WorldWideScience

Sample records for atmospheric reaction products

  1. Studies of the Atmospheric Chemsitry of Energy-Related Volatile Organic Compounds and of their Atmospheric Reaction Products

    Energy Technology Data Exchange (ETDEWEB)

    Roger Atkinson; Janet Arey

    2007-04-14

    The focus of this contract was to investigate selected aspects of the atmospheric chemistry of volatile organic compounds (VOCs) emitted into the atmosphere from energy-related sources as well as from biogenic sources. The classes of VOCs studied were polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs, the biogenic VOCs isoprene, 2-methyl-3-buten-2-ol and cis-3-hexen-1-ol, alkenes (including alkenes emitted from vegetation) and their oxygenated atmospheric reaction products, and a series of oxygenated carbonyl and hydroxycarbonyl compounds formed as atmospheric reaction products of aromatic hydrocarbons and other VOCs. Large volume reaction chambers were used to investigate the kinetics and/or products of photolysis and of the gas-phase reactions of these organic compounds with hydroxyl (OH) radicals, nitrate (NO3) radicals, and ozone (O3), using an array of analytical instrumentation to analyze the reactants and products (including gas chromatography, in situ Fourier transform infrared spectroscopy, and direct air sampling atmospheric pressure ionization tandem mass spectrometry). The following studies were carried out. The photolysis rates of 1- and 2-nitronaphthalene and of eleven isomeric methylnitronaphthalenes were measured indoors using blacklamp irradiation and outdoors using natural sunlight. Rate constants were measured for the gas-phase reactions of OH radicals, Cl atoms and NO3 radicals with naphthalene, 1- and 2-methylnaphthalene, 1- and 2-ethylnaphthalene and the ten dimethylnaphthalene isomers. Rate constants were measured for the gas-phase reactions of OH radicals with four unsaturated carbonyls and with a series of hydroxyaldehydes formed as atmospheric reaction products of other VOCs, and for the gas-phase reactions of O3 with a series of cycloalkenes. Products of the gas-phase reactions of OH radicals and O3 with a series of biogenically emitted VOCs were identified and quantified. Ambient atmospheric measurements of the concentrations of a

  2. Iron-catalyzed photochemical transformation of benzoic acid in atmospheric liquids: Product identification and reaction mechanisms

    Science.gov (United States)

    Deng, Yiwei; Zhang, Kai; Chen, Hao; Wu, Taixing; Krzyaniak, Metthew; Wellons, Amina; Bolla, Dawn; Douglas, Kenneth; Zuo, Yuegang

    This study investigated iron-catalyzed photochemical oxidation of benzoic acid (BA), one of the major photodegradation products of petroleum hydrocarbons, under sunlight or monochromatic light irradiation in a wavelength range of 254-419 nm. The photochemical degradation of BA in the absence of iron (III) occurred at irradiation wavelengths below 300 nm. The photochemical transformation of BA in the presence Fe(III) was observed at both 254, 350, 419 nm and under solar irradiation. The half-life for the photodegradation of BA (100 μM) was 160±20 min in the presence of 20 μM Fe(III) at pH 3.20 on sunny August days at noon time. The degradation rate increased with increasing concentration of Fe(III). The reaction products were separated and identified using capillary electrophoresis (CE), gas chromatography/mass spectrometry (GC/MS) and UV-Visible spectrophotometry. The major reaction products were 2-hydroxybenzoic, 3-hydroxybenzoic and 4-hydroxybenzoic acids. Hydrogen peroxide (H 2O 2) and Fe(II) species were also formed during the photochemical reactions. The proposed reaction mechanisms include the photoexcitation of Fe(III) hydroxide complexes to form Fe(II) ions and hydroxyl radicals (OH rad ) that attack ortho, meta and para positions of BA to form corresponding monohydroxybenzoic acids and H 2O 2. The monohydroxybenzoic acids formed further react with hydroxyl and surperoxide radicals (HO 2- rad /O 2- rad ) to yield dihydroxybenzoic acids in atmospheric water droplets.

  3. The Reaction between CH3O2 and OH Radicals: Product Yields and Atmospheric Implications.

    Science.gov (United States)

    Assaf, Emmanuel; Sheps, Leonid; Whalley, Lisa; Heard, Dwayne; Tomas, Alexandre; Schoemaecker, Coralie; Fittschen, Christa

    2017-02-21

    The reaction between CH3O2 and OH radicals has been shown to be fast and to play an appreciable role for the removal of CH3O2 radials in remote environments such as the marine boundary layer. Two different experimental techniques have been used here to determine the products of this reaction. The HO2 yield has been obtained from simultaneous time-resolved measurements of the absolute concentration of CH3O2, OH, and HO2 radicals by cw-CRDS. The possible formation of a Criegee intermediate has been measured by broadband cavity enhanced UV absorption. A yield of ϕHO2 = (0.8 ± 0.2) and an upper limit for ϕCriegee = 0.05 has been determined for this reaction, suggesting a minor yield of methanol or stabilized trioxide as a product. The impact of this reaction on the composition of the remote marine boundary layer has been determined by implementing these findings into a box model utilizing the Master Chemical Mechanism v3.2, and constraining the model for conditions found at the Cape Verde Atmospheric Observatory in the remote tropical Atlantic Ocean. Inclusion of the CH3O2+OH reaction into the model results in up to 30% decrease in the CH3O2 radical concentration while the HO2 concentration increased by up to 20%. Production and destruction of O3 are also influenced by these changes, and the model indicates that taking into account the reaction between CH3O2 and OH leads to a 6% decrease of O3.

  4. Structural and mechanical characterization of detonation coatings formed by reaction products of titanium with components of the spraying atmosphere

    Science.gov (United States)

    Ulianitsky, Vladimir Yu.; Dudina, Dina V.; Panin, Sergey V.; Vlasov, Ilya V.; Batraev, Igor S.; Bokhonov, Boris B.

    2016-11-01

    Structural characterization of detonation deposits formed by reaction products of titanium with the components of the spraying atmosphere showed that ceramic-based coatings of unique microstructures—consisting of alternating layers of different compositions—can be formed. For the first time, mechanical characteristics of the coatings formed by reaction-accompanied detonation spraying of titanium were evaluated. It was found that high-yield transformation of titanium into oxides and nitrides during spraying can result in the formation of coatings with high fracture resistance and interface fracture toughness. The hardness of the coatings measured along the cross-section of the specimens was higher than that on the surface of the coatings, which indicated mechanical anisotropy of the deposited material. In terms of mechanical properties, coatings formed by the reaction products appear to be more attractive than those specially treated to preserve metallic titanium.

  5. The acid-catalyzed hydrolysis of an α-pinene-derived organic nitrate: kinetics, products, reaction mechanisms, and atmospheric impact

    Science.gov (United States)

    Rindelaub, Joel D.; Borca, Carlos H.; Hostetler, Matthew A.; Slade, Jonathan H.; Lipton, Mark A.; Slipchenko, Lyudmila V.; Shepson, Paul B.

    2016-12-01

    The production of atmospheric organic nitrates (RONO2) has a large impact on air quality and climate due to their contribution to secondary organic aerosol and influence on tropospheric ozone concentrations. Since organic nitrates control the fate of gas phase NOx (NO + NO2), a byproduct of anthropogenic combustion processes, their atmospheric production and reactivity is of great interest. While the atmospheric reactivity of many relevant organic nitrates is still uncertain, one significant reactive pathway, condensed phase hydrolysis, has recently been identified as a potential sink for organic nitrate species. The partitioning of gas phase organic nitrates to aerosol particles and subsequent hydrolysis likely removes the oxidized nitrogen from further atmospheric processing, due to large organic nitrate uptake to aerosols and proposed hydrolysis lifetimes, which may impact long-range transport of NOx, a tropospheric ozone precursor. Despite the atmospheric importance, the hydrolysis rates and reaction mechanisms for atmospherically derived organic nitrates are almost completely unknown, including those derived from α-pinene, a biogenic volatile organic compound (BVOC) that is one of the most significant precursors to biogenic secondary organic aerosol (BSOA). To better understand the chemistry that governs the fate of particle phase organic nitrates, the hydrolysis mechanism and rate constants were elucidated for several organic nitrates, including an α-pinene-derived organic nitrate (APN). A positive trend in hydrolysis rate constants was observed with increasing solution acidity for all organic nitrates studied, with the tertiary APN lifetime ranging from 8.3 min at acidic pH (0.25) to 8.8 h at neutral pH (6.9). Since ambient fine aerosol pH values are observed to be acidic, the reported lifetimes, which are much shorter than that of atmospheric fine aerosol, provide important insight into the fate of particle phase organic nitrates. Along with rate constant

  6. The molecular dynamics of atmospheric reaction

    Science.gov (United States)

    Polanyi, J. C.

    1971-01-01

    Detailed information about the chemistry of the upper atmosphere took the form of quantitative data concerning the rate of reaction into specified states of product vibration, rotation and translation for exothermic reaction, as well as concerning the rate of reaction from specified states of reagent vibration, rotation and translation for endothermic reaction. The techniques used were variants on the infrared chemiluminescence method. Emphasis was placed on reactions that formed, and that removed, vibrationally-excited hydroxyl radicals. Fundamental studies were also performed on exothermic reactions involving hydrogen halides.

  7. Atmospheric Gas-Phase Reactions of Fluorinated Compounds and Alkenes

    DEFF Research Database (Denmark)

    Østerstrøm, Freja From

    3)2CHOCH3, (CF3)2CHOCHO, CF3C(0)OCH3, Z- and E-CF 3CH=CHCF3. These studies include determining the kinetics of the reactions of the compounds with atmospheric oxidants, the products of the reactions, and assessing the atmospheric impact of the compounds by estimating their atmospheric lifetime...

  8. Atmospheric Chemistry of 1-Methoxy 2-Propyl Acetate: UV Absorption Cross Sections, Rate Coefficients, and Products of Its Reactions with OH Radicals and Cl Atoms.

    Science.gov (United States)

    Zogka, Antonia G; Mellouki, Abdelwahid; Romanias, Manolis N; Bedjanian, Yuri; Idir, Mahmoud; Grosselin, Benoit; Daële, Véronique

    2016-11-17

    The rate coefficients for the reactions of OH and Cl with 1-methoxy 2-propyl acetate (MPA) in the gas phase were measured using absolute and relative methods. The kinetic study on the OH reaction was conducted in the temperature (263-373) K and pressure (1-760) Torr ranges using the pulsed laser photolysis-laser-induced fluorescence technique, a low pressure fast flow tube reactor-quadrupole mass spectrometer, and an atmospheric simulation chamber/GC-FID. The derived Arrhenius expression is kMPA+OH(T) = (2.01 ± 0.02) × 10(-12) exp[(588 ± 123/T)] cm(3) molecule(-1) s(-1). The absolute and relative rate coefficients for the reaction of Cl with MPA were measured at room temperature in the flow reactor and the atmospheric simulation chamber, which led to k(Cl+MPA) = (1.98 ± 0.31) × 10(-10) cm(3) molecule(-1) s(-1). GC-FID, GC-MS, and FT-IR techniques were used to investigate the reaction mechanism in the presence of NO. The products formed from the reaction of MPA with OH and their yields were methyl formate (80 ± 7.3%), acetic acid (50 ± 4.8%), and acetic anhydride (22 ± 2.4%), while for Cl reaction, the obtained yields were 60 ± 5.4, 41 ± 3.8, and 11 ± 1.2%, respectively, for the same products. The UV absorption cross section spectrum of MPA was determined in the wavelength range 210-370 nm. The study has shown no photolysis of MPA under atmospheric conditions. The obtained results are used to derive the atmospheric implication.

  9. The oleic acid-ozone heterogeneous reaction system: products, kinetics, secondary chemistry, and atmospheric implications of a model system – a review

    Directory of Open Access Journals (Sweden)

    J. Zahardis

    2006-11-01

    Full Text Available The heterogeneous processing of organic aerosols by trace oxidants has many implications to atmospheric chemistry and climate regulation. This review covers a model heterogeneous reaction system (HRS: the oleic acid-ozone HRS and other reaction systems featuring fatty acids, and their derivatives. The analysis of the primary products of ozonolysis (azelaic acid, nonanoic acid, 9-oxononanoic acid, nonanal is described. Anomalies in the relative product yields are noted and explained by the observation of secondary chemical reactions. The secondary reaction products arising from reactive Criegee intermediates are mainly peroxidic, notably secondary ozonides and α-acyloxyalkyl hydroperoxide polymers. These highly oxygenated products are of low volatility and hydrophilic which may enhance the ability of particles to act as cloud condensation nuclei. The kinetic description of this HRS is critically reviewed. Most kinetic studies suggest this oxidative processing is either a near surface reaction that is limited by the diffusion of ozone or a surface based reaction. Internally mixed particles and coatings represent the next stage in the progression towards more realistic proxies of tropospheric organic aerosols and a description of the products and the kinetics resulting from the ozonolysis of these proxies, which are based on fatty acids or their derivatives, is presented. Finally, a series of atmospheric implications of oxidative processing of particulate containing fatty acids is presented. These implications include the extended lifetime of unsaturated species in the troposphere facilitated by the presence of solids, semisolids or viscous phases, and an enhanced rate of ozone uptake by particulate unsaturates compared to corresponding gas phase organics. Ozonolysis of oleic acid enhances its CCN activity, which implies that oxidatively processed particulate may contribute to indirect forcing of radiation. Other effects, including the potential

  10. The oleic acid-ozone heterogeneous reaction system: products, kinetics, secondary chemistry, and atmospheric implications of a model system – a review

    Directory of Open Access Journals (Sweden)

    J. Zahardis

    2007-01-01

    Full Text Available The heterogeneous processing of organic aerosols by trace oxidants has many implications to atmospheric chemistry and climate regulation. This review covers a model heterogeneous reaction system (HRS: the oleic acid-ozone HRS and other reaction systems featuring fatty acids, and their derivatives. The analysis of the commonly observed aldehyde and organic acid products of ozonolysis (azelaic acid, nonanoic acid, 9-oxononanoic acid, nonanal is described. The relative product yields are noted and explained by the observation of secondary chemical reactions. The secondary reaction products arising from reactive Criegee intermediates are mainly peroxidic, notably secondary ozonides and α-acyloxyalkyl hydroperoxide oligomers and polymers, and their formation is in accord with solution and liquid-phase ozonolysis. These highly oxygenated products are of low volatility and hydrophilic which may enhance the ability of particles to act as cloud condensation nuclei (CCN. The kinetic description of this HRS is critically reviewed. Most kinetic studies suggest this oxidative processing is either a near surface reaction that is limited by the diffusion of ozone or a surface based reaction. Internally mixed particles and coatings represent the next stage in the progression towards more realistic proxies of tropospheric organic aerosols and a description of the products and the kinetics resulting from the ozonolysis of these proxies, which are based on fatty acids or their derivatives, is presented. Finally, the main atmospheric implications of oxidative processing of particulate containing fatty acids are presented. These implications include the extended lifetime of unsaturated species in the troposphere facilitated by the presence of solids, semi-solids or viscous phases, and an enhanced rate of ozone uptake by particulate unsaturates compared to corresponding gas-phase organics. Ozonolysis of oleic acid enhances its CCN activity, which implies that

  11. Chemical Growth Processes in Titan's Atmosphere: Theoretical Rates and Product Distributions for Reactions between C2H and R1R2C=CR3R4 Species

    Science.gov (United States)

    Woon, D. E.; Park, J.-Y.

    2004-11-01

    The ethynyl radical (C2H) can attack unsaturated carbon-carbon bonds with no activation barrier, making such reactions very favorable under the low temperature and pressure conditions in Titan's upper atmosphere, where tholin production generates the satellite's distinctive haze layers. We have used density functional theory to characterize reactions between C2H and R1R2C=CR3R4 species ranging from ethylene to tetramethyl ethylene. Outcomes include multi-channel addition-elimination reactions and H abstraction. We will discuss trends in the reaction rates and product distributions as a function of temperature and pressure. Support for this work by the NASA Planetary Atmospheres program (grant NAG5-12305) is gratefully acknowledged.

  12. Double Pion Production Reactions

    CERN Document Server

    Oset, E; Cano, F; Hernández, E; Kamalov, S S; Nacher, J C; Tejedor, J A G

    1999-01-01

    We report on reactions producing two pions induced by real and virtual photons or nucleons. The role of different resonances in these reactions is emphasized. Novel results on coherent two pion photoproduction in nuclei are also reported.

  13. Meson production in + reactions

    Indian Academy of Sciences (India)

    H Machner; M Betigeri; J Bojowald; A Budzanowski; A Chatterjee; J Ernst; L Freindl; D Frekers; W Garske; K Grewer; A Hamacher; J Ilieva; L Jarczyk; K Kilian; S Kliczewski; W Klimala; D Kolev; T Kutsarova; J Lieb; H Machner; A Magiera; H Nann; L Pentchev; H S Plendl; D Protić; B Razen; P Von Rossen; B J Roy; R Siudak; J Smyrski; R V Srikantiah; A Strzałkowski; R Tsenov; K Zwoll

    2001-08-01

    Total and differential cross sections for the reactions $p+d → 3He + 0 with = ; and + → 3H + + were measured with the GEM detector at COSY for beam momenta between threshold and the maximum of the corresponding baryon resonance. For both reactions a strong forward–backward asymmetry was found. The data were compared with model calculations. The aspect of isospin symmetry breaking is studied.

  14. Reaction product imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, D.W. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    Over the past few years the author has investigated the photochemistry of small molecules using the photofragment imaging technique. Bond energies, spectroscopy of radicals, dissociation dynamics and branching ratios are examples of information obtained by this technique. Along with extending the technique to the study of bimolecular reactions, efforts to make the technique as quantitative as possible have been the focus of the research effort. To this end, the author has measured the bond energy of the C-H bond in acetylene, branching ratios in the dissociation of HI, the energetics of CH{sub 3}Br, CD{sub 3}Br, C{sub 2}H{sub 5}Br and C{sub 2}H{sub 5}OBr dissociation, and the alignment of the CD{sub 3} fragment from CD{sub 3}I photolysis. In an effort to extend the technique to bimolecular reactions the author has studied the reaction of H with HI and the isotopic exchange reaction between H and D{sub 2}.

  15. Homogeneous and heterogeneous reactions of anthracene with selected atmospheric oxidants.

    Science.gov (United States)

    Zhang, Yang; Shu, Jinian; Zhang, Yuanxun; Yang, Bo

    2013-09-01

    The reactions of gas-phase anthracene and suspended anthracene particles with O3 and O3-NO were conducted in a 200-L reaction chamber, respectively. The secondary organic aerosol (SOA) formations from gas-phase reactions of anthracene with O3 and O3-NO were observed. Meanwhile, the size distributions and mass concentrations of SOA were monitored with a scanning mobility particle sizer (SMPS) during the formation processes. The rapid exponential growths of SOA reveal that the atmospheric lifetimes of gas-phase anthracene towards O3 and O3-NO are less than 20.5 and 4.34 hr, respectively. The particulate oxidation products from homogeneous and heterogeneous reactions were analyzed with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS). Gas chromatograph/mass spectrometer (GC/MS) analyses of oxidation products of anthracene were carried out for assigning the time-of-flight (TOF) mass spectra of products from homogeneous and heterogeneous reactions. Anthrone, anthraquinone, 9,10-dihydroxyanthracene, and 1,9,10-trihydroxyanthracene were the ozonation products of anthracene, while anthrone, anthraquinone, 9-nitroanthracene, and 1,8-dihydroxyanthraquinone were the main products of anthracene with O3-NO.

  16. Homogeneous and heterogeneous reactions of anthracene with selected atmospheric oxidants

    Institute of Scientific and Technical Information of China (English)

    Yang Zhang; Jinian Shu; Yuanxun Zhang; Bo Yang

    2013-01-01

    The reactions of gas-phase anthracene and suspended anthracene particles with O3 and O3-NO were conducted in a 200-L reaction chamber,respectively.The secondary organic aerosol (SOA) formations from gas-phase reactions of anthracene with O3 and O3-NO were observed.Meanwhile,the size distributions and mass concentrations of SOA were monitored with a scanning mobility particle sizer (SMPS) during the formation processes.The rapid exponential growths of SOA reveal that the atmospheric lifetimes of gas-phase anthracene towards O3 and O3-NO are less than 20.5 and 4.34 hr,respectively.The particulate oxidation products from homogeneous and heterogeneous reactions were analyzed with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUVATOFMS).Gas chromatograph/mass spectrometer (GC/MS) analyses of oxidation products of anthracene were carried out for assigning the time-of-flight (TOF) mass spectra of products from homogeneous and heterogeneous reactions.Anthrone,anthraquinone,9,10-dihydroxyanthracene,and 1,9,10-trihydroxyanthracene were the ozonation products of anthracene,while anthrone,anthraquinone,9-nitroanthracene,and 1,8-dihydroxyanthraquinone were the main products of anthracene with O3-NO.

  17. Atmospheric science and power production

    Energy Technology Data Exchange (ETDEWEB)

    Randerson, D. (ed.)

    1984-07-01

    This is the third in a series of scientific publications sponsored by the US Atomic Energy Commission and the two later organizations, the US Energy Research and Development Adminstration, and the US Department of Energy. The first book, Meteorology and Atomic Energy, was published in 1955; the second, in 1968. The present volume is designed to update and to expand upon many of the important concepts presented previously. However, the present edition draws heavily on recent contributions made by atmospheric science to the analysis of air quality and on results originating from research conducted and completed in the 1970s. Special emphasis is placed on how atmospheric science can contribute to solving problems relating to the fate of combustion products released into the atmosphere. The framework of this book is built around the concept of air-quality modeling. Fundamentals are addressed first to equip the reader with basic background information and to focus on available meteorological instrumentation and to emphasize the importance of data management procedures. Atmospheric physics and field experiments are described in detail to provide an overview of atmospheric boundary layer processes, of how air flows around obstacles, and of the mechanism of plume rise. Atmospheric chemistry and removal processes are also detailed to provide fundamental knowledge on how gases and particulate matter can be transformed while in the atmosphere and how they can be removed from the atmosphere. The book closes with a review of how air-quality models are being applied to solve a wide variety of problems. Separate analytics have been prepared for each chapter.

  18. Positron production within our atmosphere

    Science.gov (United States)

    Dwyer, Joseph

    2016-04-01

    Positrons are commonly produced within our atmosphere by cosmic rays and the decay radioactive isotopes. Energetic positrons are also produced by pair production from the gamma rays generated by relativistic runaway electrons. Indeed, such positrons have been detected in Terrestrial Electron Beams (TEBs) in the inner magnetosphere by Fermi/GBM. In addition, positrons play an important role in relativistic feedback discharges (also known as dark lightning). Relativistic feedback models suggest that these discharges may be responsible for Terrestrial Gamma-ray Flashes (TGFs) and some gamma-ray glows. When producing TGFs, relativistic feedback discharges may generate large, lightning-like currents with current moments reaching hundreds of kA-km. In addition, relativistic feedback discharges also may limit the electric field that is possible in our atmosphere, affecting other mechanisms for generating runaway electrons. It is interesting that positrons, often thought of as exotic particles, may play an important role in thunderstorm processes. In this presentation, the role of positrons in high-energy atmospheric physics will be discussed. The unusual observation of positron clouds inside a thunderstorm by the ADELE instrument on an NCAR/NSF Gulfstream V aircraft will also be described. These observations illustrate that we still have much to learn about positron production within our atmosphere.

  19. Atmospheric Chemistry of cis-CF3CH=CHF: Kinetics of reactions with OH radicals and O3 and products of OH radical initiated oxidation

    DEFF Research Database (Denmark)

    Nilsson, Elna Johanna Kristina; Nielsen, Ole John; Johnson, Matthew Stanley

    2009-01-01

    Long path length FTIR-smog chamber techniques were used to measure k(OH + cis-CF3CH@CHF) = (1.20 ± 0.14) 1012 and k(O3 + cis-CF3CH@CHF) = (1.65 ± 0.16) 1021 cm3 molecule 1 s1 in 700 Torr of N2/O2 diluent at 296 K. The OH initiated oxidation of cis-CF3CH@CHF gives CF3CHO and HCOF in molar yields...... which are indistinguishable from 100%. The atmospheric lifetime of cis-CF3CH@CHF is determined by its reaction with OH and is approximately 10 days. cis-CF3CH@CHF has an integrated IR absorption cross section (600–2000 cm1) of (1.71 ± 0.09) 1016 cm molecule1 and a global warming potential...

  20. CRITICAL REVIEW OF N, N{sup +}, N{sup +} {sub 2}, N{sup ++}, And N{sup ++} {sub 2} MAIN PRODUCTION PROCESSES AND REACTIONS OF RELEVANCE TO TITAN'S ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Dutuit, Odile; Thissen, Roland; Vuitton, Veronique [Institut de Planetologie et d' Astrophysique de Grenoble, UJF-Grenoble 1/CNRS-INSU, UMR 5274, F-38041 Grenoble (France); Carrasco, Nathalie [Laboratoire Atmospheres, Milieux, Observations Spatiales, CNRS, UVSQ/UPMC, F-78280 Guyancourt (France); Alcaraz, Christian; Pernot, Pascal [Laboratoire de Chimie Physique, CNRS/UPS UMR 8000, Bat.349, F-91405 Orsay Cedex (France); Balucani, Nadia; Casavecchia, Piergiorgio [Dipartimento di Chimica, Universita degli Studi di Perugia, Via Elce di Sotto, 8, I-06123 Perugia (Italy); Canosa, Andre; Picard, Sebastien Le [Departement de Physique Moleculaire, Universite de Rennes 1, Institut de Physique de Rennes, UMR 6251 CNRS Universite, Campus de Beaulieu-Bat 11C, F-35042 Rennes Cedex (France); Loison, Jean-Christophe [Institut des Sciences Moleculaires, Universite Bordeaux 1/CNRS, UMR 5255, 351 cours de la Liberation, F-33405 Talence Cedex (France); Herman, Zdenek; Zabka, Jan [J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejskova 3 CZ-182 23 Prague 8 (Czech Republic); Ascenzi, Daniela; Tosi, Paolo [Dipartimento di Fisica, Universita di Trento, Via Sommarive 14, I-38123 Trento (Italy); Franceschi, Pietro [Biostatistics and Data Management, IASMA Research and Innovation Centre, Fondazione E. Mach, Via E. Mach, 1 I-38010 S. Michele all' Adige (Italy); Price, Stephen D. [Department of Chemistry, UCL, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Lavvas, Panayotis, E-mail: roland.thissen@obs.ujf-grenoble.fr [Groupe de Spectrometrie Moleculaire et Atmospherique, CNRS, UMR 6089, Campus Moulin de la Housse-BP 1039, Universite Reims Champagne-Ardenne, F-51687 Reims (France)

    2013-02-15

    This paper is a detailed critical review of the production processes and reactions of N, N{sup +}, N{sup +} {sub 2}, N{sup ++}, and N{sup ++} {sub 2} of relevance to Titan's atmosphere. The review includes neutral, ion-molecule, and recombination reactions. The review covers all possible active nitrogen species under Titan's atmospheric conditions, specifically N{sub 2} (A {sup 3}{Sigma}{sup +} {sub u}), N ({sup 4} S), N ({sup 2} D), N ({sup 2} P), N{sup +} {sub 2}, N{sup +} ({sup 3} P), N{sup +} ({sup 1} D), N{sup ++} {sub 2}, and N{sup ++} species, and includes a critical survey of the reactions of N, N{sup +}, N{sup +} {sub 2}, N{sup ++}, and N{sup ++} {sub 2} with N{sub 2}, H{sub 2}, D{sub 2}, CH{sub 4}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}, C{sub 3}H{sub 8} and the deuterated hydrocarbon analogs, as well as the recombination reactions of N{sup +} {sub 2}, N{sup +}, N{sup ++} {sub 2}, and N{sup ++}. Production processes, lifetimes, and quenching by collisions with N{sub 2} of all reactant species are reviewed. The N ({sup 4} S) state is reactive with radicals and its reactions with CH{sub 2}, CH{sub 3}, C{sub 2}H{sub 3}, and C{sub 2}H{sub 5} are reviewed. Metastable states N{sub 2} (A {sup 3}{Sigma}{sup +} {sub u}), N ({sup 2} D), and N ({sup 2} P) are either reactive or quenched by collisions with the target molecules reviewed. The reactions of N{sup +} ({sup 1} D) have similar rate constants as N{sup +} ({sup 3} P), but the product branching ratios differ significantly. Temperature effects and the role of the kinetic energy content of reactants are investigated. In all cases, experimental uncertainties of laboratory data are reported or estimated. Recommended values with uncertainties, or estimated values when no data are available, are given for rate constants and product branching ratios at 300 K and at the atmospheric temperature range of Titan (150-200 K for neutral reactions and 150 K for ion reactions).

  1. A laboratory flow reactor with gas particle separation and on-line MS/MS for product identification in atmospherically important reactions

    Directory of Open Access Journals (Sweden)

    J. F. Bennett

    2009-06-01

    Full Text Available A system to study the gas and particle phase products from gas phase hydrocarbon oxidation is described. It consists of a gas phase photochemical flow reactor followed by a diffusion membrane denuder to remove gases from the reacted products, or a filter to remove the particles. Chemical analysis is performed by an atmospheric pressure chemical ionization (APCI triple quadrupole mass spectrometer. A diffusion membrane denuder is shown to remove trace gases to below detectable limits so the particle phase can be studied. The system was tested by examining the products of the oxidation of m-xylene initiated by HO radicals. Dimethylphenol was observed in both the gas and particle phases although individual isomers could not be identified. Two furanone isomers, 5-methyl-2(3Hfuranone and 3-methyl-2(5Hfuranone were identified in the particulate phase, but the isobaric product 2,5 furandione was not observed. One isomer of dimethyl-nitrophenol was identified in the particle phase but not in the gas phase.

  2. A laboratory flow reactor with gas particle separation and on-line MS/MS for product identification in atmospherically important reactions

    Directory of Open Access Journals (Sweden)

    J. F. Bennett

    2009-12-01

    Full Text Available A system to study the gas and particle phase products from gas phase hydrocarbon oxidation is described. It consists of a gas phase photochemical flow reactor followed by a diffusion membrane denuder to remove gases from the reacted products, or a filter to remove the particles. Chemical analysis is performed by an atmospheric pressure chemical ionization (APCI triple quadrupole mass spectrometer. A diffusion membrane denuder is shown to remove trace gases to below detectable limits so the particle phase can be studied. The system was tested by examining the products of the oxidation of m-xylene initiated by HO radicals. Dimethylphenol was observed in both the gas and particle phases although individual isomers could not be identified. Two furanone isomers, 5-methyl-2(3Hfuranone and 3-methyl-2(5Hfuranone were identified in the particulate phase, but the isobaric product 2,5 furandione was not observed. One isomer of dimethyl-nitrophenol was identified in the particle phase but not in the gas phase.

  3. Possible atmospheric lifetimes and chemical reaction mechanisms for selected HCFCs, HFCs, CH3CCl3, and their degradation products against dissolution and/or degradation in seawater and cloudwater

    Science.gov (United States)

    Wine, P. H.; Chameides, W. L.

    1990-01-01

    For a wide variety of atmospheric species including CO2, HNO3, and SO2, dissolution in seawater or cloudwater followed by hydrolysis or chemical reaction represents a primary pathway for removal from the atmosphere. In order to determine if this mechanism can also remove significant amounts of atmospheric chlorofluorocarbons (HCFC's), fluorocarbons (HFC's), and their degradation products, an investigation was undertaken as part of the Alternative Fluorocarbons Environmental Acceptability Study (AFEAS). In this investigation, the rates at which CHCl2CF3 (HCFC-123), CCl2FCH3 (HCFC-141b), CClF2CH3 (HCFC-142b), CHClF2 (HCFC-22), CHClFCF3 (HCFC-124) CH2FCF3 (HFC-134a) CHF2CH3 (HFC-152a), CHF2CF3 (HFC-125), and CH3CCl3 can be dissolved in the oceans and in cloudwater were estimated from the species' thermodynamic and chemical properties using simple mathematical formulations to simulate the transfer of gases from the atmosphere to the ocean or cloudwater. The ability of cloudwater and rainwater to remove gas phase degradation products of these compounds was also considered as was the aqueous phase chemistry of the degradation products. The results of this investigation are described.

  4. Atmospheric oxidation of 1,3-butadiene: characterization of gas and aerosol reaction products and implication for PM2.5

    Science.gov (United States)

    Jaoui, M.; Lewandowski, M.; Docherty, K.; Offenberg, J. H.; Kleindienst, T. E.

    2014-06-01

    Secondary organic aerosol (SOA) was generated by irradiating 1,3-butadiene (13BD) in the presence of H2O2 or NOx. Experiments were conducted in a smog chamber operated in either flow or batch mode. A filter/denuder sampling system was used for simultaneously collecting gas- and particle-phase products. The chemical composition of the gas phase and SOA was analyzed using derivative-based methods (BSTFA, BSTFA + PFBHA, or DNPH) followed by gas chromatography-mass spectrometry (GC-MS) or high-performance liquid chromatography (HPLC) analysis of the derivative compounds. The analysis showed the occurrence of more than 60 oxygenated organic compounds in the gas and particle phases, of which 31 organic monomers were tentatively identified. The major identified products include glyceric acid, d-threitol, erythritol, d-threonic acid, meso-threonic acid, erythrose, malic acid, tartaric acid, and carbonyls including glycolaldehyde, glyoxal, acrolein, malonaldehyde, glyceraldehyde, and peroxyacryloyl nitrate (APAN). Some of these were detected in ambient PM2.5 samples and could potentially serve as organic markers of 1,3-butadiene (13BD). Furthermore, a series of oligoesters were detected and found to be produced from esterification reactions among compounds bearing alcoholic groups and compounds bearing acidic groups. Time profiles are provided for selected compounds. SOA was analyzed for organic mass to organic carbon (OM / OC) ratio, effective enthalpy of vaporization (ΔHvapeff), and aerosol yield. The average OM / OC ratio and SOA density were 2.7 ± 0.09 and 1.2 ± 0.05, respectively. The average ΔHvapeff was 26.1 ± 1.5 kJ mol-1, a value lower than that of isoprene SOA. The average laboratory SOA yield measured in this study at aerosol mass concentrations between 22.5 and 140.2 μg m-3 was 0.025 ± 0.011, a value consistent with the literature (0.021-0.178). While the focus of this study has been examination of the particle-phase measurements, the gas

  5. Atmospheric oxidation of 1,3-butadiene: characterization of gas and aerosol reaction products and implications for PM2.5

    Science.gov (United States)

    Jaoui, M.; Lewandowski, M.; Docherty, K.; Offenberg, J. H.; Kleindienst, T. E.

    2014-12-01

    Secondary organic aerosol (SOA) was generated by irradiating 1,3-butadiene (13BD) in the presence of H2O2 or NOx. Experiments were conducted in a smog chamber operated in either flow or batch mode. A filter/denuder sampling system was used for simultaneously collecting gas- and particle-phase products. The chemical composition of the gas phase and SOA was analyzed using derivative-based methods (BSTFA, BSTFA + PFBHA, or DNPH) followed by gas chromatography-mass spectrometry (GC-MS) or high-performance liquid chromatography (HPLC) analysis of the derivative compounds. The analysis showed the occurrence of more than 60 oxygenated organic compounds in the gas and particle phases, of which 31 organic monomers were tentatively identified. The major identified products include glyceric acid, d-threitol, erythritol, d-threonic acid, meso-threonic acid, erythrose, malic acid, tartaric acid, and carbonyls including glycolaldehyde, glyoxal, acrolein, malonaldehyde, glyceraldehyde, and peroxyacryloyl nitrate (APAN). Some of these were detected in ambient PM2.5 samples, and could potentially serve as organic markers of 13BD. Furthermore, a series of oligoesters were detected and found to be produced through chemical reactions occurring in the aerosol phase between compounds bearing alcoholic groups and compounds bearing acidic groups. SOA was analyzed for organic mass to organic carbon (OM /OC) ratio, effective enthalpy of vaporization (Δ Hvapeff), and aerosol yield. The average OM /OC ratio and SOA density were 2.7 ± 0.09 and 1.2 ± 0.05, respectively. The average Δ Hvapeff was -26.08 ± 1.46 kJ mol-1, a value lower than that of isoprene SOA. The average laboratory SOA yield measured in this study at aerosol mass concentrations between 22.5 and 140.2 μg m-3 was 0.025 ± 0.011, a value consistent with the literature (0.021-0.178). While the focus of this study has been examination of the particle-phase measurements, the gas-phase photooxidation products have also been

  6. Real-time air monitoring of mustard gas and Lewisite 1 by detecting their in-line reaction products by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow ion introduction.

    Science.gov (United States)

    Okumura, Akihiko; Takada, Yasuaki; Watanabe, Susumu; Hashimoto, Hiroaki; Ezawa, Naoya; Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Kondo, Tomohide; Nagashima, Hisayuki; Nagoya, Tomoki

    2015-01-20

    A new method enabling sensitive real-time air monitoring of highly reactive chemical warfare agents, namely, mustard gas (HD) and Lewisite 1 (L1), by detecting ions of their in-line reaction products instead of intact agents, is proposed. The method is based on corona discharge-initiated atmospheric pressure chemical ionization coupled with ion trap tandem mass spectrometry (MS(n)) via counterflow ion introduction. Therefore, it allows for highly sensitive and specific real-time detection of a broad range of airborne compounds. In-line chemical reactions, ionization reactions, and ion fragmentations of these agents were investigated. Mustard gas is oxygenated in small quantity by reactive oxygen species generated in the corona discharge. With increasing air humidity, the MS(2) signal intensity of protonated molecules of mono-oxygenated HD decreases but exceeds that of dominantly existing intact HD. This result can be explained in view of proton affinity. Lewisite 1 is hydrolyzed and oxidized. As the humidity increases from zero, the signal of the final product, namely, didechlorinated, dihydroxylated, and mono-oxygenated L1, quickly increases and reaches a plateau, giving the highest MS(2) and MS(3) signals among those of L1 and its reaction products. The addition of minimal moisture gives the highest signal intensity, even under low humidity. The method was demonstrated to provide sufficient analytical performance to meet the requirements concerning hygienic management and counter-terrorism. It will be the first practical method, in view of sensitivity and specificity, for real-time air monitoring of HD and L1 without sample pretreatment.

  7. Kinetics, Mechanism and Product Yields in the Atmospheric Oxidation of Dimethylsulfide

    Science.gov (United States)

    2016-06-14

    Rosenstiel School of Marine and Atmospheric Science University of Miami 4600 Rickenbacker Causeway Miami, Florida 33149-1098 ahynes...decomposition and reaction, b) direct confirmation of production, and quantitative product yields of potential reaction products and intermediates...School of Marine and Atmospheric Science ,4600 Rickenbacker Causeway,Miami,FL,33149 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING

  8. Reaction products of chlorine dioxide.

    Science.gov (United States)

    Stevens, A A

    1982-01-01

    Inspection of the available literature reveals that a detailed investigation of the aqueous organic chemistry of chlorine dioxide and systematic identification of products formed during water disinfection has not been considered. This must be done before an informed assessment can be made of the relative safety of using chlorine dioxide as a disinfectant alternative to chlorine. Although trihalomethanes are generally not formed by the action of chlorine dioxide, the products of chlorine dioxide treatment of organic materials are oxidized species, some of which also contain chlorine. The relative amounts of species types may depend on the amount of chlorine dioxide residual maintained and the concentration and nature of the organic material present in the source water. The trend toward lower concentrations of chlorinated by-products with increasing ClO2 concentration, which was observed with phenols, has not been observed with natural humic materials as measured by the organic halogen parameter. Organic halogen concentrations have been shown to increase with increasing chlorine dioxide dose, but are much lower than those observed when chlorine is applied. Aldehydes have been detected as apparent by-products of chlorine dioxide oxidation reactions in a surface water that is a drinking water source. Some other nonchlorinated products of chlorine dioxide treatment may be quinones and epoxides. The extent of formation of these moieties within the macromolecular humic structure is also still unknown. PMID:7151750

  9. Heterogeneous reactions important in atmospheric ozone depletion: a theoretical perspective.

    Science.gov (United States)

    Bianco, Roberto; Hynes, James T

    2006-02-01

    Theoretical studies of the mechanisms of several heterogeneous reactions involving ClONO(2), H(2)O, HCl, HBr, and H(2)SO(4) important in atmospheric ozone depletion are described, focused primarily on reactions on aqueous aerosol surfaces. Among the insights obtained is the active chemical participation of the surface water molecules in several of these reactions. The general methodology adopted allows reduction of these complex chemical problems to meaningful model systems amenable to quantum chemical calculations.

  10. Reaction Profiles and Molecular Dynamics Simulations of Cyanide Radical Reactions Relevant to Titan's Atmosphere

    Science.gov (United States)

    Trinidad Pérez-Rivera, Danilo; Romani, Paul N.; Lopez-Encarnacion, Juan Manuel

    2016-10-01

    Titan's atmosphere is arguably the atmosphere of greatest interest that we have an abundance of data for from both ground based and spacecraft observations. As we have learned more about Titan's atmospheric composition, the presence of pre-biotic molecules in its atmosphere has generated more and more fascination about the photochemical process and pathways it its atmosphere. Our computational laboratory has been extensively working throughout the past year characterizing nitrile synthesis reactions, making significant progress on the energetics and dynamics of the reactions of .CN with the hydrocarbons acetylene (C2H2), propylene (CH3CCH), and benzene (C6H6), developing a clear picture of the mechanistic aspects through which these three reactions proceed. Specifically, first principles calculations of the reaction profiles and molecular dynamics studies for gas-phase reactions of .CN and C2H2, .CN and CH3CCH, and .CN and C6H6 have been carried out. A very accurate determination of potential energy surfaces of these reactions will allow us to compute the reaction rates which are indispensable for photochemical modeling of Titan's atmosphere.The work at University of Puerto Rico at Cayey was supported by Puerto Rico NASA EPSCoR IDEAS-ER program (2015-2016) and DTPR was sponsored by the Puerto Rico NASA Space Grant Consortium Fellowship. *E-mail: juan.lopez15@upr.edu

  11. A theoretical study of the atmospherically important radical-radical reaction BrO + HO2; the product channel O2(a(1)Δg) + HOBr is formed with the highest rate.

    Science.gov (United States)

    Chow, Ronald; Mok, Daniel K W; Lee, Edmond P F; Dyke, John M

    2016-11-09

    A theoretical study has been made of the BrO + HO2 reaction, a radical-radical reaction which contributes to ozone depletion in the atmosphere via production of HOBr. Reaction enthalpies, activation energies and mechanisms have been determined for five reaction channels. Also rate coefficients have been calculated, in the atmospherically important temperature range 200-400 K, for the two channels with the lowest activation energies, both of which produce HOBr: (R1a) HOBr(X(1)A') + O2(X(3)Σ) and (R1b) HOBr(X(1)A') + O2(a(1)Δg). The other channels considered are: (R2) BrO + HO2 → HBr + O3, (R3) BrO + HO2 → OBrO + OH and (R4) BrO + HO2 → BrOO + OH. For all channels, geometry optimization and frequency calculations were carried out at the M06-2X/AVDZ level, while relative energies of the stationary points on the reaction surface were improved at a higher level (BD(TQ)/CBS or CCSD(T)/CBS). The computed standard reaction enthalpies (ΔH) for channels (R1a), (R1b), (R2), (R3) and (R4) are -47.5, -25.0, -4.3, 14.9 and 5.9 kcal mol(-1), and the corresponding computed activation energies (ΔE) are 2.53, -3.07, 11.83, 35.0 and 37.81 kcal mol(-1). These values differ significantly from those obtained in earlier work by Kaltsoyannis and Rowley (Phys. Chem. Chem. Phys., 2002, 4, 419-427), particularly for channel (R1b), and reasons for this are discussed. In particular, the importance of obtaining an open-shell singlet wavefunction, rather than a closed-shell singlet wavefunction, for the transition state of this channel is emphasized. Rate coefficient calculations from computed potential energy surfaces were made for BrO + HO2 for the first time. Although channel (R1a) is the most exothermic, channel (R1b) has the lowest barrier height, which is negative (at -3.07 kcal mol(-1)). Most rate coefficient calculations were therefore made for (R1b). A two transition state model has been used, involving an outer and an inner transition state. The inner transition state was

  12. Atmospheric oxidation of 1,3-butadiene: characterization of gas and aerosol reaction products and implications for PM2.5

    OpenAIRE

    Jaoui, M.; Lewandowski, M.; K. Docherty; Offenberg, J. H.; T. E. Kleindienst

    2014-01-01

    Secondary organic aerosol (SOA) was generated by irradiating 1,3-butadiene (13BD) in the presence of H2O2 or NOx. Experiments were conducted in a smog chamber operated in either flow or batch mode. A filter/denuder sampling system was used for simultaneously collecting gas- and particle-phase products. The chemical composition of the gas phase and SOA was analyzed using derivative-based methods (BSTFA, BSTFA + PFBHA, or DNPH) followed by gas chromatography–mass spectrometry ...

  13. Chemical reactions between Venus' surface and atmosphere - An update. (Invited)

    Science.gov (United States)

    Treiman, A. H.

    2013-12-01

    The surface of Venus, at ~740K, is hot enough to allow relatively rapid chemical reactions between it and the atmosphere, i.e. weathering. Venus chemical weathering has been explored in detail [1], to the limits of available data. New data from Venus Express (VEx) and new ideas from exoplanets have sparked a modest renewal of interest in Venus weathering. Venus' surface cannot be observed in visible light, but there are several NIR ';windows' through its atmosphere that allow surface imaging. The VIRTIS spectrometer on VEx viewed the surface through one window [2]; emissivity variations among lava flows on Imdr and Themis Regios have been explained as varying degrees of weathering, and thus age [3]. The VMC camera on VEx also provides images through a NIR window, which suggest variable degrees of weathering on some basaltic plains [4]. Indirect evidence for weathering may come from varying SO2 abundance at Venus' cloud tops; repeated rapid increases and gradual declines may represent volcanic eruptions followed by weathering to form sulfate minerals [5]. Continued geochemical modeling relevant to Venus weathering is motivated by expolanet studies [6]. Models have been extended to hypothetical exo-Venuses of different temperatures and surface compositions [7]. The idea that Venus' atmosphere composition can be buffered by reaction with its surface was explored in detail, and the derived constraint extended to other types of planets [8]. Several laboratories are investigating Venus weathering, motivated in part by the hope that they can provide real constraints on timescales of Venus volcanism [3]. Aveline et al. [9] are extending early studies [10] by reacting rocks and minerals with concentrated SO2 (to accelerate reaction rates to allow detectability of products). Kohler et al. [11] are investigating the stability of metals and chalcogenides as possible causes of the low-emissivity surfaces at high elevations. Berger and Aigouy [12] studied rock alteration on a

  14. Atmospheric degradation of 3-methylfuran: kinetic and products study

    Directory of Open Access Journals (Sweden)

    A. Tapia

    2010-10-01

    Full Text Available A study of the kinetics and products obtained from the reactions of 3-methylfuran with the main atmospheric oxidants has been performed. The rate coefficients for the gas-phase reaction of 3-methylfuran with OH and NO3 radicals have been determined at room temperature and atmospheric pressure (air and N2 as bath gases, using a relative method with different experimental techniques. The absolute rate coefficients obtained for these reactions were (in units cm3 molecule−1 s−1: kOH=(1.13±0.22×10−10 and kNO3=(1.26±0.18×10−11. These rate coefficients have been compared with those available in the literature. The products from the reaction of 3-methylfuran with OH, NO3 and Cl atoms in the absence and in the presence of NOx species have also been determined. The main reaction products obtained were chlorinated methylfuranones and hydroxy-methylfuranones for the reaction of 3-methylfuran with Cl atoms, 2-methylbutenedial, 3-methyl-2,5-furanodione and hydroxy-methylfuranones for the reaction of 3-methylfuran with OH and NO3 radicals and also nitrated compounds for the reaction with NO3 radicals. The results indicate that in all cases the main reaction path is the addition to the double bond of the aromatic ring followed by ring opening in the case of OH and NO3 radicals. The formation of 3-furaldehyde and hydroxy-methylfuranones (in the reactions of 3-methylfuran with Cl atoms and NO3 radicals confirmed the H-atom abstraction from the methyl group and from the aromatic ring, respectively. This study represents the first product determination for both Cl atoms and the NO3 radical in reactions with 3-methylfuran. The reaction mechanisms and atmospheric implications of the reactions under consideration are also discussed.

  15. Atmospheric degradation of 3-methylfuran: kinetic and products study

    Directory of Open Access Journals (Sweden)

    A. Tapia

    2011-04-01

    Full Text Available A study of the kinetics and products obtained from the reactions of 3-methylfuran with the main atmospheric oxidants has been performed. The rate coefficients for the gas-phase reaction of 3-methylfuran with OH and NO3 radicals have been determined at room temperature and atmospheric pressure (air and N2 as bath gases, using a relative method with different experimental techniques. The rate coefficients obtained for these reactions were (in units cm3 molecule−1 s−1 kOH = (1.13 ± 0.22 × 10−10 and kNO3 = (1.26 ± 0.18 × 10−11. Products from the reaction of 3-methylfuran with OH, NO3 and Cl atoms in the absence and in the presence of NO have also been determined. The main reaction products obtained were chlorinated methylfuranones and hydroxy-methylfuranones in the reaction of 3-methylfuran with Cl atoms, 2-methylbutenedial, 3-methyl-2,5-furanodione and hydroxy-methylfuranones in the reaction of 3-methylfuran with OH and NO3 radicals and also nitrated compounds in the reaction with NO3 radicals. The results indicate that, in all cases, the main reaction path is the addition to the double bond of the aromatic ring followed by ring opening in the case of OH and NO3 radicals. The formation of 3-furaldehyde and hydroxy-methylfuranones (in the reactions of 3-methylfuran with Cl atoms and NO3 radicals confirmed the H-atom abstraction from the methyl group and from the aromatic ring, respectively. This study represents the first product determination for Cl atoms and NO3 radicals in reactions with 3-methylfuran. The reaction mechanisms and atmospheric implications of the reactions under consideration are also discussed.

  16. Atmospheric production rate of {sup 36}Cl

    Energy Technology Data Exchange (ETDEWEB)

    Parrat, Y.; Hajdas, W.; Baltensperger, U.; Synal, H.A.; Kubik, P.W.; Gaeggeler, H.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Suter, M. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Using experimental cross sections, a new calculation of the atmospheric production rate of {sup 36}Cl was carried out. A mean production rate of 20 atoms m{sup -2}s{sup -1} was obtained, which is lower than mean {sup 36}Cl deposition rates. (author) 2 figs., 7 refs.

  17. Reactions between the (SO·4-) radical and some common anions in atmospheric aqueous droplets

    Institute of Scientific and Technical Information of China (English)

    OUYANG Bin; FANG Hao-jie; ZHU Cheng-zhu; DONG Wen-bo; HOU Hui-qi

    2005-01-01

    The rate constants of reactions between the SO4·- radical and some common anions in atmospheric aqueous droplets e.g. Cl-,NO3-, HSO3- and HCO3- were determined using the laser flash photolysis technique. Absorption spectra of SO4·- and the product radicals were also reported. The chloride ion was evaluated among all the anions to be the most efficient scavenger of SO4·- . The results may supply useful information for a better understanding of the vigorous radical-initiated reactions in atmospheric aqueous droplets such as clouds, rains or fogs.

  18. Interception of excited vibrational quantum states by O2 in atmospheric association reactions.

    Science.gov (United States)

    Glowacki, David R; Lockhart, James; Blitz, Mark A; Klippenstein, Stephen J; Pilling, Michael J; Robertson, Struan H; Seakins, Paul W

    2012-08-31

    Bimolecular reactions in Earth's atmosphere are generally assumed to proceed between reactants whose internal quantum states are fully thermally relaxed. Here, we highlight a dramatic role for vibrationally excited bimolecular reactants in the oxidation of acetylene. The reaction proceeds by preliminary adduct formation between the alkyne and OH radical, with subsequent O(2) addition. Using a detailed theoretical model, we show that the product-branching ratio is determined by the excited vibrational quantum-state distribution of the adduct at the moment it reacts with O(2). Experimentally, we found that under the simulated atmospheric conditions O(2) intercepts ~25% of the excited adducts before their vibrational quantum states have fully relaxed. Analogous interception of excited-state radicals by O(2) is likely common to a range of atmospheric reactions that proceed through peroxy complexes.

  19. Atmospheric Production of Perchlorate on Earth and Mars

    Science.gov (United States)

    Claire, M.; Catling, D. C.; Zahnle, K. J.

    2009-12-01

    Natural production and preservation of perchlorate on Earth occurs only in arid environments. Isotopic evidence suggests a strong role for atmospheric oxidation of chlorine species via pathways including ozone or its photochemical derivatives. As the Martian atmosphere is both oxidizing and drier than the driest places on Earth, we propose an atmospheric origin for the Martian perchlorates measured by NASA's Phoenix Lander. A variety of hypothetical formation pathways can be proposed including atmospheric photochemical reactions, electrostatic discharge, and gas-solid reactions. Here, we investigate gas phase formation pathways using a 1-D photochemical model (Catling et al. 2009, accepted by JGR). Because perchlorate-rich deposits in the Atacama desert are closest in abundance to perchlorate measured at NASA's Phoenix Lander site, we start with a study of the means to produce Atacama perchlorate. We found that perchlorate can be produced in sufficient quantities to explain the abundance of perchlorate in the Atacama from a proposed gas phase oxidation of chlorine volatiles to perchloric acid. These results are sensitive to estimated reaction rates for ClO3 species. The feasibility of gas phase production for the Atacama provides justification for further investigations of gas phase photochemistry as a possible source for Martian perchlorate. In addition to the Atacama results, we will present a preliminary study incorporating chlorine chemistry into an existing Martian photochemical model (Zahnle et al. JGR 2008).

  20. Insights into secondary reactions occurring during atmospheric ablation of micrometeoroids

    Science.gov (United States)

    Court, Richard W.; Tan, Jonathan

    2016-06-01

    Ablation of micrometeoroids during atmospheric entry yields volatile gases such as water, carbon dioxide, and sulfur dioxide, capable of altering atmospheric chemistry and hence the climate and habitability of the planetary surface. While laboratory experiments have revealed the yields of these gases during laboratory simulations of ablation, the reactions responsible for the generation of these gases have remained unclear, with a typical assumption being that species simply undergo thermal decomposition without engaging in more complex chemistry. Here, pyrolysis-Fourier transform infrared spectroscopy reveals that mixtures of meteorite-relevant materials undergo secondary reactions during simulated ablation, with organic matter capable of taking part in carbothermic reduction of iron oxides and sulfates, resulting in yields of volatile gases that differ from those predicted by simple thermal decomposition. Sulfates are most susceptible to carbothermic reduction, producing greater yields of sulfur dioxide and carbon dioxide at lower temperatures than would be expected from simple thermal decomposition, even when mixed with meteoritically relevant abundances of low-reactivity Type IV kerogen. Iron oxides were less susceptible, with elevated yields of water, carbon dioxide, and carbon monoxide only occurring when mixed with high abundances of more reactive Type III kerogen. We use these insights to reinterpret previous ablation simulation experiments and to predict the reactions capable of occurring during ablation of carbonaceous micrometeoroids in atmospheres of different compositions.

  1. Reaction of SO2 with OH in the atmosphere.

    Science.gov (United States)

    Long, Bo; Bao, Junwei Lucas; Truhlar, Donald G

    2017-03-15

    The OH + SO2 reaction plays a critical role in understanding the oxidation of SO2 in the atmosphere, and its rate constant is critical for clarifying the fate of SO2 in the atmosphere. The rate constant of the OH + SO2 reaction is calculated here by using beyond-CCSDT correlation energy calculations for a benchmark, validated density functional methods for direct dynamics, canonical variational transition state theory with anharmonicity and multidimensional tunneling for the high-pressure rate constant, and system-specific quantum RRK theory for pressure effects; the combination of these methods can compete in accuracy with experiments. There has been a long-term debate in the literature about whether the OH + SO2 reaction is barrierless, but our calculations indicate a positive barrier with an transition structure that has an enthalpy of activation of 0.27 kcal mol(-1) at 0 K. Our results show that the high-pressure limiting rate constant of the OH + SO2 reaction has a positive temperature dependence, but the rate constant at low pressures has a negative temperature dependence. The computed high-pressure limiting rate constant at 298 K is 1.25 × 10(-12) cm(3) molecule(-1) s(-1), which agrees excellently with the value (1.3 × 10(-12) cm(3) molecule(-1) s(-1)) recommended in the most recent comprehensive evaluation for atmospheric chemistry. We show that the atmospheric lifetime of SO2 with respect to oxidation by OH depends strongly on altitude (in the range 0-50 km) due to the falloff effect. We introduce a new interpolation procedure for fitting the combined temperature and pressure dependence of the rate constant, and it fits the calculated rate constants over the whole range with a mean unsigned error of only 7%. The present results provide reliable kinetics data for this specific reaction, and also they demonstrate convenient theoretical methods that can be reliable for predicting rate constants of other gas-phase reactions.

  2. Secondary aerosol formation from atmospheric reactions of aliphatic amines

    Directory of Open Access Journals (Sweden)

    S. M. Murphy

    2007-01-01

    Full Text Available Although aliphatic amines have been detected in both urban and rural atmospheric aerosols, little is known about the chemistry leading to particle formation or the potential aerosol yields from reactions of gas-phase amines. We present here the first systematic study of aerosol formation from the atmospheric reactions of amines. Based on laboratory chamber experiments and theoretical calculations, we evaluate aerosol formation from reaction of OH, ozone, and nitric acid with trimethylamine, methylamine, triethylamine, diethylamine, ethylamine, and ethanolamine. Entropies of formation for alkylammonium nitrate salts are estimated by molecular dynamics calculations enabling us to estimate equilibrium constants for the reactions of amines with nitric acid. Though subject to significant uncertainty, the calculated dissociation equilibrium constant for diethylammonium nitrate is found to be sufficiently small to allow for its atmospheric formation, even in the presence of ammonia which competes for available nitric acid. Experimental chamber studies indicate that the dissociation equilibrium constant for triethylammonium nitrate is of the same order of magnitude as that for ammonium nitrate. All amines studied form aerosol when photooxidized in the presence of NOx with the majority of the aerosol mass present at the peak of aerosol growth consisting of aminium (R3NH+ nitrate salts, which repartition back to the gas phase as the parent amine is consumed. Only the two tertiary amines studied, trimethylamine and triethylamine, are found to form significant non-salt organic aerosol when oxidized by OH or ozone; calculated organic mass yields for the experiments conducted are similar for ozonolysis (15% and 5% respectively and photooxidation (23% and 8% respectively. The non-salt organic aerosol formed appears to be more stable than the nitrate salts and does not quickly repartition back to the gas phase.

  3. Secondary aerosol formation from atmospheric reactions of aliphatic amines

    Directory of Open Access Journals (Sweden)

    S. M. Murphy

    2007-01-01

    Full Text Available Although aliphatic amines have been detected in both urban and rural atmospheric aerosols, little is known about the chemistry leading to particle formation or the potential aerosol yields from reactions of gas-phase amines. We present here the first systematic study of aerosol formation from the atmospheric reactions of amines. Based on laboratory chamber experiments and theoretical calculations, we evaluate aerosol formation from reaction of OH, ozone, and nitric acid with trimethylamine, methylamine, triethylamine, diethylamine, ethylamine, and ethanolamine. Entropies of formation for alkylammonium nitrate salts are estimated by molecular dynamics calculations enabling us to estimate equilibrium constants for the reactions of amines with nitric acid. Though subject to significant uncertainty, the calculated dissociation equilibrium constant for diethylammonium nitrate is found to be sufficiently small to allow for its atmospheric formation, even in the presence of ammonia which competes for available nitric acid. Experimental chamber studies indicate that the dissociation equilibrium constant for triethylammonium nitrate is of the same order of magnitude as that for ammonium nitrate. All amines studied form aerosol when photooxidized in the presence of NOx with the majority of the aerosol mass present at the peak of aerosol growth consisting of aminium (R3NH+ nitrate salts, which repartition back to the gas phase as the parent amine is consumed. Only the two tertiary amines studied, trimethylamine and triethylamine, are found to form significant non-salt organic aerosol when oxidized by OH or ozone; calculated organic mass yields for the experiments conducted are similar for ozonolysis (15% and 5% respectively and photooxidation (23% and 8% respectively. The non-salt organic aerosol formed appears to be more stable than the nitrate salts and does not quickly repartition back to the gas phase.

  4. Atmospheric Reactions of a Series of Hexenols with OH Radical and Ozone

    Science.gov (United States)

    Gai, Yanbo; Lin, Xiaoxiao; Ma, Qiao; Yang, Chengqiang; Zhao, Weixiong; Zhang, Weijun

    2016-04-01

    C6 hexenols are one of the most significant groups of biogenic volatile organic compounds (BVOCs). Because of their antibacterial properties, C6 hexenols can be emitted by a wide number of plants in response to changes in the ambient environment. The oxidation of these compounds in the atmosphere is involved in the formation of tropospheric ozone and secondary organic aerosols (SOA), thus causing significant effects on atmospheric chemistry and the climate. The lack of corresponding kinetic parameters and product information of their oxidation reactions will result in incomplete atmospheric chemical mechanisms and models. In this paper, we will overview our recent research progress on the study of the atmospheric reactions of a series of C6 hexenols with OH radicals and ozone. A series of studies were conducted using both experimental and theoretical methods. Corresponding rate constants were obtained, and reaction mechanisms were also analyzed. It could be concluded that both the nature of the substituent and its position play a fundamental role in the reactivity of the C6 hexenols toward OH radicals and O3. An activating effect of the -OH group in OH radical reactions was found, thus making the H-abstraction channel non-negligible in reactions of these unsaturated alcohols with OH radicals. The removal of these C6 hexenols by ozone also showed great importance and could be competitive with the major recognized sinks by OH radicals. These studies are of great significance for understanding the mechanism of atmospheric chemical reactions of hexenols and improving the atmospheric chemistry model. Experimental detail and corresponding results will be presented. Acknowledgements. This work was supported by the National Natural Science Foundation of China (21307137, 41575125 and 91544228), and the Natural Science Foundation of Anhui Province (1508085J03).

  5. Reaction products of chlorine dioxide.

    OpenAIRE

    Stevens, A A

    1982-01-01

    Inspection of the available literature reveals that a detailed investigation of the aqueous organic chemistry of chlorine dioxide and systematic identification of products formed during water disinfection has not been considered. This must be done before an informed assessment can be made of the relative safety of using chlorine dioxide as a disinfectant alternative to chlorine. Although trihalomethanes are generally not formed by the action of chlorine dioxide, the products of chlorine dioxi...

  6. Snake antivenoms: adverse reactions and production technology

    Directory of Open Access Journals (Sweden)

    VM Morais

    2009-01-01

    Full Text Available Antivenoms have been widely used for more than a century for treating snakebites and other accidents with poisonous animals. Despite their efficacy, the use of heterologous antivenoms involves the possibility of adverse reactions due to activation of the immune system. In this paper, alternatives for antivenom production already in use were evaluated in light of their ability to minimize the occurrence of adverse reactions. These effects were classified according to their molecular mechanism as: anaphylactic reactions mediated by IgE, anaphylactoid reactions caused by complement system activation, and pyrogenic reactions produced mainly by the presence of endotoxins in the final product. In the future, antivenoms may be replaced by humanized antibodies, specific neutralizing compounds or vaccination. Meanwhile, improvements in antivenom quality will be focused on the obtainment of a more purified and specific product in compliance with good manufacturing practices and at an affordable cost.

  7. Atmospheric chemistry of CF3C(O)O2 radicals. Kinetics of their reaction with NO2 and kinetics of the thermal decomposition of the product CF3C(O)O2NO2

    DEFF Research Database (Denmark)

    Wallington, T.J.; Sehested, J.; Nielsen, O.J.

    1994-01-01

    A pulse radiolysis technique has been used to measure a rate constant of (6.6 +/- 1.3) x 10(-12) cm3 molecule-1 s-1 for the association reaction between CF3C(O)O2 radicals and NO2 at 295 K and one atmosphere total pressure of SF6 diluent. A FTIR/smog chamber system was used to study the thermal...... decomposition CF3C(O)O2NO2. The rate of decomposition of CF3C(O)O2NO2 was independent of the total pressure of N2 diluent over the range 100-700 Torr and was fit by the expression k-1 = (1.9(-1.5)+7.6) x 10(16) exp[(-14000 +/- 480)/T] s-1. Implications for the atmospheric chemistry of CFC replacements...

  8. Dynamical Model of Weak Pion Production Reactions

    CERN Document Server

    Sato, T; Lee, T S H

    2003-01-01

    The dynamical model of pion electroproduction has been extended to investigate the weak pion production reactions. The predicted cross sections of neutrino-induced pion production reactions are in good agreement with the existing data. We show that the renormalized(dressed) axial N-$\\Delta$ form factor contains large dynamical pion cloud effects and this renormalization effects are crucial in getting agreement with the data. We conclude that the N-$\\Delta$ transitions predicted by the constituent quark model are consistent with the existing neutrino induced pion production data in the $\\Delta$ region.

  9. Particle production in antiproton induced nuclear reactions

    CERN Document Server

    Feng, Zhao-Qing

    2014-01-01

    The quantum molecular dynamics model has been improved to investigate the reaction dynamics induced by antiprotons. The reaction channels of elastic scattering, annihilation, charge exchange and inelastic collisions have been included in the model. Dynamics on particle production, in particular pions, kaons, antikaons and hyperons, is investigated in collisions of $\\overline{p}$ on $^{12}$C, $^{20}$Ne, $^{40}$Ca, $^{112}$Sn, $^{181}$Ta, $^{197}$Au and $^{238}$U from a low to high incident momentum. The rapidity and momentum distributions of $\\pi^{+}$ and protons from the LEAR measurements can be well reproduced. The impacts of system size and incident momentum on particle emissions are investigated from the inclusive spectra, transverse momentum and rapidity distributions. It is found that the annihilations of $\\overline{p}$ on nucleons are of importance on the particle production. Hyperons are mainly produced via meson induced reactions on nucleons and strangeness exchange collisions when the incident moment...

  10. Ion-ion reactions for charge reduction of biopolymer at atmospheric pressure ambient

    Institute of Scientific and Technical Information of China (English)

    Yue Ming Zhou; Jian Hua Ding; Xie Zhang; Huan Wen Chen

    2007-01-01

    Extractive electrospray ionization source (EESI) was adapted for ion-ion reaction, which was demonstrated by using a linear quadrupole ion trap mass spectrometer for the first ion-ion reaction of biopolymers in the atmospheric pressure ambient.

  11. Mechanism of the heterogeneous reaction of carbonyl sulfide with typical components of atmospheric aerosol

    Institute of Scientific and Technical Information of China (English)

    WU Hongbo; WANG Xiao; CHEN Jianmin; YU Hongkun; XUE Huaxin; PAN Xunxi; HOU Huiqi

    2004-01-01

    The homogeneous reactions of earbonyl sulfide (COS) with OH and oxygen radicals have been studied thoroughly. However, the heterogeneous chemical processes involving COS and atmospheric particles are still not well understood. The reactivity of COS with atmospheric mineral oxides such as A12O3, CaO, SiO2, Fe2O3 and MnO2 has been explored. The gaseous and solid products of the reaction were identified by in situ Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy respectively.The mechanism and kinetics of the heterogeneous reaction are also discussed in detail. The results showed that COS can be catalytically oxidized on the surfaces of different atmospheric mineral oxides with the products of CO2, S and SO42-.The reactivity of the oxides with COS differs widely. A12O3 exhibits excellent reactivity, and Fe2O3 is inferior to it. CaO shows weak reactivity, while SiO2 and MnO2 nearly have no activity for the oxidation of COS. The absorbed oxygen and hydroxyls on the surfaces of the oxides are the main active sites in the conversion of COS. When O2 in the experimental system was much excessive, the catalytic oxidation on the surface of AI2O3 is a pseudo first order reaction with respect to COS. The acidity of A12O3 influences the reactivity significantly. The rate constants of the catalytic oxidation of COS on the surface of basic, neutral and acidic A12O3 are respectively 1.51xl0-4, 9.81x10-s and 3.06x10-6 s-1.

  12. Atmospheric Processing Module for Mars Propellant Production

    Science.gov (United States)

    Muscatello, A.; Devor, R.; Captain, J.

    2014-01-01

    The multi-NASA center Mars Atmosphere and Regolith COllector/PrOcessor for Lander Operations (MARCO POLO) project was established to build and demonstrate a methaneoxygen propellant production system in a Mars analog environment. Work at the Kennedy Space Center (KSC) Applied Chemistry Laboratory is focused on the Atmospheric Processing Module (APM). The purpose of the APM is to freeze carbon dioxide from a simulated Martian atmosphere containing the minor components nitrogen, argon, carbon monoxide, and water vapor at Martian pressures (approx. 8 torr) by using dual cryocoolers with alternating cycles of freezing and sublimation. The resulting pressurized CO(sub 2) is fed to a methanation subsystem where it is catalytically combined with hydrogen in a Sabatier reactor supplied by the Johnson Space Center (JSC) to make methane and water vapor. We first used a simplified once-through setup and later employed a H(sub 2)CO(sub 2) recycling system to improve process efficiency. This presentation and paper will cover (1) the design and selection of major hardware items, such as the cryocoolers, pumps, tanks, chillers, and membrane separators, (2) the determination of the optimal cold head design and flow rates needed to meet the collection requirement of 88 g CO(sub 2) hr for 14 hr, (3) the testing of the CO(sub 2) freezer subsystem, and (4) the integration and testing of the two subsystems to verify the desired production rate of 31.7 g CH(sub 4) hr and 71.3 g H(sub 2)O hr along with verification of their purity. The resulting 2.22 kg of CH(sub 2)O(sub 2) propellant per 14 hr day (including O(sub 2) from electrolysis of water recovered from regolith, which also supplies the H(sub 2) for methanation) is of the scale needed for a Mars Sample Return mission. In addition, the significance of the project to NASAs new Mars exploration plans will be discussed.

  13. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

    Science.gov (United States)

    Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ.

  14. Computational Study of the Thermodynamics of Atmospheric Nitration of PAHs via OH-Radical-Initiated Reaction

    Science.gov (United States)

    Jariyasopit, N.; Cheong, P.; Simonich, S. L.

    2011-12-01

    Nitrated polycyclic aromatic hydrocarbons (NPAHs) are an important class of PAH derivatives that are more toxic than their parent PAHs (1) and are emitted from direct emission and secondary emission to the atmosphere. The secondary emissions, particularly the OH-radical initiated and NO3-radical-initiated reactions, have been shown to influence the NPAH concentrations in the atmosphere. Gas-phase reactions are thought to be the major sources of NPAHs containing four or fewer rings (2). Besides NPAHs, PAHs lead to a number of other products including oxygenated, hydroxy substituted and ring-opened PAH derivatives (3). For some PAHs, the OH-initiated and NO3-initiated reactions result in the formation of different NPAH isomers, allowing the ratio of these isomers to be used in the determination of direct or secondary emission sources. Previous studies have shown that the PAH gas-phase reactions with OH radical is initiated by the addition of OH radical to the aromatic ring to form hydroxycyclohexadienyl radicals (4). In the presence of NO2, these reactive intermediates readily nitrate with the elimination of water (4). The hydroxycyclohexadienyl-type radical intermediates are also prone to react with other species in the atmosphere or revert back to the original compound (3). The objective of this study was to investigate the thermodynamics of PAH nitration through day-time OH-radical-initiated reactions. The theoretical investigation were carried out using Density Functioanl Theory (B3LYP) and the 6-31G(d) basis set, as implemented in Gaussian03. A number of different PAHs were studied including fluoranthene, pyrene, as well as the molecular weight 302 PAHs such as dibenzo[a,l]pyrene. Computations were also used to predict unknown NPAHs formed by OH-radical-initiated reaction. All intermediates for the OH-radical addition and the following nitration were computed. We have discovered that the thermodynamic stability of the intermediates involved in the PAH

  15. Heterogeneous reactions on the surface of fine particles in the atmosphere

    Institute of Scientific and Technical Information of China (English)

    DING Jie; ZHU Tong

    2003-01-01

    Fine particles play an important role in the atmosphere. Research on heterogeneous reactions on the surface of fine particles is one of the frontier areas of atmospheric science. In this paper, physical and chemical characteristics of fine particles in the atmosphere and the interactions between trace gases and fine particles are described, methods used in heterogeneous reactions research are discussed in detail, progress in the study of heterogeneous reactions on the surface of fine particles in the atmosphere is summarized, existing importantquestions are pointed out and future research directions are suggested.

  16. Reactions of volatile organic compounds in the atmosphere: Ozone-alkene reactions

    Science.gov (United States)

    Fenske, Jill Denise

    2000-08-01

    Photochemical smog cannot form without sunlight, nitrogen oxides, and volatile organic compounds (VOC). This dissertation addresses several different aspects of VOC chemistry in the atmosphere. Aside from ambient levels of VOC outdoors, VOC are also present at moderate concentrations indoors. Many studies have measured indoor air concentrations of VOC, but only one considered the effects of human breath. The major VOC in the breath of healthy individuals are isoprene (12-580 ppb), acetone (1.2-1800 ppb), ethanol (13-1000 ppb), methanol (160-2000 ppb), and other alcohols. Human emissions of VOC are negligible on a regional (less than 4%) and global scale (less than 0.3%). However, in indoor air, under fairly crowded situations, human emissions of VOC may dominate other sources of VOC. An important class of VOC in the atmosphere is alkenes, due to their high reactivity. The ozone reaction with alkenes forms OH radicals, a powerful oxidizing agent in the troposphere. OH radical formation yields from the ozonolysis of several cycloalkenes were measured using small amounts of fast-reacting aromatics and aliphatic ethers to trace OH formation. The values are 0.62 +/- 0.15, 0.54 +/- 0.13, 0.36 +/- 0.08, and 0.91 +/- 0.20 for cyclopentene, cyclohexene, cycloheptene and 1-methylcyclohexene, respectively. Density functional theory calculations at the B3LYP/6-31 G(d,p) level are presented to aid in understanding the trends observed. The pressure dependence of OH radical yields may lend insight into the formation mechanism. We have made the first study of the pressure dependence of the OH radical yield for ethene, propene, 1-butene, trans-2-butene, and 2,3-dimethyl-2- butene over the range 20-760 Torr, and trans -3-hexene, and cyclopentene over the range 200-760 Torr. The OH yields from ozonolysis of ethene and propene were pressure dependent, while the other compounds had OH yields that were independent of pressure. Ozone-alkene reactions form vibrationally excited carbonyl

  17. Evaluation of the atmospheric significance of multiphase reactions in atmospheric secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    Gelencsér

    2005-01-01

    Full Text Available In a simple conceptual cloud-aerosol model the mass of secondary organic aerosol (SOA that may be formed in multiphase reaction in an idealized scenario involving two cloud cycles separated with a cloud-free period is evaluated. The conditions are set to those typical of continental clouds, and each parameter used in the model calculations is selected as a mean of available observational data of individual species for which the multiphase SOA formation route has been established. In the idealized setting gas and aqueous-phase reactions are both considered, but only the latter is expected to yield products of sufficiently low volatility to be retained by aerosol particles after the cloud dissipates. The key variable of the model is the Henry-constant which primarily determines how important multiphase reactions are relative to gas-phase photooxidation processes. The precursor considered in the model is assumed to already have some affinity to water, i.e. it is a compound having oxygen-containing functional group(s. As a principal model output an aerosol yield parameter is calculated for the multiphase SOA formation route as a function of the Henry-constant, and has been found to be significant already above H~103 M atm-1. Among the potential precursors that may be eligible for this mechanism based on their Henry constants, there are a suite of oxygenated compounds such as primary oxidation products of biogenic and anthropogenic hydrocarbons, including, for example, pinonaldehyde. Finally, the analogy of multiphase SOA formation to in-cloud sulfate production is exploited.

  18. The OH-initiated atmospheric chemical reactions of polyfluorinated dibenzofurans and polychlorinated dibenzofurans: A comparative theoretical study.

    Science.gov (United States)

    Zeng, Xiaolan; Chen, Jing; Qu, Ruijuan; Pan, Xiaoxue; Wang, Zunyao

    2017-02-01

    The atmospheric chemical reactions of some polyfluorinated dibenzofurans (PFDFs) and polychlorinated dibenzofurans (PCDFs), initiated by OH radical, were investigated by performing theoretical calculations using density functional theory (DFT) and B3LYP/6-311++G(2df,p) method. The obtained results indicate that OH addition reactions of PFDFs and PCDFs occurring at C1∼4 and CA sites are thermodynamic spontaneous changes and the branching ratio of the PF(C)DF-OH adducts is decided primarily by kinetic factor. The OH addition reactions of PFDFs taking place at fluorinated C1∼4 positions are kinetically comparable with those occurring at nonfluorinated C1∼4 positions, while OH addition reactions of PCDFs occurring at chlorinated C1∼4 sites are negligible. The total rate constants of the addition reactions of PFDFs or PCDFs become smaller with consecutive fluorination or chlorination, and substituting at C1 position has more adverse effects than substitution at other sites. The succedent O2 addition reactions of PF(C)DF-OH adducts are thermodynamic nonspontaneous processes under the atmospheric conditions, and have high Gibbs free energies of activation (ΔrG(≠)). The substituted dibenzofuranols are the primary oxidation products for PCDFs under the atmospheric conditions. However, other oxidative products may also be available for PFDFs besides substituted dibenzofuranols.

  19. Feasibility Study of Venus Surfuce Cooling Using Chemical Reactions with the Atmosphere

    Science.gov (United States)

    Evans, Christopher

    2013-01-01

    A literature search and theoretical analysis were conducted to investigate the feasibility of cooling a craft on Venus through chemical reformation of materials from the atmosphere. The core concept was to take carbon dioxide (CO2) from the Venus atmosphere and chemically reform it into simpler compounds such as carbon, oxygen, and carbon monoxide. This process is endothermic, taking energy from the surroundings to produce a cooling effect. A literature search was performed to document possible routes for achieving the desired reactions. Analyses indicated that on Venus, this concept could theoretically be used to produce cooling, but would not perform as well as a conventional heat pump. For environments other than Venus, the low theoretical performance limits general applicability of this concept, however this approach to cooling may be useful in niche applications. Analysis indicated that environments with particular atmospheric compositions and temperatures could allow a similar cooling system to operate with very good performance. This approach to cooling may also be useful where the products of reaction are also desirable, or for missions where design simplicity is valued. Conceptual designs for Venus cooling systems were developed using a modified concept, in which an expendable reactant supply would be used to promote more energetically favorable reactions with the ambient CO2, providing cooling for a more limited duration. This approach does not have the same performance issues, but the use of expendable supplies increases the mass requirements and limits the operating lifetime. This paper summarizes the findings of the literature search and corresponding analyses of the various cooling options

  20. Feasibility Study of Venus Surface Cooling Using Chemical Reactions with the Atmosphere

    Science.gov (United States)

    Evans, Christopher

    2013-01-01

    A literature search and theoretical analysis were conducted to investigate the feasibility of cooling a craft on Venus through chemical reformation of materials from the atmosphere. The core concept was to take carbon dioxide (CO2) from the Venus atmosphere and chemically reform it into simpler compounds such as carbon, oxygen, and carbon monoxide. This process is endothermic, taking energy from the surroundings to produce a cooling effect. A literature search was performed to document possible routes for achieving the desired reactions. Analyses indicated that on Venus, this concept could theoretically be used to produce cooling, but would not perform as well as a conventional heat pump. For environments other than Venus, the low theoretical performance limits general applicability of this concept, however this approach to cooling may be useful in niche applications. Analysis indicated that environments with particular atmospheric compositions and temperatures could allow a similar cooling system to operate with very good performance. This approach to cooling may also be useful where the products of reaction are also desirable, or for missions where design simplicity is valued. Conceptual designs for Venus cooling systems were developed using a modified concept, in which an expendable reactant supply would be used to promote more energetically favorable reactions with the ambient CO2, providing cooling for a more limited duration. This approach does not have the same performance issues, but the use of expendable supplies increases the mass requirements and limits the operating lifetime. This paper summarizes the findings of the literature search and corresponding analyses of the various cooling options.

  1. Atmospheric reaction of Cl + methacrolein: a theoretical study on the mechanism, and pressure- and temperature-dependent rate constants.

    Science.gov (United States)

    Sun, Cuihong; Xu, Baoen; Zhang, Shaowen

    2014-05-22

    Methacrolein is a major degradation product of isoprene, the reaction of methacrolein with Cl atoms may play some roles in the degradation of isoprene where these species are relatively abundant. However, the energetics and kinetics of this reaction, which govern the reaction branching, are still not well understood so far. In the present study, two-dimensional potential energy surfaces were constructed to analyze the minimum energy path of the barrierless addition process between Cl and the C═C double bond of methacrolein, which reveals that the terminal addition intermediate is directly formed from the addition reaction. The terminal addition intermediate can further yield different products among which the reaction paths abstracting the aldehyde hydrogen atom and the methyl hydrogen atom are dominant reaction exits. The minimum reaction path for the direct aldehydic hydrogen atom abstraction is also obtained. The reaction kinetics was calculated by the variational transition state theory in conjunction with the master equation method. From the theoretical model we predicted that the overall rate constant of the Cl + methacrolein reaction at 297 K and atmospheric pressure is koverall = 2.3× 10(-10) cm(3) molecule(-1) s(-1), and the branching ratio of the aldehydic hydrogen abstraction is about 12%. The reaction is pressure dependent at P pressure limit at about 100 Torr. The calculated results could well account for the experimental observations.

  2. Reactions in a Mixture of CH4 and CO2 under the Aciton of Microwave Discharge at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    YunpengXu; ZhijianTian; 等

    2002-01-01

    Reactions between CH4 and CO2 under the action of continuous microwave discharge at atmospheric pressure were studied in a special homemade reactor,The main products were CO and H2,while acetylene and ethylene were also found in the products.Experimental results show that conversions of CH4 and CO2 could be higher than 90% without the presence of any catalyst,Effects of CO2/CH4 molar ratio and total flow rate of the feed gas on the reaction were also investigated.

  3. Kinetics of the photolysis and OH reaction of 4-hydroxy-4-methyl-2-pentanone: Atmospheric implications

    Science.gov (United States)

    Aslan, L.; Laversin, H.; Coddeville, P.; Fittschen, C.; Roth, E.; Tomas, A.; Chakir, A.

    2017-02-01

    This study provides the first kinetic and mechanistic study of the photolysis of 4-hydroxy-4-methyl-2-pentanone (4H4M2P) and the determination of the temperature dependence of the relative rate coefficient for the reaction of OH radicals with 4H4M2P. The UV absorption spectrum of 4H4M2P was determined in the spectral range 200-360 nm. The photolysis frequency of this compound in the atmosphere was evaluated relative to actinometers and found to be J4 H 4M 2 P atm = 4.2 ×10-3h-1 , corresponding to a lifetime of about 10 days. Using 4H4M2P cross section measurements, an atmospheric effective quantum yield of 0.15 was calculated. The main primary photolysis products were acetone (121 ± 4) % and formaldehyde (20 ± 1) %. A low methanol yield of (3.0 ± 0.3) % was also determined. These results enabled us to propose a mechanistic scheme for the photolysis. Rate coefficients for the reaction of 4H4M2P with OH radicals were determined over the temperature range 298-354 K and the following Arrhenius expression was obtained: kOH+4M4H2P = (1.12 ± 0.40) × 10-12exp(461.5 ± 60/T) cm3 molecule-1 s-1. The lifetimes of 4H4M2P due to reaction with OH radicals has been estimated to ∼2.5 days and indicates that the gas-phase reaction with the OH could be the main loss process for this compound.

  4. Influence of reaction atmosphere and solvent on biochar yield and characteristics.

    Science.gov (United States)

    Marx, S; Chiyanzu, I; Piyo, N

    2014-07-01

    Sunflower husks were converted to biochar via thermochemical liquefaction in different solvents and reaction atmospheres. Highest biochar yields obtained was 574 g kg(-1) husks. Surface area of the produced chars and evolution of aromatic compounds in the biochar structure increased with an increase in temperature. Volatile matter and N-content decreased and S-content decreased significantly with an increase in temperature which is favourable should the biochars be used for combustion. The HHV of the biochars were significantly higher than that of the feedstock as was also indicated by the energy densification ratio. The biochars compared favourable with coal on a Van Krevelen diagram, showing the possibility of the biochars for application in co-gasification. CO2 performed better in retaining the energy of the feedstock in the biochar (up to 58%). It was shown that sunflower husks are a viable feedstock for the production of biochars for application in co-gasification or combustion.

  5. Effect of Pozzolanic Reaction Products on Alkali-silica Reaction

    Institute of Scientific and Technical Information of China (English)

    WEI Fengyan; LAN Xianghui; LV Yinong; XU Zhongzi

    2006-01-01

    The effect of fly ash on controlling alkali-silica reaction (ASR) in simulated alkali solution was studied. The expansion of mortar bars and the content of Ca(OH)2 in cement paste cured at 80 ℃ for 91 d were measured. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) were employed to study the microstructure of C-S-H. TEM/energy dispersive spectroscopy (EDS) was then used to determine the composition of C-S-H. The pore structure of the paste was analyzed by mercury intrusion porosimetry (MIP). The results show that the contents of fly ash of 30% and 45% can well inhibit ASR. And the content of Ca(OH)2 decreases with the increase of fly ash. That fly ash reacted with Ca(OH)2 to produce C-S-H with a low Ca/Si molar ratio could bind more Na+ and K+ ions, and produce a reduction in the amount of soluble alkali available for ASR. At the same time, the C-S-H produced by pozzolanic reaction converted large pores to smaller ones (gel pores smaller than 10 nm) to densify the pore structure. Perhaps that could inhibit alkali transport to aggregate for ASR.

  6. Molecule-based approach for computing chemical-reaction rates in upper atmosphere hypersonic flows.

    Energy Technology Data Exchange (ETDEWEB)

    Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert

    2009-08-01

    This report summarizes the work completed during FY2009 for the LDRD project 09-1332 'Molecule-Based Approach for Computing Chemical-Reaction Rates in Upper-Atmosphere Hypersonic Flows'. The goal of this project was to apply a recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary nonequilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological non-equilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, the difference between the two models can exceed 10 orders of magnitude. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates. Extensions of the model to reactions typically found in combustion flows and ionizing reactions are also found to be in very good agreement with available measurements, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates.

  7. Middle atmosphere heating by exothermic chemical reactions involving odd-hydrogen species

    Science.gov (United States)

    Mlynczak, Martin G.; Solomon, Susan

    1991-01-01

    The rate of heating which occurs in the middle atmosphere due to four exothermic reactions involving members of the odd-hydrogen family is calculated. The following reactions are considered: O + OH yields O2 + H; H + O2 + M yields HO2 + M; H + O3 yields OH + O2; and O + HO2 yields OH + O2. It is shown that the heating rates due to these reactions rival the oxygen-related heating rates conventionally considered in middle-atmosphere models. The conversion of chemical potential energy into molecular translational energy (heat) by these odd-hydrogen reactions is shown to be a significant energy source in the middle atmosphere that has not been previously considered.

  8. Insights into gas-phase reaction mechanisms of small carbon radicals using isomer-resolved product detection.

    Science.gov (United States)

    Trevitt, Adam J; Goulay, Fabien

    2016-02-17

    For reactive gas-phase environments, including combustion, extraterrestrials atmospheres and our Earth's atmosphere, the availability of quality chemical data is essential for predictive chemical models. These data include reaction rate coefficients and product branching fractions. This perspective overviews recent isomer-resolved production detection experiments for reactions of two of the most reactive gas phase radicals, the CN and CH radicals, with a suite of small hydrocarbons. A particular focus is given to flow-tube experiments using synchrotron photoionization mass spectrometry. Coupled with computational studies and other experiment techniques, flow tube isomer-resolved product detection have provided significant mechanistic details of these radical + neutral reactions with some general patterns emerging.

  9. Fractionation of Stable Isotopes in Atmospheric Aerosol Reactions

    DEFF Research Database (Denmark)

    Meusinger, Carl

    -pinene - an abundant precursor to biogenic aerosol 3. Oxidation of SO2 to sulfuric acid - one of the key species in aerosol formation Laboratory experiments were designed and conducted as part of this thesis to investigate these processes. In addition, advanced data treatment and chemical modeling were performed...... reactions and undergo complex chemical and physical changes during their lifetimes. In order to assess processes that form and alter aerosols, information provided by stable isotopes can be used to help constrain estimates on the strength of aerosol sources and sinks. This thesis studies (mass......-independent) fractionation processes of stable isotopes of C, N, O and S in order to investigate three different systems related to aerosols: 1. Post-depositional processes of nitrate in snow that obscure nitrate ice core records 2. Formation and aging of secondary organic aerosol generated by ozonolysis of X...

  10. Step Towards Modeling the Atmosphere of Titan: State-Selected Reactions of O+ with Methane

    Science.gov (United States)

    Hrušák, J.; Paidarová, I.

    2016-11-01

    Methane conversion and in particular the formation of the C-O bond is one of fundamental entries to organic chemistry and it appears to be essential for understanding parts of atmospheric chemistry of Titan, but, in broader terms it might be also relevant for Earth-like exoplanets. Theoretical study of the reactions of methane with atomic oxygen ion in its excited electronic states requires treating simultaneously at least 19 electronic states. Development of a computational strategy that would allow chemically reasonable and computationally feasible treatment of the CH4 (X)/O+ (2D, 2P) system is by far not trivial and it requires careful examination of all the complex features of the corresponding 19 potential energy surfaces. Before entering the discussion of the rich (photo) chemistry, inspection of the long range behavior of the system with focus on electric dipole transition moments is required. Our calculations show nonzero probability for the reactants to decay before entering the multiple avoided crossings region of the [CH4 + O → products]+ reaction. For the CH4/O+ (2P) system non-zero transition moment probabilities occur over the entire range of considered C-O distances (up to 15 Å), while for the CH4/O+ (2D) system these probabilities are lower by one order of magnitude and were found only at C-O distances smaller than 6 Å.

  11. Maillard reaction products in pet foods

    OpenAIRE

    Rooijen, van, J.

    2015-01-01

    Pet dogs and cats around the world are commonly fed processed commercial foods throughout their lives. Often heat treatments are used during the processing of these foods to improve nutrient digestibility, shelf life, and food safety. Processing is known to induce the Maillard reaction, in which a reducing sugar binds to a free reactive amino group of an amino acid. In intact proteins, the ε-amino group of lysine is the most abundant free amino group. The reaction reduces the bioavail...

  12. Heavy quark production in neutrino-nucleon reactions

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, C.E.M. de; Simoes, J.A.M. (Rio de Janeiro Univ. (Brazil). Inst. de Fisica); Garcia Canal, C.A. (La Plata Univ. Nacional (Argentina))

    1982-05-01

    The heavy quark production (charm and bottom) in neutrino-nucleon reactions is discussed. The greater interest is in the leptonic channels, in particular in the production of two charged leptons in the final state.

  13. Research on Nuclear Reaction Network Equation for Fission Product Nuclides

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Nuclear Reaction Network Equation calculation system for fission product nuclides was developed. With the system, the number of the fission product nuclides at different time can be calculated in the different neutron field intensity and neutron energy spectra

  14. Stream of Reaction Products behind the Detonation Wave Front

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Embedded copper foils in a high explosive charge allow to see the stream of the reaction products behind the detonation front. With three individual firings in front of FXR it can be shown that the reaction products behind the detonation front are immediately going in the direction of the detonation front. But then the rarefaction fans are influencing strongly the further displacements.

  15. The Heck reaction in the production of fine chemicals

    NARCIS (Netherlands)

    Vries, Johannes G. de

    2001-01-01

    An overview is given of the use of the Heck reaction for the production of fine chemicals. Five commercial products have been identified that are produced on a scale in excess of 1 ton/year. The herbicide Prosulfuron™ is produced via a Matsuda reaction of 2-sulfonatobenzenediazonium on 3,3,3-trifluo

  16. Atmospheric chemistry of perfluorinated carboxylic acids: Reaction with OH radicals and atmospheric lifetimes

    DEFF Research Database (Denmark)

    Hurley, MD; Andersen, Mads Peter Sulbæk; Wallington, TJ;

    2004-01-01

    Relative rate techniques were used to study the kinetics of the reactions of OH radicals with a homologous series of perfluorinated acids, F(CF2)(n)COOH (n = 1, 2, 3, 4), in 700 Torr of air at 296 +/- 2 K. For n > 1, the length of the F(CF2)(n) group had no discernible impact on the reactivity...

  17. Reactions of CF3O radicals with selected alkenes and aromatics under atmospheric conditions

    DEFF Research Database (Denmark)

    Kelly, C.; Sidebottom, H.W.; Treacy, J.;

    1994-01-01

    Rate data for the reactions of CF3O radicals with alkenes and aromatic compounds have been determined at 298 K using a relative rate method. The data are analyzed in terms of structure-reactivity relationships, and their importance to the atmospheric chemistry of CF3O discussed.......Rate data for the reactions of CF3O radicals with alkenes and aromatic compounds have been determined at 298 K using a relative rate method. The data are analyzed in terms of structure-reactivity relationships, and their importance to the atmospheric chemistry of CF3O discussed....

  18. Maillard reaction products in pet foods

    NARCIS (Netherlands)

    Rooijen, van C.

    2015-01-01

    Pet dogs and cats around the world are commonly fed processed commercial foods throughout their lives. Often heat treatments are used during the processing of these foods to improve nutrient digestibility, shelf life, and food safety. Processing is known to induce the Maillard reaction, in which a r

  19. Kinetic and photochemical data for atmospheric chemistry reactions of the nitrogen oxides

    Science.gov (United States)

    Hampson, R. F., Jr.

    1980-01-01

    Data sheets for thermal and photochemical reactions of importance in the atmospheric chemistry of the nitrogen oxides are presented. For each reaction the available experimental data are summarized and critically evaluated, and a preferred value of the rate coefficient is given. The selection of the preferred value is discussed and an estimate of its accuracy is given. For the photochemical process, the data are summarized, and preferred for the photoabsorption cross section and primary quantum yields are given.

  20. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II ? reactions of organic species

    OpenAIRE

    2005-01-01

    International audience; This article, the second in the series, presents kinetic and photochemical data evaluated by the IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. It covers the gas phase and photochemical reactions of Organic species, which were last published in 1999, and were updated on the IUPAC website in late 2002. The article consists of a summary sheet, containing the recommended kinetic parameters for the evaluated reactions, and eight appendices con...

  1. Non-thermal production and escape of OH from the upper atmosphere of Mars

    Science.gov (United States)

    Gacesa, M.; Lewkow, N.; Kharchenko, V.

    2017-03-01

    We present a theoretical analysis of formation and kinetics of hot OH molecules in the upper atmosphere of Mars produced in reactions of thermal molecular hydrogen and energetic oxygen atoms. Two major sources of energetic O considered are the photochemical production, via dissociative recombination of O2+ ions, and energizing collisions with fast atoms produced by the precipitating Solar Wind (SW) ions, mostly H+ and He2+ , and energetic neutral atoms (ENAs) originating in the charge-exchange collisions between the SW ions and atmospheric gases. Energizing collisions of O with atmospheric secondary hot atoms, induced by precipitating SW ions and ENAs, are also included in our consideration. The non-thermal reaction O + H2(v, j) → H + OH(v‧, j‧) is described using recent quantum-mechanical state-to-state cross sections, which allow us to predict non-equilibrium distributions of excited rotational and vibrational states (v‧, j‧) of OH and expected emission spectra. A fraction of produced translationally hot OH is sufficiently energetic to overcome Mars' gravitational potential and escape into space, contributing to the hot corona. We estimate its total escape flux from the dayside of Mars for low solar activity conditions at about 1.1 × 1023 s-1 , or about 0.1% of the total escape rate of atomic O and H. The described non-thermal OH production mechanism is general and expected to contribute to the evolution of atmospheres of the planets, satellites, and exoplanets with similar atmospheric compositions.

  2. Production of Radioactive Nuclides in Inverse Reaction Kinematics

    CERN Document Server

    Traykov, E; Dendooven, P; Dermois, O C; Jungmann, K; Onderwater, G; Rogachevskiy, A; Sohani, M; Willmann, L; Wilschut, H W; Young, A R

    2006-01-01

    Efficient production of short-lived radioactive isotopes in inverse reaction kinematics is an important technique for various applications. It is particularly interesting when the isotope of interest is only a few nucleons away from a stable isotope. In this article production via charge exchange and stripping reactions in combination with a magnetic separator is explored. The relation between the separator transmission efficiency, the production yield, and the choice of beam energy is discussed. The results of some exploratory experiments will be presented.

  3. Low-temperature Kinetic Studies of OH Radical Reactions Relevant to Planetary Atmospheres

    Science.gov (United States)

    Townsend, T. M.; Antiñolo, M.; Ballesteros, B.; Jimenez, E.; Canosa, A.

    2011-05-01

    In the solar system, the temperature (T) of the atmosphere of giant planets or their satellites is only several tens of Kelvin (K). The temperature of the tropopause of Titan (satellite of Saturn) and the surface of Mars is 70 K and 210 K, respectively. In the Earth's atmosphere, T decreases from 298 K (surface) to 210 K close to the T-inversion region (tropopause). The principal oxidants in the Earth's lower atmosphere are ozone, the hydroxyl (OH) radical and hydrogen peroxide. A number of critical atmospheric chemical problems depend on the Earth's oxidising capacity, which is essentially the global burden of these oxidants. In the interstellar clouds and circumstellar envelopes, OH radicals have also been detected. As the chemistry of atmospheres is highly influenced by temperature, the knowledge of the T-dependence of the rate coefficients for OH-reactions (k) is the key to understanding the underlying molecular mechanisms. In general, these reactions take place on a short temporal scale. Therefore, a detection technique with high temporal resolution is required. Measurements of k at low temperatures can be achieved by maintaining a thermalised environment using either cryogenic cooling (T>200 K) or supersonic gas expansion with a Laval nozzle (several tens of K). The pulsed laser photolysis technique coupled with laser induced fluorescence detection has been widely used in our laboratory to determine the rate coefficients of OH-reactions with different volatile organic compounds, such as alcohols (1), saturated and unsaturated aliphatic aldehydes (2), linear ketones (3), as a function of temperature (260 350 K). An experimental system based on the CRESU (Cinetique de Reaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in a Uniform Supersonic Flow) technique is currently under construction. This technique will allow the performance of kinetic studies of OH-reactions of astrophysical interest at temperatures lower than 200 K.

  4. Aqueous-Phase Reactions of Isoprene with Sulfoxy Radical Anions as a way of Wet Aerosol Formation in the Atmosphere

    Science.gov (United States)

    Kuznietsova, I.; Rudzinski, K. J.; Szmigielski, R.; Laboratory of the Environmental Chemistry

    2011-12-01

    Atmospheric aerosols exhibit an important role in the environment. They have implications on human health and life, and - in the larger scale - on climate, the Earth's radiative balance and the cloud's formation. Organic matter makes up a significant fraction of atmospheric aerosols (~35% to ~90%) and may originate from direct emissions (primary organic aerosol, POA) or result from complex physico-chemical processes of volatile organic compounds (secondary organic aerosol, SOA). Isoprene (2-methyl-buta-1,3-diene) is one of the relevant volatile precursor of ambient SOA in the atmosphere. It is the most abundant non-methane hydrocarbon emitted to the atmosphere as a result of living vegetation. According to the recent data, the isoprene emission rate is estimated to be at the level of 500 TgC per year. While heterogeneous transformations of isoprene have been well documented, aqueous-phase reactions of this hydrocarbon with radical species that lead to the production of new class of wet SOA components such as polyols and their sulfate esters (organosulfates), are still poorly recognized. The chain reactions of isoprene with sulfoxy radical-anions (SRA) are one of the recently researched route leading to the formation of organosulfates in the aqueous phase. The letter radical species originate from the auto-oxidation of sulfur dioxide in the aqueous phase and are behind the phenomenon of atmospheric acid rain formation. This is a complicated chain reaction that is catalyzed by transition metal ions, such as manganese(II), iron(III) and propagated by sulfoxy radical anions . The presented work addresses the chemical interaction of isoprene with sulfoxy radical-anions in the water solution in the presence of nitrite ions and nitrous acid, which are important trace components of the atmosphere. We showed that nitrite ions and nitrous acid significantly altered the kinetics of the auto-oxidation of SO2 in the presence of isoprene at different solution acidity from 2 to 8

  5. Adsorption and reaction of trace gas-phase organic compounds on atmospheric water film surfaces: a critical review.

    Science.gov (United States)

    Donaldson, D J; Valsaraj, Kalliat T

    2010-02-01

    The air-water interface in atmospheric water films of aerosols and hydrometeors (fog, mist, ice, rain, and snow) presents an important surface for the adsorption and reaction of many organic trace gases and gaseous reactive oxidants (hydroxyl radical (OH(.)), ozone (O(3)), singlet oxygen (O(2)((1)Delta(g))), nitrate radicals (NO(3)(.)), and peroxy radicals (RO(2)(.)). Knowledge of the air-water interface partition constant of hydrophobic organic species is necessary for elucidating the significance of the interface in atmospheric fate and transport. Various methods of assessing both experimental and theoretical values of the thermodynamic partition constant and adsorption isotherm are described in this review. Further, the reactivity of trace gases with gas-phase oxidants (ozone and singlet oxygen) at the interface is summarized. Oxidation products are likely to be more water-soluble and precursors for secondary organic aerosols in hydrometeors. Estimation of characteristic times shows that heterogeneous photooxidation in water films can compete effectively with homogeneous gas-phase reactions for molecules in the atmosphere. This provides further support to the existing thesis that reactions of organic compounds at the air-water interface should be considered in gas-phase tropospheric chemistry.

  6. Massive production of nanoparticles via mist reaction

    Science.gov (United States)

    Liu, Ran; Liu, Lei; Liu, Jing

    2009-06-01

    A novel conceptual nanoparticle fabrication method is proposed in this paper. It can be easily implemented for the preparation of micro or nanoparticles through a reaction between mists with different specific chemical compounds produced by ultrasonic atomization technology. Ultrasonic atomization is an established technology that easily atomizes liquid to produce very small droplets-in the orders of tens to hundreds of micrometers. The results reveal that metal oxide nanoparticles, such as iron oxide can be massively produced via reactions between metal chlorides and sodium carbonate in an experimental set-up based on physical and chemical principles. The density of the nanoparticle distribution is also investigated and determined to be dependent on the amount of mist reacted and the collection time. Moreover, since the vibrational frequency of ultrasound can be adjusted, we can control the size of micro-droplets of reactants, hence producing particles of different dimensions. Given that the double mist reaction method is easily controllable, environmentally friendly and extremely low in cost, it can potentially become a significant method for making micro/nano particles in the newly emerging field of nanofabrication and integration.

  7. The Influence of CO2 Admixtures on the Product Composition in a Nitrogen-Methane Atmospheric Glow Discharge Used as a Prebiotic Atmosphere Mimic

    Science.gov (United States)

    Mazankova, V.; Torokova, L.; Krcma, F.; Mason, N. J.; Matejcik, S.

    2016-04-01

    This work extends our previous experimental studies of the chemistry of Titan's atmosphere by atmospheric glow discharge. The Titan's atmosphere seems to be similarly to early Earth atmospheric composition. The exploration of Titan atmosphere was initiated by the exciting results of the Cassini-Huygens mission and obtained results increased the interest about prebiotic atmospheres. Present work is devoted to the role of CO2 in the prebiotic atmosphere chemistry. Most of the laboratory studies of such atmosphere were focused on the chemistry of N2 + CH4 mixtures. The present work is devoted to the study of the oxygenated volatile species in prebiotic atmosphere, specifically CO2 reactivity. CO2 was introduced to the standard N2 + CH4 mixture at different mixing ratio up to 5 % CH4 and 3 % CO2. The reaction products were characterized by FTIR spectroscopy. This work shows that CO2 modifies the composition of the gas phase with the detection of oxygenated compounds: CO and others oxides. There is a strong influence of CO2 on increasing concentration other products as cyanide (HCN) and ammonia (NH3).

  8. The Influence of CO2 Admixtures on the Product Composition in a Nitrogen-Methane Atmospheric Glow Discharge Used as a Prebiotic Atmosphere Mimic

    Science.gov (United States)

    Mazankova, V.; Torokova, L.; Krcma, F.; Mason, N. J.; Matejcik, S.

    2016-11-01

    This work extends our previous experimental studies of the chemistry of Titan's atmosphere by atmospheric glow discharge. The Titan's atmosphere seems to be similarly to early Earth atmospheric composition. The exploration of Titan atmosphere was initiated by the exciting results of the Cassini-Huygens mission and obtained results increased the interest about prebiotic atmospheres. Present work is devoted to the role of CO2 in the prebiotic atmosphere chemistry. Most of the laboratory studies of such atmosphere were focused on the chemistry of N2 + CH4 mixtures. The present work is devoted to the study of the oxygenated volatile species in prebiotic atmosphere, specifically CO2 reactivity. CO2 was introduced to the standard N2 + CH4 mixture at different mixing ratio up to 5 % CH4 and 3 % CO2. The reaction products were characterized by FTIR spectroscopy. This work shows that CO2 modifies the composition of the gas phase with the detection of oxygenated compounds: CO and others oxides. There is a strong influence of CO2 on increasing concentration other products as cyanide (HCN) and ammonia (NH3).

  9. Elusive anion growth in Titan's atmosphere: Low temperature kinetics of the C3N- + HC3N reaction

    Science.gov (United States)

    Bourgalais, Jérémy; Jamal-Eddine, Nour; Joalland, Baptiste; Capron, Michael; Balaganesh, Muthiah; Guillemin, Jean-Claude; Le Picard, Sébastien D.; Faure, Alexandre; Carles, Sophie; Biennier, Ludovic

    2016-06-01

    Ion chemistry appears to be deeply involved in the formation of heavy molecules in the upper atmosphere of Titan. These large species form the seeds of the organic aerosols responsible for the opaque haze surrounding the biggest satellite of Saturn. The chemical pathways involving individual anions remain however mostly unknown. The determination of the rates of the elementary reactions with ions and the identification of the products are essential to the progress in our understanding of Titan's upper atmosphere. We have taken steps in that direction through the investigation of the low temperature reactivity of C3N- , which was tentatively identified in the spectra measured by the CAPS-ELS instrument of the Cassini spacecraft during its high altitude flybys. The reaction of this anion with HC3N, one of the most abundant trace organics in the atmosphere, has been studied over the 49-294 K temperature range in uniform supersonic flows using the CRESU technique. The proton transfer is found to be the main exit channel (>91%) of the C315N- + HC3N reaction. It remains however indistinguishable with the non-isotopically labeled C314N- reactant. The T - 1 / 2 temperature dependence of this proton transfer reaction and its global rate are reasonably well reproduced theoretically using an average dipole orientation model. A minor exit channel, reactive detachment (anions in the upper atmosphere of Titan. Due to the low branching into the neutral exit channel, it cannot contribute either to the growth of neutrals even assuming a complete mass transfer.

  10. Mutagenicity in Salmonella of a Simulated Urban-Smog Atmosphere Generated Using a Mobile Reaction Chamber

    Science.gov (United States)

    The EPA Mobile Reaction Chamber (MRC) is a 24-foot trailer containing a 14.3-m3 Teflon lined photochemical chamber used to generate simulated urban atmospheres. Photochemistry in the MRC is catalyzed by 120 fluorescent bulbs evenly mixed with black light bulbs and UV bulbs (300 &...

  11. Oxidation and nitration of tyrosine by ozone and nitrogen dioxide: reaction mechanisms and biological and atmospheric implications.

    Science.gov (United States)

    Sandhiya, L; Kolandaivel, P; Senthilkumar, K

    2014-04-01

    The nitration of tyrosine by atmospheric oxidants, O3 and NO2, is an important cause for the spread of allergenic diseases. In the present study, the mechanism and pathways for the reaction of tyrosine with the atmospheric oxidants O3 and NO2 are studied using DFT-M06-2X, B3LYP, and B3LYP-D methods with the 6-311+G(d,p) basis set. The energy barrier for the initial oxidation reactions is also calculated at the CCSD(T)/6-31+G(d,p) level of theory. The reaction is studied in gas, aqueous, and lipid media. The initial oxidation of tyrosine by O3 proceeds by H atom abstraction and addition reactions and leads to the formation of six different intermediates. The subsequent nitration reaction is studied for all the intermediates, and the results show that the nitration affects both the side chain and the aromatic ring of tyrosine. The rate constant of the favorable oxidation and nitration reaction is calculated using variational transition state theory over the temperature range of 278-350 K. The spectral properties of the oxidation and nitration products are calculated at the TD-M06-2X/6-311+G(d,p) level of theory. The fate of the tyrosine radical intermediate is studied by its reaction with glutathione antioxidant. This study provides an enhanced understanding of the oxidation and nitration of tyrosine by O3 and NO2 in the context of improving the air quality and reducing the allergic diseases.

  12. Reactions between Criegee Intermediates and the Inorganic Acids HCl and HNO3 : Kinetics and Atmospheric Implications.

    Science.gov (United States)

    Foreman, Elizabeth S; Kapnas, Kara M; Murray, Craig

    2016-08-22

    Criegee intermediates (CIs) are a class of reactive radicals that are thought to play a key role in atmospheric chemistry through reactions with trace species that can lead to aerosol particle formation. Recent work has suggested that water vapor is likely to be the dominant sink for some CIs, although reactions with trace species that are sufficiently rapid can be locally competitive. Herein, we use broadband transient absorption spectroscopy to measure rate constants for the reactions of the simplest CI, CH2 OO, with two inorganic acids, HCl and HNO3 , both of which are present in polluted urban atmospheres. Both reactions are fast; at 295 K, the reactions of CH2 OO with HCl and HNO3 have rate constants of 4.6×10(-11)  cm(3)  s(-1) and 5.4×10(-10)  cm(3)  s(-1) , respectively. Complementary quantum-chemical calculations show that these reactions form substituted hydroperoxides with no energy barrier. The results suggest that reactions of CIs with HNO3 in particular are likely to be competitive with those with water vapor in polluted urban areas under conditions of modest relative humidity.

  13. Fundamental Heterogeneous Reaction Chemistry Related to Secondary Organic Aerosols (SOA) in the Atmosphere

    Science.gov (United States)

    Akimoto, H.

    2016-11-01

    Typical reaction pathways of formation of dicarboxylic acids, larger multifunctional compounds, oligomers, and organosulfur and organonitrogen compounds in secondary organic aerosols (SOA), revealed by laboratory experimental studies are reviewed with a short introduction to field observations. In most of the reactions forming these compounds, glyoxal, methyl glyoxal and related difunctional carbonyl compounds play an important role as precursors, and so their formation pathways in the gas phase are discussed first. A substantial discussion is then presented for the OH-initiated aqueous phase radical oxidation reactions of glyoxal and other carbonyls which form dicarboxylic acids, larger multifunctional compounds and oligomers, and aqueous-phase non-radical reactions which form oligomers, organosulfates and organonitrogen compounds. Finally, the heterogeneous oxidation reaction of gaseous O3, OH and NO3 with liquid and solid organic aerosols at the air-particle interface is discussed relating to the aging of SOA in the atmosphere.

  14. Products of the Benzene + O(3P) Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Taatjes, Craig A.; Osborn, David L.; Selby, Talitha M.; Meloni, Giovanni; Trevitt, Adam J.; Epifanovsky, Evgeny; Krylov, Anna I.; Sirjean, Baptiste; Dames, Enoch; Wang, Hai

    2009-12-21

    The gas-phase reaction of benzene with O(3P) is of considerable interest for modeling of aromatic oxidation, and also because there exist fundamental questions concerning the prominence of intersystem crossing in the reaction. While its overall rate constant has been studied extensively, there are still significant uncertainties in the product distribution. The reaction proceeds mainly through the addition of the O atom to benzene, forming an initial triplet diradical adduct, which can either dissociate to form the phenoxy radical and H atom, or undergo intersystem crossing onto a singlet surface, followed by a multiplicity of internal isomerizations, leading to several possible reaction products. In this work, we examined the product branching ratios of the reaction between benzene and O(3P) over the temperature range of 300 to 1000 K and pressure range of 1 to 10 Torr. The reactions were initiated by pulsed-laser photolysis of NO2 in the presence of benzene and helium buffer in a slow-flow reactor, and reaction products were identified by using the multiplexed chemical kinetics photoionization mass spectrometer operating at the Advanced Light Source (ALS) of Lawrence Berkeley National Laboratory. Phenol and phenoxy radical were detected and quantified. Cyclopentadiene and cyclopentadienyl radical were directly identified for the first time. Finally, ab initio calculations and master equation/RRKM modeling were used to reproduce the experimental branching ratios, yielding pressure-dependent rate expressions for the reaction channels, including phenoxy + H, phenol, cyclopentadiene + CO, which are proposed for kinetic modeling of benzene oxidation.

  15. Charmonium production in p̄-induced reactions on nuclei

    Directory of Open Access Journals (Sweden)

    Larionov Alexei

    2014-01-01

    Full Text Available The production of charmonia in the antiproton-nucleus reactions at plab = 3 − 10 GeV/c is studied within the Glauber model and the generalized eikonal approximation. The main reaction channel is charmonium formation in an antiproton-proton collision. The target mass dependence of the charmonium transparency ratio allows to determine the charmonium-nucleon cross section. The polarization effects in the production of χc2 states are evaluated.

  16. Charmonium production in $\\bar p$-induced reactions on nuclei

    CERN Document Server

    Larionov, Alexei; Gillitzer, Albrecht; Strikman, Mark

    2014-01-01

    The production of charmonia in the antiproton-nucleus reactions at $p_{\\rm lab}=3-10$ GeV/c is studied within the Glauber model and the generalized eikonal approximation. The main reaction channel is charmonium formation in an antiproton-proton collision. The target mass dependence of the charmonium transparency ratio allows to determine the charmonium-nucleon cross section. The polarization effects in the production of $\\chi_{c2}$ states are evaluated.

  17. Reactant-Product Quantum Coherence in Electron Transfer Reactions

    CERN Document Server

    Kominis, I K

    2012-01-01

    We investigate the physical meaning of quantum superposition states between reactants and products in electron transfer reactions. We show that such superpositions are strongly suppressed and to leading orders of perturbation theory do not pertain in electron transfer reactions. This is because of the intermediate manifold of states separating the reactants from the products. We provide an intuitive description of these considerations with Feynman diagrams. We also discuss the relation of such quantum coherences to understanding the fundamental quantum dynamics of spin-selective radical-ion-pair reactions.

  18. The reaction of methyl peroxy and hydroxyl radicals as a major source of atmospheric methanol

    Science.gov (United States)

    Müller, Jean-François; Liu, Zhen; Nguyen, Vinh Son; Stavrakou, Trissevgeni; Harvey, Jeremy N.; Peeters, Jozef

    2016-10-01

    Methyl peroxy, a key radical in tropospheric chemistry, was recently shown to react with the hydroxyl radical at an unexpectedly high rate. Here, the molecular reaction mechanisms are elucidated using high-level quantum chemical methodologies and statistical rate theory. Formation of activated methylhydrotrioxide, followed by dissociation into methoxy and hydroperoxy radicals, is found to be the main reaction pathway, whereas methylhydrotrioxide stabilization and methanol formation (from activated and stabilized methylhydrotrioxide) are viable minor channels. Criegee intermediate formation is found to be negligible. Given the theoretical uncertainties, useful constraints on the yields are provided by atmospheric methanol measurements. Using a global chemistry-transport model, we show that the only explanation for the high observed methanol abundances over remote oceans is the title reaction with an overall methanol yield of ~30%, consistent with the theoretical estimates given their uncertainties. This makes the title reaction a major methanol source (115 Tg per year), comparable to global terrestrial emissions.

  19. Toxicity of aerosols of sodium reaction products.

    Science.gov (United States)

    Zwicker, G M; Allen, M D; Stevens, D L

    1979-01-01

    Sodium is used as the heat transfer medium in several new energy technologies such as liquid-metal fast-breeder reactors and solar-thermal collection systems. Because sodium burns in air and reacts violently with water, the potential exists for an airborne release of sodium combustion products and subsequent human exposure. To help evaluate the potential short-term hazard from an accidental sodium fire, male juvenile or adult Wistar rats were exposed to sodium aerosols for 2 hours to determine the dose at which 50 percent of the animals were affected (ED50) for each age group. The estimated ED50 of 510 microgram/l for adults was not significantly different from the estimated ED50 of 489 microgram/l for juveniles. The incidence of acute laryngitis, attributed to exposure, was three times higher for juvenile rats than for adults, and the degree of severity of this lesion was significantly (P less than 0.05) higher for juveniles.

  20. Atmospheric chemistry of HFC-134a. Kinetic and mechanistic study of the CF3CFHO2 + NO2 reaction

    DEFF Research Database (Denmark)

    Møgelberg, T.E.; Nielsen, O.J.; Sehested, J.;

    1994-01-01

    A pulse radiolysis system was used to study the kinetics of the reaction of CF3CFHO2 with NO2. By monitoring the rate of the decay of NO2 using its absorption at 400 nm the reaction rate constant was determined to be k = (5.0 +/- 0.5) x 10(-12) cm3 molecule-1 s-1. A long path length Fourier......-transform infrared technique was used to investigate the thermal decomposition of the product CF3CFHO2NO2. At 296 K in the presence of 700 Torr of air, decomposition of CF3CFHO2NO2 was rapid (greater than 90% decomposition within 3 min). The results are discussed in the context of atmospheric chemistry of CF3CFH2...

  1. Duff reaction on phenols: Characterization of non steam volatile products

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; DeSouza, L.; Bhattacharya, J.

    New products having structures 1 and 2 have been characterized in the Duff reaction thymol arid carvacrol. These products have been identified as 2.6'-dithymylmethane 1 and 5.5' -dicarvacryl methane 2 respectively on the basis of spectral data...

  2. Reactions of substituted benzene anions with N and O atoms: Chemistry in Titan's upper atmosphere and the interstellar medium

    Science.gov (United States)

    Wang, Zhe-Chen; Bierbaum, Veronica M.

    2016-06-01

    The likely existence of aromatic anions in many important extraterrestrial environments, from the atmosphere of Titan to the interstellar medium (ISM), is attracting increasing attention. Nitrogen and oxygen atoms are also widely observed in the ISM and in the ionospheres of planets and moons. In the current work, we extend previous studies to explore the reactivity of prototypical aromatic anions (deprotonated toluene, aniline, and phenol) with N and O atoms both experimentally and computationally. The benzyl and anilinide anions both exhibit slow associative electron detachment (AED) processes with N atom, and moderate reactivity with O atom in which AED dominates but ionic products are also formed. The reactivity of phenoxide is dramatically different; there is no measurable reaction with N atom, and the moderate reactivity with O atom produces almost exclusively ionic products. The reaction mechanisms are studied theoretically by employing density functional theory calculations, and spin conversion is found to be critical for understanding some product distributions. This work provides insight into the rich gas-phase chemistry of aromatic ion-atom reactions and their relevance to ionospheric and interstellar chemistry.

  3. How is entropy production rate related to chemical reaction rate?

    CERN Document Server

    Banerjee, Kinshuk

    2013-01-01

    The entropy production rate is a key quantity in irreversible thermodynamics. In this work, we concentrate on the realization of entropy production rate in chemical reaction systems in terms of the experimentally measurable reaction rate. Both triangular and linear networks have been studied. They attain either thermodynamic equilibrium or a non-equilibrium steady state, under suitable external constraints. We have shown that the entropy production rate is proportional to the square of the reaction velocity only around equilibrium and not any arbitrary non-equilibrium steady state. This feature can act as a guide in revealing the nature of a steady state, very much like the minimum entropy production principle. A discussion on this point has also been presented.

  4. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III ? gas phase reactions of inorganic halogens

    OpenAIRE

    Atkinson, R.; Baulch, D. L.; Cox, R A; J. N. Crowley; Hampson, R. F.; Hynes, R. G.; Jenkin, M. E.; M. J. Rossi; Troe, J.

    2007-01-01

    International audience; This article, the third in the series, presents kinetic and photochemical data evaluated by the IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. It covers the gas phase and photochemical reactions of inorganic halogen species, which were last published in J. Phys. Chem. Ref. Data, in 2000 (Atkinson et al., 2000), were updated on the IUPAC website in 2003 and are updated again in the present evaluation. The article consists of a summary sheet...

  5. Potential atmospheric production of small volatile organic compounds from soot oxidation

    Science.gov (United States)

    Horn, A.; Carpenter, L.; Daly, H.; Jones, C.

    2003-04-01

    In the polluted troposphere, VOCs are involved in a range of interlinked chemical and photochemical cycles with a direct bearing on the production of ozone. The rates of emission, production and reaction of VOC are therefore an important component of atmospheric models. Recent urban measurements using 2D-GC methods show that there are a large number of unidentified and unattributed VOC components. Any new sources of such material with high photochemical ozone creation potentials may therefore be significant. Hydrocarbon, fossil fuel and biomass burning produces particulate carbonaceous aerosols (soot) in addition to gas phase products. Soot in the atmosphere is known to undergo oxidation becoming hydrophilic in aged urban plumes and the process is also known to produce water soluble organic compounds. In our experiments, soot samples are prepared by combustion of appropriate liquid hydrocarbons and reacted with ozone in a glass reaction vessel. Analysis of the surface and gas-phase during the course of this reaction confirms kinetic measurements showing irreversible uptake of O_3 on soot and further identify that the reaction has oxidised the surface. Transmission electron micrographs of the fresh and ozonised soot reveal small, coagulated particles: fresh soot particle size ranges from 50--90 nm which reduces to 40--50 nm after ozonolysis. Separation of the soluble components of fresh and ozonised soot samples analysed by GC/MS reveal the presence of polyaromatic and unsaturated components in unreacted soot and partially oxidised components post-ozonolysis. ATR-IR spectra of soot extracts and ozonised soot confirm that surface features due to the creation of oxidised surface products grow in with exposure time. These include carbonyl, ester and alcohol functional groups. Direct sampling of the gas-phase during the ozone reaction allows some gaseous products to be identified as small organic acids, ketones and alcohols. Overall, the reaction of ozone with soot

  6. Computational studies of atmospherically-relevant chemical reactions in water clusters and on liquid water and ice surfaces.

    Science.gov (United States)

    Gerber, R Benny; Varner, Mychel E; Hammerich, Audrey D; Riikonen, Sampsa; Murdachaew, Garold; Shemesh, Dorit; Finlayson-Pitts, Barbara J

    2015-02-17

    CONSPECTUS: Reactions on water and ice surfaces and in other aqueous media are ubiquitous in the atmosphere, but the microscopic mechanisms of most of these processes are as yet unknown. This Account examines recent progress in atomistic simulations of such reactions and the insights provided into mechanisms and interpretation of experiments. Illustrative examples are discussed. The main computational approaches employed are classical trajectory simulations using interaction potentials derived from quantum chemical methods. This comprises both ab initio molecular dynamics (AIMD) and semiempirical molecular dynamics (SEMD), the latter referring to semiempirical quantum chemical methods. Presented examples are as follows: (i) Reaction of the (NO(+))(NO3(-)) ion pair with a water cluster to produce the atmospherically important HONO and HNO3. The simulations show that a cluster with four water molecules describes the reaction. This provides a hydrogen-bonding network supporting the transition state. The reaction is triggered by thermal structural fluctuations, and ultrafast changes in atomic partial charges play a key role. This is an example where a reaction in a small cluster can provide a model for a corresponding bulk process. The results support the proposed mechanism for production of HONO by hydrolysis of NO2 (N2O4). (ii) The reactions of gaseous HCl with N2O4 and N2O5 on liquid water surfaces. Ionization of HCl at the water/air interface is followed by nucleophilic attack of Cl(-) on N2O4 or N2O5. Both reactions proceed by an SN2 mechanism. The products are ClNO and ClNO2, precursors of atmospheric atomic chlorine. Because this mechanism cannot result from a cluster too small for HCl ionization, an extended water film model was simulated. The results explain ClNO formation experiments. Predicted ClNO2 formation is less efficient. (iii) Ionization of acids at ice surfaces. No ionization is found on ideal crystalline surfaces, but the process is efficient on

  7. Long-term elevated atmospheric CO2 enhances forest productivity

    Science.gov (United States)

    Loecke, T. D.; Groffman, P. M.; Treseder, K. K.; LaDeau, S.

    2011-12-01

    that warmer sites also promote tree growth. In- growth root cores, soil N mineralization and nitrification assays, and soil C and N contents all suggest that N is unlikely to be limiting current tree productivity on most sites across our rural to urban transect. Furthermore, soil lead content varied little across these forest sites, suggesting that heavy metal contamination is not likely a significant control on forest productivity in our study. These results lend support for the overarching hypothesis that terrestrial ecosystems will sequester more C under greater atmospheric CO2 concentrations and warmer air temperatures.

  8. Efficient combinatorial filtering for desired molecular properties of reaction products.

    Science.gov (United States)

    Shi, S; Peng, Z; Kostrowicki, J; Paderes, G; Kuki, A

    2000-01-01

    Two combinatorial filtering methods for efficiently selecting reaction products with desired properties are presented. The first, "direct reactants" method is applicable only to those molecular properties that are strictly additive or approximately additive, with relatively small interference between neighboring fragments. This method uses only the molecular properties of reactants. The second, "basis products" method can be used to filter not only the strictly additive properties but also the approximately additive molecular properties where a certain degree of mutual influence occurs between neighboring fragments. This method requires the molecular properties of the "basis products," which are the products formed by combining all the reactants for a given reaction component with the simplest set of complementary reactant partners. There is a one-to-one correspondence between the reactants and the "basis products." The latter is a product representation of the former. High efficiency of both methods is enhanced further by a tree-sorting and hierarchical selection algorithm, which is performed on the reaction components in a limited space determined systematically from the filtering criteria. The methods are illustrated with product logPs, van der Waals volumes, solvent accessible surface areas, and other product properties. Good results are obtained when filtering for a number of important molecular properties in a virtual library of 1.5 billion.

  9. Particulate and gas-phase products from the atmospheric degradation of chlorpyrifos and chlorpyrifos-oxon

    Science.gov (United States)

    Borrás, Esther; Ródenas, Milagros; Vázquez, Mónica; Vera, Teresa; Muñoz, Amalia

    2015-12-01

    The phosphorothioate structure is highly present in several pesticides. However, there is a lack of information about its degradation process in air and the secondary pollutants formed. Herein, the atmospheric reactions of chlorpyrifos, one of the most world-used insecticide, and its main degradation product - chlorpyrifos-oxon - are described. The photo-oxidation under the presence of NOx was studied in a large outdoor simulation chamber for both chlorpyrifos and chlorpyrifos-oxon, observing a rapid degradation (Half lifetime < 3.5 h for both compounds). Also, the photolysis reactions of both were studied. The formation of particulate matter (aerosol mass yield ranged 6-59%) and gaseous products were monitored. The chemical composition of minor products was studied, identifying 15 multi-oxygenated derivatives. The most abundant products were ring-retaining molecules such as 3,5,6-trichloropyridin-2-ol and ethyl 3,5,6-trichloropyridin-2-yl hydrogen phosphate. An atmospheric degradation mechanism has been amplified based on an oxidation started with OH-nucleophilic attack to Pdbnd S bond.

  10. Product branching ratio of the HCCO + NO reaction

    Energy Technology Data Exchange (ETDEWEB)

    Rim, K.T.; Hershberger, J.F.

    2000-01-20

    The reaction of HCCO radicals with NO was studied at room temperature by excimer laser photolysis of ketene precursor molecules followed by infrared absorption spectroscopic detection of CO and CO{sub 2} product molecules. After quantification of product yields and consideration of secondary chemistry, the authors obtain the following product branching ratios (1{sigma} error bars) at 296 K: 0.12 {+-} 0.04 for CO{sub 2} + (HCN) and 0.88 {+-} 0.04 for CO + (HCNO). In addition, they estimate a relative quantum yield for HCCO production in the 193 nm photolysis of CH{sub 2}CO to be 0.17 {+-} 0.02.

  11. The Sentinel-4 Mission: Instrument Description and Atmospheric Composition Products

    Science.gov (United States)

    Veihelmann, Ben; Meijer, Yasjka; Ingmann, Paul; Koopman, Rob; Bazalgette Courrèges-Lacoste, Grégory; Stark, Hendrik

    2013-04-01

    The Sentinel-4 mission, together with Sentinel-5 and the Sentinel-5 Precursor missions, is part of the Global Monitoring for Environment and Security (GMES) space component covering the Earth's atmosphere. The primary objective of the Sentinel-4 mission is the observation of the diurnal cycle of tropospheric species in support of the air quality applications of GMES Atmosphere Services. The presentation focuses on the Sentinel-4/UVN instrument and its related Level-2 atmospheric composition products. The Sentinel-4 instrument is an Ultra-violet Visible Near infrared spectrometer (S4/UVN) which is embarked on the geostationary Meteosat Third Generation-Sounder (MTG-S) platforms. Key features of the S4/UVN instrument are the spectral range from 305 nm to 500 nm with a spectral resolution of 0.5 nm, and from 750 nm to 775 nm with a spectral resolution of 0.12 nm, in combination with a low polarization sensitivity and a high radiometric accuracy. The instrument shall observe Europe with a revisit time of one hour. The spatial sampling distance varies across the geographic coverage area and takes a value of 8 km at a reference location at 45˚ N. The expected launch date of the first MTG-S platform is 2019, and the expected lifetime is 15 years (two S4/UVN instruments in sequence on two MTG-S platforms). ESA will develop products based on the S4/UVN measurements for the key target species, which are NO2, O3, HCHO, SO2, aerosols, and CHOCHO, and for cloud and surface properties (mainly intermediate products). Also a synergetic O3 vertical profile product is foreseen based on observations from the S4/UVN and the MTG InfraRed Sounder (IRS) on-board the same platform. Synergetic aerosol and cloud products are foreseen based on observations from the S4/UVN and from the MTG Flexible Combined Imager (FCI) on-board the MTG-Imager (MTG-I) platform. Current pre-development studies are dedicated to a daily surface reflectance map product that treats the surface directionality as

  12. Strangeness production and hypernucleus formation in antiproton induced reactions

    CERN Document Server

    Feng, Zhao-Qing

    2015-01-01

    Formation mechanism of fragments with strangeness in collisions of antiprotons on nuclei has been investigated within the Lanzhou quantum molecular dynamics (LQMD) transport approach combined with a statistical model (GEMINI) for describing the decays of excited fragments. Production of strange particles in the antiproton induced nuclear reactions is modeled within the LQMD model, in which all possible reaction channels such as elastic scattering, annihilation, charge exchange and inelastic scattering in antibaryon-baryon, baryon-baryon and meson-baryon collisions have been included. A coalescence approach is developed for constructing hyperfragments in phase space after de-excitation of nucleonic fragments. The combined approach could describe the production of fragments in low-energy antiproton induced reactions. Hyperfragments are formed within the narrower rapidities and lower kinetic energies. It has advantage to produce heavier hyperfragments and hypernuclides with strangeness s=-2 (double-$\\Lambda$ fra...

  13. Interplay between diffusion, accretion and nuclear reactions in the atmospheres of Sirius and Przybylski's star

    CERN Document Server

    Yushchenko, A; Goriely, S; Shavrina, A; Kang, Y W; Rostopchin, S; Valyavin, G; Mkrtichian, D; Hatzes, A; Lee, B C; Kim, C; Yushchenko, Alexander; Gopka, Vera; Goriely, Stephane; Shavrina, Angelina; Kang, Young Woon; Rostopchin, Sergey; Valyavin, Gennady; Mkrtichian, David; Hatzes, Artie; Lee, Byeong-Cheol; Kim, Chulhee

    2006-01-01

    The abundance anomalies in chemically peculiar B-F stars are usually explained by diffusion of chemical elements in the stable atmospheres of these stars. But it is well known that Cp stars with similar temperatures and gravities show very different chemical compositions. We show that the abundance patterns of several stars can be influenced by accretion and (or) nuclear reactions in stellar atmospheres. We report the result of determination of abundances of elements in the atmosphere of hot Am star: Sirius A and show that Sirius A was contaminated by s-process enriched matter from Sirius B (now a white dwarf). The second case is Przybylski's star. The abundance pattern of this star is the second most studied one after the Sun with the abundances determined for about 60 chemical elements. Spectral lines of radioactive elements with short decay times were found in the spectrum of this star. We report the results of investigation on the stratification of chemical elements in the atmosphere of Przybylski's star ...

  14. Fission-product SiC reaction in HTGR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, F.

    1981-07-13

    The primary barrier to release of fission product from any of the fuel types into the primary circuit of the HTGR are the coatings on the fuel particles. Both pyrolytic carbon and silicon carbide coatings are very effective in retaining fission gases under normal operating conditions. One of the possible performance limitations which has been observed in irradiation tests of TRISO fuel is chemical interaction of the SiC layer with fission products. This reaction reduces the thickness of the SiC layer in TRISO particles and can lead to release of fission products from the particles if the SiC layer is completely penetrated. The experimental section of this report describes the results of work at General Atomic concerning the reaction of fission products with silicon carbide. The discussion section describes data obtained by various laboratories and includes (1) a description of the fission products which have been found to react with SiC; (2) a description of the kinetics of silicon carbide thinning caused by fission product reaction during out-of-pile thermal gradient heating and the application of these kinetics to in-pile irradiation; and (3) a comparison of silicon carbide thinning in LEU and HEU fuels.

  15. Infrared Absorption Spectroscopic Study on Reaction between Self-Assembled Monolayers and Atmospheric-Pressure Plasma

    Directory of Open Access Journals (Sweden)

    Masanori Shinohara

    2015-01-01

    Full Text Available Plasma is becoming increasingly adopted in bioapplications such as plasma medicine and agriculture. This study investigates the interaction between plasma and molecules in living tissues, focusing on plasma-protein interactions. To this end, the reaction of air-pressure air plasma with NH2-terminated self-assembled monolayer is investigated by infrared spectroscopy in multiple internal reflection geometry. The atmospheric-pressure plasma decomposed the NH2 components, the characteristic units of proteins. The decomposition is attributed to water clusters generated in the plasma, indicating that protein decomposition by plasma requires humid air.

  16. The characterization of atmospheric aerosols: Application to heterogeneous gas-particle reactions

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, J.M.; Henson, B.F.; Wilson, K.R. [Los Alamos National Lab., NM (United States); Prather, K.A.; Noble, C.A. [Univ. of California, Riverside, CA (United States)

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project of the Los Alamos National Laboratory (LANL). The objective of this collaborative research project is the measurement and modeling of atmospheric aerosols and heterogeneous (gas/aerosol) chemical reactions. The two major accomplishments are single particle characterization of tropospheric particles and experimental investigation of simulated stratospheric particles and reactions thereon. Using aerosol time-of-flight mass spectrometry, real-time and composition measurements of single particles are performed on ambient aerosol samples. This technique allows particle size distributions for chemically distinct particle types to be described. The thermodynamics and chemical reactivity of polar stratospheric clouds are examined using vapor deposited thin ice films. Employing nonlinear optical methods, as well as other techniques, phase transitions on both water and acid ices are monitored as a function of temperature or the addition of gases.

  17. Atmospheric degradation of pyridine: UV absorption spectrum and reaction with OH radicals and O3

    Science.gov (United States)

    Errami, M.; El Dib, G.; Cazaunau, M.; Roth, E.; Salghi, R.; Mellouki, A.; Chakir, A.

    2016-10-01

    The UV absorption spectrum of pyridine and its gas phase reactions with OH radicals and O3 were investigated. UV absorption cross-sections were determined by using a D2-lamp system in the range 200-350 nm. The kinetic studies were carried out at room temperature and atmospheric pressure of purified air. The rate coefficient for the reaction of pyridine with OH was determined relative to that with acetone while that with O3 was measured under pseudo first order conditions. The rate coefficients obtained are (in cm3 molecule-1 s-1): k(OH + pyridine) = (5.40 ± 0.80) × 10-13 and k(O3 + pyridine) = (3.28 ± 1.70) × 10-20.

  18. Non-thermal production and escape of OH from the upper atmosphere of Mars

    CERN Document Server

    Gacesa, Marko; Kharchenko, Vasili

    2016-01-01

    We present a theoretical analysis of formation and kinetics of hot OH molecules in the upper atmosphere of Mars produced in reactions of thermal molecular hydrogen and energetic oxygen atoms. Two major sources of energetic O considered are the photochemical production, via dissociative recombination of O$_{2}^{+}$ ions, and energizing collisions with fast atoms produced by the precipitating Solar Wind (SW) ions, mostly H$^+$ and He$^{2+}$, and energetic neutral atoms (ENAs) originating in the charge-exchange collisions between the SW ions and atmospheric gases. Energizing collisions of O with atmospheric secondary hot atoms, induced by precipitating SW ions and ENAs, are also included in our consideration. The non-thermal reaction O + H$_2(v,j) \\rightarrow$ H + OH$(v',j')$ is described using recent quantum-mechanical state-to-state cross sections, which allow us to predict non-equilibrium distributions of excited rotational and vibrational states $(v',j')$ of OH and expected emission spectra. A fraction of pr...

  19. Open charm and beauty production in hadron reactions

    Energy Technology Data Exchange (ETDEWEB)

    Lykasov, G.I.; Lyubushkin, V.V.; Bednyakov, V.A. [Joint Institute for Nuclear Research, 141980, Dubna, Moscow region (Russian Federation)

    2010-01-15

    The production of charmed and beauty hadrons in proton-proton and proton-antiproton collisions at high energies is analyzed within the modified quark-gluon string model (QGSM) including the internal motion of quarks in colliding hadrons. It is shown that using both the QGSM and NLO QCD one can describe these experimental data rather successfully in a wide region of transverse momenta. We also present some predictions for the future experiments on the beauty baryon production in pp collisions at LHC energies and on the charmed meson production in p-bar p reactions at GSI energies.

  20. Hydrogen production from methane through catalytic partial oxidation reactions

    Science.gov (United States)

    Freni, S.; Calogero, G.; Cavallaro, S.

    This paper reviews recent developments in syn-gas production processes used for partial methane oxidation with and/or without steam. In particular, we examined different process charts (fixed bed, fluidised bed, membrane, etc.), kinds of catalysts (powders, foams, monoliths, etc.) and catalytically active phases (Ni, Pt, Rh, etc.). The explanation of the various suggested technical solutions accounted for the reaction mechanism that may selectively lead to calibrated mixtures of CO and H 2 or to the unwanted formation of products of total oxidation (CO 2 and H 2O) and pyrolysis (coke). Moreover, the new classes of catalysts allow the use of small reactors to treat large amounts of methane (monoliths) or separate hydrogen in situ from the other reaction products (membrane). This leads to higher conversions and selectivity than could have been expected thermodynamically. Although catalysts based on Rh are extremely expensive, they can be used to minimise H 2O formation by maximising H 2 yield.

  1. Production of radioactive nuclides in inverse reaction kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Traykov, E.; Rogachevskiy, A.; Dammalapati, U.; Dendooven, P.; Dermois, O.C.; Jungmann, K.; Onderwater, C.J.G.; Sohani, M.; Willmann, L.; Wilschut, H.W. [KVI, Univ. of Groningen (Netherlands); Young, A. [North Carolina State Univ., Raleigh, NC (United States)

    2007-07-01

    Beams of radioactive nuclides can be produced in a variety of ways. Effcient production of short-lived radioactive isotopes in inverse reaction kinematics is an important technique for a number of applications. It is particularly interesting when the isotope is only a few nucleons away from stable isotopes. The production via charge exchange and stripping reactions has been explored at the TRI{mu}P magnetic double separator at the Kernfysisch Versneller Instituut in Groningen. The balance between separator transmission efficiency and production yield and the corresponding choice for the beam energy has been investigated. The results of some exploratory experiments at the new TRI{mu}P facility will be presented. (orig.)

  2. Heterogeneous chemistry and reaction dynamics of the atmospheric oxidants, O3, NO3, and OH, on organic surfaces

    OpenAIRE

    Chapleski, Robert C.; Zhang, Yafen; Troya, Diego; Morris, John R.

    2015-01-01

    Heterogeneous chemistry of the most important atmospheric oxidants, O3, NO3, and OH, plays a central role in regulating atmospheric gas concentrations, processing aerosols, and aging materials. Recent experimental and computational studies have begun to reveal the detailed reaction mechanisms and kinetics for gas-phase O3, NO3, and OH when they impinge on organic surfaces. Through new research approaches that merge the fields of traditional surface science with atmospheric chemistry, research...

  3. Sorption enhanced reaction process (SERP) for production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Sircar, S.; Anand, M.; Carvill, B. [Air Products and Chemicals, Inc., Allentown, PA (United States)] [and others

    1995-09-01

    Sorption Enhanced Reaction (SER) is a novel process that is being developed for the production of lower cost hydrogen by steam-methane reforming (SMR). In this process, the reaction of methane with steam is carried out in the presence of an admixture of a catalyst and a selective adsorbent for carbon dioxide. The consequences of SER are: (1) reformation reaction at a significantly lower temperature (300-500{degrees}C) than conventional SMR (800-1100{degrees}C), while achieving the same conversion of methane to hydrogen, (2) the product hydrogen is obtained at reactor pressure (200-400 psig) and at 99+% purity directly from the reactor (compared to only 70-75% H{sub 2} from conventional SMR reactor), (3) downstream hydrogen purification step is either eliminated or significantly reduced in size. The early focus of the program will be on the identification of an adsorbent/chemisorbent for CO{sub 2} and on the demonstration of the SER concept for SMR in our state-of-the-art bench scale process. In the latter stages, a pilot plant will be built to scale-up the technology and to develop engineering data. The program has just been initiated and no significant results for SMR will be reported. However, results demonstrating the basic principles and process schemes of SER technology will be presented for reverse water gas shift reaction as the model reaction. If successful, this technology will be commercialized by Air Products and Chemicals, Inc. (APCI) and used in its existing hydrogen business. APCI is the world leader in merchant hydrogen production for a wide range of industrial applications.

  4. Reactions of ethynyl radicals as a source of C 4 and C 5 hydrocarbons in Titan's atmosphere

    Science.gov (United States)

    Stahl, F.; Schleyer, P. v. R.; Schaefer, H. F., III; Kaiser, R. I.

    2002-06-01

    Crossed molecular beam experiments augmented by electronic structure computations of neutral-neutral reactions of the ethynyl radical (C 2H, X 2Σ+) with the unsaturated hydrocarbons acetylene (C 2H 2), methylacetylene (CH 3CCH), and allene (H 2CCCH 2) are reviewed briefly. All reactions are characterized by a C 2H versus H atom exchange and in the case of the C 2H/C 2H 2 system by an additional molecular hydrogen (H 2) elimination pathway. The attack of the ethynyl radical onto the π-electron density of the unsaturated hydrocarbons has no entrance barrier and initializes each reaction. Consecutive hydrogen atom migrations may precede the exit channels. Diacetylene (HCCCCH), the butadiynyl radical (HCCCC), methyldiacetylene (CH 3CCCCH), ethynylallene (H 2CCH(C 2H)), and penta-4-diyne (HCC(CH 2)C 2H) were identified as products of which only diacetylene has yet been observed in Titan's atmosphere. Our results, however, strongly suggest the presence of all these species on Titan, and the Cassini-Huygens mission is likely to detect these upon arrival in the Saturnian system in 2004.

  5. A Pilot Study of Ion - Molecule Reactions at Temperatures Relevant to the Atmosphere of Titan

    Science.gov (United States)

    Zymak, Illia; Žabka, Ján; Polášek, Miroslav; Španěl, Patrik; Smith, David

    2016-11-01

    Reliable theoretical models of the chemical kinetics of the ionosphere of Saturn's moon, Titan, is highly dependent on the precision of the rates of the reactions of ambient ions with hydrocarbon molecules at relevant temperatures. A Variable Temperature Selected Ions Flow Tube technique, which has been developed primarily to study these reactions at temperatures within the range of 200-330 K, is briefly described. The flow tube temperature regulation system and the thermalisation of ions are also discussed. Preliminary studies of two reactions have been carried out to check the reliability and efficacy of kinetics measurements: (i) Rate constants of the reaction of CH3 + ions with molecular oxygen were measured at different temperatures, which indicate values in agreement with previous ion cyclotron resonance measurements ostensibly made at 300 K. (ii) Formation of CH3 + ions in the reaction of N2 + ions with CH4 molecules were studied at temperatures within the range 240-310 K which showed a small but statistically significant decrease of the ratio of product CH3 + ions to reactant N2 + ions with reaction temperature.

  6. Pressure Dependent Product Formation in the Photochemically Initiated Allyl + Allyl Reaction

    Directory of Open Access Journals (Sweden)

    Thomas Zeuch

    2013-11-01

    Full Text Available Photochemically driven reactions involving unsaturated radicals produce a thick global layer of organic haze on Titan, Saturn’s largest moon. The allyl radical self-reaction is an example for this type of chemistry and was examined at room temperature from an experimental and kinetic modelling perspective. The experiments were performed in a static reactor with a volume of 5 L under wall free conditions. The allyl radicals were produced from laser flash photolysis of three different precursors allyl bromide (C3H5Br, allyl chloride (C3H5Cl, and 1,5-hexadiene (CH2CH(CH22CHCH2 at 193 nm. Stable products were identified by their characteristic vibrational modes and quantified using FTIR spectroscopy. In addition to the (re- combination pathway C3H5+C3H5 → C6H10 we found at low pressures around 1 mbar the highest final product yields for allene and propene for the precursor C3H5Br. A kinetic analysis indicates that the end product formation is influenced by specific reaction kinetics of photochemically activated allyl radicals. Above 10 mbar the (re- combination pathway becomes dominant. These findings exemplify the specificities of reaction kinetics involving chemically activated species, which for certain conditions cannot be simply deduced from combustion kinetics or atmospheric chemistry on Earth.

  7. A SIFT ion-molecule study of some reactions in Titan's atmosphere. reactions of N(+), N(2)(+), and HCN(+) with CH(4), C(2)H(2), and C(2)H(4)

    Science.gov (United States)

    Anicich, Vincent G.; Wilson, Paul; McEwan, Murray J.

    2004-01-01

    The results of a study of the ion-molecule reactions of N(+), N(2)(+), and HCN(+) with methane, acetylene, and ethylene are reported. These studies were performed using the FA-SIFT at the University of Canterbury. The reactions studied here are important to understanding the ion chemistry in Titan's atmosphere. N(+) and N(2)(+) are the primary ions formed by photo-ionization and electron impact in Titan's ionosphere and drive Titan's ion chemistry. It is therefore very important to know how these ions react with the principal trace neutral species in Titan's atmosphere: Methane, acetylene, and ethylene. While these reactions have been studied before the product channels have been difficult to define as several potential isobaric products make a definitive answer difficult. Mass overlap causes difficulties in making unambiguous species assignments in these systems. Two discriminators have been used in this study to resolve the mass overlap problem. They are deuterium labeling and also the differences in reactivities of each isobar with various neutral reactants. Several differences have been found from the products in previous work. The HCN(+) ion is important in both Titan's atmosphere and in the laboratory.

  8. Dual Position Sensitive MWPC for tracking reaction products at VAMOS++

    CERN Document Server

    Vandebrouck, Marine; Rejmund, Maurycy; Fremont, Georges; Pancin, Julien; Navin, Alahari; Michelagnoli, Caterina; Goupil, Johan; Spitaels, Charles; Jacquot, Bertrand

    2015-01-01

    The characteristics and performance of a Dual Position Sensitive Multi-Wire Proportional Counter (DPS-MWPC) used to measure the scattering angle, interaction position on the target and the velocity of reaction products, detected in the VAMOS++ magnetic spectrometer, are reported. The detector consists of a pair of position sensitive low pressure MWPCs and provides both fast timing signals, along with the two-dimensional position coordinates required to define the trajectory of the reaction products. A time-of-flight resolution of 305(11) ps (FWHM) was measured. The measured resolutions (FWHM) were 2.5(3) mrad and 560(70) {\\mu}m for the scattering angle and the interaction point at the target respectively. The subsequent improvement of the Doppler correction of the energy of the gamma-rays, detected in the gamma-ray tracking array AGATA in coincidence with isotopically identified ions in VAMOS++, is also discussed.

  9. The Atmospheric Infrared Sounder Version 6 cloud products

    Directory of Open Access Journals (Sweden)

    B. H. Kahn

    2013-06-01

    Full Text Available The Version 6 cloud products of the Atmospheric Infrared Sounder (AIRS and Advanced Microwave Sounding Unit (AMSU instrument suite are described. The cloud top temperature, pressure, and height and effective cloud fraction are now reported at the AIRS field of view (FOV resolution. Significant improvements in cloud height assignment over Version 5 are shown with pixel-scale comparisons to cloud vertical structure observed by the CloudSat 94 GHz radar and the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP. Cloud thermodynamic phase (ice, liquid, and unknown phase, ice cloud effective diameter (De, and ice cloud optical thickness (τ are derived using an optimal estimation methodology for AIRS FOVs, and global distributions for January 2007 are presented. The largest values of τ are found in the storm tracks and near convection in the Tropics, while De is largest on the equatorial side of the midlatitude storm tracks in both hemispheres, and lowest in tropical thin cirrus and the winter polar atmosphere. Over the Maritime Continent the diurnal cycle of τ is significantly larger than for the total cloud fraction, ice cloud frequency, and De, and is anchored to the island archipelago morphology. Important differences are described between northern and southern hemispheric midlatitude cyclones using storm center composites. The infrared-based cloud retrievals of AIRS provide unique, decadal-scale and global observations of clouds over the diurnal and annual cycles, and captures variability within the mesoscale and synoptic scales at all latitudes.

  10. A kinetic study of the reaction of ozone with ethylene in a smog chamber under atmospheric conditions

    Institute of Scientific and Technical Information of China (English)

    XU Yongfu; JIA Long; GE Maofa; DU Lin; WANG Gengchen; WANG Dianxun

    2006-01-01

    Ozone is one of the key species in the processes of atmospheric chemistry, which can be taken as an indicator of oxidation capacity in the troposphere, The reaction of ozone with reactive gases is an important process in the troposphere. Experimental simulation equipment of smog chamber for atmospheric reactions is used to study the reaction of ozone with ethylene in real atmospheric environment with ozone concentrations of 100-200 ppb. The concentrations of ozone and ethylene were monitored during the reaction with the combination of Model 49C-O3 Analyzer and GC-FID. A rate constant of 1.01×10-18 (cm3.mol-1.s-1) was obtained at 286.5 K,under condition of which the half-life of ozone was 88 min. The results obtained from our experiments are in excellent agreement with those reported previously by other researchers under extremely Iow pressure in terms of matrix-isolation technology. This demonstrates that our equipment of smog chamber for atmospheric reactions is reliable, which can be used for further research of the processes of atmospheric reactions.

  11. Influence of transesterification reaction temperature on biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Pighinelli, Anna Leticia Montenegro Turtelli; Zorzeto, Thais Queiroz; Park, Kil Jin [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], E-mail: annalets@agr.unicamp.br; Bevilaqua, Gabriela [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica

    2008-07-01

    Brazilian government policy has authorized the introduction of biodiesel into the national energy matrix, law no.11.097 of January 13th, 2005. It is necessary, like any new product, to invest in research which is able to cover its entire production chain (planting of oilseeds, vegetable oils extraction and chemical reactions), providing data and relevant information in order to optimize the process and solve critical issues. The objective of this work was to study the effects of temperature on crude sunflower transesterification reaction with ethanol. A central composite experimental design with five variation levels (25 deg, 32 deg, 47.5 deg, 64 deg and 70 deg C) was used and response surface methodology applied for the data analysis. The statistical analysis of the results showed that the production suffered the influence of temperature (linear and quadratic effects) and reaction time (linear and quadratic). The generated models did not show significant regression. The model generated was not well suited to the experimental data and the value of the coefficient of determination (R{sup 2}=0.52) was low. Consequently it was not possible to build the response surface. (author)

  12. Effect of atmospheric oxidative plasma treatments on polypropylenic fibers surface: Characterization and reaction mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Nisticò, Roberto, E-mail: roberto.nistico@unito.it [University of Torino, Department of Chemistry and NIS Centre of Excellence, Via P. Giuria 7, 10125 Torino (Italy); Magnacca, Giuliana [University of Torino, Department of Chemistry and NIS Centre of Excellence, Via P. Giuria 7, 10125 Torino (Italy); Faga, Maria Giulia; Gautier, Giovanna [CNR-IMAMOTER, Strada delle Cacce 73, 10135 Torino (Italy); D’Angelo, Domenico; Ciancio, Emanuele [Clean-NT Lab, Environment Park S.p.A., Via Livorno 60, 10144 Torino (Italy); Lamberti, Roberta; Martorana, Selanna [Herniamesh S.r.l., Via F.lli Meliga 1/C, 10034 Chivasso (Italy)

    2013-08-15

    Atmospheric pressure plasma-dielectric barrier discharge (APP-DBD, open chamber configuration) was used to functionalize polypropylene (PP) fibers surface in order to generate oxidized-reactive groups such as hydroperoxides, alcohols and carbonyl species (i.e. ketones and others). Such a species increased the surface polarity, without causing material degradation. Three different types of plasma mixture (He, He/O{sub 2}, He/O{sub 2}/H{sub 2}O) under three different values of applied power (750, 1050, 1400 W) were investigated. The formed plasma species (O{sub 2}{sup +}, O single atom and OH radical) and their distribution were monitored via optical emission spectrometry (OES) measurements, and the plasma effects on PP surface species formation were followed by X-ray photoemission spectroscopy (XPS). Results allowed to better understand the reaction pathways between plasma phase and PP fibers. In fact, two reaction mechanisms were proposed, the first one concerning the plasma phase reactions and the second one involving material surface modifications.

  13. Liquid-phase reactions induced by atmospheric pressure glow discharge with liquid electrode

    Science.gov (United States)

    Tochikubo, Fumiyoshi; Shirai, Naoki; Uchida, Satoshi

    2014-12-01

    We experimentally investigated some of the initial reactions in a liquid induced by electron or positive-ion irradiation from an atmospheric-pressure dc glow discharge in contact with the liquid. We used an H-shaped glass reactor to observe the effects of electron irradiation and positive-ion irradiation on the liquid-phase reaction separately and simultaneously. Aqueous solutions of NaCl, AgNO3, HAuCl4, and FeCl2 are used as the electrolyte. Solutions of AgNO3 and HAuCl4 are used for the generation of Ag and Au nanoparticles, respectively. Solution of FeCl2 is used for the generation of ferromagnetic particles. Experimental results showed that electron irradiation of the liquid surface generates OH- in water and that positive-ion irradiation of the liquid surface generates H+ in water even without the dissolution of gas-phase nitrogen oxide. A possible reaction process is qualitatively discussed. We also showed that the control of reductive and oxidative environment in the liquid is possible not only by the gas composition for the plasma generation but also by the liquid composition.

  14. Multi-strangeness production in hadron induced reactions

    Science.gov (United States)

    Gaitanos, T.; Moustakidis, Ch.; Lalazissis, G. A.; Lenske, H.

    2016-10-01

    We discuss in detail the formation and propagation of multi-strangeness particles in reactions induced by hadron beams relevant for the forthcoming experiments at FAIR. We focus the discussion on the production of the decuplet-particle Ω and study for the first time the production and propagation mechanism of this heavy hyperon inside hadronic environments. The transport calculations show the possibility of Ω-production in the forthcoming P ‾ANDA-experiment, which can be achieved with measurable probabilities using high-energy secondary Ξ-beams. We predict cross sections for Ω-production. The theoretical results are important in understanding the hyperon-nucleon and, in particular, the hyperon-hyperon interactions also in the high-strangeness sector. We emphasize the importance of our studies for the research plans at FAIR.

  15. Multi-Strangeness Production in Hadron Induced Reactions

    CERN Document Server

    Gaitanos, T; Lalazissis, G A; Lenske, H

    2016-01-01

    We discuss in detail the formation and propagation of multi-strangeness particles in reactions induced by hadron beams relevant for the forthcoming experiments at FAIR. We focus the discussion on the production of the decuplett-particle $\\Omega$ and study for the first time the production and propagation mechanism of this heavy hyperon inside hadronic environments. The transport calculations show the possibility of $\\Omega$-production in the forthcoming \\panda-experiment, which can be achieved with measurable probabilities using high-energy secondary $\\Xi$-beams. We predict cross sections for $\\Omega$-production. The theoretical results are important in understanding the hyperon-nucleon and, in particular, the hyperon-hyperon interactions also in the high-strangeness sector. We emphasize the importance of our studies for the research plans at FAIR.

  16. Theoretical study on the mechanism of CH3NH2 and O3 atmospheric reaction

    Indian Academy of Sciences (India)

    Samira Valehi; Morteza Vahedpour

    2014-07-01

    Reaction pathways of methylamine with ozone on the singlet potential energy profile have been investigated at the RB3LYP/6-311++G (3df-3pd) computational level. Calculated results reveal that six kinds of products P1 (CH3NO + H2O2), P2 (CH3NH + OH + O2), P3 (NH2CH + HO2+ OH), P4 (CH2NH + H2O +O2), P5 (NH2CH2OH + O2), P6 (NH3+ CH2O +O2) are obtained through variety of transformation of one reactant complex C1. Cleavage and formation of the chemical bonds in the reaction pathways have been discussed using the structural parameters. Based on the calculations, the title reaction leads to NH3+ CH2O + O2 as thermodynamic adducts in an exothermic process by −76.28 kcal/mol in heat realizing and spontaneous reaction by −86.71 kcal/mol in standard Gibbs free energy. From a kinetic viewpoint, the production of CH3NH + OH + O2 adducts with one transition state is the most favoured path.

  17. TOPICAL REVIEW: Nucleation and aerosol processing in atmospheric pressure electrical discharges: powders production, coatings and filtration

    Science.gov (United States)

    Borra, Jean-Pascal

    2006-01-01

    This review addresses the production of nano-particles and the processing of particles injected in atmospheric pressure electrical discharges (APED). The mechanisms of formation and the evolution of particles suspended in gases are first presented, with numerical and experimental facilities. Different APED and related properties are then introduced for dc corona, streamer and spark filamentary discharges (FD), as well as for ac filamentary and homogeneous dielectric barrier discharges (DBD). Two mechanisms of particle production are depicted in APED: when FD interact with the surface of electrodes or dielectrics and when filamentary and homogeneous DBD induce reactions with gaseous precursors in volume. In both cases, condensable gaseous species are produced, leading to nano-sized particles by physical and chemical routes of nucleation. The evolution of the so-formed nano-particles, i.e. the growth by coagulation/condensation, the charging and the collection are detailed for each APED, with respect to fine powders production and thin films deposition. Finally, when particles are injected in APED, they undergo interfacial processes. Non-thermal plasmas charge particles for electro-collection and trigger heterogeneous chemical reactions for organic and inorganic films deposition. Heat exchanges in thermal plasmas enable powder purification, shaping, melting for hard coatings and fine powders production by reactive evaporation.

  18. Temperature- and pH-dependent aqueous-phase kinetics of the reactions of glyoxal and methylglyoxal with atmospheric amines and ammonium sulfate

    Science.gov (United States)

    Sedehi, Nahzaneen; Takano, Hiromi; Blasic, Vanessa A.; Sullivan, Kristin A.; De Haan, David O.

    2013-10-01

    Reactions of glyoxal (Glx) and methylglyoxal (MG) with primary amines and ammonium salts may produce brown carbon and N-containing oligomers in aqueous aerosol. 1H NMR monitoring of reactant losses and product appearance in bulk aqueous reactions were used to derive rate constants and quantify competing reaction pathways as a function of pH and temperature. Glx + ammonium sulfate (AS) and amine reactions generate products containing C-N bonds, with rates depending directly on pH: rate = (70 ± 60) M-1 s-1fAld [Glx]totfAm [Am]tot, where fAld is the fraction of aldehyde with a dehydrated aldehyde functional group, and fAm is the fraction of amine or ammonia that is deprotonated at a given pH. MG + amine reactions generate mostly aldol condensation products and exhibit less pH dependence: rate = 10[(0.36 ± 0.06) × pH - (3.6 ± 0.3)] M-1 s-1fAld [MG]tot [Am]tot. Aldehyde + AS reactions are less temperature-dependent (Ea = 18 ± 8 kJ mol-1) than corresponding amine reactions (Ea = 50 ± 11 kJ mol-1). Using aerosol concentrations of [OH] = 10-12 M, [amine]tot = [AS] = 0.1 M, fGlx = 0.046 and fMG = 0.09, we estimate that OH radical reactions are normally the major aerosol-phase sink for both dicarbonyl compounds. However, reactions with AS and amines together can account for up to 12 and 45% of daytime aerosol-phase glyoxal and methylglyoxal reactivity, respectively, in marine aerosol at pH 5.5. Reactions with AS and amines become less important in acidic or non-marine aerosol, but may still be significant atmospheric sources of brown carbon, imidazoles, and nitrogen-containing oligomers.

  19. An experimental kinetic study and products research of the reactions of O3 with a series of unsaturated alcohols

    Science.gov (United States)

    Chen, Yi; Wang, Jing; Zhao, Sanping; Tong, Shengrui; Ge, Maofa

    2016-11-01

    The gas-phase reactions of unsaturated alcohols with O3 were investigated in FEP Teflon film chamber at 298 K and 760 torr of atmosphere pressure. The rate constants of the reactions of C6-C8 alkenols with O3 were determined using both the absolute and the relative rate method, and the measured values were (5.96 ± 0.35) × 10-17 cm3 molecule-1 s-1 for (Z)-3-hexen-1-ol, (5.12 ± 0.30) × 10-17 cm3 molecule-1 s-1 for (Z)-3-hepten-1-ol, and (5.66 ± 0.52) × 10-17 cm3 molecule-1 s-1 for (Z)-3-octen-1-ol, respectively. The gas-phase products of these reactions mentioned above were detected using proton-transfer-reaction mass spectrum (PTR-MS). HOCH2CH2CHO, CH2CH2CHO, HCHO and CH3CHO were identified as the main gas products for (Z)-3-hexen-1-ol. HOCH2CH2CHO and CH3(CH2)2CHO dominated the gaseous products for (Z)-3-hepten-1-ol. And for (Z)-3-octen-1-ol, CH3(CH2)3CHO, CH3(CH2)2CHO and HOCH2CH2CHO were the main gaseous products. The SOA yields were monitored at the same time, which were 0.184 ± 0.013, 0.213 ± 0.017, 0.232 ± 0.021 for (Z)-3-hexen-1-ol, (Z)-3-hepten-1-ol and (Z)-3-octen-1-ol, respectively. The possible reaction mechanisms were proposed and discussed. The kinetic data presented here has been used to estimate their atmosphere lifetimes and the reaction reactivity. The atmosphere implication of these reactions has also been discussed.

  20. Methyl chavicol: characterization of its biogenic emission rate, abundance, and oxidation products in the atmosphere

    Directory of Open Access Journals (Sweden)

    N. C. Bouvier-Brown

    2009-03-01

    Full Text Available We report measurements of ambient atmospheric mixing ratios for methyl chavicol and determine its biogenic emission rate. Methyl chavicol, a biogenic oxygenated aromatic compound, is abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol was detected simultaneously by three in-situ instruments – a gas chromatograph with mass spectrometer detector (GC-MS, a proton transfer reaction mass spectrometer (PTR-MS, and a thermal desorption aerosol GC-MS (TAG – and found to be abundant within and above Blodgett Forest. Methyl chavicol atmospheric mixing ratios are strongly correlated with 2-methyl-3-buten-2-ol (MBO, a light- and temperature-dependent biogenic emission from the ponderosa pine trees at Blodgett Forest. Scaling from this correlation, methyl chavicol emissions account for 4–68% of the carbon mass emitted as MBO in the daytime, depending on the season. From this relationship, we estimate a daytime basal emission rate of 0.72–10.2 μgCg−1 h−1, depending on needle age and seasonality. We also present the first observations of its oxidation products (4-methoxybenzaldehyde and 4-methyoxy benzene acetaldehyde in the ambient atmosphere. Methyl chavicol is a major essential oil component of many plant species. This work suggests that methyl chavicol plays a significant role in the atmospheric chemistry of Blodgett Forest, and potentially other sites, and should be included explicitly in both biogenic volatile organic carbon emission and atmospheric chemistry models.

  1. Methyl chavicol: characterization of its biogenic emission rate, abundance, and oxidation products in the atmosphere

    Directory of Open Access Journals (Sweden)

    N. C. Bouvier-Brown

    2008-11-01

    Full Text Available We report measurements of ambient atmospheric mixing ratios for methyl chavicol and determine its biogenic emission rate. Methyl chavicol, a biogenic oxygenated aromatic compound, is abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol was detected simultaneously by three in-situ instruments – a gas chromatograph with mass spectrometer detector (GC-MS, a proton transfer reaction mass spectrometer (PTR-MS, and a thermal desorption aerosol GC-MS (TAG – and found to be abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol atmospheric mixing ratios are strongly correlated with 2-methyl-3-buten-2-ol (MBO, a light- and temperature-dependent biogenic emission from the ponderosa pine trees at Blodgett Forest. Scaling from this correlation, methyl chavicol emissions account for 4–68% of the carbon mass emitted as MBO in the daytime, depending on the season. From this relationship, we estimate a daytime basal emission rate of 0.72–10.2 μgCg−1h−1, depending on needle age and seasonality. We also present the first observations of its oxidation products (4-methoxybenzaldehyde and 4-methyoxy benzene acetaldehyde in the ambient atmosphere. Methyl chavicol is a major essential oil component of many plant species. This work suggests that methyl chavicol plays a significant role in the atmospheric chemistry of Blodgett Forest, and potentially other sites, and should be included explicitly in both biogenic volatile organic carbon emission and atmospheric chemistry models.

  2. Manifestation of macroscopic correlations in elementary reaction kinetics. I. Irreversible reaction A +A→product

    Science.gov (United States)

    Doktorov, Alexander B.; Kipriyanov, Alexander A.; Kipriyanov, Alexey A.

    2010-05-01

    Using an modern many-particle method for the derivation of non-Markovian binary kinetic equations, we have treated theoretically the applicability of the encounter theory (ET) (the prototype of the collision theory) concepts to the widely known diffusion assisted irreversible bulk reaction A +A→product (for example, radical reaction) in dilute solutions. The method shows that the agreement with the ET is observed when the familiar integral ET is employed which in this method is just a step in the derivation of kinetic equations. It allows for two-particle correlations only, but fails to take account of correlation of reactant simultaneously with the partner of the encounter and the reactant in the bulk. However, the next step leading to the modified ET under transformation of equations to the regular form both extends the time range of the applicability of ET rate equation (as it was for reactions proceeding with one of the reactants in excess), and gives the equation of the generalized ET. In full agreement with physical considerations, this theory reveals macroscopic correlations induced by the encounters in the reservoir of free walks. This means that the encounters of reactants in solution are correlated on a rather large time interval of the reaction. Though any nonstationary (non-Markovian) effects manifest themselves rather weakly in the kinetics of the bimolecular reaction in question, just the existence of the revealed macroscopic correlations in the binary theory is of primary importance. In particular, it means that the well-known phenomena which are generally considered to be associated solely with correlation of particles on the encounter (for example, chemically induced dynamic nuclear polarization) may be induced by correlation in the reservoir of free random walks of radicals in solution.

  3. Manifestation of macroscopic correlations in elementary reaction kinetics. I. Irreversible reaction A+A-->product.

    Science.gov (United States)

    Doktorov, Alexander B; Kipriyanov, Alexander A; Kipriyanov, Alexey A

    2010-05-28

    Using an modern many-particle method for the derivation of non-Markovian binary kinetic equations, we have treated theoretically the applicability of the encounter theory (ET) (the prototype of the collision theory) concepts to the widely known diffusion assisted irreversible bulk reaction A+A-->product (for example, radical reaction) in dilute solutions. The method shows that the agreement with the ET is observed when the familiar integral ET is employed which in this method is just a step in the derivation of kinetic equations. It allows for two-particle correlations only, but fails to take account of correlation of reactant simultaneously with the partner of the encounter and the reactant in the bulk. However, the next step leading to the modified ET under transformation of equations to the regular form both extends the time range of the applicability of ET rate equation (as it was for reactions proceeding with one of the reactants in excess), and gives the equation of the generalized ET. In full agreement with physical considerations, this theory reveals macroscopic correlations induced by the encounters in the reservoir of free walks. This means that the encounters of reactants in solution are correlated on a rather large time interval of the reaction. Though any nonstationary (non-Markovian) effects manifest themselves rather weakly in the kinetics of the bimolecular reaction in question, just the existence of the revealed macroscopic correlations in the binary theory is of primary importance. In particular, it means that the well-known phenomena which are generally considered to be associated solely with correlation of particles on the encounter (for example, chemically induced dynamic nuclear polarization) may be induced by correlation in the reservoir of free random walks of radicals in solution.

  4. Polynuclear aromatic hydrocarbon degradation by heterogeneous reactions with N 2O 5 on atmospheric particles

    Science.gov (United States)

    Kamens, Richard M.; Guo, Jiazhen; Guo, Zhishi; McDow, Stephen R.

    The degradation of particulate polynuclear aromatic hydrocarbons (PAH) on atmospheric soot particles in the presence of gas phase dinitrogen pentoxide (N 2O 5) was explored. Dilute diesel and wood soot particles containing PAH were reacted with˜10ppm of N 2O 5 in a 200 ℓ continuous stirred tank reactor (CSTR). To provide a stable source of particles for reaction in the CSTR, diesel or wood soot particles were injected at night into a 25 m 3 Teflon outdoor chamber. The large chamber served as a reservoir for the feed aerosol, and the aerosol could then be introduced at a constant flow rate into the CSTR. PAH-N 2O 5 heterogeneous rate constants for wood soot at 15°C ranged from2 × 10 -18to5 × 10 -18 cm 3 molecules -1 s -1. For diesel soot the rate constants at 16°C were higher and ranged from5 × 10 -18to30 × 10 -18 cm 3 molecules -1 s -1. Comparisons with other studies suggest that sunlight is the most important factor which influences PAH decay. This is followed by ozone, NO 2, N 2O 5 and nitric acid. The rate constants of nitro-PAH formation from a parent PAH and N 2O 5 were of the order of1 × 10 -19-1 × 10 -18 molecules -1s -1. The uncertainty associated with all of these rate constants is± a factor of 3. Given, however, the small magnitude of the rate constants and the low levels of N 2O 5 present in the atmosphere, we concluded that PAH heterogeneous reactions with gas phase N 2O 5 degrade particle-bound PAH or to form nitro-PAH from PAH are not very important. (Direct application of the specific rate constants derived in this study to ambient atmospheres should not be undertaken unless the ambient particle size distributions and chemical composition of the particles are similar to the ones reported in this study.)

  5. Two-pion production in photon-induced reactions

    Indian Academy of Sciences (India)

    S Schadmand

    2006-05-01

    Differences in the photoproduction of mesons on the free proton and on nuclei are expected to reveal changes in the properties of hadrons. Inclusive studies of nuclear photoabsorption have provided evidence of medium modifications. However, the results have not been explained in a model independent way. A deeper understanding of the situation is anticipated from a detailed experimental study of meson photoproduction from nuclei in exclusive reactions. In the energy regime above the (1232) resonance, the dominant double pion production channels are of particular interest. Double pion photoproduction from nuclei is also used to investigate the in-medium modification of meson–meson interactions.

  6. Atmospheric emission of reactive nitrogen during biofuel ethanol production.

    Science.gov (United States)

    Machado, Cristine M D; Cardoso, Arnaldo A; Allen, Andrew G

    2008-01-15

    This paper evaluates emissions to the atmosphere of biologically available nitrogen compounds in a region characterized by intensive sugar cane biofuel ethanol production. Large emissions of NH3 and NOx, as well as particulate nitrate and ammonium, occur at the harvest when the crop is burned, with the amount of nitrogen released equivalent to approximately 35% of annual fertilizer-N application. Nitrogen oxides concentrations show a positive association with fire frequency, indicating that biomass burning is a major emission source, with mean concentrations of NOx doubling in the dry season relative to the wetseason. During the dry season biomass burning is a source of NH3, with other sources (wastes, soil, biogenic) predominant during the wet season. Estimated NO2-N, NH3-N, NO3- -N and NH4+ -N emission fluxes from sugar cane burning in a planted area of ca. 2.2 x 10(6) ha are 11.0, 1.1, 0.2, and 1.2 Gg N yr(-1), respectively.

  7. Production of Energetic Light Fragments in Spallation Reactions

    Directory of Open Access Journals (Sweden)

    Mashnik Stepan G.

    2014-03-01

    Full Text Available Different reaction mechanisms contribute to the production of light fragments (LF from nuclear reactions. Available models cannot accurately predict emission of LF from arbitrary reactions. However, the emission of LF is important formany applications, such as cosmic-ray-induced single event upsets, radiation protection, and cancer therapy with proton and heavy-ion beams, to name just a few. The cascade-exciton model (CEM and the Los Alamos version of the quark-gluon string model (LAQGSM, as implemented in the CEM03.03 and LAQGSM03.03 event generators used in the Los Alamos Monte Carlo transport code MCNP6, describe quite well the spectra of fragments with sizes up to 4He across a broad range of target masses and incident energies. However, they do not predict high-energy tails for LF heavier than 4He. The standard versions of CEM and LAQGSM do not account for preequilibrium emission of LF larger than 4He. The aim of our work is to extend the preequilibrium model to include such processes. We do this by including the emission of fragments heavier than 4He at the preequilibrium stage, and using an improved version of the Fermi Break-up model, providing improved agreement with various experimental data.

  8. Production of Energetic Light Fragments in Spallation Reactions

    CERN Document Server

    Mashnik, Stepan G; Gudima, Konstantin K; Sierk, Arnold J

    2013-01-01

    Different reaction mechanisms contribute to the production of light fragments (LF) from nuclear reactions. Available models cannot accurately predict emission of LF from arbitrary reactions. However, the emission of LF is important for many applications, such as cosmic-ray-induced single event upsets, radiation protection, and cancer therapy with proton and heavy-ion beams, to name just a few. The cascade-exciton model (CEM) and the Los Alamos version of the quark-gluon string model (LAQGSM), as implemented in the CEM03.03 and LAQGSM03.03 event generators used in the Los Alamos transport code MCNP6, describe quite well the spectra of fragments with sizes up to 4He across a broad range of target masses and incident energies. However, they do not predict high-energy tails for LF heavier than 4He. The standard versions of CEM and LAQGSM do not account for preequilibrium emission of LF larger than 4He. The aim of our work is to extend the preequilibrium model to include such processes. We do this by including the...

  9. Multistage Extractive Reaction for Hydrogen Peroxide Production by Anthraquinone Process

    Institute of Scientific and Technical Information of China (English)

    WANG Li; L(U) Shuxiang; WANG Yaquan; MI Zhentao

    2005-01-01

    The extractive reaction process of oxygen-working solution-water three-phase system for the production of hydrogen peroxide by the anthraquinone method was investigated in a sieve plate column of 50 mm in internal diameter. The oxidation reaction of anthrahydroquinone in the working solution with oxygen and the extraction of hydrogen peroxide from the working solution into aqueous phase occurred simultaneously in the countercurrent mode. The agitating effect caused by gaseous phase made the droplets of the dispersed phase become smaller, thus, increasing the liquid-liquid interfacial contact areas and resulting in the improvement of the mass transfer velocity. Results showed that the gas-agitation had a beneficial effect on the extraction of hydrogen peroxide from the working solution into the aqueous phase; the concentration of hydrogen peroxide in the raffinate decreased with the increase of the gaseous superficial velocities; and the concentration of H2O2 in the raffinate increased with the increase of the dispersed phase superficial velocity at the same superficial velocity of the gaseous phase. In the G-L-L extractive reaction process, with the increase of the gaseous superficial velocities, both the conversion of the anthrahydroquinone oxidation and the extraction efficiency of hydrogen peroxide first increased significantly, then increased gradually.

  10. Removal of triclosan via peroxidases-mediated reactions in water: Reaction kinetics, products and detoxification.

    Science.gov (United States)

    Li, Jianhua; Peng, Jianbiao; Zhang, Ya; Ji, Yuefei; Shi, Huanhuan; Mao, Liang; Gao, Shixiang

    2016-06-05

    This study investigated and compared reaction kinetics, product characterization, and toxicity variation of triclosan (TCS) removal mediated by soybean peroxidase (SBP), a recognized potential peroxidase for removing phenolic pollutants, and the commonly used horseradish peroxidase (HRP) with the goal of assessing the technical feasibility of SBP-catalyzed removal of TCS. Reaction conditions such as pH, H2O2 concentration and enzyme dosage were found to have a strong influence on the removal efficiency of TCS. SBP can retain its catalytic ability to remove TCS over broad ranges of pH and H2O2 concentration, while the optimal pH and H2O2 concentration were 7.0 and 8μM, respectively. 98% TCS was removed with only 0.1UmL(-1) SBP in 30min reaction time, while an HRP dose of 0.3UmL(-1) was required to achieve the similar conversion. The catalytic performance of SBP towards TCS was more efficient than that of HRP, which can be explained by catalytic rate constant (KCAT) and catalytic efficiency (KCAT/KM) for the two enzymes. MS analysis in combination with quantum chemistry computation showed that the polymerization products were generated via CC and CO coupling pathways. The polymers were proved to be nontoxic through growth inhibition of green alga (Scenedesmus obliquus). Taking into consideration of the enzymatic treatment cost, SBP may be a better alternative to HRP upon the removal and detoxification of TCS in water/wastewater treatment.

  11. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV ? gas phase reactions of organic halogen species

    OpenAIRE

    2007-01-01

    International audience; This article, the fourth in the series, presents kinetic and photochemical data sheets evaluated by the IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. It covers the gas phase and photochemical reactions of organic halogen species, which were last published in 1997, and were updated on the IUPAC website in 2006. The article consists of a summary sheet, containing the recommended kinetic parameters for the evaluated reactions, and four appen...

  12. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I - gas phase reactions of Ox, HOx, NOx and SOx species

    OpenAIRE

    2004-01-01

    This article, the first in the series, presents kinetic and photochemical data evaluated by the IUPAC Subcommittee on GasKinetic Data Evaluation for Atmospheric Chemistry. It covers the gas phase and photochemical reactions of Ox, HOx, NOx and SOx species, which were last published in 1997, and were updated on the IUPAC website in late 2001. The article consists of a summary sheet, containing the recommended kinetic parameters for the evaluated reactions, and five appendi...

  13. Atmospheric CO2 uptake throughout bio-enhanced brucite-water reaction at Montecastelli serpentinites (Italy)

    Science.gov (United States)

    Bedini, Federica; Boschi, Chiara; Ménez, Benedicte; Perchiazzi, Natale; Zanchetta, Giovanni

    2014-05-01

    In the last several years, interactions between microorganisms and minerals have intrigued and catched the interest of the scientific community. Montecastelli serpentinites (Tuscany, Italy) are characterized by CO2-mineral carbonation, an important process which leads to spontaneous formation of carbonate phases uptaking atmospheric CO2. In the studied areas carbonate precipitates, mainly hydrated Mg-carbonates, are present in form of crusts, coating and spherules on exposed rock surfaces, and filling rock fractures. Petrographic and mineralogical observations revealed that Tuscan brucite-rich serpentinites hosts preserve their original chemical compositions with typical mesh-textured serpentine (± brucite) after olivine, magnetite-rich mesh rims and relicts of primary spinel. Representative hydrated carbonate samples have been collected in three different areas and analyzed to investigate the role of biological activity and its influence in the serpentine-hydrated Mg-carbonates reaction. The different types of whitish precipitates have been selected under binocular microscope for XRD analyses performed at the Dipartimento di Scienze della Terra (University of Pisa, Italy): their mineralogical composition consists of mainly hydromagnesite and variable amount of other metastable carbonate phases (i.e. nesquehonite, manasseite, pyroaurite, brugnatellite and aragonite). Moreover, the crystallinity analysis of whitish crust and spherules have been carried out by detailed and quantitative XRD analyses to testify a possible biologically controlled growth, inasmuch as the crystal structure of biominerals could be affected by many lattice defects (i.e. dislocations, twinning, etc.) and this observation cause low crystallinity of the mineral. The presence of microbial cells and relicts of organic matter has already been detected by confocal laser scanning microscopy (CLSM) combined with Raman spectromicroscopy in a previous study (Bedini et al., 2013). The presence of

  14. Atmospheric chemistry of 2,3-pentanedione: photolysis and reaction with OH radicals.

    Science.gov (United States)

    Szabó, Emese; Djehiche, Mokhtar; Riva, Matthieu; Fittschen, Christa; Coddeville, Patrice; Sarzyński, Dariusz; Tomas, Alexandre; Dóbé, Sándor

    2011-08-25

    The kinetics of the overall reaction between OH radicals and 2,3-pentanedione (1) were studied using both direct and relative kinetic methods at laboratory temperature. The low pressure fast discharge flow experiments coupled with resonance fluorescence detection of OH provided the direct rate coefficient of (2.25 ± 0.44) × 10(-12) cm(3) molecule(-1) s(-1). The relative-rate experiments were carried out both in a collapsible Teflon chamber and a Pyrex reactor in two laboratories using different reference reactions to provide the rate coefficients of 1.95 ± 0.27, 1.95 ± 0.34, and 2.06 ± 0.34, all given in 10(-12) cm(3) molecule(-1) s(-1). The recommended value is the nonweighted average of the four determinations: k(1) (300 K) = (2.09 ± 0.38) × 10(-12) cm(3) molecule(-1) s(-1), given with 2σ accuracy. Absorption cross sections for 2,3-pentanedione were determined: the spectrum is characterized by two wide absorption bands between 220 and 450 nm. Pulsed laser photolysis at 351 nm was used and the depletion of 2,3-pentanedione (2) was measured by GC to determine the photolysis quantum yield of Φ(2) = 0.11 ± 0.02(2σ) at 300 K and 1000 mbar synthetic air. An upper limit was estimated for the effective quantum yield of 2,3-pentanedione applying fluorescent lamps with peak wavelength of 312 nm. Relationships between molecular structure and OH reactivity, as well as the atmospheric fate of 2,3-pentanedione, have been discussed.

  15. 40 CFR 721.4461 - Hydrofluoric acid, reaction products with octane (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrofluoric acid, reaction products... New Uses for Specific Chemical Substances § 721.4461 Hydrofluoric acid, reaction products with octane... identified generically as a hydrofluoric acid, reaction products with octane (PMN P-99-0052) is subject...

  16. 40 CFR 721.4385 - Hydrofluoric acid, reaction products with heptane.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrofluoric acid, reaction products... Specific Chemical Substances § 721.4385 Hydrofluoric acid, reaction products with heptane. (a) Chemical... hydrofluoric acid, reaction products with heptane (PMN P-98-1036; CAS No. 207409-71-0) is subject to...

  17. INFLUENCE OF REACTION TEMPERATURE AND REACTION TIME ON PRODUCT FROM HYDROTHERMAL TREATMENT OF BIOMASS RESIDUE

    Directory of Open Access Journals (Sweden)

    Jakaphong Kongpanya

    2014-01-01

    Full Text Available Thailand is facing with problems associated with biomass residue such as palm oil residues (oil palm trunks, oil palm fronds, empty fruit bunches, shells and fibers. Biomass is promising source for the production of an array of energy-related produts including, liquid, solid and gaseous fuels, heat, chemicals electricity and other materials. Therefore, the use of biomass for energy is not still fully utilization due to the high moisture content, lower heating value of the energy unit or low bulk density and the problems withtar. While Thailand has high potential because the reisa lot of biomass that has not been utilizedfor example biomass residues from palm oil industry. About 2 million tons of empty fruit bunches in Thailand have great potential. This amount will continue increase with the rapid growth in the Thailand, the largest crude palm oil producer in the world. This amount will continue increase with the rapid growth in the Thailand palm oil industry. Therefore, a better method to manage such biomass residues is highly desired. One of the potential ways for alternative utilization of biomass is thermo-chemical process. Hydrothermal treatment is a process for making a homogenizinged, carbon rich and energy-dense solid fuel, called hydrochar. The objective of the study was to identify the effect of reaction temperature and reaction time for hydrothermal treatment of Empty Fruit Bunches (EFB. Influence of temperature 100°C, 150°C and 200°C for 30 to 90 min and active biogas process on 1.00-15.538 bars, within 1,000 mL stainless steel 316 batch-type reactor with a stirrer and there is an automatic temperature controller. Results showed that the highest chemical and physical properties of hydrochar product was achieved when operated on 200°C for 90 min. Maximum heating value was found that 5678 cal/g for EFB9. The result showed that the chemical and physical properties increased progressively with higher temperature. The results was

  18. Evaluation of Neutron Induced Reactions for 32 Fission Products

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeong Il

    2007-02-15

    Neutron cross sections for 32 fission products were evaluated in the neutron-incident energy range from 10{sup -5} eV to 20 MeV. The list of fission products consists of the priority materials for several applications, extended to cover complete isotopic chains for three elements. The full list includes 8 individual isotopes, {sup 95}Mo, {sup 101}Ru, {sup 103}Rh, {sup 105}Pd, {sup 109}Ag, {sup 131}Xe, {sup 133}Cs, {sup 141}Pr, and 24 isotopes in complete isotopic chains for Nd (8), Sm (9) and Dy (7). Our evaluation methodology covers both the low energy region and the fast neutron region.In the low energy region, our evaluations are based on the latest data published in the Atlas of Neutron Resonances. This resource was used to infer both the thermal values and the resolved resonance parameters that were validated against the capture resonance integrals. In the unresolved resonance region we performed the additional evaluation by using the averages of the resolved resonances and adjusting them to the experimental data.In the fast neutron region our evaluations are based on the nuclear reaction model code EMPIRE-2.19 validated against the experimental data. EMPIRE is the modular system of codes consisting of many nuclear reaction models, including the spherical and deformed Optical Model, Hauser-Feshbach theory with the width fluctuation correction and complete gamma-ray emission cascade, DWBA, Multi-step Direct and Multi-step Compound models, and several versions of the phenomenological preequilibrium models. The code is equipped with a power full GUI, allowing an easy access to support libraries such as RIPL and CSISRS, the graphical package, as well the utility codes for formatting and checking. In general, in our calculations we used the Reference Input Parameter Library, RIPL, for the initial set model parameters. These parameters were properly adjusted to reproduce the available experimental data taken from the CSISRS library. Our evaluations cover cross

  19. Production of secondary Deuterium in the atmosphere at various latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Papini, P. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Grimani, C. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); Stephens, S.A. [Tata Institute of Fundamental Research, Bombay (International Commission on Radiation Units and Measurements)

    1995-09-01

    Secondary deuterium in the atmosphere are produced in interactions by primary cosmic rays. The shape of their energy spectrum depends on the primary cosmic ray spectrum incident at the top of the atmosphere. At high energies, the spectral shape depends on the primary spectrum of helium and heavy nuclei. However, at very low energies, specially below the geomagnetic cut-off, the spectral shape depends on the evaporation and recoil processes and hence almost independent of the spectral shape of the primary radiation. It is undertaken a calculation of the secondary deuterium spectrum at small atmospheric depths at various latitudes and the results will be presented.

  20. Reaction of carbon tetrachloride with methane in a non-equilibrium plasma at atmospheric pressure, and characterisation of the polymer thus formed.

    Science.gov (United States)

    Gaikwad, Vaibhav; Kennedy, Eric; Mackie, John; Holdsworth, Clovia; Molloy, Scott; Kundu, Sazal; Stockenhuber, Michael; Dlugogorski, Bogdan

    2014-09-15

    In this paper we focus on the development of a methodology for treatment of carbon tetrachloride utilising a non-equilibrium plasma operating at atmospheric pressure, which is not singularly aimed at destroying carbon tetrachloride but rather at converting it to a non-hazardous, potentially valuable commodity. This method encompasses the reaction of carbon tetrachloride and methane, with argon as a carrier gas, in a quartz dielectric barrier discharge reactor. The reaction is performed under non-oxidative conditions. Possible pathways for formation of major products based on experimental results and supported by quantum chemical calculations are outlined in the paper. We elucidate important parameters such as carbon tetrachloride conversion, product distribution, mass balance and characterise the chlorinated polymer formed in the process.

  1. Chlorination of parabens: reaction kinetics and transformation product identification.

    Science.gov (United States)

    Mao, Qianhui; Ji, Feng; Wang, Wei; Wang, Qiquan; Hu, Zhenhu; Yuan, Shoujun

    2016-11-01

    The reactivity and fate of parabens during chlorination were investigated in this work. Chlorination kinetics of methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP) were studied in the pH range of 4.0 to 11.0 at 25 ± 1 °C. Apparent rate constants (k app) of 9.65 × 10(-3) M(-0.614)·s(-1), 1.77 × 10(-2) M(-1.019)·s(-1), 2.98 × 10(-2) M(-0.851)·s(-1), and 1.76 × 10(-2) M(-0.860)·s(-1) for MeP, EtP, PrP, and BuP, respectively, were obtained at pH 7.0. The rate constants depended on the solution pH, temperature, and NH4(+) concentration. The maximum k app was obtained at pH 8.0, and the minimum value was obtained at pH 11.0. The reaction rate constants increased with increasing temperature. When NH4(+) was added to the solution, the reaction of parabens was inhibited due to the rapid formation of chloramines. Two main transformation products, 3-chloro-parabens and 3,5-dichloro-parabens, were identified by GC-MS and LCMS-IT-TOF, and a reaction pathway was proposed. Dichlorinated parabens accumulated in solution, which is a threat to human health and the aqueous environment.

  2. Maillard reaction products as antimicrobial components for packaging films.

    Science.gov (United States)

    Hauser, Carolin; Müller, Ulla; Sauer, Tanja; Augner, Kerstin; Pischetsrieder, Monika

    2014-02-15

    Active packaging foils with incorporated antimicrobial agents release the active ingredient during food storage. Maillard reaction products (MRPs) show antimicrobial activity that is at least partially mediated by H2O2. De novo generation of H2O2 by an MRP fraction, extracted from a ribose/lysine Maillard reaction mixture by 85% ethanol, was monitored at three concentrations (1.6, 16.1, and 32.3g/L) and three temperatures (4, 25, and 37 °C) between 0 and 96 h, reaching a maximum of 335 μM H2O2 (32.3g/L, 37 °C, 96 h). The active MRP fraction (16.1g/L) completely inhibited the growth of Escherichia coli for 24h and was therefore incorporated in a polyvinyl acetate-based lacquer and dispersed onto a low-density polyethylene film. The coated film generated about 100 μM H2O2 and resulted in a log-reduction of >5 log-cycles against E. coli. Thus, MRPs can be considered as active ingredients for antimicrobial packaging materials.

  3. A kinetic-theory approach for computing chemical-reaction rates in upper-atmosphere hypersonic flows.

    Science.gov (United States)

    Gallis, Michael A; Bond, Ryan B; Torczynski, John R

    2009-09-28

    Recently proposed molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties (i.e., no macroscopic reaction-rate information) are investigated for chemical reactions occurring in upper-atmosphere hypersonic flows. The new models are in good agreement with the measured Arrhenius rates for near-equilibrium conditions and with both measured rates and other theoretical models for far-from-equilibrium conditions. Additionally, the new models are applied to representative combustion and ionization reactions and are in good agreement with available measurements and theoretical models. Thus, molecular-level chemistry modeling provides an accurate method for predicting equilibrium and nonequilibrium chemical-reaction rates in gases.

  4. Sorption enhanced reaction process (SERP) for the production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Hufton, J.; Mayorga, S.; Gaffney, T.; Nataraj, S.; Rao, M.; Sircar, S. [Air Products and Chemicals, Inc., Allentown, PA (United States)

    1998-08-01

    The novel Sorption Enhanced Reaction Process has the potential to decrease the cost of hydrogen production by steam methane reforming. Current effort for development of this technology has focused on adsorbent development, experimental process concept testing, and process development and design. A preferred CO{sub 2} adsorbent, K{sub 2}CO{sub 3} promoted hydrotalcite, satisfies all of the performance targets and it has been scaled up for process testing. A separate class of adsorbents has been identified which could potentially improve the performance of the H{sub 2}-SER process. Although this material exhibits improved CO{sub 2} adsorption capacity compared to the HTC adsorbent, its hydrothermal stability must be improved. Single-step process experiments (not cyclic) indicate that the H{sub 2}-SER reactor performance during the reaction step improves with decreasing pressure and increasing temperature and steam to methane ratio in the feed. Methane conversion in the H{sub 2}-SER reactor is higher than for a conventional catalyst-only reactor operated at similar temperature and pressure. The reactor effluent gas consists of 90+% H{sub 2}, balance CH{sub 4}, with only trace levels (< 50 ppm) of carbon oxides. A best-case process design (2.5 MMSCFD of 99.9+% H{sub 2}) based on the HTC adsorbent properties and a revised SER process cycle has been generated. Economic analysis of this design indicates the process has the potential to reduce the H{sub 2} product cost by 25--31% compared to conventional steam methane reforming.

  5. Sorption Enhanced Reaction Process (SERP) for production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Anand, M.; Hufton, J.; Mayorga, S. [Air Products and Chemicals, Inc., Allentown, PA (United States)] [and others

    1996-10-01

    Sorption Enhanced Reaction Process (SERP) is a novel process that is being developed for the production of lower cost hydrogen by steam-methane reforming (SMR). In this process the reaction of methane with steam is carried out in the presence of an admixture of a catalyst and a selective adsorbent for carbon dioxide. The key consequences of SERP are: (i) reformation reaction is carried out at a significantly lower temperature (300-500{degrees}C) than that in a conventional SMR reactor (800-1100{degrees}C), while achieving the same conversion of methane to hydrogen, (ii) the product hydrogen is obtained at reactor pressure (200-400 psig) and at 98+% purity directly from the reactor (compared to only 70-75% H{sub 2} from conventional SMR reactor), (iii) downstream hydrogen purification step is either eliminated or significantly reduced in size. The first phase of the program has focused on the development of a sorbent for CO{sub 2} which has (a) reversible CO{sub 2} capacity >0.3 mmol/g at low partial pressures of CO{sub 2} (0.1 - 1.0 atm) in the presence of excess steam (pH{sub 2}O/pCO{sub 2}>20) at 400-500{degrees}C and (b) fast sorption-desorption kinetics for CO{sub 2}, at 400-500{degrees}C. Several families of supported sorbents have been identified that meet the target CO{sub 2} capacity. A few of these sorbents have been tested under repeated sorption/desorption cycles and extended exposure to high pressure steam at 400-500{degrees}C. One sorbent has been scaled up to larger quantities (2-3 kg) and tested in the laboratory process equipment for sorption and desorption kinetics of CO{sub 2}. The CO{sub 2}, sorption and desorption kinetics are desirably fast. This was a critical path item for the first phase of the program and now has been successfully demonstrated. A reactor has been designed that will allow nearly isothermal operation for SERP-SMR. This reactor was integrated into an overall process flow diagram for the SERP-SMR process.

  6. Heterogeneous chemistry and reaction dynamics of the atmospheric oxidants, O3, NO3, and OH, on organic surfaces.

    Science.gov (United States)

    Chapleski, Robert C; Zhang, Yafen; Troya, Diego; Morris, John R

    2016-07-01

    Heterogeneous chemistry of the most important atmospheric oxidants, O3, NO3, and OH, plays a central role in regulating atmospheric gas concentrations, processing aerosols, and aging materials. Recent experimental and computational studies have begun to reveal the detailed reaction mechanisms and kinetics for gas-phase O3, NO3, and OH when they impinge on organic surfaces. Through new research approaches that merge the fields of traditional surface science with atmospheric chemistry, researchers are developing an understanding for how surface structure and functionality affect interfacial chemistry with this class of highly oxidizing pollutants. Together with future research initiatives, these studies will provide a more complete description of atmospheric chemistry and help others more accurately predict the properties of aerosols, the environmental impact of interfacial oxidation, and the concentrations of tropospheric gases.

  7. Mass identification of the neutral products generated in the plasma treatment of polluted atmospheres

    Science.gov (United States)

    Seymour, David

    2013-09-01

    Plasmas produced using Dielectric Barrier Discharge (DBD) devices are very effective in the abatement of air pollution resulting from, for example, the emission of volatile organic compounds (VCOs) by a range of industrial and agricultural processes. The development and monitoring of effective DBD systems can be investigated by advanced mass spectrometric methods specifically configured for analysis at high and atmospheric pressures The present work involves the operation of a small DBD reactor which uses either a helium or nitrogen carrier gas to sustain the plasma to which may be added reactive gases, such as oxygen, as well as samples of pollutants such as chlorinated hydrocarbons, including trichloroethylene. The mass spectrometric analysis was performed using a specially configured system manufactured by Hiden Analytical Ltd. The DBD source may also be combined with a catalyst for plasma-enhanced catalysis. The neutral products of the reactions proceeding in the plasma at atmospheric pressure are sampled through the capillary sampling system which also reduces the pressure of the gas mixture delivered to the ionisation source of the quadrupole mass spectrometer. The ions produced are subsequently mass identified. We describe typical data and comment on the advantages of this technique.

  8. A COMBINED REACTION/PRODUCT RECOVERY PROCESS FOR THE CONTINUOUS PRODUCTION OF BIODIESEL

    Energy Technology Data Exchange (ETDEWEB)

    Birdwell, J.F., Jr.; McFarlane, J.; Schuh, D.L.; Tsouris, C; Day, J.N. (Nu-Energie, LLC); Hullette, J.N. (Nu-Energie, LLC)

    2009-09-01

    Oak Ridge National Laboratory (ORNL) and Nu-Energie, LLC entered into a Cooperative Research And Development Agreement (CRADA) for the purpose of demonstrating and deploying a novel technology for the continuous synthesis and recovery of biodiesel from the transesterification of triglycerides. The focus of the work was the demonstration of a combination Couette reactor and centrifugal separator - an invention of ORNL researchers - that facilitates both product synthesis and recovery from reaction byproducts in the same apparatus. At present, transesterification of triglycerides to produce biodiesel is performed in batch-type reactors with an excess of a chemical catalyst, which is required to achieve high reactant conversions in reasonable reaction times (e.g., 1 hour). The need for long reactor residence times requires use of large reactors and ancillary equipment (e.g., feed and product tankage), and correspondingly large facilities, in order to obtain the economy of scale required to make the process economically viable. Hence, the goal of this CRADA was to demonstrate successful, extended operation of a laboratory-scale reactor/separator prototype to process typical industrial reactant materials, and to design, fabricate, and test a production-scale unit for deployment at the biodiesel production site. Because of its ease of operation, rapid attainment of steady state, high mass transfer and phase separation efficiencies, and compact size, a centrifugal contactor was chosen for intensification of the biodiesel production process. The unit was modified to increase the residence time from a few seconds to minutes*. For this application, liquid phases were introduced into the reactor as separate streams. One was composed of the methanol and base catalyst and the other was the soy oil used in the experiments. Following reaction in the mixing zone, the immiscible glycerine and methyl ester products were separated in the high speed rotor and collected from separate

  9. Measurement of charmed particle production in hadronic reactions

    CERN Multimedia

    2002-01-01

    The aim of the experiment is to measure the production cross-section for charmed particles in hadronic reactions, study their production mechanism, and search for excited charmed hadrons.\\\\ \\\\ Charmed Mesons and Baryons will be measured in $\\pi$ and $p$ interactions on Beryllium between 100 and 200 GeV/c. The trigger will be on an electron from the leptonic decay of one charmed particle by signals from the Cerenkov counter (Ce), the electron trigger calorimeter (eCal), scintillation counters, and proportional wire chambers. The accompanying charmed particle will be measured via its hadronic decay in a two-stage magnetic spectrometer with drift chambers (arms 2, 3a, 3b, 3c), two large-area multicell Cerenkov counters (C2, C3) and a large-area shower counter ($\\gamma$-CAL). The particles which can be measured and identified include $\\gamma, e, \\pi^{\\pm}, \\pi^{0}, K^{\\pm}, p, \\bar{p}$ so that a large number of hadronic decay modes of charmed particles can be studied. \\\\ \\\\ A silicon counter telescope with 5 $\\m...

  10. Measurement of atmospheric sesquiterpenes by proton transfer reaction-mass spectrometry (PTR-MS

    Directory of Open Access Journals (Sweden)

    A. Guenther

    2009-04-01

    Full Text Available The ability to measure sesquiterpenes (SQT; C15H24 by a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS was investigated. SQT calibration standards were prepared by a capillary diffusion method and the PTR-MS-estimated mixing ratios were derived from the counts of product ions and proton transfer reaction constants. These values were compared with mixing ratios determined by a calibrated Gas Chromatograph (GC coupled to a Flame Ionization Detector (GC-FID. Product ion distributions from soft-ionization occurring in a selected ion drift tube via proton transfer were measured as a function of collision energies. Results after the consideration of the mass discrimination of the PTR-MS system suggest that quantitative SQT measurements within 20% accuracy can be achieved with PTR-MS if two major product ions (m/z 149+ and 205+, out of seven major product ions (m/z 81+, 95+, 109+, 123+, 135+, 149+ and 205+, are accounted for. Considerable fragmentation of bicyclic sesquiterpenes, i.e. β-caryophyllene and α-humulene, cause the accuracy to be reduced to 50% if only the parent ion (m/z 205+ is considered. These findings were applied to a field dataset collected above a deciduous forest at the PROPHET (Program for Research on Oxidants: Photochemistry, Emissions, and Transport research station in 2005. Inferred average daytime ecosystem scale mixing ratios (fluxes of isoprene, sum of monoterpenes (MT, and sum of SQT exhibited values of 15 μg m−3 (4.5 mg m−2 h−1, 1.2 μg m−3 (0.21 mg m−2 h−1, and 0.0016 μg m−3 (0.10 mg m−2 h−1, respectively. A range of MT and SQT reactivities with respect to the OH radical was calculated and compared to an earlier study inferring significantly

  11. Measurement of atmospheric sesquiterpenes by proton transfer reaction-mass spectrometry (PTR-MS

    Directory of Open Access Journals (Sweden)

    S. Kim

    2008-12-01

    Full Text Available The ability to measure sesquiterpenes (SQT; C15H24 by a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS was investigated with SQT standards, prepared by a capillary diffusion method, and the estimated mixing ratios, derived from the counts of product ions and proton transfer reaction constants were intercompared with measured mixing ratios, measured by a complementary Gas Chromatograph (GC coupled to a Flame Ionization Detector (GC-FID. Product ion distributions due to soft-ionization occurring in a selected ion drift tube via proton transfer were measured as a function of collision energies. Results after the consideration of the mass discrimination of the PTR-MS system suggest that quantitative SQT measurements within 20% accuracy can be achieved with PTR-MS if two major product ions (m/z 149+ and 205+ out of seven major product ions (m/z 81+, 95+, 109+, 123+, 135+, 149+ and 205+ are accounted for. Bicyclic sesquiterpenes, i.e. β-caryophyllene and α-humulene, showed considerable fragmentation causing the accuracy of their analysis to be reduced to 50% if only the parent ion (m/z 205 is considered. These findings were applied to a field dataset collected above a deciduous forest at the PROPHET (Program for Research on Oxidants: Photochemistry, Emissions, and Transport research station in 2005. Inferred Average daytime ecosystem scale mixing ratios (fluxes of isoprene, sum of monoterpenes (MT, and sum of SQT exhibited values of 15 μg m−3 (4.5 mg m−2 h−1, 1.2 μg m−3 (0.21 mg m−2 h−1 and 0.0016 μg m−3 (0.10 mgm−2 h−1 respectively. A range of MT and SQT reactivities with respect to the OH radical was calculated and compared to an earlier study inferring significantly underestimated OH

  12. OH Production from Reactions of Organic Peroxy Radicals with HO2 : Recent Studies on Ether-Derived Peroxy Radicals

    Science.gov (United States)

    Orlando, J. J.; Tyndall, G. S.; Kegley Owen, C. S.; Reynoldson, N.

    2013-12-01

    There is now ample evidence supporting significant formation of OH radicals in the reaction of HO2 with certain organic peroxy radicals (RO2). These reaction channels serve to promote radical propagation, and thus have the potential to alter HOx budgets and partitioning and hence tropospheric oxidative capacity. While much focus has been placed on OH production from reactions involving carbonyl-containing RO2 species, it is also the case that other oxygen- substituted peroxy species (e.g., CH3OCH2OO, HOCH2OO) likely generate OH in their reactions with HO2 (see ref. 1 and refs therein). In this work, the Cl-atom-initiated oxidation of two ethers, diethyl and diisopropyl ether, is investigated over ranges of conditions in an environmental chamber, using both FTIR and GC-FID methods for product quantification. Preliminary analysis suggests that significant OH production is occurring in the reaction of HO2 with CH3CH2OCH(OO)CH3, and also provides evidence for a rapid unimolecular reaction of diisopropyl ether-derived peroxy radicals. Details of these and other results will be described. 1. Orlando, J. J., and G. S. Tyndall, 2012: Laboratory studies of organic peroxy radical chemistry: an overview with emphasis on recent issues of atmospheric significance, Chemical Society Reviews, 41, 6294-6317, doi: 10.1039/C2CS35166H.

  13. GALS - setup for production and study of multinucleon transfer reaction products: present status

    Science.gov (United States)

    Zemlyanoy, S.; Zagrebaev, V.; Kozulin, E.; Kudryavtsev, Yu; Fedosseev, V.; Bark, R.; Janas, Z.

    2016-06-01

    This is a brief report on the current status of the new GAs cell based Laser ionization Setup (GALS) at Flerov Laboratory for Nuclear Reactions (FLNR) - JINR, Dubna. GALS is planned to exploit available beams from the U-400M cyclotron in low energy multi-nucleon transfer reactions to study exotic neutron-rich nuclei located in the "north-east" region of nuclear map. Products from 4.5 to 9 MeV/nucleon heavy-ion collisions, such as 136Xe on 208Pb, are to be captured in a gas cell and selectively laser-ionized in a sextupole (quadrupole) ion guide extraction system.

  14. Chemical Reaction and Flow Modeling in Fullerene and Nanotube Production

    Science.gov (United States)

    Scott, Carl D.; Farhat, Samir; Greendyke, Robert B.

    2004-01-01

    The development of processes to produce fullerenes and carbon nanotubes has largely been empirical. Fullerenes were first discovered in the soot produced by laser ablation of graphite [1]and then in the soot of electric arc evaporated carbon. Techniques and conditions for producing larger and larger quantities of fullerenes depended mainly on trial and error empirical variations of these processes, with attempts to scale them up by using larger electrodes and targets and higher power. Various concepts of how fullerenes and carbon nanotubes were formed were put forth, but very little was done based on chemical kinetics of the reactions. This was mainly due to the complex mixture of species and complex nature of conditions in the reactors. Temperatures in the reactors varied from several thousand degrees Kelvin down to near room temperature. There are hundreds of species possible, ranging from atomic carbon to large clusters of carbonaceous soot, and metallic catalyst atoms to metal clusters, to complexes of metals and carbon. Most of the chemical kinetics of the reactions and the thermodynamic properties of clusters and complexes have only been approximated. In addition, flow conditions in the reactors are transient or unsteady, and three dimensional, with steep spatial gradients of temperature and species concentrations. All these factors make computational simulations of reactors very complex and challenging. This article addresses the development of the chemical reaction involved in fullerene production and extends this to production of carbon nanotubes by the laser ablation/oven process and by the electric arc evaporation process. In addition, the high-pressure carbon monoxide (HiPco) process is discussed. The article is in several parts. The first one addresses the thermochemical aspects of modeling; and considers the development of chemical rate equations, estimates of reaction rates, and thermodynamic properties where they are available. The second part

  15. A theoretical study of the mechanism of the atmospherically relevant reaction of chlorine atoms with methyl nitrate, and calculation of the reaction rate coefficients at temperatures relevant to the troposphere.

    Science.gov (United States)

    Ng, Maggie; Mok, Daniel K W; Lee, Edmond P F; Dyke, John M

    2015-03-21

    The reaction between atomic chlorine (Cl) and methyl nitrate (CH3ONO2) is significant in the atmosphere, as Cl is a key oxidant, especially in the marine boundary layer, and alkyl nitrates are important nitrogen-containing organic compounds, which are temporary reservoirs of the reactive nitrogen oxides NO, NO2 and NO3 (NOx). Four reaction channels HCl + CH2ONO2, CH3OCl + NO2, CH3Cl + NO3 and CH3O + ClNO2 were considered. The major channel is found to be the H abstraction channel, to give the products HCl + CH2ONO2. For all channels, geometry optimization and frequency calculations were carried out at the M06-2X/6-31+G** level, while relative electronic energies were improved to the UCCSD(T*)-F12/CBS level. The reaction barrier (ΔE(‡)0K) and reaction enthalpy (ΔH(RX)298K) of the H abstraction channel were computed to be 0.61 and -2.30 kcal mol(-1), respectively, at the UCCSD(T*)-F12/CBS//M06-2X/6-31+G** level. Reaction barriers (ΔE(‡)0K) for the other channels are more positive and these pathways do not contribute to the overall reaction rate coefficient in the temperature range considered (200-400 K). Rate coefficients were calculated for the H-abstraction channel at various levels of variational transition state theory (VTST) including tunnelling. Recommended ICVT/SCT rate coefficients in the temperature range 200-400 K are presented for the first time for this reaction. The values obtained in the 200-300 K region are particularly important as they will be valuable for atmospheric modelling calculations involving reactions with methyl nitrate. The implications of the results to atmospheric chemistry are discussed. Also, the enthalpies of formation, ΔHf,298K, of CH3ONO2 and CH2ONO2 were computed to be -29.7 and 19.3 kcal mol(-1), respectively, at the UCCSD(T*)-F12/CBS level.

  16. Atmospheric reactions between E,E-2,4-hexadienal and OH, NO3 radicals and Cl atoms

    Science.gov (United States)

    Colmenar, I.; Martín, P.; Cabañas, B.; Salgado, S.; Martínez, E.

    2014-12-01

    E,E-2,4-Hexadienal is an α,β-unsaturated aldehyde whose presence in the atmosphere can arise from different sources. The rate coefficients for the reaction of this compound with Cl atoms, OH and NO3 radicals and for the photolysis process have been determined at atmospheric pressure and room temperature. A relative method has been developed with a Fourier Transform Infrared spectrometer (FTIR) or Solid Phase Micro Extraction fiber/chromatography-mass spectrometer (SPME/GC-MS) used as sampling/detection techniques. The absolute rate coefficients k (in units of cm3 molecule-1 s-1) obtained for Cl, OH and NO3 were (3.98 ± 0.44) × 10-10, (6.78 ± 0.47) × 10-11 and (1.34 ± 0.56) × 10-12, respectively. An estimation of the rate coefficient for the reaction of E,E-2,4-hexadienal with OH and NO3 radicals and Cl atoms has been carried out using correlations and SAR methods. The SAR substituent factor for the -C(O)H group, [G-(C(O)H)] = 3.58 × 10-3, has been obtained. This group reactivity factor allows the rate coefficients to be estimated for the reaction of unsaturated aldehydes with NO3 radicals. The results of this study confirm that the reaction of unsaturated aldehydes with Cl atoms is very fast and that the structure of the compound has little influence, with the influence of the structure being more marked in the case of the OH radical reaction and relatively large for the NO3 reaction. The results are consistent with a mechanism in which the first stage is addition of an atom or radical to the double bond of E,E-2,4-hexadienal as the main reaction channel and, to a minor extent, the abstraction of aldehydic hydrogen. These are the first data reported for the atmospheric reactions of this compound and this study therefore contributes to the database of rate coefficients for atmospheric reactions.

  17. Reaction of carbon tetrachloride with methane in a non-equilibrium plasma at atmospheric pressure, and characterisation of the polymer thus formed

    Energy Technology Data Exchange (ETDEWEB)

    Gaikwad, Vaibhav [Process Safety and Environment Protection Research Group, School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); Kennedy, Eric, E-mail: Eric.Kennedy@newcastle.edu.au [Process Safety and Environment Protection Research Group, School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); Mackie, John [Process Safety and Environment Protection Research Group, School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); Holdsworth, Clovia [Centre for Organic Electronics, Chemistry Building, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308 (Australia); Molloy, Scott; Kundu, Sazal; Stockenhuber, Michael [Process Safety and Environment Protection Research Group, School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); Dlugogorski, Bogdan [School of Engineering and Information Technology, Murdoch University, Murdoch, WA 6150 (Australia)

    2014-09-15

    Highlights: • CCl{sub 4} remediation using non-equilibrium plasma and non-oxidative conditions is proposed. • The reaction mechanism relies on experimental data and quantum chemical analysis. • Comprehensive mass balance for the reaction is provided. • CCl{sub 4} is converted to an environmentally benign and potentially useful polymer. • Characterisation of the polymer structure based on NMR and FTIR analyses is presented. - Abstract: In this paper we focus on the development of a methodology for treatment of carbon tetrachloride utilising a non-equilibrium plasma operating at atmospheric pressure, which is not singularly aimed at destroying carbon tetrachloride but rather at converting it to a non-hazardous, potentially valuable commodity. This method encompasses the reaction of carbon tetrachloride and methane, with argon as a carrier gas, in a quartz dielectric barrier discharge reactor. The reaction is performed under non-oxidative conditions. Possible pathways for formation of major products based on experimental results and supported by quantum chemical calculations are outlined in the paper. We elucidate important parameters such as carbon tetrachloride conversion, product distribution, mass balance and characterise the chlorinated polymer formed in the process.

  18. Cold Atmospheric Plasma: methods of production and application in dentistry and oncology

    OpenAIRE

    Hoffmann, Clotilde; Berganza, Carlos; Zhang, John

    2013-01-01

    Cold Atmospheric Plasma is an ionized gas that has recently been extensively studied by researchers as a possible therapy in dentistry and oncology. Several different gases can be used to produce Cold Atmospheric Plasma such as Helium, Argon, Nitrogen, Heliox, and air. There are many methods of production by which cold atmospheric plasma is created. Each unique method can be used in different biomedical areas. In dentistry, researchers have mostly investigated the antimicrobial effects produc...

  19. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV – gas phase reactions of organic halogen species

    Directory of Open Access Journals (Sweden)

    R. Atkinson

    2008-08-01

    Full Text Available This article, the fourth in the series, presents kinetic and photochemical data sheets evaluated by the IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. It covers the gas phase and photochemical reactions of organic halogen species, which were last published in 1997, and were updated on the IUPAC website in 2006/07. The article consists of a summary sheet, containing the recommended kinetic parameters for the evaluated reactions, and four appendices containing the data sheets, which provide information upon which the recommendations are made.

  20. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species

    Directory of Open Access Journals (Sweden)

    R. Atkinson

    2006-01-01

    Full Text Available This article, the second in the series, presents kinetic and photochemical data evaluated by the IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. It covers the gas phase and photochemical reactions of Organic species, which were last published in 1999, and were updated on the IUPAC website in late 2002, and subsequently during the preparation of this article. The article consists of a summary table of the recommended rate coefficients, containing the recommended kinetic parameters for the evaluated reactions, and eight appendices containing the data sheets, which provide information upon which the recommendations are made.

  1. Electrochemical device for converting carbon dioxide to a reaction product

    Energy Technology Data Exchange (ETDEWEB)

    Masel, Richard I.; Chen, Qingmei; Liu, Zengcai; Kutz, Robert

    2016-11-01

    An electrochemical device converts carbon dioxide to a reaction product. The device includes an anode and a cathode, each comprising a quantity of catalyst. The anode and cathode each has reactant introduced thereto. A polymer electrolyte membrane is interposed between the anode and the cathode. At least a portion of the cathode catalyst is directly exposed to gaseous carbon dioxide during electrolysis. The average current density at the membrane is at least 20 mA/cm.sup.2, measured as the area of the cathode gas diffusion layer that is covered by catalyst, and CO selectivity is at least 50% at a cell potential of 3.0 V. In some embodiments, the polymer electrolyte membrane comprises a polymer in which a constituent monomer is (p-vinylbenzyl)-R, where R is selected from the group consisting of imidazoliums, pyridiniums and phosphoniums. In some embodiments, the polymer electrolyte membrane is a Helper Membrane comprising a polymer containing an imidazolium ligand, a pyridinium ligand, or a phosphonium ligand.

  2. Plant Glutathione Biosynthesis: Diversity in Biochemical Regulation and Reaction Products

    Directory of Open Access Journals (Sweden)

    Ashley eGalant

    2011-09-01

    Full Text Available In plants, exposure to temperature extremes, heavy metal-contaminated soils, drought, air pollutants, and pathogens results in the generation of reactive oxygen species that alter the intracellular redox environment, which in turn influences signaling pathways and cell fate. As part of their response to these stresses, plants produce glutathione. Glutathione acts as an antioxidant by quenching reactive oxygen species, and is involved in the ascorbate-glutathione cycle that eliminates damaging peroxides. Plants also use glutathione for the detoxification of xenobiotics, herbicides, air pollutants (sulfur dioxide and ozone, and toxic heavy metals. Two enzymes catalyze glutathione synthesis: glutamate-cysteine ligase (GCL, and glutathione synthetase (GS. Glutathione is a ubiquitous protective compound in plants, but the structural and functional details of the proteins that synthesize it, as well as the potential biochemical mechanisms of their regulation, have only begun to be explored. As discussed here, the core reactions of glutathione synthesis are conserved across various organisms, but plants have diversified both the regulatory mechanisms that control its synthesis and the range of products derived from this pathway. Understanding the molecular basis of glutathione biosynthesis and its regulation will expand our knowledge of this component in the plant stress response network.

  3. Plant glutathione biosynthesis: diversity in biochemical regulation and reaction products.

    Science.gov (United States)

    Galant, Ashley; Preuss, Mary L; Cameron, Jeffrey C; Jez, Joseph M

    2011-01-01

    In plants, exposure to temperature extremes, heavy metal-contaminated soils, drought, air pollutants, and pathogens results in the generation of reactive oxygen species that alter the intracellular redox environment, which in turn influences signaling pathways and cell fate. As part of their response to these stresses, plants produce glutathione. Glutathione acts as an anti-oxidant by quenching reactive oxygen species, and is involved in the ascorbate-glutathione cycle that eliminates damaging peroxides. Plants also use glutathione for the detoxification of xenobiotics, herbicides, air pollutants (sulfur dioxide and ozone), and toxic heavy metals. Two enzymes catalyze glutathione synthesis: glutamate-cysteine ligase, and glutathione synthetase. Glutathione is a ubiquitous protective compound in plants, but the structural and functional details of the proteins that synthesize it, as well as the potential biochemical mechanisms of their regulation, have only begun to be explored. As discussed here, the core reactions of glutathione synthesis are conserved across various organisms, but plants have diversified both the regulatory mechanisms that control its synthesis and the range of products derived from this pathway. Understanding the molecular basis of glutathione biosynthesis and its regulation will expand our knowledge of this component in the plant stress response network.

  4. KRATTA, a versatile triple telescope array for charged reaction products

    CERN Document Server

    Łukasik, J; Budzanowski, A; Czech, B; Skwirczyńska, I; Brzychczyk, J; Adamczyk, M; Kupny, S; Lasko, P; Sosin, Z; Wieloch, A; Kiš, M; Leifels, Y; Trautmann, W

    2013-01-01

    A new detection system KRATTA, Krak\\'ow Triple Telescope Array, is presented. This versatile, low threshold, broad energy range system has been built to measure the energy, emission angle, and isotopic composition of light charged reaction products. It consists of 38 independent modules which can be arranged in an arbitrary configuration. A single module, covering actively about 4.5 msr of the solid angle at the optimal distance of 40 cm from the target, consists of three identical, 0.500 mm thick, large area photodiodes, used also for direct detection, and of two CsI(1500 ppm Tl) crystals of 2.5 and 12.5 cm length, respectively. All the signals are digitally processed. The lower identification threshold, due to the thickness of the first photodiode, has been reduced to about 2.5 MeV for protons (~0.065 mm of Si equivalent) by applying a pulse shape analysis. The pulse shape analysis allowed also to decompose the complex signals from the middle photodiode into their ionization and scintillation components and...

  5. An assessment of potential degradation products in the gas-phase reactions of alternative fluorocarbons in the troposphere

    Science.gov (United States)

    Niki, Hiromi

    1990-01-01

    Tropospheric chemical transformations of alternative hydrofluorocarbons (HCF's) and hydrochlorofluorocarbons (HCFC's) are governed by hydroxyl radical initiated oxidation processes, which are likely to be analogous to those known for alkanes and chloroalkanes. A schematic diagram is used to illustrate plausible reaction mechanisms for their atmospheric degradation, where R, R', and R'' denote the F- and/or Cl-substituted alkyl groups derived from HCF's and HCFC's subsequent th the initial H atom abstraction by HO radicals. At present, virtually no kinetic data exist for the majority of these reactions, particularly for those involving RO. Potential degradation intermediates and final products include a large variety of fluorine- and/or chlorine-containing carbonyls, acids, peroxy acids, alcohols, hydrogen peroxides, nitrates and peroxy nitrates, as summarized in the attached table. Probably atmospheric lifetimes of these compounds were also estimated. For some carbonyl and nitrate products shown in this table, there seem to be no significant gas-phase removal mechanisms. Further chemical kinetics and photochemical data are needed to quantitatively assess the atmospheric fate of HCF's and HCFC's, and of the degradation products postulated in this report.

  6. Theoretical studies on atmospheric chemistry of HFE-245mc and perfluoro-ethyl formate: Reaction with OH radicals, atmospheric fate of alkoxy radical and global warming potential

    Science.gov (United States)

    Lily, Makroni; Baidya, Bidisha; Chandra, Asit K.

    2017-02-01

    Theoretical studies have been performed on the kinetics, mechanism and thermochemistry of the hydrogen abstraction reactions of CF3CF2OCH3 (HFE-245mc) and CF3CF2OCHO with OH radical using DFT based M06-2X method. IRC calculation shows that both hydrogen abstraction reactions proceed via weakly bound hydrogen-bonded complex preceding to the formation of transition state. The rate coefficients calculated by canonical transition state theory along with Eckart's tunnelling correction at 298 K: k1(CF3CF2OCH3 + OH) = 1.09 × 10-14 and k2(CF3CF2OCHO + OH) = 1.03 × 10-14 cm3 molecule-1 s-1 are in very good agreement with the experimental values. The atmospheric implications of CF3CF2OCH3 and CF3CF2OCHO are also discussed.

  7. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species

    OpenAIRE

    2006-01-01

    This article, the second in the series, presents kinetic and photochemical data evaluated by the IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. It covers the gas phase and photochemical reactions of Organic species, which were last published in 1999, and were updated on the IUPAC website in late 2002, and subsequently during the preparation of this article. The article consists of a summary table of the recommended rate coefficients, containing the...

  8. Direct estimation of the rate constant of the reaction ClO + HO2 → HOCl + O2 from SMILES atmospheric observations

    Directory of Open Access Journals (Sweden)

    K. Kuribayashi

    2013-05-01

    Full Text Available Diurnal variations of ClO, HO2, and HOCl were simultaneously observed by the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES between 12 October 2009 and 21 April 2010. These were the first global observations of the diurnal variation of HOCl in the upper atmosphere. A major reaction to produce HOCl is ClO + HO2 → HOCl + O2 (R1 in extra polar region. A model study suggested that in the mesosphere during night this is the only reaction influencing the amount of HOCl and ClO. The evaluation of the pure reaction period, where only reaction (R1 occurred in Cly chemical system, was performed by the consistency between two reaction rates, HOCl production and ClO loss, from SMILES observation data. It turned out that the SMILES data at the pressure level of 0.28 hPa (about 58 km during night (between local time 18:30 and 04:00 in the autumn mid-latitude region (20–40° February–April 2010 were suitable for the estimation of k1. The rate constant was obtained to be k1(245 K = 7.73 ± 0.26 (1σ [× 10–12 cm3/molecule s] from SMILES atmospheric observations. This result was consistent with that from both the laboratory experiment and the ab initio calculations for similar low-pressure conditions. The 1σ precision of k1 obtained was 2–10 times better than those of previous laboratory measurements.

  9. A COMBINED REACTION/PRODUCT RECOVERY PROCESS FOR THE CONTINUOUS PRODUCTION OF BIODIESEL

    Energy Technology Data Exchange (ETDEWEB)

    Birdwell, J.F., Jr.; McFarlane, J.; Schuh, D.L.; Tsouris, C; Day, J.N. (Nu-Energie, LLC); Hullette, J.N. (Nu-Energie, LLC)

    2009-09-01

    Oak Ridge National Laboratory (ORNL) and Nu-Energie, LLC entered into a Cooperative Research And Development Agreement (CRADA) for the purpose of demonstrating and deploying a novel technology for the continuous synthesis and recovery of biodiesel from the transesterification of triglycerides. The focus of the work was the demonstration of a combination Couette reactor and centrifugal separator - an invention of ORNL researchers - that facilitates both product synthesis and recovery from reaction byproducts in the same apparatus. At present, transesterification of triglycerides to produce biodiesel is performed in batch-type reactors with an excess of a chemical catalyst, which is required to achieve high reactant conversions in reasonable reaction times (e.g., 1 hour). The need for long reactor residence times requires use of large reactors and ancillary equipment (e.g., feed and product tankage), and correspondingly large facilities, in order to obtain the economy of scale required to make the process economically viable. Hence, the goal of this CRADA was to demonstrate successful, extended operation of a laboratory-scale reactor/separator prototype to process typical industrial reactant materials, and to design, fabricate, and test a production-scale unit for deployment at the biodiesel production site. Because of its ease of operation, rapid attainment of steady state, high mass transfer and phase separation efficiencies, and compact size, a centrifugal contactor was chosen for intensification of the biodiesel production process. The unit was modified to increase the residence time from a few seconds to minutes*. For this application, liquid phases were introduced into the reactor as separate streams. One was composed of the methanol and base catalyst and the other was the soy oil used in the experiments. Following reaction in the mixing zone, the immiscible glycerine and methyl ester products were separated in the high speed rotor and collected from separate

  10. Critical Evaluation of Chemical Reaction Rates and Collision Cross Sections of Importance in the Earth's Upper Atmosphere and the Atmospheres of Other Planets, Moons, and Comets

    Science.gov (United States)

    Huestis, David L.

    2006-01-01

    We propose to establish a long-term program of critical evaluation by domain experts of the rates and cross sections for atomic and molecular processes that are needed for understanding and modeling the atmospheres in the solar system. We envision data products resembling those of the JPL/NASA Panel for Data Evaluation and the similar efforts of the international combustion modeling community funded by US DoE and its European counterpart.

  11. Mechanistic studies of NO{sub x} reduction reactions under oxidative atmosphere on alumina supported 0.2wt% platinum catalyst treated under microwave. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Ringler, Sandrine; Girard, Paule; Maire, Gilbert; Garin, Francois [Laboratoire d`Etudes de la Reactivite Catalytique, des Surfaces et Interfaces (LERCSI), UMR 7515 du CNRS - ECPM, Universite Louis Pasteur - Institut Le Bel 4, rue Blaise Pascal 67, 070 Strasbourg Cedex (France); Hilaire, Stephanie; Roussy, Georges [Laboratoire de Spectroscopie et des Techniques Micro-Ondes LSTM, Universite de Nancy I, BP 239 54506, Vandoeuvre-les-Nancy Cedex (France)

    1999-03-08

    Reduction of nitrogen oxides under oxidative atmosphere is a very extensively studied reaction, but it is still very difficult to understand and to follow the various pathways of the reaction. Two alumina supported 0.2wt% platinum catalysts, reduced by hydrogen in an oven heated either by microwave irradiations or by Joule effect, with different metal dispersion of 60% and 90%, respectively, were studied. By the use of labelled compounds we were able to show the presence of an exchange reaction between 15N16O and 15N18O which occurred on both catalysts. It means that [15N16O18O] is the intermediate species. Such product, 15N18O, is less formed on the microwave catalyst `MW` than on the classical one `CT`. Experiments were performed at 22 and 550Torr, between 150C and 250C. Near atmospheric pressure, `MW` catalyst gives higher initial rates for 15N{sub 2} formation than the `CT` catalysts. At low temperature, the nitrogen selectivity is higher on `MW` catalyst than on the other catalyst. From the apparent activation energy values, one may deduce that several mechanisms are responsible for the 15N{sub 2} formation depending on the reaction temperature and the catalyst used. On the 0.2% Pt/Al{sub 2}O{sub 3} `CT` catalyst, an additive process between propene and 15NO takes place at low temperature giving nitroso and oxime intermediate species. At high temperature, a partial oxidation of propene occurs, giving a ketone, before the 15NO reduction to 15N{sub 2}. With this catalyst only two sites with different activity are involved. On the 0.2% Pt/Al{sub 2}O{sub 3} `MW` catalyst the reactants are seated on three sites with different activity. This particularity reinforce the proposals concerning the `MW` catalyst which may exhibit particular shapes for the aggregates having different crystallographic orientations. What is surprising, for this `MW` catalyst, is the fact that we already observed a specific reactivity under reductive atmosphere in reforming reactions and now

  12. Atmospheric heteroseneous reaction of acetone: Adsorption and desorption kinetics and mechanisms on SiO2 particles

    Institute of Scientific and Technical Information of China (English)

    JIE ChongYu; CHEN ZhongMing; WANG HongLi; HUA Wei; WANG CaiXia; LI Shuang

    2008-01-01

    Acetone plays an important role in photooxidation processes in the atmosphere. Up to date, little is known regarding the heterogeneous fate of acetone. In this study, the adsorption and desorption processes of acetone on SiO2 particles, which are the major constituent of mineral dust in the atmos-phere, have been investigated for the first time under the simulated atmospheric conditions, using in situ transmission Fourier transform infrared spectroscopy. It is found that acetone molecules are ad-sorbed on the surfaces of SiO2 particles by van der Waals forces and hydrogen bonding forces in a nonreactive and reversible state. The rates of initial adsorption and initial desorption, initial uptake coefficients and adsorption concentrations at equilibrium have been determined at different relative humidity. The presence of water vapor cannot result in the formation of new substances, but can de-crease the adsorption ability by consuming or overlapping the isolated OH groups on the surfaces of SiO2 particles. In the desorption process, a considerable amount of acetone molecules will remain on SiO2 particles in dry air, whereas acetone molecules are almost completely desorbed at a high relative humidity. In order to evaluate the role of heterogeneous reactions of acetone and other carbonyl compounds in the atmosphere, a new model fitting the atmospheric conditions is needed.

  13. Accessing reaction rate constants in on-column reaction chromatography: an extended unified equation for reaction educts and products with different response factors.

    Science.gov (United States)

    Trapp, Oliver; Bremer, Sabrina; Weber, Sven K

    2009-11-01

    An extension of the unified equation of chromatography to directly access reaction rate constants k(1) of first-order reaction in on-column chromatography is presented. This extended equation reflects different response factors in the detection of the reaction educt and product which arise from structural changes by elimination or addition, e.g., under pseudo-first-order reaction conditions. The reaction rate constants k(1) and Gibbs activation energies DeltaG(double dagger) of first-order reactions taking place in a chromatographic system can be directly calculated from the chromatographic parameters, i.e., retention times of the educt E and product P (t(R)(A) and t(R)(B)), peak widths at half height (w(A) and w(B)), the relative plateau height (h(p)) of the conversion profile, and the individual response factors f(A) and f(B). The evaluation of on-column reaction gas chromatographic experiments is exemplified by the evaluation of elution profiles obtained by ring-closing metathesis reaction of N,N-diallytrifluoroacetamide in presence of Grubbs second-generation catalyst, dissolved in polydimethylsiloxane (GE SE 30).

  14. Propellant and Terrestrial Fuel Production from Atmospheric Carbon Dioxide Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Build and test in a relevant environment a Mars propellant production plant of an appropriate scale for an initial demonstration on Mars. It will produce sufficient...

  15. Atmospheric hydroxyl radical production from electronically excited NO2 and H2O.

    Science.gov (United States)

    Li, Shuping; Matthews, Jamie; Sinha, Amitabha

    2008-03-21

    Hydroxyl radicals are often called the "detergent" of the atmosphere because they control the atmosphere's capacity to cleanse itself of pollutants. Here, we show that the reaction of electronically excited nitrogen dioxide with water can be an important source of tropospheric hydroxyl radicals. Using measured rate data, along with available solar flux and atmospheric mixing ratios, we demonstrate that the tropospheric hydroxyl contribution from this source can be a substantial fraction (50%) of that from the traditional O(1D) + H2O reaction in the boundary-layer region for high solar zenith angles. Inclusion of this chemistry is expected to affect modeling of urban air quality, where the interactions of sunlight with emitted NOx species, volatile organic compounds, and hydroxyl radicals are central in determining the rate of ozone formation.

  16. Quantum dynamical study of the O({sup 1}D) + CH{sub 4} → CH{sub 3} + OH atmospheric reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ben Bouchrit, R.; Ben Abdallah, D.; Jaidane, N. [Laboratoire de Physique Atomique et Moléculaire et Applications, Département de Physique, Faculté des Sciences, Université Tunis-El Manar, 1060 Tunis (Tunisia); Jorfi, M. [Institut de Chimie des Milieux et des Matériaux de Poitiers, UMR CNRS 6503, Université de Poitiers, 86022 Poitiers Cedex (France); González, M. [Departament de Química Física and IQTC, Universitat de Barcelona, C/Martí i Franqués 1, 08028 Barcelona (Spain); Bussery-Honvault, B. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université de Bourgogne, 21078 Dijon Cedex (France); Honvault, P., E-mail: pascal.honvault@univ-fcomte.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université de Bourgogne, 21078 Dijon Cedex (France); UFR Sciences et Techniques, Université de Franche-Comté, 25030 Besançon Cedex (France)

    2014-06-28

    Time independent quantum mechanical (TIQM) scattering calculations have been carried out for the O({sup 1}D) + CH{sub 4}(X{sup 1}A{sub 1}) → CH{sub 3}(X{sup 2}A{sub 2}″) + OH(X{sup 2}Π) atmospheric reaction, using an ab initio ground potential energy surface where the CH{sub 3} group is described as a pseudo-atom. Total and state-to-state reaction probabilities for a total angular momentum J = 0 have been determined for collision energies up to 0.5 eV. The vibrational and rotational state OH product distributions show no specific behavior. The rate coefficient has been calculated by means of the J-shifting approach in the 10–500 K temperature range and slightly depends on T at ordinary temperatures (as expected for a barrierless reaction). Quantum effects do not influence the vibrational populations and rate coefficient in an important way, and a rather good agreement has been found between the TIQM results and the quasiclassical trajectory and experimental ones. This reinforces somewhat the reliability of the pseudo-triatomic approach under the reaction conditions explored.

  17. ON THE SYNTHESIS OF MOLYBDENUM CARBIDE WITH COBALT ADDITION VIA GAS-SOLID REACTIONS IN A CH4/H2 ATMOSPHERE

    Directory of Open Access Journals (Sweden)

    C. P. B. Araujo

    Full Text Available Abstract Due to ever more severe environmental regulations regarding SOx, NOx and other pollutants' emissions, there has been an interest in developing new and improved catalysts for hydroprocessing reactions. Mo2C has been reported to display good selectivity and activity for those reactions, especially for HDS. Addition of another metal to the carbide structure may improve catalytic properties. Mo2C with low cobalt addition (2.5 and 5% was obtained via gas-solid reaction in a fixed bed reactor with CH4 (5%/H2 atmosphere. XRD and TG/DTA analysis of the precursors were carried out in order to understand its mass loss profile, doping metal presence and phase distributions. CoMoO4 as well as MoO3 were identified after calcining doped precursors at 600 °C/180min. SEM, XRD, XRF, TOC, BET and laser granulometric analysis of the reaction products were also performed. Compositions verified by XRF and theoretical values were compatible. At 700 °C both carbide (Mo2C and oxide (MoO2 phases are present, as identified in XRD analysis and observed by SEM. At 750 °C only single phase Mo2C was verified by XRD, indicating Co dispersion on the carbide matrix. Morphology at this temperature is compatible with pure Mo2C, though XRF indicates Co presence on the material.

  18. Thermochemical hydrogen production via a cycle using barium and sulfur - Reaction between barium sulfide and water

    Science.gov (United States)

    Ota, K.; Conger, W. L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653-866 C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. An expression was derived for the rate of hydrogen formation.

  19. Laser ion source for multi-nucleon transfer reaction products

    Science.gov (United States)

    Hirayama, Y.; Watanabe, Y. X.; Imai, N.; Ishiyama, H.; Jeong, S. C.; Miyatake, H.; Oyaizu, M.; Kimura, S.; Mukai, M.; Kim, Y. H.; Sonoda, T.; Wada, M.; Huyse, M.; Kudryavtsev, Yu.; Van Duppen, P.

    2015-06-01

    We have developed a laser ion source for the target-like fragments (TLFs) produced in multi-nucleon transfer (MNT) reactions. The operation principle of the source is based on the in-gas laser ionization and spectroscopy (IGLIS) approach. In the source TLFs are thermalized and neutralized in high pressure and high purity argon gas, and are extracted after being selectively re-ionized in a multi-step laser resonance ionization process. The laser ion source has been implemented at the KEK Isotope Separation System (KISS) for β-decay spectroscopy of neutron-rich isotopes with N = 126 of nuclear astrophysical interest. The simulations of gas flow and ion-beam optics have been performed to optimize the gas cell for efficient thermalization and fast transporting the TLFs, and the mass-separator for efficient transport with high mass-resolving power, respectively. To confirm the performances expected at the design stage, off-line experiments have been performed by using 56Fe atoms evaporated from a filament in the gas cell. The gas-transport time of 230 ms in the argon cell and the measured KISS mass-resolving power of 900 are consistent with the designed values. The high purity of the gas-cell system, which is extremely important for efficient and highly-selective production of laser ions, was achieved and confirmed from the mass distribution of the extracted ions. After the off-line tests, on-line experiments were conducted by directly injecting energetic 56Fe beam into the gas cell. After thermalization of the injected 56Fe beam, laser-produced singly-charged 56Fe+ ions were extracted. The extraction efficiency and selectivity of the gas cell in the presence of plasma induced by 56Fe beam injection as well as the time profile of the extracted ions were investigated; extraction efficiency of 0.25%, a beam purity of >99% and an extraction time of 270 ms. It has been confirmed that the performance of the KISS laser ion source is satisfactory to start the measurements of

  20. Assessment of Density Functional Theory in Predicting Structures and Free Energies of Reaction of Atmospheric Prenucleation Clusters.

    Science.gov (United States)

    Elm, Jonas; Bilde, Merete; Mikkelsen, Kurt V

    2012-06-12

    This work assesses different computational strategies for predicting structures and Gibb's free energies of reaction of atmospheric prenucleation clusters. The performance of 22 Density Functional Theory functionals in predicting equilibrium structures of molecules and water prenucleation clusters of atmospheric relevance is evaluated against experimental data using a test set of eight molecules and prenucleation clusters: SO2, H2SO4, CO2·H2O, CS2·H2O, OCS·H2O, SO2·H2O, SO3·H2O, and H2SO4·H2O. Furthermore, the functionals are tested and compared for their ability to predict the free energy of reaction for the formation of five benchmark atmospheric prenucleation clusters: H2SO4·H2O, H2SO4·(H2O)2, H2SO4·NH3, HSO4(-)·H2O, and HSO4(-)·(H2O)2. The performance is evaluated against experimental data, coupled cluster, and complete basis set extrapolation procedure methods. Our investigation shows that the utilization of the M06-2X functional with the 6-311++G(3df,3pd) basis set represents an improved approach compared to the conventionally used PW91 functional, yielding mean absolute errors of 0.48 kcal/mol and maximum errors of 0.67 kcal/mol compared to experimental results.

  1. Demonstration of correlations between the 8 and 10 kHz atmospherics and the inflammatory reaction of rats after carrageenan injection

    Science.gov (United States)

    Ruhenstroth-Bauer, Gerhard; Rösing, Olga; Baumer, Hans; Sönning, Walter; Lehmacher, Walter

    1988-09-01

    Between the mean daily density of 28 kHz atmospherics and the onset of epileptic fits there is a highly significant correlation coefficient ( r) of 0.30; there is a negative coefficient of -0.20 between the fits and the mean daily density of 10 kHz atmospherics. The onset of heart infarction is correlated with 28 kHz atmospherics ( r=0.15). Furthermore, we have discovered that sudden deafness is also correlated with certain configurations of atmospherics. In this paper we report the following correlation coefficients between the inflammatory reaction of rats to a carrageenan injection (rci) into a hind paw and the mean daily pulse rate of atmospherics of the same day: r=0.49 for the 8 kHz atmospherics ( P<0.02) and r=0.44 for the 10 kHz atmospherics ( P<0.04). The correlations between rci reaction and other atmospherics (12 and 28 kHz) are smaller and not significant. By the method of multiple linear regression we found a multiple R=0.54 between rci reaction and the 8 and 10 kHz atmospherics (the regression function for the rci reaction is 0.15+0.004×8 kHz+0.002×10 kHz, P<0.05).

  2. Singlet oxygen production in the reaction of superoxide with organic peroxides.

    Science.gov (United States)

    MacManus-Spencer, Laura A; Edhlund, Betsy L; McNeill, Kristopher

    2006-01-20

    [reaction: see text] A selective chemiluminescent probe for singlet oxygen has been employed to detect and quantify singlet oxygen in the reactions of superoxide with organic peroxides. The production of singlet oxygen has been quantified in the reaction of superoxide with benzoyl peroxide (BP). No singlet oxygen was detected in the reactions of superoxide with cumyl peroxide, tert-butyl peroxide, or tert-butyl hydroperoxide. On the basis of these results and on the temperature dependence of the reaction, we proposed a mechanism for singlet oxygen formation in the reaction of superoxide with BP.

  3. Entropy production and efficiency analysis of the Bunsen reaction in the General Atomic sulfur-iodine thermochemical hydrogen production cycle

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.E.; Conger, W.L.

    1980-01-01

    An entropy production and efficiency analysis of the first reaction in the General Atomic sulfur-iodine thermochemical hydrogen production cycle has been carried out by simulating the reaction including the mixing of reactants and separation of the resulting phases. The reaction: 2H/sub 2/O(L) + SO/sub 2/(g) + (excess) I/sub 2/(g) = H/sub 2/SO/sub 4/ (sol)(Phase I) + 2 HI core (Phase II) was simulated at 388 K, which is slightly above the melting point of I/sup 2/. Analysis of only this reaction shows that the reaction should be run at 15 to 25% I/sub 2/ reacted and the greatest excess of H/sub 2/O which will produce two product phases. Actual operating conditions are however dependent on the total processing scheme. An entropy production and efficiency analysis along with economic factors for the entire process is necessary to obtain these conditions.

  4. 40 CFR 721.2625 - Reaction product of alkane-diol and epichlorohydrin.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of alkane-diol and epichlorohydrin. 721.2625 Section 721.2625 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.2625 Reaction product of alkane-diol and epichlorohydrin. (a)...

  5. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle...

  6. Cold Atmospheric Plasma: methods of production and application in dentistry and oncology.

    Science.gov (United States)

    Hoffmann, Clotilde; Berganza, Carlos; Zhang, John

    2013-01-01

    Cold Atmospheric Plasma is an ionized gas that has recently been extensively studied by researchers as a possible therapy in dentistry and oncology. Several different gases can be used to produce Cold Atmospheric Plasma such as Helium, Argon, Nitrogen, Heliox, and air. There are many methods of production by which cold atmospheric plasma is created. Each unique method can be used in different biomedical areas. In dentistry, researchers have mostly investigated the antimicrobial effects produced by plasma as a means to remove dental biofilms and eradicate oral pathogens. It has been shown that reactive oxidative species, charged particles, and UV photons play the main role. Cold Atmospheric Plasma has also found a minor, but important role in tooth whitening and composite restoration. Furthermore, it has been demonstrated that Cold Atmospheric Plasma induces apoptosis, necrosis, cell detachment, and senescence by disrupting the S phase of cell replication in tumor cells. This unique finding opens up its potential therapy in oncology.

  7. Isoprene oxidation products are a significant atmospheric aerosol component

    Directory of Open Access Journals (Sweden)

    S. N. Matsunaga

    2005-11-01

    Full Text Available Glycolaldehyde, hydroxyacetone, and methylglyoxal, which are known isoprene oxidation products, were collected during two field experiments using an annular denuder sampling system and compared to a model calculation. The compounds in gas and aerosol phases were determined during both experiments. Global variation and distribution of the aerosol mass contribution of the compounds were predicted using the measurements, the box model results, and gas-phase concentrations and humidity simulated by a global 3-D model. Here we report the estimates of a global annual contribution of 35 (10–120 Tg of aerosol organic matter from isoprene.

  8. Western Pacific atmospheric nutrient deposition fluxes, their impact on surface ocean productivity

    Science.gov (United States)

    Martino, M.; Hamilton, D.; Baker, A. R.; Jickells, T. D.; Bromley, T.; Nojiri, Y.; Quack, B.; Boyd, P. W.

    2014-07-01

    The atmospheric deposition of both macronutrients and micronutrients plays an important role in driving primary productivity, particularly in the low-latitude ocean. We report aerosol major ion measurements for five ship-based sampling campaigns in the western Pacific from ~25°N to 20°S and compare the results with those from Atlantic meridional transects (~50°N to 50°S) with aerosols collected and analyzed in the same laboratory, allowing full incomparability. We discuss sources of the main nutrient species (nitrogen (N), phosphorus (P), and iron (Fe)) in the aerosols and their stoichiometry. Striking north-south gradients are evident over both basins with the Northern Hemisphere more impacted by terrestrial dust sources and anthropogenic emissions and the North Atlantic apparently more impacted than the North Pacific. We estimate the atmospheric supply rates of these nutrients and the potential impact of the atmospheric deposition on the tropical western Pacific. Our results suggest that the atmospheric deposition is P deficient relative to the needs of the resident phytoplankton. These findings suggest that atmospheric supply of N, Fe, and P increases primary productivity utilizing some of the residual excess phosphorus (P*) in the surface waters to compensate for aerosol P deficiency. Regional primary productivity is further enhanced via the stimulation of nitrogen fixation fuelled by the residual atmospheric iron and P*. Our stoichiometric calculations reveal that a P* of 0.1 µmol L-1 can offset the P deficiency in atmospheric supply for many months. This study suggests that atmospheric deposition may sustain ~10% of primary production in both the western tropical Pacific.

  9. Protonation Reaction of Benzonitrile Radical Anion and Absorption of Product

    DEFF Research Database (Denmark)

    Holcman, Jerzy; Sehested, Knud

    1975-01-01

    The rate constant for the protonation of benzonitrile radical anions formed in pulse radiolysis of aqueous benzonitrile solutions is (3.5 ± 0.5)× 1010 dm3 mol–1 s–1. A new 270 nm absorption band is attributed to the protonated benzonitrile anion. The pK of the protonation reaction is determined...

  10. Secondary proton production at small atmospheric depths as a function of the geomagnetic cut-off

    Energy Technology Data Exchange (ETDEWEB)

    Papini, P. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Grimani, C. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); Stephens, S.A. [Tata Institute of Fundamental Research, Bombay (International Commission on Radiation Units and Measurements)

    1995-09-01

    A detailed calculation of the energy spectrum of secondary protons in the atmosphere is being carried out in the energy range 20 MeV - 40 GeV. In this calculation, it is taken into account all processes leading to the production of secondary protons as a function of the atmospheric depth has been calculated using all relevant energy loss processes. In this paper, it is examine the effect of the geomagnetic cut-off on the spectral shape of secondary protons specially at energies below the geomagnetic cut-off for small atmospheric depths.

  11. Section i: Thermodynamic Properties of Hydrocarbon Radicals, Peroxy Hydrocarbon and Peroxy Chlorohydrocarbon Molecules and Radicals. Section II. Kinetics and Reaction Mechanisms For: (1) Chloroform Pyrolysis and Oxidation; (2) Benzene and Toluene Oxidation Under Atmospheric Conditions.

    Science.gov (United States)

    Lay, Tsan-Horng

    1995-01-01

    Alkyl radicals are important active intermediates in gas phase photochemistry and combustion reaction systems. With the exception of a limited number of the most elementary radicals, accurate thermodynamic properties of alkyl radicals are either not available or only rough estimations exist. An H atom Bond Increment approach is developed and a data base is derived, for accurately estimating thermodynamic properties (Delta H_{f }^circ298, S ^circ298 and Cp(T)) for generic classes of hydrocarbon radical species. Reactions of alkyl radicals with molecular oxygen are one of the major reaction paths for these radicals in atmospheric photochemistry, oxidation of hydrocarbon liquids and combustion process. Alkyl hydroperoxides are subsequently formed through the alkyl peroxy radicals reactions with varied chemical species present in the reaction system. Thermodynamic properties of the alkyl hydroperoxides and related radicals are therefore frequently required in gas phase modeling and kinetic studies on these systems. The thermodynamic properties of alkyl hydroperoxides, alkyl peroxy radicals and hydroperoxyl-1-ethyl radicals including the species with fluorine and chlorine substituents on the alpha-carbon are evaluated using molecular orbital calculations. Chloroform is used as a model chlorocarbon system with high Cl/H ratio to investigate thermal decomposition processes of chlorocarbons in oxidative and pyrolytic reaction environments. A detailed reaction mechanism is developed to describe the important features of products and reagent loss and is shown to predict the experimental data well. Reaction pathways and rate constants are developed for CCl _3, CCl_2 and rm C_2Cl_3 radical addition to O_2 and combination with O, OH HO_2 and ClO. The reversible addition reaction of OH radical with benzene to form the hydroxyl-2,4-cyclohexadienyl (benzene -OH) adduct and the subsequent reactions of this benzene -OH adduct with O_2 are important initial steps for the

  12. The Phase Behavior Effect on the Reaction Engineering of Transesterification Reactions and Reactor Design for Continuous Biodiesel Production

    Science.gov (United States)

    Csernica, Stephen N.

    transitions from two phases to a single phase, or pseudo-single phase. The transition to a single phase or pseudo-single phase is a function of the methanol content. Regardless, the maximum observed reaction rate occurs at the point of the phase transition, when the concentration of triglycerides in the methanol phase is largest. The phase transition occurs due to the accumulation of the primary product, biodiesel methyl esters. Through various experiments, it was determined that the rate of the triglyceride mass transfer into the methanol phase, as well as the solubility of triglycerides in methanol, increases with increasing methyl ester concentration. Thus, there exists some critical methyl ester concentration which favors the formation of a single or pseudo-single phase system. The effect of the by-product glycerol on the reaction kinetics was also investigated. It was determined that at low methanol to triglyceride molar ratios, glycerol acts to inhibit the reaction rate and limit the overall triglyceride conversion. This occurs because glycerol accumulates in the methanol phase, i.e. the primary reaction volume. When glycerol is at relatively high concentrations within the methanol phase, triglycerides become excluded from the reaction volume. This greatly reduces the reaction rate and limits the overall conversion. As the concentration of methanol is increased, glycerol becomes diluted and the inhibitory effects become dampened. Assuming pseudo-homogeneous phase behavior, a simple kinetic model incorporating the inhibitory effects of glycerol was proposed based on batch reactor data. The kinetic model was primarily used to theoretically compare the performance of different types of continuous flow reactors for continuous biodiesel production. It was determined that the inhibitory effects of glycerol result in the requirement of very large reactor volumes when using continuous stirred tank reactors (CSTR). The reactor volume can be greatly reduced using tubular style

  13. Atmospheric chemistry of CF3COOH. Kinetics of the reaction with OH radicals

    DEFF Research Database (Denmark)

    Møgelberg, T.E.; Nielsen, O.J.; Sehested, J.;

    1994-01-01

    Two different experimental techniques were used to study the kinetics of the reaction of OH radicals with trifluoroacetic acid, CF3COOH. Using a pulse radiolysis absolute rate technique, rate constants at 315 and 348 K were determined to be (1.6 +/- 0.4) x 10(-13) and (1.5 +/- 0.2) x 10(-13) cm3...

  14. Complex signal amplitude analysis for complete fusion nuclear reaction products

    CERN Document Server

    Tsyganov, Yu S

    2015-01-01

    A complex analysis has been performed on the energy amplitude signals corresponding to events of Z=117 element measured in the 249Bk+48Ca complete fusion nuclear reaction. These signals were detected with PIPS position sensitive detector. The significant values of pulse height defect both for recoils (ER) and fission fragments (FF) were measured. Comparison with the computer simulations and empirical formulae has been performed both for ER and FF signals.

  15. Effect of an allophanic soil on humification reactions between catechol and glycine: Spectroscopic investigations of reaction products

    Science.gov (United States)

    Fukushima, Masami; Miura, Akitaka; Sasaki, Masahide; Izumo, Kenji

    2009-01-01

    Adduction of amino acids to phenols is a possible humification reaction pathway [F.J. Stevenson, Humus Chemistry: Genesis, Composition, Reaction, second ed., Wiley, New York, 1994, pp. 188-211; M.C. Wang, P.M. Huang, Sci. Total Environ. 62 (1987) 435; M.C. Wang, P.M. Huang, Soil Sci. Soc. Am. J. 55 (1991) 1156; M.C. Wang, P.M. Huang, Geoderma 112 (2003) 31; M.C. Wang, P.M. Huang, Geoderma 124 (2005) 415]. To elucidate the reaction kinetics and products of abiotic humification, the effects of an allophanic soil on the adduction of amino acids to phenols were investigated using catechol (CT) and glycine (Gly) as a model phenol and amino acid, respectively. An aqueous solution containing CT and Gly (pH 7.0) in the presence of allophanic soil was incubated for 2 weeks, and the kinetics of the humification reactions were monitored by analysis of absorptivity at 600 nm ( E600). A mixture of CT and Gly in the absence of allophanic soil was used as a control. The E600 value increased markedly in the presence of allophanic soil. In addition, unreacted CT was detected in the control reaction mixture, but not in the allophane-containing reaction mixture. Under the sterilized conditions, absorbance at 600 nm for the control reaction mixture was significantly smaller than that for the allophanic soil-containing reaction mixture, which indicates there was no microbial participation during incubation. These results indicate that the allophanic soil effectively facilitated humification reactions between CT and Gly. The reaction mixtures were acidified and humic-like acid (HLA) was isolated as a precipitate. The elemental composition, acidic functional group contents, molecular weight, FT-IR, solid-state CP-MAS 13C NMR, and 1H NMR spectra of the purified HLAs were analyzed. The results of these analyses indicate that the nitrogen atom of Gly binds to the aromatic carbon of CT in the HLA products.

  16. Origin of Nanobubbles Electrochemically Formed in a Magnetic Field: Ionic Vacancy Production in Electrode Reaction

    Science.gov (United States)

    Aogaki, Ryoichi; Sugiyama, Atsushi; Miura, Makoto; Oshikiri, Yoshinobu; Miura, Miki; Morimoto, Ryoichi; Takagi, Satoshi; Mogi, Iwao; Yamauchi, Yusuke

    2016-07-01

    As a process complementing conventional electrode reactions, ionic vacancy production in electrode reaction was theoretically examined; whether reaction is anodic or cathodic, based on the momentum conservation by Newton’s second law of motion, electron transfer necessarily leads to the emission of original embryo vacancies, and dielectric polarization endows to them the same electric charge as trans- ferred in the reaction. Then, the emitted embryo vacancies immediately receive the thermal relaxation of solution particles to develop steady-state vacancies. After the vacancy production, nanobubbles are created by the collision of the vacancies in a vertical magnetic field.

  17. Study on the atmospheric photochemical reaction of CF3 radicals using ultraviolet photoelectron and photoionization mass spectrometer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A study of the atmospheric photochemical reaction of CF3 radical with CO and O2 was performed by using a homemade ultraviolet photoelectron spectrometer-photoionization mass spectrometer (PES- PIMS). The electronic structures and mechanism of ionization and dissociation of CF3OC(O)OOC(O)- OCF3 were investigated. It was indicated that the two bands on the photoelectron spectrum of CF3OC(O)OOC(O)OCF3 are the result of ionization of an electron from a lone pair of oxygen and a fluo- rine lone pair of CF3 group. The outermost electrons reside in the oxygen lone pair. The experimental and theoretical first vertical ionization energy is 13.21 and 13.178 eV, respectively, with the PES and OVGF method. They are in good agreement. The photo ionization and dissociation processes were discussed with the help of theoretical calculations and PES-PIMS experiment. After ionization, the parent ions prefer the dissociation of the C-O bond and giving the fragments CF3OCO+ and CF3+. It demonstrated that the ultraviolet photoelectron and photoionization mass spectrometer could be ap- plied widely in the study of atmospheric photochemical reaction.

  18. Thermochemical hydrogen production via a cycle using barium and sulfur: reaction between barium sulfide and water

    Energy Technology Data Exchange (ETDEWEB)

    Ota, K.; Conger, W.L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653 to 866/sup 0/C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. The rate of formation of hydrogen can be expressed as: RH2 = 1.07 x 10/sup -2/ exp (-3180/RT) (mol H/sub 2//mol BaS s). Hydrogen sulfide was produced during the initial period of reaction and the quantity of hydrogen sulfide formed during this period decreased as the temperature of reaction was increased.

  19. Atmospheric isoprene ozonolysis: impacts of stabilized Criegee intermediate reactions with SO2, H2O and dimethyl sulfide

    Directory of Open Access Journals (Sweden)

    M. J. Newland

    2015-03-01

    Full Text Available Isoprene is the dominant global biogenic volatile organic compound (VOC emission. Reactions of isoprene with ozone are known to form stabilised Criegee intermediates (SCIs, which have recently been shown to be potentially important oxidants for SO2 and NO2 in the atmosphere; however the significance of this chemistry for SO2 processing (affecting sulfate aerosol and NO2 processing (affecting NOx levels depends critically upon the fate of the SCI with respect to reaction with water and decomposition. Here, we have investigated the removal of SO2 in the presence of isoprene and ozone, as a function of humidity, under atmospheric boundary layer conditions. The SO2 removal displays a clear dependence on relative humidity, confirming a significant reaction for isoprene derived SCI with H2O. Under excess SO2 conditions, the total isoprene ozonolysis SCI yield was calculated to be 0.56 (±0.03. The observed SO2 removal kinetics are consistent with a relative rate constant, k(SCI + H2O/k(SCI + SO2, of 5.4 (±0.8 × 10−5 for isoprene derived SCI. The relative rate constant for k(SCI decomposition/k(SCI + SO2 is 8.4 (±5.0 × 1010 cm−3. Uncertainties are ±2σ and represent combined systematic and precision components. These kinetic parameters are based on the simplification that a single SCI species is formed in isoprene ozonolysis, an approximation which describes the results well across the full range of experimental conditions. Our data indicate that isoprene-derived SCIs are unlikely to make a substantial contribution to gas-phase SO2 oxidation in the troposphere. We also present results from an analogous set of experiments, which show a clear dependence of SO2 removal in the isoprene-ozone system as a function of dimethyl sulfide concentration. We propose that this behaviour arises from a rapid reaction between isoprene-derived SCI and DMS; the observed SO2 removal kinetics are consistent with a relative rate constant, k(SCI + DMS/k(SCI + SO2

  20. Atmospheric reactions of (H)- and (D)-fluoroalcohols with chlorine atoms.

    Science.gov (United States)

    Garzón, Andrés; Moral, Mónica; Notario, Alberto; Ceacero-Vega, Antonio A; Fernández-Gómez, Manuel; Albaladejo, José

    2010-02-01

    The reactions of Cl with a series of fluoroalcohols and deuterated fluoroalcohols, CF(3)CH(2)OH (k(4)), CF(3)CH(OH)CH(3) (k(5)), CF(3)CH(OH)CF(3) (k(6)), CF(3)CH(OD)CF(3) (k(7)) and CF(3)CD(OD)CF(3) (k(8)), are investigated as a function of temperature in the range of 268-378 K by laser photolysis-resonance fluorescence. To our knowledge, only the CF(3)CH(2)OH + Cl reaction has been previously studied from a kinetic point of view. The derived Arrhenius expressions obtained using our kinetic data are: k(4) = (1.79+/-0.17) x 10(-13) exp[(410+/-26)/T], k(5) = (1.20+/-0.11) x 10(-12) exp[(394+/-14)/T], k(6) = (2.32+/-0.18) x 10(-13) exp[-(740+/-12)/T], k(7) = (6.45+/-1.87) x 10(-13) exp[-(1136+/-94)/T] and k(8) = (4.19+/-1.09) x 10(-13) exp[-(1378+/-81)/T] (in units of cm(3) molecule(-1) s(-1) and where errors are +/-sigma). Moreover, a theoretical insight into the mechanisms of these reactions is pursued through ab initio Möller-Plesset second-order perturbation treatment calculations with the 6-311G** basis set. Optimized geometries are obtained for reagents, transition states and molecular complexes appearing along the different reaction pathways. Furthermore, molecular energies are calculated at the quadratic configuration interaction with single, double and triple excitations [QCISD(T)] level to obtain an estimation of the activation energies. Finally, the rate constants are calculated through transition-state theory using Wigner's transmission coefficient in order to include the tunnelling-effect corrections.

  1. Production of heavy actinides in incomplete fusion reactions

    Science.gov (United States)

    Antonenko, N. V.; Cherepanov, E. A.; Iljinov, A. S.; Mebel, M. V.

    1994-10-01

    We present preliminary results of calculations by the phenomenological model of the estimated yield of some heavy actinide isotopes. It is assumed that these isotopes are produced as a result of multinucleon transfers followed by neutrons and charged particle emission A.S. Iljinov and E.A. Cherepanov (1980). The yield P(sub Z, N)(E*) of primary excited actinides is found using the model of N.V. Antonenko and R.V. Jolos (1991). Absolute cross-sections for different binary reaction channels are obtained by summing the cross-sections for all subchannels with an appreciable yield according to J. Wilczynski et al. (1980).

  2. Atmospheric Photochemistry

    Science.gov (United States)

    Massey, Harrie; Potter, A. E.

    1961-01-01

    The upper atmosphere offers a vast photochemical laboratory free from solid surfaces, so all reactions take place in the gaseous phase. At 30 km altitude the pressure has fallen to about one-hundredth of that at ground level, and we shall, rather arbitrarily, regard the upper atmosphere as beginning at that height. By a little less than 100 km the pressure has fallen to 10(exp -3) mm Hg and is decreasing by a power of ten for every 15 km increase in altitude. Essentially we are concerned then with the photochemistry of a nitrogen-oxygen mixture under low-pressure conditions in which photo-ionization, as well as photodissociation, plays an important part. Account must also be taken of the presence of rare constituents, such as water vapour and its decomposition products, including particularly hydroxyl, oxides of carbon, methane and, strangely enough, sodium, lithium and calcium. Many curious and unfamiliar reactions occur in the upper atmosphere. Some of them are luminescent, causing the atmosphere to emit a dim light called the airglow. Others, between gaseous ions and neutral molecules, are almost a complete mystery at this time. Similar interesting phenomena must occur in other planetary atmospheres, and they might be predicted if sufficient chemical information were available.

  3. Production of metallic copper powder by autocatalytic reaction in suspension

    Directory of Open Access Journals (Sweden)

    João Guilherme Rocha Poço

    2006-06-01

    Full Text Available The production of metallic powder by precipitation from solution was studied in laboratory scale as an alternative to the conventionally adopted processes, based on the atomization of molten material, for producing metal powders with small particle size. The process is based on the precipitation of metals from aqueous solutions by reduction under controlled conditions. Results of laboratory scale experiments are presented for the production of copper particles from aqueous solutions of copper sulfate, using formaldehyde as reducing reactant, and EDTA as complexing agent. The effect of the presence of nuclei was studied. Metallic particles with average sizes in the range from about 0.3 µm to about 15 µm were obtained. In the process, large particles are formed mainly by aggregation of submicrometric particles, indicating that the particle size distribution of the product depends on the control of particle agglomeration rate.

  4. Reactions of 3-Formylchromone with Active Methylene and Methyl Compounds and Some Subsequent Reactions of the Resulting Condensation Products

    Directory of Open Access Journals (Sweden)

    M. Lácova

    2005-08-01

    Full Text Available This review presents a survey of the condensations of 3-formylchromone with various active methylene and methyl compounds, e.g. malonic or barbituric acid derivatives, five-membered heterocycles, etc. The utilisation of the condensation products for the synthesis of different heterocyclic systems, which is based on the ability of the γ-pyrone ring to be opened by the nucleophilic attack is also reviewed. Finally, the applications of microwave irradiation as an unconventional method of reaction activation in the synthesis of condensation products is described and the biological activity of some chromone derivatives is noted.

  5. Extremely rapid self-reaction of the simplest Criegee intermediate CH2OO and its implications in atmospheric chemistry

    Science.gov (United States)

    Su, Yu-Te; Lin, Hui-Yu; Putikam, Raghunath; Matsui, Hiroyuki; Lin, M. C.; Lee, Yuan-Pern

    2014-06-01

    Criegee intermediates, which are carbonyl oxides produced when ozone reacts with unsaturated hydrocarbons, play an important role in the formation of OH and organic acids in the atmosphere, but they have eluded direct detection until recently. Reactions that involve Criegee intermediates are not understood fully because data based on their direct observation are limited. We used transient infrared absorption spectroscopy to probe directly the decay kinetics of formaldehyde oxide (CH2OO) and found that it reacts with itself extremely rapidly. This fast self-reaction is a result of its zwitterionic character. According to our quantum-chemical calculations, a cyclic dimeric intermediate that has the terminal O atom of one CH2OO bonded to the C atom of the other CH2OO is formed with large exothermicity before further decomposition to 2H2CO + O2(1Δg). We suggest that the inclusion of this previously overlooked rapid reaction in models may affect the interpretation of previous laboratory experiments that involve Criegee intermediates.

  6. Laser photolysis-resonance fluorescence technique (LP-RF) applied to the study of reactions of atmospheric interest

    Science.gov (United States)

    Albaladejo, J.; Cuevas, C. A.; Notario, A.; Martínez, E.

    Atomic chlorine is highly reactive with a variety of organic and inorganic compounds so that relatively small concentrations can compete with the tropospheric oxidants (OH, O3 and NO3) in determining the tropospheric fate of such compounds [1]. Besides, there is a lot of evidence that bromine compounds play significant role in the ozone chemistry both in the troposphere and in the stratosphere [2]. In this work we show the laser photolysis-resonance fluorescence technique (LP-RF) applied to the study of gas phase reactions of halogen atoms with volatile organic compounds (VOCs) of interest in atmospheric chemistry [3]. By means of this technique is possible to measure the rate constants of theses reactions, and subsequently obtain the Arrhenius parameters. Halogens atoms are produced in a excess of the VOC and He, by photolyzing Cl2 at 308 nm to obtain Cl atoms, or CF2Br2 at 248 nm for Br atoms, both cases using a pulsed excimer laser. The radiation (135 nm) from a microwave-driven lamp, through which He containing a low concentrations of Cl2 or Br2 was flowed, was used to excite the resonance fluorescence from the corresponding halogen atom in the jacketed Pyrex reaction cell. Signal were obtained using photon-counting techniques in conjunction with multichannel scaling. The fluorescence signal from the PMT was processed by a preamplifier and sent to an multichannel scaler to collect the time-resolved signal. The multichannel scaler was coupled to a microcomputer for further kinetics analysis.

  7. Low temperature rate coefficients for the reactions of 1CH2 with reactive and non-reactive species, and the implications for Titan's atmosphere

    Science.gov (United States)

    Douglas, Kevin; Slater, Eloise; Blitz, Mark; Plane, John; Heard, Dwayne; Seakins, Paul

    2016-04-01

    The Cassini-Huygens mission to Titan revealed unexpectedly large amounts of benzene in the troposphere, and confirmed the absence of a global ethane ocean as predicted by photochemical models of methane conversion over the lifetime of the solar system. An important chemical intermediate in both the production and loss of benzene and ethane is the first electronically excited state of methylene, 1CH2. For example, at room temperature an important reaction of 1CH2 is with acetylene (R1a), leading to the formation of propargyl (C3H3)[1]. The subsequent recombination of propargyl radicals is the major suggested route to benzene in Titan's atmosphere (R2)[2]. In addition to reaction of 1CH2 leading to products, there is also competition between inelastic electronic relaxation to form the ground triplet state 3CH2 (R1b). This ground state 3CH2 has a markedly different reactivity to the singlet, reacting primarily with methyl radicals (CH3) to form ethene (R3). As methyl radical recombination is the primary route to ethane (R4)[3], reactions of 1CH2 will also heavily influence the ethane budget on Titan. 1CH2 + C2H2 → C3H3 + H (R1a) 1CH2 + C2H2 → 3CH2 + C2H2 (R1b) C3H3 + C3H3 → C6H6 (R2) 3CH2 + CH3 → C2H4 + H (R3) CH3 + CH3 (+ M) → C2H6 (R4) Thus this competition between chemical reaction and electronic relaxation in the reactions of 1CH2 with H2, CH4, C2H4, and C2H6 will play an important role in determining the benzene and ethane budgets on Titan. Despite this there are no measurements of any rate constants for 1CH2 at temperatures relevant to Titan's atmosphere (60 - 170 K). Using a pulsed Laval nozzle apparatus coupled with pulsed laser photolysis laser-induced fluorescence, the low temperature reaction kinetics for the removal of 1CH2 with nitrogen, hydrogen, methane, ethane, ethene, acetylene, and oxygen, have been studied. The results revealed an increase in the removal rate of 1CH2 at temperatures below 200 K, with a sharp increase of around a factor of

  8. Formic acid production from carbohydrates biomass by hydrothermal reaction

    Energy Technology Data Exchange (ETDEWEB)

    Yun, J; Kishita, A; Tohji, K; Enomoto, H [Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579 (Japan); Jin, F, E-mail: yun@bucky1.kankyo.tohoku.ac.j [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200091 (China)

    2010-03-01

    The formation of formic acid or formate salts by hydrothermal oxidation of model biomass materials (glucose, starch and cellulose) was investigated. All experiments were conducted in a batch reactor, made of SUS 316 tubing, providing an internal volume of 5.7 cm{sup 3}. A 30 wt% hydrogen peroxide aqueous solution was used as an oxidant. The experiments were carried out with temperature of 250{sup 0}C, reaction time varying from 0.5 min to 5 min, H{sub 2}O{sub 2} supply of 240%, and alkaline concentration varying from 0 to 1.25 M. Similar to glucose, in the cases of the oxidation of hydrothermal starch and cellulose, the addition of alkaline can also improve the yield of formic acid. And the yield were glucose>starch> cellulose in cases of with or without of alkaline addition.

  9. Quasielastic production of polarized hyperons in antineutrino--nucleon reactions

    CERN Document Server

    Akbar, F; Athar, M Sajjad; Singh, S K

    2016-01-01

    We have studied the longitudinal and perpendicular polarizations of final hyperon($\\Lambda$,$\\Sigma$) produced in the antineutrino induced quasielastic charged current reactions on nucleon targets. The nucleon-hyperon transition form factors are determined from the experimental data on quasielastic $(\\Delta S =0)$ charged current (anti)neutrino--nucleon scattering and the semileptonic decay of neutron and hyperons assuming G--invariance, T--invariance and SU(3) symmetry. The vector transition form factors are obtained in terms of nucleon electromagnetic form factors for which various parameterizations available in literature have been used. A dipole parameterization for the axial vector form factor and the pseudoscalar transition form factor derived in terms of axial vector form factor assuming PCAC and GT relation extended to strangeness sector have been used in numerical evaluations. The flux averaged cross section and polarization observables corresponding to CERN Gargamelle experiment have been calculated...

  10. The effect of nuclear structure in the emission of reaction products in heavy-ion reactions

    Indian Academy of Sciences (India)

    Samir Kundu

    2014-04-01

    Study of intermediate mass fragments (IMFs) and light charged particles (LCPs) emission has been carried out for a few reactions involving -cluster and non--cluster systems to see how the emission processes are affected by nuclear clustering. Li, Be, B and -particles have been studied from α-clustered system 16O + 12C for 117, 125, 145 and 160 MeV bombarding energies respectively. The enhanced yields of near-entrance channel fragment B and large quadrupole deformation of the produced composite 28Si* extracted from LCP spectra indicate the survival of orbiting-like process in 16O + 12C system at these energies. The same IMFs emitted from the -cluster system 12C (77 MeV) + 28Si and nearby non- cluster 11B (64 MeV) + 28Si and 12C (73 MeV) + 27Al (all having the same excitation energy of ∼67 MeV) have also been studied. The fully energy damped (fusion–fission) and the partially energy damped (deep inelastic) components of the fragment energy spectra have been extracted. It has been found that the yields of the fully energy damped fragments for all the above reactions are in conformity with the respective statistical model predictions. The time-scales of various deep inelastic fragment emissions have been extracted from the angular distribution data. The angular momentum dissipation in deep inelastic collisions has been estimated from the data and it has been found to be close to the corresponding sticking limit value.

  11. Direct photon production in heavy-ion reactions at SPS and RHIC

    Indian Academy of Sciences (India)

    T Peitzmann

    2003-04-01

    A review on experimental results for direct photon production in heavy ion reactions is given. A brief survey of early direct photon limits from SPS experiments is presented. The first measurement of direct photons in heavy ion reactions from the WA98 collaboration is discussed and compared to theoretical calculations. An outlook on the perspective of photon measurements at RHIC is given.

  12. Recent applications of intramolecular Diels-Alder reactions to natural product synthesis

    DEFF Research Database (Denmark)

    Juhl, M.; Tanner, David Ackland

    2009-01-01

    This tutorial review presents some recent examples of intramolecular Diels-Alder (IMDA) reactions as key complexity-generating steps in the total synthesis of structurally intricate natural products. The opportunities afforded by transannular (TADA) versions of the IMDA reaction in complex molecu...

  13. Mapping Students' Conceptual Modes When Thinking about Chemical Reactions Used to Make a Desired Product

    Science.gov (United States)

    Weinrich, M. L.; Talanquer, V.

    2015-01-01

    The central goal of this qualitative research study was to uncover major implicit assumptions that students with different levels of training in the discipline apply when thinking and making decisions about chemical reactions used to make a desired product. In particular, we elicited different ways of conceptualizing why chemical reactions happen…

  14. Use of Moessbauer spectroscopy to study reaction products of polyphenols and iron compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gust, J. (Building Research Inst., Warsaw (Poland)); Suwalski, J. (Atomic Energy Inst., Otwock-Swierk (Poland))

    1994-05-01

    Moessbauer spectroscopy was used to study parameters of the reaction products of iron compounds (Fe[sup III]) and polyphenols with hydroxyl (OH) groups in ortho positions. Polyphenols used in the reaction were catechol, pyrogallol, gallic acid, and oak tannin. The Fe-containing compounds were hydrated ferric sulfate (Fe[sub 2][SO[sub 4

  15. Microwave-ultrasound combined reactor suitable for atmospheric sample preparation procedure of biological and chemical products

    NARCIS (Netherlands)

    Lagha, A.; Chemat, S.; Bartels, P.V.; Chemat, F.

    1999-01-01

    A compact apparatus in which a specific position can be irradiated by microwaves (MW) and ultrasound (US) simultaneously has been developed. The MW-US reactor has been designed for atmospheric pressure digestion and dissolution of biological and chemical products. The reactor can treat a range of th

  16. Validation of the Atmospheric Infrared Sounder Retrieval Products over China and Their Application in Numerical Model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The atmospheric infrared sounder (AIRS) instrument onboard Aqua Satellite is a high spectral resolution infrared sounder. In recent years, AIRS has gradually become the primary method of atmospheric vertical observations. To examine the validation of AIRS retrieval products (V3.0) over China, the AIRS surface air temperature retrievals were compared with the ground observations obtained from 540 meteorological stations in July 2004 and January 2005, respectively. The sources of errors were considerably discussed. Based on the error analysis, the AIRS retrieved surface air temperature products were systemically corrected. Moreover, the AIRS temperature and humidity profile retrievals were compared with T213numerical forecasting products. Because T213 forecasting products are not the actual atmospheric states,to further verify the validation, the AIRS temperature and humidity profile products were assimilated into the MM5 model through the analysis nudging. In this paper, the case on February 14, 2005 in North China was simulated in detail. Then, we investigated the effects of AIRS retrievals on snowfall, humidity field,vertical velocity field, divergence field, and cloud microphysical processes. The major results are: (1) the errors of AIRS retrieved surface air temperature products are largely systematic deviations, for which the influences of terrain altitude and surface types are the major reasons; (2) the differences between the AIRS atmospheric profile retrievals and T213 numerical prediction products in temperature are generally less than 2 K, the differences in relative humidity are generally less than 25%; and (3) the AIRS temperature and humidity retrieval products can adjust the model initial field, and thus can improve the capacity of snowfall simulation to some extent.

  17. Liquid composition having ammonia borane and decomposing to form hydrogen and liquid reaction product

    Science.gov (United States)

    Davis, Benjamin L; Rekken, Brian D

    2014-04-01

    Liquid compositions of ammonia borane and a suitably chosen amine borane material were prepared and subjected to conditions suitable for their thermal decomposition in a closed system that resulted in hydrogen and a liquid reaction product.

  18. Dynamical coupled-channels study of meson production reactions from EBAC@Jlab

    Energy Technology Data Exchange (ETDEWEB)

    Hiroyuki Kamano

    2011-10-01

    We present the current status of a combined and simultaneous analysis of meson production reactions based on a dynamical coupled-channels (DCC) model, which is conducted at Excited Baryon Analysis Center (EBAC) of Jefferson Lab.

  19. Extraction of Nucleon Resonances From Global Analysis of Meson Production Reactions at EBAC

    Energy Technology Data Exchange (ETDEWEB)

    Hiroyuki Kamano

    2011-10-01

    We report the current status of exploring the dynamical aspect of the excited nucleon states through the comprehensive coupled-channels analysis of meson production reactions at the Excited Baryon Analysis Center of Jefferson Lab.

  20. Laboratory studies of reactions of atmospheric gases with components of mineral dust aerosol and research in chemical education

    Science.gov (United States)

    Schuttlefield, Jennifer Dianne

    Mineral dust aerosol surfaces provide a medium in the atmosphere for heterogeneous chemistry to occur, which can alter the chemical balance of the Earth's atmosphere. It is becoming increasingly clear that the heterogeneous chemistry of these aerosols is a function of relative humidity (RH), as water on the surface of these particles can enhance or inhibit reactivity depending on the reaction. In this thesis, the uptake of water on clays and oxides was investigated, as well as phase transitions for atmospherically relevant salts. Reactions of carbon dioxide and nitric acid on oxide particles in the presence and absence of water were also examined. Following the reaction of HNO 3 on an alumina surface, photoirradiation experiments were preformed to determine the effect of irradiation on the adsorbed nitrate. The results presented in this thesis provide insight into the heterogeneous reactivity of mineral dust aerosol in the presence and absence of co-adsorbed water, as well as a fundamental understanding of water uptake on soluble and insoluble aerosols. A new method, using a quartz crystal microbalance, was developed to attempt to obtain a better fundamental understanding of different mineral dust components. In addition to the laboratory research, research in chemical education is also presented in this thesis. Two different types of work being done in the area of chemical education are shown. First a new experiment was implemented into an undergraduate physical chemistry course. The technique, ATR-FTIR spectroscopy, was chosen for its ability to expose students to a technique that is commonly used in laboratory research as well as the ease for which high quality results can be obtained. Students used ATR-FTIR spectroscopy to monitor sulfate, SO 42-, adsorption on TiO2 thin films. Second, the role of cognitive load and problem difficulty was accessed with data acquired while students completed an introductory-level chemistry word problem using a web-based tool

  1. Atmospheric fate of OH initiated oxidation of terpenes. Reaction mechanism of alpha-pinene degradation and secondary organic aerosol formation.

    Science.gov (United States)

    Librando, Vito; Tringali, Giuseppe

    2005-05-01

    This paper studies the reaction products of alpha-pinene, beta-pinene, sabinene, 3-carene and limonene with OH radicals and of alpha-pinene with ozone using FT-IR spectroscopy for measuring gas phase products and HPLC-MS-MS to measure products in the aerosol phase. These techniques were used to investigate the secondary organic aerosol (SOA) formation from the terpenes. The gas phase reaction products were all quantified using reference compounds. At low terpene concentrations (0.9-2.1 ppm), the molar yields of gas phase reaction products were: HCHO 16-92%, HCOOH 10-54% (OH source: H2O2, 6-25 ppm); HCHO 127-148%, HCOOH 4-6% (OH source: CH3ONO, 5-8 ppm). At high terpene concentrations (4.1-13.2 ppm) the results were: HCHO 9-27%, HCOOH 15-23%, CH3(CO)CH3 0-14%, CH3COOH 0-5%, nopinone 24% (only from beta-pinene oxidation), limona ketone 61% (only from limonene oxidation), pinonaldehyde was identified during alpha-pinene degradation (OH source H2O2, 23-30 ppm); HCHO 76-183%, HCOOH 12-15%, CH3(CO)CH3 0-12%, nopinone 17% (from beta-pinene oxidation), limona ketone 48% (from limonene oxidation), pinonaldehyde was identified during alpha-pinene degradation (OH source CH3ONO, 14-16 ppm). Pinic acid, pinonic acid, limonic acid, limoninic acid, 3-caric acid, 3-caronic acid and sabinic acid were identified in the aerosol phase. On the basis of these results, we propose a formation mechanism for pinonic and pinic acid in the aerosol phase explaining how degradation products could influence SOA formation and growth in the troposphere.

  2. Dynamical Coupled-Channel Model of Meson Production Reactions in the Nucleon Resonance Region

    Energy Technology Data Exchange (ETDEWEB)

    T.-S. H. Lee; A. Matsuyama; T. Sato

    2006-11-15

    A dynamical coupled-channel model is presented for investigating the nucleon resonances (N*) in the meson production reactions induced by pions and photons. Our objective is to extract the N* parameters and to investigate the meson production reaction mechanisms for mapping out the quark-gluon substructure of N* from the data. The model is based on an energy-independent Hamiltonian which is derived from a set of Lagrangians by using a unitary transformation method.

  3. 40 CFR 721.10145 - Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino...

    Science.gov (United States)

    2010-07-01

    ... alcohol, halogenated alkane, substituted epoxide, and amino compound (generic). 721.10145 Section 721... Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino compound... identified generically as modified reaction products of alkyl alcohol, halogenated alkane,...

  4. $X(3872)$ production from reactions involving $D$ and $D^*$ mesons

    CERN Document Server

    Torres, A Martinez; Navarra, F S; Nielsen, M; Abreu, Luciano M

    2014-01-01

    In this proceeding we show the results found for the cross sections of the processes $\\bar D D\\to\\pi X(3872)$, $\\bar D^* D\\to \\pi X(3872)$ and $\\bar D^* D^*\\to\\pi X(3872)$, information needed for calculations of the $X(3872)$ abundance in heavy ion collisions. Our formalism is based on the generation of $X(3872)$ from the interaction of the hadrons $\\bar D^0 D^{*0} - \\textrm{c.c}$, $D^- D^{*+} - \\textrm{c.c}$ and $D^-_s D^{*+}_s - \\textrm{c.c}$. The evaluation of the cross section associated with processes having $D^*$ meson(s) involves an anomalous vertex, $X\\bar D^* D^*$, which we have determined by considering triangular loops motivated by the molecular nature of $X(3872)$. We find that the contribution of this vertex is important. Encouraged by this finding we estimate the $X\\bar D^* D^*$ coupling, which turns out to be $1.95\\pm 0.22$. We then use it to obtain the cross section for the reaction $\\bar D^* D^*\\to\\pi X$ and find that the $X\\bar D^* D^*$ vertex is also relevant in this case. We also discuss t...

  5. Characterization of ionic liquid‐based biocatalytic two‐phase reaction system for production of biodiesel

    DEFF Research Database (Denmark)

    Prabhavathi Devi, Bethala Lakshmi Anu; Guo, Zheng; Xu, Xuebing

    2011-01-01

    /IL biphasic reaction system by mixing with substrates, which is highly effective for the production of biodiesel with more than 98% biodiesel yield and nearly 100% conversion of oil. Conductor‐like screening model for real solvent (COSMO‐RS) in silico prediction of substrate solubility and simulation...... a large chemical potential to move reaction equilibrium for maximum oil conversion and yield of target biodiesel. The reaction behavior and specificity of oil/IL biphasic system for enzymatic production of biodiesel were theoretically delineated through COSMO‐RS computation with experimental validation...

  6. Characterization of reaction products of iron and iron salts and aqueous plant extracts

    Energy Technology Data Exchange (ETDEWEB)

    Jaen, J.A. [Universidad de Panama, Centro de Investigaciones con Tecnicas Nucleares/Depto. de Quimica (Panama); Garcia de Saldana, E.; Hernandez, C. [Universidad de Panama, Maestria en Ciencias Quimicas (Panama)

    1999-11-15

    The complexes formed in aqueous solution as a result of a reaction of iron and iron salts (Fe{sup 2+} and Fe{sup 3+}) and some plant extracts were analyzed using Moessbauer spectroscopy and Fourier transform infrared. The extracts were obtained from Opuntia elatior mill., Acanthocereus pentagonus (L.) Britton, Mimosa tenuiflora, Caesalpinia coriaria (Jacq.) Willd., Bumbacopsis quinata (Jacq.) Dugand and Acacia mangium Willd., plants growing wildly in different zones of the Isthmus of Panama. Results suggest the formation of mono- and bis-type complexes, and in some cases, the occurrence of a redox reaction. The feasibility of application of the studied extracts as atmospheric corrosion inhibitors is discussed.

  7. Characterization of reaction products of iron and iron salts and aqueous plant extracts

    Science.gov (United States)

    Jaén, J. A.; García de Saldaña, E.; Hernández, C.

    1999-11-01

    The complexes formed in aqueous solution as a result of a reaction of iron and iron salts (Fe2+ and Fe3+) and some plant extracts were analyzed using Mössbauer spectroscopy and Fourier transform infrared. The extracts were obtained from Opuntia elatior mill., Acanthocereus pentagonus (L.) Britton, Mimosa tenuiflora, Caesalpinia coriaria (Jacq.) Willd., Bumbacopsis quinata (Jacq.) Dugand and Acacia mangium Willd., plants growing wildly in different zones of the Isthmus of Panama. Results suggest the formation of mono- and bis-type complexes, and in some cases, the occurrence of a redox reaction. The feasibility of application of the studied extracts as atmospheric corrosion inhibitors is discussed.

  8. Increased greenhouse-gas intensity of rice production under future atmospheric conditions

    Science.gov (United States)

    van Groenigen, Kees Jan; van Kessel, Chris; Hungate, Bruce A.

    2013-03-01

    Increased atmospheric CO2 and rising temperatures are expected to affect rice yields and greenhouse-gas (GHG) emissions from rice paddies. This is important, because rice cultivation is one of the largest human-induced sources of the potent GHG methane (CH4) and rice is the world's second-most produced staple crop. The need for meeting a growing global food demand argues for assessing GHG emissions from croplands on the basis of yield rather than land area, such that efforts to reduce GHG emissions take into consideration the consequences for food production. However, it is unclear whether or how the GHG intensity (that is, yield-scaled GHG emissions) of cropping systems will be affected by future atmospheric conditions. Here we show, using meta-analysis, that increased atmospheric CO2 (ranging from 550 to 743ppmV) and warming (ranging from +0.8°C to +6°C) both increase the GHG intensity of rice cultivation. Increased atmospheric CO2 increased GHG intensity by 31.4%, because CH4 emissions are stimulated more than rice yields. Warming increased GHG intensity by 11.8% per 1°C, largely owing to a decrease in yield. This analysis suggests that rising CO2 and warming will approximately double the GHG intensity of rice production by the end of the twenty-first century, stressing the need for management practices that optimize rice production while reducing its GHG intensity as the climate continues to change.

  9. Contact allergy to a reaction product in Hirudoid cream: an example of compound allergy.

    Science.gov (United States)

    Smeenk, G; Kerckhoffs, H P; Schreurs, P H

    1987-02-01

    We have investigated patients with a contact allergy to Hirudoid cream. The hypersensitivity reactions appeared to be due to an allergy to the cream base, but the separate ingredients did not give rise to positive patch test reactions. The hypersensitivity proved to be due to an allergy to a reaction product, and the simultaneous presence of the preservatives 1,3,5-trihydroxyethylhexahydrotriazine and thymol was found to be necessary for the occurrence of a positive patch test reaction. A new allergen was found to be formed by the reaction between thymol and the degradation products of the triazine derivative. This allergen was identified by nuclear magnetic resonance spectroscopy and infrared spectroscopy as 3-(hydroxyethyl)-5-methyl-8-(2-methylethyl)-3,4-dihydro-2H-1,3-benzoxazi ne.

  10. 40 CFR 721.5560 - Formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz[c...

    Science.gov (United States)

    2010-07-01

    ... (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz oxaphosphorin-6-oxide. 721.5560 Section 721... Formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz oxaphosphorin-6... identified as formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with...

  11. 40 CFR 721.10190 - Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2...

    Science.gov (United States)

    2010-07-01

    ... diamine and phenol, reaction products with 4-methyl-2-pentanone (generic). 721.10190 Section 721.10190... Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2-pentanone (generic... identified generically as formaldehyde, polymer with aliphatic diamine and phenol, reaction products with...

  12. The gas phase reaction of ozone with 1,3-butadiene: formation yields of some toxic products

    Science.gov (United States)

    Kramp, Franz; Paulson, Suzanne E.

    The formation yields of acrolein, 1,2-epoxy-3-butene and OH radicals have been measured from reaction of ozone with 1,3-butadiene at room temperature and atmosphere pressure. 1,3,5-Trimethyl benzene was added to scavenge OH radicals in measurements of product yields. In separate experiments, small quantities of 1,3,5-trimethyl benzene were added as a tracer for OH. Formation yields of acrolein of (52±7)%, 1,2-epoxy-3-butene of (3.1±0.5)% and OH radicals of (13±3)% were observed. In addition, the rate coefficient of the gas-phase reaction of ozone with 1,2-epoxy-3-butene was measured both directly and relative to propene, finding an average of (1.6±0.4)×10 -18 cm 3 molecule -1 s -1, respectively, at 296±2 K. The results are briefly discussed in terms of the effect of atmospheric processing on the toxicity of 1,3-butadiene.

  13. Corrosion Products and Formation Mechanism During Initial Stage of Atmospheric Corrosion of Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    XIAO Kui; DONG Chao-fang; LI Xiao-gang; WANG Fu-ming

    2008-01-01

    The formation and development of corrosion products on carbon steel surface during the initial stage of atmospheric corrosion in a laboratory simulated environment have been studied by scanning electron microscopy (SEM)and Raman spectroscopy.The results showed that two different shapes of corrosion products,that is,ring and chain,were formed in the initial stage of corrosion.MnS clusters were found in the nuclei of corrosion products at the active local corrosion sites.The ring-shaped products were composed of lepidocrocite (γ-FeOOH) and maghemite(γ-Fe2 O3) transformed from lepidocrocite.The chain-type products were goethite (α-FeOOH).A formation mechanism of the corrosion products is proposed.

  14. Effect of synthesis atmosphere on photocatalytic hydrogen production of NaNbO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Nana [Key Laboratory of Photovoltaic Materials of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Institute of Physics for Microsystems, Henan University, Kaifeng 475004 (China); Li, Guoqiang, E-mail: gqli1980@gmail.com [Key Laboratory of Photovoltaic Materials of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Institute of Physics for Microsystems, Henan University, Kaifeng 475004 (China); Zhang, Weifeng, E-mail: wfzhang@henu.edu.cn [Key Laboratory of Photovoltaic Materials of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Institute of Physics for Microsystems, Henan University, Kaifeng 475004 (China)

    2014-08-15

    The NaNbO{sub 3} photocatalysts were prepared under air, H{sub 2}/Ar and O{sub 2} atmosphere by a solid state reaction. These samples were characterized by X-ray diffraction, UV–vis spectroscopy, Raman spectroscopy, scanning electron microscopy and X-ray photoelectron spectroscopy. The photocatalytic activity of NaNbO{sub 3} samples were evaluated from the hydrogen evolution from an aqueous methanol solution. The hydrogen evolution rate of NaNbO{sub 3} under air, H{sub 2}/Ar and O{sub 2} atmosphere showed an increasing trend in turn. Moreover, the hydrogen evolution rate exhibited a linear increase with the surface oxygen defects.

  15. Short and Long Term Impacts of Forest Bioenergy Production on Atmospheric Carbon Dioxide Emissions

    Science.gov (United States)

    Hudiburg, T.; Law, B. E.; Luyssaert, S.; Thornton, P. E.

    2011-12-01

    Temperate forest annual net uptake of CO2 from the atmosphere is equivalent to ~16% of the annual fossil fuel emissions in the United States. Mitigation strategies to reduce emissions of carbon dioxide have lead to investigation of alternative sources of energy including forest biomass. The prospect of forest derived bioenergy has led to implementation of new forest management strategies based on the assumption that they will reduce total CO2 emissions to the atmosphere by simultaneously reducing the risk of wildfire and substituting for fossil fuels. The benefit of managing forests for bioenergy substitution of fossil fuels versus potential carbon sequestration by reducing harvest needs to be evaluated. This study uses a combination of Federal Forest Inventory data (FIA), remote sensing, and a coupled carbon-nitrogen ecosystem process model (CLM4-CN) to predict net atmospheric CO2 emissions from forest thinning for bioenergy production in Oregon under varying future management and climate scenarios. We use life-cycle assessment (LCA) incorporating both the forest and forest product sinks and sources of carbon dioxide. Future modeled results are compared with a reduced harvest scenario to determine the potential for increased carbon sequestration in forest biomass. We find that Oregon forests are a current strong sink of 7.5 ± 1.7 Tg C yr-1 or 61 g C m-2 yr-1. (NBP; NEP minus removals from fire and harvest). In the short term, we find that carbon dynamics following harvests for fire prevention and large-scale bioenergy production lead to 2-15% higher emissions over the next 20 years compared to current management, assuming 100% effectiveness of fire prevention. Given the current sink strength, analysis of the forest sector in Oregon demonstrates that increasing harvest levels by all practices above current business-as-usual levels increases CO2 emissions to the atmosphere as long as the region's sink persists. In the long-term, we find that projected changes in

  16. Atmospheric Deposition And MediterraneAN sea water productiviTy (Thales - ADAMANT) An overview

    Science.gov (United States)

    Christodoulaki, Sylvia; Petihakis, George; Triantafyllou, George; Pitta, Paraskevi; Papadimitriou, Vassileios; Tsiaras, Konstantinos; Mihalopoulos, Nikolaos; Kanakidou, Maria

    2015-04-01

    In the marine environment the salinity and biological pumps sequester atmospheric carbon dioxide. The biological pump is directly related to marine primary production which is controlled by nutrient availability mainly of iron, nitrogen and phosphorus. The Mediterranean Sea, especially the eastern basin is one of the most oligotrophic seas. The nitrogen (N) to phosphorus (P) ratio is unusually high, especially in the eastern basin (28:1) and primary production is limited by phosphorus availability. ADAMANT project contributes to new knowledge into how nutrients enter the marine environment through atmospheric deposition, how they are assimilated by organisms and how this influences carbon and nutrient fluxes. Experimental work has been combined with atmospheric and marine models. Important knowledge is obtained on nutrients deposition through mesocosm experiments on their uptake by the marine systems and their effects on the marine carbon cycle and food chain. Kinetic parameters of adsorption of acidic and organic volatile compounds in atmospheric samples of dust and marine salts are estimated in conjunction with solubility of N and P in mixtures contained in dust. Atmospheric and oceanographic models are coupled to create a system that is able to holistically simulate the effects of atmospheric deposition on the marine environment over time, beginning from the pre-industrial era until the future years (hind cast, present and forecast simulations). This research has been co-financed by the European Union (European Social Fund) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework - Research Funding Program: THALES, Investing in knowledge society through European Social Fund.

  17. Hydrogen production from banyan leaves using an atmospheric-pressure microwave plasma reactor.

    Science.gov (United States)

    Lin, Yuan-Chung; Wu, Tzi-Yi; Jhang, Syu-Ruei; Yang, Po-Ming; Hsiao, Yi-Hsing

    2014-06-01

    Growth of the hydrogen market has motivated increased study of hydrogen production. Understanding how biomass is converted to hydrogen gas can help in evaluating opportunities for reducing the environmental impact of petroleum-based fuels. The microwave power used in the reaction is found to be proportional to the rate of production of hydrogen gas, mass of hydrogen gas produced per gram of banyan leaves consumed, and amount of hydrogen gas formed with respect to the H-atom content of banyan leaves decomposed. Increase the microwave power levels results in an increase of H2 and decrease of CO2 concentrations in the gaseous products. This finding may possibly be ascribed to the water-gas shift reaction. These results will help to expand our knowledge concerning banyan leaves and hydrogen yield on the basis of microwave-assisted pyrolysis, which will improve the design of hydrogen production technologies.

  18. NASA Langley Atmospheric Science Data Centers Near Real-Time Data Products

    Science.gov (United States)

    Davenport, T.; Parker, L.; Rinsland, P. L.

    2014-12-01

    Over the past decade the Atmospheric Science Data Center (ASDC) at NASA Langley Research Center has archived and distributed a variety of satellite mission data sets. NASA's goal in Earth science is to observe, understand, and model the Earth system to discover how it is changing, to better predict change, and to understand the consequences for life on Earth. The ASDC has collaborated with Science Teams to accommodate emerging science users in the climate and modeling communities. The ASDC has expanded its original role to support operational usage by related Earth Science satellites, support land and ocean assimilations, support of field campaigns, outreach programs, and application projects for agriculture and energy industries to bridge the gap between Earth science research results and the adoption of data and prediction capabilities for reliable and sustained use in Decision Support Systems (DSS). For example; these products are being used by the community performing data assimilations to regulate aerosol mass in global transport models to improve model response and forecast accuracy, to assess the performance of components of a global coupled atmospheric-ocean climate model, improve atmospheric motion vector (winds) impact on numerical weather prediction models, and to provide internet-based access to parameters specifically tailored to assist in the design of solar and wind powered renewable energy systems. These more focused applications often require Near Real-Time (NRT) products. Generating NRT products pose their own unique set challenges for the ASDC and the Science Teams. Examples of ASDC NRT products and challenges will be discussed.

  19. Product inhibition of enzymatic hydrolysis of cellulose: are we running the reactions all wrong?

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2012-01-01

    Enzyme catalyzed deconstruction of cellulose to glucose is an important technology step in lignocellulose-to-ethanol processing as well as in the future biorefinery based production of novel products to replace fossil oil based chemistry. The main goals of the enzymatic biomass saccharification i....... Based on cellulose inhibition kinetics the talk will illustrate the suitability of membrane reactor technology for improving cellulose substrate conversion efficiency....... include high substrate conversion (maximal yields), maximal enzyme efficiency, maximal volumetric reactor productivity, minimal equipment investment, minimal size, and short reaction time. The classic batch type STR reactions used for enzymatic cellulose hydrolysis prevent these goals to be fulfilled...

  20. Transport of exhaust products in the near trail of a jet engine under atmospheric conditions

    Energy Technology Data Exchange (ETDEWEB)

    Karcher, B. [Universitat Muenchen, Freising (Germany)

    1994-07-01

    The transport of exhaust effluents and the possibility of water ice contrail formation are investigated under the specific fluid dynamical conditions in the near exhaust trail of a subsonic jet aircraft at cruise altitude. By means of a computational model describing the two-dimensional turbulent mixing of a single jet of hot exhaust gas with the atmosphere, representative results are discussed on the temperature and saturation ratio evolutions of air parcels in the jet flow field as well as on radial distributions of exhaust effluents undergoing chemical reactions behind the nozzle exit with prescribed, typical net reaction rates. The results underline the importance of a simultaneous treatment of spatially resolved jet expansion together with microphysical and chemical processes, because this coupling leads to distinct concentration patterns for various classes of chemical reactants and is essential for the detailed prediction of contrails.

  1. Biodiesel production from integration between reaction and separation system: reactive distillation process.

    Science.gov (United States)

    da Silva, Nívea de Lima; Santander, Carlos Mario Garcia; Batistella, César Benedito; Filho, Rubens Maciel; Maciel, Maria Regina Wolf

    2010-05-01

    Biodiesel is a clean burning fuel derived from a renewable feedstock such as vegetable oil or animal fat. It is biodegradable, non-inflammable, non-toxic, and produces lesser carbon monoxide, sulfur dioxide, and unburned hydrocarbons than petroleum-based fuel. The purpose of the present work is to present an efficient process using reactive distillation columns applied to biodiesel production. Reactive distillation is the simultaneous implementation of reaction and separation within a single unit of column. Nowadays, it is appropriately called "Intensified Process". This combined operation is especially suited for the chemical reaction limited by equilibrium constraints, since one or more of the products of the reaction are continuously separated from the reactants. This work presents the biodiesel production from soybean oil and bioethanol by reactive distillation. Different variables affect the conventional biodiesel production process such as: catalyst concentration, reaction temperature, level of agitation, ethanol/soybean oil molar ratio, reaction time, and raw material type. In this study, the experimental design was used to optimize the following process variables: the catalyst concentration (from 0.5 wt.% to 1.5 wt.%), the ethanol/soybean oil molar ratio (from 3:1 to 9:1). The reactive column reflux rate was 83 ml/min, and the reaction time was 6 min.

  2. Modified Atmosphere Systems and Shelf Life Extension of Fish and Fishery Products

    Directory of Open Access Journals (Sweden)

    Christina A. Mireles DeWitt

    2016-06-01

    Full Text Available This review aims at summarizing the findings of studies published over the past 15 years on the application of modified atmosphere (MA systems for shelf life extension of fish and fishery products. This review highlights the importance of CO2 in the preservation of seafood products, and underscores the benefits of combining MA technology with product storage in the superchilled temperature range. It is generally accepted that MA technology cannot improve product quality and should not be utilized as a substitute for good sanitation and strict temperature control. Benefits derived from application of MA, however, can significantly impact preservation of product quality and it subsequent shelf-life. For this reason, this review is the first of its kind to propose detailed handling and quality guidelines for fresh fish to realize the maximum benefit of MA technology.

  3. Impact of atmospheric nitrogen deposition on phytoplankton productivity in the South China Sea

    Science.gov (United States)

    Kim, Tae-Wook; Lee, Kitack; Duce, Robert; Liss, Peter

    2014-05-01

    The impacts of anthropogenic nitrogen (N) deposition on the marine N cycle are only now being revealed, but the magnitudes of those impacts are largely unknown in time and space. The South China Sea (SCS) is particularly subject to high anthropogenic N deposition, because the adjacent countries are highly populated and have rapidly growing economies. Analysis of data sets for atmospheric N deposition, satellite chlorophyll-a (Chl-a), and air mass back trajectories reveals that the transport of N originating from the populated east coasts of China and Indonesia, and its deposition to the ocean, has been responsible for the enhancements of Chl-a in the SCS. We found that atmospheric N deposition contributed approximately 20% of the annual biological new production in the SCS. The airborne contribution of N to new production in the SCS is expected to grow considerably in the coming decades.

  4. Reactions between ozone and building products: Impact on primary and secondary emissions

    Science.gov (United States)

    Nicolas, Mélanie; Ramalho, Olivier; Maupetit, François

    Reactions of ozone on common building products were studied in a dedicated emission test chamber system. Fourteen new and unused products were exposed to 100-160 ppb of ozone at 23 °C and 50% RH during 48 h experiments. Ozone deposition velocities calculated at steady state were between 0.003 cm s -1 (alkyd paint on polyester film) and 0.108 cm s -1 (pine wood board). All tested product showed modified emissions when exposed to ozone and secondary emissions of several aldehydes were identified. Carpets and wall coverings emitted mainly C 5-C 10n-aldehydes, typical by-products of surface reactions. Linoleum, polystyrene tiles and pine wood boards also showed increased emissions of formaldehyde, benzaldehyde and hexanal associated with reduced emissions of unsaturated compounds suggesting the occurrence of gas-phase reactions. The ozone removal on the different tested products was primarily associated with surface reactions. The relative contribution of gas-phase reactions to the total ozone removal was estimated to be between 5% and 30% for pine wood boards depending on relative humidity (RH) and on the incoming ozone concentration and 2% for polystyrene tiles. On pine wood board, decreasing ozone deposition velocities were measured with increasing ozone concentrations and with RH increasing in the range 30-50%.

  5. Cutin-derived CuO reaction products from purified cuticles and tree leaves

    Science.gov (United States)

    Goñi, Miguel A.; Hedges, John I.

    1990-11-01

    Long chain (C 16-C 18) hydroxy fatty acids are obtained among the nonlignin-derived reaction products from the CuO oxidation of a variety of geochemical samples. In order to investigate the origin of these acids, the CuO reaction products of isolated cuticles and whole leaves were investigated. The reaction products from the CuO oxidation of purified apple ( Malus pumila) cuticle include 16-hydroxy-hexadecanoic acid, 10,16-dihydroxyhexadecanoic acid, 9,10,18-trihydroxyoctadec-12-enoic acid, and 9,10,18-trihydroxyoctadecanoic acid as major components. The distribution of these cutin-derived CuO reaction products is similar to the monomer compositions deduced from traditional methods of cutin analysis. Oxidation of whole English Holly ( Ilex aquifolium) leaves yields cutin-derived acidic reaction products (in addition to lignin-derived phenols) similar to those obtained from oxidation of the corresponding isolated cuticles, indicating that CuO oxidation of bulk plant tissue is a viable procedure of cutin analysis in geochemical applications.

  6. Surveillance of suspected adverse reactions to natural health products: the case of propolis.

    Science.gov (United States)

    Menniti-Ippolito, Francesca; Mazzanti, Gabriela; Vitalone, Annabella; Firenzuoli, Fabio; Santuccio, Carmela

    2008-01-01

    Natural health products are promoted to the public as equally or more effective and less toxic than conventional drugs. However, some 'natural' medicines are known to have adverse effects. From April 2002 to August 2007, 18 suspected adverse reactions associated with propolis-containing products were reported to the national surveillance system of natural health products, coordinated by the Italian National Health Institute. Sixteen reports concerned allergic reactions (with dermatological or respiratory symptoms), while two concerned the digestive tract. Some of the reactions were serious: six patients were admitted to hospital or visited an emergency department and in two of these a life-threatening event was reported. In seven patients (four of whom were children), an allergic predisposition was indicated. Propolis, a resinous substance collected by honeybees from the buds of living plants, has been used for several purposes (dermatitis, laryngitis, oral ulcers) because of its wide range of suggested activities (antibacterial, antiviral, antifungal, anti-inflammatory, antioxidant and chemopreventive actions). However, propolis is also a potent sensitizer and should not be used in patients with an allergic predisposition, in particular an allergy to pollen. In Italy, products containing bee derivatives (bee pollen, royal jelly or propolis) are available to the public as food supplements. No label warning of possible adverse reactions is found on the packaging, although it is well known that atopic and asthmatic individuals may be at an increased risk of allergic reactions after using these products. The public and healthcare practitioners should be aware of the risk of allergic reactions to products derived from bees and a warning should be added to the packaging of these products.

  7. Atmospheric Oxidation Mechanisms for Diethyl Ether and its Oxidation Products, Ethyl Formate and Ethyl Acetate.

    Science.gov (United States)

    Orlando, J. J.; Tyndall, G. S.

    2006-12-01

    Carbon-containing compounds are present in the earth's atmosphere as the result of emissions from natural and anthropogenic sources. Their oxidation in the atmosphere, initiated by such oxidants as OH, ozone, and nitrate radicals, leads to potentially harmful secondary pollutants such as ozone, carbonyl species, organic acids and aerosols. Ethers and esters are two classes of compounds that contribute to the complex array of organic compounds found in anthropogenically-influenced air. Additional ester is present as a result of the oxidation of the ethers. In this paper, the oxidation of diethyl ether and its two main oxidation products, ethyl formate and ethyl acetate, are studied over ranges of temperature, oxygen partial pressure, and NOx concentration, using an environmental chamber / FTIR absorption technique. Major end-products (the esters from diethyl ether; organic acids and anhydrides from the esters) are quantified, and these data are interpreted in terms of the chemistry of the various alkoxy and peroxy radicals generated. Emphasis is placed on the effects of chemical activation on the behavior of the alkoxy radicals, as well as on a novel peroxy radical rearrangement that may contribute to the observed products of ether oxidation under some conditions. Finally, the data are used, in conjunction with data on similar species, to provide a general representation of ether and ester oxidation in the atmosphere.

  8. O/S-1/ interactions - The product channels. [collisional electron quenching and chemical reaction pathway frequencies

    Science.gov (United States)

    Slanger, T. G.; Black, G.

    1978-01-01

    The first measurements are reported of the reaction pathways for the interaction between oxygen atoms in the 4.19 eV S-1 state, and four molecules, N2O, CO2, H2O, and NO. Distinction is made between three possible paths - quenching to O(D-1), quenching to O(P-3), and chemical reaction. With N2O, the most reasonable interpretation of the data indicates that there no reaction, in sharp contrast with the interaction between O(D-1) and N2O, which proceeds entirely by reaction. Similarly, there is no reaction with CO2. With H2O, the reactive pathway is the dominant one, although electronic quenching is not negligible. With NO, O(D-1) is the preferred product.

  9. Reactions of the CN Radical with Benzene and Toluene: Product Detection and Low-Temperature Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Trevitt, Adam J.; Goulay, Fabien; Taatjes, Craig A.; Osborn, David L.; Leone, Stephen R.

    2009-12-23

    Low temperature rate coefficients are measured for the CN + benzene and CN + toluene reactions using the pulsed Laval nozzle expansion technique coupled with laser-induced fluorescence detection. The CN + benzene reaction rate coefficient at 105, 165 and 295 K is found to be relatively constant over this temperature range, 3.9 - 4.9 x 10-10 cm3 molecule-1 s-1. These rapid kinetics, along with the observed negligible temperature dependence, are consistent with a barrierless reaction entrance channel and reaction efficiencies approaching unity. The CN + toluene reaction is measured to have a slower rate coefficient of 1.3 x 10-10 cm3 molecule-1 s-1 at 105 K. At room temperature, non-exponential decay profiles are observed for this reaction that may suggest significant back-dissociation of intermediate complexes. In separate experiments, the products of these reactions are probed at room temperature using synchrotron VUV photoionization mass spectrometry. For CN + benzene, cyanobenzene (C6H5CN) is the only product recorded with no detectable evidence for a C6H5 + HCN product channel. In the case of CN + toluene, cyanotoluene (NCC6H4CH3) constitutes the only detected product. It is not possible to differentiate among the ortho, meta and para isomers of cyanotoluene because of their similar ionization energies and the ~;; 40 meV photon energy resolution of the experiment. There is no significant detection of benzyl radicals (C6H5CH2) that would suggest a H-abstraction or a HCN elimination channel is prominent at these conditions. As both reactions are measured to be rapid at 105 K, appearing to have barrierless entrance channels, it follows that they will proceed efficiently at the temperatures of Saturn?s moon Titan (~;;100 K) and are also likely to proceed at the temperature of interstellar clouds (10-20 K).

  10. Composition of thermodestruction products of biologically active compounds polluting the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Dmitriyev, M.T.; Rastyannikov, Y.G.; Sotnikov, Y.Y.; Volkov, S.A.

    1981-01-01

    The most promising method of removal of biologically active compounds such as microorganisms, antibiotics, food and other household waste from industrial waste gases is to destroy them by thermal destruction including burning. In this case, products of thermodestruction enter into the atmosphere along with carbon dioxide and steam and can unfavorably affect the population. Thus, mass spectrometric analyses have determined in the waste gases of antibiotics production aldehydes and ketones (croton- and adipalaldehydes, acetone), alcohols (propanol and butanol), amines, unsaturated and aromatic hydrocarbons. The composition of thermodestruction products of biologically active compounds was identified by their pyrolysis at 700/sup 0/C for 2 min. in the presence of air. The main components were proteins and amino acids. The products of pyrolysis were analyzed by chromato-mass-spectrometric and gas-chromatographic methods by means of a two-flame thermionic detector. No significant difference between the thermodestruction products of proteins and amino acids was found. Many of detected substances can be not only toxic but also emit strong unpleasant odors. The studies revealed toxic substances that pollute the atmospheric air during removal of biologically-active compounds from waste gases.

  11. Mode specificity and product energy disposal in unimolecular reactions: insights from the sudden vector projection model.

    Science.gov (United States)

    Li, Jun; Guo, Hua

    2014-04-03

    A simple model is proposed to predict mode specificity and product energy disposal in unimolecular dissociation reactions. This so-called Sudden Vector Projection (SVP) model quantifies the coupling of a reactant or product mode with the reaction coordinate at the transition state by projecting the corresponding normal mode vector onto the imaginary frequency mode at the saddle point. Due to the sudden assumption, SVP predictions for mode specificity are expected to be valid only when the reactant molecule has weak intermodal coupling. On the other hand, the sudden limit is generally satisfied for its predictions of product energy disposal in unimolecular reactions with a tight barrier. The SVP model is applied to several prototypical systems and the agreement with available experimental and theoretical results is satisfactory.

  12. Reaction of cyclodextrins with propylene oxide or with glycidol: analysis of product distribution.

    Science.gov (United States)

    Pitha, J; Szabo, L; Fales, H M

    1987-11-01

    Reaction of cyclomalto-hexaose, -heptaose, or -octaose with propylene oxide in strong aqueous alkali gave products in which distribution of the degrees of substitution was relatively narrow and nearly symmetrical, and increased with the average degree of substitution. When an equimolar mixture of cyclomalto-hexaose, heptaose, or -octaose was used, the average degrees of substitution of all three carbohydrates were close to each other. These findings indicate that the reactivities of the hydroxyl groups of cyclomalto-hexaose, -heptaose, or -octaose, and of all their (2-hydroxypropyl) ethers formed in the reactions, are quite similar. Reaction of cyclomaltoheptaose with glycidol also yielded a product having a narrow distribution of degree of substitution, but which was slightly skewed towards the higher degrees. Thus, as it proceeds, this etherification leads to products having higher reactivity towards the epoxide.

  13. Kinetic modeling of Secondary Organic Aerosol formation: effects of particle- and gas-phase reactions of semivolatile products

    Directory of Open Access Journals (Sweden)

    A. W. H. Chan

    2007-05-01

    Full Text Available The distinguishing mechanism of formation of secondary organic aerosol (SOA is the partitioning of semivolatile hydrocarbon oxidation products between the gas and aerosol phases. While SOA formation is typically described in terms of partitioning only, the rate of formation and ultimate yield of SOA can also depend on the kinetics of both gas- and aerosol-phase processes. We present a general equilibrium/kinetic model of SOA formation that provides a framework for evaluating the extent to which the controlling mechanisms of SOA formation can be inferred from laboratory chamber data. With this model we examine the effect on SOA formation of gas-phase oxidation of first-generation products to either more or less volatile species, of particle-phase reaction (both first- and second-order kinetics, of the rate of parent hydrocarbon oxidation, and of the extent of reaction of the parent hydrocarbon. The effect of pre-existing organic aerosol mass on SOA yield, an issue of direct relevance to the translation of laboratory data to atmospheric applications, is examined. The importance of direct chemical measurements of gas- and particle-phase species is underscored in identifying SOA formation mechanisms.

  14. Kinetic modeling of secondary organic aerosol formation: effects of particle- and gas-phase reactions of semivolatile products

    Directory of Open Access Journals (Sweden)

    A. W. H. Chan

    2007-08-01

    Full Text Available The distinguishing mechanism of formation of secondary organic aerosol (SOA is the partitioning of semivolatile hydrocarbon oxidation products between the gas and aerosol phases. While SOA formation is typically described in terms of partitioning only, the rate of formation and ultimate yield of SOA can also depend on the kinetics of both gas- and aerosol-phase processes. We present a general equilibrium/kinetic model of SOA formation that provides a framework for evaluating the extent to which the controlling mechanisms of SOA formation can be inferred from laboratory chamber data. With this model we examine the effect on SOA formation of gas-phase oxidation of first-generation products to either more or less volatile species, of particle-phase reaction (both first- and second-order kinetics, of the rate of parent hydrocarbon oxidation, and of the extent of reaction of the parent hydrocarbon. The effect of pre-existing organic aerosol mass on SOA yield, an issue of direct relevance to the translation of laboratory data to atmospheric applications, is examined. The importance of direct chemical measurements of gas- and particle-phase species is underscored in identifying SOA formation mechanisms.

  15. 40 CFR 721.10188 - Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (generic). (a... generically as fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

  16. Gaseous hydrocarbon production by the reaction of coal char with hydrogen plasma at relatively lower microwave power

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, S.; Nishikubo, K.; Imamura, T. [Kyushu National Industrial Research Institute, Tosu (Japan)

    1998-07-01

    Experimental conditions such as reaction temperature, microwave power and reaction pressure were changed in the reaction of carbon with hydrogen plasma. Methane was major product and other hydrocarbons such as acetylene and C2-C4 hydrocarbons were also produced. Methane production shows its maximum at 700-900 K and at 30W of microwave power. 2 figs.

  17. Occurrence of the Bunsen side reaction in the sulfur-iodine thermochemical cycle for hydrogen production

    Institute of Scientific and Technical Information of China (English)

    Qiao-qiao ZHU; Yan-wei ZHANG; Zhi YING; Jun-hu ZHOU; Zhi-hua WANG; Ke-fa CEN

    2013-01-01

    This study aimed to establish a closed-cycle operation technology with high thermal efficiency in the thermochemical sulfur-iodine cycle for large-scale hydrogen production.A series of experimental studies were performed to investigate the occurrence of side reactions in both the H2SO4 and HIx phases from the H2SO4/HI/I2/H2O quaternary system within a constant temperature range of 323-363 K.The effects of iodine content,water content and reaction temperature on the side reactions were evaluated.The results showed that an increase in the reaction temperature promoted the side reactions.However,they were prevented as the iodine or water content increased.The occurrence of side reactions was faster in kinetics and more intense in the H2SO4 phase than in the HIx phase.The sulfur or hydrogen sulfide formation reaction or the reverse Bunsen reaction was validated under certain conditions.

  18. Effect of incubation atmosphere on the production and composition of staphylococcal biofilms.

    Science.gov (United States)

    Asai, Kentaro; Yamada, Keiko; Yagi, Tetsuya; Baba, Hisashi; Kawamura, Ichiro; Ohta, Michio

    2015-01-01

    Staphylococcus aureus and Staphylococcus epidermidis are pathogenic bacteria that often cause invasive infections in humans. In this study, we characterized the composition and growth characteristics of staphylococcal biofilms under various incubation atmospheres. We assessed the effect of incubation atmosphere (aerobic, 5% CO2, anaerobic, and microaerobic) on the biofilm production capabilities of S. aureus strains isolated from healthy volunteers and from patients with catheter-related bloodstream infection. In addition, the composition of S. aureus and S. epidermidis biofilms was determined by assessment of biofilm degradation after treatment with DNase I, proteinase K, and dispersin B. The strains obtained from healthy volunteers and patients showed similar biofilm formation capabilities. Biofilms of S. aureus were rich in proteins when developed under ambient atmospheric conditions, 5% CO2, and microaerobic condition, whereas S. epidermidis biofilms contained large amounts of poly-β (1, 6)-N-acetyl-D-glucosamine when developed under ambient atmospheric conditions and microaerobic condition. The biofilm-producing capability of S. epidermidis was considerably higher than that of S. aureus under aerobic condition. Staphylococcal isolates obtained from healthy individuals and patients with catheter-related infections have similar biofilm-forming capabilities. Under microaerobic conditions, S. aureus and S. epidermidis form protein-rich and poly-β (1, 6)-N-acetyl-D-glucosamine-rich biofilms, respectively. These components may play an important role in the development of biofilms inside the body and may be the target molecules to prevent catheter-related infections caused by these organisms.

  19. Future atmospheric conditions increase the greenhouse gas intensity of rice production

    Science.gov (United States)

    Van Groenigen, K.; Van Kessel, C.; Hungate, B. A.

    2012-12-01

    Elevated levels of atmospheric CO2 and rising temperatures are both expected to alter rice yields and greenhouse gas (GHG) emissions from rice paddies. This is important, because rice cultivation is one of the largest anthropogenic sources of the potent GHG methane (CH4) and rice is the world's second-most produced staple crop. Because global food demand is growing, it makes sense to assess GHG emissions from croplands on the basis of yield rather than land area, so that efforts to reduce GHG emissions occur with taking into consideration the effects on food production. However, it is unclear whether or how the GHG intensity (that is, yield-scaled GHG emissions) of cropping systems will be affected by future atmospheric conditions. Using meta-analysis, we show that elevated atmospheric CO2 (ranging from 550 to 743 ppmV) and warming (ranging from +0.8°C to +6°C) both increase the GHG intensity of rice cultivation. Elevated atmospheric CO2 increased GHG intensity by 31.4%, because CH4 emissions are stimulated more than rice yields. Warming increased GHG intensity by 11.8% per 1°C, largely due to a decrease in yield. Our findings underscore the need for mitigation and adaptation efforts to secure global food supply while at the same time keeping GHG emissions in check.

  20. Deep subthreshold Xi;{-} production in Ar + KCl reactions at 1.76A GeV.

    Science.gov (United States)

    Agakishiev, G; Balanda, A; Bassini, R; Belver, D; Belyaev, A V; Blanco, A; Böhmer, M; Boyard, J L; Braun-Munzinger, P; Cabanelas, P; Castro, E; Chernenko, S; Christ, T; Destefanis, M; Díaz, J; Dohrmann, F; Dybczak, A; Eberl, T; Fabbietti, L; Fateev, O V; Finocchiaro, P; Fonte, P; Friese, J; Fröhlich, I; Galatyuk, T; Garzón, J A; Gernhäuser, R; Gil, A; Gilardi, C; Golubeva, M; González-Díaz, D; Guber, F; Hennino, T; Holzmann, R; Iori, I; Ivashkin, A; Jurkovic, M; Kämpfer, B; Kanaki, K; Karavicheva, T; Kirschner, D; Koenig, I; Koenig, W; Kolb, B W; Kotte, R; Krizek, F; Krücken, R; Kühn, W; Kugler, A; Kurepin, A; Lang, S; Lange, J S; Lapidus, K; Liu, T; Lopes, L; Lorenz, M; Maier, L; Mangiarotti, A; Markert, J; Metag, V; Michalska, B; Michel, J; Mishra, D; Morinière, E; Mousa, J; Müntz, C; Naumann, L; Otwinowski, J; Pachmayer, Y C; Palka, M; Parpottas, Y; Pechenov, V; Pechenova, O; Pietraszko, J; Przygoda, W; Ramstein, B; Reshetin, A; Roy-Stephan, M; Rustamov, A; Sadovsky, A; Sailer, B; Salabura, P; Schmah, A; Sobolev, Yu G; Spataro, S; Spruck, B; Ströbele, H; Stroth, J; Sturm, C; Sudol, M; Tarantola, A; Teilab, K; Tlusty, P; Traxler, M; Trebacz, R; Tsertos, H; Wagner, V; Weber, M; Wisniowski, M; Wojcik, T; Wüstenfeld, J; Yurevich, S; Zanevsky, Y V; Zhou, P; Zumbruch, P

    2009-09-25

    We report first results on a deep subthreshold production of the doubly strange hyperon Xi;{-} in a heavy-ion reaction. At a beam energy of 1.76A GeV the reaction Ar + KCl was studied with the High Acceptance Di-Electron Spectrometer at SIS18/GSI. A high-statistics and high-purity Lambda sample was collected, allowing for the investigation of the decay channel Xi;{-} --> Lambdapi;{-}. The deduced Xi;{-}/(Lambda + Sigma;{0}) production ratio of (5.6 +/- 1.2_{-1.7};{+1.8}) x 10;{-3} is significantly larger than available model predictions.

  1. Reaction product analysis of aconitine in dilute ethanol using ESI-Q-ToF-MS.

    Science.gov (United States)

    Tan, Peng; Liu, Yong-Gang; Li, Fei; Qiao, Yan-Jiang

    2012-04-01

    The study was done to identify the reaction products of aconitine in dilute ethanol using electrospray ionization-triple quad time-of-flight mass spectrometry (ESI-Q-TOF-MS). Five hydrolysates were detected, their pseudo-molecules are 632, 604, 586, 570, 500, they are 8-ethyoxyl-14-benzoylaconitine, benzoylaconine, pyraconitine, 8-acetyl-14-ethyoxylaconitine, aconine, respectively. Among them, 8-ethyoxyl-14-benzoylaconitine and 8-acetyl-14-ethyoxylaconitine were identified firstly as reaction products of aconitine in dilute ethanol, and can thus be used as indicators in quality control of medicinal Aconitum preparations used in Traditional Chinese Medicine.

  2. Review of heterogeneous photochemical reactions of NOy on aerosol-A possible daytime source of nitrous acid (HONO) in the atmosphere

    Institute of Scientific and Technical Information of China (English)

    Jinzhu Ma; Yongchun Liu; Chong Han; Qingxin Ma; Chang Liu; Hong He

    2013-01-01

    As an important precursor of hydroxyl radical,nitrous acid (HONO) plays a key role in the chemistry of the lower atmosphere.Recent atmospheric measurements and model calculations show strong enhancement for HONO formation during daytime,while they are inconsistent with the known sources in the atmosphere,suggesting that current models are lacking important sources for HONO.In this article,heterogeneous photochemical reactions of nitric acid/nitrate anion and nitrogen oxide on various aerosols were reviewed and their potential contribution to HONO formation was also discussed.It is demonstrated that HONO can be formed by photochemical reaction on surfaces with deposited HNO3,by photocatalytic reaction of NO2 on TiO2 or TiO2-containing materials,and by photochemical reaction of NO2 on soot,humic acids or other photosensitized organic surfaces.Although significant uncertainties still exist in the exact mechanisms and the yield of HONO,these additional sources might explain daytime observations in the atmosphere.

  3. Preliminary study on atmospheric-pressure plasma-based chemical dry figuring and finishing of reaction-sintered silicon carbide

    Science.gov (United States)

    Shen, Xinmin; Deng, Hui; Zhang, Xiaonan; Peng, Kang; Yamamura, Kazuya

    2016-10-01

    Reaction-sintered silicon carbide (RS-SiC) is a research focus in the field of optical manufacturing. Atmospheric-pressure plasma-based chemical dry figuring and finishing, which consist of plasma chemical vaporization machining (PCVM) and plasma-assisted polishing (PAP), were applied to improve material removal rate (MRR) in rapid figuring and ameliorate surface quality in fine finishing. Through observing the processed RS-SiC sample in PCVM by scanning white-light interferometer (SWLI), the calculated peak-MRR and volume-MRR were 0.533 μm/min and 2.78×10-3 mm3/min, respectively. The comparisons of surface roughness and morphology of the RS-SiC samples before and after PCVM were obtained by the scanning electron microscope and atomic force microscope. It could be found that the processed RS-SiC surface was deteriorated with surface roughness rms 382.116 nm. The evaluations of surface quality of the processed RS-SiC sample in PAP corresponding to different collocations of autorotation speed and revolution speed were obtained by SWLI measurement. The optimal surface roughness rms of the processed RS-SiC sample in PAP was 2.186 nm. There were no subsurface damages, scratches, or residual stresses on the processed sample in PAP. The results indicate that parameters in PAP should be strictly selected, and the optimal parameters can simultaneously obtain high MRR and smooth surface.

  4. An atmospheric pressure high-temperature laminar flow reactor for investigation of combustion and related gas phase reaction systems

    Energy Technology Data Exchange (ETDEWEB)

    Oßwald, Patrick; Köhler, Markus [Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, D-70569 Stuttgart (Germany)

    2015-10-15

    A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimental data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes.

  5. Computational Raman spectroscopy of organometallic reaction products in lithium and sodium-based battery systems.

    Science.gov (United States)

    Sánchez-Carrera, Roel S; Kozinsky, Boris

    2014-11-28

    A common approach to understanding surface reaction mechanisms in rechargeable lithium-based battery systems involves spectroscopic characterization of the product mixtures and matching of spectroscopic features to spectra of pure candidate reference compounds. This strategy, however, requires separate chemical synthesis and accurate characterization of potential reference compounds. It also assumes that atomic structures are the same in the actual product mixture as in the reference samples. We propose an alternative approach that uses first-principles computations of spectra of the possible reaction products and by-products present in advanced battery systems. We construct a library of computed Raman spectra for possible products, achieving excellent agreement with reference experimental data, targeting solid-electrolyte interphase in Li-ion cells and discharge products of Li-air cells. However, the solid-state crystalline structure of Li(Na) metal-organic compounds is often not known, making the spectra computations difficult. We develop and apply a novel technique of simplifying spectra calculations by using dimer-like representations of the solid state structures. On the basis of a systematic investigation, we demonstrate that molecular dimers of Li(Na)-based organometallic material provide relevant information about the vibrational properties of many possible solid reaction products. Such an approach should serve as a basis to extend existing spectral libraries of molecular structures relevant for understanding the link between atomic structures and measured spectroscopic data of materials in novel battery systems.

  6. Combustion characteristics and influential factors of isooctane active-thermal atmosphere combustion assisted by two-stage reaction of n-heptane

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xingcai; Ji, Libin; Ma, Junjun; Zhou, Xiaoxin; Huang, Zhen [Key Lab. for Power Machinery and Engineering of MOE, Shanghai Jiao Tong University, 200240 Shanghai (China)

    2011-02-15

    This paper presents an experimental study on the isooctane active-thermal atmosphere combustion (ATAC) which is assisted by two-stage reaction of n-heptane. The active-thermal atmosphere is created by low- and high-temperature reactions of n-heptane which is injected at intake port, and isooctane is directly injected into combustion chamber near the top dead center. The effects of isooctane injection timing, active-thermal atmosphere intensity, overall equivalence ratio, and premixed ratio on combustion characteristics and emissions are investigated. The experimental results reveal that, the isooctane ignition and combustion can be classified to thermal atmosphere combustion, active atmosphere combustion, and active-thermal atmosphere combustion respectively according to the extent of n-heptane oxidation as well as effects of isooctane quenching and charge cooling. n-Heptane equivalence ratio, isooctane equivalence ratio and isooctane delivery advance angle are major control parameters. In one combustion cycle, the isooctane ignited and burned after those of n-heptane, and then this combustion phenomenon can also be named as dual-fuel sequential combustion (DFSC). The ignition timing of the overall combustion event is mainly determined by n-heptane equivalence ratio and can be controlled in flexibility by simultaneously adjusting isooctane equivalence ratio. The isooctane ignition regime, overall thermal efficiency, and NO{sub x} emissions show strong sensitivity to the fuel delivery advance angle between 20 CA BTDC and 25 CA BTDC. (author)

  7. Light Induced Degradation of Eight Commonly Used Pesticides Adsorbed on Atmospheric Particles: Kinetics and Product Study

    Science.gov (United States)

    Socorro, J.; Durand, A.; Gligorovski, S.; Wortham, H.; Quivet, E.

    2014-12-01

    Pesticides are widely used all over the world whether in agricultural production or in non-agricultural settings. They may pose a potential human health effects and environmental risks due to their physico-chemical properties and their extensive use which is growing every year. Pesticides are found in the atmosphere removed from the target area by volatilization or wind erosion, and carried over long distances. These compounds are partitioned between the gaseous and particulate atmospheric phases. The increasingly used pesticides are semi-volatile compounds which are usually adsorbed on the surface of the atmospheric particles. These pesticides may undergo chemical and photo-chemical transformation. New compounds may then be formed that could be more hazardous than the primary pesticides. The atmospheric fate and lifetime of adsorbed pesticides on particles are controlled by the these (photo)chemical processes. However, there is a lack of kinetic data regarding the pesticides in the particle phase. This current work focuses on the photolytic degradation of commonly used pesticides in particulate phase. It aims at estimating the photolytic rates and thus the lifetimes of pesticides adsorbed on silica particles as a proxy of atmospheric particles. The following eight commonly used pesticides, cyprodinil, deltamethrin, difenoconazole, fipronil, oxadiazon, pendimethalin, permethrin, tetraconazole, were chosen because of their physico-chemical properties. The photolysis rates of tetraconazole and permethrin were extremely slow ≤ 1.2 · 10-6 s-1. The photolysis rates for the other pesticides were determined in the range of: (5.9 ± 0.3) · 10-6 fipronil. Finally, the identification of the surface products upon light irradiation was performed, using GC-(QqQ)-MS/MS and LC-(Q-IMS-ToF)-MS/MS. The potentially formed gas-phase products during these photolysis processes were followed continuously and on-line by PTR-ToF-MS. We hope that the obtained results from this study

  8. Production of bio-fuels from cottonseed cake by catalytic pyrolysis under steam atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Puetuen, Ersan [Department of Material Science and Engineering, Anadolu University, Iki Eyluel Campus, 26555 Eskisehir (Turkey); Uzun, Basak Burcu; Puetuen, Ayse Eren [Department of Chemical Engineering, Anadolu University, Iki Eyluel Campus, 26555 Eskisehir (Turkey)

    2006-06-15

    The purpose of this study is to evaluate the amounts of catalytic pyrolysis products of cottonseed cake in steam atmosphere and investigate the effects of both zeolite and steam on pyrolysis yields. The effect of steam was investigated by co-feeding steam at various velocities (0.6:1.3:2.7cms{sup -1}) in the presence of zeolite (20wt% of feed). Liquid pyrolysis products obtained at the most appropriate conditions were fractionated by column chromatography. Elemental analysis and FT-IR were applied on both of these liquid products and their sub-fractions. The H/C ratios obtained from elemental analysis were compared with the petroleum products. The aliphatic sub-fractions of the oils were then analysed by capillary column gas chromatography. Further structural analysis of pyrolysis oil was conducted using {sup 1}H-NMR spectroscopy. The characterization has shown that the bio-oil obtained from catalytic and steam pyrolysis of cottonseed cake was more beneficial than those obtained from non-catalytic and catalytic works under static and nitrogen atmospheres. (author)

  9. Rapid differentiation of tea products by surface desorption atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Chen, Huanwen; Liang, Huazheng; Ding, Jianhua; Lai, Jinhu; Huan, Yanfu; Qiao, Xiaolin

    2007-12-12

    Protonated water molecules generated by an ambient corona discharge were directed to impact tea leaves for desorption/ionization at atmospheric pressure. Thus, a novel method based on surface desorption chemical ionization mass spectrometry (DAPCI-MS) has been developed for rapid analysis of tea products without any sample pretreatment. Under the optimized experimental conditions, DAPCI MS spectra of various tea samples are recorded rapidly, and the resulting mass spectra are chemical fingerprints that characterize the tea samples. On the basis of the mass spectral fingerprints, 40 tea samples including green tea, oolong tea, and jasmine tea were successfully differentiated by principal component analysis (PCA) of the mass spectral raw data. The PCA results were also validated with cluster analysis and supervised PCA analysis. The alteration of signal intensity caused by rough surfaces of tea leaves did not cause failure in the separation of the tea products. The experimental findings show that DAPCI-MS creates ions of both volatile and nonvolatile compounds in tea products at atmospheric pressure, providing a practical and convenient tool for high-throughput differentiation of tea products.

  10. Modeling Chemical Growth Processes in Titan's Atmosphere: 1. Theoretical Rates for Reactions between Benzene and the Ethynyl (C2H) and Cyano (CN) Radicals at Low Temperature and Pressure

    Science.gov (United States)

    Woon, David E.

    2006-01-01

    Density functional theory calculations at the B3LYP/6-31+G** level were employed to characterize the critical points for adducts, isomers, products, and intervening transition states for the reactions between benzene and the ethynyl (C2H) or cyano (CN) radicals. Both addition reactions were found to have no barriers in their entrance channels, making them efficient at the low temperature and pressure conditions that prevail in the haze-forming region of Titan's atmosphere as well as in the dense interstellar medium (ISM). The dominant products are ethynylbenzene (C6H5C2H) and cyanobenzene (C6H5CN). Hydrogen abstraction reactions were also characterized but found to be non-competitive. Trajectory calculations based on potentials fit to about 600 points calculated at the ROMP2/6-31+G** level for each interaction surface were used to determine reaction rates. The rates incorporated any necessary corrections for back reactions as ascertained from a multiwell treatment used to determine outcome distributions over the range of temperatures and pressures pertinent to Titan and the ISM and are in good agreement with the limited available experimental data.

  11. Production of Zinc Borate for Pilot-Scale Equipment and Effects of Reaction Conditions on Yield

    Directory of Open Access Journals (Sweden)

    Melek BARDAKCI

    2013-05-01

    Full Text Available In this study, zinc borate (ZB was synthesized by reacting zinc oxide and boric acid in the presence of standard ZB (w/w, in terms of boric acid in order to promote crystallization. The effects of seed, H3BO3/ZnO (boric acid/zinc oxide ratio, reaction time, water volume, reaction temperature and cooling temperature on yield were investigated for pilot-scale equipment. The results indicated that the addition of seed (w/w to a saturated solution of reactants increased the yield of the reaction. The results of reaction yields obtained from either magnetically or mechanically stirred systems were compared. At various reaction times, the optimal yield was 86.78 % in a saturated aqueous solution. The products were characterized by X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR and Thermogravimetric / Differential Thermal Analysis (TG/DTA. The results displayed that ZB was successfully produced under the optimized reaction conditions and the product synthesized had high thermal stability.DOI: http://dx.doi.org/10.5755/j01.ms.19.2.4432

  12. Quantitative relationship between production and removal of OH and HO2 radicals in urban atmosphere

    Institute of Scientific and Technical Information of China (English)

    SHAO Min; REN Xinrong; WANG Huixiang; ZENG Limin; ZHANG Yuanhang; TANG Xiaoyan

    2004-01-01

    Atmospheric oxidizing capacity is the essential feature of urban and regional air. And OH and HO2 radicals are the key species indicating atmospheric oxidizing capacity. Using Guangzhou City as a case, this work has conducted field measurements of photochemistry relevant pollutants including O3, NOx, VOCs, H2O2, HNO2 and CO, SO2. The concentrations of OH radical are measured simultaneously by impregnated filter trapping and HPLC (IFT- HPLC) method. The factors influencing OH levels are assessed. Based on understanding of OH and HO2 air chemistry, the production and removal rates of these 2 radicals are calculated. The results show that the budget of OH and HO2 can generally be closed, the radical transformation between OH and HO2 dominates the sources and sinks of them, and also the photolysis of HNO2 and HCHO is the significant source of OH and HO2 respectively.

  13. $J/\\psi$ and $\\psi '$ production in p, O and S induced reactions at SPS energies

    CERN Document Server

    Abreu, M C; Baglin, C; Baldit, A; Bedjidian, Marc; Bordalo, P; Bohrani, A; Bussière, A; Busson, P; Castor, J I; Chambon, T; Charlot, C; Chaurand, B; Chevrot, I; Contardo, D; Descroix, E; Devaux, A; Drapier, O; Espagnon, B; Fargeix, J; Ferreira, R; Fleuret, F; Force, P; Fredj, L; Gago, J M; Gerschel, C; Gorodetzky, P; Grossiord, J Y; Guichard, A; Guillaud, J P; Haroutunian, R; Jouan, D; Kluberg, L; Kossakowski, R; Landaud, G; Lourenço, C; Luquin, Lionel; Mandry, R; Mourgues, S; Ohlsson-Malek, F; Papillon, S; Pizzi, J R; Racca, C; Ramos, S; Romana, A; Ronceux, B; Saturnini, P; Silva, S; Sonderegger, P; Tarrago, X; Varela, J; Vazeille, F

    1999-01-01

    The production of the \\jpsi\\ and \\psip\\ charmonia states has been studied, through their dimuon decay, in proton, Oxygen and Sulphur induced reactions, by the NA38 experiment at the CERN SPS. The proton data was collected with beams of 200 and 450~GeV, while the ion beams had an energy of 200~GeV per incident nucleon. The \\jpsi\\ production cross-section per nucleon-nucleon collision exhibits a remarkably continuous pattern, as a function of the product of the mass numbers of the interacting nuclei, from pp up to S-U reactions. The same pattern is observed within S-U collisions, as a function of the collision centrality. While in p-A interactions both charmonia states exhibit the same A-dependence, in \\mbox{S-U} collisions the \\psip\\ production is very strongly suppressed.

  14. $J/\\psi$ and $\\psi'$ production in p, O and S induced reactions at SPS energies

    CERN Document Server

    Abreu, M C; Baglin, C; Baldit, A; Bedjidian, Marc; Bordalo, P; Bohrani, A; Bussière, A; Busson, P; Castor, J I; Chambon, T; Charlot, C; Chaurand, B; Chevrot, I; Contardo, D; Descroix, E; Devaux, A; Drapier, O; Espagnon, B; Fargeix, J; Ferreira, R; Fleuret, F; Force, P; Fredj, L; Gago, J M; Gerschel, C; Gorodetzky, P; Grossiord, J Y; Guichard, A; Guillaud, J P; Haroutunian, R; Jouan, D; Kluberg, L; Kossakowski, R; Landaud, G; Lourenço, C; Luquin, Lionel; Mandry, R; Mourgues, S; Ohlsson-Malek, F; Papillon, S; Pizzi, J R; Racca, C; Ramos, S; Romana, A; Ronceux, B; Saturnini, P; Silva, S; Sonderegger, P; Tarrago, X; Varela, J; Vazeille, F

    1999-01-01

    The production of the J/ psi and psi ' charmonia states has been studied, through their dimuon decay, in proton, oxygen and sulphur induced reactions, by the NA38 experiment at the CERN SPS. The proton data was collected with beams of 200 and 450 GeV, while the ion beams had an energy of 200 GeV per incident nucleon. The J/ psi production cross-section per nucleon-nucleon collision exhibits a remarkably continuous pattern, as a function of the product of the mass numbers of the interacting nuclei, from pp up to S-U reactions. The same pattern is observed within S-U collisions, as a function of the collision centrality. While in p-A interactions both charmonia states exhibit the same A-dependence, in S-U collisions the psi ' production is very strongly suppressed. (15 refs).

  15. Production of Solar-Grade Silicon by the SiF4 and Mg Reaction

    Science.gov (United States)

    Xie, Xiaobing; Bao, Jianer; Sanjurjo, Angel

    2016-08-01

    Over 90 pct of the solar cells currently produced and installed are Si based, and this industrial dominance is expected to persist for the foreseeable future. The crystalline Si substrate accounts for a significant portion of the total cost of solar cells. In order to further reduce the cost of solar panels, there has been significant effort in producing inexpensive solar-grade Si, mainly through three paths: (1) modification of the Siemens process to lower production costs, (2) upgrading metallurgical-grade Si to reach solar-grade purity, and (3) by means of new metallurgical processes such as the reduction of a silicon halide, e.g., SiF4 or SiCl4, by a reactive metal such as Na or Zn. In this paper, we describe an alternative path that uses Mg to react with SiF4 to produce low-cost solar grade Si. Experimental conditions for complete reaction and separation of the products, Si and MgF2, as well as aspects of the reaction mechanism are described. The reaction involves both a heterogeneous liquid-gas phase reaction and a homogeneous gas-gas phase reaction. When pure Mg was used, the Si product obtained had sub-ppm levels of B and P impurities and is expected to be suitable for solar cell applications.

  16. Reactions

    DEFF Research Database (Denmark)

    Søndergaard, Morten

    2011-01-01

      My concern is to understand augmentation as an emergent modality - among many others in ‘the expanding digital field' (Søndergaard M. , Transformative Creativity in the Expanded Digital Field, 2009)' - attributed to the production of contemporary art and the ‘archive of knowledge' in the (art...... construction; and 2) As a construction of a new reactive modality of the (art) museum as ‘archive of reality' - showing the outline of a cultural institution that oscillates between the instituting and institutionalizing competences of the (art) museum - between knowledge-based and experience-based exhibiting......; It is in this negotiation, I would claim, that the foundation of a possible critique of the role of the (art) museum in the age of post-bourgeois public space and experience-based culture should be located....

  17. Chemoselective reaction of cyanoacetic acid with benzal-4-acetylanilines and fungitoxicity of products

    Indian Academy of Sciences (India)

    Anjali Sidhu; J R Sharma; Mangat Rai

    2009-07-01

    Cyanoacetic acid reacted chemoselectively with carbon-nitrogen double bond of benzal-4-acetylaniliines, leaving the carbon-oxygen double bond, considered to be more reactive, intact, leading to the formation of mono addition-elimination products rather than bis attack at both the reactive centres, even when the reaction was carried out with two moles of cyanoacetic acid. The product viz. benzalcyanoacetic acid and its derivatives were screened for their fungitoxicity against five pathogenic fungi.

  18. Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles.

    OpenAIRE

    Carozzi, N B; Kramer, V C; Warren, G W; Evola, S; Koziel, M G

    1991-01-01

    A rapid analysis of Bacillus thuringiensis strains predictive of insecticidal activity was established by using polymerase chain reaction (PCR) technology. Primers specific to regions of high homology within genes encoding three major classes of B. thuringiensis crystal proteins were used to generate a PCR product profile characteristic of each insecticidal class. Predictions of insecticidal activity were made on the basis of the electrophoretic patterns of the PCR products. Included in the s...

  19. Determination of 68Ga production parameters by different reactions using ALICE and TALYS codes

    Indian Academy of Sciences (India)

    Mahdi Sadeghi; Tayeb Kakavand; Leila Mokhtari; Zohreh Gholamzadeh

    2009-02-01

    Gallium-68 (1/2 = 68 min, + = 89%) is an important positron-emitting radionuclide for positron emission tomography and used in nuclear medicine for diagnosing tumours. This study gives a suitable reaction to produce 68Ga. Gallium-68 excitation function via 68Zn(, ) 68Ga, 68Zn(, 2) 68Ga, 70Zn(, 3) 68Ga and 65Cu(, ) 68Ga reactions were calculated by ALICE-91 and TALYS-1.0 codes. The calculated excitation function of 68Zn(, ) 68Ga reaction was compared with the reported measurement and evaluations. Requisite thickness of the targets was obtained by SRIM code for each reaction. The 68Ga production yield was evaluated using excitation function and stopping power.

  20. Characterization of the products formed by the reaction of trichlorocyanuric acid with 2-propanol.

    Science.gov (United States)

    Sandercock, P Mark L; Barnett, Julie S

    2009-11-01

    We report a recent investigation into the death of a cat that was initially thought to involve intentionally burning the animal via the use of an ignitable liquid. The exposure of the animal to flame was ruled out. Instead, forensic investigation revealed the intentional mixing together of a common outdoor swimming pool chlorinator, trichlorocyanuric acid (TCCA), and 2-propanol (aka, isopropyl alcohol or rubbing alcohol). The reaction of these two chemicals resulted in the formation of cyanuric acid residue, hydrochloric acid, and the evolution of a significant volume of chlorine gas. Further alpha-chlorination side reactions also occurred between 2-propanol and TCCA to produce a variety of chlorinated 2-propanone species that were detected on the submitted evidence. The identification of the products of both the main reaction and the side reactions allowed the authors to determine what chemicals were originally mixed together by the culprit.

  1. Food Processing and Maillard Reaction Products: Effect on Human Health and Nutrition.

    Science.gov (United States)

    Tamanna, Nahid; Mahmood, Niaz

    2015-01-01

    Maillard reaction produces flavour and aroma during cooking process; and it is used almost everywhere from the baking industry to our day to day life to make food tasty. It is often called nonenzymatic browning reaction since it takes place in the absence of enzyme. When foods are being processed or cooked at high temperature, chemical reaction between amino acids and reducing sugars leads to the formation of Maillard reaction products (MRPs). Depending on the way the food is being processed, both beneficial and toxic MRPs can be produced. Therefore, there is a need to understand the different types of MRPs and their positive or negative health effects. In this review we have summarized how food processing effects MRP formation in some of the very common foods.

  2. Food Processing and Maillard Reaction Products: Effect on Human Health and Nutrition

    Directory of Open Access Journals (Sweden)

    Nahid Tamanna

    2015-01-01

    Full Text Available Maillard reaction produces flavour and aroma during cooking process; and it is used almost everywhere from the baking industry to our day to day life to make food tasty. It is often called nonenzymatic browning reaction since it takes place in the absence of enzyme. When foods are being processed or cooked at high temperature, chemical reaction between amino acids and reducing sugars leads to the formation of Maillard reaction products (MRPs. Depending on the way the food is being processed, both beneficial and toxic MRPs can be produced. Therefore, there is a need to understand the different types of MRPs and their positive or negative health effects. In this review we have summarized how food processing effects MRP formation in some of the very common foods.

  3. Atmospheric emissions and air quality impacts from natural gas production and use.

    Science.gov (United States)

    Allen, David T

    2014-01-01

    The US Energy Information Administration projects that hydraulic fracturing of shale formations will become a dominant source of domestic natural gas supply over the next several decades, transforming the energy landscape in the United States. However, the environmental impacts associated with fracking for shale gas have made it controversial. This review examines emissions and impacts of air pollutants associated with shale gas production and use. Emissions and impacts of greenhouse gases, photochemically active air pollutants, and toxic air pollutants are described. In addition to the direct atmospheric impacts of expanded natural gas production, indirect effects are also described. Widespread availability of shale gas can drive down natural gas prices, which, in turn, can impact the use patterns for natural gas. Natural gas production and use in electricity generation are used as a case study for examining these indirect consequences of expanded natural gas availability.

  4. Acid-Catalyzed Transesterification Reaction of Beef Tallow For Biodiesel Production By Factor Variation

    Directory of Open Access Journals (Sweden)

    R.C. Ehiri

    2014-07-01

    Full Text Available Biodiesel is a diesel grade fuel made by transesterification reaction of vegetable oils and animal fats with alcohol. Three variable factors that affect the yield of biodiesel namely, reaction time, reaction temperature and catalyst concentration were studied in this work. The biodiesel was produced via a batchprocess acid-catalyzed transesterification reaction of beef tallow with methanol. Optimal conditions for the reaction were established in a three factor two-level (23 central composite design with the biodiesel pretreatment yield as the response surface. The results show that the mean yield of biodiesel was 92.04% with a standard deviation of 5.16. An optimal biodiesel yield of 96.30% occurred at 0.5% HCl catalyst concentration and at constant conditions of 1.5h reaction time, 60oC reaction temperature and 6:1 methanol: tallow volume ratio. Gas chromatographic analysis of the beef tallow identified palmitic, stearic and oleic acids in it while the fatty acid methyl esters in the biodiesel product were oleate and linoleate. Catalysis was the most significant factor in the transesterification process.

  5. Concurrent extraction and reaction for the production of biodiesel from wet microalgae.

    Science.gov (United States)

    Im, Hanjin; Lee, HanSol; Park, Min S; Yang, Ji-Won; Lee, Jae W

    2014-01-01

    This work addresses a reliable in situ transesterification process which integrates lipid extraction from wet microalgae, and its conversion to biodiesel, with a yield higher than 90 wt.%. This process enables single-step production of biodiesel from microalgae by mixing wet microalgal cells with solvent, methanol, and acid catalyst; and then heating them in one pot. The effects of reaction parameters such as reaction temperature, wet cell weight, reaction time, and catalyst volume on the conversion yield are investigated. This simultaneous extraction and transesterification of wet microalgae may enable a significant reduction in energy consumption by eliminating the drying process of algal cells and realize the economic production of biodiesel using wet microalgae.

  6. Production of hydrogen peroxide in the atmosphere of a Snowball Earth and the origin of oxygenic photosynthesis.

    Science.gov (United States)

    Liang, Mao-Chang; Hartman, Hyman; Kopp, Robert E; Kirschvink, Joseph L; Yung, Yuk L

    2006-12-12

    During Proterozoic time, Earth experienced two intervals with one or more episodes of low-latitude glaciation, which are probable "Snowball Earth" events. Although the severity of the historical glaciations is debated, theoretical "hard Snowball" conditions are associated with the nearly complete shutdown of the hydrological cycle. We show here that, during such long and severe glacial intervals, a weak hydrological cycle coupled with photochemical reactions involving water vapor would give rise to the sustained production of hydrogen peroxide. The photochemical production of hydrogen peroxide has been proposed previously as the primary mechanism for oxidizing the surface of Mars. During a Snowball, hydrogen peroxide could be stored in the ice; it would then be released directly into the ocean and the atmosphere upon melting and could mediate global oxidation events in the aftermath of the Snowball, such as that recorded in the Fe and Mn oxides of the Kalahari Manganese Field, deposited after the Paleoproterozoic low-latitude Makganyene glaciation. Low levels of peroxides and molecular oxygen generated during Archean and earliest Proterozoic non-Snowball glacial intervals could have driven the evolution of oxygen-mediating and -using enzymes and thereby paved the way for the eventual appearance of oxygenic photosynthesis.

  7. Kinetics and corrosion products of aqueous nitrate reduction by iron powder without reaction conditions control

    Institute of Scientific and Technical Information of China (English)

    FAN Xiaomeng; GUAN Xiaohong; MA Jun; AI Hengyu

    2009-01-01

    Although considerable research has been conducted on nitrate reduction by zero-valent iron powder (Fe0), these studies were mostly operated under anaerobic and invariable pH conditions that was unsuitable for practical application.Without reaction conditions (dissolved oxygen or reaction pH) control, this study aimed at subjecting the kinetics of denitrification by microscale Fe0 (160-200 mesh) to analysis the factors affecting the denitrification of nitrate and the composition of iron reductive products coating upon the iron surface.Results of the kinetics study have indicated that a higher initial concentration of nitrate would yield a greater reaction rate constant.Additional test results showed that the reduction rate of nitrate increased with increasing Fe0 dosage.The reaction can be described as a pseudo-first order reaction with respect to nitrate concentration or Fe0 dosage.Experimental results also suggested that nitrate reduction by microscale Fe0 without reaction condition control primarily was an acid-driven surface-mediated process, and the reaction order was 0.65 with respect to hydrogen ion concentration.X-ray diffractometry and X-ray photoelectron spectroscopy indicated that a black coating, consisted of Fe2O3, Fe3O4 and FeO(OH), was formed on the surface of iron grains as an iron corrosion product when the system initial pH was lower than 5.The proportion of FeO(OH) increased as reaction time went on, whereas the proportion of Fe3O4 decreased.

  8. Characterization of cement minerals, cements and their reaction products at the atomic and nano scale

    DEFF Research Database (Denmark)

    Skibsted, Jørgen; Hall, Christopher

    2008-01-01

    Recent advances and highlights in characterization methods are reviewed for cement minerals, cements and their reaction products. The emphasis is on X-ray and neutron diffraction, and on nuclear magnetic resonance methods, although X-ray absorption and Raman spectroscopies are discussed briefly...

  9. 40 CFR 721.10154 - Quaternary ammonium compounds, dicoco alkyldimethyl, chlorides, reaction products with silica.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Quaternary ammonium compounds, dicoco alkyldimethyl, chlorides, reaction products with silica. 721.10154 Section 721.10154 Protection of Environment... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10154 Quaternary ammonium...

  10. A new branch of advertising: reviewing factors that influence reactions to product placement

    NARCIS (Netherlands)

    van Reijmersdal, E.; Neijens, P.; Smit, E.G.

    2009-01-01

    This iiterature review presents a quantitative synthesis of 57 studies on product placement and shows which factors are most effective, it shows that placement characteristics, such as placement commerciality, modality, and prominence, have a strong impact on audience reactions. Audience characteris

  11. Hyperon production in photonuclear reactions on protons and deuterons : The Kappa(0)Sigma(+) channel

    NARCIS (Netherlands)

    Lohner, H; Bacelar, J; Castelijns, R; Messchendorp, J; Shende, S; Maeda, K; Tamura, H; Nakamura, SN; Hashimoto, O

    2004-01-01

    With the combined setup of the Crystal Barrel and TAPS photonspectrometers at ELSA in Bonn we have studied photonuclear reactions on protons and deuterons. From the series of experiments on single and multiple neutral meson emission we concentrate here on the hyperon production off protons and deute

  12. Rapid and sensitive detection of Campylobacter spp. in chicken products by using the polymerase chain reaction

    NARCIS (Netherlands)

    Giesendorf, B A; Quint, W G; Henkens, M H; Stegeman, H; Huf, F A; Niesters, H G

    1992-01-01

    The polymerase chain reaction (PCR) after a short enrichment culture was used to detect Campylobacter spp. in chicken products. After the 16S rRNA gene sequence of Campylobacter jejuni was determined and compared with known sequences from other enterobacteria, a primer and probe combination was sele

  13. Age-related accumulation of Maillard reaction products in human articular cartilage collagen

    NARCIS (Netherlands)

    Verzijl, N.; Groot, J. de; Oldehinkel, E.; Bank, R.A.; Thorpe, S.R.; Baynes, J.W.; Bayliss, M.T.; Bijlsma, J.W.J.; Lafeber, F.P.J.G.; TeKoppele, J.M.

    2000-01-01

    Non-enzymic modification of tissue proteins by reducing sugars, the so-called Maillard reaction, is a prominent feature of aging. In articular cartilage, relatively high levels of the advanced glycation end product (AGE) pentosidine accumulate with age. Higher pentosidine levels have been associated

  14. Detection and analysis of polymerase chain reaction products by mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, G.B., Doktycz, M.J., Britt, P.F., Vass, A.A., Buchanan, M.V.

    1997-02-01

    This paper describes recent and ongoing efforts to overcome some of the obstacles to more routine and robust application of MALDI-TOF to analysis of polymerase chain reaction products and other information- bearing nucleic acid molecules. Methods for purifying nucleic acid samples are described, as is the application of delayed extraction TOF mass spectrometry to analysis of short oligonucleotides.

  15. Gas phase formation of extremely oxidized pinene reaction products in chamber and ambient air

    Directory of Open Access Journals (Sweden)

    M. Ehn

    2012-06-01

    Full Text Available High molecular weight (300–650 Da naturally charged negative ions have previously been observed at a boreal forest site in Hyytiälä, Finland. The long-term measurements conducted in this work showed that these ions are observed practically every night between spring and autumn in Hyytiälä. The ambient mass spectral patterns could be reproduced in striking detail during additional measurements of α-pinene (C10H16 oxidation at low-OH conditions in the Jülich Plant Atmosphere Chamber (JPAC. The ions were identified as clusters of the nitrate ion (NO3 and α-pinene oxidation products reaching oxygen to carbon ratios of 0.7–1.3, while retaining most of the initial ten carbon atoms. Attributing the ions to clusters instead of single molecules was based on additional observations of the same extremely oxidized organics in clusters with HSO4 (Hyytiälä and C3F5O2 (JPAC. The most abundant products in the ion spectra were identified as C10H14O7, C10H14O9, C10H16O9, and C10H14O11. The mechanism responsible for forming these molecules is still not clear, but the initial reaction is most likely ozone attack at the double bond, as the ions are mainly observed under dark conditions. β-pinene also formed highly oxidized products under the same conditions, but less efficiently, and mainly C9 compounds which were not observed in Hyytiälä, where β-pinene on average is 4–5 times less abundant than α-pinene. Further, to explain the high O/C together with the relatively high H/C, we propose that geminal diols and/or hydroperoxide groups may be important. We estimate that the night-time concentration of the sum of the neutral extremely oxidized products is on the order of 0.1–1 ppt (~10

  16. Gas phase formation of extremely oxidized pinene reaction products in chamber and ambient air

    Directory of Open Access Journals (Sweden)

    M. Ehn

    2012-02-01

    Full Text Available High molecular weight (300–650 Da naturally charged negative ions have previously been observed at a boreal forest site in Hyytiälä, Finland. The long-term measurements conducted in this work showed that these ions are observed practically every night during spring and summer in Hyytiälä. The ambient mass spectral patterns could be reproduced in striking detail during additional measurements of α-pinene (C10H16 oxidation at low-OH conditions in the Jülich Plant Atmosphere Chamber (JPAC. The ions were identified as clusters of the nitrate ion (NO3 and α-pinene oxidation products reaching oxygen to carbon ratios of 0.7–1.3, while retaining most of the initial ten carbon atoms. Attributing the ions to clusters instead of single molecules was based on additional observations of the same extremely oxidized organics in clusters with HSO4 (Hyytiälä and C3F5O2 (JPAC. The most abundant products in the ion spectra were identified as C105H14O7, C10H14O9, C10H16O9, and C10H14O11. The mechanism responsible for forming these molecules is still not clear, but the initial reaction is most likely ozone attack at the double bond, as the ions are mainly observed under dark conditions. β-pinene also formed highly oxidized products under the same conditions, but less efficiently, and mainly C9 compounds which were not observed in Hyytiälä, where β-pinene on average is 4–5 times less abundant than α-pinene. Further, to explain the high O/C together with the relatively high H/C, we propose that geminal diols and/or hydroperoxide groups may be important. We estimate that the night-time concentration of the sum of the neutral extremely oxidized products is on the order of 0.1–1 ppt (~10

  17. Lactic acid bacteria in marinades used for modified atmosphere packaged broiler chicken meat products.

    Science.gov (United States)

    Lundström, Hanna-Saara; Björkroth, Johanna

    2007-03-01

    Lactic acid bacteria (LAB) in some marinades commonly used in Finland for modified atmosphere packaged poultry meat products were enumerated and identified to determine whether the marinades contained LAB species that cause meat spoilage. The concentrations of LAB in 51 marinade samples ranged from less than 100 to 8.0 x 10(5) CFU/ml. Seventeen of the samples produced LAB growth only after enrichment, and in five samples no growth was detected either by direct culturing or enrichment. Eighty-eight randomly selected isolates, 51 from the enumerated plates and 37 from enriched samples, were identified using a database of 16S and 23S rRNA gene HindIII restriction fragment length polymorphism patterns of over 300 type and references LAB strains as operational taxonomic units in numerical analyses. The predominating LAB in the enumerated samples was Lactobacillus plantarum (25 of 51 isolates). Eleven isolates were identified as Lactobacillus paracasei subsp. paracasei, and nine were Lactobacillus parabuchneri. None of these species are considered specific spoilage LAB in marinated modified atmosphere packaged poultry meat products nor have they been reported to dominate in unspoiled late-shelf-life products. These results indicate that even though marinades may contain high numbers of LAB, they are not necessarily sources of specific meat spoilage LAB. Therefore, risks associated with meat quality are not predicted by quantitative enumeration of LAB in marinades.

  18. Development of Level 3 (gridded) products for the Atmospheric Infrared Sounder (AIRS)

    Science.gov (United States)

    Granger, Stephanie L.; Leroy, Stephen S.; Manning, Evan M.; Fetzer, Eric J.; Oliphant, Robert B.; Braverman, Amy; Lee, Sung-Yung; Lambrigtsen, Bjom H.

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) sounding system is a suite of infrared and microwave instruments flown as part of NASA's Earth Observing System (EOS) onboard the Aqua platform. The AIRS dataset provides a daily, global view of Earth processes at a finer vertical resolution than ever before. However, analysis of the AIRS data is a daunting task given the sheer volume and complexity of the data. The volume of data produced by the EOS project is unprecedented; the AIRS project alone will produce many terabytes of data over the lifetime of the mission. This paper describes development of AIRS Level 3 data products that will help to alleviate problems of access and usability.

  19. Carbon dioxide absorption and release properties of pyrolysis products of dolomite calcined in vacuum atmosphere.

    Science.gov (United States)

    Wang, Fei; Kuzuya, Toshihiro; Hirai, Shinji; Li, Jihua; Li, Te

    2014-01-01

    The decomposition of dolomite into CaO and MgO was performed at 1073 K in vacuum and at 1273 K in an Ar atmosphere. The dolomite calcined in vacuum was found to have a higher specific surface area and a higher micropore volume when compared to the dolomite calcined in the Ar atmosphere. These pyrolysis products of dolomite were reacted with CO2 at 673 K for 21.6 ks. On the absorption of CO2, the formation of CaCO3 was observed. The degree of absorption of the dolomite calcined in vacuum was determined to be above 50%, which was higher than the degree of absorption of the dolomite calcined in the Ar atmosphere. The CO2 absorption and release procedures were repeated three times for the dolomite calcined in vacuum. The specific surface area and micropore volume of calcined dolomite decreased with successive repetitions of the CO2 absorption and release cycles leading to a decrease in the degree of absorption of CO2.

  20. Uncertainty in the ocean-atmosphere feedbacks associated with ENSO in the reanalysis products

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Arun; Hu, Zeng-Zhen [NCEP/NWS/NOAA, Climate Prediction Center, Camp Springs, MD (United States)

    2012-08-15

    The evolution of El Nino-Southern Oscillation (ENSO) variability can be characterized by various ocean-atmosphere feedbacks, for example, the influence of ENSO related sea surface temperature (SST) variability on the low-level wind and surface heat fluxes in the equatorial tropical Pacific, which in turn affects the evolution of the SST. An analysis of these feedbacks requires physically consistent observational data sets. Availability of various reanalysis data sets produced during the last 15 years provides such an opportunity. A consolidated estimate of ocean surface fluxes based on multiple reanalyses also helps understand biases in ENSO predictions and simulations from climate models. In this paper, the intensity and the spatial structure of ocean-atmosphere feedback terms (precipitation, surface wind stress, and ocean surface heat flux) associated with ENSO are evaluated for six different reanalysis products. The analysis provides an estimate for the feedback terms that could be used for model validation studies. The analysis includes the robustness of the estimate across different reanalyses. Results show that one of the ''coupled'' reanalysis among the six investigated is closer to the ensemble mean of the results, suggesting that the coupled data assimilation may have the potential to better capture the overall atmosphere-ocean feedback processes associated with ENSO than the uncoupled ones. (orig.)

  1. Li production in alpha-alpha reactions. [relation to gamma ray observation

    Science.gov (United States)

    Kozlovsky, B.; Ramaty, R.

    1974-01-01

    The cross section for Li-7 production in alpha-alpha reactions is shown to be increased by about a factor of 2 due to the excitation levels of Li-7 and Be-7 at 478 keV and 431 keV, respectively. The cross section for Li-6 production, however, remains the same as calculated on the basis of the detailed balance principle. The lines at 478 keV and 431 keV may link Li-7 production to feasible gamma-ray observations.

  2. Ozone deposition velocities, reaction probabilities and product yields for green building materials

    Science.gov (United States)

    Lamble, S. P.; Corsi, R. L.; Morrison, G. C.

    2011-12-01

    Indoor surfaces can passively remove ozone that enters buildings, reducing occupant exposure without an energy penalty. However, reactions between ozone and building surfaces can generate and release aerosols and irritating and carcinogenic gases. To identify desirable indoor surfaces the deposition velocity, reaction probability and carbonyl product yields of building materials considered green (listed, recycled, sustainable, etc.) were quantified. Nineteen separate floor, wall or ceiling materials were tested in a 10 L, flow-through laboratory reaction chamber. Inlet ozone concentrations were maintained between 150 and 200 ppb (generally much lower in chamber air), relative humidity at 50%, temperature at 25 °C and exposure occurred over 24 h. Deposition velocities ranged from 0.25 m h -1 for a linoleum style flooring up to 8.2 m h -1 for a clay based paint; reaction probabilities ranged from 8.8 × 10 -7 to 6.9 × 10 -5 respectively. For all materials, product yields of C 1 thru C 12 saturated n-aldehydes, plus acetone ranged from undetectable to greater than 0.70 The most promising material was a clay wall plaster which exhibited a high deposition velocity (5.0 m h -1) and a low product yield (

  3. TiCl4-promoted Baylis-Hillman reaction: mechanistic rationale toward product distribution and stereoselectivity.

    Science.gov (United States)

    Patel, Chandan; Sunoj, Raghavan B

    2010-01-15

    The mechanism of TiCl(4)-promoted Baylis-Hillman reaction between methyl vinyl ketone (MVK) and acetaldehyde, in the absence of any base, is studied using the mPW1K density functional theory. The study focuses on several mechanistic intricacies as well as selectivity issues at each step of the reaction. The minimum energy pathway for this reaction involves three major steps such as a chloride transfer resulting in a chloro-enolate, titanium-mediated aldol reaction, and elimination of HCl or HOTiCl(3). Both s-cis and s-trans conformers of MVK are considered along with various modes of chloride transfer involving different complexes between TiCl(4), aldehyde, and MVK. Chloride transfer is found to be kinetically more favored for s-cis-MVK than for s-trans-MVK. The diastereoselectivity in the next step, i.e., Ti-mediated aldol reaction between the enolate and aldehyde, is found to be dependent on the geometry of the enolate, wherein anti and syn BH products are predicted for Z and E enolates, respectively. An interesting secondary orbital interaction between the oxygen atoms of the enolate and aldehyde moieties in the transition states for the C-C bond formation is identified as one of the contributing factors toward the predicted diastereoselectivity in the formation of the alpha-chloromethyl aldol product (P2). It has earlier been reported that under different experimental conditions, any of the three products such as (i) a normal BH product (P1), (ii) 2-(chloromethyl)vinyl ketones (P3), and (iii) alpha-chloro methyl aldol could be generated (Scheme 1 ). The present study offers valuable insights toward rationalizing the observed product distribution as well as diastereoselectivity in TiCl(4)-promoted BH reaction under base-free conditions. The computed energetics indicate that when MVK is employed as the Michael acceptor, the formation of 2-(choromethyl)vinyl ketone is the preferred product rather than the corresponding normal BH product, consistent with the known

  4. Heat of Combustion of the Product Formed by the Reaction of Acetylene, Ethylene, and Diborane

    Science.gov (United States)

    Tannenbaum, Stanley

    1957-01-01

    The net heat of combustion of the product formed by the reaction of diborane with a mixture of acetylene and ethylene was found to be 20,440 +/- 150 Btu per pound for the reaction of liquid fuel to gaseous carbon dioxide, gaseous water, and solid boric oxide. The measurements were made in a Parr oxygen-bomb calorimeter, and the combustion was believed to be 98 percent complete. The estimated net-heat of combustion for complete combustion would therefore be 20,850 +/- 150 Btu per pound.

  5. Marginal Lands Gross Primary Production Dominate Atmospheric CO2 Interannual Variations

    Science.gov (United States)

    Ahlström, A.; Raupach, M. R.; Schurgers, G.; Arneth, A.; Jung, M.; Reichstein, M.; Smith, B.

    2014-12-01

    Since the 1960s terrestrial ecosystems have acted as a substantial sink for atmospheric CO2, sequestering about one quarter of anthropogenic emissions in an average year. Variations in this land carbon sink are also responsible for most of the large interannual variability in atmospheric CO2 concentrations. While most evidence places the majority of the sink in highly productive forests and at high latitudes experiencing warmer and longer growing seasons, the location and the processes governing the interannual variations are still not well characterised. Here we evaluate the hypothesis that the long-term trend and the variability in the land CO2 sink are respectively dominated by geographically distinct regions: the sink by highly productive lands, mainly forests, and the variability by semi-arid or "marginal" lands where vegetation activity is strongly limited by water and therefore responds strongly to climate variability. Using novel analysis methods and data from both upscaled flux-tower measurements and a dynamic global vegetation model, we show that (1) the interannual variability in the terrestrial CO2 sink arises mainly from variability in terrestrial gross primary production (GPP); (2) most of the interannual variability in GPP arises in tropical and subtropical marginal lands, where negative anomalies are driven mainly by warm, dry conditions and positive anomalies by cool, wet conditions; (3) the variability in the GPP of high-latitude marginal lands (tundra and shrublands) is instead controlled by temperature and light, with warm bright conditions resulting in positive anomalies. The influence of ENSO (El Niño-Southern Oscillation) on the growth rate of atmospheric CO2 concentrations is mediated primarily through climatic effects on GPP in marginal lands, with opposite signs in subtropical and higher-latitude regions. Our results show that the land sink of CO2 (dominated by forests) and its interannual variability (dominated by marginal lands) are

  6. Factors affecting release of ethanol vapour in active modified atmosphere packaging systems for horticultural products

    Directory of Open Access Journals (Sweden)

    Weerawate Utto

    2014-04-01

    Full Text Available The active modified atmosphere packaging (active MAP system , which provides interactive postharvest control , using ethanol vapour controlled release, is one of the current interests in the development of active packaging for horticultural products. A number of published research work have discussed the relationship between the effectiveness of ethanol vapour and its concentration in the package headspace, including its effect on postharvest decay and physiological controls. This is of importance because a controlled release system should release and maintain ethanol vapour at effective concentrations during the desired storage period. A balance among the mass transfer processes of ethanol vapour in the package results in ethanol vapour accumulation in the package headspace. Key factors affecting these processes include ethanol loading, packaging material, packaged product and storage environment (temperature and relative h umidity. This article reviews their influences and discusses future work required to better understand their influences on ethanol vapour release and accumulations in active MAP.

  7. Responses of deciduous trees to elevated atmospheric CO[sub 2]: Productivity, phytochemistry, and insect performance

    Energy Technology Data Exchange (ETDEWEB)

    Lindroth, R.L.; Kinney, K.K.; Platz, C.L. (Univ. of Wisconsin, Madison (United States))

    1993-04-01

    Rising levels of atmospheric carbon dioxide are expected to directly affect forest ecosystems. This research evaluated the effects of enriched CO[sub 2], on the productivity and phytochemistry of forest trees and performance of associated insects. Our experimental system consisted of three tree species (quaking aspen [Populus tremuloides], red oak [Quercus rubra], sugar maple [Acer saccharum]) and two species of leaf-feeding insects (gypsy moth [Lymantria dispar] and forest tent caterpillar [Malacosma disstria]). Three questions were evaluated: in response to enriched CO[sub 2]: (1) relative increases in tree growth rates (2) relative decreases in protein and increases in carbon-based compounds, and (3) relative reductions in insect performance. Aspen responded the most to enriched CO[sub 2], atmospheres whereas maple responded the least. Proportional growth increases, were highest for oak and least for maple. Effects of elevated CO[sub 2], on biomass allocation patterns differed among the three species. Enriched CO[sub 2], altered concentrations of primary and secondary metabolites in leaves, but the magnitude and direction of effects were species-specific. Consumption rates of insects fed high-CO[sub 2], aspen increased dramatically, but growth rates declined. Gypsy moths grew better on high-CO[sub 2], oak, whereas forest tent caterpillars were unaffected; tent caterpillars grew less on high-CO[sub 2], maple, while gypsy moths were unaffected. Changes in insect performance parameters were related to changes in foliar chemistry. This study illustrates that tree productivity and chemistry, and the performance of associated insects, will change under CO[sub 2], atmospheres predicted for the next century. Changes in higher level ecological processes, such as community structure and nutrient cycling, are also implicated. 61 refs., 3 figs., 2 tabs.

  8. Uptake of acetylene on cosmic dust and production of benzene in Titan's atmosphere

    Science.gov (United States)

    Frankland, Victoria L.; James, Alexander D.; Sánchez, Juan Diego Carrillo; Mangan, Thomas P.; Willacy, Karen; Poppe, Andrew R.; Plane, John M. C.

    2016-11-01

    A low-temperature flow tube and ultra-high vacuum apparatus were used to explore the uptake and heterogeneous chemistry of acetylene (C2H2) on cosmic dust analogues over the temperature range encountered in Titan's atmosphere below 600 km. The uptake coefficient, γ, was measured at 181 K to be (1.6 ± 0.4) × 10-4, (1.9 ± 0.4) × 10-4 and (1.5 ± 0.4) × 10-4 for the uptake of C2H2 on Mg2SiO4, MgFeSiO4 and Fe2SiO4, respectively, indicating that γ is independent of Mg or Fe active sites. The uptake of C2H2 was also measured on SiO2 and SiC as analogues for meteoric smoke particles in Titan's atmosphere, but was found to be below the detection limit (γ < 6 × 10-8 and < 4 × 10-7, respectively). The rate of cyclo-trimerization of C2H2 to C6H6 was found to be 2.6 × 10-5 exp(-741/T) s-1, with an uncertainty ranging from ± 27 % at 115 K to ± 49 % at 181 K. A chemical ablation model was used to show that the bulk of cosmic dust particles (radius 0.02-10 μm) entering Titan's atmosphere do not ablate (< 1% mass loss through sputtering), thereby providing a significant surface for heterogeneous chemistry. A 1D model of dust sedimentation shows that the production of C6H6via uptake of C2H2 on cosmic dust, followed by cyclo-trimerization and desorption, is probably competitive with gas-phase production of C6H6 between 80 and 120 km.

  9. Controlling the nitric and nitrous oxide production of an atmospheric pressure plasma jet

    Science.gov (United States)

    Douat, Claire; Hubner, Simon; Engeln, Richard; Benedikt, Jan

    2016-09-01

    Atmospheric pressure plasma jets are non-thermal plasmas and have the ability to create reactive species. These features make it a very attractive tool for biomedical applications. In this work, we studied NO and N2O production, which are two species having biomedical properties. NO plays a role in the vascularization and in ulcer treatment, while N2O is used as anesthetic and analgesic gas. In this study, the plasma source is similar to the COST Reference Microplasma Jet (µ-APPJ). Helium is used as feed gas with small admixtures of molecular nitrogen and oxygen of below 1%. The absolute densities of NO and N2O were measured in the effluent of an atmospheric pressure RF plasma jet by means of ex-situ quantum-cascade laser absorption spectroscopy via a multi-pass cell in Herriot configuration. We will show that the species' production is dependent on several parameters such as power, flow and oxygen and nitrogen admixture. The NO and N2O densities are strongly dependent on the N2-O2 ratio. Changing this ratio allows for choosing between a NO-rich or a N2O-rich regime.

  10. Atmospheric oxidation of vinyl and allyl acetate: product distribution and mechanisms of the OH-initiated degradation in the presence and absence of NO(x).

    Science.gov (United States)

    Blanco, María B; Bejan, Iustinian; Barnes, Ian; Wiesen, Peter; Teruel, Mariano A

    2012-08-21

    The products formed from the reactions of OH radicals with vinyl acetate and allyl acetate have been studied in a 1080 L quartz-glass chamber in the presence and absence of NO(x) using in situ FTIR spectroscopy to monitor the reactant decay and product formation. The yields of the primary products formed in the reaction of OH with vinyl acetate were: formic acetic anhydride (84 ± 11)%; acetic acid (18 ± 3)% and formaldehyde (99 ± 15)% in the presence of NO(x) and formic acetic anhydride (28 ± 5)%; acetic acid (87 ± 12)% and formaldehyde (52 ± 8)% in the absence of NO(x). For the reaction of OH with allyl acetate the yields of the identified products were: acetoxyacetaldehyde (96 ± 15)% and formaldehyde (90 ± 12)% in the presence of NO(x) and acetoxyacetaldehyde (26 ± 4)% and formaldehyde (12 ± 3)% in the absence of NO(x). The present results indicate that in the absence of NO(x) the main fate of the 1,2-hydroxyalkoxy radicals formed after addition of OH to the double bond in the compounds is, in the case of vinyl acetate, an α-ester rearrangement to produce acetic acid and CH(2)(OH)CO(•) radicals and in the case of allyl acetate reaction of the radical with O(2) to form acetic acid 3-hydroxy-2-oxo-propyl ester (CH(3)C(O)OCH(2)C(O)CH(2)OH). In contrast, in the presence of NO(x) the main reaction pathway for the 1,2-hydroxyalkoxy radicals is decomposition. The results are compared with the available literature data and implications for the atmospheric chemistry of vinyl and allyl acetate are assessed.

  11. Heterogeneous and Photochemical Reactions Involving Surface Adsorbed Organics: Common Lignin Pyrolysis Products With Nitrogen Dioxide.

    Science.gov (United States)

    Hinrichs, R. Z.; Nichols, B. R.; Rapa, C.; Costa, V.

    2009-05-01

    Solid-air interfaces, such as airborne particulate matter and ground level surfaces, provide unique supports for tropospheric heterogeneous chemistry. These interfaces commonly contain surface adsorbed organics, such as lignin pyrolysis products, that can significantly alter their physical and chemical properties. Attenuated total reflectance infrared spectroscopy (ATR-FTIR) provides an ideal tool for monitoring chemical changes in thin organic films during heterogeneous and photochemical reactions. Phenolic compounds, with and without co- adsorbed photosensitizers, were exposed to NO2 concentrations in the parts-per-billion range at 300 K and 20% relative humidity. Catechol, when mixed with benzophenone or dicyclohexylketone, formed 4- nitrocatechol as the dominant product under dark conditions. Deuterating the catechol alcohol groups caused the initial rate of reaction to decrease by a factor of 3.3±0.5, consistent with formation of the ortho- semiquinone radical as the rate determining step. The rate of 4-nitrocatechol formation did not increase under illuminated conditions, even with the presence of benzophenone a well known photosensitizer. UV-A/visible radiation did, however, initiate a photochemical reaction between benzophenone and 4-nitrocatechol, likely forming high molecular weight polymerization products. In contrast, 2-ethoxyphenol displayed no reactivity with NO2, even under illuminated conditions with a photosensitizer. Implications for the fate of lignin pyrolysis products, which are prevalent in biomass combustion smoke, will be discussed.

  12. One-Pot Synthesis of N-(α-Peroxy)Indole/Carbazole via Chemoselective Three-Component Condensation Reaction in Open Atmosphere

    KAUST Repository

    Wang, Xinbo

    2015-11-06

    A facile one-pot synthesis of N-(α-peroxy)indole and N-(α-peroxy)carbazole has been developed using metal-free, organo-acid-catalyzed three-component condensation reactions of indole/carbazole, aldehyde, and peroxide. Based on the reaction discovered, a new synthetic proposal for Fumitremorgin A and Verruculogen is introduced. Such a protocol could be easily handled and scaled up in an open atmosphere with a wide substrate scope, enabling the construction of a new molecule library.

  13. Product lambda-doublet ratios for the O(3P) + D2 reaction: A mechanistic imprint

    CERN Document Server

    Jambrina, P G; Aldegunde, J; Brouard, M; Aoiz, F J

    2016-01-01

    In the last decade, the development of theoretical methods have allowed chemists to reproduce and explain almost all of the experimental data associated with elementary atom plus diatom collisions. However, there are still a few examples where theory cannot account yet for experimental results. This is the case for the preferential population of one of the $\\Lambda$-doublet states produced by chemical reactions. In particular, recent measurements of the OD($^2\\Pi$) product of the O($^3$P) + D$_2$ reaction have shown a clear preference for the $\\Pi(A')$ $\\Lambda$-doublet states, in apparent contradiction with {\\em ab initio} calculations, which predict a larger reactivity on the $A"$ potential energy surface. Here we present a method to calculate the $\\Lambda$-doublet ratio when concurrent potential energy surfaces participate in the reaction. It accounts for the experimental $\\Lambda$-doublet populations via explicit consideration of the stereodynamics of the process. Furthermore, our results demonstrate that...

  14. Strangeness Production in Au+Au Reactions at √ {SNN} = 62.4\\ GeV

    Science.gov (United States)

    Arsene, Ionut-Cristian

    The measurement of strangeness is a valuable tool for understanding the reaction mechanism of nuclear collisions since all the strange particles need to be created during the reaction. Also, strangeness enhancement is one of the predicted signals of the QGP. In the present work we will discuss the behaviour of the strangeness production (i.e. K/π ratio) with rapidity and baryo-chemical potential in Au+Au collisions at 62.4 A GeV. In this particular reaction, BRAHMS is able to identify particles over 3.5 rapidity units and thereby cover a wide range of bar {p}/p ratios, including the fragmentation region. We will show spectra and ratios of identified particles as a function of pT and rapidity.

  15. Inferring Ozone Production in an Urban Atmosphere using Measurements of Peroxynitric Acid

    Science.gov (United States)

    Spencer, K. M.; McCabe, D. C.; Crounse, J. D.; Olson, J. R.; Crawford, J. H.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D. D.; Cantrell, C. A.; Anderson, R. S.; Mauldin, R. L.; Wennberg, P. O.

    2009-01-01

    Observations of peroxynitric acid (HO2NO2) obtained simultaneously with those of NO and NO2 provide a sensitive measure of the ozone photochemical production rate. We illustrate this technique for constraining the ozone production rate with observations obtained from the NCAR C-130 aircraft platform during the Megacity Initiative: Local and Global Research Observations (MILAGRO) intensive in Mexico during the spring of 2006. Sensitive and selective measurements of HO2NO2 were made in situ using chemical ionization mass spectrometry (CIMS). Observations were compared to modeled HO2NO2 concentrations obtained from the NASA Langley highly-constrained photochemical time-dependent box model. The median observed-to-calculated ratio of HO2NO2 is 1.18. At NOx levels greater than 15 ppbv, the photochemical box model underpredicts observations with an observed-to-calculated ratio of HO2NO2 of 1.57. As a result, we find that at high NOx, the ozone production rate calculated using measured HO2NO2 is faster than predicted using accepted photochemistry. Inclusion of an additional HOx source from the reaction of excited state NO2 with H2O or reduction in the rate constant of the reaction of OH with NO2 improves the agreement.

  16. Catalytic pyrolysis of atmospheric residue on a fluid catalytic cracking catalyst for the production of light olefins

    Institute of Scientific and Technical Information of China (English)

    YANG Lian-guo; MENG Xiang-hai; XU Chun-ming; GAO Jin-sen; LIU Zhi-chang

    2009-01-01

    Catalytic pyrolysis of Chinese Daqing atmospheric residue on a commercial fluid catalytic cracking (FCC) catalyst was investigated in a confined fluidized bed reactor. The results show that the commercial FCC catalyst has good capability of cracking atmospheric residue to light olefins. The analysis of gas samples shows that the content of total light olefins in cracked gas is above 80%. The analysis of liquid samples shows that the content of aromatics in liquid samples ranges from 60% to 80%, and it increases with the enhancement of reaction temperature. The yield of total light olefins shows a maximum with the increase of reaction temperature, the weight ratios of catalyst-to-oil and steam-to-oil, respectively. The optimal reaction temperature, the weight ratios of catalyst-to-oil and steam-to-oil are about 650℃, 15 and 0.75, respectively.

  17. Reactions between water-soluble organic acids and nitrates in atmospheric aerosols: Recycling of nitric acid and formation of organic salts

    Science.gov (United States)

    Wang, Bingbing; Laskin, Alexander

    2014-03-01

    Atmospheric particles often include a complex mixture of nitrate and secondary organic materials accumulated within the same individual particles. Nitrate as an important inorganic component can be chemically formed in the atmosphere. For instance, formation of sodium nitrate (NaNO3) and calcium nitrate (Ca(NO3)2) occurs when nitrogen oxides and nitric acid (HNO3) react with sea salt and calcite, respectively. Organic acids contribute a significant fraction of photochemically formed secondary organics that can condense on the preexisting nitrate-containing particles. Here we present a systematic microanalysis study on chemical composition of laboratory-generated particles composed of water-soluble organic acids and nitrates (i.e., NaNO3 and Ca(NO3)2) using computer-controlled scanning electron microscopy with energy-dispersive X-ray microanalysis and Fourier transform infrared microspectroscopy. The results show that water-soluble organic acids can react with nitrates and release gaseous HNO3 during the dehydration process. These reactions are attributed to acid displacement of nitrate with weak organic acids driven by the evaporation of HNO3 into gas phase because of its relatively high volatility. The reactions result in significant nitrate depletion and formation of organic salts in mixed organic acids/nitrate particles that, in turn, may affect their physical and chemical properties relevant to atmospheric environment and climate. Airborne nitrate concentrations are estimated by thermodynamic calculations corresponding to various nitrate depletions in selected organic acids of atmospheric relevance. The results indicate a potential mechanism of HNO3 recycling that may further affect concentrations of gas and condensed phase species in the atmosphere and the heterogeneous reaction chemistry between them.

  18. Reaction Rates Uncertainties and the Production of F19 in AGB Stars

    CERN Document Server

    Lugaro, M; Karakas, A I; Görres, J; Wiescher, M; Lattanzio, J C; Cannon, R C; Lugaro, Maria; Ugalde, Claudio; Karakas, Amanda I.; Gorres, Joachim; Wiescher, Michael; Lattanzio, John C.; Cannon, Robert C.

    2004-01-01

    We present nucleosynthesis calculations and the resulting 19F stellar yields for a large set of models with different masses and metallicity. We find that the production of fluorine depends on the temperature of the convective pulses, the amount of primary 12C mixed into the envelope by third dredge up and the extent of the partial mixing zone. Then we perform a detailed analysis of the reaction rates involved in the production of 19F and the effects of their uncertainties. We find that the major uncertainties are associated with the 14C(alpha,gamma)18O and the 19F(alpha,p)22Ne reaction rates. For these two reactions we present new estimates of the rates and their uncertainties. The importance of the partial mixing zone is reduced when using our estimate for the 14C(alpha,gamma)18O rate. Taking into account both the uncertainties related to the partial mixing zone and those related to nuclear reactions, the highest values of 19F enhancements observed in AGB stars are not matched by the models. This is a probl...

  19. Uses of alpha particles, especially in nuclear reaction studies and medical radionuclide production

    Energy Technology Data Exchange (ETDEWEB)

    Qaim, Syed M.; Spahn, Ingo; Scholten, Bernhard; Neumaier, Bernd [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Neurowissenschaften und Medizin (INM), Nuklearchemie (INM-5)

    2016-11-01

    Alpha particles exhibit three important characteristics: scattering, ionisation and activation. This article briefly discusses those properties and outlines their major applications. Among others, α-particles are used in elemental analysis, investigation and improvement of materials properties, nuclear reaction studies and medical radionuclide production. The latter two topics, dealing with activation of target materials, are treated in some detail in this paper. Measurements of excitation functions of α-particle induced reactions shed some light on their reaction mechanisms, and studies of isomeric cross sections reveal the probability of population of high-spin nuclear levels. Regarding medical radionuclides, an overview is presented of the isotopes commonly produced using α-particle beams. Consideration is also given to some routes which could be potentially useful for production of a few other radionuclides. The significance of α-particle induced reactions to produce a few high-spin isomeric states, decaying by emission of low-energy conversion or Auger electrons, which are of interest in localized internal radiotherapy, is outlined. The α-particle beam, thus broadens the scope of nuclear chemistry research related to development of non-standard positron emitters and therapeutic radionuclides.

  20. State-to-state mode selectivity in the HD + OH reaction: Perspectives from two product channels

    Science.gov (United States)

    Zhao, Bin; Sun, Zhigang; Guo, Hua

    2016-06-01

    The state-to-state quantum dynamics (Jtot = 0) of the HD + OH(υ2 = 0, 1) reaction is studied using a reactant coordinate based method, which allows the analysis of both the H + DOH and D + HOH channels with a single propagation. The stretching vibration of the newly formed bond, namely, the OD bond in DOH and one OH bond in HOH, is excited, thanks to its strong coupling with the reaction coordinate at the transition state. On the other hand, the vibrational energy deposited into the OH reactant (υ2 = 1) is sequestered during the reaction in the spectator OH mode. The combined effect leads to the excitation of both the OD and OH stretching modes in the DOH product, and the dominance of the (002) normal-mode state population in the HOH product, which in the local-mode picture corresponds to the excitation of both OH bonds with one quantum each. The energy flow in this prototypical tetratomic reaction can be understood in terms of the sudden vector projection model.

  1. Hydroxyl radical reactions with adenine: reactant complexes, transition states, and product complexes.

    Science.gov (United States)

    Cheng, Qianyi; Gu, Jiande; Compaan, Katherine R; Schaefer, Henry F

    2010-10-18

    In order to address problems such as aging, cell death, and cancer, it is important to understand the mechanisms behind reactions causing DNA damage. One specific reaction implicated in DNA oxidative damage is hydroxyl free-radical attack on adenine (A) and other nucleic acid bases. The adenine reaction has been studied experimentally, but there are few theoretical results. In the present study, adenine dehydrogenation at various sites, and the potential-energy surfaces for these reactions, are investigated theoretically. Four reactant complexes [A···OH]* have been found, with binding energies relative to A+OH* of 32.8, 11.4, 10.7, and 10.1 kcal mol(-1). These four reactant complexes lead to six transition states, which in turn lie +4.3, -5.4, (-3.7 and +0.8), and (-2.3 and +0.8) kcal mol(-1) below A+OH*, respectively. Thus the lowest lying [A···OH]* complex faces the highest local barrier to formation of the product (A-H)*+H(2)O. Between the transition states and the products lie six product complexes. Adopting the same order as the reactant complexes, the product complexes [(A-H)···H(2)O]* lie at -10.9, -22.4, (-24.2 and -18.7), and (-20.5 and -17.5) kcal mol(-1), respectively, again relative to separated A+OH*. All six A+OH* → (A-H)*+H(2)O pathways are exothermic, by -0.3, -14.7, (-17.4 and -7.8), and (-13.7 and -7.8) kcal mol(-1), respectively. The transition state for dehydrogenation at N(6) lies at the lowest energy (-5.4 kcal mol(-1) relative to A+OH*), and thus reaction is likely to occur at this site. This theoretical prediction dovetails with the observed high reactivity of OH radicals with the NH(2) group of aromatic amines. However, the high barrier (37.1 kcal mol(-1)) for reaction at the C(8) site makes C(8) dehydrogenation unlikely. This last result is consistent with experimental observation of the imidazole ring opening upon OH radical addition to C(8). In addition, TD-DFT computed electronic transitions of the N(6) product around 420 nm

  2. Product Yields and Characteristics of Corncob Waste under Various Torrefaction Atmospheres

    Directory of Open Access Journals (Sweden)

    Jau-Jang Lu

    2013-12-01

    Full Text Available Biomass is a promising energy source due to its abundant, carbon-fixing, and carbon-neutral properties. Torrefaction can be employed to improve the properties of biomass in an oxygen-free or nitrogen atmosphere. This study investigates the product yields and the solid product characteristics from corncob waste torrefaction at the temperatures of 250 °C and 300 °C for 1 h. Nitrogen, carbon dioxide, and a gas mixture of air and carbon dioxide are employed as the carrier gases. The solid product characteristics approach those of coal at the higher temperature, regardless of what the carrier gases are. The fixed carbon, higher heating value, and solid and energy yields using carbon dioxide as a carrier gas at 300 °C are close to those using nitrogen. The product safety and storage properties before and after torrefaction are revealed by the measurements of ignition temperature and hygroscopicity. A higher torrefaction temperature leads to a higher ignition temperature of treated biomass, except using the mixture of air and carbon dioxide as the carrier gas. Carbon dioxide is a better carrier gas than nitrogen for biomass torrefaction, from the storage and transportation points of view.

  3. Zeolite Membrane Reactor for Water Gas Shift Reaction for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y.S. [Arizona State Univ., Mesa, AZ (United States)

    2013-01-29

    Gasification of biomass or heavy feedstock to produce hydrogen fuel gas using current technology is costly and energy-intensive. The technology includes water gas shift reaction in two or more reactor stages with inter-cooling to maximize conversion for a given catalyst volume. This project is focused on developing a membrane reactor for efficient conversion of water gas shift reaction to produce a hydrogen stream as a fuel and a carbon dioxide stream suitable for sequestration. The project was focused on synthesizing stable, hydrogen perm-selective MFI zeolite membranes for high temperature hydrogen separation; fabricating tubular MFI zeolite membrane reactor and stable water gas shift catalyst for membrane reactor applications, and identifying experimental conditions for water gas shift reaction in the zeolite membrane reactor that will produce a high purity hydrogen stream. The project has improved understanding of zeolite membrane synthesis, high temperature gas diffusion and separation mechanisms for zeolite membranes, synthesis and properties of sulfur resistant catalysts, fabrication and structure optimization of membrane supports, and fundamentals of coupling reaction with separation in zeolite membrane reactor for water gas shift reaction. Through the fundamental study, the research teams have developed MFI zeolite membranes with good perm-selectivity for hydrogen over carbon dioxide, carbon monoxide and water vapor, and high stability for operation in syngas mixture containing 500 part per million hydrogen sulfide at high temperatures around 500°C. The research teams also developed a sulfur resistant catalyst for water gas shift reaction. Modeling and experimental studies on the zeolite membrane reactor for water gas shift reaction have demonstrated the effective use of the zeolite membrane reactor for production of high purity hydrogen stream.

  4. Multi-reaction-channel fitting calculations in a coupled-channel model: Photoinduced strangeness production

    Indian Academy of Sciences (India)

    O Scholten; A Usov

    2010-08-01

    To describe photo- and meson-induced reactions on the nucleon, one is faced with a rather extensive coupled-channel problem. Ignoring the effects of channel coupling, as one would do in describing a certain reaction at the tree level, invariably creates a large inconsistency between the different reactions that are described. In addition, the imaginary parts of the amplitude, which are related through the optical theorem, to total cross-sections, are directly reflected in certain polarization observables. Performing a full coupled-channel calculation thus offers the possibility to implement the maximum number of constraints. The drawback one is faced with is to arrive at a simultaneous fit of a large number of reaction channels. While some of the parameters are common to many reactions, one is still faced with the challenge to optimize a large number of parameters in a highly non-linear calculation. Here we show that such an approach is possible and present some results for photoinduced strangeness production.

  5. Microbiological and sensorial quality assessment of ready-to-cook seafood products packaged under modified atmosphere.

    Science.gov (United States)

    Speranza, B; Corbo, M R; Conte, A; Sinigaglia, M; Del Nobile, M A

    2009-01-01

    The effects of modified atmosphere packaging (MAP) (30:40:30 O(2):CO(2):N(2) and 5:95 O(2):CO(2)) on the quality of 4 ready-to-cook seafood products were studied. In particular, the investigation was carried out on hake fillets, yellow gurnard fillets, chub mackerel fillets, and entire eviscerated cuttlefish. Quality assessment was based on microbiological and sensorial indices determination. Both packaging gas mixtures contributed to a considerable slowing down of the microbial and sensorial quality loss of the investigated seafood products. Results showed that sensorial quality was the subindex that limited their shelf life. In fact, based primarily on microbiological results, samples under MAP remained acceptable up to the end of storage (that is, 14 d), regardless of fish specie. On the other hand, results from sensory analyses showed that chub mackerel fillets in MAP were acceptable up to the 6th storage d, whilst hake fillets, yellow gurnard fillets, and entire cuttlefish became unacceptable after 10 to 11 d. However, compared to control samples, an increase in the sensorial shelf life of MAP samples (ranging from about 95% to 250%) was always recorded. Practical Application: Modified atmosphere packaging (MAP) is an inexpensive and uncomplicated method of extending shelf life of packed seafood. It could gain great attention from the fish industrial sector due to the fact that MAP is a practical and economic technique, realizable by small technical expedients. Moreover, there is great attention from the food industry and retailers to react to the growing demand for convenience food, thus promoting an increase in the assortments of ready-to-cook seafood products.

  6. Hypernuclear production cross section in the reaction of Li-6+C-12 at 2 A GeV

    NARCIS (Netherlands)

    Rappold, C.; Saito, T. R.; Bertini, O.; Bianchin, S.; Bozkurt, V.; Kim, E.; Kavatsyuk, M.; Ma, Y.; Maas, F.; Minami, S.; Nakajima, D.; Ozel-Tashenov, B.; Yoshida, K.; Achenbach, P.; Ajimura, S.; Aumann, T.; Gayoso, C. Ayerbe; Bhang, H. C.; Caesar, C.; Erturk, S.; Fukuda, T.; Goekuezuem, B.; Guliev, E.; Hoffmann, J.; Ickert, G.; Ketenci, Z. S.; Khaneft, D.; Kim, M.; Kim, S.; Koch, K.; Kurz, N.; Le Fevre, A.; Mizoi, Y.; Nungesser, L.; Ott, W.; Pochodzalla, J.; Sakaguchi, A.; Schmidt, C. J.; Sekimoto, M.; Simon, H.; Takahashi, T.; Tambave, G. J.; Tamura, H.; Trautmann, W.; Voltz, S.; Yoon, C. J.

    2015-01-01

    Hypernuclear production cross sections have been deduced for the first time with induced reaction of heavy ion beam on fixed target and by means of the invariant mass method by the HypHI Collaboration exploiting the reaction of Li-6 C-12 at 2 A GeV or root S-NN = 2.70 GeV. A production cross section

  7. Urinary excretion of dietary maillard reaction products in healthy adult female cats

    NARCIS (Netherlands)

    Rooijen, van C.; Bosch, G.; Butre, C.I.; Poel, van der A.F.B.; Wierenga, P.A.; Alexander, L.; Hendriks, W.H.

    2016-01-01

    Download »Citation Alerts »Sign up for TOC email alerts Share »Email this content »Recommend to librarian Facebook Twitter doi:10.2527/jas.2015-9550 Urinary excretion of dietary Maillard reaction products in healthy adult female cats12 C. van Rooijen*, G. Bosch 3*, C. I. Butré†, A. F. B. van der Poe

  8. Measurement of reaction cross sections of fission products induced by DT neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Daisuke; Murata, Isao; Takahashi, Akito [Osaka Univ., Suita (Japan)

    1998-03-01

    With the view of future application of fusion reactor to incineration of fission products, we have measured the {sup 129}I(n,2n){sup 128}I reaction cross section by DT neutrons with the activation method. The measured cross section was compared with the evaluated nuclear data of JENDL-3.2. From the result, it was confirmed that the evaluation overestimated the cross section by about 20-40%. (author)

  9. Detection of specific polymerase chain reaction product by utilizing the 5'----3' exonuclease activity of Thermus aquaticus DNA polymerase.

    OpenAIRE

    1991-01-01

    The 5'----3' exonuclease activity of the thermostable enzyme Thermus aquaticus DNA polymerase may be employed in a polymerase chain reaction product detection system to generate a specific detectable signal concomitantly with amplification. An oligonucleotide probe, nonextendable at the 3' end, labeled at the 5' end, and designed to hybridize within the target sequence, is introduced into the polymerase chain reaction assay. Annealing of probe to one of the polymerase chain reaction product s...

  10. Effect of Solvents on the Product Distribution and Reaction Rate of a Buchwald-Hartwig Amination Reaction

    DEFF Research Database (Denmark)

    Christensen, H.; Kiil, Søren; Dam-Johansen, Kim;

    2006-01-01

    The Buchwald-Hartwig amination reaction between p-bromotoluene and piperazine in the presence of the homogeneous catalytic system Pd(dba)(2)/(+/-)-BINAP and the base NaO-t-Bu was investigated in two different classes of solvents: aprotic, nonpolar and aprotic, polar. The reaction was carried out...... solvent for the Buchwald-Hartwig amination reaction under the conditions applied was m-xylene....

  11. Biodiesel Fuel Production by the Transesterification Reaction of Soybean Oil Using Immobilized Lipase

    Science.gov (United States)

    Bernardes, Otávio L.; Bevilaqua, Juliana V.; Leal, Márcia C. M. R.; Freire, Denise M. G.; Langone, Marta A. P.

    The enzymatic alcoholysis of soybean oil with methanol and ethanol was investigated using a commercial, immobilized lipase (Lipozyme RM IM). The effect of alcohol (methanol or ethanol), enzyme concentration, molar ratio of alcohol to soybean oil, solvent, and temperature on biodiesel production was determined. The best conditions were obtained in a solvent-free system with ethanol/oil molar ratio of 3.0, temperature of 50°C, and enzyme concentration of 7.0% (w/w). Three-step batch ethanolysis was most effective for the production of biodiesel. Ethyl esters yield was about 60% after 4 h of reaction.

  12. The direct oxidative diene cyclization and related reactions in natural product synthesis

    Directory of Open Access Journals (Sweden)

    Juliane Adrian

    2016-09-01

    Full Text Available The direct oxidative cyclization of 1,5-dienes is a valuable synthetic method for the (diastereoselective preparation of substituted tetrahydrofurans. Closely related reactions start from 5,6-dihydroxy or 5-hydroxyalkenes to generate similar products in a mechanistically analogous manner. After a brief overview on the history of this group of transformations and a survey on mechanistic and stereochemical aspects, this review article provides a summary on applications in natural product synthesis. Moreover, current limitations and future directions in this area of chemistry are discussed.

  13. Superoxide anion production by human spermatozoa as a part of the ionophore-induced acrosome reaction process.

    Science.gov (United States)

    Griveau, J F; Renard, P; Le Lannou, D

    1995-04-01

    The involvement of superoxide anion (O2o-) in human sperm capacitation and/or acrosome reaction was investigated. Addition of superoxide dismutase (SOD) to the medium at the beginning of the capacitation process or 15 min before induction of the acrosome reaction, decreased the level of ionophore-induced acrosome reaction. Hyperactivation was unaffected by the presence of SOD during the capacitation process. Addition of calcium ionophore to the sperm suspension increased production of O2o- by the spermatozoa by four to five-fold and induced the acrosome reaction. In the presence of SOD, superoxide anion could not be detected in the medium and the rate of induced-acrosome reaction was decreased greatly. The presence of an inhibitor of protein kinase C inhibited the production of O2o- in the medium and reduced the induced-acrosome reaction. The production of O2o- and the acrosome reaction were also increased by exposure of spermatozoa to 12-myristate 13-acetate phorbol ester, a specific activator of protein kinase C. While the level of spontaneous acrosome reaction was not increased by the direct addition of O2o- to the medium, its presence induced the release of unesterified fatty acids from membrane phospholipids. These findings suggest that the production of O2o- by spermatozoa could be involved in the ionophore-induced acrosome reaction, possibly through the de-esterification of membrane phospholipids. However, this production of superoxide anion is not sufficient on its own to induce the acrosome reaction.

  14. Polymerase-endonuclease amplification reaction (PEAR for large-scale enzymatic production of antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Xiaolong Wang

    Full Text Available Antisense oligonucleotides targeting microRNAs or their mRNA targets prove to be powerful tools for molecular biology research and may eventually emerge as new therapeutic agents. Synthetic oligonucleotides are often contaminated with highly homologous failure sequences. Synthesis of a certain oligonucleotide is difficult to scale up because it requires expensive equipment, hazardous chemicals and a tedious purification process. Here we report a novel thermocyclic reaction, polymerase-endonuclease amplification reaction (PEAR, for the amplification of oligonucleotides. A target oligonucleotide and a tandem repeated antisense probe are subjected to repeated cycles of denaturing, annealing, elongation and cleaving, in which thermostable DNA polymerase elongation and strand slipping generate duplex tandem repeats, and thermostable endonuclease (PspGI cleavage releases monomeric duplex oligonucleotides. Each round of PEAR achieves over 100-fold amplification. The product can be used in one more round of PEAR directly, and the process can be further repeated. In addition to avoiding dangerous materials and improved product purity, this reaction is easy to scale up and amenable to full automation. PEAR has the potential to be a useful tool for large-scale production of antisense oligonucleotide drugs.

  15. Crystal structure of an EAL domain in complex with reaction product 5'-pGpG.

    Directory of Open Access Journals (Sweden)

    Julien Robert-Paganin

    Full Text Available FimX is a large multidomain protein containing an EAL domain and involved in twitching motility in Pseudomonas aeruginosa. We present here two crystallographic structures of the EAL domain of FimX (residues 438-686: one of the apo form and the other of a complex with 5'-pGpG, the reaction product of the hydrolysis of c-di-GMP. In both crystal forms, the EAL domains form a dimer delimiting a large cavity encompassing the catalytic pockets. The ligand is trapped in this cavity by its sugar phosphate moiety. We confirmed by NMR that the guanine bases are not involved in the interaction in solution. We solved here the first structure of an EAL domain bound to the reaction product 5'-pGpG. Though isolated FimX EAL domain has a very low catalytic activity, which would not be significant compared to other catalytic EAL domains, the structure with the product of the reaction can provides some hints in the mechanism of hydrolysis of the c-di-GMP by EAL domains.

  16. Product polarization distribution: Stereodynamics of the reaction of atom H and radical NH

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The product angular momentum polarization of the reaction of H+NH is calculated via the quasiclassical trajectory method(QCT)based on the extended London-Eyring-Polanyi-Sato(LEPS)potential energy surface(PES)at a collision energy of 5.1 kcal/mol.The calculated results of the vector correlations are denoted by using the angular distribution functions.The polarization-dependent differential cross sections(PDDCSs)demonstrate that the rotational angular momentum of the product H2 is aligned and oriented along the direction perpendicular to the scattering plane.Vector correlation shows that the angular momentum of the product H2 is aligned in the plane perpendicular to the velocity vector.It suggests that the reaction proceeds preferentially when the reactant velocity vector lies in a plane containing all three atoms.The orientation and alignment of the product angular momentum affects the scattering direction of the product molecules.The polarization-dependent differential cross sections(PDDCSs)reveal that scattering is predominantly in the backward hemisphere.

  17. Hypernucleus Production by $A(p,pK^+)_{\\Lambda}B$ Reactions

    CERN Document Server

    Jing, Hantao; Chiang, Huanching

    2008-01-01

    The $\\Lambda$-hypernucleus production by $A(p, pK^+)_{\\Lambda}B$ reactions is investigated within the framework of the distorted wave impulse approximation(DWIA). The amplitude for the elementary process is evaluated in a fully covariant two-nucleon model based on the effective Lagrangian. The reaction cross sections for $\\Lambda$-hypernucleus productions on $^6Li$, $^{12}C$ and $^{16}O$ targets are calculated. It is found that the distortion effects tend to reduce the cross sections by a factor of 3$\\sim$10. Various differential cross sections (DCS) and double differential cross sections (DDCS) are presented. It is shown that for the $s_{\\Lambda}-$wave hypernucleus production, the DCS is decreased with increasing nuclear mass, and the DCS for the $p_{\\Lambda}-$wave hypernucleus production is normally higher than that for the $s_{\\Lambda}-$wave hypernucleus production. As a reference, the DDCS with respect to the momenta of the outgoing proton and kaon is also demonstrated. Finally, the missing mass spectra o...

  18. Solvent-resistant nanofiltration for product purification and catalyst recovery in click chemistry reactions.

    Science.gov (United States)

    Cano-Odena, Angels; Vandezande, Pieter; Fournier, David; Van Camp, Wim; Du Prez, Filip E; Vankelecom, Ivo F J

    2010-01-18

    The quickly developing field of "click" chemistry would undoubtedly benefit from the availability of an easy and efficient technology for product purification to reduce the potential health risks associated with the presence of copper in the final product. Therefore, solvent-resistant nanofiltration (SRNF) membranes have been developed to selectively separate "clicked" polymers from the copper catalyst and solvent. By using these solvent-stable cross-linked polyimide membranes in diafiltration, up to 98 % of the initially present copper could be removed through the membrane together with the DMF solvent, the polymer product being almost completely retained. This paper also presents the first SRNF application in which the catalyst permeates through the membrane and the reaction product is retained.

  19. Product rotational polarization. The stereodynamics of the F + H 2 reaction

    Science.gov (United States)

    Aoiz, F. J.; Brouard, M.; Herrero, V. J.; Sáez Rábanos, V.; Stark, K.

    1997-01-01

    The angular momentum polarization of the products of the reaction F + H 2 ( ν = 0, j = 0) → HF( ν') + H is calculated via the QCT methodology at a collision energy of 0.119 eV. The HF rotational angular momentum distribution is found to display both alignment and orientation, the latter along the y-axis, perpendicular to the k-k' scattering plane, which depend sensitively on the product vibrational level. The origin of polarization behaviour is traced back to different dynamical mechanisms leading to production of HF(ν' = 0), and to a lesser extent HF (ν' = 1), compared with higher product vibrational states, with the former originating primarily from repulsive insertion type trajectories, and the latter primarily from repulsive abstraction type trajectories.

  20. Hadron Production for the Neutrino Factory and for the Atmospheric Neutrino Flux

    CERN Multimedia

    2002-01-01

    The HARP experiment carries out, at the CERN PS, a programme of measurements of secondary hadron production, over the full solid angle, produced on thin and thick nuclear targets by beams of protons and pions with momenta in the range 2 to 15~\\GeVc. The first aim of this experiment is to acquire adequate knowledge of pion yields for an optimal design of the proton driver of the Neutrino Factory. The second aim is to reduce substantially the existing $\\sim 30$\\% uncertainty in the calculation of absolute atmospheric neutrino fluxes and the $\\sim 7$\\% uncertainty in the ratio of neutrino flavours, required for a refined interpretation of the evidence for neutrino oscillation from the study of atmospheric neutrinos in present and forthcoming experiments. The HARP experiment comprises a large-acceptance charged-particle magnetic spectrometer of conventional design, located in the East Hall of the CERN PS and using the T9 tagged charged-particle beam. The main detector is a cylindrical TPC inside a solenoid magnet...

  1. Elevated Atmospheric CO2 Affects Ectomycorrhizal Species Abundance and Increases Sporocarp Production under Field Conditions

    Directory of Open Access Journals (Sweden)

    Douglas L. Godbold

    2015-04-01

    Full Text Available Anthropogenic activities during the last century have increased levels of atmospheric CO2. Forest net primary productivity increases in response to elevated CO2, altering the quantity and quality of carbon supplied to the rhizosphere. Ectomycorrhizal fungi form obligate symbiotic associations with the fine roots of trees that mediate improved scavenging for nutrients in exchange for a carbohydrate supply. Understanding how the community structure of ectomycorrhizal fungi is altered by climate change is important to further our understanding of ecosystem function. Betula pendula and Fagus sylvatica were grown in an elevated CO2 atmosphere delivered using free air carbon dioxide enrichment (FACE under field conditions in the U.K., and Picea abies was grown under elevated CO2 in glass domes in the Czech Republic. We used morphotyping and sequencing of the internal transcribed spacer region of the fungal ribosomal operon to study ectomycorrhizal community structure. Under FACE, un-colonised roots tips increased in abundance for Fagus sylvatica, and during 2006, sporocarp biomass of Peziza badia significantly increased. In domes, ectomycorrhizal community composition shifted from short-distance and smooth medium-distance to contact exploration types. Supply and competition for carbon belowground can influence ectomycorrhizal community structure with the potential to alter ecosystem function.

  2. Synergistic Effects of Turbine Wakes and Atmospheric Stability on Power Production at an Onshore Wind Farm

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, S; Lundquist, J K; Marjanovic, N

    2012-01-25

    This report examines the complex interactions between atmospheric stability and turbine-induced wakes on downwind turbine wind speed and power production at a West Coast North American multi-MW wind farm. Wakes are generated when the upwind flow field is distorted by the mechanical movement of the wind turbine blades. This has two consequences for downwind turbines: (1) the downwind turbine encounters wind flows with reduced velocity and (2) the downwind turbine encounters increased turbulence across multiple length scales via mechanical turbulence production by the upwind turbine. This increase in turbulence on top of ambient levels may increase aerodynamic fatigue loads on the blades and reduce the lifetime of turbine component parts. Furthermore, ambient atmospheric conditions, including atmospheric stability, i.e., thermal stratification in the lower boundary layer, play an important role in wake dissipation. Higher levels of ambient turbulence (i.e., a convective or unstable boundary layer) lead to higher turbulent mixing in the wake and a faster recovery in the velocity flow field downwind of a turbine. Lower levels of ambient turbulence, as in a stable boundary layer, will lead to more persistent wakes. The wake of a wind turbine can be divided into two regions: the near wake and far wake, as illustrated in Figure 1. The near wake is formed when the turbine structure alters the shape of the flow field and usually persists one rotor diameter (D) downstream. The difference between the air inside and outside of the near wake results in a shear layer. This shear layer thickens as it moves downstream and forms turbulent eddies of multiple length scales. As the wake travels downstream, it expands depending on the level of ambient turbulence and meanders (i.e., travels in non-uniform path). Schepers estimates that the wake is fully expanded at a distance of 2.25 D and the far wake region begins at 2-5 D downstream. The actual distance traveled before the wake

  3. Atmospheric chemistry of 3-pentanol: kinetics, mechanisms, and products of Cl atom and OH radical initiated oxidation in the presence and absence of NOX.

    Science.gov (United States)

    Hurley, M D; Wallington, T J; Bjarrum, M; Javadi, M S; Nielsen, O J

    2008-09-04

    Smog chamber/FTIR techniques were used to study the atmospheric chemistry of 3-pentanol and determine rate constants of k(Cl+3-pentanol) = (2.03 +/- 0.23) x 10 (-10) and k(OH+3-pentanol) = (1.32 +/- 0.15) x 10 (-11) cm (3) molecule (-1) s (-1) in 700 Torr of N 2/O 2 diluent at 296 +/- 2 K. The primary products of the Cl atom initiated oxidation of 3-pentanol in the absence of NO were (with molar yields) 3-pentanone (26 +/- 2%), propionaldehyde (12 +/- 2%), acetaldehyde (13 +/- 2%) and formaldehyde (2 +/- 1%). The primary products of the Cl atom initiated oxidation of 3-pentanol in the presence of NO were (with molar yields) 3-pentanone (51 +/- 4%), propionaldehyde (39 +/- 2%), acetaldehyde (44 +/- 4%) and formaldehyde (4 +/- 1%). The primary products of the OH radical initiated oxidation of 3-pentanol in the presence of NO were (with molar yields) 3-pentanone (58 +/- 3%), propionaldehyde (28 +/- 2%), and acetaldehyde (37 +/- 2%). In all cases the product yields were independent of oxygen concentration over the partial pressure range 10-700 Torr. The reactions of Cl atoms and OH radicals with 3-pentanol proceed 26 +/- 2 and 58 +/- 3%, respectively, via attack on the 3-position to give an alpha-hydroxyalkyl radical, which reacts with O 2 to give 3-pentanone. The results are discussed with respect to the literature data and atmospheric chemistry of 3-pentanol.

  4. Vertical and horizontal processes in the global atmosphere and the maximum entropy production conjecture

    Directory of Open Access Journals (Sweden)

    S. Pascale

    2012-01-01

    Full Text Available The objective of this paper is to reconsider the Maximum Entropy Production conjecture (MEP in the context of a very simple two-dimensional zonal-vertical climate model able to represent the total material entropy production due at the same time to both horizontal and vertical heat fluxes. MEP is applied first to a simple four-box model of climate which accounts for both horizontal and vertical material heat fluxes. It is shown that, under condition of fixed insolation, a MEP solution is found with reasonably realistic temperature and heat fluxes, thus generalising results from independent two-box horizontal or vertical models. It is also shown that the meridional and the vertical entropy production terms are independently involved in the maximisation and thus MEP can be applied to each subsystem with fixed boundary conditions. We then extend the four-box model by increasing its resolution, and compare it with GCM output. A MEP solution is found which is fairly realistic as far as the horizontal large scale organisation of the climate is concerned whereas the vertical structure looks to be unrealistic and presents seriously unstable features. This study suggest that the thermal meridional structure of the atmosphere is predicted fairly well by MEP once the insolation is given but the vertical structure of the atmosphere cannot be predicted satisfactorily by MEP unless constraints are imposed to represent the determination of longwave absorption by water vapour and clouds as a function of the state of the climate. Furthermore an order-of-magnitude estimate of contributions to the material entropy production due to horizontal and vertical processes within the climate system is provided by using two different methods. In both cases we found that approximately 40 mW m−2 K−1 of material entropy production is due to vertical heat transport and 5–7 mW m−2 K−1 to horizontal heat transport.

  5. Atmospheric patterns driving Holocene productivity in the Alboran Sea (Western Mediterranean): a multiproxy approach.

    Science.gov (United States)

    Ausin, Blanca; Flores, Jose-Abel; Sierro, Francisco Javier; Cacho, Isabel; Hernández-Almeida, Iván; Martrat, Belén; Grimalt, Joan

    2014-05-01

    This study is aimed to reconstruct productivity during the Holocene in the Western Mediterranean as well as to investigate what processes account for its short-term variability. Fossil coccolithophore assemblages have been studied along with Mg/Ca and Uk'37-estimated Sea Surface Temperature (SST) and other paleoenvironmental proxies. The study site is located in a semi-permanent area of upwelling in the Alboran Sea. This productive cell is of special interest since is closely related to local hydrological dynamics driven by the entering Atlantic Jet (AJ). The onset of this productive cell is suggested at 7.7 ka cal. B.P. and linked to the establishment of the anticyclonic gyres. From 7.7 ka cal. BP to present, the N ratio and accumulation rate of Florisphaera profunda show successive upwelling and stratification events. This alternation is simultaneous to changes in the Western Mediterranean Deep Water (WMDW) formation rate in the Gulf of Lions [Frigola et al., 2007], along with changes in Mg/Ca-estimated SST, relative abundance of reworked nannoliths, pollen grains record [Fletcher et al., 2012] and n-hexacosan-1-ol index. Two scenarios are proposed to explain short-term climatic and oceanographic variability: [1] Wetter climate and weaker north-westerlies blowing over the Gulf of Lions trigger a slackening of the WMDW formation. Consequently, a minor AJ inflows the Alboran Sea leading to less vertical mixing and a deepening of the nutricline and hence, long-term stratification events. [2] Arid climate and stronger north-westerlies enable WMDW reinforcement. In turn, increased AJ triggers vertical mixing and nutricline shoaling, and therefore, productive periods. Finally, changes in atmospheric patterns (e.g. the winter North Atlantic Oscillation; [Olsen et al., 2012]) prove to be useful in explaining the WMDW formation in the Gulf of Lions and associated short-term productivity variations in the Alboran Sea. References Fletcher, W. J., M. Debret, and M. F

  6. Gas-Solid Reaction Route toward the Production of Intermetallics from Their Corresponding Oxide Mixtures

    Directory of Open Access Journals (Sweden)

    Hesham Ahmed

    2016-08-01

    Full Text Available Near-net shape forming of metallic components from metallic powders produced in situ from reduction of corresponding pure metal oxides has not been explored to a large extent. Such a process can be probably termed in short as the “Reduction-Sintering” process. This methodology can be especially effective in producing components containing refractory metals. Additionally, in situ production of metallic powder from complex oxides containing more than one metallic element may result in in situ alloying during reduction, possibly at lower temperatures. With this motivation, in situ reduction of complex oxides mixtures containing more than one metallic element has been investigated intensively over a period of years in the department of materials science, KTH, Sweden. This review highlights the most important features of that investigation. The investigation includes not only synthesis of intermetallics and refractory metals using the gas solid reaction route but also study the reaction kinetics and mechanism. Environmentally friendly gases like H2, CH4 and N2 were used for simultaneous reduction, carburization and nitridation, respectively. Different techniques have been utilized. A thermogravimetric analyzer was used to accurately control the process conditions and obtain reaction kinetics. The fluidized bed technique has been utilized to study the possibility of bulk production of intermetallics compared to milligrams in TGA. Carburization and nitridation of nascent formed intermetallics were successfully carried out. A novel method based on material thermal property was explored to track the reaction progress and estimate the reaction kinetics. This method implies the dynamic measure of thermal diffusivity using laser flash method. These efforts end up with a successful preparation of nanograined intermetallics like Fe-Mo and Ni-W. In addition, it ends up with simultaneous reduction and synthesis of Ni-WN and Ni-WC from their oxide mixtures

  7. Syngas production from tar reforming by microwave plasma jet at atmospheric pressure: power supplied influence

    Science.gov (United States)

    de Souza Medeiros, Henrique; Justiniano, Lucas S.; Gomes, Marcelo P.; Soares da Silva Sobrinho, Argemiro; Petraconi Filho, Gilberto

    2013-09-01

    Now a day, scientific community is searching for new fuels able to replace fossil fuels with economic and environment gains and biofuel play a relevant rule, mainly for the transport sector. A major process to obtaining such type of renewable resource is biomass gasification. This process has as product a gas mixture containing CO, CH4, and H2 which is named synthesis gas (syngas). However, an undesirable high molecular organic species denominated tar are also produced in this process which must be removed. In this work, results of syngas production via tar reforming in the atmospheric pressure microwave discharge having as parameter the power supply. Argon, (argon + ethanol), and (argon + tar solution) plasma jet were produced by different values of power supplied (from 0.5 KW to 1.5 KW). The plasma compounds were investigated by optical spectroscopy to each power and gas composition. The main species observed in the spectrum are Ar, CN, OII, OIV, OH, H2, H(beta), CO2, CO, and SIII. This last one came from tar. The best value of the power applied to syngas production from tar reforming was verified between 1.0 KW and 1.2 KW. We thank the following institutions for financial support: CNPq, CAPES, and FAPESP.

  8. Evaluation of Atmospheric Precipitable Water from Reanalysis Products Using Homogenized Radiosonde Observations over China

    Science.gov (United States)

    Zhao, T.; Wang, J.; Dai, A.

    2015-12-01

    Many multi-decadal atmospheric reanalysis products are avialable now, but their consistencies and reliability are far from perfect. In this study, atmospheric precipitable water (PW) from the NCEP/NCAR, NCEP/DOE, MERRA, JRA-55, JRA-25, ERA-Interim, ERA-40, CFSR and 20CR reanalyses is evaluated against homogenized radiosonde observations over China during 1979-2012 (1979-2001 for ERA-40). Results suggest that the PW biases in the reanalyses are within ˜20% for most of northern and eastern China, but the reanalyses underestimate the observed PW by 20%-40% over western China, and by ˜60% over the southwestern Tibetan Plateau. The newer-generation reanalyses (e.g., JRA25, JRA55, CFSR and ERA-Interim) have smaller root-mean-square error (RMSE) than the older-generation ones (NCEP/NCAR, NCEP/DOE and ERA-40). Most of the reanalyses reproduce well the observed PW climatology and interannual variations over China. However, few reanalyses capture the observed long-term PW changes, primarily because they show spurious wet biases before about 2002. This deficiency results mainly from the discontinuities contained in reanalysis RH fields in the mid-lower troposphere due to the wet bias in older radiosonde records that are assimilated into the reanalyses. An empirical orthogonal function (EOF) analysis revealed two leading modes that represent the long-term PW changes and ENSO-related interannual variations with robust spatial patterns. The reanalysis products, especially the MERRA and JRA-25, roughly capture these EOF modes, which account for over 50% of the total variance. The results show that even during the post-1979 satellite era, discontinuities in radiosonde data can still induce large spurious long-term changes in reanalysis PW and other related fields. Thus, more efforts are needed to remove spurious changes in input data for future long-term reanlayses.

  9. Combustion products of plastics as indicators for refuse burning in the atmosphere.

    Science.gov (United States)

    Simoneit, Bernd R T; Medeiros, Patricia M; Didyk, Borys M

    2005-09-15

    Despite all of the economic problems and environmental discussions on the dangers and hazards of plastic materials, plastic production worldwide is growing at a rate of about 5% per year. Increasing techniques for recycling polymeric materials have been developed during the last few years; however, a large fraction of plastics are still being discarded in landfills or subjected to intentional or incidental open-fire burning. To identify specific tracer compounds generated during such open-fire combustion, both smoke particles from burning and plastic materials from shopping bags, roadside trash, and landfill garbage were extracted for gas chromatography-mass spectrometry analyses. Samples were collected in Concón, Chile, an area frequently affected by wildfire incidents and garbage burning, and the United States for comparison. Atmospheric samples from various aerosol sampling programs are also presented as supportive data. The major components of plastic extracts were even-carbon-chain n-alkanes (C16-C40), the plasticizer di-2-ethylhexyl phthalate, and the antioxidants and lubricants/antiadhesives Irganox 1076, Irgafos 168, and its oxidation product tris(2,4-di-tertbutylphenyl) phosphate. Major compounds in smoke from burning plastics include the non-source-specific n-alkanes (mainly even predominance), terephthalic acid, phthalates, and 4-hydroxybenzoic acid, with minor amounts of polycyclic aromatic hydrocarbons (including triphenylbenzenes) and tris(2,4-di-tert-butylphenyl)phosphate. 1,3,5-Triphenylbenzene and tris(2,4-di-tert-butylphenyl)- phosphate were found in detectable amounts in atmospheric samples where plastics and refuse were burned in open fires, and thus we propose these two compounds as specific tracers for the open-burning of plastics.

  10. 大气中有机胺类物质反应机理和消除过程研究%A Review of Reaction Mechanism and Eliminate Process of Atmospheric Amines

    Institute of Scientific and Technical Information of China (English)

    夏京; 王兴

    2015-01-01

    The possible sources,health hazards,homogeneous and heterogeneous chemical conversion mech-anism of amines in the atmosphere were reviewed.The changes of reaction product to secondary organic aerosols ( SOAs) as well as to the physical and chemical properties of aerosols which enhance the indirect climate effect of aerosol ( such as CCN,etc.) were elaborated.Amines in the atmosphere convert to particle phase mainly by dis-solution or replacement in the reaction with atmospheric oxidants and heterogeneous reaction process,then reac-hing ground or sea by wet sedimentation ( like drops,cloud droplets,rain,etc.) .%综述大气中有机胺可能的来源、健康危害及其在大气中的均相和非均相化学转化机制,阐述有机胺的反应产物对二次有机气溶胶及其对大气气溶胶的物理和化学性质的改变,此类改变增强大气气溶胶间接气候效应(如成云结核能力等)。大气中的有机胺主要通过与大气氧化剂的反应和非均相反应过程的溶解或置换进入颗粒相,而后随着湿沉降(如云滴、雾滴、雨滴等)到达地面或海面。

  11. Production of stable, non-thermal atmospheric pressure rf capacitive plasmas using gases other than helium or neon

    Science.gov (United States)

    Park, Jaeyoung; Henins, Ivars

    2005-06-21

    The present invention enables the production of stable, steady state, non-thermal atmospheric pressure rf capacitive .alpha.-mode plasmas using gases other than helium and neon. In particular, the current invention generates and maintains stable, steady-state, non-thermal atmospheric pressure rf .alpha.-mode plasmas using pure argon or argon with reactive gas mixtures, pure oxygen or air. By replacing rare and expensive helium with more readily available gases, this invention makes it more economical to use atmospheric pressure rf .alpha.-mode plasmas for various materials processing applications.

  12. ASR prevention — Effect of aluminum and lithium ions on the reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Leemann, Andreas, E-mail: andreas.leemann@empa.ch [Laboratory for Concrete/Construction Chemistry, Empa, Swiss Federal Laboratories for Material Science and Technology, Überlandstr. 129, 8600 Dübendorf (Switzerland); Bernard, Laetitia [Laboratory for Nanoscale Materials Science, Empa, Swiss Federal Laboratories for Material Science and Technology, Überlandstr. 129, 8600 Dübendorf (Switzerland); Alahrache, Salaheddine; Winnefeld, Frank [Laboratory for Concrete/Construction Chemistry, Empa, Swiss Federal Laboratories for Material Science and Technology, Überlandstr. 129, 8600 Dübendorf (Switzerland)

    2015-10-15

    In spite of the recent progress in the understanding of the mechanisms enabling aluminum-containing SCM like metakaolin and added LiNO{sub 3} to limit the extent of ASR in mortar and concrete, some gaps still remain. They concern mainly the effect of aluminum-containing SCM on the formed ASR products and the influence of aggregate characteristics on the effectiveness of LiNO{sub 3}. In this study, a model system, concrete and mortar were investigated by pore solution analysis, TGA, XRD, NMR, SEM combined with EDX and ToF-SIMS to address these questions. The amount of aluminum present in the pore solution of concrete and mortar is only able to slow down SiO{sub 2} dissolution but not to alter morphology, structure and composition of the reaction products. LiNO{sub 3} can suppress ASR by forming dense products protecting reactive minerals from further reaction. But its effectiveness is decreasing with increasing specific surface area of the reactive minerals in aggregates. - Highlights: • Aluminum of SCM slows down SiO{sub 2} dissolution. • Aluminum of SCM does not alter morphology and structure of ASR product. • ASR suppressing effect of LiNO{sub 3} depends on specific surface area of the aggregates.

  13. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles

    Science.gov (United States)

    Williams, Brent J.; Zhang, Yaping; Zuo, Xiaochen; Martinez, Raul E.; Walker, Michael J.; Kreisberg, Nathan M.; Goldstein, Allen H.; Docherty, Kenneth S.; Jimenez, Jose L.

    2016-04-01

    Atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality and, often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completion of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a gas chromatography column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer. Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO+ (m/z 30), NO2+ (m/z 46), SO+ (m/z 48), and SO2+ (m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO2+ (m/z 44) makes up a major component of the decomposition signal, along with smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z 53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate mass concentrations measured by an AMS reveal good correlation, with improved correlations for OA when compared to the AMS oxygenated OA (OOA

  14. Structural Analysis of Substrate, Reaction Intermediate, and Product Binding in Haemophilus influenzae Biotin Carboxylase.

    Science.gov (United States)

    Broussard, Tyler C; Pakhomova, Svetlana; Neau, David B; Bonnot, Ross; Waldrop, Grover L

    2015-06-23

    Acetyl-CoA carboxylase catalyzes the first and regulated step in fatty acid synthesis. In most Gram-negative and Gram-positive bacteria, the enzyme is composed of three proteins: biotin carboxylase, a biotin carboxyl carrier protein (BCCP), and carboxyltransferase. The reaction mechanism involves two half-reactions with biotin carboxylase catalyzing the ATP-dependent carboxylation of biotin-BCCP in the first reaction. In the second reaction, carboxyltransferase catalyzes the transfer of the carboxyl group from biotin-BCCP to acetyl-CoA to form malonyl-CoA. In this report, high-resolution crystal structures of biotin carboxylase from Haemophilus influenzae were determined with bicarbonate, the ATP analogue AMPPCP; the carboxyphosphate intermediate analogues, phosphonoacetamide and phosphonoformate; the products ADP and phosphate; and the carboxybiotin analogue N1'-methoxycarbonyl biotin methyl ester. The structures have a common theme in that bicarbonate, phosphate, and the methyl ester of the carboxyl group of N1'-methoxycarbonyl biotin methyl ester all bound in the same pocket in the active site of biotin carboxylase and as such utilize the same set of amino acids for binding. This finding suggests a catalytic mechanism for biotin carboxylase in which the binding pocket that binds tetrahedral phosphate also accommodates and stabilizes a tetrahedral dianionic transition state resulting from direct transfer of CO₂ from the carboxyphosphate intermediate to biotin.

  15. Product lambda-doublet ratios as an imprint of chemical reaction mechanism

    Science.gov (United States)

    Jambrina, P. G.; Zanchet, A.; Aldegunde, J.; Brouard, M.; Aoiz, F. J.

    2016-11-01

    In the last decade, the development of theoretical methods has allowed chemists to reproduce and explain almost all of the experimental data associated with elementary atom plus diatom collisions. However, there are still a few examples where theory cannot account yet for experimental results. This is the case for the preferential population of one of the Λ-doublet states produced by chemical reactions. In particular, recent measurements of the OD(2Π) product of the O(3P)+D2 reaction have shown a clear preference for the Π(A') Λ-doublet states, in apparent contradiction with ab initio calculations, which predict a larger reactivity on the A'' potential energy surface. Here we present a method to calculate the Λ-doublet ratio when concurrent potential energy surfaces participate in the reaction. It accounts for the experimental Λ-doublet populations via explicit consideration of the stereodynamics of the process. Furthermore, our results demonstrate that the propensity of the Π(A') state is a consequence of the different mechanisms of the reaction on the two concurrent potential energy surfaces

  16. Influence of temperature inhomogeneity on product profile of reactions occurring within zeolites

    Indian Academy of Sciences (India)

    A V Anil Kumar; S Yashonath; G Ananthakrishna

    2003-10-01

    In zeolites, diffusion is often accompanied by a reaction or sorption which in turn can induce temperature inhomogeneities. Monte Carlo simulations of Lennard-Jones atoms in zeolite NaCaA are reported for the presence of a hot zone presumed to be created by a reaction or chemi- or physi-sorption site. These simulations show that the presence of localized hot regions can alter both kinetic and transport properties such as diffusion. Further, we show that enhancement of diffusion constant is greater for systems with larger barrier height, a surprising result that may be of considerable significance in many chemical and biological processes. We find an unanticipated coupling between reaction and diffusion due to the presence of a hot zone in addition to that which normally exists via concentration. Implications of this coupling for the product profile of a reaction are discussed. We also propose a mechanism by which mobility of ions or diffusion of molecular species within biomembranes may take place.

  17. Coupled Pervaporation-Reaction Distillation Process for the Production of n-Bromopropane

    Institute of Scientific and Technical Information of China (English)

    毛澄宇; 余立新; 郭庆丰; 席春光

    2002-01-01

    The reaction of n-C3H7OH+HBr=n-C3H7Br+H2O was used to experimentally study a coupled pervaporation (PV)-reaction distillation (RD) process. The results show that polyvinyl alcohol (PVA) is a suitable membrane material for water removal. The typical separation properties of PVA polyacrylonitrile (PAN) composite membranes are a highest flux of 780 g/(m2*h) and a separation factor of 840 for the C3H7OH concentration in the original feed of 95% at 90℃ and below 3300 Pa(abs). Reaction distillation produced the n-bromopropane from the distillation column as a ternary azeotropic liquid mixture of C3H7OH, H2O and C3H7Br, with a product concentration of about 92%. The coupled PV-RD membrane reactor experiment shows that the BrPr yield can reach 92%, much higher than that for reaction-distillation without pervaporation.

  18. Pyranone natural products as inspirations for catalytic reaction discovery and development.

    Science.gov (United States)

    McDonald, Benjamin R; Scheidt, Karl A

    2015-04-21

    Natural products continue to provide a wealth of opportunities in the areas of chemical and therapeutic development. These structures are effective measuring sticks for the current state of chemical synthesis as a field and constantly inspire new approaches and strategies. Tetrahydropryans and tetrahydropyran-4-ones are found in numerous bioactive marine natural products and medicinal compounds. Our interest in exploring the therapeutic potential of natural products containing these motifs provided the impetus to explore new methods to access highly functionalized, chiral pyran molecules in the most direct and rapid fashion possible. This goal led to exploration and development of a Lewis acid-mediated Prins reaction between a chiral β-hydroxy-dioxinone and aldehyde to produce a pyran-dioxinone fused product that can be processed in a single pot operation to the desired tetrahydropyran-4-ones in excellent yield and stereoselectivity. Although the Prins reaction is a commonly employed approach toward pyrans, this method uniquely provides a 3-carboxy-trisubstituted pyran and utilizes dioxinones in a manner that was underexplored at the time. The 3-carboxy substituent served as a key synthetic handhold when this method was applied to the synthesis of highly functionalized pyrans within the macrocyclic natural products neopeltolide, okilactiomycin, and exiguolide. When employed in challenging macrocyclizations, this tetrahydropyranone forming reaction proved highly stereoselective and robust. Another major thrust in our lab has been the synthesis of benzopyranone natural products, specifically flavonoids, because this broad and diverse family of compounds possesses an equally broad range of biological and medicinal applications. With the goal of developing a broad platform toward the synthesis of enantioenriched flavonoid analogs and natural products, a biomimetic, asymmetric catalytic approach toward the synthesis of 2-aryl benzopyranones was developed. A

  19. Multiphasic Reaction Modeling for Polypropylene Production in a Pilot-Scale Catalytic Reactor

    Directory of Open Access Journals (Sweden)

    Mohammad Jakir Hossain Khan

    2016-06-01

    Full Text Available In this study, a novel multiphasic model for the calculation of the polypropylene production in a complicated hydrodynamic and the physiochemical environments has been formulated, confirmed and validated. This is a first research attempt that describes the development of the dual-phasic phenomena, the impact of the optimal process conditions on the production rate of polypropylene and the fluidized bed dynamic details which could be concurrently obtained after solving the model coupled with the CFD (computational fluid dynamics model, the basic mathematical model and the moment equations. Furthermore, we have established the quantitative relationship between the operational condition and the dynamic gas–solid behavior in actual reaction environments. Our results state that the proposed model could be applied for generalizing the production rate of the polymer from a chemical procedure to pilot-scale chemical reaction engineering. However, it was assumed that the solids present in the bubble phase and the reactant gas present in the emulsion phase improved the multiphasic model, thus taking into account that the polymerization took place mutually in the emulsion besides the bubble phase. It was observed that with respect to the experimental extent of the superficial gas velocity and the Ziegler-Natta feed rate, the ratio of the polymer produced as compared to the overall rate of production was approximately in the range of 9%–11%. This is a significant amount and it should not be ignored. We also carried out the simulation studies for comparing the data of the CFD-dependent dual-phasic model, the emulsion phase model, the dynamic bubble model and the experimental results. It was noted that the improved dual-phasic model and the CFD model were able to predict more constricted and safer windows at similar conditions as compared to the experimental results. Our work is unique, as the integrated developed model is able to offer clearer ideas

  20. Technical Note: Performance of Chemical Ionization Reaction Time-of-Flight Mass Spectrometry (CIR-TOF-MS for the measurement of atmospherically significant oxygenated volatile organic compounds

    Directory of Open Access Journals (Sweden)

    K. P. Wyche

    2007-01-01

    Full Text Available The performance of a new chemical ionization reaction time-of-flight mass spectrometer (CIR-TOF-MS utilising the environment chamber SAPHIR (Simulation of Atmospheric Photochemistry In a large Reaction Chamber- Forschungzentrum Jülich, Germany is described. The work took place as part of the ACCENT (Atmospheric Composition and Change the European NeTwork for excellence supported oxygenated volatile organic compound (OVOC measurement intercomparison during January 2005. The experiment entailed the measurement of 14 different atmospherically significant OVOCs at various mixing ratios in the approximate range 10.0–0.6 ppbV. The CIR-TOF-MS operated throughout the exercise with the hydronium ion (H3O+ as the primary chemical ionization (CI reagent in order to facilitate proton transfer to the analyte OVOCs. The results presented show that the CIR time-of-flight mass spectrometer is capable of detecting a wide range of atmospheric OVOCs at mixing ratios of around 10 ppbV in "real-time" (i.e. detection on the one-minute time scale, with sub-ppbV measurement also achieved following an increase in averaging time to tens of minutes. It is shown that in general OVOC measurement is made with high accuracy and precision, with integration time, mixing ratio and compound dependent values as good as 4–13% and 3–15% respectively. It is demonstrated that CIR-TOF-MS has rapid multi-channel response at the required sensitivity, accuracy and precision for atmospheric OVOC measurement.

  1. Lipoxidation products as biomarkers of oxidative damage to proteins during lipid peroxidation reactions.

    Science.gov (United States)

    Requena, J R; Fu, M X; Ahmed, M U; Jenkins, A J; Lyons, T J; Thorpe, S R

    1996-01-01

    Oxidative stress is implicated in the pathogenesis of numerous disease processes including diabetes mellitus, atherosclerosis, ischaemia reperfusion injury and rheumatoid arthritis. Chemical modification of amino acids in protein during lipid peroxidation results in the formation of lipoxidation products which may serve as indicators of oxidative stress in vivo. The focus of the studies described here was initially to identify chemical modifications of protein derived exclusively from lipids in order to assess the role of lipid peroxidative damage in the pathogenesis of disease. Malondialdehye (MDA) and 4-hydroxynonenal (HNE) are well characterized oxidation products of polyunsaturated fatty acids on low-density lipoprotein (LDL) and adducts of these compounds have been detected by immunological means in atherosclerotic plaque. Thus, we first developed gas chromatography-mass spectrometry assays for the Schiff base adduct of MDA to lysine, the lysine-MDA-lysine diimine cross-link and the Michael addition product of HNE to lysine. Using these assays, we showed that the concentrations of all three compounds increased significantly in LDL during metal-catalysed oxidation in vitro. The concentration of the advanced glycation end-product N epsilon-(carboxymethyl)lysine (CML) also increased during LDL oxidation, while that of its putative carbohydrate precursor the Amadori compound N epsilon-(1-deoxyfructose-1-yl)lysine did not change, demonstrating that CML is a marker of both glycoxidation and lipoxidation reactions. These results suggest that MDA and HNE adducts to lysine residues should serve as biomarkers of lipid modification resulting from lipid peroxidation reactions, while CML may serve as a biomarker of general oxidative stress resulting from both carbohydrate and lipid oxidation reactions.

  2. Hexagonal boron nitride thin film thermal neutron detectors with high energy resolution of the reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Doan, T.C.; Majety, S.; Grenadier, S.; Li, J.; Lin, J.Y.; Jiang, H.X., E-mail: hx.jiang@ttu.edu

    2015-05-21

    Hexagonal boron nitride (h-BN) is highly promising for solid-state thermal neutron detector applications due to its many outstanding physical properties, especially its very large thermal neutron capture cross-section (~3840 barns for {sup 10}B), which is several orders of magnitude larger than those of most other isotopes. The focus of the present work is to carry out studies on h-BN thin film and detector properties to lay the foundation for the development of a direct-conversion solid-state thermal neutron detector with high sensitivity. The measured carrier mobility-lifetime (μτ) product of h-BN thin films grown on sapphire substrates is 2.83×10{sup −7} cm{sup 2}/V for electrons and holes, which is comparable to the value of about 10{sup −7} cm{sup 2}/V for GaN thin films grown on sapphire. Detectors based on h-BN thin films were fabricated and the nuclear reaction product pulse height spectra were measured. Under a bias of 20 V, very narrow individual peaks corresponding to the reaction product energies of α and Li particles as well as the sum peaks have been clearly resolved in the pulse height spectrum for the first time by a B-based direct-conversion semiconductor neutron detector. Our results indicate that h-BN thin film detectors possess unique advantages including small size, low weight, portability, low voltage operation and high energy resolution of specific reaction products.

  3. Production of A-hypernuclei in A(p,K+)ΛB reactions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The production of A-hypernuclei in the A(p,K+)ΛB reaction is investigated in the framework of the distorted wave impulse approximation(DWIA).The total cross sections and differential cross sections for various nuclear targets are calculated with an elementary process pN→+NKA where the additional contributions from the N*(1535)resonance and the final state interaction between p and A are included.The dependence of the production cross sections of Λ-hypernuclei on the phenomenological nuclear density and the nucleon number in the target,as well as the distortion effect of the incident proton and outgoing kaon,are also explored.It is shown that the distortion effect tends to decrease the cross sections by a factor of about 3-10.The production cross sections are sensitive to the adopted nuclear density.

  4. Engineering of carboligase activity reaction in Candida glabrata for acetoin production.

    Science.gov (United States)

    Li, Shubo; Xu, Nan; Liu, Liming; Chen, Jian

    2014-03-01

    Utilization of Candida glabrata overproducing pyruvate is a promising strategy for high-level acetoin production. Based on the known regulatory and metabolic information, acetaldehyde and thiamine were fed to identify the key nodes of carboligase activity reaction (CAR) pathway and provide a direction for engineering C. glabrata. Accordingly, alcohol dehydrogenase, acetaldehyde dehydrogenase, pyruvate decarboxylase, and butanediol dehydrogenase were selected to be manipulated for strengthening the CAR pathway. Following the rational metabolic engineering, the engineered strain exhibited increased acetoin biosynthesis (2.24 g/L). In addition, through in silico simulation and redox balance analysis, NADH was identified as the key factor restricting higher acetoin production. Correspondingly, after introduction of NADH oxidase, the final acetoin production was further increased to 7.33 g/L. By combining the rational metabolic engineering and cofactor engineering, the acetoin-producing C. glabrata was improved stepwise, opening a novel pathway for rational development of microorganisms for bioproduction.

  5. Novel Production Method for Plant Polyphenol from Livestock Excrement Using Subcritical Water Reaction

    Directory of Open Access Journals (Sweden)

    Mayu Yamamoto

    2008-01-01

    Full Text Available Plant polyphenol, including vanillin, is often used as the intermediate materials of the medicines and vanilla flavoring. In agriculture generally vanillin is produced from vanilla plant and in industry from lignin of disposed wood pulp. We have recently developed a method for the production of plant polyphenol with the excrement as a natural resource of lignin, of the herbivorous animals, by using the subcritical water. The method for using the subcritical water is superior to that of the supercritical water because in the latter complete decomposition occurs. We have successfully produced the vanillin, protocatechuic acid, vanillic acid, and syringic acid in products. Our method is simpler and more efficient not only because it requires the shorter treatment time but also because it releases less amount of carbon dioxide into the atmosphere.

  6. High-molecular products analysis of VOC destruction in atmospheric pressure discharge

    Science.gov (United States)

    Grossmannova, Hana; Ciganek, Miroslav; Krcma, Frantisek

    2007-04-01

    We investigate the issue of applicability of the solid phase microextraction (SPME) in the analysis of volatile organic compounds (VOCs) destruction products in the gliding arc discharge. Our research is focused on the measurements with the simple one stage gliding arc reactor, applied voltage was varied in the range of 3.5-4 kV. As a carrier gas, the dry air and its mixtures with nitrogen and oxygen, enriched by toluene, with flow rate of 1000-3500 ml/min was used. Total decomposition of toluene of 97 % was achieved at the oxygen content in carrier gas of 60 %. For measurements with air as a carrier gas, the highest efficiency was 95 %. We also tested the SPME technique suitability for the quantitative analysis of exhausts gases and if this technique can be used efficiently in the field to extract byproducts. Carbowax/divinylbenzene and Carboxen/polydimethylsiloxane/divinylbenzene fibres were chosen for sampling. Tens of various high-molecular substances were observed, especially a large number of oxygenous compounds and further several nitrogenous and CxHy compounds. The concentrations of various generated compounds strongly depend on the oxygen content in gas mixture composition. The results showed that the fiber coated by Carbowax/divinylbenzene can extract more products independently on the used VOC compound. The Carboxen/polydimethylsiloxane/divinylbenzene fiber is useful for the analysis of oxygenous compounds and its use will be recommended especially when the destruction is done in the oxygen rich atmosphere. With the higher ratio of oxygen in the carrier gas a distinctive decline of CxHy compounds amount have been observed. We also tried to describe the significant production of some compounds like benzyl alcohol, benzeneacetaldehyde, even in oxygen content is proximate 0 %. Experimental data demonstrated that it is necessary to use several SPME fibres for full-scale high-molecular products analysis.

  7. Measurement of the Residual Gases O2 and CO2 in Meat Products Packed in Modified Atmosphere

    Directory of Open Access Journals (Sweden)

    Jozef Čapla

    2013-02-01

    Full Text Available Nowadays, consumers have increased demand for quality and food safety and also rising demand for natural foods without chemical additives. There are many ways to presserve freshness of these products, one of them is modified atmosphere packaging, which can mean elimination and/or replacement surrounding the product before closing it in package with a mixture of gases other than the original ambient air atmosphere. for replacement of atmosphere are generally used three types of gases such as carbon dioxide, oxygen and nitrogen. this type of packaging is often used for meat and meat products, which belongs to foods that are under normal conditions perishable and for increasing the shelf life of meat products are also used various other preservation methods or their combinations. Packaging of meat and meat products in modified atmosphere is usually made with a high content of carbon dioxide, which has good bacteriostatic and fungistatic effect and is also an effective mean for increasing the shelf life of packaged products during storage and sale.

  8. Production of Camphene by Isomerization Reaction on Sulfated ZrO2

    Institute of Scientific and Technical Information of China (English)

    NoraAlejandraComelli; OmarMasini; AlfredoL~zaroCarrascull; EstherNataliaPonzi; MartaIsabelPonzi

    2000-01-01

    The kinetics of camphene production in liquid phase from α-pinene was experimentally determined in an isothermal batch reactor. To this end, a sulfated ZrO2 catalyst was used and the reaction studied in the temperature range of 370-403 K. By analyzing the experimental data, second reaction order for α-pinene was found. A kinetic model is presented which includes term for the catalyst load used. The specific rate constant at 393K was 2.19×10-3 mol·L-1·min-1, the activation energy being 93kJ·mo1·-1. Both values are within the range of literature results.

  9. Immunoassay utilizing biochemistry reaction product via surface-enhanced Raman scattering in near field

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Haiying; NI; Yi; JIANG; Wei; LUO; Peiqing; HUANG; Mei

    2005-01-01

    We propose here a kind of applications of surface-enhanced Raman scattering (SERS) to immunology. It is a new enzyme immunoassay based on SERS. In the proposed system, antibody immobilized on a solid substrate reacts with antigen, which binds with another antibody labeled with peroxidase. If this immunocomplex is subjected to reaction with o-phenylenediamine and hydrogenperoxide, azoaniline is generated. This azo compound is adsorbed on a silver colloid and only the azo compound gives a strong surface-enhanced resonance Raman (SERRS) spectrum. A linear relationship was observed between the peak intensity of the N=N stretching band and the concentration of antigen, revealing that one can determine the concentration of antigen by the SERRS measurement of the reaction product. The detection limit of this SERS enzyme immunoassay method was found to be about 10-15 mol/L.

  10. Rapid Removal of Tetrabromobisphenol A by Ozonation in Water: Oxidation Products, Reaction Pathways and Toxicity Assessment.

    Directory of Open Access Journals (Sweden)

    Ruijuan Qu

    Full Text Available Tetrabromobisphenol A (TBBPA is one of the most widely used brominated flame retardants and has attracted more and more attention. In this work, the parent TBBPA with an initial concentration of 100 mg/L was completely removed after 6 min of ozonation at pH 8.0, and alkaline conditions favored a more rapid removal than acidic and neutral conditions. The presence of typical anions and humic acid did not significantly affect the degradation of TBBPA. The quenching test using isopropanol indicated that direct ozone oxidation played a dominant role during this process. Seventeen reaction intermediates and products were identified using an electrospray time-of-flight mass spectrometer. Notably, the generation of 2,4,6-tribromophenol was first observed in the degradation process of TBBPA. The evolution of reaction products showed that ozonation is an efficient treatment for removal of both TBBPA and intermediates. Sequential transformation of organic bromine to bromide and bromate was confirmed by ion chromatography analysis. Two primary reaction pathways that involve cleavage of central carbon atom and benzene ring cleavage concomitant with debromination were thus proposed and further justified by calculations of frontier electron densities. Furthermore, the total organic carbon data suggested a low mineralization rate, even after the complete removal of TBBPA. Meanwhile, the acute aqueous toxicity of reaction solutions to Photobacterium Phosphoreum and Daphnia magna was rapidly decreased during ozonation. In addition, no obvious difference in the attenuation of TBBPA was found by ozone oxidation using different water matrices, and the effectiveness in natural waters further demonstrates that ozonation can be adopted as a promising technique to treat TBBPA-contaminated waters.

  11. Study of the corrosion products formed on carbon steels in the tropical atmosphere of Panama

    Directory of Open Access Journals (Sweden)

    Jaén, J. A.

    2003-12-01

    Full Text Available Mössbauer spectroscopy and X-ray powder diffraction (in selected samples have been used to characterize corrosion products on carbon steels after atmospheric exposure to the tropical Panamanian locations of Panama and Colon, classified according to ISO 9223 as C3 and C5, respectively. Goethite (α-FeOOH of intermediate particle size (20-100 nm, lepidocrocite (γ-FeOOH, a spinel phase consisting of non-stoichiometric magnetite (Fe3-xO4 and/or maghemite (γ-Fe2O3 and nano-sized particles were identified in the corrosion products. The spinel phase is related to short term atmospheric exposure transforms in time to other corrosion products. The corrosion resistance increased with fraction of goethite following a saturation-type behavior.

    Se caracterizaron los productos de corrosión de aceros al carbono expuestos a las atmósferas tropicales panameñas localizadas en Panamá y Colón, mediante el uso de la espectroscopia Mössbauer y difracción de rayos-X (en muestras seleccionadas. Las atmósferas se clasifican como C3 y C5, respectivamente, de acuerdo a la norma ISO 9223. Se lograron identificar los compuestos goethita (α-FeOOH de tamaño de partícula intermedio (20-100 nm, lepidocrocita (γ-FeOOH, una fase de espinela consistente en magnetita no estequiométrica (Fe3-xO4 y/o maghemita (γ-Fe2O3, y nanopartículas. La fase de espinela se puede correlacionar con exposiciones cortas a la atmósfera, transformándose en el tiempo en otros productos de corrosión. La resistencia a la corrosión se incrementa con la cantidad de goethita siguiendo una conducta de saturación.

  12. Atmospheric transport modelling of time resolved 133Xe emissions from the isotope production facility ANSTO, Australia.

    Science.gov (United States)

    Schöppner, M; Plastino, W; Hermanspahn, N; Hoffmann, E; Kalinowski, M; Orr, B; Tinker, R

    2013-12-01

    The verification of the Comprehensive Nuclear-Test Ban Treaty (CTBT) relies amongst other things on the continuous and worldwide monitoring of radioxenon. The characterization of the existing and legitimate background, which is produced mainly by nuclear power plants and isotope production facilities, is of high interest to improve the capabilities of the monitoring network. However, the emissions from legitimate sources can usually only be estimated. For this paper historic source terms of (133)Xe emissions from the isotope production facility at ANSTO, Sydney, Australia, have been made available in a daily resolution. Based on these high resolution data, different source term sets with weekly, monthly and yearly time resolution have been compiled. These different sets are then applied together with atmospheric transport modelling (ATM) to predict the concentration time series at two radioxenon monitoring stations. The results are compared with each other in order to examine the improvement of the prediction capability depending on the used time resolution of the most dominant source term in the region.

  13. Oxidation of triclosan by ferrate: Reaction kinetics, products identification and toxicity evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Yang Bin [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Ying Guangguo, E-mail: guang-guo.ying@csiro.au [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Zhao Jianliang; Zhang Lijuan; Fang Yixiang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Nghiem, Long Duc [School of Civil Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2011-02-15

    Research highlights: {yields} Triclosan reacted rapidly with ferrate. {yields} Oxidation resulted in a decrease in algal toxicity. {yields} No inhibition of algae growth from ferrate. - Abstract: The oxidation of triclosan by commercial grade aqueous ferrate (Fe(VI)) was investigated and the reaction kinetics as a function of pH (7.0-10.0) were experimentally determined. Intermediate products of the oxidation process were characterized using both GC-MS and RRLC-MS/MS techniques. Changes in toxicity during the oxidation process of triclosan using Fe(VI) were investigated using Pseudokirchneriella subcapitata growth inhibition tests. The results show that triclosan reacted rapidly with Fe(VI), with the apparent second-order rate constant, k{sub app}, being 754.7 M{sup -1} s{sup -1} at pH 7. At a stoichiometric ratio of 10:1 (Fe(VI):triclosan), complete removal of triclosan was achieved. Species-specific rate constants, k, were determined for reaction of Fe(VI) with both the protonated and deprotonated triclosan species. The value of k determined for neutral triclosan was 6.7({+-}1.9) x 10{sup 2} M{sup -1} s{sup -1}, while that measured for anionic triclosan was 7.6({+-}0.6) x 10{sup 3} M{sup -1} s{sup -1}. The proposed mechanism for the oxidation of triclosan by the Fe(VI) involves the scission of ether bond and phenoxy radical addition reaction. Coupling reaction may also occur during Fe(VI) degradation of triclosan. Overall, the degradation processes of triclosan resulted in a significant decrease in algal toxicity. The toxicity tests showed that Fe(VI) itself dosed in the reaction did not inhibit green algae growth.

  14. A laboratory investigation of the production and properties of molecular and radical species pertinent to planetary atmospheres

    Science.gov (United States)

    Fahr, Askar; Herron, John; Laufer, Allan H.

    1990-01-01

    Vinylidene (H2C=C) is shown to be the largest photodecomposition channel in the direct photolysis of both C2H2 and C2H4. The chemistry of H2C=C as it relates to planetary atmospheres is discussed. The vinyl radical (C2H3), important in the acetylene chemistry cycle, has been directly observed spectroscopically and the kinetics of several key reactions of this species measured.

  15. Production of high quality gasoline from waste polyethylene derived heavy oil over Ni-REY catalyst in steam atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Takao; Kuwahara, Hiroshi; Mukai, Shin; Hashimoto, Kenji [Kyoto University Honnmachi (Japan). Graduate School of Engineering

    1999-07-01

    Nickel and rare earth metal exchanged Y-type zeolite catalyst (Ni-REY) was prepared for producing light fuels (gasoline and kerosene) by the catalytic cracking of heavy oil from waste plastics in a steam atmosphere. The Ni in the catalyst was found to exhibit catalysis for transportation of hydrogen atoms from steam to hydrocarbons. In a steam atmosphere, strong acid sites of the catalyst, which usually cause excessive cracking, were covered with steam molecules, leading to a high yield of liquid fuels. Experiments using MFI zeolite in a nitrogen atmosphere were also conducted for comparison. During the repetition of sequences of reaction and regeneration of the catalysts, MFI zeolite was gradually deactivated, whereas NI-REY was found to show constant activity. Furthermore, the selectivity towards gasoline was higher than MFI zeolite (NI-REY in steam: 78%, MFI type zeolite in N{sub 2} 35%). (author)

  16. Gas-phase reactivity of peptide thiyl (RS•), perthiyl (RSS•), and sulfinyl (RSO•) radical ions formed from atmospheric pressure ion/radical reactions.

    Science.gov (United States)

    Tan, Lei; Xia, Yu

    2013-04-01

    In this study, we demonstrated the formation of gas-phase peptide perthiyl (RSS•) and thiyl (RS•) radical ions besides sulfinyl radical (RSO•) ions from atmospheric pressure (AP) ion/radical reactions of peptides containing inter-chain disulfide bonds. The identity of perthiyl radical was verified from characteristic 65 Da (•SSH) loss in collision-induced dissociation (CID). This signature loss was further used to assess the purity of peptide perthiyl radical ions formed from AP ion/radical reactions. Ion/molecule reactions combined with CID were carried out to confirm the formation of thiyl radical. Transmission mode ion/molecule reactions in collision cell (q2) were developed as a fast means to estimate the population of peptide thiyl radical ions. The reactivity of peptide thiyl, perthiyl, and sulfinyl radical ions was evaluated based on ion/molecule reactions toward organic disulfides, allyl iodide, organic thiol, and oxygen, which followed in order of thiyl (RS•) > perthiyl (RSS•) > sulfinyl (RSO•). The gas-phase reactivity of these three types of sulfur-based radicals is consistent with literature reports from solution studies.

  17. Importance of atmospheric aging in reactivity of mineral dust aerosol: a case study of heterogeneous reaction of gaseous hydrogen peroxide on processed mineral particles

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2011-10-01

    Full Text Available Atmospheric aging and processing appears to alter physical and chemical properties of mineral dust aerosol and thus its role as reactive surface in the troposphere. Yet, previous studies in the atmosphere have mainly focused on the clean surfaces of mineral dust aerosol, and the reactivity of aged mineral aerosol toward atmospheric trace gases is still poorly recognized. This work presents the first laboratory investigation of heterogeneous reactions of gaseous hydrogen peroxide (H2O2, an important atmospheric oxidant, on the surface of HNO3 and SO2-processed alumina particles as surrogates of mineral dust aerosol aged by acidic trace gases as a function of relative humidity (RH and surface coverage of coatings. Pretreatment of the alumina surfaces with HNO3 and SO2 has a strong impact on its reactivity toward H2O2 uptake. On HNO3-processed particles, because of the dual role of the nitrate coating in modifying the reactivity of the particle surface, namely blocking oxide active sites but altering surface hygroscopicity, H2O2 uptake seems to decrease in some cases whereas increase in other cases, largely depending on RH and surface coverage of nitrate. On SO2-processed particles, the presence of adsorbed S(IV species appears to enhance the intrinsic reactivity of the alumina particles due to its affinity for H2O2, and the uptake of H2O2 increases by 40–80% in the range of RH from 25% to 92% relative to the unprocessed particles. However, when S(IV is completely oxidized to S(VI, the alumina surface is significantly deactivated and the measured uptake of H2O2 decreased markedly. The mechanisms for heterogeneous reactions of H2O2 with these processed particles are discussed, as well as its potential implications on tropospheric

  18. Improving North American gross primary production (GPP) estimates using atmospheric measurements of carbonyl sulfide (COS)

    Science.gov (United States)

    Chen, Huilin; Montzka, Steve; Andrews, Arlyn; Sweeney, Colm; Jacobson, Andy; Miller, Ben; Masarie, Ken; Jung, Martin; Gerbig, Christoph; Campbell, Elliott; Abu-Naser, Mohammad; Berry, Joe; Baker, Ian; Tans, Pieter

    2013-04-01

    Understanding the responses of gross primary production (GPP) to climate change is essential for improving our prediction of climate change. To this end, it is important to accurately partition net ecosystem exchange of carbon into GPP and respiration. Recent studies suggest that carbonyl sulfide is a useful tracer to provide a constraint on GPP, based on the fact that both COS and CO2 are simultaneously taken up by plants and the quantitative correlation between GPP and COS plant uptake. We will present an assessment of North American GPP estimates from the Simple Biosphere (SiB) model, the Carnegie-Ames-Stanford Approach (CASA) model, and the MPI-BGC model through atmospheric transport simulations of COS in a receptor oriented framework. The newly upgraded Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) will be employed to compute the influence functions, i.e. footprints, to link the surface fluxes to the concentration changes at the receptor observations. The HYSPLIT is driven by the 3-hourly archived NAM 12km meteorological data from NOAA NCEP. The background concentrations are calculated using empirical curtains along the west coast of North America that have been created by interpolating in time and space the observations at the NOAA/ESRL marine boundary layer stations and from aircraft vertical profiles. The plant uptake of COS is derived from GPP estimates of biospheric models. The soil uptake and anthropogenic emissions are from Kettle et al. 2002. In addition, we have developed a new soil flux map of COS based on observations of molecular hydrogen (H2), which shares a common soil uptake term but lacks a vegetative sink. We will also improve the GPP estimates by assimilating atmospheric observations of COS in the receptor oriented framework, and then present the assessment of the improved GPP estimates against variations of climate variables such as temperature and precipitation.

  19. Application of micro X-ray diffraction to investigate the reaction products formed by the alkali silica reaction in concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Dähn, R.; Arakcheeva, A.; Schaub, Ph.; Pattison, P.; Chapuis, G.; Grolimund, D.; Wieland, E.; Leemann, A. (Ecole); (PSI); (Phase Solutions); (ESRF)

    2015-12-21

    Alkali–silica reaction (ASR) is one of the most important deterioration mechanisms in concrete leading to substantial damages of structures worldwide. Synchrotron-based micro-X-ray diffraction (micro-XRD) was employed to characterize the mineral phases formed in micro-cracks of concrete aggregates as a consequence of ASR. This particular high spatial resolution technique enables to directly gain structural information on ASR products formed in a 40-year old motorway bridge damaged due to ASR. Micro-X-ray-fluorescence was applied on thin sections to locate the reaction products formed in veins within concrete aggregates. Micro-XRD pattern were collected at selected points of interest along a vein by rotating the sample. Rietveld refinement determined the structure of the ASR product consisting of a new layered framework similar to mountainite and rhodesite. Furthermore, it is conceivable that understanding the structure of the ASR product may help developing new technical treatments inhibiting ASR.

  20. Acute allergic reactions in Vietnamese children after drinking a new milk product.

    Science.gov (United States)

    Vo, Thuan Huu; Le, Ninh Hoang; Patel, Mahomed Said; Phan, Lan Trong; Tran Minh, Nhu Nguyen

    2012-02-01

    In early October 2009, pediatricians in hospitals in Ho Chi Minh City (HCMC) reported an unusual increase in the number of children presenting with an acute onset of itchy rash and some with breathing difficulties shortly after drinking milk products. The pediatricians considered the illness to be an allergic reaction to milk. The objective of our investigation was to identify the cause of this acute illness. Following early case reports, all hospitals in HCMC were requested to report cases of this illness. Parents were advised to take children with symptoms to a hospital immediately. A case-series was conducted to generate hypotheses on the possible causes of the illness and was followed by a case-control study to test the hypothesis. Parents of all cases and controls were interviewed face-to-face. The association between food items and the allergy was tested using conditional logistics regression. From 9 to 28 October 2009, 19 cases fulfilled the case definition, and 16 of the 17 cases included in the study had consumed milk supplemented with galacto-oligosaccharides (GOS) shortly before the onset of illness. Fifty age-matched, neighborhood controls were enrolled into the case control study. Of the 30 food items consumed by study participants in the preceding 24 h, only the odds ratio (OR) of milk supplemented with GOS was statistically significant: OR=34.0 (95% CI=3.9, 294.8). Laboratory tests of this milk product did not reveal any unusual properties, chemicals, or other toxic substances. This is the first report of an acute allergic reaction to fresh milk supplemented with GOS. However, the specific allergen in this product was not identified. Further cases were not reported once this product was withdrawn from sale. Vietnam's food safety authorities should expand laboratory capacity to detect allergens in food products.

  1. Preparative isolation of polymerase chain reaction products using mixed-mode chromatography.

    Science.gov (United States)

    Matos, T; Silva, G; Queiroz, J A; Bülow, L

    2015-11-15

    The polymerase chain reaction (PCR) has become one of the most useful techniques in molecular biology laboratories around the world. The purification of the target DNA product is often challenging, however, and most users are restricted to employing available commercial kits. The recent developments in mixed-mode chromatography have shown higher selectivity for a variety of nucleic acid-containing samples. Capto Adhere is a mixed-mode chromatography resin that offers a high-selectivity ligand and is here applied for the purification of amplified DNAs from PCR mixtures in a 10-min single step, with yields above 95%, high linearity, and high precision for different concentrations.

  2. Influence of atmospheric rivers on vegetation productivity and fire patterns in the southwestern U.S.

    Science.gov (United States)

    Albano, Christine M.; Dettinger, Michael; Soulard, Christopher E.

    2017-01-01

    In the southwestern U.S., the meteorological phenomenon known as atmospheric rivers (ARs) has gained increasing attention due to its strong connections to floods, snowpacks, and water supplies in the West Coast states. Relatively less is known about the ecological implications of ARs, particularly in the interior Southwest, where AR storms are less common. To address this gap, we compared a chronology of AR landfalls on the west coast between 1989 and 2011 and between 25°N and 42.5°N to annual metrics of the normalized difference vegetation index (NDVI; an indicator of vegetation productivity) and daily resolution precipitation data to assess influences of AR-fed winter precipitation on vegetation productivity across the southwestern U.S. We mapped correlations between winter AR precipitation during landfalling ARs and (1) annual maximum NDVI and (2) area burned by large wildfires summarized by ecoregion during the same year as the landfalls and during the following year. Interannual variations of AR precipitation strongly influenced both NDVI and area burned by wildfire in some dryland ecoregions. The influence of ARs on dryland vegetation varied significantly depending on the latitude of landfall, with those ARs making landfall below 35°N latitude more strongly influencing these systems, and with effects observed as far as 1300 km from the landfall location. As climatologists' understanding of the synoptic patterns associated with the occurrence of ARs continues to evolve, an increased understanding of how AR landfalls, in aggregate, influence vegetation productivity and associated wildfire activity in dryland ecosystems may provide opportunities to better predict ecological responses to climate and climate change.

  3. Estimates of Radioxenon Released from Southern Hemisphere Medical isotope Production Facilities Using Measured Air Concentrations and Atmospheric Transport Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Eslinger, Paul W.; Friese, Judah I.; Lowrey, Justin D.; McIntyre, Justin I.; Miley, Harry S.; Schrom, Brian T.

    2014-09-01

    Abstract The International Monitoring System (IMS) of the Comprehensive-Nuclear-Test-Ban-Treaty monitors the atmosphere for radioactive xenon leaking from underground nuclear explosions. Emissions from medical isotope production represent a challenging background signal when determining whether measured radioxenon in the atmosphere is associated with a nuclear explosion prohibited by the treaty. The Australian Nuclear Science and Technology Organisation (ANSTO) operates a reactor and medical isotope production facility in Lucas Heights, Australia. This study uses two years of release data from the ANSTO medical isotope production facility and Xe-133 data from three IMS sampling locations to estimate the annual releases of Xe-133 from medical isotope production facilities in Argentina, South Africa, and Indonesia. Atmospheric dilution factors derived from a global atmospheric transport model were used in an optimization scheme to estimate annual release values by facility. The annual releases of about 6.8×1014 Bq from the ANSTO medical isotope production facility are in good agreement with the sampled concentrations at these three IMS sampling locations. Annual release estimates for the facility in South Africa vary from 1.2×1016 to 2.5×1016 Bq and estimates for the facility in Indonesia vary from 6.1×1013 to 3.6×1014 Bq. Although some releases from the facility in Argentina may reach these IMS sampling locations, the solution to the objective function is insensitive to the magnitude of those releases.

  4. Estimates of radioxenon released from Southern Hemisphere medical isotope production facilities using measured air concentrations and atmospheric transport modeling.

    Science.gov (United States)

    Eslinger, Paul W; Friese, Judah I; Lowrey, Justin D; McIntyre, Justin I; Miley, Harry S; Schrom, Brian T

    2014-09-01

    The International Monitoring System (IMS) of the Comprehensive-Nuclear-Test-Ban-Treaty monitors the atmosphere for radioactive xenon leaking from underground nuclear explosions. Emissions from medical isotope production represent a challenging background signal when determining whether measured radioxenon in the atmosphere is associated with a nuclear explosion prohibited by the treaty. The Australian Nuclear Science and Technology Organisation (ANSTO) operates a reactor and medical isotope production facility in Lucas Heights, Australia. This study uses two years of release data from the ANSTO medical isotope production facility and (133)Xe data from three IMS sampling locations to estimate the annual releases of (133)Xe from medical isotope production facilities in Argentina, South Africa, and Indonesia. Atmospheric dilution factors derived from a global atmospheric transport model were used in an optimization scheme to estimate annual release values by facility. The annual releases of about 6.8 × 10(14) Bq from the ANSTO medical isotope production facility are in good agreement with the sampled concentrations at these three IMS sampling locations. Annual release estimates for the facility in South Africa vary from 2.2 × 10(16) to 2.4 × 10(16) Bq, estimates for the facility in Indonesia vary from 9.2 × 10(13) to 3.7 × 10(14) Bq and estimates for the facility in Argentina range from 4.5 × 10(12) to 9.5 × 10(12) Bq.

  5. Effect of entrance channel parameters on the fusion of two heavy ions: Excitation functions of reaction products in 16O+66Zn and 37Cl + 45Sc reactions

    Indian Academy of Sciences (India)

    Suparne Sodaye; B S Tomar; A Goswami

    2006-06-01

    Excitation functions of reaction products formed in 16O+66Zn and 37Cl + 45Sc systems, leading to the same compound nucleus, 82Sr, were measured using recoilcatcher technique and off-line -ray spectrometry. The contribution of non-compound processes like transfer and incomplete fusion (ICF) reactions to the cross-sections of different evaporation residues were delineated by comparing the experimental data with the predictions of Monte Carlo simulation code PACE2. The results show that non-compound processes become a significant fraction of the total reaction cross-section in 16O+66Zn systems in the beam energy range studied, while 37Cl + 45Sc gives mainly compound nucleus products. The mass asymmetry dependence of the fusion and non-compound cross-sections have been analysed in terms of the static fusion model and sum rule model.

  6. Direct probe atmospheric pressure photoionization/atmospheric pressure chemical ionization high-resolution mass spectrometry for fast screening of flame retardants and plasticizers in products and waste.

    Science.gov (United States)

    Ballesteros-Gómez, A; Brandsma, S H; de Boer, J; Leonards, P E G

    2014-04-01

    In this study, we develop fast screening methods for flame retardants and plasticizers in products and waste based on direct probe (DP) atmospheric pressure photoionization (APPI) and atmospheric pressure chemical ionization (APCI) coupled to a high-resolution (HR) time-of-flight mass spectrometer. DP-APPI is reported for the first time in this study, and DP-APCI that has been scarcely exploited is optimized for comparison. DP-APPI was more selective than DP-APCI and also more sensitive for the most hydrophobic compounds. No sample treatment was necessary, and only a minimal amount of sample (few milligrams) was used for analysis that was performed within a few minutes. Both methods were applied to the analysis of plastic products, electronic waste, and car interiors. Polybrominated diphenylethers, new brominated flame retardants, and organophosphorus flame retardants were present in most of the samples. The combination of DP with HR mass spectra and data processing based on mass accuracy and isotopic patterns allowed the unambiguous identification of chemicals at low levels of about 0.025 % (w/w). Under untargeted screening, resorcinol bis(biphenylphosphate) and bisphenol A bis(bisphenylphosphate) were identified in many of the consumer products of which literature data are still very limited.

  7. Production method of raw material dispersion liquid for reaction layer of gas diffusion electrode

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, Choichi; Motoo, Satoshi

    1987-10-13

    Heretofore, in order to make a raw material dispersion liquid of a reaction layer of a gas diffusion electrode, water repellent carbon, polytetrafluoroethylene, water and a surface active agent are mixed, then a cake is made by filtering this mixed liquid and afterwards the cake is heated and dried before being crushed. Since this crushing is done mechanically, homogeneous fine raw material powders cannot be obtained. Accordingly, even when a reaction layer is made by sintering a mixture of this powder, hydrophilic carbon black or hydrophilic carbon black carrying catalyst, and polytetrafluoroethylene, the hydrophilic part and the water repellent part are not distributed homogeneously and the catalytic performance of the reaction layer declines. In order to solve this, this invention proposes a production method that water repellent carbon black, polyterafluoroethylene, water and a surface active agent are mixed, then this mixture is frozen so that the surface active agent may not become active and homogeneous condensed cores of water repellent carbon black and polytetrafluoroethylene powders may be formed, and afterwards a homogeneous fine raw material dispersion liquid is made from thawing the condensed cores without change by thawing the above frozen mixture.

  8. Comparative analyses of laccase-catalyzed amination reactions for production of novel β-lactam antibiotics.

    Science.gov (United States)

    Mikolasch, Annett; Manda, Katrin; Schlüter, Rabea; Lalk, Michael; Witt, Sabine; Seefeldt, Simone; Hammer, Elke; Schauer, Frieder; Jülich, Wolf-Dieter; Lindequist, Ulrike

    2012-01-01

    Seven novel β-lactam antibiotics with activities against Gram-positive bacterial strains, among them methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci, were synthesized by amination of 2,5-dihydroxyphenylacetic acid in usable yields (30-60%). These products protected mice against an infection with S. aureus lethal to the control animals. The results show the usefulness of laccase for the synthesis of potential new antibiotics, in addition to the interdependence of the laccase substrates, the amino coupling partners, and the product formation, yield, and activity. The syntheses of β-lactam antibiotics with 2,5-dihydroxyaromatic acid substructures (para-substituted) are then compared with those of 3,4-dihydroxyaromatic acid substructures (ortho-substituted). Para-substituted laccase substrates were better reaction partners in these syntheses than ortho-substituted compounds.

  9. Charmonia production in 450 GeV/c proton-induced reactions

    CERN Document Server

    Abreu, M C; Baldit, A; Bedjidian, Marc; Bordalo, P; Bussière, A; Busson, P; Castor, J I; Chambon, T; Charlot, C; Chaurand, B; Contardo, D; Descroix, E; Devaux, A; Drapier, O; Espagnon, B; Fargeix, J; Ferreira, R; Fleuret, F; Force, P; Fredj, L; Gago, J M; Gerschel, C; Gorodetzky, P; Grossiord, J Y; Guichard, A; Guillaud, J P; Haroutunian, R; Jouan, D; Kluberg, L; Kossakowski, R; Landaud, G; Lourenço, C; Mandry, R; Ohlsson-Malek, F; Pizzi, J R; Racca, C; Ramos, S; Romana, A; Saturnini, P; Silva, S; Sonderegger, P; Tarrago, X; Varela, J

    1998-01-01

    Absolute \\jpsi\\ and \\psip\\ production cross sections have been measured at the CERN SPS, with 450~GeV/$c$ protons incident on a set of C, Al, Cu and W targets. Complementing these values with the results obtained by experiment NA51, which used the same beam and detector with H and D targets, we establish a coherent picture of charmonia production in proton-induced reactions at SPS energies. In particular, we show that the scaling of the \\jpsi\\ cross section with the mass number of the target, A, is well described as A$^\\alpha$ with $\\alpha^\\psi=0.919\\pm0.015$. The ratio between the \\jpsi\\ and \\psip\\ yields, in our kinematical window, is found to be independent of A, with $\\alpha^{\\psi^\\prime}-\\alpha^{\\psi}=0.014\\pm0.0 11$.

  10. Ozonation of trimethoprim in aqueous solution: identification of reaction products and their toxicity.

    Science.gov (United States)

    Kuang, Jiangmeng; Huang, Jun; Wang, Bin; Cao, Qiming; Deng, Shubo; Yu, Gang

    2013-05-15

    This work aimed to better understand the ozonation process of a typical antibiotic pharmaceutical, trimethoprim in aqueous solution. The parent compound was almost completely degraded with ozone dose up to 3.5 mg/L with no mineralization. Twenty one degradation products were identified using an electrospray quadrupole time-of-flight mass spectrometer. Several ozonation pathways were proposed including hydroxylation, demethylation, carbonylation, deamination and methylene group cleavage. Two species of luminescent bacteria Photobacterium phosphoreum and Vibrio qinghaiensis were selected to assess the toxicity of ozonation products. For P. phosphoreum, higher level of toxicity was observed compared to the parent compound, but a negligible toxicity change was observed for V. qinghaiensis, indicating different modes of action for the same water sample. This was further confirmed by quantitative structure-active relationship analysis. This work proves the dominant role of ozone rather than hydroxyl radicals in the reaction and the potential risk after ozonation.

  11. Analysis of reaction products of food contaminants and ingredients: Bisphenol A diglycidyl ether (BADGE) in canned foods

    NARCIS (Netherlands)

    Coulier, L.; Bradley, E.L.; Bas, R.C.; Verhoeckx, K.C.M.; Driffield, M.; Harmer, N.; Castle, L.

    2010-01-01

    Bisphenol A diglycidyl ether (BADGE) is an epoxide that is used as a starting substance in the manufacture of can coatings for food-contact applications. Following migration from the can coating into food, BADGE levels decay and new reaction products are formed by reaction with food ingredients. The

  12. pH-Controlled Oxidation of an Aromatic Ketone: Structural Elucidation of the Products of Two Green Chemical Reactions

    Science.gov (United States)

    Ballard, C. Eric

    2010-01-01

    A laboratory experiment emphasizing the structural elucidation of organic compounds has been developed as a discovery exercise. The "unknown" compounds are the products of the pH-controlled oxidation of 4'-methoxyacetophenone with bleach. The chemoselectivity of this reaction is highly dependent on the pH of the reaction media: under basic…

  13. Contributions of parent molecule fixed and excess energies to product energy partitioning in four-center elimination reactions

    Science.gov (United States)

    Benito, R. M.; Santamaría, J.

    1989-03-01

    In four-center elimination reactions such as hydrogen halide elimination from halogenated hydrocarbons the energy barrier is higher than the difference in enthalpy of formation between the parent molecule and its fragments (HX and olefin). This determines that the energy available to products has two origins: the reverse reaction barrier (fixed energy), and the excess energy (energy above the barrier). Both types of energy are partitioned among products following different laws: more or less statistical for excess energy and non-statistical for fixed energy. In a study of CF 3-CH 3 decomposition, we describe a practical method, based on the variation of product energy partitioning with excess energy, to determine the partitioning of the fixed energy among different types of product energy, thus defining the exact nature of the reverse reaction energy barrier. We applied this model to other types of reactions, such as three-center molecular eliminations.

  14. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Science.gov (United States)

    2010-07-01

    ... substituted oxirane, formaldehyde-phenol polymer glycidyl ether, substituted proplyamine and...-phenol polymer glycidyl ether, substituted proplyamine and polyethylenepolyamines (generic). (a) Chemical... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl...

  15. Insulin and leptin enhance human sperm motility, acrosome reaction and nitric oxide production

    Institute of Scientific and Technical Information of China (English)

    Fanuel Lampiao; Stefan S. du Plessis

    2008-01-01

    Aim: To investigate the in vitro effects of insulin and leptin on human sperm motility, viability, acrosome reaction and nitric oxide (NO) production. Methods: Washed human spermatozoa from normozoospermic donors were treated with insulin (10 μIU) and leptin (10 nmol). Insulin and leptin effects were blocked by inhibition of their intracellular effector, phosphotidylinositol 3-kinase (PI3K), by wortmannin (10 μmol) 30 min prior to insulin and leptin being given. Computer-assisted semen analysis was used to assess motility after 1, 2 and 3 h of incubation. Viability was assessed by fluorescence-activated cell sorting using propidium iodide as a fluorescent probe. Acrosome-reacted cells were observed under a fluorescent microscope using fluorescein-isothiocyanate-Pisum sativum agglutinin as a probe. NO was measured after treating the sperm with 4,5-diaminofluorescein-2/diacetate (DAF-2/DA) and analyzed by fluorescence-activated cell sorting. Results: Insulin and leptin significantly increased total motility, progressive motility and acrosome reaction, as well as NO production. Conclusion: This study showed the in vitro beneficial effects of insulin and leptin on human sperm function. These hormones could play a role in enhancing the fertilization capacity of human spermatozoa.

  16. Identification of Listeria spp. strains isolated from meat products and meat production plants by multiplex polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Roberta Mazza

    2015-12-01

    Full Text Available Listeriosis is a foodborne disease caused by Listeria monocytogenes and is considered as a serious health problem, due to the severity of symptoms and the high mortality rate. Recently, other Listeria species have been associated with disease in human and animals. The aim of this study was to develop a multiplex polymerase chain reaction (PCR in order to simultaneously detect six Listeria species (L. grayi, L. welshimeri, L. ivanovii, L. monocytogenes, L. seeligeri, L. innocua in a single reaction. One hundred eighteen Listeria spp. strains, isolated from meat products (sausages and processing plants (surfaces in contact and not in contact with meat, were included in the study. All the strains were submitted to biochemical identification using the API Listeria system. A multiplex PCR was developed with the aim to identify the six species of Listeria. PCR allowed to uniquely identify strains that had expressed a doubtful profile with API Listeria The results suggest that the multiplex PCR could represent a rapid and sensitive screening test, a reliable method for the detection of all Listeria species, both in contaminated food and in clinical samples, and also a tool that could be used for epidemiological purposes in food-borne outbreaks. A further application could be the development of a PCR that can be directly applied to the pre-enrichment broth.

  17. Cold atmospheric pressure plasma treatment of ready-to-eat meat: Inactivation of Listeria innocua and changes in product quality

    DEFF Research Database (Denmark)

    Röd, Sara Katrine; Hansen, Flemming; Leipold, Frank;

    Sliced ready-to-eat (RTE) meat products are susceptible to growth of the foodborne pathogenic bacterium, Listeria monocytogenes. Cold atmospheric pressure plasma (CAPP) may be applicable for surface decontamination in sealed bags thus avoiding recontamination. Plasmas (Fig. 1), created in neutral...

  18. Cold atmospheric pressure plasma treatment of ready-to-eat meat: Inactivation of Listeria innocua and changes in product quality

    DEFF Research Database (Denmark)

    Rød, Sara Katrine; Hansen, Flemming; Leipold, Frank

    2012-01-01

    The application of cold atmospheric pressure plasma for decontamination of a sliced ready-to-eat (RTE) meat product (bresaola) inoculated with Listeria innocua was investigated. Inoculated samples were treated at 15.5, 31, and 62 W for 2–60 s inside sealed linear-low-density-polyethylene bags...

  19. Carbon Dioxide Production Responsibility on the Basis of comparing in Situ and mean CO2 Atmosphere Concentration Data

    CERN Document Server

    Mavrodiev, S Cht; Vachev, B

    2008-01-01

    The method is proposed for estimation of regional CO2 and other greenhouses and pollutants production responcibility. The comparison of CO2 local emissions reduction data with world CO2 atmosphere data will permit easy to judge for overall effect in curbing not only global warming but also chemical polution.

  20. Improving ecophysiological simulation models to predict the impact of elevated atmospheric CO2 concentration on crop productivity

    NARCIS (Netherlands)

    Yin, X.

    2013-01-01

    Background - Process-based ecophysiological crop models are pivotal in assessing responses of crop productivity and designing strategies of adaptation to climate change. Most existing crop models generally over-estimate the effect of elevated atmospheric [CO2], despite decades of experimental resear

  1. Secondary organic aerosol from ozone-initiated reactions with terpene-rich household products

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Beverly; Coleman, Beverly K.; Lunden, Melissa M.; Destaillats, Hugo; Nazaroff, William W.

    2008-01-01

    We analyzed secondary organic aerosol (SOA) data from a series of small-chamber experiments in which terpene-rich vapors from household products were combined with ozone under conditions analogous to product use indoors. Reagents were introduced into a continuously ventilated 198 L chamber at steady rates. Consistently, at the time of ozone introduction, nucleation occurred exhibiting behavior similar to atmospheric events. The initial nucleation burst and growth was followed by a period in which approximately stable particle levels were established reflecting a balance between new particle formation, condensational growth, and removal by ventilation. Airborne particles were measured with a scanning mobility particle sizer (SMPS, 10 to 400 nm) in every experiment and with an optical particle counter (OPC, 0.1 to 2.0 ?m) in a subset. Parameters for a three-mode lognormal fit to the size distribution at steady state were determined for each experiment. Increasing the supply ozone level increased the steady-state mass concentration and yield of SOA from each product tested. Decreasing the air-exchange rate increased the yield. The steady-state fine-particle mass concentration (PM1.1) ranged from 10 to> 300 mu g m-3 and yields ranged from 5percent to 37percent. Steady-state nucleation rates and SOA mass formation rates were on the order of 10 cm-3 s-1 and 10 mu g m-3 min-1, respectively.

  2. Rhodium-catalyzed [5 + 2 + 1] cycloaddition of ene-vinylcyclopropanes and CO: reaction design, development, application in natural product synthesis, and inspiration for developing new reactions for synthesis of eight-membered carbocycles.

    Science.gov (United States)

    Wang, Yi; Yu, Zhi-Xiang

    2015-08-18

    Practical syntheses of natural products and their analogues with eight-membered carbocyclic skeletons are important for medicinal and biological investigations. However, methods and strategies to construct the eight-membered carbocycles are limited. Therefore, developing new methods to synthesize the eight-membered carbocycles is highly desired. In this Account, we describe our development of three rhodium-catalyzed cycloadditions for the construction of the eight-membered carbocycles, which have great potential in addressing the challenges in the synthesis of medium-sized ring systems. The first reaction described in this Account is our computationally designed rhodium-catalyzed two-component [5 + 2 + 1] cycloaddition of ene-vinylcyclopropanes (ene-VCPs) and CO for the diastereoselective construction of bi- and tricyclic cyclooctenones. The design of this reaction is based on the hypothesis that the C(sp(3))-C(sp(3)) reductive elimination of the eight-membered rhodacycle intermediate generated from the rhodium-catalyzed cyclopropane cleavage and alkene insertion, giving Wender's [5 + 2] cycloadduct, is not easy. Under CO atmosphere, CO insertion may occur rapidly, converting the eight-membered rhodacycle into a nine-membered rhodacycle, which then undergoes an easy C(sp(2))-C(sp(3)) reductive elimination process and furnishes the [5 + 2 + 1] product. This hypothesis was supported by our preliminary DFT studies and also served as inspiration for the development of two [7 + 1] cycloadditions: the [7 + 1] cycloaddition of buta-1,3-dienylcyclopropanes (BDCPs) and CO for the construction of cyclooctadienones, and the benzo/[7 + 1] cycloaddition of cyclopropyl-benzocyclobutenes (CP-BCBs) and CO to synthesize the benzocyclooctenones. The efficiency of these rhodium-catalyzed cycloadditions can be revealed by the application in natural product synthesis. Two eight-membered ring-containing natural products, (±)-asterisca-3(15),6-diene and (+)-asteriscanolide, have been

  3. Trial Production and Evaluation of Solar Cells Optimized for Solar Spectrum in Mars Atmosphere

    Science.gov (United States)

    Toyota, Hiroyuki; Shimada, Takanobu; Takahashi, Yu; Oyama, Akira; Washio, Hidetoshi

    2014-08-01

    We describe the production and evaluation of a prototype of an inverted metamorphic triple-junction (IMM3J) solar cell optimized for the solar spectrum on the surface of Mars. High-efficiency, flexible, lightweight solar panels containing IMM3J solar cells are promising power sources for Mars surface explorers such as rovers, landers, and airplanes. The intensity of sunlight at the Martian surface substantially decreases at wavelengths shorter than 700 nm because of absorption and scattering by the atmosphere. This decreases the output current of the InGaP top cells in state-of-the-art IMM3J solar cells, and thus decreases the overall output current. Therefore, solar cells for Mars surface explorers need to be optimized for the solar spectrum at the Martian surface. We modified IMM3J solar cells in two ways to increase the output power. We increased the thickness of the InGaP top cell to increase the light absorption, which increased the output current of the entire cell. We also increased the band gap energy of the InGaAs bottom cell by trimming the surplus current, in order to increase the output voltage. In the simulated Martian solar spectrum, the performance of the prototype solar cells was higher than that of IMM3J solar cells designed for the AM0 spectrum.

  4. Product characteristics from the torrefaction of oil palm fiber pellets in inert and oxidative atmospheres.

    Science.gov (United States)

    Chen, Wei-Hsin; Zhuang, Yi-Qing; Liu, Shih-Hsien; Juang, Tarng-Tzuen; Tsai, Chi-Ming

    2016-01-01

    The aim of this work was to study the characteristics of solid and liquid products from the torrefaction of oil palm fiber pellets (OPFP) in inert and oxidative environments. The torrefaction temperature and O2 concentration in the carrier gas were in the ranges of 275-350°C and 0-10 vol%, respectively, while the torrefaction duration was 30 min. The oxidative torrefaction of OPFP at 275°C drastically intensified the HHV of the biomass when compared to the non-oxidative torrefaction. OPFP torrefied at 300°C is recommended to upgrade the biomass, irrespective of the atmosphere. The HHV of condensed liquid was between 10.1 and 13.2 MJ kg(-)(1), and was promoted to 23.2-28.7 MJ kg(-)(1) following dewatering. This accounts for 92-139% improvement in the calorific value of the liquid. This reveals that the recovery of condensed liquid with dewatering is able to enhance the energy efficiency of a torrefaction system.

  5. Modulation in Ocean Primary Production due to Variability of Photosynthetically Available Radiation under Different Atmospheric Conditions

    Directory of Open Access Journals (Sweden)

    Madhumita Tripathy

    2014-01-01

    Full Text Available The rate of photosynthesis primarily depends on nutrients and photosynthetically available radiation (PAR at sea surface. Several ship cruises were carried out to measure optical, biological, and atmospheric parameters in the Arabian Sea and their variability were studied. An analytical nonspectral photosynthesis-irradiance model was used to estimate euphotic primary production (EuPP to study its variability during cruise periods. PAR was estimated using COART model using in situ measured aerosol optical depth (AOD to compare with in situ measured PAR. In order to understand the variability of PAR under different types of aerosol and different aerosol loading, a simulation study was carried out using COART model. EuPP was estimated for various PAR values under different aerosol loading and cloud coverage conditions. Sensitivity analysis showed that for maritime, maritime polluted, and desert aerosols, the ratio PAR/PAR0AOD has attenuated to about 11–25%, whereas it has attenuated to 44% for urban aerosol type. PAR/PARclear  sky was reduced by ~57% for high aerosol loading and for overcast sky. The decrease in EuPP under various aerosol loading and cloud coverage was observed to depend on the photoadaptation parameter. EuPP/EuPPclear  sky was reduced by 38% for maximum maritime aerosol loading and for overcast sky.

  6. 100% N2 atmospheric-pressure microwave-line-plasma production with a modified waveguide structure

    Science.gov (United States)

    Suzuki, Haruka; Tamura, Yuto; Itoh, Hitoshi; Sekine, Makoto; Hori, Masaru; Toyoda, Hirotaka

    2016-09-01

    Large-scale atmospheric pressure (AP) plasmas have been given much attention because of its high cost benefit and a variety of possibilities for industrial applications. Microwave discharge plasma using slot antenna is attractive due to its ability of high-density and stable plasma production, and we have developed a long-scale AP microwave plasma (AP microwave line plasma: AP-MLP) source using loop-structured waveguide and travelling wave and have reported spatially-uniform AP-MLP of 40 cm in length using Ar or He gas discharge. However, rare gas discharge is not always suitable for industrial applications because usage of large volume rare gas degrades the AP cost benefit. Furthermore, many industrial applications require chemically-reactive species and the AP-MLP using molecular gas will drastically increase the applications of the AP-MLP. In this study, we demonstrate 100% N2 discharge of the AP-MLP with a modified waveguide structure. Cross-sectional structure of the waveguide is improved to enhance the microwave electric field in the slot. 100% N2 plasma of 15 cm-long is successfully produced using CW microwave power of 2 kW. Low gas temperature of 1000 K is confirmed by optical emission spectroscopy, suggesting applications of the AP-MLP to low temperature processes. Part of this work is supported by JSPS KAKENHI Grant Number 25286079.

  7. Impact of atmospheric aerosol light scattering and absorption on terrestrial net primary productivity

    Science.gov (United States)

    Cohan, Daniel S.; Xu, Jin; Greenwald, Roby; Bergin, Michael H.; Chameides, William L.

    2002-12-01

    Scattering and absorption of sunlight by anthropogenic aerosols reduce the photosynthetically active radiation (PAR) incident upon the Earth's surface, but increase the fraction of the PAR that is diffuse. These alterations to irradiance may elicit conflicting responses in terrestrial plants: photosynthesis and net primary productivity (NPP) are slowed by reductions in total PAR, but enhanced by increases in diffuse PAR. In this paper, we use two canopy photosynthesis models to estimate the net effect of aerosols on carbon assimilation by green plants during summertime at midlatitudes. The model calculations indicate that the net effect of PAR scattering and absorption by atmospheric aerosols on NPP can be positive, neutral, or negative. Two parameters that strongly influence the net effect are the aerosol optical depth (integral of light extinction with height) and the cloud cover. On cloudless days NPP peaks under moderately thick aerosol loadings. On overcast days, aerosols slow NPP. The implications of these results for various regions of the globe and possible directions for future studies on the effect of aerosols on plant growth are discussed.

  8. Detection of Staphylococcus aureus in Dairy Products by Polymerase Chain Reaction Assay

    Institute of Scientific and Technical Information of China (English)

    YANG Yang; SU Xu-dong; YUAN Yao-wu; KANG Chun-yu; LI Ying-jun; ZHANG wei; ZHONG Xiao-ying

    2007-01-01

    A polymerase chain reaction (PCR) assay was employed for direct detection of Staphylococcus aureus without enrichment in dairy products. A solvent extraction procedure was successfully modified for the extraction of Staphylococcus aureus DNA from artificially contaminated whole milk, skim milk, and cheese. A primer targeting the thermostable nuclease gene (nuc) was used in the PCR. A DNA fragment of 279 bp was amplified. The PCR product was confirmed by DNA sequencing. In this study, the PCR, GB- 4789.10-94, Perifilm RSA.Count Plate, and Baird-Parker + RPF Agar were compared.The sensitivity of the PCR was 10 CFU mL-1 of whole milk, skim milk, and 55 CFU g-1 of cheese. The developed methodology allowed for detection of Staphylococcus aureus in dairy products in less than 6 h. The time taken for the development of this PCR assay was 12-24 h, less than the time taken by the general PCR assay using the enrichment method, and the coincidence rate of this developed PCR was 94.3%, the sensitivity was 100%. It was a rapid, sensitive, and effective method for PCR to detect Staphylococcus aureus in milk and milk products.

  9. Quantitative real-time monitoring of chemical reactions by autosampling flow injection analysis coupled with atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Zhu, Zhenqian; Bartmess, John E; McNally, Mary Ellen; Hoffman, Ron M; Cook, Kelsey D; Song, Liguo

    2012-09-04

    Although qualitative and/or semiquantitative real-time monitoring of chemical reactions have been reported with a few mass spectrometric approaches, to our knowledge, no quantitative mass spectrometric approach has been reported so far to have a calibration valid up to molar concentrations as required by process control. This is mostly due to the absence of a practical solution that could well address the sample overloading issue. In this study, a novel autosampling flow injection analysis coupled with an atmospheric pressure chemical ionization mass spectrometry (FIA/APCI-MS) system, consisting of a 1 μL automatic internal sample injector, a postinjection splitter with 1:10 splitting ratio, and a detached APCI source connected to the mass spectrometer using a 4.5 in. long, 0.042 in. inner diameter (ID) stainless-steel capillary, was thus introduced. Using this system together with an optional FIA solvent modifier, e.g., 0.05% (v/v) isopropylamine, a linear quantitative calibration up to molar concentration has been achieved with 3.4-7.2% relative standard deviations (RSDs) for 4 replicates. As a result, quantitative real-time monitoring of a model reaction was successfully performed at the 1.63 M level. It is expected that this novel autosampling FIA/APCI-MS system can be used in quantitative real-time monitoring of a wide range of reactions under diverse reaction conditions.

  10. A study of the atmospherically important reactions of dimethylsulfide (DMS) with I2 and ICl using infrared matrix isolation spectroscopy and electronic structure calculations.

    Science.gov (United States)

    Beccaceci, Sonya; Armata, Nerina; Ogden, J Steven; Dyke, John M; Rhyman, Lydia; Ramasami, Ponnadurai

    2012-02-21

    The reactions of dimethylsulfide (DMS) with molecular iodine (I(2)) and iodine monochloride (ICl) have been studied by infrared matrix isolation spectroscopy by co-condensation of the reagents in an inert gas matrix. Molecular adducts of DMS + I(2) and DMS + ICl have also been prepared using standard synthetic methods. The vapour above each of these adducts trapped in an inert gas matrix gave the same infrared spectrum as that recorded for the corresponding co-condensation reaction. In each case, the infrared spectrum has been interpreted in terms of a van der Waals adduct, DMS : I(2) and DMS : ICl, with the aid of infrared spectra computed for their minimum energy structures at the MP2 level. Computed relative energies of minima and transition states on the potential energy surfaces of these reactions were used to understand why they do not proceed further than the reactant complexes DMS : I(2) and DMS : ICl. The main findings of this research are compared with results obtained earlier for the DMS + Cl(2) and DMS + Br(2) reactions, and the atmospheric implications of the conclusions are also considered.

  11. Competition between functionalization and fragmentation pathways in the OH-initiated oxidation of aqueous tartaric acid droplets: Reaction products and model simulations

    Science.gov (United States)

    Cheng, C. T.; Chow, C. Y.; Chan, M. N.; Zuend, A.; Berkemeier, T.; Shiraiwa, M.

    2015-12-01

    To gain better insights into the competition between functionalization and fragmentation pathways for oxygenated organic compounds, we investigate the OH-radical initiated oxidation of aqueous tartaric acid (C4H6O6) droplets using an aerosol flow tube reactor. The molecular composition of reaction products is characterized by an atmospheric pressure ionization source (Direct Analysis in Real Time, DART) coupled with a high resolution mass spectrometer. The reaction produces four major products: a functionalization product (C4H4O6) and three fragmentation products (C3H4O4, C3H2O4 and C3H2O5), with a predominance of the functionalization product which supports the literature result that only less than 10% of carbon loss was observed for the OH oxidation of tartaric acid. The formation of the functionalization product (2-hydroxy-3-oxosuccinic acid, C4H4O6) can be attributed to that the tertiary alkyl radical, formed after hydrogen abstraction, reacts with an O2 molecule to form a hydroxyperoxyl radical which tends to quickly undergo intramolecular HO2 elimination without fragmentation. The molecular transformation of aqueous tartaric acid droplets is stimulated using the kinetic multi-layer model of gas-particle interactions in aerosols and clouds (KM-GAP) and the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model in order to take into account the change in particle-phase water and activities of reaction products during the oxidation. Results suggest that aqueous tartaric acid droplets become slightly less hygroscopic after oxidation due to the formation of less polar products. The formation of products with different hygroscopicities and volatilities largely determine the amount of particle-phase water, which in turn governs the size of the aqueous droplets and the concentration of the reactants. Consideration of the variation in water content in response to the chemical evolution in the aerosol is needed to better understand

  12. Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales

    Science.gov (United States)

    Ryu, Youngryel; Baldocchi, Dennis D.; Kobayashi, Hideki; van Ingen, Catharine; Li, Jie; Black, T. Andy; Beringer, Jason; van Gorsel, Eva; Knohl, Alexander; Law, Beverly E.; Roupsard, Olivier

    2011-12-01

    We propose the Breathing Earth System Simulator (BESS), an upscaling approach to quantify global gross primary productivity and evapotranspiration using MODIS with a spatial resolution of 1-5 km and a temporal resolution of 8 days. This effort is novel because it is the first system that harmonizes and utilizes MODIS Atmosphere and Land products on the same projection and spatial resolution over the global land. This enabled us to use the MODIS Atmosphere products to calculate atmospheric radiative transfer for visual and near infrared radiation wave bands. Then we coupled atmospheric and canopy radiative transfer processes, with models that computed leaf photosynthesis, stomatal conductance and transpiration on the sunlit and shaded portions of the vegetation and soil. At the annual time step, the mass and energy fluxes derived from BESS showed strong linear relations with measurements of solar irradiance (r2 = 0.95, relative bias: 8%), gross primary productivity (r2 = 0.86, relative bias: 5%) and evapotranspiration (r2 = 0.86, relative bias: 15%) in data from 33 flux towers that cover seven plant functional types across arctic to tropical climatic zones. A sensitivity analysis revealed that the gross primary productivity and evapotranspiration computed in BESS were most sensitive to leaf area index and solar irradiance, respectively. We quantified the mean global terrestrial estimates of gross primary productivity and evapotranpiration between 2001 and 2003 as 118 ± 26 PgC yr-1 and 500 ± 104 mm yr-1 (equivalent to 63,000 ± 13,100 km3 yr-1), respectively. BESS-derived gross primary productivity and evapotranspiration estimates were consistent with the estimates from independent machine-learning, data-driven products, but the process-oriented structure has the advantage of diagnosing sensitivity of mechanisms. The process-based BESS is able to offer gridded biophysical variables everywhere from local to the total global land scales with an 8-day interval over

  13. Overview of suspected adverse reactions to veterinary medicinal products reported in South Africa (March 2002 – February 2003

    Directory of Open Access Journals (Sweden)

    V. Naidoo

    2003-07-01

    Full Text Available The Veterinary Pharmacovigilance and Medicines Information Centre is responsible for the monitoring of veterinary adverse drug reactions in South Africa. An overview of reports of suspected adverse drug reactions received by the centre during the period March 2002 to February 2003 is given. In total, 40 reports were received. This had declined from the previous year. Most reports involved suspected adverse reactions that occurred in dogs and cats. Most of the products implicated were Stock Remedies. The animal owner predominantly administered these products. Only 1 report was received from a veterinary pharmaceutical company. Increasing numbers of reports are being received from veterinarians.

  14. Actinide Production in the Reaction of Heavy Ions withCurium-248

    Energy Technology Data Exchange (ETDEWEB)

    Moody, K.J.

    1983-07-01

    Chemical experiments were performed to examine the usefulness of heavy ion transfer reactions in producing new, neutron-rich actinide nuclides. A general quasi-elastic to deep-inelastic mechanism is proposed, and the utility of this method as opposed to other methods (e.g. complete fusion) is discussed. The relative merits of various techniques of actinide target synthesis are discussed. A description is given of a target system designed to remove the large amounts of heat generated by the passage of a heavy ion beam through matter, thereby maximizing the beam intensity which can be safely used in an experiment. Also described is a general separation scheme for the actinide elements from protactinium (Z = 91) to mendelevium (Z = 101), and fast specific procedures for plutonium, americium and berkelium. The cross sections for the production of several nuclides from the bombardment of {sup 248}Cm with {sup 18}O, {sup 86}Kr and {sup 136}Xe projectiles at several energies near and below the Coulomb barrier were determined. The results are compared with yields from {sup 48}Ca and {sup 238}U bombardments of {sup 248}Cm. Simple extrapolation of the product yields into unknown regions of charge and mass indicates that the use of heavy ion transfer reactions to produce new, neutron-rich above-target species is limited. The substantial production of neutron-rich below-target species, however, indicates that with very heavy ions like {sup 136}Xe and {sup 238}U the new species {sup 248}Am, {sup 249}Am and {sup 247}Pu should be produced with large cross sections from a {sup 248}Cm target. A preliminary, unsuccessful attempt to isolate {sup 247}Pu is outlined. The failure is probably due to the half life of the decay, which is calculated to be less than 3 minutes. The absolute gamma ray intensities from {sup 251}Bk decay, necessary for calculating the {sup 251}Bk cross section, are also determined.

  15. Atmospheric OH reactivity in central London: observations, model predictions and estimates of in situ ozone production

    Science.gov (United States)

    Whalley, Lisa K.; Stone, Daniel; Bandy, Brian; Dunmore, Rachel; Hamilton, Jacqueline F.; Hopkins, James; Lee, James D.; Lewis, Alastair C.; Heard, Dwayne E.

    2016-02-01

    Near-continuous measurements of hydroxyl radical (OH) reactivity in the urban background atmosphere of central London during the summer of 2012 are presented. OH reactivity behaviour is seen to be broadly dependent on air mass origin, with the highest reactivity and the most pronounced diurnal profile observed when air had passed over central London to the east, prior to measurement. Averaged over the entire observation period of 26 days, OH reactivity peaked at ˜ 27 s-1 in the morning, with a minimum of ˜ 15 s-1 during the afternoon. A maximum OH reactivity of 116 s-1 was recorded on one day during morning rush hour. A detailed box model using the Master Chemical Mechanism was used to calculate OH reactivity, and was constrained with an extended measurement data set of volatile organic compounds (VOCs) derived from a gas chromatography flame ionisation detector (GC-FID) and a two-dimensional GC instrument which included heavier molecular weight (up to C12) aliphatic VOCs, oxygenated VOCs and the biogenic VOCs α-pinene and limonene. Comparison was made between observed OH reactivity and modelled OH reactivity using (i) a standard suite of VOC measurements (C2-C8 hydrocarbons and a small selection of oxygenated VOCs) and (ii) a more comprehensive inventory including species up to C12. Modelled reactivities were lower than those measured (by 33 %) when only the reactivity of the standard VOC suite was considered. The difference between measured and modelled reactivity was improved, to within 15 %, if the reactivity of the higher VOCs (⩾ C9) was also considered, with the reactivity of the biogenic compounds of α-pinene and limonene and their oxidation products almost entirely responsible for this improvement. Further improvements in the model's ability to reproduce OH reactivity (to within 6 %) could be achieved if the reactivity and degradation mechanism of unassigned two-dimensional GC peaks were estimated. Neglecting the contribution of the higher VOCs (⩾ C

  16. Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles

    CERN Document Server

    Riccobono, Francesco; Baltensperger, Urs; Worsnop, Douglas R; Curtius, Joachim; Carslaw, Kenneth S; Wimmer, Daniela; Wex, Heike; Weingartner, Ernest; Wagner, Paul E; Vrtala, Aron; Viisanen, Yrjö; Vaattovaara, Petri; Tsagkogeorgas, Georgios; Tomé, Antonio; Stratmann, Frank; Stozhkov, Yuri; Spracklen, Dominick V; Sipilä, Mikko; Praplan, Arnaud P; Petäjä, Tuukka; Onnela, Antti; Nieminen, Tuomo; Mathot, Serge; Makhmutov, Vladimir; Lehtipalo, Katrianne; Laaksonen, Ari; Kvashin, Alexander N.; Kürten, Andreas; Kupc, Agnieszka; Keskinen, Helmi; Kajos, Maija; Junninen, Heikki; Hansel, Armin; Franchin, Alessandro; Flagan, Richard C; Ehrhart, Sebastian; Duplissy, Jonathan; Dunne, Eimear M; Downard, Andrew; David, André; Breitenlechner, Martin; Bianchi, Federico; Amorim, Antonio; Almeida, João; Rondo, Linda; Ortega, Ismael K; Dommen, Josef; Scott, Catherine E; Vrtala, Aron; Santos, Filipe D; Schallhart, Simon; Seinfeld, John H; Sipila, Mikko; Donahue, Neil M; Kirkby, Jasper; Kulmala, Markku

    2014-01-01

    Atmospheric new-particle formation affects climate and is one of the least understood atmospheric aerosol processes. The complexity and variability of the atmosphere has hindered elucidation of the fundamental mechanism of new-particle formation from gaseous precursors. We show, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN, that sulfuric acid and oxidized organic vapors at atmospheric concentrations reproduce particle nucleation rates observed in the lower atmosphere. The experiments reveal a nucleation mechanism involving the formation of clusters containing sulfuric acid and oxidized organic molecules from the very first step. Inclusion of this mechanism in a global aerosol model yields a photochemically and biologically driven seasonal cycle of particle concentrations in the continental boundary layer, in good agreement with observations.

  17. Acid-beta-glycerophosphatase reaction products in the central nervous system mitochondria following x-ray irradiation.

    Science.gov (United States)

    Roizin, L; Orlovskaja, D; Liu, J C; Carsten, A L

    1975-06-01

    A survey of the literature to date on the enzyme histochemistry of intracellular organelles has not yielded any reference to the presence of acid phosphatase reaction products in the mammalian mitochondria of the central nervous system. A combination of Gomori's acid phosphatase mehtod, however, with standard electron microscopy has disclosed the presence of enzyme reaction products in the mitochondria of the central nervous system of rats from 2 hr to 22 weeks after x-ray irradiation, as well as in a cerebral biopsy performed on a patient affected by Huntington's chorea. No enzyme reaction products, on the other hand, were observed in serial sections that had been incubated in substrates either containing sodium fluoride or lacking in beta-glycerophosphate. The abnormal mitochondrial enzyme reaction (chemical lesion) is considered to be the consequenco of the pathologic process affecting the ultrastructural-chemical organization of the organelle.

  18. Sensitivity of the Reaction Mechanism of the Ozone Depletion Events during the Arctic Spring on the Initial Atmospheric Composition of the Troposphere

    Directory of Open Access Journals (Sweden)

    Le Cao

    2016-09-01

    Full Text Available Ozone depletion events (ODEs during the Arctic spring have been investigated since the 1980s. It was found that the depletion of ozone is highly associated with the release of halogens, especially bromine containing compounds. These compounds originate from various substrates such as the ice/snow-covered surfaces in Arctic. In the present study, the dependence of the mixing ratios of ozone and principal bromine species during ODEs on the initial composition of the Arctic atmospheric boundary layer was investigated by using a concentration sensitivity analysis. This analysis was performed by implementing a reaction mechanism representing the ozone depletion and halogen release in the box model KINAL (KInetic aNALysis of reaction mechanics. The ratios between the relative change of the mixing ratios of particular species such as ozone and the variation in the initial concentration of each atmospheric component were calculated, which indicate the relative importance of each initial species in the chemical kinetic system. The results of the computations show that the impact of various chemical species is different for ozone and bromine containing compounds during the depletion of ozone. It was found that CH3CHO critically controls the time scale of the complete removal of ozone. However, the rate of the ozone loss and the maximum values of bromine species are only slightly influenced by the initial value of CH3CHO. In addition, according to the concentration sensitivity analysis, the reduction of initial Br2 was found to cause a significant retardant of the ODE while the initial mixing ratio of HBr exerts minor influence on both ozone and bromine species. In addition, it is also interesting to note that the increase of C2H2 would significantly raise the amount of HOBr and Br in the atmosphere while the ozone depletion is hardly changed.

  19. Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products.

    Science.gov (United States)

    van Deventer, J S J; Provis, J L; Duxson, P; Lukey, G C

    2007-01-31

    High-performance materials for construction, waste immobilisation and an ever-growing range of niche applications are produced by the reaction sequence known as 'geopolymerisation'. In this process, an alkaline activating solution reacts with a solid aluminosilicate source, with solidification possible within minutes and very rapid early strength development. Geopolymers have been observed to display remarkable chemical and thermal stability, but due to their largely X-ray amorphous nature have only recently been accurately characterised. It has previously been shown that both fly ash and ground granulated blast furnace slag are highly effective as solid constituents of geopolymer reaction slurries, providing readily soluble alumina and silica that undergo a dissolution-reorientation-solidification process to form a geopolymeric material. Here a conceptual model for geopolymerisation is presented, allowing elucidation of the individual mechanistic steps involved in this complex and rapid process. The model is based on the reactions known to occur in the weathering of aluminosilicate minerals under alkaline conditions, which occur in a highly accelerated manner under the conditions required for geopolymerisation. Transformation of the waste materials to the mixture of gel and nanocrystalline/semicrystalline phases comprising the geopolymeric product is described. Presence of calcium in the solid waste materials affects the process of geopolymerisation by providing extra nucleation sites for precipitation of dissolved species, which may be used to tailor setting times and material properties if desired. Application of geopolymer technology in remediation of toxic or radioactive contaminants will depend on the ability to analyse and predict long-term durability and stability based on initial mix formulation. The model presented here provides a framework by which this will be made possible.

  20. On the effect of nuclear interactions in neutrino reactions with oxygen targets and its role in atmospheric neutrino anomaly; De l`effet des interactions nucleaires dans les reactions de neutrinos sur des cibles d`oxygene et de son role dans l`anomalie des neutrinos atmospheriques

    Energy Technology Data Exchange (ETDEWEB)

    Marteau Jacques [Inst. de Physique Nucleaire, Lyon-1 Univ., 69 - Villeurbanne (France)

    1998-12-10

    Atmospheric neutrinos are produced by interactions of the cosmic rays with the atmosphere`s nuclei. The observed ratio of muonic to electronic neutrinos is smaller than the theoretical one (up to a factor 2), this is the so-called atmospheric anomaly. This anomaly could be linked to that observed in the solar neutrino experiments. The aim of this work is to evaluate the effects of nuclear correlations upon the interaction of the atmospheric neutrinos with the oxygen nuclei of the water Cherenkov detectors. The products of these interactions are detected and identified thanks to the light ring the produce. The events are classified according to the number of produced rings which is computed from the neutrino-oxygen event rates in each exclusive reaction channel. The interpretation of the experimental results has been up to now limited to the quasi-elastic nucleon and {Delta} channels but other reaction channels exist which can lead to identification problems. A special role is played by the non-pionic decay channels of the {Delta} resonance which induce single ring events that have not been considered so far. To calculate them we adopted the nuclear response formalism and started with a semi-classical approximation. This allowed us to take into account the nuclear correlations by solving exactly the RPA equations in the ring approximation. It was found that these correlations strongly modify the inclusive and exclusive neutrino-oxygen cross sections and absolute interaction rates while the ratio of the interaction rates {mu}/e is not very much affected. The analysis in the exclusive channels leads to the result that the number of pions predicted in the simulations is overestimated. In conclusion, this work has shown the importance of the nuclear correlations in the neutrino-oxygen interaction and its impact on the atmospheric neutrino anomaly. It goes beyond the usual quasi-elastic approximations and can be moreover extended to other target nuclei, such as iron

  1. The Production of Biodiesel and Bio-kerosene from Coconut Oil Using Microwave Assisted Reaction

    Science.gov (United States)

    SAIFUDDIN, N.; SITI FAZLILI, A.; KUMARAN, P.; PEI-JUA, N.; PRIATHASHINI, P.

    2016-03-01

    Biofuels including biodiesel, an alternative fuel, is renewable, environmentally friendly, non-toxic and low emissions. The raw material used in this work was coconut oil, which contained saturated fatty acids about 90% with high percentage of medium chain (C8-C12), especially lauric acid and myristic acid. The purpose of this research was to study the effect of power and NaOH catalyst in transesterification assisted by microwave for production of biofuels (biodiesel and bio-kerosene) derived from coconut oil. The reaction was performed with oil and methanol using mole ratio of 1:6, catalyst concentration of 0.6% with microwave power at 100W, 180W, 300W, 450W, 600W, and 850W. The reaction time was set at of 3, 5, 7, 10 and 15 min. The results showed that microwave could accelerate the transesterification process to produce biodiesel and bio-kerosene using NaOH catalyst. The highest yield of biodiesel was 97.17 %, or 99.05 % conversion at 5 min and 100W microwave power. Meanwhile, the bio-kerosene obtained was 65% after distillation.

  2. Complex fragment production in Kr-induced reactions at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, A.; Colonna, M.; Di Toro, M. (Catania Univ. (Italy). Dipt. di Fisica INFN, Catania (Italy). Lab. Nazionale del Sud); Bonasera, A. (INFN, Catania (Italy)); Cavinato, M.; Gulminelli, F. (Milan Univ. (Italy). Dipt. di Fisica INFN, Milan (Italy)); Cunsolo, A. (Catania Univ. (Italy). Dipt. di Fisica INFN, Catania (Italy)); Di Leo, G.C. (Catania Univ. (Italy). Dipt. di Fisica)

    1991-07-15

    Several features of complex fragment production at intermediate energies can be understood from the coupling of a dynamical description, which takes into account entrance-channel properties, and a statistical decay of equilibrated primary sources. We discuss this point using two different models for the dynamics, both based on the idea of the competition between mean field and two-body effects in this intermediate-energy range. The importance of a slow emission of large clusters in the de-excitation stage is stressed, with the possibility of using a suitably extended evaporation code. Fragment yields and spectra are analysed for Kr-induced reactions on C, Al, Ti at 34.4 MeV/A and on Au at 43 MeV/A. The effects of a different equation of state (e.o.s.) used in microscopic calculations is analysed. A stiffer e.o.s. implies more stopping of the fragments. Finally, projectile-like fragments produced in the Kr+Au reaction at 200 MeV/A are analysed. The predictions of the participant-spectator model are confirmed in this energy range. (orig.).

  3. Iron oxide and pyrocatechol: a spectroscopy study of the reaction products

    Directory of Open Access Journals (Sweden)

    Wagner José Barreto

    2006-12-01

    Full Text Available The reaction of 1,2-dihydroxy-benzene (pyrocatechol (C6H6O2 with iron oxide (Fe2O3 and sodium thiosulfate (Na2S2O3 in aqueous medium (pH 7 was investigated. Pyrocatechol suffers autoxidation and coordinates with Fe3+ in solution. The presence of S2O3(2- in solution was fundamental to generate and stabilize the pyrocatechol oxidation products as o-semiquinones. This compound was isolated and its structure characterized using FT-IR, EPR and UV-Vis Spectroscopy as [CTA][Fe(SQ2(Cat]. A thermal mass loss mechanism was proposed based on Thermogravimetric Analysis (TG to support the structural characterization.

  4. Technical Note: Synthesis of isoprene atmospheric oxidation products: isomeric epoxydiols and the rearrangement products cis- and trans-3-methyl-3,4-dihydroxytetrahydrofuran

    Directory of Open Access Journals (Sweden)

    A. Gold

    2012-09-01

    Full Text Available Isoprene epoxydiol (IEPOX isomers are key gas-phase intermediates of isoprene atmospheric oxidation. Secondary organic aerosols derived from such intermediates have important impacts on air quality and health. We report here convergent and unambiguous pathways developed for the synthesis of isomeric IEPOX species and the rearrangement products cis- and trans-3-methyl-3,4-dihydroxytetrahydrofuran in good yield. The availability of such compounds is necessary to expedite research on isoprene atmospheric oxidation mechanisms and subsequent aerosol formation as well as the toxicological properties of the aerosols.

  5. Technical Note: Synthesis of isoprene atmospheric oxidation products: isomeric epoxydiols and the rearrangement products cis- and trans-3-methyl-3,4-dihydroxytetrahydrofuran

    Directory of Open Access Journals (Sweden)

    A. Gold

    2012-06-01

    Full Text Available Isoprene epoxydiol (IEPOX isomers are key gas-phase intermediates of isoprene atmospheric oxidation. Secondary organic aerosols derived from such intermediates have important impacts on air quality and health. We report here convergent and unambiguous pathways developed for the synthesis of isomeric IEPOX species and the rearrangement products cis- and trans-3-methyl-3,4-dihydroxytetrahydrofuran in good yield. The availability of such compounds is necessary to expedite research on isoprene atmospheric oxidation mechanisms and subsequent aerosol formation as well as the toxicological properties of the aerosols.

  6. 40 CFR 721.3830 - Formaldehyde, reaction products with an alkylated phenol and an aliphatic amine (generic).

    Science.gov (United States)

    2010-07-01

    ... an alkylated phenol and an aliphatic amine (generic). 721.3830 Section 721.3830 Protection of... products with an alkylated phenol and an aliphatic amine (generic). (a) Chemical substance and significant..., reaction products with an alkylated phenol and an aliphatic amine (PMN P-99-0531) is subject to...

  7. Mitigation of ASR by the use of LiNO{sub 3}—Characterization of the reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Leemann, Andreas, E-mail: andreas.leemann@empa.ch [Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstr. 129, 8600 Dübendorf (Switzerland); Lörtscher, Luzia [Institute for Surface Science and Technology (D-MATL), ETH Zurich, Schafmattstr. 6, 8093 Zurich (Switzerland); Bernard, Laetitia; Le Saout, Gwenn; Lothenbach, Barbara [Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstr. 129, 8600 Dübendorf (Switzerland); Espinosa-Marzal, Rosa M. [Institute for Surface Science and Technology (D-MATL), ETH Zurich, Schafmattstr. 6, 8093 Zurich (Switzerland)

    2014-05-01

    The influence of the LiNO{sub 3} on the ASR product was studied both in a model system and in mortars. In the model system, the addition of LiNO{sub 3} decreases the dissolution rate and the solubility of silica. Lithium changes the 2-dimensional cross-linked (Q{sub 3} dominated) network of the ASR product into a less structured, Q{sub 2} dominated product, likely by adopting the role of calcium. In the mortar samples the addition of LiNO{sub 3} decreases expansion and significantly influences the chemical composition and the morphology of the reaction product. Lithium decreases the calcium, sodium and potassium content and changes the relatively porous plate-like reaction product into a dense one without texture. The findings in the mortars indicate that the ASR-suppressing effect of lithium is caused by the lower potential of the reaction product to swell. Furthermore, it forms a protective barrier after an initial reaction slowing down ASR. - Highlights: • Detection of lithium in ASR product by ToF-SIMS • Relation between composition of pore solution and ASR product • Identification of ASR suppressing mechanisms of LiNO{sub 3}.

  8. The gas chromatographic analysis of the reaction products of the partial isobutane oxidation as a two phase process.

    Science.gov (United States)

    Willms, Thomas; Kryk, Holger; Hampel, Uwe

    2016-08-05

    The partial oxidation of isobutane to t-butyl hydroperoxide (TBHP) has been studied analytically for the first time as a two-phase process in a capillary micro reactor. In order to obtain detailed information on products, yields, selectivities and reaction pathways, the products have been investigated by GC/MS. An Rxi-5ms column and a PTV-injector have been used to analyze the liquid products. TBHP, di-t-butyl peroxide (DTBP), t-butanol (TBA), and propanone as main products as well as further by-products e.g. methanal, isopropanol, isobutanol and isobutanal in minor quantities have been identified by MS. The liquid products have been obtained by quenching the reaction and vaporizing the isobutane afterwards by pressure reduction using a mass flow controller allowing a constant mass flow. For all liquid reaction products calibrations, a validation of the method including limits of quantification and detection as well as calculation of uncertainties has been performed. The results have been applied successfully for the investigation of the selectivities of the main products (TBHP, DTBP, TBA, propanone) of the isobutane oxidation. In the frame of the analytical investigation of this reaction a correlation coefficient of r(2)>0.999 for TBHP and DTBP, which is necessary to perform a validation, has been obtained for the first time. The gaseous phase has been analyzed using a GASPRO column, a DEANS switch, a mole sieve column and a TCD detector. Apart from the gaseous reactants, isobutene has been found.

  9. Assessment Of Surface-Catalyzed Reaction Products From High Temperature Materials In Plasmas

    Science.gov (United States)

    Allen, Luke Daniel

    Current simulations of atmospheric entry into both Mars and Earth atmospheres for the design of thermal protections systems (TPS) typically invoke conservative assumptions regarding surface-catalyzed recombination and the amount of energy deposited on the surface. The need to invoke such assumptions derives in part from lack of adequate experimental data on gas-surface interactions at trajectory relevant conditions. Addressing this issue, the University of Vermont's Plasma Test and Diagnostics Laboratory has done extensive work to measure atomic specie consumption by measuring the concentration gradient over various material surfaces. This thesis extends this work by attempting to directly diagnose molecular species production in air plasmas. A series of spectral models for the A-X and B-X systems of nitric oxide (NO), and the B-X system of boron monoxide (BO) have been developed. These models aim to predict line positions and strengths for the respective molecules in a way that is best suited for the diagnostic needs of the UVM facility. From the NO models, laser induced fluorescence strategies have been adapted with the intent of characterizing the relative quantity and thermodynamic state of NO produced bysurface-catalyzed recombination, while the BO model adds a diagnostic tool for the testing of diboride-based TPS materials. Boundary layer surveys of atomic nitrogen and NO have been carried out over water-cooled copper and nickel surfaces in air/argon plasmas. Translation temperatures and relative number densities throughout the boundary layer are reported. Additional tests were also conducted over a water-cooled copper surface to detect evidence of highly non-equilibrium effects in the form of excess population in elevated vibrational levels of the A-X system of NO. The tests showed that near the sample surface there is a much greater population in the upsilon'' = 1ground state than is predicted by a Boltzmann distribution.

  10. Optimizing Photosynthetic and Respiratory Parameters Based on the Seasonal Variation Pattern in Regional Net Ecosystem Productivity Obtained from Atmospheric Inversion

    Science.gov (United States)

    Chen, Z.; Chen, J.; Zheng, X.; Jiang, F.; Zhang, S.; Ju, W.; Yuan, W.; Mo, G.

    2014-12-01

    In this study, we explore the feasibility of optimizing ecosystem photosynthetic and respiratory parameters from the seasonal variation pattern of the net carbon flux. An optimization scheme is proposed to estimate two key parameters (Vcmax and Q10) by exploiting the seasonal variation in the net ecosystem carbon flux retrieved by an atmospheric inversion system. This scheme is implemented to estimate Vcmax and Q10 of the Boreal Ecosystem Productivity Simulator (BEPS) to improve its NEP simulation in the Boreal North America (BNA) region. Simultaneously, in-situ NEE observations at six eddy covariance sites are used to evaluate the NEE simulations. The results show that the performance of the optimized BEPS is superior to that of the BEPS with the default parameter values. These results have the implication on using atmospheric CO2 data for optimizing ecosystem parameters through atmospheric inversion or data assimilation techniques.

  11. The C(3P) + NH3 reaction in interstellar chemistry: I. Investigation of the product formation channels

    CERN Document Server

    Bourgalais, Jeremy; Kailasanathan, Ranjith Kumar Abhinavam; Osborn, David L; Hickson, Kevin M; Loison, Jean-Christophe; Wakelam, Valentine; Goulay, Fabien; Picard, Sébastien D Le

    2016-01-01

    The product formation channels of ground state carbon atoms, C(3P), reacting with ammonia, NH3, have been investigated using two complementary experiments and electronic structure calculations. Reaction products are detected in a gas flow tube experiment (330 K, 4 Torr) using tunable VUV photoionization coupled with time of flight mass spectrometry. Temporal profiles of the species formed and photoionization spectra are used to identify primary products of the C + NH3 reaction. In addition, H-atom formation is monitored by VUV laser induced fluorescence from room temperature to 50 K in a supersonic gas flow generated by the Laval nozzle technique. Electronic structure calculations are performed to derive intermediates, transition states and complexes formed along the reaction coordinate. The combination of photoionization and laser induced fluorescence experiments supported by theoretical calculations indicate that in the temperature and pressure range investigated, the H + H2CN production channel represents ...

  12. KINETIC MODELING OF TRANSESTERFICATION REACTION FOR BIODIESEL PRODUCTION USING HETEROGENEOUS CATALYST

    Directory of Open Access Journals (Sweden)

    N. JAYA,

    2011-04-01

    Full Text Available Biodiesel derived from renewable plant sources is monoalkyl esters of long chain fatty acids which fall in the carbon range of C12-C22. It has similar properties as mineral diesel. Various processes exist to convert vegetable oils into biodiesel. Transesterification of such vegetable oils using alcohol in the catalytic environment is most commonly used method for producing biodiesel. The equilibrium conversion of triglycerides is affected by various factors namely feed Quality (like free fatty acid content, water content etc.,type of alcohol used, molar ratio of alcohol to triglycerides, type of catalyst, amount of catalyst, reaction temperature, reaction time and stirring rates. The present work reports on the characterization of cotton seed oil and production of biodiesel. This study also reports on the optimal operating parameter for cotton seed oil inbatch reactor. The main thrust of present work was to study the kinetics, modeling and simulation of anionic ion exchange resin catalyzed transesterification of cotton seed oil. Experiments were carried out in batch reactor to generate kinetic data and a kinetic model was developed. The effect of temperature, catalyst concentration and molar ratio of methanol to triglycerides and stirring rates were investigated. A few fuel properties were alsomeasured for biodiesel to observe its competitiveness with onventional diesel fuel. The equilibrium conversions of triglycerides were observed to be in the range of 85%. It was also observed that higher conversion was achieved at 6:1 molar ratio of ethanol to oil, 2 wt.% of anionic resin catalyst ,temperature at 338 K, reaction time of 180 minutes with stirring speed 10 Hz. Model parameters such as order, activation energy and rate constants were calculated, the overall activation energy was also estimated. The rate constants werefound to increase with an increase in temperature and catalyst concentration. Various simulations were also carried out at

  13. Separation of reaction product and palladium catalyst after a Heck coupling reaction by means of organic solvent nanofiltration.

    Science.gov (United States)

    Tsoukala, Anna; Peeva, Ludmila; Livingston, Andrew G; Bjørsvik, Hans-René

    2012-01-09

    Organic solvent nanofiltration (OSN) is a recently commercialized technology, which we have used to develop a method for the separation of a target product and the Pd catalyst from a Heck coupling postreaction mixture. The experimental setup included commercially available polyimide copolymer membranes with molecular weight cut-off (MWCO) values in the range of 150-300 Da, acetone as the solvent, and a working pressure (N(2)) of 3 MPa. The investigation of the membranes revealed that a membrane with a MWCO of 200 Da provided quantitative retention of the Pd catalyst and quantitative recovery of the target product by means of a cross-flow dia-nanofiltration procedure.

  14. Allowed energetic pathways for the three-body recombination reaction of nitrogen monoxide with the hydroxyl radical and their potential atmospheric implications

    Directory of Open Access Journals (Sweden)

    Luca D´Ottone

    2010-12-01

    Full Text Available The OH initiated oxidation of nitric oxide (NO is an important atmospheric reaction being, during the day time, the main channel that leads to the formation of HONO a reservoir species for both OH and odd nitrogen. This work reports ab initio study of the Potential Energy Surface (PES of NO + OH using density functional theory calculations conducted at the B3LYP level of theory with a 6-311g (d,p basis set. We confirmed experimental observations pointing out that the main channel for this reaction is the formation the HONO. From the addition of OH to NO both cis and trans isomers of HONO were found to be the formed as stable intermediate, both having a negative enthalpy of formation relative to the reactants, the cis isomer being more stable than the trans one. The ab initio calculations were extended to include the hydrogen extraction mechanism with its respective transition state to investigate the potential existence of a reaction channel leading to the formation of NO2 + H, that was found not to be of significant interest.

  15. Toward an Improved Understanding of the Tropical Energy Budget Using TRMM-based Atmospheric Radiative Heating Products

    Science.gov (United States)

    L'Ecuyer, T.; McGarragh, G.; Ellis, T.; Stephens, G.; Olson, W.; Grecu, M.; Shie, C.; Jiang, X.; Waliser, D.; Li, J.; Tian, B.

    2008-05-01

    It is widely recognized that clouds and precipitation exert a profound influence on the propagation of radiation through the Earth's atmosphere. In fact, feedbacks between clouds, radiation, and precipitation represent one of the most important unresolved factors inhibiting our ability to predict the consequences of global climate change. Since its launch in late 1997, the Tropical Rainfall Measuring Mission (TRMM) has collected more than a decade of rainfall measurements that now form the gold standard of satellite-based precipitation estimates. Although not as widely advertised, the instruments aboard TRMM are also well-suited to the problem of characterizing the distribution of atmospheric heating in the tropics and a series of algorithms have recently been developed for estimating profiles of radiative and latent heating from these measurements. This presentation will describe a new multi-sensor tropical radiative heating product derived primarily from TRMM observations. Extensive evaluation of the products using a combination of ground and satellite-based observations is used to place the dataset in the context of existing techniques for quantifying atmospheric radiative heating. Highlights of several recent applications of the dataset will be presented that illustrate its utility for observation-based analysis of energy and water cycle variability on seasonal to inter-annual timescales and evaluating the representation of these processes in numerical models. Emphasis will be placed on the problem of understanding the impacts of clouds and precipitation on atmospheric heating on large spatial scales, one of the primary benefits of satellite observations like those provided by TRMM.

  16. The C(3P) + NH3 Reaction in Interstellar Chemistry. I. Investigation of the Product Formation Channels

    Science.gov (United States)

    Bourgalais, Jérémy; Capron, Michael; Abhinavam Kailasanathan, Ranjith Kumar; Osborn, David L.; Hickson, Kevin M.; Loison, Jean-Christophe; Wakelam, Valentine; Goulay, Fabien; Le Picard, Sébastien D.

    2015-10-01

    The product formation channels of ground state carbon atoms, C(3P), reacting with ammonia, NH3, have been investigated using two complementary experiments and electronic structure calculations. Reaction products are detected in a gas flow tube experiment (330 K, 4 Torr) using tunable vacuum-ultraviolet (VUV) photoionization coupled with time of flight mass spectrometry. Temporal profiles of the species formed and photoionization spectra are used to identify primary products of the C + NH3 reaction. In addition, H-atom formation is monitored by VUV laser induced fluorescence (LIF) from room temperature to 50 K in a supersonic gas flow generated by the Laval nozzle technique. Electronic structure calculations are performed to derive intermediates, transition states, and complexes formed along the reaction coordinate. The combination of photoionization and LIF experiments supported by theoretical calculations indicate that in the temperature and pressure range investigated, the H + H2CN production channel represents 100% of the product yield for this reaction. Kinetics measurements of the title reaction down to 50 K and the effect of the new rate constants on interstellar nitrogen hydride abundances using a model of dense interstellar clouds are reported in Paper II.

  17. Production of proton-rich nuclei around Z=84-90 in fusion-evaporation reactions

    CERN Document Server

    Chen, Peng-Hui; Niu, Fei; Guo, Ya-Fei; Zhang, Hong-Fei; Li, Jun-Qing; Jin, Gen-Ming

    2016-01-01

    Within the framework of the dinuclear system model, production cross sections of proton-rich nuclei with charged numbers of Z=84-90 are investigated systematically. Possible combinations with the $^{28}$Si, $^{32}$S, $^{40}$Ar bombarding the target nuclides $^{165}$Ho, $^{169}$Tm, $^{170-174}$Yb, $^{175,176}$Lu, $^{174,176-180}$Hf and $^{181}$Ta are analyzed thoroughly. The optimal excitation energies and evaporation channels are proposed to produce the proton-rich nuclei. The systems are feasible to be constructed in experiments. It is found that the neutron shell closure of N=126 is of importance during the evaporation of neutrons. The experimental excitation functions in the $^{40}$Ar induced reactions can be nicely reproduced. The charged particle evaporation is comparable with neutrons in cooling the excited proton-rich nuclei, in particular for the channels with $\\alpha$ and proton evaporation. The production cross section increases with the mass asymmetry of colliding systems because of the decrease of...

  18. Exclusive measurement of two-pion production in the dd --> 4Hepipi reaction

    CERN Document Server

    Keleta, S; Bashkanov, M; Berlowski, M; Bogoslawsky, D; Calén, H; Clement, H; Demirors, L; Ekström, C; Fransson, K; Geren, L; Gustafsson, L; Höistad, B; Ivanov, G; Jacewicz, M; Jiganov, E; Johansson, T; Khakimova, O; Kren, F; Kullander, S; Kupsc, A; Kuzmin, A; Lindberg, K; Marciniewski, P; Morosov, B; Oelert, W; Pauly, C; Petren, H; Petukhov, Yu P; Povtorejko, A; Pricking, A; Ruber, R J M Y; Schonning, K; Scobel, W; Shafigullin, R; Shwartz, B; Skorodko, T; Sopov, V; Stepaniak, J; Tegner, P -E; Engblom, P Thorngren; Tikhomirov, V; Turowiecki, A; Wagner, G J; Wilkin, C; Wolke, M; Zabierowski, J; Zartova, I; Zlomanczuk, Yu

    2009-01-01

    The results from the first kinematically complete measurement of the dd --> 4Hepipi reaction are reported. The aim was to investigate a long standing puzzle regarding the origin of the peculiar pipi-invariant mass distributions appearing in double pion production in light ion collisions, the so-called ABC effect. The measurements were performed at the incident deuteron energies of 712 MeV and 1029 MeV, with the WASA detector assembly at CELSIUS in Uppsala, Sweden. We report the observation of a characteristic enhancement at low pipi-invariant mass at 712 MeV, the lowest energy yet. At the higher energy, in addition to confirming previous experimental observations, our results reveal a strong angular dependence of the pions in the overall centre of mass system. The results are qualitatively reproduced by a theoretical model, according to which the ABC effect is described as resulting from a kinematical enhancement in the production of the pion pairs from two parallel and independent NN--> dpi sub-processes.

  19. Atmospheric corrosion in subtropical areas: XRD and electrochemical study of zinc atmospheric corrosion products in the province of Santa Cruz de Tenerife (Canary Islands, Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Morales, J. [Departamento de Quimica Fisica, Universidad de La Laguna, 38071 La Laguna, Tenerife (Spain)]. E-mail: jmorales@ull.es; Diaz, F. [Departamento de Quimica Fisica, Universidad de La Laguna, 38071 La Laguna, Tenerife (Spain); Hernandez-Borges, J. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Universidad de La Laguna, 38071 La Laguna, Tenerife (Spain); Gonzalez, S. [Departamento de Quimica Fisica, Universidad de La Laguna, 38071 La Laguna, Tenerife (Spain)

    2006-02-15

    In the present paper, zinc sheets have been exposed for 4 years to the action of different atmospheres in 35 test sites located in the province of Santa Cruz de Tenerife, Canary Islands, Spain. Corrosion products formed on the surface of the samples have been identified by means of X-ray diffraction (XRD) for the first and second year of exposure. Zincite, hydrozincite, simonkolleite, zinc chlorohydroxysulphate, zinc oxysulphate and zinc hydroxysulphate have been identified in the test sheets. Preliminary results of an electrochemical study of the breakdown potential of zinc samples are also presented in order to test the protective effect of the film formed on the surface of the samples. It was found that the protective effect of this film increases linearly with exposure time.

  20. [Development of novel synthetic organic reactions: synthesis of antitumor natural products and leading compounds for new pharmaceuticals].

    Science.gov (United States)

    Kita, Yasuyuki

    2002-12-01

    Biologically active natural products with unique, highly complex molecular skeletons have been used as leading compounds for raw materials of new drugs. Due to the limitations of natural supply, highly efficient, large-scale syntheses and molecular design have been sought in drug discovery. For this purpose, we have focused on a synthetic strategy effective in developing novel reactions and reagents and found several useful regio- and stereospecific reactions, contributing to the synthesis of otherwise unattainable target molecules. The application of these reactions for the total synthesis of three types of potent cytotoxic natural products for the first time is described in this paper. The basic concept is first described. Then the total synthesis of anthracyclines, fredericamycin A, and discorhabdins is reported. Novel reactions using hypervalent iodine reagents under environmentally benign conditions are also described. The future prospects for this method are discussed.

  1. Atmospheric Neutrinos

    OpenAIRE

    Takaaki Kajita

    1994-01-01

    Atmospheric neutrinos are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith angle and energy-dependent deficit of muon-neutrino events. It was found that neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. This paper discusses...

  2. Production of hydrogen in the reaction between aluminum and water in the presence of NaOH and KOH

    Directory of Open Access Journals (Sweden)

    C. B. Porciúncula

    2012-06-01

    Full Text Available The objective of this work is to investigate the production of hydrogen as an energy source by means of the reaction of aluminum with water. This reaction only occurs in the presence of NaOH and KOH, which behave as catalysts. The main advantages of using aluminum for indirect energy storage are: recyclability, non-toxicity and easiness to shape. Alkali concentrations varying from 1 to 3 mol.L-1 were applied to different metallic samples, either foil (0.02 mm thick or plates (0.5 and 1 mm thick, and reaction temperatures between 295 and 345 K were tested. The results show that the reaction is strongly influenced by temperature, alkali concentration and metal shape. NaOH commonly promotes faster reactions and higher real yields than KOH.

  3. Atmospheric CO2 concentration effects on rice water use and biomass production.

    Science.gov (United States)

    Kumar, Uttam; Quick, William Paul; Barrios, Marilou; Sta Cruz, Pompe C; Dingkuhn, Michael

    2017-01-01

    Numerous studies have addressed effects of rising atmospheric CO2 concentration on rice biomass production and yield but effects on crop water use are less well understood. Irrigated rice evapotranspiration (ET) is composed of floodwater evaporation and canopy transpiration. Crop coefficient Kc (ET over potential ET, or ETo) is crop specific according to FAO, but may decrease as CO2 concentration rises. A sunlit growth chamber experiment was conducted in the Philippines, exposing 1.44-m2 canopies of IR72 rice to four constant CO2 levels (195, 390, 780 and 1560 ppmv). Crop geometry and management emulated field conditions. In two wet (WS) and two dry (DS) seasons, final aboveground dry weight (agdw) was measured. At 390 ppmv [CO2] (current ambient level), agdw averaged 1744 g m-2, similar to field although solar radiation was only 61% of ambient. Reduction to 195 ppmv [CO2] reduced agdw to 56±5% (SE), increase to 780 ppmv increased agdw to 128±8%, and 1560 ppmv increased agdw to 142±5%. In 2013WS, crop ET was measured by weighing the water extracted daily from the chambers by the air conditioners controlling air humidity. Chamber ETo was calculated according to FAO and empirically corrected via observed pan evaporation in chamber vs. field. For 390 ppmv [CO2], Kc was about 1 during crop establishment but increased to about 3 at flowering. 195 ppmv CO2 reduced Kc, 780 ppmv increased it, but at 1560 ppmv it declined. Whole-season crop water use was 564 mm (195 ppmv), 719 mm (390 ppmv), 928 mm (780 ppmv) and 803 mm (1560 ppmv). With increasing [CO2], crop water use efficiency (WUE) gradually increased from 1.59 g kg-1 (195 ppmv) to 2.88 g kg-1 (1560 ppmv). Transpiration efficiency (TE) measured on flag leaves responded more strongly to [CO2] than WUE. Responses of some morphological traits are also reported. In conclusion, increased CO2 promotes biomass more than water use of irrigated rice, causing increased WUE, but it does not help saving water. Comparability

  4. Atmospheric CO2 concentration effects on rice water use and biomass production

    Science.gov (United States)

    Kumar, Uttam; Quick, William Paul; Barrios, Marilou; Sta Cruz, Pompe C.; Dingkuhn, Michael

    2017-01-01

    Numerous studies have addressed effects of rising atmospheric CO2 concentration on rice biomass production and yield but effects on crop water use are less well understood. Irrigated rice evapotranspiration (ET) is composed of floodwater evaporation and canopy transpiration. Crop coefficient Kc (ET over potential ET, or ETo) is crop specific according to FAO, but may decrease as CO2 concentration rises. A sunlit growth chamber experiment was conducted in the Philippines, exposing 1.44-m2 canopies of IR72 rice to four constant CO2 levels (195, 390, 780 and 1560 ppmv). Crop geometry and management emulated field conditions. In two wet (WS) and two dry (DS) seasons, final aboveground dry weight (agdw) was measured. At 390 ppmv [CO2] (current ambient level), agdw averaged 1744 g m-2, similar to field although solar radiation was only 61% of ambient. Reduction to 195 ppmv [CO2] reduced agdw to 56±5% (SE), increase to 780 ppmv increased agdw to 128±8%, and 1560 ppmv increased agdw to 142±5%. In 2013WS, crop ET was measured by weighing the water extracted daily from the chambers by the air conditioners controlling air humidity. Chamber ETo was calculated according to FAO and empirically corrected via observed pan evaporation in chamber vs. field. For 390 ppmv [CO2], Kc was about 1 during crop establishment but increased to about 3 at flowering. 195 ppmv CO2 reduced Kc, 780 ppmv increased it, but at 1560 ppmv it declined. Whole-season crop water use was 564 mm (195 ppmv), 719 mm (390 ppmv), 928 mm (780 ppmv) and 803 mm (1560 ppmv). With increasing [CO2], crop water use efficiency (WUE) gradually increased from 1.59 g kg-1 (195 ppmv) to 2.88 g kg-1 (1560 ppmv). Transpiration efficiency (TE) measured on flag leaves responded more strongly to [CO2] than WUE. Responses of some morphological traits are also reported. In conclusion, increased CO2 promotes biomass more than water use of irrigated rice, causing increased WUE, but it does not help saving water. Comparability

  5. Crystal structures of deoxygenation products and the characteristics of reactions of phenyl- (trihalomethyl)mercury with tetraphenylcyclone

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The single crystal structures of the gem-dihalides (3a and 3b)produced from the reactions of tetraphenylcy- clone (TPCP) with phenyl(trihalomethyl)mercury (trihalo = tribromo, bromodichloro) are reported. The structural parameters of the X-ray single crystal analysis vary slightly with the radius of the halogen atom in dihalides and are found to be related to the yields of the deoxygenation products. These results support the proposed mechanism for the carbene reaction of this type and reflect the key role of the structural characteristics of the incipient carbonyl ylide intermediate in choosing different competitive reaction path- ways.

  6. In-Line Reactions and Ionizations of Vaporized Diphenylchloroarsine and Diphenylcyanoarsine in Atmospheric Pressure Chemical Ionization Mass Spectrometry.

    Science.gov (United States)

    Okumura, Akihiko; Takada, Yasuaki; Watanabe, Susumu; Hashimoto, Hiroaki; Ezawa, Naoya; Seto, Yasuo; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Kondo, Tomohide; Nagashima, Hisayuki; Nagoya, Tomoki

    2016-07-01

    We propose detecting a fragment ion (Ph2As(+)) using counter-flow introduction atmospheric pressure chemical ionization ion trap mass spectrometry for sensitive air monitoring of chemical warfare vomiting agents diphenylchloroarsine (DA) and diphenylcyanoarsine (DC). The liquid sample containing of DA, DC, and bis(diphenylarsine)oxide (BDPAO) was heated in a dry air line, and the generated vapor was mixed into the humidified air flowing through the sampling line of a mass spectrometer. Humidity effect on the air monitoring was investigated by varying the humidity of the analyzed air sample. Evidence of the in-line conversion of DA and DC to diphenylarsine hydroxide (DPAH) and then BDPAO was obtained by comparing the chronograms of various ions from the beginning of heating. Multiple-stage mass spectrometry revealed that the protonated molecule (MH(+)) of DA, DC, DPAH, and BDPAO could produce Ph2As(+) through their in-source fragmentation. Among the signals of the ions that were investigated, the Ph2As(+) signal was the most intense and increased to reach a plateau with the increased air humidity, whereas the MH(+) signal of DA decreased. It was suggested that DA and DC were converted in-line into BDPAO, which was a major source of Ph2As(+). Graphical Abstract ᅟ.

  7. Urinary excretion of dietary Maillard reaction products in healthy adult female cats.

    Science.gov (United States)

    van Rooijen, C; Bosch, G; Butré, C I; van der Poel, A F B; Wierenga, P A; Alexander, L; Hendriks, W H

    2016-01-01

    During processing of foods, the Maillard reaction occurs, resulting in the formation of advanced Maillard reaction products (MRP). Varying amounts of MRP have been found in commercially processed pet foods. Dietary MRP can be absorbed and contribute to the endogenous pool of MRP and possibly the etiology of age-related diseases. The aim of the present study was to determine urinary excretion of dietary MRP in cats fed commercial moist and dry foods. A pilot study with 10 cats, conducted to determine the adaptation time required for stable urinary excretion of MRP when changing to a diet with contrasting MRP content, showed an adaptation time of 1 d for all components. In the main study, 6 commercially processed dry and 6 moist diets were fed to 12 adult female cats in 2 parallel randomized, 36-d Latin square designs. The 24-h urine was collected quantitatively using modified litter boxes, and fructoselysine (FL), carboxymethyllysine (CML), and lysinoalanine (LAL) were analyzed using ultra high performance liquid chromatography (UHPLC) - mass spectrometer. Daily urinary excretion of FL and CML showed a positive relationship with daily intake in the dry ( = 0.03 and cats and excreted in the urine. The adaptation time with change in diet indicates a likely effective excretion of MRP. Minimum apparent absorption of FL, CML, and LAL was found to range between 8% and 23%, 25% and 73%, and 6% and 19%, respectively. The observed decrease in urinary recovery suggests a limiting factor in digestion, absorption, metabolism, or urinary excretion. This study shows that dietary MRP in commercial diets are absorbed and excreted via the kidneys in cats.

  8. Atmospheric chemistry of trans-CF3CH = CHCl: Kinetics of the gas-phase reactions with Cl atoms, OH radicals, and O-3

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbæk; Nilsson, E. J. K.; Nielsen, O. J.;

    2008-01-01

    = CHCl) = (5.22 +/- 0.72) x 10(-11) cm(3) molecule(-1) s(-1), k(OH + t-CF3CH = CHCl) = (4.40 +/- 0.38) x 10(-13) cm(3) molecule(-1) s(-1) and k(O-3 + t-CF3CH = CHCl) = (1.46 +/- 0.12) x 10(-21) cm(3) molecule(-1) s(-1), were established (quoted uncertainties are 2 sigma: see Experimental section). The IR...... spectrum of t-CF3CH = CHCl is reported. The atmospheric lifetime of t-CF3CH = CHCl is determined by reaction with OH radicals and is approximately 26 days. The global warming potential of t-CF3CH = CHCl is approximately 7 for a 100-year time horizon. (C) 2008 Elsevier B.V. All rights reserved....

  9. Atmospheric chemistry of dimethyl sulfide. Kinetics of the CH3SCH2O2 + NO2 reaction in the gas phase at 296 K

    DEFF Research Database (Denmark)

    Nielsen, O.J.; Sehested, J.; Wallington, T.J.

    1995-01-01

    The pulse radiolysis of SF6/CH3SCH3/O-2/NO2 gas mixtures was used to generate CH3SCH2O2 radicals in the presence of NO2. By monitoring the rate of NO2 decay using its absorption at 400 nm, rate constants for the reaction of CH3SCH2O2 radicals with NO2 were measured to be (9.2 +/- 0.9) x 10......(-12) and (7.1 +/- 0.9) X 10(-12) cm(3) molecule(-1) s(-1) at room temperature in 1000 and 300 mbar of SF6 diluent, respectively. Results are discussed with respect to the atmospheric chemistry of dimethyl sulfide....

  10. Chemical modification of a bitumen and its non-fuel uses. [Reactions of tar sand asphaltenes in synthesis of non-fuel products

    Energy Technology Data Exchange (ETDEWEB)

    Moschopedis, S.E.; Speight, J.G.

    1974-01-01

    Simple reactions are described whereby tar sand bitumen can be converted to a whole range of materials. Examples are given to illustrate the non-fuel uses of the products. The following reactions of Athabasca asphaltenes are considered: oxidation, halogenation, sulfonation and sulfomethylation, phosphorylation, hydrogenation, reactions with S and O, reactions with metal salts, and miscellaneous chemical conversions. (JGB)

  11. Measurements of acetone and other gas phase product yields from the OH-initiated oxidation of terpenes by proton-transfer-reaction mass spectrometry (PTR-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Wisthaler, A.; Lindinger, W. [University of Innsbruck (Austria). Institut fuer Ionenphysik; Jensen, N.R.; Winterhalter, R.; Hjorth, J. [Joint Research Centre, European Commission, Environment Institute, Ispra (Italy)

    2001-07-01

    The atmospheric oxidation of several terpenes appears to be a potentially relevant source of acetone in the atmosphere. Proton-transfer-reaction mass spectrometry was used as an on-line analytical method in a chamber study to measure acetone and other gas phase products from the oxidation of {alpha}- and {beta}-pinene initiated by OH radicals in air and in the presence of NO{sub x}. Acetone may be formed promptly, following attack by the OH radical on the terpene, via a series of highly unstable radical intermediates. It can also be formed by slower processes, via degradation of stable non-radical intermediates such as pinonaldehyde and nopinone. Primary acetone and pinonaldehyde molar yields of 11{+-}2% (one {sigma}) and 34{+-}9% (one {sigma}), respectively, were found from the reaction between {alpha}-pinene and the OH radical. After all {alpha}-pinene had been consumed, an additional formation of acetone due to the degradation of stable non-radical intermediates was observed. The total amount of acetone formed was 15{+-}2% (one {sigma}) of the reacted {alpha}-pinene. An upper limit of 12{+-}3% (one {sigma}) for the acetone molar yield from the oxidation of pinonaldehyde was established. From the reaction between {beta}-pinene and the OH radicals, primary acetone and nopinone molar yields of 13{+-}2% (one {sigma}) and 25{+-}3% (one {sigma}), respectively, were observed. Additional amounts of acetone were formed by the further degradation of the primary product, such as the most abundant product nopinone. The total amount of acetone formed was 16{+-}2% (one {sigma}) of the reacted {beta}-pinene. An upper limit of 12{+-}2% (one {sigma}) for the acetone molar yield from the oxidation of nopinone was established. The observed product yields from {alpha}- and {beta}-pinene are in good agreement with other studies using mass-spectrometric and gas chromatographic analytical techniques, but differ significantly from previous studies using spectroscopic methods. Possible

  12. Anaphylaxis and severe systemic reactions caused by skin contact with persulfates in hair-bleaching products

    NARCIS (Netherlands)

    Hoekstra, Margriet; van der Heide, Sicco; Coenraads, Pieter Jan; Schuttelaar, Marielouise

    2012-01-01

    BACKGROUND: Persulfates have been reported to cause both delayed-type and immediate skin reactions. They may also cause immediate reactions of the mucous membranes of the bronchial system through inhalation, leading to asthma and rhinitis. Anaphylactic reactions caused by contact with persulfates ar

  13. Pathways of arachidonic acid peroxyl radical reactions and product formation with guanine radicals.

    Science.gov (United States)

    Crean, Conor; Geacintov, Nicholas E; Shafirovich, Vladimir

    2008-02-01

    Peroxyl radicals were derived from the one-electron oxidation of polyunsaturated fatty acids by sulfate radicals that were generated by the photodissociation of peroxodisulfate anions in air-equilibrated aqueous solutions. Reactions of these peroxyl and neutral guanine radicals, also generated by oxidation with sulfate radicals, were investigated by laser kinetic spectroscopy, and the guanine oxidation products were identified by HPLC and mass spectrometry methods. Sulfate radicals rapidly oxidize arachidonic (ArAc), linoleic (LnAc), and palmitoleic (PmAc) acids with similar rate constants, (2-4) x 10 (9) M (-1) s (-1). The C-centered radicals derived from the oxidation of ArAc and LnAc include nonconjugated Rn(.) ( approximately 80%) and conjugated bis-allylic Rba(.) ( approximately 20%) radicals. The latter were detectable in the absence of oxygen by their prominent, narrow absorption band at 280 nm. The Rn(.) radicals of ArAc (containing three bis-allylic sites) transform to the Rba(.) radicals via an intramolecular H-atom abstraction [rate constant (7.5 +/- 0.7) x 10 (4) s (-1)]. In contrast, the Rn(.) radicals of LnAc that contain only one bis-allylic site do not transform intramolecularly to the Rba(.) radicals. In the case of PmAc, which contains only one double bond, the Rba(.) radicals are not observed. The Rn(.) radicals of PmAc rapidly combine with oxygen with a rate constant of (3.8 +/- 0.4) x 10(9) M(-1) s(-1). The Rba(.) radicals of ArAc are less reactive and react with oxygen with a rate constant of (2.2 +/- 0.2) x 10 (8) M (-1) s (-1). The ArAc peroxyl radicals formed spontaneously eliminate superoxide radical anions [rate constant = (3.4 +/- 0.3) x 10 (4) M (-1) s (-1)]. The stable oxidative lesions derived from the 2',3',5'-tri- O-acetylguanosine or 2',3',5'-tri- O-acetyl-8-oxo-7,8-dihydroguanosine radicals and their subsequent reactions with ArAc peroxyl radicals were also investigated. The major products found were the 2,5-diamino-4 H

  14. Deep sub-threshold $\\Xi^-$ production in Ar+KCl reactions at 1.76A GeV

    CERN Document Server

    Agakichiev, G; Bassini, R; Belver, D; Belyaev, A V; Blanco, A; Böhmer, M; Boyard, J L; Braun-Munzinger, P; Cabanelas, P; Castro, E; Chernenko, S; Christ, T; Destefanis, M; Díaz, J; Dohrmann, F; Dybczak, A; Eberl, T; Fabbietti, L; Fateev, O V; Finocchiaro, P; Fonte, P; Friese, J; Fröhlich, I; Galatyuk, T; Garzón, J A; Gernhäuser, R; Gil, A; Gilardi, C; Golubeva, M; González-Díaz, D; Guber, F; Hennino, T; Holzmann, R; Iori, I; Ivashkin, A; Jurkovic, M; Kämpfer, B; Kanaki, K; Karavicheva, T; Kirschner, D; König, I; König, W; Kolb, B W; Kotte, R; Krizek, F; Krücken, R; Kühn, W; Kugler, A; Kurepin, A; Lang, S; Lange, J S; Lapidus, K; Liu, T; Lopes, L; Lorenz, M; Maier, L; Mangiarotti, A; Markert, J; Metag, V; Michalska, B; Michel, J; Mishra, D; Morinière, E; Mousa, J; Müntz, C; Naumann, L; Otwinowski, J; Pachmayer, Y C; Palka, M; Parpottas, Y; Pechenov, V; Pechenova, O; Pietraszko, J; Przygoda, W; Ramstein, B; Reshetin, A; Roy-Stephan, M; Rustamov, A; Sadovskii, A; Sailer, B; Salabura, P; Schmah, A; Sobolev, Yu G; Spataro, S; Spruck, B; Ströbele, H; Stroth, J; Sturm, C; Sudol, M; Tarantola, A; Teilab, K; Tlustý, P; Traxler, M; Trebacz, R; Tsertos, H; Wagner, V; Weber, M; Wisniowski, M; Wojcik, T; Wüstenfeld, J; Yurevich, S; Zanevsky, Yu V; Zhou, P

    2009-01-01

    We report first results on a deep sub-threshold production of the doubly strange hyperon $\\Xi^-$ in a heavy-ion reaction. At a beam energy of 1.76A GeV the reaction Ar+KCl was studied with the High Acceptance Di-Electron Spectrometer (HADES) at SIS18/GSI. A high-statistics and high-purity $\\Lambda$ sample was collected, allowing for the investigation of the decay channel $\\Xi^- \\to \\Lambda \\pi^-$. The deduced $\\Xi^-/(\\Lambda+\\Sigma^0)$ production ratio of $(5.6 \\pm 1.2 ^{+1.8}_{-1.7})\\cdot 10^{-3}$ is significantly larger than available model predictions.

  15. Atmospheric Dispositifs

    DEFF Research Database (Denmark)

    Wieczorek, Izabela

    2015-01-01

    , the conceptual foundations and protocols for the production of atmosphere in architecture might be found beneath the surface of contemporary debates. In this context, the notion of atmospheric dispositif – illustrated through an oeuvre of the German architect Werner Ruhnau and its theoretical and historical...... as a spatial phenomenon, exploring a multiplicity of conditions that constitute their resonant origins – i.e. the production sites from and within they have emerged. The intention is also to argue that despite the fact that atmosphere as an aesthetic category has crystallised over the last few decades...... contextualisation – provides a platform for revealing productive entanglements between heterogeneous elements, disciplines and processes. It also allows rendering atmosphere as a site of co-production open to contingencies and affective interplay on multiples levels: at the moment of its conceptualisation...

  16. Atmospheric Neutrinos

    Directory of Open Access Journals (Sweden)

    Takaaki Kajita

    2012-01-01

    Full Text Available Atmospheric neutrinos are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith angle and energy-dependent deficit of muon-neutrino events. It was found that neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. This paper discusses atmospheric neutrino experiments and the neutrino oscillation studies with these neutrinos.

  17. Overview of the O3M SAF GOME-2 operational atmospheric composition and UV radiation data products and data availability

    Directory of Open Access Journals (Sweden)

    S. Hassinen

    2015-07-01

    Full Text Available The three GOME-2 instruments will provide unique and long data sets for atmospheric research and applications. The complete time period will be 2007–2022, including the period of ozone depletion as well as the beginning of ozone layer recovery. Besides ozone chemistry, the GOME-2 products are important e.g. for air quality studies, climate modeling, policy monitoring and hazard warnings. The heritage for GOME-2 is in the ERS/GOME and Envisat/SCIAMACHY instruments. The current Level 2 (L2 data cover a wide range of products such as trace gas columns (NO2, BrO, H2CO, H2O, SO2, tropospheric columns of NO2, total ozone columns and vertical ozone profiles in high and low spatial resolution, absorbing aerosol indices from the main science channels as well as from the polarization channels (AAI, AAI-PMD, Lambertian-equivalent reflectivity database, clear-sky and cloud-corrected UV indices and surface UV fields with different weightings and photolysis rates. The Ozone Monitoring and Atmospheric Composition Satellite Application Facility (O3M SAF processing and data dissemination is operational and running 24/7. Data quality is quarantined by the detailed review processes for the algorithms, validation of the products as well as by a continuous quality monitoring of the products and processing. This is an overview paper providing the O3M SAF project background, current status and future plans to utilization of the GOME-2 data. An important focus is the provision of summaries of the GOME-2 products including product principles and validation examples together with the product sample images. Furthermore, this paper collects the references to the detailed product algorithm and validation papers.

  18. Observations of Recent Arctic Sea Ice Volume Loss and Its Impact on Ocean-Atmosphere Energy Exchange and Ice Production

    Science.gov (United States)

    Kurtz, N. T.; Markus, T.; Farrell, S. L.; Worthen, D. L.; Boisvert, L. N.

    2011-01-01

    Using recently developed techniques we estimate snow and sea ice thickness distributions for the Arctic basin through the combination of freeboard data from the Ice, Cloud, and land Elevation Satellite (ICESat) and a snow depth model. These data are used with meteorological data and a thermodynamic sea ice model to calculate ocean-atmosphere heat exchange and ice volume production during the 2003-2008 fall and winter seasons. The calculated heat fluxes and ice growth rates are in agreement with previous observations over multiyear ice. In this study, we calculate heat fluxes and ice growth rates for the full distribution of ice thicknesses covering the Arctic basin and determine the impact of ice thickness change on the calculated values. Thinning of the sea ice is observed which greatly increases the 2005-2007 fall period ocean-atmosphere heat fluxes compared to those observed in 2003. Although there was also a decline in sea ice thickness for the winter periods, the winter time heat flux was found to be less impacted by the observed changes in ice thickness. A large increase in the net Arctic ocean-atmosphere heat output is also observed in the fall periods due to changes in the areal coverage of sea ice. The anomalously low sea ice coverage in 2007 led to a net ocean-atmosphere heat output approximately 3 times greater than was observed in previous years and suggests that sea ice losses are now playing a role in increasing surface air temperatures in the Arctic.

  19. Atmospheric radiocarbon calibration to 45,000 yr BP : Late glacial fluctuations and cosmogenic isotope production

    NARCIS (Netherlands)

    Kitagawa, H; van der Plicht, J

    1998-01-01

    More than 250 carbon-14 accelerator mass spectrometry dates of terrestrial macrofossils from annually laminated sediments from Lake Suigetsu (Japan) provide a first atmospheric calibration for almost the total range of the radiocarbon method (45,000 years before the present), The results confirm the

  20. New insights into atrazine degradation by cobalt catalyzed peroxymonosulfate oxidation: kinetics, reaction products and transformation mechanisms.

    Science.gov (United States)

    Ji, Yuefei; Dong, Changxun; Kong, Deyang; Lu, Junhe

    2015-03-21

    The widespread occurrence of atrazine in waters poses potential risk to ecosystem and human health. In this study, we investigated the underlying mechanisms and transformation pathways of atrazine degradation by cobalt catalyzed peroxymonosulfate (Co(II)/PMS). Co(II)/PMS was found to be more efficient for ATZ elimination in aqueous solution than Fe(II)/PMS process. ATZ oxidation by Co(II)/PMS followed pseudo-first-order kinetics, and the reaction rate constant (k(obs)) increased appreciably with increasing Co(II) concentration. Increasing initial PMS concentration favored the decomposition of ATZ, however, no linear relationship between k(obs) and PMS concentration was observed. Higher efficiency of ATZ oxidation was observed around neutral pH, implying the possibility of applying Co(II)/PMS process under environmental realistic conditions. Natural organic matter (NOM), chloride (Cl(-)) and bicarbonate (HCO3(-)) showed detrimental effects on ATZ degradation, particularly at higher concentrations. Eleven products were identified by applying solid phase extraction-liquid chromatography-mass spectrometry (SPE-LC/MS) techniques. Major transformation pathways of ATZ included dealkylation, dechlorination-hydroxylation, and alkyl chain oxidation. Detailed mechanisms responsible for these transformation pathways were discussed. Our results reveal that Co(II)/PMS process might be an efficient technique for remediation of groundwater contaminated by ATZ and structurally related s-triazine herbicides.

  1. Induction of the acrosome reaction test to in vitro estimate embryo production in Nelore cattle

    Directory of Open Access Journals (Sweden)

    M.Z. Costa

    2010-08-01

    Full Text Available The effectiveness of induction of the acrosome reaction (AR test as a parameter to in vitro estimate embryo production (IVP in Nelore breed and the AR pattern by the Trypan Blue/Giemsa (TB stain were evaluated. Frozen semen samples from ten Nelore bulls were submitted to AR induction and were also evaluated for cleavage and blastocyst rates. The treatments utilized for AR induction were: control (TALP medium, TH (TALP medium + 10μg heparin, TL (TALP medium + 100μg lysophosphatidylcholine and THL (TALP medium + 10μg heparin + 100μg lysophosphatidylcholine. Sperm acrosomal status and viability were evaluated by TB staining at 0 and after 4h incubation at 38°C. The results obtained for AR presented a significant difference (P<0.05 in the percentage of acrosome reacted live sperm after 4h of incubation in the treatments that received heparin. The cleavage and blastocyst rates were 60% and 38% respectively and a significant difference was observed among bulls (P<0.05. It was founded a satisfactory model to estimate the cleavage and blastocyst rates by AR induction test. Therefore, it can be concluded that the induction of the AR test is a valuable tool to predict the IVP in Nelore breed.

  2. Kinetics and products of the reaction of the first-generation isoprene hydroxy hydroperoxide (ISOPOOH) with OH

    DEFF Research Database (Denmark)

    St. Clair, Jason M.; Rivera-Rios, Jean C.; Crounse, John D.;

    2016-01-01

    The atmospheric oxidation of isoprene by the OH radical leads to the formation of several isomers of an unsaturated hydroxy hydroperoxide, ISOPOOH. Oxidation of ISOPOOH by OH produces epoxydiols, IEPOX, which have been shown to contribute mass to secondary organic aerosol (SOA). We present kineti...... are observed from these channels. We suggest that the major products, highly oxygenated organic peroxides, are lost to the chamber walls. In the atmosphere, formation of these compounds may contribute to organic aerosol mass.......The atmospheric oxidation of isoprene by the OH radical leads to the formation of several isomers of an unsaturated hydroxy hydroperoxide, ISOPOOH. Oxidation of ISOPOOH by OH produces epoxydiols, IEPOX, which have been shown to contribute mass to secondary organic aerosol (SOA). We present kinetic...

  3. Comment on "Cosmic-ray-driven reaction and greenhouse effect of halogenated molecules: Culprits for atmospheric ozone depletion and global climate change"

    Science.gov (United States)

    Müller, Rolf; Grooß, Jens-Uwe

    2014-04-01

    Lu's "cosmic-ray-driven electron-induced reaction (CRE) theory" is based on the assumption that the CRE reaction of halogenated molecules (e.g., chlorofluorocarbons (CFCs), HCl, ClONO2) adsorbed or trapped in polar stratospheric clouds in the winter polar stratosphere is the key step in forming photoactive halogen species that are the cause of the springtime ozone hole. This theory has been extended to a warming theory of halogenated molecules for climate change. In this comment, we discuss the chemical and physical foundations of these theories and the conclusions derived from the theories. First, it is unclear whether the loss rates of halogenated molecules induced by dissociative electron attachment (DEA) observed in the laboratory can also be interpreted as atmospheric loss rates, but even if this were the case, the impact of DEA-induced reactions on polar chlorine activation and ozone loss in the stratosphere is limited. Second, we falsify several conclusions that are reported on the basis of the CRE theory: There is no polar ozone loss in darkness, there is no apparent 11-year periodicity in polar total ozone measurements, the age of air in the polar lower stratosphere is much older than 1-2 years, and the reported detection of a pronounced recovery (by about 20-25%) in Antarctic total ozone measurements by the year 2010 is in error. There are also conclusions about the future development of sea ice and global sea level which are fundamentally flawed because Archimedes' principle is neglected. Many elements of the CRE theory are based solely on correlations between certain datasets which are no substitute for providing physical and chemical mechanisms causing a particular behavior noticeable in observations. In summary, the CRE theory cannot be considered as an independent, alternative mechanism for polar stratospheric ozone loss and the conclusions on recent and future surface temperature and global sea level change do not have a physical basis.

  4. Marine Primary Productivity as a Potential Indirect Source of Selenium and Other Trace Elements in Atmospheric Deposition.

    Science.gov (United States)

    Blazina, Tim; Läderach, Alexander; Jones, Gerrad D; Sodemann, Harald; Wernli, Heini; Kirchner, James W; Winkel, Lenny H E

    2017-01-03

    Atmospheric processes play an important role in the supply of the trace element selenium (Se) as well as other essential trace elements to terrestrial environments, mainly via wet deposition. Here we investigate whether the marine biosphere can be identified as a source of Se and of other trace elements in precipitation samples. We used artificial neural network (ANN) modeling and other statistical methods to analyze relationships between a high-resolution atmospheric deposition chemistry time series (March 2007-January 2009) from Plynlimon (UK) and exposure of air masses to marine chlorophyll a and to other source proxies. Using ANN sensitivity analyses, we found that higher air mass exposure to marine productivity leads to higher concentrations of dissolved organic carbon (DOC) in rainfall. Furthermore, marine productivity was found to be an important but indirect factor in controlling Se as well as vanadium (V), cobalt (Co), nickel (Ni), zinc (Zn), and aluminum (Al) concentrations in atmospheric deposition, likely via scavenging by organic compounds derived from marine organisms. Marine organisms may thus play an indirect but important role in the delivery of trace elements to terrestrial environments and food chains.

  5. Investigation of heat induced reactions between lipid oxidation products and amino acids in lipid rich model systems and hazelnuts.

    Science.gov (United States)

    Karademir, Yeşim; Göncüoğlu, Neslihan; Gökmen, Vural

    2013-07-01

    This study aimed to investigate the contribution of lipid oxidation to non-enzymatic browning reactions in lipid rich model and actual food systems. Hazelnut oil and model reaction mixtures consisting of different amino acids were heated under certain conditions to determine possible lipid oxidation and non-enzymatic browning reaction products. In model systems, the Schiff base of 2,4-decadienal, its decarboxylated form, and reaction products formed after hydrolytic cleavage of the Schiff base or decarboxylated form were identified by high resolution mass spectrometry. No furosine was detected in hazelnuts after roasting at 160 °C while the concentration of free amino acids significantly decreased. 2,4-Decadienal reacted effectively with all amino acids studied through a Maillard type carbonyl-amine condensation pathway. (2E,4E)-Deca-2,4-dien-1-amine was identified as a typical reaction product in model systems and roasted hazelnuts. In lipid-rich foods like hazelnuts, lipid-derived carbonyls might be responsible for potential modifications of free and protein bound amino acids during heating.

  6. Behavior of Listeria monocytogenes in Sliced Ready-to-Eat Meat Products Packaged under Vacuum or Modified Atmosphere Conditions.

    Science.gov (United States)

    Menéndez, Rosa Ana; Rendueles, Eugenia; Sanz, José Javier; Capita, Rosa; García-Fernández, Camino

    2015-10-01

    The objective of this research was to determine the behavior of Listeria monocytogenes in three types of sliced ready-to-eat meat products packaged under vacuum or modified atmosphere conditions and stored at three temperatures. Slices of about 25 g of chorizo (a fermented dry pork sausage), jamón (cured ham), and cecina (a salted, dried beef product) were inoculated with L. monocytogenes NCTC 11994. Slices were packaged in a vacuum or in a modified atmosphere (20% CO2, 80% N2). After packaging, samples were stored for 6 months at three temperatures: 3, 11, or 20°C. Microbiological analyses were performed after 0, 1, 7, 15, 30, 45, 90, and 180 days of storage. The type of meat product, the type of packaging, the temperature, and the day of storage all influenced microbial levels (P cecina samples, counts of L. monocytogenes increased from day 0 to day 1 of storage and then remained constant until day 90 of the study. These results may be of use for enhancing the safety of these ready-to-eat meat product types. Additional evaluation of the behavior of L. monocytogenes in cecina is needed.

  7. Silicon limitation on primary production and its destiny in Jiaozhou Bay, China Ⅷ: The variation of atmospheric carbon caused by both phytoplankton and human

    Institute of Scientific and Technical Information of China (English)

    杨东方; 苗振清; 石强; 陈豫; 陈国光

    2010-01-01

    Statistical analysis on data collected in the Jiaozhou Bay (Shandong, China) from May 1991 to February 1994 and those collected in Hawaii from March 1958 to December 2007 shows dynamic and cyclic changes in atmospheric carbon in the Northern Pacific Ocean (NPO), as well as the variation in space-time distribution of phytoplankton primary production and atmospheric carbon in the study regions. The study indicates that the human beings have imposed an important impact on the changing trends of the atmospheric...

  8. The Ethical Judgment and Moral Reaction to the Product-Harm Crisis: Theoretical Model and Empirical Research

    Directory of Open Access Journals (Sweden)

    Dong Lu

    2016-07-01

    Full Text Available Based on the dual-process theory of ethical judgment, a research model is proposed for examining consumers’ moral reactions to a product-harm crisis. A national-wide survey was conducted with 801 respondents in China. The results of this study indicate that consumers will react to a product-harm crisis through controlled cognitive processing and emotional intuition. The results of the study also show that consumers view a product-harm crisis as an ethical issue, and they will make an ethical judgment according to the perceived severity and perceived relevance of the crisis. The ethical judgment in the perceived crisis severity and perceived crisis relevance will affect consumers’ condemning emotions in terms of contempt and anger. Through controlled cognitive processing, a personal consumption-related reaction (purchasing intention is influenced by the perceived crisis severity. Furthermore, a social and interpersonal reaction (negative word of mouth is influenced by the perceived crisis relevance through the controlled cognitive processing. This social and interpersonal reaction is also influenced by the perceived crisis severity and perceived crisis relevance through the intuition of other-condemning emotion. Moreover, this study finds that the product knowledge negatively moderates the impact of the perceived crisis severity on the condemning emotions. Therefore, when a consumer has a high level of product knowledge, the effect of perceived crisis severity on the condemning emotions will be attenuated, and vice versa. This study provides scholars and managers with means of understanding and handling of consumers’ reactions to a product-harm crisis.

  9. The production of $\\phi , \\omega$ and $\\rho$ mesons in p-, d-, S- and Pb- induced reactions at the CERN SPS

    CERN Document Server

    Jouan, D; Alexa, C; Arnaldi, R; Atayan, M; Baglin, C; Baldit, A; Bedjidian, M; Beolè, S; Boldea, V; Boraldo, P; Borenstein, S R; Borges, G; Bussière, A; Capelli, L; Castanier, C; Castor, J I; Chaurand, B; Cheynis, B; Chiavassa, E; Cicalò, C; Claudino, T; Comets, M P; Constantinescu, S; Cortese, P; Cruz, J; De Falco, A; De Marco, N; Dellacasa, G; Devaux, A; Dita, S; Drapier, O; Espagnon, B; Fargeix, J; Force, P; Gallio, M; Gavrilov, Yu K; Gerschel, C; Giubellino, P; Golubeva, M B; Gonin, M; Grigorian, A A; Grigorian, S; Grossiord, J Y; Guber, F F; Guichard, A; Gulkanian, H R; Hakobyan, R S; Haroutunian, R; Idzik, M; Karavitcheva, T L; Kluberg, L; Kurepin, A B; Le Bornec, Y; Lourenço, C; Macciotta, P; MacCormick, M; Marzari-Chiesa, A; Masera, M; Masoni, A; Monteno, M; Musso, A; Petiau, P; Piccotti, A; Pizzi, J R; Prado da Silva, W L; Prino, F; Puddu, G; Quintans, C; Ramello, L; Ramos, S; Rato-Mendes, P; Riccati, L; Romana, A; Santos, H; Saturnini, P; Scalas, E; Scomparin, E; Serci, S; Shahoyan, R; Sigaudo, F; Sitta, M; Sonderegger, P; Tarrago, X; Topilskaya, N S; Usai, G L; Vercellin, E; Villatte, L; Willis, N; Wu, T

    2004-01-01

    From proton, deuteron, S- and Pb-induced reactions, experiments NA38 and NA50 have measured muon pair production with various targets. In particular, the production rates of the phi omega and rho mesons have been simultaneously extracted and compared. Preliminary partial results of the most recent Pb-Pb measurement done in year 2000 by NA50 are presented here. They are also included in the comparison with the results obtained with lighter interacting nuclei. (23 refs).

  10. Evidence for the Active Phase of Heterogeneous Catalysts through In Situ Reaction Product Imaging and Multiscale Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Matera, S.; Blomberg, S.; Hoffmann, M. J.; Zetterberg, J.; Gustafson, J.; Lundgren, E.; Reuter, K.

    2015-06-17

    We use multiscale modeling to analyze laser-induced fluorescence (LIF) measurements of the CO oxidation reaction over Pd(100) at near-ambient reaction conditions. Integrating density functional theory-based kinetic Monte Carlo simulations of the active catalyst into fluid-dynamical simulations of the mass transport inside the reactor chamber, we calculate the reaction product concentration directly above the catalyst surface. Comparing corresponding data calculated for different surface models against the measured LIF signals, we can discriminate the one that predominantly actuates the experimentally measured catalytic activity. For the probed CO oxidation reaction conditions, the experimental activity is due to pristine Pd(100) possibly coexisting with other (oxidic) domains on the surface.

  11. Alcohol-to-acid ratio and substrate concentration affect product structure in chain elongation reactions initiated by unacclimatized inoculum.

    Science.gov (United States)

    Liu, Yuhao; Lü, Fan; Shao, Liming; He, Pinjing

    2016-10-01

    The objective of the study was to investigate whether the ratio of ethanol to acetate affects yield and product structure in chain elongation initiated by unacclimatized mixed cultures. The effect of varying the substrate concentration, while maintaining the same ratio of alcohol to acid, was also investigated. With a high substrate concentration, an alcohol to acid ratio >2:1 provided sufficient electron donor capacity for the chain elongation reaction. With an ethanol to acetate ratio of 3:1 (300mM total carbon), the highest n-caproate concentration (3033±98mg/L) was achieved during the stable phase of the reaction. A lower substrate concentration (150mM total carbon) gave a lower yield of products and led to reduced carbon transformation efficiency compared with other reaction conditions. The use of unacclimatized inoculum in chain elongation can produce significant amounts of odd-carbon-number carboxylates as a result of protein hydrolysis.

  12. Biodiesel production from various oils under supercritical fluid conditions by Candida antartica lipase B using a stepwise reaction method.

    Science.gov (United States)

    Lee, Jong Ho; Kwon, Cheong Hoon; Kang, Jeong Won; Park, Chulhwan; Tae, Bumseok; Kim, Seung Wook

    2009-05-01

    In this study, we evaluate the effects of various reaction factors, including pressure, temperature, agitation speed, enzyme concentration, and water content to increase biodiesel production. In addition, biodiesel was produced from various oils to establish the optimal enzymatic process of biodiesel production. Optimal conditions were determined to be as follows: pressure 130 bar, temperature 45 degrees C, agitation speed 200 rpm, enzyme concentration 20%, and water contents 10%. Among the various oils used for production, olive oil showed the highest yield (65.18%) upon transesterification. However, when biodiesel was produced using a batch system, biodiesel conversion yield was not increased over 65%; therefore, a stepwise reaction was conducted to increase biodiesel production. When a reaction medium with an initial concentration of methanol of 60 mmol was used and adjusted to maintain this concentration of methanol every 1.5 h during biodiesel production, the conversion yield of biodiesel was 98.92% at 6 h. Finally, reusability was evaluated using immobilized lipase to determine if this method was applicable for industrial biodiesel production. When biodiesel was produced repeatedly, the conversion rate was maintained at over 85% after eight reuses.

  13. DYNAMIC MATHEMATICAL MODELLING OF REACTION KINETICS FOR CYCLODEXTRINS PRODUCTION FROM DIFFERENT STARCH SOURCES USING BACILLUS MACERANS CYCLODEXTRIN GLUCANOTRANSFERASE

    Directory of Open Access Journals (Sweden)

    Syahinaz Shahrazi

    2013-01-01

    Full Text Available This study relates to the mathematical modelling of enzymatic production of Cyclodextrins (CDs by Cyclodextrin Glucanotransferase (CGTase from Bacillus macerans. The experiments were carried out in batch mode using different starch sources and the results were used to estimate unknown parameters using linearization and dynamic simulation methods. α- and β-CD produced from tapioca were found to give the highest Michaelis-Menten constant, KM,i of 58.23 and 54.07 g L-1, respectively and maximum velocity, Vmax,i of 3.45 and 2.76 g L-1.min, respectively, while sago resulted in the highest KM,i and Vmax,i values of 342.35 g L-1 and 5.97 g L-1.min, respectively, for γ-CD obtained by the linearization method. Value of product inhibition, K1,i and CD degradation coefficient rate, δCD,i, were estimated using dynamic simulation, indicating that exponential reaction kinetics could be fitted better with the experimental data. Sensitivity analysis revealed that the product inhibition parameter in the exponential reaction kinetic equation is more significant in the process. For validation, the production of CDs by fed batch method was undertaken and starch and enzyme were added into the reaction medium. Then, the predicted profiles generated by simulation were compared with the experimental values. The proposed exponential reaction kinetics shows good fitting with the experimental data.

  14. Effects of beetroot (Beta vulgaris) preparations on the Maillard reaction products in milk and meat-protein model systems

    NARCIS (Netherlands)

    Rackauskienea, I.; Pukalskas, A.; Rimantas Venskutonis, P.; Fiore, A.M.; Troise, A.D.; Fogliano, V.

    2015-01-01

    The effects of beetroots (Beta vulgaris) on the formation of Maillard reaction (MR) products possessing health, nutritional and sensory implications were studied. The effect of dried beetroot juice on the formation of Ne-(carboxymethyl)lysine (CML) and Ne-(2-furoylmethyl)-L-lysine (furosine) was det

  15. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl polycarboxylic acids, esters... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols,...

  16. New Collections of Aura Atmospheric data Products at the GES DISC

    Science.gov (United States)

    Johnson, James; Ahmad, Suraiya; Gerasimov, Irina; Lepthoukh, Gregory

    2008-01-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the primary archive of