WorldWideScience

Sample records for atmospheric pressure ionization

  1. Atmospheric pressure thermospray ionization using a heated microchip nebulizer.

    Science.gov (United States)

    Keski-Rahkonen, Pekka; Haapala, Markus; Saarela, Ville; Franssila, Sami; Kotiaho, Tapio; Kostiainen, Risto; Auriola, Seppo

    2009-10-30

    When a standard atmospheric pressure chemical ionization (APCI) or atmospheric pressure photoionization (APPI) ion source is used without applying the corona discharge or photoirradiation, atmospheric pressure thermospray ionization (APTSI) of various compounds can be achieved. Although largely ignored, this phenomenon has recently gained interest as an alternative ionization technique. In this study, this technique is performed for the first time on a miniaturized scale using a microchip nebulizer. Sample ionization with the presented microchip-APTSI (microAPTSI) is achieved by applying only heat and gas flow to a nebulizer chip, without any other methods to promote gas-phase ionization. To evaluate the performance of the described microAPTSI setup, ionization efficiency for a set of test compounds was monitored as the microchip positioning, temperature, nebulizer gas flow rate, sample solution composition, and solvent flow rate were varied. The microAPTSI mass spectra of the test compounds were also compared to those obtained with ESI and APCI. The microAPTSI produces ESI-like spectra with low background noise, favoring the formation of protonated or deprotonated molecules of compounds that are ionizable in solution. Multiple charging of peptides without in-source fragmentation was also observed. Unlike ESI, however, the microAPTSI source can tolerate the presence of mobile phase additives like trifluoroacetic acid (TFA) without significant ion suppression. The microAPTSI source can be used with standard mass spectrometer ion source hardware, being a unique alternative to the present interfacing techniques.

  2. Ionization of EPA contaminants in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

    Science.gov (United States)

    Kauppila, Tiina J; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.

  3. Acetonitrile Ion Suppression in Atmospheric Pressure Ionization Mass Spectrometry

    Science.gov (United States)

    Colizza, Kevin; Mahoney, Keira E.; Yevdokimov, Alexander V.; Smith, James L.; Oxley, Jimmie C.

    2016-11-01

    Efforts to analyze trace levels of cyclic peroxides by liquid chromatography/mass spectrometry gave evidence that acetonitrile suppressed ion formation. Further investigations extended this discovery to ketones, linear peroxides, esters, and possibly many other types of compounds, including triazole and menadione. Direct ionization suppression caused by acetonitrile was observed for multiple adduct types in both electrospray ionization and atmospheric pressure chemical ionization. The addition of only 2% acetonitrile significantly decreased the sensitivity of analyte response. Efforts to identify the mechanism were made using various nitriles. The ion suppression was reduced by substitution of an acetonitrile hydrogen with an electron-withdrawing group, but was exacerbated by electron-donating or steric groups adjacent to the nitrile. Although current theory does not explain this phenomenon, we propose that polar interactions between the various functionalities and the nitrile may be forming neutral aggregates that manifest as ionization suppression.

  4. The ionization mechanisms in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

    Science.gov (United States)

    Kauppila, Tiina J; Kersten, Hendrik; Benter, Thorsten

    2014-11-01

    A novel, gas-tight API interface for gas chromatography-mass spectrometry was used to study the ionization mechanism in direct and dopant-assisted atmospheric pressure photoionization (APPI) and atmospheric pressure laser ionization (APLI). Eight analytes (ethylbenzene, bromobenzene, naphthalene, anthracene, benzaldehyde, pyridine, quinolone, and acridine) with varying ionization energies (IEs) and proton affinities (PAs), and four common APPI dopants (toluene, acetone, anisole, and chlorobenzene) were chosen. All the studied compounds were ionized by direct APPI, forming mainly molecular ions. Addition of dopants suppressed the signal of the analytes with IEs above the IE of the dopant. For compounds with suitable IEs or Pas, the dopants increased the ionization efficiency as the analytes could be ionized through dopant-mediated gas-phase reactions, such as charge exchange, proton transfer, and other rather unexpected reactions, such as formation of [M + 77](+) in the presence of chlorobenzene. Experiments with deuterated toluene as the dopant verified that in case of proton transfer, the proton originated from the dopant instead of proton-bound solvent clusters, as in conventional open or non-tight APPI sources. In direct APLI using a 266 nm laser, a narrower range of compounds was ionized than in direct APPI, because of exceedingly high IEs or unfavorable two-photon absorption cross-sections. Introduction of dopants in the APLI system changed the ionization mechanism to similar dopant-mediated gas-phase reactions with the dopant as in APPI, which produced mainly ions of the same form as in APPI, and ionized a wider range of analytes than direct APLI.

  5. Hydrocarbon analysis using desorption atmospheric pressure chemical ionization

    KAUST Repository

    Jjunju, Fred Paul Mark

    2013-07-01

    Characterization of the various petroleum constituents (hydronaphthalenes, thiophenes, alkyl substituted benzenes, pyridines, fluorenes, and polycyclic aromatic hydrocarbons) was achieved under ambient conditions without sample preparation by desorption atmospheric pressure chemical ionization (DAPCI). Conditions were chosen for the DAPCI experiments to control whether ionization was by proton or electron transfer. The protonated molecule [M+H]+ and the hydride abstracted [MH]+ form were observed when using an inert gas, typically nitrogen, to direct a lightly ionized plasma generated by corona discharge onto the sample surface in air. The abundant water cluster ions generated in this experiment react with condensed-phase functionalized hydrocarbon model compounds and their mixtures at or near the sample surface. On the other hand, when naphthalene was doped into the DAPCI gas stream, its radical cation served as a charge exchange reagent, yielding molecular radical cations (M+) of the hydrocarbons. This mode of sample ionization provided mass spectra with better signal/noise ratios and without unwanted side-products. It also extended the applicability of DAPCI to petroleum constituents which could not be analyzed through proton transfer (e.g., higher molecular PAHs such as chrysene). The thermochemistry governing the individual ionization processes is discussed and a desorption/ionization mechanism is inferred. © 2012 Elsevier B.V.

  6. ATMOSPHERIC-PRESSURE-IONIZATION MASS-SPECTROMETRY .1. INSTRUMENTATION AND IONIZATION TECHNIQUES

    NARCIS (Netherlands)

    BRUINS, AP

    1994-01-01

    Mass spectrometer ion sources are normally located inside a high-vacuum envelope. Such low-pressure ion sources can make use of a range of different ionization methods and are in routine use in analytical mass spectrometers. An ion source operating at atmospheric pressure is better suited, and may b

  7. Super-atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Chen, Lee Chuin; Rahman, Md Matiur; Hiraoka, Kenzo

    2013-03-01

    Super-atmospheric pressure chemical ionization (APCI) mass spectrometry was performed using a commercial mass spectrometer by pressurizing the ion source with compressed air up to 7 atm. Similar to typical APCI source, reactant ions in the experiment were generated with corona discharge using a needle electrode. Although a higher needle potential was necessary to initiate the corona discharge, discharge current and detected ion signal were stable at all tested pressures. A Roots booster pump with variable pumping speed was installed between the evacuation port of the mass spectrometer and the original rough pumps to maintain a same pressure in the first pumping stage of the mass spectrometer regardless of ion source pressure. Measurement of gaseous methamphetamine and research department explosive showed an increase in ion intensity with the ion source pressure until an optimum pressure at around 4-5 atm. Beyond 5 atm, the ion intensity decreased with further increase of pressure, likely due to greater ion losses inside the ion transport capillary. For benzene, it was found that besides molecular ion and protonated species, ion due to [M + 2H](+) which was not so common in APCI, was also observed with high ion abundance under super-atmospheric pressure condition.

  8. Transmission geometry laserspray ionization vacuum using an atmospheric pressure inlet.

    Science.gov (United States)

    Lutomski, Corinne A; El-Baba, Tarick J; Inutan, Ellen D; Manly, Cory D; Wager-Miller, James; Mackie, Ken; Trimpin, Sarah

    2014-07-01

    This represents the first report of laserspray ionization vacuum (LSIV) with operation directly from atmospheric pressure for use in mass spectrometry. Two different types of electrospray ionization source inlets were converted to LSIV sources by equipping the entrance of the atmospheric pressure inlet aperture with a customized cone that is sealed with a removable glass plate holding the matrix/analyte sample. A laser aligned in transmission geometry (at 180° relative to the inlet) ablates the matrix/analyte sample deposited on the vacuum side of the glass slide. Laser ablation from vacuum requires lower inlet temperature relative to laser ablation at atmospheric pressure. However, higher inlet temperature is required for high-mass analytes, for example, α-chymotrypsinogen (25.6 kDa). Labile compounds such as gangliosides and cardiolipins are detected in the negative ion mode directly from mouse brain tissue as intact doubly deprotonated ions. Multiple charging enhances the ion mobility spectrometry separation of ions derived from complex tissue samples.

  9. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

    Science.gov (United States)

    Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ.

  10. Atmospheric Pressure Ionization Using a High Voltage Target Compared to Electrospray Ionization

    Science.gov (United States)

    Lubin, Arnaud; Bajic, Steve; Cabooter, Deirdre; Augustijns, Patrick; Cuyckens, Filip

    2016-11-01

    A new atmospheric pressure ionization (API) source, viz. UniSpray, was evaluated for mass spectrometry (MS) analysis of pharmaceutical compounds by head-to-head comparison with electrospray ionization (ESI) on the same high-resolution MS system. The atmospheric pressure ionization source is composed of a grounded nebulizer spraying onto a high voltage, cylindrical stainless steel target. Molecules are ionized in a similar fashion to electrospray ionization, predominantly producing protonated or deprotonated species. Adduct formation (e.g., proton and sodium adducts) and in-source fragmentation is shown to be almost identical between the two sources. The performance of the new API source was compared with electrospray by infusion of a mix of 22 pharmaceutical compounds with a wide variety of functional groups and physico-chemical properties (molecular weight, logP, and pKa) in more than 100 different conditions (mobile phase strength, solvents, pH, and flow rate). The new API source shows an intensity gain of a factor 2.2 compared with ESI considering all conditions on all compounds tested. Finally, some hypotheses on the ionization mechanism, similarities, and differences with ESI, are discussed.

  11. Gas chromatography coupled to atmospheric pressure ionization mass spectrometry (GC-API-MS): review.

    Science.gov (United States)

    Li, Du-Xin; Gan, Lin; Bronja, Amela; Schmitz, Oliver J

    2015-09-03

    Although the coupling of GC/MS with atmospheric pressure ionization (API) has been reported in 1970s, the interest in coupling GC with atmospheric pressure ion source was expanded in the last decade. The demand of a "soft" ion source for preserving highly diagnostic molecular ion is desirable, as compared to the "hard" ionization technique such as electron ionization (EI) in traditional GC/MS, which fragments the molecule in an extensive way. These API sources include atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), atmospheric pressure laser ionization (APLI), electrospray ionization (ESI) and low temperature plasma (LTP). This review discusses the advantages and drawbacks of this analytical platform. After an introduction in atmospheric pressure ionization the review gives an overview about the history and explains the mechanisms of various atmospheric pressure ionization techniques used in combination with GC such as APCI, APPI, APLI, ESI and LTP. Also new developments made in ion source geometry, ion source miniaturization and multipurpose ion source constructions are discussed and a comparison between GC-FID, GC-EI-MS and GC-API-MS shows the advantages and drawbacks of these techniques. The review ends with an overview of applications realized with GC-API-MS.

  12. Specific interaction between negative atmospheric ions and organic compounds in atmospheric pressure corona discharge ionization mass spectrometry.

    Science.gov (United States)

    Sekimoto, Kanako; Sakai, Mami; Takayama, Mitsuo

    2012-06-01

    The interaction between negative atmospheric ions and various types of organic compounds were investigated using atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. Atmospheric negative ions such as O(2)(-), HCO(3)(-), COO(-)(COOH), NO(2)(-), NO(3)(-), and NO(3)(-)(HNO(3)) having different proton affinities served as the reactant ions for analyte ionization in APCDI in negative-ion mode. The individual atmospheric ions specifically ionized aliphatic and aromatic compounds with various functional groups as atmospheric ion adducts and deprotonated analytes. The formation of the atmospheric ion adducts under certain discharge conditions is most likely attributable to the affinity between the analyte and atmospheric ion and the concentration of the atmospheric ion produced under these conditions. The deprotonated analytes, in contrast, were generated from the adducts of the atmospheric ions with higher proton affinity attributable to efficient proton abstraction from the analyte by the atmospheric ion.

  13. LC-MS analysis of estradiol in human serum and endometrial tissue: Comparison of electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization.

    Science.gov (United States)

    Keski-Rahkonen, Pekka; Huhtinen, Kaisa; Desai, Reena; Harwood, D Tim; Handelsman, David J; Poutanen, Matti; Auriola, Seppo

    2013-09-01

    Accurate measurement of estradiol (E2) is important in clinical diagnostics and research. High sensitivity methods are critical for specimens with E2 concentrations at low picomolar levels, such as serum of men, postmenopausal women and children. Achieving the required assay performance with LC-MS is challenging due to the non-polar structure and low proton affinity of E2. Previous studies suggest that ionization has a major role for the performance of E2 measurement, but comparisons of different ionization techniques for the analysis of clinical samples are not available. In this study, female serum and endometrium tissue samples were used to compare electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) in both polarities. APPI was found to have the most potential for E2 analysis, with a quantification limit of 1 fmol on-column. APCI and ESI could be employed in negative polarity, although being slightly less sensitive than APPI. In the presence of biological background, ESI was found to be highly susceptible to ion suppression, while APCI and APPI were largely unaffected by the sample matrix. Irrespective of the ionization technique, background interferences were observed when using the multiple reaction monitoring transitions commonly employed for E2 (m/z 271 > 159; m/z 255 > 145). These unidentified interferences were most severe in serum samples, varied in intensity between ionization techniques and required efficient chromatographic separation in order to achieve specificity for E2.

  14. Comparison of the sensitivity of mass spectrometry atmospheric pressure ionization techniques in the analysis of porphyrinoids.

    Science.gov (United States)

    Swider, Paweł; Lewtak, Jan P; Gryko, Daniel T; Danikiewicz, Witold

    2013-10-01

    The porphyrinoids chemistry is greatly dependent on the data obtained in mass spectrometry. For this reason, it is essential to determine the range of applicability of mass spectrometry ionization methods. In this study, the sensitivity of three different atmospheric pressure ionization techniques, electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization, was tested for several porphyrinods and their metallocomplexes. Electrospray ionization method was shown to be the best ionization technique because of its high sensitivity for derivatives of cyanocobalamin, free-base corroles and porphyrins. In the case of metallocorroles and metalloporphyrins, atmospheric pressure photoionization with dopant proved to be the most sensitive ionization method. It was also shown that for relatively acidic compounds, particularly for corroles, the negative ion mode provides better sensitivity than the positive ion mode. The results supply a lot of relevant information on the methodology of porphyrinoids analysis carried out by mass spectrometry. The information can be useful in designing future MS or liquid chromatography-MS experiments.

  15. Atmospheric pressure ionization and gas phase ion mobility studies of isomeric dihalogenated benzenes using different ionization techniques

    Science.gov (United States)

    Borsdorf, H.; Nazarov, E. G.; Eiceman, G. A.

    2004-03-01

    Ion mobility spectrometry (IMS) featuring different ionization techniques was used to analyze isomeric ortho-, meta- and para-dihalogenated benzenes in order to assess how structural features affect ion formation and drift behavior. The structure of the product ions formed was investigated by atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) and IMS-MS coupling. Photoionization provided [M]+ ions for chlorinated and fluorinated compounds while bromine was cleaved from isomers of dibromobenzene and bromofluorobenzene. This ionization technique does not permit the different isomers to be distinguished. Comparable ions and additional clustered ions were obtained using 63Ni ionization. Depending on the chemical constitution, different clustered ions were observed in ion mobility spectra for the separate isomers of dichlorobenzene and dibromobenzene. Corona discharge ionization permits the most sensitive detection of dihalogenated compounds. Only clustered product ions were obtained. Corona discharge ionization enables the classification of different structural isomers of dichlorobenzene, dibromobenzene and bromofluorobenzene.

  16. Super-atmospheric pressure ionization mass spectrometry and its application to ultrafast online protein digestion analysis.

    Science.gov (United States)

    Chen, Lee Chuin; Ninomiya, Satoshi; Hiraoka, Kenzo

    2016-06-01

    Ion source pressure plays a significant role in the process of ionization and the subsequent ion transmission inside a mass spectrometer. Pressurizing the ion source to a gas pressure greater than atmospheric pressure is a relatively new approach that aims to further improve the performance of atmospheric pressure ionization sources. For example, under a super-atmospheric pressure environment, a stable electrospray can be sustained for liquid with high surface tension such as pure water, because of the suppression of electric discharge. Even for nano-electrospray ionization (nano-ESI), which is known to work with aqueous solution, its stability and sensitivity can also be enhanced, particularly in the negative mode when the ion source is pressurized. A brief review on the development of super-atmospheric pressure ion sources, including high-pressure electrospray, field desorption and superheated ESI, and the strategies to interface these ion sources to a mass spectrometer will be given. Using a recent ESI prototype with an operating temperature at 220 °C under 27 atm, we also demonstrate that it is possible to achieve an online Asp-specific protein digestion analysis in which the whole processes of digestion, ionization and MS acquisition could be completed on the order of a few seconds. This method is fast, and the reaction can even be monitored on a near-real-time basis. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Ionization pattern obtained in electrospray ionization or atmospheric pressure chemical ionization interfaces for authorized antidepressants in Romania

    Science.gov (United States)

    Grecu, Iulia; Ionicǎ, Mihai; Vlǎdescu, Marian; Truţǎ, Elena; Sultan, Carmen; Viscol, Oana; Horhotǎ, Luminiţa; Radu, Simona

    2016-12-01

    Antidepressants were found in 1950. In the 1990s there was a new generation of antidepressants. They act on the level of certain neurotransmitters extrasinpatic by its growth. After their mode of action antidepressants may be: SSRIs (Selective Serotonin Reuptake Inhibitors); (Serotonin-Norepinephrine Reuptake Inhibitors); SARIs (Serotonin Antagonist Reuptake Inhibitors); NRIs (Norepinephrine Reuptake Inhibitors); NDRIs (Norepinephrine-Dopamine Reuptake Inhibitors) NDRAs (Norepinephrine-Dopamine Releasing Agents); TCAs (Tricyclic Antidepressants); TeCAs (Tetracyclic Antidepressants); MAOIs (Monoamine Oxidase Inhibitors); agonist receptor 5-HT1A (5- hydroxytryptamine); antagonist receptor 5-HT2; SSREs (Selective Serotonin Reuptake Enhancers) and Sigma agonist receptor. To determine the presence of antidepressants in biological products, it has been used a system HPLC-MS (High Performance Liquid Chromatography - Mass Spectrometry) Varian 12001. The system is equipped with APCI (Atmospheric Pressure Chemical Ionization) or ESI (ElectroSpray Ionization) interface. To find antidepressants in unknown samples is necessary to recognize them after mass spectrum. Because the mass spectrum it is dependent on obtaining private parameters work of HPLC-MS system, and control interfaces, the mass spectra library was filled with the mass spectra of all approved antidepressants in Romania. The paper shows the mass spectra obtained in the HPLCMS system.

  18. Atmospheric pressure ionization-tandem mass spectrometry of the phenicol drug family.

    Science.gov (United States)

    Alechaga, Élida; Moyano, Encarnación; Galceran, M Teresa

    2013-11-01

    In this work, the mass spectrometry behaviour of the veterinary drug family of phenicols, including chloramphenicol (CAP) and its related compounds thiamphenicol (TAP), florfenicol (FF) and FF amine (FFA), was studied. Several atmospheric pressure ionization sources, electrospray (ESI), atmospheric pressure chemical ionization and atmospheric pressure photoionization were compared. In all atmospheric pressure ionization sources, CAP, TAP and FF were ionized in both positive and negative modes; while for the metabolite FFA, only positive ionization was possible. In general, in positive mode, [M + H](+) dominated the mass spectrum for FFA, while the other compounds, CAP, TAP and FF, with lower proton affinity showed intense adducts with species present in the mobile phase. In negative mode, ESI and atmospheric pressure photoionization showed the deprotonated molecule [M-H](-), while atmospheric pressure chemical ionization provided the radical molecular ion by electron capture. All these ions were characterized by tandem mass spectrometry using the combined information obtained by multistage mass spectrometry and high-resolution mass spectrometry in a quadrupole-Orbitrap instrument. In general, the fragmentation occurred via cyclization and losses or fragmentation of the N-(alkyl)acetamide group, and common fragmentation pathways were established for this family of compounds. A new chemical structure for the product ion at m/z 257 for CAP, on the basis of the MS(3) and MS(4) spectra is proposed. Thermally assisted ESI and selected reaction monitoring are proposed for the determination of these compounds by ultra high-performance liquid chromatography coupled to tandem mass spectrometry, achieving instrumental detection limits down to 0.1 pg.

  19. Characterization of typical chemical background interferences in atmospheric pressure ionization liquid chromatography-mass spectrometry

    NARCIS (Netherlands)

    Guo, Xinghua; Bruins, Andries P.; Covey, Thomas R.

    2006-01-01

    The structures and origins of typical chemical background noise ions in positive atmospheric pressure ionization liquid chromatography/mass spectrometry (API LC/MS) are investigated and summarized in this study. This was done by classifying chemical background ions using precursor and product ion sc

  20. ATMOSPHERIC-PRESSURE-IONIZATION MASS-SPECTROMETRY .2. APPLICATIONS IN PHARMACY, BIOCHEMISTRY AND GENERAL-CHEMISTRY

    NARCIS (Netherlands)

    BRUINS, AP

    1994-01-01

    Mass spectrometer ion sources are normally located inside a high-vacuum envelope. An ion source operating at atmospheric pressure is better suited, it not essential, for a growing number of applications. MS analysis of samples pyrolyzed under controlled conditions makes use of chemical ionization at

  1. Pyroelectricity Assisted Infrared-Laser Desorption Ionization (PAI-LDI) for Atmospheric Pressure Mass Spectrometry

    Science.gov (United States)

    Li, Yanyan; Ma, Xiaoxiao; Wei, Zhenwei; Gong, Xiaoyun; Yang, Chengdui; Zhang, Sichun; Zhang, Xinrong

    2015-08-01

    A new atmospheric pressure ionization method termed pyroelectricity-assisted infrared laser desorption ionization (PAI-LDI) was developed in this study. The pyroelectric material served as both sample target plate and enhancing ionization substrate, and an IR laser with wavelength of 1064 nm was employed to realize direct desorption and ionization of the analytes. The mass spectra of various compounds obtained on pyroelectric material were compared with those of other substrates. For the five standard substances tested in this work, LiNbO3 substrate produced the highest ion yield and the signal intensity was about 10 times higher than that when copper was used as substrate. For 1-adamantylamine, as low as 20 pg (132.2 fmol) was successfully detected. The active ingredient in (Compound Paracetamol and 1-Adamantylamine Hydrochloride Capsules), 1-adamantylamine, can be sensitively detected at an amount as low as 150 pg, when the medicine stock solution was diluted with urine. Monosaccharide and oligosaccharides in Allium Cepa L. juice was also successfully identified with PAI-LDI. The method did not require matrix-assisted external high voltage or other extra facility-assisted set-ups for desorption/ionization. This study suggested exciting application prospect of pyroelectric materials in matrix- and electricity-free atmospheric pressure mass spectrometry research.

  2. Super-atmospheric pressure ionization mass spectrometry and its application to ultrafast online protein digestion analysis.

    Science.gov (United States)

    Chen, L C; Ninomiya, S; Hiraoka, K

    2016-06-01

    Pressure is a key parameter for an ionization source. In this Special Feature article, Lee Chuin Chen and colleagues review super-atmospheric pressure ionization MS with electrospray, corona-discharge-based chemical ionization, and field desorption. They routinely run their mass spectrometer with ion source pressures ranging from several to several tens of atmospheres. A number of strategies have been used to preserve the high vacuum of the instrument while working with a high-pressure (HP) ion source. A recent prototype uses a booster pump with variable pumping speed added to the first pumping stage of the mass spectrometer to regulate a constant vacuum pressure. Further, a new HP-ESI source allowing rapid (a few seconds) online protein digestion MS is also reported. Dr. Lee Chuin Chen is Associate Professor in the Department of Interdisciplinary Research at the University of Yamanashi (Yamanashi, Japan). His main research interest is the development of novel mass spectrometric methods for in-situ medical diagnosis.

  3. Trace analysis of organics in air by corona discharge atmospheric pressure ionization using an electrospray ionization interface.

    Science.gov (United States)

    Nikolaev, Eugene; Riter, Leah S; Laughlin, Brian C; Handberg, Eric; Cooks, R Graham

    2004-01-01

    A corona discharge ion source operating at atmospheric pressure in the point-to-plane configuration was constructed by reconfiguring the ion source of a commercial electrospray ionization (ESI) quadrupole mass spectrometer. This new source allows direct air analysis without modification to the mass spectrometer. Detection and quantitation of semi-volatile compounds in air is demonstrated. The analytical performance of the system was established using the chemical warfare agent simulants methyl salicylate and dimethyl methylphosphonate. Limits of detection are 60 pptr in the negative-ion mode and 800 pptr in the positive-ion mode for methyl salicylate and 800 pptr in the negative-ion mode and 3.6 ppb in the positive-ion mode for dimethyl methylphosphonate. A linear response was observed from 60 pptr to 8 ppb for methyl salicylate in air in the negative-ionization mode. Cluster ion formation versus production of analyte ions was investigated and it was found that dry air or an elevated capillary interface temperature (130 degrees C) was needed to avoid extensive clustering, mostly of water. Reagent gases are not needed as proton sources, as is usually the case for atmospheric pressure chemical ionization, and this, together with the simplicity, sensitivity and speed of the technique, makes it promising for miniaturization and future field studies.

  4. Precursor ion scan profiles of acylcarnitines by atmospheric pressure thermal desorption chemical ionization tandem mass spectrometry.

    Science.gov (United States)

    Paglia, Giuseppe; D'Apolito, Oceania; Corso, Gaetano

    2008-12-01

    The fatty acyl esters of L-carnitine (acylcarnitines) are useful biomarkers for the diagnosis of some inborn errors of metabolism analyzed by liquid chromatography/tandem mass spectrometry. In this study the acylcarnitines were analyzed by atmospheric pressure thermal desorption chemical ionization using a commercial tandem mass spectrometer (APTDCI-MS/MS). The method is based on the precursor ion scan mode determination of underivatized acylcarnitines desorbed from samples by a hot desolvation gas flow and ionized by a corona pin discharge. During desorption/ionization step the temperature induces the degradation of acylcarnitines; nevertheless, the common fragment to all acylcarnitines [MH-59](+) is useful for analyzing their profile. APTDCI parameters, including angle of collection and incidence, gas flows and temperatures, were optimized for acylcarnitines. The experiments were performed drying 2 microL of an equimolar mixture of acylcarnitine standards on a glass slide. The specificity was evaluated by comparing product ion spectra and the precursor ion spectra of 85 m/z of acylcarnitines obtained by the APTDCI method and by electrospray ionization flow injection analysis (ESI-FIA). The method was also employed to analyze acylcarnitines extracted from a pathological dried blood spot and a control. The method enables analysis of biological samples and recognition of some acylcarnitines that are diagnostic markers of inherited metabolic diseases. The intrinsic high-throughput analysis of the ambient desorption ionization methods offers a new opportunity either for its potential application in clinical chemistry and for the expanded screening of some inborn errors of metabolism.

  5. Atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry for complex thiophenic mixture analysis

    KAUST Repository

    Hourani, Nadim

    2013-10-01

    Rationale Polycyclic aromatic sulfur heterocycles (PASHs) are detrimental species for refining processes in petroleum industry. Current mass spectrometric Methods that determine their composition are often preceded by derivatization and dopant addition approaches. Different ionization Methods have different impact on the molecular assignment of complex PASHs. The analysis of such species under atmospheric pressure chemical ionization (APCI) is still considered limited due to uncontrolled ion generation with low- and high-mass PASHs. Methods The ionization behavior of a model mixture of five selected PASH standards was investigated using an APCI source with nitrogen as the reagent gas. A complex thiophenic fraction was separated from a vacuum gas oil (VGO) and injected using the same method. The samples were analyzed using Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). RESULTS PASH model analytes were successfully ionized and mainly [M + H]+ ions were produced. The same ionization pattern was observed for the real thiophenic sample. It was found that S1 class species were the major sulfur-containing species found in the VGO sample. These species indicated the presence of alkylated benzothiophenic (BT), dibenzothiophenic (DBT) and benzonaphthothiophenic (BNT) series that were detected by APCI-FTICR MS. CONCLUSIONS This study provides an established APCI-FTICR MS method for the analysis of complex PASHs. PASHs were detected without using any derivatization and without fragmentation. The method can be used for the analysis of S-containing crude oil samples. © 2013 John Wiley & Sons, Ltd.

  6. Characterization of the chemical composition of a block copolymer by liquid chromatography/mass spectrometry using atmospheric pressure chemical ionization and electrospray ionization

    NARCIS (Netherlands)

    Leeuwen, van Suze M.; Tan, BoonHua; Grijpma, Dirk W.; Feijen, J.; Karst, Uwe

    2007-01-01

    Liquid chromatography/mass spectrometry (LC/MS) with electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) in the positive and negative ion modes was used for the characterization of a block copolymer consisting of methoxy poly(ethylene oxide) (mPEO), an -caprolactone (CL

  7. Characterization of the chemical composition of a block copolymer by liquid chromatography/mass spectrometry using atmospheric pressure chemical ionization and electrospray ionization

    NARCIS (Netherlands)

    van Leeuwen, Suze M.; Tan, BoonHua; Grijpma, Dirk W.; Fejen, Jan; Karst, Uwe

    2007-01-01

    Liquid chromatography/mass spectrometry (LC/MS) with electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) in the positive and negative ion modes was used for the characterization of a block copolymer consisting of methoxy poly(ethylene oxide) (mPEO), an epsilon-caprolact

  8. Thin-layer chromatography and mass spectrometry coupled using proximal probe thermal desorption with electrospray or atmospheric pressure chemical ionization.

    Science.gov (United States)

    Ovchinnikova, Olga S; Van Berkel, Gary J

    2010-06-30

    An atmospheric pressure proximal probe thermal desorption sampling method coupled with secondary ionization by electrospray or atmospheric pressure chemical ionization was demonstrated for the mass spectrometric analysis of a diverse set of compounds (dyestuffs, pharmaceuticals, explosives and pesticides) separated on various high-performance thin-layer chromatography plates. Line scans along or through development lanes on the plates were carried out by moving the plate relative to a stationary heated probe positioned close to or just touching the stationary phase surface. Vapors of the compounds thermally desorbed from the surface were drawn into the ionization region of a combined electrospray ionization/atmospheric pressure chemical ionization source where they merged with reagent ions and/or charged droplets from a corona discharge or an electrospray emitter and were ionized. The ionized components were then drawn through the atmospheric pressure sampling orifice into the vacuum region of a triple quadrupole mass spectrometer and detected using full scan, single ion monitoring, or selected reaction monitoring mode. Studies of variable parameters and performance metrics including the proximal probe temperature, gas flow rate into the ionization region, surface scan speed, read-out resolution, detection limits, and surface type are discussed.

  9. Atmospheric pressure air direct current glow discharge ionization source for ion mobility spectrometry.

    Science.gov (United States)

    Dong, Can; Wang, Weiguo; Li, Haiyang

    2008-05-15

    A new atmospheric pressure air direct current glow discharge (DCGD) ionization source has been developed for ion mobility spectrometry (IMS) to overcome the regularity problems associated with the conventional (63)Ni source and the instability of the negative corona discharge. Its general electrical characteristics were experimentally investigated. By equipping it to IMS, a higher sensitivity was obtained compared to that of a (63)Ni source and corona discharge, and a linear dynamic range from 20 ppb to 20 ppm was obtained for m-xylene. Primary investigations showed that alkanes, such as pentane, which are nondetectable or insensitively detectable with (63)Ni-IMS, can be efficiently detected by DCGD-IMS and the detection limit of 10 ppb can be reached. The preliminary results have shown that the new DCGD ionization source has great potential applications in IMS, such as online monitoring of environment pollutants and halogenated compounds.

  10. Gas Chromatography/Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometry for Fingerprinting the Macondo Oil Spill.

    Science.gov (United States)

    Lobodin, Vladislav V; Maksimova, Ekaterina V; Rodgers, Ryan P

    2016-07-05

    We report the first application of a new mass spectrometry technique (gas chromatography combined to atmospheric pressure chemical ionization tandem mass spectrometry, GC/APCI-MS/MS) for fingerprinting a crude oil and environmental samples from the largest accidental marine oil spill in history (the Macondo oil spill, the Gulf of Mexico, 2010). The fingerprinting of the oil spill is based on a trace analysis of petroleum biomarkers (steranes, diasteranes, and pentacyclic triterpanes) naturally occurring in crude oil. GC/APCI enables soft ionization of petroleum compounds that form abundant molecular ions without (or little) fragmentation. The ability to operate the instrument simultaneously in several tandem mass spectrometry (MS/MS) modes (e.g., full scan, product ion scan, reaction monitoring) significantly improves structural information content and sensitivity of analysis. For fingerprinting the oil spill, we constructed diagrams and conducted correlation studies that measure the similarity between environmental samples and enable us to differentiate the Macondo oil spill from other sources.

  11. Atmospheric pressure chemical ionization of fluorinated phenols in atmospheric pressure chemical ionization mass spectrometry, tandem mass spectrometry, and ion mobility spectrometry

    Science.gov (United States)

    Eiceman, G. A.; Bergloff, J. F.; Rodriguez, J. E.; Munro, W.; Karpas, Z.

    1999-01-01

    Atmospheric pressure chemical ionization (APCI)-mass spectrometry (MS) for fluorinated phenols (C6H5-xFxOH Where x = 0-5) in nitrogen with Cl- as the reagent ion yielded product ions of M Cl- through ion associations or (M-H)- through proton abstractions. Proton abstraction was controllable by potentials on the orifice and first lens, suggesting that some proton abstraction occurs through collision induced dissociation (CID) in the interface region. This was proven using CID of adduct ions (M Cl-) with Q2 studies where adduct ions were dissociated to Cl- or proton abstracted to (M-H)-. The extent of proton abstraction depended upon ion energy and structure in order of calculated acidities: pentafluorophenol > tetrafluorophenol > trifluorophenol > difluorophenol. Little or no proton abstraction occurred for fluorophenol, phenol, or benzyl alcohol analogs. Ion mobility spectrometry was used to determine if proton abstraction reactions passed through an adduct intermediate with thermalized ions and mobility spectra for all chemicals were obtained from 25 to 200 degrees C. Proton abstraction from M Cl- was not observed at any temperature for phenol, monofluorophenol, or difluorophenol. Mobility spectra for trifluorophenol revealed the kinetic transformations to (M-H)- either from M Cl- or from M2 Cl- directly. Proton abstraction was the predominant reaction for tetra- and penta-fluorophenols. Consequently, the evidence suggests that proton abstraction occurs from an adduct ion where the reaction barrier is reduced with increasing acidity of the O-H bond in C6H5-xFxOH.

  12. Rapid differentiation of tea products by surface desorption atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Chen, Huanwen; Liang, Huazheng; Ding, Jianhua; Lai, Jinhu; Huan, Yanfu; Qiao, Xiaolin

    2007-12-12

    Protonated water molecules generated by an ambient corona discharge were directed to impact tea leaves for desorption/ionization at atmospheric pressure. Thus, a novel method based on surface desorption chemical ionization mass spectrometry (DAPCI-MS) has been developed for rapid analysis of tea products without any sample pretreatment. Under the optimized experimental conditions, DAPCI MS spectra of various tea samples are recorded rapidly, and the resulting mass spectra are chemical fingerprints that characterize the tea samples. On the basis of the mass spectral fingerprints, 40 tea samples including green tea, oolong tea, and jasmine tea were successfully differentiated by principal component analysis (PCA) of the mass spectral raw data. The PCA results were also validated with cluster analysis and supervised PCA analysis. The alteration of signal intensity caused by rough surfaces of tea leaves did not cause failure in the separation of the tea products. The experimental findings show that DAPCI-MS creates ions of both volatile and nonvolatile compounds in tea products at atmospheric pressure, providing a practical and convenient tool for high-throughput differentiation of tea products.

  13. Sinapine detection in radish taproot using surface desorption atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Huang, Dejuan; Luo, Liping; Jiang, Cuicui; Han, Jing; Wang, Jiang; Zhang, Tingting; Jiang, Jie; Zhou, Zhiquan; Chen, Huanwen

    2011-03-23

    Plant research and natural product detection are of sustainable interests. Benefited by direct detection with no sample preparation, sinapine, a bioactive chemical usually found in various seeds of Brassica plants, has been unambiguously detected in radish taproot (Raphanus sativus) tissue using a liquid-assisted surface desorption atmospheric pressure chemical ionization mass spectrometry (DAPCI-MS). A methanol aqueous solution (1:1) was nebulized by a nitrogen sheath gas toward the corona discharge, resulting in charged ambient small droplets, which affected the radish tissue for desorption/ionization of analytes on the tissue surface. Thus, sinapine was directly detected and identified by tandem DAPCI-MS experiments without sample pretreatment. The typical relative standard deviation (RSD) of this method for sinapine detection was 5-8% for six measurements (S/N=3). The dynamic response range was 10(-12)-10(-7) g/cm2 for sinapine on the radish skin surface. The discovery of sinapine in radish taproot was validated by using HPLC-UV methods. The data demonstrated that DAPCI assisted by solvent enhanced the overall efficiency of the desorption/ionization process, enabling sensitive detection of bioactive compounds in plant tissue.

  14. A sensitive gas chromatography detector based on atmospheric pressure chemical ionization by a dielectric barrier discharge.

    Science.gov (United States)

    Kirk, Ansgar T; Last, Torben; Zimmermann, Stefan

    2017-02-03

    In this work, we present a novel concept for a gas chromatography detector utilizing an atmospheric pressure chemical ionization which is initialized by a dielectric barrier discharge. In general, such a detector can be simple and low-cost, while achieving extremely good limits of detection. However, it is non-selective apart from the use of chemical dopants. Here, a demonstrator manufactured entirely from fused silica capillaries and printed circuit boards is shown. It has a size of 75×60×25mm(3) and utilizes only 2W of power in total. Unlike other known discharge detectors, which require high-purity helium, this detector can theoretically be operated using any gas able to form stable ion species. Here, purified air is used. With this setup, limits of detection in the low parts-per-billion range have been obtained for acetone.

  15. Fast Differential Analysis of Propolis Using Surface Desorption Atmospheric Pressure Chemical Ionization Mass Spectrometry

    Science.gov (United States)

    Huang, Xue-yong; Guo, Xia-li; Luo, Huo-lin; Fang, Xiao-wei; Zhu, Teng-gao; Zhang, Xing-lei; Chen, Huan-wen; Luo, Li-ping

    2015-01-01

    Mass spectral fingerprints of 24 raw propolis samples, including 23 from China and one from the United States, were directly obtained using surface desorption atmospheric pressure chemical ionization mass spectrometry (SDAPCI-MS) without sample pretreatment. Under the optimized experimental conditions, the most abundant signals were detected in the mass ranges of 70 to 500 m/z and 200 to 350 m/z, respectively. Principal component analyses (PCA) for the two mass ranges showed similarities in that the colors had a significant correlation with the first two PCs; in contrast there was no correlation with the climatic zones from which the samples originated. Analytes such as chrysin, pinocembrin, and quercetin were detected and identified using multiple stage mass spectrometry within 3 min. Therefore, SDAPCI-MS can be used for rapid and reliable high-throughput analysis of propolis. PMID:26339245

  16. The transfer of atmospheric-pressure ionization waves via a metal wire

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Yang; Liu, Dongping, E-mail: Dongping.liu@dlnu.edu.cn [Liaoning Key Lab of Optoelectronic Films & Materials, School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Wang, Wenchun [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Peng, Yifeng; Niu, Jinhai; Bi, Zhenhua; Ji, Longfei; Song, Ying; Wang, Xueyang; Qi, Zhihua [Liaoning Key Lab of Optoelectronic Films & Materials, School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China)

    2016-01-15

    Our study has shown that the atmospheric-pressure He ionization waves (IWs) may be transferred from one dielectric tube (tube 1) to the other one (tube 2) via a floating metal wire. The propagation of IWs along the two tubes is not affected by the diameter of a floating metal wire, however, their propagation is strongly dependent on the length of a floating metal wire. The propagation of one IW along the tube 1 may result in the second IW propagating reversely inside the tube in vicinity of a floating metal wire, which keeps from their further propagation through the tube 1. After they merge together as one conduction channel inside the tube 1, the transferred plasma bullet starts to propagate along the tube 2. The propagation of transferred plasma bullets along the tube 2 is mainly determined by the capacitance and inductance effects, and their velocity and density can be controlled by the length of a floating metal wire.

  17. Ionization instability induced striations in atmospheric pressure He/H2O RF and DC discharges

    Science.gov (United States)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.

    2017-04-01

    One-dimensional particle-in-cell (PIC) simulations of a 1 mm gap atmospheric pressure He/2%{{\\text{H}}2}\\text{O} rf capacitive discharge showed standing striations in the bulk (Kawamura et al 2016 Plasma Sources Sci. Technol. 25 054009). We found that these striations were consistent with an ionization instability induced by non-local electron kinetics. We developed a theoretical instability criterion in good agreement with the numerical results which showed that discharges with larger bulk recombination rates tend to be more unstable. We also determined a critical wavelength such that shorter wavelengths are suppressed by diffusion while longer wavelengths may be restricted by the gap width. In this paper, we extend the gap size of the atmospheric pressure He/2%{{\\text{H}}2}\\text{O} discharges in the PIC simulations to 2 and 4 mm and drive them by either dc or rf current sources. We compare the results to the 1 mm gap rf simulations and theoretical model in Kawamura et al (2016 Plasma Sources Sci. Technol. 25 054009). We find that wider gap discharges tend to be more unstable as they can accommodate a wider range of wavelengths. Furthermore, the mixture of the various excited modes in the wider gaps can lead to distinctly non-sinusoidal spatial oscillations.

  18. Laser Microdissection and Atmospheric Pressure Chemical Ionization Mass Spectrometry Coupled for Multimodal Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Matthias [ORNL; Ovchinnikova, Olga S [ORNL; Kertesz, Vilmos [ORNL; Van Berkel, Gary J [ORNL

    2013-01-01

    This paper describes the coupling of ambient laser ablation surface sampling, accomplished using a laser capture microdissection system, with atmospheric pressure chemical ionization mass spectrometry for high spatial resolution multimodal imaging. A commercial laser capture microdissection system was placed in close proximity to a modified ion source of a mass spectrometer designed to allow for sampling of laser ablated material via a transfer tube directly into the ionization region. Rhodamine 6G dye of red sharpie ink in a laser etched pattern as well as cholesterol and phosphatidylcholine in a cerebellum mouse brain thin tissue section were identified and imaged from full scan mass spectra. A minimal spot diameter of 8 m was achieved using the 10X microscope cutting objective with a lateral oversampling pixel resolution of about 3.7 m. Distinguishing between features approximately 13 m apart in a cerebellum mouse brain thin tissue section was demonstrated in a multimodal fashion including co-registered optical and mass spectral chemical images.

  19. Laser-Ionization TOF Mass Spectrometer Characterization of Benzene Destruction in Atmospheric Pressure Pulsed Discharge

    Institute of Scientific and Technical Information of China (English)

    LIU Jiahong; XIAO Qingmei; WANG Liping; YAO Zhi; DING Hongbin

    2009-01-01

    Benzene is.a major industrial air pollutant and can cause serious human health disorders. In this paper an investigation on benzene destruction, in an atmospheric-pressure fast-flow pulsed DC-discharge by means of laser ionization combined with time-of-flight (TOF) mass spectrometry, is reported. Most by-products including transient reactive species from the benzene discharge were characterized by molecular beam sampling combined with TOF mass spectrometry.It is showed that, with a gas mixture of 0.5% C6H6 in Ar, benzene can be effectively destroyed by discharge plasma. The intermediate species consisted of small fragments of CNHm (n=3~5,m =1~11), cycle-chain species of CNHm (n=6~9, m = 7~10) and polycyclic species CNHm (n ≥9,m = 8~12). The alternation of mass peaks (intensity) with even/odd electrons was observed in the measured mass spectra. The results indicated that the alternation is mainly due to the different ionization potentials of the open shell and close shell species. Based on the examination of the features of the species' composition, the primary reaction pathways are proposed and discussed.

  20. Collision-induced dissociation analysis of negative atmospheric ion adducts in atmospheric pressure corona discharge ionization mass spectrometry.

    Science.gov (United States)

    Sekimoto, Kanako; Takayama, Mitsuo

    2013-05-01

    Collision-induced dissociation (CID) experiments were performed on atmospheric ion adducts [M + R](-) formed between various types of organic compounds M and atmospheric negative ions R(-) [such as O2(-), HCO3(-), COO(-)(COOH), NO2(-), NO3(-), and NO3(-)(HNO3)] in negative-ion mode atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. All of the [M + R](-) adducts were fragmented to form deprotonated analytes [M - H](-) and/or atmospheric ions R(-), whose intensities in the CID spectra were dependent on the proton affinities of the [M - H](-) and R(-) fragments. Precursor ions [M + R](-) for which R(-) have higher proton affinities than [M - H](-) formed [M - H](-) as the dominant product. Furthermore, the CID of the adducts with HCO3(-) and NO3(-)(HNO3) led to other product ions such as [M + HO](-) and NO3(-), respectively. The fragmentation behavior of [M + R](-) for each R(-) observed was independent of analyte type (e.g., whether the analyte was aliphatic or aromatic, or possessed certain functional groups).

  1. In-Line Reactions and Ionizations of Vaporized Diphenylchloroarsine and Diphenylcyanoarsine in Atmospheric Pressure Chemical Ionization Mass Spectrometry.

    Science.gov (United States)

    Okumura, Akihiko; Takada, Yasuaki; Watanabe, Susumu; Hashimoto, Hiroaki; Ezawa, Naoya; Seto, Yasuo; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Kondo, Tomohide; Nagashima, Hisayuki; Nagoya, Tomoki

    2016-07-01

    We propose detecting a fragment ion (Ph2As(+)) using counter-flow introduction atmospheric pressure chemical ionization ion trap mass spectrometry for sensitive air monitoring of chemical warfare vomiting agents diphenylchloroarsine (DA) and diphenylcyanoarsine (DC). The liquid sample containing of DA, DC, and bis(diphenylarsine)oxide (BDPAO) was heated in a dry air line, and the generated vapor was mixed into the humidified air flowing through the sampling line of a mass spectrometer. Humidity effect on the air monitoring was investigated by varying the humidity of the analyzed air sample. Evidence of the in-line conversion of DA and DC to diphenylarsine hydroxide (DPAH) and then BDPAO was obtained by comparing the chronograms of various ions from the beginning of heating. Multiple-stage mass spectrometry revealed that the protonated molecule (MH(+)) of DA, DC, DPAH, and BDPAO could produce Ph2As(+) through their in-source fragmentation. Among the signals of the ions that were investigated, the Ph2As(+) signal was the most intense and increased to reach a plateau with the increased air humidity, whereas the MH(+) signal of DA decreased. It was suggested that DA and DC were converted in-line into BDPAO, which was a major source of Ph2As(+). Graphical Abstract ᅟ.

  2. Gas chromatography interfaced with atmospheric pressure ionization-quadrupole time-of-flight-mass spectrometry by low-temperature plasma ionization

    DEFF Research Database (Denmark)

    Norgaard, Asger W.; Kofoed-Sorensen, Vivi; Svensmark, Bo

    2013-01-01

    A low temperature plasma (LTP) ionization interface between a gas chromatograph (GC) and an atmospheric pressure inlet mass spectrometer, was constructed. This enabled time-of-flight mass spectrometric detection of GC-eluting compounds. The performance of the setup was evaluated by injection...

  3. Atmospheric pressure chemical ionization of explosives using alternating current corona discharge ion source.

    Science.gov (United States)

    Usmanov, D T; Chen, L C; Yu, Z; Yamabe, S; Sakaki, S; Hiraoka, K

    2015-04-01

    The high-sensitive detection of explosives is of great importance for social security and safety. In this work, the ion source for atmospheric pressure chemical ionization/mass spectrometry using alternating current corona discharge was newly designed for the analysis of explosives. An electromolded fine capillary with 115 µm inner diameter and 12 mm long was used for the inlet of the mass spectrometer. The flow rate of air through this capillary was 41 ml/min. Stable corona discharge could be maintained with the position of the discharge needle tip as close as 1 mm to the inlet capillary without causing the arc discharge. Explosives dissolved in 0.5 µl methanol were injected to the ion source. The limits of detection for five explosives with 50 pg or lower were achieved. In the ion/molecule reactions of trinitrotoluene (TNT), the discharge products of NOx (-) (x = 2,3), O3 and HNO3 originating from plasma-excited air were suggested to contribute to the formation of [TNT - H](-) (m/z 226), [TNT - NO](-) (m/z 197) and [TNT - NO + HNO3 ](-) (m/z 260), respectively. Formation processes of these ions were traced by density functional theory calculations. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Back corona enhanced organic film deposition inside an Atmospheric Pressure Weakly Ionized Plasma reactor

    Science.gov (United States)

    Islam, Rokibul; Xie, Shuzheng; Englund, Karl; Pedrow, Patrick

    2014-10-01

    A grounded screen with short needle-like protrusions has been designed to generate back corona in an Atmospheric Pressure Weakly Ionized Plasma (APWIP) reactor. The grounded screen with protrusions is placed downstream at a variable gap length from an array of needles that is energized with 60 Hz high voltage. The excitation voltage is in the range 0--10 kV RMS and the feed gas mixture consists of argon and acetylene. A Lecroy 9350AL 500 MHz digital oscilloscope is used to monitor the reactor voltage and current using a resistive voltage divider and a current viewing resistor, respectively. The current signal contains many positive and negative current pulses associated with corona discharge. Analysis of the current signal shows asymmetry between positive and negative corona discharge currents. Photographs show substantial back corona generated near the tips of the protrusions situated at the grounded screen. The back corona activates via bond scission acetylene radicals that are transported downstream to form a plasma-polymerized film on a substrate positioned downstream from the grounded screen. The oscillograms will be used to generate corona mode maps that show the nature of the corona discharge as a function of gap spacing, applied voltage and many other reactor parameters.

  5. Determination of nitrogen monoxide in high purity nitrogen gas with an atmospheric pressure ionization mass spectrometer

    Science.gov (United States)

    Kato, K.

    1985-01-01

    An atmospheric pressure ionization mass spectrometric (API-MS) method was studied for the determination of residual NO in high purity N2 gas. The API-MS is very sensitive to NO, but the presence of O2 interferes with the NO measurement. Nitrogen gas in cylinders as sample gas was mixed with NO standard gas and/or O2 standard gas, and then introduced into the API-MS. The calibration curves of NO and O2 has linearity in the region of 0 - 2 ppm, but the slopes changed with every cylinder. The effect of O2 on NO+ peak was additive and proportional to O2 concentration in the range of 0 - 0.5 ppm. The increase in NO+ intensity due to O2 was (0.07 - 0.13)%/O2, 1 ppm. Determination of NO and O2 was carried out by the standard addition method to eliminate the influence of variation of slopes. The interference due to O2 was estimated from the product of the O2 concentration and the ratio of slope A to Slope B. Slope A is the change in the NO+ intensity with the O2 concentration. Slope B is the intensity with O2 concentration.

  6. Atmospheric pressure chemical ionization studies of non-polar isomeric hydrocarbons using ion mobility spectrometry and mass spectrometry with different ionization techniques

    Science.gov (United States)

    Borsdorf, H.; Nazarov, E. G.; Eiceman, G. A.

    2002-01-01

    The ionization pathways were determined for sets of isomeric non-polar hydrocarbons (structural isomers, cis/trans isomers) using ion mobility spectrometry and mass spectrometry with different techniques of atmospheric pressure chemical ionization to assess the influence of structural features on ion formation. Depending on the structural features, different ions were observed using mass spectrometry. Unsaturated hydrocarbons formed mostly [M - 1]+ and [(M - 1)2H]+ ions while mainly [M - 3]+ and [(M - 3)H2O]+ ions were found for saturated cis/trans isomers using photoionization and 63Ni ionization. These ionization methods and corona discharge ionization were used for ion mobility measurements of these compounds. Different ions were detected for compounds with different structural features. 63Ni ionization and photoionization provide comparable ions for every set of isomers. The product ions formed can be clearly attributed to the structures identified. However, differences in relative abundance of product ions were found. Although corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra detected are complex and differ from those obtained with 63Ni ionization and photoionization. c. 2002 American Society for Mass Spectrometry.

  7. Surface desorption atmospheric pressure chemical ionization mass spectrometry for direct ambient sample analysis without toxic chemical contamination.

    Science.gov (United States)

    Chen, Huanwen; Zheng, Jian; Zhang, Xie; Luo, Mingbiao; Wang, Zhichang; Qiao, Xiaolin

    2007-08-01

    Ambient mass spectrometry, pioneered with desorption electrospray ionization (DESI) technique, is of increasing interest in recent years. In this study, a corona discharge ionization source is adapted for direct surface desorption chemical ionization of compounds on various surfaces at atmospheric pressure. Ambient air, with about 60% relative humidity, is used as a reagent to generate primary ions such as H(3)O(+), which is then directed to impact the sample surface for desorption and ionization. Under experimental conditions, protonated or deprotonated molecules of analytes present on various samples are observed using positive or negative corona discharge. Fast detection of trace amounts of analytes present in pharmaceutical preparations, viz foods, skins and clothes has been demonstrated without any sample pretreatment. Taking the advantage of the gasless setup, powder samples such as amino acids and mixtures of pharmaceutical preparations are rapidly analyzed. Impurities such as sudan dyes in tomato sauce are detected semiquantitatively. Molecular markers (e.g. putrescine) for meat spoilage are successfully identified from an artificially spoiled fish sample. Chemical warfare agent stimulants, explosives and herbicides are directly detected from the skin samples and clothing exposed to these compounds. This provides a detection limit of sub-pg (S/N > or = 3) range in MS2. Metabolites and consumed chemicals such as glucose are detected successfully from human skins. Conclusively, surface desorption atmospheric pressure chemical ionization (DAPCI) mass spectrometry, without toxic chemical contamination, detects various compounds in complex matrices, showing promising applications for analyses of human related samples.

  8. Quantitative determination of acetylcholine in microdialysis samples using liquid chromatography/atmospheric pressure spray ionization mass spectrometry.

    Science.gov (United States)

    Keski-Rahkonen, Pekka; Lehtonen, Marko; Ihalainen, Jouni; Sarajärvi, Timo; Auriola, Seppo

    2007-01-01

    A fast, simple and sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed for the determination of acetylcholine in rat brain microdialysis samples. The chromatographic separation was achieved in 3 min on a reversed-phase column with isocratic conditions using a mobile phase containing 2% (v/v) of acetonitrile and 0.05% (v/v) of trifluoroacetic acid (TFA). A stable isotope-labeled internal standard was included in the analysis and detection was carried out with a linear ion trap mass spectrometer using selected reaction monitoring (SRM). Analyte ionization was performed with an atmospheric pressure chemical ionization (APCI) source without applying discharge current (atmospheric pressure spray ionization). This special ionization technique offered significant advantages over electrospray ionization for the analysis of acetylcholine with reversed-phase ion-pairing chromatography. The lower limit of quantification was 0.15 nM (1.5 fmol on-column) and linearity was maintained over the range of 0.15-73 nM, providing a concentration range that is significantly wider than that of the existing LC/MS methods. Good accuracy and precision were obtained for concentrations within the standard curve range. The method was validated and has been used extensively for the determination of acetylcholine in rat brain microdialysis samples.

  9. Probe electrospray ionization (PESI) mass spectrometry with discontinuous atmospheric pressure interface (DAPI).

    Science.gov (United States)

    Hiraoka, Kenzo; Usmanov, Dilshadbek T; Chen, Lee Chuin; Ninomiya, Satoshi; Mandal, Mridul K; Saha, Subhrakanti

    2015-01-01

    Probe electrospray ionization (PESI) using a 0.2 mm outside diameter titanium wire was performed and the generated ions were introduced into the mass spectrometer via a discontinuous atmospheric pressure interface using a pinch valve. Time-lapse PESI mass spectra were acquired by gradually increasing delay time for the pinch valve opening with respect to the start of each electrospray event when a high voltage was applied. The opening time of the pinch valve was 20 ms. Time-resolved PESI mass spectra showed marked differences for 10 mM NaCl, 10(-5) M gramicidin S and insulin in H(2)O/CH(3)OH/CH(3)COOH/CH(3)COONH(4) (65/35/1) with and without the addition of 10 mM CH(3)COONH(4). This was ascribed to the pH change of the liquid attached to the needle caused by electrochemical reactions taking place at the interface between the metal probe and the solution. NaCl cluster ions appeared only after the depletion of analytes. For the mixed solution of 10(-5) M cytochrome c, insulin, and gramicidin S in H(2)O/CH(3)OH/CH(3)COOH (65/35/1), a sequential appearance of analyte ions in the order of cytochrome c→insulin→gramicidin S was observed. The present technique was applied to three narcotic samples; methamphetamine, morphine and codeine. Limits of detection for these compounds were 10 ppb in H(2)O/CH(3)OH (1/1) for the single sampling with a pinch valve opening time of 200 ms.

  10. Supercritical fluid chromatography coupled with in-source atmospheric pressure ionization hydrogen/deuterium exchange mass spectrometry for compound speciation.

    Science.gov (United States)

    Cho, Yunju; Choi, Man-Ho; Kim, Byungjoo; Kim, Sunghwan

    2016-04-29

    An experimental setup for the speciation of compounds by hydrogen/deuterium exchange (HDX) with atmospheric pressure ionization while performing chromatographic separation is presented. The proposed experimental setup combines the high performance supercritical fluid chromatography (SFC) system that can be readily used as an inlet for mass spectrometry (MS) and atmospheric pressure photo ionization (APPI) or atmospheric pressure chemical ionization (APCI) HDX. This combination overcomes the limitation of an approach using conventional liquid chromatography (LC) by minimizing the amount of deuterium solvents used for separation. In the SFC separation, supercritical CO2 was used as a major component of the mobile phase, and methanol was used as a minor co-solvent. By using deuterated methanol (CH3OD), AP HDX was achieved during SFC separation. To prove the concept, thirty one nitrogen- and/or oxygen-containing standard compounds were analyzed by SFC-AP HDX MS. The compounds were successfully speciated from the obtained SFC-MS spectra. The exchange ions were observed with as low as 1% of CH3OD in the mobile phase, and separation could be performed within approximately 20min using approximately 0.24 mL of CH3OD. The results showed that SFC separation and APPI/APCI HDX could be successfully performed using the suggested method.

  11. Characterization of direct-current atmospheric-pressure discharges useful for ambient desorption/ionization mass spectrometry.

    Science.gov (United States)

    Shelley, Jacob T; Wiley, Joshua S; Chan, George C Y; Schilling, Gregory D; Ray, Steven J; Hieftje, Gary M

    2009-05-01

    Two relatively new ambient ionization sources, direct analysis in real time (DART) and the flowing atmospheric-pressure afterglow (FAPA), use direct current, atmospheric-pressure discharges to produce reagent ions for the direct ionization of a sample. Although at a first glance these two sources appear similar, a fundamental study reveals otherwise. Specifically, DART was found to operate with a corona-to-glow transition (C-G) discharge whereas the FAPA was found to operate with a glow-to-arc transition (G-A) discharge. The characteristics of both discharges were evaluated on the basis of four factors: reagent-ion production, response to a model analyte (ferrocene), infrared (IR) thermography of the gas used for desorption and ionization, and spatial emission characteristics. The G-A discharge produced a greater abundance and a wider variety of reagent ions than the C-G discharge. In addition, the discharges yielded different adducts and signal strengths for ferrocene. It was also found that the gas exiting the discharge chamber reached a maximum of 235 degrees C and 55 degrees C for the G-A and C-G discharges, respectively. Finally, spatially resolved emission maps of both discharges showed clear differences for N(2)(+) and O(I). These findings demonstrate that the discharges used by FAPA and DART are fundamentally different and should have different optimal applications for ambient desorption/ionization mass spectrometry (ADI-MS).

  12. The effects of added hydrogen on a helium atmospheric-pressure plasma jet ambient desorption/ionization source.

    Science.gov (United States)

    Wright, Jonathan P; Heywood, Matthew S; Thurston, Glen K; Farnsworth, Paul B

    2013-03-01

    We present mass spectrometric data demonstrating the effect that hydrogen has on a helium-based dielectric-barrier discharge (DBD) atmospheric-pressure plasma jet used as an ambient desorption/ionization (ADI) source. The addition of 0.9 % hydrogen to the helium support gas in a 35-W plasma jet increased signals for a range of test analytes, with enhancement factors of up to 68, without proportional increases in background levels. The changes in signal levels result from a combination of changes in the desorption kinetics from the surface and increased ion production in the gas phase. The enhancement in ADI-MS performance despite the quenching of key plasma species reported in earlier studies suggests that ionization with a H2/He plasma jet is the result of an alternate mechanism involving the direct generation of ionized hydrogen.

  13. Direct probe atmospheric pressure photoionization/atmospheric pressure chemical ionization high-resolution mass spectrometry for fast screening of flame retardants and plasticizers in products and waste.

    Science.gov (United States)

    Ballesteros-Gómez, A; Brandsma, S H; de Boer, J; Leonards, P E G

    2014-04-01

    In this study, we develop fast screening methods for flame retardants and plasticizers in products and waste based on direct probe (DP) atmospheric pressure photoionization (APPI) and atmospheric pressure chemical ionization (APCI) coupled to a high-resolution (HR) time-of-flight mass spectrometer. DP-APPI is reported for the first time in this study, and DP-APCI that has been scarcely exploited is optimized for comparison. DP-APPI was more selective than DP-APCI and also more sensitive for the most hydrophobic compounds. No sample treatment was necessary, and only a minimal amount of sample (few milligrams) was used for analysis that was performed within a few minutes. Both methods were applied to the analysis of plastic products, electronic waste, and car interiors. Polybrominated diphenylethers, new brominated flame retardants, and organophosphorus flame retardants were present in most of the samples. The combination of DP with HR mass spectra and data processing based on mass accuracy and isotopic patterns allowed the unambiguous identification of chemicals at low levels of about 0.025 % (w/w). Under untargeted screening, resorcinol bis(biphenylphosphate) and bisphenol A bis(bisphenylphosphate) were identified in many of the consumer products of which literature data are still very limited.

  14. Atmospheric pressure photoionisation : An ionization method for liquid chromatography-mass spectrometry

    NARCIS (Netherlands)

    Robb, DB; Covey, TR; Bruins, AP

    2000-01-01

    Atmospheric pressure photoionization (APPI) has been successfully demonstrated to provide high sensitivity to LC-MS analysis. A vacuum-ultraviolet lamp designed for photoionization detection in gas chromatography is used as a source of 10-eV photons. The mixture of samples and solvent eluting from a

  15. Formation of Metal-Adducted Analyte Ions by Flame-Induced Atmospheric Pressure Chemical Ionization Mass Spectrometry.

    Science.gov (United States)

    Cheng, Sy-Chyi; Wang, Chin-Hsiung; Shiea, Jentaie

    2016-05-17

    A flame-induced atmospheric pressure chemical ionization (FAPCI) source, consisting of a miniflame, nebulizer, and heated tube, was developed to ionize analytes. The ionization was performed by reacting analytes with a charged species generated in a flame. A stainless steel needle deposited with saturated alkali chloride solution was introduced into the mini oxyacetylene flame to generate alkali ions, which were reacted with analytes (M) generated in a heated nebulizer. The alkali-adducted 18-crown-6 ether ions, including (M + Li)(+), (M + Na)(+), (M + K)(+), (M + Rb)(+), and (M + Cs)(+), were successfully detected on the FAPCI mass spectra when the corresponding alkali chloride solutions were separately introduced to the flame. When an alkali chloride mixture was introduced, all alkali-adducted analyte ions were simultaneously detected. Their intensity order was as follows: (M + Cs)(+) > (M + Rb)(+) > (M + K)(+) > (M + Na)(+) > (M + Li)(+), and this trend agreed with the lattice energies of alkali chlorides. Besides alkali ions, other transition metal ions such as Ni(+), Cu(+), and Ag(+) were generated in a flame for analyte ionization. Other than metal ions, the reactive species generated in the fossil fuel flame could also be used to ionize analytes, which formed protonated analyte ions (M + H)(+) in positive ion mode and deprotonated analyte ions (M - H)(-) in negative ion mode.

  16. Producing highly charged ions without solvent using laserspray ionization: a total solvent-free analysis approach at atmospheric pressure.

    Science.gov (United States)

    Wang, Beixi; Lietz, Christopher B; Inutan, Ellen D; Leach, Samantha M; Trimpin, Sarah

    2011-06-01

    First examples of highly charged ions in mass spectrometry (MS) produced from the solid state without using solvent during either sample preparation or mass measurement are reported. Matrix material, matrix/analyte homogenization time and frequency, atmospheric pressure (AP) to vacuum inlet temperature, and mass analyzer ion trap conditions are factors that influence the abundance of the highly charged ions created by laserspray ionization (LSI). LSI, like matrix-assisted laser desorption/ionization (MALDI), uses laser ablation of a matrix/analyte mixture from a surface to produce ions. Preparing the matrix/analyte sample without the use of solvent provides the ability to perform total solvent-free analysis (TSA) consisting of solvent-free ionization and solvent-free gas-phase separation using ion mobility spectrometry (IMS) MS. Peptides and small proteins such as non-β-amyloid components of Alzheimer's disease and bovine insulin are examples in which LSI and TSA were combined to produce multiply charged ions, similar to electrospray ionization, but without the use of solvent. Advantages using solvent-free LSI and IMS-MS include simplicity, rapid data acquisition, reduction of sample complexity, and the potential for an enhanced effective dynamic range. This is achieved by more inclusive ionization and improved separation of mixture components as a result of multiple charging.

  17. Standing striations due to ionization instability in atmospheric pressure He/H2O radio frequency capacitive discharges

    Science.gov (United States)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.

    2016-10-01

    One-dimensional particle-in-cell (PIC) simulations of a narrow gap atmospheric pressure He/2%{{\\text{H}}2}\\text{O} radio frequency capacitive discharge showed standing striations in the bulk plasma region while previously conducted PIC simulations of a narrow gap atmospheric pressure He/0.1%{{\\text{N}}2} discharges [1] showed no such instabilities. We successively modified the base He/{{\\text{H}}2}\\text{O} chemistry to make it more similar to the He/{{\\text{N}}2} chemistry in order to determine the cause of the striations. Setting the e-{{\\text{H}}2}\\text{O} scattering, attachment, vibrational and rotational excitation rates to zero did not suppress the striations. However, a systematic reduction of the e-ion recombination cross section resulted in a transition to a stable state with no striations. The results are interpreted in terms of a model in which the balance between bulk direct ionization and bulk recombination loss determines the bulk plasma equilibrium. Perturbing the equilibrium, we find that the striations are consistent with an ionization instability induced by non-local electron kinetics that form a spatially-varying high energy tail of the electron energy distribution, causing the ionization rate coefficient to decrease with increasing electron temperature T e and root-mean-square electric field E in the instability regime.

  18. Benzylammonium Thermometer Ions: Internal Energies of Ions Formed by Low Temperature Plasma and Atmospheric Pressure Chemical Ionization.

    Science.gov (United States)

    Stephens, Edward R; Dumlao, Morphy; Xiao, Dan; Zhang, Daming; Donald, William A

    2015-12-01

    The extent of internal energy deposition upon ion formation by low temperature plasma and atmospheric pressure chemical ionization was investigated using novel benzylammonium thermometer ions. C-N heterolytic bond dissociation enthalpies of nine 4-substituted benzylammoniums were calculated using CAM-B3LYP/6-311++G(d,p), which was significantly more accurate than B3LYP/6-311++G(d,p), MP2/6-311++G(d,p), and CBS-QB3 for calculating the enthalpies of 20 heterolytic dissociation reactions that were used to benchmark theory. All 4-substituted benzylammonium thermometer ions fragmented by a single pathway with comparable dissociation entropies, except 4-nitrobenzylammonium. Overall, the extent of energy deposition into ions formed by low temperature plasma was significantly lower than those formed by atmospheric pressure chemical ionization under these conditions. Because benzylamines are volatile, this new suite of thermometer ions should be useful for investigating the extent of internal energy deposition during ion formation for a wide range of ionization methods, including plasma, spray and laser desorption-based techniques. Graphical Abstract ᅟ.

  19. Potential of gas chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry for screening and quantification of hexabromocyclododecane.

    Science.gov (United States)

    Sales, Carlos; Portolés, Tania; Sancho, Juan Vicente; Abad, Esteban; Ábalos, Manuela; Sauló, Jordi; Fiedler, Heidelore; Gómara, Belén; Beltrán, Joaquim

    2016-01-01

    A fast method for the screening and quantification of hexabromocyclododecane (sum of all isomers) by gas chromatography using a triple quadrupole mass spectrometer with atmospheric pressure chemical ionization (GC-APCI-QqQ) is proposed. This novel procedure makes use of the soft atmospheric pressure chemical ionization source, which results in less fragmentation of the analyte than by conventional electron impact (EI) and chemical ionization (CI) sources, favoring the formation of the [M - Br](+) ion and, thus, enhancing sensitivity and selectivity. Detection was based on the consecutive loses of HBr from the [M - Br](+) ion to form the specific [M - H5Br6](+) and [M - H4Br5](+) ions, which were selected as quantitation (Q) and qualification (q) transitions, respectively. Parameters affecting ionization and MS/MS detection were studied. Method performance was also evaluated; calibration curves were found linear from 1 pg/μL to 100 pg/μL for the total HBCD concentration; instrumental detection limit was estimated to be 0.10 pg/μL; repeatability and reproducibility, expressed as relative standard deviation, were better than 7% in both cases. The application to different real samples [polyurethane foam disks (PUFs), food, and marine samples] pointed out a rapid way to identify and allow quantification of this compound together with a number of polybrominated diphenyl ethers (BDE congeners 28, 47, 66, 85, 99, 100, 153, 154, 183, 184, 191, 196, 197, and 209) and two other novel brominated flame retardants [i.e., decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE)] because of their presence in the same fraction when performing the usual sample treatment.

  20. Use of electron ionization and atmospheric pressure chemical ionization in gas chromatography coupled to time-of-flight mass spetrometry for screening and identification of organic pollutants in waters

    NARCIS (Netherlands)

    Portoles, T.; Mol, J.G.J.; Sancho, J.V.; Hernandez, F.

    2014-01-01

    A new approach has been developed for multiclass screening of organic contaminants in water based on the use of gas chromatography coupled to hybrid quadrupole high-resolution time-of-flight mass spectrometry with atmospheric pressure chemical ionization (GC–(APCI)QTOF MS). The soft ionization promo

  1. Desorption electrospray ionization (DESI) with atmospheric pressure ion mobility spectrometry for drug detection.

    Science.gov (United States)

    Roscioli, Kristyn M; Tufariello, Jessica A; Zhang, Xing; Li, Shelly X; Goetz, Gilles H; Cheng, Guilong; Siems, William F; Hill, Herbert H

    2014-04-01

    Desorption electrospray ionization (DESI) was coupled to an ambient pressure drift tube ion mobility time-of-flight mass spectrometer (IM-TOFMS) for the direct analysis of active ingredients in pharmaceutical samples. The DESI source was also coupled with a standalone IMS demonstrating potential of portable and inexpensive drug-quality testing platforms. The DESI-IMS required no sample pretreatment as ions were generated directly from tablets and cream formulations. The analysis of a range of over-the-counter and prescription tablet formations was demonstrated for amphetamine (methylphenidate), antidepressant (venlafaxine), barbiturate (Barbituric acid), depressant (alprazolam), narcotic (3-methylmorphine) and sympatholytic (propranolol) drugs. Active ingredients from soft and liquid formulations, such as Icy Hot cream (methyl salicylate) and Nyquil cold medicine (acetaminophen, dextromethorphan, doxylamine) were also detected. Increased sensitivity for selective drug responses was demonstrated through the formation of sodiated adduct ions by introducing small quantities of NaCl into the DESI solvent. Of the drugs and pharmaceuticals tested in this study, 68% (22 total samples) provided a clear ion mobility response at characteristic mobilities either as (M + H)(+), (M - H)(-), or (M + Na)(+) ions.

  2. SFC-APLI-(TOF)MS: Hyphenation of Supercritical Fluid Chromatography to Atmospheric Pressure Laser Ionization Mass Spectrometry.

    Science.gov (United States)

    Klink, Dennis; Schmitz, Oliver Johannes

    2016-01-05

    Atmospheric-pressure laser ionization mass spectrometry (APLI-MS) is a powerful method for the analysis of polycyclic aromatic hydrocarbon (PAH) molecules, which are ionized in a selective and highly sensitive way via resonance-enhanced multiphoton ionization. APLI was presented in 2005 and has been hyphenated successfully to chromatographic separation techniques like high performance liquid chromatography (HPLC) and gas chromatography (GC). In order to expand the portfolio of chromatographic couplings to APLI, a new hyphenation setup of APLI and supercritical-fluid chromatography (SFC) was constructed and aim of this work. Here, we demonstrate the first hyphenation of SFC and APLI in a simple designed way with respect to different optimization steps to ensure a sensitive analysis. The new setup permits qualitative and quantitative determination of native and also more polar PAH molecules. As a result of the altered ambient characteristics within the source enclosure, the quantification of 1-hydroxypyrene (1-HP) in human urine is possible without prior derivatization. The limit of detection for 1-HP by SFC-APLI-TOF(MS) was found to be 0.5 μg L(-1), which is lower than the 1-HP concentrations found in exposed persons.

  3. A corona discharge atmospheric pressure chemical ionization source with selective NO(+) formation and its application for monoaromatic VOC detection.

    Science.gov (United States)

    Sabo, Martin; Matejčík, Štefan

    2013-11-21

    We have developed a new type of corona discharge (CD) for atmospheric pressure chemical ionization (APCI) for application in ion mobility spectrometry (IMS) as well as in mass spectrometry (MS). While the other CD-APCI sources are able to generate H3O(+)·(H2O)n as the major reactant ions in N2 or in zero air, the present CD-APCI source has the ability to generate up to 84% NO(+)·(H2O)n reactant ions in zero air. The change of the working gas from zero air to N2 allows us to change the major reactant ions from NO(+)·(H2O)n to H3O(+)·(H2O)n. In this paper we present the description of the new CD-APCI and discuss the processes associated with the NO(+) formation. The selective formation of NO(+)·(H2O)n reactant ions offers chemical ionization based on these ions which can be of great advantage for some classes of chemicals. We demonstrate here a significant increase in the sensitivity of the IMS-MS instrument for monoaromatic volatile organic compound (VOC) detection upon NO(+)·(H2O)n chemical ionization.

  4. Nitric oxide-assisted atmospheric pressure corona discharge ionization for the analysis of automobile hydrocarbon emission species.

    Science.gov (United States)

    Dearth, M A; Komiski, T J

    1994-12-01

    Nitric oxide reagent gas has been found to improve the sensitivity and robustness of the atmospheric pressure corona discharge ionization (APCDI) process. Sensitivity has been increased by a factor of 20-100, depending on the compound, over APCDI without nitric oxide. The robustness (defined as the sensitivity to matrix interferences) of APCDI in the presence of water has been improved by a factor of 3 over normal APCDI. These improvements are due in part to a modification of the commercial inlet system and ionization chamber that allows the chamber and sample gases to be heated to 100 and 350°C, respectively. Nitric oxide was chosen as the reagent gas because of the variety and selectivity of its interaction with hydrocarbons with differing functional groups. Product ions of nitric oxide ionization and their subsequent tandem mass spectra are presented and discussed for selected alkanes; alkenes, alkylbenzenes, alcohols; aldehydes, and an ether. A tandem mass spectrometry (unique parent ion-daughter ion transition) method was developed to quantify compounds of specific interest in vehicle emissions. The absolute sensitivity for these compounds, under ideal conditions, was determined and ranges from 0.006 ppb for xylene (most sensitive) to 80 ppb for C8 (or larger) normal alkanes. Routine sensitivity for real-world samples was in the single parts per billion range for aromatic and olefinic species. Potential applications include the real-time, on-line monitoring of selected hydrocarbons in automobile exhaust.

  5. Laserspray ionization on a commercial atmospheric pressure-MALDI mass spectrometer ion source: selecting singly or multiply charged ions.

    Science.gov (United States)

    McEwen, Charles N; Larsen, Barbara S; Trimpin, Sarah

    2010-06-15

    Multiply charged ions, similar to those obtained with electrospray ionization, are produced at atmospheric pressure (AP) using standard MALDI conditions of laser fluence and reflective geometry. Further, the charge state can be switched to singly charged ions nearly instantaneously by changing the voltage applied to the MALDI target plate. Under normal AP-MALDI operating conditions in which a voltage is applied to the target plate, primarily singly charged ions are observed, but at or near zero volts, highly charged ions are observed for peptides and proteins. Thus, switching between singly and multiply charged ions requires only manipulation of a single voltage. As in ESI, multiple charging, produced using the AP-MALDI source, allows compounds with molecular weights beyond the mass-to-charge limit of the mass spectrometer to be observed and improves the fragmentation relative to singly charged ions.

  6. Comparative analysis of different plant oils by high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Jakab, Annamaria; Héberger, Károly; Forgács, Esther

    2002-11-01

    Different vegetable oil samples (almond, avocado, corngerm, grapeseed, linseed, olive, peanut, pumpkin seed, soybean, sunflower, walnut, wheatgerm) were analyzed using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. A gradient elution technique was applied using acetone-acetonitrile eluent systems on an ODS column (Purospher, RP-18e, 125 x 4 mm, 5 microm). Identification of triacylglycerols (TAGs) was based on the pseudomolecular ion [M+1]+ and the diacylglycerol fragments. The positional isomers of triacylglycerol were identified from the relative intensities of the [M-RCO2]+ fragments. Linear discriminant analysis (LDA) as a common multivariate mathematical-statistical calculation was successfully used to distinguish the oils based on their TAG composition. LDA showed that 97.6% of the samples were classified correctly.

  7. Atmospheric Pressure Chemical Ionization Sources Used in The Detection of Explosives by Ion Mobility Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Waltman, Melanie J. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    2010-05-01

    Explosives detection is a necessary and wide spread field of research. From large shipping containers to airline luggage, numerous items are tested for explosives every day. In the area of trace explosives detection, ion mobility spectrometry (IMS) is the technique employed most often because it is a quick, simple, and accurate way to test many items in a short amount of time. Detection by IMS is based on the difference in drift times of product ions through the drift region of an IMS instrument. The product ions are created when the explosive compounds, introduced to the instrument, are chemically ionized through interactions with the reactant ions. The identity of the reactant ions determines the outcomes of the ionization process. This research investigated the reactant ions created by various ionization sources and looked into ways to manipulate the chemistry occurring in the sources.

  8. Capillary electrophoresis-atmospheric pressure chemical ionization-mass spectrometry using an orthogonal interface: set-up and system parameters.

    Science.gov (United States)

    Hommerson, Paul; Khan, Amjad M; de Jong, Gerhardus J; Somsen, Govert W

    2009-07-01

    The feasibility of atmospheric pressure chemical ionization (APCI) as an alternative ionization technique for capillary electrophoresis-mass spectrometry (CE-MS) was investigated using a grounded sheath-flow CE-MS sprayer and an orthogonal APCI source. Infusion experiments indicated that highest analyte signals were achieved when the sprayer tip was in close vicinity of the vaporizer entrance. The APCI-MS set-up enabled detection of basic, neutral, and acidic compounds, whereas apolar and ionic compounds could not be detected. In the positive ion mode, analytes could be detected in the entire transfer voltage range (0-5 kV), whereas highest signal intensities were observed when the corona discharge current was between 1000 and 2000 nA. In the negative ion mode, the transfer voltage typically was 500 V and the optimum corona discharge current was 6000 nA. Analyte signals were raised with increasing nebulizing gas pressure, but the pressure was limited to 25 psi to avoid siphoning and current drops. Signal intensities appeared to be optimal and constant over a wide range of sheath liquid flow rate (5-25 microL/min) and vaporizer temperature (200-350 degrees C). APCI-MS signals were unaffected by the composition of the background electrolyte (BGE), even when it contained sodium phosphate and sodium dodecyl sulfate (SDS). Consequently, BGE composition, sheath-liquid flow rate, and vaporizer temperature can be optimized with respect to the CE separation without affecting the APCI-MS response. The analysis of a mixture of basic compounds and a steroid using volatile and nonvolatile BGEs further demonstrates the feasibility of CE-APCI-MS. Detection limits (S/N = 3) were 1.6-10 microM injected concentrations.

  9. Planar differential mobility spectrometer as a pre-filter for atmospheric pressure ionization mass spectrometry.

    Science.gov (United States)

    Schneider, Bradley B; Covey, Thomas R; Coy, Stephen L; Krylov, Evgeny V; Nazarov, Erkinjon G

    2010-12-01

    Ion filters based on planar DMS can be integrated with the inlet configuration of most mass spectrometers, and are able to enhance the quality of mass analysis and quantitative accuracy by reducing chemical noise, and by pre-separating ions of similar mass. This paper is the first in a series of three papers describing the optimization of DMS / MS instrumentation. In this paper the important physical parameters of a planar DMS-MS interface including analyzer geometry, analyzer coupling to a mass spectrometer, and transport gas flow control are considered. The goal is to optimize ion transmission and transport efficiency, provide optimal and adjustable resolution, and produce stable operation under conditions of high sample contamination. We discuss the principles of DMS separations and highlight the theoretical underpinnings. The main differences between planar and cylindrical geometries are presented, including a discussion of the advantages and disadvantages of RF ion focusing. In addition, we present a description of optimization of the frequency and amplitude of the DMS fields for resolution and ion transmission, and a discussion of the influence and importance of ion residence time in DMS. We have constructed a mass spectrometer interface for planar geometries that takes advantage of atmospheric pressure gas dynamic principles, rather than ion focusing, to minimize ion losses from diffusion in the analyzer and to maximize total ion transport into the mass spectrometer. A variety of experimental results has been obtained that illustrate the performance of this type of interface, including tests of resistance to high contamination levels, and the separation of stereoisomers. In a subsequent publication the control of the chemical interactions that drive the separation process of a DMS / MS system will be considered. In a third publication we describe novel electronics designed to provide the high voltages asymmetric waveform fields (SV) required for these

  10. Gas Chromatography Coupled to Atmospheric Pressure Chemical Ionization FT-ICR Mass Spectrometry for Improvement of Data Reliability.

    Science.gov (United States)

    Schwemer, Theo; Rüger, Christopher P; Sklorz, Martin; Zimmermann, Ralf

    2015-12-15

    Atmospheric pressure chemical ionization (APCI) offers the advantage of molecular ion information with low fragmentation. Hyphenating APCI to gas chromatography (GC) and ultrahigh resolution mass spectrometry (FT-ICR MS) enables an improved characterization of complex mixtures. Data amounts acquired by this system are very huge, and existing peak picking algorithms are usually extremely time-consuming, if both gas chromatographic and ultrahigh resolution mass spectrometric data are concerned. Therefore, automatic routines are developed that are capable of handling these data sets and further allow the identification and removal of known ionization artifacts (e.g., water- and oxygen-adducts, demethylation, dehydrogenation, and decarboxylation). Furthermore, the data quality is enhanced by the prediction of an estimated retention index, which is calculated simply from exact mass data combined with a double bond equivalent correction. This retention index is used to identify mismatched elemental compositions. The approach was successfully tested for analysis of semivolatile components in heavy fuel oil and diesel fuel as well as primary combustion particles emitted by a ship diesel research engine. As a result, 10-28% of the detected compounds, mainly low abundant species, classically assigned by using only the mass spectrometric information, were identified as not valid and removed. Although GC separation is limited by the slow acquisition rate of the FT-ICR MS (information.

  11. Trace determination of 13 haloacetamides in drinking water using liquid chromatography triple quadrupole mass spectrometry with atmospheric pressure chemical ionization.

    Science.gov (United States)

    Chu, Wenhai; Gao, Naiyun; Yin, Daqiang; Krasner, Stuart W; Templeton, Michael R

    2012-04-27

    The haloacetamides (HAcAms) are disinfection by-products (DBPs) in drinking water which are currently receiving increased scientific attention due to their elevated toxicity relative to regulated disinfection by-products. A simultaneous determination method of 13 HAcAms, combining solid-phase extraction (SPE) enrichment, liquid chromatographic (LC) separation, and triple quadrupole mass spectrometry (tqMS) detection with atmospheric pressure chemical ionization (APCI) using selective reaction monitoring in positive mode, was developed to measure HAcAms, including chlorinated, brominated, and iodinated analogs. Ammonium chloride and Oasis HLB were selected as the dechlorinating reagent and polymeric SPE sorbent of HAcAm samples. The used tqMS apparatus showed higher sensitivity for the studied HAcAms in the APCI mode than electrospray ionization. 13 HAcAms were separated by LC in 9.0 min, and the detection limits ranged from 7.6 to 19.7 ng/L. The SPE-LC/tqMS method was successfully applied to quantify 13 HAcAms in drinking water samples for the first time, and first indentified tribromoacetamide and chloroiodoacetamide as DBPs in drinking water.

  12. Study of atmospheric pressure weakly ionized plasma as surface compatibilization technique for improved plastic composites loaded with cellulose based fillers

    Science.gov (United States)

    Lekobou, William Pimakouon

    Atmospheric pressure plasmas have gained considerable interest from researchers recently for their unique prospective of engineering surfaces with plasma without the need of vacuum systems. They offer the advantage of low energy consumption, minimal capital cost and their simplicity as compared to conventional low pressure plasmas make them easy to upscale from laboratory to industry size. The present dissertation summarizes results of our attempt at applying atmospheric pressure weakly ionized plasma (APWIP) to the engineering of plastic composites filled with cellulose based substrates. An APWIP reactor was designed and built based on a multipoint-to-grounded ring and screen configurations. The carrier gas was argon and acetylene serves as the precursor molecule. The APWIP reactors showed capability of depositing plasma polymerized coating rich in carbon on substrates positioned within the electrode gap as well as downstream of the plasma discharge into the afterglow region. Our findings show that films grow by forming islands which for prolonged deposition time grow into thin films showing nodules, aggregates of nodules and microspheres. They also show chemical structure similar to films deposited from hydrocarbons with other conventional plasma techniques. The plasma polymerized deposits were used on substrates to modify their surface properties. Results show the surface of wood veneer and wood flour can be finely tuned from hydrophilic to hydrophobic. It was achieved by altering the topography of the surfaces along with their chemical composition. The wettability of wood veneer was investigated with contact angle measurements on capacitive drops and the capillary effect was utilized to assess surface properties of wood flour exposed to the discharges.

  13. Internal energy deposition and ion fragmentation in atmospheric-pressure mid-infrared laser ablation electrospray ionization.

    Science.gov (United States)

    Nemes, Peter; Huang, Hehua; Vertes, Akos

    2012-02-21

    Mid-infrared laser ablation of water-rich targets at the maximum of the 2.94 μm absorption band is a two-step process initiated by phase explosion followed by recoil pressure induced material ejection. Particulates and/or droplets ejected by this high temperature high pressure process can be ionized for mass spectrometry by charged droplets from an electrospray. In order to gauge the internal energy introduced in this laser ablation electrospray ionization (LAESI®) process, we apply the survival yield method and compare the results with electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI). The results indicate that LAESI yields ions with internal energies indistinguishable from those produced by ESI. This finding is consistent with the recoil pressure induced ejection of low micrometre droplets that does not significantly change the internal energy of solute molecules.

  14. Atmospheric-Pressure Chemical Ionization Tandem Mass Spectrometry (APGC/MS/MS) an Alternative to High-Resolution Mass Spectrometry (HRGC/HRMS) for the Determination of Dioxins

    NARCIS (Netherlands)

    Bavel, Van Bert; Geng, Dawei; Cherta, Laura; Nácher-Mestre, Jaime; Portolés, Tania; Ábalos, Manuela; Sauló, Jordi; Abad, Esteban; Dunstan, Jody; Jones, Rhys; Kotz, Alexander; Winterhalter, Helmut; Malisch, Rainer; Traag, Wim; Hagberg, Jessika; Ericson Jogsten, Ingrid; Beltran, Joaquim; Hernández, Félix

    2015-01-01

    The use of a new atmospheric-pressure chemical ionization source for gas chromatography (APGC) coupled with a tandem quadrupole mass spectrometry (MS/MS) system, as an alternative to high-resolution mass spectrometry (HRMS), for the determination of PCDDs/PCDFs is described. The potential of usin

  15. Identification and quantification of flavonoids in human urine samples by column switching liquid chromatography coupled to atmospheric pressure chemical ionization mass spectrometry

    DEFF Research Database (Denmark)

    Nielsen, S. E.; Freese, R.; Cornett, Claus

    2000-01-01

    by column-switching, using the first column (a Zorbax 300SB C-3 column) for sample cleanup and eluting the heart-cut flavonoid fraction onto the second column (a Zorbax SE C-18 column) for separation and detection by ultraviolet and atmospheric pressure chemical ionization MS using single ion monitoring...

  16. Are clusters important in understanding the mechanisms in atmospheric pressure ionization? Part 1: Reagent ion generation and chemical control of ion populations.

    Science.gov (United States)

    Klee, Sonja; Derpmann, Valerie; Wißdorf, Walter; Klopotowski, Sebastian; Kersten, Hendrik; Brockmann, Klaus J; Benter, Thorsten; Albrecht, Sascha; Bruins, Andries P; Dousty, Faezeh; Kauppila, Tiina J; Kostiainen, Risto; O'Brien, Rob; Robb, Damon B; Syage, Jack A

    2014-08-01

    It is well documented since the early days of the development of atmospheric pressure ionization methods, which operate in the gas phase, that cluster ions are ubiquitous. This holds true for atmospheric pressure chemical ionization, as well as for more recent techniques, such as atmospheric pressure photoionization, direct analysis in real time, and many more. In fact, it is well established that cluster ions are the primary carriers of the net charge generated. Nevertheless, cluster ion chemistry has only been sporadically included in the numerous proposed ionization mechanisms leading to charged target analytes, which are often protonated molecules. This paper series, consisting of two parts, attempts to highlight the role of cluster ion chemistry with regard to the generation of analyte ions. In addition, the impact of the changing reaction matrix and the non-thermal collisions of ions en route from the atmospheric pressure ion source to the high vacuum analyzer region are discussed. This work addresses such issues as extent of protonation versus deuteration, the extent of analyte fragmentation, as well as highly variable ionization efficiencies, among others. In Part 1, the nature of the reagent ion generation is examined, as well as the extent of thermodynamic versus kinetic control of the resulting ion population entering the analyzer region.

  17. Natural products in Glycyrrhiza glabra (licorice) rhizome imaged at the cellular level by atmospheric pressure matrix-assisted laser desorption/ionization tandem mass spectrometry imaging

    DEFF Research Database (Denmark)

    Li, Bin; Bhandari, Dhaka Ram; Janfelt, Christian

    2014-01-01

    The rhizome of Glycyrrhiza glabra (licorice) was analyzed by high-resolution mass spectrometry imaging and tandem mass spectrometry imaging. An atmospheric pressure matrix-assisted laser desorption/ionization imaging ion source was combined with an orbital trapping mass spectrometer in order...

  18. Simultaneous determination of hydroxycinnamates and catechins in human urine samples by column switching liquid chromatography coupled to atmospheric pressure chemical ionization mass spectrometry

    DEFF Research Database (Denmark)

    Nielsen, Salka E.; Sandström, B.

    2003-01-01

    by atmospheric pressure chemical ionization (APCI) MS using single ion monitoring (SIM) in negative mode. Linear calibration graphs were achieved in the dynamic range of 10-1000 ng/ml urine. The inter- and intraassay coefficients of variation (C.V.%) for the analysis of the four compounds in quality control...

  19. Analysis of vitamin K-1 in fruits and vegetables using accelerated solvent extraction and liquid chromatography tandem mass spectrometry with atmospheric pressure chemical ionization

    DEFF Research Database (Denmark)

    Jäpelt, Rie Bak; Jakobsen, Jette

    2016-01-01

    spectrometry with atmospheric pressure chemical ionization in selected reaction monitoring mode with deuterium-labeled vitamin K1 as an internal standard. The precision was estimated as the pooled estimate of three replicates performed on three different days for spinach, peas, apples, banana, and beetroot...

  20. Flavor release measurement by atmospheric pressure chemical ionization ion trap mass spectrometry, construction of interface and mathematical modeling of release profiles

    DEFF Research Database (Denmark)

    Haahr, Anne-Mette; Madsen, Henrik; Smedsgaard, Jørn

    2003-01-01

    An instrumental on-line retronasal flavor analysis was developed to obtain information about the release of flavor compounds in expired air from humans during eating. The volatile flavor compounds were measured by ion trap mass spectrometry with an atmospheric pressure chemical ionization source...

  1. Validation of a qualitative screening method for pesticides in fruits and vegetables by gas chromatography quadrupole-time of flight mass spectrometry with atmospheric pressure chemical ionization

    NARCIS (Netherlands)

    Portoles, T.; Mol, J.G.J.; Sancho, J.V.; Lopez, F.J.; Hernandez, F.

    2014-01-01

    A wide-scope screening method was developed for the detection of pesticides in fruit and vegetables. The method was based on gas chromatography coupled to a hybrid quadrupole time-of-flight mass spectrometer with an atmospheric pressure chemical ionization source (GC-(APCI)QTOF MS). A non-target acq

  2. Application of gas chromatography–(triple quadrupole) massspectrometry with atmospheric pressure chemical ionization for thedetermination of multiclass pesticides in fruits and vegetables

    NARCIS (Netherlands)

    Cherta, L.; Portoles, T.; Beltran, J.; Pitarch, E.; Mol, J.G.J.; Hernandez, F.

    2013-01-01

    A multi-residue method for the determination of 142 pesticide residues in fruits and vegetables has been developed using a new atmospheric pressure chemical ionization (APCI) source for coupling gas chromatography (GC) to tandem mass spectrometry (MS). Selected reaction monitoring (SRM) mode has bee

  3. Hand-held portable desorption atmospheric pressure chemical ionization ion source for in situ analysis of nitroaromatic explosives.

    Science.gov (United States)

    Jjunju, Fred P M; Maher, Simon; Li, Anyin; Syed, Sarfaraz U; Smith, Barry; Heeren, Ron M A; Taylor, Stephen; Cooks, R Graham

    2015-10-06

    A novel, lightweight (0.6 kg), solvent- and gas-cylinder-free, hand-held ion source based on desorption atmospheric pressure chemical ionization has been developed and deployed for the analysis of nitroaromatic explosives on surfaces in open air, offering portability for in-field analysis. A small, inexpensive, rechargeable lithium polymer battery was used to power the custom-designed circuitry within the device, which generates up to ±5 kV dc voltage to ignite a corona discharge plasma in air for up to 12 h of continuous operation, and allowing positive- and negative-ion mass spectrometry. The generated plasma is pneumatically transported to the surface to be interrogated by ambient air at a rate of 1-3.5 L/min, compressed using a small on-board diaphragm pump. The plasma source allows liquid or solid samples to be examined almost instantaneously without any sample preparation in the open environment. The advantages of low carrier gas and low power consumption (<6 W), as well as zero solvent usage, have aided in developing the field-ready, hand-held device for trigger-based, "near-real-time" sampling/ionization. Individual nitroaromatic explosives (such as 2,4,6-trinitrotoluene) can be easily detected in amounts as low as 5.8 pg with a linear dynamic range of at least 10 (10-100 pg), a relative standard deviation of ca. 7%, and an R(2) value of 0.9986. Direct detection of several nitroaromatic compounds in a complex mixture without prior sample preparation is demonstrated, and their identities are confirmed by tandem mass spectrometry fragmentation patterns.

  4. Atmospheric pressure laser-induced acoustic desorption chemical ionization Fourier transform ion cyclotron resonance mass spectrometry for the analysis of complex mixtures.

    Science.gov (United States)

    Nyadong, Leonard; McKenna, Amy M; Hendrickson, Christopher L; Rodgers, Ryan P; Marshall, Alan G

    2011-03-01

    We present a novel nonresonant laser-based matrix-free atmospheric pressure ionization technique, atmospheric pressure laser-induced acoustic desorption chemical ionization (AP/LIAD-CI). The technique decouples analyte desorption from subsequent ionization by reagent ions generated from a corona discharge initiated in ambient air or in the presence of vaporized toluene as a CI dopant at room temperature. Analyte desorption is initiated by a shock wave induced in a titanium foil coated with electrosprayed sample, irradiated from the rear side by high-energy laser pulses. The technique enables facile and independent optimization of the analyte desorption, ionization, and sampling events, for coupling to any mass analyzer with an AP interface. Moreover, the generated analyte ions are efficiently thermalized by collisions with atmospheric gases, thereby reducing fragmentation. We have coupled AP/LIAD-CI to ultrahigh-resolution FT-ICR MS to generate predominantly [M + H](+) or M(+•) ions to resolve and identify thousands of elemental compositions from organic mixtures as complex as petroleum crude oil distillates. Finally, we have optimized the AP/LIAD CI process and investigated ionization mechanisms by systematic variation of placement of the sample, placement of the corona discharge needle, discharge current, gas flow rate, and inclusion of toluene as a dopant.

  5. Feasibility of desorption atmospheric pressure photoionization and desorption electrospray ionization mass spectrometry to monitor urinary steroid metabolites during pregnancy.

    Science.gov (United States)

    Vaikkinen, Anu; Rejšek, Jan; Vrkoslav, Vladimír; Kauppila, Tiina J; Cvačka, Josef; Kostiainen, Risto

    2015-06-23

    Steroids have important roles in the progress of pregnancy, and their study in maternal urine is a non-invasive method to monitor the steroid metabolome and its possible abnormalities. However, the current screening techniques of choice, namely immunoassays and gas and liquid chromatography-mass spectrometry, do not offer means for the rapid and non-targeted multi-analyte studies of large sample sets. In this study, we explore the feasibility of two ambient mass spectrometry methods in steroid fingerprinting. Urine samples from pregnant women were screened by desorption electrospray ionization (DESI) and desorption atmospheric pressure photoionization (DAPPI) Orbitrap high resolution mass spectrometry (HRMS). The urine samples were processed by solid phase extraction for the DESI measurements and by enzymatic hydrolysis and liquid-liquid-extraction for DAPPI. Consequently, steroid glucuronides and sulfates were detected by negative ion mode DESI-HRMS, and free steroids by positive ion mode DAPPI-HRMS. In DESI, signals of eleven steroid metabolite ions were found to increase as the pregnancy proceeded, and in DAPPI ten steroid ions showed at least an order of magnitude increase during pregnancy. In DESI, the increase was seen for ions corresponding to C18 and C21 steroid glucuronides, while DAPPI detected increased excretion of C19 and C21 steroids. Thus both techniques show promise for the steroid marker screening in pregnancy.

  6. Thermal desorption counter-flow introduction atmospheric pressure chemical ionization for direct mass spectrometry of ecstasy tablets.

    Science.gov (United States)

    Inoue, Hiroyuki; Hashimoto, Hiroaki; Watanabe, Susumu; Iwata, Yuko T; Kanamori, Tatsuyuki; Miyaguchi, Hajime; Tsujikawa, Kenji; Kuwayama, Kenji; Tachi, Noriyuki; Uetake, Naohito

    2009-09-01

    A novel approach to the analysis of ecstasy tablets by direct mass spectrometry coupled with thermal desorption (TD) and counter-flow introduction atmospheric pressure chemical ionization (CFI-APCI) is described. Analytes were thermally desorbed with a metal block heater and introduced to a CFI-APCI source with ambient air by a diaphragm pump. Water in the air was sufficient to act as the reactive reagent responsible for the generation of ions in the positive corona discharge. TD-CFI-APCI required neither a nebulizing gas nor solvent flow and the accompanying laborious optimizations. Ions generated were sent in the direction opposite to the air flow by an electric field and introduced into an ion trap mass spectrometer. The major ions corresponding to the protonated molecules ([M + H](+)) were observed with several fragment ions in full scan mass spectrometry (MS) mode. Collision-induced dissociation of protonated molecules gave characteristic product-ion mass spectra and provided identification of the analytes within 5 s. The method required neither sample pretreatment nor a chromatographic separation step. The effectiveness of the combination of TD and CFI-APCI was demonstrated by application to the direct mass spectrometric analysis of ecstasy tablets and legal pharmaceutical products.

  7. Atmospheric Pressure Chemical Ionization Gas Chromatography Mass Spectrometry for the Analysis of Selected Emerging Brominated Flame Retardants in Foods

    Science.gov (United States)

    Lv, Surong; Niu, Yumin; Zhang, Jing; Shao, Bing; Du, Zhenxia

    2017-03-01

    Emerging brominated flame retardants (eBFRs) other than polybrominated diphenyl ethers (PBDEs), polybrominated biphenyls (PBBs) and their derivatives in foods have been in focus in recent years due to their increasing production volumes, indefinite information on toxicities and the lack of data on occurrence in environments, foods as well as humans. In this study, gas chromatography was coupled to an atmospheric pressure chemical ionization-tandem mass spectrometry (APGC-MS/MS) for the analysis of six eBFRs in pork, chicken, egg, milk and fish. A short section of unpacked capillary column coupled to the end of the analytical column was applied to improve the chromatographic behaviors of high boiling point compounds. The method was comprehensively validated with method limit of quantification (mLOQ) lower than 8 pg/g wet weight (w.w.). Samples from Chinese Total Diet study were quantified following the validated APGC-MS/MS method. 2,3,4,5-pentabromo-6-ethylbenzene (PBEB), hexabromobenzene (HBB), pentabromotoluene (PBT) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) were most frequently detected in samples. The highest concentration was found in fish with 351.9 pg/g w.w. of PBT. This is the first report on the presence of PBT in food samples with non-ignorable concentrations and detection rate.

  8. Total microcystins analysis in water using laser diode thermal desorption-atmospheric pressure chemical ionization-tandem mass spectrometry.

    Science.gov (United States)

    Roy-Lachapelle, Audrey; Fayad, Paul B; Sinotte, Marc; Deblois, Christian; Sauvé, Sébastien

    2014-04-11

    A new approach for the analysis of the cyanobacterial microcystins (MCs) in environmental water matrices has been developed. It offers a cost efficient alternative method for the fast quantification of total MCs using mass spectrometry. This approach permits the quantification of total MCs concentrations without requiring any derivatization or the use of a suite of MCs standards. The oxidation product 2-methyl-3-methoxy-4-phenylbutyric acid (MMPB) was formed through a Lemieux oxidation and represented the total concentration of free and bound MCs in water samples. MMPB was analyzed using laser diode thermal desorption-atmospheric pressure chemical ionization coupled to tandem mass spectrometry (LDTD-APCI-MS/MS). LDTD is a robust and reliable sample introduction method with ultra-fast analysis time (0.999). Limits of detection and quantification were 0.2 and 0.9 μg L(-1), respectively. These values are comparable with the WHO (World Health Organization) guideline of 1 μg L(-1) for total microcystin-LR congener in drinking water. Accuracy and interday/intraday variation coefficients were below 15%. Matrix effect was determined with a recovery of 91%, showing no significant signal suppression. This work demonstrates the use of the LDTD-APCI-MS/MS interface for the screening, detection and quantification of total MCs in complex environmental matrices.

  9. Atomic Force Microscopy Thermally-Assisted Microsampling with Atmospheric Pressure Temperature Ramped Thermal Desorption/Ionization-Mass Spectrometry Analysis.

    Science.gov (United States)

    Hoffmann, William D; Kertesz, Vilmos; Srijanto, Bernadeta R; Van Berkel, Gary J

    2017-02-20

    The use of atomic force microscopy controlled nanothermal analysis probes for reproducible spatially resolved thermally assisted sampling of micrometer-sized areas (ca. 11 × 17 μm wide × 2.4 μm deep) from relatively low number-average molecular weight (Mn mass spectrometric analysis. The procedure and mechanism for material pickup, the sampling reproducibility and sampling size are discussed, and the oligomer distribution information available from slow temperature ramps versus ballistic temperature jumps is presented. For the Mn = 970 P2VP, the Mn and polydispersity index determined from the mass spectrometric data were in line with both the label values from the sample supplier and the value calculated from the simple infusion of a solution of polymer into the commercial atmospheric pressure chemical ionization source on this mass spectrometer. With a P2VP sample of higher Mn (Mn = 2070 and 2970), intact oligomers were still observed (as high as m/z 2793 corresponding to the 26-mer), but a significant abundance of thermolysis products were also observed. In addition, the capability for confident identification of the individual oligomers by slowly ramping the probe temperature and collecting data-dependent tandem mass spectra was also demonstrated. The material type limits to the current sampling and analysis approach as well as possible improvements in nanothermal analysis probe design to enable smaller area sampling and to enable controlled temperature ramps beyond the present upper limit of about 415 °C are also discussed.

  10. Investigation and Applications of In-Source Oxidation in Liquid Sampling-Atmospheric Pressure Afterglow Microplasma Ionization (LS-APAG) Source.

    Science.gov (United States)

    Xie, Xiaobo; Wang, Zhenpeng; Li, Yafeng; Zhan, Lingpeng; Nie, Zongxiu

    2016-12-19

    A liquid sampling-atmospheric pressure afterglow microplasma ionization (LS-APAG) source is presented for the first time, which is embedded with both electrospray ionization (ESI) and atmospheric pressure afterglow microplasma ionization (APAG) techniques. This ion source is capable of analyzing compounds with diverse molecule weights and polarities. An unseparated mixture sample was detected as a proof-of-concept, giving complementary information (both polarities and non-polarities) with the two ionization modes. It should also be noted that molecular mass can be quickly identified by ESI with clean and simple spectra, while the structure can be directly studied using APAG with in-source oxidation. The ionization/oxidation mechanism and applications of the LS-APAG source have been further explored in the analysis of nonpolar alkanes and unsaturated fatty acids/esters. A unique [M + O - 3H](+) was observed in the case of individual alkanes (C5-C19) and complex hydrocarbons mixture under optimized conditions. Moreover, branched alkanes generated significant in-source fragments, which could be further applied to the discrimination of isomeric alkanes. The technique also facilitates facile determination of double bond positions in unsaturated fatty acids/esters due to diagnostic fragments (the acid/ester-containing aldehyde and acid oxidation products) generated by on-line ozonolysis in APAG mode. Finally, some examples of in situ APAG analysis by gas sampling and surface sampling were given as well. Graphical Abstract ᅟ.

  11. Characterization and quantification of triacylglycerols in peanut oil by off-line comprehensive two-dimensional liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Hu, Jun; Wei, Fang; Dong, Xu-Yan; Lv, Xin; Jiang, Mu-Lan; Li, Guang-Ming; Chen, Hong

    2013-01-01

    The complexity of natural triacylglycerols (TAGs) in various edible oils is prodigious due to the hundreds of set is of TAG compositions, which makes the identification of TAGs quite difficult. In this investigation, the off-line 2D system coupling of nonaqueous RP and silver-ion HPLC with atmospheric pressure chemical ionization MS detection has been applied to the identification and quantification of TAGs in peanut oil. The method was successful in the separation of a high number of TAG solutes, and the TAG structures were evaluated by analyzing their atmospheric pressure chemical ionization mass spectra information. HPLC and MS conditions have been optimized and the fragmentation mechanisms of isomers have been validated. In addition, an internal standard approach has been developed for TAG quantification. Then this system was applied in peanut oil samples and there was a total of 48 TAGs including regioisomers that have been determined and quantified.

  12. Stability studies of propoxur herbicide in environmental water samples by liquid chromatography-atmospheric pressure chemical ionization ion-trap mass spectrometry.

    Science.gov (United States)

    Sun, Lei; Lee, Hian Kee

    2003-10-01

    Liquid chromatography-atmospheric pressure ionization ion-trap mass spectrometry has been investigated for the analysis of polar pesticides in water. The degradation behavior of propoxur, selected as a model pesticide belonging to the N-methylcarbamate group, in various aqueous matrices (Milli-Q water, drinking water, rain water, seawater and river water) was investigated. Two interfaces of atmospheric pressure ionization, atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI), were compared during the study. Propoxur and its transformation product (N-methylformamide) were best ionized as positive ions with both APCI and ESI, while another transformation product (2-isopropoxyphenol) yielded stronger signals as negative ions only with APCI. In addition, the effects of various pH, matrix type and irradiation sources (sunlight, darkness, indoor lighting and artificial UV lamp) on the chemical degradation (hydrolysis) were also assessed. From the kinetic studies of degradation, it was found that the half-life of propoxur was reduced from 327 to 161 h in Milli-Q water with variation of irradiation conditions from dark to sunlight exposure. Degradation rates largely increased with increasing pH. The half-life of the target compound dissolved in Milli-Q water under darkness decreased from 407 to 3 h when the pH of Milli-Q water was increased from 5 to 8.5. These suggest that hydrolysis of propoxur is light-intensity and pH-dependent. In order to mimic contaminated natural environmental waters, propoxur was spiked into real water samples at 30 microg/l. The degradation of propoxur in such water samples under various conditions were studied in detail and compared. With the ion trap run in a time-scheduled single ion monitoring mode, typical limits of detection of the instrument were in the range of 1-10 microg/l.

  13. Simultaneous detection of polar and nonpolar compounds by ambient mass spectrometry with a dual electrospray and atmospheric pressure chemical ionization source.

    Science.gov (United States)

    Cheng, Sy-Chyi; Jhang, Siou-Sian; Huang, Min-Zong; Shiea, Jentaie

    2015-02-03

    A dual ionization source combining electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) was developed to simultaneously ionize both polar and nonpolar compounds. The source was constructed by inserting a fused silica capillary into a stainless steel column enclosed in a glass tube. A high dc voltage was applied to a methanol solution flowing in the fused silica capillary to generate an ESI plume at the capillary tip. A high ac voltage was applied to a ring electrode attached to the glass tube to generate plasma from the nitrogen gas flowing between the glass tube and the stainless steel column. The concentric arrangement of the ESI plume and the APCI plasma in the source ensured that analytes entering the ionization region interacted with both ESI and APCI primary ion species generated in the source. Because the high voltages required for ESI and APCI were independently applied and controlled, the dual ion source could be operated in ESI-only, APCI-only, or ESI+APCI modes. Analytes were introduced into the ESI and/or APCI plumes by irradiating sample surfaces with a continuous-wavelength laser or a pulsed laser beam. Analyte ions could also be produced by directing the dual ESI+APCI source toward sample surfaces for desorption and ionization. The ionization mechanisms involved in the dual ion source include Penning ionization, ion molecule reactions, and fused-droplet electrospray ionization. Standards of polycyclic aromatic hydrocarbons, angiotensin I, lidocaine, ferrocene, diesel, and rosemary oils were used for testing. Protonated analyte ions were detected in ESI-only mode, radical cations were detected in APCI-only mode, and both types of ions were detected in ESI+APCI mode.

  14. Identification of acylated xanthone glycosides by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry in positive and negative modes from the lichen Umbilicaria proboscidea.

    Science.gov (United States)

    Rezanka, Tomás; Dembitsky, Valery M

    2003-05-01

    The xanthoside composition of the crude extract of Umbilicaria proboscidea (L.) Schrader was characterized using LC-UV diode array detection and LC-atmospheric pressure chemical ionization (APCI) MS methods. The presence of acylated xanthone-O-glucosides was determined by both positive and negative ion LC-APCI-MS methods. Based on UV and MS spectral data and NMR spectroscopy, a total of 14 compounds (6-O-acylated umbilicaxanthosides A and B) were identified in U. proboscidea for the first time. In order to further develop the applicability of LC-MS techniques in phytochemical characterization, the effect of different ionization energy on fragmentation was studied using APCI. The optimal ionization conditions were achieved in positive ion APCI by using ammonium acetate buffer and in negative ion APCI by using formic acid (pH 4).

  15. A comparison of the ion chemistry for mono-substituted toluenes and anilines by three methods of atmospheric pressure ionization with ion mobility spectrometry.

    Science.gov (United States)

    Borsdorf, H; Neitsch, K; Eiceman, G A; Stone, J A

    2009-06-15

    Ion mobility spectra for a series of mono-substituted toluenes and a series of mono-substituted anilines were obtained using three different methods of atmospheric pressure ionization including photoionization, chemical ionization from a (63)Ni source, and chemical ionization from a corona discharge source. The product ion peak intensities were measured as functions of analyte concentration at 323 K in a purified air atmosphere. Two, and sometimes three, product ion peaks were observed in spectra from chemical ionization with the (63)Ni source and it is suggested that the major peak, due to the protonated molecule, arose in both series by proton transfer from H3O+(H2O)n. The second peak with diminished intensity and longer drift time than the protonated molecule can be seen with the toluenes and was understood to be the NO+ adduct, formed from the reactant ion NO+(H2O)n. Electron transfer from the anilines to the latter ion yields the molecular ions, identified by having the same reduced mobility coefficients as the molecular ions produced by photoionization. The structure of these product ions was determined by investigations using the coupling of ion mobility spectrometry with atmospheric pressure photoionization and mass spectrometry (APPI-IMS-MS). The relative abundances of both the NO+ adducts with the toluenes and the molecular ions with the anilines are enhanced with a corona discharge source where relatively more NO+(H2O)n is produced than in a (63)Ni source. Ab initio calculations show that only the protonated anilines of all the product ions are significantly hydrated with 1 ppm(v) of moisture in the supporting atmosphere of the ion mobility spectrometer.

  16. Comparison of Cocaine Detections in Corona Discharge Ionization-Ion Mobility Spectrometry and in Atmospheric Pressure Chemical Ionization-Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sung Seen; Kim, Yun Ki; Kim, Ok Bae [Sejong University, Seoul (Korea, Republic of); An, Seung Geon; Shin, Myung Won; Maeng, Seug Jin; Choi, Gyu Seop [Wooju Communication and Technology Co., Seoul (Korea, Republic of)

    2010-08-15

    In this study, we determined the detection limit and reproducibility of the new IMS equipped with corona discharge ionization source using cocaine. The sample was injected with liquid solution to compare the results of APCI-MS. Ion mobility spectrometry (IMS) was a technique originally applied for the detection of trace compounds. IMS has been widely used to detect chemical warfare agents, explosives, and illegal drugs since it combines both high sensitivity (detection limits down to the ng/L range to pg/L range, ppb range and ppt range) and relatively low technical expenditure with high-speed data acquisition. The time required to acquire a single spectrum is in the range of several tens ms. The working principle is based on the drift of ions at ambient pressure under the influence of an external electric field.

  17. Comparative study of fourteen alkaloids from Uncaria rhynchophylla hooks and leaves using HPLC-diode array detection-atmospheric pressure chemical ionization/MS method.

    Science.gov (United States)

    Qu, Jialin; Gong, Tianxing; Ma, Bin; Zhang, Lin; Kano, Yoshihiro; Yuan, Dan

    2012-01-01

    The purpose of the study is to compare alkaloid profile of Uncaria rhynchophylla hooks and leaves. Ten oxindole alkaloids and four glycosidic indole alkaloids were identified using HPLC-diode array detection (DAD) or LC-atmospheric pressure chemical ionization (APCI)-MS method, and a HPLC-UV method for simultaneous quantification of major alkaloids was validated. The hooks are characterized by high levels of four oxindole alkaloids rhynchophylline (R), isorhynchophylline (IR), corynoxeine (C) and isocorynoxeine (IC), while the leaves contained high level of two glycosidic indole alkaloids vincoside lactam (VL) and strictosidine (S). The presented methods have proven its usefulness in chemical characterization of U. rhynchophylla hooks and leaves.

  18. Identification and quantification of flavonoids in human urine samples by column switching liquid chromatography coupled to atmospheric pressure chemical ionization mass spectrometry

    DEFF Research Database (Denmark)

    Nielsen, Salka E.; Freese, R.; Cornett, C.

    2000-01-01

    A rapid and sensitive high-performance liquid chromatographic mass spectrometric (HPLC-MS) method is described for the determination and quantification of 12 dietary flavonoid glycosides and aglycons in human urine samples. Chromatographic separation of the analytes of interest was achieved...... by column-switching, using the first column (a Zorbax 300SB C-3 column) for sample cleanup and eluting the heart-cut flavonoid fraction onto the second column (a Zorbax SE C-18 column) for separation and detection by ultraviolet and atmospheric pressure chemical ionization MS using single ion monitoring...... with high and low flavonoid content was analyzed, and the results are reported....

  19. Development and Comparison of Three Liquid Chromatography-Atmospheric Pressure Chemical Ionization/Mass Spectrometry Methods for Determining Vitamin D Metabolites in Human Serum

    OpenAIRE

    Bedner, Mary; Karen W. Phinney

    2012-01-01

    Liquid chromatographic methods with atmospheric pressure chemical ionization mass spectrometry were developed for the determination of the vitamin D metabolites 25-hydroxyvitamin D2 (25(OH)D2), 25-hydroxyvitamin D3 (25(OH)D3), and 3-epi-25-hydroxyvitamin-D3 (3-epi-25(OH)D3) in the four Levels of SRM 972, Vitamin D in Human Serum. One method utilized a C18 column, which separates 25(OH)D2 and 25(OH)D3, and one method utilized a CN column that also resolves the diastereomers 25(OH)D3 and 3-epi-...

  20. Atmospheric-pressure chemical ionization tandem mass spectrometry (APGC/MS/MS) an alternative to high-resolution mass spectrometry (HRGC/HRMS) for the determination of dioxins.

    Science.gov (United States)

    van Bavel, Bert; Geng, Dawei; Cherta, Laura; Nácher-Mestre, Jaime; Portolés, Tania; Ábalos, Manuela; Sauló, Jordi; Abad, Esteban; Dunstan, Jody; Jones, Rhys; Kotz, Alexander; Winterhalter, Helmut; Malisch, Rainer; Traag, Wim; Hagberg, Jessika; Ericson Jogsten, Ingrid; Beltran, Joaquim; Hernández, Félix

    2015-09-01

    The use of a new atmospheric-pressure chemical ionization source for gas chromatography (APGC) coupled with a tandem quadrupole mass spectrometry (MS/MS) system, as an alternative to high-resolution mass spectrometry (HRMS), for the determination of PCDDs/PCDFs is described. The potential of using atmospheric-pressure chemical ionization (APCI) coupled to a tandem quadrupole analyzer has been validated for the identification and quantification of dioxins and furans in different complex matrices. The main advantage of using the APCI source is the soft ionization at atmospheric pressure, which results in very limited fragmentation. APCI mass spectra are dominated by the molecular ion cluster, in contrast with the high energy ionization process under electron ionization (EI). The use of the molecular ion as the precursor ion in MS/MS enhances selectivity and, consequently, sensitivity by increasing the signal-to-noise ratios (S/N). For standard solutions of 2,3,7,8-TCDD, injections of 10 fg in the splitless mode on 30- or 60-m-length, 0.25 mm inner diameter (id), and 25 μm film thickness low-polarity capillary columns (DB5MS type), signal-to-noise (S/N) ratios of >10:1 were routinely obtained. Linearity was achieved in the region (correlation coefficient of r(2) > 0.998) for calibration curves ranging from 100 fg/μL to 1000 pg/μL. The results from a wide variety of complex samples, including certified and standard reference materials and samples from several QA/QC studies, which were previously analyzed by EI HRGC/HRMS, were compared with the results from the APGC/MS/MS system. Results between instruments showed good agreement both in individual congeners and toxic equivalence factors (TEQs). The data show that the use of APGC in combination with MS/MS for the analysis of dioxins has the same potential, in terms of sensitivity and selectivity, as the traditional HRMS instrumentation used for this analysis. However, the APCI/MS/MS system, as a benchtop system, is

  1. Determination of polycyclic aromatic hydrocarbons in fractions in asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization.

    Science.gov (United States)

    Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias

    2015-07-01

    An analytical method using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization for the determination of polycyclic aromatic hydrocarbons in asphalt fractions has been developed. The 14 compounds determined, characterized by having two or more condensed aromatic rings, are expected to be present in asphalt and are considered carcinogenic and mutagenic. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all of the compounds. The limits of detection ranged from 0.5 to 346.5 μg/L and the limits of quantification ranged from 1.7 to 1550 μg/L. The method was validated against a diesel particulate extract standard reference material (NIST SRM 1975), and the obtained concentrations agreed with the certified values. The method was applied to asphalt samples after its fractionation according to ASTM D4124 and the method of Green. The concentrations of the seven polycyclic aromatic hydrocarbons quantified in the sample ranged from 0.86 mg/kg for benzo[ghi]perylene to 98.32 mg/kg for fluorene.

  2. Sensitive monitoring of volatile chemical warfare agents in air by atmospheric pressure chemical ionization mass spectrometry with counter-flow introduction.

    Science.gov (United States)

    Seto, Yasuo; Kanamori-Kataoka, Mieko; Tsuge, Koichiro; Ohsawa, Isaac; Iura, Kazumitsu; Itoi, Teruo; Sekiguchi, Hiroyuki; Matsushita, Koji; Yamashiro, Shigeharu; Sano, Yasuhiro; Sekiguchi, Hiroshi; Maruko, Hisashi; Takayama, Yasuo; Sekioka, Ryoji; Okumura, Akihiko; Takada, Yasuaki; Nagano, Hisashi; Waki, Izumi; Ezawa, Naoya; Tanimoto, Hiroyuki; Honjo, Shigeru; Fukano, Masumi; Okada, Hidehiro

    2013-03-05

    A new method for sensitively and selectively detecting chemical warfare agents (CWAs) in air was developed using counter-flow introduction atmospheric pressure chemical ionization mass spectrometry (MS). Four volatile and highly toxic CWAs were examined, including the nerve gases sarin and tabun, and the blister agents mustard gas (HD) and Lewisite 1 (L1). Soft ionization was performed using corona discharge to form reactant ions, and the ions were sent in the direction opposite to the airflow by an electric field to eliminate the interfering neutral molecules such as ozone and nitrogen oxide. This resulted in efficient ionization of the target CWAs, especially in the negative ionization mode. Quadrupole MS (QMS) and ion trap tandem MS (ITMS) instruments were developed and investigated, which were movable on the building floor. For sarin, tabun, and HD, the protonated molecular ions and their fragment ions were observed in the positive ion mode. For L1, the chloride adduct ions of L1 hydrolysis products were observed in negative ion mode. The limit of detection (LOD) values in real-time or for a 1 s measurement monitoring the characteristic ions were between 1 and 8 μg/m(3) in QMS instrument. Collision-induced fragmentation patterns for the CWAs were observed in an ITMS instrument, and optimized combinations of the parent and daughter ion pairs were selected to achieve real-time detection with LOD values of around 1 μg/m(3). This is a first demonstration of sensitive and specific real-time detection of both positively and negatively ionizable CWAs by MS instruments used for field monitoring.

  3. Liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source for elemental mass spectrometry: preliminary parametric evaluation and figures of merit.

    Science.gov (United States)

    Quarles, C Derrick; Carado, Anthony J; Barinaga, Charles J; Koppenaal, David W; Marcus, R Kenneth

    2012-01-01

    A new, low-power ionization source for the elemental analysis of aqueous solutions has recently been described. The liquid sampling-atmospheric pressure glow discharge (LS-APGD) source operates at relatively low currents (LS-APGD has been interfaced to what is otherwise an organic, LC-MS mass analyzer, the Thermo Scientific Exactive Orbitrap without any modifications, other than removing the electrospray ionization source supplied with that instrument. A glow discharge is initiated between the surface of the test solution exiting a glass capillary and a metallic counter electrode mounted at a 90° angle and separated by a distance of ~5 mm. As with any plasma-based ionization source, there are key discharge operation and ion sampling parameters that affect the intensity and composition of the derived mass spectra, including signal-to-background ratios. We describe here a preliminary parametric evaluation of the roles of discharge current, solution flow rate, argon sheath gas flow rate, and ion sampling distance as they apply on this mass analyzer system. A cursive evaluation of potential matrix effects due to the presence of easily ionized elements indicate that sodium concentrations of up to 50 μg mL(-1) generally cause suppressions of less than 50%, dependant upon the analyte species. Based on the results of this series of studies, preliminary limits of detection (LOD) have been established through the generation of calibration functions. While solution-based concentration LOD levels of 0.02-2 μg mL(-1) are not impressive on the surface, the fact that they are determined via discrete 5 μL injections leads to mass-based detection limits at picogram to single-nanogram levels. The overhead costs associated with source operation (10 W d.c. power, solution flow rates of LS-APGD ion source may present a practical alternative to inductively coupled plasma sources typically employed in elemental mass spectrometry.

  4. High-throughput walkthrough detection portal for counter terrorism: detection of triacetone triperoxide (TATP) vapor by atmospheric-pressure chemical ionization ion trap mass spectrometry.

    Science.gov (United States)

    Takada, Yasuaki; Nagano, Hisashi; Suzuki, Yasutaka; Sugiyama, Masuyuki; Nakajima, Eri; Hashimoto, Yuichiro; Sakairi, Minoru

    2011-09-15

    With the aim of improving security, a high-throughput portal system for detecting triacetone triperoxide (TATP) vapor emitted from passengers and luggage was developed. The portal system consists of a push-pull air sampler, an atmospheric-pressure chemical ionization (APCI) ion source, and an explosives detector based on mass spectrometry. To improve the sensitivity of the explosives detector, a novel linear ion trap mass spectrometer with wire electrodes (wire-LIT) is installed in the portal system. TATP signals were clearly obtained 2 s after the subject under detection passed through the portal system. Preliminary results on sensitivity and throughput show that the portal system is a useful tool for preventing the use of TATP-based improvised explosive devices by screening persons in places where many people are coming and going.

  5. Detection of flunixin in equine urine using high-performance liquid chromatography with particle beam and atmospheric pressure ionization mass spectrometry after solid-phase extraction.

    Science.gov (United States)

    Stanley, S M; Owens, N A; Rodgers, J P

    1995-05-05

    A normal-phase HPLC method combined with particle-beam mass spectrometry (PB-MS) was developed for the analysis of non-steroidal anti-inflammatory drugs (NSAIDs). The forty one NSAIDs analysed responded in one or more (electron impact, positive and negative chemical ionisation) modes and highly characteristic spectra were produced. A mixed-mode solid-phase extraction (SPE) method for isolating acidic NSAIDs was developed using the Bond Elut Certify II cartridge. The average recovery was 88.5%. Flunixin, extracted by SPE from urine of a mare to which the meglumine salt had been administered was positively identified by HPLC-PB-MS and HPLC-atmospheric pressure ionization (API) MS methods.

  6. Determination of metformin in mouse, rat, dog and human plasma samples by laser diode thermal desorption/atmospheric pressure chemical ionization tandem mass spectrometry.

    Science.gov (United States)

    Swales, John G; Gallagher, Richard; Peter, Raimund M

    2010-11-02

    A simple, rapid and robust high-throughput assay for the quantitative analysis of metformin in plasma from different species using laser diode thermal desorption interfaced with atmospheric chemical pressure ionization tandem mass spectrometry (LDTD-APCI-MSMS) was developed for use in a pharmaceutical discovery environment. In order to minimize sample preparation a generic protein precipitation method was used to extract metformin from the plasma. Laser diode thermal desorption is a relatively new sample introduction method, the optimization of the instrumental parameters are presented. The method was successfully applied to spiked mouse, rat, dog and human plasma samples and was subsequently used to determine the oral pharmacokinetics of metformin after dosing to male rats in order to support drug discovery projects. The deviations for intra-assay accuracy and precision across the four species were less than 30% at all calibration and quality control levels.

  7. Determination of oxygen and nitrogen derivatives of polycyclic aromatic hydrocarbons in fractions of asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization.

    Science.gov (United States)

    Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias

    2015-12-01

    Liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization was used for the determination of polycyclic aromatic hydrocarbon derivatives, the oxygenated polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons, formed in asphalt fractions. Two different methods have been developed for the determination of five oxygenated and seven nitrated polycyclic aromatic hydrocarbons that are characterized by having two or more condensed aromatic rings and present mutagenic and carcinogenic properties. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all compounds. The detection limits of the methods ranged from 0.1 to 57.3 μg/L for nitrated and from 0.1 to 6.6 μg/L for oxygenated derivatives. The limits of quantification were in the range of 4.6-191 μg/L for nitrated and 0.3-8.9 μg/L for oxygenated derivatives. The methods were validated against a diesel particulate extract standard reference material (National Institute of Standards and Technology SRM 1975), and the obtained concentrations (two nitrated derivatives) agreed with the certified values. The methods were applied in the analysis of asphalt samples after their fractionation into asphaltenes and maltenes, according to American Society for Testing and Material D4124, where the maltenic fraction was further separated into its basic, acidic, and neutral parts following the method of Green. Only two nitrated derivatives were found in the asphalt sample, quinoline and 2-nitrofluorene, with concentrations of 9.26 and 2146 mg/kg, respectively, whereas no oxygenated derivatives were detected.

  8. Advantages of Atmospheric Pressure Chemical Ionization in Gas Chromatography Tandem Mass Spectrometry: Pyrethroid Insecticides as a Case Study

    NARCIS (Netherlands)

    Portolés, T.; Mol, J.G.J.; Sancho, J.V.; Hernández, F.

    2012-01-01

    Gas chromatography coupled to mass spectrometry (GC/MS) has been extensively applied for determination of volatile, nonpolar, compounds in many applied fields like food safety, environment, or toxicology. The wide majority of methods reported use electron ionization (EI), which may result in extensi

  9. Comparison of electrospray ionization and atmospheric pressure photoionization liquid chromatography mass spectrometry methods for analysis of ergot alkaloids from endophyte-infected sleepygrass (Achnatherum robustum).

    Science.gov (United States)

    Jarmusch, Alan K; Musso, Ashleigh M; Shymanovich, Tatsiana; Jarmusch, Scott A; Weavil, Miranda J; Lovin, Mary E; Ehrmann, Brandie M; Saari, Susanna; Nichols, David E; Faeth, Stanley H; Cech, Nadja B

    2016-01-05

    Ergot alkaloids are mycotoxins with an array of biological effects. With this study, we investigated for the first time the application of atmospheric pressure photoionization (APPI) as an ionization method for LC-MS analysis of ergot alkaloids, and compared its performance to that of the more established technique of electrospray ionization (ESI). Samples of the grass Achnatherum robustum infected with the ergot producing Epichloë fungus were extracted using cold methanol and subjected to reserved-phase HPLC-ESI-MS and HPLC-APPI-MS analysis. The ergot alkaloids ergonovine and lysergic acid amide were detected in these samples, and quantified via external calibration. Validation parameters were recorded in accordance with ICH guidelines. A triple quadrupole MS operated in multiple reaction monitoring yielded the lowest detection limits. The performance of APPI and ESI methods was comparable. Both methods were subject to very little matrix interference, with percent recoveries ranging from 82% to 100%. As determined with HPLC-APPI-MS quantification, lysergic acid amide and ergonovine were extracted from an A. robustum sample infected with the Epichloë fungus at concentrations of 1.143±0.051 ppm and 0.2822±0.0071 ppm, respectively. There was no statistically significant difference between these concentrations and those determined using ESI for the same samples.

  10. Generation of highly charged peptide and protein ions by atmospheric pressure matrix-assisted infrared laser desorption/ionization ion trap mass spectrometry.

    Science.gov (United States)

    König, Simone; Kollas, Oliver; Dreisewerd, Klaus

    2007-07-15

    We show that highly charged ions can be generated if a pulsed infrared laser and a glycerol matrix are employed for atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry with a quadrupole ion trap. Already for small peptides like bradykinin, doubly protonated ions form the most abundant analyte signal in the mass spectra. The center of the charge-state distribution increases with the size of the analyte. For example, insulin is detected with a most abundant ion signal corresponding to a charge state of four, whereas for cytochrome c, the 10 times protonated ion species produces the most intense signal. Myoglobin is observed with up to 13 charges. The high m/z ratios allow us to use the Paul trap for the detection of MALDI-generated protein ions that are, owing to their high molecular weight, not amenable in their singly protonated charge state. Formation of multiple charges critically depends on the addition of diluted acid to the analyte-matrix solution. Tandem mass spectra generated by collision-induced dissociation of doubly charged peptides are also presented. The findings allow speculations about the involvement of electrospray ionization processes in these MALDI experiments.

  11. Potential of atmospheric pressure chemical ionization source in gas chromatography tandem mass spectrometry for the screening of urinary exogenous androgenic anabolic steroids.

    Science.gov (United States)

    Raro, M; Portolés, T; Pitarch, E; Sancho, J V; Hernández, F; Garrostas, L; Marcos, J; Ventura, R; Segura, J; Pozo, O J

    2016-02-04

    The atmospheric pressure chemical ionization (APCI) source for gas chromatography-mass spectrometry analysis has been evaluated for the screening of 16 exogenous androgenic anabolic steroids (AAS) in urine. The sample treatment is based on the strategy currently applied in doping control laboratories i.e. enzymatic hydrolysis, liquid-liquid extraction (LLE) and derivatization to form the trimethylsilyl ether-trimethylsilyl enol ether (TMS) derivatives. These TMS derivatives are then analyzed by gas chromatography tandem mass spectrometry using a triple quadrupole instrument (GC-QqQ MS/MS) under selected reaction monitoring (SRM) mode. The APCI promotes soft ionization with very little fragmentation resulting, in most cases, in abundant [M + H](+) or [M + H-2TMSOH](+) ions, which can be chosen as precursor ions for the SRM transitions, improving in this way the selectivity and sensitivity of the method. Specificity of the transitions is also of great relevance, as the presence of endogenous compounds can affect the measurements when using the most abundant ions. The method has been qualitatively validated by spiking six different urine samples at two concentration levels each. Precision was generally satisfactory with RSD values below 25 and 15% at the low and high concentration level, respectively. Most the limits of detection (LOD) were below 0.5 ng mL(-1). Validation results were compared with the commonly used method based on the electron ionization (EI) source. EI analysis was found to be slightly more repeatable whereas lower LODs were found for APCI. In addition, the applicability of the developed method has been tested in samples collected after the administration of 4-chloromethandienone. The highest sensitivity of the APCI method for this compound, allowed to increase the period in which its administration can be detected.

  12. Ionization in Atmospheres of Brown Dwarfs and Extrasolar Planets V: Alfv\\'{e}n Ionization

    CERN Document Server

    Stark, Craig R; Diver, Declan A; Rimmer, Paul B

    2013-01-01

    Observations of continuous radio and sporadic X-ray emission from low-mass objects suggest they harbour localized plasmas in their atmospheric environments. For low-mass objects, the degree of thermal ionization is insufficient to qualify the ionized component as a plasma, posing the question: what ionization processes can efficiently produce the required plasma that is the source of the radiation? We propose Alfv\\'{e}n ionization as a mechanism for producing localized pockets of ionized gas in the atmosphere, having sufficient degrees of ionization ($\\geq10^{-7}$) that they constitute plasmas. We outline the criteria required for Alfv\\'{e}n ionization and demonstrate it's applicability in the atmospheres of low-mass objects such as giant gas planets, brown dwarfs and M-dwarfs for both solar and sub-solar metallicities. We find that Alfv\\'{e}n ionization is most efficient at mid to low atmospheric pressures where a seed plasma is easier to magnetize and the pressure gradients needed to drive the required neut...

  13. Liquid Sampling-Atmospheric Pressure Glow Discharge (LS-APGD) Ionization Source for Elemental Mass Spectrometry: Preliminary Parametric Evaluation and Figures of Merit

    Energy Technology Data Exchange (ETDEWEB)

    Quarles, C. Derrick; Carado, Anthony J.; Barinaga, Charles J.; Koppenaal, David W.; Marcus, R. Kenneth

    2012-01-01

    A new, low power ionization source for the elemental analysis of aqueous solutions has recently been described. The liquid sampling-atmospheric pressure glow discharge (LS-APGD) source operates at relatively low currents (<20 mA) and solution flow rates (<50 μL min-1), yielding a relatively simple alternative for atomic mass spectrometry applications. The LS-APGD has been interfaced to what is otherwise an organic, LC-MS mass analyzer, the Thermo Scientific Exactive Orbitrap without any modifications; other than removing the electrospray ionization (ESI) source supplied with that instrument. A glow discharge is initiated between the surface of the test solution exiting a glass capillary and a metallic counter electrode mounted at a 90° angle and separated by a distance of ~5 mm. As with any plasma-based ionization source, there are key discharge operation and ion sampling parameters that affect the intensity and composition of the derived mass spectra; including signal-to-background ratios. We describe here a preliminary parametric evaluation of the roles of discharge current, solution flow rate, argon sheath gas flow rate, and ion sampling distance as they apply on this mass analyzer system. A cursive evaluation of potential matrix effects due to the presence of easily ionized elements (EIEs) indicate that sodium concentrations of up to 500 μg mL-1 generally cause suppressions of less than 50%, dependant upon the analyte species. Based on the results of this series of studies, preliminary limits of detection (LOD) have been established through the generation of calibration functions. Whilst solution-based concentrations LOD levels of 0.02 – 2 μg mL-1 3 are not impressive on the surface, the fact that they are determined via discrete 5 μL injections leads to mass-based detection limits at picogram to singlenanogram levels. The overhead costs associated with source operation (10 W d.c. power, solution flow rates of <50 μL min-1, and gas flow rates <10 mL min

  14. Evaluation of gas chromatography-atmospheric pressure chemical ionization-mass spectrometry as an alternative to gas chromatography-electron ionization-mass spectrometry: avocado fruit as example.

    Science.gov (United States)

    Hurtado-Fernández, Elena; Pacchiarotta, Tiziana; Longueira-Suárez, Enrique; Mayboroda, Oleg A; Fernández-Gutiérrez, Alberto; Carrasco-Pancorbo, Alegría

    2013-10-25

    Although GC-APCI-MS was developed more than 40 years ago this coupling is still far from being a routine technique. One of the reasons explaining the limited use of GC-APCI so far is the lack of spectral database which facilitates the identification of the compounds under study. The first application of a very recently developed GC-APCI database to identify as many compounds as possible in a complex matrix such as avocado fruit is presented here. The results achieved by using this database has been checked against those obtained using traditional GC-EI-MS and a comparison of the MS signals observed in both ionization sources has been carried out. 100 compounds belonging to different chemical families were identified in the matrix under study. Considering the results of this study, the wide range of application (in terms of polarity and size of analytes) and the robustness of APCI as interface, the high quality of TOF spectra, and our library as a publicly available resource, GC-APCI-TOF MS is definitively a valuable addition to the "metabolomics toolbox".

  15. Gas chromatography/atmospheric pressure chemical ionization/mass spectrometry for the analysis of organochlorine pesticides and polychlorinated biphenyls in human serum.

    Science.gov (United States)

    Geng, Dawei; Jogsten, Ingrid Ericson; Dunstan, Jody; Hagberg, Jessika; Wang, Thanh; Ruzzin, Jerome; Rabasa-Lhoret, Rémi; van Bavel, Bert

    2016-07-01

    A method using a novel atmospheric pressure chemical ionization source for coupling gas chromatography (GC/APCI) to triple quadrupole mass spectrometry (MS/MS) for the determination of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) regulated by the Stockholm Convention is presented. One microliter injection of a six-point calibration curve of native PCBs and OCPs, ranging from 0.04 to 300pg/μL, was performed. The relative standard deviation (RSD) of the relative response factors (RRFs) was less than 15% with a coefficient of determination (r(2))>0.995. Meanwhile, two calibration solutions (CS), CS 2 (0.4pg/μL) and CS 3 (4pg/μL) were analyzed to study the repeatability calculated for both area and RRFs. The RSD for RRF ranged from 3.1 to 16% and 3.6 to 5.5% for CS 2 and CS 3, respectively. The limits of detection (LOD) determined by peak-to-peak signal-to-noise ratio (S/N) of 3 were compared between the GC/APCI/MS/MS and a GC coupled to high resolution mass spectrometry (GC/HRMS) system. GC/APCI/MS/MS resulted in lower LOD for most of the compounds, except for PCB#74, cis-chlordane and trans-chlordane. GC/APCI/MS/MS and GC/HRMS were also compared by performing analysis on 75 human serum samples together with eight QA/QC serum samples. The comparison between GC/APCI/MS/MS system and GC/HRMS system for 16 of the targeted compounds was carried out. No statistically significant difference was discovered. Due to increased sensitivity and user friendly operation under atmospheric pressure, GC/APCI/MS/MS is a powerful alternative technique that can easily meet the specification of GC/HRMS.

  16. Quantitation of triacylglycerols in edible oils by off-line comprehensive two-dimensional liquid chromatography-atmospheric pressure chemical ionization mass spectrometry using a single column.

    Science.gov (United States)

    Wei, Fang; Hu, Na; Lv, Xin; Dong, Xu-Yan; Chen, Hong

    2015-07-24

    In this investigation, off-line comprehensive two-dimensional liquid chromatography-atmospheric pressure chemical ionization mass spectrometry using a single column has been applied for the identification and quantification of triacylglycerols in edible oils. A novel mixed-mode phenyl-hexyl chromatographic column was employed in this off-line two-dimensional separation system. The phenyl-hexyl column combined the features of traditional C18 and silver-ion columns, which could provide hydrophobic interactions with triacylglycerols under acetonitrile conditions and can offer π-π interactions with triacylglycerols under methanol conditions. When compared with traditional off-line comprehensive two-dimensional liquid chromatography employing two different chromatographic columns (C18 and silver-ion column) and using elution solvents comprised of two phases (reversed-phase/normal-phase) for triacylglycerols separation, the novel off-line comprehensive two-dimensional liquid chromatography using a single column can be achieved by simply altering the mobile phase between acetonitrile and methanol, which exhibited a much higher selectivity for the separation of triacylglycerols with great efficiency and rapid speed. In addition, an approach based on the use of response factor with atmospheric pressure chemical ionization mass spectrometry has been developed for triacylglycerols quantification. Due to the differences between saturated and unsaturated acyl chains, the use of response factors significantly improves the quantitation of triacylglycerols. This two-dimensional liquid chromatography-mass spectrometry system was successfully applied for the profiling of triacylglycerols in soybean oils, peanut oils and lord oils. A total of 68 triacylglycerols including 40 triacylglycerols in soybean oils, 50 triacylglycerols in peanut oils and 44 triacylglycerols in lord oils have been identified and quantified. The liquid chromatography-mass spectrometry data were analyzed

  17. Atmospheric pressure chemical ionization of explosives induced by soft X-radiation in ion mobility spectrometry: mass spectrometric investigation of the ionization reactions of drift gasses, dopants and alkyl nitrates.

    Science.gov (United States)

    Riebe, Daniel; Erler, Alexander; Ritschel, Thomas; Beitz, Toralf; Löhmannsröben, Hans-Gerd; Beil, Andreas; Blaschke, Michael; Ludwig, Thomas

    2016-08-01

    A promising replacement for the radioactive sources commonly encountered in ion mobility spectrometers is a miniaturized, energy-efficient photoionization source that produce the reactant ions via soft X-radiation (2.8 keV). In order to successfully apply the photoionization source, it is imperative to know the spectrum of reactant ions and the subsequent ionization reactions leading to the detection of analytes. To that end, an ionization chamber based on the photoionization source that reproduces the ionization processes in the ion mobility spectrometer and facilitates efficient transfer of the product ions into a mass spectrometer was developed. Photoionization of pure gasses and gas mixtures containing air, N2 , CO2 and N2 O and the dopant CH2 Cl2 is discussed. The main product ions of photoionization are identified and compared with the spectrum of reactant ions formed by radioactive and corona discharge sources on the basis of literature data. The results suggest that photoionization by soft X-radiation in the negative mode is more selective than the other sources. In air, adduct ions of O2(-) with H2 O and CO2 were exclusively detected. Traces of CO2 impact the formation of adduct ions of O2(-) and Cl(-) (upon addition of dopant) and are capable of suppressing them almost completely at high CO2 concentrations. Additionally, the ionization products of four alkyl nitrates (ethylene glycol dinitrate, nitroglycerin, erythritol tetranitrate and pentaerythritol tetranitrate) formed by atmospheric pressure chemical ionization induced by X-ray photoionization in different gasses (air, N2 and N2 O) and dopants (CH2 Cl2 , C2 H5 Br and CH3 I) are investigated. The experimental studies are complemented by density functional theory calculations of the most important adduct ions of the alkyl nitrates (M) used for their spectrometric identification. In addition to the adduct ions [M + NO3 ](-) and [M + Cl](-) , adduct ions such as [M + N2 O2 ](-) , [M

  18. Preliminary Assessment of Potential for Metal-Ligand Speciation in Aqueous Solution via the Liquid Sampling-Atmospheric Pressure Glow Discharge (LS-APGD) Ionization Source: Uranyl Acetate.

    Science.gov (United States)

    Zhang, Lynn X; Manard, Benjamin T; Powell, Brian A; Marcus, R Kenneth

    2015-07-21

    The determination of metals, including the generation of metal-ligand speciation information, is essential across a myriad of biochemical, environmental, and industrial systems. Metal speciation is generally affected by the combination of some form of chromatographic separation (reflective of the metal-ligand chemistry) with element-specific detection for the quantification of the metal composing the chromatographic eluent. Thus, the identity of the metal-ligand is assigned by inference. Presented here, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) is assessed as an ionization source for metal speciation, with the uranyl ion-acetate system used as a test system. Molecular mass spectra can be obtained from the same source by simple modification of the sustaining electrolyte solution. Specifically, chemical information pertaining to the degree of acetate complexation of uranyl ion (UO2(2+)) is assessed as a function of pH in the spectral abundance of three metallic species: inorganic (nonligated) uranyl, UO2Ac(H2O)n(MeOH)m(+), and UO2Ac2(H2O)n(MeOH)(m)H(+) (n = 1, 2, 3, ...; m = 1, 2, 3, ...). The product mass spectra are different from what are obtained from electrospray ionization sources that have been applied to this system. The resulting relationships between the speciation and pH values have been compared to calculated concentrations of the corresponding uranyl species: UO2(2+), UO2Ac(+), UO2Ac2. The capacity for the LS-APGD to affect both atomic mass spectra and structurally significant spectra for organometallic complexes is a unique and potentially powerful combination.

  19. Performance, resolving power, and radial ion distributions of a prototype nanoelectrospray ionization resistive glass atmospheric pressure ion mobility spectrometer.

    Science.gov (United States)

    Kwasnik, Mark; Fuhrer, Katrin; Gonin, Marc; Barbeau, Katherine; Fernandez, Facundo M

    2007-10-15

    In this article, we describe and characterize a novel ion mobility spectrometer constructed with monolithic resistive glass desolvation and drift regions. This instrument is equipped with switchable corona discharge and nanoelectrospray ionization sources and a Faraday plate detector. Following description of the instrument, pulsing electronics, and data acquisition system, we examine the effects of drift gas flow rate and temperature, and of the aperture grid to anode distance on the observed resolving power and sensitivity. Once optimum experimental parameters are identified, different ion gate pulse lengths, and their effect on the temporal spread of the ion packet were investigated. Resolving power ranged from an average value of 50 ms/ms for a 400-micros ion gate pulse, up to an average value of 68 ms/ms for a 100-micros ion gate pulse, and a 26-cm drift tube operated at 383 V cm(-1). Following these experiments, the radial distribution of ions in the drift region of the spectrometer was studied by using anodes of varying sizes, showing that the highest ionic density was located at the center of the drift tube. Finally, we demonstrate the applicability of this instrument to the study of small molecules of environmental relevance by analyzing a commercially available siderophore, deferoxamine mesylate, in both the free ligand and Fe-bound forms. Ion mobility experiments showed a dramatic shift to shorter drift times caused by conformational changes upon metal binding, in agreement with previous reversed-phase liquid chromatography observations.

  20. Potential of atmospheric pressure chemical ionization source in gas chromatography tandem mass spectrometry for the screening of urinary exogenous androgenic anabolic steroids

    Energy Technology Data Exchange (ETDEWEB)

    Raro, M.; Portolés, T.; Pitarch, E.; Sancho, J.V.; Hernández, F. [Research Institute for Pesticides and Water, University Jaume I, E-12071 Castellón (Spain); Garrostas, L. [Bioanalysis Research Group, IMIM, Hospital del Mar Medical Research Institute, Doctor Aiguader 88, 08003 Barcelona (Spain); Marcos, J.; Ventura, R.; Segura, J. [Bioanalysis Research Group, IMIM, Hospital del Mar Medical Research Institute, Doctor Aiguader 88, 08003 Barcelona (Spain); Department of Experimental and Health Sciencies, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona (Spain); Pozo, O.J., E-mail: opozo@imim.es [Bioanalysis Research Group, IMIM, Hospital del Mar Medical Research Institute, Doctor Aiguader 88, 08003 Barcelona (Spain)

    2016-02-04

    The atmospheric pressure chemical ionization (APCI) source for gas chromatography-mass spectrometry analysis has been evaluated for the screening of 16 exogenous androgenic anabolic steroids (AAS) in urine. The sample treatment is based on the strategy currently applied in doping control laboratories i.e. enzymatic hydrolysis, liquid–liquid extraction (LLE) and derivatization to form the trimethylsilyl ether-trimethylsilyl enol ether (TMS) derivatives. These TMS derivatives are then analyzed by gas chromatography tandem mass spectrometry using a triple quadrupole instrument (GC-QqQ MS/MS) under selected reaction monitoring (SRM) mode. The APCI promotes soft ionization with very little fragmentation resulting, in most cases, in abundant [M + H]{sup +} or [M + H-2TMSOH]{sup +} ions, which can be chosen as precursor ions for the SRM transitions, improving in this way the selectivity and sensitivity of the method. Specificity of the transitions is also of great relevance, as the presence of endogenous compounds can affect the measurements when using the most abundant ions. The method has been qualitatively validated by spiking six different urine samples at two concentration levels each. Precision was generally satisfactory with RSD values below 25 and 15% at the low and high concentration level, respectively. Most the limits of detection (LOD) were below 0.5 ng mL{sup −1}. Validation results were compared with the commonly used method based on the electron ionization (EI) source. EI analysis was found to be slightly more repeatable whereas lower LODs were found for APCI. In addition, the applicability of the developed method has been tested in samples collected after the administration of 4-chloromethandienone. The highest sensitivity of the APCI method for this compound, allowed to increase the period in which its administration can be detected. - Highlights: • APCI source has been evaluated for the screening of 16 exogenous AAS in urine. • Suitable

  1. Quantitative real-time monitoring of chemical reactions by autosampling flow injection analysis coupled with atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Zhu, Zhenqian; Bartmess, John E; McNally, Mary Ellen; Hoffman, Ron M; Cook, Kelsey D; Song, Liguo

    2012-09-04

    Although qualitative and/or semiquantitative real-time monitoring of chemical reactions have been reported with a few mass spectrometric approaches, to our knowledge, no quantitative mass spectrometric approach has been reported so far to have a calibration valid up to molar concentrations as required by process control. This is mostly due to the absence of a practical solution that could well address the sample overloading issue. In this study, a novel autosampling flow injection analysis coupled with an atmospheric pressure chemical ionization mass spectrometry (FIA/APCI-MS) system, consisting of a 1 μL automatic internal sample injector, a postinjection splitter with 1:10 splitting ratio, and a detached APCI source connected to the mass spectrometer using a 4.5 in. long, 0.042 in. inner diameter (ID) stainless-steel capillary, was thus introduced. Using this system together with an optional FIA solvent modifier, e.g., 0.05% (v/v) isopropylamine, a linear quantitative calibration up to molar concentration has been achieved with 3.4-7.2% relative standard deviations (RSDs) for 4 replicates. As a result, quantitative real-time monitoring of a model reaction was successfully performed at the 1.63 M level. It is expected that this novel autosampling FIA/APCI-MS system can be used in quantitative real-time monitoring of a wide range of reactions under diverse reaction conditions.

  2. Application of pentafluorophenyl hydrazine derivatives to the analysis of nabumetone and testosterone in human plasma by liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry.

    Science.gov (United States)

    Sheen, J F; Her, G R

    2004-12-01

    Two carbonyl compounds, nabumetone and testosterone, were derivatized with pentafluorophenyl hydrazine (PFPH) and analyzed by atmospheric-pressure chemical-ionization mass spectrometry. The PFPH derivatives underwent dissociative electron capture in negative-ion APCI (ECAPCI) and gave intense [M-20](-) ions in the mass spectra. In positive-ion APCI, the PFPH derivatives underwent efficient protonation and gave intense [M + H](+) ions in the mass spectra. In CID, the major product ions of the [M-20](-) ions in ECAPCI corresponded to the partial moiety of PFPH. In contrast, the major product ions of [M + H](+) corresponded to the partial moiety of the analyte. By using selected reaction monitoring (SRM) detection, low pg of nabumetone (1 pg) and testosterone (7 pg) could be detected in both ECAPCI and positive-ion APCI. In comparison with the detection limits (SRM) of the underivatized analytes, use of the PFPH derivatives resulted in 2500-fold and 35-fold sensitivity enhancements for nabumetone and testosterone, respectively. The PFPH derivatives were applied to the analysis of nabumetone and testosterone in human plasma by both ECAPCI and positive-ion APCI and were found to enable detection of 0.1 ng mL(-1) nabumetone in spiked plasma. For testosterone, endogenous testosterone in female plasma was detected in both ECAPCI and positive-ion APCI.

  3. Trace analysis of selected hormones and sterols in river sediments by liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry.

    Science.gov (United States)

    Matić, Ivana; Grujić, Svetlana; Jauković, Zorica; Laušević, Mila

    2014-10-17

    In this paper, development and optimization of new LC-MS method for determination of twenty selected hormones, human/animal and plant sterols in river sediments were described. Sediment samples were prepared using ultrasonic extraction and clean up with silica gel/anhydrous sodium sulphate cartridge. Extracts were analyzed by liquid chromatography-linear ion trap-tandem mass spectrometry, with atmospheric pressure chemical ionization. The optimized extraction parameters were extraction solvent (methanol), weight of the sediment (2 g) and time of ultrasonic extraction (3× 10 min). Successful chromatographic separation of hormones (estriol and estrone, 17α- and 17β-estradiol) and four human/animal sterols (epicoprostanol, coprostanol, α-cholestanol and β-cholestanol) that have identical fragmentation reactions was achieved. The developed and optimized method provided high recoveries (73-118%), low limits of detection (0.8-18 ng g(-1)) and quantification (2.5-60 ng g(-1)) with the RSDs generally lower than 20%. Applicability of the developed method was confirmed by analysis of six river sediment samples. A widespread occurrence of human/animal and plant sterols was found. The only detected hormone was mestranol in just one sediment sample.

  4. Structure-dependent degradation of polar compounds in weathered oils observed by atmospheric pressure photo-ionization hydrogen/deuterium exchange ultrahigh resolution mass spectrometry.

    Science.gov (United States)

    Islam, Ananna; Kim, Donghwi; Yim, Un Hyuk; Shim, Won Joon; Kim, Sunghwan

    2015-10-15

    The resin fractions of fresh mixtures of three oils spilled during the M/V Hebei Spirit oil spill, as well as weathered oils collected at weathering stages II and IV from the oil spill site were analyzed and compared by atmospheric pressure photo-ionization hydrogen/deuterium exchange mass spectrometry (HDX MS). The significantly decreased abundance of N(+) and [N-H+D](+) ions suggested that secondary and tertiary amine-containing compounds were preferentially degraded during the early stage of weathering. [N+H](+) and [N+D](+) ions previously attributed to pyridine-type compounds degraded more slowly than secondary and tertiary amine-containing compounds. The preferential degradation of nitrogen-containing compounds was confirmed by photo-degradation experiments using 15 standard compounds. In addition, significant increases of [S1O1+H](+) and [S1O1+D](+) ions with higher DBE values were observed from fresh oil mixtures as compared to stages II and IV samples, and that could be linked with the decrease of higher DBE compounds of the S1 class. This study presented convincing arguments and evidence demonstrating that secondary and tertiary amines were more vulnerable to photo-degradation than compounds containing pyridine, and hence, preferential degradation depending on chemical structures must be considered in the production of hazardous or toxic components.

  5. A highly specific and sensitive quantification analysis of the sterols in silkworm larvae by high performance liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry.

    Science.gov (United States)

    Igarashi, Fumihiko; Hikiba, Juri; Ogihara, Mari H; Nakaoka, Takayoshi; Suzuki, Minoru; Kataoka, Hiroshi

    2011-12-15

    The biochemical quantification of sterols in insects has been difficult because only small amounts of tissues can be obtained from insect bodies and because sterol metabolites are structurally related. We have developed a highly specific and sensitive quantitative method for determining of the concentrations of seven sterols-7-dehydrocholesterol, desmosterol, cholesterol, ergosterol, campesterol, stigmasterol, and β-sitosterol-using a high performance liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry (HPLC/APCI-MS/MS). The sterols were extracted from silkworm larval tissues using the Bligh and Dyer method and were analyzed using HPLC/APCI-MS/MS with selected reaction monitoring, using cholesterol-3,4-(13)C(2) as an internal standard. The detection limits of the method were between 12.1 and 259 fmol. The major sterol in most silkworm larval tissues was cholesterol, whereas only small quantities of the dietary sterols were detected. Thus, a simple, sensitive, and specific method was successfully developed for the quantification of the sterol concentrations in each tissue of an individual silkworm larva. This method will be a useful tool for investigating to molecular basis of sterol physiology in insects, facilitating the quantification of femtomole quantities of sterols in biological samples.

  6. Carbamazepine in municipal wastewater and wastewater sludge: ultrafast quantification by laser diode thermal desorption-atmospheric pressure chemical ionization coupled with tandem mass spectrometry.

    Science.gov (United States)

    Mohapatra, D P; Brar, S K; Tyagi, R D; Picard, P; Surampalli, R Y

    2012-09-15

    In this study, the distribution of the anti-epileptic drug carbamazepine (CBZ) in wastewater (WW) and aqueous and solid phases of wastewater sludge (WWS) was carried out. A rapid and reliable method enabling high-throughput sample analysis for quicker data generation, detection, and monitoring of CBZ in WW and WWS was developed and validated. The ultrafast method (15s per sample) is based on the laser diode thermal desorption-atmospheric pressure chemical ionization (LDTD-APCI) coupled to tandem mass spectrometry (MS/MS). The optimization of instrumental parameters and method application for environmental analysis are presented. The performance of the novel method was evaluated by estimation of extraction recovery, linearity, precision and detection limit. The method detection limits was 12 ng L(-1) in WW and 3.4 ng g(-1) in WWS. The intra- and inter-day precisions were 8% and 11% in WW and 6% and 9% in WWS, respectively. Furthermore, three extraction methods, ultrasonic extraction (USE), microwave-assisted extraction (MAE) and accelerated solvent extraction (ASE) with three different solvent condition such as methanol, acetone and acetonitrile:ethyle acetate (5:1, v/v) were compared on the basis of procedural blank and method recovery. Overall, ASE showed the best extraction efficiency with methanol as compared to USE and MAE. Furthermore, the quantification of CBZ in WW and WWS samples showed the presence of contaminant in all stages of the treatment plant.

  7. Identification and quantification of antitumor thioproline and methylthioproline in Korean traditional foods by a liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry.

    Science.gov (United States)

    Kim, Sun Hyo; Kim, Hyun-Ji; Shin, Ho-Sang

    2014-11-01

    A liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometric method (LC-APCI-MS/MS) has been developed for the sensitive determination of antitumor thioproline and methylthioproline from fermented foods. Thioproline and methylthioproline were derivatized in one step with ethyl chloroformate at room temperature. These compounds were identified and quantified in various traditional Korean fermented foods by LC-APCI-MS/MS. The concentration range of thioproline of each food was found for doenjang (0.011-0.032mg/kg), gochujang (0.010-0.038mg/kg), and ganjang (0.010-0.038mg/kg). Those of methylthioproline of each food was found for doenjang (0.098-0.632mg/kg), gochujang (0.015-0.112mg/kg), and ganjang (0.023-1.468mg/kg). A prolonged aging time leads to an increase in both the thioproline and methylthioproline contents, suggesting that the storage time plays a key role in the formation of thioproline and methylthioproline in Korean traditional foods. The results here suggest that thioproline and methylthioproline are related to the biological activities of traditional Korean fermented foods.

  8. Ion suppression and enhancement effects of co-eluting analytes in multi-analyte approaches: systematic investigation using ultra-high-performance liquid chromatography/mass spectrometry with atmospheric-pressure chemical ionization or electrospray ionization.

    Science.gov (United States)

    Remane, Daniela; Meyer, Markus R; Wissenbach, Dirk K; Maurer, Hans H

    2010-11-15

    In multi-analyte procedures, sufficient separation is important to avoid interferences, particularly when using liquid chromatography/mass spectrometry (LC/MS) because of possible ion suppression or enhancement. However, even using ultra-high-performance LC, baseline separation is not always possible. For development and validation of an LC/MS/MS approach for quantification of 140 antidepressants, benzodiazepines, neuroleptics, beta-blockers, oral antidiabetics, and analytes measured in the context of brain death diagnosis in plasma, the extent of ion suppression or enhancement of co-eluting analytes within and between the drug classes was investigated using atmospheric-pressure chemical ionization (APCI) or electrospray ionization (ESI). Within the drug classes, five analytes showed ion enhancement of over 25% and six analytes ion suppression of over 25% using APCI and 16 analytes ion suppression of over 25% using ESI. Between the drug classes, two analytes showed ion suppression of over 25% using APCI. Using ESI, one analyte showed ion enhancement of over 25% and five analytes ion suppression of over 25%. These effects may influence the drug quantification using calibrators made in presence of overlapping and thus interfering analytes. Ion suppression/enhancement effects induced by co-eluting drugs of different classes present in the patient sample may also lead to false measurements using class-specific calibrators made in absence of overlapping and thus interfering analytes. In conclusion, ion suppression and enhancement tests are essential during method development and validation in LC/MS/MS multi-analyte procedures, with special regards to co-eluting analytes.

  9. Diclofenac in municipal wastewater treatment plant: quantification using laser diode thermal desorption--atmospheric pressure chemical ionization--tandem mass spectrometry approach in comparison with an established liquid chromatography-electrospray ionization-tandem mass spectrometry method.

    Science.gov (United States)

    Lonappan, Linson; Pulicharla, Rama; Rouissi, Tarek; Brar, Satinder K; Verma, Mausam; Surampalli, Rao Y; Valero, José R

    2016-02-12

    Diclofenac (DCF), a prevalent non-steroidal anti-inflammatory drug (NSAID) is often detected in wastewater and surface water. Analysis of the pharmaceuticals in complex matrices is often laden with challenges. In this study a reliable, rapid and sensitive method based on laser diode thermal desorption/atmospheric pressure chemical ionization (LDTD/APCI) coupled with tandem mass spectrometry (MS/MS) has been developed for the quantification of DCF in wastewater and wastewater sludge. An established conventional LC-ESI-MS/MS (liquid chromatography-electrospray ionization-tandem mass spectrometry) method was compared with LDTD-APCI-MS/MS approach. The newly developed LDTD-APCI-MS/MS method reduced the analysis time to 12s in lieu of 12 min for LC-ESI-MS/MS method. The method detection limits for LDTD-APCI-MS/MS method were found to be 270 ng L(-1) (LOD) and 1000 ng L(-1) (LOQ). Furthermore, two extraction procedures, ultrasonic assisted extraction (USE) and accelerated solvent extraction (ASE) for the extraction of DCF from wastewater sludge were compared and ASE with 95.6 ± 7% recovery was effective over USE with 86 ± 4% recovery. The fate and partitioning of DCF in wastewater (WW) and wastewater sludge (WWS) in wastewater treatment plant was also monitored at various stages of treatment in Quebec Urban community wastewater treatment plant. DCF exhibited affinity towards WW than WWS with a presence about 60% of DCF in WW in contrary with theoretical prediction (LogKow=4.51).

  10. Natural products in Glycyrrhiza glabra (licorice) rhizome imaged at the cellular level by atmospheric pressure matrix-assisted laser desorption/ionization tandem mass spectrometry imaging.

    Science.gov (United States)

    Li, Bin; Bhandari, Dhaka Ram; Janfelt, Christian; Römpp, Andreas; Spengler, Bernhard

    2014-10-01

    The rhizome of Glycyrrhiza glabra (licorice) was analyzed by high-resolution mass spectrometry imaging and tandem mass spectrometry imaging. An atmospheric pressure matrix-assisted laser desorption/ionization imaging ion source was combined with an orbital trapping mass spectrometer in order to obtain high-resolution imaging in mass and space. Sections of the rhizome were imaged with a spatial resolution of 10 μm in the positive ion mode, and a large number of secondary metabolites were localized and identified based on their accurate mass and MS/MS fragmentation patterns. Major tissue-specific metabolites, including free flavonoids, flavonoid glycosides and saponins, were successfully detected and visualized in images, showing their distributions at the cellular level. The analytical power of the technique was tested in the imaging of two isobaric licorice saponins with a mass difference of only 0.02 Da. With a mass resolving power of 140 000 and a bin width of 5 ppm in the image processing, the two compounds were well resolved in full-scan mode, and appeared with different distributions in the tissue sections. The identities of the compounds and their distributions were validated in a subsequent MS/MS imaging experiment, thereby confirming their identities and excluding possible analyte interference. The use of high spatial resolution, high mass resolution and tandem mass spectrometry in imaging experiments provides significant information about the biosynthetic pathway of flavonoids and saponins in legume species, combing the spatially resolved chemical information with morphological details at the microscopic level. Furthermore, the technique offers a scheme capable of high-throughput profiling of metabolites in plant tissues.

  11. Determination of Glucosamine in Human Plasma by High-Performance Liquid Chromatography-Atmospheric Pressure Chemical Ionization Source-Tandem Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Xingchen Zhou

    2011-01-01

    Full Text Available A sensitive, specific, and rapid high-performance liquid chromatography-atmospheric pressure chemical ionization source-tandem mass spectrometry (HPLC-APCI-MS/MS method for the determination of glucosamine in human plasma was developed and validated. Plasma samples were processed by protein precipitation with dehydrated ethanol, and the chromatographic separation was performed on an Agilent XDB-C18 column with a mobile phase of methanol—0.2% formic acid solution (70 : 30, v/v. Mass spectrometric quantification was carried out in the multiple reaction monitoring (MRM mode, monitoring ion transitions of m/z 180.1 to m/z 162.1 with collision energy (CE of 2 eV for glucosamine and m/z 181.1 to m/z 163.1 with CE of 2 eV for the internal standard (IS in positive ion mode. The linear calibration curves covered a concentration range of 53.27–3409 ng/mL with a lower limit of quantification (LLOQ of 53.27 ng/mL. The extraction recovery of glucosamine was greater than 101.7%. The intra- and interday precisions for glucosamine were less than 10%, and the accuracies were between 93.7% and 102.6%, determined from quality control (QC samples of three representative concentrations. The method has been successfully applied to determining the plasma concentration of glucosamine in a clinical pharmacokinetic study involving 20 healthy Chinese male volunteers.

  12. Atmospheric pressure laser desorption/ionization using a 6-7 µm-band mid-infrared tunable laser and liquid water matrix.

    Science.gov (United States)

    Hiraguchi, Ryuji; Hazama, Hisanao; Masuda, Katsuyoshi; Awazu, Kunio

    2015-01-01

    Due to the characteristic absorption peaks in the IR region, various molecules can be used as a matrix for infrared matrix-assisted laser desorption/ionization (IR-MALDI). Especially in the 6-7 µm-band IR region, solvents used as the mobile phase for liquid chromatography have absorption peaks that correspond to their functional groups, such as O-H, C=O, and CH3. Additionally, atmospheric pressure (AP) IR-MALDI, which is applicable to liquid-state samples, is a promising technique to directly analyze untreated samples. Herein we perform AP-IR-MALDI mass spectrometry of a peptide, angiotensin II, using a mid-IR tunable laser with a tunable wavelength range of 5.50-10.00 µm and several different matrices. The wavelength dependences of the ion signal intensity of [M + H](+) of the peptide are measured using a conventional solid matrix, α-cyano-4-hydroxycinnamic acid (CHCA) and a liquid matrix composed of CHCA and 3-aminoquinoline. Other than the O-H stretching and bending vibration modes, the characteristic absorption peaks are useful for AP-IR-MALDI. Peptide ions are also observed from an aqueous solution of the peptide without an additional matrix, and the highest peak intensity of [M + H](+) is at 6.00 µm, which is somewhat shorter than the absorption peak wavelength of liquid water corresponding to the O-H bending vibration mode. Moreover, long-lasting and stable ion signals are obtained from the aqueous solution. AP-IR-MALDI using a 6-7 µm-band IR tunable laser and solvents as the matrix may provide a novel on-line interface between liquid chromatography and mass spectrometry.

  13. Analysis of trimethoprim, lincomycin, sulfadoxin and tylosin in swine manure using laser diode thermal desorption-atmospheric pressure chemical ionization-tandem mass spectrometry.

    Science.gov (United States)

    Solliec, Morgan; Massé, Daniel; Sauvé, Sébastien

    2014-10-01

    A new extraction method coupled to a high throughput sample analysis technique was developed for the determination of four veterinary antibiotics. The analytes belong to different groups of antibiotics such as chemotherapeutics, sulfonamides, lincosamides and macrolides. Trimethoprim (TMP), sulfadoxin (SFX), lincomycin (LCM) and tylosin (TYL) were extracted from lyophilized manure using a sonication extraction. McIlvaine buffer and methanol (MeOH) were used as extraction buffers, followed by cation-exchange solid phase extraction (SPE) for clean-up. Analysis was performed by laser diode thermal desorption-atmospheric pressure chemical-ionization (LDTD-APCI) tandem mass spectrometry (MS/MS) with selected reaction monitoring (SRM) detection. The LDTD is a high throughput sample introduction method that reduces total analysis time to less than 15s per sample, compared to minutes when using traditional liquid chromatography (LC). Various SPE parameters were optimized after sample extraction: the stationary phase, the extraction solvent composition, the quantity of sample extracted and sample pH. LDTD parameters were also optimized: solvent deposition, carrier gas, laser power and corona discharge. The method limit of detection (MLD) ranged from 2.5 to 8.3 µg kg(-1) while the method limit of quantification (MLQ) ranged from 8.3 to 28µgkg(-1). Calibration curves in the manure matrix showed good linearity (R(2)≥ 0.996) for all analytes and the interday and intraday coefficients of variation were below 14%. Recoveries of analytes from manure ranged from 53% to 69%. The method was successfully applied to real manure samples.

  14. Quantitative Analysis of Mixed Halogen Dioxins and Furans in Fire Debris Utilizing Atmospheric Pressure Ionization Gas Chromatography-Triple Quadrupole Mass Spectrometry.

    Science.gov (United States)

    Organtini, Kari L; Myers, Anne L; Jobst, Karl J; Reiner, Eric J; Ross, Brian; Ladak, Adam; Mullin, Lauren; Stevens, Douglas; Dorman, Frank L

    2015-10-20

    Residential and commercial fires generate a complex mixture of volatile, semivolatile, and nonvolatile compounds. This study focused on the semi/nonvolatile components of fire debris to better understand firefighter exposure risks. Using the enhanced sensitivity of gas chromatography coupled to atmospheric pressure ionization-tandem mass spectrometry (APGC-MS/MS), complex fire debris samples collected from simulation fires were analyzed for the presence of potentially toxic polyhalogenated dibenzo-p-dioxins and dibenzofurans (PXDD/Fs and PBDD/Fs). Extensive method development was performed to create multiple reaction monitoring (MRM) methods for a wide range of PXDD/Fs from dihalogenated through hexa-halogenated homologue groups. Higher halogenated compounds were not observed due to difficulty eluting them off the long column used for analysis. This methodology was able to identify both polyhalogenated (mixed bromo-/chloro- and polybromo-) dibenzo-p-dioxins and dibenzofurans in the simulated burn study samples collected, with the dibenzofuran species being the dominant compounds in the samples. Levels of these compounds were quantified as total homologue groups due to the limitations of commercial congener availability. Concentration ranges in household simulation debris were observed at 0.01-5.32 ppb (PXDFs) and 0.18-82.11 ppb (PBDFs). Concentration ranges in electronics simulation debris were observed at 0.10-175.26 ppb (PXDFs) and 0.33-9254.41 ppb (PBDFs). Samples taken from the particulate matter coating the firefighters' helmets contained some of the highest levels of dibenzofurans, ranging from 4.10 ppb to 2.35 ppm. The data suggest that firefighters and first responders at fire scenes are exposed to a complex mixture of potentially hundreds to thousands of different polyhalogenated dibenzo-p-dioxins and dibenzofurans that could negatively impact their health.

  15. Validation of a qualitative screening method for pesticides in fruits and vegetables by gas chromatography quadrupole-time of flight mass spectrometry with atmospheric pressure chemical ionization.

    Science.gov (United States)

    Portolés, T; Mol, J G J; Sancho, J V; López, Francisco J; Hernández, F

    2014-08-01

    A wide-scope screening method was developed for the detection of pesticides in fruit and vegetables. The method was based on gas chromatography coupled to a hybrid quadrupole time-of-flight mass spectrometer with an atmospheric pressure chemical ionization source (GC-(APCI)QTOF MS). A non-target acquisition was performed through two alternating scan events: one at low collision energy and another at a higher collision energy ramp (MS(E)). In this way, both protonated molecule and/or molecular ion together with fragment ions were obtained in a single run. Validation was performed according to SANCO/12571/2013 by analysing 20 samples (10 different commodities in duplicate), fortified with a test set of 132 pesticides at 0.01, 0.05 and 0.20mg kg(-1). For screening, the detection was based on one diagnostic ion (in most cases the protonated molecule). Overall, at the 0.01mg kg(-1) level, 89% of the 2620 fortifications made were detected. The screening detection limit for individual pesticides was 0.01mg kg(-1) for 77% of the pesticides investigated. The possibilities for identification according to the SANCO criteria, requiring two ions with a mass accuracy ≤±5ppm and an ion-ratio deviation ≤±30%, were investigated. At the 0.01mg kg(-1) level, identification was possible for 70% of the pesticides detected during screening. This increased to 87% and 93% at the 0.05 and 0.20mg kg(-1) level, respectively. Insufficient sensitivity for the second ion was the main reason for the inability to identify detected pesticides, followed by deviations in mass accuracy and ion ratios.

  16. Structure-dependent degradation of polar compounds in weathered oils observed by atmospheric pressure photo-ionization hydrogen/deuterium exchange ultrahigh resolution mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Ananna; Kim, Donghwi [Kyungpook National University, Department of Chemistry, Daegu 702-701 (Korea, Republic of); Yim, Un Hyuk; Shim, Won Joon [Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, KIOST, Geoje 656-834 (Korea, Republic of); Kim, Sunghwan, E-mail: sunghwank@knu.ac.kr [Kyungpook National University, Department of Chemistry, Daegu 702-701 (Korea, Republic of); Green Nano Center, Department of Chemistry, Daegu 702-701 (Korea, Republic of)

    2015-10-15

    Highlights: • We examined source crude oil and weathered oils from M/V Hebei accident. • APPI hydrogen/deuterium exchange ultrahigh mass spectrometry was applied. • N{sub 1} class compounds with 2° and/or 3° amine decrease in larger scale than pyridines. • Preferential degradation of nitrogen-containing compounds was confirmed. • Significant increase in S{sub 1}O{sub 1} compounds was observed as the weathering proceeds. - Abstract: The resin fractions of fresh mixtures of three oils spilled during the M/V Hebei Spirit oil spill, as well as weathered oils collected at weathering stages II and IV from the oil spill site were analyzed and compared by atmospheric pressure photo-ionization hydrogen/deuterium exchange mass spectrometry (HDX MS). The significantly decreased abundance of N{sup +}· and [N − H + D]{sup +} ions suggested that secondary and tertiary amine-containing compounds were preferentially degraded during the early stage of weathering. [N + H]{sup +} and [N + D]{sup +} ions previously attributed to pyridine-type compounds degraded more slowly than secondary and tertiary amine-containing compounds. The preferential degradation of nitrogen-containing compounds was confirmed by photo-degradation experiments using 15 standard compounds. In addition, significant increases of [S{sub 1}O{sub 1} + H]{sup +} and [S{sub 1}O{sub 1} + D]{sup +} ions with higher DBE values were observed from fresh oil mixtures as compared to stages II and IV samples, and that could be linked with the decrease of higher DBE compounds of the S{sub 1} class. This study presented convincing arguments and evidence demonstrating that secondary and tertiary amines were more vulnerable to photo-degradation than compounds containing pyridine, and hence, preferential degradation depending on chemical structures must be considered in the production of hazardous or toxic components.

  17. Determination of 21-hydroxydeflazacort in human plasma by high-performance liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry. Application to bioequivalence study.

    Science.gov (United States)

    Ifa, D R; Moraes, M E; Moraes, M O; Santagada, V; Caliendo, G; de Nucci, G

    2000-03-01

    A liquid chromatographic atmospheric pressure chemical ionization tandem mass spectrometric method is described for the determination of 21-hydroxydeflazacort in human plasma using dexamethasone 21-acetate as an internal standard. The procedure requires a single diethyl ether extraction. After evaporation of the solvent under a nitrogen flow, the analytes are reconstituted in the mobile phase, chromatographed on a C18 reversed-phase column and analyzed by mass spectrometry via a heated nebulizer interface where they are detected by multiple reaction monitoring. The method has a chromatographic run time of less than 5 min and a linear calibration curve with a range of 1-400 ng ml(-1) (r>0.999). The between-run precision, based on the relative standard deviation for replicate quality controls, was Comercio, Brazil, as a test formulation, and Calcort from Merrell Lepetit, Brazil, as a reference formulation) in 24 healthy volunteers of both sexes who received a single 30 mg dose of each formulation. The study was conducted using an open, randomized, two-period crossover design with a 7-day washout interval. The 90% confidence interval (CI) of the individual geometric mean ratio for Denacen/Calcort was 89.8-109.5% for area under the curve AUC(0-24 h) and 80.7-98.5% for Cmax. Since both the 90% CI for AUC(0-24 h) and Cmax were included in the 80-125% interval proposed by the US Food and Drug Administration, Denacen was considered bioequivalent to Calcort according to both the rate and extent of absorption.

  18. Evaluation of the operating parameters of the liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source for elemental mass spectrometry.

    Science.gov (United States)

    Zhang, Lynn X; Manard, Benjamin T; Konegger-Kappel, Stefanie; Kappel, Stefanie Konegger; Marcus, R Kenneth

    2014-11-01

    The liquid sampling-atmospheric pressure glow discharge (LS-APGD) has been assessed as an ionization source for elemental analysis with an interdependent, parametric evaluation regarding sheath/cooling gas flow rate, discharge current, liquid flow rate, and the distance between the plasma and the sampling cone of the mass spectrometer. In order to better understand plasma processes (and different from previous reports), no form of collision/reaction processing was performed to remove molecular interferents. The evaluation was performed employing five test elements: cesium, silver, lead, lanthanum and nickel (10(-4) mol L(-1) in 1 mol L(-1) HNO3). The intensity of the atomic ions, levels of spectral background, the signal-to-background ratios, and the atomic-to-oxide/hydroxide adduct ratios were monitored in order to obtain fundamental understanding with regards to not only how each parameter effects the performance of this LS-APGD source, but also the inter-parametric effects. The results indicate that the discharge current and the liquid sampling flow rates are the key aspects that control the spectral composition. A compromise set of operating conditions was determined: sheath gas flow rate = 0.9 L min(-1), discharge current = 10 mA, solution flow rate = 10 μL min(-1), and sampling distance = 1 cm. Limits of detection (LODs) were calculated using the SBR-RSDB (signal-to-background ratio/relative standard deviation of the background) approach under the optimized condition. The LODs for the test elementals ranged from 15 to 400 ng mL(-1) for 10 μL injections, with absolute mass values from 0.2 to 4 ng.

  19. Determination of eight nitrosamines in water at the ng L(-1) levels by liquid chromatography coupled to atmospheric pressure chemical ionization tandem mass spectrometry.

    Science.gov (United States)

    Ripollés, Cristina; Pitarch, Elena; Sancho, Juan V; López, Francisco J; Hernández, Félix

    2011-09-19

    In this work, we have developed a sensitive method for detection and quantification of eight N-nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosomorpholine (NMor), N-nitrosomethylethylamine (NMEA), N-nitrosopirrolidine (NPyr), N-nitrosodiethylamine (NDEA), N-nitrosopiperidine (NPip), N-nitroso-n-dipropylamine (NDPA) and N-nitrosodi-n-butylamine (NDBA) in drinking water. The method is based on liquid chromatography coupled to tandem mass spectrometry, using atmospheric pressure chemical ionization (APCI) in positive mode with a triple quadrupole analyzer (QqQ). The simultaneous acquisition of two MS/MS transitions in selected reaction monitoring mode (SRM) for each compound, together with the evaluation of their relative intensity, allowed the simultaneous quantification and reliable identification in water at ppt levels. Empirical formula of the product ions selected was confirmed by UHPLC-(Q)TOF MS accurate mass measurements from reference standards. Prior to LC-MS/MS QqQ analysis, a preconcentration step by off-line SPE using coconut charcoal EPA 521 cartridges (by passing 500 mL of water sample) was necessary to improve the sensitivity and to meet regulation requirements. For accurate quantification, two isotope labelled nitrosamines (NDMA-d(6) and NDPA-d(14)) were added as surrogate internal standards to the samples. The optimized method was validated at two concentration levels (10 and 100 ng L(-1)) in drinking water samples, obtaining satisfactory recoveries (between 90 and 120%) and precision (RSDwater samples: chlorinated from drinking water and wastewater treatment plants (DWTP and WWTP, respectively), wastewaters subjected to ozonation and tap waters.

  20. In-Line Ozonation for Sensitive Air-Monitoring of a Mustard-Gas Simulant by Atmospheric Pressure Chemical Ionization Mass Spectrometry

    Science.gov (United States)

    Okumura, Akihiko

    2015-09-01

    A highly sensitive method for real-time air-monitoring of mustard gas (bis(2-chloroethyl) sulfide, HD), which is a lethal blister agent, is proposed. Humidified air containing a HD simulant, 2-chloroethyl ethyl sulfide (2CEES), was mixed with ozone and then analyzed by using an atmospheric pressure chemical ionization ion trap tandem mass spectrometer. Mass-spectral ion peaks attributable to protonated molecules of intact, monooxygenated, and dioxygenated 2CEES (MH+, MOH+, and MO2H+, respectively) were observed. As ozone concentration was increased from zero to 30 ppm, the signal intensity of MH+ sharply decreased, that of MOH+ increased once and then decreased, and that of MO2H+ sharply increased until reaching a plateau. The signal intensity of MO2H+ at the plateau was 40 times higher than that of MH+ and 100 times higher than that of MOH+ in the case without in-line ozonation. Twenty-ppm ozone gas was adequate to give a linear calibration curve for 2CEES obtained by detecting the MO2H+ signal in the concentration range up to 60 μg/m3, which is high enough for hygiene management. In the low concentration range lower than 3 μg/m3, which is equal to the short-term exposure limit for HD, calibration plots unexpectedly fell off the linear calibration curve, but 0.6-μg/m3 vapor was actually detected with the signal-to-noise ratio of nine. Ozone was generated from instrumentation air by using a simple and inexpensive home-made generator. 2CEES was ozonated in 1-m extended sampling tube in only 1 s.

  1. Profiling of triacylglycerols in plant oils by high-performance liquid chromatography-atmosphere pressure chemical ionization mass spectrometry using a novel mixed-mode column.

    Science.gov (United States)

    Hu, Na; Wei, Fang; Lv, Xin; Wu, Lin; Dong, Xu-Yan; Chen, Hong

    2014-12-01

    In this investigation, a rapid and high-throughput method for profiling of TAGs in plant oils by liquid chromatography using a single column coupled with atmospheric pressure chemical ionization (APCI) mass spectrometry was reported. A novel mixed-mode phenyl-hexyl chromatographic column was employed in this separation system. The phenyl-hexyl column could provide hydrophobic interactions as well as π-π interactions. Compared with two traditionally columns used in TAG separation - the C18 column and silver-ion column, this column exhibited much higher selectivity for the separation of TAGs with great efficiency and rapid speed. By comparison with a novel mix-mode column (Ag-HiSep OTS column), which can also provide both hydrophobic interactions as well as π-π interactions for the separation of TAGs, phenyl-hexyl column exhibited excellent stability. LC method using phenyl-hexyl column coupled with APCI-MS was successfully applied for the profiling of TAGs in soybean oils, peanut oils, corn oils, and sesame oils. 29 TAGs in peanut oils, 22 TAGs in soybean oils, 19 TAGs in corn oils, and 19 TAGs in sesame oils were determined and quantified. The LC-MS data was analyzed by barcodes and principal component analysis (PCA). The resulting barcodes constitute a simple tool to display differences between different plant oils. Results of PCA also enabled a clear identification of different plant oils. This method provided an efficient and convenient chromatographic technology for the fast characterization and quantification of complex TAGs in plant oils at high selectivity. It has great potential as a routine analytical method for analysis of edible oil quality and authenticity control.

  2. High performance liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometry for sensitive determination of bioactive amines in donkey milk.

    Science.gov (United States)

    La Torre, Giovanna Loredana; Saitta, Marcello; Giorgia Potortì, Angela; Di Bella, Giuseppa; Dugo, Giacomo

    2010-08-06

    In the present study we report on the optimization and validation of a sensitive high performance liquid chromatography atmospheric pressure chemical ionization mass spectrometry (HPLC-APCI-MS) method for the determination of 8 bioactive amines (histamine, tyramine, tryptamine, 2-phenylethylamine, cadaverine, putrescine, spermidine and spermine) in donkey milk samples. The method involves donkey milk pre-treatment to remove proteins and pre-column dansylation of the amines. HPLC in reversed phase mode has been used for bioactive amines separation and the operating condition of the APCI-MS system proved to be powerful and very efficient for peak assignment. The separation was accomplished in a short time with an excellent resolution for all the amine peaks. Quantification was carried out by monitoring the characteristic [M+H](+) ion of each amine derivative. The method sensitivity, linearity and repeatability were assayed with satisfactory results. The detection limits of the analysed amines ranged from 0.5 microg L(-1) to 15 microg L(-1); the highest LOD was for spermine. Also remarkably good recovery values were obtained; at the lowest spiking level (1 microg L(-1)) the percent mean recoveries ranged from 77.7 to 109.7. Furthermore, as the investigations relate to a complex matrix as donkey milk, suitable studies on matrix effect were performed. Finally, the developed and validated method was applied to analyse 13 donkey milk samples. Among the identified bioactive amines, putrescine, spermine and spermidine proved to be the main amines in donkey milk. Their concentration levels in the present study were lower than the values determined in mature human, cow and sow milk.

  3. Atmospheric pressure femtosecond laser imaging mass spectrometry

    Science.gov (United States)

    Coello, Yves; Gunaratne, Tissa C.; Dantus, Marcos

    2009-02-01

    We present a novel imaging mass spectrometry technique that uses femtosecond laser pulses to directly ionize the sample. The method offers significant advantages over current techniques by eliminating the need of a laser-absorbing sample matrix, being suitable for atmospheric pressure sampling, and by providing 10μm resolution, as demonstrated here with a chemical image of vegetable cell walls.

  4. Online profiling of triacylglycerols in plant oils by two-dimensional liquid chromatography using a single column coupled with atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Wei, Fang; Ji, Shu-Xian; Hu, Na; Lv, Xin; Dong, Xu-Yan; Feng, Yu-Qi; Chen, Hong

    2013-10-18

    The complexity of natural triacylglycerols (TAGs) in various edible oils is high because of the hundreds of TAG compositions, which makes the profiling of TAGs quite difficult. In this investigation, a rapid and high-throughput method for online profiling of TAGs in plant oils by two-dimensional (2D) liquid chromatography using a single column coupled with atmospheric pressure chemical ionization (APCI) mass spectrometry was reported. A novel mixed-mode 2D chromatographic column packed with silver-ion-modified octyl and sulfonic co-bonded silica was employed in this online 2D separation system. This novel 2D column combined the features of C8 column and silver-ion. In comparison with the traditional C18 column and silver-ion column, which are the two main columns used for the separation of complex TAGs in natural oil samples, this novel 2D column, could provide hydrophobic interactions as well as π-complexation interactions. It exhibited much higher selectivity for the separation of TAGs, and the separation was rapid. This online 2D separation system was successful in the separation of a large number of TAG solutes, and the TAG structures were evaluated by analyzing their APCI mass spectra information. This system was applied for the profiling of TAGs in peanut oils, corn oils, and soybean oils. 30 TAGs in peanut oils, 18 TAGs in corn oils, and 21 TAGs in soybean oils were determined and quantified. The highest relative content of TAGs was LLL, which was found in corn oil with the relative content up to 45.43 (%, w/w), and the lowest relative content of TAGs was LLS and OSS, which was found in soybean oil and corn oil respectively, with the relative content only 0.01 (%, w/w). In addition, the TAG data were analyzed by principal component analysis (PCA). Results of PCA enabled a clear identification of different plant oils. This method provided an efficient and convenient chromatographic technology for the fast characterization and quantification of complex TAGs

  5. Determination of eight nitrosamines in water at the ng L{sup -1} levels by liquid chromatography coupled to atmospheric pressure chemical ionization tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ripolles, Cristina; Pitarch, Elena; Sancho, Juan V.; Lopez, Francisco J. [Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat, E-12071 Castellon (Spain); Hernandez, Felix, E-mail: felix.hernandez@qfa.uji.es [Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat, E-12071 Castellon (Spain)

    2011-09-19

    Highlights: {center_dot} Eight N-nitrosamines in water by LC(APCI)MS/MS QqQ analysis. {center_dot} Validation at two levels: 10 ng L{sup -1} (LOQ) and 100 ng L{sup -1} in drinking water. {center_dot} Developed method applied to different types of water samples. {center_dot} NDMA was the analyte more frequently detected and at the highest concentration levels. - Abstract: In this work, we have developed a sensitive method for detection and quantification of eight N-nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosomorpholine (NMor), N-nitrosomethylethylamine (NMEA), N-nitrosopirrolidine (NPyr), N-nitrosodiethylamine (NDEA), N-nitrosopiperidine (NPip), N-nitroso-n-dipropylamine (NDPA) and N-nitrosodi-n-butylamine (NDBA) in drinking water. The method is based on liquid chromatography coupled to tandem mass spectrometry, using atmospheric pressure chemical ionization (APCI) in positive mode with a triple quadrupole analyzer (QqQ). The simultaneous acquisition of two MS/MS transitions in selected reaction monitoring mode (SRM) for each compound, together with the evaluation of their relative intensity, allowed the simultaneous quantification and reliable identification in water at ppt levels. Empirical formula of the product ions selected was confirmed by UHPLC-(Q)TOF MS accurate mass measurements from reference standards. Prior to LC-MS/MS QqQ analysis, a preconcentration step by off-line SPE using coconut charcoal EPA 521 cartridges (by passing 500 mL of water sample) was necessary to improve the sensitivity and to meet regulation requirements. For accurate quantification, two isotope labelled nitrosamines (NDMA-d{sub 6} and NDPA-d{sub 14}) were added as surrogate internal standards to the samples. The optimized method was validated at two concentration levels (10 and 100 ng L{sup -1}) in drinking water samples, obtaining satisfactory recoveries (between 90 and 120%) and precision (RSD < 20%). Limits of detection were found to be in the range of 1-8 ng L{sup -1

  6. Validation of a qualitative screening method for pesticides in fruits and vegetables by gas chromatography quadrupole-time of flight mass spectrometry with atmospheric pressure chemical ionization

    Energy Technology Data Exchange (ETDEWEB)

    Portolés, T. [Research Institute for Pesticides and Water, University Jaume I, 12071 Castellón (Spain); RIKILT Institute of Food Safety, Wageningen University and Research Centre, Akkermaalsbos 2, 6708 WB Wageningen (Netherlands); Mol, J.G.J. [RIKILT Institute of Food Safety, Wageningen University and Research Centre, Akkermaalsbos 2, 6708 WB Wageningen (Netherlands); Sancho, J.V.; López, Francisco J. [Research Institute for Pesticides and Water, University Jaume I, 12071 Castellón (Spain); Hernández, F., E-mail: hernandf@uji.es [Research Institute for Pesticides and Water, University Jaume I, 12071 Castellón (Spain)

    2014-08-01

    Highlights: • Applicability of GC-(APCI)QTOF MS as new tool for wide-scope screening of pesticides in fruits and vegetables demonstrated. • Validation of screening method according to SANCO/12571/2013. • Detection of the pesticides based on the presence of M+·/MH+ in most cases. • Screening detection limit 0.01 mg kg{sup −1} for 77% of the pesticides investigated. • Successful identification at 0.01 mg kg{sup −1} for 70% of the pesticides/matrix combinations. - Abstract: A wide-scope screening method was developed for the detection of pesticides in fruit and vegetables. The method was based on gas chromatography coupled to a hybrid quadrupole time-of-flight mass spectrometer with an atmospheric pressure chemical ionization source (GC-(APCI)QTOF MS). A non-target acquisition was performed through two alternating scan events: one at low collision energy and another at a higher collision energy ramp (MS{sup E}). In this way, both protonated molecule and/or molecular ion together with fragment ions were obtained in a single run. Validation was performed according to SANCO/12571/2013 by analysing 20 samples (10 different commodities in duplicate), fortified with a test set of 132 pesticides at 0.01, 0.05 and 0.20 mg kg{sup −1}. For screening, the detection was based on one diagnostic ion (in most cases the protonated molecule). Overall, at the 0.01 mg kg{sup −1} level, 89% of the 2620 fortifications made were detected. The screening detection limit for individual pesticides was 0.01 mg kg{sup −1} for 77% of the pesticides investigated. The possibilities for identification according to the SANCO criteria, requiring two ions with a mass accuracy ≤±5 ppm and an ion-ratio deviation ≤±30%, were investigated. At the 0.01 mg kg{sup −1} level, identification was possible for 70% of the pesticides detected during screening. This increased to 87% and 93% at the 0.05 and 0.20 mg kg{sup −1} level, respectively. Insufficient sensitivity for the second

  7. Screening and quantification of pesticide residues in fruits and vegetables making use of gas chromatography-quadrupole time-of-flight mass spectrometry with atmospheric pressure chemical ionization.

    Science.gov (United States)

    Cervera, M I; Portolés, T; López, F J; Beltrán, J; Hernández, F

    2014-11-01

    An atmospheric pressure chemical ionization source has been used to enhance the potential of gas chromatography coupled with quadrupole time-of-flight (QTOF) mass spectrometry (MS) for screening and quantification purposes in pesticide residue analysis. A screening method developed in our laboratory for around 130 pesticides has been applied to fruit and vegetable samples, including strawberries, oranges, apples, carrots, lettuces, courgettes, red peppers, and tomatoes. Samples were analyzed together with quality control samples (at 0.05 mg/kg) for each matrix and for matrix-matched calibration standards. The screening strategy consisted in first rapid searching and detection, and then a refined identification step using the QTOF capabilities (MS(E) and accurate mass). Identification was based on the presence of one characteristic m/z ion (Q) obtained with the low collision energy function and at least one fragment ion (q) obtained with the high collision energy function, both with mass errors of less than 5 ppm, and an ion intensity ratio (q/Q) within the tolerances permitted. Following this strategy, 15 of 130 pesticides were identified in the samples. Afterwards, the quantitation capabilities were tested by performing a quantitative validation for those pesticides detected in the samples. To this aim, five matrices were selected (orange, apple, tomato, lettuce, and carrot) and spiked at two concentrations (0.01 and 0.1 mg/kg), and quantification was done using matrix-matched calibration standards (relative responses versus triphenyl phosphate used as an internal standard). Acceptable average recoveries and relative standard deviations were obtained for many but not all pesticide-matrix combinations. These figures allowed us to perform a retrospective quantification of positives found in the screening without the need for additional analysis. Taking advantage of the accurate-mass full-spectrum data provided by QTOF MS, we searched for a higher number of compounds

  8. Liquid chromatography coupled to different atmospheric pressure ionization sources-quadrupole-time-of-flight mass spectrometry and post-column addition of metal salt solutions as a powerful tool for the metabolic profiling of Fusarium oxysporum.

    Science.gov (United States)

    Cirigliano, Adriana M; Rodriguez, M Alejandra; Gagliano, M Laura; Bertinetti, Brenda V; Godeas, Alicia M; Cabrera, Gabriela M

    2016-03-25

    Fusarium oxysporum L11 is a non-pathogenic soil-borne fungal strain that yielded an extract that showed antifungal activity against phytopathogens. In this study, reversed-phase high-performance liquid chromatography (RP-HPLC) coupled to different atmospheric pressure ionization sources-quadrupole-time-of-flight mass spectrometry (API-QTOF-MS) was applied for the comprehensive profiling of the metabolites from the extract. The employed sources were electrospray (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). Post-column addition of metal solutions of Ca, Cu and Zn(II) was also tested using ESI. A total of 137 compounds were identified or tentatively identified by matching their accurate mass signals, suggested molecular formulae and MS/MS analysis with previously reported data. Some compounds were isolated and identified by NMR. The extract was rich in cyclic peptides like cyclosporins, diketopiperazines and sansalvamides, most of which were new, and are reported here for the first time. The use of post-column addition of metals resulted in a useful strategy for the discrimination of compound classes since specific adducts were observed for the different compound families. This technique also allowed the screening for compounds with metal binding properties. Thus, the applied methodology is a useful choice for the metabolic profiling of extracts and also for the selection of metabolites with potential biological activities related to interactions with metal ions.

  9. The upper atmosphere of the exoplanet HD209458b revealed by the sodium D lines: Temperature-pressure profile, ionization layer, and thermosphere

    CERN Document Server

    Vidal-Madjar, A; Etangs, A Lecavelier des; Ferlet, R; Desert, J -M; Hebrard, G; Boisse, I; Ehrenreich, D; Moutou, C

    2010-01-01

    A complete reassessment of the HST observations of the transits of the extrasolar planet HD209458b has provided a transmission spectrum of the atmosphere over a wide range of wavelengths. Analysis of the NaI absorption line profile has already shown that the sodium abundance has to drop by at least a factor of ten above a critical altitude. Here we analyze the profile in the deep core of the NaI doublet line from HST and high-resolution ground-based spectra to further constrain the vertical structure of the HD209458b atmosphere. With a wavelength-dependent cross section that spans more than 5 orders of magnitude, we use the absorption signature of the NaI doublet as an atmospheric probe. The NaI transmission features are shown to sample the atmosphere of HD209458b over an altitude range of more than 6500km, corresponding to a pressure range of 14 scale heights spanning 1 millibar to 1e-9 bar pressures. By comparing the observations with a multi-layer model in which temperature is a free parameter at the resol...

  10. Modified-Atmospheric Pressure-Matrix Assisted Laser Desorption/Ionization Identification of Friction Modifier Additives Oleamide and Ethoxylated Tallow Amines on Varied Metal Target Materials and Tribologically Stressed Steel Surfaces.

    Science.gov (United States)

    Widder, Lukas; Ristic, Andjelka; Brenner, Florian; Brenner, Josef; Hutter, Herbert

    2015-11-17

    For many tasks in failure and damage analysis of surfaces deteriorated in heavy tribological contact, the detailed characterization of used lubricants and their additives is essential. The objective of the presented work is to establish accessibility of tribostressed surfaces for direct characterization via modified atmospheric pressure-matrix assisted laser desorption/ionization-mass spectrometry (m-AP-MALDI-MS). Special target holders were constructed to allow target samples of differing shape and form to fit into the desorption/ionization chamber. The best results of desorption and ionization on different target materials and varying roughnesses were achieved on smooth surfaces with low matrix/substrate interaction. M-AP-MALDI characterization of tribologically stressed steel surfaces after pin-on-disc sliding wear tests (SRV-tribotests) yielded positive identification of used friction modifier additives. Further structure elucidation by electrospray ionization mass spectrometry (ESI-MS) and measurements of worn surfaces by time-of-flight-secondary ion mass spectrometry (TOF-SIMS) accompanied findings about additive behavior and deterioration during tribological contact. Using m-AP-MALDI for direct offline examinations of worn surfaces may set up a quick method for determination of additives used for lubrication and general characterization of a tribological system.

  11. Detection of dimethylamine in the low pptv range using nitrate chemical ionization atmospheric pressure interface time-of-flight (CI-APi-TOF) mass spectrometry

    Science.gov (United States)

    Simon, Mario; Heinritzi, Martin; Herzog, Stephan; Leiminger, Markus; Bianchi, Federico; Praplan, Arnaud; Dommen, Josef; Curtius, Joachim; Kürten, Andreas

    2016-05-01

    Amines are potentially important for atmospheric new particle formation, but their concentrations are usually low with typical mixing ratios in the pptv range or even smaller. Therefore, the demand for highly sensitive gas-phase amine measurements has emerged in the last several years. Nitrate chemical ionization mass spectrometry (CIMS) is routinely used for the measurement of gas-phase sulfuric acid in the sub-pptv range. Furthermore, extremely low volatile organic compounds (ELVOCs) can be detected with a nitrate CIMS. In this study we demonstrate that a nitrate CIMS can also be used for the sensitive measurement of dimethylamine (DMA, (CH3)2NH) using the NO3-•(HNO3)1 - 2• (DMA) cluster ion signal. Calibration measurements were made at the CLOUD chamber during two different measurement campaigns. Good linearity between 0 and ˜ 120 pptv of DMA as well as a sub-pptv detection limit of 0.7 pptv for a 10 min integration time are demonstrated at 278 K and 38 % RH.

  12. Novel analytical approach for brominated flame retardants based on the use of gas chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry with emphasis in highly brominated congeners.

    Science.gov (United States)

    Portolés, Tania; Sales, Carlos; Gómara, Belén; Sancho, Juan Vicente; Beltrán, Joaquim; Herrero, Laura; González, María José; Hernández, Félix

    2015-10-06

    The analysis of brominated flame retardants (BFRs) commonly relies on the use of gas chromatography coupled to mass spectrometry (GC-MS) operating in electron ionization (EI) and electron capture negative ionization (ECNI) modes using quadrupole, triple quadrupole, ion trap, and magnetic sector analyzers. However, these brominated contaminants are examples of compounds for which a soft and robust ionization technique might be favorable since they show high fragmentation in EI and low specificity in ECNI. In addition, the low limits of quantification (0.01 ng/g) required by European Commission Recommendation 2014/118/EU on the monitoring of traces of BFRs in food put stress on the use of highly sensitive techniques/methods. In this work, a new approach for the extremely sensitive determination of BFRs taking profit of the potential of atmospheric pressure chemical ionization (APCI) combined with GC and triple quadrupole (QqQ) mass analyzer is proposed. The objective was to explore the potential of this approach for the BFRs determination in samples at pg/g levels, taking marine samples and a cream sample as a model. Ionization and fragmentation behavior of 14 PBDEs (congeners 28, 47, 66, 85, 99, 100, 153, 154, 183, 184, 191, 196, 197, and 209) and two novel BFRs, decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), in the GC-APCI-MS system has been investigated. The formation of highly abundant (quasi) molecular ion was the main advantage observed in relation to EI. Thus, a notable improvement in sensitivity and specificity was observed when using it as precursor ion in tandem MS. The improved detectability (LODs < 10 fg) achieved when using APCI compared to EI has been demonstrated, which is especially relevant for highly brominated congeners. Analysis of samples from an intercomparison exercise and samples from the marine field showed the potential of this approach for the reliable identification and quantification at very low

  13. Atmospheric Pressure Indicator.

    Science.gov (United States)

    Salzsieder, John C.

    1995-01-01

    Discusses observable phenomena related to air pressure. Describes a simple, unobtrusive, semiquantitative device to monitor the changes in air pressure that are associated with altitude, using a soft-drink bottle and a balloon. (JRH)

  14. Atmospheric Pressure During Landing

    Science.gov (United States)

    1997-01-01

    This figure shows the variation with time of pressure (dots) measured by the Pathfinder MET instrument during the landing period shown in image PIA00797. The two diamonds indicate the times of bridal cutting and 1st impact. The overall trend in the data is of pressure increasing with time. This is almost certainly due to the lander rolling downhill by roughly 10 m. The spacing of the horizontal dotted lines indicates the pressure change expected from 10 m changes in altitude. Bounces may also be visible in the data.

  15. Martian Atmospheric Pressure Static Charge Elimination Tool

    Science.gov (United States)

    Johansen, Michael R.

    2014-01-01

    A Martian pressure static charge elimination tool is currently in development in the Electrostatics and Surface Physics Laboratory (ESPL) at NASA's Kennedy Space Center. In standard Earth atmosphere conditions, static charge can be neutralized from an insulating surface using air ionizers. These air ionizers generate ions through corona breakdown. The Martian atmosphere is 7 Torr of mostly carbon dioxide, which makes it inherently difficult to use similar methods as those used for standard atmosphere static elimination tools. An initial prototype has been developed to show feasibility of static charge elimination at low pressure, using corona discharge. A needle point and thin wire loop are used as the corona generating electrodes. A photo of the test apparatus is shown below. Positive and negative high voltage pulses are sent to the needle point. This creates positive and negative ions that can be used for static charge neutralization. In a preliminary test, a floating metal plate was charged to approximately 600 volts under Martian atmospheric conditions. The static elimination tool was enabled and the voltage on the metal plate dropped rapidly to -100 volts. This test data is displayed below. Optimization is necessary to improve the electrostatic balance of the static elimination tool.

  16. Electron heating in atmospheric pressure glow discharges

    Science.gov (United States)

    Stark, Robert H.; Schoenbach, Karl H.

    2001-04-01

    The application of nanosecond voltage pulses to weakly ionized atmospheric pressure plasmas allows heating the electrons without considerably increasing the gas temperature, provided that the duration of the pulses is less than the critical time for the development of glow-to-arc transitions. The shift in the electron energy distribution towards higher energies causes a temporary increase in the ionization rate, and consequently a strong rise in electron density. This increase in electron density is reflected in an increased decay time of the plasma after the pulse application. Experiments in atmospheric pressure air glow discharges with gas temperatures of approximately 2000 K have been performed to explore the electron heating effect. Measurements of the temporal development of the voltage across the discharge and the optical emission in the visible after applying a 10 ns high voltage pulse to a weakly ionized steady state plasma demonstrated increasing plasma decay times from tens of nanoseconds to microseconds when the pulsed electric field was raised from 10 to 40 kV/cm. Temporally resolved photographs of the discharge have shown that the plasma column expands during this process. The nonlinear electron heating effect can be used to reduce the power consumption in a repetitively operated air plasma considerably compared to a dc plasma operation. Besides allowing power reduction, pulsed electron heating also has the potential to enhance plasma processes, which require elevated electron energies, such as excimer generation for ultraviolet lamps.

  17. Study and Control of Various Corona Modes in an Atmospheric Pressure Weakly Ionized Plasma Reactor Using a Current Sensor Characterized by a Broad Frequency Band

    Science.gov (United States)

    Islam, Rokibul; Pedrow, Patrick; Lekobou, William; Englund, Karl

    2013-09-01

    A broad band current sensor is being used to monitor the various phenomena (primary streamers, secondary streamers, back corona, etc.) associated with an atmospheric pressure needle-array-to-grounded-screen corona discharge. The reactor consists of a PVC tube and the needle array consists of nickel coated steel electrodes with radius of curvature about 50 μ . The grounded screen is made from stainless steel mesh and applied voltage has a frequency of 60 Hz with an RMS value ranging from 0 to 10 kV. The voltage sensor is a resistive divider and the current sensor is a viewing resistor with value 50 Ω. The feed gas stream is presently (argon + acetylene) or (argon + oxygen) with the argon acting as carrier gas and the acetylene and oxygen acting as precursor gases. Voltage and current are captured with a LeCroy 9350AL 500MHz oscilloscope and analyzed with Matlab using digital signal processing algorithms. The goals of the research are 1) to measure reactor electrical power on a real time basis; 2) to provide real time control of the applied voltage and thus avoid spark conditions; and 3) to identify the various corona modes present in the reactor. Processing of substrates takes place downstream from the grounded screen, outside of the harsh corona discharge environment.

  18. Novel analytical methods for flame retardants and plasticizers based on gas chromatography, comprehensive two-dimensional gas chromatography, and direct probe coupled to atmospheric pressure chemical ionization-high resolution time-of-flight-mass spectrometry.

    Science.gov (United States)

    Ballesteros-Gómez, Ana; de Boer, Jacob; Leonards, Pim E G

    2013-10-15

    In this study, we assess the applicability of different analytical techniques, namely, direct probe (DP), gas chromatography (GC), and comprehensive two-dimensional gas chromatography (GC × GC) coupled to atmospheric pressure chemical ionization (APCI) with a high resolution (HR)-time-of-flight (TOF)-mass spectrometry (MS) for the analysis of flame retardants and plasticizers in electronic waste and car interiors. APCI-HRTOFMS is a combination scarcely exploited yet with GC or with a direct probe for screening purposes and to the best of our knowledge, never with GC × GC to provide comprehensive information. Because of the increasing number of flame retardants and questions about their environmental fate, there is a need for the development of wider target and untargeted screening techniques to assess human exposure to these compounds. With the use of the APCI source, we took the advantage of using a soft ionization technique that provides mainly molecular ions, in addition to the accuracy of HRMS for identification. The direct probe provided a very easy and inexpensive method for the identification of flame retardants without any sample preparation. This technique seems extremely useful for the screening of solid materials such as electrical devices, electronics and other waste. GC-APCI-HRTOF-MS appeared to be more sensitive compared to liquid chromatography (LC)-APCI/atmospheric pressure photoionization (APPI)-HRTOF-MS for a wider range of flame retardants with absolute detection limits in the range of 0.5-25 pg. A variety of tri- to decabromodiphenyl ethers, phosphorus flame retardants and new flame retardants were found in the samples at levels from microgram per gram to milligram per gram levels.

  19. Preliminary Figures of Merit for Isotope Ratio Measurements: The Liquid Sampling-Atmospheric Pressure Glow Discharge Microplasma Ionization Source Coupled to an Orbitrap Mass Analyzer.

    Science.gov (United States)

    Hoegg, Edward D; Barinaga, Charles J; Hager, George J; Hart, Garret L; Koppenaal, David W; Marcus, R Kenneth

    2016-08-01

    In order to meet a growing need for fieldable mass spectrometer systems for precise elemental and isotopic analyses, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) has a number of very promising characteristics. One key set of attributes that await validation deals with the performance characteristics relative to isotope ratio precision and accuracy. Owing to its availability and prior experience with this research team, the initial evaluation of isotope ratio (IR) performance was performed on a Thermo Scientific Exactive Orbitrap instrument. While the mass accuracy and resolution performance for Orbitrap analyzers are well-documented, no detailed evaluations of the IR performance have been published. Efforts described here involve two variables: the inherent IR precision and accuracy delivered by the LS-APGD microplasma and the inherent IR measurement qualities of Orbitrap analyzers. Important to the IR performance, the various operating parameters of the Orbitrap sampling interface, high-energy collisional dissociation (HCD) stage, and ion injection/data acquisition have been evaluated. The IR performance for a range of other elements, including natural, depleted, and enriched uranium isotopes was determined. In all cases, the precision and accuracy are degraded when measuring low abundance (<0.1% isotope fractions). In the best case, IR precision on the order of 0.1% RSD can be achieved, with values of 1%-3% RSD observed for low-abundance species. The results suggest that the LS-APGD is a promising candidate for field deployable MS analysis and that the high resolving powers of the Orbitrap may be complemented with a here-to-fore unknown capacity to deliver high-precision IRs. Graphical Abstract ᅟ.

  20. Preliminary Figures of Merit for Isotope Ratio Measurements: The Liquid Sampling-Atmospheric Pressure Glow Discharge Microplasma Ionization Source Coupled to an Orbitrap Mass Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Hoegg, Edward D.; Barinaga, Charles J.; Hager, George J.; Hart, Garret L.; Koppenaal, David W.; Marcus, R. Kenneth

    2016-03-01

    ABSTRACT In order to meet a growing need for fieldable mass spectrometer systems for precise elemental and isotopic analyses, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) has a number of very promising characteristics. One key set of attributes that await validation deals with the performance characteristics relative to isotope ratio precision and accuracy. Due to its availability and prior experience with this research team, the initial evaluation of isotope ratio (IR) performance was performed on a Thermo Scientific Exactive Orbitrap instrument. While the mass accuracy and resolution performance for orbitrap analyzers are very well documented, no detailed evaluations of the IR performance have been published. Efforts described here involve two variables: the inherent IR precision and accuracy delivered by the LSAPGD microplasma and the inherent IR measurement qualities of orbitrap analyzers. Important to the IR performance, the various operating parameters of the orbitrap sampling interface, HCD dissociation stage, and ion injection/data acquisition have been evaluated. The IR performance for a range of other elements, including natural, depleted, and enriched uranium isotopes was determined. In all cases the precision and accuracy are degraded when measuring low abundance (<0.1% isotope fractions). In the best case, IR precision on the order of 0.1 %RSD can be achieved, with values of 1-3 %RSD observed for low-abundance species. The results suggest that the LSAPGD is a very good candidate for field deployable MS analysis and that the high resolving powers of the orbitrap may be complemented with a here-to-fore unknown capacity to deliver high-precision isotope ratios.

  1. Preliminary Figures of Merit for Isotope Ratio Measurements: The Liquid Sampling-Atmospheric Pressure Glow Discharge Microplasma Ionization Source Coupled to an Orbitrap Mass Analyzer

    Science.gov (United States)

    Hoegg, Edward D.; Barinaga, Charles J.; Hager, George J.; Hart, Garret L.; Koppenaal, David W.; Marcus, R. Kenneth

    2016-08-01

    In order to meet a growing need for fieldable mass spectrometer systems for precise elemental and isotopic analyses, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) has a number of very promising characteristics. One key set of attributes that await validation deals with the performance characteristics relative to isotope ratio precision and accuracy. Owing to its availability and prior experience with this research team, the initial evaluation of isotope ratio (IR) performance was performed on a Thermo Scientific Exactive Orbitrap instrument. While the mass accuracy and resolution performance for Orbitrap analyzers are well-documented, no detailed evaluations of the IR performance have been published. Efforts described here involve two variables: the inherent IR precision and accuracy delivered by the LS-APGD microplasma and the inherent IR measurement qualities of Orbitrap analyzers. Important to the IR performance, the various operating parameters of the Orbitrap sampling interface, high-energy collisional dissociation (HCD) stage, and ion injection/data acquisition have been evaluated. The IR performance for a range of other elements, including natural, depleted, and enriched uranium isotopes was determined. In all cases, the precision and accuracy are degraded when measuring low abundance (<0.1% isotope fractions). In the best case, IR precision on the order of 0.1% RSD can be achieved, with values of 1%-3% RSD observed for low-abundance species. The results suggest that the LS-APGD is a promising candidate for field deployable MS analysis and that the high resolving powers of the Orbitrap may be complemented with a here-to-fore unknown capacity to deliver high-precision IRs.

  2. Comparing Laser Desorption Ionization and Atmospheric Pressure Photoionization Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry To Characterize Shale Oils at the Molecular Level

    Science.gov (United States)

    Cho, Yunjo; Jin, Jang Mi; Witt, Matthias; Birdwell, Justin E.; Na, Jeong-Geol; Roh, Nam-Sun; Kim, Sunghwan

    2013-01-01

    Laser desorption ionization (LDI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to analyze shale oils. Previous work showed that LDI is a sensitive ionization technique for assessing aromatic nitrogen compounds, and oils generated from Green River Formation oil shales are well-documented as being rich in nitrogen. The data presented here demonstrate that LDI is effective in ionizing high-double-bond-equivalent (DBE) compounds and, therefore, is a suitable method for characterizing compounds with condensed structures. Additionally, LDI generates radical cations and protonated ions concurrently, the distribution of which depends upon the molecular structures and elemental compositions, and the basicity of compounds is closely related to the generation of protonated ions. This study demonstrates that LDI FT-ICR MS is an effective ionization technique for use in the study of shale oils at the molecular level. To the best of our knowledge, this is the first time that LDI FT-ICR MS has been applied to shale oils.

  3. Fragmentation energy index for universalization of fragmentation energy in ion trap mass spectrometers for the analysis of chemical weapon convention related chemicals by atmospheric pressure ionization-tandem mass spectrometry analysis.

    Science.gov (United States)

    Palit, Meehir; Mallard, Gary

    2009-04-01

    The use of mass spectra generated at 70 eV in electron ionization (EI) as a universal standard for EI has helped in the generation of searchable library databases and had a profound influence on the analytical applications of gas chromatography/mass spectrometry (GC/MS), similarly for liquid chromatography tandem mass spectrometry (LC-MS/MS), suggesting a novel method to normalize the collisional energy for the universalization of fragmentation energy for the analysis of Chemical Weapon Convention (CWC)-related chemicals by atmospheric pressure ionization-tandem mass spectrometry (API-MS(n)) using three-dimensional (3D) ion trap instruments. For normalizing fragmentation energy a "fragmentation energy index" (FEI) is proposed which is an arbitrary scale based on the fact of specific MS/MS fragmentation obtained at different collisional energies for the reference chemicals which are not CWC scheduled compounds. FEI 6 for the generation of an MS(n) library-searchable mass spectral database is recommended.

  4. Investigation of the ionization mechanism of polycyclic aromatic hydrocarbons using an ethanol/bromobenzene/chlorobenzene/anisole mixture as a dopant in liquid chromatography/atmospheric pressure photoionization mass spectrometry

    KAUST Repository

    Amad, Maan H.

    2012-09-23

    RATIONALE An ethanol-based multicomponent dopant consisting of ethanol/chlorobenzene/bromobenzene/anisole (98.975:0.1:0.9:0.025, v/v/v/v) has been used as a dopant for atmospheric pressure photoionization (APPI) of polycyclic aromatic hydrocarbons (PAHs). In this study the mechanism of ionization of PAHs assisted by the ethanol-based multicomponent dopant is investigated. METHODS The reactant background cluster ions of the ethanol-based multicomponent dopant observed in the positive ion APPI were studied. These studies were performed to investigate the mechanism behind the generation of a molecular radical cation (M +•) for PAHs by APPI assisted by the ethanol-based multicomponent dopant. Full scan and MS/MS analyses were conducted using an LTQ Orbitrap mass spectrometer. The effect of acidification of the mobile phase on the dopant cluster ion formation was also investigated. RESULTS With the ethanol-based multicomponent dopant, a single type of molecular radical cation M +• was observed for the studied PAHs. The characteristic ion signal of the multicomponent dopant mixture consisted of mainly anisole photoions at m/z 108.05697 and its adduct ions at m/z 124.05188 and 164.07061. The anisole ion response at m/z 108.05697 was stable in the presence of acetonitrile, methanol, water and 0.1% formic acid mobile phase composition. CONCLUSIONS The abundance formation of anisole photoions shows the universality of this multicomponent dopant in ionizing compounds with ionization energy ranging from 7.1-8.2 eV. Since the ionization energy of anisole is 8.2 eV and is lower than those of chlorobenzene (9.07 eV) and bromobenzene (9.0 eV), the mechanism of formation of anisole photoions even with its very minute amounts was not only governed by its photoionization by the krypton lamp photon energy (10.0 eV and 10.6 eV), but also by charge transfer from bromobenzene and chlorobenzene radical cations. PAH molecules were mainly ionized by charge transfer reaction from

  5. Evaluation of the capabilities of atmospheric pressure chemical ionization source coupled to tandem mass spectrometry for the determination of dioxin-like polychlorobiphenyls in complex-matrix food samples.

    Science.gov (United States)

    Portolés, T; Sales, C; Abalos, M; Sauló, J; Abad, E

    2016-09-21

    The use of the novel atmospheric pressure chemical ionization (APCI) source for gas chromatography (GC) coupled to triple quadrupole using tandem mass spectrometry (MS/MS) and its potential for the simultaneous determination of the 12 dioxin-like polychlorobiphenyls (DL-PCBs) in complex food and feed matrices has been evaluated. In first place, ionization and fragmentation behavior of DL-PCBs on the APCI source under charge transfer conditions has been studied followed by their fragmentation in the collision cell. Linearity, repeatability and sensitivity have been studied obtaining instrumental limits of detection and quantification of 0.0025 and 0.005 pg μL(-1) (2.5 and 5 fg on column) respectively for every DL-PCB. Finally, application to real samples has been carried out and DL-PCB congeners (PCB 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169, 189) have been detected in the different samples in the range of 0.40-10000 pg g(-1). GC-(APCI)MS/MS has been proved as a suitable alternative to the traditionally accepted confirmation method based on the use of high resolution mass spectrometry and other triple quadrupole tandem mass spectrometry techniques operating with electron ionization. The development of MS/MS methodologies for the analysis of dioxins and DL-PCBs is nowadays particularly important, since this technique was included as a confirmatory method in the present European Union regulations that establish the requirements for the determination of these compounds in food and feed matrices.

  6. Matrix effect in the analysis of drugs of abuse from urine with desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS) and desorption electrospray ionization-mass spectrometry (DESI-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Suni, Niina M.; Lindfors, Pia; Laine, Olli [Division of Pharmaceutical Chemistry, University of Helsinki, P.O. Box 56, Helsinki FI-00014 (Finland); Ostman, Pekka; Ojanperae, Ilkka [Hjelt Institute, Department of Forensic Medicine, University of Helsinki, P.O. Box 40, Helsinki FI-00014 (Finland); Kotiaho, Tapio [Division of Pharmaceutical Chemistry, University of Helsinki, P.O. Box 56, Helsinki FI-00014 (Finland); Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FI-00014 (Finland); Kauppila, Tiina J. [Division of Pharmaceutical Chemistry, University of Helsinki, P.O. Box 56, Helsinki FI-00014 (Finland); Kostiainen, Risto, E-mail: risto.kostiainen@helsinki.fi [Division of Pharmaceutical Chemistry, University of Helsinki, P.O. Box 56, Helsinki FI-00014 (Finland)

    2011-08-05

    Highlights: {yields} DAPPI-MS and DESI-MSI in the analysis of drugs of abuse from urine. {yields} DAPPI-MS has better urine matrix tolerance over DESI-MS. {yields} Urine matrix can affect the ionization mechanism in DAPPI. {yields} DAPPI-MS/MS can be used for screening of drugs from urine after sample pretreatment. - Abstract: We have studied the matrix effect within direct analysis of benzodiazepines and opioids from urine with desorption electrospray ionization-mass spectrometry (DESI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). The urine matrix was found to affect the ionization mechanism of the opioids in DAPPI-MS favoring proton transfer over charge exchange reaction. The sensitivity for the drugs in solvent matrix was at the same level with DESI-MS and DAPPI-MS (LODs 0.05-6 {mu}g mL{sup -1}) but the decrease in sensitivity due to the urine matrix was higher with DESI (typically 20-160-fold) than with DAPPI (typically 2-15-fold) indicating better matrix tolerance of DAPPI over DESI. Also in MS/MS mode, DAPPI provided better sensitivity than DESI for the drugs in urine. The feasibility of DAPPI-MS/MS was then studied in screening the same drugs from five authentic, forensic post mortem urine samples. A reference measurement with gas chromatography-mass spectrometry (GC-MS) (including pretreatment) revealed 16 findings from the samples, whereas with DAPPI-MS/MS after sample pretreatment, 15 findings were made. Sample pretreatment was found necessary, since only eight findings were made from the same samples untreated.

  7. Laser electrospray mass spectrometry of adsorbed molecules at atmospheric pressure

    Science.gov (United States)

    Brady, John J.; Judge, Elizabeth J.; Simon, Kuriakose; Levis, Robert J.

    2010-02-01

    Atmospheric pressure mass analysis of solid phase biomolecules is performed using laser electrospray mass spectrometry (LEMS). A non-resonant femtosecond duration laser pulse vaporizes native samples at atmospheric pressure for subsequent electrospray ionization and transfer into a mass spectrometer. LEMS was used to detect a complex molecule (irinotecan HCl), a complex mixture (cold medicine formulation with active ingredients: acetaminophen, dextromethorphan HBr and doxylamine succinate), and a biological building block (deoxyguanosine) deposited on steel surfaces without a matrix molecule.

  8. Laserspray ionization, a new atmospheric pressure MALDI method for producing highly charged gas-phase ions of peptides and proteins directly from solid solutions.

    Science.gov (United States)

    Trimpin, Sarah; Inutan, Ellen D; Herath, Thushani N; McEwen, Charles N

    2010-02-01

    The first example of a matrix-assisted laser desorption/ionization (MALDI) process producing multiply charged mass spectra nearly identical to those observed with electrospray ionization (ESI) is presented. MALDI is noted for its ability to produce singly charged ions, but in the experiments described here multiply charged ions are produced by laser ablation of analyte incorporated into a common MALDI matrix, 2,5-dihydroxybenzoic acid, using standard solvent-based sample preparation protocols. Laser ablation is known to produce matrix clusters in MALDI provided a threshold energy is achieved. We propose that these clusters (liquid droplets) are highly charged, and under conditions that produce sufficient matrix evaporation, ions are field-evaporated from the droplets similarly to ESI. Because of the multiple charging, advanced mass spectrometers with limited mass-to-charge range can be used for protein characterization. Thus, using an Orbitrap mass spectrometer, low femtomole quantities of proteins produce full-range mass spectra at 100,000 mass resolution with <5-ppm mass accuracy and with 1-s acquisition. Furthermore, the first example of protein fragmentation using electron transfer dissociation with MALDI is presented.

  9. An atmospheric pressure chemical ionization-ion-trap mass spectrometer for the on-line analysis of volatile compounds in foods: a tool for linking aroma release to aroma perception.

    Science.gov (United States)

    Le Quéré, Jean-Luc; Gierczynski, Isabelle; Sémon, Etienne

    2014-09-01

    An atmospheric pressure chemical ionization ion-trap mass spectrometer was set up for the on-line analysis of aroma compounds. This instrument, which has been successfully employed for some years in several in vitro and in vivo flavour release studies, is described for the first time in detail. The ion source was fashioned from polyether ether ketone and operated at ambient pressure and temperature making use of a discharge corona pin facing coaxially the capillary ion entrance of the ion-trap mass spectrometer. Linear dynamic ranges (LDR), limits of detection (LOD) and other analytical characteristics have been re-evaluated. LDRs and LODs have been found fully compatible with the concentrations of aroma compounds commonly found in foods. Thus, detection limits have been found in the low ppt range for common flavouring aroma compounds (for example 5.3 ppt (0.82 ppbV) for ethyl hexanoate and 4.8 ppt (1.0 ppbV) for 2,5-dimethylpyrazine). This makes the instrument applicable for in vitro and in vivo aroma release investigations. The use of dynamic sensory techniques such as the temporal dominance of sensations (TDS) method conducted simultaneously with in vivo aroma release measurements allowed to get some new insights in the link between flavour release and flavour perception.

  10. Systematic investigation of ion suppression and enhancement effects of fourteen stable-isotope-labeled internal standards by their native analogues using atmospheric-pressure chemical ionization and electrospray ionization and the relevance for multi-analyte liquid chromatographic/mass spectrometric procedures.

    Science.gov (United States)

    Remane, Daniela; Wissenbach, Dirk K; Meyer, Markus R; Maurer, Hans H

    2010-04-15

    In clinical and forensic toxicology, multi-analyte procedures are very useful to quantify drugs and poisons of different classes in one run. For liquid chromatographic/tandem mass spectrometric (LC/MS/MS) multi-analyte procedures, often only a limited number of stable-isotope-labeled internal standards (SIL-ISs) are available. If an SIL-IS is used for quantification of other analytes, it must be excluded that the co-eluting native analyte influences its ionization. Therefore, the effect of ion suppression and enhancement of fourteen SIL-ISs caused by their native analogues has been studied. It could be shown that the native analyte concentration influenced the extent of ion suppression and enhancement effects leading to more suppression with increasing analyte concentration especially when electrospray ionization (ESI) was used. Using atmospheric-pressure chemical ionization (APCI), methanolic solution showed mainly enhancement effects, whereas no ion suppression and enhancement effect, with one exception, occurred when plasma extracts were used under these conditions. Such differences were not observed using ESI. With ESI, eleven SIL-ISs showed relevant suppression effects, but only one analyte showed suppression effects when APCI was used. The presented study showed that ion suppression and enhancement tests using matrix-based samples of different sources are essential for the selection of ISs, particularly if used for several analytes to avoid incorrect quantification. In conclusion, only SIL-ISs should be selected for which no suppression and enhancement effects can be observed. If not enough ISs are free of ionization interferences, a different ionization technique should be considered.

  11. Atmospheric pressure ion focusing with a vortex stream.

    Science.gov (United States)

    Kolomiets, Yuri N; Pervukhin, Viktor V

    2011-09-30

    For successful operation of ionization analysis techniques an efficient sampling and sample ion transportation into an analytical path are required. This is of particular importance for atmospheric pressure ionization sources like corona discharge, electrospray, MALDI, ionization with radioactive isotopes ((3)H, (63)Ni) that produce nonuniform spatial distribution of sample ions. The available methods of sample ion focusing with electric fields are either efficient at reduced pressure (to 1 Torr) or feature high sample losses. In this paper we suggest to use a highly whirled gas stream for atmospheric pressure ion focusing. We use a (63)Ni radioactive source to produce an ionized bipolar sample at atmospheric pressure. It is shown by experiments that compared to an aspiration method a forced highly whirled vortex stream allows one to enhance the efficiency of remote ionized sample collection at distances equal to the vortex sampler diameter by an order of magnitude. With a vortex stream, a sixfold increase in the efficiency of the radial ionized sample collection has been obtained. It may be deduced that with the vortex stream remote sampling obtains a new feature which is characterized by a considerable enhancement of the efficiency of the ionized sample collection and can be called as a "gas-dynamic" ionized sample focusing. Considered is the effect of recombination losses of the ionized sample during the remote sampling thereof with the vortex sampler. Prospects for a practical implementation of the vortex sampler for solving the problems of the customs control over the smuggling of radioactive α and β sources are made based on the research results.

  12. Rapid Analysis of Liuwei Dihuang Pills Using Surface Desorption Atmospheric Pressure Chemical Ionization Mass Spectrometry%表面解吸常压化学电离质谱快速分析六味地黄丸

    Institute of Scientific and Technical Information of China (English)

    越皓; 肖治国; 王恩鹏; 陈焕文; 张兴磊; 贾滨; 刘淑莹

    2011-01-01

    采用新型表面解吸常压化学电离(Surface Desorption Atmospheric Pressure Chemical Ionization,SDAPCI)质谱法,在敞开环境下,对潮湿的空气进行电晕放电产生试剂离子,进而在六味地黄丸表面发生解吸电离过程,在无需复杂预处理的前提下对六味地黄丸中的待测物进行离子化,从而获得了六味地黄丸在正负离子模式下的化学指纹图谱,并利用主成分分析法对质谱指纹数据进行处理,可对6个厂家生产的多个批次产品进行较好的区分.结果表明,SDAPCI-MS技术能够快速测定六味地黄丸的剂型和生产厂家信息,并能够对目标组分做多级串联质谱鉴定,发现痕量目标组分.研究方法可望应用于中成药药品生产质量控制和成品检测等领域.%A surface desorption atomospheric pressure chemical ionization mass spectrometry (SDAPCI-MS) method was developed to obtain the fingerprint of Liuwei Dihuang pills (LDP) with minimal sample pre-treatment.In the open environment, humid air was corona discharged to produce reagent ions for desorption ionization of the analytes on the surface of the LDPs.Then the analyte ions were guided into the ion trap mass analyzer of the LTQ instrument for mass analysis.Identification of the components of interests such as gallic acid, paeonol and ursolic acid in Liuwei Dihuang pills were demonstrated by tandem mass spectrometry (MS/MS).Principal component analysis (PCA) of the mass spectral fingerprint data was used to differentiate the samples from four manufacturers.The results show that this method is a useful analytical tool for quality control in pharmaceutical industry, particularly for the traditional Chinese medicine production.

  13. Non-polar lipids characterization of Quinoa (Chenopodium quinoa) seed by comprehensive two-dimensional gas chromatography with flame ionization/mass spectrometry detection and non-aqueous reversed-phase liquid chromatography with atmospheric pressure chemical ionization mass spectrometry detection.

    Science.gov (United States)

    Fanali, Chiara; Beccaria, Marco; Salivo, Simona; Tranchida, Peter; Tripodo, Giusy; Farnetti, Sara; Dugo, Laura; Dugo, Paola; Mondello, Luigi

    2015-07-08

    A chemical characterization of major lipid components, namely, triacylglycerols, fatty acids and the unsaponifiable fraction, in a Quinoa seed lipids sample is reported. To tackle such a task, non-aqueous reversed-phase high-performance liquid chromatography with mass spectrometry detection was employed. The latter was interfaced with atmospheric pressure chemical ionization for the analysis of triacylglycerols. The main triacylglycerols (>10%) were represented by OLP, OOL and OLL (P = palmitoyl, O = oleoyl, L = linoleoyl); the latter was present in the oil sample at the highest percentage (18.1%). Furthermore, fatty acid methyl esters were evaluated by gas chromatography with flame ionization detection. 89% of the total fatty acids was represented by unsaturated fatty acid methyl esters with the greatest percentage represented by linoleic and oleic acids accounting for approximately 48 and 28%, respectively. An extensive characterization of the unsaponifiable fraction of Quinoa seed lipids was performed for the first time, by using comprehensive two-dimensional gas chromatography with dual mass spectrometry/flame ionization detection. Overall, 66 compounds of the unsaponifiable fraction were tentatively identified, many constituents of which (particularly sterols) were confirmed by using gas chromatography with high-resolution time-of-flight mass spectrometry.

  14. Real-time air monitoring of mustard gas and Lewisite 1 by detecting their in-line reaction products by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow ion introduction.

    Science.gov (United States)

    Okumura, Akihiko; Takada, Yasuaki; Watanabe, Susumu; Hashimoto, Hiroaki; Ezawa, Naoya; Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Kondo, Tomohide; Nagashima, Hisayuki; Nagoya, Tomoki

    2015-01-20

    A new method enabling sensitive real-time air monitoring of highly reactive chemical warfare agents, namely, mustard gas (HD) and Lewisite 1 (L1), by detecting ions of their in-line reaction products instead of intact agents, is proposed. The method is based on corona discharge-initiated atmospheric pressure chemical ionization coupled with ion trap tandem mass spectrometry (MS(n)) via counterflow ion introduction. Therefore, it allows for highly sensitive and specific real-time detection of a broad range of airborne compounds. In-line chemical reactions, ionization reactions, and ion fragmentations of these agents were investigated. Mustard gas is oxygenated in small quantity by reactive oxygen species generated in the corona discharge. With increasing air humidity, the MS(2) signal intensity of protonated molecules of mono-oxygenated HD decreases but exceeds that of dominantly existing intact HD. This result can be explained in view of proton affinity. Lewisite 1 is hydrolyzed and oxidized. As the humidity increases from zero, the signal of the final product, namely, didechlorinated, dihydroxylated, and mono-oxygenated L1, quickly increases and reaches a plateau, giving the highest MS(2) and MS(3) signals among those of L1 and its reaction products. The addition of minimal moisture gives the highest signal intensity, even under low humidity. The method was demonstrated to provide sufficient analytical performance to meet the requirements concerning hygienic management and counter-terrorism. It will be the first practical method, in view of sensitivity and specificity, for real-time air monitoring of HD and L1 without sample pretreatment.

  15. Metabolite localization by atmospheric pressure high-resolution scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging in whole-body sections and individual organs of the rove beetle Paederus riparius.

    Science.gov (United States)

    Bhandari, Dhaka Ram; Schott, Matthias; Römpp, Andreas; Vilcinskas, Andreas; Spengler, Bernhard

    2015-03-01

    Mass spectrometry imaging provides for non-targeted, label-free chemical imaging. In this study, atmospheric pressure high-resolution scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) was used for the first time to describe the chemical distribution of the defensive compounds pederin, pseudopederin, and pederon in tissue sections (16 μm thick) of the rove beetle Paederus riparius. The whole-insect tissue section was scanned with a 20-μm step size. Mass resolution of the orbital trapping mass spectrometer was set to 100,000 at m/z 200. Additionally, organ-specific compounds were identified for brain, nerve cord, eggs, gut, ovaries, and malpighian tubules. To confirm the distribution of the specific compounds, individual organs from the insect were dissected, and MSI experiments were performed on the dissected organs. Three ganglia of the nerve cord, with a dimension of 250-500 μm, were measured with 10-μm spatial resolution. High-quality m/z images, based on high spatial resolution and high mass accuracy were generated. These features helped to assign mass spectral peaks with high confidence. Mass accuracy of the imaging experiments was pederin and its analogues could be visualized in the whole-insect section. Without any labeling, we assigned key lipids for specific organs to describe their location in the body and to identify morphological structures with a specificity higher than with staining or immunohistology methods.

  16. Comparison of Atmospheric Pressure Ionization Gas Chromatography-Triple Quadrupole Mass Spectrometry to Traditional High-Resolution Mass Spectrometry for the Identification and Quantification of Halogenated Dioxins and Furans.

    Science.gov (United States)

    Organtini, Kari L; Haimovici, Liad; Jobst, Karl J; Reiner, Eric J; Ladak, Adam; Stevens, Douglas; Cochran, Jack W; Dorman, Frank L

    2015-08-04

    The goal of this study was to qualify gas chromatography coupled to atmospheric pressure ionization tandem mass spectrometry (APGC-MS/MS) as a reliable and valid technique for analysis of halogenated dioxins and furans that could be used in place of more traditional gas chromatography coupled to high-resolution mass spectrometry (GC-HRMS) analysis. A direct comparison of the two instrumental techniques was performed. APGC-MS/MS system sensitivity was demonstrated to be on the single femtogram level. The APGC-MS/MS analysis also demonstrated method detection limits (MDLs) in both sediment and fish that were 2-18 times lower than those determined for the GC-HRMS. Inlet conditions were established to prevent issues with sample carry-over, due largely to the enhanced sensitivity of this technique. Additionally, this work utilized direct injection for sample introduction through the split/splittless inlet. Finally, quantification of both sediment and fish certified reference materials were directly compared between the APGC-MS/MS and GC-HRMS. The APGC-MS/MS performed similarly to, if not better than, the GC-HRMS instrument in the analysis of these samples. This data is intended to substantiate APGC-MS/MS as a comparable technique to GC-HRMS for the analysis of dioxins and furans.

  17. Method development for the determination of 24S-hydroxycholesterol in human plasma without derivatization by high-performance liquid chromatography with tandem mass spectrometry in atmospheric pressure chemical ionization mode.

    Science.gov (United States)

    Sugimoto, Hiroshi; Kakehi, Masaaki; Satomi, Yoshinori; Kamiguchi, Hidenori; Jinno, Fumihiro

    2015-10-01

    We developed a highly sensitive and specific high-performance liquid chromatography with tandem mass spectrometry method with an atmospheric pressure chemical ionization interface to determine 24S-hydroxycholesterol, a major metabolite of cholesterol formed by cytochrome P450 family 46A1, in human plasma without any derivatization step. Phosphate buffered saline including 1% Tween 80 was used as the surrogate matrix for preparation of calibration curves and quality control samples. The saponification process to convert esterified 24S-hydroxycholesterol to free sterols was optimized, followed by liquid-liquid extraction using hexane. Chromatographic separation of 24S-hydroxycholesterol from other isobaric endogenous oxysterols was successfully achieved with gradient mobile phase comprised of 0.1% propionic acid and acetonitrile using L-column2 ODS (2 μm, 2.1 mm id × 150 mm). This assay was capable of determining 24S-hydroxycholesterol in human plasma (200 μL) ranging from 1 to 100 ng/mL with acceptable intra- and inter-day precision and accuracy. The potential risk of in vitro formation of 24S-hydroxycholesterol by oxidation from endogenous cholesterol in human plasma was found to be negligible. The stability of 24S-hydroxycholesterol in relevant solvents and human plasma was confirmed. This method was successfully applied to quantify the plasma concentrations of 24S-hydroxycholesterol in male and female volunteers.

  18. Atmospheric fate of non volatile and ionizable compounds

    DEFF Research Database (Denmark)

    Franco, Antonio; Hauschild, Michael Zwicky; Jolliet, Olivier;

    2011-01-01

    A modified version of theMultimedia Activity Model for Ionics MAMI, including two-layered atmosphere,air–water interface partitioning, intermittent rainfall and variable cloud coverage was developed to simulate the atmospheric fate of ten low volatility or ionizable organic chemicals. Probabilistic...

  19. Parameterization of ionization induced in the atmosphere by precipitating particles

    Science.gov (United States)

    Artamonov, Anton; Usoskin, Ilya; Kovaltsov, Gennady

    We present a physical model to calculate ionization induced in the atmosphere by precipitating particles. This model is based on the Bethe-Bloch equation applied for precipitating particles such as: electrons, alpha-particles and protons. The energy range of precipitating particles is up to 5MeV and 80MeV/nuc respectively. This model provides an easy implementation with a robust realization of model calculations for a wide range of incident energies of precipitating particles. This method is limited to the upper-middle atmosphere. An ionization yield function [see, Usoskin and Kovaltsov, 2006; Usoskin, Kovaltsov, Mironova, 2010] can be also used in this model, making it possible to calculate the atmospheric ionization effect of precipitating particles for the entire atmosphere, dawn to the ground.

  20. Domestic atmospheric pressure thermal deaerators

    Science.gov (United States)

    Egorov, P. V.; Gimmelberg, A. S.; Mikhailov, V. G.; Baeva, A. N.; Chuprakov, M. V.; Grigoriev, G. V.

    2016-04-01

    Based on many years of experience and proven technical solutions, modern atmospheric pressure deaerators of the capacity of 0.4 to 800 t/h were designed and developed. The construction of such deaerators is based on known and explored technical solutions. A two-stage deaeration scheme is applied where the first stage is a jet dripping level (in a column) and the second one is a bubble level (in a tank). In the design of deaeration columns, low-pressure hydraulic nozzles (Δ p tests of the new deaerator prototypes of the capacity of 800 and 500 t/h in the HPP conditions showed their sustainable, reliable, and efficient work in the designed range of hydraulic and thermal loads. The content of solved oxygen and free carbon dioxide in make-up water after deaerators meets the requirements of State Standard GOST 16860-88, the operating rules and regulations, and the customer's specifications. Based on these results, the proposals were developed on the structure and the design of deaerators of the productivity of more than 800 t/h for the use in circuits of large heating systems and the preparation of feed water to the TPP at heating and industrial-heating plants. The atmospheric pressure thermal deaerators developed at NPO TsKTI with consideration of the current requirements are recommended for the use in water preparation schemes of various power facilities.

  1. The Thermodynamical Instability Induced by Pressure Ionization in Fluid Helium

    CERN Document Server

    Li, Qiong; Zhang, Gong-Mu; Zhao, Yan-Hong; Lu, Guo; Tian, Ming-Feng; Song, Hai-Feng

    2016-01-01

    A systematic study of pressure ionization is carried out in the chemical picture by the example of fluid helium. By comparing the variants of the chemical model, it is demonstrated that the behavior of pressure ionization depends on the construction of the free energy function. In the chemical model with the Coulomb free energy described by the Pad\\'e interpolation formula, thermodynamical instability induced by pressure ionization is found to be manifested by a discontinuous drop or a continuous fall and rise along the pressure-density curve as well as the pressure-temperature curve, which is very much like the first order liquid-liquid phase transition of fluid hydrogen from the first principles simulations. In contrast, in the variant chemical model with the Coulomb free energy term empirically weakened, no thermodynamical instability is induced when pressure ionization occurs, and the resulting equation of state achieves good agreement with the first principles simulations of fluid helium.

  2. Determining Atmospheric Pressure Using a Water Barometer

    Science.gov (United States)

    Lohrengel, C. Frederick, II; Larson, Paul R.

    2012-01-01

    The atmosphere is an envelope of compressible gases that surrounds Earth. Because of its compressibility and nonuniform heating by the Sun, it is in constant motion. The atmosphere exerts pressure on Earth's surface, but that pressure is in constant flux. This experiment allows students to directly measure atmospheric pressure by measuring the…

  3. Influence of Dust Loading on Atmospheric Ionizing Radiation on Mars

    Science.gov (United States)

    Norman, Ryan B.; Gronoff, Guillaume; Mertens, Christopher J.

    2014-01-01

    Measuring the radiation environment at the surface of Mars is the primary goal of the Radiation Assessment Detector on the NASA Mars Science Laboratory's Curiosity rover. One of the conditions that Curiosity will likely encounter is a dust storm. The objective of this paper is to compute the cosmic ray ionization in different conditions, including dust storms, as these various conditions are likely to be encountered by Curiosity at some point. In the present work, the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety model, recently modified for Mars, was used along with the Badhwar & O'Neill 2010 galactic cosmic ray model. In addition to galactic cosmic rays, five different solar energetic particle event spectra were considered. For all input radiation environments, radiation dose throughout the atmosphere and at the surface was investigated as a function of atmospheric dust loading. It is demonstrated that for galactic cosmic rays, the ionization depends strongly on the atmosphere profile. Moreover, it is shown that solar energetic particle events strongly increase the ionization throughout the atmosphere, including ground level, and can account for the radio blackout conditions observed by the Mars Advanced Radar for Subsurface and Ionospheric Sounding instrument on the Mars Express spacecraft. These results demonstrate that the cosmic rays' influence on the Martian surface chemistry is strongly dependent on solar and atmospheric conditions that should be taken into account for future studies.

  4. Atmospheric Pressure Ionization Mass Spectrometry and Its Application in Ultra High Purity Gases Analysis:A Review%大气压电离质谱及其用于超高纯气体分析研究进展

    Institute of Scientific and Technical Information of China (English)

    张体强; 胡树国; 韩桥

    2014-01-01

    Ultra high purity (UHP)gases are very important in the manufacturing industry.As an example,in the semiconductor industry,the quality of electron gas directly affects the performance of semiconductor devices;a few parts per million of trace impurities in gases can reduce component store information in integrated circuits.Thus, challenges to the sensitivity of the analytical instruments and the analysis methods arise for detection of ultra-trace impurities.Atmospheric Pressure Ionization Mass Spectrometry (APIMS),which could ionize impurities under the atmospheric pressure conditions with high efficiency of ionization and sensitivity,becomes the most important instrument for the purity analysis of the UHP gases.APIMS is especially suitable for the analysis of trace impurities with a concentration below 1 0 -9 mol/mol or even 1 0 -1 2 mol/mol.Two ionization sources based on corona discharge and 63 Ni have been developed for APIMS,where the former is more commonly equipped.Quadruple rod is usually used as the mass filter.A sampling and dilution system,in which the components in standard gas can be diluted to far lower concentrations for calibration,is utilized in APIMS for analysis of UHP gases.The detection sensitivity of impurities by APIMS is quite relevant to the ionization modes.One of the main modes is charge transfer reaction, which is applicable to matrix and impurities with large different ionization energy.For example,most impurities in Ar and N2 can be determined by this mode due to the high ionization energy of Ar and N2 .And by adding H2 , APIMS is also used for detecting N2 in Ar.The third mode is the reaction of forming cluster ions,for which few applications have been reported.The mode could enhance the detection sensitivity of H2 O in matrix O2 by detecting the ion of O2 +·H2 O.Based on these ionization modes,various detecting methods for different impurities can be designed to effectively detect trace or ultra-trace impurities.The sensitivity of

  5. Models of magnetized neutron star atmospheres: thin atmospheres and partially ionized hydrogen atmospheres with vacuum polarization

    CERN Document Server

    Suleimanov, V F; Werner, K

    2009-01-01

    Observed X-ray spectra of some isolated magnetized neutron stars display absorption features, sometimes interpreted as ion cyclotron lines. Modeling the observed spectra is necessary to check this hypothesis and to evaluate neutron star parameters.We develop a computer code for modeling magnetized neutron star atmospheres in a wide range of magnetic fields (10^{12} - 10^{15} G) and effective temperatures (3 \\times 10^5 - 10^7 K). Using this code, we study the possibilities to explain the soft X-ray spectra of isolated neutron stars by different atmosphere models. The atmosphere is assumed to consist either of fully ionized electron-ion plasmas or of partially ionized hydrogen. Vacuum resonance and partial mode conversion are taken into account. Any inclination of the magnetic field relative to the stellar surface is allowed. We use modern opacities of fully or partially ionized plasmas in strong magnetic fields and solve the coupled radiative transfer equations for the normal electromagnetic modes in the plas...

  6. Electrode Configurations in Atmospheric Pressure Plasma Jets

    Science.gov (United States)

    Lietz, Amanda M.; Kushner, Mark J.

    2016-09-01

    Atmospheric pressure plasma jets (APPJs) are being studied for emerging medical applications including cancer treatment and wound healing. APPJs typically consist of a dielectric tube through which a rare gas flows, sometimes with an O2 or H2O impurity. In this paper, we present results from a computational study of APPJs using nonPDPSIM, a 2-D plasma hydrodynamics model, with the goal of providing insights on how the placement of electrodes can influence the production of reactive species. Gas consisting of He/O2 = 99.5/0.5 is flowed through a capillary tube at 2 slpm into humid air, and a pulsed DC voltage is applied. An APPJ with two external ring electrodes will be compared with one having a powered electrode inside and a ground electrode on the outside. The consequences on ionization wave propagation and the production of reactive oxygen and nitrogen species (RONS) will be discussed. Changing the electrode configuration can concentrate the power deposition in volumes having different gas composition, resulting in different RONS production. An internal electrode can result in increased production of NOx and HNOx by increasing propagation of the ionization wave through the He dominated plume to outside of the tube where humid air is diffusing into the plume. Work supported by US DOE Office of Fusion Energy Science and the National Science Foundation.

  7. An improved high performance liquid chromatography-photodiode array detection-atmospheric pressure chemical ionization-mass spectrometry method for determination of chlorophylls and their derivatives in freeze-dried and hot-air-dried Rhinacanthus nasutus (L.) Kurz.

    Science.gov (United States)

    Kao, Tsai Hua; Chen, Chia Ju; Chen, Bing Huei

    2011-10-30

    Rhinacanthus nasutus (L.) Kurz, a traditional Chinese herb possessing antioxidant and anti-cancer activities, has been reported to contain functional components like carotenoids and chlorophylls. However, the variety and amount of chlorophylls remain uncertain. The objectives of this study were to develop a high performance liquid chromatography-photodiode array detection-atmospheric pressure chemical ionization-mass spectrometry (HPLC-DAD-APCI-MS) method for determination of chlorophylls and their derivatives in hot-air-dried and freeze-dried R. nasutus. An Agilent Eclipse XDB-C18 column and a gradient mobile phase composed of methanol/N,N-dimethylformamide (97:3, v/v), acetonitrile and acetone were employed to separate internal standard zinc-phthalocyanine plus 12 cholorophylls and their derivatives within 21 min, including chlorophyll a, chlorophyll a', hydroxychlorophyll a, 15-OH-lactone chlorophyll a, chlorophyll b, chlorophyll b', hydroxychlorophyll b, pheophytin a, pheophytin a', hydroxypheophytin a, hydroxypheophytin a' and pheophytin b in hot-air-dried R. nasutus with flow rate at 1 mL/min and detection at 660 nm. But, in freeze-dried R. nasutus, only 4 chlorophylls and their derivatives, including chlorophyll a, chlorophyll a', chlorophyll b and pheophytin a were detected. Zinc-phthalocyanine was found to be an appropriate internal standard to quantify all the chlorophyll compounds. After quantification by HPLC-DAD, both chlorophyll a and pheophytin a were the most abundant in hot-air-dried R. nasutus, while in freeze-dried R. nasutus, chlorophyll a and chlorophyll b dominated.

  8. Corona Discharge Atmospheric Pressure Ionization Mass Spectrometry for Real Time Gas Analysis%在线气体分析的电晕放电大气压电离质谱

    Institute of Scientific and Technical Information of China (English)

    梁华正; 张燮; 陈双喜; 邵昭

    2008-01-01

    研制了适合在线气体分析的电晕放电大气压电离源(corona discharge atmospheric pressure ionization source)及其与商品质谱仪(LTQ-MS)的接口,对其试剂离子的产生机理进行了研究,以H2O*+ (H2O)为试剂离子,对乙醇气体进行检测,并分析了该离子的产生机制.实验结果表明:在潮湿氮气中电晕放电产生的主要试剂离子是m/z 36、37和55;而在含丙酮的潮湿氮气中则产生m/z 59和76等离子.利用静态顶空-电晕放电大气压电离质谱对不同浓度的乙醇水溶液进行分析,结果表明:以m/z 64为检测对象,乙醇气体浓度的最低检出限可达2.4×10-7 g/L;而以m/z 47为检测对象,检出限为5.9×10-6 g/L.同时还利用动态顶空-电晕放电大气压电离质谱对栀子花香气成分进行了检测,为生物挥发性物质的在线检测提供了一种新方法.

  9. Development of a new multi-residue laser diode thermal desorption atmospheric pressure chemical ionization tandem mass spectrometry method for the detection and quantification of pesticides and pharmaceuticals in wastewater samples.

    Science.gov (United States)

    Boisvert, Michel; Fayad, Paul B; Sauvé, Sébastien

    2012-11-19

    A new solid phase extraction (SPE) method coupled to a high throughput sample analysis technique was developed for the simultaneous determination of nine selected emerging contaminants in wastewater (atrazine, desethylatrazine, 17β-estradiol, ethynylestradiol, norethindrone, caffeine, carbamazepine, diclofenac and sulfamethoxazole). We specifically included pharmaceutical compounds from multiple therapeutic classes, as well as pesticides. Sample pre-concentration and clean-up was performed using a mixed-mode SPE cartridge (Strata ABW) having both cation and anion exchange properties, followed by analysis by laser diode thermal desorption atmospheric pressure chemical ionization coupled to tandem mass spectrometry (LDTD-APCI-MS/MS). The LDTD interface is a new high-throughput sample introduction method, which reduces total analysis time to less than 15s per sample as compared to minutes with traditional liquid-chromatography coupled to tandem mass spectrometry (LC-MS/MS). Several SPE parameters were evaluated in order to optimize recovery efficiencies when extracting analytes from wastewater, such as the nature of the stationary phase, the loading flow rate, the extraction pH, the volume and composition of the washing solution and the initial sample volume. The method was successfully applied to real wastewater samples from the primary sedimentation tank of a municipal wastewater treatment plant. Recoveries of target compounds from wastewater ranged from 78% to 106%, the limit of detection ranged from 30 to 122ng L(-1) while the limit of quantification ranged from 90 to 370ng L(-1). Calibration curves in the wastewater matrix showed good linearity (R(2)≥0.991) for all target analytes and the intraday and interday coefficient of variation was below 15%, reflecting a good precision.

  10. An approach based on ultrahigh performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry allowing the quantification of both individual phytosteryl and phytostanyl fatty acid esters in complex mixtures.

    Science.gov (United States)

    Scholz, Birgit; Menzel, Nicole; Lander, Vera; Engel, Karl-Heinz

    2016-01-15

    A method for the analysis of both individual phytosteryl and phytostanyl fatty acid esters in complex mixtures was established. The approach was based on a previously not described combination of three elements: (i) the formation of [M-FA+H](+) fragment ions via APCI (atmospheric pressure chemical ionization), (ii) a highly efficient UHPLC-based separation on a 1.7 μ C8 column, previously established for phytostanyl fatty acid esters, allowing the distinction of individual fatty acid esters sharing the same sterol/stanol nucleus and of isotope peaks of phytosteryl fatty acid esters and corresponding phytostanyl fatty acid esters based on these [M-FA+H](+) fragment ions, and (iii) the adjustment of the APCI conditions allowing the differential APCI-MS-SIM (single ion monitoring) detection of phytostanyl esters of linoleic and linolenic acid based on their distinct formation of a [M+H](+) ion. The usefulness of the methodology was demonstrated by the analysis of a commercially available enriched margarine. Two runs per sample allowed the quantification of 35 target analytes; the total amounts of esters were between 124.7 and 125.3g/kg, being in good agreement with the labelled 125 g/kg. Validation data were elaborated for 35 individual fatty acid esters of sitosterol, campesterol, brassicasterol, stigmasterol, sitostanol and campestanol. Recovery rates ranged from 95 to 106%; the coefficients of variation were consistently quantification of both individual phytosteryl and phytostanyl fatty acid esters and thus closes an analytical gap related to this class of health-relevant food constituents.

  11. Quantification of β-carotene, retinol, retinyl acetate and retinyl palmitate in enriched fruit juices using dispersive liquid-liquid microextraction coupled to liquid chromatography with fluorescence detection and atmospheric pressure chemical ionization-mass spectrometry.

    Science.gov (United States)

    Viñas, Pilar; Bravo-Bravo, María; López-García, Ignacio; Hernández-Córdoba, Manuel

    2013-02-01

    A detailed optimization of dispersive liquid-liquid microextraction (DLLME) was carried out for developing liquid chromatographic (HPLC) techniques, using both fluorescence and atmospheric pressure chemical ionization mass spectrometric (APCI-MS) detection, for the simultaneous analysis of preforms of vitamin A: retinol (R), retinyl acetate (RA), retinyl palmitate (RP) and β-carotene (β-C). The HPLC analyses were carried out using a mobile phase composed of methanol and water, with gradient elution. The APCI-MS and fluorescence spectra permitted the correct identification of compounds in the analyzed samples. Parameters affecting DLLME were optimized using 2 mL of methanol (disperser solvent) containing 150 μL carbon tetrachloride (extraction solvent). The precision ranged from 6% to 8% (RSD) and the limits of detection were between 0.03 and 1.4 ng mL(-1), depending on the compound. The enrichment factor values were in the 21-44 range. Juice samples were analyzed without saponification and no matrix effect was found when using fluorescence detection, so calibration was possible with aqueous standards. However, a matrix effect appeared with APCI-MS, in which case it was necessary to apply matrix-matched calibration. There was great variability in the forms of vitamin A present in the juices, the most abundant ester being retinyl acetate (0.04 to 3.4 μg mL(-1)), followed by the amount of retinol (0.01 to 0.16 μg mL(-1)), while retinyl palmitate was not detected, except in the milk-containing juice, in which RP was the main form. The representative carotenoid β-carotene was present in the orange, peach, mango and multifruit juices in high amounts. The method was validated using two certified reference materials.

  12. Ion-ion reactions for charge reduction of biopolymer at atmospheric pressure ambient

    Institute of Scientific and Technical Information of China (English)

    Yue Ming Zhou; Jian Hua Ding; Xie Zhang; Huan Wen Chen

    2007-01-01

    Extractive electrospray ionization source (EESI) was adapted for ion-ion reaction, which was demonstrated by using a linear quadrupole ion trap mass spectrometer for the first ion-ion reaction of biopolymers in the atmospheric pressure ambient.

  13. Ionization Mechanism of the Ambient Pressure Pyroelectric Ion Source (APPIS) and Its Applications to Chemical Nerve Agent Detection

    OpenAIRE

    Neidholdt, Evan L.; Beauchamp, J. L.

    2009-01-01

    We present studies of the ionization mechanism operative in the ambient pressure pyroelectric ionization source (APPIS), along with applications that include detection of simulants for chemical nerve agents. It is found that ionization by APPIS occurs in the gas-phase. As the crystal is thermally cycled over a narrow temperature range, electrical discharges near the surface of the crystal produce energetic species which, through reactions with atmospheric molecules, result in reactant ions su...

  14. Effect of gas pressure on ionization of ambient gas

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An Nd: YAG pulsed laser (145 mJ) was used to ablate aluminum target and Ar was used as protecting gas. Time-and space-resolved spectra of the plasmas under pressure 100 Pa, 1 kPa, 10 kPa and 100 kPa were acquired with time- and space-resolved technique. The characteristics of the plasma radiating under each pressure were briefly described, and the laws of Ar characteristical radiaton were analyzed in detail. Based on the profile of Ar characteristical radiation under these pressure, the relation between protecting gas pressure and its ionization was briefly discussed, and explained with quantum theory. Farther more, the mechanism of ambient gas ionization was investigated. As the result, it was suggested that the main mechanism inducing protecting gas to ionize should be the absorption of the plasma continuum radiation by the gas.

  15. Space Weather Nowcasting of Atmospheric Ionizing Radiation for Aviation Safety

    Science.gov (United States)

    Mertens, Christopher J.; Wilson, John W.; Blattnig, Steve R.; Solomon, Stan C.; Wiltberger, J.; Kunches, Joseph; Kress, Brian T.; Murray, John J.

    2007-01-01

    There is a growing concern for the health and safety of commercial aircrew and passengers due to their exposure to ionizing radiation with high linear energy transfer (LET), particularly at high latitudes. The International Commission of Radiobiological Protection (ICRP), the EPA, and the FAA consider the crews of commercial aircraft as radiation workers. During solar energetic particle (SEP) events, radiation exposure can exceed annual limits, and the number of serious health effects is expected to be quite high if precautions are not taken. There is a need for a capability to monitor the real-time, global background radiations levels, from galactic cosmic rays (GCR), at commercial airline altitudes and to provide analytical input for airline operations decisions for altering flight paths and altitudes for the mitigation and reduction of radiation exposure levels during a SEP event. The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model is new initiative to provide a global, real-time radiation dosimetry package for archiving and assessing the biologically harmful radiation exposure levels at commercial airline altitudes. The NAIRAS model brings to bear the best available suite of Sun-Earth observations and models for simulating the atmospheric ionizing radiation environment. Observations are utilized from ground (neutron monitors), from the atmosphere (the METO analysis), and from space (NASA/ACE and NOAA/GOES). Atmospheric observations provide the overhead shielding information and the ground- and space-based observations provide boundary conditions on the GCR and SEP energy flux distributions for transport and dosimetry simulations. Dose rates are calculated using the parametric AIR (Atmospheric Ionizing Radiation) model and the physics-based HZETRN (High Charge and Energy Transport) code. Empirical models of the near-Earth radiation environment (GCR/SEP energy flux distributions and geomagnetic cut-off rigidity) are benchmarked

  16. Rapid Discrimination of Chemotypes of Cinnamomum camphora by Surface Desorption Atmospheric Pressure Chemical Ionization Mass Spectrometry%表面解吸常压化学电离质谱法快速判别樟树化学型

    Institute of Scientific and Technical Information of China (English)

    刘星星; 方小伟; 黄学勇; 张婷婷; 陈焕文; 罗丽萍

    2016-01-01

    采用表面解吸常压化学电离质谱(SDAPCI-MS)技术直接对5种化学型的樟树叶粉末片剂进行分析,获得其化学指纹谱图信息.采用主成分分析(PCA)、 聚类分析(CA)和反向传输人工神经网络(BP-ANN)对谱图信息进行分析,获得各化学型樟树叶粉末片剂的特征质谱信息,进而对不同化学型样品进行判别.结果表明,在正离子模式下,SDAPCI-MS能快速获取樟树的化学指纹谱图;PCA分析中的PC1,PC2和PC3贡献率分别为79.9%,12.9%和4.2%,共计97.0%.SDAPCI-MS结合CA和BP-ANN测试样本准确率均为100%,能够快速、有效地判别出樟树化学型.%Surface desorption atmospheric pressure chemical ionization mass spectrometry( SDAPCI-MS) was selected to detect five chemotypes of C. camphora leaves powder and the raw mass spectral fingerprints of the powder samples were obtained. Principal component analysis ( PCA ) , cluster analysis ( CA ) and the back propagation artificial neural network technology( BP-ANN) were used to analyze the spectral information. The results showed that the SDAPCI-MS technique could got mass spectral fingerprints of C. camphora quickly in positive ion mode. The contribution rates of PC1, PC2, PC3 were 79. 9%, 12. 9% and 4. 2%, respectively, with a total of 97. 0% in PCA. The accuracy of discrimination of CA and BP-ANN of SDAPCI-MS was 100%.

  17. Rapid Screening of Sulfur Fumigated Chinese Star Anises by Surface Desorption Atmospheric Pressure Chemical Ionization Mass Spectrometry%表面解吸常压化学电离质谱快速鉴别硫磺熏蒸八角

    Institute of Scientific and Technical Information of China (English)

    罗丽萍; 王姜; 章文军; 戴喜末; 方小伟; 张茜; 刘亚丽; 陈焕文

    2013-01-01

    Without any sample pretreatment,the mass spectral fingerprints of sulfur fumigated Chinese star anises and untreated samples were rapidly obtained in either a positive or negative ion detection mode with a home-made surface desorption atmospheric pressure chemical ionization (DAPCI) source.The DAPCI-MS raw data were further analyzed by principal component analysis (PCA) and cluster analysis (CA),and several unknown samples were successfully discriminated using the PCA model.The results showed that the DAPCIMS was able to detect some characteristic chemicals from the Chinese star anises' surface and identify the components by tandem mass spectrometry (MS/MS).The further principal component analysis (PCA) and cluster analysis (CA) of MS fingerprints allow a confident discrimination of sulfur fumigated star anise samples from the non-sulfur fumigated samples.The method developed here is attractive to provide a fast and effective way to screen sulfur fumigated products with sufficient sensitivity and no toxin pollution.This method is expected to be applied to rapid identification of the sulfur fumigated product on the market in future.%采用自行研制的表面解吸常压化学电离质谱(DAPCI-MS),无需样品预处理,对硫磺熏蒸八角和未熏八角直接进行正、负离子模式检测,获得其化学指纹图谱,并通过主成分分析(PCA)及聚类分析(CA)方法对所获指纹谱图信息进行分析,进而对不同样品进行鉴别.结果表明,在正、负离子模式下,DAPCI-MS都可对八角表面多种特征化学成分进行分析,快速获得八角的化学指纹谱图,并能够对目标组分进行多级串联质谱鉴定,结合PCA及CA方法可对八角是否经硫磺熏蒸进行快速鉴别.本方法无需样品预处理,灵敏度高,分析速度快,无污染,可望应用于市场上硫熏制品的快速鉴别.

  18. IONIZATION IN ATMOSPHERES OF BROWN DWARFS AND EXTRASOLAR PLANETS. IV. THE EFFECT OF COSMIC RAYS

    Energy Technology Data Exchange (ETDEWEB)

    Rimmer, P. B.; Helling, Ch., E-mail: pr33@st-andrews.ac.uk [SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom)

    2013-09-10

    Cosmic rays provide an important source for free electrons in Earth's atmosphere and also in dense interstellar regions where they produce a prevailing background ionization. We utilize a Monte Carlo cosmic ray transport model for particle energies of 10{sup 6} eV atmospheres of free-floating objects. The cosmic ray calculations are applied to DRIFT-PHOENIX model atmospheres of an example brown dwarf with effective temperature T{sub eff} = 1500 K, and two example giant gas planets (T{sub eff} = 1000 K, 1500 K). For the model brown dwarf atmosphere, the electron fraction is enhanced significantly by cosmic rays when the pressure p{sub gas} < 10{sup -2} bar. Our example giant gas planet atmosphere suggests that the cosmic ray enhancement extends to 10{sup -4}-10{sup -2} bar, depending on the effective temperature. For the model atmosphere of the example giant gas planet considered here (T{sub eff} = 1000 K), cosmic rays bring the degree of ionization to f{sub e} {approx}> 10{sup -8} when p{sub gas} < 10{sup -8} bar, suggesting that this part of the atmosphere may behave as a weakly ionized plasma. Although cosmic rays enhance the degree of ionization by over three orders of magnitude in the upper atmosphere, the effect is not likely to be significant enough for sustained coupling of the magnetic field to the gas.

  19. An Atmospheric Pressure Ping-Pong "Ballometer"

    Science.gov (United States)

    Kazachkov, Alexander; Kryuchkov, Dmitriy; Willis, Courtney; Moore, John C.

    2006-01-01

    Classroom experiments on atmospheric pressure focus largely on demonstrating its existence, often in a most impressive way. A series of amusing physics demonstrations is widely known and practiced by educators teaching the topic. However, measuring the value of atmospheric pressure(P[subscript atm]) is generally done in a rather mundane way,…

  20. Towards a Carbon Nanotube Ionization Source for Planetary Atmosphere Exploration

    Science.gov (United States)

    Oza, A. V.; Leblanc, F.; Berthelier, J. J.; Becker, J.; Coulomb, R.; Gilbert, P.; Hong, N. T.; Lee, S.; Vettier, L.

    2015-12-01

    The characterization of planetary exospheres today, relies on the development of a highly efficient ionization source, due to the scant neutral molecules (n atmospheres provide insight on to physical processes known to occur such as: space weathering, magneto-atmosphere interactions, as well as atmospheric escape mechanisms, all of which are being heavily investigated via current 3D Monte Carlo simulations (Turc et al. 2014, Leblanc et al. 2016 in prep) at LATMOS. Validation of these studies will rely on in-situ observations in the coming decades. Neutral detection strongly depends on electron-impact ionization which via conventional cathode-sources, such as thermal filaments (heated up to 2000 K), may only produce the target ionization essential for energy-measurements with large power consumption. Carbon nanotubes (CNTs) however are ideal low-power, cold cathodes, when subject to moderate electric fields (E ~ 1 MV / m). We present our current device, a small CNT chip, of emission area 15 mm2, emitting electrons that pass through an anode grid and subsequent electrostatic analyzer. The device currently extracts hundreds of µAmperes with applied external voltages ~ -150 Volts, approaching minimum power consumption plasma sputtering the icy regolith with heavy ions and electrons (keV < E < MeV), producing predominately molecular oxygen (Johnson et al. 2002).

  1. Bisulphate-cluster based atmospheric pressure chemical ionization mass spectrometer for ultra-high sensitivity (10 ppq detection of atmospheric amines: proof-of-concept and first ambient data from boreal forest

    Directory of Open Access Journals (Sweden)

    M. Sipilä

    2015-04-01

    Full Text Available Atmospheric amines may play a crucial role in formation of new aerosol particles via nucleation with sulphuric acid. Recent studies have revealed that concentrations below 1 ppt can significantly promote nucleation of sulphuric acid particles. While sulphuric acid detection is relatively straightforward, no amine measurements to date have been able to reach the critical sub-ppt concentration range and atmospheric amine concentrations are in general poorly characterized. In this work we present a proof-of-concept of an instrument capable of detecting dimethyl amine (DMA with concentrations even down to 8 ppq (parts per quadrillion, 0.008 ppt for a 15 min integration time. Detection of ammonia and amines other than dimethyl amine is discussed. We also report results from the first ambient measurements performed in spring 2013 at a boreal forest site. While minute signals from some amines were observed, DMA concentration never exceeded the detection threshold of ambient measurements (20 ppq, suggesting that it is unlikely that nucleation at this location involves DMA.

  2. High pressure nanoelectrospray ionization mass spectrometry for analysis of aqueous solutions.

    Science.gov (United States)

    Rahman, Md Matiur; Mandal, Mridul Kanti; Hiraoka, Kenzo; Chen, Lee Chuin

    2013-11-07

    Nanoelectrospray ionization (nanoESI) with a very fine emitter and nanoliter solution flow rate is known to be suitable for aqueous solutions. However, under atmospheric pressure, its stability with aqueous solutions is not always guaranteed particularly in the negative ion mode where corona and arc discharge tend to occur more easily. Electrical discharge can be quenched to a certain extent by adding electron scavenging gases like SF6 or CO2 to the ion source. The onset potential that is required to induce the discharge also increases with an increase of gas pressure. Recently, we have reported on a series of high pressure electrospray ion sources that were stable in both positive and negative ion modes using air or N2 as the working gas. In this paper, we compare the performance of nanoelectrospray under atmospheric pressure and super-atmospheric pressure for the analysis of samples in aqueous solution. The comparative study was performed using the same ion source chamber that could be pressurized up to 6 bar. The pressure in the first pumping stage of the mass spectrometer was kept constant when the ion source pressure was changed by using an additional pump with variable pumping speed. High pressure nanoESI optimized at 2-3 bar demonstrated a 3-5 times improvement in ion signal intensity compared to atmospheric pressure nanoESI, and the signal stability was significantly improved particularly in the negative mode.

  3. Pressurized rf cavities in ionizing beams

    Science.gov (United States)

    Freemire, B.; Tollestrup, A. V.; Yonehara, K.; Chung, M.; Torun, Y.; Johnson, R. P.; Flanagan, G.; Hanlet, P. M.; Collura, M. G.; Jana, M. R.; Leonova, M.; Moretti, A.; Schwarz, T.

    2016-06-01

    A muon collider or Higgs factory requires significant reduction of the six dimensional emittance of the beam prior to acceleration. One method to accomplish this involves building a cooling channel using high pressure gas filled radio frequency cavities. The performance of such a cavity when subjected to an intense particle beam must be investigated before this technology can be validated. To this end, a high pressure gas filled radio frequency (rf) test cell was built and placed in a 400 MeV beam line from the Fermilab linac to study the plasma evolution and its effect on the cavity. Hydrogen, deuterium, helium and nitrogen gases were studied. Additionally, sulfur hexafluoride and dry air were used as dopants to aid in the removal of plasma electrons. Measurements were made using a variety of beam intensities, gas pressures, dopant concentrations, and cavity rf electric fields, both with and without a 3 T external solenoidal magnetic field. Energy dissipation per electron-ion pair, electron-ion recombination rates, ion-ion recombination rates, and electron attachment times to SF6 and O2 were measured.

  4. Super-Atmospheric Pressure Ion Sources: Application and Coupling to API Mass Spectrometer.

    Science.gov (United States)

    Chen, Lee Chuin; Rahman, Md Matiur; Hiraoka, Kenzo

    2014-01-01

    Pressurizing the ionization source to gas pressure greater than atmospheric pressure is a new tactic aimed at further improving the performance of atmospheric pressure ionization (API) sources. In principle, all API sources, such as ESI, APCI and AP-MALDI, can be operated at pressure higher than 1 atm if suitable vacuum interface is available. The gas pressure in the ion source can have different role for different ionization. For example, in the case of ESI, stable electrospray could be sustained for high surface tension liquid (e.g., pure water) under super-atmospheric pressure, owing to the absence of electric discharge. Even for nanoESI, which is known to work well with aqueous solution, its stability and sensitivity were found to be enhanced, particularly in the negative mode when the ion source was pressurized. For the gas phase ionization like APCI, measurement of gaseous compound also showed an increase in ion intensity with the ion source pressure until an optimum pressure at around 4-5 atm. The enhancement was due to the increased collision frequency among reactant ion and analyte that promoted the ion/molecule reaction and a higher intake rate of gas to the mass spectrometer. Because the design of vacuum interface for API instrument is based on the upstream pressure of 1 atm, some coupling aspects need to be considered when connecting the high pressure ion source to the mass spectrometer. Several coupling strategies are discussed in this paper.

  5. Study of the response of low pressure ionization chambers

    CERN Document Server

    Nebot Del Busto, E; Effinger, E; Grishin, V; Herranz Alvarez, J

    2012-01-01

    The Beam Loss Monitoring System (BLM) of the Large Hadron Collider (LHC) is based on parallel plate Ionization Chambers (IC) with active volume 1.5l and a nitrogen filling gas at 0.1 bar overpressure. At the largest loss locations, the ICs generate signals large enough to saturate the read-out electronics. A reduction of the active volume and filling pressure in the ICs would decrease the amount of charge collected in the electrodes, and so provide a higher saturation limit using the same electronics. This makes Little Ionization Chambers (LIC) with both reduced pressure and small active volume a good candidate for these high radiation areas. In this contribution we present measurements performed with several LIC monitors with reduced active volume and various filling pressures. These detectors were tested under various conditions with different beam setups, with standard LHC ICs used for calibration purposes

  6. Special issue: diagnostics of atmospheric pressure microplasmas

    Science.gov (United States)

    Bruggeman, Peter; Czarnetzki, Uwe; Tachibana, Kunihide

    2013-11-01

    In recent decades, a strong revival of non-equilibrium atmospheric pressure plasma studies has developed in the form of microplasmas. Microplasmas have typical scales of 1 mm or less and offer a very exciting research direction in the field of plasma science and technology as the discharge physics can be considerably different due to high collisionality and the importance of plasma-surface interaction. These high-pressure small-scale plasmas have a diverse range of physical and chemical properties. This diversity coincides with various applications including light/UV sources [1], material processing [2], chemical analysis [3], material synthesis [4], electromagnetics [5], combustion [6] and even medicine [7]. At atmospheric pressure, large scale plasmas have the tendency to become unstable due to the high collision rates leading to enhanced heating and ionization compared to their low-pressure counterparts. As low-pressure plasmas typically operate in reactors with sizes of tens of centimetres, scaling up the pressure to atmospheric pressure the size of the plasma reduces to typical sizes below 1 mm. A natural approach of stabilizing atmospheric pressure plasmas is thus the use of microelectrode geometries. Traditionally microplasmas have been produced in confined geometries which allow one to stabilize dc excited discharges. This stabilization is intrinsically connected to the large surface-to-volume ratio which enhances heat transfer and losses of charged and excited species to the walls. Currently challenging boundaries are pushed by producing microcavity geometries with dimensions of the order of 1 µm [8]. The subject of this special issue, diagnostics of microplasmas, is motivated by the many challenges in microplasma diagnostics in view of the complex chemistry and strong spatial (and even temporal) gradients of species densities and plasma properties. Atmospheric pressure plasmas have a very long history dating back more than 100 years, with early work of

  7. Simultaneous extraction of acetylsalicylic acid and salicylic acid from human plasma and simultaneous estimation by liquid chromatography and atmospheric pressure chemical ionization/tandem mass spectrometry detection. Application to a pharmacokinetic study.

    Science.gov (United States)

    Nirogi, Ramakrishna; Kandikere, Vishwottam; Mudigonda, Koteshwara; Ajjala, Devender; Suraneni, Ramakrishna; Thoddi, Parthasarathi

    2011-01-01

    A simple analytical method using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in atmospheric chemical ionization mode (APCI) for the simultaneous estimation of acetylsalicylic acid (ASA, CAS 50-78-2) and its active metabolite salicylic acid (SA, CAS 69-72-7) in human plasma has been developed and validated. ASA and SA were analyzed simultaneously despite differences in plasma concentration ranges of ASA and SA after oral administration of ASA. In spite of having different chemical, ionization and chromatographic properties, ASA and SA were extracted simultaneously from the plasma sample using acetonitrile protein precipitation followed by liquid-liquid extraction. The analytes were separated on a reversed phase column with rapid gradient program using mobile phase consisting of ammonium acetate buffer and methanol. The structural analogue diclofenac was used as an internal standard. The multiple reaction monitoring (MRM) transitions m/z 179 --> 137 for ASA, m/z 137 --> 65 for SA and m/z 294 --> 250 for IS were used. The assay exhibited a linear dynamic range of 0.02-10 microg/mL for ASA and 0.1-50 microg/mL for SA. The between-batch precision (%CV) ranged from 2.1 to 7.9% for ASA and from 0.2 to 5.2% for SA. The between-batch accuracy ranged from 95.4 to 96.7% for ASA and from 94.6 to 111.3% for SA. The validated method was successfully applied for the evaluation of pharmacokinetics of ASA after single oral administration of 650 mg test formulation versus two 325 mg reference formulations of ASA in human subjects.

  8. Evaporation of urea at atmospheric pressure.

    Science.gov (United States)

    Bernhard, Andreas M; Czekaj, Izabela; Elsener, Martin; Wokaun, Alexander; Kröcher, Oliver

    2011-03-31

    Aqueous urea solution is widely used as reducing agent in the selective catalytic reduction of NO(x) (SCR). Because reports of urea vapor at atmospheric pressure are rare, gaseous urea is usually neglected in computational models used for designing SCR systems. In this study, urea evaporation was investigated under flow reactor conditions, and a Fourier transform infrared (FTIR) spectrum of gaseous urea was recorded at atmospheric pressure for the first time. The spectrum was compared to literature data under vacuum conditions and with theoretical spectra of monomolecular and dimeric urea in the gas phase calculated with the density functional theory (DFT) method. Comparison of the spectra indicates that urea vapor is in the monomolecular form at atmospheric pressure. The measured vapor pressure of urea agrees with the thermodynamic data obtained under vacuum reported in the literature. Our results indicate that considering gaseous urea will improve the computational modeling of urea SCR systems.

  9. Low-Pressure, Field-Ionizing Mass Spectrometer

    Science.gov (United States)

    Hartley, Frank; Smith, Steven

    2009-01-01

    A small mass spectrometer utilizing a miniature field ionization source is now undergoing development. It is designed for use in a variety of applications in which there are requirements for a lightweight, low-power-consumption instrument that can analyze the masses of a wide variety of molecules and ions. The device can operate without need for a high-vacuum, carrier-gas feed radioactive ionizing source, or thermal ionizer. This mass spectrometer can operate either in the natural vacuum of outer space or on Earth at any ambient pressure below 50 torr (below about 6.7 kPa) - a partial vacuum that can easily be reached by use of a small sampling pump. This mass spectrometer also has a large dynamic range - from singly charged small gas ions to deoxyribonucleic acid (DNA) fragments larger than 104 atomic mass units - with sensitivity adequate for detecting some molecules and ions at relative abundances of less than one part per billion. This instrument (see figure) includes a field ionizer integrated with a rotating-field mass spectrometer (RFMS). The field ionizer effects ionization of a type characterized as "soft" in the art because it does not fragment molecules or initiate avalanche arcing. What makes the "soft" ionization mode possible is that the distance between the ionizing electrodes is less than mean free path for ions at the maximum anticipated operating pressure, so that the ionizer always operates on the non-breakdown side of the applicable Paschen curve (a standard plot of breakdown potential on the ordinate and pressure electrode separation on the abscissa). The field ionizer in this instrument is fabricated by micromachining a submicron-thick membrane out of an electrically nonconductive substrate, coating the membrane on both sides to form electrodes, then micromachining small holes through the electrodes and membrane. Because of the submicron electrode separation, even a potential of only 1 V applied between the electrodes gives rise to an electric

  10. When API Mass Spectrometry Meets Super Atmospheric Pressure Ion Sources.

    Science.gov (United States)

    Chen, Lee Chuin

    2015-01-01

    In a tutorial paper on the application of free-jet technique for API-MS, John Fenn mentioned that "…for a number of years and a number of reasons, it has been found advantageous in many situations to carry out the ionization process in gas at pressures up to 1000 Torr or more" (Int. J. Mass Spectrom. 200: 459-478, 2000). In fact, the first ESI mass spectrometer constructed by Yamashita and Fenn had a counter-flow curtain gas source at 1050 Torr (ca. 1.4 atm) to sweep away the neutral (J. Phys. Chem. 88: 4451-4459, 1984). For gaseous ionization using electrospray plume, theoretical analysis also shows that "super-atmospheric operation would be more preferable in space-charge-limited situations."(Int. J. Mass Spectrom. 300: 182-193, 2011). However, electrospray and the corona-based chemical ion source (APCI) in most commercial instrument are basically operated under an atmospheric pressure ambient, perhaps out of the concern of safety, convenience and simplicity in maintenance. Running the ion source at pressure much higher than 1 atm is not so common, but had been done by a number of groups as well as in our laboratory. A brief review on these ion sources will be given in this paper.

  11. Cosmic Rays Response of High-pressure Ionization Chamber

    Institute of Scientific and Technical Information of China (English)

    GAO; Fei; XIAO; Xue-fu; NI; Ning; ZHANG; Xi; HOU; Jin-bing; SONG; Ming-zhe; WANG; Hong-yu

    2013-01-01

    In order to study cosmic rays response characteristics of self-designed HPIC(high pressure ionization chamber),model JLZ-Ⅲ,the JLZ-Ⅲwas placed on a boat which is 3 meters much deeper and at least 1 kilometer away from land to measure air kerma rate in the open water in Miyun Reservoir(geomagnetic latitude 29°N,altitude 160 m),Beijing.The result was compared with the measurement

  12. A modified setup for measuring the first ionization coefficient of tissue equivalent gases at low pressure

    Energy Technology Data Exchange (ETDEWEB)

    Petri, Anna R.; Goncalves, Josemary A.C.; Bueno, Carmen C., E-mail: arpetri@ipen.br, E-mail: josemary@ipen.br, E-mail: ccbueno@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Mangiarotti, Alessio, E-mail: alessio@if.usp.br [Universidade de Sao Paulo (IF/USP), Sao Paulo, SP (Brazil). Instituto de Fisica

    2015-07-01

    In our previous works, measurements of the first Townsend ionization coefficient, α, for pure nitrogen and isobutane at atmospheric pressure as a function of the reduced electric field were carried out in the range of 145 to 194 Td to prevent the chamber from electrical discharges. In order to increase this upper limit, the setup was modified for operating at low pressure. The detector has a Resistive Plate Chamber-like configuration where the primary ionization is produced by the incidence of nitrogen pulsed laser beam on an aluminum electrode. To validate the technique, measurements of the first Townsend ionization coefficient in nitrogen as a function of the reduced electric field were carried out at atmospheric pressure and at 100hPa, as this is an extensively studied gas with well-established data. Good agreement among our results, data from the literature and Magboltz simulations, leading to extend our method to Tissue Equivalent (TE) gases whose α is unknown. Preliminary measurements of α in a methane-based TE gas (CH{sub 4} - 64.4%, CO{sub 2} - 32.4% and N{sub 2} - 3.2%) are also presented. (author)

  13. Atmospheric Pressure Plasma Process And Applications

    Energy Technology Data Exchange (ETDEWEB)

    Peter C. Kong; Myrtle

    2006-09-01

    This paper provides a general discussion of atmospheric-pressure plasma generation, processes, and applications. There are two distinct categories of atmospheric-pressure plasmas: thermal and nonthermal. Thermal atmospheric-pressure plasmas include those produced in high intensity arcs, plasma torches, or in high intensity, high frequency discharges. Although nonthermal plasmas are at room temperatures, they are extremely effective in producing activated species, e.g., free radicals and excited state atoms. Thus, both thermal and nonthermal atmosphericpressure plasmas are finding applications in a wide variety of industrial processes, e.g. waste destruction, material recovery, extractive metallurgy, powder synthesis, and energy conversion. A brief discussion of recent plasma technology research and development activities at the Idaho National Laboratory is included.

  14. Ambient desorption/ionization mass spectrometry using a liquid sampling-atmospheric glow discharge (LS-APGD) ionization source.

    Science.gov (United States)

    Marcus, R Kenneth; Burdette, Carolyn Q; Manard, Benjamin T; Zhang, Lynn X

    2013-10-01

    A novel approach to ambient desorption/ionization mass spectrometry (ADI-MS) is described, based on a recently developed liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source. The device is essentially unmodified relative to its implementation in elemental mass spectrometry, where the operational space is characterized by low operation power (LS-APGD source is mounted onto the source interface of a Thermo Finnigan LCQ Advantage Max quadrupole ion trap mass spectrometer without modifications to the instrument faceplate or ion optics. Described here is the initial evaluation of the roles of source geometry and working parameters, including electrolytic solution composition and plasma current, on the response of caffeine residues, with preliminary limits of detection based on the relative standard deviation of the spectral background suggested to be on the 10-pg level. Demonstrative spectra are presented for green tea extracts and raw leaves, coffee beans, a dried (raw) tobacco leaf, an analgesic tablet, and paper currency. Versatility is further revealed through the determination of components in common cigarette smoke. In each case, the spectra are characterized by (M + H)(+) species of the expected constituents. The capacity for a single source to perform both in solution and particulate elemental analysis (as shown previously) and ADI of molecular species is unique in the realm of mass spectrometry.

  15. A comparative study of APLI and APCI in IMS at atmospheric pressure to reveal and explain peak broadening effects by the use of APLI.

    Science.gov (United States)

    Ihlenborg, Marvin; Raupers, Björn; Gunzer, Frank; Grotemeyer, Jürgen

    2015-11-21

    The details of the ionization mechanism in atmospheric pressure are still not completely known. In order to obtain further insight into the occurring processes in atmospheric pressure laser ionization (APLI) a comparative study of atmospheric pressure chemical ionization (APCI) and APLI is presented in this paper. This study is carried out using similar experimental condition at atmospheric pressure employing a commercial ion mobility spectrometer (IMS). Two different peak broadening mechanisms can then be assigned, one related to a range of different species generated and detected, and furthermore for the first time a power broadening effect on the signals can be identified.

  16. Graphene Membranes for Atmospheric Pressure Photoelectron Spectroscopy.

    Science.gov (United States)

    Weatherup, Robert S; Eren, Baran; Hao, Yibo; Bluhm, Hendrik; Salmeron, Miquel B

    2016-05-05

    Atmospheric pressure X-ray photoelectron spectroscopy (XPS) is demonstrated using single-layer graphene membranes as photoelectron-transparent barriers that sustain pressure differences in excess of 6 orders of magnitude. The graphene serves as a support for catalyst nanoparticles under atmospheric pressure reaction conditions (up to 1.5 bar), where XPS allows the oxidation state of Cu nanoparticles and gas phase species to be simultaneously probed. We thereby observe that the Cu(2+) oxidation state is stable in O2 (1 bar) but is spontaneously reduced under vacuum. We further demonstrate the detection of various gas-phase species (Ar, CO, CO2, N2, O2) in the pressure range 10-1500 mbar including species with low photoionization cross sections (He, H2). Pressure-dependent changes in the apparent binding energies of gas-phase species are observed, attributable to changes in work function of the metal-coated grids supporting the graphene. We expect atmospheric pressure XPS based on this graphene membrane approach to be a valuable tool for studying nanoparticle catalysis.

  17. [Development of a chemical ionization time-of-flight mass spectrometer for continuous measurements of atmospheric hydroxyl radical].

    Science.gov (United States)

    Dou, Jian; Hua, Lei; Hou, Ke-Yong; Jiang, Lei; Xie, Yuan-Yuan; Zhao, Wu-Duo; Chen, Ping; Wang, Wei-Guo; Di, Tian; Li, Hai-Yang

    2014-05-01

    A home-made chemical ionization time-of-flight mass spectrometer (TOFMS) has been developed for continuous measurements of atmospheric hydroxyl radical. Based on the atmospheric pressure chemical ionization technique, an ionization source with orthogonal dual tube structure was adopted in the instrument, which minimized the interference between the reagent gas ionization and the titration reaction. A 63Ni radioactive source was fixed inside one of the orthogonal tubes to generate reactant ion of NO(-)(3) from HNO3 vapor. Hydroxyl radical was first titrated by excess SO2 to form equivalent concentrations of H2SO4 in the other orthogonal tube, and then reacted with NO(-)(3) ions in the chemical ionization chamber, leading to HSO(-)(4) formation. The concentration of atmospheric hydroxyl radical can be directly calculated by measuring the intensities of the HSOj product ions and the NO(-)(3) reactant ions. The analytical capability of the instrument was demonstrated by measuring hydroxyl radical in laboratory air, and the concentration of the hydroxyl radical in the investigated air was calculated to be 1.6 x 106 molecules*cm ', based on 5 seconds integration. The results have shown that the instrument is competent for in situ continuous measurements of atmospheric trace radical.

  18. Non-equilibrium helium ionization in an MHD simulation of the solar atmosphere

    CERN Document Server

    Golding, Thomas Peter; Carlsson, Mats

    2015-01-01

    The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilbrium hydrogen ionization by performing a 2D radiation-magneto-hydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyman-$\\alpha$ and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with LTE ionization shows that non-equilibrium helium ionization leads to higher temperatures in wave fronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behaviour with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. ...

  19. Response of cyanobacteria to low atmospheric pressure

    Science.gov (United States)

    Qin, Lifeng; Yu, Qingni; Ai, Weidang; Tang, Yongkang; Ren, Jin; Guo, Shuangsheng

    2014-10-01

    Maintaining a low pressure environment in a controlled ecological life support system would reduce the technological complexity and resupply cost in the course of the construction of a future manned lunar base. To estimate the effect of a hypobaric environment in a lunar base on biological components, such as higher plants, microbes, and algae, cyanobacteria was used as the model by determining their response of growth, morphology, and physiology when exposed to half of standard atmospheric pressure for 16 days (brought back to standard atmospheric pressure 30 minutes every two days for sampling). The results indicated that the decrease of atmospheric pressure from 100 kPa to 50 kPa reduced the growth rates of Microcystis aeruginosa, Merismopedia sp., Anabaena sp. PCC 7120, and Anabaena flos-aquae. The ratio of carotenoid to chlorophyll a content in the four tested strains increased under low pressure conditions compared to ambient conditions, resulting from the decrease of chlorophyll a and the increase of carotenoid in the cells. Moreover, low pressure induced the reduction of the phycocyanin content in Microcystis aeruginosa, Anabaena sp. PCC 7120, and Anabaena flos-aquae. The result from the ultrastructure observed using SEM indicated that low pressure promoted the production of more extracellular polymeric substances (EPSs) compared to ambient conditions. The results implied that the low pressure environment of 50 kPa in a future lunar base would induce different effects on biological components in a CELSS, which must be considered during the course of designing a future lunar base. The results will be a reference for exploring the response of other biological components, such as plants, microbes, and animals, living in the life support system of a lunar base.

  20. Ionization in atmospheres of Brown Dwarfs and extrasolar planets IV. The Effect of Cosmic Rays

    CERN Document Server

    Rimmer, Paul

    2013-01-01

    Cosmic rays provide an important source for free electrons in the Earth's atmosphere and also in dense interstellar regions where they produce a prevailing background ionization. We utilize a Monte Carlo cosmic ray transport model for particle energies of 1 MeV < E < 1 GeV, and an analytic cosmic ray transport model for particle energies of 1 GeV < E < 1 TeV in order to investigate the cosmic ray enhancement of free electrons in substellar atmospheres of free-floating objects. The cosmic ray calculations are applied to Drift-Phoenix model atmospheres of an example brown dwarf with effective temperature Teff = 1500 K, and two example giant gas planets (Teff = 1000 K, 1500 K). For the model brown dwarf atmosphere, the electron fraction is enhanced significantly by cosmic rays when the pressure pgas < 10^-2 bar. Our example giant gas planet atmosphere suggests that the cosmic ray enhancement extends to 10^-4 - 10^-2 bar, depending on the effective temperature. For the model atmosphere of the examp...

  1. Laserspray ionization using an atmospheric solids analysis probe for sample introduction.

    Science.gov (United States)

    Zydel, Frank; Trimpin, Sarah; McEwen, Charles N

    2010-11-01

    A newly introduced high sensitivity laserspray (LSI) mass spectrometry (MS) method that uses laser ablation of a matrix/analyte mixture at atmospheric pressure (AP) to obtain multiply charged ions from nonvolatile as well as high-mass compounds is now implemented using a simple probe device. The probe used in the LSI approach was originally designed for sample introduction into an AP ionization source using the atmospheric solids analysis probe (ASAP) method. Multiply charged mass spectra of peptides and proteins in 2,5-dihydroxybenzoic acid matrix were readily obtained on two mass spectrometers from different manufacturers with sample introduction using melting point tubes. Here we demonstrate rapid analysis by placing four peptide and protein samples on a single melting point tube. Mass spectra were obtained at high-resolution and using ion mobility spectrometry/MS.

  2. Comparison of free radicals formation induced by cold atmospheric plasma, ultrasound, and ionizing radiation.

    Science.gov (United States)

    Rehman, Mati Ur; Jawaid, Paras; Uchiyama, Hidefumi; Kondo, Takashi

    2016-09-01

    Plasma medicine is increasingly recognized interdisciplinary field combining engineering, physics, biochemistry and life sciences. Plasma is classified into two categories based on the temperature applied, namely "thermal" and "non-thermal" (i.e., cold atmospheric plasma). Non-thermal or cold atmospheric plasma (CAP) is produced by applying high voltage electric field at low pressures and power. The chemical effects of cold atmospheric plasma in aqueous solution are attributed to high voltage discharge and gas flow, which is transported rapidly on the liquid surface. The argon-cold atmospheric plasma (Ar-CAP) induces efficient reactive oxygen species (ROS) in aqueous solutions without thermal decomposition. Their formation has been confirmed by electron paramagnetic resonance (EPR) spin trapping, which is reviewed here. The similarities and differences between the plasma chemistry, sonochemistry, and radiation chemistry are explained. Further, the evidence for free radical formation in the liquid phase and their role in the biological effects induced by cold atmospheric plasma, ultrasound and ionizing radiation are discussed.

  3. Atmospheric pressure does not influence acute diverticular disease

    OpenAIRE

    Velayos, Benito; Pons-Renedo, Fernando; Feranández-Salazar, Luis; Muñoz, María Fe; Olmo, Lourdes del; Almaraz Gómez, Ana; Beltrán de Heredia, Juan; Hernández-González, José Manuel

    2013-01-01

    Producción Científica The article offers information on a study which examines the influence of atmospheric pressure on the development of acute diverticular disease. The value of atmospheric pressure and its daily trends in 2012 was collected to prove whether atmospheric pressure influence this disease by raising intra-diverticular pressure in days with higher atmospheric pressure. The study involved patients with acute diverticulitis who underwent computed tomography.

  4. A microwave pressure sounder. [for remote measurement of atmospheric pressure

    Science.gov (United States)

    Peckham, G. E.; Flower, D. A.

    1981-01-01

    A technique for the remote measurement of atmospheric surface pressure will be described. Such measurements could be made from a satellite in polar orbit and would cover many areas for which conventional meteorological data are not available. An active microwave instrument is used to measure the strength of return echoes from the ocean surface at a number of frequencies near the 60 GHz oxygen absorption band. Factors which affect the accuracy with which surface pressure can be deduced from these measurements will be discussed and an instrument designed to test the method by making measurements from an aircraft will be described.

  5. Ionization effect of solar particle GLE events in low and middle atmosphere

    Directory of Open Access Journals (Sweden)

    I. G. Usoskin

    2010-12-01

    Full Text Available Using a new reconstruction of the solar proton energy spectra for Ground Level Enhancement (GLE events, based on fits to measurements from ground-based and satellite-borne instruments covering a wide energy range, we quantitatively evaluate the possible ionization effects in the low and middle atmosphere for 58 out of the 66 GLE events recorded by the world-wide neutron monitor network since 1956. The ionization computations are based on the numerical 3-D CRAC:CRII model. A table of the ionization effect caused by the GLE events at different atmospheric heights is provided. It is shown that the direct ionization effect is negligible or even negative, due to the accompanying Forbush decreases, in all low- and mid-latitude regions. The ionization effect is important only in the polar atmosphere, where it can be dramatic in the middle and upper atmosphere (above 30 km during major GLE events.

  6. NON-EQUILIBRIUM HELIUM IONIZATION IN AN MHD SIMULATION OF THE SOLAR ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Golding, Thomas Peter; Carlsson, Mats [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Leenaarts, Jorrit, E-mail: thomas.golding@astro.uio.no, E-mail: mats.carlsson@astro.uio.no, E-mail: jorrit.leenaarts@astro.su.se [Institute for Solar Physics, Department of Astronomy, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm (Sweden)

    2016-02-01

    The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamic equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11–18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed.

  7. Atmospheric Pressure Plasma Processing for Polymer Adhesion: A Review

    DEFF Research Database (Denmark)

    Kusano, Yukihiro

    2014-01-01

    Atmospheric pressure plasma processing has attracted significant interests over decades due to its usefulness and a variety of applications. Adhesion improvement of polymer surfaces is among the most important applications of atmospheric pressure plasma treatment. Reflecting recent significant...... development of the atmospheric pressure plasma processing, this work presents its fundamental aspects, applications, and characterization techniques relevant to adhesion....

  8. Formation Mechanism of Atmospheric Pressure Plasma Jet

    CERN Document Server

    Jiang, Nan; Cao, Zexian

    2008-01-01

    Atmospheric pressure plasma jet can protrude some 5.0 cm into air. It holds promise for multivarious innovative applications, but its formation mechanism remains unsettled. We show that the plasma jet is essentially a streamer corona totally independent of, but obscured by, dielectric barrier discharge. Consequently, the jets can be equally successfully generated even with one single bare metal electrode attached to the tube orifice, both downstream and upstream simultaneously, and at a significantly reduced voltage. These results will help understand the underlying physics and facilitate a safer and more flexible implementation of this marvelous plasma source.

  9. New development of atmospheric pressure plasma polishing

    Institute of Scientific and Technical Information of China (English)

    Bo Wang; Jufan Zhang; Shen Dong

    2009-01-01

    Atmospheric pressure plasma polishing (APPP) is a precision machining technology used for manufacturing high quality optical surfaces. The changes of surface modulus and hardness after machining prove the distinct improvement of surface mechanical properties. The demonstrated decrease of surfacc residual stresses testifies the removal of the former deformation layer.And the surface topographies under atomic force microscope (AFM) and scanning electron microscope (SEM) indicate obvious amelioration of the surface status,showing that the 0.926-nm average surface roughness has been achieved.

  10. Atmospheric ionization induced by precipitating electrons: Comparison of CRAC:EPII model with parametrization model

    CERN Document Server

    Artamonov, A A; Usoskin, I G

    2016-01-01

    A new model CRAC:EPII (Cosmic Ray Atmospheric Cascade: Electron Precipitation Induced Ionization) is presented. The CRAC:EPII is based on Monte Carlo simulation of precipitating electrons propagation and interaction with matter in the Earth atmosphere. It explicitly considers energy deposit: ionization, pair production, Compton scattering, generation of Bremsstrahlung high energy photons, photo-ionization and annihilation of positrons, multiple scattering as physical processes accordingly. The propagation of precipitating electrons and their interactions with atmospheric molecules is carried out with the GEANT4 simulation tool PLANETOCOSMICS code using NRLMSISE 00 atmospheric model. The ionization yields is compared with an analytical parametrization for various energies of incident precipitating electron, using a flux of mono-energetic particles. A good agreement between the two models is achieved. Subsequently, on the basis of balloon-born measured spectra of precipitating electrons at 30.10.2002 and 07.01....

  11. Nanocapillary Atmospheric Pressure Plasma Jet: A Tool for Ultrafine Maskless Surface Modification at Atmospheric Pressure.

    Science.gov (United States)

    Motrescu, Iuliana; Nagatsu, Masaaki

    2016-05-18

    With respect to microsized surface functionalization techniques we proposed the use of a maskless, versatile, simple tool, represented by a nano- or microcapillary atmospheric pressure plasma jet for producing microsized controlled etching, chemical vapor deposition, and chemical modification patterns on polymeric surfaces. In this work we show the possibility of size-controlled surface amination, and we discuss it as a function of different processing parameters. Moreover, we prove the successful connection of labeled sugar chains on the functionalized microscale patterns, indicating the possibility to use ultrafine capillary atmospheric pressure plasma jets as versatile tools for biosensing, tissue engineering, and related biomedical applications.

  12. Response of cyanobacteria to low atmosphere pressure

    Science.gov (United States)

    Qin, Lifeng; Ai, Weidang; Guo, Shuangsheng; Tang, Yongkang; Yu, Qingni; Shen, Yunze; Ren, Jin

    Maintaining a low pressure environment would reduce the technological complexity and constructed cost of future lunar base. To estimate the effect of hypobaric of controlled ecological life support system in lunar base on terrestrial life, cyanobacteria was used as the model to exam the response of growth, morphology, physiology to it. The decrease of atmosphere pressure from 100 KPa to 50 KPa reducing the growth rates of Microcystis aeruginosa, Merismopedia.sp, Anabaena sp. PCC 7120, Anabaena Hos-aquae, the chlorophyll a content in Microcystis aeruginosa, Merismopedia.sp, Anabaena Hos-aquae, the carotenoid content in Microcystis aeruginosa, Merismopedia.sp and Anabaena sp. PCC 7120, the phycocyanin content in Microcystis aeruginosa. This study explored the biological characteristics of the cyanobacteria under low pressure condition, which aimed at understanding the response of the earth's life to environment for the future moon base, the results enrich the research contents of the lunar biology and may be referred for the research of other terrestrial life, such as human, plant, microbe and animal living in life support system of lunar base.

  13. Surface desorption atmospheric pressure chemical ionization mass spectrometry for rapid analysis of volatile components of Ginseng Flos%表面解吸常压化学电离质谱快速分析人参花中挥发性成分

    Institute of Scientific and Technical Information of China (English)

    王恩鹏; 越皓; 陈焕文; 刘淑莹

    2014-01-01

    Objective:To establish a method of surface desorption atmospheric pressure chemical ionization (SDAPCI)-mass spectrometry(MS) for identification of the volatile components of Ginseng Flos.Methods:Through the SDAPCI approach,the direct detection was carried out for the volatile oil which was gained by a steam distillation method without any chromatographic separation.An in-house corona discharge was employed to generate the primary ions such as H3O + which was combined with the volatile compounds to generate [M + H] + for mass analysis in the positive ion detection mode in the ambient air with 50% relative humidity.Results:Through this method,34 compounds were detected,of which 10 were identified as the volatile oil from Ginseng Flos.Conclusion:Compared with the results of gas chromatography (GC)-mass spectrometry (MS),SDAPCI-MS is more rapid,sensitive and sample-preparation-free for analysis of volatile components of the plants,which can be used for real time and online detection of various compounds in complex matrices including volatile samples.%目的:建立新型表面解吸常压化学电离(surface desorption atmospheric pressure chemical ionization,SDAPCI)质谱法对人参花蕾中挥发性成分的快速鉴别.方法:采用SDAPCI质谱法,无需色谱分离,对水蒸气蒸馏法获得的人参花挥发油进行直接检测.在空气相对湿度为50%的敞开体系下,通过电晕放电,在正离子模式可产生以H3O+为主的初级离子,使得挥发成分与之结合产生[M+H]+而被检测.结果:通过该方法共检测出34个化合物,通过串联质谱(MS/MS)分析结合气相色谱-质谱(GC-MS)数据比对,鉴定出其中10个挥发性成分.结论:实验结果表明,与GC-MS相比,该方法快捷灵敏,无污染,不需要样本制备,可广泛应用于实时及在线检测复杂基质中挥发性成分的鉴定.

  14. Competitive Deprotonation and Superoxide [O2 -•] Radical-Anion Adduct Formation Reactions of Carboxamides under Negative-Ion Atmospheric-Pressure Helium-Plasma Ionization (HePI) Conditions

    Science.gov (United States)

    Hassan, Isra; Pinto, Spencer; Weisbecker, Carl; Attygalle, Athula B.

    2016-03-01

    Carboxamides bearing an N-H functionality are known to undergo deprotonation under negative-ion-generating mass spectrometric conditions. Herein, we report that N-H bearing carboxamides with acidities lower than that of the hydroperoxyl radical (HO-O•) preferentially form superoxide radical-anion (O2 -•) adducts, rather than deprotonate, when they are exposed to the glow discharge of a helium-plasma ionization source. For example, the spectra of N-alkylacetamides show peaks for superoxide radical-anion (O2 -•) adducts. Conversely, more acidic amides, such as N-alkyltrifluoroacetamides, preferentially undergo deprotonation under similar experimental conditions. Upon collisional activation, the O2 -• adducts of N-alkylacetamides either lose the neutral amide or the hydroperoxyl radical (HO-O•) to generate the superoxide radical-anion ( m/z 32) or the deprotonated amide [ m/z (M - H)-], respectively. For somewhat acidic carboxamides, the association between the two entities is weak. Thus, upon mildest collisional activation, the adduct dissociates to eject the superoxide anion. Superoxide-adduct formation results are useful for structure determination purposes because carboxamides devoid of a N-H functionality undergo neither deprotonation nor adduct formation under HePI conditions.

  15. Structure formation of atmospheric pressure discharge

    Science.gov (United States)

    Medvedev, Alexey E.

    2016-02-01

    In this paper it is shown, by analyzing the results of experimental studies, that the outer boundary of the atmospheric pressure discharge pinch is determined by the condition of equality of plasma flows based on the thermal and electric field energy. In most cases, the number of charged particles coming from near-electrode zones is sufficient to compensate for losses in the discharge bulk. At large currents and enhanced heating, plasma is in the diffusion mode of losses, with recombination of charged particles at the pinch boundary. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.

  16. The Possible Role of Penning Ionization Processes in Planetary Atmospheres

    Directory of Open Access Journals (Sweden)

    Stefano Falcinelli

    2015-03-01

    Full Text Available In this paper we suggest Penning ionization as an important route of formation for ionic species in upper planetary atmospheres. Our goal is to provide relevant tools to researchers working on kinetic models of atmospheric interest, in order to include Penning ionizations in their calculations as fast processes promoting reactions that cannot be neglected. Ions are extremely important for the transmission of radio and satellite signals, and they govern the chemistry of planetary ionospheres. Molecular ions have also been detected in comet tails. In this paper recent experimental results concerning production of simple ionic species of atmospheric interest are presented and discussed. Such results concern the formation of free ions in collisional ionization of H2O, H2S, and NH3 induced by highly excited species (Penning ionization as metastable noble gas atoms. The effect of Penning ionization still has not been considered in the modeling of terrestrial and extraterrestrial objects so far, even, though metastable helium is formed by radiative recombination of He+ ions with electrons. Because helium is the second most abundant element of the universe, Penning ionization of atomic or molecular species by He*(23S1 is plausibly an active route of ionization in relatively dense environments exposed to cosmic rays.

  17. Synthetic oligomer analysis using atmospheric pressure photoionization mass spectrometry at different photon energies

    Energy Technology Data Exchange (ETDEWEB)

    Desmazières, Bernard [Global Bioenergies, 5 rue Henri Desbruyeres, 91030 Evry (France); Legros, Véronique [CNRS, UMR8587, Université d’Evry-Val-d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, F-91025 Evry (France); Giuliani, Alexandre [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, 91192 Gif-sur-Yvette (France); UAR1008, CEPIA, INRA, Rue de la Geraudiere, F-44316 Nantes (France); Buchmann, William, E-mail: william.buchmann@univ-evry.fr [CNRS, UMR8587, Université d’Evry-Val-d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, F-91025 Evry (France)

    2014-01-15

    Graphical abstract: Atmospheric pressure photoIonization mass spectra of synthetic oligomers were recorded in the negative mode by varying the photon energy using synchrotron radiation. Photon energy required for an efficient ionization of the polymer was correlated to ionization potential of the solvent (for example 9.4 eV for tetrahydrofuran). -- Highlights: •Atmospheric pressure photoionization was performed using synchrotron radiation. •Photoionization of oligomers in THF with 10% CH{sub 2}Cl{sub 2} produces intact [M + Cl]{sup −} ions. •The photon energy required corresponds to ionization potential of the solvent. •Polymer distributions depend on source parameters such T °C and applied voltages. •Liquid chromatography was coupled to MS using an APPI interface for polymer analysis. -- Abstract: Atmospheric pressure photoionization (APPI) followed by mass spectrometric detection was used to ionize a variety of polymers: polyethylene glycol, polymethyl methacrylate, polystyrene, and polysiloxane. In most cases, whatever the polymer or the solvent used (dichloromethane, tetrahydrofuran, hexane, acetone or toluene), only negative ion mode produced intact ions such as chlorinated adducts, with no or few fragmentations, in contrast to the positive ion mode that frequently led to important in-source fragmentations. In addition, it was shown that optimal detection of polymer distributions require a fine tuning of other source parameters such as temperature and ion transfer voltage. Series of mass spectra were recorded in the negative mode, in various solvents (dichloromethane, tetrahydrofuran, hexane, toluene, and acetone), by varying the photon energy from 8 eV up to 10.6 eV using synchrotron radiation. To these solvents, addition of a classical APPI dopant (toluene or acetone) was not necessary. Courtesy of the synchrotron radiation, it was demonstrated that the photon energy required for an efficient ionization of the polymer was correlated to the

  18. Analysis of Short Chain Chlorinated Paraffins in Leather by Liquid Chromatography-Atmosphere Pressure Ionization Mass Spectrometry%皮革中短链氯化石蜡的液相色谱-大气压化学电离质谱分析

    Institute of Scientific and Technical Information of China (English)

    马贺伟

    2012-01-01

    Short - chain chlorinated paraffins ( SCCPs) in leather were analyzed by liquid chromatography combined atmosphere pressure ionization mass spectrometry ( LC - APCI/MS). The results demonstrated that multi - clusters of chloride adduct ions were contained in the mass spectrum and the response factors were dependent on the degree of chlorination. Selective Ion Monitoring (SIM) mode could reduce the interferences of medium - chain chlorinated paraffins (MCCPs). However, the significant interferences were found when leather samples were tested due to the expressive complexity of the matrix in leather, which easily resulted in FALSE positives.%采用液相色谱-大气压化学电离源质谱(LC-MS/APCI)对皮革中短链氯化石蜡(SCCPs)进行分析.结果表明,SCCPs的质谱图包含了多簇离子碎片峰,其响应值表现出对氯含量的依赖性;采用选择监测离子模式可有效降低中链氯化石蜡(MCCPs)的干扰,但实际皮革样品基质的多样性及复杂性,极易造成检测结果的假阳性.

  19. Ultra performance liquid chromatography coupled with electrospray and atmospheric pressure chemical ionization (ESCi)-quadrupole time-of-flight mass spectrometry with novel mass spectrometry(Elevated Energy) (MS(E)) data collection technique: determination and pharmacokinetics, tissue distribution and biliary excretion study of ergone in rat.

    Science.gov (United States)

    Zhao, Ying-Yong; Cheng, Xian-Long; Wei, Feng; Bai, Xu; Lin, Rui-Chao

    2012-07-01

    Ergosta-4,6,8(14),22-tetraen-3-one (ergone) has been proved to have novel antitumor effects on HepG2 cells. The aim of this study was to investigate the pharmacokinetics, tissue distribution, and biliary excretion of ergone in rats following a single oral administration (5, 10, and 20 mg/kg). The levels of ergone in plasma, tissues, and bile were measured by ultra performance liquid chromatography coupled with electrospray and atmospheric pressure chemical ionization (ESCi)-quadrupole time-of-flight mass spectrometry with novel mass spectrometry(Elevated Energy) (MS(E)) data collection technique method. The results show ergone was distributed and eliminated from rat plasma and in non-linear pharmacokinetics from a dose range of 5-20 mg/kg. The ergone was found to distribute widely in the internal organs, with tissue concentrations in order of lungs, spleen, liver, intestine, kidneys, heart, stomach, parorchis, teasticles, and brain. At 12 h after dosing, the tissue concentrations in the organs were markedly decreased. The lungs, spleen, and liver were the dominant organs with high tissue concentrations that might be the primary sites for metabolism and elimination of ergone. Total recoveries of ergone within 24 h in bile were 34.14%.

  20. Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) in toxicological analysis. Studies on the detection of clobenzorex and its metabolites within a systematic toxicological analysis procedure by GC-MS and by immunoassay and studies on the detection of alpha- and beta-amanitin in urine by atmospheric pressure ionization electrospray LC-MS.

    Science.gov (United States)

    Maurer, H H; Kraemer, T; Ledvinka, O; Schmitt, C J; Weber, A A

    1997-02-07

    GC-MS is the method of choice for toxicological analysis of toxicants volatile in GC while non-volatile and/or thermally labile toxicants need LC-MS for their determination. Studies are presented on the toxicological detection of the amphetamine-like anorectic clobenzorex in urine by GC-MS after acid hydrolysis, extraction and acetylation and by fluorescence polarization immunoassay (FPIA, TDx (meth)amphetamine II). After ingestion of 60 mg of clobenzorex, the parent compound and/or its metabolites could be detected by GC-MS for up to 84 h or by FPIA for up to 60 h. Since clobenzorex shows no cross-reactivity with the used immunoassay, the N-dealkylated metabolite amphetamine is responsible for the positive TDx results. The intake of clobenzorex instead of amphetamine can be differentiated by GC-MS detection of hydroxyclobenzorex which is detectable for at least as long as amphetamine. In addition, the described GC-MS procedure allows the simultaneous detection of most of the toxicologically relevant drugs. Furthermore, studies are described on the atmospheric pressure ionization electrospray LC-MS detection of alpha- and beta-amanitin, toxic peptides of amanita mushrooms, in urine after solid-phase extraction on RP-18 columns. Using the single ion monitoring mode with the ions m/z 919 and 920 the amanitins could be detected down to 10 ng/ml of urine which allows us to diagnose intoxications with amanita mushrooms.

  1. Atmospheric pressure variations and abdominal aortic aneurysm rupture.

    LENUS (Irish Health Repository)

    Killeen, S D

    2012-02-03

    BACKGROUND: Ruptured abdominal aortic aneurysm (RAAA) presents with increased frequency in the winter and spring months. Seasonal changes in atmospheric pressure mirrors this pattern. AIM: To establish if there was a seasonal variation in the occurrence of RAAA and to determine if there was any association with atmospheric pressure changes. METHODS: A retrospective cohort-based study was performed. Daily atmospheric pressure readings for the region were obtained. RESULTS: There was a statistically significant monthly variation in RAAA presentation with 107 cases (52.5%) occurring from November to March. The monthly number of RAAA and the mean atmospheric pressure in the previous month were inversely related (r = -0.752, r (2) = 0.566, P = 0.03), and there was significantly greater daily atmospheric pressure variability on days when patients with RAAA were admitted. CONCLUSION: These findings suggest a relationship between atmospheric pressure and RAAA.

  2. Atmospheric ionization induced by precipitating electrons: Comparison of CRAC:EPII model with a parametrization model

    Science.gov (United States)

    Artamonov, A. A.; Mishev, A. L.; Usoskin, I. G.

    2016-11-01

    Results of a comparison of a new model CRAC:EPII (Cosmic Ray Atmospheric Cascade: Electron Precipitation Induced Ionization) with a commonly used parametric model of atmospheric ionization is presented. The CRAC:EPII is based on a Monte Carlo simulation of precipitating electrons propagation and interaction with matter in the Earth's atmosphere. It explicitly considers energy deposit: ionization, pair production, Compton scattering, generation of Bremsstrahlung high energy photons, photo-ionization and annihilation of positrons, multiple scattering as physical processes accordingly. Propagation of precipitating electrons and their interactions with air is simulated with the GEANT4 simulation tool PLANETOCOSMICS code using NRLMSISE-00 atmospheric model. Ionization yields are computed and compared with a parametrization model for different energies of incident precipitating energetic electrons, using simulated fluxes of mono-energetic particles. A good agreement between the two models is achieved in the mesosphere but the contribution of Bremsstrahlung in the stratosphere, which is not accounted for in the parametric models, is found significant. As an example, we calculated profiles of the ion production rates in the middle and upper atmosphere (below 100 km) on the basis of balloon-born measured spectra of precipitating electrons for 30-October-2002 and 07-January-2004.

  3. Resonant Alfven waves in partially ionized plasmas of the solar atmosphere

    CERN Document Server

    Soler, R; Goossens, M

    2011-01-01

    Context. Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. In magnetic waveguides resonant absorption due to plasma inhomogeneity naturally transfers wave energy from large-scale motions to small-scale motions. In the cooler parts of the solar atmosphere as, e.g., the chromosphere, effects due to partial ionization may be relevant for wave dynamics and heating. Aims. We study resonant Alfven waves in partially ionized plasmas. Methods. We use the multifluid equations in the cold plasma approximation. We investigate propagating resonant MHD waves in partially ionized flux tubes. We use approximate analytical theory based on normal modes in the thin tube and thin boundary approximations along with numerical eigenvalue computations. Results. We find that the jumps of the wave perturbations across the resonant layer are the same as in fully ionized plasmas. The damping length due to resonant absorption is inversely proportional to the frequency, while that due to ion-neutral collisions is in...

  4. A New Atmospheric Pressure Microwave Plasma Source (APMPS)

    Institute of Scientific and Technical Information of China (English)

    LIU Liang; ZHANG Guixin; LI Yinan; ZHU Zhijie; WANG Xinxin; LUO Chengmu

    2008-01-01

    An atmospheric pressure microwave plasma source (APMPS) that can generate a large volume of plasma at an atmospheric pressure has been developed at Tsinghua University. This paper presents the design of this APMPS, the theoretical consideration of microwave plasma ignition and the simulation results, including the distributions of the electric field and power density inside the cavity as well as the accuracy of the simulation results. In addition, a method of producing an atmospheric pressure microwave plasma and some relevant observations of the plasma are also provided. It. is expected that this research would be useful for further developing atmospheric pressure microwave plasma sources and expanding the scope of their applications.

  5. Ionization mechanism of the ambient pressure pyroelectric ion source (APPIS) and its applications to chemical nerve agent detection.

    Science.gov (United States)

    Neidholdt, Evan L; Beauchamp, J L

    2009-11-01

    We present studies of the ionization mechanism operative in the ambient pressure pyroelectric ionization source (APPIS), along with applications that include detection of simulants for chemical nerve agents. It is found that ionization by APPIS occurs in the gas-phase. As the crystal is thermally cycled over a narrow temperature range, electrical discharges near the surface of the crystal produce energetic species which, through reactions with atmospheric molecules, result in reactant ions such as protonated water clusters or clusters of hydroxide and water. Reactant ions can be observed directly in the mass spectrometer. These go on to react with trace neutrals via proton transfer reactions to produce the ions observed in mass spectra, which are usually singly protonated or deprotonated species. Further implicating gas-phase ionization, observed product distributions are highly dependent on the composition of ambient gases, especially the concentration of water vapor and oxygen surrounding the source. For example, basic species such as triethylamine are observed as singly protonated cations at a water partial pressure of 10 torr. At a water pressure of 4 torr, reactive oxygen species are formed and lead to observation of protonated amine oxides. The ability of the APPIS source to detect basic molecules with high proton affinities makes it highly suited for the detection of chemical nerve agents. We demonstrate this application using simulants corresponding to VX and GA (Tabun). With the present source configuration pyridine is detected readily at a concentration of 4 ppm, indicating ultimate sensitivity in the high ppb range.

  6. Analysis of solids, liquids, and biological tissues using solids probe introduction at atmospheric pressure on commercial LC/MS instruments.

    Science.gov (United States)

    McEwen, Charles N; McKay, Richard G; Larsen, Barbara S

    2005-12-01

    Direct analysis of samples using atmospheric pressure ionization (API) provides a more rapid method for analysis of volatile and semivolatile compounds than vacuum solids probe methods and can be accomplished on commercial API mass spectrometers. With only a simple modification to either an electrospray (ESI) or atmospheric pressure chemical ionization (APCI) source, solid as well as liquid samples can be analyzed in seconds. The method acts as a fast solids/liquid probe introduction as well as an alternative to the new direct analysis in real time (DART) and desorption electrospray ionization (DESI) methods for many compound types. Vaporization of materials occurs in the hot nitrogen gas stream flowing from an ESI or APCI probe. Ionization of the thermally induced vapors occurs by corona discharge under standard APCI conditions. Accurate mass and mass-selected fragmentation are demonstrated as is the ability to obtain ions from biological tissue, currency, and other objects placed in the path of the hot nitrogen stream.

  7. Atmospheric Pressure Glow Discharge with Liquid Electrode

    Science.gov (United States)

    Tochikubo, Fumiyoshi

    2013-09-01

    Nonthermal atmospheric pressure plasmas in contact with liquid are widely studied aiming variety of plasma applications. DC glow discharge with liquid electrode is an easy method to obtain simple and stable plasma-liquid interface. When we focus attention on liquid-phase reaction, the discharge system is considered as electrolysis with plasma electrode. The plasma electrode will supply electrons and positive ions to the liquid surface in a different way from the conventional metal electrode. However, the phenomena at plasma-liquid interface have not been understood well. In this work, we studied physical and chemical effect in liquid induced by dc atmospheric pressure glow discharge with liquid electrode. The experiment was carried out using H-shaped Hoffman electrolysis apparatus filled with electrolyte, to separate the anodic and cathodic reactions. Two nozzle electrodes made of stainless steel are set about 2 mm above the liquid surface. By applying a dc voltage between the nozzle electrodes, dc glow discharges as plasma electrodes are generated in contact with liquid. As electrolyte, we used aqueous solutions of NaCl, Na2SO4, AgNO3 and HAuCl4. AgNO3 and HAuCl4 are to discuss the reduction process of metal ions for synthesis of nanoparticles (NPs). OH radical generation yield in liquid was measured by chemical probe method using terephthalic acid. Discharge-induced liquid flow was visualized by Schlieren method. Electron irradiation to liquid surface (plasma cathode) generated OH- and OH radical in liquid while positive ion irradiation (plasma anode) generated H+ and OH radical. The generation efficiency of OH radical was better with plasma anode. Both Ag NPs in AgNO3 and Au NPs in HAuCl4 were synthesized with plasma cathode while only Au NPs were generated with plasma anode. Possible reaction process is qualitatively discussed. The discharge-induced liquid flow such as convection pattern was strongly influenced by the gas flow on the liquid surface. This work

  8. Atmospheric pressure changes and unexplained variability in INR measurements.

    Science.gov (United States)

    Ernst, Michael E; Shaw, Robert F; Ernst, Erika J; Alexander, Bruce; Kaboli, Peter J

    2009-06-01

    Changes in atmospheric pressure may influence hepatic blood flow and drug metabolism. Anecdotal experience suggests international normalized ratio (INR) variability may be temporally related to significant atmospheric pressure changes. We investigated this potential association in a large sample of patients with multiple INRs. This is a retrospective review of outpatient anticoagulation records from the Iowa City Veteran's Affairs Medical Center and affiliated outpatient clinics from October 1999 to July 2007. All patients, receiving at least one prescription for warfarin and INR at least 30 days or more from the date of the first warfarin prescription, were identified. INRs during periods of hospitalization and vitamin K use were excluded. Proximity analysis using geocoding of ZIP codes of identified patients to the nearest National Oceanic and Atmospheric Administration station was performed to assign atmospheric pressure with INR. Spearman's Rho and Pearson's correlation were used to evaluate atmospheric pressure and INR. Unique patients (1441) with 45 187 INRs were analyzed. When limited to nontherapeutic INRs following a previously therapeutic INR (1121 unique patients/5256 INRs), a small but clinically insignificant association between delta INR and delta atmospheric pressure was observed (r = -0.025; P = 0.038), but not for actual INR and atmospheric pressure (P = 0.06). Delta atmospheric pressure demonstrated greater variation during fall/winter months compared with spring/summer (0.23 vs. 0.15 inHg; P atmospheric pressure changes and INR variability. These findings refute the anecdotal experience seen in our anticoagulation clinic.

  9. Helium atmospheric pressure plasma jets touching dielectric and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Norberg, Seth A., E-mail: norbergs@umich.edu; Johnsen, Eric, E-mail: ejohnsen@umich.edu [Department of Mechanical Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, Michigan 48109-2125 (United States); Kushner, Mark J., E-mail: mjkush@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122 (United States)

    2015-07-07

    Atmospheric pressure plasma jets (APPJs) are being investigated in the context plasma medicine and biotechnology applications, and surface functionalization. The composition of the surface being treated ranges from plastics, liquids, and biological tissue, to metals. The dielectric constant of these materials ranges from as low as 1.5 for plastics to near 80 for liquids, and essentially infinite for metals. The electrical properties of the surface are not independent variables as the permittivity of the material being treated has an effect on the dynamics of the incident APPJ. In this paper, results are discussed from a computational investigation of the interaction of an APPJ incident onto materials of varying permittivity, and their impact on the discharge dynamics of the plasma jet. The computer model used in this investigation solves Poisson's equation, transport equations for charged and neutral species, the electron energy equation, and the Navier-Stokes equations for the neutral gas flow. The APPJ is sustained in He/O{sub 2} = 99.8/0.2 flowing into humid air, and is directed onto dielectric surfaces in contact with ground with dielectric constants ranging from 2 to 80, and a grounded metal surface. Low values of relative permittivity encourage propagation of the electric field into the treated material and formation and propagation of a surface ionization wave. High values of relative permittivity promote the restrike of the ionization wave and the formation of a conduction channel between the plasma discharge and the treated surface. The distribution of space charge surrounding the APPJ is discussed.

  10. The effect of atmospheric pressure on ventricular assist device output.

    Science.gov (United States)

    Goto, Takeshi; Sato, Masaharu; Yamazaki, Akio; Fukuda, Wakako; Watanabe, Ken-Ichi; Daitoku, Kazuyuki; Minakawa, Masahito; Fukui, Kozo; Suzuki, Yasuyuki; Fukuda, Ikuo

    2012-03-01

    The effect of cabin pressure change on the respiratory system during flight is well documented in the literature, but how the change in atmospheric pressure affects ventricular assist device (VAD) output flow has not been studied yet. The purpose of our study was to evaluate the change in VAD output using a mock circulatory system in a low-pressure chamber mimicking high altitude. Changes in output and driving pressure were measured during decompression from 1.0 to 0.7 atm and pressurization from 0.7 to 1.0 atm. Two driving systems were evaluated: the VCT system and the Mobart system. In the VCT system, output and driving pressure remained the same during decompression and pressurization. In the Mobart system, the output decreased as the atmospheric pressure dropped and recovered during pressurization. The lowest output was observed at 0.7 atm, which was 80% of the baseline driven by the Mobart system. Under a practical cabin pressure of 0.8 atm, the output driven by the Mobart system was 90% of the baseline. In the Mobart system, the output decreased as the atmospheric pressure dropped, and recovered during pressurization. However, the decrease in output was slight. In an environment where the atmospheric pressure changes, it is necessary to monitor the diaphragmatic motion of the blood pump and the driving air pressure, and to adjust the systolic:diastolic ratio as well as the positive and negative pressures in a VAD system.

  11. Study of the energy response of high pressure ionization chamber for high energy gamma-ray

    Institute of Scientific and Technical Information of China (English)

    HUA Zheng-Dong; XU Xun-Jiang; WANG Jian-Hua; LIU Shu-Dong; LI Jian-Ping

    2008-01-01

    The energy response calibration of the commonly used high pressure ionization chamber is very difficult to obtain when the gamma-ray energy is more than 3 MeV.In order to get the calibration of the higher part of the high pressure ionization chamber,we use the Fluka Monte Carlo program to perfclrm the energy response in both the spherical and the cylindrical high pressure ionization chamber which are full of argon gas.The results compared with prior study when the gamma-ray energy is less than 1.25 MeV.Our result of Monte Carlo calculation shows agreement with those obtained by measurement within the uncertainty of the respective methods.The calculation of this study is significant for the high pressure ionization chamber to measure the high energy gamma-ray.

  12. Surface Modification by Atmospheric Pressure Plasma for Improved Bonding

    Science.gov (United States)

    Williams, Thomas Scott

    An atmospheric pressure plasma source operating at temperatures below 150?C and fed with 1.0-3.0 volume% oxygen in helium was used to activate the surfaces of the native oxide on silicon, carbon-fiber reinforced epoxy composite, stainless steel type 410, and aluminum alloy 2024. Helium and oxygen were passed through the plasma source, whereby ionization occurred and ˜10 16 cm-3 oxygen atoms, ˜1015 cm -3 ozone molecules and ˜1016 cm-3 metastable oxygen molecules (O21Deltag) were generated. The plasma afterglow was directed onto the substrate material located 4 mm downstream. Surface properties of the plasma treated materials have been investigated using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and x-ray photoelectron spectroscopy (XPS). The work presented herein establishes atmospheric-pressure plasma as a surface preparation technique that is well suited for surface activation and enhanced adhesive bond strength in a variety of materials. Atmospheric plasma activation presents an environmentally friendly alternative to wet chemical and abrasive methods of surface preparation. Attenuated total internal reflection infrared spectroscopy was used to study the aging mechanism of the native oxide on silicon. During storage at ambient conditions, the water contact angle of a clean surface increased from composite, stainless steel type 410, and aluminum alloy 2024 was demonstrated with the atmospheric pressure helium-oxygen plasma. All surfaces studied were converted from a hydrophobic state with a water contact angle of 65° to 80° into a hydrophilic state with a water contact angle between 20° and 40° within 5 seconds of plasma exposure. X-ray photoelectron spectroscopy confirmed that the carbon atoms on the carbon-fiber/epoxy composite were oxidized, yielding 17 atom% carboxylic acid groups, 10% ketones or aldehydes and 9% alcohols. Analysis of stainless steel and aluminum by XPS illustrate oxidation of the metal

  13. Radiation pressure confinement - III. The origin of the broad ionization distribution in AGN outflows

    Science.gov (United States)

    Stern, Jonathan; Behar, Ehud; Laor, Ari; Baskin, Alexei; Holczer, Tomer

    2014-12-01

    The winds of ionized gas driven by active galactic nuclei (AGN) can be studied through absorption lines in their X-ray spectra. A recurring feature of these outflows is their broad ionization distribution, including essentially all ionization levels (e.g., Fe0+ to Fe25+). This characteristic feature can be quantified with the absorption measure distribution (AMD), defined as the distribution of column density with ionization parameter |dN/d log ξ|. Observed AMDs extend over 0.1 ≲ ξ ≲ 104 (cgs), and are remarkably similar in different objects. Power-law fits (|dN/d log ξ| ≈ N1ξa) yield N1 = 3 × 1021 cm- 2 ± 0.4 dex and a = 0-0.4. What is the source of this broad ionization distribution, and what sets the small range of observed N1 and a? A common interpretation is a multiphase outflow, with a wide range of gas densities in a uniform gas pressure medium. However, the incident radiation pressure leads to a gas pressure gradient in the photoionized gas, and therefore to a broad range of ionization states within a single slab. We show that this compression of the gas by the radiation pressure leads to an AMD with |dN/d log ξ| = 8 × 1021 ξ0.03 cm-2, remarkably similar to that observed. The calculated values of N1 and a depend weakly on the gas metallicity, the ionizing spectral slope, the distance from the nucleus, the ambient density, and the total absorber column. Thus, radiation pressure compression (RPC) of the photoionized gas provides a natural explanation for the observed AMD. RPC predicts that the gas pressure increases with decreasing ionization, which can be used to test the validity of RPC in ionized AGN outflows.

  14. Atmospheric pressure thermal dissociation of phospho- and sulfopeptides.

    Science.gov (United States)

    Eberlin, Lívia S; Xia, Yu; Chen, Hao; Cooks, R Graham

    2008-12-01

    Several phospho- and sulfopeptides were subjected to atmospheric pressure thermal dissociation (APTD), which was effected by passing peptide ions generated by electrosonic spray ionization (ESSI) through a heated coiled metal tube. Sequence informative fragment ions including a-, b-, c-, and y-types of ions were observed with increased relative intensities under APTD compared with collision-induced dissociation (CID), performed inside the ion trap. A certain degree of preservation of phosphate and sulfate ester moieties was observed for some fragments ions under APTD. The neutral fragments generated outside the mass spectrometer were further analyzed via on-line corona discharge to provide rich and complementary sequence information to that provided by the fragment ions directly obtained from APTD, although complete losses of the modification groups were noted. Improved primary sequence information for phospho- and sulfopeptides was typically obtained by analyzing both ionic and neutral fragments from APTD compared with fragment ions from CID alone. Localization of the modification sites of phospho- and sulfopeptides was achieved by combining the structural information acquired from APTD and CID.

  15. Atmospheric pressure arc discharge with ablating graphite anode

    Energy Technology Data Exchange (ETDEWEB)

    Nemchinsky, V. A. [Keiser University, Fort Lauderdale Campus, FL, 33309, USA; Raitses, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2015-05-18

    The anodic carbon arc discharge is used to produce carbon nanoparticles. Recent experiments with the carbon arc at atmospheric pressure helium demonstrated the enhanced ablation rate for narrow graphite anodes resulting in high deposition rates of carbonaceous products on the copper cathode (Fetterman et al 2008 Carbon 46 1322–6). The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. When considering cathode functioning, the model predicts circulation of the particles in the near-cathode region: evaporation of the cathode material, ionization of evaporated atoms and molecules in the near-cathode plasma, return of the resulting ions to the cathode, surface recombination of ions and electrons followed again by cathode evaporation etc. In the case of the low anode ablation rate, the ion acceleration in the cathode sheath provides the major cathode heating mechanism. In the case of an intensive anode ablation, an additional cathode heating is due to latent fusion heat of the atomic species evaporated from the anode and depositing at the cathode. Using the experimental arc voltage as the only input discharge parameter, the model allows us to calculate the anode ablation rate. A comparison of the results of calculations with the available experimental data shows reasonable agreement.

  16. A new matrix assisted ionization method for the analysis of volatile and nonvolatile compounds by atmospheric probe mass spectrometry.

    Science.gov (United States)

    Chakrabarty, Shubhashis; Pagnotti, Vincent S; Inutan, Ellen D; Trimpin, Sarah; McEwen, Charles N

    2013-07-01

    Matrix assisted ionization of nonvolatile compounds is shown not to be limited to vacuum conditions and does not require a laser. Simply placing a solution of analyte dissolved with a suitable matrix such as 3-nitrobenzonitrile (3-NBN) or 2,5-dihydroxyacetophenone on a melting point tube and gently heating the dried sample near the ion entrance aperture of a mass spectrometer using a flow of gas produces abundant ions of peptides, small proteins, drugs, and polar lipids. Fundamental studies point to matrix-mediated ionization occurring prior to the entrance aperture of the mass spectrometer. The method is analytically useful, producing peptide mass fingerprints of bovine serum albumin tryptic digest consuming sub-picomoles of sample. Application of 100 fmol of angiotensin I in 3-NBN matrix produces the doubly and triply protonated molecular ions as the most abundant peaks in the mass spectrum. No carryover is observed for samples containing up to 100 pmol of this peptide. A commercial atmospheric samples analysis probe provides a simple method for sample introduction to an atmospheric pressure ion source for analysis of volatile and nonvolatile compounds without using the corona discharge but using sample preparation similar to matrix-assisted laser desorption/ionization.

  17. Ionization chemistry in the H2O-dominant atmospheres of the icy moons

    Science.gov (United States)

    Shematovich, V. I.; Johnson, R. E.

    2007-08-01

    The main pathways of the ionization chemistry for pure H2O- and mixed H2O+O2+CO2+NH3+CH4 atmospheres which are representative for neutral and ionized atmospheres of the icy bodies in the Jovian and Saturnian systems are discussed. The gaseous envelopes of the icy moons of the giant planets are formed usually due to the surface radiolysis by the solar UV radiation and energetic magnetospheric plasma (Johnson, 1990). The standard astrochemical UMIST2005 (UDFA05) network is used to infer the main chemical pathways of ionization chemistry in the pure or with admixtures of other volatile molecules water vapor atmospheres. In case of the H2O- dominant atmosphere the parent H2O molecules are easily dissociated and ionized by the solar UVradiation and the energetic magnetospheric electrons. These impact processes result in the formation of the secondary neutral and ionized products - chemically active radicals O and OH, and H+, H2+, O+, OH+, and H2O+ ions. Secondary ions have admixture abundances in the H2O-dominant atmospheres, because they are efficiently transformed to H3O+ hydroxonium ions in the fast ion-molecular reactions. The major H3O+ hydroxonium ion does not chemically interact with other neutrals, and is destroyed in the dissociative recombination with thermal electrons mainly reproducing the chemically simple H, H2, O, and OH species. In case of the mixed H2O+O2-dominant atmosphere corresponding to the near-surface atmospheres of icy moons (Shematovich et al., 2005), the ionization chemistry results in the formation of the second major ion O2+ - because ion of molecular oxygen has the lower ionization potential comparing with other parent species -H2, H2O, CO2. The H+, O+, OH+, and H2O+ ions can be easily converted to O2+ ions through the ion-molecular reactions. In case of significant admixture of molecular hydrogen it is possible to transfer the O2+ ions to the O2H+ ions through the fast reaction with H2 and further to the H3O+ ions through the ion

  18. A twin-type airflow pulse ionization chamber for continuous alpha-radioactivity monitoring in atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Kada, Wataru, E-mail: kada@nf.eie.eng.osaka-u.ac.j [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Dwaikat, Nidal; Datemichi, Jun; Sato, Fuminobu; Murata, Isao; Kato, Yushi; Iida, Toshiyuki [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2010-10-15

    A simple and inexpensive twin-type airflow pulse ionization chamber was developed for the continuous monitoring of alpha-radioactivity in atmosphere under high humidity condition. The symmetrical structure of the twin-type ionization chamber was effective in the improvement of the ratio of signal to noise in the measurement of pulses induced by alpha-rays. Outdoor alpha-ray measurement was well performed with this ionization chamber by applying sufficiently high bias voltage to the electrodes, except for at very high humidity conditions. It was confirmed that the declination of the counting efficiency due to wetting was easily recovered by the dry-up of the inside of the chamber. Alpha-radioactivity from radon and other alpha-emitting radionuclide in atmosphere was satisfactorily monitored by the detector.

  19. A new method for measuring the response time of the high pressure ionization chamber.

    Science.gov (United States)

    Wang, Zhentao; Shen, Yixiong; An, Jigang

    2012-08-01

    Time response is an important performance characteristic for gas-pressurized ionization chambers. To study the time response, it is especially crucial to measure the ion drift time in high pressure ionization chambers. In this paper, a new approach is proposed to study the ion drift time in high pressure ionization chambers. It is carried out with a short-pulsed X-ray source and a high-speed digitizer. The ion drift time in the chamber is then determined from the digitized data. By measuring the ion drift time of a 15 atm xenon testing chamber, the method has been proven to be effective in the time response studies of ionization chambers.

  20. Atmospheric pressure plasma for surface modification

    CERN Document Server

    Wolf, Rory A

    2012-01-01

    This Book's focus and intent is to impart an understanding of the practical application of atmospheric plasma for the advancement of a wide range of current and emerging technologies. The primary key feature of this book is the introduction of over thirteen years of practical experimental evidence of successful surface modifications by atmospheric plasma methods. It offers a handbook-based approach for leveraging and optimizing atmospheric plasma technologies which are currently in commercial use. It also offers a complete treatment of both basic plasma physics and industrial plasma process

  1. Spectrochemical analysis with DC glow discharges at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Broekaert, J.A.C., E-mail: jose.broekaert@chemie.uni-hamburg.de; Reinsberg, K.-G.

    2015-04-01

    A review on recent work and developments in dc glow discharges at atmospheric pressure when used as radiation sources for optical atomic spectrometry and mass spectrometry is given. Diagnostics and analytical features of dc glow discharges at atmospheric pressure between conductive solid electrodes as well as with a liquid as the cathode and flowing afterglow sources were described. Possibilities for the introduction of analytes in solutions, in the gaseous state and direct solids sampling were discussed. - Highlights: • The state-of-the-art and trends of development of dc glow discharges at atmospheric pressure for spectrochemical analysis are discussed.

  2. Experimental study of propagation characteristics of a pulse-modulated surface-wave argon plasma at atmospheric pressure

    Science.gov (United States)

    Chen, Chuan-Jie; Li, Shou-Zhe; Wu, Yue; Li, Zhen-Ye; Zhang, Jialiang; Wang, Yong-Xing

    2016-12-01

    An atmospheric-pressure, pulse-modulated surface wave argon plasma is investigated with respect to its propagation of the ionization front. The time-resolved photographs about the advance of the ionization front are taken using a high speed camera. The ionization front velocity and its rise time when propagating along the discharge tube are measured with respect to a series of values of input power, duty ratio, and the pulse repetition frequency. The interpretations are given on the basis of the ionization and diffusion processes. And it is also found that the reduced electric field and memory effect from previous discharge impose the influence on both the ionization front velocity and its rise time strongly.

  3. Non-equilibrium hydrogen ionization in 2D simulations of the solar atmosphere

    NARCIS (Netherlands)

    Leenaarts, J.; Carlsson, M.; Hansteen, V.; Rutten, R.J.

    2007-01-01

    Context: The ionization of hydrogen in the solar chromosphere and transition region does not obey LTE or instantaneous statistical equilibrium because the timescale is long compared with important hydrodynamical timescales, especially of magneto-acoustic shocks. Since the pressure, temperature, and

  4. Measuring Viscosities of Gases at Atmospheric Pressure

    Science.gov (United States)

    Singh, Jag J.; Mall, Gerald H.; Hoshang, Chegini

    1987-01-01

    Variant of general capillary method for measuring viscosities of unknown gases based on use of thermal mass-flowmeter section for direct measurement of pressure drops. In technique, flowmeter serves dual role, providing data for determining volume flow rates and serving as well-characterized capillary-tube section for measurement of differential pressures across it. New method simple, sensitive, and adaptable for absolute or relative viscosity measurements of low-pressure gases. Suited for very complex hydrocarbon mixtures where limitations of classical theory and compositional errors make theoretical calculations less reliable.

  5. Lookup tables to compute high energy cosmic ray induced atmospheric ionization and changes in atmospheric chemistry

    OpenAIRE

    Atri, Dimitra; Melott, Adrian L.; Thomas, Brian C

    2008-01-01

    A variety of events such as gamma-ray bursts and supernovae may expose the Earth to an increased flux of high-energy cosmic rays, with potentially important effects on the biosphere. Existing atmospheric chemistry software does not have the capability of incorporating the effects of substantial cosmic ray flux above 10 GeV . An atmospheric code, the NASA-Goddard Space Flight Center two-dimensional (latitude, altitude) time-dependent atmospheric model (NGSFC), is used to study atmospheric chem...

  6. Non-Thermal Sanitation By Atmospheric Pressure Plasma Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a non-thermal technology based on atmospheric-pressure (AP) cold plasma to sanitize foods, food packaging materials, and other hardware...

  7. Non-Thermal Sanitation By Atmospheric Pressure Plasma Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC's Non-Thermal Sanitation by Atmospheric Pressure Plasma technology sanitizes fresh fruits and vegetables without the use of consumable chemicals and without...

  8. Atmospheric pressure plasma jet with high-voltage power supply based on piezoelectric transformer.

    Science.gov (United States)

    Babij, Michał; Kowalski, Zbigniew W; Nitsch, Karol; Silberring, Jerzy; Gotszalk, Teodor

    2014-05-01

    The dielectric barrier discharge plasma jet, an example of the nonthermal atmospheric pressure plasma jet (APPJ), generates low-temperature plasmas that are suitable for the atomization of volatile species and can also be served as an ionization source for ambient mass and ion mobility spectrometry. A new design of APPJ for mass spectrometry has been built in our group. In these plasma sources magnetic transformers (MTs) and inductors are typically used in power supplies but they present several drawbacks that are even more evident when dealing with high-voltage normally used in APPJs. To overcome these disadvantages, high frequency generators with the absence of MT are proposed in the literature. However, in the case of miniaturized APPJs these conventional power converters, built of ferromagnetic cores and inductors or by means of LC resonant tank circuits, are not so useful as piezoelectric transformer (PT) based power converters due to bulky components and small efficiency. We made and examined a novel atmospheric pressure plasma jet with PT supplier served as ionization source for ambient mass spectrometry, and especially mobile spectrometry where miniaturization, integration of components, and clean plasma are required. The objective of this paper is to describe the concept, design, and implementation of this miniaturized piezoelectric transformer-based atmospheric pressure plasma jet.

  9. Numerical study of the interaction of a helium atmospheric pressure plasma jet with a dielectric material

    Science.gov (United States)

    Wang, Lijun; Zheng, Yashuang; Jia, Shenli

    2016-10-01

    This is a computational modeling study of a cold atmospheric pressure helium plasma jet impinging on a dielectric surface placed normal to the jet axis. This study provides insights into the propagation mechanism of the plasma jet, the electrical properties, and the total accumulated charge density at the dielectric surface. For the radial streamer propagation along the dielectric surface, Penning ionization and the electron impact ionization of helium atoms are the major ionization reactions in the streamer head, while Penning ionization is the only dominant contributor along the streamer body. In addition, the plasma bullet velocity along the dielectric surface is 10-100 times lower than that in the plasma column. Increasing tube radius or helium flow rate lowers air entrainment in the plasma jet, leading to a decrease of the radial electric field and the accumulated charge density at the dielectric surface. Furthermore, the tube radius has weaker influence on the plasma properties as tube radius increases. For a target dielectric with lower relative permittivity, a higher radial electric field penetrates into the material, and the surface ionization wave along the dielectric surface extends farther. Higher relative permittivity of the treated dielectric results in more charging at the dielectric surface and more electron density in the plasma column.

  10. Atmospheric pressure plasma enhanced spatial ALD of silver

    NARCIS (Netherlands)

    Van Den Bruele, F.J.; Smets, M.; Illiberi, A.; Creyghton, Y.; Buskens, P.; Roozeboom, F.; Poodt, P.

    2014-01-01

    The authors have investigated the growth of thin silver films using a unique combination of atmospheric process elements: spatial atomic layer deposition and an atmospheric pressure surface dielectric barrier discharge plasma source. Silver films were grown on top of Si substrates with good purity a

  11. Application of atmospheric pressure plasma in polymer and composite adhesion

    Science.gov (United States)

    Yu, Hang

    An atmospheric pressure helium and oxygen plasma was used to investigate surface activation and bonding in polymer composites. This device was operated by passing 1.0-3.0 vol% of oxygen in helium through a pair of parallel plate metal electrodes powered by 13.56 or 27.12 MHz radio frequency power. The gases were partially ionized between the capacitors where plasma was generated. The reactive species in the plasma were carried downstream by the gas flow to treat the substrate surface. The temperature of the plasm gas reaching the surface of the substrate did not exceed 150 °C, which makes it suitable for polymer processing. The reactive species in the plasma downstream includes ~ 1016-1017 cm-3 atomic oxygen, ~ 1015 cm-3 ozone molecule, and ~ 10 16 cm-3 metastable oxygen molecule (O2 1Deltag). The substrates were treated at 2-5 mm distance from the exit of the plasma. Surface properties of the substrates were characterized using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and X-ray photoelectron spectroscopy (XPS). Subsequently, the plasma treated samples were bonded adhesively or fabricated into composites. The increase in mechanical strength was correlated to changes in the material composition and structure after plasma treatment. The work presented hereafter establishes atmospheric pressure plasma as an effective method to activate and to clean the surfaces of polymers and composites for bonding. This application can be further expanded to the activation of carbon fibers for better fiber-resin interactions during the fabrication of composites. Treating electronic grade FR-4 and polyimide with the He/O2 plasma for a few seconds changed the substrate surface from hydrophobic to hydrophilic, which allowed complete wetting of the surface by epoxy in underfill applications. Characterization of the surface by X-ray photoelectron spectroscopy shows formation of oxygenated functional groups, including hydroxyl, carbonyl, and

  12. Modeling Pressure-Ionization of Hydrogen in the Context of Astrophysics

    CERN Document Server

    Saumon, D S; Wagner, D J; Xie, X

    1999-01-01

    The recent development of techniques for laser-driven shock compression of hydrogen has opened the door to the experimental determination of its behavior under conditions characteristic of stellar and planetary interiors. The new data probe the equation of state (EOS) of dense hydrogen in the complex regime of pressure ionization. The structure and evolution of dense astrophysical bodies depend on whether the pressure ionization of hydrogen occurs continuously or through a ``plasma phase transition'' (PPT) between a molecular state and a plasma state. For the first time, the new experiments constrain predictions for the PPT. We show here that the EOS model developed by Saumon and Chabrier can successfully account for the data, and we propose an experiment that should provide a definitive test of the predicted PPT of hydrogen. The usefulness of the chemical picture for computing astrophysical EOS and in modeling pressure ionization is discussed.

  13. A Spectacular Experiment Exhibiting Atmospheric Pressure

    Science.gov (United States)

    Le Noxaïc, Armand

    2014-01-01

    The experiment described here is fairly easy to reproduce and dramatically shows the magnitude of ambient air pressure. Two circular plates of aluminum are applied one against the other. How do you make their separation very difficult? With only the help of an elastic band! You don't have to use a vacuum pump for this experiment.

  14. 热降解辅助表面解吸常压化学电离质谱对阿莫西林的分析%Analysis of amoxicillin by surface desorption atmospheric pressure chemical ionization mass spectrometry aided with thermal degradation

    Institute of Scientific and Technical Information of China (English)

    陈荣; 邓慧宇; 石俊

    2012-01-01

    To establish a novel approach to the high throughput screening of amoxicillin by direct surface desorption atmospheric pressure chemical ionization -mass spectrometry aided with thermal degradation(TD -SDAP-CI - MS). Methods; Water in the air act as the reactive reagent responsible for the generation of ions in the positive corona discharge. The rapid screening effectiveness of the combination of TD and SDAPGI was demonstrated by application to comparing the total ion current mass spectrum of degradation ingredient ions to ion current mass spectrum of amoxicillin capsules which were observed in full scan mass spectrometry (MS) mode. Collision -induced dissociation of protonated molecules gave characteristic product - ion mass spectra and provided further identification of amoxicillin degradation ingredients. Results: The high throughput screening of amoxicillin was realized by mass spectrum without sample pretreatment and separation step. Conclusions: A single sample analysis is completed in less than 30 seconds. The data show TD - SDAPCI - MS is a convenient tool for high throughtout screening of unstable amoxicillin.%目的:建立一种阿莫西林热降解辅助表面解吸常压化学电离质谱(TD - SDAPCI - MS)快速检测新方法.方法:利用阿莫西林抗生素的易降解并产生特定降解产物的特性,以潮湿空气作为试剂,通过电晕放电产生大量试剂离子,对阿莫西林抗生素总离子流质谱图与特征降解产物离子流图进行比对.并通过串联质谱对阿莫西林抗生素产生的特征降解产物进行了确认.结果:无需样品预处理,实现一级质谱法对阿莫西林抗生素的高通量筛选.结论:单个样品检测不超过30 s,可实现不稳定抗生素阿莫西林的高通量筛选.

  15. Direct Analysis of Micro Area on Tooth Surface by Surface Desorption Atmospheric Pressure Chemical Ionization Mass Spectrometry%表面解吸常压化学电离质谱法直接分析牙齿微区表面

    Institute of Scientific and Technical Information of China (English)

    王姜; 李倩; 顾海巍; 郭晓暾; 杨水平; 王志豪

    2015-01-01

    A novel analytical platform based on a nanoliter needle for sampling and surface desorption atmos-pheric pressure chemistry ionization mass spectrometry ( SDAPCI-MS ) for analysis was developed for the di-rect, fast and micro-area analysis of different parts of a human tooth, including cavity, cavity edge, tooth cusp and tooth sulcus. The results showed that the mass spectra from the four sampling spots on the same tooth were different, and that SDAPCI-MS detected lactic acid, pyruvic acid, phenylacetic acid and propanoic acid were confirmed using tandem mass spectrometry( MS/MS) . Principal component analysis( PCA) of the mass spec-tral data successfully differentiated the different sampling spots, levels of tooth decay and levels of gum disease. Therefore, our nano-SDAPCI-MS approach provides a promising way for micro-area analysis with fast, minimal pretreatment sampling, enabling rapid, simple and reliable surface MS investigation.%采用纳升取样表面解吸常压化学电离质谱法( nano-SDAPCI-MS)结合主成分分析( PCA),建立了一种采用具有微米级针尖的金属取样针直接对龋齿不同部位取样并进行快速质谱分析的方法。数据分析结果表明,同一颗龋齿不同部位的质谱指纹谱图之间存在差异;在不需要样品预处理的前提下通过串联质谱快速测定了龋齿中的乳酸、丙酮酸、苯乙酸和丙酸等成分。采用PCA方法可较好地将龋齿病灶位置与邻近正常组织进行区分,也可对不同牙病及健康牙齿进行区分。本方法可方便地对牙齿进行直接微区分析,为鉴别牙齿疾病及观测治疗效果提供了一种快速、简单的方法,为生物体中微细部位的快速取样及直接质谱分析提供了一种可能的解决方案。

  16. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    2012-01-01

    Efficiency of atmospheric pressure plasma treatment can be highly enhanced by simultaneous high power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above ∼140 dB can reduce the thickness of a boundary gas layer between the plasma...... arc at atmospheric pressure to study adhesion improvement. The effect of ultrasonic irradiation with the frequency diapason between 20 and 40 kHz at the SPL of ∼150 dB was investigated. After the plasma treatment without ultrasonic irradiation, the wettability was significantly improved...

  17. Commercial intermediate pressure MALDI ion mobility spectrometry mass spectrometer capable of producing highly charged laserspray ionization ions.

    Science.gov (United States)

    Inutan, Ellen D; Wang, Beixi; Trimpin, Sarah

    2011-02-01

    The first examples of highly charged ions observed under intermediate pressure (IP) vacuum conditions are reported using laser ablation of matrix/analyte mixtures. The method and results are similar to those obtained at atmospheric pressure (AP) using laserspray ionization (LSI) and/or matrix assisted inlet ionization (MAII). Electrospray ionization (ESI), LSI, and MAII are methods operating at AP and have been shown, with or without the use of a voltage or a laser, to produce highly charged ions with very similar ion abundance and charge states. A commercial matrix-assisted laser desorption/ionization ion mobility spectrometry (IMS) mass spectrometry (MS) instrument (SYNAPT G2) was used for the IP developments. The necessary conditions for producing highly charged ions of peptides and small proteins at IP appear to be a pressure drop region and the use of suitable matrixes and laser fluence. Ionization to produce these highly charged ions under the low pressure conditions of IP does not require specific heating or a special inlet ion transfer region. However, under the current setup, ubiquitin is the highest molecular weight protein observed. These findings are in accord with the need to provide thermal energy in the pressure drop region, similar to LSI and MAII, to improve sensitivity and extend the types of compounds that produce highly charged ions. The practical utility of IP-LSI in combination with IMS-MS is demonstrated for the analysis of model mixtures composed of a lipid, peptides, and a protein. Further, endogenous multiply charged peptides are observed directly from delipified mouse brain tissue with drift time distributions that are nearly identical in appearance to those obtained from a synthesized neuropeptide standard analyzed by either LSI- or ESI-IMS-MS at AP. Efficient solvent-free gas-phase separation enabled by the IMS dimension separates the multiply charged peptides from lipids that remained on the delipified tissue. Lipid and peptide

  18. Short- and Medium-Term Induced Ionization in the Earth Atmosphere by Galactic and Solar Cosmic Rays

    Directory of Open Access Journals (Sweden)

    Alexander Mishev

    2013-01-01

    Full Text Available The galactic cosmic rays are the main source of ionization in the troposphere of the Earth. Solar energetic particles of MeV energies cause an excess of ionization in the atmosphere, specifically over polar caps. The ionization effect during the major ground level enhancement 69 on January 20, 2005 is studied at various time scales. The estimation of ion rate is based on a recent numerical model for cosmic-ray-induced ionization. The ionization effect in the Earth atmosphere is obtained on the basis of solar proton energy spectra, reconstructed from GOES 11 measurements and subsequent full Monte Carlo simulation of cosmic-ray-induced atmospheric cascade. The evolution of atmospheric cascade is performed with CORSIKA 6.990 code using FLUKA 2011 and QGSJET II hadron interaction models. The atmospheric ion rate is explicitly obtained for various latitudes, namely, 40°N, 60°N and 80°N. The time evolution of obtained ion rates is presented. The short- and medium-term ionization effect is compared with the average effect due to galactic cosmic rays. It is demonstrated that ionization effect is significant only in subpolar and polar atmosphere during the major ground level enhancement of January 20, 2005. It is negative in troposphere at midlatitude, because of the accompanying Forbush effect.

  19. Temperature field simulation of gob influenced by atmospheric pressure

    Institute of Scientific and Technical Information of China (English)

    王刚; 罗海珠; 梁运涛; 王继仁

    2015-01-01

    The current temperature field model of mine gob does not take the boundary conditions of the atmospheric pressure into account, while the actual atmospheric pressure is influenced by weather, so as to produce differences between ventilation negative pressure of the working face and the negative pressure of gas drainage in gob, thus interfering the calculated results of gob temperature field. According to the characteristics of the actual air flow and temperature change in gob, a two-dimensional temperature field model of the gob was built, and the relational model between the air pressure of intake and outlet of the gob and the atmospheric pressure was established, which was introduced into the boundary conditions of temperature field to conduct calculation. By means of analysis on the simulation example, and comparison with the traditional model, the results indicate that atmospheric pressure change had notable impact on the distribution of gob temperature field. The laboratory test system of gob temperature field was constructed, and the relative error between simulated and measured value was no greater than 9.6%, which verified the effectiveness of the proposed model. This work offers theoretical basis for accurate calculation of temperature and prediction of ignition source in mine gob, and has important implications on preventing spontaneous combustion of coal.

  20. Radiation Pressure Confinement -- III. The origin of the broad ionization distribution in AGN outflows

    CERN Document Server

    Stern, Jonathan; Laor, Ari; Baskin, Alexei; Holczer, Tomer

    2014-01-01

    The winds of ionized gas driven by Active Galactic Nuclei (AGN) can be studied through absorption features in their X-ray spectra. A recurring feature of these outflows is their broad ionization distribution, including essentially all ionization levels (e.g., Fe^0+ to Fe^25+). The absorption measure distribution (AMD) is defined as the distribution of column density with ionization parameter |dN / dlog xi|. The AMD extends over a wide range of 0.1 < xi < 10^4 (cgs), and is remarkably similar in different objects. Power-law fits to the observed AMDs (|dN / dlog xi| ~ N_1 xi^a) yield N_1 = 3x10^21 cm^-2 +- 0.4 dex and a = 0 -- 0.4. What is the source of this broad ionization distribution, and what sets the small range of observed $N_1$ and $a$ values? A common interpretation is a multiphase outflow, with a wide range of gas densities in a uniform pressure medium. However, it has already been shown that the incident radiation pressure leads to a gas pressure gradient in the photoionized gas, and therefore ...

  1. Means of introducing an analyte into liquid sampling atmospheric pressure glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, R. Kenneth; Quarles, Jr., Charles Derrick; Russo, Richard E.; Koppenaal, David W.; Barinaga, Charles J.; Carado, Anthony J.

    2017-01-03

    A liquid sampling, atmospheric pressure, glow discharge (LS-APGD) device as well as systems that incorporate the device and methods for using the device and systems are described. The LS-APGD includes a hollow capillary for delivering an electrolyte solution to a glow discharge space. The device also includes a counter electrode in the form of a second hollow capillary that can deliver the analyte into the glow discharge space. A voltage across the electrolyte solution and the counter electrode creates the microplasma within the glow discharge space that interacts with the analyte to move it to a higher energy state (vaporization, excitation, and/or ionization of the analyte).

  2. Bullet-to-streamer transition on the liquid surface of a plasma jet in atmospheric pressure

    Science.gov (United States)

    Yoon, S.-Y.; Kim, G.-H.; Kim, S.-J.; Bae, B.; Kim, N.-K.; Lee, H.; Bae, N.; Ryu, S.; Yoo, S. J.; Kim, S. B.

    2017-01-01

    This study investigated the transition of the plasma shape from a ring-shaped bullet to a pin-like streamer adjacent to the electrolyte surface in a kHz-driven helium atmospheric pressure plasma jet. The transition was observed by synchronized fast images, plasma propagation speed, time-resolved emission profile of Hβ, and spatially and temporally resolved helium metastable density. The transition height increased when electrolyte evaporation was enhanced. The plasma continued to discharge on the electrolyte surface even in the absence of metastable species, i.e., the discharge mechanism changed from Penning ionization between helium metastable and ambient nitrogen to electron collision on evaporated water.

  3. In Situ Real-Time Monitoring of Volatile Metabolites of Fermented Milk by Dynamic Headspace Sampling - Atmospheric Pressure Ionization Mass Spectrometry%动态顶空取样-大气压化学电离质谱原位实时监测发酵乳挥发性代谢产物

    Institute of Scientific and Technical Information of China (English)

    梁华正; 杨水平; 刘维佳; 李媛

    2012-01-01

    Volatile metabolites produced from fermented milk were monitored in situ real-time by atmospheric pressure dynamic headspace sampling coupled with chemical ionization mass spectrometry. The ion current signal of volatile metabolites was recorded during 3.0 h to 4.7 h after the start of fermentation. The signal of 2,3-butanedione (m/z 104,M+H2O·+ ) was weak in the first 4 h followed by a gradual increase, reaching a rapid upward trend after 4.2 b, the signal of ethyl acetate (m/z 106, M+H2O·+) began gradually increasing after 3 h, but the signal of benzaldehyde (m/z 124, M+H2O·+ ) remained relatively stable. The mass spectrum of 6 h fermented milk mainly included the signals of lactic acid (mlz 91, MH+ and m/z 108,M+H2O·+), 2,3-butanedione (m/z 104, M+H2O·+ ), benzaldehyde (m/z 107, MH+ and m/z 124,M+H2O·+ ), ethyl acetate (m/z 89, MH+ and m/z 106, M+H2O·+ ), hexanal (m/z 101, MH+and m/z 118, M+H2O·+ ), acrolein (m/z 74, M+H2O·+), etc. Atmospheric pressure dynamic headspace sampling coupled with chemical ionization mass spectrometry has many advantages such as rapid and non-destructive and can be used for quality control in the production of fermented milk.%采用大气压化学电离质谱法,利用动态顶空取样技术对发酵乳生产过程中产生的挥发性代谢产物进行原位实时监测。从发酵开始后3.0~4.7h连续用质谱仪记录发酵乳挥发物的离子流信号,结果表明:2,3-丁二酮(m/z104,M+H2O·+)在前4h信号较弱,4h后开始逐渐增大,4.2h后呈快速增大的趋势;乙酸乙酯(m/z106,M+H2O·+)信号从发酵3h后开始呈逐渐增大趋势;苯甲醛(m/z124,M+H2O·+)信号较平稳。发酵进行到6h的质谱图中质谱信号主要有乳酸(m/z291,MH+和m/z108,M+H2O·+),2,3-丁二酮(m/z 104,M+H2O·+),苯甲醛(m/z107,MH+和m/z124,M+H2O·+),乙酸乙酯(m/z 89,MH+和m/z106,M+H2O

  4. Decomposition of Chemical Chain Molecules with Atmospheric Pressure Plasma

    Science.gov (United States)

    Tansli, Murat; Tasal, Erol

    2016-10-01

    Chemical chain molecules' decomposition is an interesting subject area for the atmospheric pressure plasma applications. The effects of the atmospheric pressure argon plasma on 4-((2-methoxyphenyl)Diazenyl)Benzene-1,3,-Diol molecule at room temperature are investigated. This molecule is one of the industrial dye molecules used widely. When considering the ecological life, this molecule will be very harmful and danger. We suggest a different, easy and useful decomposing method for such molecules. Atmospheric pressure plasma jet was principally treated for this decomposing of the molecule. Fourier transform infrared spectrometry (FT-IR) was used to characterization of the molecule after the plasma application to molecule in liquid phase with ethanol and methanol solvents. The atmospheric-pressure plasma jet of argon (Ar) as non-equilibrium has been formed by ac-power generator with frequency - 24 kHz and voltage - 12 kV. Characterizations for solutions prepared with ethanol and methanol solvents of molecule have been examined after applying (duration: 3 minutes) the atmospheric pressure plasma jet. The molecule was broken at 6C-7N =8N-9C stretching peak after the plasma treatment. The new plasma photo-products for ethanol and methanol solutions were produced as 6C-7N-8N =9C (strong, varying) and 12C =17O (strong, wide) stretching peaks.

  5. Laser-Induced Acoustic Desorption Atmospheric Pressure Photoionization via VUV-Generating Microplasmas

    Science.gov (United States)

    Benham, Kevin; Hodyss, Robert; Fernández, Facundo M.; Orlando, Thomas M.

    2016-11-01

    We demonstrate the first application of laser-induced acoustic desorption (LIAD) and atmospheric pressure photoionization (APPI) as a mass spectrometric method for detecting low-polarity organics. This was accomplished using a Lyman-α (10.2 eV) photon generating microhollow cathode discharge (MHCD) microplasma photon source in conjunction with the addition of a gas-phase molecular dopant. This combination provided a soft desorption and a relatively soft ionization technique. Selected compounds analyzed include α-tocopherol, perylene, cholesterol, phenanthrene, phylloquinone, and squalene. Detectable surface concentrations as low as a few pmol per spot sampled were achievable using test molecules. The combination of LIAD and APPI provided a soft desorption and ionization technique that can allow detection of labile, low-polarity, structurally complex molecules over a wide mass range with minimal fragmentation.

  6. Laser-Induced Acoustic Desorption Atmospheric Pressure Photoionization via VUV-Generating Microplasmas.

    Science.gov (United States)

    Benham, Kevin; Hodyss, Robert; Fernández, Facundo M; Orlando, Thomas M

    2016-11-01

    We demonstrate the first application of laser-induced acoustic desorption (LIAD) and atmospheric pressure photoionization (APPI) as a mass spectrometric method for detecting low-polarity organics. This was accomplished using a Lyman-α (10.2 eV) photon generating microhollow cathode discharge (MHCD) microplasma photon source in conjunction with the addition of a gas-phase molecular dopant. This combination provided a soft desorption and a relatively soft ionization technique. Selected compounds analyzed include α-tocopherol, perylene, cholesterol, phenanthrene, phylloquinone, and squalene. Detectable surface concentrations as low as a few pmol per spot sampled were achievable using test molecules. The combination of LIAD and APPI provided a soft desorption and ionization technique that can allow detection of labile, low-polarity, structurally complex molecules over a wide mass range with minimal fragmentation. Graphical Abstract ᅟ.

  7. Ionization and scintillation response of high-pressure xenon gas to alpha particles

    CERN Document Server

    Álvarez, V; Cárcel, S; Cebrián, S; Cervera, A; Conde, C A N; Dafni, T; Díaz, J; Egorov, M; Esteve, R; Evtoukhovitch, P; Fernandes, L M P; Ferrario, P; Ferreira, A L; Freitas, E D C; Gehman, V M; Gil, A; Goldschmidt, A; Gómez, H; Gómez-Cadenas, J J; González-Díaz, D; Gutiérrez, R M; Hauptman, J; Morata, J A Hernando; Herrera, D C; Irastorza, I G; Jinete, M A; Labarga, L; Laing, A; Liubarsky, I; Lopes, J A M; Lorca, D; Losada, M; Luzón, G; Marí, A; Martín-Albo, J; Miller, T; Moiseenko, A; Monrabal, F; Monteiro, C M B; Mora, F J; Moutinho, L M; Vidal, J Muñoz; da Luz, H Natal; Navarro, G; Nebot, M; Nygren, D; Oliveira, C A B; Palma, R; Pérez, J; Aparicio, J L Pérez; Renner, J; Ripoll, L; Rodríguez, A; Rodríguez, J; Santos, F P; Santos, J M F dos; Segui, L; Serra, L; Shuman, D; Simón, A; Sofka, C; Sorel, M; Toledo, J F; Tomás, A; Torrent, J; Tsamalaidze, Z; Vázquez, D; Veloso, J F C A; Webb, R; White, J T; Yahlali, N

    2012-01-01

    High-pressure xenon gas is an attractive detection medium for a variety of applications in fundamental and applied physics. In this paper we study the transport properties of ionization electrons, and the mechanism of electron-ion recombination, in xenon gas at 10 bar pressure. For this purpose, we use a source of alpha particles in the NEXT-DEMO time projection chamber, the large scale prototype of the NEXT-100 neutrinoless double beta decay experiment, in three different drift electric field configurations. Our electron drift velocity and longitudinal diffusion results are similar to expectations based on available electron scattering cross sections on pure xenon, favoring low-diffusion models. In addition, two types of measurements addressing the connection between the ionization and scintillation yields were performed. On the one hand we observe, for the first time in xenon gas, large event-by-event correlated fluctuations between the ionization and scintillation signals, similarly to what has already bee...

  8. Scintillation light, ionization yield and scintillation decay times in high pressure xenon and xenon methane

    NARCIS (Netherlands)

    Pushkin, K. N.; Akimov, D. Y.; Burenkov, A. A.; Dmitrenko, V. V.; Kovalenko, A. G.; Lebedenko, V. N.; Kuznetsov, I. S.; Stekhanov, V. N.; Tezuka, C.; Ulin, S. E.; Uteshev, Z. M.; Vlasik, K. F.

    2007-01-01

    Scintillation light, ionization yield and scintillation decay times have been measured in xenon and in its mixture with a 0.05% concentration of methane as a function of the reduced electric field (E/N)-the ratio of the electric field strength to the number density of gas-at a pressure of 21 atm. Th

  9. Radical electronic transformation of strongly coupled plasma at megabar pressure ionization, dielectrization and phase transitions

    Science.gov (United States)

    Fortov, Vladimir

    2007-06-01

    The work presents new results of investigation of pressure and temperature ionization of coupled nonideal plasmas generated as a result of multiple shock compression of metals, H2, He, noble gases, S, I, fullerene C60, H2O in the megabar pressure range. The highly time-resolved diagnostics permit us to measure thermodynamical, radiative and mechanical properties of high pressure condensed matter in a broad region of the phase diagram. This data in combination with exploding wire conductivity measurements demonstrate an ionization rate increase up to ten orders of magnitude as a result of compression of degenerate plasmas at p 104-107 bars. Shock compression of H2, Ar, He, Kr, Ne, Xe in initially gaseous and cryogenic liquid state allows measuring the electrical conductivity, Hall effect parameters, equation of state, and emission spectra of strongly nonideal plasma. Thermal and pressure ionization of strongly coupled states of matter is the most prominent effects under the experimental conditions. It was shown that plasma compression strongly deforms the ionization potentials, emission spectra and scattering cross-sections of the neutrals and ions in the strongly coupled plasmas. In contrast to the plasma compression the multiple shock compression of solid Li, Na, Ca shows ``dielectrization'' of the elements. Phase transitions in strongly nonideal plasmas are discussed.

  10. Seed disinfection effect of atmospheric pressure plasma and low pressure plasma on Rhizoctonia solani.

    Science.gov (United States)

    Nishioka, Terumi; Takai, Yuichiro; Kawaradani, Mitsuo; Okada, Kiyotsugu; Tanimoto, Hideo; Misawa, Tatsuya; Kusakari, Shinichi

    2014-01-01

    Gas plasma generated and applied under two different systems, atmospheric pressure plasma and low pressure plasma, was used to investigate the inactivation efficacy on the seedborne pathogenic fungus, Rhizoctonia solani, which had been artificially introduced to brassicaceous seeds. Treatment with atmospheric plasma for 10 min markedly reduced the R. solani survival rate from 100% to 3% but delayed seed germination. The low pressure plasma treatment reduced the fungal survival rate from 83% to 1.7% after 10 min and the inactivation effect was dependent on the treatment time. The seed germination rate after treatment with the low pressure plasma was not significantly different from that of untreated seeds. The air temperature around the seeds in the low pressure system was lower than that of the atmospheric system. These results suggested that gas plasma treatment under low pressure could be effective in disinfecting the seeds without damaging them.

  11. Surface cleaning of metal wire by atmospheric pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T., E-mail: tsubasa@oshima-k.ac.jp [Electronic-Mechanical Engineering Department, Oshima National College of Maritime Technology, 1091-1 Komatsu, Suo-Oshima, Yamaguchi (Japan); Department of Electrical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka (Japan); Buttapeng, C. [School of Electrical and Energy Engineering, University of the Thai Chamber of Commerce, 126/1, Vibhavadee-Rungsit, Dindaeng, Bangkok 10400 (Thailand); Furuya, S. [Faculty of Education, Gunma University, 4-2 Aramaki, Maebashi (Japan); Harada, N. [Department of Electrical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka (Japan)

    2009-11-30

    In this study, the possible application of atmospheric pressure dielectric barrier discharge plasma for the annealing of metallic wire is examined and presented. The main purpose of the current study is to examine the surface cleaning effect for a cylindrical object by atmospheric pressure plasma. The experimental setup consists of a gas tank, plasma reactor, and power supply with control panel. The gas assists in the generation of plasma. Copper wire was used as an experimental cylindrical object. This copper wire was irradiated with the plasma, and the cleaning effect was confirmed. The result showed that it is possible to remove the tarnish which exists on the copper wire surface. The experiment reveals that atmospheric pressure plasma is usable for the surface cleaning of metal wire. However, it is necessary to examine the method for preventing oxidization of the copper wire.

  12. Synthetic oligomer analysis using atmospheric pressure photoionization mass spectrometry at different photon energies.

    Science.gov (United States)

    Desmazières, Bernard; Legros, Véronique; Giuliani, Alexandre; Buchmann, William

    2014-01-15

    Atmospheric pressure photoionization (APPI) followed by mass spectrometric detection was used to ionize a variety of polymers: polyethylene glycol, polymethyl methacrylate, polystyrene, and polysiloxane. In most cases, whatever the polymer or the solvent used (dichloromethane, tetrahydrofuran, hexane, acetone or toluene), only negative ion mode produced intact ions such as chlorinated adducts, with no or few fragmentations, in contrast to the positive ion mode that frequently led to important in-source fragmentations. In addition, it was shown that optimal detection of polymer distributions require a fine tuning of other source parameters such as temperature and ion transfer voltage. Series of mass spectra were recorded in the negative mode, in various solvents (dichloromethane, tetrahydrofuran, hexane, toluene, and acetone), by varying the photon energy from 8eV up to 10.6eV using synchrotron radiation. To these solvents, addition of a classical APPI dopant (toluene or acetone) was not necessary. Courtesy of the synchrotron radiation, it was demonstrated that the photon energy required for an efficient ionization of the polymer was correlated to the ionization energy of the solvent. As commercial APPI sources typically use krypton lamps with energy fixed at 10eV and 10.6eV, the study of the ionization of polymers over a wavelength range allowed to confirm and refine the previously proposed ionization mechanisms. Moreover, the APPI source can efficiently be used as an interface between size exclusion chromatography or reverse phase liquid chromatography and MS for the study of synthetic oligomers. However, the photoionization at fixed wavelength of polymer standards with different molecular weights showed that it was difficult to obtain intact ionized oligomers with molecular weights above a few thousands.

  13. Plant adaptation to low atmospheric pressures: potential molecular responses

    Science.gov (United States)

    Ferl, Robert J.; Schuerger, Andrew C.; Paul, Anna-Lisa; Gurley, William B.; Corey, Kenneth; Bucklin, Ray

    2002-01-01

    There is an increasing realization that it may be impossible to attain Earth normal atmospheric pressures in orbital, lunar, or Martian greenhouses, simply because the construction materials do not exist to meet the extraordinary constraints imposed by balancing high engineering requirements against high lift costs. This equation essentially dictates that NASA have in place the capability to grow plants at reduced atmospheric pressure. Yet current understanding of plant growth at low pressures is limited to just a few experiments and relatively rudimentary assessments of plant vigor and growth. The tools now exist, however, to make rapid progress toward understanding the fundamental nature of plant responses and adaptations to low pressures, and to develop strategies for mitigating detrimental effects by engineering the growth conditions or by engineering the plants themselves. The genomes of rice and the model plant Arabidopsis thaliana have recently been sequenced in their entirety, and public sector and commercial DNA chips are becoming available such that thousands of genes can be assayed at once. A fundamental understanding of plant responses and adaptation to low pressures can now be approached and translated into procedures and engineering considerations to enhance plant growth at low atmospheric pressures. In anticipation of such studies, we present here the background arguments supporting these contentions, as well as informed speculation about the kinds of molecular physiological responses that might be expected of plants in low-pressure environments.

  14. MicroScale - Atmospheric Pressure Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Sankaran, Mohan [Case Western Reserve University

    2012-01-25

    Low-temperature plasmas play an essential role in the manufacturing of integrated circuits which are ubiquitous in modern society. In recent years, these top-down approaches to materials processing have reached a physical limit. As a result, alternative approaches to materials processing are being developed that will allow the fabrication of nanoscale materials from the bottom up. The aim of our research is to develop a new class of plasmas, termed “microplasmas” for nanomaterials synthesis. Microplasmas are a special class of plasmas formed in geometries where at least one dimension is less than 1 mm. Plasma confinement leads to several unique properties including high-pressure stability and non-equilibrium that make microplasams suitable for nanomaterials synthesis. Vapor-phase precursors can be dissociated to homogeneously nucleate nanometer-sized metal and alloyed nanoparticles. Alternatively, metal salts dispersed in liquids or polymer films can be electrochemically reduced to form metal nanoparticles. In this talk, I will discuss these topics in detail, highlighting the advantages of microplasma-based systems for the synthesis of well-defined nanomaterials.

  15. Characteristics of RF Cold Plasma at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    QIU Liang; MENG Yuedong; SHU Xingsheng

    2007-01-01

    The characteristics of a stable discharge at atmospheric pressure is investigated.The plasma source consisted of two closely spaced parallel-plated perforated electrodes,driven by a radio frequency power to generate a uniform cold plasma in Helium at atmospheric pressure.Both alpha and gamma modes were clearly observed.The hollow cathode effects were found in the discharge.The influence of the dielectric barrier on the discharge was also investigated by utilizing a surface-anodized aluminium electrode as the anode.

  16. On a source of electron impact ionization in Io's upstream atmosphere

    Science.gov (United States)

    Shaposhnikov, V. E.; Zaitsev, V. V.; Rucker, H. O.; Litvinenko, G. V.; Konovalenko, A. A.

    2013-09-01

    A mechanism for the ionization of Io's atmosphere due to the moon's motion through the Jovian magnetic field is considered. Attention is paid to the important role of charge separation in the upstream part of Io's ionosphere and accumulation of electrons and positive ions on the low and top ionospheric boundaries which results in (a) the creation of longitudinal component (with respect to the Jovian magnetic field lines) of polarization electric field, (b) the driving of Bounemann plasma turbulence, and (c) the heating of electrons and the ionization of neutrals. Estimations show that the proposed mechanism can essentially heat the electrons and increase the electron density. The increase with the plasma density and the electron temperature can result in an ionospheric plasma distribution and overcomes the difficulty with generation of the most bright part of UV emission of the Io's equatorial spots.

  17. Engineering a laser remote sensor for atmospheric pressure and temperature

    Science.gov (United States)

    Kalshoven, J. E., Jr.; Korb, C. L.

    1978-01-01

    A system for the remote sensing of atmospheric pressure and temperature is described. Resonant lines in the 7600 Angstrom oxygen A band region are used and an organic dye laser beam is tuned to measure line absorption changes with temperature or pressure. A reference beam outside this band is also transmitted for calibration. Using lidar techniques, profiling of these parameters with altitude can be accomplished.

  18. Influence of geomagnetic activity and atmospheric pressure in hypertensive adults.

    Science.gov (United States)

    Azcárate, T; Mendoza, B

    2017-03-30

    We performed a study of the systolic and diastolic arterial blood pressure behavior under natural variables such as the atmospheric pressure and the horizontal geomagnetic field component. We worked with a group of eight adult hypertensive volunteers, four men and four women, with ages between 18 and 27 years in Mexico City during a geomagnetic storm in 2014. The data was divided by gender, age, and day/night cycle. We studied the time series using three methods: correlations, bivariate analysis, and superposed epoch (within a window of 2 days around the day of occurrence of a geomagnetic storm) analysis, between the systolic and diastolic blood pressure and the natural variables. The correlation analysis indicated a correlation between the systolic and diastolic blood pressure and the atmospheric pressure and the horizontal geomagnetic field component, being the largest during the night. Furthermore, the correlation and bivariate analyses showed that the largest correlations are between the systolic and diastolic blood pressure and the horizontal geomagnetic field component. Finally, the superposed epoch analysis showed that the largest number of significant changes in the blood pressure under the influence of geomagnetic field occurred in the systolic blood pressure for men.

  19. Measurement of vapor pressures and heats of sublimation of dicarboxylic acids using atmospheric solids analysis probe mass spectrometry.

    Science.gov (United States)

    Bruns, Emily A; Greaves, John; Finlayson-Pitts, Barbara J

    2012-06-21

    Vapor pressures of low volatility compounds are important parameters in several atmospheric processes, including the formation of new particles and the partitioning of compounds between the gas phase and particles. Understanding these processes is critical for elucidating the impacts of aerosols on climate, visibility, and human health. Dicarboxylic acids are an important class of compounds in the atmosphere for which reported vapor pressures often vary by more than an order of magnitude. In this study, atmospheric solids analysis probe mass spectrometry (ASAP-MS), a relatively new atmospheric pressure ionization technique, is applied for the first time to the measurement of vapor pressures and heats of sublimation of a series of dicarboxylic acids. Pyrene was also studied because its vapor pressures and heat of sublimation are relatively well-known. The heats of sublimation measured using ASAP-MS were in good agreement with published values. The vapor pressures, assuming an evaporation coefficient of unity, were typically within a factor of ∼3 lower than published values made at similar temperatures for most of the acids. The underestimation may be due to diffusional constraints resulting from evaporation at atmospheric pressure. However, this study establishes that ASAP-MS is a promising new technique for such measurements.

  20. On the permanent hip-stabilizing effect of atmospheric pressure.

    Science.gov (United States)

    Prietzel, Torsten; Hammer, Niels; Schleifenbaum, Stefan; Kaßebaum, Eric; Farag, Mohamed; von Salis-Soglio, Georg

    2014-08-22

    Hip joint dislocations related to total hip arthroplasty (THA) are a common complication especially in the early postoperative course. The surgical approach, the alignment of the prosthetic components, the range of motion and the muscle tone are known factors influencing the risk of dislocation. A further factor that is discussed until today is atmospheric pressure which is not taken into account in the present THA concepts. The aim of this study was to investigate the impact of atmospheric pressure on hip joint stability. Five joint models (Ø 28-44 mm), consisting of THA components were hermetically sealed with a rubber capsule, filled with a defined amount of fluid and exposed to varying ambient pressure. Displacement and pressure sensors were used to record the extent of dislocation related to intraarticular and ambient pressure. In 200 experiments spontaneous dislocations of the different sized joint models were reliably observed once the ambient pressure was lower than 6.0 kPa. Increasing the ambient pressure above 6.0 kPa immediately and persistently reduced the joint models until the ambient pressure was lowered again. Displacement always exceeded half the diameter of the joint model and was independent of gravity effects. This experimental study gives strong evidence that the hip joint is permanently stabilized by atmospheric pressure, confirming the theories of Weber and Weber (1836). On basis of these findings the use of larger prosthetic heads, capsular repair and the deployment of an intracapsular Redon drain are proposed to substantially decrease the risk of dislocation after THA.

  1. Atmospheric Ionizing Radiation and the High Speed Civil Transport. Chapter 1

    Science.gov (United States)

    Maiden, D. L.; Wilson, J. W.; Jones, I. W.; Goldhagen, P.

    2003-01-01

    Atmospheric ionizing radiation is produced by extraterrestrial radiations incident on the Earth's atmosphere. These extraterrestrial radiations are of two sources: ever present galactic cosmic rays with origin outside the solar system and transient solar particle events that are at times very intense events associated with solar activity lasting several hours to a few days. Although the galactic radiation penetrating through the atmosphere to the ground is low in intensity, the intensity is more than two orders of magnitude greater at commercial aircraft altitudes. The radiation levels at the higher altitudes of the High Speed Civil Transport (HSCT) are an additional factor of two higher. Ionizing radiation produces chemically active radicals in biological tissues that alter the cell function or result in cell death. Protection standards against low levels of ionizing radiation are based on limitation of excess cancer mortality or limitation of developmental injury resulting in permanent damage to the offspring during pregnancy. The crews of commercial air transport operations are considered as radiation workers by the EPA, the FAA, and the International Commission on Radiological Protection (ICRP). The annual exposures of aircrews depend on the latitudes and altitudes of operation and flight time. Flight hours have significantly increased since deregulation of the airline industry in the 1980's. The FAA estimates annual subsonic aircrew exposures to range from 0.2 to 9.1 mSv compared to 0.5 mSv exposure of the average nuclear power plant worker in the nuclear industry. The commercial aircrews of the HSCT may receive exposures above recently recommended allowable limits for even radiation workers if flying their allowable number of flight hours. An adequate protection philosophy for background exposures in HSCT commercial airtraffic cannot be developed at this time due to current uncertainty in environmental levels. In addition, if a large solar particle event

  2. Atmospheric Pressure Plasma Based Flame Control and Diagnostics

    Science.gov (United States)

    2015-01-01

    TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Atmospheric Pressure Plasma Based Flame Control and Diagnostics 5a...to 10%)  Flame speed enhancement (>20%)  Extension of lean limit (factor of two)  Distributed ignition  Development of new diagnostics

  3. Einstein's Tea Leaves and Pressure Systems in the Atmosphere

    Science.gov (United States)

    Tandon, Amit; Marshall, John

    2010-01-01

    Tea leaves gather in the center of the cup when the tea is stirred. In 1926 Einstein explained the phenomenon in terms of a secondary, rim-to-center circulation caused by the fluid rubbing against the bottom of the cup. This explanation can be connected to air movement in atmospheric pressure systems to explore, for example, why low-pressure…

  4. Modes of Homogeneous Barrier Discharge at Atmospheric Pressure in Helium

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-Hui; WANG De-Zhen

    2004-01-01

    @@ The discharge modes of a homogeneous barrier discharge at atmospheric pressure in helium are investigated with a one-dimensional fluid model It is found that, either in single peak discharge or in multipeak discharge, there are two discharge modes: glow and Townsend modes. The structure and features of the two modes are compared.The conditions forming the two modes are discussed.

  5. Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Mortensen, Henrik Junge; Stenum, Bjarne

    2007-01-01

    Glassy carbon plates were treated with an atmospheric pressure dielectric barrier discharge (DBD). He gas, gas mixtures of He and reactive gases such as O2, CO2 and NH3, Ar gas and Ar/NH3 gas mixture were used as treatment gases. The oxygen and nitrogen contents on the surface as well as defect...

  6. Atmospheric pressure and suicide attempts in Helsinki, Finland.

    Science.gov (United States)

    Hiltunen, Laura; Ruuhela, Reija; Ostamo, Aini; Lönnqvist, Jouko; Suominen, Kirsi; Partonen, Timo

    2012-11-01

    The influence of weather on mood and mental health is commonly debated. Furthermore, studies concerning weather and suicidal behavior have given inconsistent results. Our aim was to see if daily weather changes associate with the number of suicide attempts in Finland. All suicide attempts treated in the hospitals in Helsinki, Finland, during two separate periods, 8 years apart, were included. Altogether, 3,945 suicide attempts were compared with daily weather parameters and analyzed with a Poisson regression. We found that daily atmospheric pressure correlated statistically significantly with the number of suicide attempts, and for men the correlation was negative. Taking into account the seasonal normal value during the period 1971-2000, daily temperature, global solar radiation and precipitation did not associate with the number of suicide attempts on a statistically significant level in our study. We concluded that daily atmospheric pressure may have an impact on suicidal behavior, especially on suicide attempts of men by violent methods (P atmospheric pressure and women under high atmospheric pressure. We show only statistical correlations, which leaves the exact mechanisms of interaction between weather and suicidal behavior open. However, suicidal behavior should be assessed from the point of view of weather in addition to psychiatric and social aspects.

  7. Spacecraft Sterilization Using Non-Equilibrium Atmospheric Pressure Plasma

    Science.gov (United States)

    Cooper, Moogega; Vaze, Nachiket; Anderson, Shawn; Fridman, Gregory; Vasilets, Victor N.; Gutsol, Alexander; Tsapin, Alexander; Fridman, Alexander

    2007-01-01

    As a solution to chemically and thermally destructive sterilization methods currently used for spacecraft, non-equilibrium atmospheric pressure plasmas are used to treat surfaces inoculated with Bacillus subtilis and Deinococcus radiodurans. Evidence of significant morphological changes and reduction in viability due to plasma exposure will be presented, including a 4-log reduction of B. subtilis after 2 minutes of dielectric barrier discharge treatment.

  8. Atmospheric pressure plasma surface modification of carbon fibres

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Løgstrup Andersen, Tom; Michelsen, Poul

    2008-01-01

    Carbon fibres are continuously treated with dielectric barrier discharge plasma at atmospheric pressure in various gas conditions for adhesion improvement in mind. An x-ray photoelectron spectroscopic analysis indicated that oxygen is effectively introduced onto the carbon fibre surfaces by He, He...

  9. Atmospheric pressure CVD of SNO2 and ZNO:AL

    NARCIS (Netherlands)

    Deelen, J. van; Kniknie, B.J.; Steijvers, H.L.A.H.; Mannie, G.; Thune, P.; Illiberi, A.

    2012-01-01

    Atmospheric pressure CVD (APCVD) is a highly cost effective method of depositing transparent conductive oxides (TCOs). In this work, insights in alcohol addition in the widely applied SnO2 process are discussed, including high resolution TEM images. Furthermore, the APCVD process of ZnO:Al was demon

  10. Atmospheric pressure photoionization using tunable VUV synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Giuliani, A., E-mail: alexandre.giuliani@synchrotron-soleil.fr [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France); INRA, U1008 CEPIA, Rue de la Geraudiere, F-44316 Nantes (France); Giorgetta, J.-L.; Ricaud, J.-P. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France); Jamme, F. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France); INRA, U1008 CEPIA, Rue de la Geraudiere, F-44316 Nantes (France); Rouam, V.; Wien, F. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France); Laprevote, O. [Laboratoire de Spectrometrie de Masse, ICSN-CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette (France); Laboratoire de Chimie-Toxicologie Analytique et cellulaire, IFR 71, Faculte des Sciences Pharmaceutiques et Biologiques, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75006 Paris (France); Refregiers, M. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Coupling of an atmospheric pressure photoionization source with a vacuum ultra-violet (VUV) beamline. Black-Right-Pointing-Pointer The set up allows photoionization up to 20 eV. Black-Right-Pointing-Pointer Compared to classical atmospheric pressure photoionization (APPI), our set up offers spectral purity and tunability. Black-Right-Pointing-Pointer Allows photoionization mass spectrometry on fragile and hard to vaporize molecules. - Abstract: We report here the first coupling of an atmospheric pressure photoionization (APPI) source with a synchrotron radiation beamline in the vacuum ultra-violet (VUV). A commercial APPI source of a QStar Pulsar i from AB Sciex was modified to receive photons from the DISCO beamline at the SOLEIL synchrotron radiation facility. Photons are delivered at atmospheric pressure in the 4-20 eV range. The advantages of this new set up, termed SR-APPI, over classical APPI are spectral purity and continuous tunability. The technique may also be used to perform tunable photoionization mass spectrometry on fragile compounds difficult to vaporize by classical methods.

  11. Infrared atmospheric pressure MALDI ion trap mass spectrometry of frozen samples using a Peltier-cooled sample stage.

    Science.gov (United States)

    Von Seggern, Christopher E; Gardner, Ben D; Cotter, Robert J

    2004-10-01

    Infrared atmospheric pressure matrix-assisted laser desorption/ionization on an ion trap mass spectrometer is used to analyze frozen samples generated using a Peltier-cooled sample stage. This allows for the analysis of samples in water without the addition of matrix, in near-native conditions, and with minimal loss of water due to evaporation. Analysis of frozen samples is extended to study peptides, carbohydrates, and glycolipids.

  12. Atmospheric-pressure guided streamers for liposomal membrane disruption

    Science.gov (United States)

    Svarnas, P.; Matrali, S. H.; Gazeli, K.; Aleiferis, Sp.; Clément, F.; Antimisiaris, S. G.

    2012-12-01

    The potential to use liposomes (LIPs) as a cellular model in order to study interactions of cold atmospheric-pressure plasma with cells is herein investigated. Cold atmospheric-pressure plasma is formed by a dielectric-barrier discharge reactor. Large multilamellar vesicle liposomes, consisted of phosphatidylcholine and cholesterol, are prepared by the thin film hydration technique, to encapsulate a small hydrophilic dye, i.e., calcein. The plasma-induced release of calcein from liposomes is then used as a measure of liposome membrane integrity and, consequently, interaction between the cold atmospheric plasma and lipid bilayers. Physical mechanisms leading to membrane disruption are suggested, based on the plasma characterization including gas temperature calculation.

  13. Atmospheric-pressure guided streamers for liposomal membrane disruption

    Energy Technology Data Exchange (ETDEWEB)

    Svarnas, P.; Aleiferis, Sp. [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, Rion 26504 (Greece); Matrali, S. H. [Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion 26504 (Greece); Gazeli, K. [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, Rion 26504 (Greece); IPREM-LCABIE, Plasmas et Applications, UPPA, 64000 Pau (France); Clement, F. [IPREM-LCABIE, Plasmas et Applications, UPPA, 64000 Pau (France); Antimisiaris, S. G. [Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion 26504 (Greece); Institute of Chemical Engineering Sciences (ICES)-FORTH, Rion 26504 (Greece)

    2012-12-24

    The potential to use liposomes (LIPs) as a cellular model in order to study interactions of cold atmospheric-pressure plasma with cells is herein investigated. Cold atmospheric-pressure plasma is formed by a dielectric-barrier discharge reactor. Large multilamellar vesicle liposomes, consisted of phosphatidylcholine and cholesterol, are prepared by the thin film hydration technique, to encapsulate a small hydrophilic dye, i.e., calcein. The plasma-induced release of calcein from liposomes is then used as a measure of liposome membrane integrity and, consequently, interaction between the cold atmospheric plasma and lipid bilayers. Physical mechanisms leading to membrane disruption are suggested, based on the plasma characterization including gas temperature calculation.

  14. Non-thermal atmospheric-pressure plasma possible application in wound healing.

    Science.gov (United States)

    Haertel, Beate; von Woedtke, Thomas; Weltmann, Klaus-Dieter; Lindequist, Ulrike

    2014-11-01

    Non-thermal atmospheric-pressure plasma, also named cold plasma, is defined as a partly ionized gas. Therefore, it cannot be equated with plasma from blood; it is not biological in nature. Non-thermal atmospheric-pressure plasma is a new innovative approach in medicine not only for the treatment of wounds, but with a wide-range of other applications, as e.g. topical treatment of other skin diseases with microbial involvement or treatment of cancer diseases. This review emphasizes plasma effects on wound healing. Non-thermal atmospheric-pressure plasma can support wound healing by its antiseptic effects, by stimulation of proliferation and migration of wound relating skin cells, by activation or inhibition of integrin receptors on the cell surface or by its pro-angiogenic effect. We summarize the effects of plasma on eukaryotic cells, especially on keratinocytes in terms of viability, proliferation, DNA, adhesion molecules and angiogenesis together with the role of reactive oxygen species and other components of plasma. The outcome of first clinical trials regarding wound healing is pointed out.

  15. Quality characteristics of the radish grown under reduced atmospheric pressure

    Science.gov (United States)

    Levine, Lanfang H.; Bisbee, Patricia A.; Richards, Jeffrey T.; Birmele, Michele N.; Prior, Ronald L.; Perchonok, Michele; Dixon, Mike; Yorio, Neil C.; Stutte, Gary W.; Wheeler, Raymond M.

    This study addresses whether reduced atmospheric pressure (hypobaria) affects the quality traits of radish grown under such environments. Radish (Raphanus sativus L. cv. Cherry Bomb Hybrid II) plants were grown hydroponically in specially designed hypobaric plant growth chambers at three atmospheric pressures; 33, 66, and 96 kPa (control). Oxygen and carbon dioxide partial pressures were maintained constant at 21 and 0.12 kPa, respectively. Plants were harvested at 21 days after planting, with aerial shoots and swollen hypocotyls (edible portion of the radish referred to as the “root” hereafter) separated immediately upon removal from the chambers. Samples were subsequently evaluated for their sensory characteristics (color, taste, overall appearance, and texture), taste-determining factors (glucosinolate and soluble carbohydrate content and myrosinase activity), proximate nutrients (protein, dietary fiber, and carbohydrate) and potential health benefit attributes (antioxidant capacity). In roots of control plants, concentrations of glucosinolate, total soluble sugar, and nitrate, as well as myrosinase activity and total antioxidant capacity (measured as ORACFL), were 2.9, 20, 5.1, 9.4, and 1.9 times greater than the amount in leaves, respectively. There was no significant difference in total antioxidant capacity, sensory characteristics, carbohydrate composition, or proximate nutrient content among the three pressure treatments. However, glucosinolate content in the root and nitrate concentration in the leaf declined as the atmospheric pressure decreased, suggesting perturbation to some nitrogen-related metabolism.

  16. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    Atmospheric pressure plasma treatment can be highly enhanced by simultaneous high-power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above approximately 140 dB can reduce the thickness of a boundary gas layer between the plasma...... and the material surface, and thus many reactive species generated in the plasma can reach the surface before inactivated, and be efficiently utilized for surface modification. In the present work polyester plates are treated using a dielectric barrier discharge (DBD) and a gliding arc at atmospheric pressure...... irradiation, the water contact angle dropped markedly, and tended to decrease furthermore at higher power. The ultrasonic irradiation during the plasma treatment consistently improved the wettability. Oxygen containing polar functional groups were introduced at the surface by the plasma treatment...

  17. Atmospheric pressure loading parameters from very long baseline interferometry observations

    Science.gov (United States)

    Macmillan, D. S.; Gipson, John M.

    1994-01-01

    Atmospheric mass loading produces a primarily vertical displacement of the Earth's crust. This displacement is correlated with surface pressure and is large enough to be detected by very long baseline interferometry (VLBI) measurements. Using the measured surface pressure at VLBI stations, we have estimated the atmospheric loading term for each station location directly from VLBI data acquired from 1979 to 1992. Our estimates of the vertical sensitivity to change in pressure range from 0 to -0.6 mm/mbar depending on the station. These estimates agree with inverted barometer model calculations (Manabe et al., 1991; vanDam and Herring, 1994) of the vertical displacement sensitivity computed by convolving actual pressure distributions with loading Green's functions. The pressure sensitivity tends to be smaller for stations near the coast, which is consistent with the inverted barometer hypothesis. Applying this estimated pressure loading correction in standard VLBI geodetic analysis improves the repeatability of estimated lengths of 25 out of 37 baselines that were measured at least 50 times. In a root-sum-square (rss) sense, the improvement generally increases with baseline length at a rate of about 0.3 to 0.6 ppb depending on whether the baseline stations are close to the coast. For the 5998-km baseline from Westford, Massachusetts, to Wettzell, Germany, the rss improvement is about 3.6 mm out of 11.0 mm. The average rss reduction of the vertical scatter for inland stations ranges from 2.7 to 5.4 mm.

  18. Influence of Ionization Degrees on the Evolutions of Charged Particles in Atmospheric Plasma at Low Altitude

    Institute of Scientific and Technical Information of China (English)

    PANG Xuexia; DENG Zechao; JIA Pengying; LIANG Weihua; LI Xia

    2012-01-01

    A zero-dimensional model which includes 56 species of reactants and 427 reactions is used to study the behavior of charged particles in atmospheric plasmas with different ionization degrees at low altitude (near 0 km). The constant coefficient nonlinear equations are solved by using the Quasi-steady-state approximation method. The electron lifetimes are obtained for afterglow plasma with different initial values, and the temporal evolutions of the main charged species are presented, which are dominant in reaction processes. The results show that the electron number density decays quickly. The lifetimes of electrons are shortened by about two orders with increasing ionization degree. Electrons then attach to neutral particles and produce negative ions. When the initial electron densities are in the range of 10l~ ~ 1014 cm-3, the negative ions have sufficiently high densities and long lifetimes for air purification, disinfection and sterilization. Electrons, O(2,-), O(4,-) CO(4,-) and CO(3,-) are the dominant negative species when the initial electron density neo ≤ 1013 cm^(-3), and only electrons and CO3 are left when neo 〉 1015 cm^(-3). N(+,2), N+ and O(+,2) are dominant in the positive charges for any ionization degree. Other positive species, such as 0(+,4), N(+,3), NO(+,2), NO(+,2), Ar(+,2) and H3O+. H2O, are dominant only for a certain ionization degree and in a certain period.

  19. Estimation of the cosmic ray ionization in the Earth's atmosphere during GLE71

    Science.gov (United States)

    Lev, Dorman

    2016-07-01

    DYASTIMA is an application, based on Geant4, which simulates the cascades of particles that are generated due to the interactions of cosmic ray particles with the atmospheres of the planets. The first version of DYASTIMA has been successfully applied to the Earth's atmosphere, providing results that are in accordance with the publications of other models. Since then, important improvements and extensions have been made to this application, including a graphical user interface environment that allows the more effective management of the configuration parameters. Also, the actual modeling of the atmosphere has been changed allowing the definition of more complex cases and at the same time providing, in a more efficient way (with respect to the program's previous version) enhanced outputs. In this work, we combine the new version of DYASTIMA with the NMBANGLE PPOLA model, that estimates the spectrum of SEPs during relativistic proton events using ground level neutron monitor data from the worldwide network. Such a joint model has as a primary scope the simulation of a SEP event and of its secondary products at different altitudes in the Earth's atmosphere, providing at the same time an estimation of the respective ionization rates and of their spatial and temporal dependence. We apply this joint model to GLE 71, on 17 May 2012, and we discuss the results.

  20. Removal of paper microbial contamination by atmospheric pressure DBD discharge

    Science.gov (United States)

    Vrajova, J.; Chalupova, L.; Novotny, O.; Cech, J.; Krcma, F.; Stahel, P.

    2009-08-01

    In this paper the removal of the microbial contamination from paper material using the plasma treatment at atmospheric pressure is investigated. The Aspergillus niger has been chosen as a bio-indicator enabling to evaluate the effect of plasma assisted microbial inactivation. Dielectric barrier discharge (DBD) operated at atmospheric pressure was used for the paper sterilization. The working gas (nitrogen, argon and helium), plasma exposition time and the plasma power density were varied in order to see the effect of the plasma treatment on the fungi removal. After the treatment, the microbial abatement was evaluated by the standard plate count method. This proved a positive effect of the DBD plasma treatment on fungi removal. Morphological and colorimetric changes of paper substrate after plasma treatment were also investigated.

  1. Cellular membrane collapse by atmospheric-pressure plasma jet

    Science.gov (United States)

    Kim, Kangil; Jun Ahn, Hak; Lee, Jae-Hyeok; Kim, Jae-Ho; Sik Yang, Sang; Lee, Jong-Soo

    2014-01-01

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.

  2. Cellular membrane collapse by atmospheric-pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kangil; Sik Yang, Sang, E-mail: jsjlee@ajou.ac.kr, E-mail: ssyang@ajou.ac.kr [Department of Electrical and Computer Engineering, Ajou University, Suwon 443-749 (Korea, Republic of); Jun Ahn, Hak; Lee, Jong-Soo, E-mail: jsjlee@ajou.ac.kr, E-mail: ssyang@ajou.ac.kr [Department of Biological Sciences, Ajou University, Suwon 443-749 (Korea, Republic of); Lee, Jae-Hyeok; Kim, Jae-Ho [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2014-01-06

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.

  3. Peptide fragmentation induced by radicals at atmospheric pressure.

    Science.gov (United States)

    Vilkov, Andrey N; Laiko, Victor V; Doroshenko, Vladimir M

    2009-04-01

    A novel ion dissociation technique, which is capable of providing an efficient fragmentation of peptides at essential atmospheric pressure conditions, is developed. The fragmentation patterns observed often contain c-type fragments that are specific to electron capture dissociation/electron transfer dissociation (ECD/ETD), along with the y-/b-type fragments that are specific to collision-activated dissociation (CAD). In the presented experimental setup, ion fragmentation takes place within a flow reactor located in the atmospheric pressure region between the ion source and the mass spectrometer. According to a proposed mechanism, the fragmentation results from the interaction of ESI-generated analyte ions with the gas-phase radical species produced by a corona discharge source.

  4. Thermally induced atmospheric pressure gas discharges using pyroelectric crystals

    Science.gov (United States)

    Johnson, Michael J.; Linczer, John; Go, David B.

    2014-12-01

    Using a heated pyroelectric crystal, an atmospheric pressure gas discharge was generated through the input of heat. When put through a change in temperature, the polarization of a pyroelectric can change significantly, creating a substantial electric potential at its surface. When configured with a grounded sharp counter electrode, a large inhomogeneous electric field forms in the interstitial gas to initiate a corona-like discharge. Under constant heating conditions, gaseous ions drifting to the pyroelectric accumulate and screen the electric field, extinguishing the discharge. By thermally cycling the pyroelectric, negative and positive discharges are generated during heating and cooling, respectively, with peak currents on the order of 80 nA. Time-integrated visualization confirmed the generation of both a corona-like discharge and a surface discharge on the pyroelectric. Parametric studies identified that thermal cycling conditions significantly influence discharge formation for this new atmospheric pressure discharge approach.

  5. Simulation of low temperature atmospheric pressure corona discharge in helium

    Science.gov (United States)

    Bekasov, Vladimir; Kirsanov, Gennady; Eliseev, Stepan; Kudryavtsev, Anatoly; Sisoev, Sergey

    2015-11-01

    The main objective of this work was to construct a numerical model of corona discharge in helium at atmospheric pressure. The calculation was based on the two-dimensional hybrid model. Two different plasma-chemical models were considered. Models were built for RF corona and negative DC corona discharge. The system of equations is solved by the finite element method in the COMSOL Multiphysics. Main parameters of the discharge (the density of charged and excited particles, the electron temperature) and their dependence on the input parameters of the model (geometry, electrode voltage, power) were calculated. The calculations showed that the shape of the electron distribution near the electrode depends on the discharge power. The neutral gas heating data obtained will allow predicting the temperature of the gases at the designing of atmospheric pressure helium plasma sources.

  6. Atmospheric sugar alcohols: evaporation rates and saturation vapor pressures

    DEFF Research Database (Denmark)

    Bilde, Merete; Zardini, Alessandro Alessio; Hong, Juan

    volatile organic molecules. Saturation vapor pressure and the associated temperature dependence (dH) are key parameters for improving predictive atmospheric models. In this work we combine experiments and thermodynamic modeling to investigate these parameters for a series of polyols, so-called sugar......The atmospheric partitioning between gas and condensed phase of organic molecules is poorly understood, and discrepancies exist between predicted and observed concentrations of secondary organic aerosols. A key problem is the lack of information about thermodynamic properties of semi- and low...... alcohols. These polyols are common in the water soluble fraction of atmospheric aerosols. In our experimental system sub-micron particles are generated by nebulization from aqueous solution, and a mono disperse fraction of the aerosol is selected using a differential mobility analyzer. The particles...

  7. Atmospheric oxygenation caused by a change in volcanic degassing pressure.

    Science.gov (United States)

    Gaillard, Fabrice; Scaillet, Bruno; Arndt, Nicholas T

    2011-10-12

    The Precambrian history of our planet is marked by two major events: a pulse of continental crust formation at the end of the Archaean eon and a weak oxygenation of the atmosphere (the Great Oxidation Event) that followed, at 2.45 billion years ago. This oxygenation has been linked to the emergence of oxygenic cyanobacteria and to changes in the compositions of volcanic gases, but not to the composition of erupting lavas--geochemical constraints indicate that the oxidation state of basalts and their mantle sources has remained constant since 3.5 billion years ago. Here we propose that a decrease in the average pressure of volcanic degassing changed the oxidation state of sulphur in volcanic gases, initiating the modern biogeochemical sulphur cycle and triggering atmospheric oxygenation. Using thermodynamic calculations simulating gas-melt equilibria in erupting magmas, we suggest that mostly submarine Archaean volcanoes produced gases with SO(2)/H(2)S atmosphere.

  8. Atmospheric energy input and ionization by energetic electrons during the geomagnetic storm of 8-9 November 1991

    Science.gov (United States)

    Chenette, D. L.; Datlowe, D. W.; Robinson, R. M.; Schumaker, T. L.; Vondrak, R. R.; Winningham, J. D.

    1993-01-01

    The Atmospheric X-ray Imaging Spectrometer (AXIS) of the Particle Environment Monitor investigation aboard the Upper Atmosphere Research Satellite monitors energy input to the upper atmosphere due to energetic electrons. Analysis of the AXIS data from the major geomagnetic storm of 8-9 November 1991 is presented. During the November storm, electrons above a few keV flowing into a substantially expanded auroral zone provided the bulk of the ionizing power to the upper atmosphere. At the peak of the disturbance the total AXIS-observed power reached 40 GW. On 9 November the whole day average atmospheric ionization rate in the auroral zone at 80 km altitude exceeded the rate due to solar UV and solar X-rays by a factor of over 10 to 100.

  9. Atmospheric pressure plasma jet treatment of Salmonella Enteritidis inoculated eggshells.

    Science.gov (United States)

    Moritz, Maike; Wiacek, Claudia; Koethe, Martin; Braun, Peggy G

    2017-03-20

    Contamination of eggshells with Salmonella Enteritidis remains a food safety concern. In many cases human salmonellosis within the EU can be traced back to raw or undercooked eggs and egg products. Atmospheric pressure plasma is a novel decontamination method that can reduce a wide range of pathogens. The aim of this work was to evaluate the possibility of using an effective short time cold plasma treatment to inactivate Salmonella Enteritidis on the eggshell. Therefore, artificially contaminated eggshells were treated with an atmospheric pressure plasma jet under different experimental settings with various exposure times (15-300s), distances from the plasma jet nozzle to the eggshell surface (5, 8 or 12mm), feed gas compositions (Ar, Ar with 0.2, 0.5 or 1.0% O2), gas flow rates (5 and 7slm) and different inoculations of Salmonella Enteritidis (10(1)-10(6)CFU/cm(2)). Atmospheric pressure plasma could reduce Salmonella Enteritidis on eggshells significantly. Reduction factors ranged between 0.22 and 2.27 log CFU (colony-forming units). Exposure time and, particularly at 10(4)CFU/cm(2) inoculation, feed gas had a major impact on Salmonella reduction. Precisely, longer exposure times led to higher reductions and Ar as feed gas was more effective than ArO2 mixtures.

  10. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nastuta, Andrei Vasile; Topala, Ionut; Pohoata, Valentin; Popa, Gheorghe [Faculty of Physics, Alexandru Ioan Cuza University, Bd. Carol No. 11, 700506, Iasi (Romania); Grigoras, Constantin, E-mail: andrei.nastuta@uaic.ro [Physiopathology Department, Grigore T. Popa University of Medicine and Pharmacy, 700115, Iasi (Romania)

    2011-03-16

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  11. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    Science.gov (United States)

    Vasile Nastuta, Andrei; Topala, Ionut; Grigoras, Constantin; Pohoata, Valentin; Popa, Gheorghe

    2011-03-01

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  12. Atmospheric pressure loading effects on Global Positioning System coordinate determinations

    Science.gov (United States)

    Vandam, Tonie M.; Blewitt, Geoffrey; Heflin, Michael B.

    1994-01-01

    Earth deformation signals caused by atmospheric pressure loading are detected in vertical position estimates at Global Positioning System (GPS) stations. Surface displacements due to changes in atmospheric pressure account for up to 24% of the total variance in the GPS height estimates. The detected loading signals are larger at higher latitudes where pressure variations are greatest; the largest effect is observed at Fairbanks, Alaska (latitude 65 deg), with a signal root mean square (RMS) of 5 mm. Out of 19 continuously operating GPS sites (with a mean of 281 daily solutions per site), 18 show a positive correlation between the GPS vertical estimates and the modeled loading displacements. Accounting for loading reduces the variance of the vertical station positions on 12 of the 19 sites investigated. Removing the modeled pressure loading from GPS determinations of baseline length for baselines longer than 6000 km reduces the variance on 73 of the 117 baselines investigated. The slight increase in variance for some of the sites and baselines is consistent with expected statistical fluctuations. The results from most stations are consistent with approximately 65% of the modeled pressure load being found in the GPS vertical position measurements. Removing an annual signal from both the measured heights and the modeled load time series leaves this value unchanged. The source of the remaining discrepancy between the modeled and observed loading signal may be the result of (1) anisotropic effects in the Earth's loading response, (2) errors in GPS estimates of tropospheric delay, (3) errors in the surface pressure data, or (4) annual signals in the time series of loading and station heights. In addition, we find that using site dependent coefficients, determined by fitting local pressure to the modeled radial displacements, reduces the variance of the measured station heights as well as or better than using the global convolution sum.

  13. Atmospheric sugar alcohols: evaporation rates and saturation vapor pressures

    Science.gov (United States)

    Bilde, M.; Zardini, A. A.; Hong, J.; Tschiskale, M.; Emanuelsson, E.

    2014-12-01

    The atmospheric partitioning between gas and condensed phase of organic molecules is poorly understood, and discrepancies exist between predicted and observed concentrations of secondary organic aerosols. A key problem is the lack of information about thermodynamic properties of semi- and low volatile organic molecules. Saturation vapor pressure and the associated temperature dependence (dH) are key parameters for improving predictive atmospheric models. In this work we combine experiments and thermodynamic modeling to investigate these parameters for a series of polyols, so-called sugar alcohols. These polyols are common in the water soluble fraction of atmospheric aerosols. In our experimental system sub-micron particles are generated by nebulization from aqueous solution, and a mono disperse fraction of the aerosol is selected using a differential mobility analyzer. The particles are allowed to evaporate in a laminar flow reactor, and changes in particle size as function of evaporation time are determined using a scanning mobility particle sizer system. In this work saturation vapor pressures of sugar alcohols at several temperatures have been inferred from such measurements using thermodynamic modeling. Results are presented and discussed in context of atmospheric gas to particle partitioning.

  14. Leidenfrost phenomenon-assisted thermal desorption (LPTD) and its application to open ion sources at atmospheric pressure mass spectrometry.

    Science.gov (United States)

    Saha, Subhrakanti; Chen, Lee Chuin; Mandal, Mridul Kanti; Hiraoka, Kenzo

    2013-03-01

    This work describes the development and application of a new thermal desorption technique that makes use of the Leidenfrost phenomenon in open ion sources at atmospheric pressure for direct mass spectrometric detection of ultratrace levels of illicit, therapeutic, and stimulant drugs, toxicants, and peptides (molecular weight above 1 kDa) in their unaltered state from complex real world samples without or with minor sample pretreatment. A low temperature dielectric barrier discharge ion source was used throughout the experiments and the analytical figures of merit of this technique were investigated. Further, this desorption technique coupled with other ionization sources such as electrospray ionization (ESI) and dc corona discharge atmospheric pressure chemical ionization (APCI) in open atmosphere was also investigated. The use of the high-resolution 'Exactive Orbitrap' mass spectrometer provided unambiguous identification of trace levels of the targeted compounds from complex mixtures and background noise; the limits of detection for various small organic molecules and peptides treated with this technique were at the level of parts per trillion and 10(-9) M, respectively. The high sensitivity of the present technique is attributed to the spontaneous enrichment of analyte molecules during the slow evaporation of the solvent, as well as to the sequential desorption of molecules from complex mixtures based on their volatilities. This newly developed desorption technique is simple and fast, while molecular ions are observed as the major ions.

  15. Application of diffuse discharges of atmospheric pressure formed by runaway electrons for modification of copper and stainless steel surface

    Energy Technology Data Exchange (ETDEWEB)

    Tarasenko, V. F., E-mail: VFT@loi.hcei.tsc.ru; Shulepov, M. A.; Erofeev, M. V. [Russian Academy of Sciences, Institute of High Current Electronics, Siberian Branch (Russian Federation)

    2015-12-15

    The results of studies devoted to the influence of a runaway electron pre-ionized diffuse discharge (REP DD) formed in air and nitrogen at atmospheric pressure on the surface of copper and stainless steel are presented. Nanosecond high-voltage pulses were used to obtain REP DD in different gases at high pressures in a chamber with a flat anode and a cathode possessing a small radius of curvature. This mode of discharge was implemented owing to the generation of runaway electrons and X-rays. The conditions under which the surface of copper and stainless steel was cleaned from carbon and oxidized are described.

  16. Suppression of diamagnetism by neutrals pressure in partially ionized, high-beta plasma

    Science.gov (United States)

    Shinohara, Shunjiro; Kuwahara, Daisuke; Yano, Kazuki; Fruchtman, Amnon

    2016-12-01

    Suppression of diamagnetism in a partially ionized plasma with high beta was experimentally investigated by the use of Langmuir and Hall sensor probes, focusing on a neutrals pressure effect. The plasma beta, which is the ratio of plasma to vacuum magnetic pressures, varied from ˜1% to >100% while the magnetic field varied from ˜120 G to ˜1 G. Here, a uniform magnetized argon plasma was operated mostly in an inductive mode, using a helicon plasma source of the Large Helicon Plasma Device [S. Shinohara et al., Phys. Plasmas 16, 057104 (2009)] with a diameter of 738 mm and an axial length of 4860 mm. Electron density varied from 5 × 1015 m-3 to power of 7 MHz and ˜3.5 kW, respectively. The observed magnetic field reduction rate, a decrease of the magnetic field divided by the vacuum one, was up to 18%. However, in a certain parameter regime, where the product of ion and electron Hall terms is a key parameter, the measured diamagnetic effect was smaller than that expected by the plasma beta. This suppressed diamagnetism is explained by the neutrals pressure replacing magnetic pressure in balancing plasma pressure. Diamagnetism is weakened if neutrals pressure is comparable to the plasma pressure and if the coupling of plasma and neutrals pressures by ion-neutral collisions is strong enough.

  17. IONIZATION IN ATMOSPHERES OF BROWN DWARFS AND EXTRASOLAR PLANETS. III. BREAKDOWN CONDITIONS FOR MINERAL CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Helling, Ch.; Jardine, M.; Stark, C. [SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom); Diver, D., E-mail: ch@leap2010.eu [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2013-04-20

    Electric discharges were detected directly in the cloudy atmospheres of Earth, Jupiter, and Saturn, are debatable for Venus, and indirectly inferred for Neptune and Uranus in our solar system. Sprites (and other types of transient luminous events) have been detected only on Earth, and are theoretically predicted for Jupiter, Saturn, and Venus. Cloud formation is a common phenomenon in ultra-cool atmospheres such as in brown dwarf and extrasolar planetary atmospheres. Cloud particles can be expected to carry considerable charges which may trigger discharge events via small-scale processes between individual cloud particles (intra-cloud discharges) or large-scale processes between clouds (inter-cloud discharges). We investigate electrostatic breakdown characteristics, like critical field strengths and critical charge densities per surface, to demonstrate under which conditions mineral clouds undergo electric discharge events which may trigger or be responsible for sporadic X-ray emission. We apply results from our kinetic dust cloud formation model that is part of the DRIFT-PHOENIX model atmosphere simulations. We present a first investigation of the dependence of the breakdown conditions in brown dwarf and giant gas exoplanets on the local gas-phase chemistry, the effective temperature, and primordial gas-phase metallicity. Our results suggest that different intra-cloud discharge processes dominate at different heights inside mineral clouds: local coronal (point discharges) and small-scale sparks at the bottom region of the cloud where the gas density is high, and flow discharges and large-scale sparks near, and maybe above, the cloud top. The comparison of the thermal degree of ionization and the number density of cloud particles allows us to suggest the efficiency with which discharges will occur in planetary atmospheres.

  18. Shock Formation by Plasma Filaments of Microwave Discharge under Atmospheric Pressure

    Science.gov (United States)

    Takahashi, Masayuki; Ohnishi, Naofumi

    2016-03-01

    A one-dimensional compressible fluid calculation was coupled with a finite- difference time-domain code and a particle-in-cell code with collision to reproduce propagation of electromagnetic wave, ionization process of plasma, and shock wave formation in atmospheric microwave discharge. Plasma filaments are driven toward the microwave source at 1 atm, and the distance between each filament is one-fifth of the wavelength of the incident microwave. The strong shock wave is generated due to the high plasma density at the atmospheric pressure. A simple analysis of the microwave propagation into the plasma shows that cut-off density of the microwave becomes smaller with the pressure decrease in a collisional plasma. At the lower pressure, the smaller density plasma is obtained with a diffusive pattern because of the smaller cut-off density and the larger diffusion effect. In contrast with the 1-atm case, the weak shock wave is generated at a rarefied condition, which lowers performance of microwave thruster.

  19. Surface desorption atmospheric pressure chemical ionization mass spectrometry for identification of lotus seeds freshness based on PCA and BP-ANN%表面解吸常压化学电离质谱结合人工神经网络鉴别新陈莲子

    Institute of Scientific and Technical Information of China (English)

    罗丽萍; 赵占锋; 戴喜末; 张茜; 刘亚丽; 张兴磊; 章文军; 欧阳永中

    2013-01-01

    In order to realize fast discrimination of lotus seeds freshness, the surface desorption atmospheric pressure chemical ionization mass spectrometry (DAPCI-MS) and principal component analysis (PCA) with back propagation artificial neural network (BP-ANN) were used to distinguish the freshness of lotus seeds produced from 2009 to 2012. Without any sample pretreatments, 60 dried lotus seeds of each year, for a total of 240 individuals were tested and distinguished. The seeds were randomly picked from samples supplied by the Chinese Lotus Seeds Research Academy, which were cultured in the same field in Guangchang County, Jiangxi Province;and were grown with the same standardized method. Each lotus seed was longitudinally sliced to 2 mm for the DAPCI-MS investigation, and tested in the center of the slice with 6 replicates to obtain the averaged results. Experiments were performed using a commercial linear ion trap mass spectrometer (LTQ-XL, Finnigan, San Jose, CA, USA) installed with a homemade DAPCI ion source in negative ion detection mode, and coupled with N2 (0.1 MPa) through a methanol:water (1:1) solution, and a high voltage of 3.0 kV. The mass range m/z was 50–500 and the ion transfer tube temperature was 150 . The mass spectra were rapidly recorded by DAPCI℃ -MS and the data were processed by PCA. Its main components were selected as the input variables for classification mode of BP-ANN. PCA and BP-ANN were performed by Matlab7.0 software. The results showed that DAPCI-MS was a practical, convenient tool for the detection of matrix bases of lotus seeds. The signal peaks occurred increasingly over the storage time, and the observation correlates well with previous studies of aging cereals such as rice and wheat. The PCA’s first 50 components, whose cumulative contribution reached 99.99%and maintained almost all of the original information of the samples, were selected as the input layer of the BP-ANN model which included 50 input layer nodes, 48 hidden

  20. Time and space variability of spectral estimates of atmospheric pressure

    Science.gov (United States)

    Canavero, Flavio G.; Einaudi, Franco

    1987-01-01

    The temporal and spatial behaviors of atmospheric pressure spectra over the northern Italy and the Alpine massif were analyzed using data on surface pressure measurements carried out at two microbarograph stations in the Po Valley, one 50 km south of the Alps, the other in the foothills of the Dolomites. The first 15 days of the study overlapped with the Alpex Intensive Observation Period. The pressure records were found to be intrinsically nonstationary and were found to display substantial time variability, implying that the statistical moments depend on time. The shape and the energy content of spectra depended on different time segments. In addition, important differences existed between spectra obtained at the two stations, indicating a substantial effect of topography, particularly for periods less than 40 min.

  1. Ultrapressure liquid chromatography-tandem mass spectrometry assay using atmospheric pressure photoionization (UPLC-APPI-MS/MS) for quantification of 4-methoxydiphenylmethane in pharmacokinetic evaluation.

    Science.gov (United States)

    Farhan, Nashid; Fitzpatrick, Sean; Shim, Yun M; Paige, Mikell; Chow, Diana Shu-Lian

    2016-09-05

    4-Methoxydiphenylmethane (4-MDM), a selective augmenter of Leukotriene A4 Hydrolase (LTA4H), is a new anti-inflammatory compound for potential treatment of chronic obstructive pulmonary disease (COPD). Currently, there is no liquid chromatography tandem mass spectrometric (LC-MS/MS) method for the quantification of 4-MDM. A major barrier for developing the LC-MS/MS method is the inability of electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) to ionize 4-MDM due to its hydrophobicity and lack of any functional group for ionization. With the advent of atmospheric pressure photoionization (APPI) technique, many hydrophobic compounds have been demonstrated to ionize by charge transfer reactions. In this study, a highly sensitive ultrapressure liquid chromatography tandem mass spectrometry assay using atmospheric pressure photoionization (UPLC-APPI-MS/MS) for the quantifications of 4-MDM in rat plasma has been developed and validated. 4-MDM was extracted from the plasma by solid phase extraction (SPE) and separated chromatographically using a reverse phase C8 column. The photoionization (PI) was achieved by introducing anisole as a dopant to promote the reaction of charge transfer. The assay with a linear range of 5 (LLOQ)-400ngmL(-1) met the regulatory requirements for accuracy, precision and stability. The validated assay was employed to quantify the plasma concentrations of 4-MDM after an oral dosing in Sprague Dawley (SD) rats.

  2. Characterizations of atmospheric pressure low temperature plasma jets and their applications

    Science.gov (United States)

    Karakas, Erdinc

    2011-12-01

    Atmospheric pressure low temperature plasma jets (APLTPJs) driven by short pulses have recently received great attention because of their potential in biomedical and environmental applications. This potential is due to their user-friendly features, such as low temperature, low risk of arcing, operation at atmospheric pressure, easy handheld operation, and low concentration of ozone generation. Recent experimental observations indicate that an ionization wave exists and propagates along the plasma jet. The plasma jet created by this ionization wave is not a continuous medium but rather consists of a bullet-like-structure known as "Plasma Bullet". More interestingly, these plasma bullets actually have a donut-shaped makeup. The nature of the plasma bullet is especially interesting because it propagates in the ambient air at supersonic velocities without any externally applied electric field. In this dissertation, experimental insights are reported regarding the physical and chemical characteristics of the APLTPJs. The dynamics of the plasma bullet are investigated by means of a high-speed ICCD camera. A plasma bullet propagation model based on the streamer theory is confirmed with adequate explanations. It is also found that a secondary discharge, ignited by the charge accumulation on the dielectric electrode surfaces at the end of the applied voltage, interrupts the plasma bullet propagation due to an opposing current along the ionization channel. The reason for this interesting phenomenon is explained in detail. The plasma bullet comes to an end when the helium mole fraction along the ionization channel, or applied voltage, or both, are less than some critical values. The presence of an inert gas channel in the surrounding air, such as helium or argon, has a critical role in plasma bullet formation and propagation. For this reason, a fluid dynamics study is employed by a commercially available simulation software, COMSOL, based on finite element method. Spatio

  3. Atmospheric-pressure glow plasma synthesis of plasmonic and photoluminescent zinc oxide nanocrystals

    Science.gov (United States)

    Bilik, N.; Greenberg, B. L.; Yang, J.; Aydil, E. S.; Kortshagen, U. R.

    2016-06-01

    In this paper, we present a large-volume (non-micro) atmospheric pressure glow plasma capable of rapid, large-scale zinc oxide nanocrystal synthesis and deposition (up to 400 μg/min), whereas in the majority of the literature, nanoparticles are synthesized using micro-scale or filamentary plasmas. The reactor is an RF dielectric barrier discharge with a non-uniform gap spacing. This design encourages pre-ionization during the plasma breakdown, making the discharge uniform over a large volume. The produced zinc oxide nanocrystals typically have diameters ranging from 4 to 15 nm and exhibit photoluminescence at ≈550 nm and localized surface plasmon resonance at ≈1900 cm-1 due to oxygen vacancies. The particle size can be tuned to a degree by varying the gas temperature and the precursor mixing ratio.

  4. Influence of dissociative recombination on the LTE of argon high-frequency plasmas at atmospheric pressure

    CERN Document Server

    Sainz, A; García, M C; Calzada, M D; Sainz, Abel; Margot, Joelle; Garcia, Maria Carmen; Calzada, Maria Dolores

    2004-01-01

    This work presents a few preliminary results from a collisional-radiative (CR) model intended to describe an argon microwave (2.45 GHz) plasma at atmospheric pressure. This model aims to investigate the influence of dissociative recombination products on the Saha-Boltzmann plasma equilibrium. The model is tested through comparison with experimental results obtained in an argon plasma column generated by a traveling electromagnetic surface-wave, which is suitable to perform a parametric investigation of the plasma. It is shown that dissociative recombination predominantly populates the 4s levels and the ground state. It is further observed that it strongly influences the population of the levels, specially those of lower energy. However, the higher levels (close to the ionization limit) appear to be in equilibrium whatever the plasma density. This allows assuming that the excitation temperature Texc determined from the upper levels in the atomic system in the Boltzmann-plot is equal to Te.

  5. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    Science.gov (United States)

    Sun, Wen-Ting; Li, Guo; Li, He-Ping; Bao, Cheng-Yu; Wang, Hua-Bo; Zeng, Shi; Gao, Xing; Luo, Hui-Ying

    2007-06-01

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure α-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images.

  6. Pressure-produced ionization of nonideal plasma in a megabar range of dynamic pressures

    NARCIS (Netherlands)

    Fortov, VE; Ternovoi, VY; Zhernokletov, MV; Mochalov, MA; Mikhailov, AL; Filimonov, AS; Pyalling, AA; Mintsev, VB; Gryaznov, VK; Iosilevskii, IL

    2003-01-01

    The low-frequency electrical conductivity of strongly nonideal hydrogen, helium, and xenon plasmas was measured in the megabar range of pressures. The plasmas in question were generated by the method of multiple shock compression in planar and cylindrical geometries, whereby it was possible to reduc

  7. Atmospheric pressure plasma enhanced spatial ALD of silver

    Energy Technology Data Exchange (ETDEWEB)

    Bruele, Fieke J. van den, E-mail: Fieke.vandenBruele@tno.nl; Smets, Mireille; Illiberi, Andrea; Poodt, Paul [Holst Centre/TNO, High Tech Campus 31, 5656 AE Eindhoven (Netherlands); Creyghton, Yves [TNO, High Tech Campus 21, 5656 AE Eindhoven (Netherlands); Buskens, Pascal [TNO, Rondom 1, 5612 AP Eindhoven, The Netherlands and DWI Leibniz-Institut für Interaktive Materialien, Aachen (Germany); Roozeboom, Fred [TNO, High Tech Campus 21, 5656 AE Eindhoven, The Netherlands and Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands)

    2015-01-15

    The authors have investigated the growth of thin silver films using a unique combination of atmospheric process elements: spatial atomic layer deposition and an atmospheric pressure surface dielectric barrier discharge plasma source. Silver films were grown on top of Si substrates with good purity as revealed by resistivity values as low as 18 μΩ cm and C- and F-levels below detection limits of energy dispersive x-ray analysis. The growth of the silver films starts through the nucleation of islands that subsequently coalesce. The authors show that the surface island morphology is dependent on surface diffusion, which can be controlled by temperature within the deposition temperature range of 100–120 °C.

  8. [Spectral diagnosis of plasma jet at atmospheric pressure].

    Science.gov (United States)

    Li, Chi; Tang, Xiao-liang; Qiu, Gao

    2008-12-01

    A new approach to surface modification of materials using dielectric barrier discharge (DBD) plasma jet at atmospheric pressure is presented in the present paper. The emission spectral lines of argon plasma jet at atmospheric pressure were recorded by the grating spectrograph HR2000 and computer software. The argon plasma emission spectra, ranging from 300nm to 1000 nm, were measured at different applied voltage. Compared to air plasma emission spectra under the same circumstance, it is shown that all of the spectral lines are attributed to neutral argon atoms. The spectral lines 763.51 and 772.42 nm were chosen to estimate the electron excitation temperature. The purpose of the study is to research the relationship between the applied voltage and temperature to control the process of materials' surface modification promptly. The results show that electron excitation temperature is in the range of 0.1-0.5 eV and increases with increasing applied voltage. In the process of surface modification under the plasma jet, the infrared radiation thermometer was used to measure the material surface temperature under the plasma jet. The results show that the material surface temperature is in the range of 50-100 degrees C and it also increases with increasing applied voltage. Because the material surface was under the plasma jet and its temperature was decided by the plasma, and the material surface temperature increased with increasing the macro-temperature of plasma jet, the relationship between the surface temperature and applied voltage indicates the relationship between the macro-temperature of the plasma jet and the applied voltage approximately. The experimental results indicate that DBD plasma jet at atmospheric pressure is a new approach to improving the quality of materials' surface modification, and spectral diagnosis has proved to be a kind of workable method by choosing suitable applied voltage.

  9. Diagnostics of Atmospheric Pressure Surface Discharge Plasmas in Argon

    Institute of Scientific and Technical Information of China (English)

    张锐; 詹如娟; 温晓辉

    2003-01-01

    Atmospheric pressure surface discharge is shown to have great prospects for a number of industrial applications.To acquire better results in application fields and considering that the study of the basic parameters including electron temperature and electron density is desirable,we develop an equivalent circuit model and the diagnostic techniques based on optical emission spectroscopy and electrical measurement in our laboratory.The electron temperature has been determined to be about 0.7eV by a Fermi-Dirac model.The electron density has been calculated to be near 1010 cm-3 from a time resolved electrical measurement(Ohmic heating method).

  10. A lidar system for measuring atmospheric pressure and temperature profiles

    Science.gov (United States)

    Schwemmer, Geary K.; Dombrowski, Mark; Korb, C. Laurence; Milrod, Jeffry; Walden, Harvey

    1987-01-01

    The design and operation of a differential absorption lidar system capable of remotely measuring the vertical structure of tropospheric pressure and temperature are described. The measurements are based on the absorption by atmospheric oxygen of the spectrally narrowband output of two pulsed alexandrite lasers. Detailed laser output spectral characteristics, which are critical to successful lidar measurements, are presented. Spectral linewidths of 0.026 and 0.018 per cm for the lasers were measured with over 99.99 percent of the energy contained in three longitudinal modes.

  11. Generation of subnanosecond electron beams in air at atmospheric pressure

    Science.gov (United States)

    Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.

    2009-11-01

    Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.

  12. Driven Motion and Instability of an Atmospheric Pressure Arc

    Energy Technology Data Exchange (ETDEWEB)

    Max Karasik

    1999-12-01

    Atmospheric pressure arcs are used extensively in applications such as welding and metallurgy. However, comparatively little is known of the physics of such arcs in external magnetic fields and the mechanisms of the instabilities present. In order to address questions of equilibrium and stability of such arcs, an experimental arc furnace is constructed and operated in air with graphite cathode and steel anode at currents 100-250 A. The arc is diagnosed with a gated intensified camera and a collimated photodiode array, as well as fast voltage and current probes.

  13. Field-Free Atmospheric Pressure Photoionization - Liquid Chromatography - Mass Spectrometry for the Analysis of Steroids within Complex Biological Matrices.

    Science.gov (United States)

    McCulloch, Ross David; Robb, Damon B

    2017-03-06

    A comparison study is presented in which the relative performance of a new orthogonal geometry field-free atmospheric pressure photoionization (FF-APPI) source was evaluated against both electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) for the analysis of a small panel of clinically relevant steroids, spiked within various complex biological matrices. Critical performance factors like sensitivity and susceptibility to matrix effects were assessed using a simple, isocratic, high throughput LC-MS workflow. FF-APPI was found to provide the best performance in terms of both sensitivity and detection limit for all of the steroids included in the survey. Order-of-magnitude sensitivity advantages were realized for some low polarity analytes including both estradiol and estrone. A robust linear regression, post extraction addition method was used to evaluate the relative impact of matrix effects upon each ionization method using protein precipitated human serum, plasma and Surine (simulated urine) as standard clinical matrices. Under conditions optimized for sensitivity, both the field-free APPI and APCI sources were found to provide similarly high resistance to matrix suppression effects, while ESI performance was impacted the most dramatically. For the prototype FF-APPI source, a strong relationship was established between optimizable source parameters and the degree of ion suppression observed. Through careful optimization of vaporization temperature and nebulizer gas flow rates it was possible to significantly reduce or even eliminate the impact of matrix effects, even for high throughput LC-MS methods.

  14. Ionized gas pressure correlates with star formation intensity in nearby starbursts

    Science.gov (United States)

    Jiang, Tianxing; Malhotra, Sangeeta; Yang, Huan

    2016-06-01

    We estimate the electron density of the ionized gas and thus the thermal pressure in HII regions; and compare that to the SFR (star formation rate) surface density for a combined sample of about 40 green peas and Lyman Break Analogs at z SII] 6716 / 6731). We find that the SFR surface density is correlated with the electron density and the thermal pressure in HII regions for the star-forming galaxies with SFR surface density above a certain threshold. This work shows quantitatively the correlation between SFR surface density and electron density and that between SFR surface density and the thermal pressure in HII regions for the nearby starburst galaxies. This is consistent with theoretical models of disks (e.g. Kim et al. (2011) if we assume that the thermal pressure in HII regions is comparable to the total diffuse gas pressure at the midplane of the diffuse neutral gas. It is also in agreement with the results from star-forming galaxies at z ~ 2.5. We might infer that the starburst galaxies at low-redshift (z < 0.3) share similar physical properties to the galaxies at high redshift (z ~ 2.5).

  15. The major influence of the atmosphere on intracranial pressure: an observational study

    Science.gov (United States)

    Herbowski, Leszek

    2017-01-01

    The impact of the atmosphere on human physiology has been studied widely within the last years. In practice, intracranial pressure is a pressure difference between intracranial compartments and the surrounding atmosphere. This means that gauge intracranial pressure uses atmospheric pressure as its zero point, and therefore, this method of pressure measurement excludes the effects of barometric pressure's fluctuation. The comparison of these two physical quantities can only take place through their absolute value relationship. The aim of this study is to investigate the direct effect of barometric pressure on the absolute intracranial pressure homeostasis. A prospective observational cross-sectional open study was conducted in Szczecin, Poland. In 28 neurosurgical patients with suspected normal-pressure hydrocephalus, intracranial intraventricular pressure was monitored in a sitting position. A total of 168 intracranial pressure and atmospheric pressure measurements were performed. Absolute atmospheric pressure was recorded directly. All values of intracranial gauge pressure were converted to absolute pressure (the sum of gauge intracranial pressure and local absolute atmospheric pressure). The average absolute mean intracranial pressure in the patients is 1006.6 hPa (95 % CI 1004.5 to 1008.8 hPa, SEM 1.1), and the mean absolute atmospheric pressure is 1007.9 hPa (95 % CI 1006.3 to 1009.6 hPa, SEM 0.8). The observed association between atmospheric and intracranial pressure is strongly significant (Spearman correlation r = 0.87, p < 0.05) and all the measurements are perfectly reliable (Bland-Altman coefficient is 4.8 %). It appears from this study that changes in absolute intracranial pressure are related to seasonal variation. Absolute intracranial pressure is shown to be impacted positively by atmospheric pressure.

  16. The major influence of the atmosphere on intracranial pressure: an observational study

    Science.gov (United States)

    Herbowski, Leszek

    2016-06-01

    The impact of the atmosphere on human physiology has been studied widely within the last years. In practice, intracranial pressure is a pressure difference between intracranial compartments and the surrounding atmosphere. This means that gauge intracranial pressure uses atmospheric pressure as its zero point, and therefore, this method of pressure measurement excludes the effects of barometric pressure's fluctuation. The comparison of these two physical quantities can only take place through their absolute value relationship. The aim of this study is to investigate the direct effect of barometric pressure on the absolute intracranial pressure homeostasis. A prospective observational cross-sectional open study was conducted in Szczecin, Poland. In 28 neurosurgical patients with suspected normal-pressure hydrocephalus, intracranial intraventricular pressure was monitored in a sitting position. A total of 168 intracranial pressure and atmospheric pressure measurements were performed. Absolute atmospheric pressure was recorded directly. All values of intracranial gauge pressure were converted to absolute pressure (the sum of gauge intracranial pressure and local absolute atmospheric pressure). The average absolute mean intracranial pressure in the patients is 1006.6 hPa (95 % CI 1004.5 to 1008.8 hPa, SEM 1.1), and the mean absolute atmospheric pressure is 1007.9 hPa (95 % CI 1006.3 to 1009.6 hPa, SEM 0.8). The observed association between atmospheric and intracranial pressure is strongly significant (Spearman correlation r = 0.87, p < 0.05) and all the measurements are perfectly reliable (Bland-Altman coefficient is 4.8 %). It appears from this study that changes in absolute intracranial pressure are related to seasonal variation. Absolute intracranial pressure is shown to be impacted positively by atmospheric pressure.

  17. Charging of aerosol and nucleation in atmospheric pressure electrical discharges

    Science.gov (United States)

    Borra, J. P.

    2008-12-01

    The paper focuses on applications of atmospheric pressure plasmas (dc corona, streamer, spark and ac dielectric barrier discharges (DBDs)) in aerosol processes for materials and environment. Since aerosol kinematics depends mainly on electric forces acting on charged particles, the two mechanisms of aerosol charging by the collection of ions are presented in corona, post-corona and DBDs. In such defined charging conditions, field and diffusion charging laws are depicted, with respect to applications of controlled kinematics of charged aerosol. Then key parameters controlling the formation by nucleation and the growth by coagulation of particles in plasmas are presented. Sources of vapor leading to nucleated nanoparticles are depicted in atmospheric pressure electrical discharges: (i) when filamentary dc streamer and spark as well as ac-DBDs interact with metal or dielectric surfaces and (ii) when discharges induce reactions with gaseous precursors in volume. In both cases, condensable gaseous species are produced, leading to nano-sized particles by physical and chemical routes of nucleation. The composition, size and structure of primary nanoparticles as well as the final size of agglomerates are related to plasma parameters (energy, number per unit surface and time and thermal gradients around each filament as well as the transit time).

  18. Parametric study of radiofrequency helium discharge under atmospheric pressure

    Indian Academy of Sciences (India)

    SAFDAR HUSSAIN; HAFIZ IMRAN AHMAD QAZI; SHANAWER NIAZ; MANZOOR AHMAD BADAR

    2016-12-01

    The parameters of radio frequency helium discharge under atmospheric pressure were studied by electrical and optical measurements using high voltage probe, current probe and optical emission spectroscopy. Two discharge modes $\\alpha$ and $\\gamma$ were observed within certain limits. During $\\alpha$ to $\\gamma$ mode transition, a decrease in voltage (280–168 V), current (2.05–1.61 A) and phase angle (76$^{\\rm o}-56^{\\rm o}$) occurred. The discharge parameters such as resistance, reactance, sheath thickness, electron density, excitation temperature and gas temperature were assessed by electrical measurements using equivalent circuit model and optical emission spectroscopy. In $\\alpha$ mode, the discharge current increased from 1.17 to 2.05 A, electron density increased from $0.19 \\times 10^{12} {\\rm to} 0.47 \\times 10^{12} {\\rm cm}^{−3}$ while sheath thickness decreased from 0.40 to 0.25 mm. The excitation temperatures in the $\\alpha$ and $\\gamma$ modes were 3266 and 4500 K respectively, evaluated by Boltzmann’s plot method. The estimated gas temperature increased from 335 K in the α mode to 485 K in the γ mode, suggesting that the radio frequency atmospheric pressure helium discharge can be used for surface treatment applications.

  19. Microwave heating systems for atmospheric pressure: Nonequilibrium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Guest, G.E.; Dandl, R.A. (AMPC, Inc., Carlsbad, CA (USA))

    1989-03-01

    Nonequilibrium plasma-chemical processing is attracting increasing interest because of the possibility of creating mixtures of active species that would not be available in thermal equilibrium. For significant throughput of reactants it would be advantageous to create nonequilibrium plasmas in large volumes of atmospheric-pressure mixtures of gases. Techniques for accomplishing this are very limited at present. Here they describe a novel microwave approach to creating nonequilibrium plasmas in large volumes of atmospheric-pressure gases using pulses of microwave radiation with very high peak power that are focused by quasi-optical techniques at one or more points in the interior of the reaction chamber. A new type of microwave source, the Plasma Electron Microwave Source (PEMS), is able to produce the require power levels by storing cw microwave power in a mirror-confined, relativistic-electron plasma and periodically transforming a fraction of that stored energy into intense microwave pulses. This approach avoids many of the limitations inherent in resonant cavity approaches and is expected to permit ultrahigh purity discharges to be produced.

  20. Bacteria Inactivation Using DBD Plasma Jet in Atmospheric Pressure Argon

    Institute of Scientific and Technical Information of China (English)

    XU Guimin; ZHANG Guanjun; SHI Xingmin; MA Yue; WANG Ning; LI Yuan

    2009-01-01

    A coaxial dielectric barrier discharge plasma jet Was designed,which can be operated in atmospheric pressure argon under an intermediate frequency sinusoidal resonant power supply,and an atmospheric pressure glow-like discharge Was achieved.Two kinds of typical bacteria,i.e.,the Staphylococcus aureus(S.aurens)and Escherichia coil(E.coil),were employed to study the bacterial inactivation mechanism by means of the non-thermal plasma.The killing log value (KLV)of S.aureus reached up to 5.38 with a treatment time of 90 s and that of E.coil up to 5.36 with 60 s,respectively.According to the argon emission spectra of the plasma jet and the scanning electron microscope (SEM) images of the two bacteria before and after the plasma treatment.it is concluded that the reactive species in the argon plasma played a major role in the bacterial inactivation,while the heat,electric field and UV photons had little effect.

  1. Surface modification of polycarbonate in homogeneous atmospheric pressure discharge

    Energy Technology Data Exchange (ETDEWEB)

    SIra, M; Trunec, D; St' ahel, P; BursIkova, V; Navratil, Z [Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic)

    2008-01-07

    A homogeneous atmospheric pressure dielectric barrier discharge was used for the surface modification of polycarbonate (PC). The discharge was generated between two planar metal electrodes, the top electrode was covered by glass and the bottom electrode was covered by a polymer sample. The discharge burned in pure nitrogen or in a mixture of nitrogen and hydrogen. The surface properties of both treated and untreated polymers were characterized by atomic force microscopy, surface free energy (SFE) measurements and x-ray photoelectron spectroscopy. The influence of the treatment time and power input to the discharge on the surface properties of polymers was studied. The ageing of treated samples was also investigated. The treatment of polymers in the homogeneous atmospheric pressure discharge was homogeneous and the polymer surfaces showed a smaller degree of roughness in comparison with the polymer surfaces treated in a filamentary discharge. The SFE of the treated PC obtained at optimum conditions was 53 mJ m{sup -2} and the corresponding contact angle of water was 38{sup 0}. The maximum decrease in the SFE during ageing was about 13%. The analysis of the chemical composition showed an increase in the nitrogen concentration in the surface layer, but almost a zero increase in the oxygen concentration. This result was discussed concerning the measured values of the SFE measurement.

  2. Nanosecond Repetitively Pulsed Discharges in Air at Atmospheric Pressure -- Experiment and Theory of Regime Transitions

    Science.gov (United States)

    Pai, David; Lacoste, Deanna; Laux, Christophe

    2009-10-01

    In atmospheric pressure air preheated from 300 to 1000 K, the Nanosecond Repetitively Pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and inter-electrode gap distance) of each discharge regime. Notably, there is a minimum gap distance for the existence of the glow regime that increases with decreasing gas temperature. A theory is developed to describe the Corona-to-Glow (C-G) and Glow-to-Spark (G-S) transitions for NRP discharges. The C-G transition is shown to depend on the Avalanche-to-Streamer Transition (AST) as well as the electric field strength in the positive column. The G-S transition is due to the thermal ionization instability. The minimum gap distance for the existence of the glow regime can be understood by considering that the applied voltage of the AST must be lower than that of the thermal ionization instability. This is a previously unknown criterion for generating glow discharges, as it does not correspond to the Paschen minimum or to the Meek-Raether criterion.

  3. Atmospheric pressure plasma jets interacting with liquid covered tissue: touching and not-touching the liquid

    Science.gov (United States)

    Norberg, Seth A.; Tian, Wei; Johnsen, Eric; Kushner, Mark J.

    2014-11-01

    In the use of atmospheric pressure plasma jets in biological applications, the plasma-produced charged and neutral species in the plume of the jet often interact with a thin layer of liquid covering the tissue being treated. The plasma-produced reactivity must then penetrate through the liquid layer to reach the tissue. In this computational investigation, a plasma jet created by a single discharge pulse at three different voltages was directed onto a 200 µm water layer covering tissue followed by a 10 s afterglow. The magnitude of the voltage and its pulse length determined if the ionization wave producing the plasma plume reached the surface of the liquid. When the ionization wave touches the surface, significantly more charged species were created in the water layer with H3O+aq, O3-aq, and O2-aq being the dominant terminal species. More aqueous OHaq, H2O2aq, and O3aq were also formed when the plasma plume touches the surface. The single pulse examined here corresponds to a low repetition rate plasma jet where reactive species would be blown out of the volume between pulses and there is not recirculation of flow or turbulence. For these conditions, NxOy species do not accumulate in the volume. As a result, aqueous nitrites, nitrates, and peroxynitrite, and the HNO3aq and HOONOaq, which trace their origin to solvated NxOy, have low densities.

  4. Atmospheric pressure He-air plasma jet: Breakdown process and propagation phenomenon

    Directory of Open Access Journals (Sweden)

    Asma Begum

    2013-06-01

    Full Text Available In this paper He-discharge (plasma jet/bullet in atmospheric pressure air and its progression phenomenon has been studied experimentally using ICCD camera, optical emission spectroscopy (OES and calibrated dielectric probe measurements. The repetitive nanosecond pulse has applied to a plasma pencil to generate discharge in the helium gas channel. The discharge propagation speed was measured from the ICCD images. The axial electric field distribution in the plasma jet is inferred from the optical emission spectroscopic data and from the probe measurement. The correlation between the jet velocities, jet length with the pulse duration is established. It shows that the plasma jet is not isolated from the input voltage along its propagation path. The discharge propagation speed, the electron density and the local and average electric field distribution along the plasma jet axis predicted from the experimental results are in good agreement with the data predicted by numerical simulation of the streamer propagation presented in different literatures. The ionization phenomenon of the discharge predicts the key ionization parameters, such as speed, peak electric field in the front, and electron density. The maximum local electric field measured by OES is 95 kV/cm at 1.3 cm of the jet axis, and average EF measured by probe is 24 kV/cm at the same place of the jet. The average and local electron density estimated are in the order of 1011 cm-3 and it reaches to the maximum of 1012 cm-3.

  5. Measurement of viscosity of gaseous mixtures at atmospheric pressure

    Science.gov (United States)

    Singh, J. J.; Mall, G. H.; Chegini, H.

    1986-01-01

    Coefficients of viscosity of various types of gas mixtures, including simulated natural-gas samples, have been measured at atmospheric pressure and room temperature using a modified capillary tube method. Pressure drops across the straight capillary tube section of a thermal mass flowmeter were measured for small, well-defined, volume flow rates for the test gases and for standard air. In this configuration, the flowmeter provides the volumetric flow rates as well as a well-characterized capillary section for differential pressure measurements across it. The coefficients of viscosity of the test gases were calculated using the reported value of 185.6 micro P for the viscosity of air. The coefficients of viscosity for the test mixtures were also calculated using Wilke's approximation of the Chapman-Enskog (C-E) theory. The experimental and calculated values for binary mixtures are in agreement within the reported accuracy of Wilke's approximation of the C-E theory. However, the agreement for multicomponent mixtures is less satisfactory, possible because of the limitations of Wilkes's approximation of the classical dilute-gas state model.

  6. Cut-off wavenumber of Alfven waves in partially ionized plasmas of the solar atmosphere

    CERN Document Server

    Zaqarashvili, T V; Ballester, J L; Khodachenko, M L

    2012-01-01

    Alfven wave dynamics in partially ionized plasmas of the solar atmosphere shows that there is indeed a cut-off wavenumber, i.e. the Alfven waves with wavenumbers higher than the cut-off value are evanescent. The cut-off wavenumber appears in single-fluid magnetohydrodynamic (MHD) approximation but it is absent in a multi-fluid approach. Up to now, an explanation for the existence of the cut-off wavenumber is still missing. The aim of this paper is to point out the reason for the appearance of a cut-off wavenumber in single-fluid MHD. Beginning with three-fluid equations (with electrons, protons and neutral hydrogen atoms), we performed consecutive approximations until we obtained the usual single-fluid description is obtained. We solved the dispersion relation of linear Alfven waves at each step and sought the approximation responsible of the cut-off wavenumber appearance. We have found that neglecting inertial terms significantly reduces the real part of the Alfven frequency although it never becomes zero. T...

  7. Controlled Microdroplet Transport in an Atmospheric Pressure Microplasma

    CERN Document Server

    Maguire, P D; Kelsey, C P; Bingham, A; Montgomery, E P; Bennet, E D; Potts, H E; Rutherford, D; McDowell, D A; Diver, D A; Mariotti, D

    2015-01-01

    We report the controlled injection of near-isolated micron-sized liquid droplets into a low temperature He-Ne steady-state rf plasma at atmospheric pressure. The H2O droplet stream is constrained within a 2 mm diameter quartz tube. Imaging at the tube exit indicates a log-normal droplet size distribution with an initial count mean diameter of 15 micrometers falling to 13 micrometers with plasma exposure. The radial velocity profile is approximately parabolic indicating near laminar flow conditions with the majority of droplets travelling at >75% of the local gas speed and having a plasma transit time of < 100 microseconds. The maximum gas temperature, determined from nitrogen spectral lines, was below 400 K and the observed droplet size reduction implies additional factors beyond standard evaporation, including charge and surface chemistry effects. The successful demonstration of controlled microdroplet streams opens up possibilities for gas-phase microreactors and remote delivery of active species for pla...

  8. Synthesis of silicon nanocones using rf microplasma at atmospheric pressure

    Science.gov (United States)

    Shirai, H.; Kobayashi, T.; Hasegawa, Y.

    2005-10-01

    We report the synthesis of silicon nanocones using the rf microplasma discharge at atmospheric pressure. The products formed underneath the tube electrode on Fe-coated crystalline silicon were constituted mainly of silicon and silicon oxide despite the use of a methane-argon mixture. Carbon nanotubes and silicon nanowires were also formed around the silicon nanocones. The number density and average size of silicon nanocones increased with the plasma exposure time accompanied by the enlargement of their surface distribution. The growth mechanism of silicon nanocones is discussed in terms of the catalytic growth via diffusion of silicon with nanocrystalline Si particle through FeSix nanoclusters, and enhanced Si oxidation by the plasma heating.

  9. Simulation of nonstationary phenomena in atmospheric-pressure glow discharge

    Science.gov (United States)

    Korolev, Yu. D.; Frants, O. B.; Nekhoroshev, V. O.; Suslov, A. I.; Kas'yanov, V. S.; Shemyakin, I. A.; Bolotov, A. V.

    2016-06-01

    Nonstationary processes in atmospheric-pressure glow discharge manifest themselves in spontaneous transitions from the normal glow discharge into a spark. In the experiments, both so-called completed transitions in which a highly conductive constricted channel arises and incomplete transitions accompanied by the formation of a diffuse channel are observed. A model of the positive column of a discharge in air is elaborated that allows one to interpret specific features of the discharge both in the stationary stage and during its transition into a spark and makes it possible to calculate the characteristic oscillatory current waveforms for completed transitions into a spark and aperiodic ones for incomplete transitions. The calculated parameters of the positive column in the glow discharge mode agree well with experiment. Data on the densities of the most abundant species generated in the discharge (such as atomic oxygen, metastable nitrogen molecules, ozone, nitrogen oxides, and negative oxygen ions) are presented.

  10. Atmospheric pressure plasmas for aerosols processes in materials and environment

    Science.gov (United States)

    Borra, J. P.; Jidenko, N.; Bourgeois, E.

    2009-08-01

    The paper highlights applications of some atmospheric pressure plasmas (dc-corona, streamer and spark and ac-Dielectric Barrier Discharges) to aerosol processes for Materials and Environment (filtration, diagnostics). The production of vapor i.e. condensable gaseous species, leads to nano-sized particles by physical and chemical routes of nucleation in these AP plasmas: (i) when dc streamer and spark filamentary discharges as well as ac filamentary dielectric barrier discharges interact with metal or dielectric surfaces, and (ii) when discharges induce reactions with gaseous precursors in volume. It is shown how composition, size and structure of primary nano-particles are related to plasma parameters (energy, number per unit surface and time and thermal gradients). Then the growth by coagulation controls the final size of agglomerates versus plasma parameters and transit time in and after the plasma. Charging and electro-thermal collection are depicted to account for the related potential applications of controlled kinematics of charged aerosol.

  11. Polymerization of acrylic acid using atmospheric pressure DBD plasma jet

    Science.gov (United States)

    Bashir, M.; Bashir, S.

    2016-08-01

    In this paper polymerization of acrylic acid was performed using non thermal atmospheric pressure plasma jet technology. The goal of this study is to deposit organic functional coatings for biomedical applications using a low cost and rapid growth rate plasma jet technique. The monomer solution of acrylic acid was vaporized and then fed into the argon plasma for coating. The discharge was powered using a laboratory made power supply operating with sinusoidal voltage signals at a frequency of 10 kHz. The optical emission spectra were collected in order to get insight into the plasma chemistry during deposition process. The coatings were characterized using Fourier transform infrared spectroscopy, atomic force microscopy and growth rates analysis. A high retention of carboxylic functional groups of the monomer was observed at the surface deposited using this low power technique.

  12. Destruction mechanisms for formaldehyde in atmospheric pressure low temperature plasmas

    Science.gov (United States)

    Storch, Daniel G.; Kushner, Mark J.

    1993-01-01

    Formaldehyde (CH2O) is a common pollutant of indoor air in residences and commercial buildings. The removal of CH2O from atmospheric pressure gas streams (N2/O2/H2O/CH2O) using plasmas generated by a dielectric barrier discharge has been theoretically investigated with the goal of cleansing indoor air. The model consists of a full accounting of the electron, ion, and neutral chemical kinetics in contaminated humid air. We find that the destruction of CH2O results dominantly from chemical attack by OH and O radicals, with the primary end products being CO and H2O. The predicted destruction rates for CH2O are typically 2-8 ppm/(mJ cm-3) (parts per million of CH2O in air/energy deposition). The elimination of the unwanted byproducts, CO and NO, using a platinum catalyst is discussed.

  13. Investigation of atmospheric pressure streamer discharges for methane reforming

    Science.gov (United States)

    Pachuilo, M. V.; Stefani, F.; Rosocha, L. A.; Raja, L. L.

    2015-09-01

    Hydrogen has several valuable uses in transportation: it can lower the coefficient of variation under lean burn conditions in internal combustion engines, and it is essential for the operation of fuel cells. Currently hydrogen can only be produced efficiently by reducing fossil fuels in large facilities. However, on-board production is desirable to reduce the infrastructure associated with storing and distributing hydrogen. Plasma dry reforming processes are viable candidates for onboard production. Our current work investigates the fundamental behavior of a single streamer discharge in methane. The electron temperature, and active species generation are determined through time resolved spectroscopy. This work will hopefully accelerate the development of non-thermal plasma based devices that include: dielectric barrier discharges, pulsed corona discharges, and other atmospheric-pressure plasma devices.

  14. Ultrafast laser-collision-induced fluorescence in atmospheric pressure plasma

    Science.gov (United States)

    Barnat, E. V.; Fierro, A.

    2017-04-01

    The implementation and demonstration of laser-collision-induced fluorescence (LCIF) generated in atmospheric pressure helium environments is presented in this communication. As collision times are observed to be fast (~10 ns), ultrashort pulse laser excitation (<100 fs) of the 23S to 33P (388.9 nm) is utilized to initiate the LCIF process. Both neutral-induced and electron-induced components of the LCIF are observed in the helium afterglow plasma as the reduced electric field (E/N) is tuned from  <0.1 Td to over 5 Td. Under the discharge conditions presented in this study (640 Torr He), the lower limit of electron density detection is ~1012 e cm‑3. The spatial profiles of the 23S helium metastable and electrons are presented as functions of E/N to demonstrate the spatial resolving capabilities of the LCIF method.

  15. Diagnostics of atmospheric pressure capillary DBD oxygen plasma jet

    CERN Document Server

    Roy, N C; Pramanik, B K

    2015-01-01

    Atmospheric pressure capillary dielectric barrier oxygen discharge plasma jet is developed to generate non-thermal plasma using unipolar positive pulse power supply. Both optical and electrical techniques are used to investigate the characteristics of the produced plasma as function of applied voltage and gas flow rate. Analytical results obtained from the optical emission spectroscopic data reveal the gas temperature, rotational temperature, excitation temperature and electron density. Gas temperature and rotational temperature are found to decrease with increasing oxygen flow rate but increase linearly with applied voltage. It is exposed that the electron density is boosting up with enhanced applied voltage and oxygen flow rate, while the electron excitation temperature is reducing with rising oxygen flow rate. Electrical characterization demonstrates that the discharge frequency is falling with flow rate but increasing with voltage. The produced plasma is applied preliminarily to study the inactivation yie...

  16. Sterilization of Turmeric by Atmospheric Pressure Dielectric Barrier Discharge Plasma

    Science.gov (United States)

    Setareh, Salarieh; Davoud, Dorranian

    2013-11-01

    In this study atmospheric pressure dielectric barrier discharge (DBD) plasma has been employed for sterilizing dry turmeric powders. A 6 kV, 6 kHz frequency generator was used to generate plasma with Ar, Ar/O2, He, and He/O2 gases between the 5 mm gap of two quartz covered electrodes. The complete sterilization time of samples due to plasma treatment was measured. The most important contaminant of turmeric is bacillus subtilis. The results show that the shortest sterilization time of 15 min is achieved by exposing the samples to Ar/O2 plasma. Survival curves of samples are exponential functions of time and the addition of oxygen to plasma leads to a significant increase of the absolute value of time constant of the curves. Magnitudes of protein and DNA in treated samples were increased to a similar value for all samples. Taste, color, and solubility of samples were not changed after the plasma treatment.

  17. Atmospheric pressure dielectric barrier discharges for sterilization and surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chin, O. H.; Lai, C. K.; Choo, C. Y.; Wong, C. S.; Nor, R. M. [Plasma Technology Research Centre, Physics Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Thong, K. L. [Microbiology Division, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-04-24

    Atmospheric pressure non-thermal dielectric barrier discharges can be generated in different configurations for different applications. For sterilization, a parallel-plate electrode configuration with glass dielectric that discharges in air was used. Gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and Gram-positive bacteria (Bacillus cereus) were successfully inactivated using sinusoidal high voltage of ∼15 kVp-p at 8.5 kHz. In the surface treatment, a hemisphere and disc electrode arrangement that allowed a plasma jet to be extruded under controlled nitrogen gas flow (at 9.2 kHz, 20 kVp-p) was applied to enhance the wettability of PET (Mylar) film.

  18. Plasma reactor for deposition of carbon nanowalls at atmospheric pressure

    Science.gov (United States)

    Dimitrov, Zh; Mitev, D.; Kiss'ovski, Zh

    2016-10-01

    In this study a novel plasma reactor for deposition of carbon nanowalls at atmospheric pressure is constructed and characterized. A low power microwave discharge is used as a plasma source and working gas of Ar/H2/CH4 gas mixture. The substrate is heated by plasma flame and its temperature is in the range 600-700 C. The chemical composition of the plasma and the gas mixture effect on the concentration of the various particles in the plasma is investigated by optical emission spectroscopy. The emission spectrum of the plasma jet in Ar/H2/CH4 mixture shows the presence of carbon (Swan band) and an intensive line of CH (388 nm), which are necessary species for deposition of carbon nanostructures. Additional voltage in the range from -20 V to -100 V is applied in order to ensure the vertical growth of graphene walls. Results of deposited carbon nanostructures on metal substrate are shown.

  19. Atmospheric ionization by high-fluence, hard spectrum solar proton events and their probable appearance in the ice core archive

    CERN Document Server

    Melott, Adrian L; Laird, Claude M; Neuenswander, Ben; Atri, Dimitra

    2016-01-01

    Solar energetic particles ionize the atmosphere, leading to production of nitrogen oxides. It has been suggested that some such events are visible as layers of nitrate in ice cores, yielding archives of energetic, high fluence solar proton events (SPEs). There has been controversy, due to slowness of transport for these species down from the upper stratosphere; past numerical simulations based on an analytic calculation have shown very little ionization below the mid stratosphere. These simulations suffer from deficiencies: they consider only soft SPEs and narrow energy ranges; spectral fits are poorly chosen; with few exceptions secondary particles in air showers are ignored. Using improved simulations that follow development of the proton-induced air shower, we find consistency with recent experiments showing substantial excess ionization down to 5 km. We compute nitrate available from the 23 February 1956 SPE, which had a high fluence, hard spectrum, and well-resolved associated nitrate peak in a Greenland...

  20. Sterilization of Surfaces with a Handheld Atmospheric Pressure Plasma

    Science.gov (United States)

    Hicks, Robert; Habib, Sara; Chan, Wai; Gonzalez, Eleazar; Tijerina, A.; Sloan, Mark

    2009-10-01

    Low temperature, atmospheric pressure plasmas have shown great promise for decontaminating the surfaces of materials and equipment. In this study, an atmospheric pressure, oxygen and argon plasma was investigated for the destruction of viruses, bacteria, and spores. The plasma was operated at an argon flow rate of 30 L/min, an oxygen flow rate of 20 mL/min, a power density of 101.0 W/cm^3 (beam area = 5.1 cm^2), and at a distance from the surface of 7.1 mm. An average 6log10 reduction of viable spores was obtained after only 45 seconds of exposure to the reactive gas. By contrast, it takes more than 35 minutes at 121^oC to sterilize anthrax in an autoclave. The plasma properties were investigated by numerical modeling and chemical titration with nitric oxide. The numerical model included a detailed reaction mechanism for the discharge as well as for the afterglow. It was predicted that at a delivered power density of 29.3 W/cm^3, 30 L/min argon, and 0.01 volume% O2, the plasma generated 1.9 x 10^14 cm-3 O atoms, 1.6 x 10^12 cm-3 ozone, 9.3 x 10^13 cm-3 O2(^1δg), and 2.9 x 10^12 cm-3 O2(^1σ^+g) at 1 cm downstream of the source. The O atom density measured by chemical titration with NO was 6.0 x 10^14 cm-3 at the same conditions. It is believe that the oxygen atoms and the O2(^1δg) metastables were responsible for killing the anthrax and other microorganisms.

  1. Atmospheric Pressure Effects on Cryogenic Storage Tank Boil-Off

    Science.gov (United States)

    Sass, J. P.; Frontier, C. R.

    2007-01-01

    The Cryogenics Test Laboratory (CTL) at the Kennedy Space Center (KSC) routinely utilizes cryostat test hardware to evaluate comparative and absolute thermal conductivities of a wide array of insulation systems. The test method is based on measurement of the flow rate of gas evolved due to evaporative boil-off of a cryogenic liquid. The gas flow rate typically stabilizes after a period of a couple of hours to a couple of days, depending upon the test setup. The stable flow rate value is then used to calculate the thermal conductivity for the insulation system being tested. The latest set of identical cryostats, 1,000-L spherical tanks, exhibited different behavior. On a macro level, the flow rate did stabilize after a couple of days; however the stable flow rate was oscillatory with peak to peak amplitude of up to 25 percent of the nominal value. The period of the oscillation was consistently 12 hours. The source of the oscillation has been traced to variations in atmospheric pressure due to atmospheric tides similar to oceanic tides. This paper will present analysis of this phenomenon, including a calculation that explains why other cryostats are not affected by it.

  2. Effects of atmospheric pressure fluctuations on hill-side coal fires and surface anomalies

    Institute of Scientific and Technical Information of China (English)

    Song Zeyang; Zhu Hongqing; Xu Jiyuan; Qin Xiaofeng

    2015-01-01

    This paper presents numerical studies on the effects of atmospheric pressure fluctuations on hill-side coal fires and their surface anomalies. Based on the single-particle reaction–diffusion model, a formula to estimate oxygen consumption rate at high temperature controlled by oxygen transport is proposed. Daily fluctuant atmospheric pressure was imposed on boundaries, including the abandoned gallery and cracks. Simulated results show that the effects of atmospheric pressure fluctuations on coal fires and surface anomalies depend on two factors: the fluctuant amplitude and the pressure difference between inlet(s) and outlet(s) of the air ventilation system. If the pressure difference is close to the fluctuant amplitude, atmospheric pressure fluctuations greatly enhance gas flow motion and tempera-tures of the combustion zone and outtake(s). If the pressure difference is much larger than the fluctuant amplitude, atmospheric pressure fluctuations exert no impact on underground coal fires and surface anomalies.

  3. Trends in surface engineering of biomaterials: atmospheric pressure plasma deposition of coatings for biomedical applications

    Science.gov (United States)

    da Ponte, G.; Sardella, E.; Fanelli, F.; D'Agostino, R.; Favia, P.

    2011-11-01

    Cold plasma processes for surface engineering of biomaterials and biomedical devices are traditionally performed at low pressure; more and more, though, surface modification plasma processes at atmospheric pressure are also gaining popularity. This short review is aimed to list briefly atmospheric pressure plasma processes reported, in the last decade, for adapting the surface of materials to the best interactions with cells, bacteria and biomolecules.

  4. Selective-Reagent-Ionization Mass Spectrometry: New Prospects for Atmospheric Research

    Science.gov (United States)

    Sulzer, Philipp; Jordan, Alfons; Hartungen, Eugen; Hanel, Gernot; Jürschik, Simone; Herbig, Jens; Märk, Lukas; Märk, Tilmann D.

    2014-05-01

    Proton-Transfer-Reaction Mass Spectrometry (PTR-MS), which was introduced to the scientific community in the 1990's, has quickly evolved into a well-established technology for atmospheric research and environmental chemistry [1]. Advantages of PTR-MS are i) high sensitivities of several hundred cps/ppbv, ii) detection limits at or below the pptv level, iii) direct injection sampling (i.e. no sample preparation), iv) response times in the 100 ms regime and v) online quantification. However, one drawback is a somehow limited selectivity, as in case of quadrupole mass filter based instruments only information about nominal m/z are available. In Time-Of-Flight (TOF) mass analyzer based instruments selectivity is drastically increased by a high mass resolution of up to 8000 m/Δm, but e.g. isomers still cannot be separated. In 2009 we introduced an advanced version of PTR-MS, which permits switching the reagent ions from H3O+ to NO+ and O2+, respectively [2]. This novel type of instrumentation was called Selective-Reagent-Ionization Mass Spectrometry (SRI-MS) and has been successfully used to separate isomers, e.g. the biogenic compounds isoprene and 2-methyl-3-buten-2-ol as shown by Karl et al. [3]. Switching the reagent ions dramatically increases selectivity and thus applicability of SRI-MS in atmospheric research. Here we report on the latest results utilizing an even more advanced embodiment of SRI-MS enabling the use of the additional reagent ions Kr+ and Xe+ [4]. With this technology important atmospheric compounds, such as CO2, CO, CH4, O2, etc. can be quantified and selectivity is increased even further. We present comparison data between diesel and gasoline car exhaust gases and quantitative data on indoor air for these compounds, which are not detectable with classical PTR-MS. Additionally, we show very recent examples of isomers which cannot be separated with PTR-MS but can clearly be distinguished with SRI-MS. Finally, we give an overview of ongoing SRI

  5. Some new aspects of the transient ionization layer of comet Siding Spring origin in the Martian upper atmosphere

    Science.gov (United States)

    Venkateswara Rao, N.; ManasaMohana, P.; Jayaraman, A.; Rao, S. V. B.

    2016-04-01

    The close encounter of comet Siding Spring with Mars resulted in the formation of a dense transient ionization layer in the Martian upper atmosphere at altitudes between 80 and 120 km. Instruments on three spacecraft orbiting Mars detected the presence of this layer, as reported in previous publications. In this study, we reanalyzed the ionograms of the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) instrument on Mars Express to get further insight about the recurrence of the layer. For this purpose, data from three periapsis passes of MARSIS that took place 5 h, 12 h, and 19 h after peak dust deposition are used. We found that the transient ionization layer was sustained at least for 19 h on the nightside and 12 h on the dayside. While the peak density of the layer on the nightside gradually decreases from orbit to orbit, it does not change much on the dayside. Some ionograms in all three orbits show two transient ionization layers that are separated by ~60 km in apparent altitude. These double layers occur preferentially in regions of strong vertical magnetic fields. The bottom layer of the double structure is probably an oblique echo due to reflections from ionization bulges (formed in regions of vertical magnetic fields) at altitudes of the transient ionization layer. Horizontal bifurcation of the original layer is considered as another plausible mechanism for explaining the double-layer structure.

  6. Influence of excitation frequency on helium metastable density in atmospheric pressure DBD

    Science.gov (United States)

    Boisvert, J.-S.; Sadeghi, N.; Margot, J.; Massines, F.

    2016-09-01

    Diffuse dielectric barrier discharges in atmospheric-pressure helium was sustained over a wide range of excitation frequencies (50 kHz to 15 MHz). Emission spectroscopy and resonant absorption and laser absorption on He(23S) metastable atoms have been used to characterize different plasma regimes, which with increasing frequency changes from a low pressure glow discharge (APGD) to Townsend-like mode (TL) and finally to a continuously sustained plasma. This later can be in Ω mode (with uniform E-field) or RF- α mode (with sheath formation). Depending on applied power, the time-averaged He(23S) density remains below 3 1016 m-3 in TL and Ω modes, can reach 7 1016 m-3 in APGD and RF- α modes and up to 4 1017 m-3 in a combination of APGD and RF- α modes (Hybrid). Time-resolved He(23S) densities show an overshoot on the ignition phase, which in RF- α mode can be attributed to a secondary source of ionization involving metastable atoms.

  7. Decontamination of Chemical/Biological Warfare (CBW) Agents Using an Atmospheric Pressure Plasma Jet (APPJ)

    Science.gov (United States)

    Herrmann, Hans W.

    1998-11-01

    The atmospheric pressure plasma jet (APPJ) is a non-thermal, high pressure, uniform glow discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g. He/O_2/H_2O) which flows between an outer, grounded, cylindrical electrode and an inner, coaxial electrode powered at 13.56 MHz RF. While passing through the plasma, the feedgas becomes excited, dissociated or ionized by electron impact. Once the gas exits the discharge volume, ions and electrons are rapidly lost by recombination, but the fast-flowing effluent still contains metastables (e.g. O2*, He*) and radicals (e.g. O, OH). These reactive species have been shown to be effective neutralizers of surrogates for anthrax spores, mustard blister agent and VX nerve gas. Unlike conventional, wet decontamination methods, the plasma effluent does not cause corrosion of most surfaces and does not damage wiring, electronics, nor most plastics. This makes it highly suitable for decontamination of high value sensitive equipment such as is found in vehicle interiors (i.e. tanks, planes...) for which there is currently no good decontamination technique. Furthermore, the reactive species rapidly degrade into harmless products leaving no lingering residue or harmful byproducts. Physics of the APPJ will be discussed and results of surface decontamination experiments using simulant and actual CBW agents will be presented.

  8. Characterization of aromaticity in analogues of titan's atmospheric aerosols with two-step laser desorption ionization mass spectrometry

    CERN Document Server

    Mahjoub, Ahmed; Carrasco, Nathalie; Benilan, Yves; Cernogora, Guy; Szopa, Cyril; Gazeau, Marie-Claire

    2016-01-01

    The role of polycyclic aromatic hydrocarbons (PAH) and Nitrogen containing PAH (PANH) as intermediates of aerosol production in the atmosphere of Titan has been a subject of controversy for a long time. An analysis of the atmospheric emission band observed by the Visible and Infrared Mapping Spectrometer (VIMS) at 3.28 micrometer suggests the presence of neutral polycyclic aromatic species in the upper atmosphere of Titan. These molecules are seen as the counter part of negative and positive aromatics ions suspected by the Plasma Spectrometer onboard the Cassini spacecraft, but the low resolution of the instrument hinders any molecular speciation. In this work we investigate the specific aromatic content of Titan's atmospheric aerosols through laboratory simulations. We report here the selective detection of aromatic compounds in tholins, Titan's aerosol analogues, produced with a capacitively coupled plasma in a N2:CH4 95:5 gas mixture. For this purpose, Two-Step Laser Desorption Ionization Time-of-Flight Ma...

  9. Chromospheric anemone jets and magnetic reconnection in partially ionized solar atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Singh, K. A. P.; Shibata, K. [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Nishizuka, N. [Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency, 3-1-1, Yoshinodai, Chuo-ku, Sagamihara-shi, Kanagawa (Japan); Isobe, H. [Unit for Synergetic Studies for Space, Kyoto University, Yamashina, Kyoto 607-8471 (Japan)

    2011-11-15

    The solar optical telescope onboard Hinode with temporal resolution of less than 5 s and spatial resolution of 150 km has observed the lower solar atmosphere with an unprecedented detail. This has led to many important findings, one of them is the discovery of chromospheric anemone jets in the solar chromosphere. The chromospheric anemone jets are ubiquitous in solar chromosphere and statistical studies show that the typical length, life time and energy of the chromospheric anemone jets are much smaller than the coronal events (e.g., jets/flares/CMEs). Among various observational parameters, the apparent length and maximum velocity shows good correlation. The velocity of chromospheric anemone jets is comparable to the local Alfven speed in the lower solar chromosphere. Since the discovery of chromospheric anemone jets by Hinode, several evidences of magnetic reconnection in chromospheric anemone jets have been found and these observations are summarized in this paper. These observations clearly suggest that reconnection occurs quite rapidly as well as intermittently in the solar chromosphere. In the solar corona ({lambda}{sub i} > {delta}{sub SP}), anomalous resistivity arises due to various collisionless processes. Previous MHD simulations show that reconnection becomes fast as well as strongly time-dependent due to anomalous resistivity. Such processes would not arise in the solar chromosphere which is fully collisional and partially-ionized. So, it is unclear how the rapid and strongly time-dependent reconnection would occur in the solar chromosphere. It is quite likely that the Hall and ambipolar diffusion are present in the solar chromosphere and they could play an important role in driving such rapid, strongly time-dependent reconnection in the solar chromosphere.

  10. Electron impact ionization and attachment cross sections for H2S. [in comet and planetary atmospheres

    Science.gov (United States)

    Rao, M. V. V. S.; Srivastava, S. K.

    1993-01-01

    Experiments were performed to measure, by electron impact, appearance potentials and the cross sections for ionization, dissociative ionization, and electron attachment for H2S. Results are presented, and discussed individually, for both positive and negative ions. A schematic diagram of the experimental setup is included.

  11. PRESSURE COMPENSATION METHOD OF UNDERWATER HYDRAULIC SYSTEM WITH HYDRAULIC POWER UNIT BEING UNDER ATMOSPHERIC CIRCUMSTANCE AND PRESSURE COMPENSATED VALVE

    Institute of Scientific and Technical Information of China (English)

    Wang Qingfeng; Li Yanmin; Zhong Tianyu; Xu Guohua

    2005-01-01

    Based on the analysis of the-state-of-the-art of pressure compensation of underwater hydraulic systems (UHSs), a new method of pressure compensation of UHSs, whose hydraulic power unit is in the atmospheric circumstance, is proposed. And a pilot-operated relief valve with pressure compensation is realized. The pressure compensation precision is guaranteed by direct detection. Its dynamic performance and stability are improved by a dynamic feedback. Theoretical study, simulation and experiment show that the pilot-operated relief valve with pressure compensation has a fine property of tracking underwater ambient pressure and meet the requirement of underwater ambient pressure compensation.

  12. High Pressure Atmospheric Sampling Inlet System for Venus or the Gas Giants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a miniaturized high pressure atmospheric sampling inlet system for sample acquisition in extreme planetary environments,...

  13. Ionization Parameter as a Diagnostic of Radiation and Wind Pressures in H II Regions and Starburst Galaxies

    CERN Document Server

    Yeh, Sherry C C

    2012-01-01

    The ionization parameter U is potentially useful for measuring radiation pressure feedback from massive star clusters, as it reflects the radiation-to-gas-pressure ratio and is readily derived from mid-infrared line ratios. We consider several effects which determine the apparent value of U in HII regions and galaxies. An upper limit is set by the compression of gas by radiation pressure. The pressure from stellar winds and the presence of neutral clumps both reduce U for a given radiation intensity. The most intensely irradiated regions are selectively dimmed by internal dust absorption of ionizing photons, inducing observational bias on galactic scales. We explore these effects analytically and numerically, and use them to interpret previous observational results. We find that radiation confinement sets the upper limit log_10 U = -1 seen in individual regions. Unresolved starbursts display a maximum value of ~ -2.3. While lower, this is also consistent with a large portion of their HII regions being radiati...

  14. Study of short atmospheric pressure dc glow microdischarge in air

    Science.gov (United States)

    Kudryavtsev, Anatoly; Bogdanov, Eugene; Chirtsov, Alexander; Emelin, Sergey

    2011-10-01

    The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen and oxygen atoms; ozone molecule; and different nitrogen and oxygen ions with different plasmochemical reactions between them. Simulations predicted the main regions of the dc glow discharges including cathode and anode sheath and plasma of negative glow, Faraday dark space and transition region. Gas heating plays an important role in shaping the discharge profiles. The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen

  15. Influence of geomagnetic activity and atmospheric pressure on human arterial pressure during the solar cycle 24

    Science.gov (United States)

    Azcárate, T.; Mendoza, B.; Levi, J. R.

    2016-11-01

    We performed a study of the systolic (SBP) and diastolic (DBP) arterial blood pressure behavior under natural variables such as the atmospheric pressure (AtmP) and the horizontal geomagnetic field component (H). We worked with a sample of 304 healthy normotense volunteers, 152 men and 152 women, with ages between 18 and 84 years in Mexico City during the period 2008-2014, corresponding to the minimum, ascending and maximum phases of the solar cycle 24. The data was divided by gender, age and day/night cycle. We studied the time series using three methods: Correlations, bivariate and superposed epochs (within a window of three days around the day of occurrence of a geomagnetic storm) analysis, between the SBP and DBP and the natural variables (AtmP and H). The correlation analysis indicated correlation between the SBP and DBP and AtmP and H, being the largest during the night. Furthermore, the correlation and bivariate analysis showed that the largest correlations are between the SBP and DBP and the AtmP. The superposed epoch analysis found that the largest number of significant SBP and DBP changes occurred for women. Finally, the blood pressure changes are larger during the solar minimum and ascending solar cycle phases than during the solar maximum; the storms of the minimum were more intense than those of the maximum and this could be the reason of behavior of the blood pressure changes along the solar cycle.

  16. The effects of atmospheric pressure on infrared reflectance spectra of Martian analogs

    Science.gov (United States)

    Bishop, Janice L.; Pieters, Carle M.; Pratt, Stephen F.; Patterson, William

    1993-01-01

    The use of terrestrial samples as analogs of Mars soils are complicated by the Martian atmosphere. Spectral features due to the Martian atmosphere can be removed from telescopic spectra of Mars and ISM spectra of Mars, but this does not account for any spectral differences resulting from atmospheric pressure or any interactions between the atmosphere and the surface. We are examining the effects of atmospheric pressure on reflectance spectra of powdered samples in the laboratory. Contrary to a previous experiment with granite, no significant changes in albedo or the Christiansen feature were observed from 1 bar pressure down to a pressure of 8 micrometers Hg. However, reducing the atmospheric pressure does have a pronounced affect on the hydration features, even for samples retained in a dry environment for years.

  17. Blow-out limits of nonpremixed turbulent jet flames in a cross flow at atmospheric and sub-atmospheric pressures

    KAUST Repository

    Wang, Qiang

    2015-07-22

    The blow-out limits of nonpremixed turbulent jet flames in cross flows were studied, especially concerning the effect of ambient pressure, by conducting experiments at atmospheric and sub-atmospheric pressures. The combined effects of air flow and pressure were investigated by a series of experiments conducted in an especially built wind tunnel in Lhasa, a city on the Tibetan plateau where the altitude is 3650 m and the atmospheric pressure condition is naturally low (64 kPa). These results were compared with results obtained from a wind tunnel at standard atmospheric pressure (100 kPa) in Hefei city (altitude 50 m). The size of the fuel nozzles used in the experiments ranged from 3 to 8 mm in diameter and propane was used as the fuel. It was found that the blow-out limit of the air speed of the cross flow first increased (“cross flow dominant” regime) and then decreased (“fuel jet dominant” regime) as the fuel jet velocity increased in both pressures; however, the blow-out limit of the air speed of the cross flow was much lower at sub-atmospheric pressure than that at standard atmospheric pressure whereas the domain of the blow-out limit curve (in a plot of the air speed of the cross flow versus the fuel jet velocity) shrank as the pressure decreased. A theoretical model was developed to characterize the blow-out limit of nonpremixed jet flames in a cross flow based on a Damköhler number, defined as the ratio between the mixing time and the characteristic reaction time. A satisfactory correlation was obtained at relative strong cross flow conditions (“cross flow dominant” regime) that included the effects of the air speed of the cross flow, fuel jet velocity, nozzle diameter and pressure.

  18. Ambient ionization mass spectrometry: A tutorial

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Min-Zong; Cheng, Sy-Chi; Cho, Yi-Tzu [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Shiea, Jentaie, E-mail: jetea@fac.nsysu.edu.tw [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Cancer Center, Kaohsiung Medical University, Kaohsiung, Taiwan (China)

    2011-09-19

    Highlights: {yields} Ambient ionization technique allows the direct analysis of sample surfaces with little or no sample pretreatment. {yields} We sort ambient ionization techniques into three main analytical strategies, direct ionization, direct desorption/ionization, and two-step ionization. {yields} The underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques are described and compared. - Abstract: Ambient ionization is a set of mass spectrometric ionization techniques performed under ambient conditions that allows the direct analysis of sample surfaces with little or no sample pretreatment. Using combinations of different types of sample introduction systems and ionization methods, several novel techniques have been developed over the last few years with many applications (e.g., food safety screening; detection of pharmaceuticals and drug abuse; monitoring of environmental pollutants; detection of explosives for antiterrorism and forensics; characterization of biological compounds for proteomics and metabolomics; molecular imaging analysis; and monitoring chemical and biochemical reactions). Electrospray ionization and atmospheric pressure chemical ionization are the two main ionization principles most commonly used in ambient ionization mass spectrometry. This tutorial paper provides a review of the publications related to ambient ionization techniques. We describe and compare the underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques.

  19. Power modulation in an atmospheric pressure plasma jet

    Science.gov (United States)

    Kelly, S.; Turner, M. M.

    2014-12-01

    Power modulation in an atmospheric pressure capacitively coupled radio frequency plasma jet is investigated by numerical modelling. The dynamics of successively pulsing the applied power on and off for a helium-oxygen (˜0.6%) plasma is investigated. The impact of power pulsing on reactive species generation and gas heating is discussed with control opportunities emphasized. Power modulation shows linear control for reactive species and heat flux delivery to a treatment surface above an initial phase of power growth. Power is found to be coupled primarily to the electrons with electron loss rates determining the interference between successive power modulation phases. Plasma decay in the power off phase is characterized by a large initial electron loss in the first 0.5 µs followed by ambipolar decay dominated by ions of opposite charge. Power modulation effects on gas heating show a larger range of temperature control when compared with convection cooling. Reactive oxygen species reaching a treatment surface are shown to typically vary over an order of magnitude for variation in the duty cycle.

  20. FAST TRACK COMMUNICATION: Small surface wave discharge at atmospheric pressure

    Science.gov (United States)

    Kiss'ovski, Zh; Kolev, M.; Ivanov, A.; Lishev, St.; Koleva, I.

    2009-09-01

    A small surface wave driven source produces plasma at atmospheric pressure. Microwave power at frequency 2.45 GHz is coupled with the source and a discharge is ignited at power levels below 10 W. The coaxial exciter of the surface waves has a length of 10 mm because its dielectric is a high permittivity discharge tube. The plasma source operates as a plasma jet in the case of plasma columns longer than the tube length. The source maintains stable plasma columns over a wide range of neutral gas flow and applied power in continuous and pulse regimes. An additional advantage of this source is the discharge self-ignition. An electron temperature of Te ~ 1.9 eV and a density of ne ~ 3.9 × 1014 cm-3 are estimated by the probe diagnostics method. The emission spectra in the wavelength range 200-1000 nm under different experimental conditions are analysed and they prove the applicability of the source for analytical spectroscopy. The dependences of column length, reflected power and plasma parameters on the gas flow and the input power are discussed.

  1. On the mechanism of atmospheric pressure plasma plume

    Science.gov (United States)

    Chen, Longwei; Zhao, Peng; Shu, Xingsheng; Shen, Jie; Meng, Yuedong

    2010-08-01

    For the purpose of unveiling the parameters influencing the length of atmospheric pressure plasma plume, an over 165 cm long argon plasma plume is generated in the quartz tube attached to the nozzle of the device. Dependence of plasma length on discharge parameters such as applied voltage, frequency of power supply, and argon gas flow rate was investigated. Experimental results indicated that (a) the applied voltage plays crucial roles on plasma plume length, that is, the plasma plume length exponentially increases with the applied voltage, (b) the plasma plume length increases with frequency, more obviously when the applied voltage is higher, (c) the plasma plume length increases with argon gas flow rate, reaches its maximum at critical value of the gas flow rate, and then decreases again. An evaluation of the physical phenomena involved in streamer propagation, particularly of the energy balance, was investigated. The numerical results were qualitatively consistent with previous experimental results by successfully indicating the high velocity of "plasma bullet" and providing physical mechanism of energy balance determining streamer length.

  2. Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hao; ZHU Fengsen; TU Xin; BO Zheng; CEN Kefa; LI Xiaodong

    2016-01-01

    In this work,a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions.The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals,high speed photography,and optical emission spectroscopic diagnostics.Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g.,10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone,in this RGA system,a lower gas flow rate (e.g.,2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions.Two different motion patterns can be clearly observed in the N2 and air RGA plasmas.The time-resolved arc voltage signals show that three different arc dynamic modes,the arc restrike mode,takeover mode,and combined modes,can be clearly identified in the RGA plasmas.The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate.

  3. Atmospheric pressure plasma assisted calcination of composite submicron fibers

    Science.gov (United States)

    Medvecká, Veronika; Kováčik, Dušan; Tučeková, Zlata; Zahoranová, Anna; Černák, Mirko

    2016-08-01

    The plasma assisted calcination of composite organic/inorganic submicron fibers for the preparation of inorganic fibers in submicron scale was studied. Aluminium butoxide/polyvinylpyrrolidone fibers prepared by electrospinning were treated using low-temperature plasma generated by special type of dielectric barrier discharge, so called diffuse coplanar surface barrier discharge (DCSBD) at atmospheric pressure in ambient air, synthetic air, oxygen and nitrogen. Effect of plasma treatment on base polymer removal was investigated by using Attenuated total reflectance - Fourier transform infrared (ATR-FTIR) spectroscopy. Influence of working gas on the base polymer reduction was studied by energy-dispersive X-ray spectroscopy (EDX) and CHNS elemental analysis. Changes in fibers morphology were observed by scanning electron microscopy (SEM). High efficiency of organic template removal without any degradation of fibers was observed after plasma treatment in ambient air. Due to the low-temperature approach and short exposure time, the plasma assisted calcination is a promising alternative to the conventional thermal calcination. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  4. Atmospheric Pressure Plasma Jet for Chem/Bio Warfare Decontamination

    Science.gov (United States)

    Herrmann, Hans W.; Henins, Ivars; Park, Jaeyoung; Selwyn, Gary S.

    1999-11-01

    Atmospheric Pressure Plasma Jet (APPJ) technology may provide a much needed method of CBW decontamination which, unlike traditional decon methods, is dry and nondestructive to sensitive equipment and materials. The APPJ discharge uses a high-flow feedgas consisting primarily of an inert carrier gas, such as He, and a small amount of a reactive additive, such as O2, which flows between capacitively-coupled electrodes powered at 13.56 MHz. The plasma generates highly reactive metastable and atomic species of oxygen which are then directed onto a contaminated surface. The reactive effluent of the APPJ has been shown to effectively neutralize VX nerve agent as well as simulants for anthrax and mustard blister agent. Research efforts are now being directed towards reducing He consumption and increasing the allowable stand-off distance. Recent results demonstrate that by replacing the O2 reactive additive with CO2, ozone formation is greatly reduced. This has the result of extending the lifetime of atomic oxygen by an order of magnitude or more. A recirculating APP Decon Chamber which combines heat, vacuum, forced convection and reactivity is currently being developed for enhanced decontamination of sensitive equipment. Several techniques are also being evaluated for use in an APP Decon Jet for decontamination of items which cannot be placed inside a chamber.

  5. In situ impedance measurement of microwave atmospheric pressure plasma

    Science.gov (United States)

    Lee, S. T.; Nam, W. J.; Lee, J. K.; Yun, G. S.

    2017-04-01

    The impedance of atmospheric pressure argon plasma jets driven by microwave frequency is determined in situ by a novel ‘two frequency method’. In the conventional method of reflection coefficient ({{S}}11) measurement, the frequency of the driving microwave power is scanned, which inevitably affects the plasma characters and leads to uncertainty in the estimated plasma impedance. In our proposed method, the frequency-scanning signal additional to the driving power is used to measure {{S}}11 over a wide frequency range, which enables accurate determination of the plasma impedance based on an equivalent circuit model. The measured resistance and reactance of the plasma increase with the driving power in agreement with the transmission line theory. Based on this in situ measurement of the plasma impedance, the net power coupled to the plasma has been determined. The overall power efficiency remains approximately unchanged around 45% for different input power levels owing to the competing effects between the impedance mismatch and the volume change of the plasma.

  6. Methane coupling in microwave plasma under atmospheric pressure

    Institute of Scientific and Technical Information of China (English)

    Changsheng Shen; Dekun Sun; Hongsheng Yang

    2011-01-01

    Methane coupling in microwave plasma under atmospheric pressure has been investigated.The effects of molar ratio n(CH4)/n(H2),flow rate and microwave power on the reaction have been studied.(1) With the decrease of n(CH4)/n(H2) ratio,methane conversion,C2 hydrocarbon yield,energy yield and space-time yield of acetylene increased,but the yield of carbon deposit decreased.(2) With the increase of microwave power,energy yield of acetylene decreased,but space-time yield of acetylene increased.(3) With the increase of flow rate,energy yield and space-time yield of acetylene increased first and then decreased.Finally,under the reaction conditions of CH4 flow rate of 700 mL/min,n(CH4)/n(H2) ratio of 1/4 and microwave power of 400 W,the energy yield and space-time yield of acetylene could reach 0.337 mmol/kJ and 12.3 mol/(s·m3),respectively.The reaction mechanism of methane coupling in microwave plasma has been investigated based on the thermodynamics of chemical reaction.Interestingly,the acetylene yield of methane coupling in microwave plasma was much higher than the maximum thermodynamic yield of acetylene.This phenomenon was tentatively explained from non-expansion work in the microwave plasma system.

  7. Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas

    Science.gov (United States)

    Zhang, Hao; Zhu, Fengsen; Tu, Xin; Bo, Zheng; Cen, Kefa; Li, Xiaodong

    2016-05-01

    In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals, high speed photography, and optical emission spectroscopic diagnostics. Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g., 10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone, in this RGA system, a lower gas flow rate (e.g., 2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions. Two different motion patterns can be clearly observed in the N2 and air RGA plasmas. The time-resolved arc voltage signals show that three different arc dynamic modes, the arc restrike mode, takeover mode, and combined modes, can be clearly identified in the RGA plasmas. The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate. supported by National Natural Science Foundation of China (No. 51576174), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120101110099) and the Fundamental Research Funds for the Central Universities (No. 2015FZA4011)

  8. Basic characteristics of an atmospheric pressure rf generated plasma jet

    Institute of Scientific and Technical Information of China (English)

    Wang Shou-Guo; Li Hai-Jiang; Ye Tian-Chun; Zhao Ling-Li

    2004-01-01

    A plasma jet has been developed which operates using radio frequency (rf) power and produces a stable homogeneous discharge at atmospheric pressure. Its discharge characteristics, especially the dependence of stable discharge operating range on the feed gas, were studied, and the electric parameters such as RMS current, RMS voltage and reflected power were obtained with different gas flows. These studies indicate that there is an optimum range of operation of the plasma jet for a filling with a gas mixture of He and O2. Two "failure" modes of the discharge are identified.One is a filamentary arc when the input power is raised above a critical level, another is that the discharge disappears gradually as the addition of O2 approaches 3.2%. Possible explanations for the two failure modes have been given. The current and voltage waveform measurements show that there is a clear phase shift between normal and failure modes.In addition, Ⅰ-Ⅴ curves as a function of pure helium and for 1% addition of oxygen have been studied.

  9. Dynamics of apokamp-type atmospheric pressure plasma jets

    Science.gov (United States)

    Sosnin, Eduard A.; Panarin, Victor A.; Skakun, Victor S.; Baksht, Evgeny Kh.; Tarasenko, Victor F.

    2017-02-01

    The paper describes a new discharge source of atmospheric pressure plasma jets (APPJs) in air with no gas supply through the discharge region. In this discharge mode, plasma jets develop from the bending point of a bright current channel between two electrodes and are therefore termed an apokamp (from Greek `off' and `bend'). The apokamp can represent single plasma jets of length up 6 cm or several jets, and the temperature of such jets can range from more than 1000 °C at their base to 100-250 °C at their tip. Apokamps are formed at maximum applied voltage of positive polarity, provided that the second electrode is capacitively decoupled with ground. According to high-speed photography with time resolution from several nanoseconds to several tens of nanoseconds, the apokamp consists of a set of plasma bullets moving with a velocity of 100-220 km/s, which excludes the convective mechanism of plasma decay. Estimates on a 100-ns scale show that the near-electrode zones and the zones from which apokamps develop are close in temperature.

  10. Main species and chemical pathways in cold atmospheric-pressure Ar + H2O plasmas

    Science.gov (United States)

    Liu, Dingxin; Sun, Bowen; Iza, Felipe; Xu, Dehui; Wang, Xiaohua; Rong, Mingzhe; Kong, Michael G.

    2017-04-01

    Cold atmospheric-pressure plasmas in Ar + H2O gas mixtures are a promising alternative to He + H2O plasmas as both can produce reactive oxygen species of relevance for many applications and argon is cheaper than helium. Although He + H2O plasmas have been the subject of multiple experimental and computational studies, Ar + H2O plasmas have received less attention. In this work we investigate the composition and chemical pathways in Ar + H2O plasmas by means of a global model that incorporates 57 species and 1228 chemical reactions. Water vapor concentrations from 1 ppm to saturation (32 000 ppm) are considered in the study and abrupt transitions in power dissipation channels, species densities and chemical pathways are found when the water concentration increases from 100 to 1000 ppm. In this region the plasma transitions from an electropositive discharge in which most power is coupled to electrons into an electronegative one in which most power is coupled to ions. While increasing electronegativity is also observed in He + H2O plasmas, in Ar + H2O plasmas the transition is more abrupt because Penning processes do not contribute to gas ionization and the changes in the electron energy distribution function and mean electron energy caused by the increasing water concentration result in electron-neutral excitation and ionization rates changing by many orders of magnitude in a relatively small range of water concentrations. Insights into the main chemical species and pathways governing the production and loss of electrons, O, OH, OH(A) and H2O2 are provided as part of the study.

  11. Atmospheric pressure He-air plasma jet: Breakdown process and propagation phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Begum, Asma [Independent University, Bangladesh, School of Engineering and Computer Science, Bashundhara, Dhaka (Bangladesh); Laroussi, Mounir [Old Dominion University, Department of Electrical and Computer Engineering, Norfolk, Virginia (United States); Pervez, Mohammad Rasel [Master Mind College, Department of Physics, Dhanmondi, Dhaka (Bangladesh)

    2013-06-15

    In this paper He-discharge (plasma jet/bullet) in atmospheric pressure air and its progression phenomenon has been studied experimentally using ICCD camera, optical emission spectroscopy (OES) and calibrated dielectric probe measurements. The repetitive nanosecond pulse has applied to a plasma pencil to generate discharge in the helium gas channel. The discharge propagation speed was measured from the ICCD images. The axial electric field distribution in the plasma jet is inferred from the optical emission spectroscopic data and from the probe measurement. The correlation between the jet velocities, jet length with the pulse duration is established. It shows that the plasma jet is not isolated from the input voltage along its propagation path. The discharge propagation speed, the electron density and the local and average electric field distribution along the plasma jet axis predicted from the experimental results are in good agreement with the data predicted by numerical simulation of the streamer propagation presented in different literatures. The ionization phenomenon of the discharge predicts the key ionization parameters, such as speed, peak electric field in the front, and electron density. The maximum local electric field measured by OES is 95 kV/cm at 1.3 cm of the jet axis, and average EF measured by probe is 24 kV/cm at the same place of the jet. The average and local electron density estimated are in the order of 10{sup 11} cm{sup -3} and it reaches to the maximum of 10{sup 12} cm{sup -3}.

  12. Characterization of aromaticity in analogues of titan's atmospheric aerosols with two-step laser desorption ionization mass spectrometry

    Science.gov (United States)

    Mahjoub, Ahmed; Schwell, Martin; Carrasco, Nathalie; Benilan, Yves; Cernogora, Guy; Szopa, Cyril; Gazeau, Marie-Claire

    2016-10-01

    The role of polycyclic aromatic hydrocarbons (PAH) and Nitrogen containing PAH (PANH) as intermediates of aerosol production in the atmosphere of Titan has been a subject of controversy for a long time. An analysis of the atmospheric emission band observed by the Visible and Infrared Mapping Spectrometer (VIMS) at 3.28 μm suggests the presence of neutral polycyclic aromatic species in the upper atmosphere of Titan. These molecules are seen as the counter part of negative and positive aromatics ions suspected by the Plasma Spectrometer onboard the Cassini spacecraft, but the low resolution of the instrument hinders any molecular speciation. In this work we investigate the specific aromatic content of Titan's atmospheric aerosols through laboratory simulations. We report here the selective detection of aromatic compounds in tholins, Titan's aerosol analogs, produced with a capacitively coupled plasma in a N2:CH4 95:5 gas mixture. For this purpose, Two-Step Laser Desorption Ionization Time-of-Flight Mass Spectrometry (L2DI-TOF-MS) technique is used to analyze the so produced analogs. This analytical technique is based on the ionization of molecules by Resonance Enhanced Multi-Photon Ionization (REMPI) using a λ=248 nm wavelength laser which is selective for aromatic species. This allows for the selective identification of compounds having at least one aromatic ring. Our experiments show that tholins contain a trace amount of small PAHs with one to three aromatic rings. Nitrogen containing PAHs (PANHs) are also detected as constituents of tholins. Molecules relevant to astrobiology are detected as is the case of the substituted DNA base adenine.

  13. Non-thermal atmospheric pressure plasma jet and its application for polymer treatment

    OpenAIRE

    Sarani, Abdollah

    2010-01-01

    Non-thermal atmospheric pressure plasma jet is a suitable source for polymer treatment. The main characteristic of this plasma jet is the remote operation and its scalable dimension, thus, allowing local treatment of 3D surfaces. In this work an atmospheric pressure DBD plasma jet has been constructed and the application of the plasma jet for polymer treatment is investigated.

  14. Following the Ions through a Mass Spectrometer with Atmospheric Pressure Interface: Simulation of Complete Ion Trajectories from Ion Source to Mass Analyzer.

    Science.gov (United States)

    Zhou, Xiaoyu; Ouyang, Zheng

    2016-07-19

    Ion trajectory simulation is an important and useful tool in instrumentation development for mass spectrometry. Accurate simulation of the ion motion through the mass spectrometer with atmospheric pressure ionization source has been extremely challenging, due to the complexity in gas hydrodynamic flow field across a wide pressure range as well as the computational burden. In this study, we developed a method of generating the gas flow field for an entire mass spectrometer with an atmospheric pressure interface. In combination with the electric force, for the first time simulation of ion trajectories from an atmospheric pressure ion source to a mass analyzer in vacuum has been enabled. A stage-by-stage ion repopulation method has also been implemented for the simulation, which helped to avoid an intolerable computational burden for simulations at high pressure regions while it allowed statistically meaningful results obtained for the mass analyzer. It has been demonstrated to be suitable to identify a joint point for combining the high and low pressure fields solved individually. Experimental characterization has also been done to validate the new method for simulation. Good agreement was obtained between simulated and experimental results for ion transfer though an atmospheric pressure interface with a curtain gas.

  15. Novel applications of atmospheric pressure plasma on textile materials

    Science.gov (United States)

    Cornelius, Carrie Elizabeth

    Various applications of atmospheric pressure plasma are investigated in conjunction with polymeric materials including paper, polypropylene non-woven fabric, and cotton. The effect of plasma on bulk and surface properties is examined by treating both cellulosic pulp and prefabricated paper with various plasma-gas compositions. After treatment, pulp is processed into paper and the properties are compared. The method of pulp preparation is found to be more significant than the plasma, but differences in density, strength, and surface roughness are apparent for the pulp vs. paper plasma treatments. The plasma is also used to remove sizes of PVA and starch from poly/cotton and cotton fabric respectively. In both cases plasma successfully removes a significant amount of size, but complete size removal is not achieved. Subsequent washes (PVA) or scouring (cotton) to remove the size are less successful than a control, suggesting the plasma is crosslinking the size that is not etched away. However, at short durations in cold water using an oxygen plasma, slightly more PVA is removed than with a control. For the starch sized samples, plasma and scouring are never as successful at removing starch as a conventional enzyme, but plasma improves dyeability without need for scouring. Plasma is also used to graft chemicals to the surface of polypropylene and cotton fabric. HTCC, an antimicrobial is grafted to polypropylene with successful grafting indicated by x-ray photoemission spectroscopy (XPS), dye tests, and Fourier transform infrared spectroscopy (FTIR). Antimicrobial activity of the grafted samples is also characterized. 3ATAC, a vinyl monomer is also grafted to polypropylene and to cotton. Additives including Mohr's salt, potassium persulfate, and diacrylate are assessed to increase yield. Successful grafting of 3ATAC is confirmed by XPS and dye testing. A combination of all three additives is identified as optimum for maximizing graft yield.

  16. Collaborative Research. Atmospheric Pressure Microplasma Chemistry-Photon Synergies

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung-Jin [Univ. of Illinois, Urbana, IL (United States); Eden, James Gary [Univ. of Illinois, Urbana, IL (United States)

    2015-12-01

    Combining the effects of low temperature, atmospheric pressure microplasmas and microplasma photon sources offers the promise of greatly expanding the range of applications for each of them. The plasma sources create active chemical species and these can be activated further by the addition of photons and the associated photochemistry. There are many ways to combine the effects of plasma chemistry and photochemistry, especially if there are multiple phases present. This project combined the construction of appropriate test experimental systems, various spectroscopic diagnostics and mathematical modeling. Through a continuous discussion and co-design process with the UC-Berkeley Team, we have successfully completed the fabrication and testing of all components for a microplasma array-assisted system designed for photon-activated plasma chemistry research. Microcavity plasma lamps capable of generating more than 20 mW/cm2 at 172 nm (Xe dimer) were fabricated with a custom form factor to mate to the plasma chemistry setup, and a lamp was current being installed by the Berkeley team so as to investigate plasma chemistry-photon synergies at a higher photon energy (~7.2 eV) as compared to the UVA treatment that is afforded by UV LEDs operating at 365 nm. In particular, motivated by the promising results from the Berkeley team with UVA treatment, we also produced the first generation of lamps that can generate photons in the 300-370 nm wavelength range. Another set of experiments, conducted under the auspices of this grant, involved the use of plasma microjet arrays. The combination of the photons and excited radicals produced by the plasma column resulted in broad area deactivation of bacteria.

  17. Pressure and Ionization Balances in the Circum-Heliospheric Interstellar Medium and the Local Bubble

    CERN Document Server

    Jenkins, Edward B

    2008-01-01

    A disconcerting mismatch of thermal pressures for two media in contact with each other, (1) the warm, Circum-heliospheric Interstellar Medium (CHISM) and (2) the very hot material within a much larger region called the Local Bubble (LB), has troubled astronomers for over two decades. A possible resolution of this problem, at least in part, now seems possible. We now understand that earlier estimates for the average electron density in the very hot LB plasma were inflated by an unrecognized foreground contamination to the low energy diffuse X-ray background measurements. This foreground illumination arises from photons emitted by charge exchange reactions between solar wind ions and neutral atoms from the interstellar medium that enter into the heliosphere. However, with the resolution of this problem comes a new one. The high ionization fraction of helium in the CHISM, relative to that of hydrogen, could be understood in terms of the effects from a strong flux of EUV and X-ray radiation coming from both the L...

  18. Some new aspects of the transient ionization layer of comet Siding Spring origin in the Martian upper atmosphere

    Science.gov (United States)

    Mohana Manasa, P.; Jayaraman, Achuthan; Rao Narukull, Venkateswara; Vijaya Bhaskara Rao, Sarangam

    2016-07-01

    On 19 October 2014, comet Siding Spring passed near to the Mars and deposited a large amount of dust on the Martian upper atmosphere. This resulted in the formation of a dense transient ionization layer on Mars at altitudes between 80 and 120 km. Gurnett et al., [2014] reported the detection of this layer with Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) instrument aboard Mars Express spacecraft. In this study, we re-analyzed the ionograms obtained by this instrument to get further insight on the recurrence of the layer. Data from three orbital passes of MARSIS that took place 5 h, 12 h, and 19 h after peak dust deposition are used in this analysis. We found that the transient ionization layer sustained at least for 19 hours on the nightside and 12 hours on the dayside. While the peak density of the layer on the nightside gradually decreases from orbit-to-orbit, it does not change much on the dayside. Some ionograms in all the three orbits show two transient ionization layers that are separated by several kilometers in apparent altitude. We propose two mechanisms to explain this double layer structure. The first one assumes a horizontal bifurcation of the layer in which specular reflections from the two horizontal parts result in a double layer structure in ionograms. In the second mechanism, we assume specular reflections from ionization bulges (formed in regions of vertical magnetic fields) at altitudes of transient ionization layer give rise to oblique echoes that form the bottom layer of the double layer structure.

  19. Extractive Atmospheric Pressure Photoionization (EAPPI) Mass Spectrometry: Rapid Analysis of Chemicals in Complex Matrices

    Science.gov (United States)

    Liu, Chengyuan; Yang, Jiuzhong; Wang, Jian; Hu, Yonghua; Zhao, Wan; Zhou, Zhongyue; Qi, Fei; Pan, Yang

    2016-10-01

    Extractive atmospheric pressure photoionization (EAPPI) mass spectrometry was designed for rapid qualitative and quantitative analysis of chemicals in complex matrices. In this method, an ultrasonic nebulization system was applied to sample extraction, nebulization, and vaporization. Mixed with a gaseous dopant, vaporized analytes were ionized through ambient photon-induced ion-molecule reactions, and were mass-analyzed by a high resolution time-of-flight mass spectrometer (TOF-MS). After careful optimization and testing with pure sample solution, EAPPI was successfully applied to the fast screening of capsules, soil, natural products, and viscous compounds. Analysis was completed within a few seconds without the need for preseparation. Moreover, the quantification capability of EAPPI for matrices was evaluated by analyzing six polycyclic aromatic hydrocarbons (PAHs) in soil. The correlation coefficients ( R 2 ) for standard curves of all six PAHs were above 0.99, and the detection limits were in the range of 0.16-0.34 ng/mg. In addition, EAPPI could also be used to monitor organic chemical reactions in real time.

  20. Gliding arc triggered microwave plasma arc at atmospheric pressure for coal gasification application

    Science.gov (United States)

    Jain, Vishal; Visani, A.; Patil, C.; Patel, B. K.; Sharma, P. K.; John, P. I.; Nema, S. K.

    2014-08-01

    Plasma torch is device that efficiently converts electrical energy in to thermal energy for various high temperature applications. The conventional plasma torch comprises of consumable electrodes namely anode and cathode electrodes. The replacement of these electrodes is a complex process owing to its cooling and process shut down requirements. However, microwave plasma arc is electrode-less plasma arc system that is an alternative method to conventional arc technology for generating plasma arc. In this technique, microwave power is efficiently coupled to generate plasma arc by using the property of polar molecule to absorb microwave power. The absorption of microwave power is in form of losses due to intermolecular friction and high collisions between the molecules. This is an efficient method because all microwave power can be absorbed by plasma arc. The main feature of microwave plasma arc is its large uniform high temperature column which is not possible with conventional arc discharge methods. Such type of plasma discharge is very useful in applications where sufficient residence time for treat materials is required. Microwave arc does not require any consumable electrodes and hence, it can be operated continuously that makes it very useful for hazardous effluent treatment applications. Further, microwave cannot ionize neutral particles at atmospheric pressure and hence, a gliding arc is initiated between two thin electrodes in the cavity by applying very low power high voltage (3kV) AC source. In this report, the method for generating microwave arc of 1kW power using commercial microwave oven is elaborated.

  1. Study of a Filamentary Dielectric Barrier Discharge in Air at Atmospheric Pressure

    Science.gov (United States)

    Celestin, Sebastien; Zeghondy, Barbar; Guaitella, Olivier; Bourdon, Anne; Rousseau, Antoine

    2006-10-01

    Dielectric Barrier Discharges (DBD) at atmospheric pressure have many applications, for instance ozone production, surface treatment, and waste gas treatment. Generally, such a discharge is filamentary but it can be diffuse under particular conditions. Understanding the formation of the filament, which is an ionization wave or so-called ``streamer'', is very hard theoretically, numerically, and experimentally. This is due, first, to the non-linearity of the equations concerned, and second, because of the scaling in space and time of this phenomenon: a streamer has a radius on the order of a few microns, and propagates through distances of several centimeters in a few nanoseconds. In this study we will present the results obtained in experiments and in simulations for a plane-to-plane DBD. We electrically characterized this device and have observed collective effects that are still poorly understood. A point-to-plane DBD has also been studied for producing a much more localized discharge. In parallel with the experimental study we have developed a numerical model based on the Immersed Boundary Method (IBM) to introduce an electrode having a complex geometry into a structured Cartesian mesh. The first results of the code will be discussed.

  2. Surface conductivity dependent dynamic behaviour of an ultrafine atmospheric pressure plasma jet for microscale surface processing

    Science.gov (United States)

    Abuzairi, Tomy; Okada, Mitsuru; Bhattacharjee, Sudeep; Nagatsu, Masaaki

    2016-12-01

    An experimental study on the dynamic behaviour of microcapillary atmospheric pressure plasma jets (APPJs) with 5 μm tip size for surfaces of different conductivity is reported. Electrical and spatio-temporal characteristics of the APPJs are monitored using high voltage probe, current monitor and high speed intensified charge couple device camera. From these experimental results, we presented a simple model to understand the electrical discharge characteristics of the capillary APPJs with double electrodes, and estimated the velocity of the ionization fronts in the jet and the electron density to be 3.5-4.2 km/s and 2-7 × 1017 m-3. By analyzing the dynamics of the microcapillary APPJs for different substrate materials, it was found that the surface irradiation area strongly depended on the substrate conductivity and permittivity, especially in the case of polymer-like substrate, surface irradiation area was significantly broadened probably due to the repelling behaviour of the plasma jets from the accumulated electrical charges on the polymer surface. The effect of applying a substrate bias in the range from -900 V to +900 V on the plasma irradiation onto the substrates was also investigated. From the knowledge of the present results, it is helpful for choosing the substrate materials for microscale surface modification.

  3. Study of a new direct current atmospheric pressure glow discharge in helium

    Energy Technology Data Exchange (ETDEWEB)

    Gielniak, B. [University of Hamburg, Institute for Inorganic and Applied Chemistry, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Fiedler, T. [Johannes Gutenberg-University Mainz, Institute for Inorganic and Analytical Chemistry, Duesbergweg 10-14, 55128 Mainz (Germany); Broekaert, J.A.C., E-mail: jose.broekaert@chemie.uni-hamburg.de [University of Hamburg, Institute for Inorganic and Applied Chemistry, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)

    2011-01-15

    In this study a new DC-APGD operated in He was developed and characterized. The discharge is operated at 0.9 kV and about 25-35 mA and at a gas flow of 100 ml/min. The source was spectroscopically studied and parameters such as the rotational temperature (T{sub rot}), the excitation temperature (T{sub exc}), the ionization temperature (T{sub ion}) and the electron number density (n{sub e}) were determined. The current-voltage characteristic of the source was studied as well. At optimized conditions the discharge operates in the normal region of the current-voltage characteristic. Rotational and excitation temperatures determined with the use of OH band and Fe I lines as thermometric species were of the order of about 900-1200 and 4500-5500 K, respectively. This indicates that despite of the atmospheric pressure, the discharge is not in LTE. Spatially resolved temperature measurements were performed with axial as well as radial resolution and showed relatively flat profiles. Axially resolved emission intensity profiles for several species such as H, N{sub 2}, N{sub 2}{sup +}, OH, He and Hg were determined. It also was found that H{sub 2} introduced into the He by electrolysis of acid solutions such as in ECHG considerably increases the spectroscopically measured gas temperatures but decreases the analyte line intensities, as shown for Hg.

  4. Thermal dissociation atmospheric chemical ionization ion trap mass spectrometry with a miniature source for selective trace detection of dimethoate in fruit juices.

    Science.gov (United States)

    Ouyang, Yongzhong; Zhang, Xinglei; Han, Jing; Guo, Xiali; Zhu, Zhiqiang; Chen, Huanwen; Luo, Liping

    2013-01-21

    A miniature thermal dissociation atmospheric chemical ionization (TDCI) source, coupled with LTQ-MS, has been developed for rapid trace detection of pesticide residues such as dimethoate in highly viscous fruit juice samples. Instead of toxic organic solvents and the high electric field used in the conventional ionizations, an ionic liquid, a "green solvent", was employed to directly generate reagent ions in the TDCI process, followed by the proton or charge transfer with the analytes prior to the LTQ instrument for mass analysis. Trace amounts of dimethoate in fresh orange juices have been quantitatively detected, without any sample pretreatment or aid of high-pressure gas. A low limit of detection (LOD = 8.76 × 10(-11) g mL(-1)), acceptable relative standard deviation (RSD = 3.1-10.0%), and reasonable recoveries (91.2-102.8%) were achieved with this method for direct detection of dimethoate in highly viscous orange juice samples. The average analysis time for each single sample was less than 30 seconds. These experimental results showed that the miniature TDCI developed here is a powerful tool for the fast trace detection of pesticide residues in complex viscous fruit juices, with the advantage of high sensitivity, high speed, and high-throughput, ease of operation, and so on. Because of no chemical contamination and high voltage damage to the analytes and the environment, the technique has promising applications for online quality monitoring in the area of food safety.

  5. Progress and Status on the Development of NASA's Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model

    Science.gov (United States)

    Mertens, C. J.; Tobiska, W. K.; Blattnig, S. R.; Kress, B. T.; Wiltberger, M. J.; Solomon, S. C.; Kunches, J.; Murray, J. J.

    2008-12-01

    The NASA Applied Sciences Program recently selected a project for funding through the Research Opportunities in Space and Earth Sciences (ROSES) solicitation. The project objective is to develop a nowcast prediction of air-crew radiation exposure from both background galactic cosmic rays (GCR) and solar energetic particle events (SEP) that may accompany solar storms. The new air-crew radiation exposure model is called the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model. NAIRAS will provide global, data-driven, real-time radiation dose predictions of biologically harmful radiation at commercial airline altitudes. Observations are utilized from the ground (neutron monitors), from the atmosphere (the NCEP reanalysis), and from space (NASA/ACE and NOAA/GOES). Atmospheric observations provide the overhead shielding information and the ground- and space-based observations provide boundary conditions on the incident GCR and SEP particle flux distributions for transport and dosimetry simulations. Dose rates are calculated using the parametric AIR (Atmospheric Ionizing Radiation) model and the physics-based HZETRN (High Charge and Energy Transport) code. In this paper we discuss the concept and design of the NAIRAS model, and present recent progress in the implementation and give examples of the model results. Specifically, we show predictions of representative annual background exposure levels and radiation exposure levels for selected SEP events during solar cycle 23, with emphasis on the high-latitude and polar region. We also characterize the suppression of the geomagnetic cutoff rigidity during these storm periods and their subsequent influence on atmospheric radiation exposure. We discuss the key uncertainties and areas that need improvement in both model and data, the timeline for project completion, and access to model results.

  6. A flowing atmospheric pressure afterglow as an ion source coupled to a differential mobility analyzer for volatile organic compound detection.

    Science.gov (United States)

    Bouza, Marcos; Orejas, Jaime; López-Vidal, Silvia; Pisonero, Jorge; Bordel, Nerea; Pereiro, Rosario; Sanz-Medel, Alfredo

    2016-05-23

    Atmospheric pressure glow discharges have been widely used in the last decade as ion sources in ambient mass spectrometry analyses. Here, an in-house flowing atmospheric pressure afterglow (FAPA) has been developed as an alternative ion source for differential mobility analysis (DMA). The discharge source parameters (inter-electrode distance, current and helium flow rate) determining the atmospheric plasma characteristics have been optimized in terms of DMA spectral simplicity with the highest achievable sensitivity while keeping an adequate plasma stability and so the FAPA working conditions finally selected were: 35 mA, 1 L min(-1) of He and an inter-electrode distance of 8 mm. Room temperature in the DMA proved to be adequate for the coupling and chemical analysis with the FAPA source. Positive and negative ions for different volatile organic compounds were tested and analysed by FAPA-DMA using a Faraday cup as a detector and proper operation in both modes was possible (without changes in FAPA operational parameters). The FAPA ionization source showed simpler ion mobility spectra with narrower peaks and a better, or similar, sensitivity than conventional UV-photoionization for DMA analysis in positive mode. Particularly, the negative mode proved to be a promising field of further research for the FAPA ion source coupled to ion mobility, clearly competitive with other more conventional plasmas such as corona discharge.

  7. Langmuir probe diagnostics of an atmospheric pressure, vortex-stabilized nitrogen plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Prevosto, L.; Mancinelli, B. R. [Grupo de Descargas Electricas, Departamento Ingenieria Electromecanica, Facultad Regional Venado Tuerto (UTN), Laprida 651, (2600) Venado Tuerto, Santa Fe (Argentina); Kelly, H. [Grupo de Descargas Electricas, Departamento Ingenieria Electromecanica, Facultad Regional Venado Tuerto (UTN), Laprida 651, (2600) Venado Tuerto, Santa Fe (Argentina) and Instituto de Fisica del Plasma (CONICET), Departamento de Fisica, Facultad de Ciencias Exactas y Naturales UBA Ciudad Universitaria Pab. I, (1428) Buenos Aires (Argentina)

    2012-09-15

    Langmuir probe measurements in an atmospheric pressure direct current (dc) plasma jet are reported. Sweeping probes were used. The experiment was carried out using a dc non-transferred arc torch with a rod-type cathode and an anode of 5 mm diameter. The torch was operated at a nominal power level of 15 kW with a nitrogen flow rate of 25 Nl min{sup -1}. A flat ion saturation region was found in the current-voltage curve of the probe. The ion saturation current to a cylindrical probe in a high-pressure non local thermal equilibrium (LTE) plasma was modeled. Thermal effects and ionization/recombination processes inside the probe perturbed region were taken into account. Averaged radial profiles of the electron and heavy particle temperatures as well as the electron density were obtained. An electron temperature around 11 000 K, a heavy particle temperature around 9500 K and an electron density of about 4 Multiplication-Sign 10{sup 22} m{sup -3}, were found at the jet centre at 3.5 mm downstream from the torch exit. Large deviations from kinetic equilibrium were found throughout the plasma jet. The electron and heavy particle temperature profiles showed good agreement with those reported in the literature by using spectroscopic techniques. It was also found that the temperature radial profile based on LTE was very close to that of the electrons. The calculations have shown that this method is particularly useful for studying spraying-type plasma jets characterized by electron temperatures in the range 9000-14 000 K.

  8. Atmospheric-pressure plasma activation and surface characterization on polyethylene membrane separator

    Science.gov (United States)

    Tseng, Yu-Chien; Li, Hsiao-Ling; Huang, Chun

    2017-01-01

    The surface hydrophilic activation of a polyethylene membrane separator was achieved using an atmospheric-pressure plasma jet. The surface of the atmospheric-pressure-plasma-treated membrane separator was found to be highly hydrophilic realized by adjusting the plasma power input. The variations in membrane separator chemical structure were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Chemical analysis showed newly formed carbonyl-containing groups and high surface concentrations of oxygen-containing species on the atmospheric-pressure-plasma-treated polymeric separator surface. It also showed that surface hydrophilicity primarily increased from the polar component after atmospheric-pressure plasma treatment. The surface and pore structures of the polyethylene membrane separator were examined by scanning electron microscopy, revealing a slight alteration in the pore structure. As a result of the incorporation of polar functionalities by atmospheric-pressure plasma activation, the electrolyte uptake and electrochemical impedance of the atmospheric-pressure-plasma-treated membrane separator improved. The investigational results show that the separator surface can be controlled by atmospheric-pressure plasma surface treatment to tailor the hydrophilicity and enhance the electrochemical performance of lithium ion batteries.

  9. Ionization in atmospheres of brown dwarfs and extrasolar planets VI: Properties of large-scale discharge events

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, R. L.; Helling, Ch.; Hodosán, G.; Bilger, C.; Stark, C. R., E-mail: ch@leap2010.eu [SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS (United Kingdom)

    2014-03-20

    Mineral clouds in substellar atmospheres play a special role as a catalyst for a variety of charge processes. If clouds are charged, the surrounding environment becomes electrically activated, and ensembles of charged grains are electrically discharging (e.g., by lightning), which significantly influences the local chemistry creating conditions similar to those thought responsible for life in early planetary atmospheres. We note that such lightning discharges contribute also to the ionization state of the atmosphere. We apply scaling laws for electrical discharge processes from laboratory measurements and numerical experiments to DRIFT-PHOENIX model atmosphere results to model the discharge's propagation downward (as lightning) and upward (as sprites) through the atmospheric clouds. We evaluate the spatial extent and energetics of lightning discharges. The atmospheric volume affected (e.g., by increase of temperature or electron number) is larger in a brown dwarf atmosphere (10{sup 8}-10{sup 10} m{sup 3}) than in a giant gas planet (10{sup 4}-10{sup 6} m{sup 3}). Our results suggest that the total dissipated energy in one event is <10{sup 12} J for all models of initial solar metallicity. First attempts to show the influence of lightning on the local gas phase indicate an increase of small carbohydrate molecules like CH and CH{sub 2} at the expense of CO and CH{sub 4}. Dust-forming molecules are destroyed and the cloud particle properties are frozen in unless enough time is available for complete evaporation. We summarize instruments potentially suitable to observe lightning on extrasolar objects.

  10. TiN films grown by reactive magnetron sputtering with enhanced ionization at low discharge pressures

    Energy Technology Data Exchange (ETDEWEB)

    Kadlec, S.; Musil, J. (Ceskoslovenska Akademie Ved, Prague (Czechoslovakia). Fyzikalni Ustav); Valvoda, V. (Karlova Univ., Prague (Czechoslovakia). Fakulta Matematicko-Fyzikalni); Muenz, W.-D.; Petersein, H.; Schroeder, J. (Leybold A.G., Hanau (Germany, F.R.))

    1990-01-01

    TiN films were produced by reactive magnetron sputtering at a discharge pressure of 0.09 Pa on substrates placed 200 mm away from the magnetron target, using a sputtering system with enhanced ionization by means of multipolar magnetic confinement. The effects on film properties are reported for two ranges of values: an external substrate bias U{sub s} of from -35 to -150 V, and a floating potential U{sub fl} of from -24 to -45 V. All films show a dense microstructure, a smooth surface and shiny golden color. The microhardness HV is between 2000 and 2600 kg mm{sup -1}, a high critical load of up to L{sub c} = 58 N in scratch tests and the coefficient of friction against a cemented carbide counter ball is between 0.12 and 0.22. The color co-ordinated L{sup *}, A{sup *} and B{sup *} depend on the bias voltage. The brightness L{sup *} reaches 78 CIELAB units. The properties of films prepared at U{sub s} between -60 and -150 V compare well to those of ion-plated films. The films prepared at U{sub s} < 60 V, or at any of the values for U{sub fl}, exhibit comparatively low compressive microstresses down to 2.2 GPa and low microstrain down to 3.5 x 10{sup -3}. These films show single (111), (200) or (220) textures, or a mixed (200) + (111) texture, depending on the U value at which they were prepared. (author).

  11. Simulation of rarefied gas flows in atmospheric pressure interfaces for mass spectrometry systems.

    Science.gov (United States)

    Garimella, Sandilya; Zhou, Xiaoyu; Ouyang, Zheng

    2013-12-01

    The understanding of the gas dynamics of the atmospheric pressure interface is very important for the development of mass spectrometry systems with high sensitivity. While the gas flows at high pressure (>1 Torr) and low pressure (pressure stage (1 to 10(-3) Torr) remains challenging. In this study, we used the direct simulation Monte Carlo (DMSC) method to develop the gas dynamic simulations for the continuous and discontinuous atmospheric pressure interfaces (API), with different focuses on the ion transfer by gas flows through a skimmer or directly from the atmospheric pressure to a vacuum stage, respectively. The impacts by the skimmer location in the continuous API and the temporal evolvement of the gas flow with a discontinuous API were characterized, which provide a solid base for the instrument design and performance improvement.

  12. The effect of atmospheric temperature and pressure on the occurrence of acute myocardial infarction in Kaunas.

    Science.gov (United States)

    Radišauskas, Ričardas; Vaičiulis, Vidmantas; Ustinavičienė, Rūta; Bernotienė, Gailutė

    2013-01-01

    OBJECTIVE. The aim of the study was to evaluate the impact of meteorological variables (atmospheric temperature and pressure) on the daily occurrence of acute myocardial infarction (AMI). MATERIAL AND METHODS. The study used the daily values of atmospheric temperature and pressure in 2000-2007. The meteorological data were obtained from the Lithuanian Hydrometeorological Service for Kaunas. The relative risks of event occurrence were computed for 5°C atmospheric temperature and for 10-hPa atmospheric pressure variations by means of the Poisson regression model. RESULTS. The occurrence of AMI and atmospheric temperature showed an inverse linear relationship, while the occurrence of AMI and atmospheric pressure, a positive linear relationship. Among the youngest subjects (25-44 years old), no relationships were detected. Contrary, among the subjects aged 45-64 years and those aged 65 years and older, the occurrence of AMI significantly decreased with higher temperature (P=0.001 and P=0.002, respectively). A decrease in atmospheric temperature by 10ºC reduced the risk of AMI by 8.7% in the age groups of 45-64 and 65 years and older and by 19% in the age group of 25 years and older. Among the first AMI cases, the risk increased by 7.5% in the age group of 45-64-year olds and by 6.4% in the age group of 25-64-year olds. The relationship between atmospheric temperature and pressure, and AMI occurrence was found to be linear but inverse. An increase in atmospheric pressure by 10 hPa resulted in an increase in risk by 4% among the subjects aged 65 years and more and by 3% among the subjects aged 25 years and more. CONCLUSIONS. Atmospheric temperature and pressure variations had the greatest effect on middle-aged and aging subjects (starting from 45 years). At younger age, the effect of such factors on the AMI risk was considerably lower.

  13. Exact Mass Measurements for a-Allenic Alcohol by Atmospheric Pressure Chemical Ionization/Time-of-flight Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    何萍; 郭寅龙; 陈国强; 徐代旺; 麻生明

    2003-01-01

    The atmospheric pressure chemical ionization/time,of-flight mass speetrmtry (APEI/TOF-MS) was applied to determine the mass of five a.aIIenic alcohols via their vrotonated molecu.lar ions nslna Imsifive ion mode. Polyethylene Idycol (PEG) was used as the hlternal reference. All results were obtained under the resolution of about 5000 FWHM (full width at the half maximum). Solvent effects were studied and the satired results were obtained in acetonitrile. Comvared with the theoreflcal values, nun absolute errors were less thRn 1.0 mmu. The efTeets Of nozzle pote.Jldal, push pulse potential, pug pulse potentlai, puO bias potential and ic(lulsltion rate on exact mass determina/lon were also discussed. APCI/TOF.MS is proven to be a very semi/ire analytical technique and an alternative ionizafion mode in analytical technique lablle compounds with relatively weak polarity, such as a-allenic alcohol.

  14. Applications of tunable high energy/pressure pulsed lasers to atmospheric transmission and remote sensing

    Science.gov (United States)

    Hess, R. V.; Seals, R. K.

    1974-01-01

    Atmospheric transmission of high energy C12 O2(16) lasers were improved by pulsed high pressure operation which, due to pressure broadening of laser lines, permits tuning the laser 'off' atmospheric C12 O2(16) absorption lines. Pronounced improvement is shown for horizontal transmission at altitudes above several kilometers, and for vertical transmission through the entire atmosphere. The atmospheric transmission of tuned C12 O2(16) lasers compares favorably with C12 O2(18) isotope lasers and CO lasers. The advantages of tunable, high energy, high pressure pulsed lasers over tunable diode lasers and waveguide lasers, in combining high energies with a large tuning range, are evaluated for certain applications to remote sensing of atmospheric constituents and pollutants. Pulsed operation considerably increases the signal to noise ratio without seriously affecting the high spectral resolution of signal detection obtained with laser heterodyning.

  15. Atmospheric-Pressure Plasma Interaction with Soft Materials as Fundamental Processes in Plasma Medicine.

    Science.gov (United States)

    Takenaka, Kosuke; Miyazaki, Atsushi; Uchida, Giichiro; Setsuhara, Yuichi

    2015-03-01

    Molecular-structure variation of organic materials irradiated with atmospheric pressure He plasma jet have been investigated. Optical emission spectrum in the atmospheric-pressure He plasma jet has been measured. The spectrum shows considerable emissions of He lines, and the emission of O and N radicals attributed to air. Variation in molecular structure of Polyethylene terephthalate (PET) film surface irradiated with the atmospheric-pressure He plasma jet has been observed via X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). These results via XPS and FT-IR indicate that the PET surface irradiated with the atmospheric-pressure He plasma jet was oxidized by chemical and/or physical effect due to irradiation of active species.

  16. Relating landfill gas emissions to atmospheric pressure using numerical modeling and state-space analysis

    DEFF Research Database (Denmark)

    Poulsen, T.G.; Christophersen, Mette; Moldrup, P.

    2003-01-01

    were applied: (I) State-space analysis was used to identify relations between gas flux and short-term (hourly) variations in atmospheric pressure. (II) A numerical gas transport model was fitted to the data and used to quantify short-term impacts of variations in atmospheric pressure, volumetric soil......-water content, soil gas permeability, soil gas diffusion coefficients, and biological CH4 degradation rate upon landfill gas concentration and fluxes in the soil. Fluxes and concentrations were found to be most sensitive to variations in volumetric soil water content, atmospheric pressure variations and gas...... permeability whereas variations in CH4 oxidation rate and molecular coefficients had less influence. Fluxes appeared to be most sensitive to atmospheric pressure at intermediate distances from the landfill edge. Also overall CH4 fluxes out of the soil over longer periods (years) were largest during periods...

  17. Adhesion improvement of fibres by continuous plasma treatment at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Løgstrup Andersen, Tom; Sørensen, Bent F.

    2013-01-01

    Carbon fibres and ultra-high-molecular-weight polyethylene (UHMWPE) fibres were continuously treated by a dielectric barrier discharge plasma at atmospheric pressure for adhesion improvement with epoxy resins. The plasma treatment improved wettability, increased the oxygen containing polar...

  18. Keratinocytes at the uppermost layer of epidermis might act as sensors of atmospheric pressure change.

    Science.gov (United States)

    Denda, Mitsuhiro

    2016-01-01

    It has long been suggested that climate, especially atmospheric pressure change, can cause health problems ranging from migraine to myocardial infarction. Here, I hypothesize that the sensory system of epidermal keratinocytes mediates the influence of atmospheric pressure change on the human physiological condition. We previously demonstrated that even subtle changes of atmospheric pressure (5-20 hPa) induce elevation of intracellular calcium level in cultured human keratinocytes (excitation of keratinocytes). It is also established that communication occurs between epidermal keratinocytes and peripheral nerve systems. Moreover, various neurotransmitters and hormones that influence multiple systems (nervous, cardiovascular, endocrine, and immune systems) are generated and released from epidermal keratinocytes in response to various external stimuli. Thus, I suggest that pathophysiological phenomena induced by atmospheric pressure changes might be triggered by epidermal keratinocytes.

  19. Comparison of atmospheric pressure chemical ionization and electrospray ionization mass spectrometry for the detection of lignans from sesame seeds

    NARCIS (Netherlands)

    Struijs, K.; Vincken, J.P.; Gruppen, H.

    2008-01-01

    In sesame seeds, high concentrations of lignans are present. When these lignans are fermented in the human colon, a range of structurally different lignans is formed. A good liquid chromatography/mass spectrometry (LC/MS) protocol for the analysis of lignans in complex mixtures is lacking. In order

  20. Water cycles in closed ecological systems: effects of atmospheric pressure

    Science.gov (United States)

    Rygalov, Vadim Y.; Fowler, Philip A.; Metz, Joannah M.; Wheeler, Raymond M.; Bucklin, Ray A.; Sager, J. C. (Principal Investigator)

    2002-01-01

    In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from 1 to 10 L m-2 d-1 (1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems.

  1. Analysis of selective androgen receptor modulators by gas chromatography-microchip atmospheric pressure photoionization-mass spectrometry.

    Science.gov (United States)

    Luosujärvi, Laura; Haapala, Markus; Thevis, Mario; Saarela, Ville; Franssila, Sami; Ketola, Raimo A; Kostiainen, Risto; Kotiaho, Tapio

    2010-02-01

    A gas chromatography-microchip atmospheric pressure photoionization-mass spectrometric (GC-microAPPI-MS) method was developed and used for the analysis of three 2-quinolinone-derived selective androgen receptor modulators (SARMs). SARMs were analyzed from spiked urine samples, which were hydrolyzed and derivatized with N-methyl-N-(trimethylsilyl)trifluoroacetamide before analysis. Trimethylsilyl derivatives of SARMs formed both radical cations (M(+*)) and protonated molecules ([M + H](+)) in photoionization. Better signal-to-noise ratios (S/N) were obtained in MS/MS analysis using the M(+*) ions as precursor ions than using the [M + H](+) ions, and therefore the M(+*) ions were selected for the precursor ions in selected reaction monitoring (SRM) analysis. Limits of detection (LODs) with the method ranged from 0.01 to 1 ng/mL, which correspond to instrumental LODs of 0.2-20 pg. Limits of quantitation ranged from 0.03 to 3 ng/mL. The mass spectrometric response to the analytes was linear (R > or = 0.995) from the LOQ concentration level up to 100 ng/mL concentration, and intra-day repeatabilities were 5%-9%. In addition to the GC-microAPPI-MS study, the proof-of-principle of gas chromatography-microchip atmospheric pressure chemical ionization-Orbitrap MS (GC-microAPCI-Orbitrap MS) was demonstrated.

  2. Disinfection of ocular cells and tissues by atmospheric-pressure cold plasma.

    Directory of Open Access Journals (Sweden)

    Paola Brun

    Full Text Available BACKGROUND: Low temperature plasmas have been proposed in medicine as agents for tissue disinfection and have received increasing attention due to the frequency of bacterial resistance to antibiotics. This study explored whether atmospheric-pressure cold plasma (APCP generated by a new portable device that ionizes a flow of helium gas can inactivate ocular pathogens without causing significant tissue damage. METHODOLOGY/PRINCIPAL FINDINGS: We tested the APCP effects on cultured Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Candida albicans, Aspergillus fumigatus and Herpes simplex virus-1, ocular cells (conjunctival fibroblasts and keratocytes and ex-vivo corneas. Exposure to APCP for 0.5 to 5 minutes significantly reduced microbial viability (colony-forming units but not human cell viability (MTT assay, FACS and Tunel analysis or the number of HSV-1 plaque-forming units. Increased levels of intracellular reactive oxygen species (ROS in exposed microorganisms and cells were found using a FACS-activated 2',7'-dichlorofluorescein diacetate probe. Immunoassays demonstrated no induction of thymine dimers in cell cultures and corneal tissues. A transient increased expression of 8-OHdG, genes and proteins related to oxidative stress (OGG1, GPX, NFE2L2, was determined in ocular cells and corneas by HPLC, qRT-PCR and Western blot analysis. CONCLUSIONS: A short application of APCP appears to be an efficient and rapid ocular disinfectant for bacteria and fungi without significant damage on ocular cells and tissues, although the treatment of conjunctival fibroblasts and keratocytes caused a time-restricted generation of intracellular ROS and oxidative stress-related responses.

  3. Atmospheric-Pressure Cold Plasma Induces Transcriptional Changes in Ex Vivo Human Corneas.

    Directory of Open Access Journals (Sweden)

    Umberto Rosani

    Full Text Available Atmospheric pressure cold plasma (APCP might be considered a novel tool for tissue disinfection in medicine since the active chemical species produced by low plasma doses, generated by ionizing helium gas in air, induces reactive oxygen species (ROS that kill microorganisms without substantially affecting human cells.In this study, we evaluated morphological and functional changes in human corneas exposed for 2 minutes (min to APCP and tested if the antioxidant n-acetyl l-cysteine (NAC was able to inhibit or prevent damage and cell death.Immunohistochemistry and western blotting analyses of corneal tissues collected at 6 hours (h post-APCP treatment demonstrated no morphological tissue changes, but a transient increased expression of OGG1 glycosylase that returned to control levels in 24 h. Transcriptome sequencing and quantitative real time PCR performed on different corneas revealed in the treated corneas many differentially expressed genes: namely, 256 and 304 genes showing expression changes greater than ± 2 folds in the absence and presence of NAC, respectively. At 6 h post-treatment, the most over-expressed gene categories suggested an active or enhanced cell functioning, with only a minority of genes specifically concerning oxidative DNA damage and repair showing slight over-expression values (<2 folds. Moreover, time-related expression analysis of eight genes up-regulated in the APCP-treated corneas overall demonstrated the return to control expression levels after 24 h.These findings of transient oxidative stress accompanied by wide-range transcriptome adjustments support the further development of APCP as an ocular disinfectant.

  4. Ignition during hydrogen release from high pressure into the atmosphere

    Science.gov (United States)

    Oleszczak, P.; Wolanski, P.

    2010-12-01

    The first investigations concerned with a problem of hydrogen jet ignition, during outflow from a high-pressure vessel were carried out nearly 40 years ago by Wolanski and Wojcicki. The research resulted from a dramatic accident in the Chorzow Chemical Plant Azoty, where the explosion of a synthesis gas made up of a mixture composed of three moles of hydrogen per mole of nitrogen, at 300°C and 30 MPa killed four people. Initial investigation had excluded potential external ignition sources and the main aim of the research was to determine the cause of ignition. Hydrogen is currently considered as a potential fuel for various vehicles such as cars, trucks, buses, etc. Crucial safety issues are of potential concern, associated with the storage of hydrogen at a very high pressure. Indeed, the evidence obtained nearly 40 years ago shows that sudden rupture of a high-pressure hydrogen storage tank or other component can result in ignition and potentially explosion. The aim of the present research is identification of the conditions under which hydrogen ignition occurs as a result of compression and heating of the air by the shock wave generated by discharge of high-pressure hydrogen. Experiments have been conducted using a facility constructed in the Combustion Laboratory of the Institute of Heat Engineering, Warsaw University of Technology. Tests under various configurations have been performed to determine critical conditions for occurrence of high-pressure hydrogen ignition. The results show that a critical pressure exists, leading to ignition, which depends mainly on the geometric configuration of the outflow system, such as tube diameter, and on the presence of obstacles.

  5. Modified drug release using atmospheric pressure plasma deposited siloxane coatings

    Science.gov (United States)

    Dowling, D. P.; Maher, S.; Law, V. J.; Ardhaoui, M.; Stallard, C.; Keenan, A.

    2016-09-01

    This pilot study evaluates the potential of atmospheric plasma polymerised coatings to modify the rate of drug release from polymeric substrates. The antibiotic rifampicin was deposited in a prototype multi-layer drug delivery system, consisting of a nebulized layer of active drug between a base layer of TEOS deposited on a plastic substrate (polystyrene) and an overlying layer of plasma polymerised PDMS. The polymerised TEOS and PDMS layers were deposited using a helium atmospheric plasma jet system. Elution of rifampicin was measured using UV-VIS spectroscopy, in addition to a antimicrobial well diffusion assay with an established indicator organism. The multi-layered plasma deposited coatings significantly extended the duration of release of the rifampicin from 24 h for the uncoated polymer to 144 h for the coated polymer.

  6. The Effect of Atmospheric Pressure on Rocket Thrust -- Part I.

    Science.gov (United States)

    Leitner, Alfred

    1982-01-01

    The first of a two-part question asks: Does the total thrust of a rocket depend on the surrounding pressure? The answer to this question is provided, with accompanying diagrams of rockets. The second part of the question (and answer) are provided in v20 n7, p479, Oct 1982 of this journal. (Author/JN)

  7. Flow Reactor Studies with Nanosecond Pulsed Discharges at Atmospheric Pressure and Higher

    Science.gov (United States)

    2013-10-01

    Image of Discharge Reactor with Viewport Inlet Cap • Modular plasma discharge reactor can be interchanged with redesigned pressure shell to perform...Flow Reactor Studies with Nanosecond Pulsed Discharges at Atmospheric Pressure and Higher Nicholas Tsolas, Kuni Togai and Richard Yetter...Department of Mechanical and Nuclear Engineering The Pennsylvania State University University Park, PA, 16801 Fourth Annual Review Meeting of the

  8. Vertical thermal structure of the Venus atmosphere from temperature and pressure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Linkin, V.M.; Blamon, Z.; Lipatov, A.P.; Devyatkin, S.I.; Dyachkov, A.V.; Ignatova, S.I.; Kerzhanovich, V.V.; Malyk, K.; Stadny, V.I.; Sanotskiy, Y.V.

    1986-05-01

    Accurate temperature and pressure measurements were made on the Vega-2 lander during its entire descent. The temperature and pressure at the surface were 733 K and 89.3 bar, respectively. A strong temperature inversion was found in the upper troposphere. Several layers with differing static stability were visible in the atmospheric structure.

  9. Vertical thermal structure of the Venus atmosphere from temperature and pressure measurements

    Science.gov (United States)

    Linkin, V. M.; Blamon, Z.; Lipatov, A. P.; Devyatkin, S. I.; Dyachkov, A. V.; Ignatova, S. I.; Kerzhanovich, V. V.; Malyk, K.; Stadny, V. I.; Sanotskiy, Y. V.

    1986-01-01

    Accurate temperature and pressure measurements were made on the Vega-2 lander during its entire descent. The temperature and pressure at the surface were 733 K and 89.3 bar, respectively. A strong temperature inversion was found in the upper troposphere. Several layers with differing static stability were visible in the atmospheric structure.

  10. Decontamination of objects in a sealed container by means of atmospheric pressure plasmas

    DEFF Research Database (Denmark)

    Leipold, Frank; Schultz-Jensen, Nadja; Kusano, Yukihiro

    2011-01-01

    The decontamination of objects (food) in a sealed container by means of atmospheric pressure plasmas is investigated. The target is Listeria monocytogenes, a bacterium which causes listeriosis and can be found in plants and food. The non-pathogenic species, Listeria innocua, is used....... The ambient atmosphere was air at atmospheric pressure. A plasma is generated inside the bag forming ozone from the oxygen. The maximum ozone concentration in the bag was found to be 140 ppm. A log 6 reduction of L. innocua is obtained after 15 min of exposure time. The temperature of the slides after...

  11. Cut-off wavenumber of Alfvén waves in partially ionized plasmas of the solar atmosphere

    Science.gov (United States)

    Zaqarashvili, T. V.; Carbonell, M.; Ballester, J. L.; Khodachenko, M. L.

    2012-08-01

    Context. Alfvén wave dynamics in partially ionized plasmas of the solar atmosphere shows that there is indeed a cut-off wavenumber, i.e. the Alfvén waves with wavenumbers higher than the cut-off value are evanescent. The cut-off wavenumber appears in single-fluid magnetohydrodynamic (MHD) approximation but it is absent in a multi-fluid approach. Up to now, an explanation for the existence of the cut-off wavenumber is still missing. Aims: The aim of this paper is to point out the reason for the appearance of a cut-off wavenumber in single-fluid MHD. Methods: Beginning with three-fluid equations (with electrons, protons and neutral hydrogen atoms), we performed consecutive approximations until we obtained the usual single-fluid description. We solved the dispersion relation of linear Alfvén waves at each step and sought the approximation responsible of the cut-off wavenumber appearance. Results: We have found that neglecting inertial terms significantly reduces the real part of the Alfvén frequency although it never becomes zero. Therefore, the cut-off wavenumber does not exist at this stage. However, when the inertial terms together with the Hall term in the induction equation are neglected, the real part of the Alfvén frequency becomes zero. Conclusions: The appearance of a cut-off wavenumber, when Alfvén waves in partially ionized regions of the solar atmosphere are studied, is the result of neglecting inertial and Hall terms, therefore it has no physical origin.

  12. Plasma density enhancements created by the ionization of the Earth's upper atmosphere by artificial electron beams

    DEFF Research Database (Denmark)

    Neubert, Torsten; Banks, P.M.

    We present analytical calculations and experimental observations relating to the interaction with the Earth's upper atmosphere of electron beams emitted from low altitude spacecraft. The problem is described by two coupled non-linear differential equations in the up-going (along a magnetic field ...

  13. Time-resolved characterization of a filamentary argon discharge at atmospheric pressure in a capillary using emission and absorption spectroscopy

    Science.gov (United States)

    Schröter, Sandra; Pothiraja, Ramasamy; Awakowicz, Peter; Bibinov, Nikita; Böke, Marc; Niermann, Benedikt; Winter, Jörg

    2013-11-01

    An argon/nitrogen (0.999/0.001) filamentary pulsed discharge operated at atmospheric pressure in a quartz tube is characterized using voltage-current measurements, microphotography, optical emission spectroscopy (OES) and absorption spectroscopy. Nitrogen is applied as a sensor gas for the purpose of OES diagnostic. The density of argon metastable atoms Ar(3P2) is determined using tunable diode laser absorption spectroscopy (TDLAS). Using a plasma chemical model the measured OES data are applied for the characterization of the plasma conditions. Between intense positive pulses the discharge current oscillates with a damped amplitude. It is established that an electric current flows in this discharge not only through a thin plasma filament that is observed in the discharge image but also through the whole cross section of the quartz tube. A diffuse plasma fills the quartz tube during a time between intense current pulses. Ionization waves are propagating in this plasma between the spike and the grounded area of the tube producing thin plasma channels. The diameter of these channels increases during the pause between the propagation of ionization waves probably because of thermal expansion and diffusion. Inside the channels electron densities of ˜2 × 1013 cm-3, argon metastable densities ˜1014 cm-3 and a reduced electric field about 10 Td are determined.

  14. Atmospheric pressure and temperature profiling using near IR differential absorption lidar

    Science.gov (United States)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Weng, C. Y.

    1983-01-01

    The present investigation is concerned with differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The procedure used in determining the pressure is based on the conduction of high-resolution measurements of absorption in the wings of lines in the oxygen A band. Absorption with respect to these areas is highly pressure sensitive in connection with the mechanism of collisional line broadening. The method of temperature measurement utilizes a determination of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy.

  15. Subtarget Effect on Laser Plasma Generated by Transversely Excited Atmospheric CO2 Laser at Atmospheric Gas Pressure

    Science.gov (United States)

    Kagawa, Kiichiro; Lie, Tjung Jie; Hedwig, Rinda; Abdulmajid, Syahrun Nur; Suliyanti, Maria Margaretha; Kurniawan, Hendrik

    2000-05-01

    An experimental study has been carried out on the dynamical process taking place in the laser plasma generated by Transversely Excited Atmospheric CO2 laser (100 mJ, 50 ns) irradiation of a soft sample at surrounding helium pressure of 1 atm. It is shown that the presence of a copper subtarget behind the soft sample is crucial in raising the gushing speed of the atoms to the level adequate for the generation of shock wave laser plasma even at atmospheric pressure. It is also found that the time profiles of spatially integrated emission intensity of the target’s atoms and gas atoms exhibit a characteristic dynamical process that consists of successive excitation and cooling stages even at such a high pressure, which is typical of shock wave laser plasma. It is therefore suggested that the generation of the laser plasma at atmospheric pressure is more likely due to the shock wave mechanism than to the widely known breakdown mechanism. Initial spectrochemical analysis of water from the blow off of a boiler system was also carried out, showing a detection limit of as low as 5 ppm for calcium.

  16. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hiromasa [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Mizuno, Masaaki [Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Toyokuni, Shinya [Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Maruyama, Shoichi [Department of Nephrology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kodera, Yasuhiro [Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Terasaki, Hiroko [Department of Ophthalmology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Adachi, Tetsuo [Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 501-1196 Gifu (Japan); Kato, Masashi [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kikkawa, Fumitaka [Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Hori, Masaru [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-12-15

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established.

  17. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    Science.gov (United States)

    Tanaka, Hiromasa; Mizuno, Masaaki; Toyokuni, Shinya; Maruyama, Shoichi; Kodera, Yasuhiro; Terasaki, Hiroko; Adachi, Tetsuo; Kato, Masashi; Kikkawa, Fumitaka; Hori, Masaru

    2015-12-01

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established.

  18. Simulations of atmospheric pressure discharge in a high-voltage nanosecond pulse using the particle-in-cell Monte Carlo collision model in noble gases

    Science.gov (United States)

    Shi, Feng; Wang, Dezhen; Ren, Chunsheng

    2008-06-01

    Atmospheric pressure discharge nonequilibrium plasmas have been applied to plasma processing with modern technology. Simulations of discharge in pure Ar and pure He gases at one atmospheric pressure by a high voltage trapezoidal nanosecond pulse have been performed using a one-dimensional particle-in-cell Monte Carlo collision (PIC-MCC) model coupled with a renormalization and weighting procedure (mapping algorithm). Numerical results show that the characteristics of discharge in both inert gases are very similar. There exist the effects of local reverse field and double-peak distributions of charged particles' density. The electron and ion energy distribution functions are also observed, and the discharge is concluded in the view of ionization avalanche in number. Furthermore, the independence of total current density is a function of time, but not of position.

  19. Research progress in the study of atmospheric pressure glow barrier discharge

    Institute of Scientific and Technical Information of China (English)

    LI Xuechen; DONG Lifang; JIA Pengying

    2007-01-01

    Atmospheric pressure glow barrier discharge (APGBD) can operate at high pressure, and so vacuum device is not necessary. Furthermore, the produced plasma by APGBD has moderate electron temperature and density besides good uniformity. Therefore,APGBD has extensive potential applications in industry and has been becoming a hot issue in the research of low temperature plasma. In this paper, the main problems in the study of atmospheric pressure glow discharge generated by dielectric barrier discharge, including the experimental setup, judging criterion, discharging conditions, physical mechanisms, and parameter diagnoses, are discussed, and further research prospects of APGBD are proposed.

  20. The Healing Effect of Low-Temperature Atmospheric-Pressure Plasma in Pressure Ulcer: A Randomized Controlled Trial.

    Science.gov (United States)

    Chuangsuwanich, Apirag; Assadamongkol, Tananchai; Boonyawan, Dheerawan

    2016-08-31

    Pressure ulcers are difficult to treat. Recent reports of low-temperature atmospheric-pressure plasma (LTAPP) indicated its safe and effectiveness in chronic wound care management. It has been shown both in vitro and vivo studies that LTAPP not only helps facilitate wound healing but also has antimicrobial efficacy due to its composition of ion and electron, free radicals, and ultraviolet ray. We studied the beneficial effect of LTAPP specifically on pressure ulcers. In a prospective randomized study, 50 patients with pressure ulcers were divided into 2 groups: Control group received standard wound care and the study group was treated with LTAPP once every week for 8 consecutive weeks in addition to standard wound care. We found that the group treated with LTAPP had significantly better PUSH (Pressure Ulcer Scale for Healing) scores and exudate amount after 1 week of treatment. There was also a reduction in bacterial load after 1 treatment regardless of the species of bacteria identified.

  1. Atmospheric oxygenation caused by a change in volcanic degassing pressure

    OpenAIRE

    Gaillard, Fabrice; Scaillet, Bruno; Arndt, Nicholas T.

    2011-01-01

    International audience; The Precambrian history of our planet is marked by two major events: a pulse of continental crust formation at the end of the Archaean eon and a weak oxygenation of the atmosphere (the Great Oxidation Event) that followed, at 2.45 billion years ago. This oxygenation has been linked to the emergence of oxygenic cyanobacteria1,2 and to changes in the compositions of volcanic gases3,4, but not to the composition of erupting lavas--geochemical constraints indicate that the...

  2. Germination and growth of lettuce (Lactuca sativa) at low atmospheric pressure

    Science.gov (United States)

    Spanarkel, Robert; Drew, Malcolm C.

    2002-01-01

    The response of lettuce (Lactuca sativa L. cv. Waldmann's Green) to low atmospheric pressure was examined during the initial 5 days of germination and emergence, and also during subsequent growth to vegetative maturity at 30 days. Growth took place inside a 66-l-volume low pressure chamber maintained at 70 kPa, and plant response was compared to that of plants in a second, matching chamber that was at ambient pressure (approximately 101 kPa) as a control. In other experiments, to determine short-term effects of low pressure transients, plants were grown at ambient pressure until maturity and then subjected to alternating periods of 24 h of low and ambient atmospheric pressures. In all treatments the partial pressure of O2 was maintained at 21 kPa (approximately the partial pressure in air at normal pressure), and the partial pressure of CO2 was in the range 66.5-73.5 Pa (about twice that in normal air) in both chambers, with the addition of CO2 during the light phase. With continuous exposure to low pressure, shoot and root growth was at least as rapid as at ambient pressure, with an overall trend towards slightly greater performance at the lower pressure. Dark respiration rates were greater at low pressure. Transient periods at low pressure decreased transpiration and increased dark respiration but only during the period of exposure to low pressure. We conclude that long-term or short-term exposure to subambient pressure (70 kPa) was without detectable detriment to vegetative growth and development.

  3. Multicomponent mixed dopant optimization for rapid screening of polycyclic aromatic hydrocarbons using ultra high performance liquid chromatography coupled to atmospheric pressure photoionization high-resolution mass spectrometry

    KAUST Repository

    Sioud, Salim

    2012-05-04

    RATIONALE To enhance the ionization efficiencies in atmospheric pressure photoionization mass spectrometry a dopant with favorable ionization energy such as chlorobenzene is typically used. These dopants are typically toxic and difficult to mix with water-soluble organic solvents. In order to achieve a more efficient and less toxic dopant, a multicomponent mixed dopant was explored. METHODS A multicomponent mixed dopant for non-targeted rapid screening of polycyclic aromatic hydrocarbons (PAHs) was developed and optimized using ultra high performance liquid chromatography (UPLC) coupled to atmospheric pressure photoionization high-resolution mass spectrometry. Various single and multicomponent mixed dopants consisting of ethanol, chlorobenzene, bromobenzene, anisole and toluene were evaluated. RESULTS Fourteen out of eighteen PAHs were successfully separated and detected at low pg/μL levels within 5 min with high mass accuracy ≤4 ppm. The optimal mixed multicomponent dopant consisted of ethanol/chlorobenzene/bromobenzene/anisole (98.975:0.1:0.9:0.025, v/v %) and it improved the limit of detection (LOD) by 2- to 10-fold for the tested PAHs compared to those obtained with pure chlorobenzene. CONCLUSIONS A novel multicomponent dopant that contains 99% ethanol and 1% mixture of chlorobenzene, bromobenzene and anisole was found to be an effective dopant mixture to ionize PAHs. The developed UPLC multicomponent dopant assisted atmospheric pressure photoionization high-resolution mass spectrometry offered a rapid non targeted screening method for detecting the PAHs at low pg/;μL levels within a 5 min run time with high mass accuracy a;circ4 ppm. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Power Absorption of High Frequency Electromagnetic Waves in a Partially Ionized Plasma Layer in Atmosphere Conditions

    Institute of Scientific and Technical Information of China (English)

    郭斌; 王晓钢

    2005-01-01

    We have studied the absorption, reflection, and transmission of electromagnetic waves in an unmagnetized uniform plasma layer covering a metal surface in atmosphere conditions.Instead of the absorption of the electromagnetic wave propagating only once in previous work on the plasma layer, a general formula of total power absorption by the plasma layer with an infinite time of reflections between the atmosphere-plasma interface and the metal surface has been derived for the first time. Effects of plasma parameters, especially the dependence of the fraction of positive ions, negative ions and electrons in plasmas on the power absorption processes are discussed. The results show that the existence of negative ions significantly reduces the power absorption of the electromagnetic wave. Absorptions of electromagnetic waves are calculated.

  5. Chain elongation of diacylphosphatidylcholine induces fully bilayer interdigitation under atmospheric pressure.

    Science.gov (United States)

    Goto, Masaki; Wilk, Agnieszka; Kazama, Akira; Chodankar, Shirish; Kohlbrecher, Joachim; Matsuki, Hitoshi

    2011-05-01

    The phase transitions of dibehenoylphosphatidylcholine (C22PC) bilayer membrane were observed by differential scanning calorimetry under atmospheric pressure and light-transmittance measurements under high pressure. The constructed temperature-pressure phase diagram suggests that the gel phase at low temperatures is the interdigitated gel phase. To confirm the phase state, we performed small-angle neutron scattering and fluorescence measurements using a polarity-sensitive probe Prodan for the C22PC bilayer membrane under atmospheric pressure. The peaks obtained in both measurements clearly showed the characteristic patterns of the fully interdigitated gel phase. Taking into account of previous studies on the gel phase for long-chain PC bilayers under atmospheric pressure and our studies on the pressure-induced bilayer interdigitaion of diacyl-PCs, it turned out that the interdigitation of diacyl-PC bilayer membranes occurs when the carbon number of acyl chain reaches at least 22. The present study revealed that the interdigitation of PC bilayer membranes occurs not only by weakening the attractive force of polar head groups but also by strengthening the cohesive force of acyl chains. When dominating the force of acyl chains, the interdigitation can be induced even in a diacyl-PC bilayer membrane by only hydration under atmospheric pressure.

  6. The glow duration time influence on the ionization rate detected in the diodes filled with noble gases on mbar pressures

    Directory of Open Access Journals (Sweden)

    Stepanović Olivera M.

    2003-01-01

    Full Text Available The results of the glow current duration time (glowing-time influence on the ionization rate detected in the gas filled diodes are presented. The electrical breakdown was detected as the minimal current impulse. After that diode glow from the minimal glowing-time (10-3 s, up to the maximal 103 s which overlap the time of the stationary regime formation in the gas diode tube. The diodes were with volumes of 300 cm3, but with a diode gap volume of about 1 cm3 and filled with helium, neon, argon or krypton, at the pressures of the order of mbar. The ionization rates were detected as the residual ionization after the glowing was interrupted, using the electrical breakdown time delay measuring method. The influence of the gap distance stationary current values and the relaxation period were also investigated. The result shows that the stationary regime in such a gas diode is established after the glowing time of 1-3 s, although the breakdown formative times were smaller then 1 ms.

  7. Analysis of oxysterols and vitamin D metabolites in mouse brain and cell line samples by ultra-high-performance liquid chromatography-atmospheric pressure photoionization-mass spectrometry.

    Science.gov (United States)

    Ahonen, Linda; Maire, Florian B R; Savolainen, Mari; Kopra, Jaakko; Vreeken, Rob J; Hankemeier, Thomas; Myöhänen, Timo; Kylli, Petri; Kostiainen, Risto

    2014-10-17

    We have developed an ultra-high-performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometric (UHPLC-APPI-MS/MS) method for the simultaneous quantitative analyses of several oxysterols and vitamin D metabolites in mouse brain and cell line samples. An UHPLC-APPI-high resolution mass spectrometric (UHPLC-APPI-HRMS) method that uses a quadrupole-time of flight mass spectrometer was also developed for confirmatory analysis and for the identification of non-targeted oxysterols. Both methods showed good quantitative performance. Furthermore, APPI provides high ionization efficiency for determining oxysterols and vitamin D related compounds without the time consuming derivatization step needed in the conventionally used electrospray ionization method to achieve acceptable sensitivity. Several oxysterols were quantified in mouse brain and cell line samples. Additionally, 25-hydroxyvitamin D3 was detected in mouse brain samples for the first time.

  8. Gas chromatographic vapor pressure determination of atmospherically relevant oxidation products of β-caryophyllene and α-pinene

    Science.gov (United States)

    Hartonen, Kari; Parshintsev, Jevgeni; Vilja, Vesa-Pekka; Tiala, Heidi; Knuuti, Sinivuokko; Lai, Ching Kwan; Riekkola, Marja-Liisa

    2013-12-01

    Vapor pressures (subcooled liquid, pliquid) of atmospherically relevant oxidation products of β-caryophyllene (β-caryophyllene aldehyde 0.18 ± 0.03 Pa and β-nocaryophyllene aldehyde 0.17 ± 0.03 Pa), and α-pinene (pinonaldehyde 16.8 ± 0.20 Pa, cis-pinic acid 0.12 ± 0.06 Pa, and cis-pinonic acid 0.99 ± 0.19 Pa) at 298 K were obtained by gas chromatography with flame ionization detection (FID) and mass spectrometric (MS) detection. The effects of stationary phase polarity and column film thickness on the vapor pressure values were investigated. Increase in stationary phase polarity provided smaller values, while increase in film thickness gave slightly higher values. Values for vapor pressure were at least two orders of magnitude lower when obtained by a method utilizing vaporization enthalpy (determined by gas chromatography-mass spectrometry) than by retention index method. Finally, the results were compared with values calculated by group contribution theory. For the β-caryophyllene oxidation products, the values measured by gas chromatography were slightly lower than those obtained by theoretical calculations. The opposite trend was observed for the α-pinene oxidation products. The methods based on gas chromatography are concluded to be highly useful for the determination of vapor pressures of semi-volatile compounds. Except for the most polar pinic and pinonic acids, differences between vapor pressure values obtained by GC-FID and GC-MS were small. Since GC-MS provides structural information simultaneously, the use of GC-MS is recommended.

  9. Seasonal emanation of radon at Ghuttu, northwest Himalaya: Differentiation of atmospheric temperature and pressure influences.

    Science.gov (United States)

    Kamra, Leena

    2015-11-01

    Continuous monitoring of radon along with meteorological parameters has been carried out in a seismically active area of Garhwal region, northwest Himalaya, within the frame work of earthquake precursory research. Radon measurements are carried out by using a gamma ray detector installed in the air column at a depth of 10m in a 68m deep borehole. The analysis of long time series for 2006-2012 shows strong seasonal variability masked by diurnal and multi-day variations. Isolation of a seasonal cycle by minimising short-time by 31 day running average shows a strong seasonal variation with unambiguous dependence on atmospheric temperature and pressure. The seasonal characteristics of radon concentrations are positively correlated to atmospheric temperature (R=0.95) and negatively correlated to atmospheric pressure (R=-0.82). The temperature and pressure variation in their annual progressions are negatively correlated. The calculations of partial correlation coefficient permit us to conclude that atmospheric temperature plays a dominant role in controlling the variability of radon in borehole, 71% of the variability in radon arises from the variation in atmospheric temperature and about 6% of the variability is contributed by atmospheric pressure. The influence of pressure variations in an annual cycle appears to be a pseudo-effect, resulting from the negative correlation between temperature and pressure variations. Incorporation of these results explains the varying and even contradictory claims regarding the influence of the pressure variability on radon changes in the published literature. Temperature dependence, facilitated by the temperature gradient in the borehole, controls the transportation of radon from the deep interior to the surface.

  10. The Role of Non-ionizing Radiation Pressure in Star Formation: The Stability of Cores and Filaments

    CERN Document Server

    Seo, Young Min

    2016-01-01

    Stars form when filaments and dense cores in molecular clouds fragment and collapse due to self-gravity. In the most basic analyses of gravitational stability, the competition between self-gravity and thermal pressure sets the critical (i.e. maximum stable) mass of spheres and the critical line density of cylinders. Previous work has considered additional support from magnetic fields and turbulence. Here, we consider the effects of non-ionizing radiation, specifically the inward radiation pressure force that acts on dense structures embedded in an isotropic radiation field. Using hydrostatic, isothermal models, we find that irradiation lowers the critical mass and line density for gravitational collapse, and can thus act as a trigger for star formation. For structures with moderate central densities, $\\sim10^3$ cm$^{-3}$, the interstellar radiation field in the Solar vicinity has an order unity effect on stability thresholds. For more evolved objects with higher central densities, a significant lowering of st...

  11. An analysis of the errors associated with the determination of atmospheric temperature from atmospheric pressure and density data

    Science.gov (United States)

    Minzner, R. A.

    1976-01-01

    A graph was developed for relating delta T/T, the relative uncertainty in atmospheric temperature T, to delta p/p, the relative uncertainty in the atmospheric pressure p, for situations, when T is derived from the slope of the pressure-height profile. A similar graph relates delta T/T to delta roh/rho, the relative uncertainty in the atmospheric density rho, for those cases when T is derived from the downward integration of the density-height profile. A comparison of these two graphs shows that for equal uncertainties in the respective basic parameters, p or rho, smaller uncertainties in the derived temperatures are associated with density-height rather than with pressure-height data. The value of delta T/T is seen to depend not only upon delta p or delta rho, and to a small extent upon the value of T or the related scale height H, but also upon the inverse of delta h, the height increment between successive observations of p or rho. In the case of pressure-height data, delta T/T is dominated by 1/delta h for all values of delta h; for density-height data, delta T/T is dominated by delta rho/rho for delta h smaller than about 5 km. In the case of T derived from density-height data, this inverse relationship between delta T/T and delta h applies only for large values of delta h, that is, for delta h 35 km. No limit exists in the fineness of usable height resolution of T which may be derived from densities, while a fine height resolution in pressure-height data leads to temperature with unacceptably large uncertainties.

  12. Middle atmosphere response to the solar cycle in irradiance and ionizing particle precipitation

    Directory of Open Access Journals (Sweden)

    K. Semeniuk

    2011-05-01

    Full Text Available The impact of NOx and HOx production by three types of energetic particle precipitation (EPP, auroral zone medium and high energy electrons, solar proton events and galactic cosmic rays on the middle atmosphere is examined using a chemistry climate model. This process study uses ensemble simulations forced by transient EPP derived from observations with one-year repeating sea surface temperatures and fixed chemical boundary conditions for cases with and without solar cycle in irradiance. Our model results show a wintertime polar stratosphere ozone reduction of between 3 and 10 % in agreement with previous studies. EPP is found to modulate the radiative solar cycle effect in the middle atmosphere in a significant way, bringing temperature and ozone variations closer to observed patterns. The Southern Hemisphere polar vortex undergoes an intensification from solar minimum to solar maximum instead of a weakening. This changes the solar cycle variation of the Brewer-Dobson circulation, with a weakening during solar maxima compared to solar minima. In response, the tropical tropopause temperature manifests a statistically significant solar cycle variation resulting in about 4 % more water vapour transported into the lower tropical stratosphere during solar maxima compared to solar minima. This has implications for surface temperature variation due to the associated change in radiative forcing.

  13. Atmospheric Refraction Predictions Based on Actual Atmospheric Pressure and Temperature Data

    Science.gov (United States)

    Nauenberg, Michael

    2017-04-01

    Calculations of atmospheric refraction are generally based on a simplified model of atmospheric density in the troposphere that assumes the temperature decreases at a constant lapse rate L from sea level up to a height {h}t≈ 11 {km}, and that afterward it remains constant. In this model, the ratio T o /L, where T o is the temperature at the observer’s location, determines the length scale in the calculations for altitudes h≤slant {h}t. But daily balloon measurements across the USA show that in some cases there is an inversion so that the air temperature actually increases from sea level up to a height {h}p≈ 1 {km}, and only after reaching a plateau with temperature {T}o\\prime at this height, it decreases at an approximately constant lapse rate. Hence, in such cases the relevant length scale for atmospheric refraction calculations in the range {h}p≤slant hatmospheric refraction based on this actual atmospheric data are compared with the results of current simplified models.

  14. Atmospheric Amines and Ammonia Measured with a Chemical Ionization Mass Spectrometer (CIMS)

    Energy Technology Data Exchange (ETDEWEB)

    You, Y.; Kanawade, V. P.; de Gouw, J. A.; Guenther, Alex B.; Madronich, Sasha; Sierra-Hernandez, M. R.; Lawler, M.; Smith, James N.; Takahama, S.; Ruggeri, G.; Koss, A.; Olson, K.; Baumann, K.; Weber, R. J.; Nenes, A.; Guo, H.; Edgerton, Eric S.; Porcelli, L.; Brune, W. H.; Goldstein, Allen H.; Lee, S.-H

    2014-11-19

    We report ambient measurements of amines and ammonia with a fast response chemical ionization mass spectrometer (CIMS) in a Southeastern U.S. forest in Alabama and a moderately polluted Midwestern site during the summer. In the Alabama forest, mostly C3-amines (from pptv to tens of pptv) and ammonia (up to 2 ppbv) were detected on a daily basis. C3-amines and ammonia showed similar diurnal trends and temperature and wind direction dependences, and were not associated with transported CO and SO2 plumes. Consistent with temperature dependences, amine and ammonia in the gas and aerosol phases showed opposite diurnal trends, indicating gas-to-particle partitioning of amines and ammonia. Temperature dependences also imply reversible processes of amines and ammonia evaporation from soil surfaces in daytime and deposition of amines and ammonia to soil surfaces at nighttime. Various amines (C1-C6) at the pptv level were observed in the transported biomass burning plumes, showing that biomass burning can be a substantial source of amines in the Southeast U.S. At the moderately polluted Kent site, higher concentrations of amines (C1-C6, from pptv to tens of pptv) and ammonia (up to 6 ppbv) were detected. Diurnal variations of C1- to C3-amines and ammonia were correlated with the ambient temperature. C4- to C6-amines showed abrupt increases during the nighttime, suggesting that they were emitted from local sources. These abundant amines and ammonia may in part explain the frequent new particle formation events r