WorldWideScience

Sample records for atmospheric pressure ionization

  1. Atmospheric pressure thermospray ionization using a heated microchip nebulizer.

    Science.gov (United States)

    Keski-Rahkonen, Pekka; Haapala, Markus; Saarela, Ville; Franssila, Sami; Kotiaho, Tapio; Kostiainen, Risto; Auriola, Seppo

    2009-10-30

    When a standard atmospheric pressure chemical ionization (APCI) or atmospheric pressure photoionization (APPI) ion source is used without applying the corona discharge or photoirradiation, atmospheric pressure thermospray ionization (APTSI) of various compounds can be achieved. Although largely ignored, this phenomenon has recently gained interest as an alternative ionization technique. In this study, this technique is performed for the first time on a miniaturized scale using a microchip nebulizer. Sample ionization with the presented microchip-APTSI (microAPTSI) is achieved by applying only heat and gas flow to a nebulizer chip, without any other methods to promote gas-phase ionization. To evaluate the performance of the described microAPTSI setup, ionization efficiency for a set of test compounds was monitored as the microchip positioning, temperature, nebulizer gas flow rate, sample solution composition, and solvent flow rate were varied. The microAPTSI mass spectra of the test compounds were also compared to those obtained with ESI and APCI. The microAPTSI produces ESI-like spectra with low background noise, favoring the formation of protonated or deprotonated molecules of compounds that are ionizable in solution. Multiple charging of peptides without in-source fragmentation was also observed. Unlike ESI, however, the microAPTSI source can tolerate the presence of mobile phase additives like trifluoroacetic acid (TFA) without significant ion suppression. The microAPTSI source can be used with standard mass spectrometer ion source hardware, being a unique alternative to the present interfacing techniques.

  2. Ionization of EPA contaminants in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

    Science.gov (United States)

    Kauppila, Tiina J; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.

  3. Acetonitrile Ion Suppression in Atmospheric Pressure Ionization Mass Spectrometry

    Science.gov (United States)

    Colizza, Kevin; Mahoney, Keira E.; Yevdokimov, Alexander V.; Smith, James L.; Oxley, Jimmie C.

    2016-11-01

    Efforts to analyze trace levels of cyclic peroxides by liquid chromatography/mass spectrometry gave evidence that acetonitrile suppressed ion formation. Further investigations extended this discovery to ketones, linear peroxides, esters, and possibly many other types of compounds, including triazole and menadione. Direct ionization suppression caused by acetonitrile was observed for multiple adduct types in both electrospray ionization and atmospheric pressure chemical ionization. The addition of only 2% acetonitrile significantly decreased the sensitivity of analyte response. Efforts to identify the mechanism were made using various nitriles. The ion suppression was reduced by substitution of an acetonitrile hydrogen with an electron-withdrawing group, but was exacerbated by electron-donating or steric groups adjacent to the nitrile. Although current theory does not explain this phenomenon, we propose that polar interactions between the various functionalities and the nitrile may be forming neutral aggregates that manifest as ionization suppression.

  4. The ionization mechanisms in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

    Science.gov (United States)

    Kauppila, Tiina J; Kersten, Hendrik; Benter, Thorsten

    2014-11-01

    A novel, gas-tight API interface for gas chromatography-mass spectrometry was used to study the ionization mechanism in direct and dopant-assisted atmospheric pressure photoionization (APPI) and atmospheric pressure laser ionization (APLI). Eight analytes (ethylbenzene, bromobenzene, naphthalene, anthracene, benzaldehyde, pyridine, quinolone, and acridine) with varying ionization energies (IEs) and proton affinities (PAs), and four common APPI dopants (toluene, acetone, anisole, and chlorobenzene) were chosen. All the studied compounds were ionized by direct APPI, forming mainly molecular ions. Addition of dopants suppressed the signal of the analytes with IEs above the IE of the dopant. For compounds with suitable IEs or Pas, the dopants increased the ionization efficiency as the analytes could be ionized through dopant-mediated gas-phase reactions, such as charge exchange, proton transfer, and other rather unexpected reactions, such as formation of [M + 77](+) in the presence of chlorobenzene. Experiments with deuterated toluene as the dopant verified that in case of proton transfer, the proton originated from the dopant instead of proton-bound solvent clusters, as in conventional open or non-tight APPI sources. In direct APLI using a 266 nm laser, a narrower range of compounds was ionized than in direct APPI, because of exceedingly high IEs or unfavorable two-photon absorption cross-sections. Introduction of dopants in the APLI system changed the ionization mechanism to similar dopant-mediated gas-phase reactions with the dopant as in APPI, which produced mainly ions of the same form as in APPI, and ionized a wider range of analytes than direct APLI.

  5. Hydrocarbon analysis using desorption atmospheric pressure chemical ionization

    KAUST Repository

    Jjunju, Fred P M

    2013-07-01

    Characterization of the various petroleum constituents (hydronaphthalenes, thiophenes, alkyl substituted benzenes, pyridines, fluorenes, and polycyclic aromatic hydrocarbons) was achieved under ambient conditions without sample preparation by desorption atmospheric pressure chemical ionization (DAPCI). Conditions were chosen for the DAPCI experiments to control whether ionization was by proton or electron transfer. The protonated molecule [M+H]+ and the hydride abstracted [MH]+ form were observed when using an inert gas, typically nitrogen, to direct a lightly ionized plasma generated by corona discharge onto the sample surface in air. The abundant water cluster ions generated in this experiment react with condensed-phase functionalized hydrocarbon model compounds and their mixtures at or near the sample surface. On the other hand, when naphthalene was doped into the DAPCI gas stream, its radical cation served as a charge exchange reagent, yielding molecular radical cations (M+) of the hydrocarbons. This mode of sample ionization provided mass spectra with better signal/noise ratios and without unwanted side-products. It also extended the applicability of DAPCI to petroleum constituents which could not be analyzed through proton transfer (e.g., higher molecular PAHs such as chrysene). The thermochemistry governing the individual ionization processes is discussed and a desorption/ionization mechanism is inferred. © 2012 Elsevier B.V.

  6. ATMOSPHERIC-PRESSURE-IONIZATION MASS-SPECTROMETRY .1. INSTRUMENTATION AND IONIZATION TECHNIQUES

    NARCIS (Netherlands)

    BRUINS, AP

    1994-01-01

    Mass spectrometer ion sources are normally located inside a high-vacuum envelope. Such low-pressure ion sources can make use of a range of different ionization methods and are in routine use in analytical mass spectrometers. An ion source operating at atmospheric pressure is better suited, and may b

  7. Transmission geometry laserspray ionization vacuum using an atmospheric pressure inlet.

    Science.gov (United States)

    Lutomski, Corinne A; El-Baba, Tarick J; Inutan, Ellen D; Manly, Cory D; Wager-Miller, James; Mackie, Ken; Trimpin, Sarah

    2014-07-01

    This represents the first report of laserspray ionization vacuum (LSIV) with operation directly from atmospheric pressure for use in mass spectrometry. Two different types of electrospray ionization source inlets were converted to LSIV sources by equipping the entrance of the atmospheric pressure inlet aperture with a customized cone that is sealed with a removable glass plate holding the matrix/analyte sample. A laser aligned in transmission geometry (at 180° relative to the inlet) ablates the matrix/analyte sample deposited on the vacuum side of the glass slide. Laser ablation from vacuum requires lower inlet temperature relative to laser ablation at atmospheric pressure. However, higher inlet temperature is required for high-mass analytes, for example, α-chymotrypsinogen (25.6 kDa). Labile compounds such as gangliosides and cardiolipins are detected in the negative ion mode directly from mouse brain tissue as intact doubly deprotonated ions. Multiple charging enhances the ion mobility spectrometry separation of ions derived from complex tissue samples.

  8. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

    Science.gov (United States)

    Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ.

  9. The updated bottom up solution applied to atmospheric pressure photoionization and electrospray ionization mass spectrometry

    Science.gov (United States)

    The Updated Bottom Up Solution (UBUS) was recently applied to atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) of triacylglycerols (TAGs). This report demonstrates that the UBUS applies equally well to atmospheric pressure photoionization (APPI) MS and to electrospray ionizatio...

  10. Gas chromatography coupled to atmospheric pressure ionization mass spectrometry (GC-API-MS): review.

    Science.gov (United States)

    Li, Du-Xin; Gan, Lin; Bronja, Amela; Schmitz, Oliver J

    2015-09-01

    Although the coupling of GC/MS with atmospheric pressure ionization (API) has been reported in 1970s, the interest in coupling GC with atmospheric pressure ion source was expanded in the last decade. The demand of a "soft" ion source for preserving highly diagnostic molecular ion is desirable, as compared to the "hard" ionization technique such as electron ionization (EI) in traditional GC/MS, which fragments the molecule in an extensive way. These API sources include atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), atmospheric pressure laser ionization (APLI), electrospray ionization (ESI) and low temperature plasma (LTP). This review discusses the advantages and drawbacks of this analytical platform. After an introduction in atmospheric pressure ionization the review gives an overview about the history and explains the mechanisms of various atmospheric pressure ionization techniques used in combination with GC such as APCI, APPI, APLI, ESI and LTP. Also new developments made in ion source geometry, ion source miniaturization and multipurpose ion source constructions are discussed and a comparison between GC-FID, GC-EI-MS and GC-API-MS shows the advantages and drawbacks of these techniques. The review ends with an overview of applications realized with GC-API-MS.

  11. Corona discharge secondary ionization of laser desorbed neutral molecules from a liquid matrix at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Turney, Kevin [Department of Chemistry, University of Florida, Gainesville, Florida 32611 (United States); Harrison, W.W. [Department of Chemistry, University of Florida, Gainesville, Florida 32611 (United States)]. E-mail: harrison@chem.ufl.edu

    2006-06-15

    Matrix assisted laser desorption/ionization (MALDI) is studied at atmospheric pressure using liquid sampling methods. A time-of-flight mass spectrometer couples to an open sample stage accessed by a UV laser for desorption and ionization. Also coupled to the sampling state is a corona discharge for auxiliary ionization of desorbed neutral molecules. The interaction of the laser desorption and corona ionization is studied for a range of desorption conditions, showing enhanced analyte ionization, but the effect is analytically advantageous only at low desorption rates. The effect of corona discharge voltage was also explored. The decoupling of neutral molecule formation and subsequent ionization provides an opportunity to study each process separately.

  12. Specific interaction between negative atmospheric ions and organic compounds in atmospheric pressure corona discharge ionization mass spectrometry.

    Science.gov (United States)

    Sekimoto, Kanako; Sakai, Mami; Takayama, Mitsuo

    2012-06-01

    The interaction between negative atmospheric ions and various types of organic compounds were investigated using atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. Atmospheric negative ions such as O(2)(-), HCO(3)(-), COO(-)(COOH), NO(2)(-), NO(3)(-), and NO(3)(-)(HNO(3)) having different proton affinities served as the reactant ions for analyte ionization in APCDI in negative-ion mode. The individual atmospheric ions specifically ionized aliphatic and aromatic compounds with various functional groups as atmospheric ion adducts and deprotonated analytes. The formation of the atmospheric ion adducts under certain discharge conditions is most likely attributable to the affinity between the analyte and atmospheric ion and the concentration of the atmospheric ion produced under these conditions. The deprotonated analytes, in contrast, were generated from the adducts of the atmospheric ions with higher proton affinity attributable to efficient proton abstraction from the analyte by the atmospheric ion. PMID:22528201

  13. Specific interaction between negative atmospheric ions and organic compounds in atmospheric pressure corona discharge ionization mass spectrometry.

    Science.gov (United States)

    Sekimoto, Kanako; Sakai, Mami; Takayama, Mitsuo

    2012-06-01

    The interaction between negative atmospheric ions and various types of organic compounds were investigated using atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. Atmospheric negative ions such as O(2)(-), HCO(3)(-), COO(-)(COOH), NO(2)(-), NO(3)(-), and NO(3)(-)(HNO(3)) having different proton affinities served as the reactant ions for analyte ionization in APCDI in negative-ion mode. The individual atmospheric ions specifically ionized aliphatic and aromatic compounds with various functional groups as atmospheric ion adducts and deprotonated analytes. The formation of the atmospheric ion adducts under certain discharge conditions is most likely attributable to the affinity between the analyte and atmospheric ion and the concentration of the atmospheric ion produced under these conditions. The deprotonated analytes, in contrast, were generated from the adducts of the atmospheric ions with higher proton affinity attributable to efficient proton abstraction from the analyte by the atmospheric ion.

  14. LC-MS analysis of estradiol in human serum and endometrial tissue: Comparison of electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization.

    Science.gov (United States)

    Keski-Rahkonen, Pekka; Huhtinen, Kaisa; Desai, Reena; Harwood, D Tim; Handelsman, David J; Poutanen, Matti; Auriola, Seppo

    2013-09-01

    Accurate measurement of estradiol (E2) is important in clinical diagnostics and research. High sensitivity methods are critical for specimens with E2 concentrations at low picomolar levels, such as serum of men, postmenopausal women and children. Achieving the required assay performance with LC-MS is challenging due to the non-polar structure and low proton affinity of E2. Previous studies suggest that ionization has a major role for the performance of E2 measurement, but comparisons of different ionization techniques for the analysis of clinical samples are not available. In this study, female serum and endometrium tissue samples were used to compare electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) in both polarities. APPI was found to have the most potential for E2 analysis, with a quantification limit of 1 fmol on-column. APCI and ESI could be employed in negative polarity, although being slightly less sensitive than APPI. In the presence of biological background, ESI was found to be highly susceptible to ion suppression, while APCI and APPI were largely unaffected by the sample matrix. Irrespective of the ionization technique, background interferences were observed when using the multiple reaction monitoring transitions commonly employed for E2 (m/z 271 > 159; m/z 255 > 145). These unidentified interferences were most severe in serum samples, varied in intensity between ionization techniques and required efficient chromatographic separation in order to achieve specificity for E2.

  15. Comparison of the sensitivity of mass spectrometry atmospheric pressure ionization techniques in the analysis of porphyrinoids.

    Science.gov (United States)

    Swider, Paweł; Lewtak, Jan P; Gryko, Daniel T; Danikiewicz, Witold

    2013-10-01

    The porphyrinoids chemistry is greatly dependent on the data obtained in mass spectrometry. For this reason, it is essential to determine the range of applicability of mass spectrometry ionization methods. In this study, the sensitivity of three different atmospheric pressure ionization techniques, electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization, was tested for several porphyrinods and their metallocomplexes. Electrospray ionization method was shown to be the best ionization technique because of its high sensitivity for derivatives of cyanocobalamin, free-base corroles and porphyrins. In the case of metallocorroles and metalloporphyrins, atmospheric pressure photoionization with dopant proved to be the most sensitive ionization method. It was also shown that for relatively acidic compounds, particularly for corroles, the negative ion mode provides better sensitivity than the positive ion mode. The results supply a lot of relevant information on the methodology of porphyrinoids analysis carried out by mass spectrometry. The information can be useful in designing future MS or liquid chromatography-MS experiments.

  16. Super-atmospheric pressure ionization mass spectrometry and its application to ultrafast online protein digestion analysis.

    Science.gov (United States)

    Chen, Lee Chuin; Ninomiya, Satoshi; Hiraoka, Kenzo

    2016-06-01

    Ion source pressure plays a significant role in the process of ionization and the subsequent ion transmission inside a mass spectrometer. Pressurizing the ion source to a gas pressure greater than atmospheric pressure is a relatively new approach that aims to further improve the performance of atmospheric pressure ionization sources. For example, under a super-atmospheric pressure environment, a stable electrospray can be sustained for liquid with high surface tension such as pure water, because of the suppression of electric discharge. Even for nano-electrospray ionization (nano-ESI), which is known to work with aqueous solution, its stability and sensitivity can also be enhanced, particularly in the negative mode when the ion source is pressurized. A brief review on the development of super-atmospheric pressure ion sources, including high-pressure electrospray, field desorption and superheated ESI, and the strategies to interface these ion sources to a mass spectrometer will be given. Using a recent ESI prototype with an operating temperature at 220 °C under 27 atm, we also demonstrate that it is possible to achieve an online Asp-specific protein digestion analysis in which the whole processes of digestion, ionization and MS acquisition could be completed on the order of a few seconds. This method is fast, and the reaction can even be monitored on a near-real-time basis. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Super-atmospheric pressure ionization mass spectrometry and its application to ultrafast online protein digestion analysis.

    Science.gov (United States)

    Chen, Lee Chuin; Ninomiya, Satoshi; Hiraoka, Kenzo

    2016-06-01

    Ion source pressure plays a significant role in the process of ionization and the subsequent ion transmission inside a mass spectrometer. Pressurizing the ion source to a gas pressure greater than atmospheric pressure is a relatively new approach that aims to further improve the performance of atmospheric pressure ionization sources. For example, under a super-atmospheric pressure environment, a stable electrospray can be sustained for liquid with high surface tension such as pure water, because of the suppression of electric discharge. Even for nano-electrospray ionization (nano-ESI), which is known to work with aqueous solution, its stability and sensitivity can also be enhanced, particularly in the negative mode when the ion source is pressurized. A brief review on the development of super-atmospheric pressure ion sources, including high-pressure electrospray, field desorption and superheated ESI, and the strategies to interface these ion sources to a mass spectrometer will be given. Using a recent ESI prototype with an operating temperature at 220 °C under 27 atm, we also demonstrate that it is possible to achieve an online Asp-specific protein digestion analysis in which the whole processes of digestion, ionization and MS acquisition could be completed on the order of a few seconds. This method is fast, and the reaction can even be monitored on a near-real-time basis. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27270863

  18. Atmospheric pressure ionization-tandem mass spectrometry of the phenicol drug family.

    Science.gov (United States)

    Alechaga, Élida; Moyano, Encarnación; Galceran, M Teresa

    2013-11-01

    In this work, the mass spectrometry behaviour of the veterinary drug family of phenicols, including chloramphenicol (CAP) and its related compounds thiamphenicol (TAP), florfenicol (FF) and FF amine (FFA), was studied. Several atmospheric pressure ionization sources, electrospray (ESI), atmospheric pressure chemical ionization and atmospheric pressure photoionization were compared. In all atmospheric pressure ionization sources, CAP, TAP and FF were ionized in both positive and negative modes; while for the metabolite FFA, only positive ionization was possible. In general, in positive mode, [M + H](+) dominated the mass spectrum for FFA, while the other compounds, CAP, TAP and FF, with lower proton affinity showed intense adducts with species present in the mobile phase. In negative mode, ESI and atmospheric pressure photoionization showed the deprotonated molecule [M-H](-), while atmospheric pressure chemical ionization provided the radical molecular ion by electron capture. All these ions were characterized by tandem mass spectrometry using the combined information obtained by multistage mass spectrometry and high-resolution mass spectrometry in a quadrupole-Orbitrap instrument. In general, the fragmentation occurred via cyclization and losses or fragmentation of the N-(alkyl)acetamide group, and common fragmentation pathways were established for this family of compounds. A new chemical structure for the product ion at m/z 257 for CAP, on the basis of the MS(3) and MS(4) spectra is proposed. Thermally assisted ESI and selected reaction monitoring are proposed for the determination of these compounds by ultra high-performance liquid chromatography coupled to tandem mass spectrometry, achieving instrumental detection limits down to 0.1 pg.

  19. Characterization of typical chemical background interferences in atmospheric pressure ionization liquid chromatography-mass spectrometry

    NARCIS (Netherlands)

    Guo, Xinghua; Bruins, Andries P.; Covey, Thomas R.

    2006-01-01

    The structures and origins of typical chemical background noise ions in positive atmospheric pressure ionization liquid chromatography/mass spectrometry (API LC/MS) are investigated and summarized in this study. This was done by classifying chemical background ions using precursor and product ion sc

  20. Real-Time Flavor Release from French Fries Using Atmospheric Pressure Chemical Ionization-Mass Spectrometry

    NARCIS (Netherlands)

    Loon, W.A.M.; Linssen, J.P.H.; Boelrijk, A.E.M.; Burgering, M.J.M.; Voragen, A.G.J.

    2005-01-01

    Flavor release from French fries was measured with atmospheric pressure chemical ionization-mass spectrometry (APCI-MS) using both assessors (in vivo) and a mouth model system (in vitro). Several volatiles measured with APCI were identified with MS-MS. The effect of frying time, salt addition, and a

  1. Medium Vacuum Electron Emitter as Soft Atmospheric Pressure Chemical Ionization Source for Organic Molecules.

    Science.gov (United States)

    Liedtke, Sascha; Ahlmann, Norman; Marggraf, Ulrich; Schütz, Alexander; Vautz, Wolfgang; Franzke, Joachim

    2016-05-01

    An electron emitter as a soft atmospheric pressure chemical ionization source is presented, which operates at inner pressures of the device in the medium vacuum range (>10(-3) hPa). Conventional nonradioactive electron emitters require high vacuum (pump-by 2% compared to high-vacuum conditions. This can be compensated with an increase of the electron source output. The functionality of this ion source is demonstrated with mass spectrometric and ion mobility measurements of acetone, eucalyptol, and diisopropyl methanephosphonate. Additional mass spectrometric measurements of 20 different organic compounds demonstrate the soft characteristics of this ionization source. PMID:27046293

  2. Measurement of the First Townsend's Ionization Coefficients in Helium, Air, and Nitrogen at Atmospheric Pressure

    Science.gov (United States)

    Ran, Junxia; Luo, Haiyun; Yue, Yang; Wang, Xinxin

    2014-07-01

    In the past the first Townsend’s ionization coefficient α could only be measured with Townsend discharge in gases at low pressure. After realizing Townsend discharge in some gases at atmospheric pressure by using dielectric barrier electrodes, we had developed a new method for measuring α coefficient at atmospheric pressure, a new optical method based on the discharge images taken with ICCD camera. With this newly developed method α coefficient in helium, nitrogen and air at atmospheric pressure were measured. The results were found to be in good agreement with the data obtained at lower pressure but same reduced field E/p by other groups. It seems that the value of α coefficient is sensitive to the purity of the working gas.

  3. The Townsend coefficient of ionization in atmospheric pressure rare gas plasma

    Science.gov (United States)

    Zvereva, G.

    2015-12-01

    In the work the influence of the processes characteristic for atmospheric pressure heavy inert gases discharge plasma on the value of the first Townsend ionization coefficient were investigated. Krypton plasma was considered. Calculations have shown that the greatest impact on the value of the first Townsend ionization coefficient has dissociative recombination of molecular ions, followed by descending influence processes occur: stepwise ionization, the electron-electron collisions and superelastic ones. The effect of these processes begins to appear at concentrations of electrons and excited particles higher than 1012 cm-3. At times shorter than the time of molecular ions formation, when dissociative recombination is absent, should expect a significant increase of the ionization coefficient.

  4. Super-atmospheric pressure ionization mass spectrometry and its application to ultrafast online protein digestion analysis.

    Science.gov (United States)

    Chen, L C; Ninomiya, S; Hiraoka, K

    2016-06-01

    Pressure is a key parameter for an ionization source. In this Special Feature article, Lee Chuin Chen and colleagues review super-atmospheric pressure ionization MS with electrospray, corona-discharge-based chemical ionization, and field desorption. They routinely run their mass spectrometer with ion source pressures ranging from several to several tens of atmospheres. A number of strategies have been used to preserve the high vacuum of the instrument while working with a high-pressure (HP) ion source. A recent prototype uses a booster pump with variable pumping speed added to the first pumping stage of the mass spectrometer to regulate a constant vacuum pressure. Further, a new HP-ESI source allowing rapid (a few seconds) online protein digestion MS is also reported. Dr. Lee Chuin Chen is Associate Professor in the Department of Interdisciplinary Research at the University of Yamanashi (Yamanashi, Japan). His main research interest is the development of novel mass spectrometric methods for in-situ medical diagnosis. PMID:27270871

  5. Choosing between atmospheric pressure chemical ionization and electrospray ionization interfaces for the HPLC/MS analysis of pesticides

    Science.gov (United States)

    Thurman, E.M.; Ferrer, I.; Barcelo, D.

    2001-01-01

    An evaluation of over 75 pesticides by high-performance liquid chromatography/mass spectrometry (HPLC/MS) clearly shows that different classes of pesticides are more sensitive using either atmospheric pressure chemical ionization (APCI) or electrospray ionization (ESI). For example, neutral and basic pesticides (phenylureas, triazines) are more sensitive using APCI (especially positive ion). While cationic and anionic herbicides (bipyridylium ions, sulfonic acids) are more sensitive using ESI (especially negative ion). These data are expressed graphically in a figure called an ionization-continuum diagram, which shows that protonation in the gas phase (proton affinity) and polarity in solution, expressed as proton addition or subtraction (pKa), is useful in selecting APCI or ESI. Furthermore, sodium adduct formation commonly occurs using positive ion ESI but not using positive ion APCI, which reflects the different mechanisms of ionization and strengthens the usefulness of the ionization-continuum diagram. The data also show that the concept of "wrong-way around" ESI (the sensitivity of acidic pesticides in an acidic mobile phase) is a useful modification of simple pKa theory for mobile-phase selection. Finally, this finding is used to enhance the chromatographic separation of oxanilic and sulfonic acid herbicides while maintaining good sensitivity in LC/MS using ESI negative.

  6. Rotation planar chromatography coupled on-line with atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Van Berkel, Gary J; Llave, Jonathan J; De Apadoca, Marilyn F; Ford, Michael J

    2004-01-15

    The coupling of a rotation planar preparative thin-layer chromatography system on-line with mass spectrometry is demonstrated using a simple plumbing scheme and a self-aspirating heated nebulizer probe of a corona discharge atmospheric pressure chemical ionization source. The self-aspiration of the heated nebulizer delivers approximately 20 microL/min of the 3.0 mL/min eluate stream to the mass spectrometer, eliminating the need for an external pump in the system. The viability of the coupling is demonstrated with a three-dye mixture composed of fat red 7B, solvent green 3, and solvent blue 35 separated and eluted from a silica gel-coated rotor using toluene. The real-time characterization of the dyes eluting from the rotor is illustrated in positive ion full-scan mode. Other self-aspirating ion source systems including atmospheric pressure photoionization, electrospray ionization, and inductively coupled plasma ionization, for example, might be configured and used in a similar manner coupled to the chromatograph to expand the types of analytes that could be ionized, detected, and characterized effectively.

  7. Atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry for complex thiophenic mixture analysis

    KAUST Repository

    Hourani, Nadim

    2013-10-01

    Rationale Polycyclic aromatic sulfur heterocycles (PASHs) are detrimental species for refining processes in petroleum industry. Current mass spectrometric Methods that determine their composition are often preceded by derivatization and dopant addition approaches. Different ionization Methods have different impact on the molecular assignment of complex PASHs. The analysis of such species under atmospheric pressure chemical ionization (APCI) is still considered limited due to uncontrolled ion generation with low- and high-mass PASHs. Methods The ionization behavior of a model mixture of five selected PASH standards was investigated using an APCI source with nitrogen as the reagent gas. A complex thiophenic fraction was separated from a vacuum gas oil (VGO) and injected using the same method. The samples were analyzed using Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). RESULTS PASH model analytes were successfully ionized and mainly [M + H]+ ions were produced. The same ionization pattern was observed for the real thiophenic sample. It was found that S1 class species were the major sulfur-containing species found in the VGO sample. These species indicated the presence of alkylated benzothiophenic (BT), dibenzothiophenic (DBT) and benzonaphthothiophenic (BNT) series that were detected by APCI-FTICR MS. CONCLUSIONS This study provides an established APCI-FTICR MS method for the analysis of complex PASHs. PASHs were detected without using any derivatization and without fragmentation. The method can be used for the analysis of S-containing crude oil samples. © 2013 John Wiley & Sons, Ltd.

  8. Asymptotic analysis of simple ionization kinetics of air flows at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Degond, Pierre [Mathematiques pour l' Industrie et la Physique, UFR MIG, Universite Paul Sabatier Toulouse 3, 118, route de Narbonne, 31 062 Toulouse cedex 4 (France); Quinio, Geraldine [Mathematiques pour l' Industrie et la Physique, UFR MIG, Universite Paul Sabatier Toulouse 3, 118, route de Narbonne, 31 062 Toulouse cedex 4 (France); Rogier, Francois [Onera centre de Toulouse, Departement Traitement de l' Information et Modelisation, 2, avenue Edouard Belin, 31055 Toulouse cedex (France)

    2005-05-07

    The purpose of this paper is to propose and analyse a simplified model for plasma generation in air flows at atmospheric pressure. The starting point is a model previously proposed by Lowke (1992 J. Phys. D: Appl. Phys. 25 202-10), enriched with a loss term which schematically takes into account the drag of the metastable and ionized species by the flow. An asymptotic analysis of this model confirmed by numerical simulations is proposed and shows that plasma generation is a two or three time scale process (depending on the electric field value). Eventually, the existence of the plasma over long time scales depends on the value of the flow velocity relative to a threshold value, which can be approximately computed analytically. A procedure for generating a plasma at atmospheric pressure in air at low energetic cost is also suggested.

  9. Characterization of the chemical composition of a block copolymer by liquid chromatography/mass spectrometry using atmospheric pressure chemical ionization and electrospray ionization

    NARCIS (Netherlands)

    Leeuwen, van Suze M.; Tan, BoonHua; Grijpma, Dirk W.; Feijen, J.; Karst, Uwe

    2007-01-01

    Liquid chromatography/mass spectrometry (LC/MS) with electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) in the positive and negative ion modes was used for the characterization of a block copolymer consisting of methoxy poly(ethylene oxide) (mPEO), an -caprolactone (CL

  10. Characterization of the chemical composition of a block copolymer by liquid chromatography/mass spectrometry using atmospheric pressure chemical ionization and electrospray ionization

    NARCIS (Netherlands)

    van Leeuwen, Suze M.; Tan, BoonHua; Grijpma, Dirk W.; Fejen, Jan; Karst, Uwe

    2007-01-01

    Liquid chromatography/mass spectrometry (LC/MS) with electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) in the positive and negative ion modes was used for the characterization of a block copolymer consisting of methoxy poly(ethylene oxide) (mPEO), an epsilon-caprolact

  11. Gas Chromatography/Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometry for Fingerprinting the Macondo Oil Spill.

    Science.gov (United States)

    Lobodin, Vladislav V; Maksimova, Ekaterina V; Rodgers, Ryan P

    2016-07-01

    We report the first application of a new mass spectrometry technique (gas chromatography combined to atmospheric pressure chemical ionization tandem mass spectrometry, GC/APCI-MS/MS) for fingerprinting a crude oil and environmental samples from the largest accidental marine oil spill in history (the Macondo oil spill, the Gulf of Mexico, 2010). The fingerprinting of the oil spill is based on a trace analysis of petroleum biomarkers (steranes, diasteranes, and pentacyclic triterpanes) naturally occurring in crude oil. GC/APCI enables soft ionization of petroleum compounds that form abundant molecular ions without (or little) fragmentation. The ability to operate the instrument simultaneously in several tandem mass spectrometry (MS/MS) modes (e.g., full scan, product ion scan, reaction monitoring) significantly improves structural information content and sensitivity of analysis. For fingerprinting the oil spill, we constructed diagrams and conducted correlation studies that measure the similarity between environmental samples and enable us to differentiate the Macondo oil spill from other sources.

  12. Atmospheric pressure chemical ionization of fluorinated phenols in atmospheric pressure chemical ionization mass spectrometry, tandem mass spectrometry, and ion mobility spectrometry

    Science.gov (United States)

    Eiceman, G. A.; Bergloff, J. F.; Rodriguez, J. E.; Munro, W.; Karpas, Z.

    1999-01-01

    Atmospheric pressure chemical ionization (APCI)-mass spectrometry (MS) for fluorinated phenols (C6H5-xFxOH Where x = 0-5) in nitrogen with Cl- as the reagent ion yielded product ions of M Cl- through ion associations or (M-H)- through proton abstractions. Proton abstraction was controllable by potentials on the orifice and first lens, suggesting that some proton abstraction occurs through collision induced dissociation (CID) in the interface region. This was proven using CID of adduct ions (M Cl-) with Q2 studies where adduct ions were dissociated to Cl- or proton abstracted to (M-H)-. The extent of proton abstraction depended upon ion energy and structure in order of calculated acidities: pentafluorophenol > tetrafluorophenol > trifluorophenol > difluorophenol. Little or no proton abstraction occurred for fluorophenol, phenol, or benzyl alcohol analogs. Ion mobility spectrometry was used to determine if proton abstraction reactions passed through an adduct intermediate with thermalized ions and mobility spectra for all chemicals were obtained from 25 to 200 degrees C. Proton abstraction from M Cl- was not observed at any temperature for phenol, monofluorophenol, or difluorophenol. Mobility spectra for trifluorophenol revealed the kinetic transformations to (M-H)- either from M Cl- or from M2 Cl- directly. Proton abstraction was the predominant reaction for tetra- and penta-fluorophenols. Consequently, the evidence suggests that proton abstraction occurs from an adduct ion where the reaction barrier is reduced with increasing acidity of the O-H bond in C6H5-xFxOH.

  13. The transfer of atmospheric-pressure ionization waves via a metal wire

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Yang; Liu, Dongping, E-mail: Dongping.liu@dlnu.edu.cn [Liaoning Key Lab of Optoelectronic Films & Materials, School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Wang, Wenchun [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Peng, Yifeng; Niu, Jinhai; Bi, Zhenhua; Ji, Longfei; Song, Ying; Wang, Xueyang; Qi, Zhihua [Liaoning Key Lab of Optoelectronic Films & Materials, School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China)

    2016-01-15

    Our study has shown that the atmospheric-pressure He ionization waves (IWs) may be transferred from one dielectric tube (tube 1) to the other one (tube 2) via a floating metal wire. The propagation of IWs along the two tubes is not affected by the diameter of a floating metal wire, however, their propagation is strongly dependent on the length of a floating metal wire. The propagation of one IW along the tube 1 may result in the second IW propagating reversely inside the tube in vicinity of a floating metal wire, which keeps from their further propagation through the tube 1. After they merge together as one conduction channel inside the tube 1, the transferred plasma bullet starts to propagate along the tube 2. The propagation of transferred plasma bullets along the tube 2 is mainly determined by the capacitance and inductance effects, and their velocity and density can be controlled by the length of a floating metal wire.

  14. The transfer of atmospheric-pressure ionization waves via a metal wire

    International Nuclear Information System (INIS)

    Our study has shown that the atmospheric-pressure He ionization waves (IWs) may be transferred from one dielectric tube (tube 1) to the other one (tube 2) via a floating metal wire. The propagation of IWs along the two tubes is not affected by the diameter of a floating metal wire, however, their propagation is strongly dependent on the length of a floating metal wire. The propagation of one IW along the tube 1 may result in the second IW propagating reversely inside the tube in vicinity of a floating metal wire, which keeps from their further propagation through the tube 1. After they merge together as one conduction channel inside the tube 1, the transferred plasma bullet starts to propagate along the tube 2. The propagation of transferred plasma bullets along the tube 2 is mainly determined by the capacitance and inductance effects, and their velocity and density can be controlled by the length of a floating metal wire

  15. Electron density and temperature measurement by continuum radiation emitted from weakly ionized atmospheric pressure plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sanghoo; Choe, Wonho, E-mail: wchoe@kaist.ac.kr [Department of Physics, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Youn Moon, Se [High-enthalpy Plasma Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 561-756 (Korea, Republic of); Park, Jaeyoung [5771 La Jolla Corona Drive, La Jolla, CA 92037 (United States)

    2014-02-24

    The electron-atom neutral bremsstrahlung continuum radiation emitted from weakly ionized plasmas is investigated for electron density and temperature diagnostics. The continuum spectrum in 450–1000 nm emitted from the argon atmospheric pressure plasma is found to be in excellent agreement with the neutral bremsstrahlung formula with the electron-atom momentum transfer cross-section given by Popović. In 280–450 nm, however, a large discrepancy between the measured and the neutral bremsstrahlung emissivities is observed. We find that without accounting for the radiative H{sub 2} dissociation continuum, the temperature, and density measurements would be largely wrong, so that it should be taken into account for accurate measurement.

  16. Collision-induced dissociation analysis of negative atmospheric ion adducts in atmospheric pressure corona discharge ionization mass spectrometry.

    Science.gov (United States)

    Sekimoto, Kanako; Takayama, Mitsuo

    2013-05-01

    Collision-induced dissociation (CID) experiments were performed on atmospheric ion adducts [M + R](-) formed between various types of organic compounds M and atmospheric negative ions R(-) [such as O2(-), HCO3(-), COO(-)(COOH), NO2(-), NO3(-), and NO3(-)(HNO3)] in negative-ion mode atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. All of the [M + R](-) adducts were fragmented to form deprotonated analytes [M - H](-) and/or atmospheric ions R(-), whose intensities in the CID spectra were dependent on the proton affinities of the [M - H](-) and R(-) fragments. Precursor ions [M + R](-) for which R(-) have higher proton affinities than [M - H](-) formed [M - H](-) as the dominant product. Furthermore, the CID of the adducts with HCO3(-) and NO3(-)(HNO3) led to other product ions such as [M + HO](-) and NO3(-), respectively. The fragmentation behavior of [M + R](-) for each R(-) observed was independent of analyte type (e.g., whether the analyte was aliphatic or aromatic, or possessed certain functional groups). PMID:23479312

  17. Collision-induced dissociation analysis of negative atmospheric ion adducts in atmospheric pressure corona discharge ionization mass spectrometry.

    Science.gov (United States)

    Sekimoto, Kanako; Takayama, Mitsuo

    2013-05-01

    Collision-induced dissociation (CID) experiments were performed on atmospheric ion adducts [M + R](-) formed between various types of organic compounds M and atmospheric negative ions R(-) [such as O2(-), HCO3(-), COO(-)(COOH), NO2(-), NO3(-), and NO3(-)(HNO3)] in negative-ion mode atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. All of the [M + R](-) adducts were fragmented to form deprotonated analytes [M - H](-) and/or atmospheric ions R(-), whose intensities in the CID spectra were dependent on the proton affinities of the [M - H](-) and R(-) fragments. Precursor ions [M + R](-) for which R(-) have higher proton affinities than [M - H](-) formed [M - H](-) as the dominant product. Furthermore, the CID of the adducts with HCO3(-) and NO3(-)(HNO3) led to other product ions such as [M + HO](-) and NO3(-), respectively. The fragmentation behavior of [M + R](-) for each R(-) observed was independent of analyte type (e.g., whether the analyte was aliphatic or aromatic, or possessed certain functional groups).

  18. Laser-Ionization TOF Mass Spectrometer Characterization of Benzene Destruction in Atmospheric Pressure Pulsed Discharge

    Institute of Scientific and Technical Information of China (English)

    LIU Jiahong; XIAO Qingmei; WANG Liping; YAO Zhi; DING Hongbin

    2009-01-01

    Benzene is.a major industrial air pollutant and can cause serious human health disorders. In this paper an investigation on benzene destruction, in an atmospheric-pressure fast-flow pulsed DC-discharge by means of laser ionization combined with time-of-flight (TOF) mass spectrometry, is reported. Most by-products including transient reactive species from the benzene discharge were characterized by molecular beam sampling combined with TOF mass spectrometry.It is showed that, with a gas mixture of 0.5% C6H6 in Ar, benzene can be effectively destroyed by discharge plasma. The intermediate species consisted of small fragments of CNHm (n=3~5,m =1~11), cycle-chain species of CNHm (n=6~9, m = 7~10) and polycyclic species CNHm (n ≥9,m = 8~12). The alternation of mass peaks (intensity) with even/odd electrons was observed in the measured mass spectra. The results indicated that the alternation is mainly due to the different ionization potentials of the open shell and close shell species. Based on the examination of the features of the species' composition, the primary reaction pathways are proposed and discussed.

  19. Gas Chromatography/Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometry for Fingerprinting the Macondo Oil Spill.

    Science.gov (United States)

    Lobodin, Vladislav V; Maksimova, Ekaterina V; Rodgers, Ryan P

    2016-07-01

    We report the first application of a new mass spectrometry technique (gas chromatography combined to atmospheric pressure chemical ionization tandem mass spectrometry, GC/APCI-MS/MS) for fingerprinting a crude oil and environmental samples from the largest accidental marine oil spill in history (the Macondo oil spill, the Gulf of Mexico, 2010). The fingerprinting of the oil spill is based on a trace analysis of petroleum biomarkers (steranes, diasteranes, and pentacyclic triterpanes) naturally occurring in crude oil. GC/APCI enables soft ionization of petroleum compounds that form abundant molecular ions without (or little) fragmentation. The ability to operate the instrument simultaneously in several tandem mass spectrometry (MS/MS) modes (e.g., full scan, product ion scan, reaction monitoring) significantly improves structural information content and sensitivity of analysis. For fingerprinting the oil spill, we constructed diagrams and conducted correlation studies that measure the similarity between environmental samples and enable us to differentiate the Macondo oil spill from other sources. PMID:27281271

  20. In-Line Reactions and Ionizations of Vaporized Diphenylchloroarsine and Diphenylcyanoarsine in Atmospheric Pressure Chemical Ionization Mass Spectrometry

    Science.gov (United States)

    Okumura, Akihiko; Takada, Yasuaki; Watanabe, Susumu; Hashimoto, Hiroaki; Ezawa, Naoya; Seto, Yasuo; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Kondo, Tomohide; Nagashima, Hisayuki; Nagoya, Tomoki

    2016-07-01

    We propose detecting a fragment ion (Ph2As+) using counter-flow introduction atmospheric pressure chemical ionization ion trap mass spectrometry for sensitive air monitoring of chemical warfare vomiting agents diphenylchloroarsine (DA) and diphenylcyanoarsine (DC). The liquid sample containing of DA, DC, and bis(diphenylarsine)oxide (BDPAO) was heated in a dry air line, and the generated vapor was mixed into the humidified air flowing through the sampling line of a mass spectrometer. Humidity effect on the air monitoring was investigated by varying the humidity of the analyzed air sample. Evidence of the in-line conversion of DA and DC to diphenylarsine hydroxide (DPAH) and then BDPAO was obtained by comparing the chronograms of various ions from the beginning of heating. Multiple-stage mass spectrometry revealed that the protonated molecule (MH+) of DA, DC, DPAH, and BDPAO could produce Ph2As+ through their in-source fragmentation. Among the signals of the ions that were investigated, the Ph2As+ signal was the most intense and increased to reach a plateau with the increased air humidity, whereas the MH+ signal of DA decreased. It was suggested that DA and DC were converted in-line into BDPAO, which was a major source of Ph2As+.

  1. Gas chromatography interfaced with atmospheric pressure ionization-quadrupole time-of-flight-mass spectrometry by low-temperature plasma ionization

    DEFF Research Database (Denmark)

    Norgaard, Asger W.; Kofoed-Sorensen, Vivi; Svensmark, Bo;

    2013-01-01

    A low temperature plasma (LTP) ionization interface between a gas chromatograph (GC) and an atmospheric pressure inlet mass spectrometer, was constructed. This enabled time-of-flight mass spectrometric detection of GC-eluting compounds. The performance of the setup was evaluated by injection...

  2. Accurate quantitation of pentaerythritol tetranitrate and its degradation products using liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry

    NARCIS (Netherlands)

    Brust, H.; Asten, A. van; Koeberg, M.; Dalmolen, J.; Heijden, A.E.D.M. van der; Schoenmakers, P.

    2014-01-01

    After an explosion of pentaerythritol tetranitrate (PETN), its degradation products pentaerythritol trinitrate (PETriN), dinitrate (PEDiN) and mononitrate (PEMN) were detected using liquid chromatography-atmospheric-pressure chemical-ionization-mass spectrometry (LC-APCI-MS). Discrimination between

  3. Secondary ionization of chemical warfare agent simulants: atmospheric pressure ion mobility time-of-flight mass spectrometry.

    Science.gov (United States)

    Steiner, Wes E; Clowers, Brian H; Haigh, Paul E; Hill, Herbert H

    2003-11-15

    For the first time, the use of a traditional ionization source for ion mobility spectrometry (radioactive nickel ((63)Ni) beta emission ionization) and three alternative ionization sources (electrospray ionization (ESI), secondary electrospray ionization (SESI), and electrical discharge (corona) ionization (CI)) were employed with an atmospheric pressure ion mobility orthogonal reflector time-of-flight mass spectrometer (IM(tof)MS) to detect chemical warfare agent (CWA) simulants from both aqueous- and gas-phase samples. For liquid-phase samples, ESI was used as the sample introduction and ionization method. For the secondary ionization (SESI, CI, and traditional (63)Ni ionization) of vapor-phase samples, two modes of sample volatilization (heated capillary and thermal desorption chamber) were investigated. Simulant reference materials, which closely mimic the characteristic chemical structures of CWA as defined and described by Schedule 1, 2, or 3 of the Chemical Warfare Convention treaty verification, were used in this study. A mixture of four G/V-type nerve simulants (dimethyl methylphosphonate, pinacolyl methylphosphonate, diethyl phosphoramidate, and 2-(butylamino)ethanethiol) and one S-type vesicant simulant (2-chloroethyl ethyl sulfide) were found in each case (sample ionization and introduction methods) to be clearly resolved using the IM(tof)MS method. In many cases, reduced mobility constants (K(o)) were determined for the first time. Ion mobility drift times, flight times, relative signal intensities, and fragmentation product signatures for each of the CWA simulants are reported for each of the methods investigated. PMID:14615983

  4. Atmospheric pressure chemical ionization of explosives using alternating current corona discharge ion source.

    Science.gov (United States)

    Usmanov, D T; Chen, L C; Yu, Z; Yamabe, S; Sakaki, S; Hiraoka, K

    2015-04-01

    The high-sensitive detection of explosives is of great importance for social security and safety. In this work, the ion source for atmospheric pressure chemical ionization/mass spectrometry using alternating current corona discharge was newly designed for the analysis of explosives. An electromolded fine capillary with 115 µm inner diameter and 12 mm long was used for the inlet of the mass spectrometer. The flow rate of air through this capillary was 41 ml/min. Stable corona discharge could be maintained with the position of the discharge needle tip as close as 1 mm to the inlet capillary without causing the arc discharge. Explosives dissolved in 0.5 µl methanol were injected to the ion source. The limits of detection for five explosives with 50 pg or lower were achieved. In the ion/molecule reactions of trinitrotoluene (TNT), the discharge products of NOx (-) (x = 2,3), O3 and HNO3 originating from plasma-excited air were suggested to contribute to the formation of [TNT - H](-) (m/z 226), [TNT - NO](-) (m/z 197) and [TNT - NO + HNO3 ](-) (m/z 260), respectively. Formation processes of these ions were traced by density functional theory calculations. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26149109

  5. Atmospheric pressure chemical ionization studies of non-polar isomeric hydrocarbons using ion mobility spectrometry and mass spectrometry with different ionization techniques

    Science.gov (United States)

    Borsdorf, H.; Nazarov, E. G.; Eiceman, G. A.

    2002-01-01

    The ionization pathways were determined for sets of isomeric non-polar hydrocarbons (structural isomers, cis/trans isomers) using ion mobility spectrometry and mass spectrometry with different techniques of atmospheric pressure chemical ionization to assess the influence of structural features on ion formation. Depending on the structural features, different ions were observed using mass spectrometry. Unsaturated hydrocarbons formed mostly [M - 1]+ and [(M - 1)2H]+ ions while mainly [M - 3]+ and [(M - 3)H2O]+ ions were found for saturated cis/trans isomers using photoionization and 63Ni ionization. These ionization methods and corona discharge ionization were used for ion mobility measurements of these compounds. Different ions were detected for compounds with different structural features. 63Ni ionization and photoionization provide comparable ions for every set of isomers. The product ions formed can be clearly attributed to the structures identified. However, differences in relative abundance of product ions were found. Although corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra detected are complex and differ from those obtained with 63Ni ionization and photoionization. c. 2002 American Society for Mass Spectrometry.

  6. On-line characterization of gaseous and particulate organic analytes using atmospheric pressure chemical ionization mass spectrometry

    International Nuclear Information System (INIS)

    A modified atmospheric pressure chemical ionization ion source is applied for direct analysis of volatile or low volatile organic compounds in air. The method is based on the direct introduction of the analytes in the gas phase and/or particle phase into the ion source of a commercial ion-trap mass spectrometer. Two methods are employed for the production of primary ions at atmospheric pressure, photoionization and corona discharge. It is shown that in the presence of a dopant, photoionization can be a highly efficient ionization method also for real-time analysis with detection limits for selected analytes in the lower ppt-range. Using corona discharge for the production of primary ions, which is instrumentally easier since no additional chemicals have to be added to the sample flow, we demonstrate the analytical potential of on-line atmospheric pressure chemical ionization mass spectrometry for reaction monitoring experiments. To do so, an atmospherically relevant gas phase reaction is carried out in a 500 l reaction chamber and gaseous and particulate compounds are monitored in the positive and negative ion mode of the mass spectrometer

  7. Quantitative determination of acetylcholine in microdialysis samples using liquid chromatography/atmospheric pressure spray ionization mass spectrometry.

    Science.gov (United States)

    Keski-Rahkonen, Pekka; Lehtonen, Marko; Ihalainen, Jouni; Sarajärvi, Timo; Auriola, Seppo

    2007-01-01

    A fast, simple and sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed for the determination of acetylcholine in rat brain microdialysis samples. The chromatographic separation was achieved in 3 min on a reversed-phase column with isocratic conditions using a mobile phase containing 2% (v/v) of acetonitrile and 0.05% (v/v) of trifluoroacetic acid (TFA). A stable isotope-labeled internal standard was included in the analysis and detection was carried out with a linear ion trap mass spectrometer using selected reaction monitoring (SRM). Analyte ionization was performed with an atmospheric pressure chemical ionization (APCI) source without applying discharge current (atmospheric pressure spray ionization). This special ionization technique offered significant advantages over electrospray ionization for the analysis of acetylcholine with reversed-phase ion-pairing chromatography. The lower limit of quantification was 0.15 nM (1.5 fmol on-column) and linearity was maintained over the range of 0.15-73 nM, providing a concentration range that is significantly wider than that of the existing LC/MS methods. Good accuracy and precision were obtained for concentrations within the standard curve range. The method was validated and has been used extensively for the determination of acetylcholine in rat brain microdialysis samples.

  8. Supercritical fluid chromatography coupled with in-source atmospheric pressure ionization hydrogen/deuterium exchange mass spectrometry for compound speciation.

    Science.gov (United States)

    Cho, Yunju; Choi, Man-Ho; Kim, Byungjoo; Kim, Sunghwan

    2016-04-29

    An experimental setup for the speciation of compounds by hydrogen/deuterium exchange (HDX) with atmospheric pressure ionization while performing chromatographic separation is presented. The proposed experimental setup combines the high performance supercritical fluid chromatography (SFC) system that can be readily used as an inlet for mass spectrometry (MS) and atmospheric pressure photo ionization (APPI) or atmospheric pressure chemical ionization (APCI) HDX. This combination overcomes the limitation of an approach using conventional liquid chromatography (LC) by minimizing the amount of deuterium solvents used for separation. In the SFC separation, supercritical CO2 was used as a major component of the mobile phase, and methanol was used as a minor co-solvent. By using deuterated methanol (CH3OD), AP HDX was achieved during SFC separation. To prove the concept, thirty one nitrogen- and/or oxygen-containing standard compounds were analyzed by SFC-AP HDX MS. The compounds were successfully speciated from the obtained SFC-MS spectra. The exchange ions were observed with as low as 1% of CH3OD in the mobile phase, and separation could be performed within approximately 20min using approximately 0.24 mL of CH3OD. The results showed that SFC separation and APPI/APCI HDX could be successfully performed using the suggested method.

  9. Production and Utilization of CO3- Produced by a Corona Discharge in Air for Atmospheric Pressure Chemical Ionization

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Robert G.; Waltman, Melanie J.

    2010-12-14

    Atmospheric pressure chemical ionization is a multistep ionization process used in mass spectrometry and ion mobility spectrometry. The formation of product ions depends upon interactions with the analyte and the reactant ion species formed in the ionization source. The predominant reactant ion observed in a point-to-plane corona discharge in air occurs at m/z 60. There have been multiple references in the literature to the identity of this ion with some disagreement. It was postulated to be either CO3- or N2O2-. The identity of this ion is important as it is a key to the ionization of analytes. It was determined here to be CO3- through the use of 18O labeled oxygen. Further confirmation was provided through MS/MS studies. The ionization of nitroglycerine (NG) with CO3- produced the adduct NG•CO3-. This was compared to ionization with NO3- and Cl- reactant ions that also formed adducts with NG. The fragmentation patterns of these three adducts provides insight into the charge distribution and indicates that CO3- has a relatively high electron affinity similar to that of nitrate.

  10. Atmospheric pressure photoionisation : An ionization method for liquid chromatography-mass spectrometry

    NARCIS (Netherlands)

    Robb, DB; Covey, TR; Bruins, AP

    2000-01-01

    Atmospheric pressure photoionization (APPI) has been successfully demonstrated to provide high sensitivity to LC-MS analysis. A vacuum-ultraviolet lamp designed for photoionization detection in gas chromatography is used as a source of 10-eV photons. The mixture of samples and solvent eluting from a

  11. Atmospheric pressure ionization waves propagating through a flexible high aspect ratio capillary channel and impinging upon a target

    International Nuclear Information System (INIS)

    Atmospheric pressure ionization waves (IWs) propagating in flexible capillary tubes are a unique way of transporting a plasma and its active species to remote sites for applications such as biomedical procedures, particularly in endoscopic procedures. The propagation mechanisms for such IWs in tubes having aspect ratios of hundreds to thousands are not clear. In this paper, results are discussed from a numerical investigation of the fundamental properties of ionization waves generated by nanosecond voltage pulses inside a 15 cm long, 600 µm wide (aspect ratio 250), flexible dielectric channel. The channel, filled with a Ne/Xe = 99.9/0.1 gas mixture at 1 atm, empties into a small chamber separated from a target substrate by 1 cm. The IWs propagate through the entire length of the channel while maintaining similar strength and magnitude. Upon exiting the channel into the chamber, the IW induces a second streamer discharge at the channel–chamber junction. This streamer then propagates across the chamber and impinges upon the target. The average speeds of the capillary-bounded IW are about 5 × 107 cm s−1 and 1 × 108 cm s−1 for positive and negative polarities, respectively. The propagation speed is sensitive to the curvature of the channel. In both cases, the peak in ionization tends to be located along the channel walls and alternates from side-to-side depending on the direction of the local instantaneous electric field and curvature of the channel. The ionization region following the IW extends up to several centimeters inside the channel, as opposed to being highly localized at the ionization front in unconstrained, atmospheric pressure IWs. The maximum speed of the IW in the chamber is about twice that in the channel. (paper)

  12. Benzylammonium Thermometer Ions: Internal Energies of Ions Formed by Low Temperature Plasma and Atmospheric Pressure Chemical Ionization

    Science.gov (United States)

    Stephens, Edward R.; Dumlao, Morphy; Xiao, Dan; Zhang, Daming; Donald, William A.

    2015-12-01

    The extent of internal energy deposition upon ion formation by low temperature plasma and atmospheric pressure chemical ionization was investigated using novel benzylammonium thermometer ions. C-N heterolytic bond dissociation enthalpies of nine 4-substituted benzylammoniums were calculated using CAM-B3LYP/6-311++G(d,p), which was significantly more accurate than B3LYP/6-311++G(d,p), MP2/6-311++G(d,p), and CBS-QB3 for calculating the enthalpies of 20 heterolytic dissociation reactions that were used to benchmark theory. All 4-substituted benzylammonium thermometer ions fragmented by a single pathway with comparable dissociation entropies, except 4-nitrobenzylammonium. Overall, the extent of energy deposition into ions formed by low temperature plasma was significantly lower than those formed by atmospheric pressure chemical ionization under these conditions. Because benzylamines are volatile, this new suite of thermometer ions should be useful for investigating the extent of internal energy deposition during ion formation for a wide range of ionization methods, including plasma, spray and laser desorption-based techniques.

  13. Benzylammonium Thermometer Ions: Internal Energies of Ions Formed by Low Temperature Plasma and Atmospheric Pressure Chemical Ionization.

    Science.gov (United States)

    Stephens, Edward R; Dumlao, Morphy; Xiao, Dan; Zhang, Daming; Donald, William A

    2015-12-01

    The extent of internal energy deposition upon ion formation by low temperature plasma and atmospheric pressure chemical ionization was investigated using novel benzylammonium thermometer ions. C-N heterolytic bond dissociation enthalpies of nine 4-substituted benzylammoniums were calculated using CAM-B3LYP/6-311++G(d,p), which was significantly more accurate than B3LYP/6-311++G(d,p), MP2/6-311++G(d,p), and CBS-QB3 for calculating the enthalpies of 20 heterolytic dissociation reactions that were used to benchmark theory. All 4-substituted benzylammonium thermometer ions fragmented by a single pathway with comparable dissociation entropies, except 4-nitrobenzylammonium. Overall, the extent of energy deposition into ions formed by low temperature plasma was significantly lower than those formed by atmospheric pressure chemical ionization under these conditions. Because benzylamines are volatile, this new suite of thermometer ions should be useful for investigating the extent of internal energy deposition during ion formation for a wide range of ionization methods, including plasma, spray and laser desorption-based techniques. Graphical Abstract ᅟ.

  14. Standing striations due to ionization instability in atmospheric pressure He/H2O radio frequency capacitive discharges

    Science.gov (United States)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.

    2016-10-01

    One-dimensional particle-in-cell (PIC) simulations of a narrow gap atmospheric pressure He/2%{{\\text{H}}2}\\text{O} radio frequency capacitive discharge showed standing striations in the bulk plasma region while previously conducted PIC simulations of a narrow gap atmospheric pressure He/0.1%{{\\text{N}}2} discharges [1] showed no such instabilities. We successively modified the base He/{{\\text{H}}2}\\text{O} chemistry to make it more similar to the He/{{\\text{N}}2} chemistry in order to determine the cause of the striations. Setting the e–{{\\text{H}}2}\\text{O} scattering, attachment, vibrational and rotational excitation rates to zero did not suppress the striations. However, a systematic reduction of the e–ion recombination cross section resulted in a transition to a stable state with no striations. The results are interpreted in terms of a model in which the balance between bulk direct ionization and bulk recombination loss determines the bulk plasma equilibrium. Perturbing the equilibrium, we find that the striations are consistent with an ionization instability induced by non-local electron kinetics that form a spatially-varying high energy tail of the electron energy distribution, causing the ionization rate coefficient to decrease with increasing electron temperature T e and root-mean-square electric field E in the instability regime.

  15. Potential of gas chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry for screening and quantification of hexabromocyclododecane.

    Science.gov (United States)

    Sales, Carlos; Portolés, Tania; Sancho, Juan Vicente; Abad, Esteban; Ábalos, Manuela; Sauló, Jordi; Fiedler, Heidelore; Gómara, Belén; Beltrán, Joaquim

    2016-01-01

    A fast method for the screening and quantification of hexabromocyclododecane (sum of all isomers) by gas chromatography using a triple quadrupole mass spectrometer with atmospheric pressure chemical ionization (GC-APCI-QqQ) is proposed. This novel procedure makes use of the soft atmospheric pressure chemical ionization source, which results in less fragmentation of the analyte than by conventional electron impact (EI) and chemical ionization (CI) sources, favoring the formation of the [M - Br](+) ion and, thus, enhancing sensitivity and selectivity. Detection was based on the consecutive loses of HBr from the [M - Br](+) ion to form the specific [M - H5Br6](+) and [M - H4Br5](+) ions, which were selected as quantitation (Q) and qualification (q) transitions, respectively. Parameters affecting ionization and MS/MS detection were studied. Method performance was also evaluated; calibration curves were found linear from 1 pg/μL to 100 pg/μL for the total HBCD concentration; instrumental detection limit was estimated to be 0.10 pg/μL; repeatability and reproducibility, expressed as relative standard deviation, were better than 7% in both cases. The application to different real samples [polyurethane foam disks (PUFs), food, and marine samples] pointed out a rapid way to identify and allow quantification of this compound together with a number of polybrominated diphenyl ethers (BDE congeners 28, 47, 66, 85, 99, 100, 153, 154, 183, 184, 191, 196, 197, and 209) and two other novel brominated flame retardants [i.e., decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE)] because of their presence in the same fraction when performing the usual sample treatment. PMID:26554601

  16. Potential of gas chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry for screening and quantification of hexabromocyclododecane.

    Science.gov (United States)

    Sales, Carlos; Portolés, Tania; Sancho, Juan Vicente; Abad, Esteban; Ábalos, Manuela; Sauló, Jordi; Fiedler, Heidelore; Gómara, Belén; Beltrán, Joaquim

    2016-01-01

    A fast method for the screening and quantification of hexabromocyclododecane (sum of all isomers) by gas chromatography using a triple quadrupole mass spectrometer with atmospheric pressure chemical ionization (GC-APCI-QqQ) is proposed. This novel procedure makes use of the soft atmospheric pressure chemical ionization source, which results in less fragmentation of the analyte than by conventional electron impact (EI) and chemical ionization (CI) sources, favoring the formation of the [M - Br](+) ion and, thus, enhancing sensitivity and selectivity. Detection was based on the consecutive loses of HBr from the [M - Br](+) ion to form the specific [M - H5Br6](+) and [M - H4Br5](+) ions, which were selected as quantitation (Q) and qualification (q) transitions, respectively. Parameters affecting ionization and MS/MS detection were studied. Method performance was also evaluated; calibration curves were found linear from 1 pg/μL to 100 pg/μL for the total HBCD concentration; instrumental detection limit was estimated to be 0.10 pg/μL; repeatability and reproducibility, expressed as relative standard deviation, were better than 7% in both cases. The application to different real samples [polyurethane foam disks (PUFs), food, and marine samples] pointed out a rapid way to identify and allow quantification of this compound together with a number of polybrominated diphenyl ethers (BDE congeners 28, 47, 66, 85, 99, 100, 153, 154, 183, 184, 191, 196, 197, and 209) and two other novel brominated flame retardants [i.e., decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE)] because of their presence in the same fraction when performing the usual sample treatment.

  17. Influence of field emission on the propagation of cylindrical fast ionization wave in atmospheric-pressure nitrogen

    Science.gov (United States)

    Levko, Dmitry; Raja, Laxminarayan L.

    2016-04-01

    The influence of field emission of electrons from surfaces on the fast ionization wave (FIW) propagation in high-voltage nanosecond pulse discharge in the atmospheric-pressure nitrogen is studied by a one-dimensional Particle-in-Cell Monte Carlo Collisions model. A strong influence of field emission on the FIW dynamics and plasma parameters is obtained. Namely, the accounting for the field emission makes possible the bridging of the cathode-anode gap by rather dense plasma (˜1013 cm-3) in less than 1 ns. This is explained by the generation of runaway electrons from the field emitted electrons. These electrons are able to cross the entire gap pre-ionizing it and promoting the ionization wave propagation. We have found that the propagation of runaway electrons through the gap cannot be accompanied by the streamer propagation, because the runaway electrons align the plasma density gradients. In addition, we have obtained that the field enhancement factor allows controlling the speed of ionization wave propagation.

  18. Use of electron ionization and atmospheric pressure chemical ionization in gas chromatography coupled to time-of-flight mass spetrometry for screening and identification of organic pollutants in waters

    NARCIS (Netherlands)

    Portoles, T.; Mol, J.G.J.; Sancho, J.V.; Hernandez, F.

    2014-01-01

    A new approach has been developed for multiclass screening of organic contaminants in water based on the use of gas chromatography coupled to hybrid quadrupole high-resolution time-of-flight mass spectrometry with atmospheric pressure chemical ionization (GC–(APCI)QTOF MS). The soft ionization promo

  19. Desorption electrospray ionization (DESI) with atmospheric pressure ion mobility spectrometry for drug detection.

    Science.gov (United States)

    Roscioli, Kristyn M; Tufariello, Jessica A; Zhang, Xing; Li, Shelly X; Goetz, Gilles H; Cheng, Guilong; Siems, William F; Hill, Herbert H

    2014-04-01

    Desorption electrospray ionization (DESI) was coupled to an ambient pressure drift tube ion mobility time-of-flight mass spectrometer (IM-TOFMS) for the direct analysis of active ingredients in pharmaceutical samples. The DESI source was also coupled with a standalone IMS demonstrating potential of portable and inexpensive drug-quality testing platforms. The DESI-IMS required no sample pretreatment as ions were generated directly from tablets and cream formulations. The analysis of a range of over-the-counter and prescription tablet formations was demonstrated for amphetamine (methylphenidate), antidepressant (venlafaxine), barbiturate (Barbituric acid), depressant (alprazolam), narcotic (3-methylmorphine) and sympatholytic (propranolol) drugs. Active ingredients from soft and liquid formulations, such as Icy Hot cream (methyl salicylate) and Nyquil cold medicine (acetaminophen, dextromethorphan, doxylamine) were also detected. Increased sensitivity for selective drug responses was demonstrated through the formation of sodiated adduct ions by introducing small quantities of NaCl into the DESI solvent. Of the drugs and pharmaceuticals tested in this study, 68% (22 total samples) provided a clear ion mobility response at characteristic mobilities either as (M + H)(+), (M - H)(-), or (M + Na)(+) ions.

  20. A corona discharge atmospheric pressure chemical ionization source with selective NO(+) formation and its application for monoaromatic VOC detection.

    Science.gov (United States)

    Sabo, Martin; Matejčík, Štefan

    2013-11-21

    We have developed a new type of corona discharge (CD) for atmospheric pressure chemical ionization (APCI) for application in ion mobility spectrometry (IMS) as well as in mass spectrometry (MS). While the other CD-APCI sources are able to generate H3O(+)·(H2O)n as the major reactant ions in N2 or in zero air, the present CD-APCI source has the ability to generate up to 84% NO(+)·(H2O)n reactant ions in zero air. The change of the working gas from zero air to N2 allows us to change the major reactant ions from NO(+)·(H2O)n to H3O(+)·(H2O)n. In this paper we present the description of the new CD-APCI and discuss the processes associated with the NO(+) formation. The selective formation of NO(+)·(H2O)n reactant ions offers chemical ionization based on these ions which can be of great advantage for some classes of chemicals. We demonstrate here a significant increase in the sensitivity of the IMS-MS instrument for monoaromatic volatile organic compound (VOC) detection upon NO(+)·(H2O)n chemical ionization. PMID:24081306

  1. Athabasca oil sands process water: characterization by atmospheric pressure photoionization and electrospray ionization fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Barrow, Mark P; Witt, Matthias; Headley, John V; Peru, Kerry M

    2010-05-01

    The Athabasca oil sands in Canada are a less conventional source of oil which have seen rapid development. There are concerns about the environmental impact, with particular respect to components in oil sands process water which may enter the aquatic ecosystem. Naphthenic acids have been previously targeted for study, due to their implications in toxicity toward aquatic wildlife, but it is believed that other components, too, contribute toward the potential toxicity of the oil sands process water. When mass spectrometry is used, it is necessary to use instrumentation with a high resolving power and mass accuracy when studying complex mixtures, but the technique has previously been hindered by the range of compounds that have been accessible via common ionization techniques, such as electrospray ionization. The research described here applied Fourier transform ion cyclotron resonance mass spectrometry in conjunction with electrospray ionization and atmospheric pressure photoionization, in both positive-ion and negative-ion modes, to the characterization of oil sands process water for the first time. The results highlight the need for broader characterization when investigating toxic components within oil sands process water. PMID:20359201

  2. SFC-APLI-(TOF)MS: Hyphenation of Supercritical Fluid Chromatography to Atmospheric Pressure Laser Ionization Mass Spectrometry.

    Science.gov (United States)

    Klink, Dennis; Schmitz, Oliver Johannes

    2016-01-01

    Atmospheric-pressure laser ionization mass spectrometry (APLI-MS) is a powerful method for the analysis of polycyclic aromatic hydrocarbon (PAH) molecules, which are ionized in a selective and highly sensitive way via resonance-enhanced multiphoton ionization. APLI was presented in 2005 and has been hyphenated successfully to chromatographic separation techniques like high performance liquid chromatography (HPLC) and gas chromatography (GC). In order to expand the portfolio of chromatographic couplings to APLI, a new hyphenation setup of APLI and supercritical-fluid chromatography (SFC) was constructed and aim of this work. Here, we demonstrate the first hyphenation of SFC and APLI in a simple designed way with respect to different optimization steps to ensure a sensitive analysis. The new setup permits qualitative and quantitative determination of native and also more polar PAH molecules. As a result of the altered ambient characteristics within the source enclosure, the quantification of 1-hydroxypyrene (1-HP) in human urine is possible without prior derivatization. The limit of detection for 1-HP by SFC-APLI-TOF(MS) was found to be 0.5 μg L(-1), which is lower than the 1-HP concentrations found in exposed persons. PMID:26633261

  3. Comparative analysis of different plant oils by high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Jakab, Annamaria; Héberger, Károly; Forgács, Esther

    2002-11-01

    Different vegetable oil samples (almond, avocado, corngerm, grapeseed, linseed, olive, peanut, pumpkin seed, soybean, sunflower, walnut, wheatgerm) were analyzed using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. A gradient elution technique was applied using acetone-acetonitrile eluent systems on an ODS column (Purospher, RP-18e, 125 x 4 mm, 5 microm). Identification of triacylglycerols (TAGs) was based on the pseudomolecular ion [M+1]+ and the diacylglycerol fragments. The positional isomers of triacylglycerol were identified from the relative intensities of the [M-RCO2]+ fragments. Linear discriminant analysis (LDA) as a common multivariate mathematical-statistical calculation was successfully used to distinguish the oils based on their TAG composition. LDA showed that 97.6% of the samples were classified correctly.

  4. Comparative analysis of different plant oils by high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Jakab, Annamaria; Héberger, Károly; Forgács, Esther

    2002-11-01

    Different vegetable oil samples (almond, avocado, corngerm, grapeseed, linseed, olive, peanut, pumpkin seed, soybean, sunflower, walnut, wheatgerm) were analyzed using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. A gradient elution technique was applied using acetone-acetonitrile eluent systems on an ODS column (Purospher, RP-18e, 125 x 4 mm, 5 microm). Identification of triacylglycerols (TAGs) was based on the pseudomolecular ion [M+1]+ and the diacylglycerol fragments. The positional isomers of triacylglycerol were identified from the relative intensities of the [M-RCO2]+ fragments. Linear discriminant analysis (LDA) as a common multivariate mathematical-statistical calculation was successfully used to distinguish the oils based on their TAG composition. LDA showed that 97.6% of the samples were classified correctly. PMID:12462617

  5. Atmospheric Pressure Chemical Ionization Sources Used in The Detection of Explosives by Ion Mobility Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Waltman, Melanie J. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    2010-05-01

    Explosives detection is a necessary and wide spread field of research. From large shipping containers to airline luggage, numerous items are tested for explosives every day. In the area of trace explosives detection, ion mobility spectrometry (IMS) is the technique employed most often because it is a quick, simple, and accurate way to test many items in a short amount of time. Detection by IMS is based on the difference in drift times of product ions through the drift region of an IMS instrument. The product ions are created when the explosive compounds, introduced to the instrument, are chemically ionized through interactions with the reactant ions. The identity of the reactant ions determines the outcomes of the ionization process. This research investigated the reactant ions created by various ionization sources and looked into ways to manipulate the chemistry occurring in the sources.

  6. Desorption/ionization of biomolecules from aqueous solutions at atmospheric pressure using an infrared laser at 3 microm.

    Science.gov (United States)

    Laiko, Victor V; Taranenko, Nelli I; Berkout, Vadym D; Yakshin, Mikhail A; Prasad, Coorg R; Lee, H Sang; Doroshenko, Vladimir M

    2002-04-01

    A new atmospheric pressure (AP) infrared (IR) matrix-assisted laser desorption/ionization (MALDI) ion source was developed and interfaced with a Thermo Finnigan LCQ ion trap mass spectrometer. The source utilized a miniature all-solid-state optical parametric oscillator (OPO)-based IR laser system tunable in the lambda = 1.5-4 microm spectral range and a nitrogen ultraviolet (UV) laser (lambda = 337 nm) for use in comparative studies. The system demonstrated comparable performance at 3 microm and 337 nm wavelengths if UV matrices were used. However, AP IR-MALDI using a 3 microm wavelength showed good performance with a much broader choice of matrices including glycerol and liquid water. AP IR-MALDI mass spectra of peptides in the mass range up to 2000 Da were obtained directly from aqueous solutions at atmospheric conditions for the first time. A potential use of the new AP IR-MALDI ion source includes direct MS analysis of biological cells and tissues in a normal atmospheric environment as well as on-line coupling of mass spectrometers with liquid separation techniques. PMID:11951973

  7. Planar differential mobility spectrometer as a pre-filter for atmospheric pressure ionization mass spectrometry.

    Science.gov (United States)

    Schneider, Bradley B; Covey, Thomas R; Coy, Stephen L; Krylov, Evgeny V; Nazarov, Erkinjon G

    2010-12-01

    Ion filters based on planar DMS can be integrated with the inlet configuration of most mass spectrometers, and are able to enhance the quality of mass analysis and quantitative accuracy by reducing chemical noise, and by pre-separating ions of similar mass. This paper is the first in a series of three papers describing the optimization of DMS / MS instrumentation. In this paper the important physical parameters of a planar DMS-MS interface including analyzer geometry, analyzer coupling to a mass spectrometer, and transport gas flow control are considered. The goal is to optimize ion transmission and transport efficiency, provide optimal and adjustable resolution, and produce stable operation under conditions of high sample contamination. We discuss the principles of DMS separations and highlight the theoretical underpinnings. The main differences between planar and cylindrical geometries are presented, including a discussion of the advantages and disadvantages of RF ion focusing. In addition, we present a description of optimization of the frequency and amplitude of the DMS fields for resolution and ion transmission, and a discussion of the influence and importance of ion residence time in DMS. We have constructed a mass spectrometer interface for planar geometries that takes advantage of atmospheric pressure gas dynamic principles, rather than ion focusing, to minimize ion losses from diffusion in the analyzer and to maximize total ion transport into the mass spectrometer. A variety of experimental results has been obtained that illustrate the performance of this type of interface, including tests of resistance to high contamination levels, and the separation of stereoisomers. In a subsequent publication the control of the chemical interactions that drive the separation process of a DMS / MS system will be considered. In a third publication we describe novel electronics designed to provide the high voltages asymmetric waveform fields (SV) required for these

  8. Trace determination of 13 haloacetamides in drinking water using liquid chromatography triple quadrupole mass spectrometry with atmospheric pressure chemical ionization.

    Science.gov (United States)

    Chu, Wenhai; Gao, Naiyun; Yin, Daqiang; Krasner, Stuart W; Templeton, Michael R

    2012-04-27

    The haloacetamides (HAcAms) are disinfection by-products (DBPs) in drinking water which are currently receiving increased scientific attention due to their elevated toxicity relative to regulated disinfection by-products. A simultaneous determination method of 13 HAcAms, combining solid-phase extraction (SPE) enrichment, liquid chromatographic (LC) separation, and triple quadrupole mass spectrometry (tqMS) detection with atmospheric pressure chemical ionization (APCI) using selective reaction monitoring in positive mode, was developed to measure HAcAms, including chlorinated, brominated, and iodinated analogs. Ammonium chloride and Oasis HLB were selected as the dechlorinating reagent and polymeric SPE sorbent of HAcAm samples. The used tqMS apparatus showed higher sensitivity for the studied HAcAms in the APCI mode than electrospray ionization. 13 HAcAms were separated by LC in 9.0 min, and the detection limits ranged from 7.6 to 19.7 ng/L. The SPE-LC/tqMS method was successfully applied to quantify 13 HAcAms in drinking water samples for the first time, and first indentified tribromoacetamide and chloroiodoacetamide as DBPs in drinking water.

  9. Gas Chromatography Coupled to Atmospheric Pressure Chemical Ionization FT-ICR Mass Spectrometry for Improvement of Data Reliability.

    Science.gov (United States)

    Schwemer, Theo; Rüger, Christopher P; Sklorz, Martin; Zimmermann, Ralf

    2015-12-15

    Atmospheric pressure chemical ionization (APCI) offers the advantage of molecular ion information with low fragmentation. Hyphenating APCI to gas chromatography (GC) and ultrahigh resolution mass spectrometry (FT-ICR MS) enables an improved characterization of complex mixtures. Data amounts acquired by this system are very huge, and existing peak picking algorithms are usually extremely time-consuming, if both gas chromatographic and ultrahigh resolution mass spectrometric data are concerned. Therefore, automatic routines are developed that are capable of handling these data sets and further allow the identification and removal of known ionization artifacts (e.g., water- and oxygen-adducts, demethylation, dehydrogenation, and decarboxylation). Furthermore, the data quality is enhanced by the prediction of an estimated retention index, which is calculated simply from exact mass data combined with a double bond equivalent correction. This retention index is used to identify mismatched elemental compositions. The approach was successfully tested for analysis of semivolatile components in heavy fuel oil and diesel fuel as well as primary combustion particles emitted by a ship diesel research engine. As a result, 10-28% of the detected compounds, mainly low abundant species, classically assigned by using only the mass spectrometric information, were identified as not valid and removed. Although GC separation is limited by the slow acquisition rate of the FT-ICR MS (information.

  10. Analysis of psychoactive cathinones and tryptamines by electrospray ionization atmospheric pressure ion mobility time-of-flight mass spectrometry.

    Science.gov (United States)

    Kanu, A Bakarr; Brandt, Simon D; Williams, Mike D; Zhang, Nancy; Hill, Herbert H

    2013-09-17

    The ability to use positive ion monitoring mode with an atmospheric pressure ion mobility time-of-flight mass spectrometer (APIM(tof)MS) to detect psychoactive cathinones and tryptamines from aqueous phase samples was evaluated. The study used a traditional electrospray ionization (ESI) source for sample introduction and ionization. A total of four cathinones (mephedrone, butylone, 4-Me-PPP, and 4-MEC) and five tryptamines (5-EtO-DPT, 5-EtO-DALT, 5-EtO-MIPT, 5-EtO-ALCHT, and 5-EtO-2MALET) were investigated, and we report on parent ions, collision induced dissociation (CID) fragment ions, reduced mobility (Ko), mass flight times, and detection limits obtained from a single instrument run for the psychoactive substances. Detection limits reported ranged from 3 to 11 μM concentration for the compounds studied. This detection limit range corresponded to 1-5 ng of material needed for improved detection on the instrument. This article demonstrates that it was possible to use a single instrument platform for the separation, detection, and identification of cathinones and tryptamines in less than 1 min. The application holds great promise for detecting and identifying a new class of drugs often referred to as "bath salts" or "legal highs" distributed over the Internet. PMID:23875808

  11. Study of atmospheric pressure weakly ionized plasma as surface compatibilization technique for improved plastic composites loaded with cellulose based fillers

    Science.gov (United States)

    Lekobou, William Pimakouon

    Atmospheric pressure plasmas have gained considerable interest from researchers recently for their unique prospective of engineering surfaces with plasma without the need of vacuum systems. They offer the advantage of low energy consumption, minimal capital cost and their simplicity as compared to conventional low pressure plasmas make them easy to upscale from laboratory to industry size. The present dissertation summarizes results of our attempt at applying atmospheric pressure weakly ionized plasma (APWIP) to the engineering of plastic composites filled with cellulose based substrates. An APWIP reactor was designed and built based on a multipoint-to-grounded ring and screen configurations. The carrier gas was argon and acetylene serves as the precursor molecule. The APWIP reactors showed capability of depositing plasma polymerized coating rich in carbon on substrates positioned within the electrode gap as well as downstream of the plasma discharge into the afterglow region. Our findings show that films grow by forming islands which for prolonged deposition time grow into thin films showing nodules, aggregates of nodules and microspheres. They also show chemical structure similar to films deposited from hydrocarbons with other conventional plasma techniques. The plasma polymerized deposits were used on substrates to modify their surface properties. Results show the surface of wood veneer and wood flour can be finely tuned from hydrophilic to hydrophobic. It was achieved by altering the topography of the surfaces along with their chemical composition. The wettability of wood veneer was investigated with contact angle measurements on capacitive drops and the capillary effect was utilized to assess surface properties of wood flour exposed to the discharges.

  12. Development of an ion mobility spectrometer for use in an atmospheric pressure ionization ion mobility spectrometer/mass spectrometer instrument for fast screening analysis

    NARCIS (Netherlands)

    Sysoev, A; Adamov, A; Vildanoja, J; Ketoja, RA; Kostiainen, R; Kotiaho, T

    2004-01-01

    An ion mobility spectrometer that can easily be installed as an intermediate component between a commercial triple-quadrupole mass spectrometer and its original atmospheric pressure ionization (API) sources was developed. The curtain gas from the mass spectrometer is also used as the ion mobility sp

  13. Application of gas chromatography–(triple quadrupole) massspectrometry with atmospheric pressure chemical ionization for thedetermination of multiclass pesticides in fruits and vegetables

    NARCIS (Netherlands)

    Cherta, L.; Portoles, T.; Beltran, J.; Pitarch, E.; Mol, J.G.J.; Hernandez, F.

    2013-01-01

    A multi-residue method for the determination of 142 pesticide residues in fruits and vegetables has been developed using a new atmospheric pressure chemical ionization (APCI) source for coupling gas chromatography (GC) to tandem mass spectrometry (MS). Selected reaction monitoring (SRM) mode has bee

  14. Development of a method for quantitation of retinol and retinyl palmitate in human serum using high-performance liquid chromatography atmospheric pressure chemical ionization mass spectrometry.

    NARCIS (Netherlands)

    Breemen, van R.B.; Nikolic, D.; Xu, X.Y.; Xiong, Y.S.; Lieshout, van M.; West, C.E.; Schilling, A.B.

    1998-01-01

    A method for the quantitative analysis of the vitamin A compounds all-trans-retinol and all-trans-retinyl palmitate was developed using high-performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (APCI-LC-MS). Unlike previous quantitative mass spectrometric meth

  15. Identification and quantification of flavonoids in human urine samples by column switching liquid chromatography coupled to atmospheric pressure chemical ionization mass spectrometry

    DEFF Research Database (Denmark)

    Nielsen, S. E.; Freese, R.; Cornett, Claus;

    2000-01-01

    by column-switching, using the first column (a Zorbax 300SB C-3 column) for sample cleanup and eluting the heart-cut flavonoid fraction onto the second column (a Zorbax SE C-18 column) for separation and detection by ultraviolet and atmospheric pressure chemical ionization MS using single ion monitoring...

  16. Simultaneous determination of hydroxycinnamates and catechins in human urine samples by column switching liquid chromatography coupled to atmospheric pressure chemical ionization mass spectrometry

    DEFF Research Database (Denmark)

    Nielsen, Salka E.; Sandström, B.

    2003-01-01

    by atmospheric pressure chemical ionization (APCI) MS using single ion monitoring (SIM) in negative mode. Linear calibration graphs were achieved in the dynamic range of 10-1000 ng/ml urine. The inter- and intraassay coefficients of variation (C.V.%) for the analysis of the four compounds in quality control...

  17. Flavor release measurement by atmospheric pressure chemical ionization ion trap mass spectrometry, construction of interface and mathematical modeling of release profiles

    DEFF Research Database (Denmark)

    Haahr, Anne-Mette; Madsen, Henrik; Smedsgaard, Jørn;

    2003-01-01

    An instrumental on-line retronasal flavor analysis was developed to obtain information about the release of flavor compounds in expired air from humans during eating. The volatile flavor compounds were measured by ion trap mass spectrometry with an atmospheric pressure chemical ionization source...

  18. Natural products in Glycyrrhiza glabra (licorice) rhizome imaged at the cellular level by atmospheric pressure matrix-assisted laser desorption/ionization tandem mass spectrometry imaging

    DEFF Research Database (Denmark)

    Li, Bin; Bhandari, Dhaka Ram; Janfelt, Christian;

    2014-01-01

    The rhizome of Glycyrrhiza glabra (licorice) was analyzed by high-resolution mass spectrometry imaging and tandem mass spectrometry imaging. An atmospheric pressure matrix-assisted laser desorption/ionization imaging ion source was combined with an orbital trapping mass spectrometer in order...

  19. Analysis of vitamin K-1 in fruits and vegetables using accelerated solvent extraction and liquid chromatography tandem mass spectrometry with atmospheric pressure chemical ionization

    DEFF Research Database (Denmark)

    Jäpelt, Rie Bak; Jakobsen, Jette

    2016-01-01

    spectrometry with atmospheric pressure chemical ionization in selected reaction monitoring mode with deuterium-labeled vitamin K1 as an internal standard. The precision was estimated as the pooled estimate of three replicates performed on three different days for spinach, peas, apples, banana, and beetroot...

  20. Are clusters important in understanding the mechanisms in atmospheric pressure ionization? Part 1: Reagent ion generation and chemical control of ion populations.

    Science.gov (United States)

    Klee, Sonja; Derpmann, Valerie; Wißdorf, Walter; Klopotowski, Sebastian; Kersten, Hendrik; Brockmann, Klaus J; Benter, Thorsten; Albrecht, Sascha; Bruins, Andries P; Dousty, Faezeh; Kauppila, Tiina J; Kostiainen, Risto; O'Brien, Rob; Robb, Damon B; Syage, Jack A

    2014-08-01

    It is well documented since the early days of the development of atmospheric pressure ionization methods, which operate in the gas phase, that cluster ions are ubiquitous. This holds true for atmospheric pressure chemical ionization, as well as for more recent techniques, such as atmospheric pressure photoionization, direct analysis in real time, and many more. In fact, it is well established that cluster ions are the primary carriers of the net charge generated. Nevertheless, cluster ion chemistry has only been sporadically included in the numerous proposed ionization mechanisms leading to charged target analytes, which are often protonated molecules. This paper series, consisting of two parts, attempts to highlight the role of cluster ion chemistry with regard to the generation of analyte ions. In addition, the impact of the changing reaction matrix and the non-thermal collisions of ions en route from the atmospheric pressure ion source to the high vacuum analyzer region are discussed. This work addresses such issues as extent of protonation versus deuteration, the extent of analyte fragmentation, as well as highly variable ionization efficiencies, among others. In Part 1, the nature of the reagent ion generation is examined, as well as the extent of thermodynamic versus kinetic control of the resulting ion population entering the analyzer region.

  1. Atmospheric-Pressure Chemical Ionization Tandem Mass Spectrometry (APGC/MS/MS) an Alternative to High-Resolution Mass Spectrometry (HRGC/HRMS) for the Determination of Dioxins

    NARCIS (Netherlands)

    Bavel, Van Bert; Geng, Dawei; Cherta, Laura; Nácher-Mestre, Jaime; Portolés, Tania; Ábalos, Manuela; Sauló, Jordi; Abad, Esteban; Dunstan, Jody; Jones, Rhys; Kotz, Alexander; Winterhalter, Helmut; Malisch, Rainer; Traag, Wim; Hagberg, Jessika; Ericson Jogsten, Ingrid; Beltran, Joaquim; Hernández, Félix

    2015-01-01

    The use of a new atmospheric-pressure chemical ionization source for gas chromatography (APGC) coupled with a tandem quadrupole mass spectrometry (MS/MS) system, as an alternative to high-resolution mass spectrometry (HRMS), for the determination of PCDDs/PCDFs is described. The potential of usin

  2. Validation of a qualitative screening method for pesticides in fruits and vegetables by gas chromatography quadrupole-time of flight mass spectrometry with atmospheric pressure chemical ionization

    NARCIS (Netherlands)

    Portoles, T.; Mol, J.G.J.; Sancho, J.V.; Lopez, F.J.; Hernandez, F.

    2014-01-01

    A wide-scope screening method was developed for the detection of pesticides in fruit and vegetables. The method was based on gas chromatography coupled to a hybrid quadrupole time-of-flight mass spectrometer with an atmospheric pressure chemical ionization source (GC-(APCI)QTOF MS). A non-target acq

  3. A new liquid chromatography - tandem mass spectrometry method using atmospheric pressure photo ionization for the simultaneous determination of azaarenes and azaarones in Dutch river sediments

    NARCIS (Netherlands)

    J. Brulik; Z. Simek; P. de Voogt

    2013-01-01

    A new method for the analysis of azaarenes and their degradation products (azaarones) was developed, optimized and validated using liquid chromatography coupled with atmospheric pressure photo ionization tandem mass spectrometric detection (LC-APPI/MS/MS). Seventeen compounds including 4 PAHs (napht

  4. Automatic sampling and analysis of organics and biomolecules by capillary action-supported contactless atmospheric pressure ionization mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Cheng-Huan Hsieh

    Full Text Available Contactless atmospheric pressure ionization (C-API method has been recently developed for mass spectrometric analysis. A tapered capillary is used as both the sampling tube and spray emitter in C-API. No electric contact is required on the capillary tip during C-API mass spectrometric analysis. The simple design of the ionization method enables the automation of the C-API sampling system. In this study, we propose an automatic C-API sampling system consisting of a capillary (∼1 cm, an aluminium sample holder, and a movable XY stage for the mass spectrometric analysis of organics and biomolecules. The aluminium sample holder is controlled by the movable XY stage. The outlet of the C-API capillary is placed in front of the orifice of a mass spectrometer, whereas the sample well on the sample holder is moved underneath the capillary inlet. The sample droplet on the well can be readily infused into the C-API capillary through capillary action. When the sample solution reaches the capillary outlet, the sample spray is readily formed in the proximity of the mass spectrometer applied with a high electric field. The gas phase ions generated from the spray can be readily monitored by the mass spectrometer. We demonstrate that six samples can be analyzed in sequence within 3.5 min using this automatic C-API MS setup. Furthermore, the well containing the rinsing solvent is alternately arranged between the sample wells. Therefore, the C-API capillary could be readily flushed between runs. No carryover problems are observed during the analyses. The sample volume required for the C-API MS analysis is minimal, with less than 1 nL of the sample solution being sufficient for analysis. The feasibility of using this setup for quantitative analysis is also demonstrated.

  5. Total microcystins analysis in water using laser diode thermal desorption-atmospheric pressure chemical ionization-tandem mass spectrometry.

    Science.gov (United States)

    Roy-Lachapelle, Audrey; Fayad, Paul B; Sinotte, Marc; Deblois, Christian; Sauvé, Sébastien

    2014-04-11

    A new approach for the analysis of the cyanobacterial microcystins (MCs) in environmental water matrices has been developed. It offers a cost efficient alternative method for the fast quantification of total MCs using mass spectrometry. This approach permits the quantification of total MCs concentrations without requiring any derivatization or the use of a suite of MCs standards. The oxidation product 2-methyl-3-methoxy-4-phenylbutyric acid (MMPB) was formed through a Lemieux oxidation and represented the total concentration of free and bound MCs in water samples. MMPB was analyzed using laser diode thermal desorption-atmospheric pressure chemical ionization coupled to tandem mass spectrometry (LDTD-APCI-MS/MS). LDTD is a robust and reliable sample introduction method with ultra-fast analysis time (0.999). Limits of detection and quantification were 0.2 and 0.9 μg L(-1), respectively. These values are comparable with the WHO (World Health Organization) guideline of 1 μg L(-1) for total microcystin-LR congener in drinking water. Accuracy and interday/intraday variation coefficients were below 15%. Matrix effect was determined with a recovery of 91%, showing no significant signal suppression. This work demonstrates the use of the LDTD-APCI-MS/MS interface for the screening, detection and quantification of total MCs in complex environmental matrices.

  6. Feasibility of desorption atmospheric pressure photoionization and desorption electrospray ionization mass spectrometry to monitor urinary steroid metabolites during pregnancy.

    Science.gov (United States)

    Vaikkinen, Anu; Rejšek, Jan; Vrkoslav, Vladimír; Kauppila, Tiina J; Cvačka, Josef; Kostiainen, Risto

    2015-06-23

    Steroids have important roles in the progress of pregnancy, and their study in maternal urine is a non-invasive method to monitor the steroid metabolome and its possible abnormalities. However, the current screening techniques of choice, namely immunoassays and gas and liquid chromatography-mass spectrometry, do not offer means for the rapid and non-targeted multi-analyte studies of large sample sets. In this study, we explore the feasibility of two ambient mass spectrometry methods in steroid fingerprinting. Urine samples from pregnant women were screened by desorption electrospray ionization (DESI) and desorption atmospheric pressure photoionization (DAPPI) Orbitrap high resolution mass spectrometry (HRMS). The urine samples were processed by solid phase extraction for the DESI measurements and by enzymatic hydrolysis and liquid-liquid-extraction for DAPPI. Consequently, steroid glucuronides and sulfates were detected by negative ion mode DESI-HRMS, and free steroids by positive ion mode DAPPI-HRMS. In DESI, signals of eleven steroid metabolite ions were found to increase as the pregnancy proceeded, and in DAPPI ten steroid ions showed at least an order of magnitude increase during pregnancy. In DESI, the increase was seen for ions corresponding to C18 and C21 steroid glucuronides, while DAPPI detected increased excretion of C19 and C21 steroids. Thus both techniques show promise for the steroid marker screening in pregnancy.

  7. Self-Aspirated Atmospheric Pressure Chemical Ionization Source for Direct Sampling of Analytes on Surfaces and in Liquid Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Keiji G [ORNL; Ford, Michael J [ORNL; Tomkins, Bruce A [ORNL; Van Berkel, Gary J [ORNL

    2005-01-01

    A self-aspirating heated nebulizer probe is described and demonstrated for use in the direct analysis of analytes on surfaces and in liquid samples by atmospheric pressure chemical ionization (APCI) mass spectrometry. Functionality and performance of the probe as a self-aspirating APCI source is demonstrated using reserpine and progesterone as test compounds. The utility of the probe to sample analytes directly from surfaces was demonstrated first by scanning development lanes of a reversed-phase thin-layer chromatography plate in which a three-component dye mixture, viz., Fat Red 7B, Solvent Green 3, and Solvent Blue 35, was spotted and the components were separated. Development lanes were scanned by the sampling probe operated under computer control (x, y plane) while full-scan mass spectra were recorded using a quadrupole ion trap mass spectrometer. In addition, the ability to sample the surface of pharmaceutical tablets (viz., Extra Strength Tylenol(reg. sign) and Evista(reg. sign) tablets) and to detect the active ingredients (acetaminophen and raloxifene, respectively) selectively was demonstrated using tandem mass spectrometry (MS/MS). Finally, the capability to sample analyte solutions from the wells of a 384-well microtiter plate and to perform quantitative analyses using MS/MS detection was illustrated with cotinine standards spiked with cotinine-d{sub 3} as an internal standard.

  8. Self-aspirating atmospheric pressure chemical ionization source for direct sampling of analytes on surfaces and in liquid solutions.

    Science.gov (United States)

    Asano, Keiji G; Ford, Michael J; Tomkins, Bruce A; Van Berkel, Gary J

    2005-01-01

    A self-aspirating heated nebulizer probe is described and demonstrated for use in the direct analysis of analytes on surfaces and in liquid samples by atmospheric pressure chemical ionization (APCI) mass spectrometry. Functionality and performance of the probe as a self-aspirating APCI source is demonstrated using reserpine and progesterone as test compounds. The utility of the probe to sample analytes directly from surfaces was demonstrated first by scanning development lanes of a reversed-phase thin-layer chromatography plate in which a three-component dye mixture, viz., Fat Red 7B, Solvent Green 3, and Solvent Blue 35, was spotted and the components were separated. Development lanes were scanned by the sampling probe operated under computer control (x, y plane) while full-scan mass spectra were recorded using a quadrupole ion trap mass spectrometer. In addition, the ability to sample the surface of pharmaceutical tablets (viz., Extra Strength Tylenol and Evista tablets) and to detect the active ingredients (acetaminophen and raloxifene, respectively) selectively was demonstrated using tandem mass spectrometry (MS/MS). Finally, the capability to sample analyte solutions from the wells of a 384-well microtiter plate and to perform quantitative analyses using MS/MS detection was illustrated with cotinine standards spiked with cotinine-d3 as an internal standard.

  9. Continuous Flow Atmospheric Pressure Laser Desorption/Ionization Using a 6–7-µm-Band Mid-Infrared Tunable Laser for Biomolecular Mass Spectrometry

    OpenAIRE

    Ryuji Hiraguchi; Hisanao Hazama; Kenichirou Senoo; Yukinori Yahata; Katsuyoshi Masuda; Kunio Awazu

    2014-01-01

    A continuous flow atmospheric pressure laser desorption/ionization technique using a porous stainless steel probe and a 6–7-µm-band mid-infrared tunable laser was developed. This ion source is capable of direct ionization from a continuous flow with a high temporal stability. The 6–7-µm wavelength region corresponds to the characteristic absorption bands of various molecular vibration modes, including O–H, C=O, CH3 and C–N bonds. Consequently, many organic compounds and solvents, including ...

  10. Stability studies of propoxur herbicide in environmental water samples by liquid chromatography-atmospheric pressure chemical ionization ion-trap mass spectrometry.

    Science.gov (United States)

    Sun, Lei; Lee, Hian Kee

    2003-10-01

    Liquid chromatography-atmospheric pressure ionization ion-trap mass spectrometry has been investigated for the analysis of polar pesticides in water. The degradation behavior of propoxur, selected as a model pesticide belonging to the N-methylcarbamate group, in various aqueous matrices (Milli-Q water, drinking water, rain water, seawater and river water) was investigated. Two interfaces of atmospheric pressure ionization, atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI), were compared during the study. Propoxur and its transformation product (N-methylformamide) were best ionized as positive ions with both APCI and ESI, while another transformation product (2-isopropoxyphenol) yielded stronger signals as negative ions only with APCI. In addition, the effects of various pH, matrix type and irradiation sources (sunlight, darkness, indoor lighting and artificial UV lamp) on the chemical degradation (hydrolysis) were also assessed. From the kinetic studies of degradation, it was found that the half-life of propoxur was reduced from 327 to 161 h in Milli-Q water with variation of irradiation conditions from dark to sunlight exposure. Degradation rates largely increased with increasing pH. The half-life of the target compound dissolved in Milli-Q water under darkness decreased from 407 to 3 h when the pH of Milli-Q water was increased from 5 to 8.5. These suggest that hydrolysis of propoxur is light-intensity and pH-dependent. In order to mimic contaminated natural environmental waters, propoxur was spiked into real water samples at 30 microg/l. The degradation of propoxur in such water samples under various conditions were studied in detail and compared. With the ion trap run in a time-scheduled single ion monitoring mode, typical limits of detection of the instrument were in the range of 1-10 microg/l.

  11. Identification of acylated xanthone glycosides by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry in positive and negative modes from the lichen Umbilicaria proboscidea.

    Science.gov (United States)

    Rezanka, Tomás; Dembitsky, Valery M

    2003-05-01

    The xanthoside composition of the crude extract of Umbilicaria proboscidea (L.) Schrader was characterized using LC-UV diode array detection and LC-atmospheric pressure chemical ionization (APCI) MS methods. The presence of acylated xanthone-O-glucosides was determined by both positive and negative ion LC-APCI-MS methods. Based on UV and MS spectral data and NMR spectroscopy, a total of 14 compounds (6-O-acylated umbilicaxanthosides A and B) were identified in U. proboscidea for the first time. In order to further develop the applicability of LC-MS techniques in phytochemical characterization, the effect of different ionization energy on fragmentation was studied using APCI. The optimal ionization conditions were achieved in positive ion APCI by using ammonium acetate buffer and in negative ion APCI by using formic acid (pH 4).

  12. Gas Chromatography/Atmospheric Pressure Chemical Ionization-Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of Pyrolysis Oil from German Brown Coal

    Directory of Open Access Journals (Sweden)

    Jan Zuber

    2016-01-01

    Full Text Available Pyrolysis oil from the slow pyrolysis of German brown coal from Schöningen, obtained at a temperature of 500°C, was separated and analyzed using hyphenation of gas chromatography with an atmospheric pressure chemical ionization source operated in negative ion mode and Fourier transform ion cyclotron resonance mass spectrometry (GC-APCI-FT-ICR-MS. Development of this ultrahigh-resolving analysis method is described, that is, optimization of specific GC and APCI parameters and performed data processing. The advantages of GC-APCI-FT-ICR-MS hyphenation, for example, soft ionization, ultrahigh-resolving detection, and most important isomer separation, were demonstrated for the sample liquid. For instance, it was possible to separate and identify nine different propylphenol, ethylmethylphenol, and trimethylphenol isomers. Furthermore, homologous series of different acids, for example, alkyl and alkylene carboxylic acids, were verified, as well as homologous series of alkyl phenols, alkyl dihydroxy benzenes, and alkoxy alkyl phenols.

  13. Gas Chromatography/Atmospheric Pressure Chemical Ionization-Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of Pyrolysis Oil from German Brown Coal.

    Science.gov (United States)

    Zuber, Jan; Kroll, Marius M; Rathsack, Philipp; Otto, Matthias

    2016-01-01

    Pyrolysis oil from the slow pyrolysis of German brown coal from Schöningen, obtained at a temperature of 500°C, was separated and analyzed using hyphenation of gas chromatography with an atmospheric pressure chemical ionization source operated in negative ion mode and Fourier transform ion cyclotron resonance mass spectrometry (GC-APCI-FT-ICR-MS). Development of this ultrahigh-resolving analysis method is described, that is, optimization of specific GC and APCI parameters and performed data processing. The advantages of GC-APCI-FT-ICR-MS hyphenation, for example, soft ionization, ultrahigh-resolving detection, and most important isomer separation, were demonstrated for the sample liquid. For instance, it was possible to separate and identify nine different propylphenol, ethylmethylphenol, and trimethylphenol isomers. Furthermore, homologous series of different acids, for example, alkyl and alkylene carboxylic acids, were verified, as well as homologous series of alkyl phenols, alkyl dihydroxy benzenes, and alkoxy alkyl phenols. PMID:27066076

  14. Atmospheric-pressure chemical ionization tandem mass spectrometry (APGC/MS/MS) an alternative to high-resolution mass spectrometry (HRGC/HRMS) for the determination of dioxins.

    Science.gov (United States)

    van Bavel, Bert; Geng, Dawei; Cherta, Laura; Nácher-Mestre, Jaime; Portolés, Tania; Ábalos, Manuela; Sauló, Jordi; Abad, Esteban; Dunstan, Jody; Jones, Rhys; Kotz, Alexander; Winterhalter, Helmut; Malisch, Rainer; Traag, Wim; Hagberg, Jessika; Ericson Jogsten, Ingrid; Beltran, Joaquim; Hernández, Félix

    2015-09-01

    The use of a new atmospheric-pressure chemical ionization source for gas chromatography (APGC) coupled with a tandem quadrupole mass spectrometry (MS/MS) system, as an alternative to high-resolution mass spectrometry (HRMS), for the determination of PCDDs/PCDFs is described. The potential of using atmospheric-pressure chemical ionization (APCI) coupled to a tandem quadrupole analyzer has been validated for the identification and quantification of dioxins and furans in different complex matrices. The main advantage of using the APCI source is the soft ionization at atmospheric pressure, which results in very limited fragmentation. APCI mass spectra are dominated by the molecular ion cluster, in contrast with the high energy ionization process under electron ionization (EI). The use of the molecular ion as the precursor ion in MS/MS enhances selectivity and, consequently, sensitivity by increasing the signal-to-noise ratios (S/N). For standard solutions of 2,3,7,8-TCDD, injections of 10 fg in the splitless mode on 30- or 60-m-length, 0.25 mm inner diameter (id), and 25 μm film thickness low-polarity capillary columns (DB5MS type), signal-to-noise (S/N) ratios of >10:1 were routinely obtained. Linearity was achieved in the region (correlation coefficient of r(2) > 0.998) for calibration curves ranging from 100 fg/μL to 1000 pg/μL. The results from a wide variety of complex samples, including certified and standard reference materials and samples from several QA/QC studies, which were previously analyzed by EI HRGC/HRMS, were compared with the results from the APGC/MS/MS system. Results between instruments showed good agreement both in individual congeners and toxic equivalence factors (TEQs). The data show that the use of APGC in combination with MS/MS for the analysis of dioxins has the same potential, in terms of sensitivity and selectivity, as the traditional HRMS instrumentation used for this analysis. However, the APCI/MS/MS system, as a benchtop system, is

  15. Determination of polycyclic aromatic hydrocarbons in fractions in asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization.

    Science.gov (United States)

    Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias

    2015-07-01

    An analytical method using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization for the determination of polycyclic aromatic hydrocarbons in asphalt fractions has been developed. The 14 compounds determined, characterized by having two or more condensed aromatic rings, are expected to be present in asphalt and are considered carcinogenic and mutagenic. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all of the compounds. The limits of detection ranged from 0.5 to 346.5 μg/L and the limits of quantification ranged from 1.7 to 1550 μg/L. The method was validated against a diesel particulate extract standard reference material (NIST SRM 1975), and the obtained concentrations agreed with the certified values. The method was applied to asphalt samples after its fractionation according to ASTM D4124 and the method of Green. The concentrations of the seven polycyclic aromatic hydrocarbons quantified in the sample ranged from 0.86 mg/kg for benzo[ghi]perylene to 98.32 mg/kg for fluorene.

  16. Continuous Flow Atmospheric Pressure Laser Desorption/Ionization Using a 6–7-µm-Band Mid-Infrared Tunable Laser for Biomolecular Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Ryuji Hiraguchi

    2014-06-01

    Full Text Available A continuous flow atmospheric pressure laser desorption/ionization technique using a porous stainless steel probe and a 6–7-µm-band mid-infrared tunable laser was developed. This ion source is capable of direct ionization from a continuous flow with a high temporal stability. The 6–7-µm wavelength region corresponds to the characteristic absorption bands of various molecular vibration modes, including O–H, C=O, CH3 and C–N bonds. Consequently, many organic compounds and solvents, including water, have characteristic absorption peaks in this region. This ion source requires no additional matrix, and utilizes water or acetonitrile as the solvent matrix at several absorption peak wavelengths (6.05 and 7.27 µm, respectively. The distribution of multiply-charged peptide ions is extremely sensitive to the temperature of the heated capillary, which is the inlet of the mass spectrometer. This ionization technique has potential for the interface of liquid chromatography/mass spectrometry (LC/MS.

  17. Use of electron ionization and atmospheric pressure chemical ionization in gas chromatography coupled to time-of-flight mass spectrometry for screening and identification of organic pollutants in waters.

    Science.gov (United States)

    Portolés, Tania; Mol, Johannes G J; Sancho, Juan V; Hernández, Félix

    2014-04-25

    A new approach has been developed for multiclass screening of organic contaminants in water based on the use of gas chromatography coupled to hybrid quadrupole high-resolution time-of-flight mass spectrometry with atmospheric pressure chemical ionization (GC-(APCI)QTOF MS). The soft ionization promoted by the APCI source allows effective and wide-scope screening based on the investigation of the molecular ion and/or protonated molecule. This is in contrast to electron ionization (EI) where ionization typically results in extensive fragmentation, and diagnostic ions and/or spectra need to be known a priori to facilitate detection of the analytes in the raw data. Around 170 organic contaminants from different chemical families were initially investigated by both approaches, i.e. GC-(EI)TOF and GC-(APCI)QTOF, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and a notable number of pesticides and relevant metabolites. The new GC-(APCI)QTOF MS approach easily allowed widening the number of compounds investigated (85 additional compounds), with more pesticides, personal care products (UV filters, musks), polychloronaphthalenes (PCNs), antimicrobials, insect repellents, etc., most of them considered as emerging contaminants. Both GC-(EI)TOF and GC-(APCI)QTOF methodologies have been applied, evaluating their potential for a wide-scope screening in the environmental field. PMID:24674644

  18. Liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source for elemental mass spectrometry: preliminary parametric evaluation and figures of merit.

    Science.gov (United States)

    Quarles, C Derrick; Carado, Anthony J; Barinaga, Charles J; Koppenaal, David W; Marcus, R Kenneth

    2012-01-01

    A new, low-power ionization source for the elemental analysis of aqueous solutions has recently been described. The liquid sampling-atmospheric pressure glow discharge (LS-APGD) source operates at relatively low currents (LS-APGD has been interfaced to what is otherwise an organic, LC-MS mass analyzer, the Thermo Scientific Exactive Orbitrap without any modifications, other than removing the electrospray ionization source supplied with that instrument. A glow discharge is initiated between the surface of the test solution exiting a glass capillary and a metallic counter electrode mounted at a 90° angle and separated by a distance of ~5 mm. As with any plasma-based ionization source, there are key discharge operation and ion sampling parameters that affect the intensity and composition of the derived mass spectra, including signal-to-background ratios. We describe here a preliminary parametric evaluation of the roles of discharge current, solution flow rate, argon sheath gas flow rate, and ion sampling distance as they apply on this mass analyzer system. A cursive evaluation of potential matrix effects due to the presence of easily ionized elements indicate that sodium concentrations of up to 50 μg mL(-1) generally cause suppressions of less than 50%, dependant upon the analyte species. Based on the results of this series of studies, preliminary limits of detection (LOD) have been established through the generation of calibration functions. While solution-based concentration LOD levels of 0.02-2 μg mL(-1) are not impressive on the surface, the fact that they are determined via discrete 5 μL injections leads to mass-based detection limits at picogram to single-nanogram levels. The overhead costs associated with source operation (10 W d.c. power, solution flow rates of LS-APGD ion source may present a practical alternative to inductively coupled plasma sources typically employed in elemental mass spectrometry.

  19. Screening of lake sediments for emerging contaminants by liquid chromatography atmospheric pressure photoionization and electrospray ionization coupled to high resolution mass spectrometry.

    Science.gov (United States)

    Chiaia-Hernandez, Aurea C; Krauss, Martin; Hollender, Juliane

    2013-01-15

    We developed a multiresidue method for the target and suspect screening of more than 180 pharmaceuticals, personal care products, pesticides, biocides, additives, corrosion inhibitors, musk fragrances, UV light stabilizers, and industrial chemicals in sediments. Sediment samples were freeze-dried, extracted by pressurized liquid extraction, and cleaned up by liquid-liquid partitioning. The quantification and identification of target compounds with a broad range of physicochemical properties (log K(ow) 0-12) was carried out by liquid chromatography followed by electrospray ionization (ESI) and atmospheric pressure photoionization (APPI) coupled to high resolution Orbitrap mass spectrometry (HRMS/MS). The overall method average recoveries and precision are 103% and 9% (RSD), respectively. The method detection limits range from 0.010 to 4 ng/g(dw), while limits of quantification range from 0.030 to 14 ng/g(dw). The use of APPI as an alternative ionization source helped to distinguish two isomeric musk fragrances by means of different ionization behavior. The method was demonstrated on sediment cores from Lake Greifensee located in northeastern Switzerland. The results show that biocides, musk fragrances, and other personal care products were the most frequently detected compounds with concentrations ranging from pg/g(dw) to ng/g(dw), whereas none of the targeted pharmaceuticals were found. The concentrations of many urban contaminants originating from wastewater correlate with the highest phosphorus input into the lake as a proxy for treatment efficiency. HRMS enabled a retrospective analysis of the full-scan data acquisition allowing the detection of suspected compounds like quaternary ammonium surfactants, the biocide triclocarban, and the tentative identification of further compounds without reference standards, among others transformation products of triclosan and triclocarban. PMID:23215447

  20. Liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source for elemental mass spectrometry: preliminary parametric evaluation and figures of merit.

    Science.gov (United States)

    Quarles, C Derrick; Carado, Anthony J; Barinaga, Charles J; Koppenaal, David W; Marcus, R Kenneth

    2012-01-01

    A new, low-power ionization source for the elemental analysis of aqueous solutions has recently been described. The liquid sampling-atmospheric pressure glow discharge (LS-APGD) source operates at relatively low currents (elements indicate that sodium concentrations of up to 50 μg mL(-1) generally cause suppressions of less than 50%, dependant upon the analyte species. Based on the results of this series of studies, preliminary limits of detection (LOD) have been established through the generation of calibration functions. While solution-based concentration LOD levels of 0.02-2 μg mL(-1) are not impressive on the surface, the fact that they are determined via discrete 5 μL injections leads to mass-based detection limits at picogram to single-nanogram levels. The overhead costs associated with source operation (10 W d.c. power, solution flow rates of elemental mass spectrometry. PMID:21910014

  1. Determination of oxygen and nitrogen derivatives of polycyclic aromatic hydrocarbons in fractions of asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization.

    Science.gov (United States)

    Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias

    2015-12-01

    Liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization was used for the determination of polycyclic aromatic hydrocarbon derivatives, the oxygenated polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons, formed in asphalt fractions. Two different methods have been developed for the determination of five oxygenated and seven nitrated polycyclic aromatic hydrocarbons that are characterized by having two or more condensed aromatic rings and present mutagenic and carcinogenic properties. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all compounds. The detection limits of the methods ranged from 0.1 to 57.3 μg/L for nitrated and from 0.1 to 6.6 μg/L for oxygenated derivatives. The limits of quantification were in the range of 4.6-191 μg/L for nitrated and 0.3-8.9 μg/L for oxygenated derivatives. The methods were validated against a diesel particulate extract standard reference material (National Institute of Standards and Technology SRM 1975), and the obtained concentrations (two nitrated derivatives) agreed with the certified values. The methods were applied in the analysis of asphalt samples after their fractionation into asphaltenes and maltenes, according to American Society for Testing and Material D4124, where the maltenic fraction was further separated into its basic, acidic, and neutral parts following the method of Green. Only two nitrated derivatives were found in the asphalt sample, quinoline and 2-nitrofluorene, with concentrations of 9.26 and 2146 mg/kg, respectively, whereas no oxygenated derivatives were detected. PMID:26446274

  2. Determination of oxygen and nitrogen derivatives of polycyclic aromatic hydrocarbons in fractions of asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization.

    Science.gov (United States)

    Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias

    2015-12-01

    Liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization was used for the determination of polycyclic aromatic hydrocarbon derivatives, the oxygenated polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons, formed in asphalt fractions. Two different methods have been developed for the determination of five oxygenated and seven nitrated polycyclic aromatic hydrocarbons that are characterized by having two or more condensed aromatic rings and present mutagenic and carcinogenic properties. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all compounds. The detection limits of the methods ranged from 0.1 to 57.3 μg/L for nitrated and from 0.1 to 6.6 μg/L for oxygenated derivatives. The limits of quantification were in the range of 4.6-191 μg/L for nitrated and 0.3-8.9 μg/L for oxygenated derivatives. The methods were validated against a diesel particulate extract standard reference material (National Institute of Standards and Technology SRM 1975), and the obtained concentrations (two nitrated derivatives) agreed with the certified values. The methods were applied in the analysis of asphalt samples after their fractionation into asphaltenes and maltenes, according to American Society for Testing and Material D4124, where the maltenic fraction was further separated into its basic, acidic, and neutral parts following the method of Green. Only two nitrated derivatives were found in the asphalt sample, quinoline and 2-nitrofluorene, with concentrations of 9.26 and 2146 mg/kg, respectively, whereas no oxygenated derivatives were detected.

  3. Advantages of Atmospheric Pressure Chemical Ionization in Gas Chromatography Tandem Mass Spectrometry: Pyrethroid Insecticides as a Case Study

    NARCIS (Netherlands)

    Portolés, T.; Mol, J.G.J.; Sancho, J.V.; Hernández, F.

    2012-01-01

    Gas chromatography coupled to mass spectrometry (GC/MS) has been extensively applied for determination of volatile, nonpolar, compounds in many applied fields like food safety, environment, or toxicology. The wide majority of methods reported use electron ionization (EI), which may result in extensi

  4. An evaluation of liquid chromatography/mass spectrometry with atmospheric pressure chemical ionization for the rapid and simultaneous measurement of carbamate pesticides and organophorus pesticides

    International Nuclear Information System (INIS)

    Liquid chromatography/mass spectrometry with an atmospheric pressure chemical ionization interface (LC/APCI/MS) is evaluated for the simultaneous determination of carbamate pesticides and organophosphorus pesticides in a single chromatographic analysis. APCI mass spectra of those compounds were obtained to study their ionization characteristics. APCI provided abundant ions such as protonated molecules and characteristic fragment ions for carbamate pesticides and organophosphorus pesticides. To evaluate the feasibility of the LC/APCI/MS for a routine quantitative analysis, the linearity and repeatability of LC/APCI/MS were examined by measuring standard solution mixtures of five carbamate pesticides and four organophosphorus pesticides over the range of 1 to 100 μg/mL. The peak areas in chromatograms of characteristic ions for those compounds showed less than 3% of variation from run to tun. The standard calibration curves for the nine pesticides show good linearity in the concentration range. The detection limits of the LC/APCI/MS system for those compounds range from 0.006 to 0.2 ng

  5. Comparison of electrospray ionization and atmospheric pressure photoionization liquid chromatography mass spectrometry methods for analysis of ergot alkaloids from endophyte-infected sleepygrass (Achnatherum robustum).

    Science.gov (United States)

    Jarmusch, Alan K; Musso, Ashleigh M; Shymanovich, Tatsiana; Jarmusch, Scott A; Weavil, Miranda J; Lovin, Mary E; Ehrmann, Brandie M; Saari, Susanna; Nichols, David E; Faeth, Stanley H; Cech, Nadja B

    2016-01-01

    Ergot alkaloids are mycotoxins with an array of biological effects. With this study, we investigated for the first time the application of atmospheric pressure photoionization (APPI) as an ionization method for LC-MS analysis of ergot alkaloids, and compared its performance to that of the more established technique of electrospray ionization (ESI). Samples of the grass Achnatherum robustum infected with the ergot producing Epichloë fungus were extracted using cold methanol and subjected to reserved-phase HPLC-ESI-MS and HPLC-APPI-MS analysis. The ergot alkaloids ergonovine and lysergic acid amide were detected in these samples, and quantified via external calibration. Validation parameters were recorded in accordance with ICH guidelines. A triple quadrupole MS operated in multiple reaction monitoring yielded the lowest detection limits. The performance of APPI and ESI methods was comparable. Both methods were subject to very little matrix interference, with percent recoveries ranging from 82% to 100%. As determined with HPLC-APPI-MS quantification, lysergic acid amide and ergonovine were extracted from an A. robustum sample infected with the Epichloë fungus at concentrations of 1.143±0.051 ppm and 0.2822±0.0071 ppm, respectively. There was no statistically significant difference between these concentrations and those determined using ESI for the same samples.

  6. Sensitive and comprehensive detection of chemical warfare agents in air by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow introduction.

    Science.gov (United States)

    Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Yamashiro, Shigeharu; Sano, Yasuhiro; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Sekiguchi, Hiroyuki; Iura, Kazumitsu; Nagashima, Hisayuki; Nagoya, Tomoki; Tsuge, Kouichiro; Ohsawa, Isaac; Okumura, Akihiko; Takada, Yasuaki; Ezawa, Naoya; Watanabe, Susumu; Hashimoto, Hiroaki

    2014-05-01

    A highly sensitive and specific real-time field-deployable detection technology, based on counterflow air introduction atmospheric pressure chemical ionization, has been developed for a wide range of chemical warfare agents (CWAs) comprising gaseous (two blood agents, three choking agents), volatile (six nerve gases and one precursor agent, five blister agents), and nonvolatile (three lachrymators, three vomiting agents) agents in air. The approach can afford effective chemical ionization, in both positive and negative ion modes, for ion trap multiple-stage mass spectrometry (MS(n)). The volatile and nonvolatile CWAs tested provided characteristic ions, which were fragmented into MS(3) product ions in positive and negative ion modes. Portions of the fragment ions were assigned by laboratory hybrid mass spectrometry (MS) composed of linear ion trap and high-resolution mass spectrometers. Gaseous agents were detected by MS or MS(2) in negative ion mode. The limits of detection for a 1 s measurement were typically at or below the microgram per cubic meter level except for chloropicrin (submilligram per cubic meter). Matrix effects by gasoline vapor resulted in minimal false-positive signals for all the CWAs and some signal suppression in the case of mustard gas. The moisture level did influence the measurement of the CWAs. PMID:24678766

  7. Potential of atmospheric pressure chemical ionization source in gas chromatography tandem mass spectrometry for the screening of urinary exogenous androgenic anabolic steroids.

    Science.gov (United States)

    Raro, M; Portolés, T; Pitarch, E; Sancho, J V; Hernández, F; Garrostas, L; Marcos, J; Ventura, R; Segura, J; Pozo, O J

    2016-02-01

    The atmospheric pressure chemical ionization (APCI) source for gas chromatography-mass spectrometry analysis has been evaluated for the screening of 16 exogenous androgenic anabolic steroids (AAS) in urine. The sample treatment is based on the strategy currently applied in doping control laboratories i.e. enzymatic hydrolysis, liquid-liquid extraction (LLE) and derivatization to form the trimethylsilyl ether-trimethylsilyl enol ether (TMS) derivatives. These TMS derivatives are then analyzed by gas chromatography tandem mass spectrometry using a triple quadrupole instrument (GC-QqQ MS/MS) under selected reaction monitoring (SRM) mode. The APCI promotes soft ionization with very little fragmentation resulting, in most cases, in abundant [M + H](+) or [M + H-2TMSOH](+) ions, which can be chosen as precursor ions for the SRM transitions, improving in this way the selectivity and sensitivity of the method. Specificity of the transitions is also of great relevance, as the presence of endogenous compounds can affect the measurements when using the most abundant ions. The method has been qualitatively validated by spiking six different urine samples at two concentration levels each. Precision was generally satisfactory with RSD values below 25 and 15% at the low and high concentration level, respectively. Most the limits of detection (LOD) were below 0.5 ng mL(-1). Validation results were compared with the commonly used method based on the electron ionization (EI) source. EI analysis was found to be slightly more repeatable whereas lower LODs were found for APCI. In addition, the applicability of the developed method has been tested in samples collected after the administration of 4-chloromethandienone. The highest sensitivity of the APCI method for this compound, allowed to increase the period in which its administration can be detected. PMID:26772132

  8. Potential of atmospheric pressure chemical ionization source in gas chromatography tandem mass spectrometry for the screening of urinary exogenous androgenic anabolic steroids.

    Science.gov (United States)

    Raro, M; Portolés, T; Pitarch, E; Sancho, J V; Hernández, F; Garrostas, L; Marcos, J; Ventura, R; Segura, J; Pozo, O J

    2016-02-01

    The atmospheric pressure chemical ionization (APCI) source for gas chromatography-mass spectrometry analysis has been evaluated for the screening of 16 exogenous androgenic anabolic steroids (AAS) in urine. The sample treatment is based on the strategy currently applied in doping control laboratories i.e. enzymatic hydrolysis, liquid-liquid extraction (LLE) and derivatization to form the trimethylsilyl ether-trimethylsilyl enol ether (TMS) derivatives. These TMS derivatives are then analyzed by gas chromatography tandem mass spectrometry using a triple quadrupole instrument (GC-QqQ MS/MS) under selected reaction monitoring (SRM) mode. The APCI promotes soft ionization with very little fragmentation resulting, in most cases, in abundant [M + H](+) or [M + H-2TMSOH](+) ions, which can be chosen as precursor ions for the SRM transitions, improving in this way the selectivity and sensitivity of the method. Specificity of the transitions is also of great relevance, as the presence of endogenous compounds can affect the measurements when using the most abundant ions. The method has been qualitatively validated by spiking six different urine samples at two concentration levels each. Precision was generally satisfactory with RSD values below 25 and 15% at the low and high concentration level, respectively. Most the limits of detection (LOD) were below 0.5 ng mL(-1). Validation results were compared with the commonly used method based on the electron ionization (EI) source. EI analysis was found to be slightly more repeatable whereas lower LODs were found for APCI. In addition, the applicability of the developed method has been tested in samples collected after the administration of 4-chloromethandienone. The highest sensitivity of the APCI method for this compound, allowed to increase the period in which its administration can be detected.

  9. Ionization in Atmospheres of Brown Dwarfs and Extrasolar Planets V: Alfv\\'{e}n Ionization

    CERN Document Server

    Stark, Craig R; Diver, Declan A; Rimmer, Paul B

    2013-01-01

    Observations of continuous radio and sporadic X-ray emission from low-mass objects suggest they harbour localized plasmas in their atmospheric environments. For low-mass objects, the degree of thermal ionization is insufficient to qualify the ionized component as a plasma, posing the question: what ionization processes can efficiently produce the required plasma that is the source of the radiation? We propose Alfv\\'{e}n ionization as a mechanism for producing localized pockets of ionized gas in the atmosphere, having sufficient degrees of ionization ($\\geq10^{-7}$) that they constitute plasmas. We outline the criteria required for Alfv\\'{e}n ionization and demonstrate it's applicability in the atmospheres of low-mass objects such as giant gas planets, brown dwarfs and M-dwarfs for both solar and sub-solar metallicities. We find that Alfv\\'{e}n ionization is most efficient at mid to low atmospheric pressures where a seed plasma is easier to magnetize and the pressure gradients needed to drive the required neut...

  10. Liquid Sampling-Atmospheric Pressure Glow Discharge (LS-APGD) Ionization Source for Elemental Mass Spectrometry: Preliminary Parametric Evaluation and Figures of Merit

    Energy Technology Data Exchange (ETDEWEB)

    Quarles, C. Derrick; Carado, Anthony J.; Barinaga, Charles J.; Koppenaal, David W.; Marcus, R. Kenneth

    2012-01-01

    A new, low power ionization source for the elemental analysis of aqueous solutions has recently been described. The liquid sampling-atmospheric pressure glow discharge (LS-APGD) source operates at relatively low currents (<20 mA) and solution flow rates (<50 μL min-1), yielding a relatively simple alternative for atomic mass spectrometry applications. The LS-APGD has been interfaced to what is otherwise an organic, LC-MS mass analyzer, the Thermo Scientific Exactive Orbitrap without any modifications; other than removing the electrospray ionization (ESI) source supplied with that instrument. A glow discharge is initiated between the surface of the test solution exiting a glass capillary and a metallic counter electrode mounted at a 90° angle and separated by a distance of ~5 mm. As with any plasma-based ionization source, there are key discharge operation and ion sampling parameters that affect the intensity and composition of the derived mass spectra; including signal-to-background ratios. We describe here a preliminary parametric evaluation of the roles of discharge current, solution flow rate, argon sheath gas flow rate, and ion sampling distance as they apply on this mass analyzer system. A cursive evaluation of potential matrix effects due to the presence of easily ionized elements (EIEs) indicate that sodium concentrations of up to 500 μg mL-1 generally cause suppressions of less than 50%, dependant upon the analyte species. Based on the results of this series of studies, preliminary limits of detection (LOD) have been established through the generation of calibration functions. Whilst solution-based concentrations LOD levels of 0.02 – 2 μg mL-1 3 are not impressive on the surface, the fact that they are determined via discrete 5 μL injections leads to mass-based detection limits at picogram to singlenanogram levels. The overhead costs associated with source operation (10 W d.c. power, solution flow rates of <50 μL min-1, and gas flow rates <10 mL min

  11. Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MSn for measuring organic acids in concentrated bulk aerosol – a laboratory and field study

    Directory of Open Access Journals (Sweden)

    J. Williams

    2012-08-01

    Full Text Available The field application of an aerosol concentrator in conjunction with an atmospheric pressure chemical ionization ion trap mass spectrometer (APCI-IT-MS at the boreal forest station SMEAR II at Hyytiälä, Finland, is demonstrated in this study. APCI is a soft ionization technique allowing online measurements of organic acids in the gas and particle phase. The detection limit for the acid species in the particle phase was increased by a factor of 7.5 to 11 (e.g. ~40 ng m−3 for pinonic acid by using the miniature Versatile Aerosol Concentration Enrichment System (mVACES upstream of the mass spectrometer. The APCI-IT-MS was calibrated in the negative ion mode with two biogenic organic acid standards – pinic acid and pinonic acid. Pinic acid was used as a surrogate for the quantification of the total amount of organic acids in the ambient aerosol based on the total signal intensities in the negative ion mode. The results were compared with the total organic signal of a C-ToF-AMS during the HUMPPA-COPEC 2010 field campaign. The campaign average contribution of organic acids measured by APCI-IT-MS to the total sub-micron organic aerosol mass was estimated to be about 60%. Very good correlation between APCI-IT-MS and C-ToF-AMS (Pearson's R = 0.94 demonstrates soft ionization mass spectrometry as a complimentary technique to AMS with electron impact ionization. MS2 studies of specific m/z ratios recorded during the HUMPPA-COPEC 2010 field campaign were compared to MS2 studies of selected monoterpene oxidation products formed in simulation chamber experiments. The comparison of the resulting fragments shows that oxidation products of the main VOCs emitted at Hyytiälä (α-pinene and Δ3-carene cannot account for all of the measured fragments, which illustrates the complexity of ambient aerosol and possibly indicates unidentified or underestimated biogenic SOA precursor in the boreal forest.

  12. Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MSn for measuring organic acids in concentrated bulk aerosol – a laboratory and field study

    Directory of Open Access Journals (Sweden)

    J. Williams

    2013-02-01

    Full Text Available The field application of an aerosol concentrator in conjunction with an atmospheric pressure chemical ionization ion trap mass spectrometer (APCI-IT-MS at the boreal forest station SMEAR II at Hyytiälä, Finland, is demonstrated in this study. APCI is a soft-ionization technique allowing online measurements of organic acids in the gas and particle phase. The detection limit for the acid species in the particle phase was improved by a factor of 7.5 to 11 (e.g. ∼40 ng m3 for pinonic acid by using the miniature versatile aerosol concentration enrichment system (mVACES upstream of the mass spectrometer. The APCI-IT-MS was calibrated in the negative ion mode with two biogenic organic acid standards – pinic acid and pinonic acid. Pinic acid was used as a surrogate for the quantification of the total amount of organic acids in the ambient aerosol based on the total signal intensities in the negative ion mode. The results were compared with the total organic signal of a C-ToF-AMS during the HUMPPA-COPEC 2010 field campaign. The campaign average contribution of organic acids measured by APCI-IT-MS to the total submicron organic aerosol mass was estimated to be about 60%, based on the response of pinic acid. Very good correlation between APCI-IT-MS and C-ToF-AMS (Pearson's R = 0.94 demonstrates soft-ionization mass spectrometry as a complimentary technique to AMS with electron impact ionization. MS2 studies of specific m/z ratios recorded during the HUMPPA-COPEC 2010 field campaign were compared to MS2 studies of selected monoterpene oxidation products formed in simulation chamber experiments. The comparison of the resulting fragments shows that oxidation products of the main VOCs emitted at Hyytiälä (α-pinene and Δ3-carene cannot account for all of the measured fragments. Possible explanations for those unaccounted fragments are the presence of unidentified or underestimated biogenic SOA precursors, or that different products are formed by a

  13. Gas chromatography/atmospheric pressure chemical ionization/mass spectrometry for the analysis of organochlorine pesticides and polychlorinated biphenyls in human serum.

    Science.gov (United States)

    Geng, Dawei; Jogsten, Ingrid Ericson; Dunstan, Jody; Hagberg, Jessika; Wang, Thanh; Ruzzin, Jerome; Rabasa-Lhoret, Rémi; van Bavel, Bert

    2016-07-01

    A method using a novel atmospheric pressure chemical ionization source for coupling gas chromatography (GC/APCI) to triple quadrupole mass spectrometry (MS/MS) for the determination of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) regulated by the Stockholm Convention is presented. One microliter injection of a six-point calibration curve of native PCBs and OCPs, ranging from 0.04 to 300pg/μL, was performed. The relative standard deviation (RSD) of the relative response factors (RRFs) was less than 15% with a coefficient of determination (r(2))>0.995. Meanwhile, two calibration solutions (CS), CS 2 (0.4pg/μL) and CS 3 (4pg/μL) were analyzed to study the repeatability calculated for both area and RRFs. The RSD for RRF ranged from 3.1 to 16% and 3.6 to 5.5% for CS 2 and CS 3, respectively. The limits of detection (LOD) determined by peak-to-peak signal-to-noise ratio (S/N) of 3 were compared between the GC/APCI/MS/MS and a GC coupled to high resolution mass spectrometry (GC/HRMS) system. GC/APCI/MS/MS resulted in lower LOD for most of the compounds, except for PCB#74, cis-chlordane and trans-chlordane. GC/APCI/MS/MS and GC/HRMS were also compared by performing analysis on 75 human serum samples together with eight QA/QC serum samples. The comparison between GC/APCI/MS/MS system and GC/HRMS system for 16 of the targeted compounds was carried out. No statistically significant difference was discovered. Due to increased sensitivity and user friendly operation under atmospheric pressure, GC/APCI/MS/MS is a powerful alternative technique that can easily meet the specification of GC/HRMS. PMID:27236485

  14. Gas chromatography/atmospheric pressure chemical ionization/mass spectrometry for the analysis of organochlorine pesticides and polychlorinated biphenyls in human serum.

    Science.gov (United States)

    Geng, Dawei; Jogsten, Ingrid Ericson; Dunstan, Jody; Hagberg, Jessika; Wang, Thanh; Ruzzin, Jerome; Rabasa-Lhoret, Rémi; van Bavel, Bert

    2016-07-01

    A method using a novel atmospheric pressure chemical ionization source for coupling gas chromatography (GC/APCI) to triple quadrupole mass spectrometry (MS/MS) for the determination of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) regulated by the Stockholm Convention is presented. One microliter injection of a six-point calibration curve of native PCBs and OCPs, ranging from 0.04 to 300pg/μL, was performed. The relative standard deviation (RSD) of the relative response factors (RRFs) was less than 15% with a coefficient of determination (r(2))>0.995. Meanwhile, two calibration solutions (CS), CS 2 (0.4pg/μL) and CS 3 (4pg/μL) were analyzed to study the repeatability calculated for both area and RRFs. The RSD for RRF ranged from 3.1 to 16% and 3.6 to 5.5% for CS 2 and CS 3, respectively. The limits of detection (LOD) determined by peak-to-peak signal-to-noise ratio (S/N) of 3 were compared between the GC/APCI/MS/MS and a GC coupled to high resolution mass spectrometry (GC/HRMS) system. GC/APCI/MS/MS resulted in lower LOD for most of the compounds, except for PCB#74, cis-chlordane and trans-chlordane. GC/APCI/MS/MS and GC/HRMS were also compared by performing analysis on 75 human serum samples together with eight QA/QC serum samples. The comparison between GC/APCI/MS/MS system and GC/HRMS system for 16 of the targeted compounds was carried out. No statistically significant difference was discovered. Due to increased sensitivity and user friendly operation under atmospheric pressure, GC/APCI/MS/MS is a powerful alternative technique that can easily meet the specification of GC/HRMS.

  15. Quantitation of triacylglycerols in edible oils by off-line comprehensive two-dimensional liquid chromatography-atmospheric pressure chemical ionization mass spectrometry using a single column.

    Science.gov (United States)

    Wei, Fang; Hu, Na; Lv, Xin; Dong, Xu-Yan; Chen, Hong

    2015-07-24

    In this investigation, off-line comprehensive two-dimensional liquid chromatography-atmospheric pressure chemical ionization mass spectrometry using a single column has been applied for the identification and quantification of triacylglycerols in edible oils. A novel mixed-mode phenyl-hexyl chromatographic column was employed in this off-line two-dimensional separation system. The phenyl-hexyl column combined the features of traditional C18 and silver-ion columns, which could provide hydrophobic interactions with triacylglycerols under acetonitrile conditions and can offer π-π interactions with triacylglycerols under methanol conditions. When compared with traditional off-line comprehensive two-dimensional liquid chromatography employing two different chromatographic columns (C18 and silver-ion column) and using elution solvents comprised of two phases (reversed-phase/normal-phase) for triacylglycerols separation, the novel off-line comprehensive two-dimensional liquid chromatography using a single column can be achieved by simply altering the mobile phase between acetonitrile and methanol, which exhibited a much higher selectivity for the separation of triacylglycerols with great efficiency and rapid speed. In addition, an approach based on the use of response factor with atmospheric pressure chemical ionization mass spectrometry has been developed for triacylglycerols quantification. Due to the differences between saturated and unsaturated acyl chains, the use of response factors significantly improves the quantitation of triacylglycerols. This two-dimensional liquid chromatography-mass spectrometry system was successfully applied for the profiling of triacylglycerols in soybean oils, peanut oils and lord oils. A total of 68 triacylglycerols including 40 triacylglycerols in soybean oils, 50 triacylglycerols in peanut oils and 44 triacylglycerols in lord oils have been identified and quantified. The liquid chromatography-mass spectrometry data were analyzed

  16. Quantitation of triacylglycerols in edible oils by off-line comprehensive two-dimensional liquid chromatography-atmospheric pressure chemical ionization mass spectrometry using a single column.

    Science.gov (United States)

    Wei, Fang; Hu, Na; Lv, Xin; Dong, Xu-Yan; Chen, Hong

    2015-07-24

    In this investigation, off-line comprehensive two-dimensional liquid chromatography-atmospheric pressure chemical ionization mass spectrometry using a single column has been applied for the identification and quantification of triacylglycerols in edible oils. A novel mixed-mode phenyl-hexyl chromatographic column was employed in this off-line two-dimensional separation system. The phenyl-hexyl column combined the features of traditional C18 and silver-ion columns, which could provide hydrophobic interactions with triacylglycerols under acetonitrile conditions and can offer π-π interactions with triacylglycerols under methanol conditions. When compared with traditional off-line comprehensive two-dimensional liquid chromatography employing two different chromatographic columns (C18 and silver-ion column) and using elution solvents comprised of two phases (reversed-phase/normal-phase) for triacylglycerols separation, the novel off-line comprehensive two-dimensional liquid chromatography using a single column can be achieved by simply altering the mobile phase between acetonitrile and methanol, which exhibited a much higher selectivity for the separation of triacylglycerols with great efficiency and rapid speed. In addition, an approach based on the use of response factor with atmospheric pressure chemical ionization mass spectrometry has been developed for triacylglycerols quantification. Due to the differences between saturated and unsaturated acyl chains, the use of response factors significantly improves the quantitation of triacylglycerols. This two-dimensional liquid chromatography-mass spectrometry system was successfully applied for the profiling of triacylglycerols in soybean oils, peanut oils and lord oils. A total of 68 triacylglycerols including 40 triacylglycerols in soybean oils, 50 triacylglycerols in peanut oils and 44 triacylglycerols in lord oils have been identified and quantified. The liquid chromatography-mass spectrometry data were analyzed

  17. Evaluation of gas chromatography-atmospheric pressure chemical ionization-mass spectrometry as an alternative to gas chromatography-electron ionization-mass spectrometry: avocado fruit as example.

    Science.gov (United States)

    Hurtado-Fernández, Elena; Pacchiarotta, Tiziana; Longueira-Suárez, Enrique; Mayboroda, Oleg A; Fernández-Gutiérrez, Alberto; Carrasco-Pancorbo, Alegría

    2013-10-25

    Although GC-APCI-MS was developed more than 40 years ago this coupling is still far from being a routine technique. One of the reasons explaining the limited use of GC-APCI so far is the lack of spectral database which facilitates the identification of the compounds under study. The first application of a very recently developed GC-APCI database to identify as many compounds as possible in a complex matrix such as avocado fruit is presented here. The results achieved by using this database has been checked against those obtained using traditional GC-EI-MS and a comparison of the MS signals observed in both ionization sources has been carried out. 100 compounds belonging to different chemical families were identified in the matrix under study. Considering the results of this study, the wide range of application (in terms of polarity and size of analytes) and the robustness of APCI as interface, the high quality of TOF spectra, and our library as a publicly available resource, GC-APCI-TOF MS is definitively a valuable addition to the "metabolomics toolbox".

  18. Determination of talinolol in human plasma using automated on-line solid phase extraction combined with atmospheric pressure chemical ionization tandem mass spectrometry.

    Science.gov (United States)

    Bourgogne, Emmanuel; Grivet, Chantal; Hopfgartner, Gérard

    2005-06-01

    A specific LC-MS/MS assay was developed for the automated determination of talinolol in human plasma, using on-line solid phase extraction system (prospekt 2) combined with atmospheric pressure chemical ionization (APCI) tandem mass spectrometry. The method involved simple precipitation of plasma proteins with perchloric acid (contained propranolol) as the internal standard (IS) and injection of the supernatant onto a C8 End Capped (10 mmx2 mm) cartridge without any evaporation step. Using the back-flush mode, the analytes were transferred onto an analytical column (XTerra C18, 50 mmx4.6 mm) for chromatographic separation and mass spectrometry detection. One of the particularities of the assay is that the SPE cartridge is used as a column switching device and not as an SPE cartridge. Therefore, the same SPE cartridge could be used more than 28 times, significantly reducing the analysis cost. APCI ionization was selected to overcome any potential matrix suppression effects because the analyte and IS co-eluted. The mean precision and accuracy in the concentration range 2.5-200 ng/mL was found to be 103% and 7.4%, respectively. The data was assessed from QC samples during the validation phase of the assay. The lower limit of quantification was 2.5 ng/mL, using a 250 microL plasma aliquot. The LC-MS/MS method provided the requisite selectivity, sensitivity, robustness accuracy and precision to assess pharmacokinetics of the compound in several hundred human plasma samples. PMID:15866498

  19. Preliminary Assessment of Potential for Metal-Ligand Speciation in Aqueous Solution via the Liquid Sampling-Atmospheric Pressure Glow Discharge (LS-APGD) Ionization Source: Uranyl Acetate.

    Science.gov (United States)

    Zhang, Lynn X; Manard, Benjamin T; Powell, Brian A; Marcus, R Kenneth

    2015-07-21

    The determination of metals, including the generation of metal-ligand speciation information, is essential across a myriad of biochemical, environmental, and industrial systems. Metal speciation is generally affected by the combination of some form of chromatographic separation (reflective of the metal-ligand chemistry) with element-specific detection for the quantification of the metal composing the chromatographic eluent. Thus, the identity of the metal-ligand is assigned by inference. Presented here, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) is assessed as an ionization source for metal speciation, with the uranyl ion-acetate system used as a test system. Molecular mass spectra can be obtained from the same source by simple modification of the sustaining electrolyte solution. Specifically, chemical information pertaining to the degree of acetate complexation of uranyl ion (UO2(2+)) is assessed as a function of pH in the spectral abundance of three metallic species: inorganic (nonligated) uranyl, UO2Ac(H2O)n(MeOH)m(+), and UO2Ac2(H2O)n(MeOH)(m)H(+) (n = 1, 2, 3, ...; m = 1, 2, 3, ...). The product mass spectra are different from what are obtained from electrospray ionization sources that have been applied to this system. The resulting relationships between the speciation and pH values have been compared to calculated concentrations of the corresponding uranyl species: UO2(2+), UO2Ac(+), UO2Ac2. The capacity for the LS-APGD to affect both atomic mass spectra and structurally significant spectra for organometallic complexes is a unique and potentially powerful combination.

  20. Structure-dependent degradation of polar compounds in weathered oils observed by atmospheric pressure photo-ionization hydrogen/deuterium exchange ultrahigh resolution mass spectrometry.

    Science.gov (United States)

    Islam, Ananna; Kim, Donghwi; Yim, Un Hyuk; Shim, Won Joon; Kim, Sunghwan

    2015-10-15

    The resin fractions of fresh mixtures of three oils spilled during the M/V Hebei Spirit oil spill, as well as weathered oils collected at weathering stages II and IV from the oil spill site were analyzed and compared by atmospheric pressure photo-ionization hydrogen/deuterium exchange mass spectrometry (HDX MS). The significantly decreased abundance of N(+) and [N-H+D](+) ions suggested that secondary and tertiary amine-containing compounds were preferentially degraded during the early stage of weathering. [N+H](+) and [N+D](+) ions previously attributed to pyridine-type compounds degraded more slowly than secondary and tertiary amine-containing compounds. The preferential degradation of nitrogen-containing compounds was confirmed by photo-degradation experiments using 15 standard compounds. In addition, significant increases of [S1O1+H](+) and [S1O1+D](+) ions with higher DBE values were observed from fresh oil mixtures as compared to stages II and IV samples, and that could be linked with the decrease of higher DBE compounds of the S1 class. This study presented convincing arguments and evidence demonstrating that secondary and tertiary amines were more vulnerable to photo-degradation than compounds containing pyridine, and hence, preferential degradation depending on chemical structures must be considered in the production of hazardous or toxic components.

  1. Determination of the mycotoxin moniliformin in cultures of Fusarium subglutinans and in naturally contaminated maize by high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Sewram, V; Nieuwoudt, T W; Marasas, W F; Shephard, G S; Ritieni, A

    1999-07-01

    A LC-MS method employing triethylamine as ion-pairing reagent for the determination of moniliformin in culture material and naturally contaminated maize samples is described. Mass spectrometric detection of moniliformin was accomplished following atmospheric pressure chemical ionization to yield the deprotonated molecular ion [M-H]- at m/z 97. The moniliformin response was found to be linear over the injected range 10 ng to 700 ng and a detection limit of 10 ng was attainable at a signal-to-noise (S/N) ratio of 4. Five South African strains of Fusarium subglutinans were grown on maize kernels and moniliformin extracted with an acetonitrile-water (95:5) mixture. Following sample clean up with reversed-phase (C18) solid-phase extraction cartridges, the extracts were subjected to LC-MS analysis. Triethylamine was used as an ion-pair reagent and found to improve the retention characteristics of moniliformin without any detrimental effects to the instrument. Moniliformin concentrations ranged between 130 mg/kg and 1460 mg/kg culture. Application of this method to naturally contaminated maize samples from Transkei showed that it was capable of measuring moniliformin levels down to 10 micrograms/kg in selected moldy maize cobs. This is the first report on the application of LC-MS to the analysis of moniliformin in cultures of F. subglutinans and in naturally contaminated maize. PMID:10427758

  2. Diclofenac in municipal wastewater treatment plant: quantification using laser diode thermal desorption--atmospheric pressure chemical ionization--tandem mass spectrometry approach in comparison with an established liquid chromatography-electrospray ionization-tandem mass spectrometry method.

    Science.gov (United States)

    Lonappan, Linson; Pulicharla, Rama; Rouissi, Tarek; Brar, Satinder K; Verma, Mausam; Surampalli, Rao Y; Valero, José R

    2016-02-12

    Diclofenac (DCF), a prevalent non-steroidal anti-inflammatory drug (NSAID) is often detected in wastewater and surface water. Analysis of the pharmaceuticals in complex matrices is often laden with challenges. In this study a reliable, rapid and sensitive method based on laser diode thermal desorption/atmospheric pressure chemical ionization (LDTD/APCI) coupled with tandem mass spectrometry (MS/MS) has been developed for the quantification of DCF in wastewater and wastewater sludge. An established conventional LC-ESI-MS/MS (liquid chromatography-electrospray ionization-tandem mass spectrometry) method was compared with LDTD-APCI-MS/MS approach. The newly developed LDTD-APCI-MS/MS method reduced the analysis time to 12s in lieu of 12 min for LC-ESI-MS/MS method. The method detection limits for LDTD-APCI-MS/MS method were found to be 270 ng L(-1) (LOD) and 1000 ng L(-1) (LOQ). Furthermore, two extraction procedures, ultrasonic assisted extraction (USE) and accelerated solvent extraction (ASE) for the extraction of DCF from wastewater sludge were compared and ASE with 95.6 ± 7% recovery was effective over USE with 86 ± 4% recovery. The fate and partitioning of DCF in wastewater (WW) and wastewater sludge (WWS) in wastewater treatment plant was also monitored at various stages of treatment in Quebec Urban community wastewater treatment plant. DCF exhibited affinity towards WW than WWS with a presence about 60% of DCF in WW in contrary with theoretical prediction (LogKow=4.51).

  3. Diclofenac in municipal wastewater treatment plant: quantification using laser diode thermal desorption--atmospheric pressure chemical ionization--tandem mass spectrometry approach in comparison with an established liquid chromatography-electrospray ionization-tandem mass spectrometry method.

    Science.gov (United States)

    Lonappan, Linson; Pulicharla, Rama; Rouissi, Tarek; Brar, Satinder K; Verma, Mausam; Surampalli, Rao Y; Valero, José R

    2016-02-12

    Diclofenac (DCF), a prevalent non-steroidal anti-inflammatory drug (NSAID) is often detected in wastewater and surface water. Analysis of the pharmaceuticals in complex matrices is often laden with challenges. In this study a reliable, rapid and sensitive method based on laser diode thermal desorption/atmospheric pressure chemical ionization (LDTD/APCI) coupled with tandem mass spectrometry (MS/MS) has been developed for the quantification of DCF in wastewater and wastewater sludge. An established conventional LC-ESI-MS/MS (liquid chromatography-electrospray ionization-tandem mass spectrometry) method was compared with LDTD-APCI-MS/MS approach. The newly developed LDTD-APCI-MS/MS method reduced the analysis time to 12s in lieu of 12 min for LC-ESI-MS/MS method. The method detection limits for LDTD-APCI-MS/MS method were found to be 270 ng L(-1) (LOD) and 1000 ng L(-1) (LOQ). Furthermore, two extraction procedures, ultrasonic assisted extraction (USE) and accelerated solvent extraction (ASE) for the extraction of DCF from wastewater sludge were compared and ASE with 95.6 ± 7% recovery was effective over USE with 86 ± 4% recovery. The fate and partitioning of DCF in wastewater (WW) and wastewater sludge (WWS) in wastewater treatment plant was also monitored at various stages of treatment in Quebec Urban community wastewater treatment plant. DCF exhibited affinity towards WW than WWS with a presence about 60% of DCF in WW in contrary with theoretical prediction (LogKow=4.51). PMID:26805597

  4. Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MSn) for measuring organic acids in concentrated bulk aerosol – a laboratory and field study

    OpenAIRE

    Williams, J.; Kulmala, M.; D. R. Worsnop; Junninen, H.; Petäjä, T.; Ehn, M.; Brüggemann, M; M. Äijälä; Vogel, A. L.; Hoffmann, T.

    2013-01-01

    The field application of an aerosol concentrator in conjunction with an atmospheric pressure chemical ionization ion trap mass spectrometer (APCI-IT-MS) at the boreal forest station SMEAR II at Hyytiälä, Finland, is demonstrated in this study. APCI is a soft-ionization technique allowing online measurements of organic acids in the gas and particle phase. The detection limit for the acid species in the particle phase was improved by a factor of 7.5 to 11 (e.g. ∼40 ng m3 for pinonic acid) b...

  5. Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MSn) for measuring organic acids in concentrated bulk aerosol – a laboratory and field study

    OpenAIRE

    Williams, J.; Kulmala, M.; D. R. Worsnop; Junninen, H.; Petäjä, T.; Ehn, M.; Brüggemann, M; M. Äijälä; Vogel, A. L.; Hoffmann, T.

    2012-01-01

    The field application of an aerosol concentrator in conjunction with an atmospheric pressure chemical ionization ion trap mass spectrometer (APCI-IT-MS) at the boreal forest station SMEAR II at Hyytiälä, Finland, is demonstrated in this study. APCI is a soft ionization technique allowing online measurements of organic acids in the gas and particle phase. The detection limit for the acid species in the particle phase was increased by a factor of 7.5 to 11 (e.g. ~40 ng m−3 for pinonic ac...

  6. Profiling of triacylglycerols in plant oils by high-performance liquid chromatography-atmosphere pressure chemical ionization mass spectrometry using a novel mixed-mode column.

    Science.gov (United States)

    Hu, Na; Wei, Fang; Lv, Xin; Wu, Lin; Dong, Xu-Yan; Chen, Hong

    2014-12-01

    In this investigation, a rapid and high-throughput method for profiling of TAGs in plant oils by liquid chromatography using a single column coupled with atmospheric pressure chemical ionization (APCI) mass spectrometry was reported. A novel mixed-mode phenyl-hexyl chromatographic column was employed in this separation system. The phenyl-hexyl column could provide hydrophobic interactions as well as π-π interactions. Compared with two traditionally columns used in TAG separation - the C18 column and silver-ion column, this column exhibited much higher selectivity for the separation of TAGs with great efficiency and rapid speed. By comparison with a novel mix-mode column (Ag-HiSep OTS column), which can also provide both hydrophobic interactions as well as π-π interactions for the separation of TAGs, phenyl-hexyl column exhibited excellent stability. LC method using phenyl-hexyl column coupled with APCI-MS was successfully applied for the profiling of TAGs in soybean oils, peanut oils, corn oils, and sesame oils. 29 TAGs in peanut oils, 22 TAGs in soybean oils, 19 TAGs in corn oils, and 19 TAGs in sesame oils were determined and quantified. The LC-MS data was analyzed by barcodes and principal component analysis (PCA). The resulting barcodes constitute a simple tool to display differences between different plant oils. Results of PCA also enabled a clear identification of different plant oils. This method provided an efficient and convenient chromatographic technology for the fast characterization and quantification of complex TAGs in plant oils at high selectivity. It has great potential as a routine analytical method for analysis of edible oil quality and authenticity control.

  7. Determination of eight nitrosamines in water at the ng L(-1) levels by liquid chromatography coupled to atmospheric pressure chemical ionization tandem mass spectrometry.

    Science.gov (United States)

    Ripollés, Cristina; Pitarch, Elena; Sancho, Juan V; López, Francisco J; Hernández, Félix

    2011-09-19

    In this work, we have developed a sensitive method for detection and quantification of eight N-nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosomorpholine (NMor), N-nitrosomethylethylamine (NMEA), N-nitrosopirrolidine (NPyr), N-nitrosodiethylamine (NDEA), N-nitrosopiperidine (NPip), N-nitroso-n-dipropylamine (NDPA) and N-nitrosodi-n-butylamine (NDBA) in drinking water. The method is based on liquid chromatography coupled to tandem mass spectrometry, using atmospheric pressure chemical ionization (APCI) in positive mode with a triple quadrupole analyzer (QqQ). The simultaneous acquisition of two MS/MS transitions in selected reaction monitoring mode (SRM) for each compound, together with the evaluation of their relative intensity, allowed the simultaneous quantification and reliable identification in water at ppt levels. Empirical formula of the product ions selected was confirmed by UHPLC-(Q)TOF MS accurate mass measurements from reference standards. Prior to LC-MS/MS QqQ analysis, a preconcentration step by off-line SPE using coconut charcoal EPA 521 cartridges (by passing 500 mL of water sample) was necessary to improve the sensitivity and to meet regulation requirements. For accurate quantification, two isotope labelled nitrosamines (NDMA-d(6) and NDPA-d(14)) were added as surrogate internal standards to the samples. The optimized method was validated at two concentration levels (10 and 100 ng L(-1)) in drinking water samples, obtaining satisfactory recoveries (between 90 and 120%) and precision (RSDwater samples: chlorinated from drinking water and wastewater treatment plants (DWTP and WWTP, respectively), wastewaters subjected to ozonation and tap waters.

  8. Determination of Glucosamine in Human Plasma by High-Performance Liquid Chromatography-Atmospheric Pressure Chemical Ionization Source-Tandem Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Xingchen Zhou

    2011-01-01

    Full Text Available A sensitive, specific, and rapid high-performance liquid chromatography-atmospheric pressure chemical ionization source-tandem mass spectrometry (HPLC-APCI-MS/MS method for the determination of glucosamine in human plasma was developed and validated. Plasma samples were processed by protein precipitation with dehydrated ethanol, and the chromatographic separation was performed on an Agilent XDB-C18 column with a mobile phase of methanol—0.2% formic acid solution (70 : 30, v/v. Mass spectrometric quantification was carried out in the multiple reaction monitoring (MRM mode, monitoring ion transitions of m/z 180.1 to m/z 162.1 with collision energy (CE of 2 eV for glucosamine and m/z 181.1 to m/z 163.1 with CE of 2 eV for the internal standard (IS in positive ion mode. The linear calibration curves covered a concentration range of 53.27–3409 ng/mL with a lower limit of quantification (LLOQ of 53.27 ng/mL. The extraction recovery of glucosamine was greater than 101.7%. The intra- and interday precisions for glucosamine were less than 10%, and the accuracies were between 93.7% and 102.6%, determined from quality control (QC samples of three representative concentrations. The method has been successfully applied to determining the plasma concentration of glucosamine in a clinical pharmacokinetic study involving 20 healthy Chinese male volunteers.

  9. Evaluation of the operating parameters of the liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source for elemental mass spectrometry.

    Science.gov (United States)

    Zhang, Lynn X; Manard, Benjamin T; Konegger-Kappel, Stefanie; Kappel, Stefanie Konegger; Marcus, R Kenneth

    2014-11-01

    The liquid sampling-atmospheric pressure glow discharge (LS-APGD) has been assessed as an ionization source for elemental analysis with an interdependent, parametric evaluation regarding sheath/cooling gas flow rate, discharge current, liquid flow rate, and the distance between the plasma and the sampling cone of the mass spectrometer. In order to better understand plasma processes (and different from previous reports), no form of collision/reaction processing was performed to remove molecular interferents. The evaluation was performed employing five test elements: cesium, silver, lead, lanthanum and nickel (10(-4) mol L(-1) in 1 mol L(-1) HNO3). The intensity of the atomic ions, levels of spectral background, the signal-to-background ratios, and the atomic-to-oxide/hydroxide adduct ratios were monitored in order to obtain fundamental understanding with regards to not only how each parameter effects the performance of this LS-APGD source, but also the inter-parametric effects. The results indicate that the discharge current and the liquid sampling flow rates are the key aspects that control the spectral composition. A compromise set of operating conditions was determined: sheath gas flow rate = 0.9 L min(-1), discharge current = 10 mA, solution flow rate = 10 μL min(-1), and sampling distance = 1 cm. Limits of detection (LODs) were calculated using the SBR-RSDB (signal-to-background ratio/relative standard deviation of the background) approach under the optimized condition. The LODs for the test elementals ranged from 15 to 400 ng mL(-1) for 10 μL injections, with absolute mass values from 0.2 to 4 ng.

  10. Atmospheric pressure laser desorption/ionization using a 6-7 µm-band mid-infrared tunable laser and liquid water matrix.

    Science.gov (United States)

    Hiraguchi, Ryuji; Hazama, Hisanao; Masuda, Katsuyoshi; Awazu, Kunio

    2015-01-01

    Due to the characteristic absorption peaks in the IR region, various molecules can be used as a matrix for infrared matrix-assisted laser desorption/ionization (IR-MALDI). Especially in the 6-7 µm-band IR region, solvents used as the mobile phase for liquid chromatography have absorption peaks that correspond to their functional groups, such as O-H, C=O, and CH3. Additionally, atmospheric pressure (AP) IR-MALDI, which is applicable to liquid-state samples, is a promising technique to directly analyze untreated samples. Herein we perform AP-IR-MALDI mass spectrometry of a peptide, angiotensin II, using a mid-IR tunable laser with a tunable wavelength range of 5.50-10.00 µm and several different matrices. The wavelength dependences of the ion signal intensity of [M + H](+) of the peptide are measured using a conventional solid matrix, α-cyano-4-hydroxycinnamic acid (CHCA) and a liquid matrix composed of CHCA and 3-aminoquinoline. Other than the O-H stretching and bending vibration modes, the characteristic absorption peaks are useful for AP-IR-MALDI. Peptide ions are also observed from an aqueous solution of the peptide without an additional matrix, and the highest peak intensity of [M + H](+) is at 6.00 µm, which is somewhat shorter than the absorption peak wavelength of liquid water corresponding to the O-H bending vibration mode. Moreover, long-lasting and stable ion signals are obtained from the aqueous solution. AP-IR-MALDI using a 6-7 µm-band IR tunable laser and solvents as the matrix may provide a novel on-line interface between liquid chromatography and mass spectrometry.

  11. A high-performance liquid chromatographic-atmospheric pressure chemical ionization-tandem mass spectrometric method for determination of risperidone and 9-hydroxyrisperidone in human plasma.

    Science.gov (United States)

    Moody, David E; Laycock, John D; Huang, Wei; Foltz, Rodger L

    2004-09-01

    Risperidone, a benzisoxazole derivative, is an antipsychotic agent used for the treatment of schizophrenia. We developed a liquid chromatographic-atmospheric pressure chemical ionization-tandem mass spectrometric (LC-APCI-MS-MS) method with improved sensitivity, selectivity, and dynamic range for determination of risperidone and 9-hydroxyrisperidone in human plasma. A structural analogue of risperidone, RO68808 (5 ng/mL), is added as the internal standard to 1 mL of human plasma. Plasma is made basic, extracted with pentane/methylene chloride (3:1), the organic phase evaporated to dryness, and the residue is reconstituted in water with 0.1% formic acid/acetonitrile (20:1). For LC-MS-MS analysis, a Metachem Inertsel HPLC column (2.1 x 150 mm, 5-microm particle size) is connected to a Finnigan TSQ7000 tandem MS via the Finnigan API interface. Both electrospray (ESI) and APCI produced predominantly MH(+) ions for the two analytes and the internal standard. Ions detected by selected reaction monitoring correspond to the following transitions: m/z 411 to 191 for risperidone, m/z 427 to 207 for 9-hydroxyrisperidone, and m/z 421 to 201 for the internal standard. APCI provided a larger dynamic range (0.1 to 25 ng/mL) and better precision and accuracy than ESI. Intrarun accuracy and precision determined at 0.1, 0.25, 2.5, and 15 ng/mL were within 12% of target with %CVs not exceeding 10.9%. Interrun accuracy and precision determined at the same concentrations were within 9.6% of target with %CVs not exceeding 6.7%. Analytes were stable in plasma after 24 h at room temperature, 2 freeze-thaw cycles, and 490 days at -20 degrees C. PMID:15516302

  12. Structure-dependent degradation of polar compounds in weathered oils observed by atmospheric pressure photo-ionization hydrogen/deuterium exchange ultrahigh resolution mass spectrometry

    International Nuclear Information System (INIS)

    Highlights: • We examined source crude oil and weathered oils from M/V Hebei accident. • APPI hydrogen/deuterium exchange ultrahigh mass spectrometry was applied. • N1 class compounds with 2° and/or 3° amine decrease in larger scale than pyridines. • Preferential degradation of nitrogen-containing compounds was confirmed. • Significant increase in S1O1 compounds was observed as the weathering proceeds. - Abstract: The resin fractions of fresh mixtures of three oils spilled during the M/V Hebei Spirit oil spill, as well as weathered oils collected at weathering stages II and IV from the oil spill site were analyzed and compared by atmospheric pressure photo-ionization hydrogen/deuterium exchange mass spectrometry (HDX MS). The significantly decreased abundance of N+· and [N − H + D]+ ions suggested that secondary and tertiary amine-containing compounds were preferentially degraded during the early stage of weathering. [N + H]+ and [N + D]+ ions previously attributed to pyridine-type compounds degraded more slowly than secondary and tertiary amine-containing compounds. The preferential degradation of nitrogen-containing compounds was confirmed by photo-degradation experiments using 15 standard compounds. In addition, significant increases of [S1O1 + H]+ and [S1O1 + D]+ ions with higher DBE values were observed from fresh oil mixtures as compared to stages II and IV samples, and that could be linked with the decrease of higher DBE compounds of the S1 class. This study presented convincing arguments and evidence demonstrating that secondary and tertiary amines were more vulnerable to photo-degradation than compounds containing pyridine, and hence, preferential degradation depending on chemical structures must be considered in the production of hazardous or toxic components

  13. Structure-dependent degradation of polar compounds in weathered oils observed by atmospheric pressure photo-ionization hydrogen/deuterium exchange ultrahigh resolution mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Ananna; Kim, Donghwi [Kyungpook National University, Department of Chemistry, Daegu 702-701 (Korea, Republic of); Yim, Un Hyuk; Shim, Won Joon [Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, KIOST, Geoje 656-834 (Korea, Republic of); Kim, Sunghwan, E-mail: sunghwank@knu.ac.kr [Kyungpook National University, Department of Chemistry, Daegu 702-701 (Korea, Republic of); Green Nano Center, Department of Chemistry, Daegu 702-701 (Korea, Republic of)

    2015-10-15

    Highlights: • We examined source crude oil and weathered oils from M/V Hebei accident. • APPI hydrogen/deuterium exchange ultrahigh mass spectrometry was applied. • N{sub 1} class compounds with 2° and/or 3° amine decrease in larger scale than pyridines. • Preferential degradation of nitrogen-containing compounds was confirmed. • Significant increase in S{sub 1}O{sub 1} compounds was observed as the weathering proceeds. - Abstract: The resin fractions of fresh mixtures of three oils spilled during the M/V Hebei Spirit oil spill, as well as weathered oils collected at weathering stages II and IV from the oil spill site were analyzed and compared by atmospheric pressure photo-ionization hydrogen/deuterium exchange mass spectrometry (HDX MS). The significantly decreased abundance of N{sup +}· and [N − H + D]{sup +} ions suggested that secondary and tertiary amine-containing compounds were preferentially degraded during the early stage of weathering. [N + H]{sup +} and [N + D]{sup +} ions previously attributed to pyridine-type compounds degraded more slowly than secondary and tertiary amine-containing compounds. The preferential degradation of nitrogen-containing compounds was confirmed by photo-degradation experiments using 15 standard compounds. In addition, significant increases of [S{sub 1}O{sub 1} + H]{sup +} and [S{sub 1}O{sub 1} + D]{sup +} ions with higher DBE values were observed from fresh oil mixtures as compared to stages II and IV samples, and that could be linked with the decrease of higher DBE compounds of the S{sub 1} class. This study presented convincing arguments and evidence demonstrating that secondary and tertiary amines were more vulnerable to photo-degradation than compounds containing pyridine, and hence, preferential degradation depending on chemical structures must be considered in the production of hazardous or toxic components.

  14. Validation of a qualitative screening method for pesticides in fruits and vegetables by gas chromatography quadrupole-time of flight mass spectrometry with atmospheric pressure chemical ionization.

    Science.gov (United States)

    Portolés, T; Mol, J G J; Sancho, J V; López, Francisco J; Hernández, F

    2014-08-01

    A wide-scope screening method was developed for the detection of pesticides in fruit and vegetables. The method was based on gas chromatography coupled to a hybrid quadrupole time-of-flight mass spectrometer with an atmospheric pressure chemical ionization source (GC-(APCI)QTOF MS). A non-target acquisition was performed through two alternating scan events: one at low collision energy and another at a higher collision energy ramp (MS(E)). In this way, both protonated molecule and/or molecular ion together with fragment ions were obtained in a single run. Validation was performed according to SANCO/12571/2013 by analysing 20 samples (10 different commodities in duplicate), fortified with a test set of 132 pesticides at 0.01, 0.05 and 0.20mg kg(-1). For screening, the detection was based on one diagnostic ion (in most cases the protonated molecule). Overall, at the 0.01mg kg(-1) level, 89% of the 2620 fortifications made were detected. The screening detection limit for individual pesticides was 0.01mg kg(-1) for 77% of the pesticides investigated. The possibilities for identification according to the SANCO criteria, requiring two ions with a mass accuracy ≤±5ppm and an ion-ratio deviation ≤±30%, were investigated. At the 0.01mg kg(-1) level, identification was possible for 70% of the pesticides detected during screening. This increased to 87% and 93% at the 0.05 and 0.20mg kg(-1) level, respectively. Insufficient sensitivity for the second ion was the main reason for the inability to identify detected pesticides, followed by deviations in mass accuracy and ion ratios.

  15. Atmospheric pressure femtosecond laser imaging mass spectrometry

    Science.gov (United States)

    Coello, Yves; Gunaratne, Tissa C.; Dantus, Marcos

    2009-02-01

    We present a novel imaging mass spectrometry technique that uses femtosecond laser pulses to directly ionize the sample. The method offers significant advantages over current techniques by eliminating the need of a laser-absorbing sample matrix, being suitable for atmospheric pressure sampling, and by providing 10μm resolution, as demonstrated here with a chemical image of vegetable cell walls.

  16. Validation of a qualitative screening method for pesticides in fruits and vegetables by gas chromatography quadrupole-time of flight mass spectrometry with atmospheric pressure chemical ionization

    International Nuclear Information System (INIS)

    Highlights: • Applicability of GC-(APCI)QTOF MS as new tool for wide-scope screening of pesticides in fruits and vegetables demonstrated. • Validation of screening method according to SANCO/12571/2013. • Detection of the pesticides based on the presence of M+·/MH+ in most cases. • Screening detection limit 0.01 mg kg−1 for 77% of the pesticides investigated. • Successful identification at 0.01 mg kg−1 for 70% of the pesticides/matrix combinations. - Abstract: A wide-scope screening method was developed for the detection of pesticides in fruit and vegetables. The method was based on gas chromatography coupled to a hybrid quadrupole time-of-flight mass spectrometer with an atmospheric pressure chemical ionization source (GC-(APCI)QTOF MS). A non-target acquisition was performed through two alternating scan events: one at low collision energy and another at a higher collision energy ramp (MSE). In this way, both protonated molecule and/or molecular ion together with fragment ions were obtained in a single run. Validation was performed according to SANCO/12571/2013 by analysing 20 samples (10 different commodities in duplicate), fortified with a test set of 132 pesticides at 0.01, 0.05 and 0.20 mg kg−1. For screening, the detection was based on one diagnostic ion (in most cases the protonated molecule). Overall, at the 0.01 mg kg−1 level, 89% of the 2620 fortifications made were detected. The screening detection limit for individual pesticides was 0.01 mg kg−1 for 77% of the pesticides investigated. The possibilities for identification according to the SANCO criteria, requiring two ions with a mass accuracy ≤±5 ppm and an ion-ratio deviation ≤±30%, were investigated. At the 0.01 mg kg−1 level, identification was possible for 70% of the pesticides detected during screening. This increased to 87% and 93% at the 0.05 and 0.20 mg kg−1 level, respectively. Insufficient sensitivity for the second ion was the main reason for the inability to

  17. Online profiling of triacylglycerols in plant oils by two-dimensional liquid chromatography using a single column coupled with atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Wei, Fang; Ji, Shu-Xian; Hu, Na; Lv, Xin; Dong, Xu-Yan; Feng, Yu-Qi; Chen, Hong

    2013-10-18

    The complexity of natural triacylglycerols (TAGs) in various edible oils is high because of the hundreds of TAG compositions, which makes the profiling of TAGs quite difficult. In this investigation, a rapid and high-throughput method for online profiling of TAGs in plant oils by two-dimensional (2D) liquid chromatography using a single column coupled with atmospheric pressure chemical ionization (APCI) mass spectrometry was reported. A novel mixed-mode 2D chromatographic column packed with silver-ion-modified octyl and sulfonic co-bonded silica was employed in this online 2D separation system. This novel 2D column combined the features of C8 column and silver-ion. In comparison with the traditional C18 column and silver-ion column, which are the two main columns used for the separation of complex TAGs in natural oil samples, this novel 2D column, could provide hydrophobic interactions as well as π-complexation interactions. It exhibited much higher selectivity for the separation of TAGs, and the separation was rapid. This online 2D separation system was successful in the separation of a large number of TAG solutes, and the TAG structures were evaluated by analyzing their APCI mass spectra information. This system was applied for the profiling of TAGs in peanut oils, corn oils, and soybean oils. 30 TAGs in peanut oils, 18 TAGs in corn oils, and 21 TAGs in soybean oils were determined and quantified. The highest relative content of TAGs was LLL, which was found in corn oil with the relative content up to 45.43 (%, w/w), and the lowest relative content of TAGs was LLS and OSS, which was found in soybean oil and corn oil respectively, with the relative content only 0.01 (%, w/w). In addition, the TAG data were analyzed by principal component analysis (PCA). Results of PCA enabled a clear identification of different plant oils. This method provided an efficient and convenient chromatographic technology for the fast characterization and quantification of complex TAGs

  18. Validation of a qualitative screening method for pesticides in fruits and vegetables by gas chromatography quadrupole-time of flight mass spectrometry with atmospheric pressure chemical ionization

    Energy Technology Data Exchange (ETDEWEB)

    Portolés, T. [Research Institute for Pesticides and Water, University Jaume I, 12071 Castellón (Spain); RIKILT Institute of Food Safety, Wageningen University and Research Centre, Akkermaalsbos 2, 6708 WB Wageningen (Netherlands); Mol, J.G.J. [RIKILT Institute of Food Safety, Wageningen University and Research Centre, Akkermaalsbos 2, 6708 WB Wageningen (Netherlands); Sancho, J.V.; López, Francisco J. [Research Institute for Pesticides and Water, University Jaume I, 12071 Castellón (Spain); Hernández, F., E-mail: hernandf@uji.es [Research Institute for Pesticides and Water, University Jaume I, 12071 Castellón (Spain)

    2014-08-01

    Highlights: • Applicability of GC-(APCI)QTOF MS as new tool for wide-scope screening of pesticides in fruits and vegetables demonstrated. • Validation of screening method according to SANCO/12571/2013. • Detection of the pesticides based on the presence of M+·/MH+ in most cases. • Screening detection limit 0.01 mg kg{sup −1} for 77% of the pesticides investigated. • Successful identification at 0.01 mg kg{sup −1} for 70% of the pesticides/matrix combinations. - Abstract: A wide-scope screening method was developed for the detection of pesticides in fruit and vegetables. The method was based on gas chromatography coupled to a hybrid quadrupole time-of-flight mass spectrometer with an atmospheric pressure chemical ionization source (GC-(APCI)QTOF MS). A non-target acquisition was performed through two alternating scan events: one at low collision energy and another at a higher collision energy ramp (MS{sup E}). In this way, both protonated molecule and/or molecular ion together with fragment ions were obtained in a single run. Validation was performed according to SANCO/12571/2013 by analysing 20 samples (10 different commodities in duplicate), fortified with a test set of 132 pesticides at 0.01, 0.05 and 0.20 mg kg{sup −1}. For screening, the detection was based on one diagnostic ion (in most cases the protonated molecule). Overall, at the 0.01 mg kg{sup −1} level, 89% of the 2620 fortifications made were detected. The screening detection limit for individual pesticides was 0.01 mg kg{sup −1} for 77% of the pesticides investigated. The possibilities for identification according to the SANCO criteria, requiring two ions with a mass accuracy ≤±5 ppm and an ion-ratio deviation ≤±30%, were investigated. At the 0.01 mg kg{sup −1} level, identification was possible for 70% of the pesticides detected during screening. This increased to 87% and 93% at the 0.05 and 0.20 mg kg{sup −1} level, respectively. Insufficient sensitivity for the second

  19. Determination of benzoylurea insecticide residues in tomatoes by high-performance liquid chromatography with ultraviolet-diode array and atmospheric pressure chemical ionization-mass spectrometry detection.

    Science.gov (United States)

    Markoglou, Anastasios N; Bempelou, Eleftheria D; Liapis, Konstantinos S; Ziogas, Basil N

    2007-01-01

    A simple and sensitive method using high-performance liquid chromatography/ mass spectrometry (LC/MS) was developed and validated for simultaneous determination of 5 benzoylurea insecticides-diflubenzuron, triflumuron, teflubenzuron, lufenuron, and flufenoxuron-in tomatoes. Residues were successfully separated on a C18 column by methanol-water isocratic elution. Detection was carried out by an ultraviolet diode array detector (UV-DAD) coupled with a quadrupole mass spectrometer, using atmospheric pressure chemical ionization (APCI) in negative-ion mode. The main ions were the deprotonated molecules [M-H]- for triflumuron, and the anions formed by elimination of hydrofluoric acid [M-H-HF]- for diflubenzuron and flufenoxuron, and [M-2H-HF] for lufenuron and teflubenzuron. The calibration plots were linear for both detectors over the range 0.05 to 10 microg/mL, and the method presented good quality parameters. The limits of detection for standard solutions were 0.008-0.01 mg/L (equivalent to 0.08-0.1 ng injected) for both detectors, and the limits of quantification (LOQs) were approximately 10 times lower than national maximum residue levels (MRLs). Depending on the compound and the detector, the LOQ values ranged from 0.2 to 0.4 ng injected. The optimum LC-UV-DAD/APCI-MS conditions were applied to the analysis of benzoylureas in tomatoes. The obtained recoveries from fortified tomato samples (50 g), extracted with ethyl acetate and purified by solid-phase extraction on silica sorbent, were 88-100 and 92.9-105% for the UV-DAD and MS detectors, respectively, with precision values (relative standard deviations) of 2.9-11 and 3.7-14%, respectively. The method was applied to 12 tomato samples from local markets, and diflubenzuron and lufenuron were detected in only one sample at concentrations lower than the MRLs. The results indicate that the developed LC/MS method is accurate, precise, and sensitive for quantitative and qualitative analysis at low levels of benzoylureas

  20. Liquid chromatography coupled to different atmospheric pressure ionization sources-quadrupole-time-of-flight mass spectrometry and post-column addition of metal salt solutions as a powerful tool for the metabolic profiling of Fusarium oxysporum.

    Science.gov (United States)

    Cirigliano, Adriana M; Rodriguez, M Alejandra; Gagliano, M Laura; Bertinetti, Brenda V; Godeas, Alicia M; Cabrera, Gabriela M

    2016-03-25

    Fusarium oxysporum L11 is a non-pathogenic soil-borne fungal strain that yielded an extract that showed antifungal activity against phytopathogens. In this study, reversed-phase high-performance liquid chromatography (RP-HPLC) coupled to different atmospheric pressure ionization sources-quadrupole-time-of-flight mass spectrometry (API-QTOF-MS) was applied for the comprehensive profiling of the metabolites from the extract. The employed sources were electrospray (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). Post-column addition of metal solutions of Ca, Cu and Zn(II) was also tested using ESI. A total of 137 compounds were identified or tentatively identified by matching their accurate mass signals, suggested molecular formulae and MS/MS analysis with previously reported data. Some compounds were isolated and identified by NMR. The extract was rich in cyclic peptides like cyclosporins, diketopiperazines and sansalvamides, most of which were new, and are reported here for the first time. The use of post-column addition of metals resulted in a useful strategy for the discrimination of compound classes since specific adducts were observed for the different compound families. This technique also allowed the screening for compounds with metal binding properties. Thus, the applied methodology is a useful choice for the metabolic profiling of extracts and also for the selection of metabolites with potential biological activities related to interactions with metal ions.

  1. Atmospheric pressure plasma jet applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.; Herrmann, H.W.; Henins, I.; Selwyn, G.S. [Los Alamos National Lab., NM (United States)

    1998-12-31

    The atmospheric pressure plasma jet (APPJ) is a non-thermal, high pressure plasma discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g., He/O2/H2O) which flows between two concentric cylindrical electrodes: an outer grounded electrode and an inner electrode powered at 13.56 MHz RF. While passing through the plasma, the feedgas becomes excited, ionized or dissociated by electron impact. The fast-flowing effluent consists of ions and electrons, which are rapidly lost by recombination, highly reactive radicals (e.g., O, OH), and metastable species (e.g., O2). The metastable O2, which is reactive to hydrocarbon and other organic species, has been observed through optical emission spectroscopy to decrease by a factor of 2 from the APPJ nozzle exit to a distance of 10 cm. Unreacted metastable O2, and that which does not impinge on a surface, will then decay back to ordinary ground state O2, resulting in a completely dry, environmentally-benign form of surface cleaning. Applications such as removal of photoresist, oxide films and organic residues from wafers for the electronics industry, decontamination of civilian and military areas and personnel exposed to chemical or biological warfare agents, and paint (e.g., graffiti) removal are being considered.

  2. Hydraulic effects in a radiative atmosphere with ionization

    Science.gov (United States)

    Bhat, P.; Brandenburg, A.

    2016-03-01

    Context. In his 1978 paper, Eugene Parker postulated the need for hydraulic downward motion to explain magnetic flux concentrations at the solar surface. A similar process has also recently been seen in simplified (e.g., isothermal) models of flux concentrations from the negative effective magnetic pressure instability (NEMPI). Aims: We study the effects of partial ionization near the radiative surface on the formation of these magnetic flux concentrations. Methods: We first obtain one-dimensional (1D) equilibrium solutions using either a Kramers-like opacity or the H- opacity. The resulting atmospheres are then used as initial conditions in two-dimensional (2D) models where flows are driven by an imposed gradient force that resembles a localized negative pressure in the form of a blob. To isolate the effects of partial ionization and radiation, we ignore turbulence and convection. Results: Because of partial ionization, an unstable stratification always forms near the surface. We show that the extrema in the specific entropy profiles correspond to the extrema in the degree of ionization. In the 2D models without partial ionization, strong flux concentrations form just above the height where the blob is placed. Interestingly, in models with partial ionization, such flux concentrations always form at the surface well above the blob. This is due to the corresponding negative gradient in specific entropy. Owing to the absence of turbulence, the downflows reach transonic speeds. Conclusions: We demonstrate that, together with density stratification, the imposed source of negative pressure drives the formation of flux concentrations. We find that the inclusion of partial ionization affects the entropy profile dramatically, causing strong flux concentrations to form closer to the surface. We speculate that turbulence effects are needed to limit the strength of flux concentrations and homogenize the specific entropy to a stratification that is close to marginal.

  3. Atmospheric pressure plasma research activity in korea

    International Nuclear Information System (INIS)

    Plasma is generated by electrical discharge. Most plasma generation has been carried out at low-pressure gas typically less than one millionth of atmospheric pressure. Plasmas are in general generated from impact ionizations of neutral gas molecules by accelerated electrons. The energy gain of electrons accelerated in an electrical field is proportional to the mean free path. Electrons gain more energy at low-pressure gas and generate plasma easily by the ionization of neutrals, because the mean free path is longer. For this reason conventional plasma generation is carried out at low pressures. However, many practical applications require plasmas at high-pressure. In order to avoid the requirement for vacuum pump, researchers in Korea start to develop plasmas in high-pressure chambers where the pressure is 1 atmosphere or greater. Material processing, environmental protection/restoration and improved energy production efficiency using plasma are only possible for inexpensive bulk plasmas. We thus generate plasmas by new methods and plan to set foundations for new plasma technologies for 21st century industries. This technological research will play a central role in material processing, environmental and energy production industries

  4. Atmospheric Pressure Indicator.

    Science.gov (United States)

    Salzsieder, John C.

    1995-01-01

    Discusses observable phenomena related to air pressure. Describes a simple, unobtrusive, semiquantitative device to monitor the changes in air pressure that are associated with altitude, using a soft-drink bottle and a balloon. (JRH)

  5. Novel analytical approach for brominated flame retardants based on the use of gas chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry with emphasis in highly brominated congeners.

    Science.gov (United States)

    Portolés, Tania; Sales, Carlos; Gómara, Belén; Sancho, Juan Vicente; Beltrán, Joaquim; Herrero, Laura; González, María José; Hernández, Félix

    2015-10-01

    The analysis of brominated flame retardants (BFRs) commonly relies on the use of gas chromatography coupled to mass spectrometry (GC-MS) operating in electron ionization (EI) and electron capture negative ionization (ECNI) modes using quadrupole, triple quadrupole, ion trap, and magnetic sector analyzers. However, these brominated contaminants are examples of compounds for which a soft and robust ionization technique might be favorable since they show high fragmentation in EI and low specificity in ECNI. In addition, the low limits of quantification (0.01 ng/g) required by European Commission Recommendation 2014/118/EU on the monitoring of traces of BFRs in food put stress on the use of highly sensitive techniques/methods. In this work, a new approach for the extremely sensitive determination of BFRs taking profit of the potential of atmospheric pressure chemical ionization (APCI) combined with GC and triple quadrupole (QqQ) mass analyzer is proposed. The objective was to explore the potential of this approach for the BFRs determination in samples at pg/g levels, taking marine samples and a cream sample as a model. Ionization and fragmentation behavior of 14 PBDEs (congeners 28, 47, 66, 85, 99, 100, 153, 154, 183, 184, 191, 196, 197, and 209) and two novel BFRs, decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), in the GC-APCI-MS system has been investigated. The formation of highly abundant (quasi) molecular ion was the main advantage observed in relation to EI. Thus, a notable improvement in sensitivity and specificity was observed when using it as precursor ion in tandem MS. The improved detectability (LODs < 10 fg) achieved when using APCI compared to EI has been demonstrated, which is especially relevant for highly brominated congeners. Analysis of samples from an intercomparison exercise and samples from the marine field showed the potential of this approach for the reliable identification and quantification at very low

  6. Atmospheric Pressure During Landing

    Science.gov (United States)

    1997-01-01

    This figure shows the variation with time of pressure (dots) measured by the Pathfinder MET instrument during the landing period shown in image PIA00797. The two diamonds indicate the times of bridal cutting and 1st impact. The overall trend in the data is of pressure increasing with time. This is almost certainly due to the lander rolling downhill by roughly 10 m. The spacing of the horizontal dotted lines indicates the pressure change expected from 10 m changes in altitude. Bounces may also be visible in the data.

  7. Martian Atmospheric Pressure Static Charge Elimination Tool

    Science.gov (United States)

    Johansen, Michael R.

    2014-01-01

    A Martian pressure static charge elimination tool is currently in development in the Electrostatics and Surface Physics Laboratory (ESPL) at NASA's Kennedy Space Center. In standard Earth atmosphere conditions, static charge can be neutralized from an insulating surface using air ionizers. These air ionizers generate ions through corona breakdown. The Martian atmosphere is 7 Torr of mostly carbon dioxide, which makes it inherently difficult to use similar methods as those used for standard atmosphere static elimination tools. An initial prototype has been developed to show feasibility of static charge elimination at low pressure, using corona discharge. A needle point and thin wire loop are used as the corona generating electrodes. A photo of the test apparatus is shown below. Positive and negative high voltage pulses are sent to the needle point. This creates positive and negative ions that can be used for static charge neutralization. In a preliminary test, a floating metal plate was charged to approximately 600 volts under Martian atmospheric conditions. The static elimination tool was enabled and the voltage on the metal plate dropped rapidly to -100 volts. This test data is displayed below. Optimization is necessary to improve the electrostatic balance of the static elimination tool.

  8. Hydraulic effects in a radiative atmosphere with ionization

    CERN Document Server

    Bhat, Pallavi

    2014-01-01

    In a paper of 1978, Eugene Parker postulated the need for hydraulic downward motion to explain magnetic flux concentrations at the solar surface. A similar process has recently also been seen in simplified (e.g., isothermal) models of flux concentrations from the negative effective magnetic pressure instability. We study the effects of partial ionization near the radiative surface on the formation of such magnetic flux concentrations. We first obtain one-dimensional (1D) equilibrium solutions using either a Kramers-like opacity or the ${\\rm H}^{-}$ opacity. The resulting atmospheres are then used as initial conditions in two-dimensional (2D) models where flows are driven by an imposed gradient force resembling a localized negative pressure in the form of a blob. To isolate the effects of partial ionization and radiation, we ignore turbulence and convection. In 1D models, due to partial ionization, an unstable stratification forms always near the surface. We show that the extrema in the specific entropy profil...

  9. Preliminary Figures of Merit for Isotope Ratio Measurements: The Liquid Sampling-Atmospheric Pressure Glow Discharge Microplasma Ionization Source Coupled to an Orbitrap Mass Analyzer

    Science.gov (United States)

    Hoegg, Edward D.; Barinaga, Charles J.; Hager, George J.; Hart, Garret L.; Koppenaal, David W.; Marcus, R. Kenneth

    2016-08-01

    In order to meet a growing need for fieldable mass spectrometer systems for precise elemental and isotopic analyses, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) has a number of very promising characteristics. One key set of attributes that await validation deals with the performance characteristics relative to isotope ratio precision and accuracy. Owing to its availability and prior experience with this research team, the initial evaluation of isotope ratio (IR) performance was performed on a Thermo Scientific Exactive Orbitrap instrument. While the mass accuracy and resolution performance for Orbitrap analyzers are well-documented, no detailed evaluations of the IR performance have been published. Efforts described here involve two variables: the inherent IR precision and accuracy delivered by the LS-APGD microplasma and the inherent IR measurement qualities of Orbitrap analyzers. Important to the IR performance, the various operating parameters of the Orbitrap sampling interface, high-energy collisional dissociation (HCD) stage, and ion injection/data acquisition have been evaluated. The IR performance for a range of other elements, including natural, depleted, and enriched uranium isotopes was determined. In all cases, the precision and accuracy are degraded when measuring low abundance (abundance species. The results suggest that the LS-APGD is a promising candidate for field deployable MS analysis and that the high resolving powers of the Orbitrap may be complemented with a here-to-fore unknown capacity to deliver high-precision IRs.

  10. Analysis of secondary organic aerosol using a Micro-Orifice Volatilization Impactor (MOVI) coupled to an ion trap mass spectrometer with atmospheric pressure chemical ionization (APCI-IT/MS)

    Science.gov (United States)

    Brueggemann, M.; Vogel, A.; Hoffmann, T.

    2012-04-01

    We describe the development and characterization of a Micro-Orifice Volatilization Impactor (MOVI) which is coupled to an ion trap mass spectrometer with atmospheric pressure chemical ionization (APCI-IT/MS), and its application in laboratory and field measurements. The MOVI-APCI-IT/MS allows the quantification of organic acids and other oxidation products of volatile organic compounds (VOCs) in secondary organic aerosols (SOA) on a semi-continuous basis. Furthermore, the vapor pressure and saturation concentration of the particle components can be estimated. The MOVI was first described in 2010 by Yatavelli and Thornton (Yatavelli and Thornton, 2010). It is a single stage, multi-nozzle impactor with 100 nozzles, each having a diameter of 150 μm. At a flow-rate of 10 L·min-1 air is drawn through the MOVI and particles are collected on a deposition plate. The cut-point diameter (d50, diameter of 50% collection efficiency) is at 130 nm. A low pressure-drop of only 5.3% of atmospheric pressure behind the nozzles allows collecting not only low-volatile but even semi-volatile compounds, which are an important part of SOA. After collecting particles hydrocarbon-free synthetic air is led over the collection surface into the APCI-IT/MS and the collection surface is heated up to 120 ° C in less than 200 s, volatilizing the sampled SOA. The vaporized compounds are transferred into the ion source and subsequently analyzed by mass spectrometry. Due to the soft ionization at atmospheric pressure the obtained mass spectra show only low fragmentations and can easily be interpreted. In laboratory experiments the MOVI-APCI-IT/MS was used for the chemical analysis of SOA generated from α-pinene-ozonolysis in a smog chamber. The limit of detection was found at 7.3 ng for pinic acid. The vapor pressure log p0 and the saturation concentration C25* for pinic acid were calculated from the desorption temperature using the method presented by Faulhaber et al. (Faulhaber et al., 2009

  11. Preliminary Figures of Merit for Isotope Ratio Measurements: The Liquid Sampling-Atmospheric Pressure Glow Discharge Microplasma Ionization Source Coupled to an Orbitrap Mass Analyzer

    Science.gov (United States)

    Hoegg, Edward D.; Barinaga, Charles J.; Hager, George J.; Hart, Garret L.; Koppenaal, David W.; Marcus, R. Kenneth

    2016-04-01

    In order to meet a growing need for fieldable mass spectrometer systems for precise elemental and isotopic analyses, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) has a number of very promising characteristics. One key set of attributes that await validation deals with the performance characteristics relative to isotope ratio precision and accuracy. Owing to its availability and prior experience with this research team, the initial evaluation of isotope ratio (IR) performance was performed on a Thermo Scientific Exactive Orbitrap instrument. While the mass accuracy and resolution performance for Orbitrap analyzers are well-documented, no detailed evaluations of the IR performance have been published. Efforts described here involve two variables: the inherent IR precision and accuracy delivered by the LS-APGD microplasma and the inherent IR measurement qualities of Orbitrap analyzers. Important to the IR performance, the various operating parameters of the Orbitrap sampling interface, high-energy collisional dissociation (HCD) stage, and ion injection/data acquisition have been evaluated. The IR performance for a range of other elements, including natural, depleted, and enriched uranium isotopes was determined. In all cases, the precision and accuracy are degraded when measuring low abundance (<0.1% isotope fractions). In the best case, IR precision on the order of 0.1% RSD can be achieved, with values of 1%-3% RSD observed for low-abundance species. The results suggest that the LS-APGD is a promising candidate for field deployable MS analysis and that the high resolving powers of the Orbitrap may be complemented with a here-to-fore unknown capacity to deliver high-precision IRs.

  12. Preliminary Figures of Merit for Isotope Ratio Measurements: The Liquid Sampling-Atmospheric Pressure Glow Discharge Microplasma Ionization Source Coupled to an Orbitrap Mass Analyzer

    Science.gov (United States)

    Hoegg, Edward D.; Barinaga, Charles J.; Hager, George J.; Hart, Garret L.; Koppenaal, David W.; Marcus, R. Kenneth

    2016-08-01

    In order to meet a growing need for fieldable mass spectrometer systems for precise elemental and isotopic analyses, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) has a number of very promising characteristics. One key set of attributes that await validation deals with the performance characteristics relative to isotope ratio precision and accuracy. Owing to its availability and prior experience with this research team, the initial evaluation of isotope ratio (IR) performance was performed on a Thermo Scientific Exactive Orbitrap instrument. While the mass accuracy and resolution performance for Orbitrap analyzers are well-documented, no detailed evaluations of the IR performance have been published. Efforts described here involve two variables: the inherent IR precision and accuracy delivered by the LS-APGD microplasma and the inherent IR measurement qualities of Orbitrap analyzers. Important to the IR performance, the various operating parameters of the Orbitrap sampling interface, high-energy collisional dissociation (HCD) stage, and ion injection/data acquisition have been evaluated. The IR performance for a range of other elements, including natural, depleted, and enriched uranium isotopes was determined. In all cases, the precision and accuracy are degraded when measuring low abundance (<0.1% isotope fractions). In the best case, IR precision on the order of 0.1% RSD can be achieved, with values of 1%-3% RSD observed for low-abundance species. The results suggest that the LS-APGD is a promising candidate for field deployable MS analysis and that the high resolving powers of the Orbitrap may be complemented with a here-to-fore unknown capacity to deliver high-precision IRs.

  13. Preliminary Figures of Merit for Isotope Ratio Measurements: The Liquid Sampling-Atmospheric Pressure Glow Discharge Microplasma Ionization Source Coupled to an Orbitrap Mass Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Hoegg, Edward D.; Barinaga, Charles J.; Hager, George J.; Hart, Garret L.; Koppenaal, David W.; Marcus, R. Kenneth

    2016-03-01

    ABSTRACT In order to meet a growing need for fieldable mass spectrometer systems for precise elemental and isotopic analyses, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) has a number of very promising characteristics. One key set of attributes that await validation deals with the performance characteristics relative to isotope ratio precision and accuracy. Due to its availability and prior experience with this research team, the initial evaluation of isotope ratio (IR) performance was performed on a Thermo Scientific Exactive Orbitrap instrument. While the mass accuracy and resolution performance for orbitrap analyzers are very well documented, no detailed evaluations of the IR performance have been published. Efforts described here involve two variables: the inherent IR precision and accuracy delivered by the LSAPGD microplasma and the inherent IR measurement qualities of orbitrap analyzers. Important to the IR performance, the various operating parameters of the orbitrap sampling interface, HCD dissociation stage, and ion injection/data acquisition have been evaluated. The IR performance for a range of other elements, including natural, depleted, and enriched uranium isotopes was determined. In all cases the precision and accuracy are degraded when measuring low abundance (<0.1% isotope fractions). In the best case, IR precision on the order of 0.1 %RSD can be achieved, with values of 1-3 %RSD observed for low-abundance species. The results suggest that the LSAPGD is a very good candidate for field deployable MS analysis and that the high resolving powers of the orbitrap may be complemented with a here-to-fore unknown capacity to deliver high-precision isotope ratios.

  14. Comparing Laser Desorption Ionization and Atmospheric Pressure Photoionization Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry To Characterize Shale Oils at the Molecular Level

    Science.gov (United States)

    Cho, Yunjo; Jin, Jang Mi; Witt, Matthias; Birdwell, Justin E.; Na, Jeong-Geol; Roh, Nam-Sun; Kim, Sunghwan

    2013-01-01

    Laser desorption ionization (LDI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to analyze shale oils. Previous work showed that LDI is a sensitive ionization technique for assessing aromatic nitrogen compounds, and oils generated from Green River Formation oil shales are well-documented as being rich in nitrogen. The data presented here demonstrate that LDI is effective in ionizing high-double-bond-equivalent (DBE) compounds and, therefore, is a suitable method for characterizing compounds with condensed structures. Additionally, LDI generates radical cations and protonated ions concurrently, the distribution of which depends upon the molecular structures and elemental compositions, and the basicity of compounds is closely related to the generation of protonated ions. This study demonstrates that LDI FT-ICR MS is an effective ionization technique for use in the study of shale oils at the molecular level. To the best of our knowledge, this is the first time that LDI FT-ICR MS has been applied to shale oils.

  15. Schinus terebinthifolius scale-up countercurrent chromatography (Part I): High performance countercurrent chromatography fractionation of triterpene acids with off-line detection using atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Vieira, Mariana Neves; Costa, Fernanda das Neves; Leitão, Gilda Guimarães; Garrard, Ian; Hewitson, Peter; Ignatova, Svetlana; Winterhalter, Peter; Jerz, Gerold

    2015-04-10

    'Countercurrent chromatography' (CCC) is an ideal technique for the recovery, purification and isolation of bioactive natural products, due to the liquid nature of the stationary phase, process predictability and the possibility of scale-up from analytical to preparative scale. In this work, a method developed for the fractionation of Schinus terebinthifolius Raddi berries dichloromethane extract was thoroughly optimized to achieve maximal throughput with minimal solvent and time consumption per gram of processed crude extract, using analytical, semi-preparative and preparative 'high performance countercurrent chromatography' (HPCCC) instruments. The method using the biphasic solvent system composed of n-heptane-ethyl acetate-methanol-water (6:1:6:1, v/v/v/v) was volumetrically scaled up to increase sample throughput up to 120 times, while maintaining separation efficiency and time. As a fast and specific detection alternative, the fractions collected from the CCC-separations were injected to an 'atmospheric pressure chemical ionization mass-spectrometer' (APCI-MS/MS) and reconstituted molecular weight MS-chromatograms of the APCI-ionizable compounds from S. terebinthifolius were obtained. This procedure led to the direct isolation of tirucallane type triterpenes such as masticadienonic and 3β-masticadienolic acids. Also oleanonic and moronic acids have been identified for the first time in the species. In summary, this approach can be used for other CCC scale-up processes, enabling MS-target-guided isolation procedures. PMID:25757818

  16. Investigation of the ionization mechanism of polycyclic aromatic hydrocarbons using an ethanol/bromobenzene/chlorobenzene/anisole mixture as a dopant in liquid chromatography/atmospheric pressure photoionization mass spectrometry

    KAUST Repository

    Amad, Maan H.

    2012-09-23

    RATIONALE An ethanol-based multicomponent dopant consisting of ethanol/chlorobenzene/bromobenzene/anisole (98.975:0.1:0.9:0.025, v/v/v/v) has been used as a dopant for atmospheric pressure photoionization (APPI) of polycyclic aromatic hydrocarbons (PAHs). In this study the mechanism of ionization of PAHs assisted by the ethanol-based multicomponent dopant is investigated. METHODS The reactant background cluster ions of the ethanol-based multicomponent dopant observed in the positive ion APPI were studied. These studies were performed to investigate the mechanism behind the generation of a molecular radical cation (M +•) for PAHs by APPI assisted by the ethanol-based multicomponent dopant. Full scan and MS/MS analyses were conducted using an LTQ Orbitrap mass spectrometer. The effect of acidification of the mobile phase on the dopant cluster ion formation was also investigated. RESULTS With the ethanol-based multicomponent dopant, a single type of molecular radical cation M +• was observed for the studied PAHs. The characteristic ion signal of the multicomponent dopant mixture consisted of mainly anisole photoions at m/z 108.05697 and its adduct ions at m/z 124.05188 and 164.07061. The anisole ion response at m/z 108.05697 was stable in the presence of acetonitrile, methanol, water and 0.1% formic acid mobile phase composition. CONCLUSIONS The abundance formation of anisole photoions shows the universality of this multicomponent dopant in ionizing compounds with ionization energy ranging from 7.1-8.2 eV. Since the ionization energy of anisole is 8.2 eV and is lower than those of chlorobenzene (9.07 eV) and bromobenzene (9.0 eV), the mechanism of formation of anisole photoions even with its very minute amounts was not only governed by its photoionization by the krypton lamp photon energy (10.0 eV and 10.6 eV), but also by charge transfer from bromobenzene and chlorobenzene radical cations. PAH molecules were mainly ionized by charge transfer reaction from

  17. Evaluation of the capabilities of atmospheric pressure chemical ionization source coupled to tandem mass spectrometry for the determination of dioxin-like polychlorobiphenyls in complex-matrix food samples.

    Science.gov (United States)

    Portolés, T; Sales, C; Abalos, M; Sauló, J; Abad, E

    2016-09-21

    The use of the novel atmospheric pressure chemical ionization (APCI) source for gas chromatography (GC) coupled to triple quadrupole using tandem mass spectrometry (MS/MS) and its potential for the simultaneous determination of the 12 dioxin-like polychlorobiphenyls (DL-PCBs) in complex food and feed matrices has been evaluated. In first place, ionization and fragmentation behavior of DL-PCBs on the APCI source under charge transfer conditions has been studied followed by their fragmentation in the collision cell. Linearity, repeatability and sensitivity have been studied obtaining instrumental limits of detection and quantification of 0.0025 and 0.005 pg μL(-1) (2.5 and 5 fg on column) respectively for every DL-PCB. Finally, application to real samples has been carried out and DL-PCB congeners (PCB 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169, 189) have been detected in the different samples in the range of 0.40-10000 pg g(-1). GC-(APCI)MS/MS has been proved as a suitable alternative to the traditionally accepted confirmation method based on the use of high resolution mass spectrometry and other triple quadrupole tandem mass spectrometry techniques operating with electron ionization. The development of MS/MS methodologies for the analysis of dioxins and DL-PCBs is nowadays particularly important, since this technique was included as a confirmatory method in the present European Union regulations that establish the requirements for the determination of these compounds in food and feed matrices.

  18. Evaluation of the capabilities of atmospheric pressure chemical ionization source coupled to tandem mass spectrometry for the determination of dioxin-like polychlorobiphenyls in complex-matrix food samples.

    Science.gov (United States)

    Portolés, T; Sales, C; Abalos, M; Sauló, J; Abad, E

    2016-09-21

    The use of the novel atmospheric pressure chemical ionization (APCI) source for gas chromatography (GC) coupled to triple quadrupole using tandem mass spectrometry (MS/MS) and its potential for the simultaneous determination of the 12 dioxin-like polychlorobiphenyls (DL-PCBs) in complex food and feed matrices has been evaluated. In first place, ionization and fragmentation behavior of DL-PCBs on the APCI source under charge transfer conditions has been studied followed by their fragmentation in the collision cell. Linearity, repeatability and sensitivity have been studied obtaining instrumental limits of detection and quantification of 0.0025 and 0.005 pg μL(-1) (2.5 and 5 fg on column) respectively for every DL-PCB. Finally, application to real samples has been carried out and DL-PCB congeners (PCB 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169, 189) have been detected in the different samples in the range of 0.40-10000 pg g(-1). GC-(APCI)MS/MS has been proved as a suitable alternative to the traditionally accepted confirmation method based on the use of high resolution mass spectrometry and other triple quadrupole tandem mass spectrometry techniques operating with electron ionization. The development of MS/MS methodologies for the analysis of dioxins and DL-PCBs is nowadays particularly important, since this technique was included as a confirmatory method in the present European Union regulations that establish the requirements for the determination of these compounds in food and feed matrices. PMID:27590550

  19. Matrix effect in the analysis of drugs of abuse from urine with desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS) and desorption electrospray ionization-mass spectrometry (DESI-MS)

    International Nuclear Information System (INIS)

    Highlights: → DAPPI-MS and DESI-MSI in the analysis of drugs of abuse from urine. → DAPPI-MS has better urine matrix tolerance over DESI-MS. → Urine matrix can affect the ionization mechanism in DAPPI. → DAPPI-MS/MS can be used for screening of drugs from urine after sample pretreatment. - Abstract: We have studied the matrix effect within direct analysis of benzodiazepines and opioids from urine with desorption electrospray ionization-mass spectrometry (DESI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). The urine matrix was found to affect the ionization mechanism of the opioids in DAPPI-MS favoring proton transfer over charge exchange reaction. The sensitivity for the drugs in solvent matrix was at the same level with DESI-MS and DAPPI-MS (LODs 0.05-6 μg mL-1) but the decrease in sensitivity due to the urine matrix was higher with DESI (typically 20-160-fold) than with DAPPI (typically 2-15-fold) indicating better matrix tolerance of DAPPI over DESI. Also in MS/MS mode, DAPPI provided better sensitivity than DESI for the drugs in urine. The feasibility of DAPPI-MS/MS was then studied in screening the same drugs from five authentic, forensic post mortem urine samples. A reference measurement with gas chromatography-mass spectrometry (GC-MS) (including pretreatment) revealed 16 findings from the samples, whereas with DAPPI-MS/MS after sample pretreatment, 15 findings were made. Sample pretreatment was found necessary, since only eight findings were made from the same samples untreated.

  20. Matrix effect in the analysis of drugs of abuse from urine with desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS) and desorption electrospray ionization-mass spectrometry (DESI-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Suni, Niina M.; Lindfors, Pia; Laine, Olli [Division of Pharmaceutical Chemistry, University of Helsinki, P.O. Box 56, Helsinki FI-00014 (Finland); Ostman, Pekka; Ojanperae, Ilkka [Hjelt Institute, Department of Forensic Medicine, University of Helsinki, P.O. Box 40, Helsinki FI-00014 (Finland); Kotiaho, Tapio [Division of Pharmaceutical Chemistry, University of Helsinki, P.O. Box 56, Helsinki FI-00014 (Finland); Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FI-00014 (Finland); Kauppila, Tiina J. [Division of Pharmaceutical Chemistry, University of Helsinki, P.O. Box 56, Helsinki FI-00014 (Finland); Kostiainen, Risto, E-mail: risto.kostiainen@helsinki.fi [Division of Pharmaceutical Chemistry, University of Helsinki, P.O. Box 56, Helsinki FI-00014 (Finland)

    2011-08-05

    Highlights: {yields} DAPPI-MS and DESI-MSI in the analysis of drugs of abuse from urine. {yields} DAPPI-MS has better urine matrix tolerance over DESI-MS. {yields} Urine matrix can affect the ionization mechanism in DAPPI. {yields} DAPPI-MS/MS can be used for screening of drugs from urine after sample pretreatment. - Abstract: We have studied the matrix effect within direct analysis of benzodiazepines and opioids from urine with desorption electrospray ionization-mass spectrometry (DESI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). The urine matrix was found to affect the ionization mechanism of the opioids in DAPPI-MS favoring proton transfer over charge exchange reaction. The sensitivity for the drugs in solvent matrix was at the same level with DESI-MS and DAPPI-MS (LODs 0.05-6 {mu}g mL{sup -1}) but the decrease in sensitivity due to the urine matrix was higher with DESI (typically 20-160-fold) than with DAPPI (typically 2-15-fold) indicating better matrix tolerance of DAPPI over DESI. Also in MS/MS mode, DAPPI provided better sensitivity than DESI for the drugs in urine. The feasibility of DAPPI-MS/MS was then studied in screening the same drugs from five authentic, forensic post mortem urine samples. A reference measurement with gas chromatography-mass spectrometry (GC-MS) (including pretreatment) revealed 16 findings from the samples, whereas with DAPPI-MS/MS after sample pretreatment, 15 findings were made. Sample pretreatment was found necessary, since only eight findings were made from the same samples untreated.

  1. 大气压介质阻挡放电中电子碰撞电离系数α的测定%Preliminary Measurement of Electron Impact Ionization Coefficient in Gases at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    冉俊霞; 罗海云; 梁卓; 王新新

    2012-01-01

    电子碰撞电离系数α是气体放电研究中的一个重要物理参数,但现有的α系数数值都是在低气压Townsend放电实验中得到的,它们不适用于大气压下气体放电。为了尝试解决这个问题,提出了一种大气压下α系数的光学测量方法,它借助介质阻挡电极结构,在某些大气压气体中产生瞬态或稳态Townsend放电,利用带像增强器高速数码相机的纳秒曝光功能,记录气隙中瞬态发光强度空间分布,并与Townsend放电对应的理论发光强度分布进行比较,根据两者的最佳拟合效果推导出α系数。该方法被用于测定大气压氮气α系数,结果表明其基本可行,但仍需继续加以完善。%Electron impact ionization coefficient a is one of the most important parameters used in the study of gas discharge. However, the a values usually determined in the experiments on Townsend discharge in gases at low pressure are not applicable to the gas discharges in atmospheric gases. Aiming at solving this problem, a method for determining the a values in the gases at atmospheric pressure was proposed. Dielectric barrier Townsend discharges were produced in some gases at atmospheric pressure. The distribution of the light intensity in the discharge gap was recorded by taking side-view photograph using an ICCD camera with an extremely short exposure time and compared with the theoretical distributions with different presumed ~. The a value was determined by the best fitting of the theoretical distribution to the experimental one. The method was proved to be applicable in the determination of a for nitrogen at atmospheric pressure.

  2. High-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry and gas chromatography-flame ionization detection characterization of Delta5-polyenoic fatty acids in triacylglycerols from conifer seed oils.

    Science.gov (United States)

    Lísa, Miroslav; Holcapek, Michal; Rezanka, Tomás; Kabátová, Nadezda

    2007-03-30

    Edible conifer seeds can serve as a source of triacylglycerols (TGs) with unusual Delta5 unsaturated polymethylene interrupted fatty acids (UPIFAs), such as cis-5,9-octadecadienoic (taxoleic), cis-5,9,12-octadecatrienoic (pinolenic), cis-5,11-eicosadienoic (keteleeronic) and cis-5,11,14-eicosatrienoic acids (sciadonic). Conifer seed oils from European Larch (Larix decidua), Norway Spruce (Picea abies) and European Silver Fir (Abies alba) have been analyzed by non-aqueous reversed-phase high-performance liquid chromatography (NARP-HPLC) with atmospheric pressure chemical ionisation (APCI)-MS detection. The influence of different positions of double bonds in Delta5-UPIFAs on the retention and fragmentation behavior is described and used for the successful identification of TGs in each oil. TGs containing Delta5-UPIFAs have a higher retention in comparison with common TGs found in plant oils with single methylene interrupted Delta6(9)-FAs and also significantly changed relative abundances of fragment ions in APCI mass spectra. Results obtained from HPLC/MS analyses are supported by validated GC/FID analyses of fatty acid methyl esters after the transesterification. The total content of Delta5-UPIFAs is about 32% for European Larch, 27% for Norway Spruce and 20% for European Silver Fir. In total, 20 FAs with acyl chain lengths from 16 to 24 carbon atoms and from 0 to 3 double bonds have been identified in 64 triacylglycerols from 3 conifer seed oils. PMID:17307191

  3. Negative ion-atmospheric pressure photoionization-mass spectrometry

    NARCIS (Netherlands)

    Kauppila, T.J.; Kotiaho, T.; Kostiainen, R; Bruins, A.P.

    2004-01-01

    The ionization mechanism in the novel atmospheric pressure photoionization mass spectrometry (APPI-MS) in negative ion mode was studied thoroughly by the analysis of seven compounds in 17 solvent systems. The compounds possessed either gas-phase acidity or positive electron affinity, whereas the sol

  4. The role of physical and chemical properties of Pd nanostructured materials immobilized on inorganic carriers on ion formation in atmospheric pressure laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Silina, Yuliya E; Koch, Marcus; Volmer, Dietrich A

    2014-06-01

    Fundamental parameters influencing the ion-producing efficiency of palladium nanostructures (nanoparticles [Pd-NP], nanoflowers, nanofilms) during laser irradiation were studied in this paper. The nanostructures were immobilized on the surface of different solid inorganic carrier materials (porous and mono-crystalline silicon, anodic porous aluminum oxide, glass and polished steel) by using classical galvanic deposition, electroless local deposition and sputtering. It was the goal of this study to investigate the influence of both the nanoparticular layer as well as the carrier material on ion production for selected analyte molecules. Our experiments demonstrated that the dimensions of the synthesized nanostructures, the thickness of the active layers, surface disorders, thermal conductivity and physically or chemically adsorbed water influenced signal intensities of analyte ions during surface-assisted laser desorption/ionization (SALDI) while no effects such as plasmon resonance, photoelectric effect or catalytic activity were expected to occur. Excellent LDI abilities were seen for Pd-NPs immobilized on steel, while Pd nanoflowers on porous silicon exhibited several disadvantages; viz, strong memory effects, dependency of the analytical signal on amount of physically and chemically adsorbed water inside porous carrier, reduced SALDI activity from unstable connections between Pd and semiconductor material, decrease of the melting point of pure silicon after Pd immobilization and resulting strong laser ablation of metal/semiconductor complex, as well as significantly changed surface morphology after laser irradiation. The analytical performance of Pd-NP/steel was further improved by applying a hydrophobic coating to the steel surface before galvanic deposition. This procedure increased the distance between Pd-NPs, thus reducing thermal stress upon LDI; it simultaneously decreased spot sizes of deposited sample solutions. PMID:24913399

  5. HPLC-UV ATMOSPHERIC-PRESSURE IONIZATION MASS-SPECTROMETRIC DETERMINATION OF THE DOPAMINE-D2 AGONIST N-0923 AND ITS MAJOR METABOLITES AFTER OXIDATIVE-METABOLISM BY RAT-LIVER, MONKEY LIVER, AND HUMAN LIVER-MICROSOMES

    NARCIS (Netherlands)

    SWART, PJ; BRONNER, GM; BRUINS, AP; ENSING, K; TEPPER, PG; DEZEEUW, RA

    1993-01-01

    An innovative custom-built atmospheric ionization source afforded an opportunity to perform on-line LC/MS analysis and to obtain identification of metabolites without need to rely on radioactive profiling. An HPLC with a UV detector coupled to a modified R 3010 triple quadrupole mass spectrometer wa

  6. Quality classification of Spanish olive oils by untargeted gas chromatography coupled to hybrid quadrupole-time of flight mass spectrometry with atmospheric pressure chemical ionization and metabolomics-based statistical approach.

    Science.gov (United States)

    Sales, C; Cervera, M I; Gil, R; Portolés, T; Pitarch, E; Beltran, J

    2017-02-01

    The novel atmospheric pressure chemical ionization (APCI) source has been used in combination with gas chromatography (GC) coupled to hybrid quadrupole time-of-flight (QTOF) mass spectrometry (MS) for determination of volatile components of olive oil, enhancing its potential for classification of olive oil samples according to their quality using a metabolomics-based approach. The full-spectrum acquisition has allowed the detection of volatile organic compounds (VOCs) in olive oil samples, including Extra Virgin, Virgin and Lampante qualities. A dynamic headspace extraction with cartridge solvent elution was applied. The metabolomics strategy consisted of three different steps: a full mass spectral alignment of GC-MS data using MzMine 2.0, a multivariate analysis using Ez-Info and the creation of the statistical model with combinations of responses for molecular fragments. The model was finally validated using blind samples, obtaining an accuracy in oil classification of 70%, taking the official established method, "PANEL TEST", as reference. PMID:27596432

  7. An approach based on ultrahigh performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry allowing the quantification of both individual phytosteryl and phytostanyl fatty acid esters in complex mixtures.

    Science.gov (United States)

    Scholz, Birgit; Menzel, Nicole; Lander, Vera; Engel, Karl-Heinz

    2016-01-15

    A method for the analysis of both individual phytosteryl and phytostanyl fatty acid esters in complex mixtures was established. The approach was based on a previously not described combination of three elements: (i) the formation of [M-FA+H](+) fragment ions via APCI (atmospheric pressure chemical ionization), (ii) a highly efficient UHPLC-based separation on a 1.7 μ C8 column, previously established for phytostanyl fatty acid esters, allowing the distinction of individual fatty acid esters sharing the same sterol/stanol nucleus and of isotope peaks of phytosteryl fatty acid esters and corresponding phytostanyl fatty acid esters based on these [M-FA+H](+) fragment ions, and (iii) the adjustment of the APCI conditions allowing the differential APCI-MS-SIM (single ion monitoring) detection of phytostanyl esters of linoleic and linolenic acid based on their distinct formation of a [M+H](+) ion. The usefulness of the methodology was demonstrated by the analysis of a commercially available enriched margarine. Two runs per sample allowed the quantification of 35 target analytes; the total amounts of esters were between 124.7 and 125.3g/kg, being in good agreement with the labelled 125 g/kg. Validation data were elaborated for 35 individual fatty acid esters of sitosterol, campesterol, brassicasterol, stigmasterol, sitostanol and campestanol. Recovery rates ranged from 95 to 106%; the coefficients of variation were consistently fatty acid esters and thus closes an analytical gap related to this class of health-relevant food constituents.

  8. Method development for the determination of 24S-hydroxycholesterol in human plasma without derivatization by high-performance liquid chromatography with tandem mass spectrometry in atmospheric pressure chemical ionization mode.

    Science.gov (United States)

    Sugimoto, Hiroshi; Kakehi, Masaaki; Satomi, Yoshinori; Kamiguchi, Hidenori; Jinno, Fumihiro

    2015-10-01

    We developed a highly sensitive and specific high-performance liquid chromatography with tandem mass spectrometry method with an atmospheric pressure chemical ionization interface to determine 24S-hydroxycholesterol, a major metabolite of cholesterol formed by cytochrome P450 family 46A1, in human plasma without any derivatization step. Phosphate buffered saline including 1% Tween 80 was used as the surrogate matrix for preparation of calibration curves and quality control samples. The saponification process to convert esterified 24S-hydroxycholesterol to free sterols was optimized, followed by liquid-liquid extraction using hexane. Chromatographic separation of 24S-hydroxycholesterol from other isobaric endogenous oxysterols was successfully achieved with gradient mobile phase comprised of 0.1% propionic acid and acetonitrile using L-column2 ODS (2 μm, 2.1 mm id × 150 mm). This assay was capable of determining 24S-hydroxycholesterol in human plasma (200 μL) ranging from 1 to 100 ng/mL with acceptable intra- and inter-day precision and accuracy. The potential risk of in vitro formation of 24S-hydroxycholesterol by oxidation from endogenous cholesterol in human plasma was found to be negligible. The stability of 24S-hydroxycholesterol in relevant solvents and human plasma was confirmed. This method was successfully applied to quantify the plasma concentrations of 24S-hydroxycholesterol in male and female volunteers.

  9. Determining Atmospheric Pressure Using a Water Barometer

    Science.gov (United States)

    Lohrengel, C. Frederick, II; Larson, Paul R.

    2012-01-01

    The atmosphere is an envelope of compressible gases that surrounds Earth. Because of its compressibility and nonuniform heating by the Sun, it is in constant motion. The atmosphere exerts pressure on Earth's surface, but that pressure is in constant flux. This experiment allows students to directly measure atmospheric pressure by measuring the…

  10. Atmospheric fate of non volatile and ionizable compounds

    DEFF Research Database (Denmark)

    Franco, Antonio; Hauschild, Michael Zwicky; Jolliet, Olivier;

    2011-01-01

    A modified version of theMultimedia Activity Model for Ionics MAMI, including two-layered atmosphere,air–water interface partitioning, intermittent rainfall and variable cloud coverage was developed to simulate the atmospheric fate of ten low volatility or ionizable organic chemicals. Probabilist...

  11. Special issue: diagnostics of atmospheric pressure microplasmas

    Science.gov (United States)

    Bruggeman, Peter; Czarnetzki, Uwe; Tachibana, Kunihide

    2013-11-01

    In recent decades, a strong revival of non-equilibrium atmospheric pressure plasma studies has developed in the form of microplasmas. Microplasmas have typical scales of 1 mm or less and offer a very exciting research direction in the field of plasma science and technology as the discharge physics can be considerably different due to high collisionality and the importance of plasma-surface interaction. These high-pressure small-scale plasmas have a diverse range of physical and chemical properties. This diversity coincides with various applications including light/UV sources [1], material processing [2], chemical analysis [3], material synthesis [4], electromagnetics [5], combustion [6] and even medicine [7]. At atmospheric pressure, large scale plasmas have the tendency to become unstable due to the high collision rates leading to enhanced heating and ionization compared to their low-pressure counterparts. As low-pressure plasmas typically operate in reactors with sizes of tens of centimetres, scaling up the pressure to atmospheric pressure the size of the plasma reduces to typical sizes below 1 mm. A natural approach of stabilizing atmospheric pressure plasmas is thus the use of microelectrode geometries. Traditionally microplasmas have been produced in confined geometries which allow one to stabilize dc excited discharges. This stabilization is intrinsically connected to the large surface-to-volume ratio which enhances heat transfer and losses of charged and excited species to the walls. Currently challenging boundaries are pushed by producing microcavity geometries with dimensions of the order of 1 µm [8]. The subject of this special issue, diagnostics of microplasmas, is motivated by the many challenges in microplasma diagnostics in view of the complex chemistry and strong spatial (and even temporal) gradients of species densities and plasma properties. Atmospheric pressure plasmas have a very long history dating back more than 100 years, with early work of

  12. Parameterization of ionization induced in the atmosphere by precipitating particles

    Science.gov (United States)

    Artamonov, Anton; Usoskin, Ilya; Kovaltsov, Gennady

    We present a physical model to calculate ionization induced in the atmosphere by precipitating particles. This model is based on the Bethe-Bloch equation applied for precipitating particles such as: electrons, alpha-particles and protons. The energy range of precipitating particles is up to 5MeV and 80MeV/nuc respectively. This model provides an easy implementation with a robust realization of model calculations for a wide range of incident energies of precipitating particles. This method is limited to the upper-middle atmosphere. An ionization yield function [see, Usoskin and Kovaltsov, 2006; Usoskin, Kovaltsov, Mironova, 2010] can be also used in this model, making it possible to calculate the atmospheric ionization effect of precipitating particles for the entire atmosphere, dawn to the ground.

  13. Ionization by Cosmic Rays in the Atmosphere of Titan

    Science.gov (United States)

    Norman, R. B.; Gronoff, G.; Mertens, C. J.; Blattnig, S.

    2011-12-01

    In-situ measurements by Cassini-Huygens have shown the importance of ionizing particles (solar photons, magnetospheric electrons and protons, cosmics rays) on the atmosphere of Titan. Ionizing particles play an important role in the atmospheric chemistry of Titan and must therefore be accurately modeled to understand the contribution of the differing sources of ionization. To model the initial galactic cosmic ray environment, the Badwar-O'Neill cosmic ray spectrum model was adapted for use at Titan. The Aeroplanets model, an electron transport model for the study of airglow and aurora, was then coupled to the Planetocosmics model, a Monte-carlo cosmic ray transport and energy deposition model, to compute ion production from cosmic rays. In addition, the NAIRAS model, a cosmic ray irradiation model adapted for fast computations, was adopted to the Titan environment and, for the first time, used to compute an ionization profile on a planet other than Earth and compared to the Planetocosmics results. For the first time, the importance of high charge cosmic rays on the ionization of the Titan atmosphere was demonstrated. High charge cosmic rays were found to be especially important below an altitude of 400 km, contributing significantly to the total ionization. Specifically, between 200 km and 400 km, alpha and higher charge cosmic rays are responsible for 40% of the ionization. The increase due to high charge cosmic rays was found for both the Planetocosmics and NAIRAS models.

  14. Domestic atmospheric pressure thermal deaerators

    Science.gov (United States)

    Egorov, P. V.; Gimmelberg, A. S.; Mikhailov, V. G.; Baeva, A. N.; Chuprakov, M. V.; Grigoriev, G. V.

    2016-04-01

    Based on many years of experience and proven technical solutions, modern atmospheric pressure deaerators of the capacity of 0.4 to 800 t/h were designed and developed. The construction of such deaerators is based on known and explored technical solutions. A two-stage deaeration scheme is applied where the first stage is a jet dripping level (in a column) and the second one is a bubble level (in a tank). In the design of deaeration columns, low-pressure hydraulic nozzles (Δ p heat and mass exchange processes in the apparatus. The use of the two efficient stages in a column and a "flooded" sparger in a tank allows to reliably guarantee the necessary water heating and deaeration. Steam or "superheated" water of the temperature of t ≥ 125°C can be used as the coolant in the deaerators. The commissioning tests of the new deaerator prototypes of the capacity of 800 and 500 t/h in the HPP conditions showed their sustainable, reliable, and efficient work in the designed range of hydraulic and thermal loads. The content of solved oxygen and free carbon dioxide in make-up water after deaerators meets the requirements of State Standard GOST 16860-88, the operating rules and regulations, and the customer's specifications. Based on these results, the proposals were developed on the structure and the design of deaerators of the productivity of more than 800 t/h for the use in circuits of large heating systems and the preparation of feed water to the TPP at heating and industrial-heating plants. The atmospheric pressure thermal deaerators developed at NPO TsKTI with consideration of the current requirements are recommended for the use in water preparation schemes of various power facilities.

  15. The Thermodynamical Instability Induced by Pressure Ionization in Fluid Helium

    CERN Document Server

    Li, Qiong; Zhang, Gong-Mu; Zhao, Yan-Hong; Lu, Guo; Tian, Ming-Feng; Song, Hai-Feng

    2016-01-01

    A systematic study of pressure ionization is carried out in the chemical picture by the example of fluid helium. By comparing the variants of the chemical model, it is demonstrated that the behavior of pressure ionization depends on the construction of the free energy function. In the chemical model with the Coulomb free energy described by the Pad\\'e interpolation formula, thermodynamical instability induced by pressure ionization is found to be manifested by a discontinuous drop or a continuous fall and rise along the pressure-density curve as well as the pressure-temperature curve, which is very much like the first order liquid-liquid phase transition of fluid hydrogen from the first principles simulations. In contrast, in the variant chemical model with the Coulomb free energy term empirically weakened, no thermodynamical instability is induced when pressure ionization occurs, and the resulting equation of state achieves good agreement with the first principles simulations of fluid helium.

  16. Part-per-trillion level determination of antifouling pesticides and their byproducts in seawater samples by off-line solid-phase extraction followed by high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Martínez, K; Ferrer, I; Barceló, D

    2000-05-19

    A new method for the simultaneous determination of antifouling pesticides and some of their byproducts such as dichlofluanid, diuron and its byproducts [demethyldiuron and 1-(3,4-dichlorophenyl)urea], (2-thiocyanomethylthio)ben: zothiazole, chlorothalonil, Sea-nine 211, Irgarol 1051 and one of its byproducts (2-methylthio-4-tert.-butylamino-s-triazine) in seawater was developed. The extraction of these compounds from the filtered seawater samples was performed off-line with different solid-phase extraction sorbents using (I) a 500 mg graphitized carbon black cartridge (ENVI-Carb) and (II) 200 mg polymeric cartridges (LiChrolut EN and Isolute ENV+) and passing 500 ml of the sample through these cartridges. The detection was carried out by reversed-phase high-performance liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometry both in the negative and positive ion modes. The recovery ranged from 76 to 96% for the whole antifouling group with the ENVI-Carb cartridges and the detection limit was at the part-per-trillion level except for TCMTB. The method utilizing the polymeric cartridge proved to be very useful, time saving and with good recoveries when only Irgarol and its byproduct, Sea-nine 211 and diuron and its byproducts, have to be analyzed. The different cartridges were applied to the analysis of these pesticides in different marinas of the Catalan coast; diuron, dichlofluanid, Sea-nine 211, Irgarol as well as demethyldiuron and the Irgarol byproduct being the must ubiquitous pollutants. Maximum concentration levels were 2-3.5 microg/l of diuron and Sea-nine 211, respectively. PMID:10870693

  17. Development of a new multi-residue laser diode thermal desorption atmospheric pressure chemical ionization tandem mass spectrometry method for the detection and quantification of pesticides and pharmaceuticals in wastewater samples.

    Science.gov (United States)

    Boisvert, Michel; Fayad, Paul B; Sauvé, Sébastien

    2012-11-19

    A new solid phase extraction (SPE) method coupled to a high throughput sample analysis technique was developed for the simultaneous determination of nine selected emerging contaminants in wastewater (atrazine, desethylatrazine, 17β-estradiol, ethynylestradiol, norethindrone, caffeine, carbamazepine, diclofenac and sulfamethoxazole). We specifically included pharmaceutical compounds from multiple therapeutic classes, as well as pesticides. Sample pre-concentration and clean-up was performed using a mixed-mode SPE cartridge (Strata ABW) having both cation and anion exchange properties, followed by analysis by laser diode thermal desorption atmospheric pressure chemical ionization coupled to tandem mass spectrometry (LDTD-APCI-MS/MS). The LDTD interface is a new high-throughput sample introduction method, which reduces total analysis time to less than 15s per sample as compared to minutes with traditional liquid-chromatography coupled to tandem mass spectrometry (LC-MS/MS). Several SPE parameters were evaluated in order to optimize recovery efficiencies when extracting analytes from wastewater, such as the nature of the stationary phase, the loading flow rate, the extraction pH, the volume and composition of the washing solution and the initial sample volume. The method was successfully applied to real wastewater samples from the primary sedimentation tank of a municipal wastewater treatment plant. Recoveries of target compounds from wastewater ranged from 78% to 106%, the limit of detection ranged from 30 to 122ng L(-1) while the limit of quantification ranged from 90 to 370ng L(-1). Calibration curves in the wastewater matrix showed good linearity (R(2)≥0.991) for all target analytes and the intraday and interday coefficient of variation was below 15%, reflecting a good precision. PMID:23140957

  18. Ion-ion reactions for charge reduction of biopolymer at atmospheric pressure ambient

    Institute of Scientific and Technical Information of China (English)

    Yue Ming Zhou; Jian Hua Ding; Xie Zhang; Huan Wen Chen

    2007-01-01

    Extractive electrospray ionization source (EESI) was adapted for ion-ion reaction, which was demonstrated by using a linear quadrupole ion trap mass spectrometer for the first ion-ion reaction of biopolymers in the atmospheric pressure ambient.

  19. Pressurized ionization chamber detectors for industrial use

    International Nuclear Information System (INIS)

    The measurement of the thickness of the sheets made of different materials, e.g. metal, plastic, paper, cellulose, rubber, etc., is one of many industrial applications of nuclear techniques. The ionizing radiation detectors of ionization chamber type are based on measuring the variations in either exposure rate (for gamma radiation) or absorbed dose rate (for beta radiation) occurring in materials of different thickness, placed between the radiation source and the detector. The variations in exposure rate and absorbed dose rate can be traced by using radiation detectors of the ionization chamber type, which convert the exposure rate, X point, or the absorbed dose rate, D point, into a proportional electric current. The more stable the ionization current of the chambers (keeping a constant exposure rate or absorbed dose rate), the slighter the variations that can be detected in either exposure rate or absorbed dose rate, hence in the absorbing material placed between the radiation source and the detector. Based on these facts, several variants of such detectors, including the ionization chamber CIS-P5M-100Kr, CIS-P2M-1000Kr and CIS-P8M-70Kr, have been made. (author)

  20. Bisulphate-cluster based atmospheric pressure chemical ionization mass spectrometer for ultra-high sensitivity (10 ppq) detection of atmospheric amines: proof-of-concept and first ambient data from boreal forest

    OpenAIRE

    Sipilä, M.; N. Sarnela; Jokinen, T; Junninen, H.; Hakala, J.; Rissanen, M. P.; T. Petäjä; Worsnop, D.R.

    2015-01-01

    Atmospheric amines may play a crucial role in formation of new aerosol particles via nucleation with sulphuric acid. Recent studies have revealed that concentrations below 1 ppt can significantly promote nucleation of sulphuric acid particles. While sulphuric acid detection is relatively straightforward, no amine measurements to date have been able to reach the critical sub-ppt concentration range and atmospheric amine concentrations are in general poorly ch...

  1. Bisulfate – cluster based atmospheric pressure chemical ionization mass spectrometer for high-sensitivity (< 100 ppqV) detection of atmospheric dimethyl amine: proof-of-concept and first ambient data from boreal forest

    OpenAIRE

    Sipilä, M.; N. Sarnela; Jokinen, T; Junninen, H.; Hakala, J.; Rissanen, M. P.; Praplan, A.; M. Simon; A. Kürten; BIANCHI, F.; Dommen, J; J. Curtius; T. Petäjä; Worsnop, D.R.

    2015-01-01

    Atmospheric amines may play a crucial role in formation of new aerosol particles via nucleation with sulfuric acid. Recent studies have revealed that concentrations below 1 pptV can significantly promote nucleation of sulfuric acid particles. While sulfuric acid detection is relatively straightforward, no amine measurements to date have been able to reach the critical sub-pptV concentration range and atmospheric amine concentrations are in general poorly characterized. In th...

  2. An Atmospheric Pressure Ping-Pong "Ballometer"

    Science.gov (United States)

    Kazachkov, Alexander; Kryuchkov, Dmitriy; Willis, Courtney; Moore, John C.

    2006-01-01

    Classroom experiments on atmospheric pressure focus largely on demonstrating its existence, often in a most impressive way. A series of amusing physics demonstrations is widely known and practiced by educators teaching the topic. However, measuring the value of atmospheric pressure(P[subscript atm]) is generally done in a rather mundane way,…

  3. Rapid Discrimination of Chemotypes of Cinnamomum camphora by Surface Desorption Atmospheric Pressure Chemical Ionization Mass Spectrometry%表面解吸常压化学电离质谱法快速判别樟树化学型

    Institute of Scientific and Technical Information of China (English)

    刘星星; 方小伟; 黄学勇; 张婷婷; 陈焕文; 罗丽萍

    2016-01-01

    采用表面解吸常压化学电离质谱(SDAPCI-MS)技术直接对5种化学型的樟树叶粉末片剂进行分析,获得其化学指纹谱图信息.采用主成分分析(PCA)、 聚类分析(CA)和反向传输人工神经网络(BP-ANN)对谱图信息进行分析,获得各化学型樟树叶粉末片剂的特征质谱信息,进而对不同化学型样品进行判别.结果表明,在正离子模式下,SDAPCI-MS能快速获取樟树的化学指纹谱图;PCA分析中的PC1,PC2和PC3贡献率分别为79.9%,12.9%和4.2%,共计97.0%.SDAPCI-MS结合CA和BP-ANN测试样本准确率均为100%,能够快速、有效地判别出樟树化学型.%Surface desorption atmospheric pressure chemical ionization mass spectrometry( SDAPCI-MS) was selected to detect five chemotypes of C. camphora leaves powder and the raw mass spectral fingerprints of the powder samples were obtained. Principal component analysis ( PCA ) , cluster analysis ( CA ) and the back propagation artificial neural network technology( BP-ANN) were used to analyze the spectral information. The results showed that the SDAPCI-MS technique could got mass spectral fingerprints of C. camphora quickly in positive ion mode. The contribution rates of PC1, PC2, PC3 were 79. 9%, 12. 9% and 4. 2%, respectively, with a total of 97. 0% in PCA. The accuracy of discrimination of CA and BP-ANN of SDAPCI-MS was 100%.

  4. Rapid Screening of Inferior Quality Oils by Surface Desorption Atmospheric Pressure Chemical Ionization Mass Spectrometry%表面解吸常压化学电离质谱法快速筛查劣质食用油

    Institute of Scientific and Technical Information of China (English)

    方小伟; 张丽丽; 贾滨; 张兴磊; 陈焕文

    2011-01-01

    采用自行研制的表面解吸常压化学电离源(SDAPCI),在无需样品预处理的前提下用质谱法直接分析不同品质油品(地沟油、市售品牌食用油),获得其化学指纹图谱,并通过主成分分析(PCA)方法,对指纹谱图信息进行数据分析,进而对不同品质油品进行筛查。结果表明:(1)地沟油与品牌食用油的指纹谱图间存在差异(;2)SDAPCI-MS结合PCA方法,能较好地将地沟油样品与正常的食用油样品进行区分(;3)本方法无需前处理、灵敏度高,分析速度快(单个样品分析时间约1.0 min),实现了高通量油样的快速筛查,为食品安全中快速筛查地沟油提供了一种快速、高效、灵敏的分析方法。%By using a home-made surface desorption atmospheric pressure chemical ionization source,illicit cooking oils and normal edible oils were directly analyzed by mass spectrometry without any sample pretreatment.The MS data were further analyzed using principal component analysis(PCA).The SDAPCI-MS fingerprints of illicit cooking oils were different from those of normal edible oils.With the application of PCA,illicit cooking oils were successfully differentiated from normal oils.The method developed here is attractive by showing the advantages of no need for sample pretreatment,high sensitivity and high analytical speed(1.0 min per sample),and thus provides a fast and effective method to screen illicit cooking oils for the sake of food safety.

  5. Effect of gas pressure on ionization of ambient gas

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An Nd: YAG pulsed laser (145 mJ) was used to ablate aluminum target and Ar was used as protecting gas. Time-and space-resolved spectra of the plasmas under pressure 100 Pa, 1 kPa, 10 kPa and 100 kPa were acquired with time- and space-resolved technique. The characteristics of the plasma radiating under each pressure were briefly described, and the laws of Ar characteristical radiaton were analyzed in detail. Based on the profile of Ar characteristical radiation under these pressure, the relation between protecting gas pressure and its ionization was briefly discussed, and explained with quantum theory. Farther more, the mechanism of ambient gas ionization was investigated. As the result, it was suggested that the main mechanism inducing protecting gas to ionize should be the absorption of the plasma continuum radiation by the gas.

  6. Breaking the pumping speed barrier in mass spectrometry: discontinuous atmospheric pressure interface.

    Science.gov (United States)

    Gao, Liang; Cooks, R Graham; Ouyang, Zheng

    2008-06-01

    The performance of mass spectrometers with limited pumping capacity is shown to be improved through use of a discontinuous atmospheric pressure interface (DAPI). A proof-of-concept DAPI interface was designed and characterized using a miniature rectilinear ion trap mass spectrometer. The interface consists of a simple capillary directly connecting the atmospheric pressure ion source to the vacuum mass analyzer region; it has no ion optical elements and no differential pumping stages. Gases carrying ionized analytes were pulsed into the mass analyzer for short periods at high flow rates rather than being continuously introduced at lower flow rates; this procedure maximized ion transfer. The use of DAPI provides a simple solution to the problem of coupling an atmospheric pressure ionization source to a miniature instrument with limited pumping capacity. Data were recorded using various atmospheric pressure ionization sources, including electrospray ionization (ESI), nano-ESI, atmospheric pressure chemical ionization (APCI), and desorption electrospray ionization (DESI) sources. The interface was opened briefly for ion introduction during each scan. With the use of the 18 W pumping system of the Mini 10, limits of detection in the low part-per-billion levels were achieved and unit resolution mass spectra were recorded. PMID:18461971

  7. Towards a Carbon Nanotube Ionization Source for Planetary Atmosphere Exploration

    Science.gov (United States)

    Oza, A. V.; Leblanc, F.; Berthelier, J. J.; Becker, J.; Coulomb, R.; Gilbert, P.; Hong, N. T.; Lee, S.; Vettier, L.

    2015-12-01

    The characterization of planetary exospheres today, relies on the development of a highly efficient ionization source, due to the scant neutral molecules (n atmospheres provide insight on to physical processes known to occur such as: space weathering, magneto-atmosphere interactions, as well as atmospheric escape mechanisms, all of which are being heavily investigated via current 3D Monte Carlo simulations (Turc et al. 2014, Leblanc et al. 2016 in prep) at LATMOS. Validation of these studies will rely on in-situ observations in the coming decades. Neutral detection strongly depends on electron-impact ionization which via conventional cathode-sources, such as thermal filaments (heated up to 2000 K), may only produce the target ionization essential for energy-measurements with large power consumption. Carbon nanotubes (CNTs) however are ideal low-power, cold cathodes, when subject to moderate electric fields (E ~ 1 MV / m). We present our current device, a small CNT chip, of emission area 15 mm2, emitting electrons that pass through an anode grid and subsequent electrostatic analyzer. The device currently extracts hundreds of µAmperes with applied external voltages ~ -150 Volts, approaching minimum power consumption plasma sputtering the icy regolith with heavy ions and electrons (keV < E < MeV), producing predominately molecular oxygen (Johnson et al. 2002).

  8. Super-Atmospheric Pressure Ion Sources: Application and Coupling to API Mass Spectrometer.

    Science.gov (United States)

    Chen, Lee Chuin; Rahman, Md Matiur; Hiraoka, Kenzo

    2014-01-01

    Pressurizing the ionization source to gas pressure greater than atmospheric pressure is a new tactic aimed at further improving the performance of atmospheric pressure ionization (API) sources. In principle, all API sources, such as ESI, APCI and AP-MALDI, can be operated at pressure higher than 1 atm if suitable vacuum interface is available. The gas pressure in the ion source can have different role for different ionization. For example, in the case of ESI, stable electrospray could be sustained for high surface tension liquid (e.g., pure water) under super-atmospheric pressure, owing to the absence of electric discharge. Even for nanoESI, which is known to work well with aqueous solution, its stability and sensitivity were found to be enhanced, particularly in the negative mode when the ion source was pressurized. For the gas phase ionization like APCI, measurement of gaseous compound also showed an increase in ion intensity with the ion source pressure until an optimum pressure at around 4-5 atm. The enhancement was due to the increased collision frequency among reactant ion and analyte that promoted the ion/molecule reaction and a higher intake rate of gas to the mass spectrometer. Because the design of vacuum interface for API instrument is based on the upstream pressure of 1 atm, some coupling aspects need to be considered when connecting the high pressure ion source to the mass spectrometer. Several coupling strategies are discussed in this paper.

  9. Special issue: diagnostics of atmospheric pressure microplasmas

    Science.gov (United States)

    Bruggeman, Peter; Czarnetzki, Uwe; Tachibana, Kunihide

    2013-11-01

    In recent decades, a strong revival of non-equilibrium atmospheric pressure plasma studies has developed in the form of microplasmas. Microplasmas have typical scales of 1 mm or less and offer a very exciting research direction in the field of plasma science and technology as the discharge physics can be considerably different due to high collisionality and the importance of plasma-surface interaction. These high-pressure small-scale plasmas have a diverse range of physical and chemical properties. This diversity coincides with various applications including light/UV sources [1], material processing [2], chemical analysis [3], material synthesis [4], electromagnetics [5], combustion [6] and even medicine [7]. At atmospheric pressure, large scale plasmas have the tendency to become unstable due to the high collision rates leading to enhanced heating and ionization compared to their low-pressure counterparts. As low-pressure plasmas typically operate in reactors with sizes of tens of centimetres, scaling up the pressure to atmospheric pressure the size of the plasma reduces to typical sizes below 1 mm. A natural approach of stabilizing atmospheric pressure plasmas is thus the use of microelectrode geometries. Traditionally microplasmas have been produced in confined geometries which allow one to stabilize dc excited discharges. This stabilization is intrinsically connected to the large surface-to-volume ratio which enhances heat transfer and losses of charged and excited species to the walls. Currently challenging boundaries are pushed by producing microcavity geometries with dimensions of the order of 1 µm [8]. The subject of this special issue, diagnostics of microplasmas, is motivated by the many challenges in microplasma diagnostics in view of the complex chemistry and strong spatial (and even temporal) gradients of species densities and plasma properties. Atmospheric pressure plasmas have a very long history dating back more than 100 years, with early work of

  10. Non disturbing characterization and quantification of natural organic matter (NOM) contained in clay rock pore water by mass spectrometry using electro-spray and atmospheric pressure chemical ionization modes

    International Nuclear Information System (INIS)

    formation is of great importance. In this context, establishing accurate sequencing of structural units for the DOM shall be attempted. The present work is focused on small organic molecules that are present in the COx formation and that could also play a key role in the migration processes. It would be valuable to develop rapid analytical methods that require only a small sample volume and minimal pretreatment. Of particular importance is the ability to analyze bulk pore water samples as opposed to samples subjected to specific extraction techniques, fractionation, and/or concentration. Mass Spectrometry with either the Electro-Spray or the Atmospheric Pressure Chemical Ionization modes has been proved to be a powerful tool for aquatic humic substances since it allows the determination of the molecular weight distribution and the access to the different molecular weights. In this study, we have employed ESI-MS and APCI-MS to identify the chemical composition of NOM contained in the pore water from the argillite clay rock. Due to the very small quantities of COx pore water available from boreholes, these techniques are thus very suitable. The DOM in pore water has never been characterized on a well preserved pore water sample. The following aspects were considered in the present work: (1) the use of either ESI or APCI to select the most appropriated mode of ionization for providing the best information depending on the class of compound examined (2) a unique and original experimental process developed to get pore water from a core sample (3) the determination of concentration of dissolved organic matter and the evaluation of the organic matter maturity by Excitation-Emission Matrix (EEM) spectroscopy and (4) the application of the proposed instrumental methods for the characterization of organic components from natural pore waters. For the first time to our knowledge, a quite exhaustive inventory of the small organic compounds presents is given without proceeding to any

  11. Evaporation of urea at atmospheric pressure.

    Science.gov (United States)

    Bernhard, Andreas M; Czekaj, Izabela; Elsener, Martin; Wokaun, Alexander; Kröcher, Oliver

    2011-03-31

    Aqueous urea solution is widely used as reducing agent in the selective catalytic reduction of NO(x) (SCR). Because reports of urea vapor at atmospheric pressure are rare, gaseous urea is usually neglected in computational models used for designing SCR systems. In this study, urea evaporation was investigated under flow reactor conditions, and a Fourier transform infrared (FTIR) spectrum of gaseous urea was recorded at atmospheric pressure for the first time. The spectrum was compared to literature data under vacuum conditions and with theoretical spectra of monomolecular and dimeric urea in the gas phase calculated with the density functional theory (DFT) method. Comparison of the spectra indicates that urea vapor is in the monomolecular form at atmospheric pressure. The measured vapor pressure of urea agrees with the thermodynamic data obtained under vacuum reported in the literature. Our results indicate that considering gaseous urea will improve the computational modeling of urea SCR systems.

  12. Microwave-assisted atmospheric pressure plasma polymerization of hexamethyldisiloxane

    Science.gov (United States)

    Matsubayashi, Toshiki; Hidaka, Hiroki; Muguruma, Hitoshi

    2016-07-01

    Microwave-assisted atmospheric pressure plasma polymerization is presented. A system with a re-entrant microwave cavity realizes simple matching, stable plasma, and free space under the orifice of plasma steam. Hexamethyldisiloxane is employed as a monomer, while argon is used as a carrier gas. The effective area of the hydrophobic coating film used corresponds to a circle of 20 mm diameter and the deposition rate considered is 5 nm/min. Matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy shows that the coating film has a large molecular weight (>200 kDa), suggesting that a high-crosslinking and three-dimensional polymer matrix is formed and microwave-assisted atmospheric pressure plasma polymerization is fulfilled.

  13. Study of the response of low pressure ionization chambers

    CERN Document Server

    Nebot Del Busto, E; Effinger, E; Grishin, V; Herranz Alvarez, J

    2012-01-01

    The Beam Loss Monitoring System (BLM) of the Large Hadron Collider (LHC) is based on parallel plate Ionization Chambers (IC) with active volume 1.5l and a nitrogen filling gas at 0.1 bar overpressure. At the largest loss locations, the ICs generate signals large enough to saturate the read-out electronics. A reduction of the active volume and filling pressure in the ICs would decrease the amount of charge collected in the electrodes, and so provide a higher saturation limit using the same electronics. This makes Little Ionization Chambers (LIC) with both reduced pressure and small active volume a good candidate for these high radiation areas. In this contribution we present measurements performed with several LIC monitors with reduced active volume and various filling pressures. These detectors were tested under various conditions with different beam setups, with standard LHC ICs used for calibration purposes

  14. Improving Liquid Chromatography-Mass Spectrometry Sensitivity Using a Subambient Pressure Ionization with Nanoelectrospray (SPIN) Interface

    Science.gov (United States)

    Tang, Keqi; Page, Jason S.; Marginean, Ioan; Kelly, Ryan T.; Smith, Richard D.

    2011-08-01

    In this work, the subambient pressure ionization with nanoelectrospray (SPIN) ion source and interface, which operates at ~15-30 Torr, is demonstrated to be compatible with gradient reversed-phase liquid chromatography-MS applications, exemplified here with the analysis of complex samples (a protein tryptic digest and a whole cell lysate). A low liquid chromatographic flow rate (100-400 nL/min) allowed stable electrospray to be established while avoiding electrical breakdown. Efforts to increase the operating pressure of the SPIN source relative to previously reported designs prevented solvent freezing and enhanced charged cluster/droplet desolvation. A 5- to 12-fold improvement in sensitivity relative to a conventional atmospheric pressure nanoelectrospray ionization (ESI) source was obtained for detected peptides.

  15. Application of Atmospheric Pressure Plasma in Polymer and Composite Adhesion

    OpenAIRE

    Yu, Hang

    2015-01-01

    An atmospheric pressure helium and oxygen plasma was used to investigate surface activation and bonding in polymer composites. This device was operated by passing 1.0-3.0 vol% of oxygen in helium through a pair of parallel plate metal electrodes powered by 13.56 or 27.12 MHz radio frequency power. The gases were partially ionized between the capacitors where plasma was generated. The reactive species in the plasma were carried downstream by the gas flow to treat the substrate surface. The...

  16. Simultaneous extraction of acetylsalicylic acid and salicylic acid from human plasma and simultaneous estimation by liquid chromatography and atmospheric pressure chemical ionization/tandem mass spectrometry detection. Application to a pharmacokinetic study.

    Science.gov (United States)

    Nirogi, Ramakrishna; Kandikere, Vishwottam; Mudigonda, Koteshwara; Ajjala, Devender; Suraneni, Ramakrishna; Thoddi, Parthasarathi

    2011-01-01

    A simple analytical method using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in atmospheric chemical ionization mode (APCI) for the simultaneous estimation of acetylsalicylic acid (ASA, CAS 50-78-2) and its active metabolite salicylic acid (SA, CAS 69-72-7) in human plasma has been developed and validated. ASA and SA were analyzed simultaneously despite differences in plasma concentration ranges of ASA and SA after oral administration of ASA. In spite of having different chemical, ionization and chromatographic properties, ASA and SA were extracted simultaneously from the plasma sample using acetonitrile protein precipitation followed by liquid-liquid extraction. The analytes were separated on a reversed phase column with rapid gradient program using mobile phase consisting of ammonium acetate buffer and methanol. The structural analogue diclofenac was used as an internal standard. The multiple reaction monitoring (MRM) transitions m/z 179 --> 137 for ASA, m/z 137 --> 65 for SA and m/z 294 --> 250 for IS were used. The assay exhibited a linear dynamic range of 0.02-10 microg/mL for ASA and 0.1-50 microg/mL for SA. The between-batch precision (%CV) ranged from 2.1 to 7.9% for ASA and from 0.2 to 5.2% for SA. The between-batch accuracy ranged from 95.4 to 96.7% for ASA and from 94.6 to 111.3% for SA. The validated method was successfully applied for the evaluation of pharmacokinetics of ASA after single oral administration of 650 mg test formulation versus two 325 mg reference formulations of ASA in human subjects. PMID:21755814

  17. When API Mass Spectrometry Meets Super Atmospheric Pressure Ion Sources.

    Science.gov (United States)

    Chen, Lee Chuin

    2015-01-01

    In a tutorial paper on the application of free-jet technique for API-MS, John Fenn mentioned that "…for a number of years and a number of reasons, it has been found advantageous in many situations to carry out the ionization process in gas at pressures up to 1000 Torr or more" (Int. J. Mass Spectrom. 200: 459-478, 2000). In fact, the first ESI mass spectrometer constructed by Yamashita and Fenn had a counter-flow curtain gas source at 1050 Torr (ca. 1.4 atm) to sweep away the neutral (J. Phys. Chem. 88: 4451-4459, 1984). For gaseous ionization using electrospray plume, theoretical analysis also shows that "super-atmospheric operation would be more preferable in space-charge-limited situations."(Int. J. Mass Spectrom. 300: 182-193, 2011). However, electrospray and the corona-based chemical ion source (APCI) in most commercial instrument are basically operated under an atmospheric pressure ambient, perhaps out of the concern of safety, convenience and simplicity in maintenance. Running the ion source at pressure much higher than 1 atm is not so common, but had been done by a number of groups as well as in our laboratory. A brief review on these ion sources will be given in this paper.

  18. Electron-ion recombination study in argon at atmospheric pressure

    International Nuclear Information System (INIS)

    This study deals with a wall-stabilized arc burning in argon at atmospheric pressure. A transient mode is obtained using a fast thyristor connected to the electrodes, which short-circuits the discharge. By means of two wavelengths laser interferometry and spectroscopy measurements we have determined the temporal changes of the electron density, ground state atom density and excited atom density. We have shown that, when the electric field is suppressed, the electron temperature rapidly decreases to the gas temperature before changing electron and atom densities. This phenomenon is applied to determine the gas temperature and to evaluate the role played by ionization in electron density balance. The coefficients of ambipolar diffusion, ionization and recombination and an apparent recombination coefficient are determined versus electron temperature and compared with theoretical values

  19. Graphene Membranes for Atmospheric Pressure Photoelectron Spectroscopy.

    Science.gov (United States)

    Weatherup, Robert S; Eren, Baran; Hao, Yibo; Bluhm, Hendrik; Salmeron, Miquel B

    2016-05-01

    Atmospheric pressure X-ray photoelectron spectroscopy (XPS) is demonstrated using single-layer graphene membranes as photoelectron-transparent barriers that sustain pressure differences in excess of 6 orders of magnitude. The graphene serves as a support for catalyst nanoparticles under atmospheric pressure reaction conditions (up to 1.5 bar), where XPS allows the oxidation state of Cu nanoparticles and gas phase species to be simultaneously probed. We thereby observe that the Cu(2+) oxidation state is stable in O2 (1 bar) but is spontaneously reduced under vacuum. We further demonstrate the detection of various gas-phase species (Ar, CO, CO2, N2, O2) in the pressure range 10-1500 mbar including species with low photoionization cross sections (He, H2). Pressure-dependent changes in the apparent binding energies of gas-phase species are observed, attributable to changes in work function of the metal-coated grids supporting the graphene. We expect atmospheric pressure XPS based on this graphene membrane approach to be a valuable tool for studying nanoparticle catalysis.

  20. Cosmic Rays Response of High-pressure Ionization Chamber

    Institute of Scientific and Technical Information of China (English)

    GAO; Fei; XIAO; Xue-fu; NI; Ning; ZHANG; Xi; HOU; Jin-bing; SONG; Ming-zhe; WANG; Hong-yu

    2013-01-01

    In order to study cosmic rays response characteristics of self-designed HPIC(high pressure ionization chamber),model JLZ-Ⅲ,the JLZ-Ⅲwas placed on a boat which is 3 meters much deeper and at least 1 kilometer away from land to measure air kerma rate in the open water in Miyun Reservoir(geomagnetic latitude 29°N,altitude 160 m),Beijing.The result was compared with the measurement

  1. A modified setup for measuring the first ionization coefficient of tissue equivalent gases at low pressure

    Energy Technology Data Exchange (ETDEWEB)

    Petri, Anna R.; Goncalves, Josemary A.C.; Bueno, Carmen C., E-mail: arpetri@ipen.br, E-mail: josemary@ipen.br, E-mail: ccbueno@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Mangiarotti, Alessio, E-mail: alessio@if.usp.br [Universidade de Sao Paulo (IF/USP), Sao Paulo, SP (Brazil). Instituto de Fisica

    2015-07-01

    In our previous works, measurements of the first Townsend ionization coefficient, α, for pure nitrogen and isobutane at atmospheric pressure as a function of the reduced electric field were carried out in the range of 145 to 194 Td to prevent the chamber from electrical discharges. In order to increase this upper limit, the setup was modified for operating at low pressure. The detector has a Resistive Plate Chamber-like configuration where the primary ionization is produced by the incidence of nitrogen pulsed laser beam on an aluminum electrode. To validate the technique, measurements of the first Townsend ionization coefficient in nitrogen as a function of the reduced electric field were carried out at atmospheric pressure and at 100hPa, as this is an extensively studied gas with well-established data. Good agreement among our results, data from the literature and Magboltz simulations, leading to extend our method to Tissue Equivalent (TE) gases whose α is unknown. Preliminary measurements of α in a methane-based TE gas (CH{sub 4} - 64.4%, CO{sub 2} - 32.4% and N{sub 2} - 3.2%) are also presented. (author)

  2. A modified setup for measuring the first ionization coefficient of tissue equivalent gases at low pressure

    International Nuclear Information System (INIS)

    In our previous works, measurements of the first Townsend ionization coefficient, α, for pure nitrogen and isobutane at atmospheric pressure as a function of the reduced electric field were carried out in the range of 145 to 194 Td to prevent the chamber from electrical discharges. In order to increase this upper limit, the setup was modified for operating at low pressure. The detector has a Resistive Plate Chamber-like configuration where the primary ionization is produced by the incidence of nitrogen pulsed laser beam on an aluminum electrode. To validate the technique, measurements of the first Townsend ionization coefficient in nitrogen as a function of the reduced electric field were carried out at atmospheric pressure and at 100hPa, as this is an extensively studied gas with well-established data. Good agreement among our results, data from the literature and Magboltz simulations, leading to extend our method to Tissue Equivalent (TE) gases whose α is unknown. Preliminary measurements of α in a methane-based TE gas (CH4 - 64.4%, CO2 - 32.4% and N2 - 3.2%) are also presented. (author)

  3. Dynamics behavior of homogeneous dielectric barrier discharge at atmospheric pressure

    Science.gov (United States)

    Zhang, Yan; Gu, Biao; Wang, Wenchun; Wang, Dezhen; Peng, Xuwen

    2009-07-01

    An experimental study on the dynamics behavior of homogeneous dielectric barrier discharge (HDBD) at atmospheric pressure is described in this paper. Two kinds of discharge mode, glow and Townsend discharge modes, can be easily identified according to the differential conductivity of current-voltage relationship in the ascent stage of discharge current for the atmospheric HDBD. A (three-dimensional) 3D phase space made by discharge current, gas gap voltage, and charge density of dielectric-plate surface was utilized in the study. By projecting the discharge evolution trajectory in the 3D space, the 3D trajectory of multiple current peaks discharge in atmospheric helium shows a limited cycle with convolutions and undergoes a series of bifurcation process; however, the 3D trajectory of atmospheric N2 HDBD is a limited cycle without any convolution and bifurcation process. In addition, the first ionization coefficient of working gas plays a key role to determine the discharge mode of atmospheric HDBD, the transition of discharge mode and the dynamics stability of atmospheric HDBD.

  4. A comparative study of APLI and APCI in IMS at atmospheric pressure to reveal and explain peak broadening effects by the use of APLI.

    Science.gov (United States)

    Ihlenborg, Marvin; Raupers, Björn; Gunzer, Frank; Grotemeyer, Jürgen

    2015-11-21

    The details of the ionization mechanism in atmospheric pressure are still not completely known. In order to obtain further insight into the occurring processes in atmospheric pressure laser ionization (APLI) a comparative study of atmospheric pressure chemical ionization (APCI) and APLI is presented in this paper. This study is carried out using similar experimental condition at atmospheric pressure employing a commercial ion mobility spectrometer (IMS). Two different peak broadening mechanisms can then be assigned, one related to a range of different species generated and detected, and furthermore for the first time a power broadening effect on the signals can be identified.

  5. Runaway electron beam in atmospheric pressure discharges

    Science.gov (United States)

    Oreshkin, E. V.; Barengolts, S. A.; Chaikovsky, S. A.; Oreshkin, V. I.

    2015-11-01

    A numerical simulation was performed to study the formation of a runaway electron (RAE) beam from an individual emission zone in atmospheric pressure air discharges with a highly overvolted interelectrode gap. It is shown that the formation of a RAE beam in discharges at high overvoltages is much contributed by avalanche processes.

  6. Response of cyanobacteria to low atmospheric pressure

    Science.gov (United States)

    Qin, Lifeng; Yu, Qingni; Ai, Weidang; Tang, Yongkang; Ren, Jin; Guo, Shuangsheng

    2014-10-01

    Maintaining a low pressure environment in a controlled ecological life support system would reduce the technological complexity and resupply cost in the course of the construction of a future manned lunar base. To estimate the effect of a hypobaric environment in a lunar base on biological components, such as higher plants, microbes, and algae, cyanobacteria was used as the model by determining their response of growth, morphology, and physiology when exposed to half of standard atmospheric pressure for 16 days (brought back to standard atmospheric pressure 30 minutes every two days for sampling). The results indicated that the decrease of atmospheric pressure from 100 kPa to 50 kPa reduced the growth rates of Microcystis aeruginosa, Merismopedia sp., Anabaena sp. PCC 7120, and Anabaena flos-aquae. The ratio of carotenoid to chlorophyll a content in the four tested strains increased under low pressure conditions compared to ambient conditions, resulting from the decrease of chlorophyll a and the increase of carotenoid in the cells. Moreover, low pressure induced the reduction of the phycocyanin content in Microcystis aeruginosa, Anabaena sp. PCC 7120, and Anabaena flos-aquae. The result from the ultrastructure observed using SEM indicated that low pressure promoted the production of more extracellular polymeric substances (EPSs) compared to ambient conditions. The results implied that the low pressure environment of 50 kPa in a future lunar base would induce different effects on biological components in a CELSS, which must be considered during the course of designing a future lunar base. The results will be a reference for exploring the response of other biological components, such as plants, microbes, and animals, living in the life support system of a lunar base.

  7. Diagnostics of atmospheric pressure air plasmas

    International Nuclear Information System (INIS)

    Atmospheric pressure air plasmas are often thought to be in Local Thermodynamics Equilibrium (LTE) owing to fast interspecies collisional exchanges at high pressure. As will be seen here, this assumption cannot be relied upon, particularly with respect to optical diagnostics. Large velocity gradients in flowing plasmas and/or elevated electron temperatures created by electrical discharges can result in large departures from chemical and thermal equilibrium. Diagnostic techniques based on optical emission spectroscopy (OES) and Cavity Ring-Down Spectroscopy (CRDS) have been developed and applied at Stanford University to the investigation of atmospheric pressure plasmas under conditions ranging from thermal and chemical equilibrium to thermochemical nonequilibrium. This article presents a review of selected temperature and species concentration measurement techniques useful for the study of air and nitrogen plasmas

  8. Ambient desorption/ionization mass spectrometry using a liquid sampling-atmospheric glow discharge (LS-APGD) ionization source.

    Science.gov (United States)

    Marcus, R Kenneth; Burdette, Carolyn Q; Manard, Benjamin T; Zhang, Lynn X

    2013-10-01

    A novel approach to ambient desorption/ionization mass spectrometry (ADI-MS) is described, based on a recently developed liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source. The device is essentially unmodified relative to its implementation in elemental mass spectrometry, where the operational space is characterized by low operation power (LS-APGD source is mounted onto the source interface of a Thermo Finnigan LCQ Advantage Max quadrupole ion trap mass spectrometer without modifications to the instrument faceplate or ion optics. Described here is the initial evaluation of the roles of source geometry and working parameters, including electrolytic solution composition and plasma current, on the response of caffeine residues, with preliminary limits of detection based on the relative standard deviation of the spectral background suggested to be on the 10-pg level. Demonstrative spectra are presented for green tea extracts and raw leaves, coffee beans, a dried (raw) tobacco leaf, an analgesic tablet, and paper currency. Versatility is further revealed through the determination of components in common cigarette smoke. In each case, the spectra are characterized by (M + H)(+) species of the expected constituents. The capacity for a single source to perform both in solution and particulate elemental analysis (as shown previously) and ADI of molecular species is unique in the realm of mass spectrometry.

  9. [Development of a chemical ionization time-of-flight mass spectrometer for continuous measurements of atmospheric hydroxyl radical].

    Science.gov (United States)

    Dou, Jian; Hua, Lei; Hou, Ke-Yong; Jiang, Lei; Xie, Yuan-Yuan; Zhao, Wu-Duo; Chen, Ping; Wang, Wei-Guo; Di, Tian; Li, Hai-Yang

    2014-05-01

    A home-made chemical ionization time-of-flight mass spectrometer (TOFMS) has been developed for continuous measurements of atmospheric hydroxyl radical. Based on the atmospheric pressure chemical ionization technique, an ionization source with orthogonal dual tube structure was adopted in the instrument, which minimized the interference between the reagent gas ionization and the titration reaction. A 63Ni radioactive source was fixed inside one of the orthogonal tubes to generate reactant ion of NO(-)(3) from HNO3 vapor. Hydroxyl radical was first titrated by excess SO2 to form equivalent concentrations of H2SO4 in the other orthogonal tube, and then reacted with NO(-)(3) ions in the chemical ionization chamber, leading to HSO(-)(4) formation. The concentration of atmospheric hydroxyl radical can be directly calculated by measuring the intensities of the HSOj product ions and the NO(-)(3) reactant ions. The analytical capability of the instrument was demonstrated by measuring hydroxyl radical in laboratory air, and the concentration of the hydroxyl radical in the investigated air was calculated to be 1.6 x 106 molecules*cm ', based on 5 seconds integration. The results have shown that the instrument is competent for in situ continuous measurements of atmospheric trace radical.

  10. Non-equilibrium helium ionization in an MHD simulation of the solar atmosphere

    CERN Document Server

    Golding, Thomas Peter; Carlsson, Mats

    2015-01-01

    The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilbrium hydrogen ionization by performing a 2D radiation-magneto-hydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyman-$\\alpha$ and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with LTE ionization shows that non-equilibrium helium ionization leads to higher temperatures in wave fronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behaviour with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. ...

  11. Ionization in atmospheres of Brown Dwarfs and extrasolar planets IV. The Effect of Cosmic Rays

    CERN Document Server

    Rimmer, Paul

    2013-01-01

    Cosmic rays provide an important source for free electrons in the Earth's atmosphere and also in dense interstellar regions where they produce a prevailing background ionization. We utilize a Monte Carlo cosmic ray transport model for particle energies of 1 MeV < E < 1 GeV, and an analytic cosmic ray transport model for particle energies of 1 GeV < E < 1 TeV in order to investigate the cosmic ray enhancement of free electrons in substellar atmospheres of free-floating objects. The cosmic ray calculations are applied to Drift-Phoenix model atmospheres of an example brown dwarf with effective temperature Teff = 1500 K, and two example giant gas planets (Teff = 1000 K, 1500 K). For the model brown dwarf atmosphere, the electron fraction is enhanced significantly by cosmic rays when the pressure pgas < 10^-2 bar. Our example giant gas planet atmosphere suggests that the cosmic ray enhancement extends to 10^-4 - 10^-2 bar, depending on the effective temperature. For the model atmosphere of the examp...

  12. Research on atmospheric pressure plasma processing sewage

    Science.gov (United States)

    Song, Gui-cai; Na, Yan-xiang; Dong, Xiao-long; Sun, Xiao-liang

    2013-08-01

    The water pollution has become more and more serious with the industrial progress and social development, so it become a worldwide leading environmental management problem to human survival and personal health, therefore, countries are looking for the best solution. Generally speaking, in this paper the work has the following main achievements and innovation: (1) Developed a new plasma device--Plasma Water Bed. (2) At atmospheric pressure condition, use oxygen, nitrogen, argon and helium as work gas respectively, use fiber spectrometer to atmospheric pressure plasma discharge the emission spectrum of measurement, due to the different work gas producing active particle is different, so can understand discharge, different particle activity, in the treatment of wastewater, has the different degradation effects. (3) Methyl violet solution treatment by plasma water bed. Using plasma drafting make active particles and waste leachate role, observe the decolorization, measurement of ammonia nitrogen removal.

  13. A microwave pressure sounder. [for remote measurement of atmospheric pressure

    Science.gov (United States)

    Peckham, G. E.; Flower, D. A.

    1981-01-01

    A technique for the remote measurement of atmospheric surface pressure will be described. Such measurements could be made from a satellite in polar orbit and would cover many areas for which conventional meteorological data are not available. An active microwave instrument is used to measure the strength of return echoes from the ocean surface at a number of frequencies near the 60 GHz oxygen absorption band. Factors which affect the accuracy with which surface pressure can be deduced from these measurements will be discussed and an instrument designed to test the method by making measurements from an aircraft will be described.

  14. 大气压基质辅助激光解析离子源高分辨飞行时间质谱仪的研制%The Study of Atmospheric Pressure Matrix-assisted Laser Desorption/Ionization and High Mass Resolution Time-of-flight Mass Spectrometer

    Institute of Scientific and Technical Information of China (English)

    粘慧青; 黄正旭; 郭长娟; 高伟; 周振

    2007-01-01

    本文介绍了实验室自制的大气压基质辅助激光解析离子源(Atmospheric Pressure Matrix-assisted Laser Desorption/Ionization,AP-MALDI)高分辨飞行时间质谱仪(Time-of-flight Mass Spectrometer,TOFMS)的原理、结构以及初步的实验结果.通过对多肽样品gramicidin S的分析,国内首次实现在自制AP-MALDI-TOFMS上得到生物大分子谱图.结果表明,AP-MALDI高分辨TOFMS可以实现大气压下大通量的大分子精确质量检测.仪器分辨率优于8000(Full Width at Half Maximum,FWHM),最低检测限可达25fmol.

  15. Laser-enhanced ionization of mercury atoms in an inert atmosphere with avalanche amplification of the signal.

    Science.gov (United States)

    Clevenger, W L; Matveev, O I; Cabredo, S; Omenetto, N; Smith, B W; Winefordner, J D

    1997-07-01

    A new method for laser-enhanced ionization detection of mercury atoms in an inert gas atmosphere is described. The method, which is based on the avalanche amplification of the signal resulting from the ionization from a selected Rydberg level reached by a three-step laser excitation of mercury vapor in a simple quartz cell, can be applied to the determination of this element in various matrices by the use of conventional cold atomization techniques. The overall (collisional + photo) ionization efficiency is investigated at different temperatures, and the avalanche amplification effect is reported for Ar and P-10 gases at atmospheric pressure. It is shown that the amplified signal is related to the number of charges produced in the laser-irradiated volume. Under amplifier noise-limited conditions, a detection limit of ∼15 Hg atoms/laser pulse in the interaction region is estimated. PMID:21639354

  16. Comparison of free radicals formation induced by cold atmospheric plasma, ultrasound, and ionizing radiation.

    Science.gov (United States)

    Rehman, Mati Ur; Jawaid, Paras; Uchiyama, Hidefumi; Kondo, Takashi

    2016-09-01

    Plasma medicine is increasingly recognized interdisciplinary field combining engineering, physics, biochemistry and life sciences. Plasma is classified into two categories based on the temperature applied, namely "thermal" and "non-thermal" (i.e., cold atmospheric plasma). Non-thermal or cold atmospheric plasma (CAP) is produced by applying high voltage electric field at low pressures and power. The chemical effects of cold atmospheric plasma in aqueous solution are attributed to high voltage discharge and gas flow, which is transported rapidly on the liquid surface. The argon-cold atmospheric plasma (Ar-CAP) induces efficient reactive oxygen species (ROS) in aqueous solutions without thermal decomposition. Their formation has been confirmed by electron paramagnetic resonance (EPR) spin trapping, which is reviewed here. The similarities and differences between the plasma chemistry, sonochemistry, and radiation chemistry are explained. Further, the evidence for free radical formation in the liquid phase and their role in the biological effects induced by cold atmospheric plasma, ultrasound and ionizing radiation are discussed.

  17. Comparison of free radicals formation induced by cold atmospheric plasma, ultrasound, and ionizing radiation.

    Science.gov (United States)

    Rehman, Mati Ur; Jawaid, Paras; Uchiyama, Hidefumi; Kondo, Takashi

    2016-09-01

    Plasma medicine is increasingly recognized interdisciplinary field combining engineering, physics, biochemistry and life sciences. Plasma is classified into two categories based on the temperature applied, namely "thermal" and "non-thermal" (i.e., cold atmospheric plasma). Non-thermal or cold atmospheric plasma (CAP) is produced by applying high voltage electric field at low pressures and power. The chemical effects of cold atmospheric plasma in aqueous solution are attributed to high voltage discharge and gas flow, which is transported rapidly on the liquid surface. The argon-cold atmospheric plasma (Ar-CAP) induces efficient reactive oxygen species (ROS) in aqueous solutions without thermal decomposition. Their formation has been confirmed by electron paramagnetic resonance (EPR) spin trapping, which is reviewed here. The similarities and differences between the plasma chemistry, sonochemistry, and radiation chemistry are explained. Further, the evidence for free radical formation in the liquid phase and their role in the biological effects induced by cold atmospheric plasma, ultrasound and ionizing radiation are discussed. PMID:27085689

  18. Ionization Processes in the Atmosphere of Titan (Research Note). III. Ionization by High-Z Nuclei Cosmic Rays

    Science.gov (United States)

    Gronoff, G.; Mertens, C.; Lilensten, J.; Desorgher, L.; Fluckiger, E.; Velinov, P.

    2011-01-01

    Context. The Cassini-Huygens mission has revealed the importance of particle precipitation in the atmosphere of Titan thanks to in-situ measurements. These ionizing particles (electrons, protons, and cosmic rays) have a strong impact on the chemistry, hence must be modeled. Aims. We revisit our computation of ionization in the atmosphere of Titan by cosmic rays. The high-energy high-mass ions are taken into account to improve the precision of the calculation of the ion production profile. Methods. The Badhwahr and O Neill model for cosmic ray spectrum was adapted for the Titan model. We used the TransTitan model coupled with the Planetocosmics model to compute the ion production by cosmic rays. We compared the results with the NAIRAS/HZETRN ionization model used for the first time for a body that differs from the Earth. Results. The cosmic ray ionization is computed for five groups of cosmic rays, depending on their charge and mass: protons, alpha, Z = 8 (oxygen), Z = 14 (silicon), and Z = 26 (iron) nucleus. Protons and alpha particles ionize mainly at 65 km altitude, while the higher mass nucleons ionize at higher altitudes. Nevertheless, the ionization at higher altitude is insufficient to obscure the impact of Saturn s magnetosphere protons at a 500 km altitude. The ionization rate at the peak (altitude: 65 km, for all the different conditions) lies between 30 and 40/cu cm/s. Conclusions. These new computations show for the first time the importance of high Z cosmic rays on the ionization of the Titan atmosphere. The updated full ionization profile shape does not differ significantly from that found in our previous calculations (Paper I: Gronoff et al. 2009, 506, 955) but undergoes a strong increase in intensity below an altitude of 400 km, especially between 200 and 400 km altitude where alpha and heavier particles (in the cosmic ray spectrum) are responsible for 40% of the ionization. The comparison of several models of ionization and cosmic ray spectra (in

  19. Ionization effect of solar particle GLE events in low and middle atmosphere

    Directory of Open Access Journals (Sweden)

    I. G. Usoskin

    2010-12-01

    Full Text Available Using a new reconstruction of the solar proton energy spectra for Ground Level Enhancement (GLE events, based on fits to measurements from ground-based and satellite-borne instruments covering a wide energy range, we quantitatively evaluate the possible ionization effects in the low and middle atmosphere for 58 out of the 66 GLE events recorded by the world-wide neutron monitor network since 1956. The ionization computations are based on the numerical 3-D CRAC:CRII model. A table of the ionization effect caused by the GLE events at different atmospheric heights is provided. It is shown that the direct ionization effect is negligible or even negative, due to the accompanying Forbush decreases, in all low- and mid-latitude regions. The ionization effect is important only in the polar atmosphere, where it can be dramatic in the middle and upper atmosphere (above 30 km during major GLE events.

  20. Atmospheric Pressure Plasma Processing for Polymer Adhesion: A Review

    DEFF Research Database (Denmark)

    Kusano, Yukihiro

    2014-01-01

    Atmospheric pressure plasma processing has attracted significant interests over decades due to its usefulness and a variety of applications. Adhesion improvement of polymer surfaces is among the most important applications of atmospheric pressure plasma treatment. Reflecting recent significant...... development of the atmospheric pressure plasma processing, this work presents its fundamental aspects, applications, and characterization techniques relevant to adhesion....

  1. Determination of Ionization Coefficient of Atmospheric Helium in Dielectric Barrier Discharge

    International Nuclear Information System (INIS)

    A weakly luminous layer close to the anode is observed at time far ahead of the current pulse in dielectric barrier discharge of helium at atmospheric pressure and it is considered as the result of a very weak Townsend discharge. Based on the assumption that the space charge produced by this Townsend discharge is too small to distort the uniform electric field in the gas gap, the electrons have more or less the same energy over the entire gap and the spatial distribution of the discharge light is proportional to the distribution of electron density. This light distribution is obtained by processing side-view photograph of discharge gap using an intensified charge coupled device camera with an exposure time of 20 ns. By fitting a theoretically derived formula with the measured curve of light distribution, the Townsend electron ionization coefficient a is determined to be 31 cm−1 at E/p = 3.6 V·cm−1·Torr−1, which is much higher than that obtained by solving the Boltzmann equation of pure helium. It is believed that penning ionization of helium metastables with impurity of nitrogen molecules makes great contribution to the experimentally determined α value. The contribution of this penning ionization to α is roughly estimated. (physics of gases, plasmas, and electric discharges)

  2. Determination of Ionization Coefficient of Atmospheric Helium in Dielectric Barrier Discharge

    Institute of Scientific and Technical Information of China (English)

    LIANG Zhuo; LUO Hai-Yun; Wang Xin-Xin; LV Bo; GUAN Zhi-Cheng; WANG Li-Ming

    2008-01-01

    A weakly luminous layer close to the anode is observed at time far ahead of the current pulse in dielectric barrier discharge of helium at atmospheric pressure and it is considered as the result of a very weak Townsend discharge. Based on the assumption that the space charge produced by this Townsend discharge is too small to distort the uniform electric field in the gas gap, the electrons have more or less the same energy over the entire gap and the spatial distribution of the discharge light is proportional to the distribution of electron density. This light distribution is obtained by processing side-view photograph of discharge gap using an intensified charge coupled device camera with an exposure time of 20ns. By fitting a theoretically derived formula with the measured curve of light distribution, the Townsend electron ionization coefficient α is determined to be 31 cm-1 at E/p = 3.6 V.cm-1.Torr-1, which is much higher than that obtained by solving the Boltzmann equation of pure helium. It is believed that penning ionization of helium metastables with impurity of nitrogen molecules makes great contribution to the experimentally determined α value. The contribution of this penning ionization to a is roughly estimated.

  3. Ultra-Low Breakdown Voltage of Field Ionization in Atmospheric Air Based on Silicon Nanowires

    International Nuclear Information System (INIS)

    Classic field ionization requires extremely high positive electric fields, of the order of a few million volts per centimeter. Here we show that field ionization can occur at dramatically lower fields on the electrode of silicon nanowires (SiNWs) with dense surface states and large field enhancement factor. A field ionization structure using SiNWs as the anode has been investigated, in which the SiNWs were fabricated by improved chemical etching process. At room temperature and atmospheric pressure, breakdown of the air is reproducible with a fixed anode-to-cathode distance of 0.5 μm. The breakdown voltage is ∼38 V, low enough to be achieved by a battery-powered unit. Two reasons can be given for the low breakdown voltage. First, the gas discharge departs from the Paschen's law and the breakdown voltage decreases sharply as the gap distance falls in μm range. The other reason is the large electric field enhancement factor (β) and the high density of surface defects, which cause a highly non-uniform electric field for field emission to occur

  4. New development of atmospheric pressure plasma polishing

    Institute of Scientific and Technical Information of China (English)

    Bo Wang; Jufan Zhang; Shen Dong

    2009-01-01

    Atmospheric pressure plasma polishing (APPP) is a precision machining technology used for manufacturing high quality optical surfaces. The changes of surface modulus and hardness after machining prove the distinct improvement of surface mechanical properties. The demonstrated decrease of surfacc residual stresses testifies the removal of the former deformation layer.And the surface topographies under atomic force microscope (AFM) and scanning electron microscope (SEM) indicate obvious amelioration of the surface status,showing that the 0.926-nm average surface roughness has been achieved.

  5. Nanocapillary Atmospheric Pressure Plasma Jet: A Tool for Ultrafine Maskless Surface Modification at Atmospheric Pressure.

    Science.gov (United States)

    Motrescu, Iuliana; Nagatsu, Masaaki

    2016-05-18

    With respect to microsized surface functionalization techniques we proposed the use of a maskless, versatile, simple tool, represented by a nano- or microcapillary atmospheric pressure plasma jet for producing microsized controlled etching, chemical vapor deposition, and chemical modification patterns on polymeric surfaces. In this work we show the possibility of size-controlled surface amination, and we discuss it as a function of different processing parameters. Moreover, we prove the successful connection of labeled sugar chains on the functionalized microscale patterns, indicating the possibility to use ultrafine capillary atmospheric pressure plasma jets as versatile tools for biosensing, tissue engineering, and related biomedical applications.

  6. NON-EQUILIBRIUM HELIUM IONIZATION IN AN MHD SIMULATION OF THE SOLAR ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Golding, Thomas Peter; Carlsson, Mats [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Leenaarts, Jorrit, E-mail: thomas.golding@astro.uio.no, E-mail: mats.carlsson@astro.uio.no, E-mail: jorrit.leenaarts@astro.su.se [Institute for Solar Physics, Department of Astronomy, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm (Sweden)

    2016-02-01

    The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamic equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11–18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed.

  7. Response of cyanobacteria to low atmosphere pressure

    Science.gov (United States)

    Qin, Lifeng; Ai, Weidang; Guo, Shuangsheng; Tang, Yongkang; Yu, Qingni; Shen, Yunze; Ren, Jin

    Maintaining a low pressure environment would reduce the technological complexity and constructed cost of future lunar base. To estimate the effect of hypobaric of controlled ecological life support system in lunar base on terrestrial life, cyanobacteria was used as the model to exam the response of growth, morphology, physiology to it. The decrease of atmosphere pressure from 100 KPa to 50 KPa reducing the growth rates of Microcystis aeruginosa, Merismopedia.sp, Anabaena sp. PCC 7120, Anabaena Hos-aquae, the chlorophyll a content in Microcystis aeruginosa, Merismopedia.sp, Anabaena Hos-aquae, the carotenoid content in Microcystis aeruginosa, Merismopedia.sp and Anabaena sp. PCC 7120, the phycocyanin content in Microcystis aeruginosa. This study explored the biological characteristics of the cyanobacteria under low pressure condition, which aimed at understanding the response of the earth's life to environment for the future moon base, the results enrich the research contents of the lunar biology and may be referred for the research of other terrestrial life, such as human, plant, microbe and animal living in life support system of lunar base.

  8. Atmospheric ionization induced by precipitating electrons: Comparison of CRAC:EPII model with parametrization model

    CERN Document Server

    Artamonov, A A; Usoskin, I G

    2016-01-01

    A new model CRAC:EPII (Cosmic Ray Atmospheric Cascade: Electron Precipitation Induced Ionization) is presented. The CRAC:EPII is based on Monte Carlo simulation of precipitating electrons propagation and interaction with matter in the Earth atmosphere. It explicitly considers energy deposit: ionization, pair production, Compton scattering, generation of Bremsstrahlung high energy photons, photo-ionization and annihilation of positrons, multiple scattering as physical processes accordingly. The propagation of precipitating electrons and their interactions with atmospheric molecules is carried out with the GEANT4 simulation tool PLANETOCOSMICS code using NRLMSISE 00 atmospheric model. The ionization yields is compared with an analytical parametrization for various energies of incident precipitating electron, using a flux of mono-energetic particles. A good agreement between the two models is achieved. Subsequently, on the basis of balloon-born measured spectra of precipitating electrons at 30.10.2002 and 07.01....

  9. Plasma density enhancements created by the ionization of the Earth's upper atmosphere by artificial electron beams

    DEFF Research Database (Denmark)

    Neubert, Torsten; Banks, P.M.

    line) and down-going differential energy flux. The equations are solved numerically, using the MSIS atmospheric model and the IRI ionospheric model. The results from the model compare well with recent observations from the CHARGE 2 sounding rocket experiment. Two aspects of the beam-neutral atmosphere...... electrons and thereby limits the ionization of the neutral atmosphere. As an example we find from CHARGE 2 observations and from the model calculations that below about 180 km, secondary electrons generated through the ionization of the neutral atmosphere by 1-10 keV electron beams from sounding rockets...

  10. Structure formation of atmospheric pressure discharge

    Science.gov (United States)

    Medvedev, Alexey E.

    2016-02-01

    In this paper it is shown, by analyzing the results of experimental studies, that the outer boundary of the atmospheric pressure discharge pinch is determined by the condition of equality of plasma flows based on the thermal and electric field energy. In most cases, the number of charged particles coming from near-electrode zones is sufficient to compensate for losses in the discharge bulk. At large currents and enhanced heating, plasma is in the diffusion mode of losses, with recombination of charged particles at the pinch boundary. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.

  11. Atmospheric pressure variations and abdominal aortic aneurysm rupture.

    LENUS (Irish Health Repository)

    Killeen, S D

    2012-02-03

    BACKGROUND: Ruptured abdominal aortic aneurysm (RAAA) presents with increased frequency in the winter and spring months. Seasonal changes in atmospheric pressure mirrors this pattern. AIM: To establish if there was a seasonal variation in the occurrence of RAAA and to determine if there was any association with atmospheric pressure changes. METHODS: A retrospective cohort-based study was performed. Daily atmospheric pressure readings for the region were obtained. RESULTS: There was a statistically significant monthly variation in RAAA presentation with 107 cases (52.5%) occurring from November to March. The monthly number of RAAA and the mean atmospheric pressure in the previous month were inversely related (r = -0.752, r (2) = 0.566, P = 0.03), and there was significantly greater daily atmospheric pressure variability on days when patients with RAAA were admitted. CONCLUSION: These findings suggest a relationship between atmospheric pressure and RAAA.

  12. Synthetic oligomer analysis using atmospheric pressure photoionization mass spectrometry at different photon energies

    Energy Technology Data Exchange (ETDEWEB)

    Desmazières, Bernard [Global Bioenergies, 5 rue Henri Desbruyeres, 91030 Evry (France); Legros, Véronique [CNRS, UMR8587, Université d’Evry-Val-d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, F-91025 Evry (France); Giuliani, Alexandre [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, 91192 Gif-sur-Yvette (France); UAR1008, CEPIA, INRA, Rue de la Geraudiere, F-44316 Nantes (France); Buchmann, William, E-mail: william.buchmann@univ-evry.fr [CNRS, UMR8587, Université d’Evry-Val-d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, F-91025 Evry (France)

    2014-01-15

    Graphical abstract: Atmospheric pressure photoIonization mass spectra of synthetic oligomers were recorded in the negative mode by varying the photon energy using synchrotron radiation. Photon energy required for an efficient ionization of the polymer was correlated to ionization potential of the solvent (for example 9.4 eV for tetrahydrofuran). -- Highlights: •Atmospheric pressure photoionization was performed using synchrotron radiation. •Photoionization of oligomers in THF with 10% CH{sub 2}Cl{sub 2} produces intact [M + Cl]{sup −} ions. •The photon energy required corresponds to ionization potential of the solvent. •Polymer distributions depend on source parameters such T °C and applied voltages. •Liquid chromatography was coupled to MS using an APPI interface for polymer analysis. -- Abstract: Atmospheric pressure photoionization (APPI) followed by mass spectrometric detection was used to ionize a variety of polymers: polyethylene glycol, polymethyl methacrylate, polystyrene, and polysiloxane. In most cases, whatever the polymer or the solvent used (dichloromethane, tetrahydrofuran, hexane, acetone or toluene), only negative ion mode produced intact ions such as chlorinated adducts, with no or few fragmentations, in contrast to the positive ion mode that frequently led to important in-source fragmentations. In addition, it was shown that optimal detection of polymer distributions require a fine tuning of other source parameters such as temperature and ion transfer voltage. Series of mass spectra were recorded in the negative mode, in various solvents (dichloromethane, tetrahydrofuran, hexane, toluene, and acetone), by varying the photon energy from 8 eV up to 10.6 eV using synchrotron radiation. To these solvents, addition of a classical APPI dopant (toluene or acetone) was not necessary. Courtesy of the synchrotron radiation, it was demonstrated that the photon energy required for an efficient ionization of the polymer was correlated to the

  13. A New Atmospheric Pressure Microwave Plasma Source (APMPS)

    Institute of Scientific and Technical Information of China (English)

    LIU Liang; ZHANG Guixin; LI Yinan; ZHU Zhijie; WANG Xinxin; LUO Chengmu

    2008-01-01

    An atmospheric pressure microwave plasma source (APMPS) that can generate a large volume of plasma at an atmospheric pressure has been developed at Tsinghua University. This paper presents the design of this APMPS, the theoretical consideration of microwave plasma ignition and the simulation results, including the distributions of the electric field and power density inside the cavity as well as the accuracy of the simulation results. In addition, a method of producing an atmospheric pressure microwave plasma and some relevant observations of the plasma are also provided. It. is expected that this research would be useful for further developing atmospheric pressure microwave plasma sources and expanding the scope of their applications.

  14. Atmospheric Pressure Glow Discharge with Liquid Electrode

    Science.gov (United States)

    Tochikubo, Fumiyoshi

    2013-09-01

    Nonthermal atmospheric pressure plasmas in contact with liquid are widely studied aiming variety of plasma applications. DC glow discharge with liquid electrode is an easy method to obtain simple and stable plasma-liquid interface. When we focus attention on liquid-phase reaction, the discharge system is considered as electrolysis with plasma electrode. The plasma electrode will supply electrons and positive ions to the liquid surface in a different way from the conventional metal electrode. However, the phenomena at plasma-liquid interface have not been understood well. In this work, we studied physical and chemical effect in liquid induced by dc atmospheric pressure glow discharge with liquid electrode. The experiment was carried out using H-shaped Hoffman electrolysis apparatus filled with electrolyte, to separate the anodic and cathodic reactions. Two nozzle electrodes made of stainless steel are set about 2 mm above the liquid surface. By applying a dc voltage between the nozzle electrodes, dc glow discharges as plasma electrodes are generated in contact with liquid. As electrolyte, we used aqueous solutions of NaCl, Na2SO4, AgNO3 and HAuCl4. AgNO3 and HAuCl4 are to discuss the reduction process of metal ions for synthesis of nanoparticles (NPs). OH radical generation yield in liquid was measured by chemical probe method using terephthalic acid. Discharge-induced liquid flow was visualized by Schlieren method. Electron irradiation to liquid surface (plasma cathode) generated OH- and OH radical in liquid while positive ion irradiation (plasma anode) generated H+ and OH radical. The generation efficiency of OH radical was better with plasma anode. Both Ag NPs in AgNO3 and Au NPs in HAuCl4 were synthesized with plasma cathode while only Au NPs were generated with plasma anode. Possible reaction process is qualitatively discussed. The discharge-induced liquid flow such as convection pattern was strongly influenced by the gas flow on the liquid surface. This work

  15. Analysis of Short Chain Chlorinated Paraffins in Leather by Liquid Chromatography-Atmosphere Pressure Ionization Mass Spectrometry%皮革中短链氯化石蜡的液相色谱-大气压化学电离质谱分析

    Institute of Scientific and Technical Information of China (English)

    马贺伟

    2012-01-01

    Short - chain chlorinated paraffins ( SCCPs) in leather were analyzed by liquid chromatography combined atmosphere pressure ionization mass spectrometry ( LC - APCI/MS). The results demonstrated that multi - clusters of chloride adduct ions were contained in the mass spectrum and the response factors were dependent on the degree of chlorination. Selective Ion Monitoring (SIM) mode could reduce the interferences of medium - chain chlorinated paraffins (MCCPs). However, the significant interferences were found when leather samples were tested due to the expressive complexity of the matrix in leather, which easily resulted in FALSE positives.%采用液相色谱-大气压化学电离源质谱(LC-MS/APCI)对皮革中短链氯化石蜡(SCCPs)进行分析.结果表明,SCCPs的质谱图包含了多簇离子碎片峰,其响应值表现出对氯含量的依赖性;采用选择监测离子模式可有效降低中链氯化石蜡(MCCPs)的干扰,但实际皮革样品基质的多样性及复杂性,极易造成检测结果的假阳性.

  16. The Possible Role of Penning Ionization Processes in Planetary Atmospheres

    Directory of Open Access Journals (Sweden)

    Stefano Falcinelli

    2015-03-01

    Full Text Available In this paper we suggest Penning ionization as an important route of formation for ionic species in upper planetary atmospheres. Our goal is to provide relevant tools to researchers working on kinetic models of atmospheric interest, in order to include Penning ionizations in their calculations as fast processes promoting reactions that cannot be neglected. Ions are extremely important for the transmission of radio and satellite signals, and they govern the chemistry of planetary ionospheres. Molecular ions have also been detected in comet tails. In this paper recent experimental results concerning production of simple ionic species of atmospheric interest are presented and discussed. Such results concern the formation of free ions in collisional ionization of H2O, H2S, and NH3 induced by highly excited species (Penning ionization as metastable noble gas atoms. The effect of Penning ionization still has not been considered in the modeling of terrestrial and extraterrestrial objects so far, even, though metastable helium is formed by radiative recombination of He+ ions with electrons. Because helium is the second most abundant element of the universe, Penning ionization of atomic or molecular species by He*(23S1 is plausibly an active route of ionization in relatively dense environments exposed to cosmic rays.

  17. Analysis of solids, liquids, and biological tissues using solids probe introduction at atmospheric pressure on commercial LC/MS instruments.

    Science.gov (United States)

    McEwen, Charles N; McKay, Richard G; Larsen, Barbara S

    2005-12-01

    Direct analysis of samples using atmospheric pressure ionization (API) provides a more rapid method for analysis of volatile and semivolatile compounds than vacuum solids probe methods and can be accomplished on commercial API mass spectrometers. With only a simple modification to either an electrospray (ESI) or atmospheric pressure chemical ionization (APCI) source, solid as well as liquid samples can be analyzed in seconds. The method acts as a fast solids/liquid probe introduction as well as an alternative to the new direct analysis in real time (DART) and desorption electrospray ionization (DESI) methods for many compound types. Vaporization of materials occurs in the hot nitrogen gas stream flowing from an ESI or APCI probe. Ionization of the thermally induced vapors occurs by corona discharge under standard APCI conditions. Accurate mass and mass-selected fragmentation are demonstrated as is the ability to obtain ions from biological tissue, currency, and other objects placed in the path of the hot nitrogen stream.

  18. Atmospheric pressure changes and unexplained variability in INR measurements.

    Science.gov (United States)

    Ernst, Michael E; Shaw, Robert F; Ernst, Erika J; Alexander, Bruce; Kaboli, Peter J

    2009-06-01

    Changes in atmospheric pressure may influence hepatic blood flow and drug metabolism. Anecdotal experience suggests international normalized ratio (INR) variability may be temporally related to significant atmospheric pressure changes. We investigated this potential association in a large sample of patients with multiple INRs. This is a retrospective review of outpatient anticoagulation records from the Iowa City Veteran's Affairs Medical Center and affiliated outpatient clinics from October 1999 to July 2007. All patients, receiving at least one prescription for warfarin and INR at least 30 days or more from the date of the first warfarin prescription, were identified. INRs during periods of hospitalization and vitamin K use were excluded. Proximity analysis using geocoding of ZIP codes of identified patients to the nearest National Oceanic and Atmospheric Administration station was performed to assign atmospheric pressure with INR. Spearman's Rho and Pearson's correlation were used to evaluate atmospheric pressure and INR. Unique patients (1441) with 45 187 INRs were analyzed. When limited to nontherapeutic INRs following a previously therapeutic INR (1121 unique patients/5256 INRs), a small but clinically insignificant association between delta INR and delta atmospheric pressure was observed (r = -0.025; P = 0.038), but not for actual INR and atmospheric pressure (P = 0.06). Delta atmospheric pressure demonstrated greater variation during fall/winter months compared with spring/summer (0.23 vs. 0.15 inHg; P atmospheric pressure changes and INR variability. These findings refute the anecdotal experience seen in our anticoagulation clinic.

  19. Helium atmospheric pressure plasma jets touching dielectric and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Norberg, Seth A., E-mail: norbergs@umich.edu; Johnsen, Eric, E-mail: ejohnsen@umich.edu [Department of Mechanical Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, Michigan 48109-2125 (United States); Kushner, Mark J., E-mail: mjkush@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122 (United States)

    2015-07-07

    Atmospheric pressure plasma jets (APPJs) are being investigated in the context plasma medicine and biotechnology applications, and surface functionalization. The composition of the surface being treated ranges from plastics, liquids, and biological tissue, to metals. The dielectric constant of these materials ranges from as low as 1.5 for plastics to near 80 for liquids, and essentially infinite for metals. The electrical properties of the surface are not independent variables as the permittivity of the material being treated has an effect on the dynamics of the incident APPJ. In this paper, results are discussed from a computational investigation of the interaction of an APPJ incident onto materials of varying permittivity, and their impact on the discharge dynamics of the plasma jet. The computer model used in this investigation solves Poisson's equation, transport equations for charged and neutral species, the electron energy equation, and the Navier-Stokes equations for the neutral gas flow. The APPJ is sustained in He/O{sub 2} = 99.8/0.2 flowing into humid air, and is directed onto dielectric surfaces in contact with ground with dielectric constants ranging from 2 to 80, and a grounded metal surface. Low values of relative permittivity encourage propagation of the electric field into the treated material and formation and propagation of a surface ionization wave. High values of relative permittivity promote the restrike of the ionization wave and the formation of a conduction channel between the plasma discharge and the treated surface. The distribution of space charge surrounding the APPJ is discussed.

  20. Surface corona-bar discharges for production of pre-ionizing UV light for pulsed high-pressure plasmas

    International Nuclear Information System (INIS)

    Multi-atmospheric pressure, pulsed electric discharge excited lasers require pre-ionization to produce spatially uniform glows. Many such systems use corona bars to produce ultraviolet (UV) and vacuum ultraviolet (VUV) light as photo-ionization sources for this purpose. Corona bars are transient surface discharges, typically in a cylindrical geometry, that sustain high electron temperatures and so are efficient UV and VUV sources. In this paper, results from a numerical study of surface corona-bar discharges in a multi-atmosphere pressure Ne/Xe gas mixture are discussed. The discharge consists of a high-voltage electrode placed on the surface of a corona bar which is a dielectric tube surrounding a cylindrical metal electrode. After the initial breakdown an ionization front propagates along the circumference of the corona bar and produces a thin plasma sheet near the dielectric surface. The propagation speed of the ionization front ranges from 2 x 107 to 3.5 x 108 cm s-1, depending on the applied voltage and dielectric constant of the corona-bar insulator. As the discharge propagates around the circumference, the surface of the corona-bar is charged. The combined effects of surface curvature and charge deposition result in a non-monotonic variation of the electric field and electron temperature as the ionization front traverses the circumference. The UV fluxes collected on a surrounding circular surface correlate with the motion of the ionization front but with a time delay due to the relatively long lifetime of the precursor to the emitting species Ne2*.

  1. The effect of atmospheric pressure on ventricular assist device output.

    Science.gov (United States)

    Goto, Takeshi; Sato, Masaharu; Yamazaki, Akio; Fukuda, Wakako; Watanabe, Ken-Ichi; Daitoku, Kazuyuki; Minakawa, Masahito; Fukui, Kozo; Suzuki, Yasuyuki; Fukuda, Ikuo

    2012-03-01

    The effect of cabin pressure change on the respiratory system during flight is well documented in the literature, but how the change in atmospheric pressure affects ventricular assist device (VAD) output flow has not been studied yet. The purpose of our study was to evaluate the change in VAD output using a mock circulatory system in a low-pressure chamber mimicking high altitude. Changes in output and driving pressure were measured during decompression from 1.0 to 0.7 atm and pressurization from 0.7 to 1.0 atm. Two driving systems were evaluated: the VCT system and the Mobart system. In the VCT system, output and driving pressure remained the same during decompression and pressurization. In the Mobart system, the output decreased as the atmospheric pressure dropped and recovered during pressurization. The lowest output was observed at 0.7 atm, which was 80% of the baseline driven by the Mobart system. Under a practical cabin pressure of 0.8 atm, the output driven by the Mobart system was 90% of the baseline. In the Mobart system, the output decreased as the atmospheric pressure dropped, and recovered during pressurization. However, the decrease in output was slight. In an environment where the atmospheric pressure changes, it is necessary to monitor the diaphragmatic motion of the blood pump and the driving air pressure, and to adjust the systolic:diastolic ratio as well as the positive and negative pressures in a VAD system.

  2. Resonant Alfven waves in partially ionized plasmas of the solar atmosphere

    CERN Document Server

    Soler, R; Goossens, M

    2011-01-01

    Context. Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. In magnetic waveguides resonant absorption due to plasma inhomogeneity naturally transfers wave energy from large-scale motions to small-scale motions. In the cooler parts of the solar atmosphere as, e.g., the chromosphere, effects due to partial ionization may be relevant for wave dynamics and heating. Aims. We study resonant Alfven waves in partially ionized plasmas. Methods. We use the multifluid equations in the cold plasma approximation. We investigate propagating resonant MHD waves in partially ionized flux tubes. We use approximate analytical theory based on normal modes in the thin tube and thin boundary approximations along with numerical eigenvalue computations. Results. We find that the jumps of the wave perturbations across the resonant layer are the same as in fully ionized plasmas. The damping length due to resonant absorption is inversely proportional to the frequency, while that due to ion-neutral collisions is in...

  3. Ionization mechanism of the ambient pressure pyroelectric ion source (APPIS) and its applications to chemical nerve agent detection.

    Science.gov (United States)

    Neidholdt, Evan L; Beauchamp, J L

    2009-11-01

    We present studies of the ionization mechanism operative in the ambient pressure pyroelectric ionization source (APPIS), along with applications that include detection of simulants for chemical nerve agents. It is found that ionization by APPIS occurs in the gas-phase. As the crystal is thermally cycled over a narrow temperature range, electrical discharges near the surface of the crystal produce energetic species which, through reactions with atmospheric molecules, result in reactant ions such as protonated water clusters or clusters of hydroxide and water. Reactant ions can be observed directly in the mass spectrometer. These go on to react with trace neutrals via proton transfer reactions to produce the ions observed in mass spectra, which are usually singly protonated or deprotonated species. Further implicating gas-phase ionization, observed product distributions are highly dependent on the composition of ambient gases, especially the concentration of water vapor and oxygen surrounding the source. For example, basic species such as triethylamine are observed as singly protonated cations at a water partial pressure of 10 torr. At a water pressure of 4 torr, reactive oxygen species are formed and lead to observation of protonated amine oxides. The ability of the APPIS source to detect basic molecules with high proton affinities makes it highly suited for the detection of chemical nerve agents. We demonstrate this application using simulants corresponding to VX and GA (Tabun). With the present source configuration pyridine is detected readily at a concentration of 4 ppm, indicating ultimate sensitivity in the high ppb range. PMID:19682922

  4. Radiation Pressure Confinement - I. Ionized Gas in the ISM of AGN Hosts

    OpenAIRE

    Stern, Jonathan; Laor, Ari; Baskin, Alexei

    2013-01-01

    We analyze the hydrostatic effect of AGN radiation pressure on optically thick gas in the host galaxy. We show that in luminous AGN, the radiation pressure likely confines the ionized layer of the illuminated gas. Radiation pressure confinement (RPC) has two main implications. First, the gas density near the ionization front is 7x10^4 L_{i,45} r_{50}^{-2} cm^{-3}, where L_{i,45} is the ionizing luminosity in units of 10^45 erg/s and r_{50} is the distance of the gas from the nucleus in units ...

  5. Surface Modification by Atmospheric Pressure Plasma for Improved Bonding

    Science.gov (United States)

    Williams, Thomas Scott

    An atmospheric pressure plasma source operating at temperatures below 150?C and fed with 1.0-3.0 volume% oxygen in helium was used to activate the surfaces of the native oxide on silicon, carbon-fiber reinforced epoxy composite, stainless steel type 410, and aluminum alloy 2024. Helium and oxygen were passed through the plasma source, whereby ionization occurred and ˜10 16 cm-3 oxygen atoms, ˜1015 cm -3 ozone molecules and ˜1016 cm-3 metastable oxygen molecules (O21Deltag) were generated. The plasma afterglow was directed onto the substrate material located 4 mm downstream. Surface properties of the plasma treated materials have been investigated using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and x-ray photoelectron spectroscopy (XPS). The work presented herein establishes atmospheric-pressure plasma as a surface preparation technique that is well suited for surface activation and enhanced adhesive bond strength in a variety of materials. Atmospheric plasma activation presents an environmentally friendly alternative to wet chemical and abrasive methods of surface preparation. Attenuated total internal reflection infrared spectroscopy was used to study the aging mechanism of the native oxide on silicon. During storage at ambient conditions, the water contact angle of a clean surface increased from composite, stainless steel type 410, and aluminum alloy 2024 was demonstrated with the atmospheric pressure helium-oxygen plasma. All surfaces studied were converted from a hydrophobic state with a water contact angle of 65° to 80° into a hydrophilic state with a water contact angle between 20° and 40° within 5 seconds of plasma exposure. X-ray photoelectron spectroscopy confirmed that the carbon atoms on the carbon-fiber/epoxy composite were oxidized, yielding 17 atom% carboxylic acid groups, 10% ketones or aldehydes and 9% alcohols. Analysis of stainless steel and aluminum by XPS illustrate oxidation of the metal

  6. Atmospheric pressure arc discharge with ablating graphite anode

    Energy Technology Data Exchange (ETDEWEB)

    Nemchinsky, V. A. [Keiser University, Fort Lauderdale Campus, FL, 33309, USA; Raitses, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2015-05-18

    The anodic carbon arc discharge is used to produce carbon nanoparticles. Recent experiments with the carbon arc at atmospheric pressure helium demonstrated the enhanced ablation rate for narrow graphite anodes resulting in high deposition rates of carbonaceous products on the copper cathode (Fetterman et al 2008 Carbon 46 1322–6). The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. When considering cathode functioning, the model predicts circulation of the particles in the near-cathode region: evaporation of the cathode material, ionization of evaporated atoms and molecules in the near-cathode plasma, return of the resulting ions to the cathode, surface recombination of ions and electrons followed again by cathode evaporation etc. In the case of the low anode ablation rate, the ion acceleration in the cathode sheath provides the major cathode heating mechanism. In the case of an intensive anode ablation, an additional cathode heating is due to latent fusion heat of the atomic species evaporated from the anode and depositing at the cathode. Using the experimental arc voltage as the only input discharge parameter, the model allows us to calculate the anode ablation rate. A comparison of the results of calculations with the available experimental data shows reasonable agreement.

  7. Study of the energy response of high pressure ionization chamber for high energy gamma-ray

    Institute of Scientific and Technical Information of China (English)

    HUA Zheng-Dong; XU Xun-Jiang; WANG Jian-Hua; LIU Shu-Dong; LI Jian-Ping

    2008-01-01

    The energy response calibration of the commonly used high pressure ionization chamber is very difficult to obtain when the gamma-ray energy is more than 3 MeV.In order to get the calibration of the higher part of the high pressure ionization chamber,we use the Fluka Monte Carlo program to perfclrm the energy response in both the spherical and the cylindrical high pressure ionization chamber which are full of argon gas.The results compared with prior study when the gamma-ray energy is less than 1.25 MeV.Our result of Monte Carlo calculation shows agreement with those obtained by measurement within the uncertainty of the respective methods.The calculation of this study is significant for the high pressure ionization chamber to measure the high energy gamma-ray.

  8. Cosmic ray induced ionization in the atmosphere estimated with CORSIKA code simulations

    International Nuclear Information System (INIS)

    Electron production rate q produced by galactic cosmic rays (GCR) in the atmosphere is modelled in this paper. New calculations carried out with Monte Carlo CORSIKA 6.52 code using FLUKA 2006 and QGSJET II hadronic interaction models are presented. The energy deposit of GCR proton induced air showers is simulated. On the basis of computational results the ionization yield function Y and the ion pair production q in the atmosphere are obtained. The impact of different shower components: electromagnetic, muon and hadronic is estimated. The simulations are carried out with realistic atmospheric model (US Standard Atmosphere) and following steep energy spectrum of primary cosmic rays. (authors)

  9. 表面解吸常压化学电离质谱法直接测定日化用品中1,4-二恶烷%MS/MS Direct Determination of 1,4-Dioxane in Daily Chemo-necessities with Surface Desorption Atmospheric Pressure Chemical Ionization

    Institute of Scientific and Technical Information of China (English)

    杨水平; 张燕; 王姜; 贾滨; 胡斌; 尹帮达; 张华; 陈焕文

    2012-01-01

    在无需样品预处理的前提下,将表面解吸常压化学电离质谱法用于日化用品中1,4-二恶烷的直接快速检测。在串联质谱中,选择表面解吸常压化学电离离子源,以碰撞诱导解离反应正离子检测模式进行定性和定量检测。确定了1,4-二恶烷的碎片特征峰分别为m/z 72,45,61和32。1,4-二恶烷的线性范围为0.1~1 000mg·L-1,检出限(3σ)为7.8×10-3 mg·L-1。方法用于洗手液和洗发水的分析,回收率在84.7%~98.5%之间、测定值的相对标准偏差(n=6)在10%~18%之间。%Surface desorption atmospheric pressure chemical ionization-tandem mass spectrometry (SDAPCI- MS/MS) was applied to the direct and rapid determination of 1,4-dioxane in daily chemo-necessities, without sample preparation and pretreatment. In the MS/MS analysis, SDAPCI was used as ion source, and positive electrospray ionization as well as collision induced dissociation reaction monitoring mode was taken for qualitative and quantitative analysis. The characteristic peaks of the fragments of 1,4-dioxane at m/z 72, 45, 61 and 32 respectively were confirmed. Linearity range of 1,4-dioxane was kept in the range of 0. 1-1 000 mg · L-1 , with value of detection limit (3σ) of 7.8×10 3mg ·L-1. The proposed method was used in the analysis of samples of hand lotion and shampoo, giving values of recovery and RSD's in ranges of 84. 7 %-98. 5% and 10 %-18% respectively.

  10. Atmospheric pressure plasma for surface modification

    CERN Document Server

    Wolf, Rory A

    2012-01-01

    This Book's focus and intent is to impart an understanding of the practical application of atmospheric plasma for the advancement of a wide range of current and emerging technologies. The primary key feature of this book is the introduction of over thirteen years of practical experimental evidence of successful surface modifications by atmospheric plasma methods. It offers a handbook-based approach for leveraging and optimizing atmospheric plasma technologies which are currently in commercial use. It also offers a complete treatment of both basic plasma physics and industrial plasma process

  11. Ionization chemistry in the H2O-dominant atmospheres of the icy moons

    Science.gov (United States)

    Shematovich, V. I.; Johnson, R. E.

    2007-08-01

    The main pathways of the ionization chemistry for pure H2O- and mixed H2O+O2+CO2+NH3+CH4 atmospheres which are representative for neutral and ionized atmospheres of the icy bodies in the Jovian and Saturnian systems are discussed. The gaseous envelopes of the icy moons of the giant planets are formed usually due to the surface radiolysis by the solar UV radiation and energetic magnetospheric plasma (Johnson, 1990). The standard astrochemical UMIST2005 (UDFA05) network is used to infer the main chemical pathways of ionization chemistry in the pure or with admixtures of other volatile molecules water vapor atmospheres. In case of the H2O- dominant atmosphere the parent H2O molecules are easily dissociated and ionized by the solar UVradiation and the energetic magnetospheric electrons. These impact processes result in the formation of the secondary neutral and ionized products - chemically active radicals O and OH, and H+, H2+, O+, OH+, and H2O+ ions. Secondary ions have admixture abundances in the H2O-dominant atmospheres, because they are efficiently transformed to H3O+ hydroxonium ions in the fast ion-molecular reactions. The major H3O+ hydroxonium ion does not chemically interact with other neutrals, and is destroyed in the dissociative recombination with thermal electrons mainly reproducing the chemically simple H, H2, O, and OH species. In case of the mixed H2O+O2-dominant atmosphere corresponding to the near-surface atmospheres of icy moons (Shematovich et al., 2005), the ionization chemistry results in the formation of the second major ion O2+ - because ion of molecular oxygen has the lower ionization potential comparing with other parent species -H2, H2O, CO2. The H+, O+, OH+, and H2O+ ions can be easily converted to O2+ ions through the ion-molecular reactions. In case of significant admixture of molecular hydrogen it is possible to transfer the O2+ ions to the O2H+ ions through the fast reaction with H2 and further to the H3O+ ions through the ion

  12. Short- and Medium-Term Induced Ionization in the Earth Atmosphere by Galactic and Solar Cosmic Rays

    OpenAIRE

    Alexander Mishev

    2013-01-01

    The galactic cosmic rays are the main source of ionization in the troposphere of the Earth. Solar energetic particles of MeV energies cause an excess of ionization in the atmosphere, specifically over polar caps. The ionization effect during the major ground level enhancement 69 on January 20, 2005 is studied at various time scales. The estimation of ion rate is based on a recent numerical model for cosmic-ray-induced ionization. The ionization effect in the Earth atmosphere is obtained on th...

  13. Modeling of the initiation and evolution of a laser-ionized column in the lower atmosphere - 314.5 nm wavelength resonant multiphoton ionization of naturally occurring argon

    Science.gov (United States)

    Fetzer, G. J.; Stockley, J. E.

    1992-01-01

    A 3+1 resonant multiphoton ionization process in naturally occurring argon is studied at 314.5 nm as a candidate for providing a long ionized channel through the atmosphere. Results are presented which indicate peak electron densities up to 10 exp 8/cu cm can be created using laser intensities on the order of 10 exp 8 W/sq cm.

  14. A twin-type airflow pulse ionization chamber for continuous alpha-radioactivity monitoring in atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Kada, Wataru, E-mail: kada@nf.eie.eng.osaka-u.ac.j [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Dwaikat, Nidal; Datemichi, Jun; Sato, Fuminobu; Murata, Isao; Kato, Yushi; Iida, Toshiyuki [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2010-10-15

    A simple and inexpensive twin-type airflow pulse ionization chamber was developed for the continuous monitoring of alpha-radioactivity in atmosphere under high humidity condition. The symmetrical structure of the twin-type ionization chamber was effective in the improvement of the ratio of signal to noise in the measurement of pulses induced by alpha-rays. Outdoor alpha-ray measurement was well performed with this ionization chamber by applying sufficiently high bias voltage to the electrodes, except for at very high humidity conditions. It was confirmed that the declination of the counting efficiency due to wetting was easily recovered by the dry-up of the inside of the chamber. Alpha-radioactivity from radon and other alpha-emitting radionuclide in atmosphere was satisfactorily monitored by the detector.

  15. A new method for measuring the response time of the high pressure ionization chamber.

    Science.gov (United States)

    Wang, Zhentao; Shen, Yixiong; An, Jigang

    2012-08-01

    Time response is an important performance characteristic for gas-pressurized ionization chambers. To study the time response, it is especially crucial to measure the ion drift time in high pressure ionization chambers. In this paper, a new approach is proposed to study the ion drift time in high pressure ionization chambers. It is carried out with a short-pulsed X-ray source and a high-speed digitizer. The ion drift time in the chamber is then determined from the digitized data. By measuring the ion drift time of a 15 atm xenon testing chamber, the method has been proven to be effective in the time response studies of ionization chambers.

  16. Non-Thermal Sanitation By Atmospheric Pressure Plasma Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC's Non-Thermal Sanitation by Atmospheric Pressure Plasma technology sanitizes fresh fruits and vegetables without the use of consumable chemicals and without...

  17. Non-Thermal Sanitation By Atmospheric Pressure Plasma Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a non-thermal technology based on atmospheric-pressure (AP) cold plasma to sanitize foods, food packaging materials, and other hardware...

  18. Atmospheric pressure plasma jet with high-voltage power supply based on piezoelectric transformer

    International Nuclear Information System (INIS)

    The dielectric barrier discharge plasma jet, an example of the nonthermal atmospheric pressure plasma jet (APPJ), generates low-temperature plasmas that are suitable for the atomization of volatile species and can also be served as an ionization source for ambient mass and ion mobility spectrometry. A new design of APPJ for mass spectrometry has been built in our group. In these plasma sources magnetic transformers (MTs) and inductors are typically used in power supplies but they present several drawbacks that are even more evident when dealing with high-voltage normally used in APPJs. To overcome these disadvantages, high frequency generators with the absence of MT are proposed in the literature. However, in the case of miniaturized APPJs these conventional power converters, built of ferromagnetic cores and inductors or by means of LC resonant tank circuits, are not so useful as piezoelectric transformer (PT) based power converters due to bulky components and small efficiency. We made and examined a novel atmospheric pressure plasma jet with PT supplier served as ionization source for ambient mass spectrometry, and especially mobile spectrometry where miniaturization, integration of components, and clean plasma are required. The objective of this paper is to describe the concept, design, and implementation of this miniaturized piezoelectric transformer-based atmospheric pressure plasma jet

  19. Atmospheric pressure plasma enhanced spatial ALD of silver

    NARCIS (Netherlands)

    Van Den Bruele, F.J.; Smets, M.; Illiberi, A.; Creyghton, Y.; Buskens, P.; Roozeboom, F.; Poodt, P.

    2014-01-01

    The authors have investigated the growth of thin silver films using a unique combination of atmospheric process elements: spatial atomic layer deposition and an atmospheric pressure surface dielectric barrier discharge plasma source. Silver films were grown on top of Si substrates with good purity a

  20. Application of atmospheric pressure plasma in polymer and composite adhesion

    Science.gov (United States)

    Yu, Hang

    An atmospheric pressure helium and oxygen plasma was used to investigate surface activation and bonding in polymer composites. This device was operated by passing 1.0-3.0 vol% of oxygen in helium through a pair of parallel plate metal electrodes powered by 13.56 or 27.12 MHz radio frequency power. The gases were partially ionized between the capacitors where plasma was generated. The reactive species in the plasma were carried downstream by the gas flow to treat the substrate surface. The temperature of the plasm gas reaching the surface of the substrate did not exceed 150 °C, which makes it suitable for polymer processing. The reactive species in the plasma downstream includes ~ 1016-1017 cm-3 atomic oxygen, ~ 1015 cm-3 ozone molecule, and ~ 10 16 cm-3 metastable oxygen molecule (O2 1Deltag). The substrates were treated at 2-5 mm distance from the exit of the plasma. Surface properties of the substrates were characterized using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and X-ray photoelectron spectroscopy (XPS). Subsequently, the plasma treated samples were bonded adhesively or fabricated into composites. The increase in mechanical strength was correlated to changes in the material composition and structure after plasma treatment. The work presented hereafter establishes atmospheric pressure plasma as an effective method to activate and to clean the surfaces of polymers and composites for bonding. This application can be further expanded to the activation of carbon fibers for better fiber-resin interactions during the fabrication of composites. Treating electronic grade FR-4 and polyimide with the He/O2 plasma for a few seconds changed the substrate surface from hydrophobic to hydrophilic, which allowed complete wetting of the surface by epoxy in underfill applications. Characterization of the surface by X-ray photoelectron spectroscopy shows formation of oxygenated functional groups, including hydroxyl, carbonyl, and

  1. Mechanisms for negative reactant ion formation in an atmospheric pressure corona discharge

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Robert G.; Waltman, Melanie J.

    2009-06-02

    In an effort to better understand the formation of negative reactant ions in air produced by an atmospheric pressure corona discharge source, the neutral vapors generated by the corona were introduced in varying amounts into the ionization region of an ion mobility spectrometer/mass spectrometer containing a 63Ni ionization source. With no discharge gas the predominant ions were O2- , however, upon the introduction of low levels of discharge gas the NO2- ion quickly became the dominant species. As the amount of discharge gas increased the appearance of CO3- was observed followed by the appearance of NO3-. At very high levels, NO3- species became effectively the only ion present and appeared as two peaks in the IMS spectrum, NO3- and the NO3-•HNO3 adduct, with separate mobilities. Since explosive compounds typically ionize in the presence of negative reactant ions, the ionization of an explosive, RDX, was examined in order to investigate the ionization properties with these three primary ions. It was found that RDX forms a strong adduct with both NO2- and NO3- with reduced mobility values of 1.49 and 1.44 cm2V-1s-1, respectively. No adduct was observed for RDX with CO3- although this adduct has been observed with a corona discharge mass spectrometer. It is believed that this adduct, although formed, does not have a sufficiently long lifetime (greater than 10 ms) to be observed in an ion mobility spectrometer.

  2. Numerical study of the interaction of a helium atmospheric pressure plasma jet with a dielectric material

    Science.gov (United States)

    Wang, Lijun; Zheng, Yashuang; Jia, Shenli

    2016-10-01

    This is a computational modeling study of a cold atmospheric pressure helium plasma jet impinging on a dielectric surface placed normal to the jet axis. This study provides insights into the propagation mechanism of the plasma jet, the electrical properties, and the total accumulated charge density at the dielectric surface. For the radial streamer propagation along the dielectric surface, Penning ionization and the electron impact ionization of helium atoms are the major ionization reactions in the streamer head, while Penning ionization is the only dominant contributor along the streamer body. In addition, the plasma bullet velocity along the dielectric surface is 10-100 times lower than that in the plasma column. Increasing tube radius or helium flow rate lowers air entrainment in the plasma jet, leading to a decrease of the radial electric field and the accumulated charge density at the dielectric surface. Furthermore, the tube radius has weaker influence on the plasma properties as tube radius increases. For a target dielectric with lower relative permittivity, a higher radial electric field penetrates into the material, and the surface ionization wave along the dielectric surface extends farther. Higher relative permittivity of the treated dielectric results in more charging at the dielectric surface and more electron density in the plasma column.

  3. Overview of atmospheric ionizing radiation (AIR) Research: SST-present

    Science.gov (United States)

    Wilson, J. W.; Goldhagen, P.; Rafnsson, V.; Clem, J. M.; De Angelis, G.; Friedberg, W.

    The Supersonic Transport (SST) program proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent lowering of ICRP-recommended exposure limits 1990 with the classification of aircrew as "radiation workers" renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum June 1997 and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented.

  4. A Spectacular Experiment Exhibiting Atmospheric Pressure

    Science.gov (United States)

    Le Noxaïc, Armand

    2014-01-01

    The experiment described here is fairly easy to reproduce and dramatically shows the magnitude of ambient air pressure. Two circular plates of aluminum are applied one against the other. How do you make their separation very difficult? With only the help of an elastic band! You don't have to use a vacuum pump for this experiment.

  5. Lookup tables to compute high energy cosmic ray induced atmospheric ionization and changes in atmospheric chemistry

    OpenAIRE

    Atri, Dimitra; Melott, Adrian L.; Thomas, Brian C.

    2008-01-01

    A variety of events such as gamma-ray bursts and supernovae may expose the Earth to an increased flux of high-energy cosmic rays, with potentially important effects on the biosphere. Existing atmospheric chemistry software does not have the capability of incorporating the effects of substantial cosmic ray flux above 10 GeV . An atmospheric code, the NASA-Goddard Space Flight Center two-dimensional (latitude, altitude) time-dependent atmospheric model (NGSFC), is used to study atmospheric chem...

  6. Vapor phase growth of functional pentacene films at atmospheric pressure

    NARCIS (Netherlands)

    Rolin, C.; Vasseur, K.; Niesen, B.; Willegems, M.; Müller, R.; Steudel, S.; Genoe, J.; Heremans, P.

    2012-01-01

    Compared to traditional vacuum evaporation techniques for small organic molecules, organic vapor phase deposition (OVPD) possesses a extra processing parameter: the pressure of process gas Pch. Here, the influence of large Pch variations (from 0.1 mbar to atmospheric pressure) on pentacene thin film

  7. Diagnostics of plasma-biological surface interactions in low pressure and atmospheric pressure plasmas

    Science.gov (United States)

    Ishikawa, Kenji; Hori, Masaru

    2014-08-01

    Mechanisms of plasma-surface interaction are required to understand in order to control the reactions precisely. Recent progress in atmospheric pressure plasma provides to apply as a tool of sterilization of contaminated foodstuffs. To use the plasma with safety and optimization, the real time in situ detection of free radicals - in particular dangling bonds by using the electron-spin-resonance (ESR) technique has been developed because the free radical plays important roles for dominantly biological reactions. First, the kinetic analysis of free radicals on biological specimens such as fungal spores of Penicillium digitatum interacted with atomic oxygen generated plasma electric discharge. We have obtained information that the in situ real time ESR signal from the spores was observed and assignable to semiquinone radical with a g-value of around 2.004 and a line width of approximately 5G. The decay of the signal was correlated with a link to the inactivation of the fungal spore. Second, we have studied to detect chemical modification of edible meat after the irradiation. Using matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF-MS) and ESR, signals give qualification results for chemical changes on edible liver meat. The in situ real-time measurements have proven to be a useful method to elucidate plasma-induced surface reactions on biological specimens.

  8. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion;

    2012-01-01

    Efficiency of atmospheric pressure plasma treatment can be highly enhanced by simultaneous high power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above ∼140 dB can reduce the thickness of a boundary gas layer between the plasma...... arc at atmospheric pressure to study adhesion improvement. The effect of ultrasonic irradiation with the frequency diapason between 20 and 40 kHz at the SPL of ∼150 dB was investigated. After the plasma treatment without ultrasonic irradiation, the wettability was significantly improved...

  9. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion;

    Atmospheric pressure plasma treatment can be highly enhanced by simultaneous high-power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above approximately 140 dB can reduce the thickness of a boundary gas layer between the plasma...... and the material surface, and thus many reactive species generated in the plasma can reach the surface before inactivated, and be efficiently utilized for surface modification. In the present work polyester plates are treated using a dielectric barrier discharge (DBD) and a gliding arc at atmospheric pressure...

  10. Temperature field simulation of gob influenced by atmospheric pressure

    Institute of Scientific and Technical Information of China (English)

    王刚; 罗海珠; 梁运涛; 王继仁

    2015-01-01

    The current temperature field model of mine gob does not take the boundary conditions of the atmospheric pressure into account, while the actual atmospheric pressure is influenced by weather, so as to produce differences between ventilation negative pressure of the working face and the negative pressure of gas drainage in gob, thus interfering the calculated results of gob temperature field. According to the characteristics of the actual air flow and temperature change in gob, a two-dimensional temperature field model of the gob was built, and the relational model between the air pressure of intake and outlet of the gob and the atmospheric pressure was established, which was introduced into the boundary conditions of temperature field to conduct calculation. By means of analysis on the simulation example, and comparison with the traditional model, the results indicate that atmospheric pressure change had notable impact on the distribution of gob temperature field. The laboratory test system of gob temperature field was constructed, and the relative error between simulated and measured value was no greater than 9.6%, which verified the effectiveness of the proposed model. This work offers theoretical basis for accurate calculation of temperature and prediction of ignition source in mine gob, and has important implications on preventing spontaneous combustion of coal.

  11. Direct Analysis of Micro Area on Tooth Surface by Surface Desorption Atmospheric Pressure Chemical Ionization Mass Spectrometry%表面解吸常压化学电离质谱法直接分析牙齿微区表面

    Institute of Scientific and Technical Information of China (English)

    王姜; 李倩; 顾海巍; 郭晓暾; 杨水平; 王志豪

    2015-01-01

    A novel analytical platform based on a nanoliter needle for sampling and surface desorption atmos-pheric pressure chemistry ionization mass spectrometry ( SDAPCI-MS ) for analysis was developed for the di-rect, fast and micro-area analysis of different parts of a human tooth, including cavity, cavity edge, tooth cusp and tooth sulcus. The results showed that the mass spectra from the four sampling spots on the same tooth were different, and that SDAPCI-MS detected lactic acid, pyruvic acid, phenylacetic acid and propanoic acid were confirmed using tandem mass spectrometry( MS/MS) . Principal component analysis( PCA) of the mass spec-tral data successfully differentiated the different sampling spots, levels of tooth decay and levels of gum disease. Therefore, our nano-SDAPCI-MS approach provides a promising way for micro-area analysis with fast, minimal pretreatment sampling, enabling rapid, simple and reliable surface MS investigation.%采用纳升取样表面解吸常压化学电离质谱法( nano-SDAPCI-MS)结合主成分分析( PCA),建立了一种采用具有微米级针尖的金属取样针直接对龋齿不同部位取样并进行快速质谱分析的方法。数据分析结果表明,同一颗龋齿不同部位的质谱指纹谱图之间存在差异;在不需要样品预处理的前提下通过串联质谱快速测定了龋齿中的乳酸、丙酮酸、苯乙酸和丙酸等成分。采用PCA方法可较好地将龋齿病灶位置与邻近正常组织进行区分,也可对不同牙病及健康牙齿进行区分。本方法可方便地对牙齿进行直接微区分析,为鉴别牙齿疾病及观测治疗效果提供了一种快速、简单的方法,为生物体中微细部位的快速取样及直接质谱分析提供了一种可能的解决方案。

  12. Prediction of atmospheric pressure glow discharge in dielectric-barrier system

    Science.gov (United States)

    Duan, Xiaoxi; He, Feng; Ouyang, Jiting

    2010-06-01

    A one-dimensional fluid model was used to investigate the breakdown mechanism and discharge mode in dielectric-barrier system. The results show that the dielectric barrier discharge mode depends strongly on the gas property (i.e., the electron multiplication). The atmospheric pressure dielectric barrier glow discharge could only be achieved in a gas (e.g., noble gas) in which the first Townsend ionization coefficient is sufficiently small and the electron multiplication does not rise up rapidly with the electric field, while could not be sustained in the gas (e.g., N2 and O2) in which the electron multiplication is sensitive to the field.

  13. Laser-Induced Acoustic Desorption Atmospheric Pressure Photoionization via VUV-Generating Microplasmas

    Science.gov (United States)

    Benham, Kevin; Hodyss, Robert; Fernández, Facundo M.; Orlando, Thomas M.

    2016-11-01

    We demonstrate the first application of laser-induced acoustic desorption (LIAD) and atmospheric pressure photoionization (APPI) as a mass spectrometric method for detecting low-polarity organics. This was accomplished using a Lyman-α (10.2 eV) photon generating microhollow cathode discharge (MHCD) microplasma photon source in conjunction with the addition of a gas-phase molecular dopant. This combination provided a soft desorption and a relatively soft ionization technique. Selected compounds analyzed include α-tocopherol, perylene, cholesterol, phenanthrene, phylloquinone, and squalene. Detectable surface concentrations as low as a few pmol per spot sampled were achievable using test molecules. The combination of LIAD and APPI provided a soft desorption and ionization technique that can allow detection of labile, low-polarity, structurally complex molecules over a wide mass range with minimal fragmentation.

  14. Study of collisional and radiatif processes for atmospheric pressure argon plasma in stationary state and quenching

    International Nuclear Information System (INIS)

    The positive column of a wall-stabilized arc burning in argon at atmospheric pressure is studied. In the first part, experimental values of electron and atom number densities are presented. They have been obtained in stationary state and during the arc decay by means of spectroscopy and two wavelengths laser interferometry measurements. The theoretical study has been developed with a collisional-radiative model coupled with the electron energy balance. Electron-ion recombination and ionization coefficients have been calculated solving rate equations. Then the model has been adapted for studying a stationary plasma and the calculated results are in good agreement with the experimental values. The theoretical study of the plasma decay has allowed us to determine the influence of recombination, ionization, diffusion and convection in the evolution of densities and temperatures. Temporal variations of the difference between electron temperature and gas temperature have been explained by analysing the electron energy balance

  15. Direct Measurement of Atmospheric Ammonia from an Airborne Miniature Chemical Ionization Mass Spectrometer (miniCIMS)

    Science.gov (United States)

    Casados, K.; Schill, S.; Freeman, S.; Zoerb, M.; Bertram, T. H.; Lefer, B. L.

    2015-12-01

    Ammonia is emitted into the atmosphere from a variety of sources such as trees, ocean, diary fields, biomass burning, and fuel emissions. Previous studies have investigated the environmental impacts of atmospheric ammonia which can include chemical reactivity, nucleation of fine particulate matter 2.5 (PM 2.5 ), and implications for human health, but its chemical nature and relatively short lifetime make direct measurement of atmospheric ammonia difficult. During the 2015 NASA Student Airborne Research Program (SARP) an airborne miniature Chemical Ionization Mass Spectrometer (miniCIMS) was deployed on the NASA DC-8 flying laboratory in the Southern California region. The spatial and temporal variability of measured atmospheric ammonia concentrations will be discussed.

  16. Seed disinfection effect of atmospheric pressure plasma and low pressure plasma on Rhizoctonia solani.

    Science.gov (United States)

    Nishioka, Terumi; Takai, Yuichiro; Kawaradani, Mitsuo; Okada, Kiyotsugu; Tanimoto, Hideo; Misawa, Tatsuya; Kusakari, Shinichi

    2014-01-01

    Gas plasma generated and applied under two different systems, atmospheric pressure plasma and low pressure plasma, was used to investigate the inactivation efficacy on the seedborne pathogenic fungus, Rhizoctonia solani, which had been artificially introduced to brassicaceous seeds. Treatment with atmospheric plasma for 10 min markedly reduced the R. solani survival rate from 100% to 3% but delayed seed germination. The low pressure plasma treatment reduced the fungal survival rate from 83% to 1.7% after 10 min and the inactivation effect was dependent on the treatment time. The seed germination rate after treatment with the low pressure plasma was not significantly different from that of untreated seeds. The air temperature around the seeds in the low pressure system was lower than that of the atmospheric system. These results suggested that gas plasma treatment under low pressure could be effective in disinfecting the seeds without damaging them.

  17. Short- and Medium-Term Induced Ionization in the Earth Atmosphere by Galactic and Solar Cosmic Rays

    Directory of Open Access Journals (Sweden)

    Alexander Mishev

    2013-01-01

    Full Text Available The galactic cosmic rays are the main source of ionization in the troposphere of the Earth. Solar energetic particles of MeV energies cause an excess of ionization in the atmosphere, specifically over polar caps. The ionization effect during the major ground level enhancement 69 on January 20, 2005 is studied at various time scales. The estimation of ion rate is based on a recent numerical model for cosmic-ray-induced ionization. The ionization effect in the Earth atmosphere is obtained on the basis of solar proton energy spectra, reconstructed from GOES 11 measurements and subsequent full Monte Carlo simulation of cosmic-ray-induced atmospheric cascade. The evolution of atmospheric cascade is performed with CORSIKA 6.990 code using FLUKA 2011 and QGSJET II hadron interaction models. The atmospheric ion rate is explicitly obtained for various latitudes, namely, 40°N, 60°N and 80°N. The time evolution of obtained ion rates is presented. The short- and medium-term ionization effect is compared with the average effect due to galactic cosmic rays. It is demonstrated that ionization effect is significant only in subpolar and polar atmosphere during the major ground level enhancement of January 20, 2005. It is negative in troposphere at midlatitude, because of the accompanying Forbush effect.

  18. Small size plasma tools for material processing at atmospheric pressure

    Science.gov (United States)

    Ionita, E. R.; Ionita, M. D.; Stancu, E. C.; Teodorescu, M.; Dinescu, G.

    2009-03-01

    A small size radiofrequency plasma jet source able to produce cold plasma jets at atmospheric pressure is presented. The surface modification of polyethylene terephtalate, polyethylene and polytetrafluorethylene foils is performed by using a scanning procedure. The contact angle measurements reveal that the treatment leads to hydrophilicity increase. The roughening of surface, specific to each material is noticed. A significant improvement of adhesion is obtained as result of atmospheric plasma treatments.

  19. In Situ Real-Time Monitoring of Volatile Metabolites of Fermented Milk by Dynamic Headspace Sampling - Atmospheric Pressure Ionization Mass Spectrometry%动态顶空取样-大气压化学电离质谱原位实时监测发酵乳挥发性代谢产物

    Institute of Scientific and Technical Information of China (English)

    梁华正; 杨水平; 刘维佳; 李媛

    2012-01-01

    Volatile metabolites produced from fermented milk were monitored in situ real-time by atmospheric pressure dynamic headspace sampling coupled with chemical ionization mass spectrometry. The ion current signal of volatile metabolites was recorded during 3.0 h to 4.7 h after the start of fermentation. The signal of 2,3-butanedione (m/z 104,M+H2O·+ ) was weak in the first 4 h followed by a gradual increase, reaching a rapid upward trend after 4.2 b, the signal of ethyl acetate (m/z 106, M+H2O·+) began gradually increasing after 3 h, but the signal of benzaldehyde (m/z 124, M+H2O·+ ) remained relatively stable. The mass spectrum of 6 h fermented milk mainly included the signals of lactic acid (mlz 91, MH+ and m/z 108,M+H2O·+), 2,3-butanedione (m/z 104, M+H2O·+ ), benzaldehyde (m/z 107, MH+ and m/z 124,M+H2O·+ ), ethyl acetate (m/z 89, MH+ and m/z 106, M+H2O·+ ), hexanal (m/z 101, MH+and m/z 118, M+H2O·+ ), acrolein (m/z 74, M+H2O·+), etc. Atmospheric pressure dynamic headspace sampling coupled with chemical ionization mass spectrometry has many advantages such as rapid and non-destructive and can be used for quality control in the production of fermented milk.%采用大气压化学电离质谱法,利用动态顶空取样技术对发酵乳生产过程中产生的挥发性代谢产物进行原位实时监测。从发酵开始后3.0~4.7h连续用质谱仪记录发酵乳挥发物的离子流信号,结果表明:2,3-丁二酮(m/z104,M+H2O·+)在前4h信号较弱,4h后开始逐渐增大,4.2h后呈快速增大的趋势;乙酸乙酯(m/z106,M+H2O·+)信号从发酵3h后开始呈逐渐增大趋势;苯甲醛(m/z124,M+H2O·+)信号较平稳。发酵进行到6h的质谱图中质谱信号主要有乳酸(m/z291,MH+和m/z108,M+H2O·+),2,3-丁二酮(m/z 104,M+H2O·+),苯甲醛(m/z107,MH+和m/z124,M+H2O·+),乙酸乙酯(m/z 89,MH+和m/z106,M+H2O

  20. Characterization of Dust-Plasma Interactions In Non-Thermal Plasmas Under Low Pressure and the Atmospheric Pressure

    Science.gov (United States)

    Bilik, Narula

    difficulties in maintaining an APGD is ensuring its uniformity over large discharge volume. By examining past atmospheric pressure plasma reactor designs and looking into the details of the atmospheric pressure gas breakdown mechanism, three design features are proposed to ensure the APGD uniformity. These include the use of a dielectric barrier and the RF driving frequency, as well as a pre-ionization technique achieved by having a non-uniform gap spacing in a capacitively-coupled concentric cylinder reactor. The resulting APGD reactor operates stably in the abnormal glow regime using either helium or argon as the carrier gas. Diethylzinc (DEZ) and oxygen precursors are injected into the APGD to form zinc oxide nanocrystals. The physical and optical properties of these nanocrystals are characterized, and the system parameters that impact the nanoparticle size and deposition rate are identified.

  1. Characteristics of RF Cold Plasma at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    QIU Liang; MENG Yuedong; SHU Xingsheng

    2007-01-01

    The characteristics of a stable discharge at atmospheric pressure is investigated.The plasma source consisted of two closely spaced parallel-plated perforated electrodes,driven by a radio frequency power to generate a uniform cold plasma in Helium at atmospheric pressure.Both alpha and gamma modes were clearly observed.The hollow cathode effects were found in the discharge.The influence of the dielectric barrier on the discharge was also investigated by utilizing a surface-anodized aluminium electrode as the anode.

  2. A simplified nitrogen laser setup operated at atmospheric pressure

    Science.gov (United States)

    Ruangsri, Artit; Wungmool, Piyachat; Tesana, Siripong; Suwanatus, Suchat; Hormwantha, Tongchai; Chiangga, Surasak; Luengviriya, Chaiya

    2015-07-01

    A transversely excited atmospheric pressure nitrogen laser (TEA N2 Laser) is a molecular pulse gas laser, operated at atmospheric pressure, which generates an electromagnetic wave in ultraviolet wavelength of 337.1 nm. It can operate without an optical resonator. We present a TEA N2 laser setup excited by an electronic discharge circuit known as the Blumlein circuit. Our setup is composed of simple components commonly found in everyday life. The setup can be utilized in classroom to demonstrate the dependence of the laser intensity on the flow rate of nitrogen gas.

  3. Radiation Pressure Confinement -- III. The origin of the broad ionization distribution in AGN outflows

    CERN Document Server

    Stern, Jonathan; Laor, Ari; Baskin, Alexei; Holczer, Tomer

    2014-01-01

    The winds of ionized gas driven by Active Galactic Nuclei (AGN) can be studied through absorption features in their X-ray spectra. A recurring feature of these outflows is their broad ionization distribution, including essentially all ionization levels (e.g., Fe^0+ to Fe^25+). The absorption measure distribution (AMD) is defined as the distribution of column density with ionization parameter |dN / dlog xi|. The AMD extends over a wide range of 0.1 < xi < 10^4 (cgs), and is remarkably similar in different objects. Power-law fits to the observed AMDs (|dN / dlog xi| ~ N_1 xi^a) yield N_1 = 3x10^21 cm^-2 +- 0.4 dex and a = 0 -- 0.4. What is the source of this broad ionization distribution, and what sets the small range of observed $N_1$ and $a$ values? A common interpretation is a multiphase outflow, with a wide range of gas densities in a uniform pressure medium. However, it has already been shown that the incident radiation pressure leads to a gas pressure gradient in the photoionized gas, and therefore ...

  4. Ionization and scintillation response of high-pressure xenon gas to alpha particles

    CERN Document Server

    Álvarez, V; Cárcel, S; Cebrián, S; Cervera, A; Conde, C A N; Dafni, T; Díaz, J; Egorov, M; Esteve, R; Evtoukhovitch, P; Fernandes, L M P; Ferrario, P; Ferreira, A L; Freitas, E D C; Gehman, V M; Gil, A; Goldschmidt, A; Gómez, H; Gómez-Cadenas, J J; González-Díaz, D; Gutiérrez, R M; Hauptman, J; Morata, J A Hernando; Herrera, D C; Irastorza, I G; Jinete, M A; Labarga, L; Laing, A; Liubarsky, I; Lopes, J A M; Lorca, D; Losada, M; Luzón, G; Marí, A; Martín-Albo, J; Miller, T; Moiseenko, A; Monrabal, F; Monteiro, C M B; Mora, F J; Moutinho, L M; Vidal, J Muñoz; da Luz, H Natal; Navarro, G; Nebot, M; Nygren, D; Oliveira, C A B; Palma, R; Pérez, J; Aparicio, J L Pérez; Renner, J; Ripoll, L; Rodríguez, A; Rodríguez, J; Santos, F P; Santos, J M F dos; Segui, L; Serra, L; Shuman, D; Simón, A; Sofka, C; Sorel, M; Toledo, J F; Tomás, A; Torrent, J; Tsamalaidze, Z; Vázquez, D; Veloso, J F C A; Webb, R; White, J T; Yahlali, N

    2012-01-01

    High-pressure xenon gas is an attractive detection medium for a variety of applications in fundamental and applied physics. In this paper we study the transport properties of ionization electrons, and the mechanism of electron-ion recombination, in xenon gas at 10 bar pressure. For this purpose, we use a source of alpha particles in the NEXT-DEMO time projection chamber, the large scale prototype of the NEXT-100 neutrinoless double beta decay experiment, in three different drift electric field configurations. Our electron drift velocity and longitudinal diffusion results are similar to expectations based on available electron scattering cross sections on pure xenon, favoring low-diffusion models. In addition, two types of measurements addressing the connection between the ionization and scintillation yields were performed. On the one hand we observe, for the first time in xenon gas, large event-by-event correlated fluctuations between the ionization and scintillation signals, similarly to what has already bee...

  5. Scintillation light, ionization yield and scintillation decay times in high pressure xenon and xenon methane

    NARCIS (Netherlands)

    Pushkin, K. N.; Akimov, D. Y.; Burenkov, A. A.; Dmitrenko, V. V.; Kovalenko, A. G.; Lebedenko, V. N.; Kuznetsov, I. S.; Stekhanov, V. N.; Tezuka, C.; Ulin, S. E.; Uteshev, Z. M.; Vlasik, K. F.

    2007-01-01

    Scintillation light, ionization yield and scintillation decay times have been measured in xenon and in its mixture with a 0.05% concentration of methane as a function of the reduced electric field (E/N)-the ratio of the electric field strength to the number density of gas-at a pressure of 21 atm. Th

  6. Radiation Pressure Confinement - I. Ionized Gas in the ISM of AGN Hosts

    CERN Document Server

    Stern, Jonathan; Baskin, Alexei

    2014-01-01

    We analyze the hydrostatic effect of AGN radiation pressure on optically thick gas in the host galaxy. We show that in luminous AGN, the radiation pressure likely confines the ionized layer of the illuminated gas. Radiation pressure confinement (RPC) has two main implications. First, the gas density near the ionization front is 7x10^4 L_{i,45} r_{50}^{-2} cm^{-3}, where L_{i,45} is the ionizing luminosity in units of 10^45 erg/s and r_{50} is the distance of the gas from the nucleus in units of 50 pc. Second, as shown by Dopita et al., the solution of the ionization structure within each slab is unique, independent of the ambient pressure. We show that the RPC density vs. distance relation is observed over a dynamical range of ~10^4 in distance, from sub-pc to kpc from the nucleus, and a range of ~10^8 in gas density, from 10^3 to 10^11 cm^{-3}. This relation implies that the radiative force of luminous AGN can compress giant molecular clouds in the host galaxy, and possibly affect the star formation rate. Th...

  7. On the permanent hip-stabilizing effect of atmospheric pressure.

    Science.gov (United States)

    Prietzel, Torsten; Hammer, Niels; Schleifenbaum, Stefan; Kaßebaum, Eric; Farag, Mohamed; von Salis-Soglio, Georg

    2014-08-22

    Hip joint dislocations related to total hip arthroplasty (THA) are a common complication especially in the early postoperative course. The surgical approach, the alignment of the prosthetic components, the range of motion and the muscle tone are known factors influencing the risk of dislocation. A further factor that is discussed until today is atmospheric pressure which is not taken into account in the present THA concepts. The aim of this study was to investigate the impact of atmospheric pressure on hip joint stability. Five joint models (Ø 28-44 mm), consisting of THA components were hermetically sealed with a rubber capsule, filled with a defined amount of fluid and exposed to varying ambient pressure. Displacement and pressure sensors were used to record the extent of dislocation related to intraarticular and ambient pressure. In 200 experiments spontaneous dislocations of the different sized joint models were reliably observed once the ambient pressure was lower than 6.0 kPa. Increasing the ambient pressure above 6.0 kPa immediately and persistently reduced the joint models until the ambient pressure was lowered again. Displacement always exceeded half the diameter of the joint model and was independent of gravity effects. This experimental study gives strong evidence that the hip joint is permanently stabilized by atmospheric pressure, confirming the theories of Weber and Weber (1836). On basis of these findings the use of larger prosthetic heads, capsular repair and the deployment of an intracapsular Redon drain are proposed to substantially decrease the risk of dislocation after THA.

  8. Atmospheric pressure and suicide attempts in Helsinki, Finland

    Science.gov (United States)

    Hiltunen, Laura; Ruuhela, Reija; Ostamo, Aini; Lönnqvist, Jouko; Suominen, Kirsi; Partonen, Timo

    2012-11-01

    The influence of weather on mood and mental health is commonly debated. Furthermore, studies concerning weather and suicidal behavior have given inconsistent results. Our aim was to see if daily weather changes associate with the number of suicide attempts in Finland. All suicide attempts treated in the hospitals in Helsinki, Finland, during two separate periods, 8 years apart, were included. Altogether, 3,945 suicide attempts were compared with daily weather parameters and analyzed with a Poisson regression. We found that daily atmospheric pressure correlated statistically significantly with the number of suicide attempts, and for men the correlation was negative. Taking into account the seasonal normal value during the period 1971-2000, daily temperature, global solar radiation and precipitation did not associate with the number of suicide attempts on a statistically significant level in our study. We concluded that daily atmospheric pressure may have an impact on suicidal behavior, especially on suicide attempts of men by violent methods ( P suicide attempts. Men seem to be more vulnerable to attempt suicide under low atmospheric pressure and women under high atmospheric pressure. We show only statistical correlations, which leaves the exact mechanisms of interaction between weather and suicidal behavior open. However, suicidal behavior should be assessed from the point of view of weather in addition to psychiatric and social aspects.

  9. Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Mortensen, Henrik Junge; Stenum, Bjarne;

    2007-01-01

    Glassy carbon plates were treated with an atmospheric pressure dielectric barrier discharge (DBD). He gas, gas mixtures of He and reactive gases such as O2, CO2 and NH3, Ar gas and Ar/NH3 gas mixture were used as treatment gases. The oxygen and nitrogen contents on the surface as well as defect...

  10. Einstein's Tea Leaves and Pressure Systems in the Atmosphere

    Science.gov (United States)

    Tandon, Amit; Marshall, John

    2010-01-01

    Tea leaves gather in the center of the cup when the tea is stirred. In 1926 Einstein explained the phenomenon in terms of a secondary, rim-to-center circulation caused by the fluid rubbing against the bottom of the cup. This explanation can be connected to air movement in atmospheric pressure systems to explore, for example, why low-pressure…

  11. Atmospheric pressure and suicide attempts in Helsinki, Finland.

    Science.gov (United States)

    Hiltunen, Laura; Ruuhela, Reija; Ostamo, Aini; Lönnqvist, Jouko; Suominen, Kirsi; Partonen, Timo

    2012-11-01

    The influence of weather on mood and mental health is commonly debated. Furthermore, studies concerning weather and suicidal behavior have given inconsistent results. Our aim was to see if daily weather changes associate with the number of suicide attempts in Finland. All suicide attempts treated in the hospitals in Helsinki, Finland, during two separate periods, 8 years apart, were included. Altogether, 3,945 suicide attempts were compared with daily weather parameters and analyzed with a Poisson regression. We found that daily atmospheric pressure correlated statistically significantly with the number of suicide attempts, and for men the correlation was negative. Taking into account the seasonal normal value during the period 1971-2000, daily temperature, global solar radiation and precipitation did not associate with the number of suicide attempts on a statistically significant level in our study. We concluded that daily atmospheric pressure may have an impact on suicidal behavior, especially on suicide attempts of men by violent methods (P atmospheric pressure and women under high atmospheric pressure. We show only statistical correlations, which leaves the exact mechanisms of interaction between weather and suicidal behavior open. However, suicidal behavior should be assessed from the point of view of weather in addition to psychiatric and social aspects.

  12. Spacecraft Sterilization Using Non-Equilibrium Atmospheric Pressure Plasma

    Science.gov (United States)

    Cooper, Moogega; Vaze, Nachiket; Anderson, Shawn; Fridman, Gregory; Vasilets, Victor N.; Gutsol, Alexander; Tsapin, Alexander; Fridman, Alexander

    2007-01-01

    As a solution to chemically and thermally destructive sterilization methods currently used for spacecraft, non-equilibrium atmospheric pressure plasmas are used to treat surfaces inoculated with Bacillus subtilis and Deinococcus radiodurans. Evidence of significant morphological changes and reduction in viability due to plasma exposure will be presented, including a 4-log reduction of B. subtilis after 2 minutes of dielectric barrier discharge treatment.

  13. Atmospheric-pressure guided streamers for liposomal membrane disruption

    Science.gov (United States)

    Svarnas, P.; Matrali, S. H.; Gazeli, K.; Aleiferis, Sp.; Clément, F.; Antimisiaris, S. G.

    2012-12-01

    The potential to use liposomes (LIPs) as a cellular model in order to study interactions of cold atmospheric-pressure plasma with cells is herein investigated. Cold atmospheric-pressure plasma is formed by a dielectric-barrier discharge reactor. Large multilamellar vesicle liposomes, consisted of phosphatidylcholine and cholesterol, are prepared by the thin film hydration technique, to encapsulate a small hydrophilic dye, i.e., calcein. The plasma-induced release of calcein from liposomes is then used as a measure of liposome membrane integrity and, consequently, interaction between the cold atmospheric plasma and lipid bilayers. Physical mechanisms leading to membrane disruption are suggested, based on the plasma characterization including gas temperature calculation.

  14. Atmospheric-pressure guided streamers for liposomal membrane disruption

    Energy Technology Data Exchange (ETDEWEB)

    Svarnas, P.; Aleiferis, Sp. [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, Rion 26504 (Greece); Matrali, S. H. [Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion 26504 (Greece); Gazeli, K. [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, Rion 26504 (Greece); IPREM-LCABIE, Plasmas et Applications, UPPA, 64000 Pau (France); Clement, F. [IPREM-LCABIE, Plasmas et Applications, UPPA, 64000 Pau (France); Antimisiaris, S. G. [Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion 26504 (Greece); Institute of Chemical Engineering Sciences (ICES)-FORTH, Rion 26504 (Greece)

    2012-12-24

    The potential to use liposomes (LIPs) as a cellular model in order to study interactions of cold atmospheric-pressure plasma with cells is herein investigated. Cold atmospheric-pressure plasma is formed by a dielectric-barrier discharge reactor. Large multilamellar vesicle liposomes, consisted of phosphatidylcholine and cholesterol, are prepared by the thin film hydration technique, to encapsulate a small hydrophilic dye, i.e., calcein. The plasma-induced release of calcein from liposomes is then used as a measure of liposome membrane integrity and, consequently, interaction between the cold atmospheric plasma and lipid bilayers. Physical mechanisms leading to membrane disruption are suggested, based on the plasma characterization including gas temperature calculation.

  15. Ir/thz Double Resonance Signatures at Atmospheric Pressure

    Science.gov (United States)

    Phillips, Dane J.; Tanner, Elizabeth A.; Everitt, Henry O.; Medvedev, Ivan R.; Neese, Christopher F.; Holt, Jennifer; De Lucia, Frank C.

    2010-06-01

    IR/THz double resonance (DR) spectroscopy, historically used to investigate molecular collision dynamics and THz molecular lasers at low pressures (remote sensing at atmospheric pressure. Molecular specificity is obtained through the rare coincidence(s) between molecule-specific ro-vibrational energy levels and CO2 laser lines. The resulting molecule-specific, DR-induced, THz spectroscopic signatures strongly depend on the type of ro-vibrational transition involved (P, Q, or R), the type of vibrational level excited (stretching or bending), and the molecular mass. To illustrate these sensitivities, calculated DR spectra of prototypical molecules such as methyl fluoride, methyl chloride, and methyl cyanide will be discussed. Although atmospheric pressure broadening obfuscates pure rotational spectra, we show how it can enhance the DR signature in two ways: by relaxing the pump coincidence requirement and by adding the DR signatures of multiple nearby transitions. We will present estimates of this enhancement, including cases where the coincidences that produce the strongest DR signatures at atmospheric pressure do not exist at low pressures.

  16. Quality characteristics of the radish grown under reduced atmospheric pressure

    Science.gov (United States)

    Levine, Lanfang H.; Bisbee, Patricia A.; Richards, Jeffrey T.; Birmele, Michele N.; Prior, Ronald L.; Perchonok, Michele; Dixon, Mike; Yorio, Neil C.; Stutte, Gary W.; Wheeler, Raymond M.

    This study addresses whether reduced atmospheric pressure (hypobaria) affects the quality traits of radish grown under such environments. Radish (Raphanus sativus L. cv. Cherry Bomb Hybrid II) plants were grown hydroponically in specially designed hypobaric plant growth chambers at three atmospheric pressures; 33, 66, and 96 kPa (control). Oxygen and carbon dioxide partial pressures were maintained constant at 21 and 0.12 kPa, respectively. Plants were harvested at 21 days after planting, with aerial shoots and swollen hypocotyls (edible portion of the radish referred to as the “root” hereafter) separated immediately upon removal from the chambers. Samples were subsequently evaluated for their sensory characteristics (color, taste, overall appearance, and texture), taste-determining factors (glucosinolate and soluble carbohydrate content and myrosinase activity), proximate nutrients (protein, dietary fiber, and carbohydrate) and potential health benefit attributes (antioxidant capacity). In roots of control plants, concentrations of glucosinolate, total soluble sugar, and nitrate, as well as myrosinase activity and total antioxidant capacity (measured as ORACFL), were 2.9, 20, 5.1, 9.4, and 1.9 times greater than the amount in leaves, respectively. There was no significant difference in total antioxidant capacity, sensory characteristics, carbohydrate composition, or proximate nutrient content among the three pressure treatments. However, glucosinolate content in the root and nitrate concentration in the leaf declined as the atmospheric pressure decreased, suggesting perturbation to some nitrogen-related metabolism.

  17. Non-thermal atmospheric-pressure plasma possible application in wound healing.

    Science.gov (United States)

    Haertel, Beate; von Woedtke, Thomas; Weltmann, Klaus-Dieter; Lindequist, Ulrike

    2014-11-01

    Non-thermal atmospheric-pressure plasma, also named cold plasma, is defined as a partly ionized gas. Therefore, it cannot be equated with plasma from blood; it is not biological in nature. Non-thermal atmospheric-pressure plasma is a new innovative approach in medicine not only for the treatment of wounds, but with a wide-range of other applications, as e.g. topical treatment of other skin diseases with microbial involvement or treatment of cancer diseases. This review emphasizes plasma effects on wound healing. Non-thermal atmospheric-pressure plasma can support wound healing by its antiseptic effects, by stimulation of proliferation and migration of wound relating skin cells, by activation or inhibition of integrin receptors on the cell surface or by its pro-angiogenic effect. We summarize the effects of plasma on eukaryotic cells, especially on keratinocytes in terms of viability, proliferation, DNA, adhesion molecules and angiogenesis together with the role of reactive oxygen species and other components of plasma. The outcome of first clinical trials regarding wound healing is pointed out.

  18. A Micromachined Pressure Sensor with Integrated Resonator Operating at Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Sen Ren

    2013-12-01

    Full Text Available A novel resonant pressure sensor with an improved micromechanical double-ended tuning fork resonator packaged in dry air at atmospheric pressure is presented. The resonator is electrostatically driven and capacitively detected, and the sensor is designed to realize a low cost resonant pressure sensor with medium accuracy. Various damping mechanisms in a resonator that is vibrating at atmospheric pressure are analyzed in detail, and a formula is developed to predict the overall quality factor. A trade-off has been reached between the quality factor, stress sensitivity and drive capability of the resonator. Furthermore, differential sense elements and the method of electromechanical amplitude modulation are used for capacitive detection to obtain a large signal-to-noise ratio. The prototype sensor chip is successfully fabricated using a micromachining process based on a commercially available silicon-on-insulator wafer and is hermetically encapsulated in a custom 16-pin Kovar package. Preliminary measurements show that the fundamental frequency of the resonant pressure sensor is approximately 34.55 kHz with a pressure sensitivity of 20.77 Hz/kPa. Over the full scale pressure range of 100–400 kPa and the whole temperature range of −20–60 °C, high quality factors from 1,146 to 1,772 are obtained. The characterization of the prototype sensor reveals the feasibility of a resonant pressure sensor packaged at atmospheric pressure.

  19. Resonance ionization spectroscopy measurement of the vapor pressure of several molecular species

    International Nuclear Information System (INIS)

    In recent years resonance ionization spectroscopy (RIS) has found increasing application to various problems involving detection of low levels of atomic, and more recently molecular, species. This work demonstrates the usefulness of RIS in measuring vapor pressure curves of molecular species at very low pressures. Specifically, the vapor pressures versus temperature relationship for rubidium iodide (RbI) and potassium iodide (KI) was measured by applying RIS to atomic Rb and K, using a two-laser system. A pulsed molecular nitrogen laser first dissociated the RbI to produce ground-state Rb atoms in the experimental cell. A flashlamp-pumped dye laser then ionized the Rb in a process wherein two photons of the same wavelength are absorbed, the first exciting Rb via an allowed transition to an upper state (52S/sub 1/2/ → 62/sub 1/2 or 3/2/) lying in energy slightly more than half the distance to the ionization limit, and the second photon ionizing the excited Rb. In the case of KI, an excimer-laser-pumped dye laser was used in a similar way. An applied dc electric field swept the photoelectrons to a proportional counter for subsequent amplification and detection. The photoelectron signal was then related back to RbI and KI concentrations

  20. High-Pressure Photon Ionization Source for TOFMS and Its Application for Online Breath Analysis.

    Science.gov (United States)

    Wang, Yan; Jiang, Jichun; Hua, Lei; Hou, Keyong; Xie, Yuanyuan; Chen, Ping; Liu, Wei; Li, Qingyun; Wang, Shuang; Li, Haiyang

    2016-09-20

    Photon ionization mass spectrometry (PI-MS) is a widely used technique for the online detection of trace substances in complex matrices. In this work, a new high-pressure photon ionization (HPPI) ion source based on a vacuum ultraviolet (VUV) Kr lamp was developed for time-of-flight mass spectrometry (TOFMS). The detection sensitivity was improved by elevating the ion source pressure to about 700 Pa. A radio frequency (RF)-only quadrupole was employed as the ion guide system following the HPPI source to achieve high ion transmission efficiency. In-source collision induced dissociation (CID) was conducted for accurate chemical identification by varying the voltage between the ion source and the ion guide. The high humidity of the breath air can promote the detection of some compounds with higher ionization potentials (IPs) that could not be well detected by single photon ionization (SPI) at low pressure. Under 100% relative humidity (37 °C), the limits of detection down to 0.015 ppbv (parts per billion by volume) for aliphatic and aromatic hydrocarbons were obtained. This HPPI-TOFMS system was preliminarily applied for online investigations of the exhaled breath from both healthy nonsmoker and smoker subjects, demonstrating its analytical capacity for complicated gases analysis. Subsequently, several frequently reported VOCs in the breath of healthy volunteers, i.e., acetone, isoprene, 2-butanone, ethanol, acetic acid, and isopropanol, were successfully identified and quantified. PMID:27574033

  1. High explosives vapor detection by atmospheric sampling glow discharge ionization/tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    McLuckey, S.A.; Goeringer, D.E.; Asano, K.G. [Oak Ridge National Lab., TN (United States). Chemical and Analytical Sciences Div.

    1996-02-01

    The combination of atmospheric sampling glow discharge ionization with tandem mass spectrometry for the detection of traces of high explosives is described. Particular emphasis is placed on use of the quadrupole ion trap as the type of tandem mass spectrometer. Atmospheric sampling glow discharge provides a simple, rugged, and efficient means for anion formation while the quadrupole ion trap provides for efficient tandem mass spectrometry. Mass selective ion accumulation and non-specific ion activation methods can be used to overcome deleterious effects arising from ion/ion interactions. Such interactions constitute the major potential technical barrier to the use of the ion trap for real-time monitoring of targeted compounds in uncontrolled and highly variable matrices. Tailored waveforms can be used to effect both mass selective ion accumulation and ion activation. Concatenated tailored waveforms allow for both functions in a single experiment thereby providing the capability for monitoring several targeted species simultaneously. The combination of atmospheric sampling glow discharge ionization with a state-of-the-art analytical quadrupole ion trap is a highly sensitive and specific detector for traces of high explosives. The combination is also small and inexpensive relative to virtually any other form of tandem mass spectrometry. The science and technology underlying the glow discharge/ion trap combination is sufficiently mature to form the basis for an engineering effort to make the detector portable. 85 refs.

  2. Atmospheric pressure loading parameters from very long baseline interferometry observations

    Science.gov (United States)

    Macmillan, D. S.; Gipson, John M.

    1994-01-01

    Atmospheric mass loading produces a primarily vertical displacement of the Earth's crust. This displacement is correlated with surface pressure and is large enough to be detected by very long baseline interferometry (VLBI) measurements. Using the measured surface pressure at VLBI stations, we have estimated the atmospheric loading term for each station location directly from VLBI data acquired from 1979 to 1992. Our estimates of the vertical sensitivity to change in pressure range from 0 to -0.6 mm/mbar depending on the station. These estimates agree with inverted barometer model calculations (Manabe et al., 1991; vanDam and Herring, 1994) of the vertical displacement sensitivity computed by convolving actual pressure distributions with loading Green's functions. The pressure sensitivity tends to be smaller for stations near the coast, which is consistent with the inverted barometer hypothesis. Applying this estimated pressure loading correction in standard VLBI geodetic analysis improves the repeatability of estimated lengths of 25 out of 37 baselines that were measured at least 50 times. In a root-sum-square (rss) sense, the improvement generally increases with baseline length at a rate of about 0.3 to 0.6 ppb depending on whether the baseline stations are close to the coast. For the 5998-km baseline from Westford, Massachusetts, to Wettzell, Germany, the rss improvement is about 3.6 mm out of 11.0 mm. The average rss reduction of the vertical scatter for inland stations ranges from 2.7 to 5.4 mm.

  3. Hydrogen discharges operating at atmospheric pressure in a semiconductor gas discharge system

    Science.gov (United States)

    Aktas, K.; Acar, S.; Salamov, B. G.

    2011-08-01

    Analyses of physical processes which initiate electrical breakdown and spatial stabilization of current and control it with a photosensitive cathode in a semiconductor gas discharge system (SGDS) are carried out in a wide pressure range up to atmospheric pressure p, interelectrode distance d and diameter D of the electrode areas of the semiconductor cathode. The study compares the breakdown and stability curves of the gas discharge in the planar SGDS where the discharge gap is filled with hydrogen and air in two cases. The impact of the ionizing component of the discharge plasma on the control of the stable operation of the planar SGDS is also investigated at atmospheric pressure. The loss of stability is primarily due to modification of the semiconductor-cathode properties on the interaction with low-energy hydrogen ions and the formation of a space charge of positive ions in the discharge gap which changes the discharge from Townsend to glow type. The experimental results show that the discharge current in H2 is more stable than in air. The breakdown voltages are measured for H2 and air with parallel-plane electrodes, for pressures between 28 and 760 Torr. The effective secondary electron emission (SEE) coefficient is then determined from the breakdown voltage results and compared with the experimental results. The influence of the SEE coefficient is stated in terms of the differences between the experimental breakdown law.

  4. Hydrogen discharges operating at atmospheric pressure in a semiconductor gas discharge system

    Energy Technology Data Exchange (ETDEWEB)

    Aktas, K; Acar, S; Salamov, B G [Physics Department, Faculty of Arts and Sciences, Gazi University, 06500 Ankara (Turkey)

    2011-08-15

    Analyses of physical processes which initiate electrical breakdown and spatial stabilization of current and control it with a photosensitive cathode in a semiconductor gas discharge system (SGDS) are carried out in a wide pressure range up to atmospheric pressure p, interelectrode distance d and diameter D of the electrode areas of the semiconductor cathode. The study compares the breakdown and stability curves of the gas discharge in the planar SGDS where the discharge gap is filled with hydrogen and air in two cases. The impact of the ionizing component of the discharge plasma on the control of the stable operation of the planar SGDS is also investigated at atmospheric pressure. The loss of stability is primarily due to modification of the semiconductor-cathode properties on the interaction with low-energy hydrogen ions and the formation of a space charge of positive ions in the discharge gap which changes the discharge from Townsend to glow type. The experimental results show that the discharge current in H{sub 2} is more stable than in air. The breakdown voltages are measured for H{sub 2} and air with parallel-plane electrodes, for pressures between 28 and 760 Torr. The effective secondary electron emission (SEE) coefficient is then determined from the breakdown voltage results and compared with the experimental results. The influence of the SEE coefficient is stated in terms of the differences between the experimental breakdown law.

  5. Optimizing a remote sensing instrument to measure atmospheric surface pressure

    Science.gov (United States)

    Peckham, G. E.; Gatley, C.; Flower, D. A.

    1983-01-01

    Atmospheric surface pressure can be remotely sensed from a satellite by an active instrument which measures return echoes from the ocean at frequencies near the 60 GHz oxygen absorption band. The instrument is optimized by selecting its frequencies of operation, transmitter powers and antenna size through a new procedure baesd on numerical simulation which maximizes the retrieval accuracy. The predicted standard deviation error in the retrieved surface pressure is 1 mb. In addition the measurements can be used to retrieve water vapor, cloud liquid water and sea state, which is related to wind speed.

  6. Fluid model of a single striated filament in an RF plasma jet at atmospheric pressure

    Science.gov (United States)

    Sigeneger, F.; Loffhagen, D.

    2016-06-01

    The filaments occurring in an RF argon atmospheric-pressure plasma jet are investigated by means of numerical modelling. The special setup of the jet leads to the establishment of filaments in very regular modes under certain conditions. Such a single filament generated in the active volume between the powered and grounded electrode is described by a time-dependent, spatially two-dimensional fluid model. This self-consistent model includes those mechanisms which can lead to constriction and stratification such as the heat balance equation and the dependence of electron collision rate coefficients on the ionization degree. A curved filament with a contracted radial profile of particle densities and very pronounced striations along its trace has been obtained by the model calculation for a typical discharge parameter condition of the plasma jet. The resulting calculated electron density and mean energy in the filament as well as the period length of the striations agree qualitatively with recent experimental observations. The analysis of the ionization budget makes clear that the constriction and stratification is mainly caused by the different nonlinear dependences of ionization and recombination rates on the electron density.

  7. Ferrous alloys cast under high pressure gas atmosphere

    Directory of Open Access Journals (Sweden)

    Pirowski Z.

    2007-01-01

    Full Text Available The main objective of this paper is describing the essence of the process of introducing nitrogen to the melt of ferrous alloys by application of overpressure above the metal bath. The problem was discussed in terms of both theory (the thermodynamic aspects of the process and practice (the technical and technological aspects, safety of the furnace stand operation, and technique of conducting the melt. The novel technique of melting under high pressure of the gas atmosphere (up to 5 MPa has not been used so far in the domestic industry, mainly because of the lack of proper equipment satisfyng the requirements of safe operation. Owing to cooperation undertaken with a partner from Bulgaria, a more detailed investigation of this technology has become possible and melting of selected ferrous alloys was conducted under the gas atmosphere at a pressure of about 3,5 MPa.

  8. A decadal precession of atmospheric pressures over the North Pacific

    Science.gov (United States)

    Anderson, Bruce T.; Gianotti, Daniel J. S.; Furtado, Jason C.; Di Lorenzo, Emanuele

    2016-04-01

    Sustained droughts over the Northwestern U.S. can alter water availability to the region's agricultural, hydroelectric, and ecosystem service sectors. Here we analyze decadal variations in precipitation across this region and reveal their relation to the slow (~10 year) progression of an atmospheric pressure pattern around the North Pacific, which we term the Pacific Decadal Precession (PDP). Observations corroborate that leading patterns of atmospheric pressure variability over the North Pacific evolve in a manner consistent with the PDP and manifest as different phases in its evolution. Further analysis of the data indicates that low-frequency fluctuations of the tropical Pacific Ocean state energize one phase of the PDP and possibly the other through coupling with the polar stratosphere. Evidence that many recent climate variations influencing the North Pacific/North American sector over the last few years are consistent with the current phase of the PDP confirms the need to enhance our predictive understanding of its behavior.

  9. Simulation of low temperature atmospheric pressure corona discharge in helium

    Science.gov (United States)

    Bekasov, Vladimir; Kirsanov, Gennady; Eliseev, Stepan; Kudryavtsev, Anatoly; Sisoev, Sergey

    2015-11-01

    The main objective of this work was to construct a numerical model of corona discharge in helium at atmospheric pressure. The calculation was based on the two-dimensional hybrid model. Two different plasma-chemical models were considered. Models were built for RF corona and negative DC corona discharge. The system of equations is solved by the finite element method in the COMSOL Multiphysics. Main parameters of the discharge (the density of charged and excited particles, the electron temperature) and their dependence on the input parameters of the model (geometry, electrode voltage, power) were calculated. The calculations showed that the shape of the electron distribution near the electrode depends on the discharge power. The neutral gas heating data obtained will allow predicting the temperature of the gases at the designing of atmospheric pressure helium plasma sources.

  10. Cellular membrane collapse by atmospheric-pressure plasma jet

    Science.gov (United States)

    Kim, Kangil; Jun Ahn, Hak; Lee, Jae-Hyeok; Kim, Jae-Ho; Sik Yang, Sang; Lee, Jong-Soo

    2014-01-01

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.

  11. Cellular membrane collapse by atmospheric-pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kangil; Sik Yang, Sang, E-mail: jsjlee@ajou.ac.kr, E-mail: ssyang@ajou.ac.kr [Department of Electrical and Computer Engineering, Ajou University, Suwon 443-749 (Korea, Republic of); Jun Ahn, Hak; Lee, Jong-Soo, E-mail: jsjlee@ajou.ac.kr, E-mail: ssyang@ajou.ac.kr [Department of Biological Sciences, Ajou University, Suwon 443-749 (Korea, Republic of); Lee, Jae-Hyeok; Kim, Jae-Ho [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2014-01-06

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.

  12. Thermally induced atmospheric pressure gas discharges using pyroelectric crystals

    Science.gov (United States)

    Johnson, Michael J.; Linczer, John; Go, David B.

    2014-12-01

    Using a heated pyroelectric crystal, an atmospheric pressure gas discharge was generated through the input of heat. When put through a change in temperature, the polarization of a pyroelectric can change significantly, creating a substantial electric potential at its surface. When configured with a grounded sharp counter electrode, a large inhomogeneous electric field forms in the interstitial gas to initiate a corona-like discharge. Under constant heating conditions, gaseous ions drifting to the pyroelectric accumulate and screen the electric field, extinguishing the discharge. By thermally cycling the pyroelectric, negative and positive discharges are generated during heating and cooling, respectively, with peak currents on the order of 80 nA. Time-integrated visualization confirmed the generation of both a corona-like discharge and a surface discharge on the pyroelectric. Parametric studies identified that thermal cycling conditions significantly influence discharge formation for this new atmospheric pressure discharge approach.

  13. Removal of paper microbial contamination by atmospheric pressure DBD discharge

    Science.gov (United States)

    Vrajova, J.; Chalupova, L.; Novotny, O.; Cech, J.; Krcma, F.; Stahel, P.

    2009-08-01

    In this paper the removal of the microbial contamination from paper material using the plasma treatment at atmospheric pressure is investigated. The Aspergillus niger has been chosen as a bio-indicator enabling to evaluate the effect of plasma assisted microbial inactivation. Dielectric barrier discharge (DBD) operated at atmospheric pressure was used for the paper sterilization. The working gas (nitrogen, argon and helium), plasma exposition time and the plasma power density were varied in order to see the effect of the plasma treatment on the fungi removal. After the treatment, the microbial abatement was evaluated by the standard plate count method. This proved a positive effect of the DBD plasma treatment on fungi removal. Morphological and colorimetric changes of paper substrate after plasma treatment were also investigated.

  14. Plasma deposition of thiophene derivatives under atmospheric pressure

    OpenAIRE

    DAMS, Roel; VANGENEUGDEN, Dirk; Vanderzande, Dirk

    2006-01-01

    Plasma deposition of conjugated polymer films under atmospheric pressure is described. Three thiophene derivatives (thiophene, 3-methylthiophene, and 3,4-ethylenedioxythiophene) are used as monomers. The plasma depositions with the various precursors are compared using analytical techniques such as X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, UV-vis spectroscopy, and resistance measurements. Good results are obtained with pulsed plasma depositions of...

  15. Laser ablation of zirconium in gas atmospheres at low pressures

    International Nuclear Information System (INIS)

    Pulsed nitrogen laser induced ablation of solid zirconium targets was monitored using laser induced fluorescence. Starting from 'new' surfaces, the density evolution under the influence of different gas atmospheres (oxygen, helium, hydrogen and nitrogen) with pressures up to 10-3 mbar has been studied. It was observed that even small amounts of gas lead to a large increase in the velocity and the density of the ablated atomic cloud. (author)

  16. Atmospheric oxygenation caused by a change in volcanic degassing pressure.

    Science.gov (United States)

    Gaillard, Fabrice; Scaillet, Bruno; Arndt, Nicholas T

    2011-10-12

    The Precambrian history of our planet is marked by two major events: a pulse of continental crust formation at the end of the Archaean eon and a weak oxygenation of the atmosphere (the Great Oxidation Event) that followed, at 2.45 billion years ago. This oxygenation has been linked to the emergence of oxygenic cyanobacteria and to changes in the compositions of volcanic gases, but not to the composition of erupting lavas--geochemical constraints indicate that the oxidation state of basalts and their mantle sources has remained constant since 3.5 billion years ago. Here we propose that a decrease in the average pressure of volcanic degassing changed the oxidation state of sulphur in volcanic gases, initiating the modern biogeochemical sulphur cycle and triggering atmospheric oxygenation. Using thermodynamic calculations simulating gas-melt equilibria in erupting magmas, we suggest that mostly submarine Archaean volcanoes produced gases with SO(2)/H(2)S atmosphere.

  17. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    Science.gov (United States)

    Vasile Nastuta, Andrei; Topala, Ionut; Grigoras, Constantin; Pohoata, Valentin; Popa, Gheorghe

    2011-03-01

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  18. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nastuta, Andrei Vasile; Topala, Ionut; Pohoata, Valentin; Popa, Gheorghe [Faculty of Physics, Alexandru Ioan Cuza University, Bd. Carol No. 11, 700506, Iasi (Romania); Grigoras, Constantin, E-mail: andrei.nastuta@uaic.ro [Physiopathology Department, Grigore T. Popa University of Medicine and Pharmacy, 700115, Iasi (Romania)

    2011-03-16

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  19. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    International Nuclear Information System (INIS)

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  20. Atmospheric pressure loading effects on Global Positioning System coordinate determinations

    Science.gov (United States)

    Vandam, Tonie M.; Blewitt, Geoffrey; Heflin, Michael B.

    1994-01-01

    Earth deformation signals caused by atmospheric pressure loading are detected in vertical position estimates at Global Positioning System (GPS) stations. Surface displacements due to changes in atmospheric pressure account for up to 24% of the total variance in the GPS height estimates. The detected loading signals are larger at higher latitudes where pressure variations are greatest; the largest effect is observed at Fairbanks, Alaska (latitude 65 deg), with a signal root mean square (RMS) of 5 mm. Out of 19 continuously operating GPS sites (with a mean of 281 daily solutions per site), 18 show a positive correlation between the GPS vertical estimates and the modeled loading displacements. Accounting for loading reduces the variance of the vertical station positions on 12 of the 19 sites investigated. Removing the modeled pressure loading from GPS determinations of baseline length for baselines longer than 6000 km reduces the variance on 73 of the 117 baselines investigated. The slight increase in variance for some of the sites and baselines is consistent with expected statistical fluctuations. The results from most stations are consistent with approximately 65% of the modeled pressure load being found in the GPS vertical position measurements. Removing an annual signal from both the measured heights and the modeled load time series leaves this value unchanged. The source of the remaining discrepancy between the modeled and observed loading signal may be the result of (1) anisotropic effects in the Earth's loading response, (2) errors in GPS estimates of tropospheric delay, (3) errors in the surface pressure data, or (4) annual signals in the time series of loading and station heights. In addition, we find that using site dependent coefficients, determined by fitting local pressure to the modeled radial displacements, reduces the variance of the measured station heights as well as or better than using the global convolution sum.

  1. Influence of Ionization Degrees on the Evolutions of Charged Particles in Atmospheric Plasma at Low Altitude

    Institute of Scientific and Technical Information of China (English)

    PANG Xuexia; DENG Zechao; JIA Pengying; LIANG Weihua; LI Xia

    2012-01-01

    A zero-dimensional model which includes 56 species of reactants and 427 reactions is used to study the behavior of charged particles in atmospheric plasmas with different ionization degrees at low altitude (near 0 km). The constant coefficient nonlinear equations are solved by using the Quasi-steady-state approximation method. The electron lifetimes are obtained for afterglow plasma with different initial values, and the temporal evolutions of the main charged species are presented, which are dominant in reaction processes. The results show that the electron number density decays quickly. The lifetimes of electrons are shortened by about two orders with increasing ionization degree. Electrons then attach to neutral particles and produce negative ions. When the initial electron densities are in the range of 10l~ ~ 1014 cm-3, the negative ions have sufficiently high densities and long lifetimes for air purification, disinfection and sterilization. Electrons, O(2,-), O(4,-) CO(4,-) and CO(3,-) are the dominant negative species when the initial electron density neo ≤ 1013 cm^(-3), and only electrons and CO3 are left when neo 〉 1015 cm^(-3). N(+,2), N+ and O(+,2) are dominant in the positive charges for any ionization degree. Other positive species, such as 0(+,4), N(+,3), NO(+,2), NO(+,2), Ar(+,2) and H3O+. H2O, are dominant only for a certain ionization degree and in a certain period.

  2. Low pressure electrospray ionization system and process for effective transmission of ions

    Science.gov (United States)

    Tang, Keqi; Page, Jason S.; Kelly, Ryan T.; Smith, Richard D.

    2010-03-02

    A system and method are disclosed that provide up to complete transmission of ions between coupled stages with low effective ion losses. A novel "interfaceless" electrospray ionization system is further described that operates the electrospray at a reduced pressure such that standard electrospray sample solutions can be directly sprayed into an electrodynamic ion funnel which provides ion focusing and transmission of ions into a mass analyzer.

  3. Estimation of the cosmic ray ionization in the Earth's atmosphere during GLE71

    Science.gov (United States)

    Lev, Dorman

    2016-07-01

    DYASTIMA is an application, based on Geant4, which simulates the cascades of particles that are generated due to the interactions of cosmic ray particles with the atmospheres of the planets. The first version of DYASTIMA has been successfully applied to the Earth's atmosphere, providing results that are in accordance with the publications of other models. Since then, important improvements and extensions have been made to this application, including a graphical user interface environment that allows the more effective management of the configuration parameters. Also, the actual modeling of the atmosphere has been changed allowing the definition of more complex cases and at the same time providing, in a more efficient way (with respect to the program's previous version) enhanced outputs. In this work, we combine the new version of DYASTIMA with the NMBANGLE PPOLA model, that estimates the spectrum of SEPs during relativistic proton events using ground level neutron monitor data from the worldwide network. Such a joint model has as a primary scope the simulation of a SEP event and of its secondary products at different altitudes in the Earth's atmosphere, providing at the same time an estimation of the respective ionization rates and of their spatial and temporal dependence. We apply this joint model to GLE 71, on 17 May 2012, and we discuss the results.

  4. Creation of an artificial ionized layer in the atmosphere by microwave nanosecond radiation

    Energy Technology Data Exchange (ETDEWEB)

    Vikharev, A.L.; Ivanov, O.A.; Litvak, A.G. [Russian Academy of Science, Nizhny Novgorod (Russian Federation). Inst. of Applied Physics

    1995-12-31

    The paper reviews recent results of IAP microwave discharge group in investigation of a pulse-periodical nanosecond microwave discharges in converging wave beams. Performed experiments are the laboratory modeling of plasma chemical kinetics in an artificial ionized layer (AIL) created in the atmosphere by microwave beams using a ground-based transmitters. The interest to the AIL is explained by the variety of tasks which can be solved with its help. At present there are suggestions to use AIL for: distant radio- and television communication, generation of ozone, diagnostics of atmosphere, clearing of atmosphere from pollution. For the first time the possibility of using a nanosecond microwave discharge in wave beams to replenish the ozone decrease in the region of local ``ozone holes`` has been demonstrated experimentally. The regimes of effective ozone generation with low expenditure of energy have been defined. The efficiency of chlorofluorocarbons (freon) destruction has been defined with the help of AIL in troposphere at the heights of 10--20 km on the basis of laboratory measurements of plasma decay rate of a nanosecond microwave discharge. It has been experimentally shown that if the concentration of the atmosphere freon surpasses the threshold value then it is destroyed quickly in the processes of dissociative attachment of electrons.

  5. Application of diffuse discharges of atmospheric pressure formed by runaway electrons for modification of copper and stainless steel surface

    Energy Technology Data Exchange (ETDEWEB)

    Tarasenko, V. F., E-mail: VFT@loi.hcei.tsc.ru; Shulepov, M. A.; Erofeev, M. V. [Russian Academy of Sciences, Institute of High Current Electronics, Siberian Branch (Russian Federation)

    2015-12-15

    The results of studies devoted to the influence of a runaway electron pre-ionized diffuse discharge (REP DD) formed in air and nitrogen at atmospheric pressure on the surface of copper and stainless steel are presented. Nanosecond high-voltage pulses were used to obtain REP DD in different gases at high pressures in a chamber with a flat anode and a cathode possessing a small radius of curvature. This mode of discharge was implemented owing to the generation of runaway electrons and X-rays. The conditions under which the surface of copper and stainless steel was cleaned from carbon and oxidized are described.

  6. Leidenfrost Phenomenon-assisted Thermal Desorption (LPTD) and Its Application to Open Ion Sources at Atmospheric Pressure Mass Spectrometry

    Science.gov (United States)

    Saha, Subhrakanti; Chen, Lee Chuin; Mandal, Mridul Kanti; Hiraoka, Kenzo

    2013-03-01

    This work describes the development and application of a new thermal desorption technique that makes use of the Leidenfrost phenomenon in open ion sources at atmospheric pressure for direct mass spectrometric detection of ultratrace levels of illicit, therapeutic, and stimulant drugs, toxicants, and peptides (molecular weight above 1 kDa) in their unaltered state from complex real world samples without or with minor sample pretreatment. A low temperature dielectric barrier discharge ion source was used throughout the experiments and the analytical figures of merit of this technique were investigated. Further, this desorption technique coupled with other ionization sources such as electrospray ionization (ESI) and dc corona discharge atmospheric pressure chemical ionization (APCI) in open atmosphere was also investigated. The use of the high-resolution `Exactive Orbitrap' mass spectrometer provided unambiguous identification of trace levels of the targeted compounds from complex mixtures and background noise; the limits of detection for various small organic molecules and peptides treated with this technique were at the level of parts per trillion and 10-9 M, respectively. The high sensitivity of the present technique is attributed to the spontaneous enrichment of analyte molecules during the slow evaporation of the solvent, as well as to the sequential desorption of molecules from complex mixtures based on their volatilities. This newly developed desorption technique is simple and fast, while molecular ions are observed as the major ions.

  7. Exposure to the atmospheric ionizing radiation environment: studies on Icelandic and Italian civilian aviation flight personnel

    Science.gov (United States)

    de Angelis, G.; Caldora, M.; Santaquilani, M.; Scipione, R.; Verdecchia, A.; Rafnsson, V.; Hrafnkelsson, J.; Sulem, P.; Gudjonsdottir, A. J.

    The largest source of data on human exposure to low dose rate radiation may be airline flight personnel, if enrolled for studies on health effects induced by the cosmic-ray-generated atmospheric ionizing radiation, whose total dose, increasing over the years, may cause delayed radiation-induced health effects, with the high-LET and highly ionizing neutron component typical of atmospheric radiation. With regards to this, the Italian civilian airline flight personnel have been studied by analyzing the atmospheric ionizing radiation exposure and associated effects. The study population includes all Italian civilian airline flight personnel, both cockpit and cabin crewmembers, whose work history records and actual flights (route, aircraft type, and date for each individual flight for each person where possible) were available. The dose calculations were performed along specific flight legs, taking into account the actual flight profiles for all different routes and the variations with time of solar and geomagnetic parameters, in order to take into account the whole atmospheric neutron spectrum. Dose values for each flight are applied to the flight history of study participants in order to estimate the individual annual and lifetime occupational radiation dose. Following the same protocols for both cohorts in terms of dose evaluation, a comparative study has been performed between the radiation exposure patterns of the Icelandic and the Italian civilian aviation flight personnel. These two populations represent two extremes within the group of worldwide airline personnel. The Icelandic crewmembers, like only in the world their Canadian colleagues, always fly over or very close to the geomagnetic pole, and are this way exposed to high doses within each flight leg, whereas the Italian crewmembers, apart from transatlantic flights, are always flying close to the geomagnetic equator or anyhow quite far from the geomagnetic pole, receiving a small dose rates for each flight

  8. Highly physical penumbra solar radiation pressure modeling with atmospheric effects

    Science.gov (United States)

    Robertson, Robert; Flury, Jakob; Bandikova, Tamara; Schilling, Manuel

    2015-10-01

    We present a new method for highly physical solar radiation pressure (SRP) modeling in Earth's penumbra. The fundamental geometry and approach mirrors past work, where the solar radiation field is modeled using a number of light rays, rather than treating the Sun as a single point source. However, we aim to clarify this approach, simplify its implementation, and model previously overlooked factors. The complex geometries involved in modeling penumbra solar radiation fields are described in a more intuitive and complete way to simplify implementation. Atmospheric effects are tabulated to significantly reduce computational cost. We present new, more efficient and accurate approaches to modeling atmospheric effects which allow us to consider the high spatial and temporal variability in lower atmospheric conditions. Modeled penumbra SRP accelerations for the Gravity Recovery and Climate Experiment (GRACE) satellites are compared to the sub-nm/s2 precision GRACE accelerometer data. Comparisons to accelerometer data and a traditional penumbra SRP model illustrate the improved accuracy which our methods provide. Sensitivity analyses illustrate the significance of various atmospheric parameters and modeled effects on penumbra SRP. While this model is more complex than a traditional penumbra SRP model, we demonstrate its utility and propose that a highly physical model which considers atmospheric effects should be the basis for any simplified approach to penumbra SRP modeling.

  9. Desorption atmospheric pressure photoionization with polydimethylsiloxane as extraction phase and sample plate material

    Energy Technology Data Exchange (ETDEWEB)

    Vaikkinen, A. [Division of Pharmaceutical Chemistry, Faculty of Pharmacy, P.O. Box 56, FIN-00014 University of Helsinki (Finland); Kotiaho, T. [Division of Pharmaceutical Chemistry, Faculty of Pharmacy, P.O. Box 56, FIN-00014 University of Helsinki (Finland); Laboratory of Analytical Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland); Kostiainen, R. [Division of Pharmaceutical Chemistry, Faculty of Pharmacy, P.O. Box 56, FIN-00014 University of Helsinki (Finland); Kauppila, T.J., E-mail: tiina.kauppila@helsinki.fi [Division of Pharmaceutical Chemistry, Faculty of Pharmacy, P.O. Box 56, FIN-00014 University of Helsinki (Finland)

    2010-12-03

    Desorption atmospheric pressure photoionization (DAPPI) is an ambient ionization technique for mass spectrometry (MS) that can be used to ionize polar as well as neutral and completely non-polar analytes. In this study polydimethylsiloxane (PDMS) was used as a solid phase extraction sorbent for DAPPI-MS analysis. Pieces of PDMS polymer were soaked in an aqueous sample, where the analytes were sorbed from the sample solution to PDMS. After this, the extracted analytes were desorbed directly from the polymer by the hot DAPPI spray solvent plume, without an elution step. Swelling and extracting the PDMS with a cleaning solvent prior to extraction diminished the high background in the DAPPI mass spectrum caused by PDMS oligomers. Acetone, hexane, pentane, toluene, diisopropylamine and triethylamine were tested for this purpose. The amines were most efficient in reducing the PDMS background, but they also suppressed the signals of low proton affinity analytes. Toluene was chosen as the optimum cleaning solvent, since it reduced the PDMS background efficiently and gave intensive signals of most of the studied analytes. The effects of DAPPI spray solvents toluene, acetone and anisole on the PDMS background and the ionization of analytes were also compared and extraction conditions were optimized. Anisole gave a low background for native PDMS, but toluene ionized the widest range of analytes. Analysis of verapamil, testosterone and anthracene from purified, spiked wastewater was performed to demonstrate that the method is suited for in-situ analysis of water streams. In addition, urine spiked with several analytes was analyzed by the PDMS method and compared to the conventional DAPPI procedure, where sample droplets are applied on PMMA surface. With the PDMS method the background ion signals caused by the urine matrix were lower, the S/N ratios of analytes were 2-10 times higher, and testosterone, anthracene and benzo[a]pyrene that were not detected from PMMA in urine

  10. Ultrapressure liquid chromatography-tandem mass spectrometry assay using atmospheric pressure photoionization (UPLC-APPI-MS/MS) for quantification of 4-methoxydiphenylmethane in pharmacokinetic evaluation.

    Science.gov (United States)

    Farhan, Nashid; Fitzpatrick, Sean; Shim, Yun M; Paige, Mikell; Chow, Diana Shu-Lian

    2016-09-01

    4-Methoxydiphenylmethane (4-MDM), a selective augmenter of Leukotriene A4 Hydrolase (LTA4H), is a new anti-inflammatory compound for potential treatment of chronic obstructive pulmonary disease (COPD). Currently, there is no liquid chromatography tandem mass spectrometric (LC-MS/MS) method for the quantification of 4-MDM. A major barrier for developing the LC-MS/MS method is the inability of electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) to ionize 4-MDM due to its hydrophobicity and lack of any functional group for ionization. With the advent of atmospheric pressure photoionization (APPI) technique, many hydrophobic compounds have been demonstrated to ionize by charge transfer reactions. In this study, a highly sensitive ultrapressure liquid chromatography tandem mass spectrometry assay using atmospheric pressure photoionization (UPLC-APPI-MS/MS) for the quantifications of 4-MDM in rat plasma has been developed and validated. 4-MDM was extracted from the plasma by solid phase extraction (SPE) and separated chromatographically using a reverse phase C8 column. The photoionization (PI) was achieved by introducing anisole as a dopant to promote the reaction of charge transfer. The assay with a linear range of 5 (LLOQ)-400ngmL(-1) met the regulatory requirements for accuracy, precision and stability. The validated assay was employed to quantify the plasma concentrations of 4-MDM after an oral dosing in Sprague Dawley (SD) rats. PMID:27232150

  11. Ultrapressure liquid chromatography-tandem mass spectrometry assay using atmospheric pressure photoionization (UPLC-APPI-MS/MS) for quantification of 4-methoxydiphenylmethane in pharmacokinetic evaluation.

    Science.gov (United States)

    Farhan, Nashid; Fitzpatrick, Sean; Shim, Yun M; Paige, Mikell; Chow, Diana Shu-Lian

    2016-09-01

    4-Methoxydiphenylmethane (4-MDM), a selective augmenter of Leukotriene A4 Hydrolase (LTA4H), is a new anti-inflammatory compound for potential treatment of chronic obstructive pulmonary disease (COPD). Currently, there is no liquid chromatography tandem mass spectrometric (LC-MS/MS) method for the quantification of 4-MDM. A major barrier for developing the LC-MS/MS method is the inability of electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) to ionize 4-MDM due to its hydrophobicity and lack of any functional group for ionization. With the advent of atmospheric pressure photoionization (APPI) technique, many hydrophobic compounds have been demonstrated to ionize by charge transfer reactions. In this study, a highly sensitive ultrapressure liquid chromatography tandem mass spectrometry assay using atmospheric pressure photoionization (UPLC-APPI-MS/MS) for the quantifications of 4-MDM in rat plasma has been developed and validated. 4-MDM was extracted from the plasma by solid phase extraction (SPE) and separated chromatographically using a reverse phase C8 column. The photoionization (PI) was achieved by introducing anisole as a dopant to promote the reaction of charge transfer. The assay with a linear range of 5 (LLOQ)-400ngmL(-1) met the regulatory requirements for accuracy, precision and stability. The validated assay was employed to quantify the plasma concentrations of 4-MDM after an oral dosing in Sprague Dawley (SD) rats.

  12. Characterizations of atmospheric pressure low temperature plasma jets and their applications

    Science.gov (United States)

    Karakas, Erdinc

    2011-12-01

    Atmospheric pressure low temperature plasma jets (APLTPJs) driven by short pulses have recently received great attention because of their potential in biomedical and environmental applications. This potential is due to their user-friendly features, such as low temperature, low risk of arcing, operation at atmospheric pressure, easy handheld operation, and low concentration of ozone generation. Recent experimental observations indicate that an ionization wave exists and propagates along the plasma jet. The plasma jet created by this ionization wave is not a continuous medium but rather consists of a bullet-like-structure known as "Plasma Bullet". More interestingly, these plasma bullets actually have a donut-shaped makeup. The nature of the plasma bullet is especially interesting because it propagates in the ambient air at supersonic velocities without any externally applied electric field. In this dissertation, experimental insights are reported regarding the physical and chemical characteristics of the APLTPJs. The dynamics of the plasma bullet are investigated by means of a high-speed ICCD camera. A plasma bullet propagation model based on the streamer theory is confirmed with adequate explanations. It is also found that a secondary discharge, ignited by the charge accumulation on the dielectric electrode surfaces at the end of the applied voltage, interrupts the plasma bullet propagation due to an opposing current along the ionization channel. The reason for this interesting phenomenon is explained in detail. The plasma bullet comes to an end when the helium mole fraction along the ionization channel, or applied voltage, or both, are less than some critical values. The presence of an inert gas channel in the surrounding air, such as helium or argon, has a critical role in plasma bullet formation and propagation. For this reason, a fluid dynamics study is employed by a commercially available simulation software, COMSOL, based on finite element method. Spatio

  13. IONIZATION IN ATMOSPHERES OF BROWN DWARFS AND EXTRASOLAR PLANETS. III. BREAKDOWN CONDITIONS FOR MINERAL CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Helling, Ch.; Jardine, M.; Stark, C. [SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom); Diver, D., E-mail: ch@leap2010.eu [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2013-04-20

    Electric discharges were detected directly in the cloudy atmospheres of Earth, Jupiter, and Saturn, are debatable for Venus, and indirectly inferred for Neptune and Uranus in our solar system. Sprites (and other types of transient luminous events) have been detected only on Earth, and are theoretically predicted for Jupiter, Saturn, and Venus. Cloud formation is a common phenomenon in ultra-cool atmospheres such as in brown dwarf and extrasolar planetary atmospheres. Cloud particles can be expected to carry considerable charges which may trigger discharge events via small-scale processes between individual cloud particles (intra-cloud discharges) or large-scale processes between clouds (inter-cloud discharges). We investigate electrostatic breakdown characteristics, like critical field strengths and critical charge densities per surface, to demonstrate under which conditions mineral clouds undergo electric discharge events which may trigger or be responsible for sporadic X-ray emission. We apply results from our kinetic dust cloud formation model that is part of the DRIFT-PHOENIX model atmosphere simulations. We present a first investigation of the dependence of the breakdown conditions in brown dwarf and giant gas exoplanets on the local gas-phase chemistry, the effective temperature, and primordial gas-phase metallicity. Our results suggest that different intra-cloud discharge processes dominate at different heights inside mineral clouds: local coronal (point discharges) and small-scale sparks at the bottom region of the cloud where the gas density is high, and flow discharges and large-scale sparks near, and maybe above, the cloud top. The comparison of the thermal degree of ionization and the number density of cloud particles allows us to suggest the efficiency with which discharges will occur in planetary atmospheres.

  14. Surface desorption atmospheric pressure chemical ionization mass spectrometry for identification of lotus seeds freshness based on PCA and BP-ANN%表面解吸常压化学电离质谱结合人工神经网络鉴别新陈莲子

    Institute of Scientific and Technical Information of China (English)

    罗丽萍; 赵占锋; 戴喜末; 张茜; 刘亚丽; 张兴磊; 章文军; 欧阳永中

    2013-01-01

    In order to realize fast discrimination of lotus seeds freshness, the surface desorption atmospheric pressure chemical ionization mass spectrometry (DAPCI-MS) and principal component analysis (PCA) with back propagation artificial neural network (BP-ANN) were used to distinguish the freshness of lotus seeds produced from 2009 to 2012. Without any sample pretreatments, 60 dried lotus seeds of each year, for a total of 240 individuals were tested and distinguished. The seeds were randomly picked from samples supplied by the Chinese Lotus Seeds Research Academy, which were cultured in the same field in Guangchang County, Jiangxi Province;and were grown with the same standardized method. Each lotus seed was longitudinally sliced to 2 mm for the DAPCI-MS investigation, and tested in the center of the slice with 6 replicates to obtain the averaged results. Experiments were performed using a commercial linear ion trap mass spectrometer (LTQ-XL, Finnigan, San Jose, CA, USA) installed with a homemade DAPCI ion source in negative ion detection mode, and coupled with N2 (0.1 MPa) through a methanol:water (1:1) solution, and a high voltage of 3.0 kV. The mass range m/z was 50–500 and the ion transfer tube temperature was 150 . The mass spectra were rapidly recorded by DAPCI℃ -MS and the data were processed by PCA. Its main components were selected as the input variables for classification mode of BP-ANN. PCA and BP-ANN were performed by Matlab7.0 software. The results showed that DAPCI-MS was a practical, convenient tool for the detection of matrix bases of lotus seeds. The signal peaks occurred increasingly over the storage time, and the observation correlates well with previous studies of aging cereals such as rice and wheat. The PCA’s first 50 components, whose cumulative contribution reached 99.99%and maintained almost all of the original information of the samples, were selected as the input layer of the BP-ANN model which included 50 input layer nodes, 48 hidden

  15. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    Science.gov (United States)

    Sun, Wen-Ting; Li, Guo; Li, He-Ping; Bao, Cheng-Yu; Wang, Hua-Bo; Zeng, Shi; Gao, Xing; Luo, Hui-Ying

    2007-06-01

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure α-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images.

  16. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    International Nuclear Information System (INIS)

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure α-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images

  17. Supershort electron beam and voluminous heavy-current air discharge at atmospheric pressure

    International Nuclear Information System (INIS)

    The conditions of the electron beam and voluminous discharge formation in the air at the atmospheric pressure and subnanosecond pulse tension front are studied. It is shown that the electron beam in the gaseous diode originates at the pulse tension front over time of ∼ 0.5 ns and has duration at the semiheight of ≤0.4 ns. The electron beam with the electrons average energy of 60-80 keV and current amplitude of ≥70 A is obtained. It is assumed that the electron beam is formed from the electron avalanches, originating in the gap on the account of the gas ionization by fast electrons at achieving the critical field between the expanding plasma cloud front and anode

  18. Influence of dissociative recombination on the LTE of argon high-frequency plasmas at atmospheric pressure

    CERN Document Server

    Sainz, A; García, M C; Calzada, M D; Sainz, Abel; Margot, Joelle; Garcia, Maria Carmen; Calzada, Maria Dolores

    2004-01-01

    This work presents a few preliminary results from a collisional-radiative (CR) model intended to describe an argon microwave (2.45 GHz) plasma at atmospheric pressure. This model aims to investigate the influence of dissociative recombination products on the Saha-Boltzmann plasma equilibrium. The model is tested through comparison with experimental results obtained in an argon plasma column generated by a traveling electromagnetic surface-wave, which is suitable to perform a parametric investigation of the plasma. It is shown that dissociative recombination predominantly populates the 4s levels and the ground state. It is further observed that it strongly influences the population of the levels, specially those of lower energy. However, the higher levels (close to the ionization limit) appear to be in equilibrium whatever the plasma density. This allows assuming that the excitation temperature Texc determined from the upper levels in the atomic system in the Boltzmann-plot is equal to Te.

  19. Effect of Swirling Desolvation Gas Flow in an Atmospheric Pressure Ion Source

    Science.gov (United States)

    Savtchenko, Serguei; Ashgriz, Nasser; Jolliffe, Chuck; Cousins, Lisa; Gamble, Heather

    2014-09-01

    A numerical study is performed to examine the effect of introducing a swirling desolvation gas flow on the flow transport characteristics in an electrospray and an atmospheric pressure chemical ionization (APCI) system. An ion source having three coaxial tubes is considered: (1) an inner capillary tube to inject the liquid sample, (2) a center coaxial tube to provide a room temperature gas flow to nebulize the liquid, referred to as the nebulizing gas flow, and (3) an outer coaxial tube having a converging exit to supply a high temperature gas for droplet desolvation, referred to as the desolvation gas flow. The results show that a swirling desolvation gas flow reduces the dispersion of the nebulizing gas and suppresses turbulent diffusion. The effect of swirling desolvation flow on the trajectory of a range of droplet sizes emitted from a source is also considered.

  20. Two-dimensional simulation of discharge channels in atmospheric-pressure single dielectric barrier discharges

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiao; Wang, Yanhui, E-mail: wangyh@dlut.edu.cn; Wang, Dezhen, E-mail: wangdez@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2015-11-15

    A two-dimensional fluid model is developed to study the filaments (or discharge channels) in atmospheric-pressure discharge with one plate electrode covered by a dielectric layer. Under certain discharge parameters, one or more stable filaments with wide radii could be regularly arranged in the discharge space. Different from the short-lived randomly distributed microdischarges, this stable and thick filament can carry more current and have longer lifetime. Because only one electrode is covered by a dielectric layer in the simulation, the formed discharge channel extends outwards near the dielectric layer and shrinks inwards near the naked electrode, agreeing with the experimental results. In this paper, the evolution of channel is studied, and its behavior is like a streamer or an ionization wave, but the propagation distance is short. The discharge parameters such as voltage amplitude, electrode width, and N{sub 2} impurities content could significantly influence the number of discharge channel, which is discussed in the paper.

  1. Decomposition of benzene in a corona discharge at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Kohki [Department of Electrical and Electronic Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585 (Japan); Centre of Environmental Science and Disaster Mitigation for Advanced Research, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585 (Japan); Matsuzawa, Toshiharu; Itoh, Hidenori [Department of Electrical and Electronic Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585 (Japan)

    2008-05-01

    We investigated the decomposition characteristics of benzene in a positive DC corona discharge between multineedle and plane electrodes with a background gas of nitrogen-oxygen mixture at atmospheric pressure. We obtained C{sub 2}H{sub 2}, HCN, HCOOH, CO and CO{sub 2} as benzene fragments and by-products, and C{sub 2}H{sub 2} and HCN as minor intermediate products. Benzene was primarily converted into CO{sub 2} via CO at low oxygen concentrations (0.2%) and via CO and HCOOH at the atmospheric oxygen concentration (20%). Further, 57% and 24% of carbon atoms were deposited on the plane electrode and the discharge chamber at oxygen concentrations of 0.2% and 20%, respectively.

  2. Surface analysis of polymers treated by remote atmospheric pressure plasma.

    Science.gov (United States)

    Gonzalez, Eleazar; Hicks, Robert F

    2010-03-01

    The surfaces of high-density polyethylene (HDPE), poly(methyl methacrylate) (PMMA), and polyethersulfone (PES) were treated with a low-temperature, atmospheric pressure oxygen and helium plasma. The polymers were exposed to the downstream afterglow of the plasma, which contained primarily oxygen atoms and metastable oxygen molecules ((1)Delta(g) O(2)), and no ions or electrons. X-ray photoelectron spectroscopy (XPS) of HDPE revealed that 20% of the carbon atoms were converted into oxidized functional groups, with about half of these being carboxylic acids. Attenuated total reflection infrared spectroscopy of all three polymers was obtained in order to determine the types of functional groups formed by atmospheric plasma exposure. It was found that the polymers were rapidly oxidized with addition of alcohols, ketones, and carboxylic acids to the carbon backbone. Chain scission occurred on HDPE and PMMA, while on PES the aromatic groups underwent ring-opening and insertion of carboxylic acid. PMID:19950952

  3. Secondary ozonides of endo-cyclic alkenes analyzed by atmospheric sampling Townsend discharge ionization mass spectrometry

    Science.gov (United States)

    Nøjgaard, J. K.; Nørgaard, A. W.; Wolkoff, P.

    2007-05-01

    Secondary ozonides (SOZ) of cyclohexene, 1-methylcyclohexene, 4-isopropyl-1-methylcyclohexene and d-limonene were cryo-synthesized by ozonolysis in pentane and purified on a silica gel column. The mass spectra obtained by atmospheric sampling Townsend discharge ionization (ASTDI) and collision activated dissociation (CAD) of the protonized SOZ showed characteristic losses evident of the ozonide structure. Oxygen was eliminated as, e.g., O and O2, and loss of (HCHO + HCHO) or (O + CO2) corresponded to the SOZ base-peak for the substituted cyclohexenes by ASTDI-MS. The CAD spectra of the protonized species by use of methane as chemical ionization gas, showed consecutive losses of three oxygen atoms. Elimination of hydroxy-methyl hydroperoxide (HMHP) was particular important for the protonized SOZ, unlike consecutive loss of (HCHO + HCHO) or (O + CO2). In addition, the spectra of d-limonene were characterized by an unique loss of H2O2. These losses appear to be useful for identification of SOZ in gas-phase ozonolysis mixtures of endo-cyclic alkenes, which makes ASTDI an alternative to other on-line techniques for analysis of SOZ in ozonolysis mixtures.

  4. Driven Motion and Instability of an Atmospheric Pressure Arc

    Energy Technology Data Exchange (ETDEWEB)

    Max Karasik

    1999-12-01

    Atmospheric pressure arcs are used extensively in applications such as welding and metallurgy. However, comparatively little is known of the physics of such arcs in external magnetic fields and the mechanisms of the instabilities present. In order to address questions of equilibrium and stability of such arcs, an experimental arc furnace is constructed and operated in air with graphite cathode and steel anode at currents 100-250 A. The arc is diagnosed with a gated intensified camera and a collimated photodiode array, as well as fast voltage and current probes.

  5. Driven Motion and Instability of an Atmospheric Pressure Arc

    International Nuclear Information System (INIS)

    Atmospheric pressure arcs are used extensively in applications such as welding and metallurgy. However, comparatively little is known of the physics of such arcs in external magnetic fields and the mechanisms of the instabilities present. In order to address questions of equilibrium and stability of such arcs, an experimental arc furnace is constructed and operated in air with graphite cathode and steel anode at currents 100-250 A. The arc is diagnosed with a gated intensified camera and a collimated photodiode array, as well as fast voltage and current probes

  6. Generation of subnanosecond electron beams in air at atmospheric pressure

    Science.gov (United States)

    Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.

    2009-11-01

    Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.

  7. Electrical characterization of atmospheric pressure DBD in air

    International Nuclear Information System (INIS)

    Atmospheric pressure dielectric barrier discharge (DBD) in air was generated between two rectangular copper electrodes covering the lower electrode with a dielectric (glass or polycarbonate -PC) using low frequency (line frequency-50Hz) high voltage power supply. The discharge was studied for inter-electrode gap spacing in the range of 2 mm – 5 mm and their influence on breakdown voltage. Voltage-current characteristics and the analysis of the distribution of current pulses per half cycle of the current waveform indicated that the discharge is more uniform in 3 mm inter-electrode gap spacing with PC as a dielectric rather than glass. (author)

  8. Atmospheric pressure cold plasma as an antifungal therapy

    International Nuclear Information System (INIS)

    A microhollow cathode based, direct-current, atmospheric pressure, He/O2 (2%) cold plasma microjet was used to inactive antifungal resistants Candida albicans, Candida krusei, and Candida glabrata in air and in water. Effective inactivation (>90%) was achieved in 10 min in air and 1 min in water. Antifungal susceptibility tests showed drastic reduction of the minimum inhibitory concentration after plasma treatment. The inactivation was attributed to the reactive oxygen species generated in plasma or in water. Hydroxyl and singlet molecular oxygen radicals were detected in plasma-water system by electron spin resonance spectroscopy. This approach proposed a promising clinical dermatology therapy.

  9. Diagnostics of Atmospheric Pressure Surface Discharge Plasmas in Argon

    Institute of Scientific and Technical Information of China (English)

    张锐; 詹如娟; 温晓辉

    2003-01-01

    Atmospheric pressure surface discharge is shown to have great prospects for a number of industrial applications.To acquire better results in application fields and considering that the study of the basic parameters including electron temperature and electron density is desirable,we develop an equivalent circuit model and the diagnostic techniques based on optical emission spectroscopy and electrical measurement in our laboratory.The electron temperature has been determined to be about 0.7eV by a Fermi-Dirac model.The electron density has been calculated to be near 1010 cm-3 from a time resolved electrical measurement(Ohmic heating method).

  10. Experiment and Simulation of Atmospheric Pressure Glow Surface Discharge

    Institute of Scientific and Technical Information of China (English)

    江中和; 胡希伟; 刘明海; 辜承林; 潘垣

    2003-01-01

    Atmospheric pressure glow discharge was observed in a surface discharge generator. The frequency of ac power supply is more than 9 kHz and the sinusoidal peak-to-peak applied voltage is 9 Ky. The electric field intensity in a kind of surface discharge generators is calculated with the boundary element method. Then a two-dimensional fluid model was used to simulate the ion trapping and electron trapping in a surface discharge just before the breakdown. The simulation results are in good agreement with our observation.

  11. Collisional-radiative model of helium microwave discharges at atmospheric pressure

    Science.gov (United States)

    Santos, M.; Alves, L. L.; Gadonna, K.; Belmonte, T.

    2011-10-01

    This paper presents a stationary collisional-radiative model to describe the behavior of helium microwave discharges (2.45 GHz), produced in cylindrical geometry (1 mm radius) at atmospheric pressure. The model couples the rate balance equations for the charged particles (electrons, He+ and He2+ions), the He(n Townsend ionization coefficient. The model was solved for typical 5x1014 cm-3 electron density and 2500 K gas temperature, yielding [He2+]/[He+] ~ 0.92 and [He2*]/[He] ~ 3.4x10-8. Results show also that the He2+ions are produced mainly from the 3-body conversion of He+ ions and lost by the corresponding reverse reaction together with diffusion and dissociative recombination. The He2*is produced by a 3-body reaction involving the 23P states and by the electron-stabilized recombination of He2+and is lost by electron dissociation. This paper presents a stationary collisional-radiative model to describe the behavior of helium microwave discharges (2.45 GHz), produced in cylindrical geometry (1 mm radius) at atmospheric pressure. The model couples the rate balance equations for the charged particles (electrons, He+ and He2+ions), the He(n Townsend ionization coefficient. The model was solved for typical 5x1014 cm-3 electron density and 2500 K gas temperature, yielding [He2+]/[He+] ~ 0.92 and [He2*]/[He] ~ 3.4x10-8. Results show also that the He2+ions are produced mainly from the 3-body conversion of He+ ions and lost by the corresponding reverse reaction together with diffusion and dissociative recombination. The He2*is produced by a 3-body reaction involving the 23P states and by the electron-stabilized recombination of He2+and is lost by electron dissociation. Work supported by FCT-MCTES under PTDC/FIS/65924/2006.

  12. Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun

    International Nuclear Information System (INIS)

    An experimental study of atmospheric-pressure rare gas plasma propagation in a high-aspect-ratio capillary is reported. The plasma is generated with a plasma gun device based on a dielectric barrier discharge (DBD) reactor powered by either nanosecond or microsecond rise-time high-voltage pulses at single-shot to multi-kHz frequencies. The influence of the voltage waveform, pulse polarity, pulse repetition rate and capillary material have been studied using nanosecond intensified charge-coupled device imaging and plasma-front velocity measurements. The evolution of the plasma appearance during its propagation and the study of the role of the different experimental parameters lead us to suggest a new denomination of pulsed atmospheric-pressure plasma streams to describe all the plasma features, including the previously so-called plasma bullet. The unique properties of such non-thermal plasma launching in capillaries, far from the primary DBD plasma, are associated with a fast ionization wave travelling with velocity in the 107–108 cm s−1 range. Voltage pulse tailoring is shown to allow for a significant improvement of such plasma delivery. Thus, the plasma gun device affords unique opportunities in biomedical endoscopic applications. (paper)

  13. The major influence of the atmosphere on intracranial pressure: an observational study

    Science.gov (United States)

    Herbowski, Leszek

    2016-06-01

    The impact of the atmosphere on human physiology has been studied widely within the last years. In practice, intracranial pressure is a pressure difference between intracranial compartments and the surrounding atmosphere. This means that gauge intracranial pressure uses atmospheric pressure as its zero point, and therefore, this method of pressure measurement excludes the effects of barometric pressure's fluctuation. The comparison of these two physical quantities can only take place through their absolute value relationship. The aim of this study is to investigate the direct effect of barometric pressure on the absolute intracranial pressure homeostasis. A prospective observational cross-sectional open study was conducted in Szczecin, Poland. In 28 neurosurgical patients with suspected normal-pressure hydrocephalus, intracranial intraventricular pressure was monitored in a sitting position. A total of 168 intracranial pressure and atmospheric pressure measurements were performed. Absolute atmospheric pressure was recorded directly. All values of intracranial gauge pressure were converted to absolute pressure (the sum of gauge intracranial pressure and local absolute atmospheric pressure). The average absolute mean intracranial pressure in the patients is 1006.6 hPa (95 % CI 1004.5 to 1008.8 hPa, SEM 1.1), and the mean absolute atmospheric pressure is 1007.9 hPa (95 % CI 1006.3 to 1009.6 hPa, SEM 0.8). The observed association between atmospheric and intracranial pressure is strongly significant (Spearman correlation r = 0.87, p < 0.05) and all the measurements are perfectly reliable (Bland-Altman coefficient is 4.8 %). It appears from this study that changes in absolute intracranial pressure are related to seasonal variation. Absolute intracranial pressure is shown to be impacted positively by atmospheric pressure.

  14. The major influence of the atmosphere on intracranial pressure: an observational study

    Science.gov (United States)

    Herbowski, Leszek

    2016-06-01

    The impact of the atmosphere on human physiology has been studied widely within the last years. In practice, intracranial pressure is a pressure difference between intracranial compartments and the surrounding atmosphere. This means that gauge intracranial pressure uses atmospheric pressure as its zero point, and therefore, this method of pressure measurement excludes the effects of barometric pressure's fluctuation. The comparison of these two physical quantities can only take place through their absolute value relationship. The aim of this study is to investigate the direct effect of barometric pressure on the absolute intracranial pressure homeostasis. A prospective observational cross-sectional open study was conducted in Szczecin, Poland. In 28 neurosurgical patients with suspected normal-pressure hydrocephalus, intracranial intraventricular pressure was monitored in a sitting position. A total of 168 intracranial pressure and atmospheric pressure measurements were performed. Absolute atmospheric pressure was recorded directly. All values of intracranial gauge pressure were converted to absolute pressure (the sum of gauge intracranial pressure and local absolute atmospheric pressure). The average absolute mean intracranial pressure in the patients is 1006.6 hPa (95 % CI 1004.5 to 1008.8 hPa, SEM 1.1), and the mean absolute atmospheric pressure is 1007.9 hPa (95 % CI 1006.3 to 1009.6 hPa, SEM 0.8). The observed association between atmospheric and intracranial pressure is strongly significant (Spearman correlation r = 0.87, p Altman coefficient is 4.8 %). It appears from this study that changes in absolute intracranial pressure are related to seasonal variation. Absolute intracranial pressure is shown to be impacted positively by atmospheric pressure.

  15. Characterization of a steam plasma jet at atmospheric pressure

    International Nuclear Information System (INIS)

    An atmospheric steam plasma jet generated by an original dc water plasma torch is investigated using electrical and spectroscopic techniques. Because it directly uses the water used for cooling electrodes as the plasma-forming gas, the water plasma torch has high thermal efficiency and a compact structure. The operational features of the water plasma torch and the generation of the steam plasma jet are analyzed based on the temporal evolution of voltage, current and steam pressure in the arc chamber. The influence of the output characteristics of the power source, the fluctuation of the arc and current intensity on the unsteadiness of the steam plasma jet is studied. The restrike mode is identified as the fluctuation characteristic of the steam arc, which contributes significantly to the instabilities of the steam plasma jet. In addition, the emission spectroscopic technique is employed to diagnose the steam plasma. The axial distributions of plasma parameters in the steam plasma jet, such as gas temperature, excitation temperature and electron number density, are determined by the diatomic molecule OH fitting method, Boltzmann slope method and Hβ Stark broadening, respectively. The steam plasma jet at atmospheric pressure is found to be close to the local thermodynamic equilibrium (LTE) state by comparing the measured electron density with the threshold value of electron density for the LTE state. Moreover, based on the assumption of LTE, the axial distributions of reactive species in the steam plasma jet are estimated, which indicates that the steam plasma has high chemical activity.

  16. Atmospheric-Pressure Plasma Cleaning of Contaminated Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Robert F. Hicks; Hans W. Herrmann

    2003-12-15

    The purpose of this project was to demonstrate a practical, environmentally benigh technology for the surface decontamination and decommissioning of radioactive waste. A low temperature, atmospheric pressure plasma has been developed with initial support from the DOE, Environmental Management Sciences Program. This devise selectively etches radioactive metals from surfaces, rendering objects radiation free and suitable for decommissioning. The volatile reaction products are captured on filters, which yields a tremendous reduction in the volume of the waste. The technology shows a great potential for accelerating the clean-up effort for the equipment and structures contaminated with radioactive materials within the DOE complex. The viability of this technology has been demonstrated by selectively and rapidly stripping uranium from stainless steel surfaces at low temperature. Studies on uranium oxide have shown that etch rates of 4.0 microns per minute can be achieved at temperature below 473 K. Over the past three years, we have made numerous improvements in the design of the atmospheric pressure plasma source. We are now able to scale up the plasma source to treat large surface areas.

  17. Atmospheric-Pressure Plasma Cleaning of Contaminated Surfaces

    International Nuclear Information System (INIS)

    The purpose of this project was to demonstrate a practical, environmentally benigh technology for the surface decontamination and decommissioning of radioactive waste. A low temperature, atmospheric pressure plasma has been developed with initial support from the DOE, Environmental Management Sciences Program. This devise selectively etches radioactive metals from surfaces, rendering objects radiation free and suitable for decommissioning. The volatile reaction products are captured on filters, which yields a tremendous reduction in the volume of the waste. The technology shows a great potential for accelerating the clean-up effort for the equipment and structures contaminated with radioactive materials within the DOE complex. The viability of this technology has been demonstrated by selectively and rapidly stripping uranium from stainless steel surfaces at low temperature. Studies on uranium oxide have shown that etch rates of 4.0 microns per minute can be achieved at temperature below 473 K. Over the past three years, we have made numerous improvements in the design of the atmospheric pressure plasma source. We are now able to scale up the plasma source to treat large surface areas

  18. Compact atmospheric pressure plasma self-resonant drive circuits

    International Nuclear Information System (INIS)

    This paper reports on compact solid-state self-resonant drive circuits that are specifically designed to drive an atmospheric pressure plasma jet and a parallel-plate dielectric barrier discharge of small volume (0.5 cm3). The atmospheric pressure plasma (APP) device can be operated with helium, argon or a mixture of both. Equivalent electrical models of the self-resonant drive circuits and discharge are developed and used to estimate the plasma impedance, plasma power density, current density or electron number density of three APP devices. These parameters and the kinetic gas temperature are dependent on the self-resonant frequency of the APP device. For a fixed switching frequency and APP device geometry, the plasma parameters are controlled by adjusting the dc voltage at the primary coil and the gas flow rate. The resonant frequency is controlled by the selection of the switching power transistor and means of step-up voltage transformation (ferrite core, flyback transformer, or Tesla coil). The flyback transformer operates in the tens of kHz, the ferrite core in the hundreds of kHz and Tesla coil in the MHz range. Embedded within this work is the principle of frequency pulling which is exemplified in the flyback transformer circuit that utilizes a pickup coil for feedback control of the switching frequency. (paper)

  19. Compact atmospheric pressure plasma self-resonant drive circuits

    Science.gov (United States)

    Law, V. J.; Anghel, S. D.

    2012-02-01

    This paper reports on compact solid-state self-resonant drive circuits that are specifically designed to drive an atmospheric pressure plasma jet and a parallel-plate dielectric barrier discharge of small volume (0.5 cm3). The atmospheric pressure plasma (APP) device can be operated with helium, argon or a mixture of both. Equivalent electrical models of the self-resonant drive circuits and discharge are developed and used to estimate the plasma impedance, plasma power density, current density or electron number density of three APP devices. These parameters and the kinetic gas temperature are dependent on the self-resonant frequency of the APP device. For a fixed switching frequency and APP device geometry, the plasma parameters are controlled by adjusting the dc voltage at the primary coil and the gas flow rate. The resonant frequency is controlled by the selection of the switching power transistor and means of step-up voltage transformation (ferrite core, flyback transformer, or Tesla coil). The flyback transformer operates in the tens of kHz, the ferrite core in the hundreds of kHz and Tesla coil in the MHz range. Embedded within this work is the principle of frequency pulling which is exemplified in the flyback transformer circuit that utilizes a pickup coil for feedback control of the switching frequency.

  20. Bacteria Inactivation Using DBD Plasma Jet in Atmospheric Pressure Argon

    Institute of Scientific and Technical Information of China (English)

    XU Guimin; ZHANG Guanjun; SHI Xingmin; MA Yue; WANG Ning; LI Yuan

    2009-01-01

    A coaxial dielectric barrier discharge plasma jet Was designed,which can be operated in atmospheric pressure argon under an intermediate frequency sinusoidal resonant power supply,and an atmospheric pressure glow-like discharge Was achieved.Two kinds of typical bacteria,i.e.,the Staphylococcus aureus(S.aurens)and Escherichia coil(E.coil),were employed to study the bacterial inactivation mechanism by means of the non-thermal plasma.The killing log value (KLV)of S.aureus reached up to 5.38 with a treatment time of 90 s and that of E.coil up to 5.36 with 60 s,respectively.According to the argon emission spectra of the plasma jet and the scanning electron microscope (SEM) images of the two bacteria before and after the plasma treatment.it is concluded that the reactive species in the argon plasma played a major role in the bacterial inactivation,while the heat,electric field and UV photons had little effect.

  1. Nonlinear lumped circuit modeling of an atmospheric pressure rf discharge

    Science.gov (United States)

    Lapke, M.; Ziegler, D.; Mussenbrock, T.; Gans, T.; Schulz-von der Gathen, V.

    2006-10-01

    The subject of our modeling approach is a specifically modified version of the atmospheric pressure plasma jet (APPJ, originally proposed by Selwyn and coworkers^1) with reduced discharge volume, the micro atmospheric pressure plasma jet (μ-APPJ). The μ-APPJ is a homogeneous nonequilibrium discharge operated with Argon or Helium as the feedstock gas and a percentage volume admixture of a molecular gas (O2, H2, N2). The efficiency of the discharge is mainly due to the dissociated and activated molecules in the effluent that can be selected depending on the application. A variety of applications in surface treatment have already been demonstrated, e.g., in semiconductor technology, restoration and bio-medicine. In this contribution we present and analyze a nonlinear lumped circuit model of the μ-APPJ. We apply a two-scale formalism. The bulk is modeled by a generalized Ohm's law, whereas the sheath is described on a considerably higher level of mathematical sophistication. The main focus lies on the spectrum of the discharge current in order to support the characterization of the discharge via model-based diagnostics, i.e., the estimation of the spatially averaged electron density from the frequency of certain self-excitated collective resonance modes. J. Park et al., Appl. Phy. Lett. 76, 288 (2000)

  2. Hazardous gas treatment using atmospheric pressure microwave discharges

    Energy Technology Data Exchange (ETDEWEB)

    Mizeraczyk, Jerzy; Jasinski, Mariusz; Zakrzewski, Zenon [Centre for Plasma and Laser Engineering, Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk (Poland)

    2005-12-15

    Atmospheric pressure microwave discharge methods and devices used for producing non-thermal plasmas for control of gaseous pollutants are described in this paper. The main part of the paper is concerned with microwave torch discharges (MTDs). Results of laboratory experiments on plasma abatement of several volatile organic compounds (VOCs) in their mixtures with either synthetic air or nitrogen in low ({approx}100 W) and moderate (200-400 W) microwave torch plasmas at atmospheric pressure are presented. Three types of MTD generators, i.e. low-power coaxial-line-based MTDs, moderate-power waveguide-based coaxial-line MTDs and moderate-power waveguide-based MTDs were used. The gas flow rate and microwave (2.45 GHz) power delivered to the discharge were in the range of 1-3 litre min{sup -1} and 100-400 W, respectively. The concentrations of the processed gaseous pollutants were from several to several tens of per cent. The results showed that the MTD plasmas fully decomposed the VOCs at a relatively low energy cost. The energy efficiency of decomposition of several gaseous pollutants reached 1000 g (kW-h){sup -1}. This suggests that MTD plasmas can be useful tools for decomposition of highly concentrated VOCs.

  3. Pressure-produced ionization of nonideal plasma in a megabar range of dynamic pressures

    NARCIS (Netherlands)

    Fortov, VE; Ternovoi, VY; Zhernokletov, MV; Mochalov, MA; Mikhailov, AL; Filimonov, AS; Pyalling, AA; Mintsev, VB; Gryaznov, VK; Iosilevskii, IL

    2003-01-01

    The low-frequency electrical conductivity of strongly nonideal hydrogen, helium, and xenon plasmas was measured in the megabar range of pressures. The plasmas in question were generated by the method of multiple shock compression in planar and cylindrical geometries, whereby it was possible to reduc

  4. Nanosecond Repetitively Pulsed Discharges in Air at Atmospheric Pressure -- Experiment and Theory of Regime Transitions

    Science.gov (United States)

    Pai, David; Lacoste, Deanna; Laux, Christophe

    2009-10-01

    In atmospheric pressure air preheated from 300 to 1000 K, the Nanosecond Repetitively Pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and inter-electrode gap distance) of each discharge regime. Notably, there is a minimum gap distance for the existence of the glow regime that increases with decreasing gas temperature. A theory is developed to describe the Corona-to-Glow (C-G) and Glow-to-Spark (G-S) transitions for NRP discharges. The C-G transition is shown to depend on the Avalanche-to-Streamer Transition (AST) as well as the electric field strength in the positive column. The G-S transition is due to the thermal ionization instability. The minimum gap distance for the existence of the glow regime can be understood by considering that the applied voltage of the AST must be lower than that of the thermal ionization instability. This is a previously unknown criterion for generating glow discharges, as it does not correspond to the Paschen minimum or to the Meek-Raether criterion.

  5. Atmospheric pressure plasma jets interacting with liquid covered tissue: touching and not-touching the liquid

    Science.gov (United States)

    Norberg, Seth A.; Tian, Wei; Johnsen, Eric; Kushner, Mark J.

    2014-11-01

    In the use of atmospheric pressure plasma jets in biological applications, the plasma-produced charged and neutral species in the plume of the jet often interact with a thin layer of liquid covering the tissue being treated. The plasma-produced reactivity must then penetrate through the liquid layer to reach the tissue. In this computational investigation, a plasma jet created by a single discharge pulse at three different voltages was directed onto a 200 µm water layer covering tissue followed by a 10 s afterglow. The magnitude of the voltage and its pulse length determined if the ionization wave producing the plasma plume reached the surface of the liquid. When the ionization wave touches the surface, significantly more charged species were created in the water layer with H3O+aq, O3-aq, and O2-aq being the dominant terminal species. More aqueous OHaq, H2O2aq, and O3aq were also formed when the plasma plume touches the surface. The single pulse examined here corresponds to a low repetition rate plasma jet where reactive species would be blown out of the volume between pulses and there is not recirculation of flow or turbulence. For these conditions, NxOy species do not accumulate in the volume. As a result, aqueous nitrites, nitrates, and peroxynitrite, and the HNO3aq and HOONOaq, which trace their origin to solvated NxOy, have low densities.

  6. Atmospheric pressure He-air plasma jet: Breakdown process and propagation phenomenon

    Directory of Open Access Journals (Sweden)

    Asma Begum

    2013-06-01

    Full Text Available In this paper He-discharge (plasma jet/bullet in atmospheric pressure air and its progression phenomenon has been studied experimentally using ICCD camera, optical emission spectroscopy (OES and calibrated dielectric probe measurements. The repetitive nanosecond pulse has applied to a plasma pencil to generate discharge in the helium gas channel. The discharge propagation speed was measured from the ICCD images. The axial electric field distribution in the plasma jet is inferred from the optical emission spectroscopic data and from the probe measurement. The correlation between the jet velocities, jet length with the pulse duration is established. It shows that the plasma jet is not isolated from the input voltage along its propagation path. The discharge propagation speed, the electron density and the local and average electric field distribution along the plasma jet axis predicted from the experimental results are in good agreement with the data predicted by numerical simulation of the streamer propagation presented in different literatures. The ionization phenomenon of the discharge predicts the key ionization parameters, such as speed, peak electric field in the front, and electron density. The maximum local electric field measured by OES is 95 kV/cm at 1.3 cm of the jet axis, and average EF measured by probe is 24 kV/cm at the same place of the jet. The average and local electron density estimated are in the order of 1011 cm-3 and it reaches to the maximum of 1012 cm-3.

  7. Measurement of viscosity of gaseous mixtures at atmospheric pressure

    Science.gov (United States)

    Singh, J. J.; Mall, G. H.; Chegini, H.

    1986-01-01

    Coefficients of viscosity of various types of gas mixtures, including simulated natural-gas samples, have been measured at atmospheric pressure and room temperature using a modified capillary tube method. Pressure drops across the straight capillary tube section of a thermal mass flowmeter were measured for small, well-defined, volume flow rates for the test gases and for standard air. In this configuration, the flowmeter provides the volumetric flow rates as well as a well-characterized capillary section for differential pressure measurements across it. The coefficients of viscosity of the test gases were calculated using the reported value of 185.6 micro P for the viscosity of air. The coefficients of viscosity for the test mixtures were also calculated using Wilke's approximation of the Chapman-Enskog (C-E) theory. The experimental and calculated values for binary mixtures are in agreement within the reported accuracy of Wilke's approximation of the C-E theory. However, the agreement for multicomponent mixtures is less satisfactory, possible because of the limitations of Wilkes's approximation of the classical dilute-gas state model.

  8. Ionized gas pressure correlates with star formation intensity in nearby starbursts

    Science.gov (United States)

    Jiang, Tianxing; Malhotra, Sangeeta; Yang, Huan

    2016-06-01

    We estimate the electron density of the ionized gas and thus the thermal pressure in HII regions; and compare that to the SFR (star formation rate) surface density for a combined sample of about 40 green peas and Lyman Break Analogs at z SII] 6716 / 6731). We find that the SFR surface density is correlated with the electron density and the thermal pressure in HII regions for the star-forming galaxies with SFR surface density above a certain threshold. This work shows quantitatively the correlation between SFR surface density and electron density and that between SFR surface density and the thermal pressure in HII regions for the nearby starburst galaxies. This is consistent with theoretical models of disks (e.g. Kim et al. (2011) if we assume that the thermal pressure in HII regions is comparable to the total diffuse gas pressure at the midplane of the diffuse neutral gas. It is also in agreement with the results from star-forming galaxies at z ~ 2.5. We might infer that the starburst galaxies at low-redshift (z < 0.3) share similar physical properties to the galaxies at high redshift (z ~ 2.5).

  9. Ionization of galactic cosmic rays and high-energy particles in the ionosphere and atmosphere of Mars

    Science.gov (United States)

    Vellinov, P. I.; Mateev, L. N.

    This paper presents a new model for the ionization of cosmic rays in the atmosphere of Mars, based on an engineering model for the Martian atmosphere developed by Moroz et al. (1988). Based on the theoretical model, a computer program was developed in TURBO-PASCAL. The q(h) profiles (where q is the rate of electron production at a height h) at the minimum and the maximum of solar activity calculated for summer in the northern Martian atmosphere, and for winter in the southern hemisphere are presented.

  10. Flowing atmospheric pressure afterglow combined with laser ablation for direct analysis of compounds separated by thin-layer chromatography

    OpenAIRE

    Cegłowski, Michał; Smoluch, Marek; Reszke, Edward; Silberring, Jerzy; Schroeder, Grzegorz

    2015-01-01

    A thin-layer chromatography-mass spectrometry (TLC-MS) setup for characterization of low molecular weight compounds separated on standard TLC plates has been constructed. This new approach successfully combines TLC separation, laser ablation, and ionization using flowing atmospheric pressure afterglow (FAPA) source. For the laser ablation, a low-priced 445-nm continuous-wave diode laser pointer, with a power of 1 W, was used. The combination of the simple, low-budget laser pointer and the FAP...

  11. Atmospheric pressure dielectric barrier discharges for sterilization and surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chin, O. H.; Lai, C. K.; Choo, C. Y.; Wong, C. S.; Nor, R. M. [Plasma Technology Research Centre, Physics Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Thong, K. L. [Microbiology Division, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-04-24

    Atmospheric pressure non-thermal dielectric barrier discharges can be generated in different configurations for different applications. For sterilization, a parallel-plate electrode configuration with glass dielectric that discharges in air was used. Gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and Gram-positive bacteria (Bacillus cereus) were successfully inactivated using sinusoidal high voltage of ∼15 kVp-p at 8.5 kHz. In the surface treatment, a hemisphere and disc electrode arrangement that allowed a plasma jet to be extruded under controlled nitrogen gas flow (at 9.2 kHz, 20 kVp-p) was applied to enhance the wettability of PET (Mylar) film.

  12. Luminous Activity Study of a Long Atmospheric Pressure DBD Afterglow

    Institute of Scientific and Technical Information of China (English)

    E.PANOUSIS; F.CLEMENT; N.SPYROU; J.F.LOISEAU; C.MONGE; B.HELD

    2007-01-01

    The experimental work reported here is devoted to the study of the luminous activity of a long dielectric barrier discharge (DBD) afterglow at atmospheric pressure.The discharge plasma is generated in a commercially available (AcXys Technologies) reactor,using a N2 flow of a few tens SL/min,whereas the luminous afterglow when channelled into a quartz tube extends at a distance of 50 cm,finishing in a luminous arrow at the tube's exit.The luminous activity of the afterglow is studied by means of photomultiplier scans and optical emission spectroscopy,revealing an interesting transient phase.An attempt is made to correlate this effect with the active species' creation and destruction mechanisms.

  13. Sterilization of Turmeric by Atmospheric Pressure Dielectric Barrier Discharge Plasma

    Science.gov (United States)

    Setareh, Salarieh; Davoud, Dorranian

    2013-11-01

    In this study atmospheric pressure dielectric barrier discharge (DBD) plasma has been employed for sterilizing dry turmeric powders. A 6 kV, 6 kHz frequency generator was used to generate plasma with Ar, Ar/O2, He, and He/O2 gases between the 5 mm gap of two quartz covered electrodes. The complete sterilization time of samples due to plasma treatment was measured. The most important contaminant of turmeric is bacillus subtilis. The results show that the shortest sterilization time of 15 min is achieved by exposing the samples to Ar/O2 plasma. Survival curves of samples are exponential functions of time and the addition of oxygen to plasma leads to a significant increase of the absolute value of time constant of the curves. Magnitudes of protein and DNA in treated samples were increased to a similar value for all samples. Taste, color, and solubility of samples were not changed after the plasma treatment.

  14. Development of ac corona discharge modes at atmospheric pressure

    International Nuclear Information System (INIS)

    Corona discharges in gases exist under several distinctive forms. In this paper, a survey study has been made of ac corona discharge modes generated in some different gases fed in a wire-duct reactor with a constant rate of flowing at atmospheric pressure. The properties of different corona modes are analyzed under some condition transitions from Trichel pulses to a steady glow. In the course of the presented experimental work, numerous apparent contradictions with earlier observations necessitated further study and are given to provide more information on the physical mechanisms of the ac corona discharges. Furthermore, we have gained insight into some new technologies and applications of the environmentally friendly corona and plasma discharges.

  15. Atmospheric-Pressure Plasma Cleaning of Contaminated Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Robert F. Hicks; Gary S. Selwyn

    2001-01-09

    Project was to develop a low-cost, environmentally benign technology for the decontamination and decommissioning of transuranic waste. With the invention of the atmospheric-pressure plasma jet the goal was achieved. This device selectively etches heavy metals from surfaces, rendering objects radiation free and suitable for decommissioning. The volatile reaction products are captured on filters, which yields a tremendous reduction in the volume of the waste. Studies on tantalum, a surrogate material for plutonium, have shown that etch rate of 6.0 microns per minute can be achieved under mild conditions. Over the past three years, we have made numerous improvements in the design of the plasma jet. It may now be operated for hundreds of hours and not undergo any degradation in performance. Furthermore, small compact units have been developed, which are easily deployed in the field.

  16. Surface wave propagation characteristics in atmospheric pressure plasma column

    International Nuclear Information System (INIS)

    In the typical experiments of surface wave sustained plasma columns at atmospheric pressure the ratio of collision to wave frequency (ν/ω) is much greater than unity. Therefore, one might expect that the usual analysis of the wave dispersion relation, performed under the assumption ν/ω = 0, cannot give adequate description of the wave propagation characteristics. In order to study these characteristics we have analyzed the wave dispersion relationship for arbitrary ν/ω. Our analysis includes phase and wave dispersion curves, attenuation coefficient, and wave phase and group velocities. The numerical results show that a turning back point appears in the phase diagram, after which a region of backward wave propagation exists. The experimentally observed plasma column is only in a region where wave propagation coefficient is higher than the attenuation coefficient. At the plasma column end the electron density is much higher than that corresponding to the turning back point and the resonance

  17. Diagnostics of atmospheric pressure capillary DBD oxygen plasma jet

    CERN Document Server

    Roy, N C; Pramanik, B K

    2015-01-01

    Atmospheric pressure capillary dielectric barrier oxygen discharge plasma jet is developed to generate non-thermal plasma using unipolar positive pulse power supply. Both optical and electrical techniques are used to investigate the characteristics of the produced plasma as function of applied voltage and gas flow rate. Analytical results obtained from the optical emission spectroscopic data reveal the gas temperature, rotational temperature, excitation temperature and electron density. Gas temperature and rotational temperature are found to decrease with increasing oxygen flow rate but increase linearly with applied voltage. It is exposed that the electron density is boosting up with enhanced applied voltage and oxygen flow rate, while the electron excitation temperature is reducing with rising oxygen flow rate. Electrical characterization demonstrates that the discharge frequency is falling with flow rate but increasing with voltage. The produced plasma is applied preliminarily to study the inactivation yie...

  18. Simulation of nonstationary phenomena in atmospheric-pressure glow discharge

    Science.gov (United States)

    Korolev, Yu. D.; Frants, O. B.; Nekhoroshev, V. O.; Suslov, A. I.; Kas'yanov, V. S.; Shemyakin, I. A.; Bolotov, A. V.

    2016-06-01

    Nonstationary processes in atmospheric-pressure glow discharge manifest themselves in spontaneous transitions from the normal glow discharge into a spark. In the experiments, both so-called completed transitions in which a highly conductive constricted channel arises and incomplete transitions accompanied by the formation of a diffuse channel are observed. A model of the positive column of a discharge in air is elaborated that allows one to interpret specific features of the discharge both in the stationary stage and during its transition into a spark and makes it possible to calculate the characteristic oscillatory current waveforms for completed transitions into a spark and aperiodic ones for incomplete transitions. The calculated parameters of the positive column in the glow discharge mode agree well with experiment. Data on the densities of the most abundant species generated in the discharge (such as atomic oxygen, metastable nitrogen molecules, ozone, nitrogen oxides, and negative oxygen ions) are presented.

  19. Electrical characterization of atmospheric pressure dielectric barrier discharge in air

    International Nuclear Information System (INIS)

    This paper reports the electrical characterization of dielectric barrier discharge produced at atmospheric pressure using a high voltage power supply operating at 50Hz. The characteristics of the discharge have been studied under different values as such applied voltage and the electrode gap width. The results presented in this work can be helpful in understanding the influence of dielectric material on the nature of the discharge. An attempt has also been made to investigate the influence of ballast resistor on the magnitude of discharge current and also the density of micro-discharges. Our results indicated that with this power supply and electrode geometry, a relatively more homogenous discharge is observed for 3 mm spacing. (author)

  20. Controlled Microdroplet Transport in an Atmospheric Pressure Microplasma

    CERN Document Server

    Maguire, P D; Kelsey, C P; Bingham, A; Montgomery, E P; Bennet, E D; Potts, H E; Rutherford, D; McDowell, D A; Diver, D A; Mariotti, D

    2015-01-01

    We report the controlled injection of near-isolated micron-sized liquid droplets into a low temperature He-Ne steady-state rf plasma at atmospheric pressure. The H2O droplet stream is constrained within a 2 mm diameter quartz tube. Imaging at the tube exit indicates a log-normal droplet size distribution with an initial count mean diameter of 15 micrometers falling to 13 micrometers with plasma exposure. The radial velocity profile is approximately parabolic indicating near laminar flow conditions with the majority of droplets travelling at >75% of the local gas speed and having a plasma transit time of < 100 microseconds. The maximum gas temperature, determined from nitrogen spectral lines, was below 400 K and the observed droplet size reduction implies additional factors beyond standard evaporation, including charge and surface chemistry effects. The successful demonstration of controlled microdroplet streams opens up possibilities for gas-phase microreactors and remote delivery of active species for pla...

  1. Sterilization of Surfaces with a Handheld Atmospheric Pressure Plasma

    Science.gov (United States)

    Hicks, Robert; Habib, Sara; Chan, Wai; Gonzalez, Eleazar; Tijerina, A.; Sloan, Mark

    2009-10-01

    Low temperature, atmospheric pressure plasmas have shown great promise for decontaminating the surfaces of materials and equipment. In this study, an atmospheric pressure, oxygen and argon plasma was investigated for the destruction of viruses, bacteria, and spores. The plasma was operated at an argon flow rate of 30 L/min, an oxygen flow rate of 20 mL/min, a power density of 101.0 W/cm^3 (beam area = 5.1 cm^2), and at a distance from the surface of 7.1 mm. An average 6log10 reduction of viable spores was obtained after only 45 seconds of exposure to the reactive gas. By contrast, it takes more than 35 minutes at 121^oC to sterilize anthrax in an autoclave. The plasma properties were investigated by numerical modeling and chemical titration with nitric oxide. The numerical model included a detailed reaction mechanism for the discharge as well as for the afterglow. It was predicted that at a delivered power density of 29.3 W/cm^3, 30 L/min argon, and 0.01 volume% O2, the plasma generated 1.9 x 10^14 cm-3 O atoms, 1.6 x 10^12 cm-3 ozone, 9.3 x 10^13 cm-3 O2(^1δg), and 2.9 x 10^12 cm-3 O2(^1σ^+g) at 1 cm downstream of the source. The O atom density measured by chemical titration with NO was 6.0 x 10^14 cm-3 at the same conditions. It is believe that the oxygen atoms and the O2(^1δg) metastables were responsible for killing the anthrax and other microorganisms.

  2. Mass Spectrometry of Atmospheric Pressure Surface Wave Discharges

    Science.gov (United States)

    Ridenti, M. A.; Souza-Corrêa, J. A.; Amorim, J.

    2016-05-01

    By applying mass spectrometry techniques, we carried out measurements of ionic mass spectrum and their energy distribution in order to investigate an atmospheric argon discharge by using a surfatron surface-wave device. The mass and energy distribution measurements were performed with fixed flow rate (2.5 SLM) of pure argon gas (99.999%) and different Ar-O2 gas mixture compositions (99-1, 98-2 and 97-3). The mass spectra and energy distributions were recorded for Ar+, O+, O+ 2, N+ and N2 +. The axial distribution profiles of ionic mass and their energy were obtained for different experimental conditions as a function of the plasma length. The results showed that the peak of the positive ion energy distributions shifted to higher energies and also that the distribution width increased as the distance between the sampling orifice and the launcher gap was increased. It was also found that under certain experimental conditions the ion flux of atomic species were higher than the ion flux of their diatomic counterpart. The motivation of this study was to obtain a better understanding of a surface wave discharge in atmospheric pressure that may play a key role on new second generation biofuel technologies.

  3. Atmospheric Pressure Effects on Cryogenic Storage Tank Boil-Off

    Science.gov (United States)

    Sass, J. P.; Frontier, C. R.

    2007-01-01

    The Cryogenics Test Laboratory (CTL) at the Kennedy Space Center (KSC) routinely utilizes cryostat test hardware to evaluate comparative and absolute thermal conductivities of a wide array of insulation systems. The test method is based on measurement of the flow rate of gas evolved due to evaporative boil-off of a cryogenic liquid. The gas flow rate typically stabilizes after a period of a couple of hours to a couple of days, depending upon the test setup. The stable flow rate value is then used to calculate the thermal conductivity for the insulation system being tested. The latest set of identical cryostats, 1,000-L spherical tanks, exhibited different behavior. On a macro level, the flow rate did stabilize after a couple of days; however the stable flow rate was oscillatory with peak to peak amplitude of up to 25 percent of the nominal value. The period of the oscillation was consistently 12 hours. The source of the oscillation has been traced to variations in atmospheric pressure due to atmospheric tides similar to oceanic tides. This paper will present analysis of this phenomenon, including a calculation that explains why other cryostats are not affected by it.

  4. Trends in surface engineering of biomaterials: atmospheric pressure plasma deposition of coatings for biomedical applications

    Science.gov (United States)

    da Ponte, G.; Sardella, E.; Fanelli, F.; D'Agostino, R.; Favia, P.

    2011-11-01

    Cold plasma processes for surface engineering of biomaterials and biomedical devices are traditionally performed at low pressure; more and more, though, surface modification plasma processes at atmospheric pressure are also gaining popularity. This short review is aimed to list briefly atmospheric pressure plasma processes reported, in the last decade, for adapting the surface of materials to the best interactions with cells, bacteria and biomolecules.

  5. Development of Simplified Atmospheric-Pressure Plasma Nitriding

    Science.gov (United States)

    Yamamoto, Hirofumi; Ichiki, Ryuta; Maeda, Akihide; Yamanouchi, Kenta; Akamine, Shuichi; Kanazawa, Seiji; Oita University Team

    2015-09-01

    Nitriding treatment is one of the surface hardening technologies, applied to dies and automobile components. In recent industry, low-pressure nitriding treatment using vacuum system is mainstream. On the other hand, we have originally developed an atmospheric-pressure plasma nitriding which do not need vacuum system. However we needed an air-tight container to purge residual oxygen and external heater to control treatment temperature. To make this technique practical, we addressed to construct a simplified treatment system, where treatment temperature is controlled by thermal plasma itself and oxygen purging is achieved by a simple cover. This means that any air-tight container and external heater is not necessary. As a result, surface temperature is controlled by changing treatment gap from nozzle tip to steel surface. We succeeded in controlling well thickness of hardened layer by adjusting treatment temperature even in such a simplified system. In the conference, we also discuss experimental results for hardening complex shaped materials by using our simplified nitriding.

  6. Delayed responses of analyte emission in a pulse-modulated direct-current argon arc at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmanovic, M; Rankovic, D [Faculty of Physical Chemistry, University of Belgrade, PO Box 137, 11000 Belgrade (Serbia); Savovic, J; Pavlovic, M S; Stoiljkovic, M; Momcilovic, M, E-mail: lelas@vinca.r [Laboratory of Physical Chemistry, Institute Vinca, PO Box 522, 11001 Belgrade (Serbia)

    2010-12-15

    A pulse-modulated direct-current argon arc burning at atmospheric pressure has been investigated by analyzing temporally and spatially resolved analyte emission responses in a millisecond time domain. The arc current was a rectangular pulse modulated between 9 and 3.5 A with a modulation period of 250 ms and a low current interval of up to 50 ms. Both positive and negative step modulation in current strongly affected the analyte emission. Delayed responses of representative analytes with ionization energies ranging from 6.5 to 10 eV have been studied. Depending on the analyte ionization energy and the plasma zone observed, a sudden current change was in most cases followed by a line intensity increase. The magnitude of this increase is correlated with changes in the ionization-recombination balance, the extent of demixing and the gas dynamics processes invoked by a current modulation. For analytes with medium and low ionization energies a current drop is accompanied by a large increase in signal-to-background ratio, which opens up the possibility of the use of arc current modulation for sensitivity improvement.

  7. Analytical approach to cosmic ray ionization by nuclei with charge Z in the middle atmosphere - Distribution of galactic CR effects

    Science.gov (United States)

    Velinov, P. I. Y.; Mateev, L.

    2008-11-01

    The effects of galactic and solar cosmic rays (CR) in the middle atmosphere are considered in this work. A new analytical approach for CR ionization by protons and nuclei with charge Z in the lower ionosphere and middle atmosphere is developed in this paper. For this purpose the ionization losses (d E/d h) according to the Bohr-Bethe-Bloch formula for the energetic charged particles are approximated in three different energy intervals. More accurate expressions for energy decrease E( h) and electron production rate profiles q( h) are derived. The obtained formulas allow comparatively easy computer programming. The integrand in q( h) gives the possibility for application of adequate numerical methods - such as Romberg method or Gauss quadrature, for the solution of the mathematical problem. On this way the process of interaction of cosmic ray particles with the upper, middle and lower atmosphere will be described much more realistically. Computations for cosmic ray ionization in the middle atmosphere are made. The full CR composition is taken into account: protons, Helium ( α-particles), light L, medium M, heavy H and very heavy VH group of nuclei.

  8. Pressure of a partially ionized hydrogen gas: numerical results from exact low temperature expansions

    Energy Technology Data Exchange (ETDEWEB)

    Alastuey, A. [Laboratoire de Physique, ENS Lyon, CNRS, Lyon (France); Ballenegger, V. [Institut UTINAM, Universite de Franche-Comte, CNRS, Besancon (France)

    2010-01-15

    We consider a partially ionized hydrogen gas at low densities, where it reduces almost to an ideal mixture made with hydrogen atoms in their ground-state, ionized protons and ionized electrons. By performing systematic low-temperature expansions within the physical picture, in which the system is described as a quantum electron-proton plasma interacting via the Coulomb potential, exact formulae for the first.ve leading corrections to the ideal Saha equation of state have been derived[A. Alastuey, V. Ballenegger et al., J. Stat. Phys. 130, 1119 (2008)]. Those corrections account for all effects of interactions and thermal excitations up to order exp(E{sub H} /kT) included, where E{sub H} {approx_equal} -13.6 eV is the ground state energy of the hydrogen atom. Among the.ve leading corrections, three are easy to evaluate, while the remaining ones involve suitably truncated internal partition functions of H{sub 2} molecules and H{sup -} and H{sub 2}{sup +} ions, for which no analytical formulae are available in closed form. We estimate those partitions functions at.nite temperature via a simple phenomenology based on known values of rotational and vibrational energies. This allows us to compute numerically the leading deviations to the Saha pressure along several isotherms and isochores. Our values are compared with those of the OPAL tables (for pure hydrogen) calculated within the ACTEX method (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Atmospheric ionization by high-fluence, hard spectrum solar proton events and their probable appearance in the ice core archive

    CERN Document Server

    Melott, Adrian L; Laird, Claude M; Neuenswander, Ben; Atri, Dimitra

    2016-01-01

    Solar energetic particles ionize the atmosphere, leading to production of nitrogen oxides. It has been suggested that some such events are visible as layers of nitrate in ice cores, yielding archives of energetic, high fluence solar proton events (SPEs). There has been controversy, due to slowness of transport for these species down from the upper stratosphere; past numerical simulations based on an analytic calculation have shown very little ionization below the mid stratosphere. These simulations suffer from deficiencies: they consider only soft SPEs and narrow energy ranges; spectral fits are poorly chosen; with few exceptions secondary particles in air showers are ignored. Using improved simulations that follow development of the proton-induced air shower, we find consistency with recent experiments showing substantial excess ionization down to 5 km. We compute nitrate available from the 23 February 1956 SPE, which had a high fluence, hard spectrum, and well-resolved associated nitrate peak in a Greenland...

  10. PRESSURE COMPENSATION METHOD OF UNDERWATER HYDRAULIC SYSTEM WITH HYDRAULIC POWER UNIT BEING UNDER ATMOSPHERIC CIRCUMSTANCE AND PRESSURE COMPENSATED VALVE

    Institute of Scientific and Technical Information of China (English)

    Wang Qingfeng; Li Yanmin; Zhong Tianyu; Xu Guohua

    2005-01-01

    Based on the analysis of the-state-of-the-art of pressure compensation of underwater hydraulic systems (UHSs), a new method of pressure compensation of UHSs, whose hydraulic power unit is in the atmospheric circumstance, is proposed. And a pilot-operated relief valve with pressure compensation is realized. The pressure compensation precision is guaranteed by direct detection. Its dynamic performance and stability are improved by a dynamic feedback. Theoretical study, simulation and experiment show that the pilot-operated relief valve with pressure compensation has a fine property of tracking underwater ambient pressure and meet the requirement of underwater ambient pressure compensation.

  11. High Pressure Atmospheric Sampling Inlet System for Venus or the Gas Giants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a miniaturized high pressure atmospheric sampling inlet system for sample acquisition in extreme planetary environments,...

  12. Study of short atmospheric pressure dc glow microdischarge in air

    Science.gov (United States)

    Kudryavtsev, Anatoly; Bogdanov, Eugene; Chirtsov, Alexander; Emelin, Sergey

    2011-10-01

    The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen and oxygen atoms; ozone molecule; and different nitrogen and oxygen ions with different plasmochemical reactions between them. Simulations predicted the main regions of the dc glow discharges including cathode and anode sheath and plasma of negative glow, Faraday dark space and transition region. Gas heating plays an important role in shaping the discharge profiles. The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen

  13. Atmospheric pressure X-ray photoelectron spectroscopy apparatus: Bridging the pressure gap.

    Science.gov (United States)

    Velasco-Vélez, J J; Pfeifer, V; Hävecker, M; Wang, R; Centeno, A; Zurutuza, A; Algara-Siller, G; Stotz, E; Skorupska, K; Teschner, D; Kube, P; Braeuninger-Weimer, P; Hofmann, S; Schlögl, R; Knop-Gericke, A

    2016-05-01

    One of the main goals in catalysis is the characterization of solid/gas interfaces in a reaction environment. The electronic structure and chemical composition of surfaces become heavily influenced by the surrounding environment. However, the lack of surface sensitive techniques that are able to monitor these modifications under high pressure conditions hinders the understanding of such processes. This limitation is known throughout the community as the "pressure gap." We have developed a novel experimental setup that provides chemical information on a molecular level under atmospheric pressure and in presence of reactive gases and at elevated temperatures. This approach is based on separating the vacuum environment from the high-pressure environment by a silicon nitride grid-that contains an array of micrometer-sized holes-coated with a bilayer of graphene. Using this configuration, we have investigated the local electronic structure of catalysts by means of photoelectron spectroscopy and in presence of gases at 1 atm. The reaction products were monitored online by mass spectrometry and gas chromatography. The successful operation of this setup was demonstrated with three different examples: the oxidation/reduction reaction of iridium (noble metal) and copper (transition metal) nanoparticles and with the hydrogenation of propyne on Pd black catalyst (powder). PMID:27250406

  14. Influence of geomagnetic activity and atmospheric pressure on human arterial pressure during the solar cycle 24

    Science.gov (United States)

    Azcárate, T.; Mendoza, B.; Levi, J. R.

    2016-11-01

    We performed a study of the systolic (SBP) and diastolic (DBP) arterial blood pressure behavior under natural variables such as the atmospheric pressure (AtmP) and the horizontal geomagnetic field component (H). We worked with a sample of 304 healthy normotense volunteers, 152 men and 152 women, with ages between 18 and 84 years in Mexico City during the period 2008-2014, corresponding to the minimum, ascending and maximum phases of the solar cycle 24. The data was divided by gender, age and day/night cycle. We studied the time series using three methods: Correlations, bivariate and superposed epochs (within a window of three days around the day of occurrence of a geomagnetic storm) analysis, between the SBP and DBP and the natural variables (AtmP and H). The correlation analysis indicated correlation between the SBP and DBP and AtmP and H, being the largest during the night. Furthermore, the correlation and bivariate analysis showed that the largest correlations are between the SBP and DBP and the AtmP. The superposed epoch analysis found that the largest number of significant SBP and DBP changes occurred for women. Finally, the blood pressure changes are larger during the solar minimum and ascending solar cycle phases than during the solar maximum; the storms of the minimum were more intense than those of the maximum and this could be the reason of behavior of the blood pressure changes along the solar cycle.

  15. Radiation emitted by a slightly ionized nonideal high-pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Uchtmann, H.; Popielawski, J.; Hensel, F.

    1981-07-01

    The paper presents first measurements of the optical emissivity of a slightly ionized mercury plasma at a temperature T of 1600/sup 0/C in the pressure range from p=400 bar to p=1925 bar corresponding to a density range from d=0.45 g/cm/sup 3/ to about d=4.1 g/cm/sup 3/. For densities smaller than about 3 g/cm/sup 3/ where a broad featureless emission band is observed in the visible spectral range the results can be explained in terms of absorption by excitonic states of large randomly distributed Hg-clusters. The experimental data above 3 g/cm/sup 3/ show additional strongly density dependent emission tails in the infrared spectral range. A comparison of these results with a recent computer study leads to the conclusion that the infrared emissivity is due to electrons localized in clusters of high atomic densities.

  16. Selective-Reagent-Ionization Mass Spectrometry: New Prospects for Atmospheric Research

    Science.gov (United States)

    Sulzer, Philipp; Jordan, Alfons; Hartungen, Eugen; Hanel, Gernot; Jürschik, Simone; Herbig, Jens; Märk, Lukas; Märk, Tilmann D.

    2014-05-01

    Proton-Transfer-Reaction Mass Spectrometry (PTR-MS), which was introduced to the scientific community in the 1990's, has quickly evolved into a well-established technology for atmospheric research and environmental chemistry [1]. Advantages of PTR-MS are i) high sensitivities of several hundred cps/ppbv, ii) detection limits at or below the pptv level, iii) direct injection sampling (i.e. no sample preparation), iv) response times in the 100 ms regime and v) online quantification. However, one drawback is a somehow limited selectivity, as in case of quadrupole mass filter based instruments only information about nominal m/z are available. In Time-Of-Flight (TOF) mass analyzer based instruments selectivity is drastically increased by a high mass resolution of up to 8000 m/Δm, but e.g. isomers still cannot be separated. In 2009 we introduced an advanced version of PTR-MS, which permits switching the reagent ions from H3O+ to NO+ and O2+, respectively [2]. This novel type of instrumentation was called Selective-Reagent-Ionization Mass Spectrometry (SRI-MS) and has been successfully used to separate isomers, e.g. the biogenic compounds isoprene and 2-methyl-3-buten-2-ol as shown by Karl et al. [3]. Switching the reagent ions dramatically increases selectivity and thus applicability of SRI-MS in atmospheric research. Here we report on the latest results utilizing an even more advanced embodiment of SRI-MS enabling the use of the additional reagent ions Kr+ and Xe+ [4]. With this technology important atmospheric compounds, such as CO2, CO, CH4, O2, etc. can be quantified and selectivity is increased even further. We present comparison data between diesel and gasoline car exhaust gases and quantitative data on indoor air for these compounds, which are not detectable with classical PTR-MS. Additionally, we show very recent examples of isomers which cannot be separated with PTR-MS but can clearly be distinguished with SRI-MS. Finally, we give an overview of ongoing SRI

  17. Thermal mass loss of protoplanetary cores with hydrogen-dominated atmospheres: The influences of ionization and orbital distance

    CERN Document Server

    Erkaev, N V; Odert, P; Kislyakova, K G; Johnstone, C P; Güdel, M; Khodachenko, M L

    2016-01-01

    We investigate the loss rates of the hydrogen atmospheres of terrestrial planets with a range of masses and orbital distances by assuming a 100 times stronger soft X-ray and extreme ultraviolet (XUV) flux. We apply a 1D upper atmosphere radiation absorption and hydrodynamic escape model that takes into account ionization, dissociation and recombination to calculate hydrogen mass loss rates. We study the effect of the ionization, dissociation and recombination on the thermal mass loss rates of hydrogen-dominated super-Earths and compare the results with those obtained by the energy-limited escape formula which is widely used for mass loss evolution studies. Our results indicate that the energy-limited formula can to a great extent over- or underestimate the hydrogen mass loss rates by amounts that depend on the stellar XUV flux and planetary parameters such as mass, size, effective temperature, and XUV absorption radii.

  18. Effects of a Relativistic Electron Beam Interaction with the Upper Atmosphere: Ionization, X-Rays, and Optical Emissions

    Science.gov (United States)

    Marshall, R. A.; Nicolls, M. J.; Sanchez, E. R.; Lehtinen, N. G.; Neilson, J.

    2014-12-01

    An artificial beam of relativistic (0.5--10 MeV) electrons has been proposed as an active experiment in the ionosphere and magnetosphere, with applications to magnetic field-line tracing, studies of wave-particle interactions, and beam-atmosphere interactions. The beam-atmosphere interaction, while a scientific endeavor of its own, also provides key diagnostics for other experiments. We present results of Monte Carlo simulations of the interaction of a beam of relativistic electrons with the upper atmosphere as they are injected downwards from a notional high altitude (thermospheric / ionospheric) injection platform. The beam parameters, defined by realistic parameters of a compact linear accelerator, are used to create a distribution of thousands of electrons. Each electron is injected downwards from 300 km altitude towards the dense atmosphere, where it undergoes elastic and inelastic collisions, leading to secondary ionization, optical emissions, and X-rays via bremsstrahlung. Here we describe the Monte Carlo model and present calculations of diagnostic outputs, including optical emissions, X-ray fluxes, secondary ionization, and backscattered energetic electron fluxes. Optical emissions are propagated to the ground through the lower atmosphere, including the effects of atmospheric absorption and scattering, to estimate the brightness of the emission column for a given beam current and energy. Similarly, X-ray fluxes are propagated to hypothetical detectors on balloons and satellites, taking into account Compton scattering and photoabsorption. Secondary ionization is used to estimate the radar signal returns from various ground-based radar facilities. Finally, simulated backscattered electron fluxes are measured at the injection location. The simulation results show that for realizable accelerator parameters, each of these diagnostics should be readily detectable by appropriate instruments.

  19. Some new aspects of the transient ionization layer of comet Siding Spring origin in the Martian upper atmosphere

    Science.gov (United States)

    Venkateswara Rao, N.; ManasaMohana, P.; Jayaraman, A.; Rao, S. V. B.

    2016-04-01

    The close encounter of comet Siding Spring with Mars resulted in the formation of a dense transient ionization layer in the Martian upper atmosphere at altitudes between 80 and 120 km. Instruments on three spacecraft orbiting Mars detected the presence of this layer, as reported in previous publications. In this study, we reanalyzed the ionograms of the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) instrument on Mars Express to get further insight about the recurrence of the layer. For this purpose, data from three periapsis passes of MARSIS that took place 5 h, 12 h, and 19 h after peak dust deposition are used. We found that the transient ionization layer was sustained at least for 19 h on the nightside and 12 h on the dayside. While the peak density of the layer on the nightside gradually decreases from orbit to orbit, it does not change much on the dayside. Some ionograms in all three orbits show two transient ionization layers that are separated by ~60 km in apparent altitude. These double layers occur preferentially in regions of strong vertical magnetic fields. The bottom layer of the double structure is probably an oblique echo due to reflections from ionization bulges (formed in regions of vertical magnetic fields) at altitudes of the transient ionization layer. Horizontal bifurcation of the original layer is considered as another plausible mechanism for explaining the double-layer structure.

  20. The effects of atmospheric pressure on infrared reflectance spectra of Martian analogs

    Science.gov (United States)

    Bishop, Janice L.; Pieters, Carle M.; Pratt, Stephen F.; Patterson, William

    1993-01-01

    The use of terrestrial samples as analogs of Mars soils are complicated by the Martian atmosphere. Spectral features due to the Martian atmosphere can be removed from telescopic spectra of Mars and ISM spectra of Mars, but this does not account for any spectral differences resulting from atmospheric pressure or any interactions between the atmosphere and the surface. We are examining the effects of atmospheric pressure on reflectance spectra of powdered samples in the laboratory. Contrary to a previous experiment with granite, no significant changes in albedo or the Christiansen feature were observed from 1 bar pressure down to a pressure of 8 micrometers Hg. However, reducing the atmospheric pressure does have a pronounced affect on the hydration features, even for samples retained in a dry environment for years.

  1. Atmospheric pressure plasma assisted calcination of composite submicron fibers

    Science.gov (United States)

    Medvecká, Veronika; Kováčik, Dušan; Tučeková, Zlata; Zahoranová, Anna; Černák, Mirko

    2016-08-01

    The plasma assisted calcination of composite organic/inorganic submicron fibers for the preparation of inorganic fibers in submicron scale was studied. Aluminium butoxide/polyvinylpyrrolidone fibers prepared by electrospinning were treated using low-temperature plasma generated by special type of dielectric barrier discharge, so called diffuse coplanar surface barrier discharge (DCSBD) at atmospheric pressure in ambient air, synthetic air, oxygen and nitrogen. Effect of plasma treatment on base polymer removal was investigated by using Attenuated total reflectance - Fourier transform infrared (ATR-FTIR) spectroscopy. Influence of working gas on the base polymer reduction was studied by energy-dispersive X-ray spectroscopy (EDX) and CHNS elemental analysis. Changes in fibers morphology were observed by scanning electron microscopy (SEM). High efficiency of organic template removal without any degradation of fibers was observed after plasma treatment in ambient air. Due to the low-temperature approach and short exposure time, the plasma assisted calcination is a promising alternative to the conventional thermal calcination. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  2. Using atmospheric pressure plasma treatment for treating grey cotton fabric.

    Science.gov (United States)

    Kan, Chi-Wai; Lam, Chui-Fung; Chan, Chee-Kooi; Ng, Sun-Pui

    2014-02-15

    Conventional wet treatment, desizing, scouring and bleaching, for grey cotton fabric involves the use of high water, chemical and energy consumption which may not be considered as a clean process. This study aims to investigate the efficiency of the atmospheric pressure plasma (APP) treatment on treating grey cotton fabric when compared with the conventional wet treatment. Grey cotton fabrics were treated with different combinations of plasma parameters with helium and oxygen gases and also through conventional desizing, scouring and bleaching processes in order to obtain comparable results. The results obtained from wicking and water drop tests showed that wettability of grey cotton fabrics was greatly improved after plasma treatment and yielded better results than conventional desizing and scouring. The weight reduction of plasma treated grey cotton fabrics revealed that plasma treatment can help remove sizing materials and impurities. Chemical and morphological changes in plasma treated samples were analysed by FTIR and SEM, respectively. Finally, dyeability of the plasma treated and conventional wet treated grey cotton fabrics was compared and the results showed that similar dyeing results were obtained. This can prove that plasma treatment would be another choice for treating grey cotton fabrics. PMID:24507269

  3. Pulsed, atmospheric pressure plasma source for emission spectrometry

    Science.gov (United States)

    Duan, Yixiang; Jin, Zhe; Su, Yongxuan

    2004-05-11

    A low-power, plasma source-based, portable molecular light emission generator/detector employing an atmospheric pressure pulsed-plasma for molecular fragmentation and excitation is described. The average power required for the operation of the plasma is between 0.02 W and 5 W. The features of the optical emission spectra obtained with the pulsed plasma source are significantly different from those obtained with direct current (dc) discharge higher power; for example, strong CH emission at 431.2 nm which is only weakly observed with dc plasma sources was observed, and the intense CN emission observed at 383-388 nm using dc plasma sources was weak in most cases. Strong CN emission was only observed using the present apparatus when compounds containing nitrogen, such as aniline were employed as samples. The present apparatus detects dimethylsulfoxide at 200 ppb using helium as the plasma gas by observing the emission band of the CH radical. When coupled with a gas chromatograph for separating components present in a sample to be analyzed, the present invention provides an apparatus for detecting the arrival of a particular component in the sample at the end of the chromatographic column and the identity thereof.

  4. Basic characteristics of an atmospheric pressure rf generated plasma jet

    Institute of Scientific and Technical Information of China (English)

    Wang Shou-Guo; Li Hai-Jiang; Ye Tian-Chun; Zhao Ling-Li

    2004-01-01

    A plasma jet has been developed which operates using radio frequency (rf) power and produces a stable homogeneous discharge at atmospheric pressure. Its discharge characteristics, especially the dependence of stable discharge operating range on the feed gas, were studied, and the electric parameters such as RMS current, RMS voltage and reflected power were obtained with different gas flows. These studies indicate that there is an optimum range of operation of the plasma jet for a filling with a gas mixture of He and O2. Two "failure" modes of the discharge are identified.One is a filamentary arc when the input power is raised above a critical level, another is that the discharge disappears gradually as the addition of O2 approaches 3.2%. Possible explanations for the two failure modes have been given. The current and voltage waveform measurements show that there is a clear phase shift between normal and failure modes.In addition, Ⅰ-Ⅴ curves as a function of pure helium and for 1% addition of oxygen have been studied.

  5. Methane coupling in microwave plasma under atmospheric pressure

    Institute of Scientific and Technical Information of China (English)

    Changsheng Shen; Dekun Sun; Hongsheng Yang

    2011-01-01

    Methane coupling in microwave plasma under atmospheric pressure has been investigated.The effects of molar ratio n(CH4)/n(H2),flow rate and microwave power on the reaction have been studied.(1) With the decrease of n(CH4)/n(H2) ratio,methane conversion,C2 hydrocarbon yield,energy yield and space-time yield of acetylene increased,but the yield of carbon deposit decreased.(2) With the increase of microwave power,energy yield of acetylene decreased,but space-time yield of acetylene increased.(3) With the increase of flow rate,energy yield and space-time yield of acetylene increased first and then decreased.Finally,under the reaction conditions of CH4 flow rate of 700 mL/min,n(CH4)/n(H2) ratio of 1/4 and microwave power of 400 W,the energy yield and space-time yield of acetylene could reach 0.337 mmol/kJ and 12.3 mol/(s·m3),respectively.The reaction mechanism of methane coupling in microwave plasma has been investigated based on the thermodynamics of chemical reaction.Interestingly,the acetylene yield of methane coupling in microwave plasma was much higher than the maximum thermodynamic yield of acetylene.This phenomenon was tentatively explained from non-expansion work in the microwave plasma system.

  6. On the mechanism of atmospheric pressure plasma plume

    Science.gov (United States)

    Chen, Longwei; Zhao, Peng; Shu, Xingsheng; Shen, Jie; Meng, Yuedong

    2010-08-01

    For the purpose of unveiling the parameters influencing the length of atmospheric pressure plasma plume, an over 165 cm long argon plasma plume is generated in the quartz tube attached to the nozzle of the device. Dependence of plasma length on discharge parameters such as applied voltage, frequency of power supply, and argon gas flow rate was investigated. Experimental results indicated that (a) the applied voltage plays crucial roles on plasma plume length, that is, the plasma plume length exponentially increases with the applied voltage, (b) the plasma plume length increases with frequency, more obviously when the applied voltage is higher, (c) the plasma plume length increases with argon gas flow rate, reaches its maximum at critical value of the gas flow rate, and then decreases again. An evaluation of the physical phenomena involved in streamer propagation, particularly of the energy balance, was investigated. The numerical results were qualitatively consistent with previous experimental results by successfully indicating the high velocity of "plasma bullet" and providing physical mechanism of energy balance determining streamer length.

  7. Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hao; ZHU Fengsen; TU Xin; BO Zheng; CEN Kefa; LI Xiaodong

    2016-01-01

    In this work,a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions.The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals,high speed photography,and optical emission spectroscopic diagnostics.Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g.,10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone,in this RGA system,a lower gas flow rate (e.g.,2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions.Two different motion patterns can be clearly observed in the N2 and air RGA plasmas.The time-resolved arc voltage signals show that three different arc dynamic modes,the arc restrike mode,takeover mode,and combined modes,can be clearly identified in the RGA plasmas.The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate.

  8. Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas

    Science.gov (United States)

    Zhang, Hao; Zhu, Fengsen; Tu, Xin; Bo, Zheng; Cen, Kefa; Li, Xiaodong

    2016-05-01

    In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals, high speed photography, and optical emission spectroscopic diagnostics. Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g., 10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone, in this RGA system, a lower gas flow rate (e.g., 2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions. Two different motion patterns can be clearly observed in the N2 and air RGA plasmas. The time-resolved arc voltage signals show that three different arc dynamic modes, the arc restrike mode, takeover mode, and combined modes, can be clearly identified in the RGA plasmas. The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate. supported by National Natural Science Foundation of China (No. 51576174), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120101110099) and the Fundamental Research Funds for the Central Universities (No. 2015FZA4011)

  9. Ultrasonic nebulization atmospheric pressure glow discharge - Preliminary study

    Science.gov (United States)

    Greda, Krzysztof; Jamroz, Piotr; Pohl, Pawel

    2016-07-01

    Atmospheric pressure glow microdischarge (μAPGD) generated between a small-sized He nozzle jet anode and a flowing liquid cathode was coupled with ultrasonic nebulization (USN) for analytical optical emission spectrometry (OES). The spatial distributions of the emitted spectra from the novel coupled USN-μAPGD system and the conventional μAPGD system were compared. In the μAPGD, the maxima of the intensity distribution profiles of the atomic emission lines Ca, Cd, In, K, Li, Mg, Mn, Na and Sr were observed in the near cathode region, whereas, in the case of the USN-μAPGD, they were shifted towards the anode. In the novel system, the intensities of the analytical lines of the studied metals were boosted from several to 35 times. As compared to the conventional μAPGD-OES with the introduction of analytes through the sputtering and/or the electrospray-like nebulization of the flowing liquid cathode solution, the proposed method with the USN introduction of analytes in the form of a dry aerosol provides improved detectability of the studied metals. The detection limits of metals achieved with the USN-μAPGD-OES method were in the range from 0.08 μg L- 1 for Li to 52 μg L- 1 for Mn.

  10. Characterization of aromaticity in analogues of titan's atmospheric aerosols with two-step laser desorption ionization mass spectrometry

    CERN Document Server

    Mahjoub, Ahmed; Carrasco, Nathalie; Benilan, Yves; Cernogora, Guy; Szopa, Cyril; Gazeau, Marie-Claire

    2016-01-01

    The role of polycyclic aromatic hydrocarbons (PAH) and Nitrogen containing PAH (PANH) as intermediates of aerosol production in the atmosphere of Titan has been a subject of controversy for a long time. An analysis of the atmospheric emission band observed by the Visible and Infrared Mapping Spectrometer (VIMS) at 3.28 micrometer suggests the presence of neutral polycyclic aromatic species in the upper atmosphere of Titan. These molecules are seen as the counter part of negative and positive aromatics ions suspected by the Plasma Spectrometer onboard the Cassini spacecraft, but the low resolution of the instrument hinders any molecular speciation. In this work we investigate the specific aromatic content of Titan's atmospheric aerosols through laboratory simulations. We report here the selective detection of aromatic compounds in tholins, Titan's aerosol analogues, produced with a capacitively coupled plasma in a N2:CH4 95:5 gas mixture. For this purpose, Two-Step Laser Desorption Ionization Time-of-Flight Ma...

  11. Blow-out limits of nonpremixed turbulent jet flames in a cross flow at atmospheric and sub-atmospheric pressures

    KAUST Repository

    Wang, Qiang

    2015-07-22

    The blow-out limits of nonpremixed turbulent jet flames in cross flows were studied, especially concerning the effect of ambient pressure, by conducting experiments at atmospheric and sub-atmospheric pressures. The combined effects of air flow and pressure were investigated by a series of experiments conducted in an especially built wind tunnel in Lhasa, a city on the Tibetan plateau where the altitude is 3650 m and the atmospheric pressure condition is naturally low (64 kPa). These results were compared with results obtained from a wind tunnel at standard atmospheric pressure (100 kPa) in Hefei city (altitude 50 m). The size of the fuel nozzles used in the experiments ranged from 3 to 8 mm in diameter and propane was used as the fuel. It was found that the blow-out limit of the air speed of the cross flow first increased (“cross flow dominant” regime) and then decreased (“fuel jet dominant” regime) as the fuel jet velocity increased in both pressures; however, the blow-out limit of the air speed of the cross flow was much lower at sub-atmospheric pressure than that at standard atmospheric pressure whereas the domain of the blow-out limit curve (in a plot of the air speed of the cross flow versus the fuel jet velocity) shrank as the pressure decreased. A theoretical model was developed to characterize the blow-out limit of nonpremixed jet flames in a cross flow based on a Damköhler number, defined as the ratio between the mixing time and the characteristic reaction time. A satisfactory correlation was obtained at relative strong cross flow conditions (“cross flow dominant” regime) that included the effects of the air speed of the cross flow, fuel jet velocity, nozzle diameter and pressure.

  12. Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the spark regime

    International Nuclear Information System (INIS)

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 1015 cm-3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 1011 cm-3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 108 cm-3.

  13. Atmospheric pressure He-air plasma jet: Breakdown process and propagation phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Begum, Asma [Independent University, Bangladesh, School of Engineering and Computer Science, Bashundhara, Dhaka (Bangladesh); Laroussi, Mounir [Old Dominion University, Department of Electrical and Computer Engineering, Norfolk, Virginia (United States); Pervez, Mohammad Rasel [Master Mind College, Department of Physics, Dhanmondi, Dhaka (Bangladesh)

    2013-06-15

    In this paper He-discharge (plasma jet/bullet) in atmospheric pressure air and its progression phenomenon has been studied experimentally using ICCD camera, optical emission spectroscopy (OES) and calibrated dielectric probe measurements. The repetitive nanosecond pulse has applied to a plasma pencil to generate discharge in the helium gas channel. The discharge propagation speed was measured from the ICCD images. The axial electric field distribution in the plasma jet is inferred from the optical emission spectroscopic data and from the probe measurement. The correlation between the jet velocities, jet length with the pulse duration is established. It shows that the plasma jet is not isolated from the input voltage along its propagation path. The discharge propagation speed, the electron density and the local and average electric field distribution along the plasma jet axis predicted from the experimental results are in good agreement with the data predicted by numerical simulation of the streamer propagation presented in different literatures. The ionization phenomenon of the discharge predicts the key ionization parameters, such as speed, peak electric field in the front, and electron density. The maximum local electric field measured by OES is 95 kV/cm at 1.3 cm of the jet axis, and average EF measured by probe is 24 kV/cm at the same place of the jet. The average and local electron density estimated are in the order of 10{sup 11} cm{sup -3} and it reaches to the maximum of 10{sup 12} cm{sup -3}.

  14. Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the spark regime

    Energy Technology Data Exchange (ETDEWEB)

    Pai, David Z; Lacoste, Deanna A; Laux, Christophe O [Laboratoire EM2C, CNRS UPR288, Ecole Centrale Paris, 92295 Chatenay-Malabry (France)

    2010-12-15

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N{sub 2} (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 10{sup 15} cm{sup -3} towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 10{sup 11} cm{sup -3} produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 10{sup 8} cm{sup -3}.

  15. Ionization Parameter as a Diagnostic of Radiation and Wind Pressures in H II Regions and Starburst Galaxies

    CERN Document Server

    Yeh, Sherry C C

    2012-01-01

    The ionization parameter U is potentially useful for measuring radiation pressure feedback from massive star clusters, as it reflects the radiation-to-gas-pressure ratio and is readily derived from mid-infrared line ratios. We consider several effects which determine the apparent value of U in HII regions and galaxies. An upper limit is set by the compression of gas by radiation pressure. The pressure from stellar winds and the presence of neutral clumps both reduce U for a given radiation intensity. The most intensely irradiated regions are selectively dimmed by internal dust absorption of ionizing photons, inducing observational bias on galactic scales. We explore these effects analytically and numerically, and use them to interpret previous observational results. We find that radiation confinement sets the upper limit log_10 U = -1 seen in individual regions. Unresolved starbursts display a maximum value of ~ -2.3. While lower, this is also consistent with a large portion of their HII regions being radiati...

  16. The growth of organosilicon film using a hexamethyldisilazane/oxygen atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chun, E-mail: chunhuang@saturn.yzu.edu.tw; Wu, Shin-Yi; Tsai, Ching-Yuan; Liu, Wei-Ting

    2013-02-01

    An atmospheric pressure plasma jet, using a hexamethyldisilazane and oxygen mixture, was used to deposit an organosilicon thin film on polycarbonate (PC) substrates. The atmospheric pressure plasma jet deposited homogeneous thin films without unfavorable contamination from the plasma source. The surface properties of the organosilicon thin films were studied as a function of oxygen gas flow rate. The atmospheric pressure plasma deposited organosilicon thin films were analyzed using Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, UV–vis spectrometry and atomic forced microscopy. Surface analysis showed that atmospheric pressure plasma deposited films are more inorganic as the oxygen flow rate increases. The UV–vis spectra, detected in the range 300–800 nm, demonstrated improved transparency in the visible region and increased absorption in UV region of the spectrum. The improved hardness of the atmospheric pressure plasma deposited PC substrates was measured using a pencil hardness testing method and this was related to the chemical composition of the plasma deposited organosilicon thin films. The plasma jet allowed deposition of the coating without a chamber. - Highlights: ► Organosilicon thin films on polycarbonate (PC) by atmospheric pressure plasma jet. ► Properties of SiOx films vary with the injected oxygen flow rate in the plasma jet. ► Improved hardness of atmospheric pressure plasma deposited SiOx films achieved. ► Double-pipe atmospheric pressure plasma jet suitable for chamberless deposition.

  17. The growth of organosilicon film using a hexamethyldisilazane/oxygen atmospheric pressure plasma jet

    International Nuclear Information System (INIS)

    An atmospheric pressure plasma jet, using a hexamethyldisilazane and oxygen mixture, was used to deposit an organosilicon thin film on polycarbonate (PC) substrates. The atmospheric pressure plasma jet deposited homogeneous thin films without unfavorable contamination from the plasma source. The surface properties of the organosilicon thin films were studied as a function of oxygen gas flow rate. The atmospheric pressure plasma deposited organosilicon thin films were analyzed using Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, UV–vis spectrometry and atomic forced microscopy. Surface analysis showed that atmospheric pressure plasma deposited films are more inorganic as the oxygen flow rate increases. The UV–vis spectra, detected in the range 300–800 nm, demonstrated improved transparency in the visible region and increased absorption in UV region of the spectrum. The improved hardness of the atmospheric pressure plasma deposited PC substrates was measured using a pencil hardness testing method and this was related to the chemical composition of the plasma deposited organosilicon thin films. The plasma jet allowed deposition of the coating without a chamber. - Highlights: ► Organosilicon thin films on polycarbonate (PC) by atmospheric pressure plasma jet. ► Properties of SiOx films vary with the injected oxygen flow rate in the plasma jet. ► Improved hardness of atmospheric pressure plasma deposited SiOx films achieved. ► Double-pipe atmospheric pressure plasma jet suitable for chamberless deposition

  18. Atmospheric pressure plasma treatment of flat aluminum surface

    International Nuclear Information System (INIS)

    Highlights: • DCSBD plasma is applicable for activation and cleaning of flat aluminum surfaces. • Decrease in the value of the contact angle after 1 s plasma treatment was 93%. • EDX measurements confirmed removal of oil contamination by 50% decreasing of carbon. • XPS analyze shown decrease of carbon content and increase of aluminum hydroxide and oxyhydroxide. - Abstract: The atmospheric pressure ambient air and oxygen plasma treatment of flat aluminum sheets using the so-called Diffuse Coplanar Surface Barrier Discharge (DCSBD) were investigated. The main objective of this study is to show the possibility of using DCSBD plasma source to activate and clean aluminum surface. Surface free energy measurements, X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy (SEM/EDX) and Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) were used for the characterization of the aluminum surface chemistry and changes induced by plasma treatment. Short plasma exposure times (several seconds) led to a significant increase in the surface free energy due to changes of its polar components. Various ageing effects, depending on the storage conditions were observed and discussed. Effects of air and oxygen plasmas on the removal of varying degrees of artificial hydrocarbon contamination of aluminum surfaces were investigated by the means of EDX, ATR-FTIR and XPS methods. A significant decrease in the carbon surface content after the plasma treatment indicates a strong plasma cleaning effect, which together with high energy efficiency of the DCSBD plasma source points to potential benefits of DCSBD application in processing of the flat aluminum surfaces

  19. Collaborative Research. Atmospheric Pressure Microplasma Chemistry-Photon Synergies

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung-Jin [Univ. of Illinois, Urbana, IL (United States); Eden, James Gary [Univ. of Illinois, Urbana, IL (United States)

    2015-12-01

    Combining the effects of low temperature, atmospheric pressure microplasmas and microplasma photon sources offers the promise of greatly expanding the range of applications for each of them. The plasma sources create active chemical species and these can be activated further by the addition of photons and the associated photochemistry. There are many ways to combine the effects of plasma chemistry and photochemistry, especially if there are multiple phases present. This project combined the construction of appropriate test experimental systems, various spectroscopic diagnostics and mathematical modeling. Through a continuous discussion and co-design process with the UC-Berkeley Team, we have successfully completed the fabrication and testing of all components for a microplasma array-assisted system designed for photon-activated plasma chemistry research. Microcavity plasma lamps capable of generating more than 20 mW/cm2 at 172 nm (Xe dimer) were fabricated with a custom form factor to mate to the plasma chemistry setup, and a lamp was current being installed by the Berkeley team so as to investigate plasma chemistry-photon synergies at a higher photon energy (~7.2 eV) as compared to the UVA treatment that is afforded by UV LEDs operating at 365 nm. In particular, motivated by the promising results from the Berkeley team with UVA treatment, we also produced the first generation of lamps that can generate photons in the 300-370 nm wavelength range. Another set of experiments, conducted under the auspices of this grant, involved the use of plasma microjet arrays. The combination of the photons and excited radicals produced by the plasma column resulted in broad area deactivation of bacteria.

  20. Atmospheric pressure dielectric barrier discharges interacting with liquid covered tissue

    International Nuclear Information System (INIS)

    The interaction of plasmas with liquids is of increasing importance in biomedical applications. Tissues treated by atmospheric pressure dielectric barrier discharges (DBDs) in plasma medicine are often covered by a thin layer of liquid, typically a blood serum like water with dissolved gases and proteins up to hundreds of micrometres thick. The liquid processes the plasma-produced radicals and ions prior to their reaching the tissue. In this paper, we report on a computational investigation of the interaction of DBDs in humid air with a thin water layer covering tissue. The water layer, 50–400 µm thick, contains dissolved O2aq (aq means an aqueous species) and alkane-like hydrocarbons (RHaq). In the model, the DBDs are operated with multiple pulses at 100 Hz followed by a 1 s afterglow. Gas phase reactive oxygen and nitrogen species (RONS) intersect the water-vapour saturated air above the liquid and then solvate when reaching the water. The photolysis of water by plasma-produced UV/VUV plays a significant role in the production of radicals. Without RHaq, O2aq−, ONOOaq−, NO3aq− and hydronium (H3Oaq+) dominate the water ions with H3Oaq+ determining the pH. The dominant RONS in the liquid are O3aq, H2O2aq, and HNOxaq. Dissolved O2aq assists the production of HNO3aq and HOONOaq during the afterglow. With RHaq, reactive oxygen species are largely consumed, leaving an R·aq (alkyl radical) to reach the tissue. These results are sensitive to the thickness of the water layer. (paper)

  1. Novel applications of atmospheric pressure plasma on textile materials

    Science.gov (United States)

    Cornelius, Carrie Elizabeth

    Various applications of atmospheric pressure plasma are investigated in conjunction with polymeric materials including paper, polypropylene non-woven fabric, and cotton. The effect of plasma on bulk and surface properties is examined by treating both cellulosic pulp and prefabricated paper with various plasma-gas compositions. After treatment, pulp is processed into paper and the properties are compared. The method of pulp preparation is found to be more significant than the plasma, but differences in density, strength, and surface roughness are apparent for the pulp vs. paper plasma treatments. The plasma is also used to remove sizes of PVA and starch from poly/cotton and cotton fabric respectively. In both cases plasma successfully removes a significant amount of size, but complete size removal is not achieved. Subsequent washes (PVA) or scouring (cotton) to remove the size are less successful than a control, suggesting the plasma is crosslinking the size that is not etched away. However, at short durations in cold water using an oxygen plasma, slightly more PVA is removed than with a control. For the starch sized samples, plasma and scouring are never as successful at removing starch as a conventional enzyme, but plasma improves dyeability without need for scouring. Plasma is also used to graft chemicals to the surface of polypropylene and cotton fabric. HTCC, an antimicrobial is grafted to polypropylene with successful grafting indicated by x-ray photoemission spectroscopy (XPS), dye tests, and Fourier transform infrared spectroscopy (FTIR). Antimicrobial activity of the grafted samples is also characterized. 3ATAC, a vinyl monomer is also grafted to polypropylene and to cotton. Additives including Mohr's salt, potassium persulfate, and diacrylate are assessed to increase yield. Successful grafting of 3ATAC is confirmed by XPS and dye testing. A combination of all three additives is identified as optimum for maximizing graft yield.

  2. Tailoring non-equilibrium atmospheric pressure plasmas for healthcare technologies

    Science.gov (United States)

    Gans, Timo

    2012-10-01

    Non-equilibrium plasmas operated at ambient atmospheric pressure are very efficient sources for energy transport through reactive neutral particles (radicals and metastables), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. This includes the unique opportunity to deliver short-lived highly reactive species such as atomic oxygen and atomic nitrogen. Reactive oxygen and nitrogen species can initiate a wide range of reactions in biochemical systems, both therapeutic and toxic. The toxicological implications are not clear, e.g. potential risks through DNA damage. It is anticipated that interactions with biological systems will be governed through synergies between two or more species. Suitable optimized plasma sources are improbable through empirical investigations. Quantifying the power dissipation and energy transport mechanisms through the different interfaces from the plasma regime to ambient air, towards the liquid interface and associated impact on the biological system through a new regime of liquid chemistry initiated by the synergy of delivering multiple energy carrying species, is crucial. The major challenge to overcome the obstacles of quantifying energy transport and controlling power dissipation has been the severe lack of suitable plasma sources and diagnostic techniques. Diagnostics and simulations of this plasma regime are very challenging; the highly pronounced collision dominated plasma dynamics at very small dimensions requires extraordinary high resolution - simultaneously in space (microns) and time (picoseconds). Numerical simulations are equally challenging due to the inherent multi-scale character with very rapid electron collisions on the one extreme and the transport of chemically stable species characterizing completely different domains. This presentation will discuss our recent progress actively combining both advance optical diagnostics and multi-scale computer simulations.

  3. Common 0.1 bar Tropopause in Thick Atmospheres Set by Pressure-Dependent Infrared Transparency

    CERN Document Server

    Robinson, Tyler D

    2014-01-01

    A minimum atmospheric temperature, or tropopause, occurs at a pressure of around 0.1 bar in the atmospheres of Earth, Titan, Jupiter, Saturn, Uranus and Neptune, despite great differences in atmospheric composition, gravity, internal heat and sunlight. In all these bodies, the tropopause separates a stratosphere with a temperature profile that is controlled by the absorption of shortwave solar radiation, from a region below characterised by convection, weather, and clouds. However, it is not obvious why the tropopause occurs at the specific pressure near 0.1 bar. Here we use a physically-based model to demonstrate that, at atmospheric pressures lower than 0.1 bar, transparency to thermal radiation allows shortwave heating to dominate, creating a stratosphere. At higher pressures, atmospheres become opaque to thermal radiation, causing temperatures to increase with depth and convection to ensue. A common dependence of infrared opacity on pressure, arising from the shared physics of molecular absorption, sets t...

  4. Following the Ions through a Mass Spectrometer with Atmospheric Pressure Interface: Simulation of Complete Ion Trajectories from Ion Source to Mass Analyzer.

    Science.gov (United States)

    Zhou, Xiaoyu; Ouyang, Zheng

    2016-07-19

    Ion trajectory simulation is an important and useful tool in instrumentation development for mass spectrometry. Accurate simulation of the ion motion through the mass spectrometer with atmospheric pressure ionization source has been extremely challenging, due to the complexity in gas hydrodynamic flow field across a wide pressure range as well as the computational burden. In this study, we developed a method of generating the gas flow field for an entire mass spectrometer with an atmospheric pressure interface. In combination with the electric force, for the first time simulation of ion trajectories from an atmospheric pressure ion source to a mass analyzer in vacuum has been enabled. A stage-by-stage ion repopulation method has also been implemented for the simulation, which helped to avoid an intolerable computational burden for simulations at high pressure regions while it allowed statistically meaningful results obtained for the mass analyzer. It has been demonstrated to be suitable to identify a joint point for combining the high and low pressure fields solved individually. Experimental characterization has also been done to validate the new method for simulation. Good agreement was obtained between simulated and experimental results for ion transfer though an atmospheric pressure interface with a curtain gas.

  5. Following the Ions through a Mass Spectrometer with Atmospheric Pressure Interface: Simulation of Complete Ion Trajectories from Ion Source to Mass Analyzer.

    Science.gov (United States)

    Zhou, Xiaoyu; Ouyang, Zheng

    2016-07-19

    Ion trajectory simulation is an important and useful tool in instrumentation development for mass spectrometry. Accurate simulation of the ion motion through the mass spectrometer with atmospheric pressure ionization source has been extremely challenging, due to the complexity in gas hydrodynamic flow field across a wide pressure range as well as the computational burden. In this study, we developed a method of generating the gas flow field for an entire mass spectrometer with an atmospheric pressure interface. In combination with the electric force, for the first time simulation of ion trajectories from an atmospheric pressure ion source to a mass analyzer in vacuum has been enabled. A stage-by-stage ion repopulation method has also been implemented for the simulation, which helped to avoid an intolerable computational burden for simulations at high pressure regions while it allowed statistically meaningful results obtained for the mass analyzer. It has been demonstrated to be suitable to identify a joint point for combining the high and low pressure fields solved individually. Experimental characterization has also been done to validate the new method for simulation. Good agreement was obtained between simulated and experimental results for ion transfer though an atmospheric pressure interface with a curtain gas. PMID:27340893

  6. Extractive Atmospheric Pressure Photoionization (EAPPI) Mass Spectrometry: Rapid Analysis of Chemicals in Complex Matrices

    Science.gov (United States)

    Liu, Chengyuan; Yang, Jiuzhong; Wang, Jian; Hu, Yonghua; Zhao, Wan; Zhou, Zhongyue; Qi, Fei; Pan, Yang

    2016-10-01

    Extractive atmospheric pressure photoionization (EAPPI) mass spectrometry was designed for rapid qualitative and quantitative analysis of chemicals in complex matrices. In this method, an ultrasonic nebulization system was applied to sample extraction, nebulization, and vaporization. Mixed with a gaseous dopant, vaporized analytes were ionized through ambient photon-induced ion-molecule reactions, and were mass-analyzed by a high resolution time-of-flight mass spectrometer (TOF-MS). After careful optimization and testing with pure sample solution, EAPPI was successfully applied to the fast screening of capsules, soil, natural products, and viscous compounds. Analysis was completed within a few seconds without the need for preseparation. Moreover, the quantification capability of EAPPI for matrices was evaluated by analyzing six polycyclic aromatic hydrocarbons (PAHs) in soil. The correlation coefficients ( R 2 ) for standard curves of all six PAHs were above 0.99, and the detection limits were in the range of 0.16-0.34 ng/mg. In addition, EAPPI could also be used to monitor organic chemical reactions in real time.

  7. First steps towards the reaction kinetics of HMDSO in an atmospheric pressure plasma jet in argon

    Science.gov (United States)

    Loffhagen, Detlef; Becker, Markus M.; Foest, Rüdiger; Schäfer, Jan; Sigeneger, Florian

    2014-10-01

    Hexamethyldisiloxane (HMDSO) is a silicon-organic compound which is often used as precursor for thin-film deposition by means of plasma polymerization because of its high deposition rate and low toxicity. To improve the physical understanding of the deposition processes, fundamental investigations have been performed to clarify the plasma-chemical reaction pathways of HMDSO and their effect on the composition and structure of the deposited film. The current contribution represents the main primary and secondary plasma-chemical processes and their reaction products in the effluent region of an argon plasma jet at atmospheric pressure. The importance of the different collision processes of electrons and heavy particles are discussed. Results of numerical modelling of the plasma jet and the Ar-HMDSO reaction kinetics indicate that the fragmentation of HMDSO is mainly initiated by collisions with molecular argon ions, while Penning ionization processes play a minor role for the reaction kinetics in the effluent region of the jet. The work has been supported by the German Research Foundation (DFG) under Grant LO 623/3-1.

  8. Numerical study of the anode boundary layer in atmospheric pressure arc discharges

    Science.gov (United States)

    Semenov, I. L.; Krivtsun, I. V.; Reisgen, U.

    2016-03-01

    The anode boundary layer in atmospheric pressure arc discharges is studied numerically on the basis of the hydrodynamic (diffusion) equations for plasma components. The governing equations are formulated in a unified manner without the assumptions of thermal equilibrium, ionization equilibrium or quasi-neutrality. For comparison, a quasi-neutral model of the anode layer is also considered. The numerical computations are performed for an argon arc at typical values of the current density in anode layers (500-2000 A cm-2). The results of numerical modelling show that the common collisionless model of the sheath fails to describe the sheath region for the problem under consideration. For this reason, a detailed analysis of the anode sheath is performed using the results of unified modelling. In addition, the distributions of plasma parameters in the anode layer are analysed and the basic characteristics of the layer (anode voltage drop, sheath voltage drop, anode layer thickness, sheath thickness, heat flux to the anode) are calculated. Our results are found to be in good agreement with the existing theoretical predictions and experimental data. The dependence of the anode layer characteristics on the current density is also discussed.

  9. Helium atmospheric pressure plasma jets interacting with wet cells: delivery of electric fields

    Science.gov (United States)

    Norberg, Seth A.; Johnsen, Eric; Kushner, Mark J.

    2016-05-01

    The use of atmospheric pressure plasma jets (APPJs) in plasma medicine have produced encouraging results in wound treatment, surface sterilization, deactivation of bacteria, and treatment of cancer cells. It is known that many of the reactive oxygen and nitrogen species produced by the APPJ are critical to these processes. Other key components to treatment include the ion and photon fluxes, and the electric fields produced in cells by the ionization wave of the APPJ striking in the vicinity of the cells. These relationships are often complicated by the cells being covered by a thin liquid layer—wet cells. In this paper, results from a computational investigation of the interaction of APPJs with tissue beneath a liquid layer are discussed. The emphasis of this study is the delivery of electric fields by an APPJ sustained in He/O2  =  99.8/0.2 flowing into humid air to cells lying beneath water with thickness of 200 μm. The water layer represents the biological fluid typically covering tissue during treatment. Three voltages were analyzed—two that produce a plasma effluent that touches the surface of the water layer and one that does not touch. The effect of the liquid layer thickness, 50 μm to 1 mm, was also examined. Comparisons were made of the predicted intracellular electric fields to those thresholds used in the field of bioelectronics.

  10. A computational modeling study on the helium atmospheric pressure plasma needle discharge

    Science.gov (United States)

    Qian, Mu-Yang; Yang, Cong-Ying; Liu, San-Qiu; Wang, Zhen-Dong; Lv, Yan; Wang, De-Zhen

    2015-12-01

    A two-dimensional coupled model of neutral gas flow and plasma dynamics is employed to investigate the streamer dynamics in a helium plasma needle at atmospheric pressure. A parametric study of the streamer propagation as a function of needle tip curvature radius and helium gas flow rate is presented. The key chemical reactions at the He/air mixing layer which drive the streamer propagation are the direct ionization via collision with electrons, the Penning effect being not so crucial. With increasing the gas flow rate from 0.2 standard liter per minute (SLM) to 0.8 SLM, however, the emissions resulting from reactive oxygen and nitrogen species change from a solid circle to a hollow profile and the average streamer propagation velocity decreases. Air impurities (backdiffusion from ambient air) in the helium jet result in a significant increase in the streamer propagation velocity. Besides, with decreasing the tip curvature radiusfrom 200 μm to 100 μm, the electron avalanche process around the near-tip region is more pronounced. However, the spatially resolved plasma parameters distributions (electron, helium metastables, ground state atomic oxygen, etc.) remain almost the same, except that around the near-tip region where their peak values are more than doubled. Project supported partly by the National Natural Science Foundation of China (Grant No. 11465013), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20151BAB212012), and in part by the International Science and Technology Cooperation Program of China (Grant No. 2015DFA61800).

  11. Study of a new direct current atmospheric pressure glow discharge in helium

    Energy Technology Data Exchange (ETDEWEB)

    Gielniak, B. [University of Hamburg, Institute for Inorganic and Applied Chemistry, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Fiedler, T. [Johannes Gutenberg-University Mainz, Institute for Inorganic and Analytical Chemistry, Duesbergweg 10-14, 55128 Mainz (Germany); Broekaert, J.A.C., E-mail: jose.broekaert@chemie.uni-hamburg.de [University of Hamburg, Institute for Inorganic and Applied Chemistry, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)

    2011-01-15

    In this study a new DC-APGD operated in He was developed and characterized. The discharge is operated at 0.9 kV and about 25-35 mA and at a gas flow of 100 ml/min. The source was spectroscopically studied and parameters such as the rotational temperature (T{sub rot}), the excitation temperature (T{sub exc}), the ionization temperature (T{sub ion}) and the electron number density (n{sub e}) were determined. The current-voltage characteristic of the source was studied as well. At optimized conditions the discharge operates in the normal region of the current-voltage characteristic. Rotational and excitation temperatures determined with the use of OH band and Fe I lines as thermometric species were of the order of about 900-1200 and 4500-5500 K, respectively. This indicates that despite of the atmospheric pressure, the discharge is not in LTE. Spatially resolved temperature measurements were performed with axial as well as radial resolution and showed relatively flat profiles. Axially resolved emission intensity profiles for several species such as H, N{sub 2}, N{sub 2}{sup +}, OH, He and Hg were determined. It also was found that H{sub 2} introduced into the He by electrolysis of acid solutions such as in ECHG considerably increases the spectroscopically measured gas temperatures but decreases the analyte line intensities, as shown for Hg.

  12. Characterization of aromaticity in analogues of titan's atmospheric aerosols with two-step laser desorption ionization mass spectrometry

    Science.gov (United States)

    Mahjoub, Ahmed; Schwell, Martin; Carrasco, Nathalie; Benilan, Yves; Cernogora, Guy; Szopa, Cyril; Gazeau, Marie-Claire

    2016-10-01

    The role of polycyclic aromatic hydrocarbons (PAH) and Nitrogen containing PAH (PANH) as intermediates of aerosol production in the atmosphere of Titan has been a subject of controversy for a long time. An analysis of the atmospheric emission band observed by the Visible and Infrared Mapping Spectrometer (VIMS) at 3.28 μm suggests the presence of neutral polycyclic aromatic species in the upper atmosphere of Titan. These molecules are seen as the counter part of negative and positive aromatics ions suspected by the Plasma Spectrometer onboard the Cassini spacecraft, but the low resolution of the instrument hinders any molecular speciation. In this work we investigate the specific aromatic content of Titan's atmospheric aerosols through laboratory simulations. We report here the selective detection of aromatic compounds in tholins, Titan's aerosol analogs, produced with a capacitively coupled plasma in a N2:CH4 95:5 gas mixture. For this purpose, Two-Step Laser Desorption Ionization Time-of-Flight Mass Spectrometry (L2DI-TOF-MS) technique is used to analyze the so produced analogs. This analytical technique is based on the ionization of molecules by Resonance Enhanced Multi-Photon Ionization (REMPI) using a λ=248 nm wavelength laser which is selective for aromatic species. This allows for the selective identification of compounds having at least one aromatic ring. Our experiments show that tholins contain a trace amount of small PAHs with one to three aromatic rings. Nitrogen containing PAHs (PANHs) are also detected as constituents of tholins. Molecules relevant to astrobiology are detected as is the case of the substituted DNA base adenine.

  13. Ambient ionization mass spectrometry: A tutorial

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Min-Zong; Cheng, Sy-Chi; Cho, Yi-Tzu [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Shiea, Jentaie, E-mail: jetea@fac.nsysu.edu.tw [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Cancer Center, Kaohsiung Medical University, Kaohsiung, Taiwan (China)

    2011-09-19

    Highlights: {yields} Ambient ionization technique allows the direct analysis of sample surfaces with little or no sample pretreatment. {yields} We sort ambient ionization techniques into three main analytical strategies, direct ionization, direct desorption/ionization, and two-step ionization. {yields} The underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques are described and compared. - Abstract: Ambient ionization is a set of mass spectrometric ionization techniques performed under ambient conditions that allows the direct analysis of sample surfaces with little or no sample pretreatment. Using combinations of different types of sample introduction systems and ionization methods, several novel techniques have been developed over the last few years with many applications (e.g., food safety screening; detection of pharmaceuticals and drug abuse; monitoring of environmental pollutants; detection of explosives for antiterrorism and forensics; characterization of biological compounds for proteomics and metabolomics; molecular imaging analysis; and monitoring chemical and biochemical reactions). Electrospray ionization and atmospheric pressure chemical ionization are the two main ionization principles most commonly used in ambient ionization mass spectrometry. This tutorial paper provides a review of the publications related to ambient ionization techniques. We describe and compare the underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques.

  14. Laser induced chemical vapour deposition of TiN coatings at atmospheric pressure

    OpenAIRE

    Croonen, Y.; Verspui, G.

    1993-01-01

    Laser induced Chemical Vapour Deposition of a wide variety of materials has been studied extensively at reduced pressures. However, for this technique to be economically and industrially applicable, processes at atmospheric pressure are preferred. A model study was made on the substrate-coating system molybdenum-titaniumnitride focussing on the feasibility to deposit TiN films locally at atmospheric pressure. The results of this study turned out to be very promising. A Nd-YAG laser beam ([MAT...

  15. A flowing atmospheric pressure afterglow as an ion source coupled to a differential mobility analyzer for volatile organic compound detection.

    Science.gov (United States)

    Bouza, Marcos; Orejas, Jaime; López-Vidal, Silvia; Pisonero, Jorge; Bordel, Nerea; Pereiro, Rosario; Sanz-Medel, Alfredo

    2016-05-23

    Atmospheric pressure glow discharges have been widely used in the last decade as ion sources in ambient mass spectrometry analyses. Here, an in-house flowing atmospheric pressure afterglow (FAPA) has been developed as an alternative ion source for differential mobility analysis (DMA). The discharge source parameters (inter-electrode distance, current and helium flow rate) determining the atmospheric plasma characteristics have been optimized in terms of DMA spectral simplicity with the highest achievable sensitivity while keeping an adequate plasma stability and so the FAPA working conditions finally selected were: 35 mA, 1 L min(-1) of He and an inter-electrode distance of 8 mm. Room temperature in the DMA proved to be adequate for the coupling and chemical analysis with the FAPA source. Positive and negative ions for different volatile organic compounds were tested and analysed by FAPA-DMA using a Faraday cup as a detector and proper operation in both modes was possible (without changes in FAPA operational parameters). The FAPA ionization source showed simpler ion mobility spectra with narrower peaks and a better, or similar, sensitivity than conventional UV-photoionization for DMA analysis in positive mode. Particularly, the negative mode proved to be a promising field of further research for the FAPA ion source coupled to ion mobility, clearly competitive with other more conventional plasmas such as corona discharge.

  16. A flowing atmospheric pressure afterglow as an ion source coupled to a differential mobility analyzer for volatile organic compound detection.

    Science.gov (United States)

    Bouza, Marcos; Orejas, Jaime; López-Vidal, Silvia; Pisonero, Jorge; Bordel, Nerea; Pereiro, Rosario; Sanz-Medel, Alfredo

    2016-05-23

    Atmospheric pressure glow discharges have been widely used in the last decade as ion sources in ambient mass spectrometry analyses. Here, an in-house flowing atmospheric pressure afterglow (FAPA) has been developed as an alternative ion source for differential mobility analysis (DMA). The discharge source parameters (inter-electrode distance, current and helium flow rate) determining the atmospheric plasma characteristics have been optimized in terms of DMA spectral simplicity with the highest achievable sensitivity while keeping an adequate plasma stability and so the FAPA working conditions finally selected were: 35 mA, 1 L min(-1) of He and an inter-electrode distance of 8 mm. Room temperature in the DMA proved to be adequate for the coupling and chemical analysis with the FAPA source. Positive and negative ions for different volatile organic compounds were tested and analysed by FAPA-DMA using a Faraday cup as a detector and proper operation in both modes was possible (without changes in FAPA operational parameters). The FAPA ionization source showed simpler ion mobility spectra with narrower peaks and a better, or similar, sensitivity than conventional UV-photoionization for DMA analysis in positive mode. Particularly, the negative mode proved to be a promising field of further research for the FAPA ion source coupled to ion mobility, clearly competitive with other more conventional plasmas such as corona discharge. PMID:27141552

  17. Methods for Creation and Detection of Ultra-Strong Artificial Ionization in the Upper Atmosphere (Invited)

    Science.gov (United States)

    Bernhardt, P. A.; Siefring, C. L.; Briczinski, S. J.; Kendall, E. A.; Watkins, B. J.; Bristow, W. A.; Michell, R.

    2013-12-01

    The High Frequency Active Auroral Research Program (HAARP) transmitter in Alaska has been used to produce localized regions of artificial ionization at altitudes between 150 and 250 km. High power radio waves tuned near harmonics of the electron gyro frequency were discovered by Todd Pederson of the Air Force Research Laboratory to produce ionosonde traces that looked like artificial ionization layers below the natural F-region. The initial regions of artificial ionization (AI) were not stable but had moved down in altitude over a period of 15 minutes. Recently, artificial ionization has been produced by the 2nd, 3rd, 4th and 6th harmonics transmissions by the HAARP. In march 2013, the artificial ionization clouds were sustained for more the 5 hours using HAARP tuned to the 4 fce at the full power of 3.6 Mega-Watts with a twisted-beam antenna pattern. Frequency selection with narrow-band sweeps and antenna pattern shaping has been employed for optimal generation of AI. Recent research at HAARP has produced the longest lived and denser artificial ionization clouds using HF transmissions at the harmonics of the electron cyclotron frequency and ring-shaped radio beams tailored to prevent the descent of the clouds. Detection of artificial ionization employs (1) ionosonde echoes, (2) coherent backscatter from the Kodiak SuperDARN radar, (3) enhanced ion and plasma line echoes from the HAARP MUIR radar at 400 MHz, (4) high resolution optical image from ground sites, and (5) unique stimulated electromagnetic emissions, and (6) strong UHF and L-Band scintillation induced into trans-ionospheric signals from satellite radio beacons. Future HAARP experiments will determine the uses of long-sustained AI for enhanced HF communications.

  18. Langmuir probe diagnostics of an atmospheric pressure, vortex-stabilized nitrogen plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Prevosto, L.; Mancinelli, B. R. [Grupo de Descargas Electricas, Departamento Ingenieria Electromecanica, Facultad Regional Venado Tuerto (UTN), Laprida 651, (2600) Venado Tuerto, Santa Fe (Argentina); Kelly, H. [Grupo de Descargas Electricas, Departamento Ingenieria Electromecanica, Facultad Regional Venado Tuerto (UTN), Laprida 651, (2600) Venado Tuerto, Santa Fe (Argentina) and Instituto de Fisica del Plasma (CONICET), Departamento de Fisica, Facultad de Ciencias Exactas y Naturales UBA Ciudad Universitaria Pab. I, (1428) Buenos Aires (Argentina)

    2012-09-15

    Langmuir probe measurements in an atmospheric pressure direct current (dc) plasma jet are reported. Sweeping probes were used. The experiment was carried out using a dc non-transferred arc torch with a rod-type cathode and an anode of 5 mm diameter. The torch was operated at a nominal power level of 15 kW with a nitrogen flow rate of 25 Nl min{sup -1}. A flat ion saturation region was found in the current-voltage curve of the probe. The ion saturation current to a cylindrical probe in a high-pressure non local thermal equilibrium (LTE) plasma was modeled. Thermal effects and ionization/recombination processes inside the probe perturbed region were taken into account. Averaged radial profiles of the electron and heavy particle temperatures as well as the electron density were obtained. An electron temperature around 11 000 K, a heavy particle temperature around 9500 K and an electron density of about 4 Multiplication-Sign 10{sup 22} m{sup -3}, were found at the jet centre at 3.5 mm downstream from the torch exit. Large deviations from kinetic equilibrium were found throughout the plasma jet. The electron and heavy particle temperature profiles showed good agreement with those reported in the literature by using spectroscopic techniques. It was also found that the temperature radial profile based on LTE was very close to that of the electrons. The calculations have shown that this method is particularly useful for studying spraying-type plasma jets characterized by electron temperatures in the range 9000-14 000 K.

  19. Pressure and Ionization Balances in the Circum-Heliospheric Interstellar Medium and the Local Bubble

    CERN Document Server

    Jenkins, Edward B

    2008-01-01

    A disconcerting mismatch of thermal pressures for two media in contact with each other, (1) the warm, Circum-heliospheric Interstellar Medium (CHISM) and (2) the very hot material within a much larger region called the Local Bubble (LB), has troubled astronomers for over two decades. A possible resolution of this problem, at least in part, now seems possible. We now understand that earlier estimates for the average electron density in the very hot LB plasma were inflated by an unrecognized foreground contamination to the low energy diffuse X-ray background measurements. This foreground illumination arises from photons emitted by charge exchange reactions between solar wind ions and neutral atoms from the interstellar medium that enter into the heliosphere. However, with the resolution of this problem comes a new one. The high ionization fraction of helium in the CHISM, relative to that of hydrogen, could be understood in terms of the effects from a strong flux of EUV and X-ray radiation coming from both the L...

  20. Some new aspects of the transient ionization layer of comet Siding Spring origin in the Martian upper atmosphere

    Science.gov (United States)

    Mohana Manasa, P.; Jayaraman, Achuthan; Rao Narukull, Venkateswara; Vijaya Bhaskara Rao, Sarangam

    2016-07-01

    On 19 October 2014, comet Siding Spring passed near to the Mars and deposited a large amount of dust on the Martian upper atmosphere. This resulted in the formation of a dense transient ionization layer on Mars at altitudes between 80 and 120 km. Gurnett et al., [2014] reported the detection of this layer with Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) instrument aboard Mars Express spacecraft. In this study, we re-analyzed the ionograms obtained by this instrument to get further insight on the recurrence of the layer. Data from three orbital passes of MARSIS that took place 5 h, 12 h, and 19 h after peak dust deposition are used in this analysis. We found that the transient ionization layer sustained at least for 19 hours on the nightside and 12 hours on the dayside. While the peak density of the layer on the nightside gradually decreases from orbit-to-orbit, it does not change much on the dayside. Some ionograms in all the three orbits show two transient ionization layers that are separated by several kilometers in apparent altitude. We propose two mechanisms to explain this double layer structure. The first one assumes a horizontal bifurcation of the layer in which specular reflections from the two horizontal parts result in a double layer structure in ionograms. In the second mechanism, we assume specular reflections from ionization bulges (formed in regions of vertical magnetic fields) at altitudes of transient ionization layer give rise to oblique echoes that form the bottom layer of the double layer structure.

  1. Pressure of a partially ionized hydrogen gas : numerical results from exact low temperature expansions

    OpenAIRE

    Alastuey, Angel; Ballenegger, Vincent

    2010-01-01

    8 pages International audience We consider a partially ionized hydrogen gas at low densities, where it reduces almost to an ideal mixture made with hydrogen atoms in their ground-state, ionized protons and ionized electrons. By performing systematic low-temperature expansions within the physical picture, in which the system is described as a quantum electron-proton plasma interacting via the Coulomb potential, exact formulae for the first five leading corrections to the ideal Saha equat...

  2. Simulation of rarefied gas flows in atmospheric pressure interfaces for mass spectrometry systems.

    Science.gov (United States)

    Garimella, Sandilya; Zhou, Xiaoyu; Ouyang, Zheng

    2013-12-01

    The understanding of the gas dynamics of the atmospheric pressure interface is very important for the development of mass spectrometry systems with high sensitivity. While the gas flows at high pressure (>1 Torr) and low pressure (pressure stage (1 to 10(-3) Torr) remains challenging. In this study, we used the direct simulation Monte Carlo (DMSC) method to develop the gas dynamic simulations for the continuous and discontinuous atmospheric pressure interfaces (API), with different focuses on the ion transfer by gas flows through a skimmer or directly from the atmospheric pressure to a vacuum stage, respectively. The impacts by the skimmer location in the continuous API and the temporal evolvement of the gas flow with a discontinuous API were characterized, which provide a solid base for the instrument design and performance improvement.

  3. The effect of atmospheric temperature and pressure on the occurrence of acute myocardial infarction in Kaunas.

    Science.gov (United States)

    Radišauskas, Ričardas; Vaičiulis, Vidmantas; Ustinavičienė, Rūta; Bernotienė, Gailutė

    2013-01-01

    OBJECTIVE. The aim of the study was to evaluate the impact of meteorological variables (atmospheric temperature and pressure) on the daily occurrence of acute myocardial infarction (AMI). MATERIAL AND METHODS. The study used the daily values of atmospheric temperature and pressure in 2000-2007. The meteorological data were obtained from the Lithuanian Hydrometeorological Service for Kaunas. The relative risks of event occurrence were computed for 5°C atmospheric temperature and for 10-hPa atmospheric pressure variations by means of the Poisson regression model. RESULTS. The occurrence of AMI and atmospheric temperature showed an inverse linear relationship, while the occurrence of AMI and atmospheric pressure, a positive linear relationship. Among the youngest subjects (25-44 years old), no relationships were detected. Contrary, among the subjects aged 45-64 years and those aged 65 years and older, the occurrence of AMI significantly decreased with higher temperature (P=0.001 and P=0.002, respectively). A decrease in atmospheric temperature by 10ºC reduced the risk of AMI by 8.7% in the age groups of 45-64 and 65 years and older and by 19% in the age group of 25 years and older. Among the first AMI cases, the risk increased by 7.5% in the age group of 45-64-year olds and by 6.4% in the age group of 25-64-year olds. The relationship between atmospheric temperature and pressure, and AMI occurrence was found to be linear but inverse. An increase in atmospheric pressure by 10 hPa resulted in an increase in risk by 4% among the subjects aged 65 years and more and by 3% among the subjects aged 25 years and more. CONCLUSIONS. Atmospheric temperature and pressure variations had the greatest effect on middle-aged and aging subjects (starting from 45 years). At younger age, the effect of such factors on the AMI risk was considerably lower.

  4. Atmospheric Pressure Plasma-Electrospin Hybrid Process for Protective Applications

    Science.gov (United States)

    Vitchuli Gangadharan, Narendiran

    2011-12-01

    Chemical and biological (C-B) warfare agents like sarin, sulfur mustard, anthrax are usually dispersed into atmosphere in the form of micro aerosols. They are considered to be dangerous weapon of mass destruction next to nuclear weapons. The airtight protective clothing materials currently available are able to stop the diffusion of threat agents but not good enough to detoxify them, which endangers the wearers. Extensive research efforts are being made to prepare advanced protective clothing materials that not only prevent the diffusion of C-B agents, but also detoxify them into harmless products thus ensuring the safety and comfort of the wearer. Electrospun nanofiber mats are considered to have effective filtration characteristics to stop the diffusion of submicron level particulates without sacrificing air permeability characteristics and could be used in protective application as barrier material. In addition, functional nanofibers could be potentially developed to detoxify the C-B warfare threats into harmless products. In this research, electrospun nanofibers were deposited on fabric surface to improve barrier efficiency without sacrificing comfort-related properties of the fabrics. Multi-functional nanofibers were fabricated through an electrospinning-electrospraying hybrid process and their ability to detoxify simulants of C-B agents was evaluated. Nanofibers were also deposited onto plasma-pretreated woven fabric substrate through a newly developed plasma-electrospinning hybrid process, to improve the adhesive properties of nanofibers on the fabric surface. The nanofiber adhesion and durability properties were evaluated by peel test, flex and abrasion resistance tests. In this research work, following tasks have been carried out: i) Controlled deposition of nanofiber mat onto woven fabric substrate Electrospun Nylon 6 fiber mats were deposited onto woven 50/50 Nylon/Cotton fabric with the motive of making them into protective material against submicron

  5. On the physical processes ruling an atmospheric pressure air glow discharge operating in an intermediate current regime

    Energy Technology Data Exchange (ETDEWEB)

    Prevosto, L., E-mail: prevosto@waycom.com.ar; Mancinelli, B.; Chamorro, J. C.; Cejas, E. [Grupo de Descargas Eléctricas, Departamento Ing. Electromecánica, Facultad Regional Venado Tuerto (UTN), Laprida 651, Venado Tuerto (2600), Santa Fe (Argentina); Kelly, H. [Grupo de Descargas Eléctricas, Departamento Ing. Electromecánica, Facultad Regional Venado Tuerto (UTN), Laprida 651, Venado Tuerto (2600), Santa Fe (Argentina); Instituto de Física del Plasma (CONICET), Facultad de Ciencias Exactas y Naturales (UBA) Ciudad Universitaria Pab. I, 1428, Buenos Aires (Argentina)

    2015-02-15

    Low-frequency (100 Hz), intermediate-current (50 to 200 mA) glow discharges were experimentally investigated in atmospheric pressure air between blunt copper electrodes. Voltage–current characteristics and images of the discharge for different inter-electrode distances are reported. A cathode-fall voltage close to 360 V and a current density at the cathode surface of about 11 A/cm{sup 2}, both independent of the discharge current, were found. The visible emissive structure of the discharge resembles to that of a typical low-pressure glow, thus suggesting a glow-like electric field distribution in the discharge. A kinetic model for the discharge ionization processes is also presented with the aim of identifying the main physical processes ruling the discharge behavior. The numerical results indicate the presence of a non-equilibrium plasma with rather high gas temperature (above 4000 K) leading to the production of components such as NO, O, and N which are usually absent in low-current glows. Hence, the ionization by electron-impact is replaced by associative ionization, which is independent of the reduced electric field. This leads to a negative current-voltage characteristic curve, in spite of the glow-like features of the discharge. On the other hand, several estimations show that the discharge seems to be stabilized by heat conduction; being thermally stable due to its reduced size. All the quoted results indicate that although this discharge regime might be considered to be close to an arc, it is still a glow discharge as demonstrated by its overall properties, supported also by the presence of thermal non-equilibrium.

  6. Preflame zone structure and main features of fuel conversion in atmospheric pressure premixed laminar hydrocarbon flames

    Energy Technology Data Exchange (ETDEWEB)

    Ksandopulo, G.I.

    1995-08-25

    This report describes the structure study of the premixed hydrocarbon-oxidizer Bunsen flames burning at the atmospheric pressure and also the ones with some inhibitors added. Studies were performed on hexane, propane, methane, acetylene, and hexene flames.

  7. Relating landfill gas emissions to atmospheric pressure using numerical modeling and state-space analysis

    DEFF Research Database (Denmark)

    Poulsen, T.G.; Christophersen, Mette; Moldrup, P.;

    2003-01-01

    were applied: (I) State-space analysis was used to identify relations between gas flux and short-term (hourly) variations in atmospheric pressure. (II) A numerical gas transport model was fitted to the data and used to quantify short-term impacts of variations in atmospheric pressure, volumetric soil......-water content, soil gas permeability, soil gas diffusion coefficients, and biological CH4 degradation rate upon landfill gas concentration and fluxes in the soil. Fluxes and concentrations were found to be most sensitive to variations in volumetric soil water content, atmospheric pressure variations and gas...... permeability whereas variations in CH4 oxidation rate and molecular coefficients had less influence. Fluxes appeared to be most sensitive to atmospheric pressure at intermediate distances from the landfill edge. Also overall CH4 fluxes out of the soil over longer periods (years) were largest during periods...

  8. Atmospheric-Pressure Plasma Interaction with Soft Materials as Fundamental Processes in Plasma Medicine.

    Science.gov (United States)

    Takenaka, Kosuke; Miyazaki, Atsushi; Uchida, Giichiro; Setsuhara, Yuichi

    2015-03-01

    Molecular-structure variation of organic materials irradiated with atmospheric pressure He plasma jet have been investigated. Optical emission spectrum in the atmospheric-pressure He plasma jet has been measured. The spectrum shows considerable emissions of He lines, and the emission of O and N radicals attributed to air. Variation in molecular structure of Polyethylene terephthalate (PET) film surface irradiated with the atmospheric-pressure He plasma jet has been observed via X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). These results via XPS and FT-IR indicate that the PET surface irradiated with the atmospheric-pressure He plasma jet was oxidized by chemical and/or physical effect due to irradiation of active species.

  9. Adhesion improvement of fibres by continuous plasma treatment at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Løgstrup Andersen, Tom; Sørensen, Bent F.;

    2013-01-01

    Carbon fibres and ultra-high-molecular-weight polyethylene (UHMWPE) fibres were continuously treated by a dielectric barrier discharge plasma at atmospheric pressure for adhesion improvement with epoxy resins. The plasma treatment improved wettability, increased the oxygen containing polar...

  10. Exact Mass Measurements for a-Allenic Alcohol by Atmospheric Pressure Chemical Ionization/Time-of-flight Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    何萍; 郭寅龙; 陈国强; 徐代旺; 麻生明

    2003-01-01

    The atmospheric pressure chemical ionization/time,of-flight mass speetrmtry (APEI/TOF-MS) was applied to determine the mass of five a.aIIenic alcohols via their vrotonated molecu.lar ions nslna Imsifive ion mode. Polyethylene Idycol (PEG) was used as the hlternal reference. All results were obtained under the resolution of about 5000 FWHM (full width at the half maximum). Solvent effects were studied and the satired results were obtained in acetonitrile. Comvared with the theoreflcal values, nun absolute errors were less thRn 1.0 mmu. The efTeets Of nozzle pote.Jldal, push pulse potential, pug pulse potentlai, puO bias potential and ic(lulsltion rate on exact mass determina/lon were also discussed. APCI/TOF.MS is proven to be a very semi/ire analytical technique and an alternative ionizafion mode in analytical technique lablle compounds with relatively weak polarity, such as a-allenic alcohol.

  11. A Minimized Mutual Information retrieval for simultaneous atmospheric pressure and temperature

    OpenAIRE

    Koner, Prabhat K.; Drummond, James R.

    2010-01-01

    The primary focus of the Mars Trace Gas Orbiter (TGO) collaboration between NASA and ESA is the detection of the temporal and spatial variation of the atmospheric trace gases using a solar occultation Fourier transform spectrometer. To retrieve any trace gas mixing ratios from these measurements, the atmospheric pressure and temperature have to be known accurately. Thus, a prototype retrieval model for the determination of pressure and temperature from a broadband high resolution infrared Fou...

  12. Atmospheric-pressure plasma-enhanced chemical vapor deposition of electrochromic organonickel oxide thin films with an atmospheric pressure plasma jet

    International Nuclear Information System (INIS)

    Deposition of electrochromic organonickel oxide (NiOxCy) films onto glass/indium tin oxide (ITO) substrates using atmospheric-pressure plasma-enhanced chemical vapor deposition with an atmospheric pressure plasma jet under various precursor injection angles is investigated. A precursor [nickelocene, Ni(C5H5)2] vapor, carried by argon gas and mixed with oxygen gas, is injected into an air plasma torch for the deposition of NiOxCy films by a short exposure of the substrate, 20 s, in the plasma. Uniform light modulation on glass/ITO/NiOxCy is produced while the moving glass/ITO substrate is exposed to the plasma torch at room temperature (∼ 23 °C) and under atmospheric pressure. Light modulation with up to a 40.9% transmittance variation at a wavelength of 513.9 nm under Li+ intercalation and de-intercalation in a 1 M LiClO4–propylene carbonate electrolyte is achieved. - Highlights: ► Rapid deposition of electrochromic NiOxCy film by atmospheric pressure plasma jet ► Uniform light modulation on NiOxCy film is produced. ► Nano-grains in NiOxCy films offer fast coloration and bleaching

  13. Atmospheric pressure photoionization mass spectrometry as a tool for the investigation of the hydrolysis reaction mechanisms of phosphite antioxidants

    Science.gov (United States)

    Papanastasiou, M.; McMahon, A. W.; Allen, N. S.; Johnson, B. W.; Keck-Antoine, K.; Santos, L.; Neumann, M. G.

    2008-08-01

    The hydrolysis reaction mechanism of phosphite antioxidants is investigated by liquid chromatography-mass spectrometry (LC/MS). The phosphites were chosen because they differed in chemical structure and phosphorus content. Dopant assisted-atmospheric pressure photoionization (DA-APPI) is chosen as the ion source for the ionization of the compounds. In our previous work, DA-APPI was shown to offer an attractive alternative to atmospheric pressure chemical ionization (APCI) since it provided background-ion free mass spectra and higher sensitivity [M. Papanastasiou, et al., Polymer Degradation and Stability 91 (11) (2006) 2675-2682]. In positive ion mode, the molecules are generally detected in their protonated form. In negative ion mode, the phosphites are unstable and only fragment ions are observed; these however, are characteristic of each phosphite and may be used for the identification of the analytes in complex mixtures. The analytes under investigation are exposed to accelerated humid ageing conditions and their hydrolytic pathway and stability is investigated. Different substituents around the phosphorus atom are shown to have a significant effect on the stability of the phosphites, with phenol substituents producing very hydrolytically stable structures. Alkanox P24 and PEP-36 follow a similar hydrolytic pathway via the scission of the first and then the second POphenol bonds, eventually leading to the formation of phenol, phosphorous acid and pentaerythritol as end products. HP-10 exhibits a rather different structure and the products detected suggest scission of either the POhydrocarbon or one of the POphenol bonds. A phenomenon similar to that of autocatalysis is observed for all phosphites and is attributed to the formation of dialkyl phosphites as intermediate products.

  14. Water cycles in closed ecological systems: effects of atmospheric pressure

    Science.gov (United States)

    Rygalov, Vadim Y.; Fowler, Philip A.; Metz, Joannah M.; Wheeler, Raymond M.; Bucklin, Ray A.; Sager, J. C. (Principal Investigator)

    2002-01-01

    In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from 1 to 10 L m-2 d-1 (1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems.

  15. Physiological responses to low atmospheric pressure stunning and the implications for welfare

    NARCIS (Netherlands)

    Mckeegan, D.E.F.; Sandercock, D.A.; Gerritzen, M.A.

    2013-01-01

    In low atmospheric pressure stunning (LAPS), poultry are rendered unconscious before slaughter by gradually reducing oxygen tension in the atmosphere to achieve a progressive anoxia. The effects of LAPS are not instantaneous, so there are legitimate welfare concerns around the experience of birds be

  16. Pressure Effects on Product Channels of Hydrocarbon Radical-Radical Reactions; Implications for Modelling of Planetary Atmospheres

    Science.gov (United States)

    Fahr, A.; Halpern, J.; N'doumi, M.

    2011-10-01

    Previously we had studied the kinetics and product channels of small unsaturated hydrocarbon radical (C2 and C3s) reactions relevant to planetary atmospheric modelling. Reactions of C2 radicals (such as vinyl, H2CCH and ethynyl C2H) and C3 radicals (such as propargyl, HCCCH2 and allyl, H2CCCH3) can affect the abundances of a large number of stable observable C3, C4, C5, C6 and larger molecules, including linear, aromatic and even poly aromatic molecules. We have experimentally determined pressuredependent product yields for self- and cross-radical reactions performed at 298 K and at selected pressures between ~4 Torr (0.5 kPa) and 760 Torr (101 kPa). Final products were determined by gas chromatograph with mass spectrometry/flame ionization detection (GC/MS/FID). In some cases complementary computational studies extended the pressure and temperature range of the observations and provided valuable information on complex reaction mechanisms. These studies provide a systematic framework so that important energetic and structural parameters for radical-radical reactions can be assessed. Here we report a compilation of our earlier results relevant to planetary atmospheres in addition to recent ones for allyl radical (H2CCCH3) reactions.

  17. Analysis of selective androgen receptor modulators by gas chromatography-microchip atmospheric pressure photoionization-mass spectrometry.

    Science.gov (United States)

    Luosujärvi, Laura; Haapala, Markus; Thevis, Mario; Saarela, Ville; Franssila, Sami; Ketola, Raimo A; Kostiainen, Risto; Kotiaho, Tapio

    2010-02-01

    A gas chromatography-microchip atmospheric pressure photoionization-mass spectrometric (GC-microAPPI-MS) method was developed and used for the analysis of three 2-quinolinone-derived selective androgen receptor modulators (SARMs). SARMs were analyzed from spiked urine samples, which were hydrolyzed and derivatized with N-methyl-N-(trimethylsilyl)trifluoroacetamide before analysis. Trimethylsilyl derivatives of SARMs formed both radical cations (M(+*)) and protonated molecules ([M + H](+)) in photoionization. Better signal-to-noise ratios (S/N) were obtained in MS/MS analysis using the M(+*) ions as precursor ions than using the [M + H](+) ions, and therefore the M(+*) ions were selected for the precursor ions in selected reaction monitoring (SRM) analysis. Limits of detection (LODs) with the method ranged from 0.01 to 1 ng/mL, which correspond to instrumental LODs of 0.2-20 pg. Limits of quantitation ranged from 0.03 to 3 ng/mL. The mass spectrometric response to the analytes was linear (R > or = 0.995) from the LOQ concentration level up to 100 ng/mL concentration, and intra-day repeatabilities were 5%-9%. In addition to the GC-microAPPI-MS study, the proof-of-principle of gas chromatography-microchip atmospheric pressure chemical ionization-Orbitrap MS (GC-microAPCI-Orbitrap MS) was demonstrated.

  18. Disinfection of ocular cells and tissues by atmospheric-pressure cold plasma.

    Directory of Open Access Journals (Sweden)

    Paola Brun

    Full Text Available BACKGROUND: Low temperature plasmas have been proposed in medicine as agents for tissue disinfection and have received increasing attention due to the frequency of bacterial resistance to antibiotics. This study explored whether atmospheric-pressure cold plasma (APCP generated by a new portable device that ionizes a flow of helium gas can inactivate ocular pathogens without causing significant tissue damage. METHODOLOGY/PRINCIPAL FINDINGS: We tested the APCP effects on cultured Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Candida albicans, Aspergillus fumigatus and Herpes simplex virus-1, ocular cells (conjunctival fibroblasts and keratocytes and ex-vivo corneas. Exposure to APCP for 0.5 to 5 minutes significantly reduced microbial viability (colony-forming units but not human cell viability (MTT assay, FACS and Tunel analysis or the number of HSV-1 plaque-forming units. Increased levels of intracellular reactive oxygen species (ROS in exposed microorganisms and cells were found using a FACS-activated 2',7'-dichlorofluorescein diacetate probe. Immunoassays demonstrated no induction of thymine dimers in cell cultures and corneal tissues. A transient increased expression of 8-OHdG, genes and proteins related to oxidative stress (OGG1, GPX, NFE2L2, was determined in ocular cells and corneas by HPLC, qRT-PCR and Western blot analysis. CONCLUSIONS: A short application of APCP appears to be an efficient and rapid ocular disinfectant for bacteria and fungi without significant damage on ocular cells and tissues, although the treatment of conjunctival fibroblasts and keratocytes caused a time-restricted generation of intracellular ROS and oxidative stress-related responses.

  19. Carrier transport in undoped CdO films grown by atmospheric-pressure chemical vapor deposition

    International Nuclear Information System (INIS)

    Temperature dependent Hall effect measurements were performed for the undoped CdO films with carrier concentrations (n) ranging from 2.4 × 1019 to 2.0 × 1020 cm−3 grown on c- and r-plane sapphire substrates by the atmospheric-pressure chemical vapor deposition using Cd powder and H2O as source materials. The n dependence of the optical gap energy (Eopt) could be explained by the combination of the band gap widening due to Burstein–Moss shift and the band gap shrinkages due to the electron–electron and electron–impurity interactions. For all the films, the carrier concentrations (n) were independent of measurement temperature (T), indicating that these films were n-type degenerate semiconductors. The barrier heights at grain boundaries determined from the 1000/T-ln(μT) curves were smaller than the thermal energy at 300 K, suggesting that the grain boundary scattering plays a minor role on the carrier transport in comparison with the intra-grain scattering. The n dependence of the gradient of the μ–T curve revealed the continuous transformation of the dominant intra-grain scattering mechanism from the phonon scattering to the ionized impurity scattering with increasing n. - Highlights: • Undoped CdO films were grown on c- and r-plane sapphire substrates by CVD. • Hall effect measurements were performed for the CdO films at 83–343 K. • For many CdO films, the carrier concentration n was independent of temperature. • The grain boundary scattering plays a minor role in the CdO films. • The dominant intra-grain scattering exhibited the continuous change with n

  20. Atmospheric-Pressure Cold Plasma Induces Transcriptional Changes in Ex Vivo Human Corneas.

    Directory of Open Access Journals (Sweden)

    Umberto Rosani

    Full Text Available Atmospheric pressure cold plasma (APCP might be considered a novel tool for tissue disinfection in medicine since the active chemical species produced by low plasma doses, generated by ionizing helium gas in air, induces reactive oxygen species (ROS that kill microorganisms without substantially affecting human cells.In this study, we evaluated morphological and functional changes in human corneas exposed for 2 minutes (min to APCP and tested if the antioxidant n-acetyl l-cysteine (NAC was able to inhibit or prevent damage and cell death.Immunohistochemistry and western blotting analyses of corneal tissues collected at 6 hours (h post-APCP treatment demonstrated no morphological tissue changes, but a transient increased expression of OGG1 glycosylase that returned to control levels in 24 h. Transcriptome sequencing and quantitative real time PCR performed on different corneas revealed in the treated corneas many differentially expressed genes: namely, 256 and 304 genes showing expression changes greater than ± 2 folds in the absence and presence of NAC, respectively. At 6 h post-treatment, the most over-expressed gene categories suggested an active or enhanced cell functioning, with only a minority of genes specifically concerning oxidative DNA damage and repair showing slight over-expression values (<2 folds. Moreover, time-related expression analysis of eight genes up-regulated in the APCP-treated corneas overall demonstrated the return to control expression levels after 24 h.These findings of transient oxidative stress accompanied by wide-range transcriptome adjustments support the further development of APCP as an ocular disinfectant.

  1. Simulation of Electron-Beam Generating Plasma at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    OUYANG Liang; LI Hong; LI Benben; ZHOU Junqing; YAN Hong; SU Tie; WANG Huihui; LIUWandong

    2007-01-01

    As electron-beam generating plasma is widely applied,the software tool EGS4(Electron-Gamma Shower) was used to simulate the transmission and energy deposition of electron-beam in air.The simulation results indicated that the range of the electron-beam was inversely proportional to the gas pressure in a wide range of gas pressure,and the electron-beam of 200 keV could generate a plasma with a density 1011 cm-3 in air of latm.In addition,the energy distribution of the beam-electron and plasma density profile produced by the beam were achieved.

  2. Modified drug release using atmospheric pressure plasma deposited siloxane coatings

    Science.gov (United States)

    Dowling, D. P.; Maher, S.; Law, V. J.; Ardhaoui, M.; Stallard, C.; Keenan, A.

    2016-09-01

    This pilot study evaluates the potential of atmospheric plasma polymerised coatings to modify the rate of drug release from polymeric substrates. The antibiotic rifampicin was deposited in a prototype multi-layer drug delivery system, consisting of a nebulized layer of active drug between a base layer of TEOS deposited on a plastic substrate (polystyrene) and an overlying layer of plasma polymerised PDMS. The polymerised TEOS and PDMS layers were deposited using a helium atmospheric plasma jet system. Elution of rifampicin was measured using UV-VIS spectroscopy, in addition to a antimicrobial well diffusion assay with an established indicator organism. The multi-layered plasma deposited coatings significantly extended the duration of release of the rifampicin from 24 h for the uncoated polymer to 144 h for the coated polymer.

  3. Atmospheric sugar alcohols: evaporation rates and saturation vapor pressures

    DEFF Research Database (Denmark)

    Bilde, Merete; Zardini, Alessandro Alessio; Hong, Juan;

    are allowed to evaporate in a laminar flow reactor, and changes in particle size as function of evaporation time are determined using a scanning mobility particle sizer system. In this work saturation vapor pressures of sugar alcohols at several temperatures have been inferred from such measurements using...

  4. The Effect of Atmospheric Pressure on Rocket Thrust -- Part I.

    Science.gov (United States)

    Leitner, Alfred

    1982-01-01

    The first of a two-part question asks: Does the total thrust of a rocket depend on the surrounding pressure? The answer to this question is provided, with accompanying diagrams of rockets. The second part of the question (and answer) are provided in v20 n7, p479, Oct 1982 of this journal. (Author/JN)

  5. Vertical thermal structure of the Venus atmosphere from temperature and pressure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Linkin, V.M.; Blamon, Z.; Lipatov, A.P.; Devyatkin, S.I.; Dyachkov, A.V.; Ignatova, S.I.; Kerzhanovich, V.V.; Malyk, K.; Stadny, V.I.; Sanotskiy, Y.V.

    1986-05-01

    Accurate temperature and pressure measurements were made on the Vega-2 lander during its entire descent. The temperature and pressure at the surface were 733 K and 89.3 bar, respectively. A strong temperature inversion was found in the upper troposphere. Several layers with differing static stability were visible in the atmospheric structure.

  6. Decontamination of objects in a sealed container by means of atmospheric pressure plasmas

    DEFF Research Database (Denmark)

    Leipold, Frank; Schultz-Jensen, Nadja; Kusano, Yukihiro;

    2011-01-01

    The decontamination of objects (food) in a sealed container by means of atmospheric pressure plasmas is investigated. The target is Listeria monocytogenes, a bacterium which causes listeriosis and can be found in plants and food. The non-pathogenic species, Listeria innocua, is used....... The ambient atmosphere was air at atmospheric pressure. A plasma is generated inside the bag forming ozone from the oxygen. The maximum ozone concentration in the bag was found to be 140 ppm. A log 6 reduction of L. innocua is obtained after 15 min of exposure time. The temperature of the slides after...

  7. Modification of nitrogen Townsend ionization coefficient in a N2 laser with a weak corona preionization and high gas pressure using laser output power measurements

    Science.gov (United States)

    Sarikhani, S.; Hariri, A.

    2013-05-01

    Based on the reported experimental measurements on the output power in a transversely excited nitrogen laser with a weak corona preionization and rate equations, a simulation study was made to describe the laser output power behavior. For the study, we first made a literature survey for the appropriate E/p functional dependences of nitrogen molecules on drift velocity vd, and the Townsend ionization coefficient α, to be applied for the laser operational characteristics of high gas pressures up to 1 atmosphere, and 20 Townsend ionization coefficient to include the effect of the preionization for the laser system. This realization revealed that the Townsend coefficient upon utilizing the corona effect, (α/p)corona, can be viewed as a perturbation to be added to the (α/p)main due to the main gas discharge, where the total (α/p)t = (α/p)main + (α/p)corona was used for the calculation. We also introduced a single α/p relation with A* and B* coefficients to explain the gas discharge due to both the main and corona discharges. The results of the two approaches are introduced and have been compared with each other. The present study indicates that laser optical measurements, by themselves, constitute a reliable approach for understanding the physical quantities that are involved during plasma formation in a gas discharge. Details of the approach will be presented in this paper.

  8. Atmospheric pressure and temperature profiling using near IR differential absorption lidar

    Science.gov (United States)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Weng, C. Y.

    1983-01-01

    The present investigation is concerned with differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The procedure used in determining the pressure is based on the conduction of high-resolution measurements of absorption in the wings of lines in the oxygen A band. Absorption with respect to these areas is highly pressure sensitive in connection with the mechanism of collisional line broadening. The method of temperature measurement utilizes a determination of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy.

  9. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    International Nuclear Information System (INIS)

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established

  10. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hiromasa [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Mizuno, Masaaki [Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Toyokuni, Shinya [Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Maruyama, Shoichi [Department of Nephrology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kodera, Yasuhiro [Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Terasaki, Hiroko [Department of Ophthalmology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Adachi, Tetsuo [Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 501-1196 Gifu (Japan); Kato, Masashi [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kikkawa, Fumitaka [Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Hori, Masaru [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-12-15

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established.

  11. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    Science.gov (United States)

    Tanaka, Hiromasa; Mizuno, Masaaki; Toyokuni, Shinya; Maruyama, Shoichi; Kodera, Yasuhiro; Terasaki, Hiroko; Adachi, Tetsuo; Kato, Masashi; Kikkawa, Fumitaka; Hori, Masaru

    2015-12-01

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established.

  12. Comparison of atmospheric pressure chemical ionization and electrospray ionization mass spectrometry for the detection of lignans from sesame seeds

    NARCIS (Netherlands)

    Struijs, K.; Vincken, J.P.; Gruppen, H.

    2008-01-01

    In sesame seeds, high concentrations of lignans are present. When these lignans are fermented in the human colon, a range of structurally different lignans is formed. A good liquid chromatography/mass spectrometry (LC/MS) protocol for the analysis of lignans in complex mixtures is lacking. In order

  13. Model Simulations of Medium Time Scale Ionization Due to Cosmic Rays and Solar Energetic Particles (GLE59 and GLE in the Middle Atmosphere

    Science.gov (United States)

    Mishev, Alexander; Velinov, Peter

    2016-07-01

    The galactic cosmic rays (GCR) and solar energetic particles (SEP) could cause an excess of ionization in the atmosphere, specifically in polar and sub-polar regions. This effect is observed mainly in the middle atmosphere. The ionization effect could be strong at short time scales during major ground level enhancements (GLE)s of GCR. However, for the aims of recent atmospheric physics and atmospheric chemistry studies, namely the influence on the minor constituents and aerosols, it is important to derive the medium time scale ionization effect at various altitudes above the sea level. GLE 70 on December of 13, 2006 is the third strongest event of the previous solar cycle 23. The ionization effect in the Earth atmosphere is obtained for various latitudes on the basis of a full Monte Carlo simulation of CR induced atmospheric cascade at several altitudes, namely 35 km, 25 km, 15 km and 8 km above the sea level. Here we adopt previously reported ion production rate profiles obtained with Monte Carlo simulation of atmospheric cascade performed with the CORSIKA 6.990 code using FLUKA 2011 and QGSJET II hadron generators. A realistic winter atmospheric model is assumed. The 24-h ionization effect is computed for the sub-polar and polar regions, where it is expected to be the maximal effect of the planetary distribution on the Earth. Thus studied precipitation of energetic particles (GCR and SEP) is important and should be included in chemistry-climate models. Similar computations are performed for GLE 59 the so-called Bstille day event on 14 July 2000.

  14. Atmospheric oxygenation caused by a change in volcanic degassing pressure

    OpenAIRE

    Gaillard, Fabrice; Scaillet, Bruno; Arndt, Nicholas T.

    2011-01-01

    International audience; The Precambrian history of our planet is marked by two major events: a pulse of continental crust formation at the end of the Archaean eon and a weak oxygenation of the atmosphere (the Great Oxidation Event) that followed, at 2.45 billion years ago. This oxygenation has been linked to the emergence of oxygenic cyanobacteria1,2 and to changes in the compositions of volcanic gases3,4, but not to the composition of erupting lavas--geochemical constraints indicate that the...

  15. A Microwave Air Plasma Source under Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    LIU Liang; ZHANG Gui-Xin; FENG Jian; WANG Xin-Xin; LUO Cheng-Mu

    2008-01-01

    @@ We develop a new cavity with a mode similar to TE13 to produce microwave plasma,named APMPS Ⅱ,which is able to produce a mass of air plasma with diameter of around 6cm,equipped with about 3kW input power under one atmosphere.The plasma seems to be homogeneous without significant filamentous discharge as observed by common camera device.We present the theory of this cavity,show the distribution of electric field of several planes inside the cavity and give some experimental results.

  16. Time-resolved characterization of a filamentary argon discharge at atmospheric pressure in a capillary using emission and absorption spectroscopy

    Science.gov (United States)

    Schröter, Sandra; Pothiraja, Ramasamy; Awakowicz, Peter; Bibinov, Nikita; Böke, Marc; Niermann, Benedikt; Winter, Jörg

    2013-11-01

    An argon/nitrogen (0.999/0.001) filamentary pulsed discharge operated at atmospheric pressure in a quartz tube is characterized using voltage-current measurements, microphotography, optical emission spectroscopy (OES) and absorption spectroscopy. Nitrogen is applied as a sensor gas for the purpose of OES diagnostic. The density of argon metastable atoms Ar(3P2) is determined using tunable diode laser absorption spectroscopy (TDLAS). Using a plasma chemical model the measured OES data are applied for the characterization of the plasma conditions. Between intense positive pulses the discharge current oscillates with a damped amplitude. It is established that an electric current flows in this discharge not only through a thin plasma filament that is observed in the discharge image but also through the whole cross section of the quartz tube. A diffuse plasma fills the quartz tube during a time between intense current pulses. Ionization waves are propagating in this plasma between the spike and the grounded area of the tube producing thin plasma channels. The diameter of these channels increases during the pause between the propagation of ionization waves probably because of thermal expansion and diffusion. Inside the channels electron densities of ˜2 × 1013 cm-3, argon metastable densities ˜1014 cm-3 and a reduced electric field about 10 Td are determined.

  17. Germination and growth of lettuce (Lactuca sativa) at low atmospheric pressure

    Science.gov (United States)

    Spanarkel, Robert; Drew, Malcolm C.

    2002-01-01

    The response of lettuce (Lactuca sativa L. cv. Waldmann's Green) to low atmospheric pressure was examined during the initial 5 days of germination and emergence, and also during subsequent growth to vegetative maturity at 30 days. Growth took place inside a 66-l-volume low pressure chamber maintained at 70 kPa, and plant response was compared to that of plants in a second, matching chamber that was at ambient pressure (approximately 101 kPa) as a control. In other experiments, to determine short-term effects of low pressure transients, plants were grown at ambient pressure until maturity and then subjected to alternating periods of 24 h of low and ambient atmospheric pressures. In all treatments the partial pressure of O2 was maintained at 21 kPa (approximately the partial pressure in air at normal pressure), and the partial pressure of CO2 was in the range 66.5-73.5 Pa (about twice that in normal air) in both chambers, with the addition of CO2 during the light phase. With continuous exposure to low pressure, shoot and root growth was at least as rapid as at ambient pressure, with an overall trend towards slightly greater performance at the lower pressure. Dark respiration rates were greater at low pressure. Transient periods at low pressure decreased transpiration and increased dark respiration but only during the period of exposure to low pressure. We conclude that long-term or short-term exposure to subambient pressure (70 kPa) was without detectable detriment to vegetative growth and development.

  18. Silicon-based quantum dots: synthesis, surface and composition tuning with atmospheric pressure plasmas

    International Nuclear Information System (INIS)

    The synthesis of silicon and silicon-based quantum dots (diameter < 5 nm) is discussed. Specifically the synthesis of Si-based quantum dots (QDs) by atmospheric pressure plasmas is reviewed and the most recent developments are also reported. Atmospheric pressure plasmas are then compared with other synthesis methods that include low pressure plasmas, wet chemistry, electrochemical etching and laser-based methods. Finally, progress in the synthesis of alloyed silicon QDs is discussed where the nanoscale Si–Sn and Si–C systems are reported. The report also includes a theoretical analysis that highlights some fundamental differences offered by plasmas at atmospheric pressure and that may provide opportunities for novel materials with advantageous properties. (review article)

  19. Simulations of atmospheric pressure discharge in a high-voltage nanosecond pulse using the particle-in-cell Monte Carlo collision model in noble gases

    International Nuclear Information System (INIS)

    Atmospheric pressure discharge nonequilibrium plasmas have been applied to plasma processing with modern technology. Simulations of discharge in pure Ar and pure He gases at one atmospheric pressure by a high voltage trapezoidal nanosecond pulse have been performed using a one-dimensional particle-in-cell Monte Carlo collision (PIC-MCC) model coupled with a renormalization and weighting procedure (mapping algorithm). Numerical results show that the characteristics of discharge in both inert gases are very similar. There exist the effects of local reverse field and double-peak distributions of charged particles' density. The electron and ion energy distribution functions are also observed, and the discharge is concluded in the view of ionization avalanche in number. Furthermore, the independence of total current density is a function of time, but not of position

  20. Simulations of atmospheric pressure discharge in a high-voltage nanosecond pulse using the particle-in-cell Monte Carlo collision model in noble gases

    Science.gov (United States)

    Shi, Feng; Wang, Dezhen; Ren, Chunsheng

    2008-06-01

    Atmospheric pressure discharge nonequilibrium plasmas have been applied to plasma processing with modern technology. Simulations of discharge in pure Ar and pure He gases at one atmospheric pressure by a high voltage trapezoidal nanosecond pulse have been performed using a one-dimensional particle-in-cell Monte Carlo collision (PIC-MCC) model coupled with a renormalization and weighting procedure (mapping algorithm). Numerical results show that the characteristics of discharge in both inert gases are very similar. There exist the effects of local reverse field and double-peak distributions of charged particles' density. The electron and ion energy distribution functions are also observed, and the discharge is concluded in the view of ionization avalanche in number. Furthermore, the independence of total current density is a function of time, but not of position.

  1. The smooth transition from field emission to a self-sustained plasma in microscale electrode gaps at atmospheric pressure

    Science.gov (United States)

    Bilici, Mihai A.; Haase, John R.; Boyle, Calvin R.; Go, David B.; Sankaran, R. Mohan

    2016-06-01

    We report on the existence of a smooth transition from field emission to a self-sustained plasma in microscale electrode geometries at atmospheric pressure. This behavior, which is not found at macroscopic scales or low pressures, arises from the unique combination of large electric fields that are created in microscale dimensions to produce field-emitted electrons and the high pressures that lead to collisional ionization of the gas. Using a tip-to-plane electrode geometry, currents less than 10 μA are measured at onset voltages of ˜200 V for gaps less than 5 μm, and analysis of the current-voltage (I-V) relationship is found to follow Fowler-Nordheim behavior, confirming field emission. As the applied voltage is increased, gas breakdown occurs smoothly, initially resulting in the formation of a weak, partial-like glow and then a self-sustained glow discharge. Remarkably, this transition is essentially reversible, as no significant hysteresis is observed during forward and reverse voltage sweeps. In contrast, at larger electrode gaps, no field emission current is measured and gas breakdown occurs abruptly at higher voltages of ˜400 V, absent of any smooth transition from the pre-breakdown condition and is characterized only by glow discharge formation.

  2. Chain elongation of diacylphosphatidylcholine induces fully bilayer interdigitation under atmospheric pressure.

    Science.gov (United States)

    Goto, Masaki; Wilk, Agnieszka; Kazama, Akira; Chodankar, Shirish; Kohlbrecher, Joachim; Matsuki, Hitoshi

    2011-05-01

    The phase transitions of dibehenoylphosphatidylcholine (C22PC) bilayer membrane were observed by differential scanning calorimetry under atmospheric pressure and light-transmittance measurements under high pressure. The constructed temperature-pressure phase diagram suggests that the gel phase at low temperatures is the interdigitated gel phase. To confirm the phase state, we performed small-angle neutron scattering and fluorescence measurements using a polarity-sensitive probe Prodan for the C22PC bilayer membrane under atmospheric pressure. The peaks obtained in both measurements clearly showed the characteristic patterns of the fully interdigitated gel phase. Taking into account of previous studies on the gel phase for long-chain PC bilayers under atmospheric pressure and our studies on the pressure-induced bilayer interdigitaion of diacyl-PCs, it turned out that the interdigitation of diacyl-PC bilayer membranes occurs when the carbon number of acyl chain reaches at least 22. The present study revealed that the interdigitation of PC bilayer membranes occurs not only by weakening the attractive force of polar head groups but also by strengthening the cohesive force of acyl chains. When dominating the force of acyl chains, the interdigitation can be induced even in a diacyl-PC bilayer membrane by only hydration under atmospheric pressure.

  3. Multicomponent mixed dopant optimization for rapid screening of polycyclic aromatic hydrocarbons using ultra high performance liquid chromatography coupled to atmospheric pressure photoionization high-resolution mass spectrometry

    KAUST Repository

    Sioud, Salim

    2012-05-04

    RATIONALE To enhance the ionization efficiencies in atmospheric pressure photoionization mass spectrometry a dopant with favorable ionization energy such as chlorobenzene is typically used. These dopants are typically toxic and difficult to mix with water-soluble organic solvents. In order to achieve a more efficient and less toxic dopant, a multicomponent mixed dopant was explored. METHODS A multicomponent mixed dopant for non-targeted rapid screening of polycyclic aromatic hydrocarbons (PAHs) was developed and optimized using ultra high performance liquid chromatography (UPLC) coupled to atmospheric pressure photoionization high-resolution mass spectrometry. Various single and multicomponent mixed dopants consisting of ethanol, chlorobenzene, bromobenzene, anisole and toluene were evaluated. RESULTS Fourteen out of eighteen PAHs were successfully separated and detected at low pg/μL levels within 5 min with high mass accuracy ≤4 ppm. The optimal mixed multicomponent dopant consisted of ethanol/chlorobenzene/bromobenzene/anisole (98.975:0.1:0.9:0.025, v/v %) and it improved the limit of detection (LOD) by 2- to 10-fold for the tested PAHs compared to those obtained with pure chlorobenzene. CONCLUSIONS A novel multicomponent dopant that contains 99% ethanol and 1% mixture of chlorobenzene, bromobenzene and anisole was found to be an effective dopant mixture to ionize PAHs. The developed UPLC multicomponent dopant assisted atmospheric pressure photoionization high-resolution mass spectrometry offered a rapid non targeted screening method for detecting the PAHs at low pg/;μL levels within a 5 min run time with high mass accuracy a;circ4 ppm. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Ionization dynamics in the laser plasma in a low pressure gas target

    Science.gov (United States)

    Demidov, R. A.; Kalmykov, S. G.; Mozharov, A. M.; Petrenko, M. V.; Sasin, M. E.

    2012-11-01

    In Xe-laser-plasma short-wave-radiation sources, the laser-energy-to-EUV conversion efficiency (CE) turns out to be substantially lower than theoretical expectations. An estimation made in the present work is evidence of what a long period of the primary ionization, lasting up to a moment when high- Z ions appear to emit short-wave photons, can be considered as a main cause for the low CE values. During that period the plasma remains low-ionized and absorbs weakly the laser energy. Data deduced from laser light absorption measurements confirm the estimation above. A preionization of the gas target with the UV excimer laser pulse is proposed as a method to accelerate the ionization process.

  5. Effects of initiating anaerobic digestion of layer-hen poultry dung at sub-atmospheric pressure

    Directory of Open Access Journals (Sweden)

    Chima C. Ngumah

    2013-12-01

    Full Text Available This study investigated the effects of initiating anaerobic digestion (AD of dry layer-hen poultry dung at the sub-atmospheric pressure of -30 cmHg on biodegradation, biogasification, and biomethanation. The setup was performed as a batch process at an average ambient temperature of 29±2 0C and a retention time of 15 days. Comparisons were made with two other experiments which were both begun at ambient atmospheric pressure; one was inoculated with digestate from a previous layer-hen dung AD, while the other was not inoculated. The bioreactors initiated at sub-atmospheric pressure, ambient atmospheric pressure without inoculum, and ambient atmospheric pressure with inoculum showed the following for biogas and biomethane yields respectively: 16.8 cm3 g-1 VS and 15.46 cm3 g 1 VS, 25.10 cm3 g-1 VS and 12.85 cm3 g-1 VS, 21.44 cm3 g-1 VS and 14.88 cm3 g 1 VS. In the same order, after AD, the following values were recorded for volatile solids and total viable counts (prokaryotes and fungi in the digestates: 40.33% and 23.22 x 106 cfu mL-1, 43.42% and 22.17 x 106 cfu mL-1, 41.11% and 13.3 x 106 cfu mL-1. The feedstock showed values of 83.93% and 3.98 x 106 cfu mL-1 for volatile solids and total viable count respectively. There was a slight difference in the volatile solids of the digestates of the three bioreactors after AD. The pH recorded for the feedstock slurry before AD was 7.9 at 30oC, while after AD, the digestates from all the three bioreactors showed the same pH of 5.9 at 29 0C. Statistical analysis using ANOVA showed no significant difference in biogas yields of the feedstock for the three bioreactors (A, B, C. ANOVA showed no significant difference for biomethane yields in the bioreactors initiated at sub-atmospheric pressure and for those initiated at ambient atmospheric pressure with inoculums. However, it showed significant difference in the bioreactor initiated at sub-atmospheric pressure and that initiated at ambient atmospheric

  6. Pressure sensing of the atmosphere by solar occultation using broadband CO2 absorption

    Science.gov (United States)

    Park, J. H.; Russell, J. M., III; Drayson, S. R.

    1979-01-01

    A technique for obtaining pressure at the tangent point in an IR solar occulation experiment is described. By measuring IR absorption in bands of atmospheric CO2 (e.g., 2.0, 2.7, or 4.3 microns), mean pressure values for each tangent point layer (vertical thickness 2 km or less) of the atmosphere can be obtained with rms errors of less than 3%. The simultaneous retrieval of pressure and gas concentration in a remote-sensing experiment will increase the accuracy of inverted gas concentrations and minimize the dependence of the experiment on pressure or mass path error resulting from use of climatological pressure data, satellite ephemeris, and instrument pointing accuracy.

  7. Analytical Approach to Cosmic Ray Ionization by Nuclei with Charge Z in the Middle Atmosphere - Distribution of Galactic / Solar CR and SEP Effects

    Science.gov (United States)

    Velinov, P.; Ruder, H.; Mateev, L.

    The effects of galactic and solar cosmic rays CR in the middle atmosphere are considered in this work The solar energetic particles SEP effects are important in the upper stratosphere mesosphere and lower thermosphere In fact CR determine the electric conductivity in the middle atmosphere and influence on this way on the electric processes in it CR introduce the solar variability in the middle atmosphere - because they are modulated by solar wind A new analytical approach for CR ionization by protons and nuclei with charge Z in the lower ionosphere and middle atmosphere is developed in this paper For this purpose the ionization losses dE dh according to the Bohr-Bethe-Bloch formula for the energetic charged particles are approximated in five different energy intervals similarly to Dorman Cosmic Rays in the Earth s Atmosphere and Underground Kluwer Academic Publishers Dordrecht 2004 but a few precision corrections are involved More accurate expressions for energy decrease E h and electron production rate profiles q h are derived The obtained formulas allow comparatively easy computer programming The integrand in q h gives the possibility for application of adequate numerical methods - such as Romberg method or Gauss quadrature for the solution of the mathematical problem On this way the process of interaction of cosmic ray particles with the upper middle and lower atmosphere will be described much more realistically Computations for cosmic ray ionization in the middle atmosphere are made The full CR composition is taken into account protons

  8. Plasma Treatment of Industrial Landfill Leachate by Atmospheric Pressure Dielectric Barrier Discharges%Plasma Treatment of Industrial Landfill Leachate by Atmospheric Pressure Dielectric Barrier Discharges

    Institute of Scientific and Technical Information of China (English)

    赵迪; 王达成; 严贵; 马宏; 熊小京; 罗津晶; 张先徽; 刘东平; 杨思泽

    2011-01-01

    An dielectric barrier discharge (DBD) system in atmospheric pressure utilized for the treatment of industrial landfill leachate is reported. The discharge parameters, such as the operating frequency, gas flow rate, and treating duration, were found to affect significantly the removal of ammonia nitrogen (AN) in industrial landfill leachate. An increase in treating duration leads to an obvious increase in the removal efficiency of AN (up to 83%) and the leachate color changed from deep grey-black to transparent. Thus the dielectric barrier discharges in atmospheric pressure could degrade the landfill leachate effectively. Typical waveforms of both applied voltage and discharge current were also presented for analyzing the discharge processes under different discharge parameters. Optical emission spectra measurements indicate that oxidation species generated in oxygen DBD plasma play a crucial role in removing AN, oxidizing organic and inorganic substances and decolorizing the landfill leachate.

  9. Gas chromatographic vapor pressure determination of atmospherically relevant oxidation products of β-caryophyllene and α-pinene

    Science.gov (United States)

    Hartonen, Kari; Parshintsev, Jevgeni; Vilja, Vesa-Pekka; Tiala, Heidi; Knuuti, Sinivuokko; Lai, Ching Kwan; Riekkola, Marja-Liisa

    2013-12-01

    Vapor pressures (subcooled liquid, pliquid) of atmospherically relevant oxidation products of β-caryophyllene (β-caryophyllene aldehyde 0.18 ± 0.03 Pa and β-nocaryophyllene aldehyde 0.17 ± 0.03 Pa), and α-pinene (pinonaldehyde 16.8 ± 0.20 Pa, cis-pinic acid 0.12 ± 0.06 Pa, and cis-pinonic acid 0.99 ± 0.19 Pa) at 298 K were obtained by gas chromatography with flame ionization detection (FID) and mass spectrometric (MS) detection. The effects of stationary phase polarity and column film thickness on the vapor pressure values were investigated. Increase in stationary phase polarity provided smaller values, while increase in film thickness gave slightly higher values. Values for vapor pressure were at least two orders of magnitude lower when obtained by a method utilizing vaporization enthalpy (determined by gas chromatography-mass spectrometry) than by retention index method. Finally, the results were compared with values calculated by group contribution theory. For the β-caryophyllene oxidation products, the values measured by gas chromatography were slightly lower than those obtained by theoretical calculations. The opposite trend was observed for the α-pinene oxidation products. The methods based on gas chromatography are concluded to be highly useful for the determination of vapor pressures of semi-volatile compounds. Except for the most polar pinic and pinonic acids, differences between vapor pressure values obtained by GC-FID and GC-MS were small. Since GC-MS provides structural information simultaneously, the use of GC-MS is recommended.

  10. Three electrode atmospheric pressure plasma jet in helium flow

    Science.gov (United States)

    Maletic, Dejan; Puac, Nevena; Malovic, Gordana; Petrovic, Zoran Lj.

    2015-09-01

    Plasma jets are widely used in various types of applications and lately more and more in the field of plasma medicine. However, it is not only their applicability that distinguishes them from other atmospheric plasma sources, but also the behavior of the plasma. It was shown that plasma plume is not continuous, but discrete set of plasma packages. Here we present iCCD images and current voltage characteristics of a three electrode plasma jet. Our plasma jet has a simple design with body made of glass tube and two transparent electrodes wrapped around it. The additional third metal tip electrode was positioned at 10 and 25 mm in front of the jet nozzle and connected to the same potential as the powered electrode. Power transmitted to the plasma was from 0.5 W to 4.0 W and the helium flow rate was kept constant at 4 slm. For the 10 mm configuration plasma is ignited on the metal tip in the whole period of the excitation signal and in the positive half cycle plasma ``bullet'' is propagating beyond the metal tip. In contrast to that, for the 25 mm configuration at the tip electrode plasma can be seen only in the minimum and maximum of the excitation signal, and there is no plasma ``bullet'' formation. This research has been supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, under projects ON171037 and III41011.

  11. Analysis of oxysterols and vitamin D metabolites in mouse brain and cell line samples by ultra-high-performance liquid chromatography-atmospheric pressure photoionization-mass spectrometry.

    Science.gov (United States)

    Ahonen, Linda; Maire, Florian B R; Savolainen, Mari; Kopra, Jaakko; Vreeken, Rob J; Hankemeier, Thomas; Myöhänen, Timo; Kylli, Petri; Kostiainen, Risto

    2014-10-17

    We have developed an ultra-high-performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometric (UHPLC-APPI-MS/MS) method for the simultaneous quantitative analyses of several oxysterols and vitamin D metabolites in mouse brain and cell line samples. An UHPLC-APPI-high resolution mass spectrometric (UHPLC-APPI-HRMS) method that uses a quadrupole-time of flight mass spectrometer was also developed for confirmatory analysis and for the identification of non-targeted oxysterols. Both methods showed good quantitative performance. Furthermore, APPI provides high ionization efficiency for determining oxysterols and vitamin D related compounds without the time consuming derivatization step needed in the conventionally used electrospray ionization method to achieve acceptable sensitivity. Several oxysterols were quantified in mouse brain and cell line samples. Additionally, 25-hydroxyvitamin D3 was detected in mouse brain samples for the first time.

  12. Power Absorption of High Frequency Electromagnetic Waves in a Partially Ionized Plasma Layer in Atmosphere Conditions

    Institute of Scientific and Technical Information of China (English)

    郭斌; 王晓钢

    2005-01-01

    We have studied the absorption, reflection, and transmission of electromagnetic waves in an unmagnetized uniform plasma layer covering a metal surface in atmosphere conditions.Instead of the absorption of the electromagnetic wave propagating only once in previous work on the plasma layer, a general formula of total power absorption by the plasma layer with an infinite time of reflections between the atmosphere-plasma interface and the metal surface has been derived for the first time. Effects of plasma parameters, especially the dependence of the fraction of positive ions, negative ions and electrons in plasmas on the power absorption processes are discussed. The results show that the existence of negative ions significantly reduces the power absorption of the electromagnetic wave. Absorptions of electromagnetic waves are calculated.

  13. Model atmospheres and radiation of magnetic neutron stars. I - The fully ionized case

    Science.gov (United States)

    Shibanov, Iu. A.; Zavlin, V. E.; Pavlov, G. G.; Ventura, J.

    1992-01-01

    Model neutron star atmospheres are calculated for typical cooling stars with a strong magnetic field and effective temperatures of 10 exp 5 to 10 exp 6 K. The effect of anisotropic photon diffusion in two normal modes are examined under the assumption that the opacity is due solely to the bremsstrahlung and Thomson scattering processes under conditions of LTE that are expected to prevail at the temperatures and densities obtained. The main aspects of anisotropic photon diffusion, and an original procedure for calculating model atmospheres and emitted spectra are discussed. Representative calculated spectra are given, and it is found that the hard spectral excess characterizing the nonmagnetic case, while still present, becomes less prominent in the presence of magnetic fields in the range of 10 exp 11 to 10 exp 13 G.

  14. Plasma polymerization of acrylic acid onto polystyrene by cyclonic plasma at atmospheric pressure

    Science.gov (United States)

    Chang, Yi-Jan; Lin, Chin-Ho; Huang, Chun

    2016-01-01

    The cyclonic atmospheric-pressure plasma is developed for chamberless deposition of poly(acrylic acid) film from argon/acrylic acid mixtures. The photoemission plasma species in atmospheric-pressure plasma polymerization was identified by optical emission spectroscopy (OES). The OES diagnosis data and deposition results indicated that in glow discharge, the CH and C2 species resulted from low-energy electron-impact dissociation that creates deposition species, but the strong CO emission lines are related to nondeposition species. The acrylic acid flow rate is seen as the key factor affecting the film growth. The film surface analysis results indicate that a smooth, continuous, and uniform surface of poly(acrylic acid) films can be formed at a relatively low plasma power input. This study reveals the potential of chamberless film growth at atmospheric pressure for large-area deposition of poly(acrylic acid) films.

  15. Optical Emission Spectroscopy of an Atmospheric Pressure Plasma Jet During Tooth Bleaching Gel Treatment.

    Science.gov (United States)

    Šantak, Vedran; Zaplotnik, Rok; Tarle, Zrinka; Milošević, Slobodan

    2015-11-01

    Optical emission spectroscopy was performed during atmospheric pressure plasma needle helium jet treatment of various tooth-bleaching gels. When the gel sample was inserted under the plasma plume, the intensity of all the spectral features increased approximately two times near the plasma needle tip and up to two orders of magnitude near the sample surface. The color change of the hydroxylapatite pastille treated with bleaching gels in conjunction with the atmospheric pressure plasma jet was found to be in correlation with the intensity of OH emission band (309 nm). Using argon as an additive to helium flow (2 L/min), a linear increase (up to four times) of OH intensity and, consequently, whitening (up to 10%) of the pastilles was achieved. An atmospheric pressure plasma jet activates bleaching gel, accelerates OH production, and accelerates tooth bleaching (up to six times faster).

  16. Selective cytotoxicity of indirect nonequilibrium atmospheric pressure plasma against ovarian clear-cell carcinoma.

    Science.gov (United States)

    Utsumi, Fumi; Kajiyama, Hiroaki; Nakamura, Kae; Tanaka, Hiromasa; Hori, Masaru; Kikkawa, Fumitaka

    2014-01-01

    Ovarian clear cell carcinoma (CCC) is a histological type of epithelial ovarian cancer that is less responsive to chemotherapy and associated with a poorer prognosis than serous and endometrioid carcinoma. Non-thermal atmospheric pressure plasma which produces reactive species has recently led to an explosion of research in plasma medicine. Plasma treatment can be applied to cancer treatment to induce apoptosis and tumor growth arrest. Furthermore, recent studies have shown that a medium exposed to plasma also has an anti-proliferative effect against cancer in the absence of direct exposure to plasma. In this study, we confirmed whether this indirect plasma has an anti-tumor effect against CCC, and investigated whether this efficacy is selective for cancer cells. Non-thermal atmospheric pressure plasma induced apoptosis in CCC cells, while human peritoneal mesothelial cells remained viable. Non-thermal atmospheric pressure plasma exhibits selective cytotoxicity against CCC cells which are resistant to chemotherapy.

  17. Polymer Surface Treatment by Atmospheric Pressure Low Temperature Surface Discharge Plasma:Its Characteristics and Comparison with Low Pressure Oxygen Plasma Treatment

    Institute of Scientific and Technical Information of China (English)

    Atsushi KUWABARA; Shin-ichi KURODA; Hitoshi KUBOTA

    2007-01-01

    The polymer treatment with a low-temperature plasma jet generated on the atmospheric pressure surface discharge (SD) plasma is performed.The change of the surface property over time,in comparison with low pressure oxygen (O2) plasma treatment,is examined.As one compares the treatment by atmospheric pressure plasma to that by the low pressure O2 plasma of PS (polystyrene) the treatment effects were almost in complete agreement.However,when the atmospheric pressure plasma was used for PP(polypropylene),it produced remarkable hydrophilic effects.

  18. Improved cosmic ray ionization model for the system lower ionosphere-middle atmosphere. Determination of approximation energy interval characteristics for the particle penetration

    Science.gov (United States)

    Velinov, Peter; Mateev, Lachezar

    The effects of galactic and solar cosmic rays (CRs) in the middle atmosphere are considered in this work. We take into account the CR modulation by solar wind and the anomalous CR component also. In fact, CRs determine the electric conductivity in the middle atmosphere and influence the electric processes in it in this way. CRs introduce solar variability in the terrestrial atmosphere and ozonosphere -because they are modulated by solar wind. A new analytical approach for CR ionization by protons and nuclei with charge Z in the lower ionosphere and the middle atmosphere is developed in this paper. For this purpose, the ionization losses (dE/dh) for the energetic charged particles according to the Bohr-Bethe-Bloch formula are approximated in three different energy intervals. More accurate expressions for CR energy decrease E(h) and electron production rate profiles q(h) are derived. The obtained formulas allow comparatively easy computer programming. q(h) is determined by the solution of a 3D integral with account of geomagnetic cut-off rigidity. The integrand in q(h) gives the possibility for application of adequate numerical methods -in this case Gauss quadrature and Romberg extrapolation, for the solution of the mathematical problem. Computations for CR ionization in the middle atmosphere are made. The contributions of the different approximation energy intervals are presented. In this way the process of interaction of CR particles with the upper and middle atmosphere are described much more realistically. The full CR composition is taken into account: protons, helium (alpha-particles), light L, medium M, heavy H and very heavy VH group of