing atomic models of chemical collisions and reaction dynamics. PMID:26812395

  1. Food Processing and Maillard Reaction Products: Effect on Human Health and Nutrition

    OpenAIRE

    Nahid Tamanna; Niaz Mahmood

    2015-01-01

    Maillard reaction produces flavour and aroma during cooking process; and it is used almost everywhere from the baking industry to our day to day life to make food tasty. It is often called nonenzymatic browning reaction since it takes place in the absence of enzyme. When foods are being processed or cooked at high temperature, chemical reaction between amino acids and reducing sugars leads to the formation of Maillard reaction products (MRPs). Depending on the way the food is being processed,...

  2. Carbon dioxide sequestration via olivine carbonation: Examining the formation of reaction products

    Science.gov (United States)

    King, H. E.; Plümper, O.; Putnis, A.

    2009-04-01

    Due to its abundance and natural ability to sequester CO2, olivine has been proposed as one mineral that could be used in the control of CO2 emissions into the atmosphere (Metz, 2005). Large scale peridotite deposits found in locations such as the Western Gneiss Region in Norway could provide in-situ sites for sequestration or the raw materials for ex-situ mineral carbonation. Determining the conditions under which magnesite (MgCO3) forms most efficiently is crucial to conduct a cost effective process. Understanding the development of secondary minerals is particularly important for in-situ methods as these phases can form passivating layers and affect the host rock porosity. The final solution of flow-through experiments conducted at alkaline pH have been shown to be supersaturated with respect to talc and chrysotile (Giammer et al., 2005), although these phases were not found to have precipitated the formation of a passivating, amorphous silica layer has been observed on reacted olivine surfaces (Bearat et al., 2006). By studying magnesite and other products produced during the carbonation of olivine within Teflon lined steel autoclaves we have begun to form a more comprehensive understanding of how these reactions would proceed during sequestration processes. We have performed batch experiments using carbonated saline solutions in the presence of air or gaseous CO2 from 80 to 200 ˚ C. X-ray powder diffraction was used to identify magnesite within the reaction products. Crystals of magnesite up to 20 m in diameter can be observed on olivine grain surfaces with scanning electron microscopy. Secondary reaction products formed a platy layer on olivine surfaces in reactions above 160 ˚ C and below pH 12. Energy dispersive X-ray analysis of the platy layer revealed an increase in Fe concentration. The macroscopically observable red colouration of the reaction products and Raman spectroscopy indicate that hematite is present in these layers. For experiments with

  3. Isotope production for medical usage using fast neutron reactions

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukawa, Y.; Nagai, Y.; Kin, T. [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan)] [and others

    2011-07-01

    {sup 99}Mo was produced by the {sup 100}Mo(n, 2n){sup 99}Mo reaction using 14-MeV neutrons from the D({sup 3}H, n){sup 4}He reaction at Fusion Neutronics Source Facility (FNS) at JAEA. A target of titanium oxide gel with molybdenum oxide was irradiated and used as the {sup 99m}Tc/{sup 99}Mo generator. The growth curve of 99mTc in the titanium gel target and the elution curve of {sup 99m}Tc from the {sup 99}Mo/{sup 99m}Tc generator were obtained. (orig.)

  4. The role of oxygen and surface reactions in the deposition of silicon oxide like films from HMDSO at atmospheric pressure

    OpenAIRE

    Reuter, R; Rügner, K.; Ellerweg, D.; Arcos, T. de los; von Keudell, A.; Benedikt, J

    2011-01-01

    The deposition of thin SiO$_x$C$_y$H$_z$ or SiO$_x$H$_y$ films by means of atmospheric pressure microplasma jets with admixture of Hexamethyldisiloxane (HMDSO) and oxygen and the role of surface reactions in film growth are investigated. Two types of microplasma jets, one with a planar electrodes and operated in helium gas and the other one with a coaxial geometry operated in argon, are used to study the deposition process. The growth rate of the film and the carbon-content in the film are me...

  5. Protonation Reaction of Benzonitrile Radical Anion and Absorption of Product

    DEFF Research Database (Denmark)

    Holcman, Jerzy; Sehested, Knud

    1975-01-01

    The rate constant for the protonation of benzonitrile radical anions formed in pulse radiolysis of aqueous benzonitrile solutions is (3.5 ± 0.5)× 1010 dm3 mol–1 s–1. A new 270 nm absorption band is attributed to the protonated benzonitrile anion. The pK of the protonation reaction is determined...

  6. Utility of spectral measurements of secondary reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Heidbrink, W.E.

    1986-02-01

    The spectra of 15 MeV protons and 14 MeV neutrons produced in the burnup of 0.8 MeV THe ions and 1 MeV tritons through the d(THe,p) and d(t,n) fusion reactions contain information on the velocity distributions of the energetic THe ions and tritons. 11 refs., 2 figs.

  7. Experimental study on the effect of low melting point metal additives on hydrogen production in the aluminum–water reaction

    International Nuclear Information System (INIS)

    Aluminum (Al) is a promising hydrogen carrier. Continuous reaction of pure Al and water (H2O) cannot proceed smoothly because Al particles are covered with a protective oxide layer. Thus, 20% Mg, Li, Zn, Bi, and Sn content were added as additives to Al–H2O reaction at high temperature. Thermogravimetric experiments were conducted to determine the reactivity of pure Al and five other samples with additives in a vapor atmosphere. Experiments indicated that Mg and Li drove the Al–H2O reaction, but Zn, Bi, and Sn had little effect. Thus, Mg and Li were selected as activators in the hydrogen generation of the Al–H2O reaction conducted on a specially designed experimental facility. Hydrogen was monitored in the reaction of Al-based composites with H2O vapor in real time. Among them, Al–20%Li achieved the fastest hydrogen generation rate (309.74 ml s−1 g−1) and the largest hydrogen amount (1038.9 ml g−1). XRD (X-ray diffraction), SEM (scanning electron microscopy), and TEM (transmission electron microscopy) were used for product analyses to identify the influence of adding Mg and Li. This method of Al energy utilization may be used in underwater propulsion systems. - Highlights: • In this paper, we discussed a way of hydrogen production by the reaction of molten aluminum with water. • 20% Mg, Li, Zn, Bi, and Sn content were added as additives to Al–H2O reaction at high temperature. • Al–20%Li achieved the fastest hydrogen generation rate and the largest hydrogen amount

  8. The Phase Behavior Effect on the Reaction Engineering of Transesterification Reactions and Reactor Design for Continuous Biodiesel Production

    Science.gov (United States)

    Csernica, Stephen N.

    transitions from two phases to a single phase, or pseudo-single phase. The transition to a single phase or pseudo-single phase is a function of the methanol content. Regardless, the maximum observed reaction rate occurs at the point of the phase transition, when the concentration of triglycerides in the methanol phase is largest. The phase transition occurs due to the accumulation of the primary product, biodiesel methyl esters. Through various experiments, it was determined that the rate of the triglyceride mass transfer into the methanol phase, as well as the solubility of triglycerides in methanol, increases with increasing methyl ester concentration. Thus, there exists some critical methyl ester concentration which favors the formation of a single or pseudo-single phase system. The effect of the by-product glycerol on the reaction kinetics was also investigated. It was determined that at low methanol to triglyceride molar ratios, glycerol acts to inhibit the reaction rate and limit the overall triglyceride conversion. This occurs because glycerol accumulates in the methanol phase, i.e. the primary reaction volume. When glycerol is at relatively high concentrations within the methanol phase, triglycerides become excluded from the reaction volume. This greatly reduces the reaction rate and limits the overall conversion. As the concentration of methanol is increased, glycerol becomes diluted and the inhibitory effects become dampened. Assuming pseudo-homogeneous phase behavior, a simple kinetic model incorporating the inhibitory effects of glycerol was proposed based on batch reactor data. The kinetic model was primarily used to theoretically compare the performance of different types of continuous flow reactors for continuous biodiesel production. It was determined that the inhibitory effects of glycerol result in the requirement of very large reactor volumes when using continuous stirred tank reactors (CSTR). The reactor volume can be greatly reduced using tubular style

  9. Cold Atmospheric Plasma: methods of production and application in dentistry and oncology.

    Science.gov (United States)

    Hoffmann, Clotilde; Berganza, Carlos; Zhang, John

    2013-01-01

    Cold Atmospheric Plasma is an ionized gas that has recently been extensively studied by researchers as a possible therapy in dentistry and oncology. Several different gases can be used to produce Cold Atmospheric Plasma such as Helium, Argon, Nitrogen, Heliox, and air. There are many methods of production by which cold atmospheric plasma is created. Each unique method can be used in different biomedical areas. In dentistry, researchers have mostly investigated the antimicrobial effects produced by plasma as a means to remove dental biofilms and eradicate oral pathogens. It has been shown that reactive oxidative species, charged particles, and UV photons play the main role. Cold Atmospheric Plasma has also found a minor, but important role in tooth whitening and composite restoration. Furthermore, it has been demonstrated that Cold Atmospheric Plasma induces apoptosis, necrosis, cell detachment, and senescence by disrupting the S phase of cell replication in tumor cells. This unique finding opens up its potential therapy in oncology.

  10. Utility of spectral measurements of secondary reaction products

    International Nuclear Information System (INIS)

    The spectra of 15 MeV protons and 14 MeV neutrons produced in the burnup of 0.8 MeV 3He ions and 1 MeV tritons through the d(3He,p)α and d(t,n)α fusion reactions contain information on the velocity distributions of the energetic 3He ions and tritons. 11 refs., 2 figs

  11. Effects of hydrolysis and carbonization reactions on hydrochar production.

    Science.gov (United States)

    Fakkaew, K; Koottatep, T; Polprasert, C

    2015-09-01

    Hydrothermal carbonization (HTC) is a thermal conversion process which converts wet biomass into hydrochar. In this study, a low-energy HTC process named "Two-stage HTC" comprising of hydrolysis and carbonization stages using faecal sludge as feedstock was developed and optimized. The experimental results indicated the optimum conditions of the two-stage HTC to be; hydrolysis temperature of 170 °C, hydrolysis reaction time of 155 min, carbonization temperature of 215 °C, and carbonization reaction time of 100 min. The hydrolysis reaction time and carbonization temperature had a statistically significant effect on energy content of the produced hydrochar. Energy input of the two-stage HTC was about 25% less than conventional HTC. Energy efficiency of the two-stage HTC for treating faecal sludge was higher than that of conventional HTC and other thermal conversion processes such as pyrolysis and gasification. The two-stage HTC could be considered as a potential technology for treating FS and producing hydrochar. PMID:26051497

  12. Western Pacific atmospheric nutrient deposition fluxes, their impact on surface ocean productivity

    Science.gov (United States)

    Martino, M.; Hamilton, D.; Baker, A. R.; Jickells, T. D.; Bromley, T.; Nojiri, Y.; Quack, B.; Boyd, P. W.

    2014-07-01

    The atmospheric deposition of both macronutrients and micronutrients plays an important role in driving primary productivity, particularly in the low-latitude ocean. We report aerosol major ion measurements for five ship-based sampling campaigns in the western Pacific from ~25°N to 20°S and compare the results with those from Atlantic meridional transects (~50°N to 50°S) with aerosols collected and analyzed in the same laboratory, allowing full incomparability. We discuss sources of the main nutrient species (nitrogen (N), phosphorus (P), and iron (Fe)) in the aerosols and their stoichiometry. Striking north-south gradients are evident over both basins with the Northern Hemisphere more impacted by terrestrial dust sources and anthropogenic emissions and the North Atlantic apparently more impacted than the North Pacific. We estimate the atmospheric supply rates of these nutrients and the potential impact of the atmospheric deposition on the tropical western Pacific. Our results suggest that the atmospheric deposition is P deficient relative to the needs of the resident phytoplankton. These findings suggest that atmospheric supply of N, Fe, and P increases primary productivity utilizing some of the residual excess phosphorus (P*) in the surface waters to compensate for aerosol P deficiency. Regional primary productivity is further enhanced via the stimulation of nitrogen fixation fuelled by the residual atmospheric iron and P*. Our stoichiometric calculations reveal that a P* of 0.1 µmol L-1 can offset the P deficiency in atmospheric supply for many months. This study suggests that atmospheric deposition may sustain ~10% of primary production in both the western tropical Pacific.

  13. Safety assessment of Maillard reaction products of chicken bone hydrolysate using Sprague-Dawley rats

    OpenAIRE

    ZHANG, CHUNHUI; Wang, Jin-Zhi; Sun, Hong-Mei; Hu, Li; Li, Xia; Wu, Xiao-Wei

    2016-01-01

    Background: The Maillard reaction products of chicken bone hydrolysate (MRPB) containing 38% protein, which is a derived product from chicken bone, is usually used as a flavor enhancer or food ingredient. In the face of a paucity of reported data regarding the safety profile of controversial Maillard reaction products, the potential health effects of MRPB were evaluated in a subchronic rodent feeding study.Methods: Sprague–Dawley rats (SD, 5/sex/group) were administered diets containing 9, 3,...

  14. Product inhibition of enzymatic hydrolysis of cellulose: are we running the reactions all wrong?

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2012-01-01

    Enzyme catalyzed deconstruction of cellulose to glucose is an important technology step in lignocellulose-to-ethanol processing as well as in the future biorefinery based production of novel products to replace fossil oil based chemistry. The main goals of the enzymatic biomass saccharification...... include high substrate conversion (maximal yields), maximal enzyme efficiency, maximal volumetric reactor productivity, minimal equipment investment, minimal size, and short reaction time. The classic batch type STR reactions used for enzymatic cellulose hydrolysis prevent these goals to be fulfilled...

  15. Secondary proton production at small atmospheric depths as a function of the geomagnetic cut-off

    Energy Technology Data Exchange (ETDEWEB)

    Papini, P. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Grimani, C. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); Stephens, S.A. [Tata Institute of Fundamental Research, Bombay (International Commission on Radiation Units and Measurements)

    1995-09-01

    A detailed calculation of the energy spectrum of secondary protons in the atmosphere is being carried out in the energy range 20 MeV - 40 GeV. In this calculation, it is taken into account all processes leading to the production of secondary protons as a function of the atmospheric depth has been calculated using all relevant energy loss processes. In this paper, it is examine the effect of the geomagnetic cut-off on the spectral shape of secondary protons specially at energies below the geomagnetic cut-off for small atmospheric depths.

  16. Study on the atmospheric photochemical reaction of CF3 radicals using ultraviolet photoelectron and photoionization mass spectrometer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A study of the atmospheric photochemical reaction of CF3 radical with CO and O2 was performed by using a homemade ultraviolet photoelectron spectrometer-photoionization mass spectrometer (PES- PIMS). The electronic structures and mechanism of ionization and dissociation of CF3OC(O)OOC(O)- OCF3 were investigated. It was indicated that the two bands on the photoelectron spectrum of CF3OC(O)OOC(O)OCF3 are the result of ionization of an electron from a lone pair of oxygen and a fluo- rine lone pair of CF3 group. The outermost electrons reside in the oxygen lone pair. The experimental and theoretical first vertical ionization energy is 13.21 and 13.178 eV, respectively, with the PES and OVGF method. They are in good agreement. The photo ionization and dissociation processes were discussed with the help of theoretical calculations and PES-PIMS experiment. After ionization, the parent ions prefer the dissociation of the C-O bond and giving the fragments CF3OCO+ and CF3+. It demonstrated that the ultraviolet photoelectron and photoionization mass spectrometer could be ap- plied widely in the study of atmospheric photochemical reaction.

  17. Study on the atmospheric photochemical reaction of CF3 radicals using ultraviolet photoelectron and photoionization mass spectrometer

    Institute of Scientific and Technical Information of China (English)

    YAO Li; DU Lin; YIN Shi; GE MaoFa

    2008-01-01

    A study of the atmospheric photochemical reaction of CF2 radical with CO and O2 was performed by using a homemade ultraviolet photoelectron spectrometer-photoionization mass spectrometer (PES-PIMS). The electronic structures and mechanism of ionization and dissociation of CF3OC(O)OOC(O)-OCF3 were investigated. It was indicated that the two bands on the photoelectron spectrum of CF3OC(O)OOC(O)OCF3 are the result of ionization of an electron from a lone pair of oxygen and a fluo-rine lone pair of CF3 group. The outermost electrons reside in the oxygen lone pair. The experimental and theoretical first vertical ionization energy is 13.21 and 13.178 eV, respectively, with the PES and OVGF method. They are in good agreement. The photo ionization and dissociation processes were discussed with the help of theoretical calculations and PES-PIMS experiment. After ionization, the parent ions prefer the dissociation of the C-O bond and giving the fragments CF3OCO+ and CF<;+3. It demonstrated that the ultraviolet photoelectron and photoionization mass spectrometer could be ap-plied widely in the study of atmospheric photochemical reaction.

  18. X-ray photoelectron spectroscopic study on surface reaction on titanium by laser irradiation in nitrogen atmosphere

    International Nuclear Information System (INIS)

    The surface reaction on titanium due to pulsed Nd:YAG laser irradiation in a nitrogen atmosphere was investigated using X-ray photoelectron spectroscopy (XPS). The laser, with a wavelength of 532 nm (SHG mode), was irradiated on a titanium substrate in an atmosphere-controlled chamber, and then the substrate was transported to an XPS analysis chamber without exposure to air. This in situ XPS technique makes it possible to clearly observe the intrinsic surface reaction. The characteristics of the surface layer strongly depend on the nitrogen gas pressure. When the pressure is 133 kPa, an oxynitride and a stoichiometric titanium nitride form the topmost and lower surface layers on the titanium substrate, respectively. However, only a nonstoichiometric titanium oxide layer containing a small amount of nitrogen is formed when the pressure is lower than 13.3 kPa. Repetition of laser shots promotes the formation of the oxide layer, but the formation is completed within a few laser shots. After the initial structure is formed, the chemical state of the surface layer is less influenced by the repetition of laser shots.

  19. Atmospheric isoprene ozonolysis: impacts of stabilized Criegee intermediate reactions with SO2, H2O and dimethyl sulfide

    Directory of Open Access Journals (Sweden)

    M. J. Newland

    2015-03-01

    Full Text Available Isoprene is the dominant global biogenic volatile organic compound (VOC emission. Reactions of isoprene with ozone are known to form stabilised Criegee intermediates (SCIs, which have recently been shown to be potentially important oxidants for SO2 and NO2 in the atmosphere; however the significance of this chemistry for SO2 processing (affecting sulfate aerosol and NO2 processing (affecting NOx levels depends critically upon the fate of the SCI with respect to reaction with water and decomposition. Here, we have investigated the removal of SO2 in the presence of isoprene and ozone, as a function of humidity, under atmospheric boundary layer conditions. The SO2 removal displays a clear dependence on relative humidity, confirming a significant reaction for isoprene derived SCI with H2O. Under excess SO2 conditions, the total isoprene ozonolysis SCI yield was calculated to be 0.56 (±0.03. The observed SO2 removal kinetics are consistent with a relative rate constant, k(SCI + H2O/k(SCI + SO2, of 5.4 (±0.8 × 10−5 for isoprene derived SCI. The relative rate constant for k(SCI decomposition/k(SCI + SO2 is 8.4 (±5.0 × 1010 cm−3. Uncertainties are ±2σ and represent combined systematic and precision components. These kinetic parameters are based on the simplification that a single SCI species is formed in isoprene ozonolysis, an approximation which describes the results well across the full range of experimental conditions. Our data indicate that isoprene-derived SCIs are unlikely to make a substantial contribution to gas-phase SO2 oxidation in the troposphere. We also present results from an analogous set of experiments, which show a clear dependence of SO2 removal in the isoprene-ozone system as a function of dimethyl sulfide concentration. We propose that this behaviour arises from a rapid reaction between isoprene-derived SCI and DMS; the observed SO2 removal kinetics are consistent with a relative rate constant, k(SCI + DMS/k(SCI + SO2

  20. Impact of MODIS SWIR band calibration improvements on Level-3 atmospheric products

    Science.gov (United States)

    Wald, Andrew; Levy, Robert C.; Angal, Amit; Geng, Xu; Xiong, Jack; Hoffman, Kurt

    2016-05-01

    The spectral reflectance measured by the MODIS reflective solar bands (RSB) is used for retrieving many atmospheric science products. The accuracy of these products depends on the accuracy of the calibration of the RSB. To this end, the RSB of the MODIS instruments are primarily calibrated on-orbit using regular solar diffuser (SD) observations. For λ earth-scene targets. This correction has been implemented in C6 for the Terra MODIS 1.24 μm band over the entire mission, and for the 1.38 μm band in the forward processing. As the instruments continue to operate beyond their design lifetime of six years, a similar correction is planned for other short-wave infrared (SWIR) bands as well. MODIS SWIR bands are used in deriving atmosphere products, including aerosol optical thickness, atmospheric total column water vapor, cloud fraction and cloud optical depth. The SD degradation correction in Terra bands 5 and 26 impact the spectral radiance and therefore the retrieval of these atmosphere products. Here, we describe the corrections to Bands 5 (1.24 μm) and 26 (1.38 μm), and produce three sets (B5, B26 correction = on/on, on/off, and off/off) of Terra-MODIS Level 1B (calibrated radiance product) data. By comparing products derived from these corrected and uncorrected Terra MODIS Level 1B (L1B) calibrations, dozens of L3 atmosphere products are surveyed for changes caused by the corrections, and representative results are presented. Aerosol and water vapor products show only small local changes, while some cloud products can change locally by >10%, which is a large change.

  1. Reactivity scale for atmospheric hydrocarbons based on reaction with hydroxyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Darnall, K.R.; Lloyd, A.C.; Winer, A.M.; Pitts, J.N. Jr.

    1976-07-01

    By use of relative and absolute rate constants for the reaction of the hydroxyl radical (OH) with a number of alkanes, alkenes, aromatics, and ketones, a reactivity scale is formulated based on the rate of removal of hydrocarbons and oxygenates by reaction with OH. In this five-class scale, each class spans an order of magnitude in reactivity relative to methane. Thus, assigned reactivities range from <10 for Class I (containing only methane) to >10/sup 4/ for Class V containing the most reactive compounds (e.g., d-limonene). This scale differs in several significant ways from those presently utilized by air pollution control agencies and various industrial laboratories. For example, in contrast to other scales based on secondary manifestations such as yields of ozone and eye irritation, it focuses directly on initial rates of photooxidation. The proposed scale also provides a clearer understanding of the importance of alkanes in the generation of ozone during periods of prolonged irradiation. The present scale can be readily extended to include additional organic compounds (e.g., natural and anthropogenic hydrocarbons, oxygenates, chlorinated solvents), once their rate of reaction with OH is known.

  2. Low-intensity radiolysis study of free-radical reactions in cloudwater: H2O2 production and destruction

    International Nuclear Information System (INIS)

    Reactions in cloudwater can be important pathways for chemical transformation of atmospheric trace gases. One such reaction is the oxidation of dissolved sulfur dioxide by hydrogen peroxide. H2O2 is formed by the disproportionation of hydroperoxyl and superoxide radicals, O2(-I). The authors report measurements of the rate of H2O2 production from O2(-I) radicals generated by low-intensity cobalt-60 radiolysis of synthetic cloudwater solutions and actual precipitation samples. The authors results, employing O2(-I) production rates comparable to those expected upon transfer of HO2 from interstitial cloud air to cloudwater, confirm model predictions that H2O2 production if frequently the major fate of O2(-I) radicals. However, there is evidence of significant reaction between S(IV) and O2(-I), with a rate coefficient of (3 ± 2) x 104 at pH 4.96. In addition, the presence of 1 μM dissolved iron decreases the H2O2 yield, principally because of destruction of H2O2 by Fe(II)

  3. Production of heavy actinides in incomplete fusion reactions

    Science.gov (United States)

    Antonenko, N. V.; Cherepanov, E. A.; Iljinov, A. S.; Mebel, M. V.

    1994-10-01

    We present preliminary results of calculations by the phenomenological model of the estimated yield of some heavy actinide isotopes. It is assumed that these isotopes are produced as a result of multinucleon transfers followed by neutrons and charged particle emission A.S. Iljinov and E.A. Cherepanov (1980). The yield P(sub Z, N)(E*) of primary excited actinides is found using the model of N.V. Antonenko and R.V. Jolos (1991). Absolute cross-sections for different binary reaction channels are obtained by summing the cross-sections for all subchannels with an appreciable yield according to J. Wilczynski et al. (1980).

  4. Minimizing the Entropy Production of the Methanol Producing Reaction in a Methanol Reactor

    OpenAIRE

    Dick Bedeaux; Lars Nummedal; Audun Rosjorde; Eivind Johannessen; Signe Kjelstrup

    2000-01-01

    The entropy production of the reaction that produces methanol in a methanol reactor, has been minimized. The results show that the entropy production of the reaction can be reduced by more than 70%. The optimal path through the reactor is characterized by a driving force for the chemical reaction that is close to constant. The entropy production due to heat transfer across the reactor walls in this state is large, however. Variations of the reactor design show that it is possible to ...

  5. Investigation on the production of evaporation residues in 11B + natY reaction: 97Ru is a notable product

    International Nuclear Information System (INIS)

    This study indicates that the 11B induced reaction on natural Y is also an efficient route for the production of nca neutron deficient 97Ru. Although cross-sectional data are obtained just at two energies and not sufficient to derive significant conclusion on the reaction mechanism, but the measured cross-sectional data are in agreement with Houser-Feshbach model estimation. The data also shed light on the compound nuclear reaction as a major contributor. We look forward to study the reaction in the energy range ∼30-70 MeV in near future

  6. Extremely rapid self-reaction of the simplest Criegee intermediate CH2OO and its implications in atmospheric chemistry

    Science.gov (United States)

    Su, Yu-Te; Lin, Hui-Yu; Putikam, Raghunath; Matsui, Hiroyuki; Lin, M. C.; Lee, Yuan-Pern

    2014-06-01

    Criegee intermediates, which are carbonyl oxides produced when ozone reacts with unsaturated hydrocarbons, play an important role in the formation of OH and organic acids in the atmosphere, but they have eluded direct detection until recently. Reactions that involve Criegee intermediates are not understood fully because data based on their direct observation are limited. We used transient infrared absorption spectroscopy to probe directly the decay kinetics of formaldehyde oxide (CH2OO) and found that it reacts with itself extremely rapidly. This fast self-reaction is a result of its zwitterionic character. According to our quantum-chemical calculations, a cyclic dimeric intermediate that has the terminal O atom of one CH2OO bonded to the C atom of the other CH2OO is formed with large exothermicity before further decomposition to 2H2CO + O2(1Δg). We suggest that the inclusion of this previously overlooked rapid reaction in models may affect the interpretation of previous laboratory experiments that involve Criegee intermediates.

  7. Atmospheric Photochemistry

    Science.gov (United States)

    Massey, Harrie; Potter, A. E.

    1961-01-01

    The upper atmosphere offers a vast photochemical laboratory free from solid surfaces, so all reactions take place in the gaseous phase. At 30 km altitude the pressure has fallen to about one-hundredth of that at ground level, and we shall, rather arbitrarily, regard the upper atmosphere as beginning at that height. By a little less than 100 km the pressure has fallen to 10(exp -3) mm Hg and is decreasing by a power of ten for every 15 km increase in altitude. Essentially we are concerned then with the photochemistry of a nitrogen-oxygen mixture under low-pressure conditions in which photo-ionization, as well as photodissociation, plays an important part. Account must also be taken of the presence of rare constituents, such as water vapour and its decomposition products, including particularly hydroxyl, oxides of carbon, methane and, strangely enough, sodium, lithium and calcium. Many curious and unfamiliar reactions occur in the upper atmosphere. Some of them are luminescent, causing the atmosphere to emit a dim light called the airglow. Others, between gaseous ions and neutral molecules, are almost a complete mystery at this time. Similar interesting phenomena must occur in other planetary atmospheres, and they might be predicted if sufficient chemical information were available.

  8. Reactions of 3-Formylchromone with Active Methylene and Methyl Compounds and Some Subsequent Reactions of the Resulting Condensation Products

    Directory of Open Access Journals (Sweden)

    M. Lácova

    2005-08-01

    Full Text Available This review presents a survey of the condensations of 3-formylchromone with various active methylene and methyl compounds, e.g. malonic or barbituric acid derivatives, five-membered heterocycles, etc. The utilisation of the condensation products for the synthesis of different heterocyclic systems, which is based on the ability of the γ-pyrone ring to be opened by the nucleophilic attack is also reviewed. Finally, the applications of microwave irradiation as an unconventional method of reaction activation in the synthesis of condensation products is described and the biological activity of some chromone derivatives is noted.

  9. Low temperature rate coefficients for the reactions of 1CH2 with reactive and non-reactive species, and the implications for Titan's atmosphere

    Science.gov (United States)

    Douglas, Kevin; Slater, Eloise; Blitz, Mark; Plane, John; Heard, Dwayne; Seakins, Paul

    2016-04-01

    The Cassini-Huygens mission to Titan revealed unexpectedly large amounts of benzene in the troposphere, and confirmed the absence of a global ethane ocean as predicted by photochemical models of methane conversion over the lifetime of the solar system. An important chemical intermediate in both the production and loss of benzene and ethane is the first electronically excited state of methylene, 1CH2. For example, at room temperature an important reaction of 1CH2 is with acetylene (R1a), leading to the formation of propargyl (C3H3)[1]. The subsequent recombination of propargyl radicals is the major suggested route to benzene in Titan's atmosphere (R2)[2]. In addition to reaction of 1CH2 leading to products, there is also competition between inelastic electronic relaxation to form the ground triplet state 3CH2 (R1b). This ground state 3CH2 has a markedly different reactivity to the singlet, reacting primarily with methyl radicals (CH3) to form ethene (R3). As methyl radical recombination is the primary route to ethane (R4)[3], reactions of 1CH2 will also heavily influence the ethane budget on Titan. 1CH2 + C2H2 → C3H3 + H (R1a) 1CH2 + C2H2 → 3CH2 + C2H2 (R1b) C3H3 + C3H3 → C6H6 (R2) 3CH2 + CH3 → C2H4 + H (R3) CH3 + CH3 (+ M) → C2H6 (R4) Thus this competition between chemical reaction and electronic relaxation in the reactions of 1CH2 with H2, CH4, C2H4, and C2H6 will play an important role in determining the benzene and ethane budgets on Titan. Despite this there are no measurements of any rate constants for 1CH2 at temperatures relevant to Titan's atmosphere (60 - 170 K). Using a pulsed Laval nozzle apparatus coupled with pulsed laser photolysis laser-induced fluorescence, the low temperature reaction kinetics for the removal of 1CH2 with nitrogen, hydrogen, methane, ethane, ethene, acetylene, and oxygen, have been studied. The results revealed an increase in the removal rate of 1CH2 at temperatures below 200 K, with a sharp increase of around a factor of

  10. The effect of nuclear structure in the emission of reaction products in heavy-ion reactions

    Indian Academy of Sciences (India)

    Samir Kundu

    2014-04-01

    Study of intermediate mass fragments (IMFs) and light charged particles (LCPs) emission has been carried out for a few reactions involving -cluster and non--cluster systems to see how the emission processes are affected by nuclear clustering. Li, Be, B and -particles have been studied from α-clustered system 16O + 12C for 117, 125, 145 and 160 MeV bombarding energies respectively. The enhanced yields of near-entrance channel fragment B and large quadrupole deformation of the produced composite 28Si* extracted from LCP spectra indicate the survival of orbiting-like process in 16O + 12C system at these energies. The same IMFs emitted from the -cluster system 12C (77 MeV) + 28Si and nearby non- cluster 11B (64 MeV) + 28Si and 12C (73 MeV) + 27Al (all having the same excitation energy of ∼67 MeV) have also been studied. The fully energy damped (fusion–fission) and the partially energy damped (deep inelastic) components of the fragment energy spectra have been extracted. It has been found that the yields of the fully energy damped fragments for all the above reactions are in conformity with the respective statistical model predictions. The time-scales of various deep inelastic fragment emissions have been extracted from the angular distribution data. The angular momentum dissipation in deep inelastic collisions has been estimated from the data and it has been found to be close to the corresponding sticking limit value.

  11. Optimised procedure to analyse maillard reaction-associated fluorescence in cereal-based products

    OpenAIRE

    Delgado Andrade, Cristina; Rufián Henares, J. A.; Morales, F. J.

    2008-01-01

    Fluorescent Maillard compounds measurement provides more specific information on the extent of the Maillard reaction than other unspecific tools to monitor the reaction, and is suitable, as the first approach, to assess the nutritional quality of foods as related to protein damage. This work presents an optimised laboratory procedure for the measurement of total fluorescent intermediate compounds (FIC) associated with Maillard reaction, described and evaluated in a cereal-based product. Total...

  12. The effects of reactants ratios, reaction temperatures and times on Maillard reaction products of the L-ascorbic acid/L-glutamic acid system

    Directory of Open Access Journals (Sweden)

    Yong-Yan ZHOU

    2016-01-01

    Full Text Available Abstract The transformation law of the Maillard reaction products with three different reactants ratios - equimolar reactants, excess L-glutamic acid and excess L-ascorbic acid reaction respectively, five different temperatures, and different time conditions for the L-ascorbic acid / L-glutamic acid system were investigated. Results showed that, the increase of the reaction time and temperature led to the increase of the browning products, uncoloured intermediate products, as well as aroma compounds. Compared with the equimolar reaction system, the excess L-ascorbic acid reaction system produced more browning products and uncoloured intermediate products, while the aroma compounds production remained the same. In the excess L-glutamic acid system, the uncoloured intermediate products increased slightly, the browning products remained the same, while the aroma compounds increased.

  13. Impact of MODIS SWIR band calibration improvements on Level-3 atmospheric products

    Science.gov (United States)

    Wald, Andrew; Levy, Robert C.; Angal, Amit; Geng, Xu; Xiong, Jack; Hoffman, Kurt

    2016-05-01

    The spectral reflectance measured by the MODIS reflective solar bands (RSB) is used for retrieving many atmospheric science products. The accuracy of these products depends on the accuracy of the calibration of the RSB. To this end, the RSB of the MODIS instruments are primarily calibrated on-orbit using regular solar diffuser (SD) observations. For λ vapor, cloud fraction and cloud optical depth. The SD degradation correction in Terra bands 5 and 26 impact the spectral radiance and therefore the retrieval of these atmosphere products. Here, we describe the corrections to Bands 5 (1.24 μm) and 26 (1.38 μm), and produce three sets (B5, B26 correction = on/on, on/off, and off/off) of Terra-MODIS Level 1B (calibrated radiance product) data. By comparing products derived from these corrected and uncorrected Terra MODIS Level 1B (L1B) calibrations, dozens of L3 atmosphere products are surveyed for changes caused by the corrections, and representative results are presented. Aerosol and water vapor products show only small local changes, while some cloud products can change locally by >10%, which is a large change.

  14. Miscible viscous fingering involving production of gel by chemical reactions

    Science.gov (United States)

    Nagatsu, Yuichiro; Hoshino, Kenichi

    2015-11-01

    We have experimentally investigated miscible viscous fingering with chemical reactions producing gel. Here, two systems were employed. In one system, sodium polyacrylate (SPA) solution and aluminum ion (Al3 +) solution were used as the more and less viscous liquids, respectively. In another system, SPA solution and ferric ion (Fe3 +) solution were used as the more and less viscous liquids, respectively. In the case of Al3 +, displacement efficiency was smaller than that in the non-reactive case, whereas in the case of Fe3 +, the displacement efficiency was larger. We consider that the difference in change of the patterns in the two systems will be caused by the difference in the properties of the gels. Therefore, we have measured the rheological properties of the gels by means of a rheometer. We discuss relationship between the VF patterns and the rheological measurement.

  15. Quasielastic production of polarized hyperons in antineutrino--nucleon reactions

    CERN Document Server

    Akbar, F; Athar, M Sajjad; Singh, S K

    2016-01-01

    We have studied the longitudinal and perpendicular polarizations of final hyperon($\\Lambda$,$\\Sigma$) produced in the antineutrino induced quasielastic charged current reactions on nucleon targets. The nucleon-hyperon transition form factors are determined from the experimental data on quasielastic $(\\Delta S =0)$ charged current (anti)neutrino--nucleon scattering and the semileptonic decay of neutron and hyperons assuming G--invariance, T--invariance and SU(3) symmetry. The vector transition form factors are obtained in terms of nucleon electromagnetic form factors for which various parameterizations available in literature have been used. A dipole parameterization for the axial vector form factor and the pseudoscalar transition form factor derived in terms of axial vector form factor assuming PCAC and GT relation extended to strangeness sector have been used in numerical evaluations. The flux averaged cross section and polarization observables corresponding to CERN Gargamelle experiment have been calculated...

  16. Formic acid production from carbohydrates biomass by hydrothermal reaction

    International Nuclear Information System (INIS)

    The formation of formic acid or formate salts by hydrothermal oxidation of model biomass materials (glucose, starch and cellulose) was investigated. All experiments were conducted in a batch reactor, made of SUS 316 tubing, providing an internal volume of 5.7 cm3. A 30 wt% hydrogen peroxide aqueous solution was used as an oxidant. The experiments were carried out with temperature of 2500C, reaction time varying from 0.5 min to 5 min, H2O2 supply of 240%, and alkaline concentration varying from 0 to 1.25 M. Similar to glucose, in the cases of the oxidation of hydrothermal starch and cellulose, the addition of alkaline can also improve the yield of formic acid. And the yield were glucose>starch> cellulose in cases of with or without of alkaline addition.

  17. Rate Constants for Reaction Between Hydroxyl Radical and Dimethyl Sulfide Under Real Atmospheric Condition

    Institute of Scientific and Technical Information of China (English)

    Hai-tao Wang; Chang-jiang Hu; Yu-jing Mu; Yu-jie Zhang

    2008-01-01

    The rate constants of the reaction between hydroxyl radical (OH.) and dimethyl sulfide (DMS) were investigated by using the relative methods in air, N2, and O2. Strong influences of ground state oxygen O(3p) on DMS consumption were found by the photolysis of HONO and CH3ONO as OH- sources, and the rate constants obtained in these systems varied significantly. The rate constants of the reaction between DMS and OH- (generated by photolysis of H2O2) at room temperature were 8.56x 10-12, 11.31 x 10-12, and 4.50x10-12 cm3/(molecule·s), in air, O2, and N2, respectively. The temperature dependence of the rate constants for OH·with DMS over the temperature range of 287-338 K was also investigated in nitrogen and air, and the Arrhenius expression was obtained as follows: kair=(7.244-O.28)x10-13exp[(770.7±97.2)/T],kN2 =(3.40-4-0.15) X 10-11 exp[- (590.34-165.9)/T].

  18. Mapping Students' Conceptual Modes When Thinking about Chemical Reactions Used to Make a Desired Product

    Science.gov (United States)

    Weinrich, M. L.; Talanquer, V.

    2015-01-01

    The central goal of this qualitative research study was to uncover major implicit assumptions that students with different levels of training in the discipline apply when thinking and making decisions about chemical reactions used to make a desired product. In particular, we elicited different ways of conceptualizing why chemical reactions happen…

  19. One-pot multi-reaction processes: synthesis of natural products and drug-like scaffolds

    OpenAIRE

    Calder, Ewen D D; Grafton, Mark W.; Sutherland, Andrew

    2014-01-01

    One-pot multi-reaction processes involving Overman rearrangements, metathesis cyclizations, and Diels–Alder reactions have been developed for the rapid and efficient synthesis of amino-substituted carbocyclic and heterocyclic compounds. This account describes the development and optimization of these processes, as well as their applications in the synthesis of natural products and drug-like scaffolds.

  20. Advanced Maillard reaction end products are associated with Alzheimer disease pathology

    OpenAIRE

    Smith, M. A.; Taneda, S; Richey, P. L.; Miyata, S.; Yan, S D; Stern, D; Sayre, L. M.; Monnier, V M; Perry, G.

    1995-01-01

    During aging long-lived proteins accumulate specific post-translational modifications. One family of modifications, termed Maillard reaction products, are initiated by the condensation between amino groups of proteins and reducing sugars. Protein modification by the Maillard reaction is associated with crosslink formation, decreased protein solubility, and increased protease resistance. Here, we present evidence that the characteristic pathological structures associated with Alzheimer disease...

  1. Direct photon production in heavy-ion reactions at SPS and RHIC

    Indian Academy of Sciences (India)

    T Peitzmann

    2003-04-01

    A review on experimental results for direct photon production in heavy ion reactions is given. A brief survey of early direct photon limits from SPS experiments is presented. The first measurement of direct photons in heavy ion reactions from the WA98 collaboration is discussed and compared to theoretical calculations. An outlook on the perspective of photon measurements at RHIC is given.

  2. Large fragment production calculations in relativistic heavy-ion reactions

    International Nuclear Information System (INIS)

    The abrasion-ablation model is briefly described and then used to calculate cross sections for production of large fragments resulting from target or projectile fragmentation in high-energy heavy-ion collisions. The number of nucleons removed from the colliding nuclei in the abrasion stage and the excitation energy of the remaining fragments (primary products) are calculated with the geometrical picture of two different models: the fireball and the firestreak models. The charge-to-mass dispersion of the primary products is calculated using either a model which assumes no correlations between proton and neutron positions inside the nucleus (hypergeometric distribution) or a model based upon the zero-point oscillations of the giant dipole resonance (NUC-GDR). Standard Weisskopf--Ewing statistical evaporation calculations are used to calculate final product distributions. Results of the pure abrasion-ablation model are compared with a variety of experimental data. The comparisons show the insufficiency of the extra-surface energy term used in the abrasion calculations. A frictional spectator interaction (FSI) is introduced which increases the average excitation energy of the primary products, and improves the results considerably in most cases. Agreements and discrepancies of the results calculated with the different theoretical assumptions and the experimental data are studied. Of particular relevance is the possibility of observing nuclear ground-state correlations.Results of the recently completed experiment of fragmentation of 213 Mev/A 40Ar projectiles are studied and shown not to be capable of answering that question unambiguously. But predictions for the upcoming 48Ca fragmentation experiment clearly show the possibility of observing correlation effects. 78 references

  3. The effects of reactants ratios, reaction temperatures and times on Maillard reaction products of the L-ascorbic acid/L-glutamic acid system

    OpenAIRE

    Yong-Yan ZHOU; Li, Ya; Ai-Nong YU

    2016-01-01

    Abstract The transformation law of the Maillard reaction products with three different reactants ratios - equimolar reactants, excess L-glutamic acid and excess L-ascorbic acid reaction respectively, five different temperatures, and different time conditions for the L-ascorbic acid / L-glutamic acid system were investigated. Results showed that, the increase of the reaction time and temperature led to the increase of the browning products, uncoloured intermediate products, as well as aroma co...

  4. Atmospheric fate of OH initiated oxidation of terpenes. Reaction mechanism of alpha-pinene degradation and secondary organic aerosol formation.

    Science.gov (United States)

    Librando, Vito; Tringali, Giuseppe

    2005-05-01

    This paper studies the reaction products of alpha-pinene, beta-pinene, sabinene, 3-carene and limonene with OH radicals and of alpha-pinene with ozone using FT-IR spectroscopy for measuring gas phase products and HPLC-MS-MS to measure products in the aerosol phase. These techniques were used to investigate the secondary organic aerosol (SOA) formation from the terpenes. The gas phase reaction products were all quantified using reference compounds. At low terpene concentrations (0.9-2.1 ppm), the molar yields of gas phase reaction products were: HCHO 16-92%, HCOOH 10-54% (OH source: H2O2, 6-25 ppm); HCHO 127-148%, HCOOH 4-6% (OH source: CH3ONO, 5-8 ppm). At high terpene concentrations (4.1-13.2 ppm) the results were: HCHO 9-27%, HCOOH 15-23%, CH3(CO)CH3 0-14%, CH3COOH 0-5%, nopinone 24% (only from beta-pinene oxidation), limona ketone 61% (only from limonene oxidation), pinonaldehyde was identified during alpha-pinene degradation (OH source H2O2, 23-30 ppm); HCHO 76-183%, HCOOH 12-15%, CH3(CO)CH3 0-12%, nopinone 17% (from beta-pinene oxidation), limona ketone 48% (from limonene oxidation), pinonaldehyde was identified during alpha-pinene degradation (OH source CH3ONO, 14-16 ppm). Pinic acid, pinonic acid, limonic acid, limoninic acid, 3-caric acid, 3-caronic acid and sabinic acid were identified in the aerosol phase. On the basis of these results, we propose a formation mechanism for pinonic and pinic acid in the aerosol phase explaining how degradation products could influence SOA formation and growth in the troposphere.

  5. Dynamical coupled-channels study of meson production reactions from EBAC@Jlab

    Energy Technology Data Exchange (ETDEWEB)

    Hiroyuki Kamano

    2011-10-01

    We present the current status of a combined and simultaneous analysis of meson production reactions based on a dynamical coupled-channels (DCC) model, which is conducted at Excited Baryon Analysis Center (EBAC) of Jefferson Lab.

  6. Extraction of Nucleon Resonances From Global Analysis of Meson Production Reactions at EBAC

    Energy Technology Data Exchange (ETDEWEB)

    Hiroyuki Kamano

    2011-10-01

    We report the current status of exploring the dynamical aspect of the excited nucleon states through the comprehensive coupled-channels analysis of meson production reactions at the Excited Baryon Analysis Center of Jefferson Lab.

  7. Liquid composition having ammonia borane and decomposing to form hydrogen and liquid reaction product

    Science.gov (United States)

    Davis, Benjamin L; Rekken, Brian D

    2014-04-01

    Liquid compositions of ammonia borane and a suitably chosen amine borane material were prepared and subjected to conditions suitable for their thermal decomposition in a closed system that resulted in hydrogen and a liquid reaction product.

  8. Interfacing microbial styrene production with a biocompatible cyclopropanation reaction.

    Science.gov (United States)

    Wallace, Stephen; Balskus, Emily P

    2015-06-01

    The introduction of new reactivity into living organisms is a major challenge in synthetic biology. Despite an increasing interest in both the development of small-molecule catalysts that are compatible with aqueous media and the engineering of enzymes to perform new chemistry in vitro, the integration of non-native reactivity into metabolic pathways for small-molecule production has been underexplored. Herein we report a biocompatible iron(III) phthalocyanine catalyst capable of efficient olefin cyclopropanation in the presence of a living microorganism. By interfacing this catalyst with E. coli engineered to produce styrene, we synthesized non-natural phenyl cyclopropanes directly from D-glucose in single-vessel fermentations. This process is the first example of the combination of nonbiological carbene-transfer reactivity with cellular metabolism for small-molecule production. PMID:25925138

  9. Dynamical Coupled-Channel Model of Meson Production Reactions in the Nucleon Resonance Region

    Energy Technology Data Exchange (ETDEWEB)

    T.-S. H. Lee; A. Matsuyama; T. Sato

    2006-11-15

    A dynamical coupled-channel model is presented for investigating the nucleon resonances (N*) in the meson production reactions induced by pions and photons. Our objective is to extract the N* parameters and to investigate the meson production reaction mechanisms for mapping out the quark-gluon substructure of N* from the data. The model is based on an energy-independent Hamiltonian which is derived from a set of Lagrangians by using a unitary transformation method.

  10. Interfacing Microbial Styrene Production with a Biocompatible Cyclopropanation Reaction**

    OpenAIRE

    Wallace, Stephen; Balskus, Emily P.

    2015-01-01

    Introducing new reactivity into living organisms is a major challenge in synthetic biology. Despite an increasing interest in both developing aqueous-compatible small molecule catalysts and engineering enzymes to perform new chemistry in vitro, the integration of non-native reactivity into metabolic pathways for small molecule production has been underexplored. Herein we report a biocompatible iron(III) phthalocyanine catalyst capable of efficient olefin cyclopropanation in the presence of a ...

  11. $X(3872)$ production from reactions involving $D$ and $D^*$ mesons

    CERN Document Server

    Torres, A Martinez; Navarra, F S; Nielsen, M; Abreu, Luciano M

    2014-01-01

    In this proceeding we show the results found for the cross sections of the processes $\\bar D D\\to\\pi X(3872)$, $\\bar D^* D\\to \\pi X(3872)$ and $\\bar D^* D^*\\to\\pi X(3872)$, information needed for calculations of the $X(3872)$ abundance in heavy ion collisions. Our formalism is based on the generation of $X(3872)$ from the interaction of the hadrons $\\bar D^0 D^{*0} - \\textrm{c.c}$, $D^- D^{*+} - \\textrm{c.c}$ and $D^-_s D^{*+}_s - \\textrm{c.c}$. The evaluation of the cross section associated with processes having $D^*$ meson(s) involves an anomalous vertex, $X\\bar D^* D^*$, which we have determined by considering triangular loops motivated by the molecular nature of $X(3872)$. We find that the contribution of this vertex is important. Encouraged by this finding we estimate the $X\\bar D^* D^*$ coupling, which turns out to be $1.95\\pm 0.22$. We then use it to obtain the cross section for the reaction $\\bar D^* D^*\\to\\pi X$ and find that the $X\\bar D^* D^*$ vertex is also relevant in this case. We also discuss t...

  12. Aromatic products from reaction of lignin model compounds with UV-alkaline peroxide

    International Nuclear Information System (INIS)

    A series of guaiacyl and syringyl lignin model compounds and their methylated analogues were reacted with alkaline hydrogen peroxide while irradiating with UV light at 254 nm. The aromatic products obtained were investigated by gas chromatography-mass spectrometry (GC-MS). Guaiacol, syringol and veratrol gave no detectable aromatic products. However, syringol methyl ether gave small amounts of aromatic products, resulting from ring substitution and methoxyl displacement by hydroxyl radicals. Reaction of vanillin and syringaldehyde gave the Dakin reaction products, methoxy-1,4-hydroquinones, while reaction of their methyl ethers yielded benzoic acids. Acetoguaiacone, acetosyringone and their methyl ethers afforded several hydroxylated aromatic products, but no aromatic products were identified in the reaction mixtures from guaiacylpropane and syringylpropane. In contrast, veratrylpropane gave a mixture from which 17 aromatic hydroxylated compounds were identified. It is concluded that for phenolic lignin model compounds, particularly those possessing electrondonating aromatic ring substituents, ring-cleavage reactions involving superoxide radical anions are dominant, whereas for non-phenolic lignin models, hydroxylation reactions through attack of hydroxyl radicals prevail

  13. Potential geographic distribution of atmospheric nitrogen deposition from intensive livestock production in North Carolina, USA

    Energy Technology Data Exchange (ETDEWEB)

    Costanza, Jennifer K. [Curriculum in Ecology, University of North Carolina at Chapel Hill, Campus Box 3275, Chapel Hill, NC 27599-3275 (United States)], E-mail: costanza@unc.edu; Marcinko, Sarah E. [Curriculum in Ecology, University of North Carolina at Chapel Hill, Campus Box 3275, Chapel Hill, NC 27599-3275 (United States); Goewert, Ann E. [Department of Geological Sciences, Campus Box 3315, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3315 (United States); Mitchell, Charles E. [Curriculum in Ecology, University of North Carolina at Chapel Hill, Campus Box 3275, Chapel Hill, NC 27599-3275 (United States)

    2008-07-15

    To examine the consequences of increased spatial aggregation of livestock production facilities, we estimated the annual production of nitrogen in livestock waste in North Carolina, USA, and analyzed the potential distribution of atmospheric nitrogen deposition from confined animal feeding operations ('CAFO') lagoons. North Carolina is a national center for industrial livestock production. Livestock is increasingly being raised in CAFOs, where waste is frequently held, essentially untreated, in open-air lagoons. Reduced nitrogen in lagoons is volatilized as ammonia (NH{sub 3}), transported atmospherically, and deposited to other ecosystems. The Albemarle-Pamlico Sound, NC, is representative of nitrogen-sensitive coastal waters, and is a major component of the second largest estuarine complex in the U.S. We used GIS to model the area of water in the Sound within deposition range of CAFOs. We also evaluated the number of lagoons within deposition range of each 1 km{sup 2} grid cell of the state. We considered multiple scenarios of atmospheric transport by varying distance and directionality. Modeled nitrogen deposition rates were particularly elevated for the Coastal Plain. This pattern matches empirical data, suggesting that observed regional patterns of reduced nitrogen deposition can be largely explained by two factors: limited atmospheric transport distance, and spatial aggregation of CAFOs. Under our medium-distance scenario, a small portion (roughly 22%) of livestock production facilities contributes disproportionately to atmospheric deposition of nitrogen to the Albemarle-Pamlico Sound. Furthermore, we estimated that between 14-37% of the state receives 50% of the state's atmospheric nitrogen deposition from CAFO lagoons. The estimated total emission from livestock is 134,000 t NH{sub 3} yr{sup -1}, 73% of which originates from the Coastal Plain. Stronger waste management and emission standards for CAFOs, particularly those on the Coastal Plain

  14. Minimizing the residual oxygen in modified atmosphere packaging of bakery products.

    Science.gov (United States)

    Piergiovanni, L; Fava, P

    1997-01-01

    The total elimination of air represents a serious hurdle in modified atmosphere packaging of bakery products, due both to the high spin-rates of the packaging lines and, particularly, to the typical texture of bakery products which retain large quantities of air inside their porous structure. Simulating the gas-flushing modified atmosphere packaging with laboratory equipment and measuring the oxygen concentration directly inside bread rolls, by means of a gas analyser connected with the internal portion, it was possible to follow the rate of atmosphere substitution, evaluating the effects of different baking treatments (7, 12 and 23 min at 230 degrees C) and the role played by different gases (nitrogen, argon, helium, nitrous oxide and carbon dioxide). The oxygen content inside the products, plotted versus time, led to typical logistic 'dose-response' curves which made it possible to forecast the time needed to reach established values of residual oxygen concentration and to emphasize the effects of the different conditions used. The gas properties particularly affected the rate of oxygen substitution and the less water-soluble was the gas, the faster was the oxygen reduction; the larger was the gas molecule, the slower was the process. Also baking time was shown to have, to a different extent, some measurable effects on the rate of oxygen substitution and hence, its optimization as well as the choice of gas mixture can contribute to improve modified atmosphere packaging of bakery products. PMID:9373539

  15. 40 CFR 721.5560 - Formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz[c...

    Science.gov (United States)

    2010-07-01

    ... (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz oxaphosphorin-6-oxide. 721.5560 Section 721... Formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz oxaphosphorin-6... identified as formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with...

  16. 40 CFR 721.10190 - Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2...

    Science.gov (United States)

    2010-07-01

    ... diamine and phenol, reaction products with 4-methyl-2-pentanone (generic). 721.10190 Section 721.10190... Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2-pentanone (generic... identified generically as formaldehyde, polymer with aliphatic diamine and phenol, reaction products with...

  17. Development of Tools for the pre- and post-Launch Evaluation of VIIRS Atmospheric Products

    Science.gov (United States)

    Cureton, G. P.

    2011-12-01

    To facilitate the completion of the product evaluation tasks assigned to the Atmosphere PEATE and associated NPP Science Team, various software tools have been developed. Such tools are intended to provide an accessible path towards visualization of VIIRS swath data (radiometric and atmospheric products), the generation and visualization of globally gridded VIIRS datasets for use in daily and monthly averages, and the analysis of multi-sensor co-located data for cross-validation. In addition to end-user tools, there is also effort made to provide easy-to-use NPP sensor specific software libraries to enable NPP science team members to develop their own tools, without having to learn the minutiae of the NPP data formats. The NPOESS Preparatory Project (NPP) mission will provide a first look at a new generation of science products from U.S. operational polar orbiting Earth observing satellites. The primary focus will be on the production of Sensor Data Record (SDR) and Environmental Data Record (EDR) science products in the Interface Data Processing Segment (IDPS) of the Joint Polar Satellite System (JPSS) Ground System. The NASA NPP Science Teams have been tasked with evaluation of the anticipated operational products from the IDPS within a facility known as the Science Data Segment (SDS). Within the SDS, NASA has established five Product Evaluation and Algorithm Test Elements (PEATEs). The purpose of each PEATE is to enable its associated NPP Science Team to evaluate the operational SDRs and EDRs (both pre-launch and post-launch) from NPP efficiently. The PEATEs are organized into categories including Atmosphere, Land, Ocean, Ozone and Sounder. The Atmosphere PEATE has been established within the Space Science and Engineering Center (SSEC) at the University of Wisconsin-Madison.

  18. Aura Atmospheric Data Products and Their Availability from NASA Goddard Earth Sciences DAAC

    Science.gov (United States)

    Ahmad, S.; Johnson, J.; Gopalan, A.; Smith, P.; Leptoukh, G.; Kempler, S.

    2004-01-01

    NASA's EOS-Aura spacecraft was launched successfully on July 15, 2004. The four instruments onboard the spacecraft are the Microwave Limb Sounder (MLS), the Ozone Monitoring Instrument (OMI), the Tropospheric Emission Spectrometer (TES), and the High Resolution Dynamics Limb Sounder (HBDLS). The Aura instruments are designed to gather earth sciences measurements across the ultraviolet, visible, infra-red, thermal and microwave regions of the electromagnetic spectrum. Aura will provide over 70 distinct standard atmospheric data products for use in ozone layer and surface UV-B monitoring, air quality forecast, and atmospheric chemistry and climate change studies (http://eosaura.gsfc.nasa.gov/). These products include earth-atmosphere radiances and solar spectral irradiances; total column, tropospheric, and profiles of ozone and other trace gases, surface W-B flux; clouds and aerosol characteristics; and temperature, geopotential height, and water vapor profiles. The MLS, OMI, and HIRDLS data products will be archived at the NASA Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC), while data from TES will be archived at NASA Langley Research Center DAAC. Some of the standard products which have gone through quick preliminary checks are already archived at the GES DAAC (http://daac.nsfc.nasa.gov/) and are available to the Aura science team and data validation team members for data validation; and to the application and visualization software developers, for testing their application modules. Once data are corrected for obvious calibration problems and partially validated using in-situ observations, they would be made available to the broader user community. This presentation will provide details of the whole suite of Aura atmospheric data products, and the time line of the availability of the rest of the preliminary products and of the partially validated provisional products. Software and took available for data access, visualization, and data

  19. Atmospheric reactivity of hydroxyl radicals with guaiacol (2-methoxyphenol), a biomass burning emitted compound: Secondary organic aerosol formation and gas-phase oxidation products

    Science.gov (United States)

    Lauraguais, Amélie; Coeur-Tourneur, Cécile; Cassez, Andy; Deboudt, Karine; Fourmentin, Marc; Choël, Marie

    2014-04-01

    Methoxyphenols are low molecular weight semi-volatile polar aromatic compounds produced from the pyrolysis of wood lignin. The reaction of guaiacol (2-methoxyphenol) with hydroxyl radicals has been studied in the LPCA simulation chamber at (294 ± 2) K, atmospheric pressure, low relative humidity (RH Flame Ionization Detection) and GC-MS (Gas Chromatography - Mass Spectrometry) analysis show the formation of nitroguaiacol isomers as main oxidation products in the gas- and aerosol-phases. In the gas-phase, the formation yields were (10 ± 2) % for 4-nitroguaiacol (1-hydroxy-2-methoxy-4-nitrobenzene; 4-NG) and (6 ± 2) % for 3- or 6-nitroguaiacol (1-hydroxy-2-methoxy-3-nitrobenzene or 1-hydroxy-2-methoxy-6-nitrobenzene; 3/6-NG; the standards are not commercially available so both isomers cannot be distinguished) whereas in SOA their yield were much lower (≤0.1%). To our knowledge, this work represents the first identification of nitroguaiacols as gaseous oxidation products of the OH reaction with guaiacol. As the reactivity of nitroguaiacols with atmospheric oxidants is probably low, we suggest using them as biomass burning emission gas tracers. The atmospheric implications of the guaiacol + OH reaction are also discussed.

  20. 40 CFR 721.524 - Alcohols, C6-12, ethoxylated, reaction product with maleic anhydride.

    Science.gov (United States)

    2010-07-01

    ... product with maleic anhydride. 721.524 Section 721.524 Protection of Environment ENVIRONMENTAL PROTECTION... with maleic anhydride. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alcohols, C6-12, ethoxylated, reaction product with...

  1. Maillard reaction products of rice protein hydrolysates with mono-, oligo- and polysaccharides

    Science.gov (United States)

    Rice protein, a byproduct of rice syrup production, is abundant but, its lack of functionality prevents its wide use as a food ingredient. Maillard reaction products of (MRPs) hydrolysates from the limited hydrolysis of rice protein (LHRP) and various mono-, oligo- and polysaccharides were evaluat...

  2. Production of 100Sn in fusion reactions via cluster emission channels

    Directory of Open Access Journals (Sweden)

    Kalandarov Sh. A.

    2015-01-01

    Full Text Available The possibilities of production of the doubly magic nucleus 100Sn in complete fusion and quasifission reactions with stable and radioactive ion beams are investigated within a dinuclear system model. The excitation functions for production of the exotic nuclei 100−103Sn via cluster emission channels are predicted for future experiments.

  3. An Upstream By-product from Ester Activation via NHC-Catalysis Catalyzes Downstream Sulfonyl Migration Reaction.

    Science.gov (United States)

    Han, Runfeng; He, Liwenze; Liu, Lin; Xie, Xingang; She, Xuegong

    2016-01-01

    A sequential reaction combining N-heterocyclic carbene (NHC) and N-hydroxyphthalimide (NHPI) catalysis allowed for the upstream by-product NHPI, which was generated in the NHC-catalyzed cycloaddition reaction, to act as the catalyst for a downstream nitrogen-to-carbon sulfonyl migration reaction. Enantiomeric excess of the major product in the cycloaddition reaction remained intact in the follow-up sulfonyl migration reaction. PMID:26522328

  4. Biodiesel production from integration between reaction and separation system: reactive distillation process.

    Science.gov (United States)

    da Silva, Nívea de Lima; Santander, Carlos Mario Garcia; Batistella, César Benedito; Filho, Rubens Maciel; Maciel, Maria Regina Wolf

    2010-05-01

    Biodiesel is a clean burning fuel derived from a renewable feedstock such as vegetable oil or animal fat. It is biodegradable, non-inflammable, non-toxic, and produces lesser carbon monoxide, sulfur dioxide, and unburned hydrocarbons than petroleum-based fuel. The purpose of the present work is to present an efficient process using reactive distillation columns applied to biodiesel production. Reactive distillation is the simultaneous implementation of reaction and separation within a single unit of column. Nowadays, it is appropriately called "Intensified Process". This combined operation is especially suited for the chemical reaction limited by equilibrium constraints, since one or more of the products of the reaction are continuously separated from the reactants. This work presents the biodiesel production from soybean oil and bioethanol by reactive distillation. Different variables affect the conventional biodiesel production process such as: catalyst concentration, reaction temperature, level of agitation, ethanol/soybean oil molar ratio, reaction time, and raw material type. In this study, the experimental design was used to optimize the following process variables: the catalyst concentration (from 0.5 wt.% to 1.5 wt.%), the ethanol/soybean oil molar ratio (from 3:1 to 9:1). The reactive column reflux rate was 83 ml/min, and the reaction time was 6 min.

  5. Corrosion Products and Formation Mechanism During Initial Stage of Atmospheric Corrosion of Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    XIAO Kui; DONG Chao-fang; LI Xiao-gang; WANG Fu-ming

    2008-01-01

    The formation and development of corrosion products on carbon steel surface during the initial stage of atmospheric corrosion in a laboratory simulated environment have been studied by scanning electron microscopy (SEM)and Raman spectroscopy.The results showed that two different shapes of corrosion products,that is,ring and chain,were formed in the initial stage of corrosion.MnS clusters were found in the nuclei of corrosion products at the active local corrosion sites.The ring-shaped products were composed of lepidocrocite (γ-FeOOH) and maghemite(γ-Fe2 O3) transformed from lepidocrocite.The chain-type products were goethite (α-FeOOH).A formation mechanism of the corrosion products is proposed.

  6. Hydrogen production from banyan leaves using an atmospheric-pressure microwave plasma reactor.

    Science.gov (United States)

    Lin, Yuan-Chung; Wu, Tzi-Yi; Jhang, Syu-Ruei; Yang, Po-Ming; Hsiao, Yi-Hsing

    2014-06-01

    Growth of the hydrogen market has motivated increased study of hydrogen production. Understanding how biomass is converted to hydrogen gas can help in evaluating opportunities for reducing the environmental impact of petroleum-based fuels. The microwave power used in the reaction is found to be proportional to the rate of production of hydrogen gas, mass of hydrogen gas produced per gram of banyan leaves consumed, and amount of hydrogen gas formed with respect to the H-atom content of banyan leaves decomposed. Increase the microwave power levels results in an increase of H2 and decrease of CO2 concentrations in the gaseous products. This finding may possibly be ascribed to the water-gas shift reaction. These results will help to expand our knowledge concerning banyan leaves and hydrogen yield on the basis of microwave-assisted pyrolysis, which will improve the design of hydrogen production technologies. PMID:24721492

  7. Hydrogen production from banyan leaves using an atmospheric-pressure microwave plasma reactor.

    Science.gov (United States)

    Lin, Yuan-Chung; Wu, Tzi-Yi; Jhang, Syu-Ruei; Yang, Po-Ming; Hsiao, Yi-Hsing

    2014-06-01

    Growth of the hydrogen market has motivated increased study of hydrogen production. Understanding how biomass is converted to hydrogen gas can help in evaluating opportunities for reducing the environmental impact of petroleum-based fuels. The microwave power used in the reaction is found to be proportional to the rate of production of hydrogen gas, mass of hydrogen gas produced per gram of banyan leaves consumed, and amount of hydrogen gas formed with respect to the H-atom content of banyan leaves decomposed. Increase the microwave power levels results in an increase of H2 and decrease of CO2 concentrations in the gaseous products. This finding may possibly be ascribed to the water-gas shift reaction. These results will help to expand our knowledge concerning banyan leaves and hydrogen yield on the basis of microwave-assisted pyrolysis, which will improve the design of hydrogen production technologies.

  8. Short and Long Term Impacts of Forest Bioenergy Production on Atmospheric Carbon Dioxide Emissions

    Science.gov (United States)

    Hudiburg, T.; Law, B. E.; Luyssaert, S.; Thornton, P. E.

    2011-12-01

    Temperate forest annual net uptake of CO2 from the atmosphere is equivalent to ~16% of the annual fossil fuel emissions in the United States. Mitigation strategies to reduce emissions of carbon dioxide have lead to investigation of alternative sources of energy including forest biomass. The prospect of forest derived bioenergy has led to implementation of new forest management strategies based on the assumption that they will reduce total CO2 emissions to the atmosphere by simultaneously reducing the risk of wildfire and substituting for fossil fuels. The benefit of managing forests for bioenergy substitution of fossil fuels versus potential carbon sequestration by reducing harvest needs to be evaluated. This study uses a combination of Federal Forest Inventory data (FIA), remote sensing, and a coupled carbon-nitrogen ecosystem process model (CLM4-CN) to predict net atmospheric CO2 emissions from forest thinning for bioenergy production in Oregon under varying future management and climate scenarios. We use life-cycle assessment (LCA) incorporating both the forest and forest product sinks and sources of carbon dioxide. Future modeled results are compared with a reduced harvest scenario to determine the potential for increased carbon sequestration in forest biomass. We find that Oregon forests are a current strong sink of 7.5 ± 1.7 Tg C yr-1 or 61 g C m-2 yr-1. (NBP; NEP minus removals from fire and harvest). In the short term, we find that carbon dynamics following harvests for fire prevention and large-scale bioenergy production lead to 2-15% higher emissions over the next 20 years compared to current management, assuming 100% effectiveness of fire prevention. Given the current sink strength, analysis of the forest sector in Oregon demonstrates that increasing harvest levels by all practices above current business-as-usual levels increases CO2 emissions to the atmosphere as long as the region's sink persists. In the long-term, we find that projected changes in

  9. Atmospheric Deposition And MediterraneAN sea water productiviTy (Thales - ADAMANT) An overview

    Science.gov (United States)

    Christodoulaki, Sylvia; Petihakis, George; Triantafyllou, George; Pitta, Paraskevi; Papadimitriou, Vassileios; Tsiaras, Konstantinos; Mihalopoulos, Nikolaos; Kanakidou, Maria

    2015-04-01

    In the marine environment the salinity and biological pumps sequester atmospheric carbon dioxide. The biological pump is directly related to marine primary production which is controlled by nutrient availability mainly of iron, nitrogen and phosphorus. The Mediterranean Sea, especially the eastern basin is one of the most oligotrophic seas. The nitrogen (N) to phosphorus (P) ratio is unusually high, especially in the eastern basin (28:1) and primary production is limited by phosphorus availability. ADAMANT project contributes to new knowledge into how nutrients enter the marine environment through atmospheric deposition, how they are assimilated by organisms and how this influences carbon and nutrient fluxes. Experimental work has been combined with atmospheric and marine models. Important knowledge is obtained on nutrients deposition through mesocosm experiments on their uptake by the marine systems and their effects on the marine carbon cycle and food chain. Kinetic parameters of adsorption of acidic and organic volatile compounds in atmospheric samples of dust and marine salts are estimated in conjunction with solubility of N and P in mixtures contained in dust. Atmospheric and oceanographic models are coupled to create a system that is able to holistically simulate the effects of atmospheric deposition on the marine environment over time, beginning from the pre-industrial era until the future years (hind cast, present and forecast simulations). This research has been co-financed by the European Union (European Social Fund) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework - Research Funding Program: THALES, Investing in knowledge society through European Social Fund.

  10. Reaction of zearalenone and α-zearalenol with allyl isothiocyanate, characterization of reaction products, their bioaccessibility and bioavailability in vitro.

    Science.gov (United States)

    Bordin, K; Saladino, F; Fernández-Blanco, C; Ruiz, M J; Mañes, J; Fernández-Franzón, M; Meca, G; Luciano, F B

    2017-02-15

    This study investigates the reduction of zearalenone (ZEA) and α-zearalenol (α-ZOL) on a solution model using allyl isothiocyanate (AITC) and also determines the bioaccessibility and bioavailability of the reaction products isolated and identified by MS-LIT. Mycotoxin reductions were dose-dependent, and ZEA levels decreased more than α-ZOL, ranging from 0.2 to 96.9% and 0 to 89.5% respectively, with no difference (p⩽0.05) between pH 4 and 7. Overall, simulated gastric bioaccessibility was higher than duodenal bioaccessibility for both mycotoxins and mycotoxin-AITC conjugates, with duodenal fractions representing ⩾63.5% of the original concentration. Simulated bioavailability of reaction products (α-ZOL/ZEA-AITC) were lower than 42.13%, but significantly higher than the original mycotoxins. The cytotoxicity of α-ZOL and ZEA in Caco-2/TC7 cells was also evaluated, with toxic effects observed at higher levels than 75μM. Further studies should be performed to evaluate the toxicity and estrogenic effect of α-ZOL/ZEA-AITC. PMID:27664682

  11. NASA Langley Atmospheric Science Data Centers Near Real-Time Data Products

    Science.gov (United States)

    Davenport, T.; Parker, L.; Rinsland, P. L.

    2014-12-01

    Over the past decade the Atmospheric Science Data Center (ASDC) at NASA Langley Research Center has archived and distributed a variety of satellite mission data sets. NASA's goal in Earth science is to observe, understand, and model the Earth system to discover how it is changing, to better predict change, and to understand the consequences for life on Earth. The ASDC has collaborated with Science Teams to accommodate emerging science users in the climate and modeling communities. The ASDC has expanded its original role to support operational usage by related Earth Science satellites, support land and ocean assimilations, support of field campaigns, outreach programs, and application projects for agriculture and energy industries to bridge the gap between Earth science research results and the adoption of data and prediction capabilities for reliable and sustained use in Decision Support Systems (DSS). For example; these products are being used by the community performing data assimilations to regulate aerosol mass in global transport models to improve model response and forecast accuracy, to assess the performance of components of a global coupled atmospheric-ocean climate model, improve atmospheric motion vector (winds) impact on numerical weather prediction models, and to provide internet-based access to parameters specifically tailored to assist in the design of solar and wind powered renewable energy systems. These more focused applications often require Near Real-Time (NRT) products. Generating NRT products pose their own unique set challenges for the ASDC and the Science Teams. Examples of ASDC NRT products and challenges will be discussed.

  12. Multimass thermal desorption spectroscopy as a monitoring device for chemical reaction products

    OpenAIRE

    Zagatta, Gunther; Müller, H; Böwering, N.; Heinzmann, Ulrich

    1994-01-01

    To observe the products of surface reaction mechanisms we combined a standard quadrupole mass spectrometer featuring high-speed scanning options with fast data acquisition and a computer-controlled sample heating system. This combination served to obtain a general view (like a 'fingerprint') of the reaction occurring on a Pt(100) crystal upon heating the adsorbate covered surface, as well as to allow for a detailed analysis of the gas compounds leaving the surface within a single measurement....

  13. Mechanism of anti-influenza virus activity of Maillard reaction products derived from Isatidis roots

    OpenAIRE

    Ke, Lijing

    2011-01-01

    The cyto-protective compositions and effects of antiviral Maillard reaction products (MRPs) derived from roots of Isatis indigotica F. were examined using biochemical and biophysical methods. The Maillard reaction was identified as the main source of compounds with antiviral activity, an observation which has led to the proposal of a new class of active compounds that protect cells from influenza virus infection. In the roots, arginine and glucose were revealed to be the predom...

  14. Reactions of the CN Radical with Benzene and Toluene: Product Detection and Low-Temperature Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Trevitt, Adam J.; Goulay, Fabien; Taatjes, Craig A.; Osborn, David L.; Leone, Stephen R.

    2009-12-23

    Low temperature rate coefficients are measured for the CN + benzene and CN + toluene reactions using the pulsed Laval nozzle expansion technique coupled with laser-induced fluorescence detection. The CN + benzene reaction rate coefficient at 105, 165 and 295 K is found to be relatively constant over this temperature range, 3.9 - 4.9 x 10-10 cm3 molecule-1 s-1. These rapid kinetics, along with the observed negligible temperature dependence, are consistent with a barrierless reaction entrance channel and reaction efficiencies approaching unity. The CN + toluene reaction is measured to have a slower rate coefficient of 1.3 x 10-10 cm3 molecule-1 s-1 at 105 K. At room temperature, non-exponential decay profiles are observed for this reaction that may suggest significant back-dissociation of intermediate complexes. In separate experiments, the products of these reactions are probed at room temperature using synchrotron VUV photoionization mass spectrometry. For CN + benzene, cyanobenzene (C6H5CN) is the only product recorded with no detectable evidence for a C6H5 + HCN product channel. In the case of CN + toluene, cyanotoluene (NCC6H4CH3) constitutes the only detected product. It is not possible to differentiate among the ortho, meta and para isomers of cyanotoluene because of their similar ionization energies and the ~;; 40 meV photon energy resolution of the experiment. There is no significant detection of benzyl radicals (C6H5CH2) that would suggest a H-abstraction or a HCN elimination channel is prominent at these conditions. As both reactions are measured to be rapid at 105 K, appearing to have barrierless entrance channels, it follows that they will proceed efficiently at the temperatures of Saturn?s moon Titan (~;;100 K) and are also likely to proceed at the temperature of interstellar clouds (10-20 K).

  15. Reactions

    DEFF Research Database (Denmark)

    Søndergaard, Morten

    2011-01-01

    construction; and 2) As a construction of a new reactive modality of the (art) museum as ‘archive of reality' - showing the outline of a cultural institution that oscillates between the instituting and institutionalizing competences of the (art) museum - between knowledge-based and experience-based exhibiting......  My concern is to understand augmentation as an emergent modality - among many others in ‘the expanding digital field' (Søndergaard M. , Transformative Creativity in the Expanded Digital Field, 2009)' - attributed to the production of contemporary art and the ‘archive of knowledge' in the (art......) museum. Augmentation, in this expanding digital field, is part of a production of new public spaces, as well as a new reality that affects and traverses art and institutions immanently and througout. The expanding digital field is transforming art and the art museum in a number of fundamental ways, a few...

  16. Production of specific structured lipids by enzymatic interesterification: optimization of the reaction by response surface design

    DEFF Research Database (Denmark)

    Xu, Xuebing; Skands, Anja Rebecca Havegaard; Adler-Nissen, Jens;

    1998-01-01

    Rapeseed oil and capric acid were interesterified in solvent-free media catalyzed by Lipozyme IM (Rhizomucor miehei) to produce specific-structured lipids (SSLs). The process was optimized by response surface design concerning the effects of acyl migration and the by-products of diacylglycerols (....... Thus we conclude that the quadratic response models adequately expressed the reaction. Based on the models, the reaction was optimized for the maximum net incorporation and minimum DAG content. The reaction and the control of water content or water activity (Aw) was also discussed....

  17. Neutron Production Using Alpha-Be Reaction on the Neutron Generator Accelerator

    International Nuclear Information System (INIS)

    In order to obtain data for development of small scale Accelerator Driven System (ADS), calculations of neutron production that use alpha-Be reaction on the acceleration energy range of 100 to 500 keV have been carried out. The result of neutron yield calculation was compared with calculation result of D-T reaction and both calculations were treated for thick target. At the energy of 100 keV; alpha-Be reaction produces neutron yield about 1/10 compared to that of D-T reaction and increases to 1/5 at energy of 500 keV. At the same acceleration voltage of 250 kV, where the alpha energy is 500 keV and deuteron energy is 250 keV; the neutron yield of alpha-Be reaction is 1/3 of that in D-T reaction. On the last mentioned condition and considering that target cost of Be is cheaper than the cost of T, neutron production on a neutron generator accelerator that uses alpha-Be reaction is a competitive method as neutron source, especially for ADS. (author)

  18. Modified Atmosphere Systems and Shelf Life Extension of Fish and Fishery Products

    Directory of Open Access Journals (Sweden)

    Christina A. Mireles DeWitt

    2016-06-01

    Full Text Available This review aims at summarizing the findings of studies published over the past 15 years on the application of modified atmosphere (MA systems for shelf life extension of fish and fishery products. This review highlights the importance of CO2 in the preservation of seafood products, and underscores the benefits of combining MA technology with product storage in the superchilled temperature range. It is generally accepted that MA technology cannot improve product quality and should not be utilized as a substitute for good sanitation and strict temperature control. Benefits derived from application of MA, however, can significantly impact preservation of product quality and it subsequent shelf-life. For this reason, this review is the first of its kind to propose detailed handling and quality guidelines for fresh fish to realize the maximum benefit of MA technology.

  19. Impact of atmospheric nitrogen deposition on phytoplankton productivity in the South China Sea

    Science.gov (United States)

    Kim, Tae-Wook; Lee, Kitack; Duce, Robert; Liss, Peter

    2014-05-01

    The impacts of anthropogenic nitrogen (N) deposition on the marine N cycle are only now being revealed, but the magnitudes of those impacts are largely unknown in time and space. The South China Sea (SCS) is particularly subject to high anthropogenic N deposition, because the adjacent countries are highly populated and have rapidly growing economies. Analysis of data sets for atmospheric N deposition, satellite chlorophyll-a (Chl-a), and air mass back trajectories reveals that the transport of N originating from the populated east coasts of China and Indonesia, and its deposition to the ocean, has been responsible for the enhancements of Chl-a in the SCS. We found that atmospheric N deposition contributed approximately 20% of the annual biological new production in the SCS. The airborne contribution of N to new production in the SCS is expected to grow considerably in the coming decades.

  20. Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications

    OpenAIRE

    Jokinen, T; Berndt, T; Makkonen, R.; Kerminen, V-M; Junninen, H.; Paasonen, P.; Stratmann, F.; Herrmann, H.; Guenther, AB; Worsnop, DR; M. Kulmala; M. Ehn; Sipilä, M.

    2015-01-01

    Extremely low volatility organic compounds (ELVOC) are suggested to promote aerosol particle formation and cloud condensation nuclei (CCN) production in the atmosphere. We show that the capability of biogenic VOC (BVOC) to produce ELVOC depends strongly on their chemical structure and relative oxidant levels. BVOC with an endocyclic double bond, representative emissions from, e.g., boreal forests, efficiently produce ELVOC from ozonolysis. Compounds with exocyclic double bonds or acyclic comp...

  1. IR-BASED SATELLITE PRODUCTS FOR THE MONITORING OF ATMOSPHERIC WATER VAPOR OVER THE BLACK SEA

    OpenAIRE

    VELEA LILIANA; BOJARIU ROXANA

    2016-01-01

    The amount of precipitable water (TPW) in the atmospheric column is one of the important information used weather forecasting. Some of the studies involving the use of TPW relate to issues like lightning warning system in airports, tornadic events, data assimilation in numerical weather prediction models for short-range forecast, TPW associated with intense rain episodes. Most of the available studies on TPW focus on properties and products at global scale, with the drawback that regional cha...

  2. Occurrence of the Bunsen side reaction in the sulfur-iodine thermochemical cycle for hydrogen production

    Institute of Scientific and Technical Information of China (English)

    Qiao-qiao ZHU; Yan-wei ZHANG; Zhi YING; Jun-hu ZHOU; Zhi-hua WANG; Ke-fa CEN

    2013-01-01

    This study aimed to establish a closed-cycle operation technology with high thermal efficiency in the thermochemical sulfur-iodine cycle for large-scale hydrogen production.A series of experimental studies were performed to investigate the occurrence of side reactions in both the H2SO4 and HIx phases from the H2SO4/HI/I2/H2O quaternary system within a constant temperature range of 323-363 K.The effects of iodine content,water content and reaction temperature on the side reactions were evaluated.The results showed that an increase in the reaction temperature promoted the side reactions.However,they were prevented as the iodine or water content increased.The occurrence of side reactions was faster in kinetics and more intense in the H2SO4 phase than in the HIx phase.The sulfur or hydrogen sulfide formation reaction or the reverse Bunsen reaction was validated under certain conditions.

  3. Optimization and kinetic studies of sea mango (Cerbera odollam) oil for biodiesel production via supercritical reaction

    International Nuclear Information System (INIS)

    Highlights: • Sea mango oil as feedstock for biodiesel via non-catalytic supercritical reaction. • Extracted sea mango oil with high FFA could produce high yield of FAME. • Employment of Response Surface Methodology for optimization of FAME. • Kinetic study for reversible transesterification and esterification reactions. - Abstract: Sea mango (Cerbera odollam) oil, which is rich in free fatty acids, was utilized to produce fatty acid methyl esters (FAME) via supercritical transesterification reaction. Sea mango oil was extracted from seeds and was subsequently reacted with methanol in a batch-type supercritical reactor. Response surface methodology (RSM) analysis was used to optimize important parameters, including reaction temperature, reaction time and the molar ratio of methanol to oil. The optimum conditions were found as 380 °C, 40 min and 45:1 mol/mol, respectively, to achieve 78% biodiesel content. The first kinetic modelling of FAME production from sea mango oil incorporating reversible transesterification and reversible esterification was verified simultaneously. The kinetic parameters, including reaction rate constants, k, the pre-exponential constant, A, and the activation energy, Ea, for transesterification and esterification were determined using an ordinary differential equation (ODE45) solver. The highest activation energy of 40 kJ/mol and the lowest reaction rate constant of 2.50 × 10−5 dm3/mol s verified that the first stepwise reaction of TG to produce DG was the rate-limiting step

  4. Entrance Channel Dependence of Production Cross Sections of Superheavy Nuclei in Cold Fusion Reactions

    Institute of Scientific and Technical Information of China (English)

    FENG Zhao-Qing; JIN Gen-Ming; FU Fen; ZHANG Feng-Shou; JIA Fei; HUANG Xi; HU Rong-Jiang; LI Wen-Fei; LI Jun-Qing

    2005-01-01

    @@ Production cross sections of superheavy nuclei Rf and Hs for asymmetric and nearly symmetric projectile-target combinations are systematically studied within the framework of the dinuclear system model.The calculated results show that the production cross sections are strongly dependent on the symmetry of reaction systems.The obtained results are in good agreement with the available experimental data for asymmetric reaction systems.For nearly symmetric systems, the model gives opposite results with coupled channel model in which surface vibration and nucleon transfer are included.

  5. Near-Threshold Production of $\\omega$ Mesons in the $pp \\to pp \\omega$ Reaction

    CERN Document Server

    Hibou, F; Boivin, M; Courtat, P; Gacougnolle, R; Le Bornec, Y; Martin, J M; Plouin, F; Tatischeff, B; Wilkin, C; Willis, N; Wurzinger, R

    1999-01-01

    The total cross section for omega production in the pp -> pp omega reaction has been measured at five c.m. excess energies from 3.8 to 30 MeV. The energy dependence is easily understood in terms of a strong proton-proton final state interaction combined with a smearing over the width of the state. The ratio of near-threshold phi and omega production is consistent with the predictions of a one-pion-exchange model and the degree of violation of the OZI rule is similar to that found in the pi-p -> n omega/phi reactions.

  6. Neutral pion production in the 16O+27Al reaction at 94 MeV/nucleon

    International Nuclear Information System (INIS)

    The production of neutral pions in the reaction 16O+27Al at 94 MeV/nucleon was studied with a multidetector, which includes 180 BaF2 modules. Kinetic energy spectra for several laboratory angles were measured. The total cross section for neutral pion production was deduced. Results were compared with previous findings on charged pions from the same reaction at the same energy and with the prediction of a dynamical model based on the numerical solution of the Boltzmann-Nordheim-Vlasov equation

  7. An atmospheric pressure high-temperature laminar flow reactor for investigation of combustion and related gas phase reaction systems.

    Science.gov (United States)

    Oßwald, Patrick; Köhler, Markus

    2015-10-01

    A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimental data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes. PMID:26520986

  8. An atmospheric pressure high-temperature laminar flow reactor for investigation of combustion and related gas phase reaction systems

    Science.gov (United States)

    Oßwald, Patrick; Köhler, Markus

    2015-10-01

    A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimental data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes.

  9. Light charged-particle production in 96 MeV neutron-induced reactions on carbon and oxygen

    International Nuclear Information System (INIS)

    In recent years, an increasing number of applications involving fast neutrons have been developed or are under consideration, e.g. radiation treatment of cancer, neutron dosimetry at commercial aircraft altitudes, soft-error effects in computer memories, accelerator-driven transmutation of nuclear waste and energy production and determination of the response of neutron detectors. Data on light-ion production in light nuclei such as carbon, nitrogen and oxygen are particularly important in calculations of dose distributions in human tissue for radiation therapy at neutron beams, and for dosimetry of high-energy neutrons produced by high-energy cosmic radiation interacting with nuclei (nitrogen and oxygen) in the atmosphere. When studying neutron dose effects, it is especially important to consider carbon and oxygen, since they are, by weight, the most abundant elements in human tissue. Preliminary experimental double-differential cross sections of inclusive light-ion (p, d, t, 3He and α) production in carbon induced by 96-MeV neutrons have been presented. Energy spectra were measured at eight laboratory angles: 20, 40, 60, 80, 100, 120, 140 and 160 deg.. Measurements were performed at The Svedberg Laboratory (TSL), Uppsala, using the dedicated MEDLEY experimental setup. The authors have earlier reported experimental double-differential cross sections of inclusive light-ion production in oxygen. In this paper, the deduced kerma coefficients for oxygen has been presented and compared with reaction model calculations. (authors)

  10. Modeling Chemical Growth Processes in Titan's Atmosphere: 1. Theoretical Rates for Reactions between Benzene and the Ethynyl (C2H) and Cyano (CN) Radicals at Low Temperature and Pressure

    Science.gov (United States)

    Woon, David E.

    2006-01-01

    Density functional theory calculations at the B3LYP/6-31+G** level were employed to characterize the critical points for adducts, isomers, products, and intervening transition states for the reactions between benzene and the ethynyl (C2H) or cyano (CN) radicals. Both addition reactions were found to have no barriers in their entrance channels, making them efficient at the low temperature and pressure conditions that prevail in the haze-forming region of Titan's atmosphere as well as in the dense interstellar medium (ISM). The dominant products are ethynylbenzene (C6H5C2H) and cyanobenzene (C6H5CN). Hydrogen abstraction reactions were also characterized but found to be non-competitive. Trajectory calculations based on potentials fit to about 600 points calculated at the ROMP2/6-31+G** level for each interaction surface were used to determine reaction rates. The rates incorporated any necessary corrections for back reactions as ascertained from a multiwell treatment used to determine outcome distributions over the range of temperatures and pressures pertinent to Titan and the ISM and are in good agreement with the limited available experimental data.

  11. Computational Raman spectroscopy of organometallic reaction products in lithium and sodium-based battery systems.

    Science.gov (United States)

    Sánchez-Carrera, Roel S; Kozinsky, Boris

    2014-11-28

    A common approach to understanding surface reaction mechanisms in rechargeable lithium-based battery systems involves spectroscopic characterization of the product mixtures and matching of spectroscopic features to spectra of pure candidate reference compounds. This strategy, however, requires separate chemical synthesis and accurate characterization of potential reference compounds. It also assumes that atomic structures are the same in the actual product mixture as in the reference samples. We propose an alternative approach that uses first-principles computations of spectra of the possible reaction products and by-products present in advanced battery systems. We construct a library of computed Raman spectra for possible products, achieving excellent agreement with reference experimental data, targeting solid-electrolyte interphase in Li-ion cells and discharge products of Li-air cells. However, the solid-state crystalline structure of Li(Na) metal-organic compounds is often not known, making the spectra computations difficult. We develop and apply a novel technique of simplifying spectra calculations by using dimer-like representations of the solid state structures. On the basis of a systematic investigation, we demonstrate that molecular dimers of Li(Na)-based organometallic material provide relevant information about the vibrational properties of many possible solid reaction products. Such an approach should serve as a basis to extend existing spectral libraries of molecular structures relevant for understanding the link between atomic structures and measured spectroscopic data of materials in novel battery systems.

  12. Production of Zinc Borate for Pilot-Scale Equipment and Effects of Reaction Conditions on Yield

    Directory of Open Access Journals (Sweden)

    Melek BARDAKCI

    2013-05-01

    Full Text Available In this study, zinc borate (ZB was synthesized by reacting zinc oxide and boric acid in the presence of standard ZB (w/w, in terms of boric acid in order to promote crystallization. The effects of seed, H3BO3/ZnO (boric acid/zinc oxide ratio, reaction time, water volume, reaction temperature and cooling temperature on yield were investigated for pilot-scale equipment. The results indicated that the addition of seed (w/w to a saturated solution of reactants increased the yield of the reaction. The results of reaction yields obtained from either magnetically or mechanically stirred systems were compared. At various reaction times, the optimal yield was 86.78 % in a saturated aqueous solution. The products were characterized by X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR and Thermogravimetric / Differential Thermal Analysis (TG/DTA. The results displayed that ZB was successfully produced under the optimized reaction conditions and the product synthesized had high thermal stability.DOI: http://dx.doi.org/10.5755/j01.ms.19.2.4432

  13. Holocene primary productivity and the atmosphere/ocean linkage in the Gulf of Alaska

    Science.gov (United States)

    Addison, J. A.; Finney, B.; Anderson, L.; Barron, J. A.; Hayes, S. M.; Sliwinski, M.; Mix, A. C.

    2015-12-01

    Recent work in the temperate fjords of the Gulf of Alaska, located in the subarctic northeast Pacific Ocean, has demonstrated a positive link between modern atmosphere/ocean dynamics and accumulation of biogenic sediments during the last 100 years, where intensified Aleutian Low atmospheric pressure cell regimes correspond to peaks in export primary productivity (Addison et al., 2013). Here, this work is extended by examining the last 7500 years of biogenic sedimentation from marine sediment core EW0408-33JC (57.16°N, 135.36°W, 144 m water depth), which is constrained by 17 age-control points spaced every ~500 years. We use bromine (Br) intensities measured by core-scanning XRF with a 2-mm sampling resolution as a geochemical proxy for past primary productivity. These Br intensities are calibrated to organic Br concentrations using a combination of quantitative WD-XRF methods and synchrotron-radiation Br speciation studies, with cross-verification provided by low-resolution analyses of other productivity proxies, including biogenic silica (opal), total organic carbon (TOC), and organic matter δ13C ratios. Our findings indicate distinct centennial-to-millennial changes, with positive productivity excursions between 7500-7000, 6500-6000, 5000-3500, 2500-1500, and 1000-500 INTCAL13 yr BP. We compare the timing of these excursions against a compilation of marine and terrestrial paleoclimate records sensitive to forcing by the Aleutian Low to determine if the positive relationship between atmosphere/ocean dynamics and marine primary productivity has remained consistent over the last 7500 years. Other potential forcing mechanisms (e.g., solar insolation, irradiance) are also considered. Reference: Addison, J.A., Finney, B., Jaeger, J., Stoner, J., Norris, R., & Hangsterfer, A., 2013, Integrating satellite observations and modern climate measurements with the recent sedimentary record: an example from Southeast Alaska. JGR-Oceans, v. 118, 18 pgs.

  14. Production of Solar-Grade Silicon by the SiF4 and Mg Reaction

    Science.gov (United States)

    Xie, Xiaobing; Bao, Jianer; Sanjurjo, Angel

    2016-08-01

    Over 90 pct of the solar cells currently produced and installed are Si based, and this industrial dominance is expected to persist for the foreseeable future. The crystalline Si substrate accounts for a significant portion of the total cost of solar cells. In order to further reduce the cost of solar panels, there has been significant effort in producing inexpensive solar-grade Si, mainly through three paths: (1) modification of the Siemens process to lower production costs, (2) upgrading metallurgical-grade Si to reach solar-grade purity, and (3) by means of new metallurgical processes such as the reduction of a silicon halide, e.g., SiF4 or SiCl4, by a reactive metal such as Na or Zn. In this paper, we describe an alternative path that uses Mg to react with SiF4 to produce low-cost solar grade Si. Experimental conditions for complete reaction and separation of the products, Si and MgF2, as well as aspects of the reaction mechanism are described. The reaction involves both a heterogeneous liquid-gas phase reaction and a homogeneous gas-gas phase reaction. When pure Mg was used, the Si product obtained had sub-ppm levels of B and P impurities and is expected to be suitable for solar cell applications.

  15. Determination of 68Ga production parameters by different reactions using ALICE and TALYS codes

    Indian Academy of Sciences (India)

    Mahdi Sadeghi; Tayeb Kakavand; Leila Mokhtari; Zohreh Gholamzadeh

    2009-02-01

    Gallium-68 (1/2 = 68 min, + = 89%) is an important positron-emitting radionuclide for positron emission tomography and used in nuclear medicine for diagnosing tumours. This study gives a suitable reaction to produce 68Ga. Gallium-68 excitation function via 68Zn(, ) 68Ga, 68Zn(, 2) 68Ga, 70Zn(, 3) 68Ga and 65Cu(, ) 68Ga reactions were calculated by ALICE-91 and TALYS-1.0 codes. The calculated excitation function of 68Zn(, ) 68Ga reaction was compared with the reported measurement and evaluations. Requisite thickness of the targets was obtained by SRIM code for each reaction. The 68Ga production yield was evaluated using excitation function and stopping power.

  16. Food Processing and Maillard Reaction Products: Effect on Human Health and Nutrition

    Directory of Open Access Journals (Sweden)

    Nahid Tamanna

    2015-01-01

    Full Text Available Maillard reaction produces flavour and aroma during cooking process; and it is used almost everywhere from the baking industry to our day to day life to make food tasty. It is often called nonenzymatic browning reaction since it takes place in the absence of enzyme. When foods are being processed or cooked at high temperature, chemical reaction between amino acids and reducing sugars leads to the formation of Maillard reaction products (MRPs. Depending on the way the food is being processed, both beneficial and toxic MRPs can be produced. Therefore, there is a need to understand the different types of MRPs and their positive or negative health effects. In this review we have summarized how food processing effects MRP formation in some of the very common foods.

  17. Acid-Catalyzed Transesterification Reaction of Beef Tallow For Biodiesel Production By Factor Variation

    Directory of Open Access Journals (Sweden)

    R.C. Ehiri

    2014-07-01

    Full Text Available Biodiesel is a diesel grade fuel made by transesterification reaction of vegetable oils and animal fats with alcohol. Three variable factors that affect the yield of biodiesel namely, reaction time, reaction temperature and catalyst concentration were studied in this work. The biodiesel was produced via a batchprocess acid-catalyzed transesterification reaction of beef tallow with methanol. Optimal conditions for the reaction were established in a three factor two-level (23 central composite design with the biodiesel pretreatment yield as the response surface. The results show that the mean yield of biodiesel was 92.04% with a standard deviation of 5.16. An optimal biodiesel yield of 96.30% occurred at 0.5% HCl catalyst concentration and at constant conditions of 1.5h reaction time, 60oC reaction temperature and 6:1 methanol: tallow volume ratio. Gas chromatographic analysis of the beef tallow identified palmitic, stearic and oleic acids in it while the fatty acid methyl esters in the biodiesel product were oleate and linoleate. Catalysis was the most significant factor in the transesterification process.

  18. Chemoselective reaction of cyanoacetic acid with benzal-4-acetylanilines and fungitoxicity of products

    Indian Academy of Sciences (India)

    Anjali Sidhu; J R Sharma; Mangat Rai

    2009-07-01

    Cyanoacetic acid reacted chemoselectively with carbon-nitrogen double bond of benzal-4-acetylaniliines, leaving the carbon-oxygen double bond, considered to be more reactive, intact, leading to the formation of mono addition-elimination products rather than bis attack at both the reactive centres, even when the reaction was carried out with two moles of cyanoacetic acid. The product viz. benzalcyanoacetic acid and its derivatives were screened for their fungitoxicity against five pathogenic fungi.

  19. Expected production of new exotic α emitters 108Xe and 112Ba in complete fusion reactions

    Science.gov (United States)

    Kalandarov, Sh. A.; Adamian, G. G.; Antonenko, N. V.; Wieleczko, J. P.

    2016-05-01

    The production cross sections of neutron-deficient isotopes Xe-110108 and Ba-114112 in the complete fusion reactions Ni,5658+54Fe and Ni,5658+58Ni with stable and radioactive beams are studied with the dinuclear system model. The calculated results are compared with the available experimental data. The optimal beam energies and corresponding maximum production cross sections of new isotopes 108Xe and 112Ba are predicted.

  20. Characterization of ionic liquid‐based biocatalytic two‐phase reaction system for production of biodiesel

    DEFF Research Database (Denmark)

    Prabhavathi Devi, Bethala Lakshmi Anu; Guo, Zheng; Xu, Xuebing

    2011-01-01

    The property of a variety of ionic liquids (ILs) as reaction media was evaluated for the production of biodiesel by enzymatic methanolysis of rapeseed oil. The IL Ammoeng 102, containing tetraaminum cation with C18 acyl and oligoethyleneglycol units, was found to be capable of forming oil....../IL biphasic reaction system by mixing with substrates, which is highly effective for the production of biodiesel with more than 98% biodiesel yield and nearly 100% conversion of oil. Conductor‐like screening model for real solvent (COSMO‐RS) in silico prediction of substrate solubility and simulation...... of partition coefficient change vs. reaction evolution indicated that the amphiphilic property of Ammoeng 102 might be responsible for creating efficient interaction of immiscible substrates; while big difference of partition coefficients of generated biodiesel and glycerol between the two phases suggests...

  1. Light Induced Degradation of Eight Commonly Used Pesticides Adsorbed on Atmospheric Particles: Kinetics and Product Study

    Science.gov (United States)

    Socorro, J.; Durand, A.; Gligorovski, S.; Wortham, H.; Quivet, E.

    2014-12-01

    Pesticides are widely used all over the world whether in agricultural production or in non-agricultural settings. They may pose a potential human health effects and environmental risks due to their physico-chemical properties and their extensive use which is growing every year. Pesticides are found in the atmosphere removed from the target area by volatilization or wind erosion, and carried over long distances. These compounds are partitioned between the gaseous and particulate atmospheric phases. The increasingly used pesticides are semi-volatile compounds which are usually adsorbed on the surface of the atmospheric particles. These pesticides may undergo chemical and photo-chemical transformation. New compounds may then be formed that could be more hazardous than the primary pesticides. The atmospheric fate and lifetime of adsorbed pesticides on particles are controlled by the these (photo)chemical processes. However, there is a lack of kinetic data regarding the pesticides in the particle phase. This current work focuses on the photolytic degradation of commonly used pesticides in particulate phase. It aims at estimating the photolytic rates and thus the lifetimes of pesticides adsorbed on silica particles as a proxy of atmospheric particles. The following eight commonly used pesticides, cyprodinil, deltamethrin, difenoconazole, fipronil, oxadiazon, pendimethalin, permethrin, tetraconazole, were chosen because of their physico-chemical properties. The photolysis rates of tetraconazole and permethrin were extremely slow ≤ 1.2 · 10-6 s-1. The photolysis rates for the other pesticides were determined in the range of: (5.9 ± 0.3) · 10-6 fipronil. Finally, the identification of the surface products upon light irradiation was performed, using GC-(QqQ)-MS/MS and LC-(Q-IMS-ToF)-MS/MS. The potentially formed gas-phase products during these photolysis processes were followed continuously and on-line by PTR-ToF-MS. We hope that the obtained results from this study

  2. Production of bio-fuels from cottonseed cake by catalytic pyrolysis under steam atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Puetuen, Ersan [Department of Material Science and Engineering, Anadolu University, Iki Eyluel Campus, 26555 Eskisehir (Turkey); Uzun, Basak Burcu; Puetuen, Ayse Eren [Department of Chemical Engineering, Anadolu University, Iki Eyluel Campus, 26555 Eskisehir (Turkey)

    2006-06-15

    The purpose of this study is to evaluate the amounts of catalytic pyrolysis products of cottonseed cake in steam atmosphere and investigate the effects of both zeolite and steam on pyrolysis yields. The effect of steam was investigated by co-feeding steam at various velocities (0.6:1.3:2.7cms{sup -1}) in the presence of zeolite (20wt% of feed). Liquid pyrolysis products obtained at the most appropriate conditions were fractionated by column chromatography. Elemental analysis and FT-IR were applied on both of these liquid products and their sub-fractions. The H/C ratios obtained from elemental analysis were compared with the petroleum products. The aliphatic sub-fractions of the oils were then analysed by capillary column gas chromatography. Further structural analysis of pyrolysis oil was conducted using {sup 1}H-NMR spectroscopy. The characterization has shown that the bio-oil obtained from catalytic and steam pyrolysis of cottonseed cake was more beneficial than those obtained from non-catalytic and catalytic works under static and nitrogen atmospheres. (author)

  3. Age-related accumulation of Maillard reaction products in human articular cartilage collagen

    NARCIS (Netherlands)

    Verzijl, N.; Groot, J. de; Oldehinkel, E.; Bank, R.A.; Thorpe, S.R.; Baynes, J.W.; Bayliss, M.T.; Bijlsma, J.W.J.; Lafeber, F.P.J.G.; TeKoppele, J.M.

    2000-01-01

    Non-enzymic modification of tissue proteins by reducing sugars, the so-called Maillard reaction, is a prominent feature of aging. In articular cartilage, relatively high levels of the advanced glycation end product (AGE) pentosidine accumulate with age. Higher pentosidine levels have been associated

  4. Detection and analysis of polymerase chain reaction products by mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, G.B., Doktycz, M.J., Britt, P.F., Vass, A.A., Buchanan, M.V.

    1997-02-01

    This paper describes recent and ongoing efforts to overcome some of the obstacles to more routine and robust application of MALDI-TOF to analysis of polymerase chain reaction products and other information- bearing nucleic acid molecules. Methods for purifying nucleic acid samples are described, as is the application of delayed extraction TOF mass spectrometry to analysis of short oligonucleotides.

  5. Bottom excitation contribution to dilepton production in ν, anti ν reactions

    International Nuclear Information System (INIS)

    Bottom production in ν and anti ν deep inelastic reactions is discussed within the framework of the standard model for quarks and leptons. Using the Kobayashi-Maskawa model it is found that dilepton events available at present can have a bottom contribution which can be as high as 10% (upper bound)

  6. Characterization of cement minerals, cements and their reaction products at the atomic and nano scale

    DEFF Research Database (Denmark)

    Skibsted, Jørgen; Hall, Christopher

    2008-01-01

    Recent advances and highlights in characterization methods are reviewed for cement minerals, cements and their reaction products. The emphasis is on X-ray and neutron diffraction, and on nuclear magnetic resonance methods, although X-ray absorption and Raman spectroscopies are discussed briefly...

  7. A new branch of advertising: reviewing factors that influence reactions to product placement

    NARCIS (Netherlands)

    E. van Reijmersdal; P. Neijens; E.G. Smit

    2009-01-01

    This iiterature review presents a quantitative synthesis of 57 studies on product placement and shows which factors are most effective, it shows that placement characteristics, such as placement commerciality, modality, and prominence, have a strong impact on audience reactions. Audience characteris

  8. Quantitative relationship between production and removal of OH and HO2 radicals in urban atmosphere

    Institute of Scientific and Technical Information of China (English)

    SHAO Min; REN Xinrong; WANG Huixiang; ZENG Limin; ZHANG Yuanhang; TANG Xiaoyan

    2004-01-01

    Atmospheric oxidizing capacity is the essential feature of urban and regional air. And OH and HO2 radicals are the key species indicating atmospheric oxidizing capacity. Using Guangzhou City as a case, this work has conducted field measurements of photochemistry relevant pollutants including O3, NOx, VOCs, H2O2, HNO2 and CO, SO2. The concentrations of OH radical are measured simultaneously by impregnated filter trapping and HPLC (IFT- HPLC) method. The factors influencing OH levels are assessed. Based on understanding of OH and HO2 air chemistry, the production and removal rates of these 2 radicals are calculated. The results show that the budget of OH and HO2 can generally be closed, the radical transformation between OH and HO2 dominates the sources and sinks of them, and also the photolysis of HNO2 and HCHO is the significant source of OH and HO2 respectively.

  9. Gas phase formation of extremely oxidized pinene reaction products in chamber and ambient air

    Directory of Open Access Journals (Sweden)

    M. Ehn

    2012-06-01

    Full Text Available High molecular weight (300–650 Da naturally charged negative ions have previously been observed at a boreal forest site in Hyytiälä, Finland. The long-term measurements conducted in this work showed that these ions are observed practically every night between spring and autumn in Hyytiälä. The ambient mass spectral patterns could be reproduced in striking detail during additional measurements of α-pinene (C10H16 oxidation at low-OH conditions in the Jülich Plant Atmosphere Chamber (JPAC. The ions were identified as clusters of the nitrate ion (NO3 and α-pinene oxidation products reaching oxygen to carbon ratios of 0.7–1.3, while retaining most of the initial ten carbon atoms. Attributing the ions to clusters instead of single molecules was based on additional observations of the same extremely oxidized organics in clusters with HSO4 (Hyytiälä and C3F5O2 (JPAC. The most abundant products in the ion spectra were identified as C10H14O7, C10H14O9, C10H16O9, and C10H14O11. The mechanism responsible for forming these molecules is still not clear, but the initial reaction is most likely ozone attack at the double bond, as the ions are mainly observed under dark conditions. β-pinene also formed highly oxidized products under the same conditions, but less efficiently, and mainly C9 compounds which were not observed in Hyytiälä, where β-pinene on average is 4–5 times less abundant than α-pinene. Further, to explain the high O/C together with the relatively high H/C, we propose that geminal diols and/or hydroperoxide groups may be important. We estimate that the night-time concentration of the sum of the neutral extremely oxidized products is on the order of 0.1–1 ppt (~10

  10. Gas phase formation of extremely oxidized pinene reaction products in chamber and ambient air

    Directory of Open Access Journals (Sweden)

    M. Ehn

    2012-02-01

    Full Text Available High molecular weight (300–650 Da naturally charged negative ions have previously been observed at a boreal forest site in Hyytiälä, Finland. The long-term measurements conducted in this work showed that these ions are observed practically every night during spring and summer in Hyytiälä. The ambient mass spectral patterns could be reproduced in striking detail during additional measurements of α-pinene (C10H16 oxidation at low-OH conditions in the Jülich Plant Atmosphere Chamber (JPAC. The ions were identified as clusters of the nitrate ion (NO3 and α-pinene oxidation products reaching oxygen to carbon ratios of 0.7–1.3, while retaining most of the initial ten carbon atoms. Attributing the ions to clusters instead of single molecules was based on additional observations of the same extremely oxidized organics in clusters with HSO4 (Hyytiälä and C3F5O2 (JPAC. The most abundant products in the ion spectra were identified as C105H14O7, C10H14O9, C10H16O9, and C10H14O11. The mechanism responsible for forming these molecules is still not clear, but the initial reaction is most likely ozone attack at the double bond, as the ions are mainly observed under dark conditions. β-pinene also formed highly oxidized products under the same conditions, but less efficiently, and mainly C9 compounds which were not observed in Hyytiälä, where β-pinene on average is 4–5 times less abundant than α-pinene. Further, to explain the high O/C together with the relatively high H/C, we propose that geminal diols and/or hydroperoxide groups may be important. We estimate that the night-time concentration of the sum of the neutral extremely oxidized products is on the order of 0.1–1 ppt (~10

  11. Atmospheric fates of organic chemicals: prediction of ozone and hydroxyl radical reaction rates and mechanisms. Final report, February 1982-February 1985

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, R.; Carter, W.P.L.; Aschmann, S.M.; Pitts, J.N.; Winer, A.M.

    1985-08-01

    During the three-year cooperative agreement, the kinetic, mechanistic and product data available in the literature for the gas phase reactions of OH radicals and of O3 with organic compounds were evaluated and critically reviewed. Two review articles, one on O3 reactions, the other on OH radical reactions, resulting from the work were submitted for publication to Chemical Reviews. The review dealing with O3 reactions was published in Chemical Reviews, 84, 437-470 (1984), and the OH reaction review was accepted for publication. In addition to these extensive reviews, an experimental program was carried out to obtain needed kinetic data for selected OH radical and O3 reactions. The data, and the experimental techniques used, are summarized in the report, together with a discussion of a-priori predictive techniques for the estimation of OH radical and O3 reaction rate constants for organics for which experimental data are not available.

  12. Atmospheric emissions and air quality impacts from natural gas production and use.

    Science.gov (United States)

    Allen, David T

    2014-01-01

    The US Energy Information Administration projects that hydraulic fracturing of shale formations will become a dominant source of domestic natural gas supply over the next several decades, transforming the energy landscape in the United States. However, the environmental impacts associated with fracking for shale gas have made it controversial. This review examines emissions and impacts of air pollutants associated with shale gas production and use. Emissions and impacts of greenhouse gases, photochemically active air pollutants, and toxic air pollutants are described. In addition to the direct atmospheric impacts of expanded natural gas production, indirect effects are also described. Widespread availability of shale gas can drive down natural gas prices, which, in turn, can impact the use patterns for natural gas. Natural gas production and use in electricity generation are used as a case study for examining these indirect consequences of expanded natural gas availability. PMID:24498952

  13. Influence of the corrosion products of copper on its atmospheric corrosion kinetics in tropical climate

    International Nuclear Information System (INIS)

    In the present paper, the identification of the corrosion product phases formed on copper under different atmospheres of Cuban tropical climate is reported. Cuprite (Cu2O), paratacamite (Cu2Cl(OH)3), posnjakite (Cu4SO4(OH)6 · 2H2O) and brochantite (Cu4SO4(OH)6) were the main phases identified by X-ray diffraction (XRD) analysis and Fourier transform infrared spectroscopy (FTIR). Copper corrosion products are known to have a protective effect against corrosion. However, a different behaviour was obtained under sheltered coastal conditions. This can be due to the corrosion products morphology and degree of crystallisation, rather than their phase composition. A higher time of wetness and the accumulation of pollutants not washed away from the metal surface can also play an important role

  14. Cosmic-ray induced production of radioactive noble gases in the atmosphere, ground, and seawater

    International Nuclear Information System (INIS)

    This paper describes the development of an MCNP6 model and a suite of supporting MATLAB scripts being developed to conduct detailed studies of the radioactive noble gas background activity concentrations resulting from cosmic-neutron-induced reactions in the Earth's atmosphere, in various geologies, and in seawater. Initial results generated using the MCNP6 model and the suite of supporting MATLAB scripts indicate that the cosmic-neutron-induced 133Xe background activity concentrations at a depth of 1 m in a geology representative of the Earth's upper crust and a depth of 5 m in seawater are about 3.48 × 10-1 and 8.49 × 10-7 mBq m-3, respectively. (author)

  15. Hydroxyl-radical production in physiological reactions. A novel function of peroxidase.

    Science.gov (United States)

    Chen, S X; Schopfer, P

    1999-03-01

    Peroxidases catalyze the dehydrogenation by hydrogen peroxide (H2O2) of various phenolic and endiolic substrates in a peroxidatic reaction cycle. In addition, these enzymes exhibit an oxidase activity mediating the reduction of O2 to superoxide (O2.-) and H2O2 by substrates such as NADH or dihydroxyfumarate. Here we show that horseradish peroxidase can also catalyze a third type of reaction that results in the production of hydroxyl radicals (.OH) from H2O2 in the presence of O2.-. We provide evidence that to mediate this reaction, the ferric form of horseradish peroxidase must be converted by O2.- into the perferryl form (Compound III), in which the haem iron can assume the ferrous state. It is concluded that the ferric/perferryl peroxidase couple constitutes an effective biochemical catalyst for the production of .OH from O2.- and H2O2 (iron-catalyzed Haber-Weiss reaction). This reaction can be measured either by the hydroxylation of benzoate or the degradation of deoxyribose. O2.- and H2O2 can be produced by the oxidase reaction of horseradish peroxidase in the presence of NADH. The .OH-producing activity of horseradish peroxidase can be inhibited by inactivators of haem iron or by various O2.- and .OH scavengers. On an equimolar Fe basis, horseradish peroxidase is 1-2 orders of magnitude more active than Fe-EDTA, an inorganic catalyst of the Haber-Weiss reaction. Particularly high .OH-producing activity was found in the alkaline horseradish peroxidase isoforms and in a ligninase-type fungal peroxidase, whereas lactoperoxidase and soybean peroxidase were less active, and myeloperoxidase was inactive. Operating in the .OH-producing mode, peroxidases may be responsible for numerous destructive and toxic effects of activated oxygen reported previously. PMID:10103001

  16. Near-threshold production of neutral π mesons in heavy-ion reactions

    International Nuclear Information System (INIS)

    Energy and angular distributions of neutral π mesons emitted in reactions of 35-MeV/u 14N + A1, Ni, and W have been measured by using beams from the MSU K = 500 cyclotron. The measurements continue a long tradition of subthreshold (in the nucleon-nucleon sense) production of π mesons, extending back to the first artificial production by Gardner and Lattes using 75-MeV/u α-particle beams from the UCRL 184'' synchrocyclotron. Comparisons are made with theory, ascribing the present production to mechanisms of varying degree of collectivity, and some suggestions are made concerning future experimental work. 34 references

  17. Characterization of corrosion products formed on steels in the first months of atmospheric exposure

    Directory of Open Access Journals (Sweden)

    Renato Altobelli Antunes

    2003-06-01

    Full Text Available The corrosion products of carbon steel and weathering steel exposed to three different types of atmospheres, at times ranging from one to three months, have been identified. The steels were exposed in an industrial site, an urban site (São Paulo City, Brazil, and a humid site. The effect of the steel type on the corrosion products formed in the early stages of atmospheric corrosion has been evaluated. The corrosion products formed at the various exposure locations were characterized by Raman microscopy, X-Ray diffraction (XRD and their morphology was observed by Scanning Electron Microscopy (SEM. Three regions of different colours (yellow, black and red have been identified over the steel coupons by Raman microscopy. Analysis carried out on each of these areas led to the characterization of the correspondent oxide/hydroxide phases. The main phases present were lepidocrocite (g-FeOOH and goethite (a-FeOOH. Small amounts of magnetite (Fe3O4 were also eventually encountered.

  18. Ozone deposition velocities, reaction probabilities and product yields for green building materials

    Science.gov (United States)

    Lamble, S. P.; Corsi, R. L.; Morrison, G. C.

    2011-12-01

    Indoor surfaces can passively remove ozone that enters buildings, reducing occupant exposure without an energy penalty. However, reactions between ozone and building surfaces can generate and release aerosols and irritating and carcinogenic gases. To identify desirable indoor surfaces the deposition velocity, reaction probability and carbonyl product yields of building materials considered green (listed, recycled, sustainable, etc.) were quantified. Nineteen separate floor, wall or ceiling materials were tested in a 10 L, flow-through laboratory reaction chamber. Inlet ozone concentrations were maintained between 150 and 200 ppb (generally much lower in chamber air), relative humidity at 50%, temperature at 25 °C and exposure occurred over 24 h. Deposition velocities ranged from 0.25 m h -1 for a linoleum style flooring up to 8.2 m h -1 for a clay based paint; reaction probabilities ranged from 8.8 × 10 -7 to 6.9 × 10 -5 respectively. For all materials, product yields of C 1 thru C 12 saturated n-aldehydes, plus acetone ranged from undetectable to greater than 0.70 The most promising material was a clay wall plaster which exhibited a high deposition velocity (5.0 m h -1) and a low product yield (

  19. Theoretical investigation of the hydrogen shift reactions in peroxy radicals derived from the atmospheric decomposition of 3-methyl-3-buten-1-ol (MBO331)

    DEFF Research Database (Denmark)

    Knap, Hasse Christian; Jørgensen, Solvejg; Kjærgaard, Henrik Grum

    2015-01-01

    The hydroxy peroxy radical derived from the oxidation of 3-methyl-3-buten-1-ol (MBO331), can undergo four different hydrogen shift (H-shift) reactions. We have compared optimized geometries, barrier heights and reaction rate constants obtained with five different DFT functionals (BLYP, B3LYP, BHand......HLYP, wB97X-D and M06-2X) with the aug-cc-pVTZ basis set. We found that the single-point CCSD(T)-F12A/VDZ-F12 energies calculated at the different DFT geometries had very similar barrier heights. The wB97X-D, M06-2X and CCSD(T)-F12A/VDZ-F12 barrier heights are comparable. The atmospheric decomposition of...... the MBO331 peroxy radical was found to undergo a 1,5-CH H-shift reaction with a reaction rate constant of about 1 s-1....

  20. Transfer products from the reactions of heavy ions with heavy nuclei

    International Nuclear Information System (INIS)

    Production of nuclides heavier than the target from 86Kr- and 136Xe-induced reactions with 181Ta and 238U was investigated. Attempts were made to produce new neutron-excess Np and Pu isotopes by the deep inelastic mechanism. No evidence was found for 242Np or 247Pu. Estimates were made for the production of 242Np, 247Pu, and 248Am from heavy-ion reactions with uranium targets. Comparisons of reactions of 86Kr and 136Xe ions with thick 181Ta targets and 86Kr, 136Xe and 238U ions with thick 238U targets indicate that the most probable products are not dependent on the projectile. The most probable products can be predicted by the equation Z - Z/sub target/ = 0.43 (A - A/sub target/) + 1.0. The major effect of the projectile is the magnitude of the production cross section of the heavy products. Based on these results, estimates are made of the most probable mass of element 114 produced from heavy-ion reactions with 248Cm and 254Es targets. These estimates give the mass number of element 114 as approx. 287 if produced in heavy-ion reactions with these very heavy targets. Excitation functions of gold and bismuth isotopes arising from 86Kr- and 136Xe-induced reactions with thin 181Ta targets were measured. These results indicate that the shape and location (in Z and A above the target) of the isotopic distributions are not strongly dependent on the projectile incident energy. Also, the nuclidic cross sections are found to increase with an increase in projectile energy to a maximum at approximately 1.4 to 1.5 times the Coulomb barrier. Above this maximum, the nuclidic cross sections are found to decrease with an increase in projectile energy. This decrease in cross section is believed to be due to fission of the heavy products caused by high excitation energy and angular momentum. 111 references, 39 figures, 34 tables

  1. Independent Verification of Element 114 Production in the 48Ca+242Pu Reaction

    International Nuclear Information System (INIS)

    Independent verification of the production of element 114 in the reaction of 244-MeV 48Ca with 242Pu is presented. Two chains of time- and position-correlated decays have been assigned to 286114 and 287114. The observed decay modes, half-lives, and decay energies agree with published results. The measured cross sections at a center-of-target energy of 244 MeV for the 242Pu(48Ca,3-4n)287,286114 reactions were 1.4-1.2+3.2 pb each, which are lower than the reported values.

  2. Transformation products and reaction kinetics of fragrances in advanced wastewater treatment with ozone

    DEFF Research Database (Denmark)

    Janzen, Niklas; Dopp, Elke; Hesse, Julia;

    2011-01-01

    The reaction of the fragrance compounds 4,6,6,7,8,8-hexamethyl-1,3,4,7-tetrahydrocyclopenta[g]isochromene (HHCB), 1-(3,5,5,6,8,8-hexamethyl-6,7-dihydronaphthalen-2-yl)ethanone (AHTN), 1-tert-butyl-3,5- dimethyl-2,4,6-trinitrobenzene (musk xylene/MX), 1-(4-tert-butyl-2,6-dimethyl-3,5-dinitrophenyl...... transformation products. The reaction constants and half lives are used to predict removal efficiencies for full scale reactors....

  3. Intense secondary aerosol formation due to strong atmospheric photochemical reactions in summer: observations at a rural site in eastern Yangtze River Delta of China.

    Science.gov (United States)

    Wang, Dongfang; Zhou, Bin; Fu, Qingyan; Zhao, Qianbiao; Zhang, Qi; Chen, Jianmin; Yang, Xin; Duan, Yusen; Li, Juan

    2016-11-15

    High pollution episodes of PM2.5 and O3 were frequently observed at a rural site (N31.0935º, E120.978°) in eastern Yangtze River Delta (YRD) in summer. To study the impacts of photochemical reactions on secondary aerosol formation in this region, we performed real-time measurements of the mass concentration and composition of PM2.5, particle size distribution (13.6~736.5 nm), concentrations of gas pollutants including O3, SO2, NO2, CO, non-methane hydrocarbons (NMHC)), and nitrate radical in 2013. During the sampling period, the average concentration of PM2.5 was 76.1 (± 16.5) μg/m(3), in which secondary aerosol species including sulfate, nitrate, ammonium, and secondary organic aerosol (SOA) accounted for ~ 62%. Gas-phase oxidation of SO2 was mainly responsible for a fast increase of sulfate (at 1.70 μg/m(3)/h) in the morning. Photochemical production of nitric acid was intense during daytime, but particulate nitrate concentration was low in the afternoon due to high temperature. At night, nitrate was mainly formed through the hydrolysis of NO3 and/or N2O5. The correlations among NMHC, Ox (= O3 + NO2), and SOA suggested that a combination of high emission of hydrocarbons and active photochemical reactions led to the rapid formation of SOA. In addition, several new particle formation and fast growth events were observed despite high ambient aerosol loading. Since the onset of new particle events was accompanied by a rapid increase of H2SO4 and SOA, enhanced formation of sulfate and SOA driven by photochemical oxidation likely promoted the formation and growth of new particles. Together, our results demonstrated that strong atmospheric photochemical reactions enhanced secondary aerosols formation and led to the synchronous occurrence of high concentrations of PM2.5 and O3 in a regional scale. These findings are important for better understanding the air pollution in summer in YRD. PMID:27418517

  4. An Investigation of the Complexity of Maillard Reaction Product Profiles from the Thermal Reaction of Amino Acids with Sucrose Using High Resolution Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Agnieszka Golon

    2014-08-01

    Full Text Available Thermal treatment of food changes its chemical composition drastically with the formation of “so-called” Maillard reaction products, being responsible for the sensory properties of food, along with detrimental and beneficial health effects. In this contribution, we will describe the reactivity of several amino acids, including arginine, lysine, aspartic acid, tyrosine, serine and cysteine, with carbohydrates. The analytical strategy employed involves high and ultra-high resolution mass spectrometry followed by chemometric-type data analysis. The different reactivity of amino acids towards carbohydrates has been observed with cysteine and serine, resulting in complex MS spectra with thousands of detectable reaction products. Several compounds have been tentatively identified, including caramelization reaction products, adducts of amino acids with carbohydrates, their dehydration and hydration products, disproportionation products and aromatic compounds based on molecular formula considerations.

  5. Carbon Nanostructures Production by AC Arc Discharge Plasma Process at Atmospheric Pressure

    OpenAIRE

    Shenqiang Zhao; Ruoyu Hong; Zhi Luo; Haifeng Lu; Biao Yan

    2011-01-01

    Carbon nanostructures have received much attention for a wide range of applications. In this paper, we produced carbon nanostructures by decomposition of benzene using AC arc discharge plasma process at atmospheric pressure. Discharge was carried out at a voltage of 380 V, with a current of 6 A–20 A. The products were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (XRD), and Raman spectra. The results sho...

  6. Hydrogen production by radio frequency plasma stimulation in methane hydrate at atmospheric pressure

    OpenAIRE

    Putra, Andi Erwin Eka

    2013-01-01

    Methane hydrate, formed by injecting methane into 100 g of shaved ice at a pressure of 7 MPa and reactor temperature of 0 ??C, was decomposed by applying 27.12 MHz radio frequency plasma in order to produce hydrogen. The process involved the stimulation of plasma in the methane hydrate with a variable input power at atmospheric pressure. It was observed that production of CH4 is optimal at a slow rate of CH4 release from the methane hydrate, as analyzed by in light of the steam...

  7. Relative rate coefficient measurements of OH radical reactions with (Z)-2-hexen-1-ol and (E)-3-hexen-1-ol under simulated atmospheric conditions

    Science.gov (United States)

    Peirone, Silvina A.; Barrera, Javier A.; Taccone, Raúl A.; Cometto, Pablo M.; Lane, Silvia I.

    2014-03-01

    The relative rate technique was used to determine the rate coefficients of the reactions of OH radicals with (Z)-2-hexen-1-ol (k1), and (E)-3-hexen-1-ol (k2), at (296 ± 2) K and (750 ± 10) Torr of N2 or pure air. The reactions were investigated using a 200 L Teflon reaction chamber and a gas chromatograph coupled with flame-ionization detection. The following rate coefficients were derived, in units of cm3 mol-1 s-1: k1 = (1.1 ± 0.4) × 10-10 and k2 = (0.8 ± 0.1) × 10-10. This is the first experimental determination of k1 and k2. A comparison between the experimental rate coefficients (kexp) and the calculated rate coefficients using the structure-activity relationship (SAR) method (kSAR), for the reaction of different unsaturated alcohols with OH radicals is presented. The atmospheric lifetimes of the studied alcohols were estimated considering the rate coefficients of their reactions with OH and NO3 radicals. The radiative efficiencies (REs) were obtained from the infrared spectra of the two hexenols and the global warming potentials (GWPs) were then estimated. Atmospheric implications of the alcohols emission are briefly discussed.

  8. Atmospheric chemistry of CH3CHF2 (R-152a): mechanism of the CH3CF2O2+HO2 reaction

    DEFF Research Database (Denmark)

    Hashikawa, Y; Kawasaki, M; Andersen, Mads Peter Sulbæk;

    2004-01-01

    FTIR smog chamber techniques have been used to investigate the mechanism of the reaction of CH3CF2O2 with HO2 radicals in 100-700 Torr of synthetic air at 296 K. The reaction gives CH3CF2OOH and COF2 in molar yields of 0.53 +/- 0.05 and 0.47 +/- 0.05, respectively. Results are discussed with...... respect to the atmospheric chemistry of peroxy radicals and the environmental impact of R-152a. (C) 2004 Elsevier B.V. All rights reserved....

  9. One-Pot Synthesis of N-(α-Peroxy)Indole/Carbazole via Chemoselective Three-Component Condensation Reaction in Open Atmosphere

    KAUST Repository

    Wang, Xinbo

    2015-11-06

    A facile one-pot synthesis of N-(α-peroxy)indole and N-(α-peroxy)carbazole has been developed using metal-free, organo-acid-catalyzed three-component condensation reactions of indole/carbazole, aldehyde, and peroxide. Based on the reaction discovered, a new synthetic proposal for Fumitremorgin A and Verruculogen is introduced. Such a protocol could be easily handled and scaled up in an open atmosphere with a wide substrate scope, enabling the construction of a new molecule library.

  10. Monitoring variations of dimethyl sulfide and dimethylsulfoniopropionate in seawater and the atmosphere based on sequential vapor generation and ion molecule reaction mass spectrometry.

    Science.gov (United States)

    Iyadomi, Satoshi; Ezoe, Kentaro; Ohira, Shin-Ichi; Toda, Kei

    2016-04-20

    To monitor the fluctuations of dimethyl sulfur compounds at the seawater/atmosphere interface, an automated system was developed based on sequential injection analysis coupled with vapor generation-ion molecule reaction mass spectrometry (SIA-VG-IMRMS). Using this analytical system, dissolved dimethyl sulfide (DMSaq) and dimethylsulfoniopropionate (DMSP), a precursor to DMS in seawater, were monitored together sequentially with atmospheric dimethyl sulfide (DMSg). A shift from the equilibrium point between DMSaq and DMSg results in the emission of DMS to the atmosphere. Atmospheric DMS emitted from seawater plays an important role as a source of cloud condensation nuclei, which influences the oceanic climate. Water samples were taken periodically and dissolved DMSaq was vaporized for analysis by IMRMS. After that, DMSP was hydrolyzed to DMS and acrylic acid, and analyzed in the same manner as DMSaq. The vaporization behavior and hydrolysis of DMSP to DMS were investigated to optimize these conditions. Frequent (every 30 min) determination of the three components, DMSaq/DMSP (nanomolar) and DMSg (ppbv), was carried out by SIA-VG-IMRMS. Field analysis of the dimethyl sulfur compounds was undertaken at a coastal station, which succeeded in showing detailed variations of the compounds in a natural setting. Observed concentrations of the dimethyl sulfur compounds both in the atmosphere and seawater largely changed with time and similar variations were repeatedly observed over several days, suggesting diurnal variations in the DMS flux at the seawater/atmosphere interface. PMID:27046734

  11. Heterogeneous and Photochemical Reactions Involving Surface Adsorbed Organics: Common Lignin Pyrolysis Products With Nitrogen Dioxide.

    Science.gov (United States)

    Hinrichs, R. Z.; Nichols, B. R.; Rapa, C.; Costa, V.

    2009-05-01

    Solid-air interfaces, such as airborne particulate matter and ground level surfaces, provide unique supports for tropospheric heterogeneous chemistry. These interfaces commonly contain surface adsorbed organics, such as lignin pyrolysis products, that can significantly alter their physical and chemical properties. Attenuated total reflectance infrared spectroscopy (ATR-FTIR) provides an ideal tool for monitoring chemical changes in thin organic films during heterogeneous and photochemical reactions. Phenolic compounds, with and without co- adsorbed photosensitizers, were exposed to NO2 concentrations in the parts-per-billion range at 300 K and 20% relative humidity. Catechol, when mixed with benzophenone or dicyclohexylketone, formed 4- nitrocatechol as the dominant product under dark conditions. Deuterating the catechol alcohol groups caused the initial rate of reaction to decrease by a factor of 3.3±0.5, consistent with formation of the ortho- semiquinone radical as the rate determining step. The rate of 4-nitrocatechol formation did not increase under illuminated conditions, even with the presence of benzophenone a well known photosensitizer. UV-A/visible radiation did, however, initiate a photochemical reaction between benzophenone and 4-nitrocatechol, likely forming high molecular weight polymerization products. In contrast, 2-ethoxyphenol displayed no reactivity with NO2, even under illuminated conditions with a photosensitizer. Implications for the fate of lignin pyrolysis products, which are prevalent in biomass combustion smoke, will be discussed.

  12. Reactions of the OOH radical with guanine: Mechanisms of formation of 8-oxoguanine and other products

    Science.gov (United States)

    Kumar, Nagendra; Shukla, P. K.; Mishra, P. C.

    2010-09-01

    The mutagenic product 8-oxoguanine (8-oxoGua) is formed due to intermediacy of peroxyl (OOR) radicals in lipid peroxidation and protein oxidation-induced DNA damage. The mechanisms of these reactions are not yet understood properly. Therefore, in the present study, the mechanisms of formation of 8-oxoGua and other related products due to the reaction of the guanine base of DNA with the hydroperoxyl radical (OOH) were investigated theoretically employing the B3LYP and BHandHLYP hybrid functionals of density functional theory and the polarizable continuum model for solvation. It is found that the reaction of the OOH radical with guanine can occur following seven different mechanisms leading to the formation of various products including 8-oxoGua, its radicals, 5-hydroxy-8-oxoguanine and CO 2. The mechanism that yields 8-oxoGua as an intermediate and 5-hydroxy-8-oxoGua as the final product was found to be energetically most favorable.

  13. Study of Ozone-Initiated Limonene Reaction Products by Low Temperature Plasma Ionization Mass Spectrometry

    Science.gov (United States)

    Nørgaard, Asger W.; Vibenholt, Anni; Benassi, Mario; Clausen, Per Axel; Wolkoff, Peder

    2013-07-01

    Limonene and its ozone-initiated reaction products were investigated in situ by low temperature plasma (LTP) ionization quadrupole time-of-flight (QTOF) mass spectrometry. Helium was used as discharge gas and the protruding plasma generated ~850 ppb ozone in front of the glass tube by reaction with the ambient oxygen. Limonene applied to filter paper was placed in front of the LTP afterglow and the MS inlet. Instantly, a wide range of reaction products appeared, ranging from m/ z 139 to ca. 1000 in the positive mode and m/ z 115 to ca. 600 in the negative mode. Key monomeric oxidation products including levulinic acid, 4-acetyl-1-methylcyclohexene, limonene oxide, 3-isopropenyl-6-oxo-heptanal, and the secondary ozonide of limonene could be identified by collision-induced dissociation. Oligomeric products ranged from the nonoxidized dimer of limonene (C20H30) and up to the hexamer with 10 oxygen atoms (C60H90O10). The use of LTP for in situ ozonolysis and ionization represents a new and versatile approach for the assessment of ozone-initiated terpene chemistry.

  14. Hexagonal boron nitride thin film thermal neutron detectors with high energy resolution of the reaction products

    International Nuclear Information System (INIS)

    Hexagonal boron nitride (h-BN) is highly promising for solid-state thermal neutron detector applications due to its many outstanding physical properties, especially its very large thermal neutron capture cross-section (~3840 barns for 10B), which is several orders of magnitude larger than those of most other isotopes. The focus of the present work is to carry out studies on h-BN thin film and detector properties to lay the foundation for the development of a direct-conversion solid-state thermal neutron detector with high sensitivity. The measured carrier mobility-lifetime (μτ) product of h-BN thin films grown on sapphire substrates is 2.83×10−7 cm2/V for electrons and holes, which is comparable to the value of about 10−7 cm2/V for GaN thin films grown on sapphire. Detectors based on h-BN thin films were fabricated and the nuclear reaction product pulse height spectra were measured. Under a bias of 20 V, very narrow individual peaks corresponding to the reaction product energies of α and Li particles as well as the sum peaks have been clearly resolved in the pulse height spectrum for the first time by a B-based direct-conversion semiconductor neutron detector. Our results indicate that h-BN thin film detectors possess unique advantages including small size, low weight, portability, low voltage operation and high energy resolution of specific reaction products

  15. Hexagonal boron nitride thin film thermal neutron detectors with high energy resolution of the reaction products

    Science.gov (United States)

    Doan, T. C.; Majety, S.; Grenadier, S.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2015-05-01

    Hexagonal boron nitride (h-BN) is highly promising for solid-state thermal neutron detector applications due to its many outstanding physical properties, especially its very large thermal neutron capture cross-section (~3840 barns for 10B), which is several orders of magnitude larger than those of most other isotopes. The focus of the present work is to carry out studies on h-BN thin film and detector properties to lay the foundation for the development of a direct-conversion solid-state thermal neutron detector with high sensitivity. The measured carrier mobility-lifetime (μτ) product of h-BN thin films grown on sapphire substrates is 2.83×10-7 cm2/V for electrons and holes, which is comparable to the value of about 10-7 cm2/V for GaN thin films grown on sapphire. Detectors based on h-BN thin films were fabricated and the nuclear reaction product pulse height spectra were measured. Under a bias of 20 V, very narrow individual peaks corresponding to the reaction product energies of α and Li particles as well as the sum peaks have been clearly resolved in the pulse height spectrum for the first time by a B-based direct-conversion semiconductor neutron detector. Our results indicate that h-BN thin film detectors possess unique advantages including small size, low weight, portability, low voltage operation and high energy resolution of specific reaction products.

  16. Markers of heterogeneous reaction products in α-pinene ozone secondary organic aerosol

    Science.gov (United States)

    Czoschke, Nadine M.; Jang, Myoseon

    A gas chromatograph iontrap mass spectrometer (GC-ITMS) was used to analyze the gas-and particle-phase products of α-pinene ozone oxidation in the presence of three different inorganic seed aerosols: sodium chloride, ammonium sulfate only, and ammonium sulfate with sulfuric acid. Products of α-pinene ozone oxidation common to the literature showed little difference in gas or particle-phase concentrations between seed types within the precision of the measurements even though significantly different aerosol yields were found between seed types. Small amounts of ring-opening products of four-membered cyclic oxygenates and markers of aldol condensation products were tentatively identified in the particle-phase for all seed types. These tentatively identified products are thought to be the result of acid-catalyzed heterogeneous reactions in the particle-phase or during sampling processes or analysis. The mechanisms for their formation are also proposed in this study.

  17. Estimating European historical production, consumption and atmospheric emissions of decabromodiphenyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Earnshaw, Mark R., E-mail: m.earnshaw2@lancaster.ac.uk; Jones, Kevin C., E-mail: k.c.jones@lancaster.ac.uk; Sweetman, Andy J., E-mail: a.sweetman@lancaster.ac.uk

    2013-03-01

    A European scale production, consumption and environmental emissions inventory is produced for decabromodiphenyl ether (DecaBDE) for the period 1970–2020. A dynamic substance flow analysis model of DecaBDE is developed and emission of the main congener, BDE-209, to environmental compartments is estimated. From 1970 to 2010, it is estimated that a total of 185,000–250,000 tonnes of DecaBDE was consumed in Europe. Consumption peaked in the late 1990s at approximately 9000 tonnes/year and has declined by ∼ 30% in 2010. Predicted BDE-209 atmospheric emissions peak in 2004 at 10 tonnes/year. The waste management phase of the BDE-209 life cycle is responsible for the majority of atmospheric emissions via volatilisation and particle bound emissions from landfills, whilst leakage from Sewerage systems is the major source of emissions to the hydrosphere. Use of sewage sludge from wastewater treatment works as an agricultural fertiliser is the most important pathway of BDE-209 to soil. Although DecaBDE consumption has declined in recent years, the stock in use for 2010 remains considerable (60,000 tonnes) and is likely to act as a source of atmospheric emissions for several decades. Uncertainties exist in these estimations and more field or experimental data is needed to clarify the significance of certain emission pathways, in particular, emissions from landfill sites. - Highlights: ► Total DecaBDE consumption in Europe for the period 1970–2010 is estimated to be between 185,000 and 250,000 tonnes. ► European atmospheric emissions of BDE-209 is predicted to peak in 2004 at 10 tonnes/year. ► The waste management phase is responsible for the majority of BDE-209 environmental emissions. ► The volume of BDE-209 present in the anthroposphere is declining and is predicted to fall to negligible levels by 2030.

  18. Product lambda-doublet ratios for the O(3P) + D2 reaction: A mechanistic imprint

    CERN Document Server

    Jambrina, P G; Aldegunde, J; Brouard, M; Aoiz, F J

    2016-01-01

    In the last decade, the development of theoretical methods have allowed chemists to reproduce and explain almost all of the experimental data associated with elementary atom plus diatom collisions. However, there are still a few examples where theory cannot account yet for experimental results. This is the case for the preferential population of one of the $\\Lambda$-doublet states produced by chemical reactions. In particular, recent measurements of the OD($^2\\Pi$) product of the O($^3$P) + D$_2$ reaction have shown a clear preference for the $\\Pi(A')$ $\\Lambda$-doublet states, in apparent contradiction with {\\em ab initio} calculations, which predict a larger reactivity on the $A"$ potential energy surface. Here we present a method to calculate the $\\Lambda$-doublet ratio when concurrent potential energy surfaces participate in the reaction. It accounts for the experimental $\\Lambda$-doublet populations via explicit consideration of the stereodynamics of the process. Furthermore, our results demonstrate that...

  19. Strangeness Production in Au+Au Reactions at √ {SNN} = 62.4\\ GeV

    Science.gov (United States)

    Arsene, Ionut-Cristian

    The measurement of strangeness is a valuable tool for understanding the reaction mechanism of nuclear collisions since all the strange particles need to be created during the reaction. Also, strangeness enhancement is one of the predicted signals of the QGP. In the present work we will discuss the behaviour of the strangeness production (i.e. K/π ratio) with rapidity and baryo-chemical potential in Au+Au collisions at 62.4 A GeV. In this particular reaction, BRAHMS is able to identify particles over 3.5 rapidity units and thereby cover a wide range of bar {p}/p ratios, including the fragmentation region. We will show spectra and ratios of identified particles as a function of pT and rapidity.

  20. Production of organic nitrates from hydroxyl and nitrate radical reaction with propylene

    Energy Technology Data Exchange (ETDEWEB)

    Shepson, P.B.; Edney, E.O.; Kleindienst, T.E.; Pittman, J.H.; Namie, G.R.; Cupitt, L.T.

    1985-09-01

    Measurements of the gas-phase production rates of ..cap alpha..-(nitrooxy)acetone, propylene glycol dinitrate (PGDN), 2-hydroxypropyl nitrate (2-HPN), and 2-nitrooxy)propyl alcohol (2-NPA) in a C/sub 3/H/sub 6//N/sub 2/O/sup 5//air dark reaction and a C/sub 3/H/sub 6//NO/sub x/ air irradiation are reported. The probable operative reaction mechanisms are discussed, and the branching ratios for peroxy radical reaction with NO via RO/sub 2/ + NO ..-->.. RONO/sub 2/ vs. RO/sub 2/ + NO ..-->.. RO + NO/sub 2/ are estimated for CH/sub 3/CH(OO)CH/sub 2/OH and CH/sub 3/CH(OH)C-H/sub 2/OO radicals.

  1. Enhancement of atmospheric H2SO4/H2O nucleation: organic oxidation products versus amines

    Directory of Open Access Journals (Sweden)

    T. Berndt

    2013-06-01

    Full Text Available Atmospheric H2SO4/H2O nucleation influencing effects have been studied in the flow tube IfT-LFT (Institute for Tropospheric Research – Laminar Flow Tube at 293 ± 0.5 K and a pressure of 1 bar using synthetic air as the carrier gas. The presence of a possible background amine concentration in the order of 107–108 molecule cm−3 throughout the experiments has to be taken into account. In a first set of investigations, ozonolysis of olefins (tetramethylethylene, 1-methyl-cyclohexene, α-pinene and limonene for close to atmospheric concentrations, served as the source of OH radicals and possibly other oxidants initiating H2SO4 formation starting from SO2. The oxidant generation is inevitably associated with the formation of a series of organic oxidation products arising from the parent olefins. These products (first generation mainly showed no clear effect on the number of nucleated particles within a wide range of experimental conditions for H2SO4 concentrations higher than ~107 molecule cm−3. A comparison of the results of two different particle counters (50% cut-off size: about 1.5 nm or 2.5–3 nm suggested that the early growth process of the nucleated particles was not significantly influenced by the organic oxidation products. An additional, H2SO4-independent process of particle (nano-CN formation was observed in the case of α-pinene and limonene ozonolysis for H2SO4 concentrations smaller than ~10 7 molecule cm−3. Furthermore, the findings confirm the existence of an additional oxidant for SO2 beside OH radicals, very likely stabilized Criegee Intermediate (sCI. In the case of the ozonolysis of tetramethylethylene, the H2SO4 measurements in the absence and presence of an OH radical scavenger were well described by modelling using recently obtained kinetic data for the sCI reactivity in this system. A second set of experiments has been performed in the presence of added amines (trimethylamine, dimethylamine, aniline and pyridine in

  2. Characterizations of self-combustion reactions (SCR) for the production of nanomaterials used as advanced cathodes in Li-ion batteries

    International Nuclear Information System (INIS)

    In this work, self-combustion reactions (SCR) for the preparation of important cathode materials for rechargeable Li-ion batteries were investigated by thermal analytical tools (DSC, ARC, TGA), electron microscopy, XRD, various spectroscopies (MS, Raman, FTIR) and elemental analysis by ICP. The systems studied include solutions containing metal nitrates at the right stoichiometry and sucrose as a fuel, for the preparation of LiMn0.5Ni0.5O2 (layered), LiMn1.5Ni0.5O4 (spinel), LiMn0.33Ni0.33Co0.33O2 (layered), and LiMn0.4Ni0.4Co0.2O2 (layered). Similar products, which do not depend on the atmosphere of the processes (air or inert) were obtained by spontaneous SCR and the gradual heating of the same solutions by DSC, ARC, and TGA. The reactions involve the partial caramelization of sucrose, complicated by red-ox reactions with the nitrates that form solid products, whose organic part is finally decomposed around 400 oC. The presence of cobalt ions has a stabilizing effect, which is expressed by the low dissolution rates of Li ions from the solid products thus formed, into aqueous solutions. The reaction mechanisms are discussed herein.

  3. Importance of Photobacterium phosphoreum in relation to spoilage of modified atmosphere-packed fish products

    DEFF Research Database (Denmark)

    Dalgaard, Paw; Mejlholm, Ole; Christiansen, T.J.;

    1997-01-01

    for detection of psychrotolerant and heat-labile micro-organisms like P. phosphoreum. These methods have been used in many previous studies of MAP fish and this could explain why, contrary to the findings in the present study, P. phosphoreum in general was not detected previously in spoiled MAP fish.......Occurrence and growth of Photobacterium phosphoreum were studied in 20 experiments with fresh fish from Denmark, Iceland and Greece. The organism was detected in all marine fish species but not in fish from fresh water. Growth of P. phosphoreum to high levels (>10(7) cfu g(-1)) was observed in most...... products and the organism is likely to be of importance for spoilage of several modified atmosphere-packed (MAP) marine fish species when stored at chill temperatures. Some microbiological methods recommended for control of fish products by national and international authorities are inappropriate...

  4. Relative importance of nitrate and sulfate aerosol production mechanisms in urban atmospheres

    International Nuclear Information System (INIS)

    The relative importance of the various sulfate and nitrate aerosol production mechanisms is calculated for different atmospheric conditions. The calculation scheme used to determine the rates of nitrate and sulfate production, based on the concept that vapor transfer to the aerosols and nitrate and sulfate formation within the aerosols are coupled kinetic processes, considers sulfate formation by ozone and hydrogen peroxide oxidation and catalytic oxidation in the presence of soot, iron and manganese of sulfite solutions and sulfuric acid condensation and nitrate formation by the liquid-phase oxidation of dissolved nitrogen oxides for different initial gas concentrations and particle compositions and sizes. It is found that sulfate production is higher under daytime conditions, primarily proceeding by mechanisms involving sulfuric acid and hydrogen peroxide, while at night oxidation processes on the surface of the aerosol film are more important. Nitrate tends to decrease nighttime sulfate production due to an increase in aerosol acidity and nitrate production is found to be higher under nighttime conditions and in the winter

  5. Reaction Rates Uncertainties and the Production of F19 in AGB Stars

    CERN Document Server

    Lugaro, M; Karakas, A I; Görres, J; Wiescher, M; Lattanzio, J C; Cannon, R C; Lugaro, Maria; Ugalde, Claudio; Karakas, Amanda I.; Gorres, Joachim; Wiescher, Michael; Lattanzio, John C.; Cannon, Robert C.

    2004-01-01

    We present nucleosynthesis calculations and the resulting 19F stellar yields for a large set of models with different masses and metallicity. We find that the production of fluorine depends on the temperature of the convective pulses, the amount of primary 12C mixed into the envelope by third dredge up and the extent of the partial mixing zone. Then we perform a detailed analysis of the reaction rates involved in the production of 19F and the effects of their uncertainties. We find that the major uncertainties are associated with the 14C(alpha,gamma)18O and the 19F(alpha,p)22Ne reaction rates. For these two reactions we present new estimates of the rates and their uncertainties. The importance of the partial mixing zone is reduced when using our estimate for the 14C(alpha,gamma)18O rate. Taking into account both the uncertainties related to the partial mixing zone and those related to nuclear reactions, the highest values of 19F enhancements observed in AGB stars are not matched by the models. This is a probl...

  6. Hydroxyl radical reactions with adenine: reactant complexes, transition states, and product complexes.

    Science.gov (United States)

    Cheng, Qianyi; Gu, Jiande; Compaan, Katherine R; Schaefer, Henry F

    2010-10-18

    In order to address problems such as aging, cell death, and cancer, it is important to understand the mechanisms behind reactions causing DNA damage. One specific reaction implicated in DNA oxidative damage is hydroxyl free-radical attack on adenine (A) and other nucleic acid bases. The adenine reaction has been studied experimentally, but there are few theoretical results. In the present study, adenine dehydrogenation at various sites, and the potential-energy surfaces for these reactions, are investigated theoretically. Four reactant complexes [A···OH]* have been found, with binding energies relative to A+OH* of 32.8, 11.4, 10.7, and 10.1 kcal mol(-1). These four reactant complexes lead to six transition states, which in turn lie +4.3, -5.4, (-3.7 and +0.8), and (-2.3 and +0.8) kcal mol(-1) below A+OH*, respectively. Thus the lowest lying [A···OH]* complex faces the highest local barrier to formation of the product (A-H)*+H(2)O. Between the transition states and the products lie six product complexes. Adopting the same order as the reactant complexes, the product complexes [(A-H)···H(2)O]* lie at -10.9, -22.4, (-24.2 and -18.7), and (-20.5 and -17.5) kcal mol(-1), respectively, again relative to separated A+OH*. All six A+OH* → (A-H)*+H(2)O pathways are exothermic, by -0.3, -14.7, (-17.4 and -7.8), and (-13.7 and -7.8) kcal mol(-1), respectively. The transition state for dehydrogenation at N(6) lies at the lowest energy (-5.4 kcal mol(-1) relative to A+OH*), and thus reaction is likely to occur at this site. This theoretical prediction dovetails with the observed high reactivity of OH radicals with the NH(2) group of aromatic amines. However, the high barrier (37.1 kcal mol(-1)) for reaction at the C(8) site makes C(8) dehydrogenation unlikely. This last result is consistent with experimental observation of the imidazole ring opening upon OH radical addition to C(8). In addition, TD-DFT computed electronic transitions of the N(6) product around 420 nm

  7. Zeolite Membrane Reactor for Water Gas Shift Reaction for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y.S. [Arizona State Univ., Mesa, AZ (United States)

    2013-01-29

    Gasification of biomass or heavy feedstock to produce hydrogen fuel gas using current technology is costly and energy-intensive. The technology includes water gas shift reaction in two or more reactor stages with inter-cooling to maximize conversion for a given catalyst volume. This project is focused on developing a membrane reactor for efficient conversion of water gas shift reaction to produce a hydrogen stream as a fuel and a carbon dioxide stream suitable for sequestration. The project was focused on synthesizing stable, hydrogen perm-selective MFI zeolite membranes for high temperature hydrogen separation; fabricating tubular MFI zeolite membrane reactor and stable water gas shift catalyst for membrane reactor applications, and identifying experimental conditions for water gas shift reaction in the zeolite membrane reactor that will produce a high purity hydrogen stream. The project has improved understanding of zeolite membrane synthesis, high temperature gas diffusion and separation mechanisms for zeolite membranes, synthesis and properties of sulfur resistant catalysts, fabrication and structure optimization of membrane supports, and fundamentals of coupling reaction with separation in zeolite membrane reactor for water gas shift reaction. Through the fundamental study, the research teams have developed MFI zeolite membranes with good perm-selectivity for hydrogen over carbon dioxide, carbon monoxide and water vapor, and high stability for operation in syngas mixture containing 500 part per million hydrogen sulfide at high temperatures around 500°C. The research teams also developed a sulfur resistant catalyst for water gas shift reaction. Modeling and experimental studies on the zeolite membrane reactor for water gas shift reaction have demonstrated the effective use of the zeolite membrane reactor for production of high purity hydrogen stream.

  8. Multi-reaction-channel fitting calculations in a coupled-channel model: Photoinduced strangeness production

    Indian Academy of Sciences (India)

    O Scholten; A Usov

    2010-08-01

    To describe photo- and meson-induced reactions on the nucleon, one is faced with a rather extensive coupled-channel problem. Ignoring the effects of channel coupling, as one would do in describing a certain reaction at the tree level, invariably creates a large inconsistency between the different reactions that are described. In addition, the imaginary parts of the amplitude, which are related through the optical theorem, to total cross-sections, are directly reflected in certain polarization observables. Performing a full coupled-channel calculation thus offers the possibility to implement the maximum number of constraints. The drawback one is faced with is to arrive at a simultaneous fit of a large number of reaction channels. While some of the parameters are common to many reactions, one is still faced with the challenge to optimize a large number of parameters in a highly non-linear calculation. Here we show that such an approach is possible and present some results for photoinduced strangeness production.

  9. Application of Zn + p reactions for production of copper radioisotopes for medical studies

    Energy Technology Data Exchange (ETDEWEB)

    Szelecsenyi, F.; Kovacs, Z. [Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen (Hungary); Steyn, G.F.; Van der Walt, T.N.; Vermeulen, C.; Van der Meulen, N.P.; Dolley, S.G. [iThemba Laboratory for Accelerator Based Sciences (South Africa); Suzuki, K.; Mukai, K. [National Institute of Radiological Sciences, Chiba (Japan)

    2008-07-01

    The production possibility of four medically important copper radioisotopes via Zn + p reactions was studied up to 80 MeV. Based on experimentally evaluated excitation function curves of the {sup 64}Zn(p,x){sup 61}Cu, {sup nat}Zn(p,x){sup 62}Zn {yields} {sup 62}Cu; {sup 66}Zn(p,2pn){sup 64}Cu, {sup 68}Zn(p,x){sup 64}Cu and {sup 68}Zn(p,2p){sup 67}Cu reactions, production energy windows are recommended for the {sup 61}Cu, {sup 62}Cu, {sup 64}Cu and {sup 67}Cu isotopes. The available yields for these radioisotopes as well as the predicted yields of the major contaminants are also presented, it is concluded that the Zn + p route can produce sufficient activity of {sup 61,62,64,67}Cu (with low contamination level) to be considered for practical purposes.

  10. Sodium aerosol release rate and nonvolatile fission product retention factor during a sodium-concrete reaction

    International Nuclear Information System (INIS)

    This paper reports on a series of tests conducted to study the mechanical release behavior of sodium aerosols containing nonvolatile fission products during a sodium-concrete reaction in which release behavior due to hydrodynamic breakup of the hydrogen bubble is predominant at the sodium pool surface. In the tests, nonradioactive materials, namely, strontium oxide, europium oxide, and ruthenium particles, whose sizes range from a few microns to several tens of microns, are used as nonvolatile fission product stimulants. The following results are obtained: The sodium aerosol release rate during the sodium-concrete reaction is larger than that of natural evaporation. The difference, however, becomes smaller with increasing sodium temperature: nearly ten times smaller at 400 degrees C and three times at 700 degrees C. The retention factors for the nonvolatile materials in the sodium pool increase to the range of 0.5 to 104 with an increase in the sodium temperature from 400 to 700 degrees C

  11. Catalytic pyrolysis of atmospheric residue on a fluid catalytic cracking catalyst for the production of light olefins

    Institute of Scientific and Technical Information of China (English)

    YANG Lian-guo; MENG Xiang-hai; XU Chun-ming; GAO Jin-sen; LIU Zhi-chang

    2009-01-01

    Catalytic pyrolysis of Chinese Daqing atmospheric residue on a commercial fluid catalytic cracking (FCC) catalyst was investigated in a confined fluidized bed reactor. The results show that the commercial FCC catalyst has good capability of cracking atmospheric residue to light olefins. The analysis of gas samples shows that the content of total light olefins in cracked gas is above 80%. The analysis of liquid samples shows that the content of aromatics in liquid samples ranges from 60% to 80%, and it increases with the enhancement of reaction temperature. The yield of total light olefins shows a maximum with the increase of reaction temperature, the weight ratios of catalyst-to-oil and steam-to-oil, respectively. The optimal reaction temperature, the weight ratios of catalyst-to-oil and steam-to-oil are about 650℃, 15 and 0.75, respectively.

  12. Flame made ceria supported noble metal catalysts for efficient H2 production via the water gas shift reaction

    Science.gov (United States)

    Cavusoglu, G.; Lichtenberg, H.; Gaur, A.; Goldbach, A.; Grunwaldt, J.-D.

    2016-05-01

    Rh/ceria catalysts were synthesized by flame spray pyrolysis for high temperature water gas shift (WGS) reactions. These catalysts show a high specific surface area due to a high degree of nanocrystallinity. X-ray absorption spectroscopy (XAS) unraveled the formation of small Rh particles under WGS reaction conditions. The catalytic activity was examined at atmospheric pressure by measuring CO conversion as a function of temperature. Some methane formation was observed above 310°C.

  13. Identification of aminoglycoside-acetylating enzymes by high-pressure liquid chromatographic determination of their reaction products.

    OpenAIRE

    Lovering, A M; White, L. O.; Reeves, D S

    1984-01-01

    A method to identify the aminoglycoside-acetyltransferase (AAC) enzymes AAC(3), AAC(2') and AAC(6') by high-pressure liquid chromatographic characterization of their products of reaction with tobramycin or sisomicin is described. Conditions are given for the chromatography of kanamycin A, netilmicin, neomycin, and apramycin, and their products of reaction, if any, with the three AAC enzymes are listed.

  14. Rapid analysis of the skin irritant p-phenylenediamine (PPD) in henna products using atmospheric solids analysis probe mass spectrometry.

    Science.gov (United States)

    Chen, Weiyang; Nkosi, Thobile A N; Combrinck, Sandra; Viljoen, Alvaro M; Cartwright-Jones, Catherine

    2016-09-01

    Henna (Lawsonia inermis) is applied to stain keratin, present in hair, skin and fingernails, a red-orange or rust colour. Producers of temporary tattoos mix the aromatic amine compound, para-phenylenediamine (PPD) into natural henna to create 'black henna' that rapidly stains the skin black. However, PPD may cause severe delayed hypersensitivity reactions following skin contact. This study proposes a rapid direct-analysis method to detect and identify PPD using an atmospheric solids analysis probe (ASAP) coupled to a Q-ToF mass spectrometer (MS). Since laborious, multistep methods of analysis to determine PPD are undesirable, due to the instability of the compound in solution, a screening method involving no sample preparation steps was developed. Experiments were carried out to optimise the corona current, sample cone voltage, source temperature, and desolvation gas temperature to determine ideal ASAP-Q-ToF-MS analysing conditions. Eleven of the 109 henna samples, originating from various countries, tested positive for PPD when henna products were screened using ASAP-MS, without any form of sample preparation other than grinding. Ultra-performance liquid chromatography electrospray ionisation-mass spectrometry (UPLC-Q-ToF-MS) was subsequently used to confirm the results from ASAP and to determine the concentrations of PPD in henna products. The allergen was detected in the same eleven samples, with concentrations ranging from 0.05-4.21% (w/w). It can be concluded that the sensitivity of the ASAP-MS technique is sufficient (limit of detection=0.025% w/w) to allow screening of henna samples for the presence of PPD. This relatively new technique can be applied to commercial products without extraction, sample treatment or chromatographic separation. PMID:27243826

  15. Numerical study of the effect of water content on OH production in a pulsed-dc atmospheric pressure helium-air plasma jet

    Science.gov (United States)

    Mu-Yang, Qian; Cong-Ying, Yang; Zhen-dong, Wang; Xiao-Chang, Chen; San-Qiu, Liu; De-Zhen, Wang

    2016-01-01

    A numerical study of the effect of water content on OH production in a pulsed-dc atmospheric pressure helium-air plasma jet is presented. The generation and loss mechanisms of the OH radicals in a positive half-cycle of the applied voltage are studied and discussed. It is found that the peak OH density increases with water content in air (varying from 0% to 1%) and reaches 6.3×1018 m-3 when the water content is 1%. Besides, as the water content increases from 0.01% to 1%, the space-averaged reaction rate of three-body recombination increases dramatically and is comparable to those of main OH generation reactions. Project supported by the National Natural Science Foundation of China (Grant No. 11465013), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20151BAB212012), and the International Science and Technology Cooperation Program of China (Grant No. 2015DFA61800).

  16. Measurement of reaction cross sections of fission products induced by DT neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Daisuke; Murata, Isao; Takahashi, Akito [Osaka Univ., Suita (Japan)

    1998-03-01

    With the view of future application of fusion reactor to incineration of fission products, we have measured the {sup 129}I(n,2n){sup 128}I reaction cross section by DT neutrons with the activation method. The measured cross section was compared with the evaluated nuclear data of JENDL-3.2. From the result, it was confirmed that the evaluation overestimated the cross section by about 20-40%. (author)

  17. An Ionic Liquid Reaction and Separation Process for Production of Hydroxymethylfurfural from Sugars

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Zheng, Feng; Li, Joanne; Cooper, Alan R.

    2014-01-01

    There has been world-wide interest to making plastics out of renewable biomass feedstock for recent years. Hydroxymethylfurfural (HMF) is viewed as an attractive alternate to terephthalic acid (TPA) for production of polyesters (PET) and polyamides. Conversion of sugars into HMF has been studied in numerous publications. In this work, a complete ionic liquid reaction and separation process is presented for nearly stoichiometric conversion of fructose into HMF. Different adsorbent materials are evaluated and silicalite material is demonstrated effective for isolation of 99% pure HMF from actual ionic liquid reaction mixtures and for recovery of the un-converted sugars and reaction intermediate along with the ionic liquid. Membrane-coated silicalite particles are prepared and studied for a practical adsorption process operated at low pressure drops but with separation performances comparable or better than the powder material. Complete conversion of fresh fructose feed into HMF in the recycled ionic liquid is shown under suitable reaction conditions. Stability of HMF product is characterized. A simplified process flow diagram is proposed based on these research results, and the key equipment such as reactor and adsorbent bed is sized for a plant of 200,000 ton/year of fructose processing capacity. The proposed HMF production process is much simpler than the current paraxylene (PX) manufacturing process from petroleum oil, which suggests substantial reduction to the capital cost and energy consumption be possible. At the equivalent value to PX on the molar basis, there can be a large gross margin for HMF production from fructose and/or sugars.

  18. Contribution of Phenolics and Maillard Reaction Products to the Antioxidant Capacity of Coffee Brews

    OpenAIRE

    Ludwig, I.A. (Iziar A.); Cid, C.; Peña, M. P.

    2015-01-01

    Coffee is one of the most consumed beverages in the world and a rich source of antioxidants. The amounts of these antioxidants are influenced by several technological factors. Besides, antioxidants identified in coffee (chlorogenic acids, volatile and non-volatile Maillard reaction products) may contribute to the overall antioxidant capacity in different proportions. Therefore the aim of this research was to evaluate the actual contribution to the overall antioxidant capacity of coffee brews ...

  19. Product-form stationary distributions for deficiency zero chemical reaction networks

    OpenAIRE

    Anderson, David F.; Craciun, Gheorghe; Kurtz, Thomas G.

    2008-01-01

    We consider stochastically modeled chemical reaction systems with mass-action kinetics and prove that a product-form stationary distribution exists for each closed, irreducible subset of the state space if an analogous deterministically modeled system with mass-action kinetics admits a complex balanced equilibrium. Feinberg's deficiency zero theorem then implies that such a distribution exists so long as the corresponding chemical network is weakly reversible and has a deficiency of zero. The...

  20. Neutral products from cation-molecule reactions in the gas phase

    International Nuclear Information System (INIS)

    The use of neutral product analysis for examining ionic reaction pathways from electron impact is described. This approach merges techniques of mass spectrometry with those of radiation chemistry. Comparisons are made between experimental results and predictions based on density-of-states arguments using RRKM microscopic rate coefficients. The importance of examining isomer distributions is stressed with special attention given to the question of the mechanism of bimolecular proton transfer in the gas phase. (author)

  1. [High titer ethanol production from an atmospheric glycerol autocatalytic organosolv pretreated wheat straw].

    Science.gov (United States)

    Wang, Liang; Liu, Jianquan; Zhang, Zhe; Zhang, Feiyang; Ren, Junli; Sun, Fubao; Zhang, Zhenyu; Ding, Cancan; Lin, Qiaowen

    2015-10-01

    The expensive production of bioethanol is because it has not yet reached the 'THREE-HIGH' (High-titer, high-conversion and high-productivity) technical levels of starchy ethanol production. To cope with it, it is necessary to implement a high-gravity mash bioethanol production (HMBP), in which sugar hydrolysates are thick and fermentation-inhibitive compounds are negligible. In this work, HMBP from an atmospheric glycerol autocatalytic organosolv pretreated wheat straw was carried out with different fermentation strategies. Under an optimized condition (15% substrate concentration, 10 g/L (NH4)2SO4, 30 FPU/g dry matter, 10% (V/V) inoculum ratio), HMBP was at 31.2 g/L with a shaking simultaneous saccharification and fermentation (SSF) at 37 degrees C for 72 h, and achieved with a conversion of 73% and a productivity of 0.43 g/(L x h). Further by a semi-SFF with pre-hydrolysis time of 24 h, HMBP reached 33.7 g/L, the conversion and productivity of which was 79% and 0.47 g/(L x h), respectively. During the SSF and semi-SSF, more than 90% of the cellulose in both substrates were hydrolyzed into fermentable sugars. Finally, a fed-batch semi-SFF was developed with an initial substrate concentration of 15%, in which dried substrate (= the weight of the initial substrate) was divided into three portions and added into the conical flask once each 8 h during the first 24 h. HMBP achieved at 51.2 g/L for 72 h with a high productivity of 0.71 g/(L x h) while a low cellulose conversion of 62%. Interestingly, the fermentation inhibitive compound was mainly acetic acid, less than 3.0 g/L, and there were no other inhibitors detected, commonly furfural and hydroxymethyl furfural existing in the slurry. The data indicate that the lignocellulosic substrate subjected to the atmospheric glycerol autocatalytic organosolv pretreatment is very applicable for HMBP. The fed-batch semi-SFF is effective and desirable to realize an HMBP. PMID:26964336

  2. Crystal structure of an EAL domain in complex with reaction product 5'-pGpG.

    Directory of Open Access Journals (Sweden)

    Julien Robert-Paganin

    Full Text Available FimX is a large multidomain protein containing an EAL domain and involved in twitching motility in Pseudomonas aeruginosa. We present here two crystallographic structures of the EAL domain of FimX (residues 438-686: one of the apo form and the other of a complex with 5'-pGpG, the reaction product of the hydrolysis of c-di-GMP. In both crystal forms, the EAL domains form a dimer delimiting a large cavity encompassing the catalytic pockets. The ligand is trapped in this cavity by its sugar phosphate moiety. We confirmed by NMR that the guanine bases are not involved in the interaction in solution. We solved here the first structure of an EAL domain bound to the reaction product 5'-pGpG. Though isolated FimX EAL domain has a very low catalytic activity, which would not be significant compared to other catalytic EAL domains, the structure with the product of the reaction can provides some hints in the mechanism of hydrolysis of the c-di-GMP by EAL domains.

  3. Polymerase-endonuclease amplification reaction (PEAR for large-scale enzymatic production of antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Xiaolong Wang

    Full Text Available Antisense oligonucleotides targeting microRNAs or their mRNA targets prove to be powerful tools for molecular biology research and may eventually emerge as new therapeutic agents. Synthetic oligonucleotides are often contaminated with highly homologous failure sequences. Synthesis of a certain oligonucleotide is difficult to scale up because it requires expensive equipment, hazardous chemicals and a tedious purification process. Here we report a novel thermocyclic reaction, polymerase-endonuclease amplification reaction (PEAR, for the amplification of oligonucleotides. A target oligonucleotide and a tandem repeated antisense probe are subjected to repeated cycles of denaturing, annealing, elongation and cleaving, in which thermostable DNA polymerase elongation and strand slipping generate duplex tandem repeats, and thermostable endonuclease (PspGI cleavage releases monomeric duplex oligonucleotides. Each round of PEAR achieves over 100-fold amplification. The product can be used in one more round of PEAR directly, and the process can be further repeated. In addition to avoiding dangerous materials and improved product purity, this reaction is easy to scale up and amenable to full automation. PEAR has the potential to be a useful tool for large-scale production of antisense oligonucleotide drugs.

  4. Exploring the control of land-atmospheric oscillations over terrestrial vegetation productivity

    Science.gov (United States)

    Depoorter, Mathieu; Green, Julia; Gentine, Pierre; Liu, Yi; van Eck, Christel; Regnier, Pierre; Dorigo, Wouter; Verhoest, Niko; Miralles, Diego

    2015-04-01

    Vegetation dynamics play an important role in the climate system due to their control on the carbon, energy and water cycles. The spatiotemporal variability of vegetation is regulated by internal climate variability as well as natural and anthropogenic forcing mechanisms, including fires, land use, volcano eruptions or greenhouse gas emissions. Ocean-atmospheric oscillations, affect the fluxes of heat and water over continents, leading to anomalies in radiation, precipitation or temperature at widely separated locations (i.e. teleconnections); an effect of ocean-atmospheric oscillations on terrestrial primary productivity can therefore be expected. While different studies have shown the general importance of internal climate variability for global vegetation dynamics, the control by particular teleconnections over the regional growth and decay of vegetation is still poorly understood. At continental to global scales, satellite remote sensing offers a feasible approach to enhance our understanding of the main drivers of vegetation variability. Traditional studies of the multi-decadal variability of global vegetation have been usually based on the normalized difference vegetation index (NDVI) derived from the Advanced Very High Resolution Radiometer (AVHRR), which extends back to the early '80s. There are, however, some limitations to NDVI observations; arguably the most important of these limitations is that from the plant physiology perspective the index does not have a well-defined meaning, appearing poorly correlated to vegetation productivity. On the other hand, recently developed records from other remotely-sensed properties of vegetation, like fluorescence or microwave vegetation optical depth, have proven a significantly better correspondence to above-ground biomass. To enhance our understanding of the controls of ocean-atmosphere oscillations over vegetation, we propose to explore the link between climate oscillation extremes and net primary productivity

  5. Product polarization distribution: Stereodynamics of the reaction of atom H and radical NH

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The product angular momentum polarization of the reaction of H+NH is calculated via the quasiclassical trajectory method(QCT)based on the extended London-Eyring-Polanyi-Sato(LEPS)potential energy surface(PES)at a collision energy of 5.1 kcal/mol.The calculated results of the vector correlations are denoted by using the angular distribution functions.The polarization-dependent differential cross sections(PDDCSs)demonstrate that the rotational angular momentum of the product H2 is aligned and oriented along the direction perpendicular to the scattering plane.Vector correlation shows that the angular momentum of the product H2 is aligned in the plane perpendicular to the velocity vector.It suggests that the reaction proceeds preferentially when the reactant velocity vector lies in a plane containing all three atoms.The orientation and alignment of the product angular momentum affects the scattering direction of the product molecules.The polarization-dependent differential cross sections(PDDCSs)reveal that scattering is predominantly in the backward hemisphere.

  6. Hypernucleus Production by $A(p,pK^+)_{\\Lambda}B$ Reactions

    CERN Document Server

    Jing, Hantao; Chiang, Huanching

    2008-01-01

    The $\\Lambda$-hypernucleus production by $A(p, pK^+)_{\\Lambda}B$ reactions is investigated within the framework of the distorted wave impulse approximation(DWIA). The amplitude for the elementary process is evaluated in a fully covariant two-nucleon model based on the effective Lagrangian. The reaction cross sections for $\\Lambda$-hypernucleus productions on $^6Li$, $^{12}C$ and $^{16}O$ targets are calculated. It is found that the distortion effects tend to reduce the cross sections by a factor of 3$\\sim$10. Various differential cross sections (DCS) and double differential cross sections (DDCS) are presented. It is shown that for the $s_{\\Lambda}-$wave hypernucleus production, the DCS is decreased with increasing nuclear mass, and the DCS for the $p_{\\Lambda}-$wave hypernucleus production is normally higher than that for the $s_{\\Lambda}-$wave hypernucleus production. As a reference, the DDCS with respect to the momenta of the outgoing proton and kaon is also demonstrated. Finally, the missing mass spectra o...

  7. Product rotational polarization. The stereodynamics of the F + H 2 reaction

    Science.gov (United States)

    Aoiz, F. J.; Brouard, M.; Herrero, V. J.; Sáez Rábanos, V.; Stark, K.

    1997-01-01

    The angular momentum polarization of the products of the reaction F + H 2 ( ν = 0, j = 0) → HF( ν') + H is calculated via the QCT methodology at a collision energy of 0.119 eV. The HF rotational angular momentum distribution is found to display both alignment and orientation, the latter along the y-axis, perpendicular to the k-k' scattering plane, which depend sensitively on the product vibrational level. The origin of polarization behaviour is traced back to different dynamical mechanisms leading to production of HF(ν' = 0), and to a lesser extent HF (ν' = 1), compared with higher product vibrational states, with the former originating primarily from repulsive insertion type trajectories, and the latter primarily from repulsive abstraction type trajectories.

  8. Product Yields and Characteristics of Corncob Waste under Various Torrefaction Atmospheres

    Directory of Open Access Journals (Sweden)

    Jau-Jang Lu

    2013-12-01

    Full Text Available Biomass is a promising energy source due to its abundant, carbon-fixing, and carbon-neutral properties. Torrefaction can be employed to improve the properties of biomass in an oxygen-free or nitrogen atmosphere. This study investigates the product yields and the solid product characteristics from corncob waste torrefaction at the temperatures of 250 °C and 300 °C for 1 h. Nitrogen, carbon dioxide, and a gas mixture of air and carbon dioxide are employed as the carrier gases. The solid product characteristics approach those of coal at the higher temperature, regardless of what the carrier gases are. The fixed carbon, higher heating value, and solid and energy yields using carbon dioxide as a carrier gas at 300 °C are close to those using nitrogen. The product safety and storage properties before and after torrefaction are revealed by the measurements of ignition temperature and hygroscopicity. A higher torrefaction temperature leads to a higher ignition temperature of treated biomass, except using the mixture of air and carbon dioxide as the carrier gas. Carbon dioxide is a better carrier gas than nitrogen for biomass torrefaction, from the storage and transportation points of view.

  9. Microbiological and sensorial quality assessment of ready-to-cook seafood products packaged under modified atmosphere.

    Science.gov (United States)

    Speranza, B; Corbo, M R; Conte, A; Sinigaglia, M; Del Nobile, M A

    2009-01-01

    The effects of modified atmosphere packaging (MAP) (30:40:30 O(2):CO(2):N(2) and 5:95 O(2):CO(2)) on the quality of 4 ready-to-cook seafood products were studied. In particular, the investigation was carried out on hake fillets, yellow gurnard fillets, chub mackerel fillets, and entire eviscerated cuttlefish. Quality assessment was based on microbiological and sensorial indices determination. Both packaging gas mixtures contributed to a considerable slowing down of the microbial and sensorial quality loss of the investigated seafood products. Results showed that sensorial quality was the subindex that limited their shelf life. In fact, based primarily on microbiological results, samples under MAP remained acceptable up to the end of storage (that is, 14 d), regardless of fish specie. On the other hand, results from sensory analyses showed that chub mackerel fillets in MAP were acceptable up to the 6th storage d, whilst hake fillets, yellow gurnard fillets, and entire cuttlefish became unacceptable after 10 to 11 d. However, compared to control samples, an increase in the sensorial shelf life of MAP samples (ranging from about 95% to 250%) was always recorded. Practical Application: Modified atmosphere packaging (MAP) is an inexpensive and uncomplicated method of extending shelf life of packed seafood. It could gain great attention from the fish industrial sector due to the fact that MAP is a practical and economic technique, realizable by small technical expedients. Moreover, there is great attention from the food industry and retailers to react to the growing demand for convenience food, thus promoting an increase in the assortments of ready-to-cook seafood products. PMID:20492117

  10. TOPICAL REVIEW: Numerical modelling of atmospheric pressure gas discharges leading to plasma production

    Science.gov (United States)

    Georghiou, G. E.; Papadakis, A. P.; Morrow, R.; Metaxas, A. C.

    2005-10-01

    In this paper, we give a detailed review of recent work carried out on the numerical characterization of non-thermal gas discharge plasmas in air at atmospheric pressure. First, we briefly describe the theory of discharge development for dielectric barrier discharges, which is central to the production of non-equilibrium plasma, and we present a hydrodynamic model to approximate the evolution of charge densities. The model consists of the continuity equations for electrons, positive and negative ions coupled to Poisson's equation for the electric field. We then describe features of the finite element flux corrected transport algorithm, which has been developed to specifically aim for accuracy (no spurious diffusion or oscillations), efficiency (through the use of unstructured grids) and ease of extension to complex 3D geometries in the framework of the hydrodynamic model in gas discharges. We summarize the numerical work done by other authors who have applied different methods to various models and then we present highlights of our own work, which includes code validation, comparisons with existing results and modelling of radio frequency systems, dc discharges, secondary effects such as photoionization and plasma production in the presence of dielectrics. The extension of the code to 3D for more realistic simulations is demonstrated together with the adaptive meshing technique, which serves to achieve higher efficiency. Finally, we illustrate the versatility of our scheme by using it to simulate the transition from non-thermal to thermal discharges. We conclude that numerical modelling and, in particular, the extension to 3D can be used to shed new light on the processes involved with the production and control of atmospheric plasma, which plays an important role in a host of emerging technologies.

  11. Numerical modelling of atmospheric pressure gas discharges leading to plasma production

    Energy Technology Data Exchange (ETDEWEB)

    Georghiou, G E [Electronics and Computer Science, University of Southampton, Highfield, Southampton, SO17 1BJ (United Kingdom); Papadakis, A P [Electricity Utilization Group (EUG), Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ (United Kingdom); Morrow, R [Applied and Plasma Physics, School of Physics, University of Sydney, Sydney, NSW (Australia); Metaxas, A C [St John' s College, University of Cambridge, Cambridge, CB2 1TP (United Kingdom)

    2005-10-21

    In this paper, we give a detailed review of recent work carried out on the numerical characterization of non-thermal gas discharge plasmas in air at atmospheric pressure. First, we briefly describe the theory of discharge development for dielectric barrier discharges, which is central to the production of non-equilibrium plasma, and we present a hydrodynamic model to approximate the evolution of charge densities. The model consists of the continuity equations for electrons, positive and negative ions coupled to Poisson's equation for the electric field. We then describe features of the finite element flux corrected transport algorithm, which has been developed to specifically aim for accuracy (no spurious diffusion or oscillations), efficiency (through the use of unstructured grids) and ease of extension to complex 3D geometries in the framework of the hydrodynamic model in gas discharges. We summarize the numerical work done by other authors who have applied different methods to various models and then we present highlights of our own work, which includes code validation, comparisons with existing results and modelling of radio frequency systems, dc discharges, secondary effects such as photoionization and plasma production in the presence of dielectrics. The extension of the code to 3D for more realistic simulations is demonstrated together with the adaptive meshing technique, which serves to achieve higher efficiency. Finally, we illustrate the versatility of our scheme by using it to simulate the transition from non-thermal to thermal discharges. We conclude that numerical modelling and, in particular, the extension to 3D can be used to shed new light on the processes involved with the production and control of atmospheric plasma, which plays an important role in a host of emerging technologies. (topical review)

  12. Large-Scale Refolding and Enzyme Reaction of Human Preproinsulin for Production of Human Insulin.

    Science.gov (United States)

    Kim, Chang-Kyu; Lee, Seung-Bae; Son, Young-Jin

    2015-10-28

    Human insulin is composed of 21 amino acids of an A-chain and 30 amino acids of a B-chain. This is the protein hormone that has the role of blood sugar control. When the recombinant human proinsulin is expressed in Escherichia coli, a serious problem is the formation of an inclusion body. Therefore, the inclusion body must be denatured and refolded under chaotropic agents and suitable reductants. In this study, H27R-proinsulin was refolded from the denatured form with β-mercaptoethanol and urea. The refolding reaction was completed after 15 h at 15°C, whereas the reaction at 25°C was faster than that at 15°C. The refolding yield at 15°C was 17% higher than that at 25°C. The refolding reaction could be carried out at a high protein concentration (2 g/l) using direct refolding without sulfonation. The most economical and optimal refolding condition for human preproinsulin was 1.5 g/l protein, 10 mM glycine buffer containing 0.6 M urea, pH 10.6, and 0.3 mM β-mercaptoethanol at 15°C for 16 h. The maximum refolding yield was 74.8% at 15°C with 1.5 g/l protein. Moreover, the refolded preproinsulin could be converted into normal mature insulin with two enzymes. The average amount of human insulin was 138.2 g from 200 L of fermentation broth after enzyme reaction with H27R-proinsulin. The direct refolding process for H27R-proinsulin was successfully set up without sulfonation. The step yields for refolding and enzyme reaction were comparatively high. Therefore, our refolding process for production of recombinant insulin may be beneficial to the large-scale production of other biologically active proteins. PMID:26139616

  13. Gas-Solid Reaction Route toward the Production of Intermetallics from Their Corresponding Oxide Mixtures

    Directory of Open Access Journals (Sweden)

    Hesham Ahmed

    2016-08-01

    Full Text Available Near-net shape forming of metallic components from metallic powders produced in situ from reduction of corresponding pure metal oxides has not been explored to a large extent. Such a process can be probably termed in short as the “Reduction-Sintering” process. This methodology can be especially effective in producing components containing refractory metals. Additionally, in situ production of metallic powder from complex oxides containing more than one metallic element may result in in situ alloying during reduction, possibly at lower temperatures. With this motivation, in situ reduction of complex oxides mixtures containing more than one metallic element has been investigated intensively over a period of years in the department of materials science, KTH, Sweden. This review highlights the most important features of that investigation. The investigation includes not only synthesis of intermetallics and refractory metals using the gas solid reaction route but also study the reaction kinetics and mechanism. Environmentally friendly gases like H2, CH4 and N2 were used for simultaneous reduction, carburization and nitridation, respectively. Different techniques have been utilized. A thermogravimetric analyzer was used to accurately control the process conditions and obtain reaction kinetics. The fluidized bed technique has been utilized to study the possibility of bulk production of intermetallics compared to milligrams in TGA. Carburization and nitridation of nascent formed intermetallics were successfully carried out. A novel method based on material thermal property was explored to track the reaction progress and estimate the reaction kinetics. This method implies the dynamic measure of thermal diffusivity using laser flash method. These efforts end up with a successful preparation of nanograined intermetallics like Fe-Mo and Ni-W. In addition, it ends up with simultaneous reduction and synthesis of Ni-WN and Ni-WC from their oxide mixtures

  14. Products and mechanism of the reaction of ozone with phospholipids in unilamellar phospholipid vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Santrock, J.; Gorski, R.A.; O' Gara, J.F. (Biomedical Science Department, General Motors Research Laboratories, Warren, MI (United States))

    1992-01-01

    While considerable effort has been expended on determining the health effects of exposure to typical urban concentrations of O3, little is known about the chemical events responsible for toxicity. Phospholipids containing unsaturated fatty acids in the cell membranes of lung cells are likely reaction sites for inhaled ozone (O3). In this study, we examined the reaction of O3 with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) in unilamellar phospholipid vesicles. Reaction of ozone with the carbon-carbon double bond of POPC yielded an aldehyde and a hydroxy hydroperoxide. The hydroxy hydroperoxide eliminated H2O2 to yield a second aldehyde. Upon further ozonolysis, the aldehydes were oxidized to the corresponding carboxylic acids. A material balance showed that no other reaction consumed POPC and O3 or produced these products. As a mechanistic probe, we measured incorporation of oxygen-18 from 18O3 into aldehyde, carboxylic acid, and H2O2. Approximately 50% of the aldehyde oxygen atoms were derived from O3. Oxygen in H2O2 was derived solely from O3, where both oxygen atoms in a molecule of H2O2 were from the same molecule of O3. One of the carboxylic acid oxygen atoms was derived from the precursor aldehyde, while the other was derived from O3. These results support the following mechanism. Cleavage of the carbon-carbon double bond of POPC by O3 yields a carbonyl oxide and an aldehyde. Reaction of H2O with the carbonyl oxide yields a hydroxy hydroperoxide, preventing formation ozonide by reaction of the carbonyl oxide and aldehyde. Elimination of H2O2 from the hydroxy hydroperoxide yields a second aldehyde. Oxidation of the aldehydes by O3 yields carboxylic acids.

  15. 大气中有机胺类物质反应机理和消除过程研究%A Review of Reaction Mechanism and Eliminate Process of Atmospheric Amines

    Institute of Scientific and Technical Information of China (English)

    夏京; 王兴

    2015-01-01

    The possible sources,health hazards,homogeneous and heterogeneous chemical conversion mech-anism of amines in the atmosphere were reviewed.The changes of reaction product to secondary organic aerosols ( SOAs) as well as to the physical and chemical properties of aerosols which enhance the indirect climate effect of aerosol ( such as CCN,etc.) were elaborated.Amines in the atmosphere convert to particle phase mainly by dis-solution or replacement in the reaction with atmospheric oxidants and heterogeneous reaction process,then reac-hing ground or sea by wet sedimentation ( like drops,cloud droplets,rain,etc.) .%综述大气中有机胺可能的来源、健康危害及其在大气中的均相和非均相化学转化机制,阐述有机胺的反应产物对二次有机气溶胶及其对大气气溶胶的物理和化学性质的改变,此类改变增强大气气溶胶间接气候效应(如成云结核能力等)。大气中的有机胺主要通过与大气氧化剂的反应和非均相反应过程的溶解或置换进入颗粒相,而后随着湿沉降(如云滴、雾滴、雨滴等)到达地面或海面。

  16. ASR prevention — Effect of aluminum and lithium ions on the reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Leemann, Andreas, E-mail: andreas.leemann@empa.ch [Laboratory for Concrete/Construction Chemistry, Empa, Swiss Federal Laboratories for Material Science and Technology, Überlandstr. 129, 8600 Dübendorf (Switzerland); Bernard, Laetitia [Laboratory for Nanoscale Materials Science, Empa, Swiss Federal Laboratories for Material Science and Technology, Überlandstr. 129, 8600 Dübendorf (Switzerland); Alahrache, Salaheddine; Winnefeld, Frank [Laboratory for Concrete/Construction Chemistry, Empa, Swiss Federal Laboratories for Material Science and Technology, Überlandstr. 129, 8600 Dübendorf (Switzerland)

    2015-10-15

    In spite of the recent progress in the understanding of the mechanisms enabling aluminum-containing SCM like metakaolin and added LiNO{sub 3} to limit the extent of ASR in mortar and concrete, some gaps still remain. They concern mainly the effect of aluminum-containing SCM on the formed ASR products and the influence of aggregate characteristics on the effectiveness of LiNO{sub 3}. In this study, a model system, concrete and mortar were investigated by pore solution analysis, TGA, XRD, NMR, SEM combined with EDX and ToF-SIMS to address these questions. The amount of aluminum present in the pore solution of concrete and mortar is only able to slow down SiO{sub 2} dissolution but not to alter morphology, structure and composition of the reaction products. LiNO{sub 3} can suppress ASR by forming dense products protecting reactive minerals from further reaction. But its effectiveness is decreasing with increasing specific surface area of the reactive minerals in aggregates. - Highlights: • Aluminum of SCM slows down SiO{sub 2} dissolution. • Aluminum of SCM does not alter morphology and structure of ASR product. • ASR suppressing effect of LiNO{sub 3} depends on specific surface area of the aggregates.

  17. Microbial production of metabolites and associated enzymatic reactions under high pressure.

    Science.gov (United States)

    Dong, Yongsheng; Jiang, Hua

    2016-11-01

    High environmental pressure exerts an external stress on the survival of microorganisms that are commonly found under normal pressure. In response, many growth traits alter, including cell morphology and physiology, cellular structure, metabolism, physical and chemical properties, the reproductive process, and defense mechanisms. The high-pressure technology (HP) has been industrially utilized in pressurized sterilization, synthesis of stress-induced products, and microbial/enzymatic transformation of chemicals. This article reviews current research on pressure-induced production of metabolites in normal-pressure microbes and their enzymatic reactions. Factors that affect the production of such metabolites are summarized, as well as the effect of pressure on the performance of microbial fermentation and the yield of flavoring compounds, different categories of induced enzymatic reactions and their characteristics in the supercritical carbon dioxide fluid, effects on enzyme activity, and the selection of desirable bacterial strains. Technological challenges are discussed, and future research directions are proposed. Information presented here will benefit the research, development, and application of the HP technology to improve microbial fermentation and enzymatic production of biologically active substances, thereby help to meet their increasing demand from the ever-expanding market. PMID:27628338

  18. Reactions of clofibric acid with oxidative and reductive radicals—Products, mechanisms, efficiency and toxic effects

    International Nuclear Information System (INIS)

    The degradation of clofibric acid induced by hydroxyl radical, hydrated electron and O2−∙/HO2∙ reactive species was studied in aqueous solutions. Clofibric acid was decomposed more effectively by hydroxyl radical than by hydrated electron or O2−∙/HO2∙. Various hydroxylated, dechlorinated and fragmentation products have been identified and quantified. A new LC–MS method was developed based on 18O isotope labeling to follow the formation of hydroxylated derivatives of clofibric acid. Possible degradation pathways have been proposed. The overall degradation was monitored by determination of sum parameters like COD, TOC and AOX. It was found that the organic chlorine degrades very effectively prior to complete mineralization. After the treatment no toxic effect was found according to Vibrio fischeri tests. However, at early stages some of the reaction products were more harmful than clofibric acid. - Highlights: • Clofibric acid is effectively degraded by OH radical. • Main primary and secondary products are hydroxylated and dihydroxylated phenyl type derivatives of clofibric acid. • In air saturated aqueous solutions O2 plays an important role in decomposition of the aromatic structure. • A new LC–MS method with 18O-labeling was developed. • Early stage reaction products are more toxic to bacteria Vibrio fischeri than clofibric acid

  19. Hadron Production for the Neutrino Factory and for the Atmospheric Neutrino Flux

    CERN Multimedia

    2002-01-01

    The HARP experiment carries out, at the CERN PS, a programme of measurements of secondary hadron production, over the full solid angle, produced on thin and thick nuclear targets by beams of protons and pions with momenta in the range 2 to 15~\\GeVc. The first aim of this experiment is to acquire adequate knowledge of pion yields for an optimal design of the proton driver of the Neutrino Factory. The second aim is to reduce substantially the existing $\\sim 30$\\% uncertainty in the calculation of absolute atmospheric neutrino fluxes and the $\\sim 7$\\% uncertainty in the ratio of neutrino flavours, required for a refined interpretation of the evidence for neutrino oscillation from the study of atmospheric neutrinos in present and forthcoming experiments. The HARP experiment comprises a large-acceptance charged-particle magnetic spectrometer of conventional design, located in the East Hall of the CERN PS and using the T9 tagged charged-particle beam. The main detector is a cylindrical TPC inside a solenoid magnet...

  20. Synergistic Effects of Turbine Wakes and Atmospheric Stability on Power Production at an Onshore Wind Farm

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, S; Lundquist, J K; Marjanovic, N

    2012-01-25

    This report examines the complex interactions between atmospheric stability and turbine-induced wakes on downwind turbine wind speed and power production at a West Coast North American multi-MW wind farm. Wakes are generated when the upwind flow field is distorted by the mechanical movement of the wind turbine blades. This has two consequences for downwind turbines: (1) the downwind turbine encounters wind flows with reduced velocity and (2) the downwind turbine encounters increased turbulence across multiple length scales via mechanical turbulence production by the upwind turbine. This increase in turbulence on top of ambient levels may increase aerodynamic fatigue loads on the blades and reduce the lifetime of turbine component parts. Furthermore, ambient atmospheric conditions, including atmospheric stability, i.e., thermal stratification in the lower boundary layer, play an important role in wake dissipation. Higher levels of ambient turbulence (i.e., a convective or unstable boundary layer) lead to higher turbulent mixing in the wake and a faster recovery in the velocity flow field downwind of a turbine. Lower levels of ambient turbulence, as in a stable boundary layer, will lead to more persistent wakes. The wake of a wind turbine can be divided into two regions: the near wake and far wake, as illustrated in Figure 1. The near wake is formed when the turbine structure alters the shape of the flow field and usually persists one rotor diameter (D) downstream. The difference between the air inside and outside of the near wake results in a shear layer. This shear layer thickens as it moves downstream and forms turbulent eddies of multiple length scales. As the wake travels downstream, it expands depending on the level of ambient turbulence and meanders (i.e., travels in non-uniform path). Schepers estimates that the wake is fully expanded at a distance of 2.25 D and the far wake region begins at 2-5 D downstream. The actual distance traveled before the wake

  1. Elevated Atmospheric CO2 Affects Ectomycorrhizal Species Abundance and Increases Sporocarp Production under Field Conditions

    Directory of Open Access Journals (Sweden)

    Douglas L. Godbold

    2015-04-01

    Full Text Available Anthropogenic activities during the last century have increased levels of atmospheric CO2. Forest net primary productivity increases in response to elevated CO2, altering the quantity and quality of carbon supplied to the rhizosphere. Ectomycorrhizal fungi form obligate symbiotic associations with the fine roots of trees that mediate improved scavenging for nutrients in exchange for a carbohydrate supply. Understanding how the community structure of ectomycorrhizal fungi is altered by climate change is important to further our understanding of ecosystem function. Betula pendula and Fagus sylvatica were grown in an elevated CO2 atmosphere delivered using free air carbon dioxide enrichment (FACE under field conditions in the U.K., and Picea abies was grown under elevated CO2 in glass domes in the Czech Republic. We used morphotyping and sequencing of the internal transcribed spacer region of the fungal ribosomal operon to study ectomycorrhizal community structure. Under FACE, un-colonised roots tips increased in abundance for Fagus sylvatica, and during 2006, sporocarp biomass of Peziza badia significantly increased. In domes, ectomycorrhizal community composition shifted from short-distance and smooth medium-distance to contact exploration types. Supply and competition for carbon belowground can influence ectomycorrhizal community structure with the potential to alter ecosystem function.

  2. Coupled Pervaporation-Reaction Distillation Process for the Production of n-Bromopropane

    Institute of Scientific and Technical Information of China (English)

    毛澄宇; 余立新; 郭庆丰; 席春光

    2002-01-01

    The reaction of n-C3H7OH+HBr=n-C3H7Br+H2O was used to experimentally study a coupled pervaporation (PV)-reaction distillation (RD) process. The results show that polyvinyl alcohol (PVA) is a suitable membrane material for water removal. The typical separation properties of PVA polyacrylonitrile (PAN) composite membranes are a highest flux of 780 g/(m2*h) and a separation factor of 840 for the C3H7OH concentration in the original feed of 95% at 90℃ and below 3300 Pa(abs). Reaction distillation produced the n-bromopropane from the distillation column as a ternary azeotropic liquid mixture of C3H7OH, H2O and C3H7Br, with a product concentration of about 92%. The coupled PV-RD membrane reactor experiment shows that the BrPr yield can reach 92%, much higher than that for reaction-distillation without pervaporation.

  3. Influence of temperature inhomogeneity on product profile of reactions occurring within zeolites

    Indian Academy of Sciences (India)

    A V Anil Kumar; S Yashonath; G Ananthakrishna

    2003-10-01

    In zeolites, diffusion is often accompanied by a reaction or sorption which in turn can induce temperature inhomogeneities. Monte Carlo simulations of Lennard-Jones atoms in zeolite NaCaA are reported for the presence of a hot zone presumed to be created by a reaction or chemi- or physi-sorption site. These simulations show that the presence of localized hot regions can alter both kinetic and transport properties such as diffusion. Further, we show that enhancement of diffusion constant is greater for systems with larger barrier height, a surprising result that may be of considerable significance in many chemical and biological processes. We find an unanticipated coupling between reaction and diffusion due to the presence of a hot zone in addition to that which normally exists via concentration. Implications of this coupling for the product profile of a reaction are discussed. We also propose a mechanism by which mobility of ions or diffusion of molecular species within biomembranes may take place.

  4. Vertical and horizontal processes in the global atmosphere and the maximum entropy production conjecture

    Directory of Open Access Journals (Sweden)

    S. Pascale

    2012-01-01

    Full Text Available The objective of this paper is to reconsider the Maximum Entropy Production conjecture (MEP in the context of a very simple two-dimensional zonal-vertical climate model able to represent the total material entropy production due at the same time to both horizontal and vertical heat fluxes. MEP is applied first to a simple four-box model of climate which accounts for both horizontal and vertical material heat fluxes. It is shown that, under condition of fixed insolation, a MEP solution is found with reasonably realistic temperature and heat fluxes, thus generalising results from independent two-box horizontal or vertical models. It is also shown that the meridional and the vertical entropy production terms are independently involved in the maximisation and thus MEP can be applied to each subsystem with fixed boundary conditions. We then extend the four-box model by increasing its resolution, and compare it with GCM output. A MEP solution is found which is fairly realistic as far as the horizontal large scale organisation of the climate is concerned whereas the vertical structure looks to be unrealistic and presents seriously unstable features. This study suggest that the thermal meridional structure of the atmosphere is predicted fairly well by MEP once the insolation is given but the vertical structure of the atmosphere cannot be predicted satisfactorily by MEP unless constraints are imposed to represent the determination of longwave absorption by water vapour and clouds as a function of the state of the climate. Furthermore an order-of-magnitude estimate of contributions to the material entropy production due to horizontal and vertical processes within the climate system is provided by using two different methods. In both cases we found that approximately 40 mW m−2 K−1 of material entropy production is due to vertical heat transport and 5–7 mW m−2 K−1 to horizontal heat transport.

  5. Biorefining: heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural.

    Science.gov (United States)

    Karinen, Reetta; Vilonen, Kati; Niemelä, Marita

    2011-08-22

    Furfurals are important intermediates in the chemical industry. They are typically produced by homogeneous catalysis in aqueous solutions. However, heterogeneously catalyzed processes would be beneficial in view of the principles of green chemistry: the elimination of homogeneous mineral acids makes the reaction mixtures less corrosive, produces less waste, and facilitates easy separation and recovery of the catalyst. Finding an active and stable water-tolerant solid acid catalyst still poses a challenge for the production of furfural (furan-2-carbaldehyde) and 5-(hydroxymethyl)-2-furaldehyde (HMF). Furfural is produced in the dehydration of xylose, and HMF is formed from glucose and fructose in the presence of an acidic catalyst. Bases are not active in dehydration reaction but do catalyze the isomerization of monosaccharides, which is favorable when using glucose as a raw material. In addition to the desired dehydration of monosaccharides, many undesired side reactions take place, reducing the selectivity and deactivating the catalyst. In addition, the catalyst properties play an important role in the selectivity. In this Review, catalytic conversion approaches are summarized, focusing on the heterogeneously catalyzed formation of furfural. The attractiveness of catalytic concepts is evaluated, keeping in mind productivity, sustainability, and environmental footprint. PMID:21728248

  6. Multiphasic Reaction Modeling for Polypropylene Production in a Pilot-Scale Catalytic Reactor

    Directory of Open Access Journals (Sweden)

    Mohammad Jakir Hossain Khan

    2016-06-01

    Full Text Available In this study, a novel multiphasic model for the calculation of the polypropylene production in a complicated hydrodynamic and the physiochemical environments has been formulated, confirmed and validated. This is a first research attempt that describes the development of the dual-phasic phenomena, the impact of the optimal process conditions on the production rate of polypropylene and the fluidized bed dynamic details which could be concurrently obtained after solving the model coupled with the CFD (computational fluid dynamics model, the basic mathematical model and the moment equations. Furthermore, we have established the quantitative relationship between the operational condition and the dynamic gas–solid behavior in actual reaction environments. Our results state that the proposed model could be applied for generalizing the production rate of the polymer from a chemical procedure to pilot-scale chemical reaction engineering. However, it was assumed that the solids present in the bubble phase and the reactant gas present in the emulsion phase improved the multiphasic model, thus taking into account that the polymerization took place mutually in the emulsion besides the bubble phase. It was observed that with respect to the experimental extent of the superficial gas velocity and the Ziegler-Natta feed rate, the ratio of the polymer produced as compared to the overall rate of production was approximately in the range of 9%–11%. This is a significant amount and it should not be ignored. We also carried out the simulation studies for comparing the data of the CFD-dependent dual-phasic model, the emulsion phase model, the dynamic bubble model and the experimental results. It was noted that the improved dual-phasic model and the CFD model were able to predict more constricted and safer windows at similar conditions as compared to the experimental results. Our work is unique, as the integrated developed model is able to offer clearer ideas

  7. Methods for measuring radon and radon daughter products in underground and free-atmosphere air

    International Nuclear Information System (INIS)

    Various instruments and methods suitable for obtaining data on radon and, in particular, radon daughter products in air have been developed by the National Board of Nuclear Safety and Radiation Protection of the German Democratic Republic: (a) The potential alpha-energy concentration of radon daughters is checked by a small (2.2 kg) working-level meter especially designed for mine conditions. A diaphragm pump, filter holder and surface-barrier detector are the integral components. The sensitivity of the battery-operated instrument makes it possible to determine the potential alpha-energy concentration over the range 4x103 to 100x103 MeV/ltr; (b) A special method is used for making quasi-continuous measurements of the long-term fluctuations of radon daughter-product concentrations; (c) Methods of sufficiently high sensitivity have been developed to determine low concentrations of 222Rn and its short-lived decay products in the free atmosphere; (d) For integrating radon-daughter measurements under varying inhalation conditions, a battery-operated, pocket-sized device was developed. It consists of a small diaphragm pump, a filter disc and two thermoluminescent detectors in a compact arrangement. The minimum detection limit for a 168-hour integration time is 105 MeV.h/ltr for a 2 ltr/h air flow rate. The same filter-TLD combination fitted with a special injector unit instead of the battery-operated pump can also be used as a stationary monitor. (author)

  8. Production of A-hypernuclei in A(p,K+)ΛB reactions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The production of A-hypernuclei in the A(p,K+)ΛB reaction is investigated in the framework of the distorted wave impulse approximation(DWIA).The total cross sections and differential cross sections for various nuclear targets are calculated with an elementary process pN→+NKA where the additional contributions from the N*(1535)resonance and the final state interaction between p and A are included.The dependence of the production cross sections of Λ-hypernuclei on the phenomenological nuclear density and the nucleon number in the target,as well as the distortion effect of the incident proton and outgoing kaon,are also explored.It is shown that the distortion effect tends to decrease the cross sections by a factor of about 3-10.The production cross sections are sensitive to the adopted nuclear density.

  9. Evaluation of Atmospheric Precipitable Water from Reanalysis Products Using Homogenized Radiosonde Observations over China

    Science.gov (United States)

    Zhao, T.; Wang, J.; Dai, A.

    2015-12-01

    Many multi-decadal atmospheric reanalysis products are avialable now, but their consistencies and reliability are far from perfect. In this study, atmospheric precipitable water (PW) from the NCEP/NCAR, NCEP/DOE, MERRA, JRA-55, JRA-25, ERA-Interim, ERA-40, CFSR and 20CR reanalyses is evaluated against homogenized radiosonde observations over China during 1979-2012 (1979-2001 for ERA-40). Results suggest that the PW biases in the reanalyses are within ˜20% for most of northern and eastern China, but the reanalyses underestimate the observed PW by 20%-40% over western China, and by ˜60% over the southwestern Tibetan Plateau. The newer-generation reanalyses (e.g., JRA25, JRA55, CFSR and ERA-Interim) have smaller root-mean-square error (RMSE) than the older-generation ones (NCEP/NCAR, NCEP/DOE and ERA-40). Most of the reanalyses reproduce well the observed PW climatology and interannual variations over China. However, few reanalyses capture the observed long-term PW changes, primarily because they show spurious wet biases before about 2002. This deficiency results mainly from the discontinuities contained in reanalysis RH fields in the mid-lower troposphere due to the wet bias in older radiosonde records that are assimilated into the reanalyses. An empirical orthogonal function (EOF) analysis revealed two leading modes that represent the long-term PW changes and ENSO-related interannual variations with robust spatial patterns. The reanalysis products, especially the MERRA and JRA-25, roughly capture these EOF modes, which account for over 50% of the total variance. The results show that even during the post-1979 satellite era, discontinuities in radiosonde data can still induce large spurious long-term changes in reanalysis PW and other related fields. Thus, more efforts are needed to remove spurious changes in input data for future long-term reanlayses.

  10. Production of stable, non-thermal atmospheric pressure rf capacitive plasmas using gases other than helium or neon

    Science.gov (United States)

    Park, Jaeyoung; Henins, Ivars

    2005-06-21

    The present invention enables the production of stable, steady state, non-thermal atmospheric pressure rf capacitive .alpha.-mode plasmas using gases other than helium and neon. In particular, the current invention generates and maintains stable, steady-state, non-thermal atmospheric pressure rf .alpha.-mode plasmas using pure argon or argon with reactive gas mixtures, pure oxygen or air. By replacing rare and expensive helium with more readily available gases, this invention makes it more economical to use atmospheric pressure rf .alpha.-mode plasmas for various materials processing applications.

  11. Novel Production Method for Plant Polyphenol from Livestock Excrement Using Subcritical Water Reaction

    Directory of Open Access Journals (Sweden)

    Mayu Yamamoto

    2008-01-01

    Full Text Available Plant polyphenol, including vanillin, is often used as the intermediate materials of the medicines and vanilla flavoring. In agriculture generally vanillin is produced from vanilla plant and in industry from lignin of disposed wood pulp. We have recently developed a method for the production of plant polyphenol with the excrement as a natural resource of lignin, of the herbivorous animals, by using the subcritical water. The method for using the subcritical water is superior to that of the supercritical water because in the latter complete decomposition occurs. We have successfully produced the vanillin, protocatechuic acid, vanillic acid, and syringic acid in products. Our method is simpler and more efficient not only because it requires the shorter treatment time but also because it releases less amount of carbon dioxide into the atmosphere.

  12. Immunoassay utilizing biochemistry reaction product via surface-enhanced Raman scattering in near field

    Institute of Scientific and Technical Information of China (English)

    ZHAO Haiying; NI Yi; JIANG Wei; LUO Peiqing; HUANG Meizheng; YIN Guangzhong; DOU Xiaoming

    2005-01-01

    We propose here a kind of applications of surface-enhanced Raman scattering (SERS) to immunology. It is a new enzyme immunoassay based on SERS. In the proposed system, antibody immobilized on a solid substrate reacts with antigen, which binds with another antibody labeled with peroxidase. If this immunocomplex is subjected to reaction with o-phenylenediamine and hydrogenperoxide, azoaniline is generated. This azo compound is adsorbed on a silver colloid and only the azo compound gives a strong surface-enhanced resonance Raman (SERRS) spectrum. A linear relationship was observed between the peak intensity of the N=N stretching band and the concentration of antigen, revealing that one can determine the concentration of antigen by the SERRS measurement of the reaction product. The detection limit of this SERS enzyme immunoassay method was found to be about 10-15 mol/L.

  13. An update on measurements of helium-production reactions with a spallation neutron source

    International Nuclear Information System (INIS)

    This report gives the status, updated since the last Research Coordination Meeting, of alpha-particle production cross sections, emission spectra and angular distributions which we are measuring at the spallation source of fast neutrons at the Los Alamos Meson Physics Facility (LAMPF). Detectors at angles of 30, 60, 90 and 135 degrees are used to identify alpha particles, measure their energy spectra, and indicate the time-of-flight, and hence the energy, of the neutrons inducing the reaction. The useful neutron energy ranges from less than 1 MeV to approximately 50 MeV for the present experimental setup. Targets under study at present include C, N, 0, 27Al, Si, 51V, 56Fe, 59CO, 58,60Ni, 89Y and 93Nb. Data for 59Co have been re-analyzed. The results illustrate the capabilities of the approach, agreement with literature values, and comparisons with nuclear reaction model calculations

  14. Increase of rutin antioxidant activity by generating Maillard reaction products with lysine.

    Science.gov (United States)

    Zhang, Ru; Zhang, Bian-Ling; He, Ting; Yi, Ting; Yang, Ji-Ping; He, Bin

    2016-06-01

    Rutin exists in medicinal herbs, fruits, vegetables, and a number of plant-derived sources. Dietary sources containing rutin are considered beneficial because of their potential protective roles in multiple diseases related to oxidative stresses. In the present study, the change and antioxidation activity of rutin in Maillard reaction with lysine through a heating process were investigated. There is release of glucose and rhamnose that interact with lysine to give Maillard reaction products (MRPs), while rutin is converted to less-polar quercetin and a small quantity of isoquercitrin. Because of their high cell-membrane permeability, the rutin-lysine MRPs increase the free radical-scavenging activity in HepG2 cells, showing cellular antioxidant activity against Cu(2+)-induced oxidative stress higher than that of rutin. Furthermore, the MRPs significantly increased the Cu/Zn SOD (superoxide dismutase) activity and Cu/Zn SOD gene expression of HepG2 cells, consequently enhancing antioxidation activity. PMID:27106712

  15. Cyclotron production of I-123: An evaluation of the nuclear reactions which produce this isotope

    Science.gov (United States)

    Sodd, V. J.; Scholz, K. L.; Blue, J. W.; Wellamn, H. N.

    1970-01-01

    The reactions studied which produce I-123 directly were Sb-121(He-4,2n) I-123, Sb-121(He-3,n) I-123, Te-122(d,n) I-123, Te-122(He-4,p2n) I-123, Te-122(He-3,pn) I-123, and Te-123(He-3,p2n) I-123. Reactions which produce I-123 indirectly through the positron decay of 2.1-hour Xe-123 were Te-122(He-4,3n) Xe-123, Te-122(He-3,2n) Xe-123 and Te-123(He-3,3n) Xe-123. Use of the gas flow I-123 cyclotron target assembly is recommended for the production of I-123 with radiochemical purity greater than 99.995%.

  16. Production of Camphene by Isomerization Reaction on Sulfated ZrO2

    Institute of Scientific and Technical Information of China (English)

    NoraAlejandraComelli; OmarMasini; AlfredoL~zaroCarrascull; EstherNataliaPonzi; MartaIsabelPonzi

    2000-01-01

    The kinetics of camphene production in liquid phase from α-pinene was experimentally determined in an isothermal batch reactor. To this end, a sulfated ZrO2 catalyst was used and the reaction studied in the temperature range of 370-403 K. By analyzing the experimental data, second reaction order for α-pinene was found. A kinetic model is presented which includes term for the catalyst load used. The specific rate constant at 393K was 2.19×10-3 mol·L-1·min-1, the activation energy being 93kJ·mo1·-1. Both values are within the range of literature results.

  17. Rapid Removal of Tetrabromobisphenol A by Ozonation in Water: Oxidation Products, Reaction Pathways and Toxicity Assessment.

    Directory of Open Access Journals (Sweden)

    Ruijuan Qu

    Full Text Available Tetrabromobisphenol A (TBBPA is one of the most widely used brominated flame retardants and has attracted more and more attention. In this work, the parent TBBPA with an initial concentration of 100 mg/L was completely removed after 6 min of ozonation at pH 8.0, and alkaline conditions favored a more rapid removal than acidic and neutral conditions. The presence of typical anions and humic acid did not significantly affect the degradation of TBBPA. The quenching test using isopropanol indicated that direct ozone oxidation played a dominant role during this process. Seventeen reaction intermediates and products were identified using an electrospray time-of-flight mass spectrometer. Notably, the generation of 2,4,6-tribromophenol was first observed in the degradation process of TBBPA. The evolution of reaction products showed that ozonation is an efficient treatment for removal of both TBBPA and intermediates. Sequential transformation of organic bromine to bromide and bromate was confirmed by ion chromatography analysis. Two primary reaction pathways that involve cleavage of central carbon atom and benzene ring cleavage concomitant with debromination were thus proposed and further justified by calculations of frontier electron densities. Furthermore, the total organic carbon data suggested a low mineralization rate, even after the complete removal of TBBPA. Meanwhile, the acute aqueous toxicity of reaction solutions to Photobacterium Phosphoreum and Daphnia magna was rapidly decreased during ozonation. In addition, no obvious difference in the attenuation of TBBPA was found by ozone oxidation using different water matrices, and the effectiveness in natural waters further demonstrates that ozonation can be adopted as a promising technique to treat TBBPA-contaminated waters.

  18. Application of multisection packing concept to sorption-enhanced steam methane reforming reaction for high-purity hydrogen production

    Science.gov (United States)

    Lee, Chan Hyun; Mun, Sungyong; Lee, Ki Bong

    2015-05-01

    Hydrogen has been gaining popularity as a new clean energy carrier, and bulk hydrogen production is achieved through the steam methane reforming (SMR) reaction. Since hydrogen produced via the SMR reaction contains large amounts of impurities such as unreacted reactants and byproducts, additional purification steps are needed to produce high-purity hydrogen. By applying the sorption-enhanced reaction (SER), in which catalytic reaction and CO2 byproduct removal are carried out simultaneously in a single reactor, high-purity hydrogen can be directly produced. Additionally, the thermodynamic limitation of conventional SMR reaction is circumvented, and the SMR reaction process becomes simplified. To improve the performance of the SER, a multisection packing concept was recently proposed. In this study, the multisection packing concept is experimentally demonstrated by applying it to a sorption-enhanced SMR (SE-SMR) reaction. The experimental results show that the SE-SMR reaction is significantly influenced by the reaction temperature, owing to the conflicting dependence of the reaction rate and the CO2 sorption uptake on the reaction temperature. Additionally, it is confirmed that more high-purity hydrogen (<10 ppm of CO) can be produced by applying the multisection packing concept to the SE-SMR reactions operated at sufficiently high temperatures where the SMR reaction is not limited by rate.

  19. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles

    Science.gov (United States)

    Williams, Brent J.; Zhang, Yaping; Zuo, Xiaochen; Martinez, Raul E.; Walker, Michael J.; Kreisberg, Nathan M.; Goldstein, Allen H.; Docherty, Kenneth S.; Jimenez, Jose L.

    2016-04-01

    Atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality and, often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completion of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a gas chromatography column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer. Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO+ (m/z 30), NO2+ (m/z 46), SO+ (m/z 48), and SO2+ (m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO2+ (m/z 44) makes up a major component of the decomposition signal, along with smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z 53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate mass concentrations measured by an AMS reveal good correlation, with improved correlations for OA when compared to the AMS oxygenated OA (OOA

  20. Electronic Nose Monitoring the Maillard Reaction Flavors of Sesame Oil from Different Production Processes

    Directory of Open Access Journals (Sweden)

    Su Dong-Yang

    2014-07-01

    Full Text Available The objective in this study was to evaluate the capacity of electronic nose to monitoring the effect of different Maillard reaction processes on natural flavors of sesame oil, using a specific Electronic Nose device (PEN3. The flavors were prepared by Maillard reaction using chemical constituents from water extract of Lentinus and other precursors. The optimum conditions of reaction process was determined by using orthogonal test design, then an Electronic Nose (PEN3was used to characterize and classify eight different flavors from different reaction process and sesame oil from market. This method firstly sampled aroma composition emanating from the flavors by PEN3 systems and then obtained response values of PEN3. Principal Component Analysis (PCA and Linear Discriminant Analysis (LDA were used in order to investigate whether the electronic nose was able to distinguish among different Maillard Reaction Production (MRP. The loadings analysis was used to identify the sensors responsible for discrimination in the current pattern file. The results of this study showed that the basic components added with lysine, xylose and glycerin, heated in glycerine bath at 140C for 120 min, was a novel flavors with sesame oil flavor and taste. The electronic nose PEN 3 can discriminate successfully different MRPs using both PCA and LDA analysis. But, it was not able to detect a clear difference in the sample of similar aroma with sesame oil using PCA analysis. Some sensors have the highest influence in the current pattern file for electronic nose PEN 3. A subset of few sensors can be chosen to explain all the variance. This result could be used in further studies to optimize the number of sensors.

  1. Gas-phase reactivity of peptide thiyl (RS•), perthiyl (RSS•), and sulfinyl (RSO•) radical ions formed from atmospheric pressure ion/radical reactions.

    Science.gov (United States)

    Tan, Lei; Xia, Yu

    2013-04-01

    In this study, we demonstrated the formation of gas-phase peptide perthiyl (RSS•) and thiyl (RS•) radical ions besides sulfinyl radical (RSO•) ions from atmospheric pressure (AP) ion/radical reactions of peptides containing inter-chain disulfide bonds. The identity of perthiyl radical was verified from characteristic 65 Da (•SSH) loss in collision-induced dissociation (CID). This signature loss was further used to assess the purity of peptide perthiyl radical ions formed from AP ion/radical reactions. Ion/molecule reactions combined with CID were carried out to confirm the formation of thiyl radical. Transmission mode ion/molecule reactions in collision cell (q2) were developed as a fast means to estimate the population of peptide thiyl radical ions. The reactivity of peptide thiyl, perthiyl, and sulfinyl radical ions was evaluated based on ion/molecule reactions toward organic disulfides, allyl iodide, organic thiol, and oxygen, which followed in order of thiyl (RS•) > perthiyl (RSS•) > sulfinyl (RSO•). The gas-phase reactivity of these three types of sulfur-based radicals is consistent with literature reports from solution studies.

  2. Safety assessment of Maillard reaction products of chicken bone hydrolysate using Sprague-Dawley rats

    Directory of Open Access Journals (Sweden)

    Jin-Zhi Wang

    2016-03-01

    Full Text Available Background: The Maillard reaction products of chicken bone hydrolysate (MRPB containing 38% protein, which is a derived product from chicken bone, is usually used as a flavor enhancer or food ingredient. In the face of a paucity of reported data regarding the safety profile of controversial Maillard reaction products, the potential health effects of MRPB were evaluated in a subchronic rodent feeding study. Methods: Sprague–Dawley rats (SD, 5/sex/group were administered diets containing 9, 3, 1, or 0% of MRPB derived from chicken bone for 13 weeks. Results: During the 13-week treatment period, no mortality occurred, and no remarkable changes in general condition and behavior were observed. The consumption of MRPB did not have any effect on body weight or feed and water consumption. At the same time, there was no significant increase in the weights of the heart, liver, lung, kidney, spleen, small intestine, and thymus in groups for both sexes. Serological examination showed serum alanine aminotransferase in both sexes was decreased significantly, indicating liver cell protection. No treatment-related histopathological differences were observed between the control and test groups. Conclusion: Based on the results of this study, the addition of 9% MRPB in the diet had no adverse effect on both male and female SD rats during the 90-day observation. Those results would provide useful information on the safety of a meaty flavor enhancer from bone residue as a byproduct of meat industry.

  3. Encapsulation of ascorbic acid promotes the reduction of Maillard reaction products in UHT milk.

    Science.gov (United States)

    Troise, Antonio Dario; Vitiello, Daniele; Tsang, Catherine; Fiore, Alberto

    2016-06-15

    The presence of amino groups and carbonyls renders fortified milk with ascorbic acid particularly susceptible to the reduction of available lysine and to the formation of Maillard reaction products (MRPs), as Nε-(carboxyethyl)-l-lysine (CEL), Nε-(carboxymethyl)-l-lysine (CML), Amadori products (APs) and off-flavors. A novel approach was proposed to control the Maillard reaction (MR) in fortified milk: ascorbic acid was encapsulated in a lipid coating and the effects were tested after a lab scale UHT treatment. Encapsulation promoted a delayed release of ascorbic acid and a reduction in the formation of MRPs. Total lysine increased up to 45% in milk with encapsulated ascorbic acid, while reductions in CML, CEL and furosine ranged from 10% to 53% compared with control samples. The effects were also investigated towards the formation of amide-AGEs (advanced glycation end products) by high resolution mass spectrometry (HRMS) revealing that several mechanisms coincide with the MR in the presence of ascorbic acid. PMID:27240727

  4. ESR evidence for radical production from the reaction of ozone with unsaturated lipids

    Energy Technology Data Exchange (ETDEWEB)

    Church, D.F.; McAdams, M.L..; Pryor, W.A. (Louisiana State Univ., Baton Rouge, (United States))

    1991-03-15

    The authors report electron spin resonance (ESR) spin trapping evidence for radical production by the reaction of ozone with unsaturated compounds. Soy and egg phosphatidylcholine liposomes, fatty acid emulsions, and homogeneous aqueous solutions of 3-hexenoic acid were treated with ozone in the presence of the spin trap {alpha}-phenyl-N-tert-butyl nitrone (PBN). Under these conditions, they observe spin adducts resulting from the trapping of both organic carbon- and oxygen-centered radicals. When the lipid-soluble antioxidant alpha-tocopherol is included in the liposomal systems, the formation of spin adducts is completely inhibited. The authors suggest that radicals giving rise to these spin adducts arise form the rapid decomposition of the 1,2,3-trioxolane intermediate that is initially formed when ozone reacts with the carbon-carbon double bonds of the substrates. These free radicals are not formed by the decomposition of the Criegee ozonide, since little of the ozonide is formed in the presence of water. Although hydrogen peroxide is the predominate peroxidic product of the ozone/alkene reaction, its decomposition is not responsible for the observed radical production since neither catalase nor iron chelators significantly affect the spin adduct yield. The radical yield is approximately 1%. Since a polyunsaturated fatty acid (PUFA) such as linoleic acid produces much higher concentrations of spin trappable radicals than does the monounsaturated fatty oleic acid, the results also suggest that sites in the lung containing higher levels of PUFA may be an important target for radical formation.

  5. The impact of energy production on the atmosphere: Laboratory and field studies of emissions from oil and gas production and their chemical transformation

    Science.gov (United States)

    Li, Rui

    Over the past decades, the rapid development of energy production in the U.S. has led to significant changes in atmospheric emissions and transformation of trace gas and particles, which are still very uncertain and poorly understood. Through laboratory, modeling and field experiments we hope to better understand the trace gas emission and their contribution to secondary organic aerosols (SOA) formation in the oil and natural gas (O&NG) operations. A fast time-response Oxidation Flow Reactor (OFR) is used for the study of SOA formation from oil vapors. The radical chemistry and quantification of OH exposure (OHexp) in the reactor under various conditions were investigated using a photochemical kinetic model. An OHexp estimation equation derived from the model was shown to agree with measurements in several field campaigns. This work further establishes the usefulness of such reactors in atmospheric studies. Motivated from the SOA observations of Gulf of Mexico oil spill, the SOA formation from organic compounds of different volatility in the oil vapors was studied in the laboratory using OFR. We use the evaporation time dependence on volatility of the precursors to quantify their contribution to total SOA formation. This study shows (1) organic compounds of intermediate volatility contribute the large majority of SOA mass formed, (2) the mass spectral signature of SOA shows good agreement with that of ambient SOA formed during oil spill. These results in O&NG operations, the air toxic hydrogen sulfide (H 2S) can be released at wellheads, separation and storage tanks. Here, quantitative, fast time-response measurements of H2S using Proton-Transfer-Reaction Mass-Spectrometry (PTR-MS) instruments in an O&NG field are presented. A laboratory calibration study was performed to measure the humidity dependent sensitivities of H2S. The close correlation between H2S and CH4 and significant H2S levels downwind of storage tanks suggest that H2S emissions associated with O

  6. In vitro antibacterial analysis of phenoloxidase reaction products from the sea cucumber Apostichopus japonicus.

    Science.gov (United States)

    Jiang, Jingwei; Zhou, Zunchun; Dong, Ying; Cong, Cong; Guan, Xiaoyan; Wang, Bai; Chen, Zhong; Jiang, Bei; Yang, Aifu; Gao, Shan; Sun, Hongjuan

    2014-08-01

    Three phenoloxidases (POs) of Apostichopus japonicus, AjPOs (AjPO1, AjPO2 and AjPO3), were partially purified from the coelomocytes with an electrophoretic method, and then employed for the in vitro antibacterial analysis. Using L-3,4-dihydroxyphenylalanine (L-DOPA) as a substrate, AjPO1 and AjPO2-derived compounds inhibited the growth of Vibrio splendidus and Staphylococcus aureus, while AjPO3-derived compounds only inhibited the growth of V. splendidus. When dopamine was used as a substrate, AjPO1 and AjPO3-derived compounds inhibited the growth of V. splendidus and Vibrio harveyi, while AjPO2-derived compounds only inhibited the growth of V. splendidus. Moreover, AjPO1-derived compounds showed stronger inhibition in V. harveyi than AjPO3-derived compounds did. However, all of the three AjPO reaction products showed no inhibitions on the growth of Pseudoalteromonas nigrifaciens, Shewanella baltica, Micrococcus lysodeikticus, Streptococcus dysgalactiae and Nocardiopsis sp. with L-DOPA or dopamine as a substrate. Scanning electron microscope (SEM) observation of V. harveyi treated by AjPOs and dopamine showed that AjPO1-derived compounds resulted in massive bacteriolysis, AjPO2-derived compounds caused no obvious alteration on bacterial morphology, and AjPO3-derived compounds increased the ratio of spheroidal bacteria. All these results suggested that AjPO reaction products derived by L-DOPA and dopamine had different but limited antibacterial spectrum, and the different antibacterial effects observed among three AjPOs resulted from the different reaction products generated by AjPOs with the same substrate. PMID:24931626

  7. Pressure Effects on Product Channels of the Allyl Radical Reactions; C3H5+C3H5 and C3H5+CH3

    Science.gov (United States)

    Halpern, J. B.; N'Doumi, M.; Fahr, A.

    2011-12-01

    Relatively large hydrocarbon molecules (C4, C6 and larger) have been detected in several planetary environments. The mechanism for the formation of such large molecular species and detailed mechanism for their potential destruction are not well understood and are of considerable current interest. Previously we have studied the kinetics and product channels of small unsaturated hydrocarbon radical (C2 and C3s) reactions relevant to planetary atmospheric modeling. Reactions of C2 radicals (such as vinyl, H2CCH and ethynyl C2H) and C3 radicals (such as propargyl, HCCCH2) can affect the abundances of a large number of stable observable C3, C4, C5, C6 and larger molecules, including linear, aromatic and even poly aromatic molecules. Pressure-dependent product yields have been determined experimentally for the self- and cross-radical reactions performed at 298 K and at pressures between ~4 Torr (0.5 kPa) and 760 Torr (101 kPa). Final reaction products were quantitatively determined using a gas chromatograph with mass spectrometry/flame ionization detection (GC/MS/FID). In some cases complementary computational studies extended the pressure and temperature range of the experiments and provided valuable information on the complex reaction mechanisms. Theses studies provide a systematic framework so that important energetic and structural parameters for radical-radical reactions can be assessed. Here we report recent results for the allyl radical reactions H2CCCH3+ H2CCCH3 and H2CCCH3+CH3. For the allyl radical self-reaction, at high pressures the "head -to-head", combination channel forming 1,5-hexadiene is dominant with a combination/disproportionation = 1,5-hexadiene/propyne ratio of about 24 at 500 Torr (67 kPa, T=298K). At low pressures the ratio is substantially reduced to about 1.2 (at 0.3 kPa) and other major products are observed including allene, propene, 1-butene and propyne.

  8. Acute allergic reactions in Vietnamese children after drinking a new milk product.

    Science.gov (United States)

    Vo, Thuan Huu; Le, Ninh Hoang; Patel, Mahomed Said; Phan, Lan Trong; Tran Minh, Nhu Nguyen

    2012-02-01

    In early October 2009, pediatricians in hospitals in Ho Chi Minh City (HCMC) reported an unusual increase in the number of children presenting with an acute onset of itchy rash and some with breathing difficulties shortly after drinking milk products. The pediatricians considered the illness to be an allergic reaction to milk. The objective of our investigation was to identify the cause of this acute illness. Following early case reports, all hospitals in HCMC were requested to report cases of this illness. Parents were advised to take children with symptoms to a hospital immediately. A case-series was conducted to generate hypotheses on the possible causes of the illness and was followed by a case-control study to test the hypothesis. Parents of all cases and controls were interviewed face-to-face. The association between food items and the allergy was tested using conditional logistics regression. From 9 to 28 October 2009, 19 cases fulfilled the case definition, and 16 of the 17 cases included in the study had consumed milk supplemented with galacto-oligosaccharides (GOS) shortly before the onset of illness. Fifty age-matched, neighborhood controls were enrolled into the case control study. Of the 30 food items consumed by study participants in the preceding 24 h, only the odds ratio (OR) of milk supplemented with GOS was statistically significant: OR=34.0 (95% CI=3.9, 294.8). Laboratory tests of this milk product did not reveal any unusual properties, chemicals, or other toxic substances. This is the first report of an acute allergic reaction to fresh milk supplemented with GOS. However, the specific allergen in this product was not identified. Further cases were not reported once this product was withdrawn from sale. Vietnam's food safety authorities should expand laboratory capacity to detect allergens in food products.

  9. 22Na production cross sections from the 19F(α,n) reaction

    International Nuclear Information System (INIS)

    The thick-target neutron yield from the 19F(α,n) reaction has been measured in 0.25-MeV steps over the energy range 3.5 less than or equal to E/sub α/ less than or equal to 10.0 MeV. From these measurements, 22Na production cross sections have been deduced. These cross sections are compared with the results of a Hauser-Feshbach calculation and with the results of previous experimental investigations. 10 references

  10. Preparative isolation of polymerase chain reaction products using mixed-mode chromatography.

    Science.gov (United States)

    Matos, T; Silva, G; Queiroz, J A; Bülow, L

    2015-11-15

    The polymerase chain reaction (PCR) has become one of the most useful techniques in molecular biology laboratories around the world. The purification of the target DNA product is often challenging, however, and most users are restricted to employing available commercial kits. The recent developments in mixed-mode chromatography have shown higher selectivity for a variety of nucleic acid-containing samples. Capto Adhere is a mixed-mode chromatography resin that offers a high-selectivity ligand and is here applied for the purification of amplified DNAs from PCR mixtures in a 10-min single step, with yields above 95%, high linearity, and high precision for different concentrations.

  11. Limonene and its ozone-initiated reaction products attenuate allergic lung inflammation in mice

    DEFF Research Database (Denmark)

    Hansen, Jitka S; Nørgaard, Asger W; Koponen, Ismo K;

    2016-01-01

    and pulmonary irritation was investigated in addition to ovalbumin-specific antibodies, inflammatory cells, total protein and surfactant protein D in bronchoalveolar lavage fluid and hemeoxygenase-1 and cytokines in lung tissue. Overall, airway allergy was not exacerbated by any of the exposures. In contrast...... showed that irritation responses might be modulated by airway allergy. However, aggravation of allergic symptoms was observed by neither exposure to ozone nor exposure to ozone-initiated limonene reaction products. In contrast, anti-inflammatory properties of the tested limonene-containing pollutants...... might attenuate airway allergy....

  12. Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles

    OpenAIRE

    Riccobono, F.; Schobesberger, S.; Scott, CE; Dommen, J; Ortega, IK; L. Rondo; Almeida, J; Amorim, A.; BIANCHI, F.; Breitenlechner, M.; David, A.(CERN, European Organization for Nuclear Research, Geneva, Switzerland); Downard, A.; Dunne, EM; J. Duplissy; S. Ehrhart

    2014-01-01

    Atmospheric new-particle formation affects climate and is one of the least understood atmospheric aerosol processes. The complexity and variability of the atmosphere has hindered elucidation of the fundamental mechanism of new-particle formation from gaseous precursors. We show, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN, that sulfuric acid and oxidized organic vapors at atmospheric concentrations reproduce particle nucleation rates observed in ...

  13. Measurement of the Residual Gases O2 and CO2 in Meat Products Packed in Modified Atmosphere

    Directory of Open Access Journals (Sweden)

    Jozef Čapla

    2013-02-01

    Full Text Available Nowadays, consumers have increased demand for quality and food safety and also rising demand for natural foods without chemical additives. There are many ways to presserve freshness of these products, one of them is modified atmosphere packaging, which can mean elimination and/or replacement surrounding the product before closing it in package with a mixture of gases other than the original ambient air atmosphere. for replacement of atmosphere are generally used three types of gases such as carbon dioxide, oxygen and nitrogen. this type of packaging is often used for meat and meat products, which belongs to foods that are under normal conditions perishable and for increasing the shelf life of meat products are also used various other preservation methods or their combinations. Packaging of meat and meat products in modified atmosphere is usually made with a high content of carbon dioxide, which has good bacteriostatic and fungistatic effect and is also an effective mean for increasing the shelf life of packaged products during storage and sale.

  14. A laboratory investigation of the production and properties of molecular and radical species pertinent to planetary atmospheres

    Science.gov (United States)

    Fahr, Askar; Herron, John; Laufer, Allan H.

    1990-01-01

    Vinylidene (H2C=C) is shown to be the largest photodecomposition channel in the direct photolysis of both C2H2 and C2H4. The chemistry of H2C=C as it relates to planetary atmospheres is discussed. The vinyl radical (C2H3), important in the acetylene chemistry cycle, has been directly observed spectroscopically and the kinetics of several key reactions of this species measured.

  15. Effect of entrance channel parameters on the fusion of two heavy ions: Excitation functions of reaction products in 16O+66Zn and 37Cl + 45Sc reactions

    Indian Academy of Sciences (India)

    Suparne Sodaye; B S Tomar; A Goswami

    2006-06-01

    Excitation functions of reaction products formed in 16O+66Zn and 37Cl + 45Sc systems, leading to the same compound nucleus, 82Sr, were measured using recoilcatcher technique and off-line -ray spectrometry. The contribution of non-compound processes like transfer and incomplete fusion (ICF) reactions to the cross-sections of different evaporation residues were delineated by comparing the experimental data with the predictions of Monte Carlo simulation code PACE2. The results show that non-compound processes become a significant fraction of the total reaction cross-section in 16O+66Zn systems in the beam energy range studied, while 37Cl + 45Sc gives mainly compound nucleus products. The mass asymmetry dependence of the fusion and non-compound cross-sections have been analysed in terms of the static fusion model and sum rule model.

  16. Study of the corrosion products formed on carbon steels in the tropical atmosphere of Panama

    Directory of Open Access Journals (Sweden)

    Jaén, J. A.

    2003-12-01

    Full Text Available Mössbauer spectroscopy and X-ray powder diffraction (in selected samples have been used to characterize corrosion products on carbon steels after atmospheric exposure to the tropical Panamanian locations of Panama and Colon, classified according to ISO 9223 as C3 and C5, respectively. Goethite (α-FeOOH of intermediate particle size (20-100 nm, lepidocrocite (γ-FeOOH, a spinel phase consisting of non-stoichiometric magnetite (Fe3-xO4 and/or maghemite (γ-Fe2O3 and nano-sized particles were identified in the corrosion products. The spinel phase is related to short term atmospheric exposure transforms in time to other corrosion products. The corrosion resistance increased with fraction of goethite following a saturation-type behavior.

    Se caracterizaron los productos de corrosión de aceros al carbono expuestos a las atmósferas tropicales panameñas localizadas en Panamá y Colón, mediante el uso de la espectroscopia Mössbauer y difracción de rayos-X (en muestras seleccionadas. Las atmósferas se clasifican como C3 y C5, respectivamente, de acuerdo a la norma ISO 9223. Se lograron identificar los compuestos goethita (α-FeOOH de tamaño de partícula intermedio (20-100 nm, lepidocrocita (γ-FeOOH, una fase de espinela consistente en magnetita no estequiométrica (Fe3-xO4 y/o maghemita (γ-Fe2O3, y nanopartículas. La fase de espinela se puede correlacionar con exposiciones cortas a la atmósfera, transformándose en el tiempo en otros productos de corrosión. La resistencia a la corrosión se incrementa con la cantidad de goethita siguiendo una conducta de saturación.

  17. Atmospheric transport modelling of time resolved 133Xe emissions from the isotope production facility ANSTO, Australia.

    Science.gov (United States)

    Schöppner, M; Plastino, W; Hermanspahn, N; Hoffmann, E; Kalinowski, M; Orr, B; Tinker, R

    2013-12-01

    The verification of the Comprehensive Nuclear-Test Ban Treaty (CTBT) relies amongst other things on the continuous and worldwide monitoring of radioxenon. The characterization of the existing and legitimate background, which is produced mainly by nuclear power plants and isotope production facilities, is of high interest to improve the capabilities of the monitoring network. However, the emissions from legitimate sources can usually only be estimated. For this paper historic source terms of (133)Xe emissions from the isotope production facility at ANSTO, Sydney, Australia, have been made available in a daily resolution. Based on these high resolution data, different source term sets with weekly, monthly and yearly time resolution have been compiled. These different sets are then applied together with atmospheric transport modelling (ATM) to predict the concentration time series at two radioxenon monitoring stations. The results are compared with each other in order to examine the improvement of the prediction capability depending on the used time resolution of the most dominant source term in the region.

  18. Stable Hydrogen Production from Ethanol through Steam Reforming Reaction over Nickel-Containing Smectite-Derived Catalyst

    OpenAIRE

    Hiroshi Yoshida; Ryohei Yamaoka; Masahiko Arai

    2014-01-01

    Hydrogen production through steam reforming of ethanol was investigated with conventional supported nickel catalysts and a Ni-containing smectite-derived catalyst. The former is initially active, but significant catalyst deactivation occurs during the reaction due to carbon deposition. Side reactions of the decomposition of CO and CH4 are the main reason for the catalyst deactivation, and these reactions can relatively be suppressed by the use of the Ni-containing smectite. The Ni-containing ...

  19. Production method of raw material dispersion liquid for reaction layer of gas diffusion electrode

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, Choichi; Motoo, Satoshi

    1987-10-13

    Heretofore, in order to make a raw material dispersion liquid of a reaction layer of a gas diffusion electrode, water repellent carbon, polytetrafluoroethylene, water and a surface active agent are mixed, then a cake is made by filtering this mixed liquid and afterwards the cake is heated and dried before being crushed. Since this crushing is done mechanically, homogeneous fine raw material powders cannot be obtained. Accordingly, even when a reaction layer is made by sintering a mixture of this powder, hydrophilic carbon black or hydrophilic carbon black carrying catalyst, and polytetrafluoroethylene, the hydrophilic part and the water repellent part are not distributed homogeneously and the catalytic performance of the reaction layer declines. In order to solve this, this invention proposes a production method that water repellent carbon black, polyterafluoroethylene, water and a surface active agent are mixed, then this mixture is frozen so that the surface active agent may not become active and homogeneous condensed cores of water repellent carbon black and polytetrafluoroethylene powders may be formed, and afterwards a homogeneous fine raw material dispersion liquid is made from thawing the condensed cores without change by thawing the above frozen mixture.

  20. Excitation of the reaction of 123I, 123Xe and 123Cs radionuclides production

    International Nuclear Information System (INIS)

    The results of calculations of charged particle induced reactions for the production of radioisotopes 123I, 123Cs, 123Xe are discussed. The excitation functions for reactions 124Xe(p,2n), 124Xe(d,3n), 124Xe(p,pn+np), 127I(p,5n), 124Xe(d,p2n), 123Te(p,n), 124Te(p,2n), 121Sb(α,2n)123I are calculated on the base of statistical model in energy range up to 80 MeV. The agreement between the calculations and experiment is reasonable as a rule. It is shown, that taking account of the radiative channel is very important near threshold, particularly for neutron deficient nuclei. The analysis performed showed that the calculations with code ALICE can serve as a reasonable evaluation for the excitation functions of various reactions, if they are tested by experiment and by comparison of relevant computer codes. 55 refs.; 9 figs.; 10 tabs

  1. Production of diacylglycerols from glycerol monooleate and ethyl oleate through free and immobilized lipase-catalyzed consecutive reactions.

    Science.gov (United States)

    Jin, Juan; Li, Dan; Zhu, Xue Mei; Adhikari, Prakash; Lee, Ki-Teak; Lee, Jeung-Hee

    2011-02-28

    The ability of free and immobilized lipase on the production of diacylglycerols (DAG) by transesterification of glycerol monooleate (GMO) and ethyl oleate was investigated. Among three free lipases such as lipase G (Penicillium cyclopium), lipase AK (Pseudomonas fluorescens) and lipase PS (Pseudomonas cepacia), lipase PS exhibited the highest DAG productivity, and the DAG content gradually increased up to 24 hours reaction and then remained steady. The comparative result for DAG productivity between free lipase PS and immobilized lipases (lipase PS-D and Lipozyme RM IM) during nine times of 24 hours reaction indicated that total DAG production was higher in immobilized lipase PS-D (183.5mM) and Lipozyme RM IM (309.5mM) than free lipase PS (122.0mM) at the first reaction, and that the DAG production rate was reduced by consecutive reactions, in which more sn-1,3-DAG was synthesized than sn-1,2-DAG. During the consecutive reactions, the activity of lipase PS was relatively steady by showing similar DAG content, whereas DAG production of lipase PS-D and Lipozyme RM IM was gradually decreased to 69.9 and 167.1mM at 9th reaction, respectively, resulting in 62% and 46% reduced production when compared with 1st reaction. Interestingly, from 7th reaction lipase PS produced more DAG than immobilized lipase PS-D, and exhibited a stable activity for DAG production. Therefore, the present study suggested that DAG productivity between GMO and ethyl oleate was higher in immobilized lipases than free lipases, but the activity was reduced with repeated uses. PMID:20951847

  2. Allowed energetic pathways for the three-body recombination reaction of nitrogen monoxide with the hydroxyl radical and their potential atmospheric implications

    OpenAIRE

    Luca D´Ottone; Adeel Jamal

    2010-01-01

    The OH initiated oxidation of nitric oxide (NO) is an important atmospheric reaction being, during the day time, the main channel that leads to the formation of HONO a reservoir species for both OH and odd nitrogen. This work reports ab initio study of the Potential Energy Surface (PES) of NO + OH using density functional theory calculations conducted at the B3LYP level of theory with a 6-311g (d,p) basis set. We confirmed experimental observations pointing out that the main channel for this ...

  3. Production of a covalent flavin linkage in lipoamide dehydrogenase. Reaction with 8-Cl-FAD.

    Science.gov (United States)

    Moore, E G; Cardemil, E; Massey, V

    1978-09-25

    A method is described for preparation of apolipoamide dehydrogenase which gives quantitative removal of FAD. Active holoenzyme can be reconstituted by incubation with FAD. Reconstitution of apoenzyme with 8-Cl-FAD results in the fixation of most of the flavin to the protein in a covalently bound form. The portion noncovalently bound was shown to be unmodified 8-Cl-FAD. The covalently bound flavin has an absorption spectrum quite different from that of 8-Cl-FAD. It has a single band in the visible with a maximum at 459 nm (extinction coefficient of 22 mM-1 cm-1) and a shoulder at 480 nm. Model reactions between 8-Cl-Flavin (riboflavin or FAD) and organic thiols (thiophenol, beta-mercaptoethanol, or N-acetylcysteine) give products with spectra which are similar to that of FAD covalently bound to lipoamide dehydrogenase. The products of the model reactions have a single visible band with a maximum at 480 nm (extinction coefficient of 23.6 mM-1 cm-1 to 28.4 mM-1 cm-1) and a shoulder at 460 nm. The products of the model reaction and the covalently bound FAD of lipoamide dehydrogenase appear to be the result of a nucleophilic attack on the carbon at position 8 of the flavin ring by a thiolate anion, displacing the chloride. Thus, the product of the model reaction is 8-(RS)-flavin, and the product of the reaction between 8-Cl-FAD and protein probably has a cysteinyl residue covalently attacked at position 8 of FAD. Reconstitution of apoliopoamide dehydrogenase with 8-Cl-FAD gives two enzyme products which are fractionated by ammonium sulfate. Enzyme fractionating between 20% and 45% ammonium sulfate is monomeric and contains covanently bound FAD. Enzyme fractionating between 55% and 75% ammonium sulfate is dimeric and contains both covalently bound FAD and noncovalently bound 8-Cl-FAD. Both protein fractions contain one FAD per protein subunit and both are active with physiological substrates with Km values for NAD and dihydrolipoamide similar to those of native lipoamide

  4. Production of a covalent flavin linkage in lipoamide dehydrogenase. Reaction with 8-Cl-FAD.

    Science.gov (United States)

    Moore, E G; Cardemil, E; Massey, V

    1978-09-25

    A method is described for preparation of apolipoamide dehydrogenase which gives quantitative removal of FAD. Active holoenzyme can be reconstituted by incubation with FAD. Reconstitution of apoenzyme with 8-Cl-FAD results in the fixation of most of the flavin to the protein in a covalently bound form. The portion noncovalently bound was shown to be unmodified 8-Cl-FAD. The covalently bound flavin has an absorption spectrum quite different from that of 8-Cl-FAD. It has a single band in the visible with a maximum at 459 nm (extinction coefficient of 22 mM-1 cm-1) and a shoulder at 480 nm. Model reactions between 8-Cl-Flavin (riboflavin or FAD) and organic thiols (thiophenol, beta-mercaptoethanol, or N-acetylcysteine) give products with spectra which are similar to that of FAD covalently bound to lipoamide dehydrogenase. The products of the model reactions have a single visible band with a maximum at 480 nm (extinction coefficient of 23.6 mM-1 cm-1 to 28.4 mM-1 cm-1) and a shoulder at 460 nm. The products of the model reaction and the covalently bound FAD of lipoamide dehydrogenase appear to be the result of a nucleophilic attack on the carbon at position 8 of the flavin ring by a thiolate anion, displacing the chloride. Thus, the product of the model reaction is 8-(RS)-flavin, and the product of the reaction between 8-Cl-FAD and protein probably has a cysteinyl residue covalently attacked at position 8 of FAD. Reconstitution of apoliopoamide dehydrogenase with 8-Cl-FAD gives two enzyme products which are fractionated by ammonium sulfate. Enzyme fractionating between 20% and 45% ammonium sulfate is monomeric and contains covanently bound FAD. Enzyme fractionating between 55% and 75% ammonium sulfate is dimeric and contains both covalently bound FAD and noncovalently bound 8-Cl-FAD. Both protein fractions contain one FAD per protein subunit and both are active with physiological substrates with Km values for NAD and dihydrolipoamide similar to those of native lipoamide

  5. Characterization of hypersensitivity reactions reported among Andrographis paniculata users in Thailand using Health Product Vigilance Center (HPVC) database

    OpenAIRE

    Suwankesawong, Wimon; Saokaew, Surasak; Permsuwan, Unchalee; Chaiyakunapruk, Nathorn

    2014-01-01

    Background Andrographis paniculata (andrographis) is one of the herbal products that are widely used for various indications. Hypersensitivity reactions have been reported among subjects receiving Andrographis paniculata in Thailand. Understanding of characteristics of patients, adverse events, and clinical outcomes is essential for ensuring population safety. This study aimed to describe the characteristics of hypersensitivity reactions reported in patients receiving andrographis containing ...

  6. Operando magnetic resonance: monitoring the evolution of conversion and product distribution during the heterogeneous catalytic ethene oligomerisation reaction.

    Science.gov (United States)

    Roberts, S Tegan; Renshaw, Matthew P; Lutecki, Michal; McGregor, James; Sederman, Andrew J; Mantle, Mick D; Gladden, Lynn F

    2013-11-18

    Operando magnetic resonance (MR) spectroscopy has been used to follow an ethene oligomerisation reaction performed at 110 °C, 28 barg over a 1 wt% Ni/SiO2-Al2O3 catalyst. Spectra acquired over the timecourse of the reaction allow the calculation of conversion and product distribution as a function of time-on-stream. PMID:24088715

  7. Ozonation of trimethoprim in aqueous solution: identification of reaction products and their toxicity.

    Science.gov (United States)

    Kuang, Jiangmeng; Huang, Jun; Wang, Bin; Cao, Qiming; Deng, Shubo; Yu, Gang

    2013-05-15

    This work aimed to better understand the ozonation process of a typical antibiotic pharmaceutical, trimethoprim in aqueous solution. The parent compound was almost completely degraded with ozone dose up to 3.5 mg/L with no mineralization. Twenty one degradation products were identified using an electrospray quadrupole time-of-flight mass spectrometer. Several ozonation pathways were proposed including hydroxylation, demethylation, carbonylation, deamination and methylene group cleavage. Two species of luminescent bacteria Photobacterium phosphoreum and Vibrio qinghaiensis were selected to assess the toxicity of ozonation products. For P. phosphoreum, higher level of toxicity was observed compared to the parent compound, but a negligible toxicity change was observed for V. qinghaiensis, indicating different modes of action for the same water sample. This was further confirmed by quantitative structure-active relationship analysis. This work proves the dominant role of ozone rather than hydroxyl radicals in the reaction and the potential risk after ozonation.

  8. Hydrogen production reaction with a metal oxide catalyst in high pressure high temperature water

    International Nuclear Information System (INIS)

    Hydrogen production from biomass was attempted in high pressure high temperature water at 573 K by adopting partial oxidation to increase the yield of H2 via CO production in the presence of ZnO. The results revealed that an addition of H2O2 as an oxidant to the reaction of glucose and sugarcane bagasse brought about the trend of increasing the yields of H2, CO, and CO2. However, the sensitivity of H2 yield on H2O2 amount was different from those of CO and CO2, namely the excess amount of H2O2 tends to decrease the H2 yield with giving a maximum at a certain H2O2 amount. These indicated that the controllability of partial oxidation would be a key factor for maximizing the H2 yield through biomass conversion by partial oxidative gasification in high pressure high temperature water

  9. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Science.gov (United States)

    2010-07-01

    ... substituted oxirane, formaldehyde-phenol polymer glycidyl ether, substituted proplyamine and...-phenol polymer glycidyl ether, substituted proplyamine and polyethylenepolyamines (generic). (a) Chemical... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl...

  10. Estimates of Radioxenon Released from Southern Hemisphere Medical isotope Production Facilities Using Measured Air Concentrations and Atmospheric Transport Modeling

    International Nuclear Information System (INIS)

    The International Monitoring System (IMS) of the Comprehensive-Nuclear-Test-Ban-Treaty monitors the atmosphere for radioactive xenon leaking from underground nuclear explosions. Emissions from medical isotope production represent a challenging background signal when determining whether measured radioxenon in the atmosphere is associated with a nuclear explosion prohibited by the treaty. The Australian Nuclear Science and Technology Organisation (ANSTO) operates a reactor and medical isotope production facility in Lucas Heights, Australia. This study uses two years of release data from the ANSTO medical isotope production facility and 133Xe data from three IMS sampling locations to estimate the annual releases of 133Xe from medical isotope production facilities in Argentina, South Africa, and Indonesia. Atmospheric dilution factors derived from a global atmospheric transport model were used in an optimization scheme to estimate annual release values by facility. The annual releases of about 6.8 x 1014 Bq from the ANSTO medical isotope production facility are in good agreement with the sampled concentrations at these three IMS sampling locations. Annual release estimates for the facility in South Africa vary from 2.2 x 1016 to 2.4 x 1016 Bq and estimates for the facility in Indonesia vary from 9.2 x 1013 to 3.7 x 1014 Bq. Although some releases from the facility in Argentina may reach these IMS sampling locations, the solution to the objective function is insensitive to the magnitude of those releases

  11. Experimental protocol for determining hydroxyl radical reaction rate constants for organic compounds: estimation of atmospheric reactivity. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Pitts, J.N.; Winer, A.M.; Aschmann, S.M.; Carter, W.P.L.; Atkinson, R.

    1985-07-01

    An experimental protocol for the determination at room temperature of rate constants for the reactions of hydroxyl radicals with organic chemicals in the gas phase is described in detail. This protocol provides a basis for evaluating the reactivity of organic substances which are emitted into the environment and which are consumed primarily by reaction with hydroxyl radicals. The experimental technique is based upon monitoring the disappearance rates of the test compound and of a reference organic in irradiated methyl nitrite-NO-organic-air mixtures.

  12. Insulin and leptin enhance human sperm motility, acrosome reaction and nitric oxide production

    Institute of Scientific and Technical Information of China (English)

    Fanuel Lampiao; Stefan S. du Plessis

    2008-01-01

    Aim: To investigate the in vitro effects of insulin and leptin on human sperm motility, viability, acrosome reaction and nitric oxide (NO) production. Methods: Washed human spermatozoa from normozoospermic donors were treated with insulin (10 μIU) and leptin (10 nmol). Insulin and leptin effects were blocked by inhibition of their intracellular effector, phosphotidylinositol 3-kinase (PI3K), by wortmannin (10 μmol) 30 min prior to insulin and leptin being given. Computer-assisted semen analysis was used to assess motility after 1, 2 and 3 h of incubation. Viability was assessed by fluorescence-activated cell sorting using propidium iodide as a fluorescent probe. Acrosome-reacted cells were observed under a fluorescent microscope using fluorescein-isothiocyanate-Pisum sativum agglutinin as a probe. NO was measured after treating the sperm with 4,5-diaminofluorescein-2/diacetate (DAF-2/DA) and analyzed by fluorescence-activated cell sorting. Results: Insulin and leptin significantly increased total motility, progressive motility and acrosome reaction, as well as NO production. Conclusion: This study showed the in vitro beneficial effects of insulin and leptin on human sperm function. These hormones could play a role in enhancing the fertilization capacity of human spermatozoa.

  13. Products and stability of phosphate reactions with lead under freeze-thaw cycling in simple systems

    Energy Technology Data Exchange (ETDEWEB)

    Hafsteinsdottir, Erla G., E-mail: erla.hafsteinsdottir@gmail.com [Department of Environment and Geography, Macquarie University, NSW 2109 (Australia); White, Duanne A., E-mail: duanne.white@mq.edu.au [Department of Environment and Geography, Macquarie University, NSW 2109 (Australia); Gore, Damian B., E-mail: damian.gore@mq.edu.au [Department of Environment and Geography, Macquarie University, NSW 2109 (Australia); Stark, Scott C., E-mail: scott.stark@aad.gov.au [Environmental Protection and Change, Australian Antarctic Division, Department of Sustainability, Environment, Water, Population and Communities, Tasmania 7050 (Australia)

    2011-12-15

    Orthophosphate fixation of metal contaminated soils in environments that undergo freeze-thaw cycles is understudied. Freeze-thaw cycling potentially influences the reaction rate, mineral chemical stability and physical breakdown of particles during fixation. This study determines what products form when phosphate (triple superphosphate [Ca(H{sub 2}PO{sub 4}){sub 2}] or sodium phosphate [Na{sub 3}PO{sub 4}]) reacts with lead (PbSO{sub 4} or PbCl{sub 2}) in simple chemical systems in vitro, and assesses potential changes in formation during freeze-thaw cycles. Systems were subjected to multiple freeze-thaw cycles from +10 deg. C to -20 deg. C and then analysed by X-ray diffractometry. Pyromorphite formed in all systems and was stable over multiple freeze-thaw cycles. Low temperature lead orthophosphate reaction efficiency varied according to both phosphate and lead source; the most time-efficient pyromorphite formation was observed when PbSO{sub 4} and Na{sub 3}PO{sub 4} were present together. These findings have implications for the manner in which metal contaminated materials in freezing ground can be treated with phosphate. - Highlights: > Formation of lead phosphate products in cold environments is identified. > Potential change in formation during freeze-thaw cycling is assessed. > Lead phosphate reaction efficiency varies according to phosphate and lead source. > Pyromorphite formation is stable during 240 freeze-thaw cycles. - Pyromorphite, formed from Pb phosphate fixation, is stable during multiple freeze-thaw cycles but the efficiency of the fixation depends on the phosphate source and the type of Pb mineral.

  14. An approach to the synthesis of dimeric resveratrol natural products via a palladium-catalyzed domino reaction

    OpenAIRE

    Jeffrey, Jenna L.; Sarpong, Richmond

    2009-01-01

    A route for the rapid assembly of the carbon framework of several resveratrol natural products is presented. A palladium-catalyzed domino reaction of bromostilbene derivative 6 and tolane 7, involving two sequential Heck coupling reactions, provides access to the benzofulvene-based core of various resveratrol-derived natural products. The carbon skeleton of pallidol and its congeners is achieved by a Lewis acid-induced Nazarov-type oxidative cyclization of 9.

  15. The Issue of Calculating the Final Temperature of the Products of Rapid Exothermic Chemical Reactions with Significant Energy Release in a Closed Volume

    Science.gov (United States)

    Lazarev, V.; Geidmanis, D.

    2016-02-01

    The theoretical problem solved in this article is the calculation of thermodynamic parameters such as final temperature, distribution of the liquid and dry saturated vapour phases of the substance that are considered to be in thermodynamic equilibrium, and pressure of the system of several reaction products after adding to the system a certain amount of heat or the thermal effect released during rapid exothermic reaction in a closed volume that occurs so fast that it can be considered to be adiabatic, and when the volume of liquid reagents is several orders of magnitude less than the volume of the reactor. The general multi-substance problem is reduced to a theoretical problem for one substance of calculation thermodynamic parameters of system after adding a certain amount of heat that gives theoretically rigorous isochoric calculation. In this article, we substantiate our view that isochoric pass of calculation is more robust compared to seemingly more natural isobaric pass of calculation, if the later involves quite not trivial calculation of the adiabatic compression of a two-phase system (liquid - dry saturated vapour) that can pass itself into another kind of state (liquid - wet saturated vapour), which requires, apparently, more complex descriptions compared with isochoric calculation because the specific heat capacity of wet saturated vapour can be negative. The solved theoretical problem relates to a practical problem that has been a driver for our research as part of a design of the reactor of the titanium reduction from magnesium and titanium tetrachloride supplied into atmosphere of the reactor at high temperatures when both reagents are in gaseous state. The reaction is known to be exothermic with a high thermal effect, and estimate of the final temperature and pressure of the products of reaction, for instance, designing the reactor allows eliminating the possibility of the reaction products to penetrate backwards into supply tracts of the reagents

  16. Secondary organic aerosol from ozone-initiated reactions with terpene-rich household products

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Beverly; Coleman, Beverly K.; Lunden, Melissa M.; Destaillats, Hugo; Nazaroff, William W.

    2008-01-01

    We analyzed secondary organic aerosol (SOA) data from a series of small-chamber experiments in which terpene-rich vapors from household products were combined with ozone under conditions analogous to product use indoors. Reagents were introduced into a continuously ventilated 198 L chamber at steady rates. Consistently, at the time of ozone introduction, nucleation occurred exhibiting behavior similar to atmospheric events. The initial nucleation burst and growth was followed by a period in which approximately stable particle levels were established reflecting a balance between new particle formation, condensational growth, and removal by ventilation. Airborne particles were measured with a scanning mobility particle sizer (SMPS, 10 to 400 nm) in every experiment and with an optical particle counter (OPC, 0.1 to 2.0 ?m) in a subset. Parameters for a three-mode lognormal fit to the size distribution at steady state were determined for each experiment. Increasing the supply ozone level increased the steady-state mass concentration and yield of SOA from each product tested. Decreasing the air-exchange rate increased the yield. The steady-state fine-particle mass concentration (PM1.1) ranged from 10 to> 300 mu g m-3 and yields ranged from 5percent to 37percent. Steady-state nucleation rates and SOA mass formation rates were on the order of 10 cm-3 s-1 and 10 mu g m-3 min-1, respectively.

  17. Activation cross sections of $\\alpha$-particle induced nuclear reactions on hafnium and deuteron induced nuclear reaction on tantalum: production of $^{178}$W/$^{178m}$Ta generator

    CERN Document Server

    Tárk'anyi, F; Ditrói, F; Hermanne, A; Ignatyuk, A V; Uddin, M S

    2014-01-01

    In the frame of a systematic study of charged particle production routes of medically relevant radionuclei, the excitation function for indirect production of $^{178m}$Ta through $^{nat}$Hf($\\alpha$,xn)$^{178}$W-$^{178m}$Ta nuclear reaction was measured for the first time up to 40 MeV. In parallel, the side reactions $^{nat}$Hf($\\alpha$,x)$^{179,177,176,175}$W, $^{183,182,178g,177,176,175}$Ta, $^{179m,177m,175}$Hf were also assessed. Stacked foil irradiation technique and $\\gamma$-ray spectrometry were used. New experimental cross section data for the $^{nat}$Ta(d,xn)$^{178}$W reaction are also reported up to 40 MeV. The measured excitation functions are compared with the results of the ALICE-IPPE, and EMPIRE nuclear reaction model codes and with the TALYS 1.4 based data in the TENDL-2013 library. The thick target yields were deduced and compared with yields of other charged particle ((p,4n), (d,5n) and ($^3$He,x)) production routes for $^{178}$W.

  18. Detection of Staphylococcus aureus in Dairy Products by Polymerase Chain Reaction Assay

    Institute of Scientific and Technical Information of China (English)

    YANG Yang; SU Xu-dong; YUAN Yao-wu; KANG Chun-yu; LI Ying-jun; ZHANG wei; ZHONG Xiao-ying

    2007-01-01

    A polymerase chain reaction (PCR) assay was employed for direct detection of Staphylococcus aureus without enrichment in dairy products. A solvent extraction procedure was successfully modified for the extraction of Staphylococcus aureus DNA from artificially contaminated whole milk, skim milk, and cheese. A primer targeting the thermostable nuclease gene (nuc) was used in the PCR. A DNA fragment of 279 bp was amplified. The PCR product was confirmed by DNA sequencing. In this study, the PCR, GB- 4789.10-94, Perifilm RSA.Count Plate, and Baird-Parker + RPF Agar were compared.The sensitivity of the PCR was 10 CFU mL-1 of whole milk, skim milk, and 55 CFU g-1 of cheese. The developed methodology allowed for detection of Staphylococcus aureus in dairy products in less than 6 h. The time taken for the development of this PCR assay was 12-24 h, less than the time taken by the general PCR assay using the enrichment method, and the coincidence rate of this developed PCR was 94.3%, the sensitivity was 100%. It was a rapid, sensitive, and effective method for PCR to detect Staphylococcus aureus in milk and milk products.

  19. Oxidative coal desulfurization using lime to regenerate alkali metal hydroxide from reaction product

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, S.

    1980-07-22

    A process for the removal of pyrite from coal comprises (A) preparing an aqueous slurry containing finely divided coal particles; (B) adding to the slurry an alkali metal hydroxide selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide, as well as mixtures thereof, in amounts sufficient to continuously maintain the pH of the slurry at a value of below about 8; (C) agitating the slurry while treating the slurry with oxygen or an oxygen-containing gas at substantially atmospheric pressuresand at a slightly elevated temperature of at least about 70/sup 0/C to convert the pyrite in the coal to a soluble alkali metal sulfate; (D) reacting lime with the so-formed alkali metal sulfate to regenerate the alkali metal hydroxide; and (E) recycling the hydroxide for further use in the process, whereby pyrite is effectively removed and the hydroxide conveniently regenerated with the inhibiting effect of calcium ions therein upon the oxygen leaching of said pyritic sulfur from coal being overcome at said pH, the reaction rate being enhanced by the use of said elevated temperature.

  20. Overview of suspected adverse reactions to veterinary medicinal products reported in South Africa (March 2002 – February 2003

    Directory of Open Access Journals (Sweden)

    V. Naidoo

    2003-07-01

    Full Text Available The Veterinary Pharmacovigilance and Medicines Information Centre is responsible for the monitoring of veterinary adverse drug reactions in South Africa. An overview of reports of suspected adverse drug reactions received by the centre during the period March 2002 to February 2003 is given. In total, 40 reports were received. This had declined from the previous year. Most reports involved suspected adverse reactions that occurred in dogs and cats. Most of the products implicated were Stock Remedies. The animal owner predominantly administered these products. Only 1 report was received from a veterinary pharmaceutical company. Increasing numbers of reports are being received from veterinarians.

  1. Actinide production in the reaction of heavy ions with curium-248

    International Nuclear Information System (INIS)

    Chemical experiments were performed to examine the usefulness of heavy ion transfer reactions in producing new, neutron-rich actinide nuclides. A general quasi-elastic to deep-inelastic mechanism is proposed, and the utility of this method as opposed to other methods (e.g. complete fusion) is discussed. The relative merits of various techniques of actinide target synthesis are discussed. A description is given of a target system designed to remove the large amounts of heat generated by the passage of a heavy ion beam through matter, thereby maximizing the beam intensity which can be safely used in an experiment. Also described is a general separation scheme for the actinide elements from protactinium (Z=91) to mendelevium (Z=101), and fast specific procedures for plutonium, americium and berkelium. The cross sections for the production of several nuclides from the bombardment of 248Cm with 18O, 86Kr and 136Xe projectiles at several energies near and below the Coulomb barrier were determined. The results are compared with yields from 48Ca and 238U bombardments of 248Cm. Simple extrapolation of the product yields into unknown regions of charge and mass indicates that the use of heavy ion transfer reactions to produce new, neutron-rich above-target species is limited. The substantial production of neutron-rich below-target species, however, indicates that with very heavy ions like 136Xe and 238U the new species 248Am, 249Am and 247Pu should be produced with large cross sections from a 248Cm target. A preliminary, unsuccessful attempt to isolate 247Pu is outlined. The failure is probably due to the half life of the decay, which is calculated to be less than 3 minutes. The absolute gamma ray intensities from 251Bk decay, necessary for calculating the 251Bk cross section, are also determined

  2. Carbon Dioxide Production Responsibility on the Basis of comparing in Situ and mean CO2 Atmosphere Concentration Data

    CERN Document Server

    Mavrodiev, S Cht; Vachev, B

    2008-01-01

    The method is proposed for estimation of regional CO2 and other greenhouses and pollutants production responcibility. The comparison of CO2 local emissions reduction data with world CO2 atmosphere data will permit easy to judge for overall effect in curbing not only global warming but also chemical polution.

  3. Accurate quantitation of pentaerythritol tetranitrate and its degradation products using liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry

    NARCIS (Netherlands)

    Brust, H.; Asten, A. van; Koeberg, M.; Dalmolen, J.; Heijden, A.E.D.M. van der; Schoenmakers, P.

    2014-01-01

    After an explosion of pentaerythritol tetranitrate (PETN), its degradation products pentaerythritol trinitrate (PETriN), dinitrate (PEDiN) and mononitrate (PEMN) were detected using liquid chromatography-atmospheric-pressure chemical-ionization-mass spectrometry (LC-APCI-MS). Discrimination between

  4. Cold atmospheric pressure plasma treatment of ready-to-eat meat: Inactivation of Listeria innocua and changes in product quality

    DEFF Research Database (Denmark)

    Rød, Sara Katrine; Hansen, Flemming; Leipold, Frank;

    2012-01-01

    The application of cold atmospheric pressure plasma for decontamination of a sliced ready-to-eat (RTE) meat product (bresaola) inoculated with Listeria innocua was investigated. Inoculated samples were treated at 15.5, 31, and 62 W for 2–60 s inside sealed linear-low-density-polyethylene bags...

  5. Cold atmospheric pressure plasma treatment of ready-to-eat meat: Inactivation of Listeria innocua and changes in product quality

    DEFF Research Database (Denmark)

    Röd, Sara Katrine; Hansen, Flemming; Leipold, Frank;

    Sliced ready-to-eat (RTE) meat products are susceptible to growth of the foodborne pathogenic bacterium, Listeria monocytogenes. Cold atmospheric pressure plasma (CAPP) may be applicable for surface decontamination in sealed bags thus avoiding recontamination. Plasmas (Fig. 1), created in neutral...

  6. Improving ecophysiological simulation models to predict the impact of elevated atmospheric CO2 concentration on crop productivity

    NARCIS (Netherlands)

    Yin, X.

    2013-01-01

    Background - Process-based ecophysiological crop models are pivotal in assessing responses of crop productivity and designing strategies of adaptation to climate change. Most existing crop models generally over-estimate the effect of elevated atmospheric [CO2], despite decades of experimental resear

  7. Mass production of chemicals from biomass-derived oil by directly atmospheric distillation coupled with co-pyrolysis

    OpenAIRE

    Xue-Song Zhang; Guang-Xi Yang; Hong Jiang; Wu-Jun Liu; Hong-Sheng Ding

    2013-01-01

    Production of renewable commodity chemicals from bio-oil derived from fast pyrolysis of biomass has received considerable interests, but hindered by the presence of innumerable components in bio-oil. In present work, we proposed and experimentally demonstrated an innovative approach combining atmospheric distillation of bio-oil with co-pyrolysis for mass production of renewable chemicals from biomass, in which no waste was produced. It was estimated that 51.86 wt.% of distillate just containi...

  8. Modulation in Ocean Primary Production due to Variability of Photosynthetically Available Radiation under Different Atmospheric Conditions

    Directory of Open Access Journals (Sweden)

    Madhumita Tripathy

    2014-01-01

    Full Text Available The rate of photosynthesis primarily depends on nutrients and photosynthetically available radiation (PAR at sea surface. Several ship cruises were carried out to measure optical, biological, and atmospheric parameters in the Arabian Sea and their variability were studied. An analytical nonspectral photosynthesis-irradiance model was used to estimate euphotic primary production (EuPP to study its variability during cruise periods. PAR was estimated using COART model using in situ measured aerosol optical depth (AOD to compare with in situ measured PAR. In order to understand the variability of PAR under different types of aerosol and different aerosol loading, a simulation study was carried out using COART model. EuPP was estimated for various PAR values under different aerosol loading and cloud coverage conditions. Sensitivity analysis showed that for maritime, maritime polluted, and desert aerosols, the ratio PAR/PAR0AOD has attenuated to about 11–25%, whereas it has attenuated to 44% for urban aerosol type. PAR/PARclear  sky was reduced by ~57% for high aerosol loading and for overcast sky. The decrease in EuPP under various aerosol loading and cloud coverage was observed to depend on the photoadaptation parameter. EuPP/EuPPclear  sky was reduced by 38% for maximum maritime aerosol loading and for overcast sky.

  9. Product characteristics from the torrefaction of oil palm fiber pellets in inert and oxidative atmospheres.

    Science.gov (United States)

    Chen, Wei-Hsin; Zhuang, Yi-Qing; Liu, Shih-Hsien; Juang, Tarng-Tzuen; Tsai, Chi-Ming

    2016-01-01

    The aim of this work was to study the characteristics of solid and liquid products from the torrefaction of oil palm fiber pellets (OPFP) in inert and oxidative environments. The torrefaction temperature and O2 concentration in the carrier gas were in the ranges of 275-350°C and 0-10 vol%, respectively, while the torrefaction duration was 30 min. The oxidative torrefaction of OPFP at 275°C drastically intensified the HHV of the biomass when compared to the non-oxidative torrefaction. OPFP torrefied at 300°C is recommended to upgrade the biomass, irrespective of the atmosphere. The HHV of condensed liquid was between 10.1 and 13.2 MJ kg(-)(1), and was promoted to 23.2-28.7 MJ kg(-)(1) following dewatering. This accounts for 92-139% improvement in the calorific value of the liquid. This reveals that the recovery of condensed liquid with dewatering is able to enhance the energy efficiency of a torrefaction system.

  10. Product characteristics from the torrefaction of oil palm fiber pellets in inert and oxidative atmospheres.

    Science.gov (United States)

    Chen, Wei-Hsin; Zhuang, Yi-Qing; Liu, Shih-Hsien; Juang, Tarng-Tzuen; Tsai, Chi-Ming

    2016-01-01

    The aim of this work was to study the characteristics of solid and liquid products from the torrefaction of oil palm fiber pellets (OPFP) in inert and oxidative environments. The torrefaction temperature and O2 concentration in the carrier gas were in the ranges of 275-350°C and 0-10 vol%, respectively, while the torrefaction duration was 30 min. The oxidative torrefaction of OPFP at 275°C drastically intensified the HHV of the biomass when compared to the non-oxidative torrefaction. OPFP torrefied at 300°C is recommended to upgrade the biomass, irrespective of the atmosphere. The HHV of condensed liquid was between 10.1 and 13.2 MJ kg(-)(1), and was promoted to 23.2-28.7 MJ kg(-)(1) following dewatering. This accounts for 92-139% improvement in the calorific value of the liquid. This reveals that the recovery of condensed liquid with dewatering is able to enhance the energy efficiency of a torrefaction system. PMID:26346262

  11. Reassessing the photochemical production of methanol from peroxy radical self and cross reactions using the STOCHEM-CRI global chemistry and transport model

    Science.gov (United States)

    Khan, M. A. H.; Cooke, M. C.; Utembe, S. R.; Xiao, P.; Derwent, R. G.; Jenkin, M. E.; Archibald, A. T.; Maxwell, P.; Morris, W. C.; South, N.; Percival, C. J.; Shallcross, D. E.

    2014-12-01

    Methanol (CH3OH) is an oxygenated volatile organic compound (VOC) and one of the most abundant species present in the troposphere. The mass of CH3OH in the atmospheric reservoir, its annual mass flux from sources to sinks, and its global budget have been investigated using STOCHEM-CRI, a global three-dimensional chemistry transport model. Our study shows that the global burden of methanol is 5 Tg. The atmospheric life-time of CH3OH is found to be 6.1 days which falls within the range of previous modelling studies. The impact of peroxy radicals on the photochemical production of CH3OH has been studied and suggests that NMVOCs (non-methane Volatile Organic Compounds) are an important source of both peroxy radicals and CH3OH. The photochemical production routes of CH3OH are found to be 48 Tg/yr, which are higher than the previous studies and contributes significantly to the total global methanol sources of 287 Tg/yr. An additional CH3OH production of 8.2 Tg/yr from the reaction of methyl peroxy radicals (CH3O2) with hydroxyl radicals (OH) could be a significant additional source of CH3OH particularly over the tropical oceans which would lead to a revision of the global sources and life cycle of CH3OH.

  12. Sensitivity of the Reaction Mechanism of the Ozone Depletion Events during the Arctic Spring on the Initial Atmospheric Composition of the Troposphere

    Directory of Open Access Journals (Sweden)

    Le Cao

    2016-09-01

    Full Text Available Ozone depletion events (ODEs during the Arctic spring have been investigated since the 1980s. It was found that the depletion of ozone is highly associated with the release of halogens, especially bromine containing compounds. These compounds originate from various substrates such as the ice/snow-covered surfaces in Arctic. In the present study, the dependence of the mixing ratios of ozone and principal bromine species during ODEs on the initial composition of the Arctic atmospheric boundary layer was investigated by using a concentration sensitivity analysis. This analysis was performed by implementing a reaction mechanism representing the ozone depletion and halogen release in the box model KINAL (KInetic aNALysis of reaction mechanics. The ratios between the relative change of the mixing ratios of particular species such as ozone and the variation in the initial concentration of each atmospheric component were calculated, which indicate the relative importance of each initial species in the chemical kinetic system. The results of the computations show that the impact of various chemical species is different for ozone and bromine containing compounds during the depletion of ozone. It was found that CH3CHO critically controls the time scale of the complete removal of ozone. However, the rate of the ozone loss and the maximum values of bromine species are only slightly influenced by the initial value of CH3CHO. In addition, according to the concentration sensitivity analysis, the reduction of initial Br2 was found to cause a significant retardant of the ODE while the initial mixing ratio of HBr exerts minor influence on both ozone and bromine species. In addition, it is also interesting to note that the increase of C2H2 would significantly raise the amount of HOBr and Br in the atmosphere while the ozone depletion is hardly changed.

  13. A laboratory study of heterogeneous reactions relevant to the atmospheric boundary layer: soot as a reactive substrate

    OpenAIRE

    Stadler, Dominik; Rossi, Michel,

    2005-01-01

    The present work deals with two subjects. The interaction of NO2 and HONO with different types of soot are examined in the first part whereas in the second part an experimental set-up is presented which has been built in order to measure the kinetics of the degradation of organic compounds by OH radicals. Both soot particles as well as NO2 are mainly produced by fossil fuel and biomass burning. The two species are therefore ubiquitous in the atmospheric boundary layer where they may react wit...

  14. A laboratory study of heterogeneous reactions relevant to the atmospheric boundary layer: soot as a reactive substrate

    OpenAIRE

    Stadler, Dominik

    2000-01-01

    The present work deals with two subjects. The interaction of NO2 and HONO with different types of soot are examined in the first part whereas in the second part an experimental set-up is presented which has been built in order to measure the kinetics of the degradation of organic compounds by OH radicals. Both soot particles as well as NO2 are mainly produced by fossil fuel and biomass burning. The two species are therefore ubiquitous in the atmospheric boundary layer where they may react wit...

  15. Acid-beta-glycerophosphatase reaction products in the central nervous system mitochondria following x-ray irradiation.

    Science.gov (United States)

    Roizin, L; Orlovskaja, D; Liu, J C; Carsten, A L

    1975-06-01

    A survey of the literature to date on the enzyme histochemistry of intracellular organelles has not yielded any reference to the presence of acid phosphatase reaction products in the mammalian mitochondria of the central nervous system. A combination of Gomori's acid phosphatase mehtod, however, with standard electron microscopy has disclosed the presence of enzyme reaction products in the mitochondria of the central nervous system of rats from 2 hr to 22 weeks after x-ray irradiation, as well as in a cerebral biopsy performed on a patient affected by Huntington's chorea. No enzyme reaction products, on the other hand, were observed in serial sections that had been incubated in substrates either containing sodium fluoride or lacking in beta-glycerophosphate. The abnormal mitochondrial enzyme reaction (chemical lesion) is considered to be the consequenco of the pathologic process affecting the ultrastructural-chemical organization of the organelle.

  16. Acid-β-glycerophosphatase reaction products in the central nervous system mitochondria following x-ray irradiation

    International Nuclear Information System (INIS)

    A survey of the literature to date on the enzyme histochemistry of intracellular organelles has not yielded any reference to the presence of acid phosphatase reaction products in the mammalian mitochondria of the central nervous system. A combination of Gomori's acid phosphatase method, however, with standard electron microscopy has disclosed the presence of enzyme reaction products in the mitochondria of the central nervous system of rats from 2 hr to 22 weeks after x-ray irradiation, as well as in a cerebral biopsy performed on a patient affected by Huntington's chorea. No enzyme reaction products, on the other hand, were observed in serial sections that had been incubated in substrates either containing sodium fluoride or lacking in β-glycerophosphate. The abnormal mitochondrial enzyme reaction (chemical lesion) is considered to be the consequence of the pathologic process affecting the ultrastructural-chemical organization of the organelle

  17. Characteristic of solid product layer of MgSO in the reaction of MgO with SO2

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The microstructure, nucleation and growth of MgSO4 product layer during the reaction of MgO single crystal with SO2 and O2 were investigated with thermo gravity analyzer (TGA) and atomic force microscopy (AFM). The AFM images indicated that three dimensional islands with different sizes were formed during the initial reaction stage. At the initial stage, cone-shaped islands were formed, and most of them appeared at the position with terrace-step-kink. With the reaction time increasing, small islands would grow to large islands, and the coalescent would happen during this growth stage. During the product layer growth stage, the space and surface between islands would be occupied by islands, and continuum islands were formed. With the reaction time increasing in the product layer growth stage, the size of island increased while the number and total surface of all islands decreased.

  18. Taste-Active Maillard Reaction Products in Roasted Garlic (Allium sativum).

    Science.gov (United States)

    Wakamatsu, Junichiro; Stark, Timo D; Hofmann, Thomas

    2016-07-27

    In order to gain first insight into candidate Maillard reaction products formed upon thermal processing of garlic, mixtures of glucose and S-allyl-l-cysteine, the major sulfur-containing amino acid in garlic, were low-moisture heated, and nine major reaction products were isolated. LC-TOF-MS, 1D/2D NMR, and CD spectroscopy led to their identification as acortatarin A (1), pollenopyrroside A (2), epi-acortatarin A (3), xylapyrroside A (4), 5-hydroxymethyl-1-[(5-hydroxymethyl-2-furanyl)methyl]-1H-pyrrole-2-carbalde-hyde (5), 3-(allylthio)-2-(2-formyl-5-hydroxymethyl-1H-pyrrol-1-yl)propanoic acid (6), (4S)-4-(allylthiomethyl)-3,4-dihydro-3-oxo-1H-pyrrolo[2,1-c][1,4]oxazine-6-carbaldehyde (7), (2R)-3-(allylthio)-2-[(4R)-4-(allylthiomethyl)-6-formyl-3-oxo-3,4-dihydropyrrolo-[1,2-a]pyrazin-2(1H)-yl]propanoic acid (8), and (2R)-3-(allylthio)-2-((4S)-4-(allylthiomethyl)-6-formyl-3-oxo-3,4-dihydropyrrolo-[1,2-a]pyrazin-2(1H)-yl)propanoic acid (9). Among the Maillard reaction products identified, compounds 5-9 have not previously been published. The thermal generation of the literature known spiroalkaloids 1-4 is reported for the first time. Sensory analysis revealed a bitter taste with thresholds between 0.5 and 785 μmol/kg for 1-5 and 7-9. Compound 6 did not show any intrinsic taste (water) but exhibited a strong mouthfullness (kokumi) enhancing activity above 186 μmol/kg. LC-MS/MS analysis showed 1-9 to be generated upon pan-frying of garlic with the highest concentration of 793.7 μmol/kg found for 6, thus exceeding its kokumi threshold by a factor of 4 and giving evidence for its potential taste modulation activity in processed garlic preparations. PMID:27381763

  19. Analysing powers in pp reactions with {Delta} production; Pouvoirs d`analyse dans les reactions pp produisant des {Delta}

    Energy Technology Data Exchange (ETDEWEB)

    Yonnet, J.; Boivin, N. [Laboratoire National Saturne - Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France); Tatischeff, B.; Willis, N.; Comets, M.P.; Courtat, P.; Gagougnolle, R.; Le Bornec, Y.; Loireleux, E.; Reide, F. [Experimental Research Division, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)

    1999-11-01

    Using the Saturne polarized proton beam and the SPES3 experimental facility, the analyzing powers of p vector p {yields} {Delta}{sup ++}{Delta}{sup 0}, p vector p {yields} {Delta}{sup ++}n and p vector p {yields} p{pi}{sup +}X reactions have been measured at 3 energies (T{sub p} = 1520, 1805 and 2100 MeV), between 0 angle and 17 angle in the lab., which corresponds to an angular range between 0 angle and 100 angle (c.m.). (authors) 4 figs.

  20. Cloud condensation nuclei production associated with atmospheric nucleation: a synthesis based on existing literature and new results

    Directory of Open Access Journals (Sweden)

    V.-M. Kerminen

    2012-12-01

    Full Text Available This paper synthesizes the available scientific information connecting atmospheric nucleation with subsequent cloud condensation nuclei (CCN formation. We review both observations and model studies related to this topic, and discuss the potential climatic implications. We conclude that CCN production associated with atmospheric nucleation is both frequent and widespread phenomenon in many types of continental boundary layers, and probably also over a large fraction of the free troposphere. The contribution of nucleation to the global CCN budget spans a relatively large uncertainty range, which, together with our poor understanding of aerosol-cloud interactions, results in major uncertainties in the radiative forcing by atmospheric aerosols. In order to better quantify the role of atmospheric nucleation in CCN formation and Earth System behavior, more information is needed on (i the factors controlling atmospheric CCN production and (ii the properties of both primary and secondary CCN and their interconnections. In future investigations, more emphasis should be put on combining field measurements with regional and large-scale model studies.

  1. Cloud condensation nuclei production associated with atmospheric nucleation: a synthesis based on existing literature and new results

    Directory of Open Access Journals (Sweden)

    V.-M. Kerminen

    2012-08-01

    Full Text Available This paper synthesizes the available scientific information connecting atmospheric nucleation with subsequent Cloud Condensation Nuclei (CCN formation. We review both observations and model studies related to this topic, and discuss the potential climatic implications. We conclude that CCN production associated with atmospheric nucleation is both frequent and widespread phenomenon in many types of continental boundary layers, and probably also over a large fraction of the free troposphere. The contribution of nucleation to the global CCN budget spans a relatively large uncertainty range, which, together with our poor understanding of aerosol–cloud interactions, results in major uncertainties in the radiative forcing by atmospheric aerosols. In order to better quantify the role of atmospheric nucleation in CCN formation and Earth System behavior, more information is needed on (i the factors controlling atmospheric CCN production and (ii the properties of both primary and secondary CCN and their interconnections. In future investigations, more emphasis should be put on combining field measurements with regional and large-scale model studies.

  2. Measurements of photo-oxidation products from the reaction of a series of alkyl-benzenes with hydroxyl radicals during EXACT using comprehensive gas chromatography

    Directory of Open Access Journals (Sweden)

    J. F. Hamilton

    2003-01-01

    Full Text Available Photo-oxidation products from the reaction of a series of alkyl-benzenes, (benzene, toluene, p-xylene and 1,3,5-trimethyl-benzene with hydroxyl radicals in the presence of NOx have been investigated using comprehensive gas chromatography (GCxGC. A GCxGC system has been developed which utilises valve modulation and independent separations as a function of both volatility and polarity. A number of carbonyl-type compounds were identified during a series of reactions carried out at the European Photoreactor (EUPHORE, a large volume outdoor reaction chamber in Valencia, Spain. Experiments were carried as part of the EXACT project (Effects of the oXidation of Aromatic Compounds in the Troposphere. Two litre chamber air samples were cryo-focused, with a sampling frequency of 30 minutes, allowing the evolution of species to be followed over oxidation periods of 3-6 hours. To facilitate product identification, several carbonyl compounds, which were possible products of the photo-oxidation, were synthesised and used as reference standards. For toluene reactions, observed oxygenated intermediates found included the co-eluting pair a-angelicalactone/4-oxo-2-pentenal, maleic anhydride, citraconic anhydride, benzaldehyde and p-methyl benzoquinone. In the p-xylene experiment, the products identified were E/Z-hex-3-en-2,5-dione and citraconic anhydride. For 1,3,5-TMB reactions, the products identified were 3,5-dimethylbenzaldehyde, 3,5-dimethyl-3H-furan-2-one and 3-methyl-5-methylene-5H-furan-2-one. Preliminary quantification was carried out on identified compounds using liquid standards. Comparison of FTIR and GCxGC for the measurement of the parent aromatics generally showed good agreement. Comparison of the concentrations observed by GCxGC to concentration-time profiles simulated using the Master Chemical Mechanism, MCMv3, demonstrates that this mechanism significantly over-predicts the concentrations of many product compounds and highlights the

  3. Chemical reactions at the graphitic step-edge: changes in product distribution of catalytic reactions as a tool to explore the environment within carbon nanoreactors

    Science.gov (United States)

    Lebedeva, Maria A.; Chamberlain, Thomas W.; Thomas, Alice; Thomas, Bradley E.; Stoppiello, Craig T.; Volkova, Evgeniya; Suyetin, Mikhail; Khlobystov, Andrei N.

    2016-06-01

    A series of explorative cross-coupling reactions have been developed to investigate the local nanoscale environment around catalytically active Pd(ii)complexes encapsulated within hollow graphitised nanofibers (GNF). Two new fullerene-containing and fullerene-free Pd(ii)Salen catalysts have been synthesised, and their activity and selectivity towards different substrates has been explored in nanoreactors. The catalysts not only show a significant increase in activity and stability upon heterogenisation at the graphitic step-edges inside the GNF channel, but also exhibit a change in selectivity affected by the confinement which alters the distribution of isomeric products of the reaction. Furthermore, the observed selectivity changes reveal unprecedented details regarding the location and orientation of the catalyst molecules inside the GNF nanoreactor, inaccessible by any spectroscopic or microscopic techniques, thus shedding light on the precise reaction environment inside the molecular catalyst-GNF nanoreactor.A series of explorative cross-coupling reactions have been developed to investigate the local nanoscale environment around catalytically active Pd(ii)complexes encapsulated within hollow graphitised nanofibers (GNF). Two new fullerene-containing and fullerene-free Pd(ii)Salen catalysts have been synthesised, and their activity and selectivity towards different substrates has been explored in nanoreactors. The catalysts not only show a significant increase in activity and stability upon heterogenisation at the graphitic step-edges inside the GNF channel, but also exhibit a change in selectivity affected by the confinement which alters the distribution of isomeric products of the reaction. Furthermore, the observed selectivity changes reveal unprecedented details regarding the location and orientation of the catalyst molecules inside the GNF nanoreactor, inaccessible by any spectroscopic or microscopic techniques, thus shedding light on the precise reaction

  4. Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products.

    Science.gov (United States)

    van Deventer, J S J; Provis, J L; Duxson, P; Lukey, G C

    2007-01-31

    High-performance materials for construction, waste immobilisation and an ever-growing range of niche applications are produced by the reaction sequence known as 'geopolymerisation'. In this process, an alkaline activating solution reacts with a solid aluminosilicate source, with solidification possible within minutes and very rapid early strength development. Geopolymers have been observed to display remarkable chemical and thermal stability, but due to their largely X-ray amorphous nature have only recently been accurately characterised. It has previously been shown that both fly ash and ground granulated blast furnace slag are highly effective as solid constituents of geopolymer reaction slurries, providing readily soluble alumina and silica that undergo a dissolution-reorientation-solidification process to form a geopolymeric material. Here a conceptual model for geopolymerisation is presented, allowing elucidation of the individual mechanistic steps involved in this complex and rapid process. The model is based on the reactions known to occur in the weathering of aluminosilicate minerals under alkaline conditions, which occur in a highly accelerated manner under the conditions required for geopolymerisation. Transformation of the waste materials to the mixture of gel and nanocrystalline/semicrystalline phases comprising the geopolymeric product is described. Presence of calcium in the solid waste materials affects the process of geopolymerisation by providing extra nucleation sites for precipitation of dissolved species, which may be used to tailor setting times and material properties if desired. Application of geopolymer technology in remediation of toxic or radioactive contaminants will depend on the ability to analyse and predict long-term durability and stability based on initial mix formulation. The model presented here provides a framework by which this will be made possible.

  5. Study of neutral current reactions with production of a pion induced by muon antineutrinos

    International Nuclear Information System (INIS)

    In this work we have studied the 4 production reactions of a pion induced by muon anti-neutrino collisions with nucleons: anti-νμp → anti-νμpπ0 or anti-νμnπ+ and anti-νμn → anti-νμnπ0 or anti-νμpπ-. We have processed experimental data from the Gargamelle cloud chamber to assess the pion production cross-sections. Our results are consistent with the theoretical predictions of the Adler model and of the Fogli and Nardulli model within the framework of the Weinberg and Salam unified theory. As for the isospin structure of the weak hadronic neutral current, the iso-vectorial component is highlighted in the invariant mass spectra in the channels pπ0 and pπ-. Our results show that the isospin structure is not purely isoscalar or purely iso-vectorial but rather a mix of I = 0 and I = 1. We confirm that the sign of the product of the 2 coupling constants uL*dL is negative. (A.C.)

  6. On the effect of nuclear interactions in neutrino reactions with oxygen targets and its role in atmospheric neutrino anomaly; De l`effet des interactions nucleaires dans les reactions de neutrinos sur des cibles d`oxygene et de son role dans l`anomalie des neutrinos atmospheriques

    Energy Technology Data Exchange (ETDEWEB)

    Marteau Jacques [Inst. de Physique Nucleaire, Lyon-1 Univ., 69 - Villeurbanne (France)

    1998-12-10

    Atmospheric neutrinos are produced by interactions of the cosmic rays with the atmosphere`s nuclei. The observed ratio of muonic to electronic neutrinos is smaller than the theoretical one (up to a factor 2), this is the so-called atmospheric anomaly. This anomaly could be linked to that observed in the solar neutrino experiments. The aim of this work is to evaluate the effects of nuclear correlations upon the interaction of the atmospheric neutrinos with the oxygen nuclei of the water Cherenkov detectors. The products of these interactions are detected and identified thanks to the light ring the produce. The events are classified according to the number of produced rings which is computed from the neutrino-oxygen event rates in each exclusive reaction channel. The interpretation of the experimental results has been up to now limited to the quasi-elastic nucleon and {Delta} channels but other reaction channels exist which can lead to identification problems. A special role is played by the non-pionic decay channels of the {Delta} resonance which induce single ring events that have not been considered so far. To calculate them we adopted the nuclear response formalism and started with a semi-classical approximation. This allowed us to take into account the nuclear correlations by solving exactly the RPA equations in the ring approximation. It was found that these correlations strongly modify the inclusive and exclusive neutrino-oxygen cross sections and absolute interaction rates while the ratio of the interaction rates {mu}/e is not very much affected. The analysis in the exclusive channels leads to the result that the number of pions predicted in the simulations is overestimated. In conclusion, this work has shown the importance of the nuclear correlations in the neutrino-oxygen interaction and its impact on the atmospheric neutrino anomaly. It goes beyond the usual quasi-elastic approximations and can be moreover extended to other target nuclei, such as iron

  7. Products and stability of phosphate reactions with lead under freeze-thaw cycling in simple systems.

    Science.gov (United States)

    Hafsteinsdóttir, Erla G; White, Duanne A; Gore, Damian B; Stark, Scott C

    2011-12-01

    Orthophosphate fixation of metal contaminated soils in environments that undergo freeze-thaw cycles is understudied. Freeze-thaw cycling potentially influences the reaction rate, mineral chemical stability and physical breakdown of particles during fixation. This study determines what products form when phosphate (triple superphosphate [Ca(H(2)PO(4))(2)] or sodium phosphate [Na(3)PO(4)]) reacts with lead (PbSO(4) or PbCl(2)) in simple chemical systems in vitro, and assesses potential changes in formation during freeze-thaw cycles. Systems were subjected to multiple freeze-thaw cycles from +10 °C to -20 °C and then analysed by X-ray diffractometry. Pyromorphite formed in all systems and was stable over multiple freeze-thaw cycles. Low temperature lead orthophosphate reaction efficiency varied according to both phosphate and lead source; the most time-efficient pyromorphite formation was observed when PbSO(4) and Na(3)PO(4) were present together. These findings have implications for the manner in which metal contaminated materials in freezing ground can be treated with phosphate. PMID:21907472

  8. Complex fragment production in Kr-induced reactions at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, A.; Colonna, M.; Di Toro, M. (Catania Univ. (Italy). Dipt. di Fisica INFN, Catania (Italy). Lab. Nazionale del Sud); Bonasera, A. (INFN, Catania (Italy)); Cavinato, M.; Gulminelli, F. (Milan Univ. (Italy). Dipt. di Fisica INFN, Milan (Italy)); Cunsolo, A. (Catania Univ. (Italy). Dipt. di Fisica INFN, Catania (Italy)); Di Leo, G.C. (Catania Univ. (Italy). Dipt. di Fisica)

    1991-07-15

    Several features of complex fragment production at intermediate energies can be understood from the coupling of a dynamical description, which takes into account entrance-channel properties, and a statistical decay of equilibrated primary sources. We discuss this point using two different models for the dynamics, both based on the idea of the competition between mean field and two-body effects in this intermediate-energy range. The importance of a slow emission of large clusters in the de-excitation stage is stressed, with the possibility of using a suitably extended evaporation code. Fragment yields and spectra are analysed for Kr-induced reactions on C, Al, Ti at 34.4 MeV/A and on Au at 43 MeV/A. The effects of a different equation of state (e.o.s.) used in microscopic calculations is analysed. A stiffer e.o.s. implies more stopping of the fragments. Finally, projectile-like fragments produced in the Kr+Au reaction at 200 MeV/A are analysed. The predictions of the participant-spectator model are confirmed in this energy range. (orig.).

  9. Meteorites, Organics and Fischer-Tropsch Type Reaction: Production and Destruction

    Science.gov (United States)

    Johnson, Natasha M.; Burton, A. S.; Nurth, J. A., III

    2011-01-01

    There has been an ongoing debate about the relative importance about the various chemical reactions that fonned organics in the early solar system. One proposed method that has long been recognized as a potential source of organics is Fischer-Tropsch type (FTT) synthesis. This process is commonly used in industry to produce fuels (i.e., complex hydrocarbons) by catalytic hydrogenation of carbon monoxide. Hill and Nuth were the first to publish results of FTT experiments that also included Haber-Bosch (HB) processes (hydrogenation of nitrogen. Their findings included the production of nitrilebearing compounds as well as trace amounts of methyl amine. Previous experience with these reactions revealed that the organic coating deposited on the grains is also an efficient catalyst and that the coating is composed of insoluble organic matter (10M) and could be reminiscent of the organic matrix found in some meteorites. This current set of FTT-styled experiments tracks the evolution of a set of organics, amino acids, in detail.

  10. The Production of Biodiesel and Bio-kerosene from Coconut Oil Using Microwave Assisted Reaction

    Science.gov (United States)

    SAIFUDDIN, N.; SITI FAZLILI, A.; KUMARAN, P.; PEI-JUA, N.; PRIATHASHINI, P.

    2016-03-01

    Biofuels including biodiesel, an alternative fuel, is renewable, environmentally friendly, non-toxic and low emissions. The raw material used in this work was coconut oil, which contained saturated fatty acids about 90% with high percentage of medium chain (C8-C12), especially lauric acid and myristic acid. The purpose of this research was to study the effect of power and NaOH catalyst in transesterification assisted by microwave for production of biofuels (biodiesel and bio-kerosene) derived from coconut oil. The reaction was performed with oil and methanol using mole ratio of 1:6, catalyst concentration of 0.6% with microwave power at 100W, 180W, 300W, 450W, 600W, and 850W. The reaction time was set at of 3, 5, 7, 10 and 15 min. The results showed that microwave could accelerate the transesterification process to produce biodiesel and bio-kerosene using NaOH catalyst. The highest yield of biodiesel was 97.17 %, or 99.05 % conversion at 5 min and 100W microwave power. Meanwhile, the bio-kerosene obtained was 65% after distillation.

  11. Vibrational spectra of monouranates and uranium hydroxides as reaction products of alkali with uranyl nitrate

    International Nuclear Information System (INIS)

    Vibrational (IR absorption and Raman scattering) spectra for the reaction products of uranyl nitrate hexahydrate with NaOH and KOH have been studied. As a result of exchange reactions, the uranyl-ion coordinated nitrate groups are completely replaced by hydroxyl ions and various uranium and uranyl oxides or hydrates are formed. An analysis of the vibrations has been performed in terms of the frequencies of a free or coordinated nitrate group; comparison with the vibrations of the well-known uranium oxides and of the uranyl group UO22+ has been carried out. Vibrational spectra of a free nitrate group are characterized by four vibrational frequencies 1050, 724, 850, and 1380 cm-1, among which the frequencies at 724 and 1380 cm-1 are doubly degenerate and attributed to E’ symmetry of the point group D3h. When this group is uranium coordinated, its symmetry level is lowered to C2v, all vibrations of this group being active both in Raman and IR spectra. The doubly degenerate vibrations are exhibited as two bands and a frequency of the out-of-plane vibration is lowered to 815 cm-1. (authors)

  12. Application of FeOCl derivatives for a secondary lithium battery. 3: Electrochemical reaction and physical state of reaction product of FeOCl with aniline in water

    Energy Technology Data Exchange (ETDEWEB)

    Kanamura, Kiyoshi; Sakaebe, Hikari; Fujimoto, Hiroyuki; Takehara, Zenichiro [Kyoto Univ. (Japan). Division of Energy and Hydrocarbon Chemistry

    1995-07-01

    The reaction product of FeOCl with aniline in water was subjected to various analyses before and after its discharge and charge to determine its physical state and electrochemical reactions. From these analyses, it can be seen that there are two possible states for the reaction product before the discharge; one is a mixture of {gamma}-FeOOH and aniline derivatives (polymer or oligomer of aniline), and another is a mixture of {gamma}-FeOOH and FeOOH incorporating aniline derivatives. Atomic absorption analyses during discharge and charge cycles show that the steady-state discharge and charge processes are associated with a reversible change in lithium content in the solid matrix which change corresponds to the amount of electric charge passed. The Fourier transform infrared spectra indicate that the redox reaction of aniline derivatives (doping and undoping with anions) occurs during discharge and charge cycles. These results show that aniline derivatives exist in a different state from that of a simple mixture of the states of aniline derivatives and FeOOH.

  13. Atmospheric OH reactivity in central London: observations, model predictions and estimates of in situ ozone production

    Science.gov (United States)

    Whalley, Lisa K.; Stone, Daniel; Bandy, Brian; Dunmore, Rachel; Hamilton, Jacqueline F.; Hopkins, James; Lee, James D.; Lewis, Alastair C.; Heard, Dwayne E.

    2016-02-01

    Near-continuous measurements of hydroxyl radical (OH) reactivity in the urban background atmosphere of central London during the summer of 2012 are presented. OH reactivity behaviour is seen to be broadly dependent on air mass origin, with the highest reactivity and the most pronounced diurnal profile observed when air had passed over central London to the east, prior to measurement. Averaged over the entire observation period of 26 days, OH reactivity peaked at ˜ 27 s-1 in the morning, with a minimum of ˜ 15 s-1 during the afternoon. A maximum OH reactivity of 116 s-1 was recorded on one day during morning rush hour. A detailed box model using the Master Chemical Mechanism was used to calculate OH reactivity, and was constrained with an extended measurement data set of volatile organic compounds (VOCs) derived from a gas chromatography flame ionisation detector (GC-FID) and a two-dimensional GC instrument which included heavier molecular weight (up to C12) aliphatic VOCs, oxygenated VOCs and the biogenic VOCs α-pinene and limonene. Comparison was made between observed OH reactivity and modelled OH reactivity using (i) a standard suite of VOC measurements (C2-C8 hydrocarbons and a small selection of oxygenated VOCs) and (ii) a more comprehensive inventory including species up to C12. Modelled reactivities were lower than those measured (by 33 %) when only the reactivity of the standard VOC suite was considered. The difference between measured and modelled reactivity was improved, to within 15 %, if the reactivity of the higher VOCs (⩾ C9) was also considered, with the reactivity of the biogenic compounds of α-pinene and limonene and their oxidation products almost entirely responsible for this improvement. Further improvements in the model's ability to reproduce OH reactivity (to within 6 %) could be achieved if the reactivity and degradation mechanism of unassigned two-dimensional GC peaks were estimated. Neglecting the contribution of the higher VOCs (⩾ C

  14. Intermediate mass fragment production in the proton-induced reactions of heavy targets

    CERN Document Server

    Deppman, A; Guimaraes, V; Karapetyan, G S; Balabekyan, A R; Demekhina, N A; Adam, J

    2013-01-01

    The production of intermediate-mass fragments (IMFs) formed in the proton-induced reaction with $^{238}$U and $^{237}$Np at 660 MeV was measured in the LNP Phasotron and in U-400M Cyclotron, Joint Institute for Nuclear Research (JINR), Dubna, Russia. We have applied the induced-activation method in off-line analysis. A total of 115 isotopes of all elements in the range $7 \\leq A \\leq 69$ were unambiguously identified with high precision. There is a consideration that the formed nuclides could be produced in a very asymmetric binary decay of heavy nuclei originating from the spallation of heavy targets. Mass-yield distributions were derived from the data, and were compared with the the simulation code CRISP for multi modal fission.

  15. The Dubna double-arm time-of-flight spectrometer for heavy-ion reaction products

    International Nuclear Information System (INIS)

    The double-arm time-of-flight spectrometer DEMAS designed for the detection and identification of heavy-ion reaction products at incident energies below 10 MeV/amu is presented. Based on the kinematic coincidence method, the relevant physical information is obtained from the measurement of the two correlated velocity vectors of the binary fragments. Construction and performance of the different detector systems applied to measure the time-of-flight values, the position coordinates and the kinetic energies of both fragments are presented in detail. The description of the data acquisition and analysing procedures is followed by the discussion of some experimental examples to demonstrate the spectrometer performance. A mass resolution of typically 4 - 5 amu (fwhm) is routinely achieved. (author)

  16. Lipid Peroxidation Inhibitation Activity of Maillard Reaction Products Derived from Sugar-amino Acid Model Systems

    Directory of Open Access Journals (Sweden)

    Nanjing Zhong

    2015-08-01

    Full Text Available The present study aimed to evaluate the lipid peroxidation inhibitation activity of Maillard Reaction Products (MRPs derived from sugar (glucose, fructose, lactose and maltose and 18 amino acid model systems in soybean oil. MRPs were produced by heating at 130°C for 2 h. Of the 18 amino acids-fructose model systems studied, MRPs derived from fructose-leucine, fructose-methionine, fructose-phenylalanine and fructose-isoleucine model sytems showed high lipid peroxidation inhibitation activity and best performance was observed from fructose-phenylalanine MRPs. Interestingly, glucose-phenylalanine MRPs also exhibited high inhibitation activity and inhibitation activity of both glucose-phenylalanine and fructose-phenylalanine MRPs exceeded 87% even with concentration at 1.1 wt % after 8 days storage.

  17. Isolation and Identification of an Antiproliferative Compound from Fructose-Tryptophan Maillard Reaction Products.

    Science.gov (United States)

    Lee, Sang Hoon; Jeong, Su Jeong; Jang, Gwi Yeong; Kim, Min Young; Hwang, In Guk; Kim, Hyun Young; Woo, Koan Sik; Hwang, Bang Yeon; Song, Jin; Lee, Junsoo; Jeong, Heon Sang

    2016-04-20

    This study was performed to isolate and identify a compound with antiproliferative activity against human stomach cancer cell lines, from fructose-tryptophan Maillard reaction products (MRPs). The MRPs, prepared from a fructose-tryptophan solution heated at 130 °C for 2 h, were fractionated into five solvent fractions: n-hexane, chloroform, ethyl acetate, butanol, and water. The highest antiproliferative activity was found in the chloroform fraction (85.93% at 200 μg/mL), and the active compound from this chloroform fraction was purified by silica gel column chromatography, TLC, and preparative HPLC. The antiproliferative activity (IC50) of the active compound was 42.24 μg/mL, and the active compound was identified as perlolyrine (C16H10N2O2) by (1)H/(13)C NMR, DEPT, HMBC, and LC-ESI-MS. Therefore, this research may be useful in developing perlolyrine as a functional therapeutic agent. PMID:27041128

  18. Arrangement for remote automatic change of recording angle nuclear reaction products

    International Nuclear Information System (INIS)

    The arrangement intended for remote automatic angular displacement of detectors at measurement of angular distributions of nuclear reaction products is described. The arrangement provides a remote switching in and switching out of motor with a reversal possibility as well as a turning angle value count. Due to the fact that the motor control is realized by logical levels t.t.l. and the angle count is performed by a logical pulse number, the arrangement makes it possible to rather simply introduce semiautomatic or automatic (for example, by means of a computer) control of the angle change. The arrangement consists of a mechanical drive, convertor, ''turning angle-code'' and an engine remote control scheme. Owing to the absence of mechanically switching contacts the arrangement being relative simple possesses higher reliability

  19. Influence of home cooking conditions on Maillard reaction products in beef.

    Science.gov (United States)

    Trevisan, Aurea Juliana Bombo; de Almeida Lima, Daniele; Sampaio, Geni Rodrigues; Soares, Rosana Aparecida Manólio; Markowicz Bastos, Deborah Helena

    2016-04-01

    The influence of home cooking methods on the generation of Maillard reaction products (MRP) in beef was investigated. Grilling and frying hamburgers to an internal temperature below 90 °C mainly generated furosine. When the temperature reached 90 °C and 100 °C, furosine content decreased by 36% and fluorescent compounds increased by up to 98%. Baking meat at 300 °C, the most severe heat treatment studied, resulted in the formation of carboxymethyllysine. Boiling in water caused very low MRP formation. Acrylamide concentrations in grilled, fried or baked meat were extremely low. Home cooking conditions leading to low MRP generation and pleasant colours were obtained and could be used to guide diabetic and chronic renal patients on how to reduce their carboxymethyllysine intake. PMID:26593478

  20. Heterogeneous reactions of particulate matter-bound PAHs and NPAHs with NO3/N2O5, OH radicals, and O3 under simulated long-range atmospheric transport conditions: reactivity and mutagenicity.

    Science.gov (United States)

    Jariyasopit, Narumol; Zimmermann, Kathryn; Schrlau, Jill; Arey, Janet; Atkinson, Roger; Yu, Tian-Wei; Dashwood, Roderick H; Tao, Shu; Simonich, Staci L Massey

    2014-09-01

    The heterogeneous reactions of ambient particulate matter (PM)-bound polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs (NPAHs) with NO3/N2O5, OH radicals, and O3 were studied in a laboratory photochemical chamber. Ambient PM2.5 and PM10 samples were collected from Beijing, China, and Riverside, California, and exposed under simulated atmospheric long-range transport conditions for O3 and OH and NO3 radicals. Changes in the masses of 23 PAHs and 20 NPAHs, as well as the direct and indirect-acting mutagenicity of the PM (determined using the Salmonella mutagenicity assay with TA98 strain), were measured prior to and after exposure to NO3/N2O5, OH radicals, and O3. In general, O3 exposure resulted in the highest relative degradation of PM-bound PAHs with more than four rings (benzo[a]pyrene was degraded equally well by O3 and NO3/N2O5). However, NPAHs were most effectively formed during the Beijing PM exposure to NO3/N2O5. In ambient air, 2-nitrofluoranthene (2-NF) is formed from the gas-phase NO3 radical- and OH radical-initiated reactions of fluoranthene, and 2-nitropyrene (2-NP) is formed from the gas-phase OH radical-initiated reaction of pyrene. There was no formation of 2-NF or 2-NP in any of the heterogeneous exposures, suggesting that gas-phase formation of NPAHs did not play an important role during chamber exposures. Exposure of Beijing PM to NO3/N2O5 resulted in an increase in direct-acting mutagenic activity which was associated with the formation of mutagenic NPAHs. No NPAH formation was observed in any of the exposures of the Riverside PM. This was likely due to the accumulation of atmospheric degradation products from gas-phase reactions of volatile species onto the surface of PM collected in Riverside prior to exposure in the chamber, thus decreasing the availability of PAHs for reaction. PMID:25119270