WorldWideScience

Sample records for atmospheric pressure discharges

  1. Computational investigations of atmospheric pressure discharges

    OpenAIRE

    Iqbal, Muhammad Munawar

    2010-01-01

    This research work presents the numerical simulations of multispecies multi-dimensional fluid model of atmospheric pressure discharge. The semi-implicit sequential iterative scheme is used to solve the coupled system of plasma fluid model equations with a proper set of boundary conditions. A one- dimensional self consistent drift-diffusion fluid model is developed to investigate the characteristics of atmospheric pressure discharge in pure helium and He-N2 gases. The uniform atmos...

  2. Runaway electron beam in atmospheric pressure discharges

    Science.gov (United States)

    Oreshkin, E. V.; Barengolts, S. A.; Chaikovsky, S. A.; Oreshkin, V. I.

    2015-11-01

    A numerical simulation was performed to study the formation of a runaway electron (RAE) beam from an individual emission zone in atmospheric pressure air discharges with a highly overvolted interelectrode gap. It is shown that the formation of a RAE beam in discharges at high overvoltages is much contributed by avalanche processes.

  3. Thermally induced atmospheric pressure gas discharges using pyroelectric crystals

    International Nuclear Information System (INIS)

    Using a heated pyroelectric crystal, an atmospheric pressure gas discharge was generated through the input of heat. When put through a change in temperature, the polarization of a pyroelectric can change significantly, creating a substantial electric potential at its surface. When configured with a grounded sharp counter electrode, a large inhomogeneous electric field forms in the interstitial gas to initiate a corona-like discharge. Under constant heating conditions, gaseous ions drifting to the pyroelectric accumulate and screen the electric field, extinguishing the discharge. By thermally cycling the pyroelectric, negative and positive discharges are generated during heating and cooling, respectively, with peak currents on the order of 80 nA. Time-integrated visualization confirmed the generation of both a corona-like discharge and a surface discharge on the pyroelectric. Parametric studies identified that thermal cycling conditions significantly influence discharge formation for this new atmospheric pressure discharge approach. (paper)

  4. The first experiments on dielectric barrier discharge under atmospheric pressure

    International Nuclear Information System (INIS)

    In order to obtain uniform and stable discharge plasma in atmospheric pressure, dielectric barrier discharge experiments were carried out. Main purpose is to examine the applicability of dielectric barrier discharge to production processes of semi-conductors. LSIs and flat display panels. In the experiments, at first, quite stable and uniform discharge was obtained at atmospheric pressure. Effects of applied voltage and frequency on plasma uniformity were studied. Improvement of discharge uniformity by introducing gas flow of helium or nitrogen between the discharge gap was observed. Finally, surface cleaning effect of the present plasma was confirmed by observing contact angle of liquid droplet. At least for cleaning process, possibility of application as process plasma was suggested

  5. Dynamics behavior of homogeneous dielectric barrier discharge at atmospheric pressure

    Science.gov (United States)

    Zhang, Yan; Gu, Biao; Wang, Wenchun; Wang, Dezhen; Peng, Xuwen

    2009-07-01

    An experimental study on the dynamics behavior of homogeneous dielectric barrier discharge (HDBD) at atmospheric pressure is described in this paper. Two kinds of discharge mode, glow and Townsend discharge modes, can be easily identified according to the differential conductivity of current-voltage relationship in the ascent stage of discharge current for the atmospheric HDBD. A (three-dimensional) 3D phase space made by discharge current, gas gap voltage, and charge density of dielectric-plate surface was utilized in the study. By projecting the discharge evolution trajectory in the 3D space, the 3D trajectory of multiple current peaks discharge in atmospheric helium shows a limited cycle with convolutions and undergoes a series of bifurcation process; however, the 3D trajectory of atmospheric N2 HDBD is a limited cycle without any convolution and bifurcation process. In addition, the first ionization coefficient of working gas plays a key role to determine the discharge mode of atmospheric HDBD, the transition of discharge mode and the dynamics stability of atmospheric HDBD.

  6. A dielectric barrier discharge in neon at atmospheric pressure

    International Nuclear Information System (INIS)

    A dielectric barrier discharge in neon at atmospheric pressure is investigated with electrical measurement and fast photography. It is found that a stable diffuse discharge can be easily generated in a gap with a gap space of 0.5-6 mm and is identified with a glow discharge. The first breakdown voltage of the gap is considerably higher than that of the same gap working in a stable diffuse discharge mode, which indicates that Penning ionization of neon metastables from the previous discharge with inevitable gas impurities plays an important role in the decrease in the breakdown voltage. Discharge patterns are observed in a gap shorter than 1 mm. From the experiments with a wedge-like gap, it is found that the discharge patterns are formed in the area with a higher applied electric field, which suggests that a higher applied electric field may cause a transition from a diffuse glow to discharge patterns.

  7. Model of a stationary microwave argon discharge at atmospheric pressure

    International Nuclear Information System (INIS)

    The many applications of microwave gas discharges at atmospheric pressure in various fields of science, technology and medicine require an adequate model of these discharges. Such a model is based on the electromagnetic wave's propagation properties and on the elementary processes in the discharge bulk. In contrast to the microwave discharges at low-gas pressures, where many elementary processes might be ignored because of their negligible contribution to the electron and heavy particle's balance equations, for such discharges at atmospheric pressure the consideration of a large number of collisional processes is mandatory. For the build of a successful discharge-column model one needs three important quantities, notably the power θ necessary for sustaining an electron - ion pair, electron - neutral collision frequency for momentum transfer ven, and gas temperature Tg. The first two key parameters are obtained by a collisional-radiative model of the argon at atmospheric pressure, while the microwave frequency ω/2π = 2.45 GHz, plasma column radius R, gas pressure p and gas temperature Tg are fixed external parameters determined by the experimental conditions. Here, we present a model of a capillary argon microwave plasma column with a length L ≅ 14 cm, sustained by wave power of 110 W - the model yields the longitudinal distributions of the plasma density, expended wave power, wave electric field magnitude, and complex wave number

  8. Model of a stationary microwave argon discharge at atmospheric pressure

    Science.gov (United States)

    Zhelyazkov, I.; Pencheva, M.; Benova, E.

    2008-03-01

    The many applications of microwave gas discharges at atmospheric pressure in various fields of science, technology and medicine require an adequate model of these discharges. Such a model is based on the electromagnetic wave's propagation properties and on the elementary processes in the discharge bulk. In contrast to the microwave discharges at low-gas pressures, where many elementary processes might be ignored because of their negligible contribution to the electron and heavy particle's balance equations, for such discharges at atmospheric pressure the consideration of a large number of collisional processes is mandatory. For the build of a successful discharge-column model one needs three important quantities, notably the power θ necessary for sustaining an electron—ion pair, electron—neutral collision frequency for momentum transfer ven, and gas temperature Tg. The first two key parameters are obtained by a collisional-radiative model of the argon at atmospheric pressure, while the microwave frequency ω/2π = 2.45 GHz, plasma column radius R, gas pressure p and gas temperature Tg are fixed external parameters determined by the experimental conditions. Here, we present a model of a capillary argon microwave plasma column with a length L ≈ 14 cm, sustained by wave power of 110 W—the model yields the longitudinal distributions of the plasma density, expended wave power, wave electric field magnitude, and complex wave number.

  9. Simulation of low temperature atmospheric pressure corona discharge in helium

    Science.gov (United States)

    Bekasov, Vladimir; Kirsanov, Gennady; Eliseev, Stepan; Kudryavtsev, Anatoly; Sisoev, Sergey

    2015-11-01

    The main objective of this work was to construct a numerical model of corona discharge in helium at atmospheric pressure. The calculation was based on the two-dimensional hybrid model. Two different plasma-chemical models were considered. Models were built for RF corona and negative DC corona discharge. The system of equations is solved by the finite element method in the COMSOL Multiphysics. Main parameters of the discharge (the density of charged and excited particles, the electron temperature) and their dependence on the input parameters of the model (geometry, electrode voltage, power) were calculated. The calculations showed that the shape of the electron distribution near the electrode depends on the discharge power. The neutral gas heating data obtained will allow predicting the temperature of the gases at the designing of atmospheric pressure helium plasma sources.

  10. Non-thermal atmospheric pressure discharges for surface modification

    International Nuclear Information System (INIS)

    Throughout the last decades, plasma technology has been established in a series of surface treatment applications, e.g. for semiconductor processing or optical coatings. The majority of plasma assisted technologies is based on low pressure processes. In recent years, however, non-thermal atmospheric pressure discharges have attracted considerable interest because of their simplified technical devices for industrial applications as compared to low pressure processes which require vacuum equipment. Hence, batch processing can be avoided, thus facilitating the implementation of plasma process steps into production lines. Investment costs are cut down significantly. The use of atmospheric pressure plasmas for technical applications dates back to the ozone production with dielectric barrier discharges (DBD) by Siemens in 1857. Lately, the application of atmospheric pressure plasmas for surface treatment has been reported, e.g. for the treatment of foils to improve printability, for surface cleaning and protective coatings. The DBD is known as a strongly inhomogeneous, filamentary discharge. A non filamentary, homogeneous DBD was observed in He, N2, other gases, and mixtures. An example of this discharge type and its application for the deposition of thin films by plasma polymerization is discussed in more detail. The standard planar electrode geometry of the DBD is characterized by a narrow inter-electrode gap in the mm-Region. Hence, surface treatment has been restricted to thin, flat substrates. Attempts to overcome these limitations involve micro discharge arrays and jet geometries, which are evoked by an enhanced gas flow, partly in combination with the electric field. Jets are created out of several plasma types, among them corona discharge, DBD, microwave discharge and RF discharge. With these plasma sources, substrate geometries displaying 3-dimensional features can be treated, too. Critical parameters for the comparison of atmospheric pressure surface

  11. Electrical, Optical and acoustic diagnostics of atmospheric pressure gas discharges

    OpenAIRE

    O'Connor, Niall

    2011-01-01

    This thesis presents original diagnostic investigations of atmospheric pressure gaseous discharges, operating in owing helium and helium with low concentrations (0.1 - 1 %) of gas admixtures, together with novel biomedical surface functionalisations. The initial body of this work focuses on comprehensive electrical and optical diagnostics of the operation of an industrial scale dielectric barrier discharge (DBD), maintained in a 10 l/min w of both helium and helium with 1% admixed ...

  12. Electrical characterization of atmospheric pressure dielectric barrier discharge in air

    International Nuclear Information System (INIS)

    This paper reports the electrical characterization of dielectric barrier discharge produced at atmospheric pressure using a high voltage power supply operating at 50Hz. The characteristics of the discharge have been studied under different values as such applied voltage and the electrode gap width. The results presented in this work can be helpful in understanding the influence of dielectric material on the nature of the discharge. An attempt has also been made to investigate the influence of ballast resistor on the magnitude of discharge current and also the density of micro-discharges. Our results indicated that with this power supply and electrode geometry, a relatively more homogenous discharge is observed for 3 mm spacing. (author)

  13. Simulation of nonstationary phenomena in atmospheric-pressure glow discharge

    Science.gov (United States)

    Korolev, Yu. D.; Frants, O. B.; Nekhoroshev, V. O.; Suslov, A. I.; Kas'yanov, V. S.; Shemyakin, I. A.; Bolotov, A. V.

    2016-06-01

    Nonstationary processes in atmospheric-pressure glow discharge manifest themselves in spontaneous transitions from the normal glow discharge into a spark. In the experiments, both so-called completed transitions in which a highly conductive constricted channel arises and incomplete transitions accompanied by the formation of a diffuse channel are observed. A model of the positive column of a discharge in air is elaborated that allows one to interpret specific features of the discharge both in the stationary stage and during its transition into a spark and makes it possible to calculate the characteristic oscillatory current waveforms for completed transitions into a spark and aperiodic ones for incomplete transitions. The calculated parameters of the positive column in the glow discharge mode agree well with experiment. Data on the densities of the most abundant species generated in the discharge (such as atomic oxygen, metastable nitrogen molecules, ozone, nitrogen oxides, and negative oxygen ions) are presented.

  14. Discharge Characteristics in Atmospheric Pressure Glow Surface Discharge in Helium Gas

    Institute of Scientific and Technical Information of China (English)

    LI Xue-Chen; WANG Long

    2005-01-01

    @@ Atmospheric pressure glow discharge is observed for the first time in a surface discharge generator in flowing helium. Electrical and optical methods are used to measure the characteristics of atmospheric pressure glow discharge for different voltages. The results show that discharge current waveforms are asymmetric for the different polarities of the applied voltage. A continuous discharge profile with a width of several microseconds appears for per half cycle of the applied voltage when the voltage is increased to a certain value. The short-pulsed discharge and the continuous current would result from the Townsend breakdown and glow discharge mechanisms respectively. The properties of surface discharge in stagnant helium are completely different from that in flowing helium.

  15. Influence of gap width on discharge asymmetry in atmospheric pressure glow dielectric barrier discharges

    International Nuclear Information System (INIS)

    In this letter, a one-dimensional fluid model is used to investigate the mechanism of discharge asymmetry in atmospheric pressure helium glow dielectric barrier discharges (GDBDs). By observing the evolutionary process between the successive peak currents, the effect of the gap width on the discharge asymmetry is thoroughly discussed. It is shown that when the gap width is too large, the very severe nonuniformity of electric field distribution over the gas gap leads to the discharge asymmetry.

  16. Interaction between pulsed discharge and radio frequency discharge burst at atmospheric pressure

    Science.gov (United States)

    Zhang, Jie; Guo, Ying; Shi, Yuncheng; Zhang, Jing; Shi, J. J.

    2015-08-01

    The atmospheric pressure glow discharges (APGD) with dual excitations in terms of pulsed voltage and pulse-modulation radio frequency (rf) power are studied experimentally between two parallel plates electrodes. Pulse-modulation applied in rf APGD temporally separates the discharge into repetitive discharge bursts, between which the high voltage pulses are introduced to ignite sub-microsecond pulsed discharge. The discharge characteristics and spatio-temporal evolution are investigated by means of current voltage characteristics and time resolved imaging, which suggests that the introduced pulsed discharge assists the ignition of rf discharge burst and reduces the maintain voltage of rf discharge burst. Furtherly, the time instant of pulsed discharge between rf discharge bursts is manipulated to study the ignition dynamics of rf discharge burst.

  17. Interaction between pulsed discharge and radio frequency discharge burst at atmospheric pressure

    International Nuclear Information System (INIS)

    The atmospheric pressure glow discharges (APGD) with dual excitations in terms of pulsed voltage and pulse-modulation radio frequency (rf) power are studied experimentally between two parallel plates electrodes. Pulse-modulation applied in rf APGD temporally separates the discharge into repetitive discharge bursts, between which the high voltage pulses are introduced to ignite sub-microsecond pulsed discharge. The discharge characteristics and spatio-temporal evolution are investigated by means of current voltage characteristics and time resolved imaging, which suggests that the introduced pulsed discharge assists the ignition of rf discharge burst and reduces the maintain voltage of rf discharge burst. Furtherly, the time instant of pulsed discharge between rf discharge bursts is manipulated to study the ignition dynamics of rf discharge burst

  18. Interaction between pulsed discharge and radio frequency discharge burst at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie [State Key Lab for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); College of Science, Donghua University, Shanghai 201620 (China); Guo, Ying; Shi, Yuncheng [College of Science, Donghua University, Shanghai 201620 (China); Magnetic Confinement Fusion Research Center, Ministry of Education of the People' s Republic of China, Shanghai 201620 (China); Zhang, Jing; Shi, J. J., E-mail: JShi@dhu.edu.cn [State Key Lab for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); College of Science, Donghua University, Shanghai 201620 (China); Magnetic Confinement Fusion Research Center, Ministry of Education of the People' s Republic of China, Shanghai 201620 (China)

    2015-08-15

    The atmospheric pressure glow discharges (APGD) with dual excitations in terms of pulsed voltage and pulse-modulation radio frequency (rf) power are studied experimentally between two parallel plates electrodes. Pulse-modulation applied in rf APGD temporally separates the discharge into repetitive discharge bursts, between which the high voltage pulses are introduced to ignite sub-microsecond pulsed discharge. The discharge characteristics and spatio-temporal evolution are investigated by means of current voltage characteristics and time resolved imaging, which suggests that the introduced pulsed discharge assists the ignition of rf discharge burst and reduces the maintain voltage of rf discharge burst. Furtherly, the time instant of pulsed discharge between rf discharge bursts is manipulated to study the ignition dynamics of rf discharge burst.

  19. Role of secondary emission on discharge dynamics in an atmospheric pressure dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Tay, W. H.; Kausik, S. S.; Yap, S. L.; Wong, C. S., E-mail: cswong@um.edu.my [Plasma Technology Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-04-15

    The discharge dynamics in an atmospheric pressure dielectric barrier discharge (DBD) is studied in a DBD reactor consisting of a pair of stainless steel parallel plate electrodes. The DBD discharge has been generated by a 50 Hz ac high voltage power source. The high-speed intensified charge coupled device camera is used to capture the images of filaments occurring in the discharge gap. It is observed that frequent synchronous breakdown of micro discharges occurs across the discharge gap in the case of negative current pulse. The experimental results reveal that secondary emissions from the dielectric surface play a key role in the synchronous breakdown of plasma filaments.

  20. Development of ac corona discharge modes at atmospheric pressure

    International Nuclear Information System (INIS)

    Corona discharges in gases exist under several distinctive forms. In this paper, a survey study has been made of ac corona discharge modes generated in some different gases fed in a wire-duct reactor with a constant rate of flowing at atmospheric pressure. The properties of different corona modes are analyzed under some condition transitions from Trichel pulses to a steady glow. In the course of the presented experimental work, numerous apparent contradictions with earlier observations necessitated further study and are given to provide more information on the physical mechanisms of the ac corona discharges. Furthermore, we have gained insight into some new technologies and applications of the environmentally friendly corona and plasma discharges.

  1. Nonlinear lumped circuit modeling of an atmospheric pressure rf discharge

    Science.gov (United States)

    Lapke, M.; Ziegler, D.; Mussenbrock, T.; Gans, T.; Schulz-von der Gathen, V.

    2006-10-01

    The subject of our modeling approach is a specifically modified version of the atmospheric pressure plasma jet (APPJ, originally proposed by Selwyn and coworkers^1) with reduced discharge volume, the micro atmospheric pressure plasma jet (μ-APPJ). The μ-APPJ is a homogeneous nonequilibrium discharge operated with Argon or Helium as the feedstock gas and a percentage volume admixture of a molecular gas (O2, H2, N2). The efficiency of the discharge is mainly due to the dissociated and activated molecules in the effluent that can be selected depending on the application. A variety of applications in surface treatment have already been demonstrated, e.g., in semiconductor technology, restoration and bio-medicine. In this contribution we present and analyze a nonlinear lumped circuit model of the μ-APPJ. We apply a two-scale formalism. The bulk is modeled by a generalized Ohm's law, whereas the sheath is described on a considerably higher level of mathematical sophistication. The main focus lies on the spectrum of the discharge current in order to support the characterization of the discharge via model-based diagnostics, i.e., the estimation of the spatially averaged electron density from the frequency of certain self-excitated collective resonance modes. J. Park et al., Appl. Phy. Lett. 76, 288 (2000)

  2. Temperature profiles in filamentary dielectric barrier discharges at atmospheric pressure

    OpenAIRE

    Jidenko, N; Bourgeois, E; Borra, J-P

    2010-01-01

    Abstract The physico-chemical properties of atmospheric pressure filamentary Dielectric Barrier Discharge (f-DBD) depend on its electrical characteristics and thermal profile. In this paper, a method for separating thermal and electrical effects is developed. Therefore, thermal profiles of f-DBD are studied for well defined electrical characteristics of filaments: all filaments are quasi identical with a controlled spatio-temporal density. The temperatures of gas, dielectric surface and pl...

  3. BIOLOGICAL APPLICATIONS OF ATMOSPHERIC PRESSURE DIELECTRIC BARRIER DISCHARGES

    OpenAIRE

    Dodet, Bénédicte; Odic, Emmanuel; Salamitou, Sylvie; Goldman, Alice; Goldman, Max

    2006-01-01

    A reduction of more than 4 orders of magnitude of survivors was obtained by exposing a Bacillus Stearothermophilus spores - contaminated surface to an atmospheric pressure DBD post-discharge for 20 minutes. Decontamination mechanisms are investigated assuming that (i) inactivation is obtained when the bacteria DNA is fragmented, (ii) the protein coats are the main protection of the cell core DNA in the case of bacteria spores. The degradation of DNA (plasmid) and protein (RNAse A) samples sub...

  4. Thin film deposition on powder surfaces using atmospheric pressure discharge

    International Nuclear Information System (INIS)

    The deposition of SiOx containing films on NaCl and KBr particles in dielectric barrier discharge under atmospheric pressure was investigated. As precursor hexamethyldisiloxane (HMDSO) and tetraethoxysilane (TEOS) in argon-oxygen gas mixtures were used. The deposited layers were studied by means of light microscopy, SEM and XPS investigations. The particles could be completely covered by SiOx. With increasing oxygen content in the coating the carbon content decreases

  5. Repetitive nanosecond glow discharge in atmospheric pressure air

    Science.gov (United States)

    Packan, Denis

    Nonequilibrium, weakly ionized plasmas are widely used in the industry, but they are restricted to the domain of continuous discharges at low gas pressure or with specialty gases because of stability and power budget constraints. In this study, repetitively pulsed discharges were investigated as a way to decrease the power budget of atmospheric air plasmas by several orders of magnitude compared to continuous discharges, for an electron density of 1012 cm-3. The principle of the pulsed scheme is to use nanosecond electrical pulses to ionize air diffusely and with high efficiency, and to match the pulse interval with the recombination time of the plasma in order to maintain an elevated average electron density. Maxwellian and non-Maxwellian models of the physical processes in the discharge were examined, and the discharge parameters were chosen to minimize the power. Using a 10 ns, 12 kV, 100 kHz repetitive pulse generator, it was found that a repetitive nanosecond glow discharge could be operated in stable manner in atmospheric pressure air at 2000 K at an electron density of about 10 12 cm-3. Two pulsed discharges, with repetition frequencies of 100 kHz and 30 kHz, are described in this work. The electrode gap is 1 cm and the pulsed voltage is about 5 kV/cm. Electrical and optical methods were developed to measure the electron density in the discharge. The electron density was measured from the electrical conductivity during both the pulse and recombination phases, from the absolute intensity of the N2 Second Positive system during the pulse phase, and from the NO-gamma system during the recombination phase. The average electron density was found to be 1.4 x 1012 cm -3 for the 100 kHz discharge, and 1.8 x 102 cm-3 for the 30 kHz discharge, with peak values of 2 x 1012 cm-3 and 1013 cm-3, respectively. The power budget for the 30 kHz discharge was measured, from the voltage and current during the pulse phase, to be about 10 W/cm3, which represents an improvement of

  6. Decomposition of benzene in a corona discharge at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Kohki [Department of Electrical and Electronic Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585 (Japan); Centre of Environmental Science and Disaster Mitigation for Advanced Research, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585 (Japan); Matsuzawa, Toshiharu; Itoh, Hidenori [Department of Electrical and Electronic Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585 (Japan)

    2008-05-01

    We investigated the decomposition characteristics of benzene in a positive DC corona discharge between multineedle and plane electrodes with a background gas of nitrogen-oxygen mixture at atmospheric pressure. We obtained C{sub 2}H{sub 2}, HCN, HCOOH, CO and CO{sub 2} as benzene fragments and by-products, and C{sub 2}H{sub 2} and HCN as minor intermediate products. Benzene was primarily converted into CO{sub 2} via CO at low oxygen concentrations (0.2%) and via CO and HCOOH at the atmospheric oxygen concentration (20%). Further, 57% and 24% of carbon atoms were deposited on the plane electrode and the discharge chamber at oxygen concentrations of 0.2% and 20%, respectively.

  7. Charging of aerosol and nucleation in atmospheric pressure electrical discharges

    Energy Technology Data Exchange (ETDEWEB)

    Borra, J P [Laboratoire de Physique des Gaz et Plasmas, CNRS-Univ. Paris-Sud, F-91405, SUPELEC, 3 Rue Joliot Curie, Gif-sur-Yvette, F-91192 (France)], E-mail: jp.borra@pgp.u-psud.fr

    2008-12-15

    The paper focuses on applications of atmospheric pressure plasmas (dc corona, streamer, spark and ac dielectric barrier discharges (DBDs)) in aerosol processes for materials and environment. Since aerosol kinematics depends mainly on electric forces acting on charged particles, the two mechanisms of aerosol charging by the collection of ions are presented in corona, post-corona and DBDs. In such defined charging conditions, field and diffusion charging laws are depicted, with respect to applications of controlled kinematics of charged aerosol. Then key parameters controlling the formation by nucleation and the growth by coagulation of particles in plasmas are presented. Sources of vapor leading to nucleated nanoparticles are depicted in atmospheric pressure electrical discharges: (i) when filamentary dc streamer and spark as well as ac-DBDs interact with metal or dielectric surfaces and (ii) when discharges induce reactions with gaseous precursors in volume. In both cases, condensable gaseous species are produced, leading to nano-sized particles by physical and chemical routes of nucleation. The composition, size and structure of primary nanoparticles as well as the final size of agglomerates are related to plasma parameters (energy, number per unit surface and time and thermal gradients around each filament as well as the transit time)

  8. Hazardous gas treatment using atmospheric pressure microwave discharges

    Energy Technology Data Exchange (ETDEWEB)

    Mizeraczyk, Jerzy; Jasinski, Mariusz; Zakrzewski, Zenon [Centre for Plasma and Laser Engineering, Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk (Poland)

    2005-12-15

    Atmospheric pressure microwave discharge methods and devices used for producing non-thermal plasmas for control of gaseous pollutants are described in this paper. The main part of the paper is concerned with microwave torch discharges (MTDs). Results of laboratory experiments on plasma abatement of several volatile organic compounds (VOCs) in their mixtures with either synthetic air or nitrogen in low ({approx}100 W) and moderate (200-400 W) microwave torch plasmas at atmospheric pressure are presented. Three types of MTD generators, i.e. low-power coaxial-line-based MTDs, moderate-power waveguide-based coaxial-line MTDs and moderate-power waveguide-based MTDs were used. The gas flow rate and microwave (2.45 GHz) power delivered to the discharge were in the range of 1-3 litre min{sup -1} and 100-400 W, respectively. The concentrations of the processed gaseous pollutants were from several to several tens of per cent. The results showed that the MTD plasmas fully decomposed the VOCs at a relatively low energy cost. The energy efficiency of decomposition of several gaseous pollutants reached 1000 g (kW-h){sup -1}. This suggests that MTD plasmas can be useful tools for decomposition of highly concentrated VOCs.

  9. Two-dimensional simulation of discharge channels in atmospheric-pressure single dielectric barrier discharges

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiao; Wang, Yanhui, E-mail: wangyh@dlut.edu.cn; Wang, Dezhen, E-mail: wangdez@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2015-11-15

    A two-dimensional fluid model is developed to study the filaments (or discharge channels) in atmospheric-pressure discharge with one plate electrode covered by a dielectric layer. Under certain discharge parameters, one or more stable filaments with wide radii could be regularly arranged in the discharge space. Different from the short-lived randomly distributed microdischarges, this stable and thick filament can carry more current and have longer lifetime. Because only one electrode is covered by a dielectric layer in the simulation, the formed discharge channel extends outwards near the dielectric layer and shrinks inwards near the naked electrode, agreeing with the experimental results. In this paper, the evolution of channel is studied, and its behavior is like a streamer or an ionization wave, but the propagation distance is short. The discharge parameters such as voltage amplitude, electrode width, and N{sub 2} impurities content could significantly influence the number of discharge channel, which is discussed in the paper.

  10. Atmospheric pressure dielectric barrier discharges for sterilization and surface treatment

    International Nuclear Information System (INIS)

    Atmospheric pressure non-thermal dielectric barrier discharges can be generated in different configurations for different applications. For sterilization, a parallel-plate electrode configuration with glass dielectric that discharges in air was used. Gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and Gram-positive bacteria (Bacillus cereus) were successfully inactivated using sinusoidal high voltage of ∼15 kVp-p at 8.5 kHz. In the surface treatment, a hemisphere and disc electrode arrangement that allowed a plasma jet to be extruded under controlled nitrogen gas flow (at 9.2 kHz, 20 kVp-p) was applied to enhance the wettability of PET (Mylar) film

  11. Atmospheric pressure dielectric barrier discharges for sterilization and surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chin, O. H.; Lai, C. K.; Choo, C. Y.; Wong, C. S.; Nor, R. M. [Plasma Technology Research Centre, Physics Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Thong, K. L. [Microbiology Division, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-04-24

    Atmospheric pressure non-thermal dielectric barrier discharges can be generated in different configurations for different applications. For sterilization, a parallel-plate electrode configuration with glass dielectric that discharges in air was used. Gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and Gram-positive bacteria (Bacillus cereus) were successfully inactivated using sinusoidal high voltage of ∼15 kVp-p at 8.5 kHz. In the surface treatment, a hemisphere and disc electrode arrangement that allowed a plasma jet to be extruded under controlled nitrogen gas flow (at 9.2 kHz, 20 kVp-p) was applied to enhance the wettability of PET (Mylar) film.

  12. Hydrogen discharges operating at atmospheric pressure in a semiconductor gas discharge system

    Energy Technology Data Exchange (ETDEWEB)

    Aktas, K; Acar, S; Salamov, B G [Physics Department, Faculty of Arts and Sciences, Gazi University, 06500 Ankara (Turkey)

    2011-08-15

    Analyses of physical processes which initiate electrical breakdown and spatial stabilization of current and control it with a photosensitive cathode in a semiconductor gas discharge system (SGDS) are carried out in a wide pressure range up to atmospheric pressure p, interelectrode distance d and diameter D of the electrode areas of the semiconductor cathode. The study compares the breakdown and stability curves of the gas discharge in the planar SGDS where the discharge gap is filled with hydrogen and air in two cases. The impact of the ionizing component of the discharge plasma on the control of the stable operation of the planar SGDS is also investigated at atmospheric pressure. The loss of stability is primarily due to modification of the semiconductor-cathode properties on the interaction with low-energy hydrogen ions and the formation of a space charge of positive ions in the discharge gap which changes the discharge from Townsend to glow type. The experimental results show that the discharge current in H{sub 2} is more stable than in air. The breakdown voltages are measured for H{sub 2} and air with parallel-plane electrodes, for pressures between 28 and 760 Torr. The effective secondary electron emission (SEE) coefficient is then determined from the breakdown voltage results and compared with the experimental results. The influence of the SEE coefficient is stated in terms of the differences between the experimental breakdown law.

  13. Hydrogen discharges operating at atmospheric pressure in a semiconductor gas discharge system

    Science.gov (United States)

    Aktas, K.; Acar, S.; Salamov, B. G.

    2011-08-01

    Analyses of physical processes which initiate electrical breakdown and spatial stabilization of current and control it with a photosensitive cathode in a semiconductor gas discharge system (SGDS) are carried out in a wide pressure range up to atmospheric pressure p, interelectrode distance d and diameter D of the electrode areas of the semiconductor cathode. The study compares the breakdown and stability curves of the gas discharge in the planar SGDS where the discharge gap is filled with hydrogen and air in two cases. The impact of the ionizing component of the discharge plasma on the control of the stable operation of the planar SGDS is also investigated at atmospheric pressure. The loss of stability is primarily due to modification of the semiconductor-cathode properties on the interaction with low-energy hydrogen ions and the formation of a space charge of positive ions in the discharge gap which changes the discharge from Townsend to glow type. The experimental results show that the discharge current in H2 is more stable than in air. The breakdown voltages are measured for H2 and air with parallel-plane electrodes, for pressures between 28 and 760 Torr. The effective secondary electron emission (SEE) coefficient is then determined from the breakdown voltage results and compared with the experimental results. The influence of the SEE coefficient is stated in terms of the differences between the experimental breakdown law.

  14. Mass Spectrometry of Atmospheric Pressure Surface Wave Discharges

    Science.gov (United States)

    Ridenti, M. A.; Souza-Corrêa, J. A.; Amorim, J.

    2016-05-01

    By applying mass spectrometry techniques, we carried out measurements of ionic mass spectrum and their energy distribution in order to investigate an atmospheric argon discharge by using a surfatron surface-wave device. The mass and energy distribution measurements were performed with fixed flow rate (2.5 SLM) of pure argon gas (99.999%) and different Ar-O2 gas mixture compositions (99-1, 98-2 and 97-3). The mass spectra and energy distributions were recorded for Ar+, O+, O+ 2, N+ and N2 +. The axial distribution profiles of ionic mass and their energy were obtained for different experimental conditions as a function of the plasma length. The results showed that the peak of the positive ion energy distributions shifted to higher energies and also that the distribution width increased as the distance between the sampling orifice and the launcher gap was increased. It was also found that under certain experimental conditions the ion flux of atomic species were higher than the ion flux of their diatomic counterpart. The motivation of this study was to obtain a better understanding of a surface wave discharge in atmospheric pressure that may play a key role on new second generation biofuel technologies.

  15. Sterilization of Turmeric by Atmospheric Pressure Dielectric Barrier Discharge Plasma

    International Nuclear Information System (INIS)

    In this study atmospheric pressure dielectric barrier discharge (DBD) plasma has been employed for sterilizing dry turmeric powders. A 6 kV, 6 kHz frequency generator was used to generate plasma with Ar, Ar/O2, He, and He/O2 gases between the 5 mm gap of two quartz covered electrodes. The complete sterilization time of samples due to plasma treatment was measured. The most important contaminant of turmeric is bacillus subtilis. The results show that the shortest sterilization time of 15 min is achieved by exposing the samples to Ar/O2 plasma. Survival curves of samples are exponential functions of time and the addition of oxygen to plasma leads to a significant increase of the absolute value of time constant of the curves. Magnitudes of protein and DNA in treated samples were increased to a similar value for all samples. Taste, color, and solubility of samples were not changed after the plasma treatment

  16. Sterilization of Turmeric by Atmospheric Pressure Dielectric Barrier Discharge Plasma

    Science.gov (United States)

    Setareh, Salarieh; Davoud, Dorranian

    2013-11-01

    In this study atmospheric pressure dielectric barrier discharge (DBD) plasma has been employed for sterilizing dry turmeric powders. A 6 kV, 6 kHz frequency generator was used to generate plasma with Ar, Ar/O2, He, and He/O2 gases between the 5 mm gap of two quartz covered electrodes. The complete sterilization time of samples due to plasma treatment was measured. The most important contaminant of turmeric is bacillus subtilis. The results show that the shortest sterilization time of 15 min is achieved by exposing the samples to Ar/O2 plasma. Survival curves of samples are exponential functions of time and the addition of oxygen to plasma leads to a significant increase of the absolute value of time constant of the curves. Magnitudes of protein and DNA in treated samples were increased to a similar value for all samples. Taste, color, and solubility of samples were not changed after the plasma treatment.

  17. Analysis of the cathodic region of atmospheric pressure discharges

    International Nuclear Information System (INIS)

    The cathodic region of atmospheric pressure arcs is dominated by a number of different mechanisms. This makes a theoretical model extremely difficult. A description of this region based on fundamental physical principles is given. Using a previously published model of the inhomogeneous boundary layer of a Saha plasma (Schmitz H and Riemann K-U 2001 J. Phys. D: Appl. Phys. 34 1193), the description is set on a firm theoretical basis. A number of equations including the energy balances of plasma boundary and cathode body lead to a maximum closure of the system. The values for the boundary conditions toward the plasma column could be motivated by a simple minimum principle argument thus eliminating all arbitrary fitting parameters. Results are given for a variety of external parameters and three different discharge gases. The comparison with experimental results shows excellent agreement. (author)

  18. Bacterial Inactivation by Atmospheric Pressure Dielectric Barrier Discharge Plasma Jet

    Science.gov (United States)

    Deng, Sanxi; Cheng, Cheng; Ni, Guohua; Meng, Yuedong; Chen, Hua

    2008-08-01

    Bacillus subtilis and Escherichia coli seeded in two media (agar and filter papers) were exposed to after-glow plasma emitted from a atmospheric pressure dielectric barrier discharge (DBD) plasma jet generator in open air with a temperature of about 30-80 °C. In order to estimate the inactivation of microorganism using DBD plasma jet, various plasma conditions (such as treatment time and feed-gas composition of plasma jet) were changed. The results shown that the effective area of inactivation increased with the plasma treatment time as the bacteria seeded in Agar medium. The effective area of inactivation was much bigger than plasma jet treatment area after 5 min treatment. With the use of filter papers as the supporting media, the addition of reactive gases (oxygen, hydrogen peroxide vapor) into the plasma jet system, compared with only pure noble gas, led to a significant improvement in the bacterial Inactivation efficacy.

  19. Atmospheric pressure arc discharge with ablating graphite anode

    Energy Technology Data Exchange (ETDEWEB)

    Nemchinsky, V. A. [Keiser University, Fort Lauderdale Campus, FL, 33309, USA; Raitses, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2015-05-18

    The anodic carbon arc discharge is used to produce carbon nanoparticles. Recent experiments with the carbon arc at atmospheric pressure helium demonstrated the enhanced ablation rate for narrow graphite anodes resulting in high deposition rates of carbonaceous products on the copper cathode (Fetterman et al 2008 Carbon 46 1322–6). The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. When considering cathode functioning, the model predicts circulation of the particles in the near-cathode region: evaporation of the cathode material, ionization of evaporated atoms and molecules in the near-cathode plasma, return of the resulting ions to the cathode, surface recombination of ions and electrons followed again by cathode evaporation etc. In the case of the low anode ablation rate, the ion acceleration in the cathode sheath provides the major cathode heating mechanism. In the case of an intensive anode ablation, an additional cathode heating is due to latent fusion heat of the atomic species evaporated from the anode and depositing at the cathode. Using the experimental arc voltage as the only input discharge parameter, the model allows us to calculate the anode ablation rate. A comparison of the results of calculations with the available experimental data shows reasonable agreement.

  20. Behavior of ZnO-coated alumina dielectric barrier discharge in atmospheric pressure air

    CERN Document Server

    Li, Meng; Tao, Xiaoping

    2011-01-01

    A complete investigation of the discharge behavior of dielectric barrier discharge device using ZnO-coated dielectric layer in atmospheric pressure is made. Highly conductive ZnO film was deposited on the dielectric surface. Discharge characteristic of the dielectric barrier discharge are examined in different aspects. Experimental result shows that discharge uniformity is improved definitely in the case of ZnO-coated dielectric barrier discharge. And relevant theoretical models and explanation are presented to describing its discharge physics.

  1. Temperature profiles in filamentary dielectric barrier discharges at atmospheric pressure

    International Nuclear Information System (INIS)

    Physico-chemical properties of atmospheric pressure filamentary dielectric barrier discharges (f-DBD) depend on coupled electrical characteristics and thermal profiles. In this paper, a method for studying thermal and electrical effects is developed. Therefore, thermal profiles of f-DBD are studied for well-defined electrical characteristics of quasi-identical filaments with controlled distribution in time and space. The temperatures of gas, dielectric surface and plasma depend on the surface density and on the temporal frequency of filaments, defining the input power, and can be tuned by controlling heat transfers. Different methods to control these temperatures are depicted. Moreover, heat transfer through conduction and convection from dielectric surface is shown to be the dominant heating mechanism of the flowing gas in the reactor. Finally, experimental results show that the local temperature gradient around each filament can be controlled by the frequency of the applied voltage. Actually, the temperature difference between the filament and the surrounding gas is constant below 10 kHz but increases linearly with the frequency above 10 kHz. At high frequency, the time between two successive filaments occurring at the same position becomes smaller than the relaxation time constant of thermal exchanges (∼0.1 ms). Hence, this rise in local temperature can be attributed to time-limited heat transfers from the filament axis.

  2. Temperature profiles in filamentary dielectric barrier discharges at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Jidenko, N; Bourgeois, E; Borra, J-P [Laboratoire de Physique des Gaz et des Plasmas (UMR 8578 CNRS-Univ Paris-Sud Orsay, F-91405) SUPELEC, Plateau Moulon, F-91192 Gif-Sur-Yvette (France)

    2010-07-28

    Physico-chemical properties of atmospheric pressure filamentary dielectric barrier discharges (f-DBD) depend on coupled electrical characteristics and thermal profiles. In this paper, a method for studying thermal and electrical effects is developed. Therefore, thermal profiles of f-DBD are studied for well-defined electrical characteristics of quasi-identical filaments with controlled distribution in time and space. The temperatures of gas, dielectric surface and plasma depend on the surface density and on the temporal frequency of filaments, defining the input power, and can be tuned by controlling heat transfers. Different methods to control these temperatures are depicted. Moreover, heat transfer through conduction and convection from dielectric surface is shown to be the dominant heating mechanism of the flowing gas in the reactor. Finally, experimental results show that the local temperature gradient around each filament can be controlled by the frequency of the applied voltage. Actually, the temperature difference between the filament and the surrounding gas is constant below 10 kHz but increases linearly with the frequency above 10 kHz. At high frequency, the time between two successive filaments occurring at the same position becomes smaller than the relaxation time constant of thermal exchanges ({approx}0.1 ms). Hence, this rise in local temperature can be attributed to time-limited heat transfers from the filament axis.

  3. Gas flow dependence of atmospheric pressure plasma needle discharge characteristics

    Science.gov (United States)

    Qian, Muyang; Yang, Congying; Liu, Sanqiu; Chen, Xiaochang; Ni, Gengsong; Wang, Dezhen

    2016-04-01

    In this paper, a two-dimensional coupled model of neutral gas flow and plasma dynamics is presented to explain the gas flow dependence of discharge characteristics in helium plasma needle at atmospherics pressure. The diffusional mixing layer between the helium jet core and the ambient air has a moderate effect on the streamer propagation. The obtained simulation results present that the streamer shows the ring-shaped emission profile at a moderate gas flow rate. The key chemical reactions which drive the streamer propagation are electron-impact ionization of helium neutral, nitrogen and oxygen molecules. At a moderate gas flow rate of 0.5 slm, a significant increase in propagation velocity of the streamer is observed due to appropriate quantity of impurities air diffuse into the helium. Besides, when the gas flow rate is below 0.35 slm, the radial density of ground-state atomic oxygen peaks along the axis of symmetry. However, when the gas flow rate is above 0.5 slm, a ring-shaped density distribution appears. The peak density is on the order of 1020 m-3 at 10 ns in our work.

  4. Repetitively pulsed atmospheric pressure discharge treatment of rough polymer surfaces: I. Humid air discharges

    International Nuclear Information System (INIS)

    Plasmas generated at atmospheric pressure are used to functionalize the surfaces of polymers by creating new surface-resident chemical groups. The polymers used in textiles and biomedical applications often have non-planar surfaces whose functionalization requires penetration of plasma generated species into sometimes complex surface features. In this regard, the atmospheric pressure plasma treatment of a rough polypropylene surface was computationally investigated using a two-dimensional plasma hydrodynamics model integrated with a surface kinetics model. Repetitively pulsed discharges produced in a dielectric barrier-corona configuration in humid air were considered to affix O. Macroscopic non-uniformities in treatment result from the spatial variations in radical densities which depend on the polarity of the discharge. Microscopic non-uniformities arise due to the higher reactivity of plasma produced species, such as OH radicals, which are consumed before they can diffuse deeper into surface features. The consequences of applied voltage magnitude and polarity, and the relative humidity on discharge dynamics and radical generation leading to surface functionalization, are discussed.

  5. Repetitively pulsed atmospheric pressure discharge treatment of rough polymer surfaces: I. Humid air discharges

    Science.gov (United States)

    Bhoj, Ananth N.; Kushner, Mark J.

    2008-08-01

    Plasmas generated at atmospheric pressure are used to functionalize the surfaces of polymers by creating new surface-resident chemical groups. The polymers used in textiles and biomedical applications often have non-planar surfaces whose functionalization requires penetration of plasma generated species into sometimes complex surface features. In this regard, the atmospheric pressure plasma treatment of a rough polypropylene surface was computationally investigated using a two-dimensional plasma hydrodynamics model integrated with a surface kinetics model. Repetitively pulsed discharges produced in a dielectric barrier-corona configuration in humid air were considered to affix O. Macroscopic non-uniformities in treatment result from the spatial variations in radical densities which depend on the polarity of the discharge. Microscopic non-uniformities arise due to the higher reactivity of plasma produced species, such as OH radicals, which are consumed before they can diffuse deeper into surface features. The consequences of applied voltage magnitude and polarity, and the relative humidity on discharge dynamics and radical generation leading to surface functionalization, are discussed.

  6. Plasma Treatment of Industrial Landfill Leachate by Atmospheric Pressure Dielectric Barrier Discharges%Plasma Treatment of Industrial Landfill Leachate by Atmospheric Pressure Dielectric Barrier Discharges

    Institute of Scientific and Technical Information of China (English)

    赵迪; 王达成; 严贵; 马宏; 熊小京; 罗津晶; 张先徽; 刘东平; 杨思泽

    2011-01-01

    An dielectric barrier discharge (DBD) system in atmospheric pressure utilized for the treatment of industrial landfill leachate is reported. The discharge parameters, such as the operating frequency, gas flow rate, and treating duration, were found to affect significantly the removal of ammonia nitrogen (AN) in industrial landfill leachate. An increase in treating duration leads to an obvious increase in the removal efficiency of AN (up to 83%) and the leachate color changed from deep grey-black to transparent. Thus the dielectric barrier discharges in atmospheric pressure could degrade the landfill leachate effectively. Typical waveforms of both applied voltage and discharge current were also presented for analyzing the discharge processes under different discharge parameters. Optical emission spectra measurements indicate that oxidation species generated in oxygen DBD plasma play a crucial role in removing AN, oxidizing organic and inorganic substances and decolorizing the landfill leachate.

  7. Pulsed microwave discharge at atmospheric pressure for NOx decomposition

    International Nuclear Information System (INIS)

    A 3.0 GHz pulsed microwave source operated at atmospheric pressure with a pulse power of 1.4 MW, a maximum repetition rate of 40 Hz, and a pulse length of 3.5 μs is experimentally studied with respect to the ability to remove NOx from synthetic exhaust gases. Experiments in gas mixtures containing N2/O2/NO with typically 500 ppm NO are carried out. The discharge is embedded in a high-Q microwave resonator, which provides a reliable plasma ignition. Vortex flow is applied to the exhaust gas to improve gas treatment. Concentration measurements by Fourier transform infrared spectroscopy confirm an NOx reduction of more than 90% in the case of N2/NO mixtures. The admixture of oxygen lowers the reductive potential of the reactor, but NOx reduction can still be observed up to 9% O2 concentration. Coherent anti-Stokes Raman scattering technique is applied to measure the vibrational and rotational temperature of N2. Gas temperatures of about 400 K are found, whilst the vibrational temperature is 3000-3500 K in pure N2. The vibrational temperature drops to 1500 K when O2 and/or NO are present. The randomly distributed relative frequency of occurrence of selected breakdown field intensities is measured by a calibrated, short linear-antenna. The breakdown field strength in pure N2 amounts to 2.2x106 V m-1, a value that is reproducible within 2%. In the case of O2 and/or NO admixture, the frequency distribution of the breakdown field strength scatters more and extends over a range from 3 to 8x106 V m-1

  8. Atmospheric pressure dielectric barrier discharges interacting with liquid covered tissue

    International Nuclear Information System (INIS)

    The interaction of plasmas with liquids is of increasing importance in biomedical applications. Tissues treated by atmospheric pressure dielectric barrier discharges (DBDs) in plasma medicine are often covered by a thin layer of liquid, typically a blood serum like water with dissolved gases and proteins up to hundreds of micrometres thick. The liquid processes the plasma-produced radicals and ions prior to their reaching the tissue. In this paper, we report on a computational investigation of the interaction of DBDs in humid air with a thin water layer covering tissue. The water layer, 50–400 µm thick, contains dissolved O2aq (aq means an aqueous species) and alkane-like hydrocarbons (RHaq). In the model, the DBDs are operated with multiple pulses at 100 Hz followed by a 1 s afterglow. Gas phase reactive oxygen and nitrogen species (RONS) intersect the water-vapour saturated air above the liquid and then solvate when reaching the water. The photolysis of water by plasma-produced UV/VUV plays a significant role in the production of radicals. Without RHaq, O2aq−, ONOOaq−, NO3aq− and hydronium (H3Oaq+) dominate the water ions with H3Oaq+ determining the pH. The dominant RONS in the liquid are O3aq, H2O2aq, and HNOxaq. Dissolved O2aq assists the production of HNO3aq and HOONOaq during the afterglow. With RHaq, reactive oxygen species are largely consumed, leaving an R·aq (alkyl radical) to reach the tissue. These results are sensitive to the thickness of the water layer. (paper)

  9. Self-Consistent Model for Atmospheric Pressure Dielectric Barrier Discharges in Helium

    International Nuclear Information System (INIS)

    We show the necessity of leaving out the approximation of constant average electron energy in many fluid models. For this purpose a one-dimensional self-consistent model for He atmospheric barrier discharges is developed. With this model, the electron energy distribution function in the atmospheric pressure glow discharge is obtained without introducing much difficulty, and the new model is readily implemented for investigating discharges in complicated gases. (gases, plasmas, and electric discharges)

  10. [Temporal behavior of light emission of dielectric barrier discharges in air at atmospheric pressure].

    Science.gov (United States)

    Yin, Zeng-qian; Dong, Li-fang; Han, Li; Li, Xue-chen; Chai, Zhi-fang

    2002-12-01

    The experimental setup of dielectric barrier discharge was designed which is propitious to optical measurement. Temporal behavior of light emission of dielectric barrier discharges (filamentary model) in air at atmospheric pressure was measured by using optical method. Temporal behavior of dielectric barrier discharges was obtained. The experimental results show that the discharge burst in each half cycle of applied voltage consists of a series of discharge pulses, the duration of each discharge pulse is about 30-50 ns, and the interval of the neighboring discharge pulses is about a few hundred ns. The result is of great importance to the application of dielectric barrier discharges. PMID:12914154

  11. Statistical modelling of discharge behavior of atmospheric pressure dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Tay, W. H.; Kausik, S. S.; Wong, C. S., E-mail: cswong@um.edu.my; Yap, S. L.; Muniandy, S. V. [Plasma Technology Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-11-15

    In this work, stochastic behavior of atmospheric pressure dielectric barrier discharge (DBD) has been investigated. The experiment is performed in a DBD reactor consisting of a pair of stainless steel parallel plate electrodes powered by a 50 Hz ac high voltage source. Current pulse amplitude distributions for different space gaps and the time separation between consecutive current pulses are studied. A probability distribution function is proposed to predict the experimental distribution function for the current pulse amplitudes and the occurrence of the transition regime of the pulse distribution. Breakdown voltage at different positions on the dielectric surface is suggested to be stochastic in nature. The simulated results based on the proposed distribution function agreed well with the experimental results and able to predict the regime of transition voltage. This model would be useful for the understanding of stochastic behaviors of DBD and the design of DBD device for effective operation and applications.

  12. Observation and interpretation of energy efficient, diffuse direct current glow discharge at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jie, E-mail: tangjie1979@opt.ac.cn; Jiang, Weiman; Wang, Yishan; Zhao, Wei [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics of CAS, Xi' an 710119 (China); Li, Jing [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics of CAS, Xi' an 710119 (China); Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaian 223003 (China); Duan, Yixiang [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics of CAS, Xi' an 710119 (China); Research Center of Analytical Instrumentation, Sichuan University, Chengdu 610064 (China)

    2015-08-24

    A diffuse direct-current glow discharge was realized with low energy consumption and high energy utilization efficiency at atmospheric pressure. The formation of diffuse discharge was demonstrated by examining and comparing the electrical properties and optical emissions of plasmas. In combination with theoretical derivation and calculation, we draw guidelines that appearance of nitrogen ions at low electron density is crucial to enhance the ambipolar diffusion for the expansion of discharge channel and the increasing ambipolar diffusion near the cathode plays a key role in the onset of diffuse discharge. An individual-discharge-channel expansion model is proposed to explain the diffuse discharge formation.

  13. Observation and interpretation of energy efficient, diffuse direct current glow discharge at atmospheric pressure

    International Nuclear Information System (INIS)

    A diffuse direct-current glow discharge was realized with low energy consumption and high energy utilization efficiency at atmospheric pressure. The formation of diffuse discharge was demonstrated by examining and comparing the electrical properties and optical emissions of plasmas. In combination with theoretical derivation and calculation, we draw guidelines that appearance of nitrogen ions at low electron density is crucial to enhance the ambipolar diffusion for the expansion of discharge channel and the increasing ambipolar diffusion near the cathode plays a key role in the onset of diffuse discharge. An individual-discharge-channel expansion model is proposed to explain the diffuse discharge formation

  14. [Determination of electron density in atmospheric pressure radio frequency dielectric barrier discharges by Stark broadening].

    Science.gov (United States)

    Li, Sen; Liu, Zhong-wei; Chen, Qiang; Liu, Fu-ping; Wang, Zheng-duo; Yang, Li-zhen

    2012-01-01

    The use of high frequency power to generate plasma at atmospheric pressure is a relatively new development. An apparatus of atmospheric pressure radio frequency dielectric barrier discharge was constructed. Plasma emission based measurement of electron density in discharge columns from Stark broadening Ar is discribed. The spacial profile of electron density was studied. In the middle of the discharge column, as the input power increases from 138 to 248 W, the electron density rises from 4.038 x 10(21) m(-3) to 4.75 x 10(21) m(-3). PMID:22497121

  15. Generations and applications of atmospheric pressure glow discharge by integration of microplasmas

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, O; Tachibana, K [Department of Electronic Science and Engineering, Kyoto University, Kyoto-daigaku Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2007-10-15

    Integration of microplasmas enables us to obtain atmospheric pressure discharges with good macroscopic uniformity and various functions. We demonstrate two specific electrodes of microplasmas for generations of dielectric barrier discharges at atmospheric pressure, and integrated microplasmas on large two-dimensional area are sustained with electron density more than 10{sup 12}cm{sup -3}. Especially 'fabric' type electrode has a promising structure to provide various flexible discharge space and plasma processing on winding surface. Integrated microplasmas in array structure will serve as electromagnetic-wave control devices as well as processing tools, and two aspects are discussed in terms of equivalent dielectrics and metals.

  16. Plasma Treatment of Industrial Landfill Leachate by Atmospheric Pressure Dielectric Barrier Discharges

    International Nuclear Information System (INIS)

    An dielectric barrier discharge (DBD) system in atmospheric pressure utilized for the treatment of industrial landfill leachate is reported. The discharge parameters, such as the operating frequency, gas flow rate, and treating duration, were found to affect significantly the removal of ammonia nitrogen (AN) in industrial landfill leachate. An increase in treating duration leads to an obvious increase in the removal efficiency of AN (up to 83%) and the leachate color changed from deep grey-black to transparent. Thus the dielectric barrier discharges in atmospheric pressure could degrade the landfill leachate effectively. Typical waveforms of both applied voltage and discharge current were also presented for analyzing the discharge processes under different discharge parameters. Optical emission spectra measurements indicate that oxidation species generated in oxygen DBD plasma play a crucial role in removing AN, oxidizing organic and inorganic substances and decolorizing the landfill leachate.

  17. Characterization of a Dielectric Barrier Plasma Gun Discharging at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guang-Qiu; GE Yuan-Jing; ZHANG Yue-Fei; CHEN Guang-Liang

    2004-01-01

    @@ We develop a plasma gun based on dielectric barrier discharge and working at atmospheric pressure. A theoretical model to predict the gun discharge voltage is built, which is in agreement with the experimental results. After investigating the characterization of discharging gun and utilizing it for polymerization, we find that the gun can be used as a source to generate a stable uniform plasma for different plasma-processing technologies.

  18. Characterization of transient discharges under atmospheric pressure conditions applying nitrogen photoemission and current measurements

    OpenAIRE

    Keller, Sandra; Rajasekaran, Priyadarshini; Bibinov, Nikita; Awakowicz, Peter

    2011-01-01

    The plasma parameters such as electron distribution function and electron density of three atmospheric-pressure transient discharges namely filamentary and homogeneous dielectric barrier discharges in air, and the spark discharge of argon plasma coagulation (APC) system are determined. A combination of numerical simulation as well as diagnostic methods including current measurement and optical emission spectroscopy (OES) based on nitrogen emissions is used. The applied methods supplement each...

  19. Gas flow effects on the submicrosecond pulsed atmospheric pressure glow discharges

    International Nuclear Information System (INIS)

    The influence of gas flow on the discharge characteristics in the submicrosecond pulsed dielectric barrier discharge at atmospheric pressure was investigated by a one-dimensional self-consistent kinetic model. The convection-transport mechanism of the plasma species caused by a longitudinal gas flow was integrated into flux equation. Two discharge current pulses, the positive one and the negative one, are operated in a normal glow mode and a subnormal glow mode, respectively. It is shown that the gas flow has a significant impact on the discharge characteristics, especially on the positive discharge pulse. The spatial distribution of electrons is affected by the gas flow through the convection transport mechanism.

  20. Ultrasonic nebulization atmospheric pressure glow discharge - Preliminary study

    Science.gov (United States)

    Greda, Krzysztof; Jamroz, Piotr; Pohl, Pawel

    2016-07-01

    Atmospheric pressure glow microdischarge (μAPGD) generated between a small-sized He nozzle jet anode and a flowing liquid cathode was coupled with ultrasonic nebulization (USN) for analytical optical emission spectrometry (OES). The spatial distributions of the emitted spectra from the novel coupled USN-μAPGD system and the conventional μAPGD system were compared. In the μAPGD, the maxima of the intensity distribution profiles of the atomic emission lines Ca, Cd, In, K, Li, Mg, Mn, Na and Sr were observed in the near cathode region, whereas, in the case of the USN-μAPGD, they were shifted towards the anode. In the novel system, the intensities of the analytical lines of the studied metals were boosted from several to 35 times. As compared to the conventional μAPGD-OES with the introduction of analytes through the sputtering and/or the electrospray-like nebulization of the flowing liquid cathode solution, the proposed method with the USN introduction of analytes in the form of a dry aerosol provides improved detectability of the studied metals. The detection limits of metals achieved with the USN-μAPGD-OES method were in the range from 0.08 μg L- 1 for Li to 52 μg L- 1 for Mn.

  1. DC normal glow discharges in atmospheric pressure atomic and molecular gases

    International Nuclear Information System (INIS)

    DC glow discharges were experimentally investigated in atmospheric pressure helium, argon, hydrogen, nitrogen and air. The discharges were characterized by visualization of the discharges and voltage and current measurements for current of up to several milliamperes. Significant differences are seen in the gas temperature; however all the discharges appear to operate as temperature and pressure scaled versions of low pressure discharges. In the normal glow discharges, features such as negative glow, Faraday dark space and positive column regions are clearly observable. In hydrogen and to a lesser degree in helium and argon standing striations of the positive column were visible in the normal glow regime. Normal glow characteristics such as normal current density at the cathode and constant electric field in the positive column are observed although there are some unexplained effects. The emission spectra for each of the discharges were studied. Also the rotational and vibrational temperature of the discharges were measured by adding trace amounts of N2 to the discharge gas and comparing modeled optical emission spectra of the N2 2nd positive system with spectroscopic measurements from the discharge. The gas temperatures for a 3.5 mA normal glow discharge were around 420 K, 680 K, 750 K, 890 K and 1320 K in helium, argon, hydrogen, nitrogen and air, respectively. Measured vibrational and excitation temperatures indicate non-thermal discharge operation. Mixtures of gases achieved intermediate temperatures.

  2. Specific interaction between negative atmospheric ions and organic compounds in atmospheric pressure corona discharge ionization mass spectrometry.

    Science.gov (United States)

    Sekimoto, Kanako; Sakai, Mami; Takayama, Mitsuo

    2012-06-01

    The interaction between negative atmospheric ions and various types of organic compounds were investigated using atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. Atmospheric negative ions such as O(2)(-), HCO(3)(-), COO(-)(COOH), NO(2)(-), NO(3)(-), and NO(3)(-)(HNO(3)) having different proton affinities served as the reactant ions for analyte ionization in APCDI in negative-ion mode. The individual atmospheric ions specifically ionized aliphatic and aromatic compounds with various functional groups as atmospheric ion adducts and deprotonated analytes. The formation of the atmospheric ion adducts under certain discharge conditions is most likely attributable to the affinity between the analyte and atmospheric ion and the concentration of the atmospheric ion produced under these conditions. The deprotonated analytes, in contrast, were generated from the adducts of the atmospheric ions with higher proton affinity attributable to efficient proton abstraction from the analyte by the atmospheric ion. PMID:22528201

  3. Atmospheric pressure dc corona discharges: operating regimes and potential applications

    International Nuclear Information System (INIS)

    The operating regimes and the structures of dc corona discharges in air, nitrogen, helium and hydrogen-methane mixtures are studied for a point to plate electrode configuration. The characteristics of the dc negative corona discharge are investigated. In addition to the bright glow at the cathode (pin) region, a uniform diffuse glow is observed near the anode (plate) surface for the negative corona. This diffuse glow is observed in air and hydrogen-methane discharges only and not in nitrogen discharges. The presence of a glow near the planar anode is perhaps due to the increased electric field caused by a negative ion sheath formed only in electronegative gases. Optical emission spectroscopy (OES) was used to obtain species, spatially resolved temperature measurements and electric field estimations for the corona discharges in air. For the negative corona, the presence of a weak glow indicates an active plasma region near the positive planar electrode which may be useful for processing techniques such as plasma enhanced chemical vapor deposition. The dc negative corona discharge was observed to deposit films on the anode surface for air and methane.

  4. Diffuse α-mode atmospheric pressure radio-frequency discharge in neon

    International Nuclear Information System (INIS)

    In this work, a radio-frequency (RF) atmospheric pressure glow discharge burning in neon between planar metal electrodes is achieved for the first time. The RF discharge can operate in two stable modes: in a diffuse α-mode with uniformly covered electrode surfaces and in a constricted γ-mode. Similarities are revealed when the discharge is compared against the RF atmospheric pressure glow discharge in helium, namely both discharges show a discontinuity and a hysteresis in the current–voltage characteristic at the mode transition; the spatio-temporal profiles of the light emission in the α-mode from neon, helium and atomic oxygen are also similar. (fast track communication)

  5. Diamond-like films deposited in the plasma of barrier and surface discharges at atmospheric pressure

    International Nuclear Information System (INIS)

    The structure and properties were investigated of carbon coatings deposited in the plasma of barrier and surface discharges at atmospheric pressure. To examine the structure of the coatings, methods of transmission electron microscopy and electron diffraction analysis were used. The coatings produced in a barrier discharge in methane and in acetylene-hydrogen mixtures are similar in chemical and phase composition to amorphous diamond-like carbon films produced at low pressures by conventional deposition techniques. However, the coatings have a significant number of defects, evidently caused by the inherent microstructure of the barrier discharge. From this point of view, the use of a surface discharge is much more promising. The coatings produced in a surface discharge have almost no microdefects and both the spatial distribution of the energy delivered to the discharge and the transport of film-forming particles towards the substrate are more efficient. (J.U.)

  6. Theoretical and experimental investigation of the plasma source with argon rf barrier discharge at atmospheric pressure

    International Nuclear Information System (INIS)

    Glow characteristics of capacitive radio frequency discharge with isolated electrodes in atmospheric pressure argon in low-current and high-current modes are determined experimentally and calculated by the hybrid hydrodynamic model. Comparative analysis of obtained experimental data and simulated spatio-temporal distributions of concentrations of discharge plasma electrons and heavy species, mean energy of electrons in the RF barrier discharge enabled interpretation of the discharge structure peculiarities in low-current α,α-gamma transition and high-current modes.

  7. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan;

    2014-01-01

    Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating......, synchronized with simultaneously recorded current and voltage waveforms. Dynamic details of the novel non-equilibrium discharge are revealed, which is characterized by a sinusoidal current waveform with amplitude stabilized at around 200 mA intermediate between thermal arc and glow discharge, shedding light to...

  8. Numerical simulation of torus breakdown to chaos in an atmospheric-pressure dielectric barrier discharge

    International Nuclear Information System (INIS)

    Understanding the routes to chaos occurring in atmospheric-pressure dielectric barrier discharge systems by changing controlling parameters is very important to predict and control the dynamical behaviors. In this paper, a route of a quasiperiodic torus to chaos via the strange nonchaotic attractor is observed in an atmospheric-pressure dielectric barrier discharge driven by triangle-wave voltage. By increasing the driving frequency, the discharge system first bifurcates to a quasiperiodic torus from a stable single periodic state, and then torus and phase-locking periodic state appear and disappear alternately. In the meantime, the torus becomes increasingly wrinkling and stretching, and gradually approaches a fractal structure with the nonpositive largest Lyapunov exponent, i.e., a strange nonchaotic attractor. After that, the discharge system enters into chaotic state. If the driving frequency is further increased, another well known route of period-doubling bifurcation to chaos is also observed

  9. Gas Breakdown of Radio Frequency Glow Discharges in Helium at near Atmospheric Pressure

    Science.gov (United States)

    Liu, Xinkun; Xu, Jinzhou; Cui, Tongfei; Guo, Ying; Zhang, Jing; Shi, Jianjun

    2013-07-01

    A one-dimensional self-consistent fluid model was developed for radio frequency glow discharge in helium at near atmospheric pressure, and was employed to study the gas breakdown characteristics in terms of breakdown voltage. The effective secondary electron emission coefficient and the effective electric field for ions were demonstrated to be important for determining the breakdown voltage of radio frequency glow discharge at near atmospheric pressure. The constant of A was estimated to be 64±4 cm-1Torr-1, which was proportional to the first Townsend coefficient and could be employed to evaluate the gas breakdown voltage. The reduction in the breakdown voltage of radio frequency glow discharge with excitation frequency was studied and attributed to the electron trapping effect in the discharge gap.

  10. Numerical simulations of superlattice patterns in dielectric barrier discharges at atmospheric pressure

    Science.gov (United States)

    Liu, Fucheng; Wang, Xiaofei; He, Yafeng; Dong, Lifang

    2016-03-01

    This paper presents the numerical investigation on superlattice patterns in atmospheric pressure glow discharges in dielectric barrier discharges by using a self-consistent 2D fluid model. It is found that the superlattice pattern is an interleaving of two filamentary sub-patterns with alternate spatial and temporal characteristics. The competition between the volume ionization and the memory effects of both surface charges and space charges is expected to the formation mechanism of this superlattice pattern.

  11. Surface-initiated graft polymerization on multiwalled carbon nanotubes pretreated by corona discharge at atmospheric pressure.

    Science.gov (United States)

    Xu, Lihua; Fang, Zhengping; Song, Ping'an; Peng, Mao

    2010-03-01

    Surface-initiated graft polymerization on multi-walled carbon nanotubes pretreated with a corona discharge at atmospheric pressure was explored. The mechanism of the corona-discharge-induced graft polymerization is discussed. The results indicate that MWCNTs were encapsulated by poly(glycidyl methacrylate) (PGMA), demonstrating the formation of PGMA-grafted MWCNTs (PGMA-g-MWCNTs), with a grafting ratio of about 22 wt%. The solubility of PGMA-g-MWCNTs in ethanol was dramatically improved compared to pristine MWCNTs, which could contribute to fabricating high-performance polymer/MWCNTs nanocomposites in the future. Compared with most plasma processes, which operate at low pressures, corona discharge has the merit of working at atmospheric pressure. PMID:20644821

  12. treatment of polyimide by an atmospheric pressure plasma of capacitive rf discharge for liquid crystal alignment

    International Nuclear Information System (INIS)

    Uniform planar alignment of liquid crystals is obtained by polyimide films obliquely treated by a stream of argon plasma from capacitive RF discharge at atmospheric pressure. Two liquid crystal alignment modes are discovered differing by their longitudinal or transverse orientation with respect to treatment direction. Optimum parameters of the treatment for obtaining these orientation modes are determined.

  13. Emission properties of an atmospheric pressure argon plasma jet excited by barrier discharge

    International Nuclear Information System (INIS)

    An atmospheric-pressure argon plasma jet is initiated by the barrier discharge in a capillary, through which argon was flown. The spectral composition of radiation emitted by the jet in the atmosphere and its variation in the space are analyzed in detail. The jet radiation spectrum is shown to be predominantly formed by spectral transitions of argon and oxygen atoms, by electron-vibrational transitions of the first positive system of nitrogen molecules N2, and by transitions of hydroxyl radical OH

  14. Simulation of two counter-propagating helium discharges at atmospheric pressure

    International Nuclear Information System (INIS)

    This paper presents 2D simulations showing the dynamics of interaction between two counter-propagating helium discharges at atmospheric pressure. The discharges were generated in two glass tubes separated by a few centimeters in ambient air. First, we applied the same voltage to each electrode wrapped around each discharge tube. Simulation results show that discharges ignite in tubes and then propagate, approaching each other without merging, as observed in experiments. Using the optical emission of discharges, we have determined the minimum distance of approach of counter-propagating discharges. This minimum distance is of the order of the tube diameter, and varies with the tube radius and inversely to the applied voltage. For conditions with different applied voltages on the electrodes, simulation results show a connection of both counter-propagating discharges with an increase in the discharge emission in the interaction region. For conditions with a time delay between the voltage applied on both electrodes, based on the optical emission of discharges, we have observed that counter-propagating discharges approach each other without merging. The minimum distance is of the order of the tube diameter, as in the reference case, without time delay between both applied voltages. However, simulation results show that the electron density in the interaction region between both discharge channels is about one order of magnitude higher than that for the reference case. (paper)

  15. Sterilization of E.coli bacterium with an atmospheric pressure surface barrier discharge

    Institute of Scientific and Technical Information of China (English)

    Xu Lei; Zhang Rui; Liu Peng; Ding Li-Li; Zhan Ru-Juan

    2004-01-01

    The atmospheric pressure surface barrier discharge (APSBD) in air has been used in killing Escherichia coli (E.coli). There is almost no bacterial colony in the sample after treatment by discharge plasma for 2 min. A diagnostic technique based on mass spectrum has been applied to the discharge gas and the mechanism of killing is discussed.Ozone and monatomic oxide are considered to be the major antimicrobial active species. There is almost no harmful by-product. The experiment proves that APSBD plasma is a very simple, effective and innocuous tool for sterilization.

  16. Prediction of atmospheric pressure glow discharge in dielectric-barrier system

    Science.gov (United States)

    Duan, Xiaoxi; He, Feng; Ouyang, Jiting

    2010-06-01

    A one-dimensional fluid model was used to investigate the breakdown mechanism and discharge mode in dielectric-barrier system. The results show that the dielectric barrier discharge mode depends strongly on the gas property (i.e., the electron multiplication). The atmospheric pressure dielectric barrier glow discharge could only be achieved in a gas (e.g., noble gas) in which the first Townsend ionization coefficient is sufficiently small and the electron multiplication does not rise up rapidly with the electric field, while could not be sustained in the gas (e.g., N2 and O2) in which the electron multiplication is sensitive to the field.

  17. Optical and electrical characteristics of air dielectric barrier discharges in mode transition at atmospheric pressure

    International Nuclear Information System (INIS)

    Atmospheric pressure dielectric barrier discharges (DBDs) have a wide range of industrial applications, generally exhibiting either filamentary or diffuse (i.e. glow) discharges. The focus of this investigation is on the formation mechanisms of the discharge current pulse width, on the order of tens of microseconds, accompanied by a light source formation, which is called a light source (LS) mode in air DBDs at atmospheric pressure. From a macroscopic point of view, the characteristics of the discharge current in the LS mode are similar with those of the glow mode. The optical and electrical characteristics of air DBDs at atmospheric pressure are investigated in the transition from the filamentary mode to the LS mode by measuring the optical emission spectroscopy and electrical signals. It is shown that in the manual increasing voltage stage, the vibrational temperature almost never changes and the gas temperature, electron temperature, dielectric capacitance, gas voltage (Vg) and discharge power (P) increase with an increase in the applied voltage. In the automatic decreasing voltage stage, all of these parameters, except Vg and P, increase with a decrease in the voltage. But, when the voltage decreases to a minimum value corresponding to the LS mode, P reaches a maximum value. In this paper, the variations of these parameters are analyzed and discussed in detail. The formation of the LS mode originates from the secondary electrons. The formation mechanisms of the secondary electrons are also discussed. (paper)

  18. Plasma chemistry in an atmospheric pressure Ar/NH3 dielectric barrier discharge

    DEFF Research Database (Denmark)

    Fateev, A.; Leipold, F.; Kusano, Y.;

    2005-01-01

    An atmospheric pressure dielectric barrier discharge (DBD) in Ar/NH3 (0.1 - 10%) mixtures with a parallel plate electrode geometry was studied. The plasma was investigated by emission and absorption spectroscopy in the UV spectral range. Discharge current and voltage were measured as well. UV...... absorption spectroscopy was also employed for the detection of stable products in the exhaust gas. To clarify the different processes for ammonia decomposition, N-2(2 - 10%) was added to the plasma. Modeling of the chemical kinetics in an Ar/NH3 plasma was performed as well. The dominant stable products of...... an atmospheric pressure Ar/NH3 DBD are H-2, N-2 and N2H4. The hydrazine (N2H4) concentration in the plasma and in the exhaust gases at various ammonia concentrations and different discharge powers was measured. Thermal N2H4 decomposition into NH2 radicals may be used for NOx reduction processes....

  19. Discharge characteristics of a radio-frequency capacitively coupled Ar/O2 glow discharge at atmospheric pressure

    International Nuclear Information System (INIS)

    In this study, the discharge characteristics of the developed atmospheric pressure homogeneous and cold plasma source in Ar/O2 glow discharge driven by radio-frequency (13.56 MHz) are investigated experimentally by means of electric measurements. The electron density is estimated to be in the order of 1011 cm-3 in the abnormal discharge regime and is reduced by half in amount when the oxygen is mixed into argon plasma at oxygen-to-argon ratio of 0.3 and 0.6 vol.% at the same input power. The estimated electron temperature assumes the value of 1.4 eV in the abnormal discharge regime and the addition of oxygen to the argon plasma at the oxygen-to-argon ratio smaller than 1.0 vol.% does not alter the electron temperature appreciably.

  20. Three-dimensional numerical modelling of gas discharges at atmospheric pressure incorporating photoionization phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Papageorgiou, L; Georghiou, G E [Department of Electrical and Computer Engineering, University of Cyprus, 75 Kallipoleos Avenue, PO Box 20537 Nicosia, 1678 (Cyprus); Metaxas, A C [St John' s College, University of Cambridge, Cambridge CB2 1TP (United Kingdom)

    2011-02-02

    A three-dimensional (3D) numerical model for the characterization of gas discharges in air at atmospheric pressure incorporating photoionization through the solution of the Helmholtz equation is presented. Initially, comparisons with a two-dimensional (2D) axi-symmetric model are performed in order to assess the validity of the model. Subsequently several discharge instabilities (plasma spots and low pressure inhomogeneities) are considered in order to study their effect on streamer branching and off-axis propagation. Depending on the magnitude and position of the plasma spot, deformations and off-axis propagation of the main discharge channel were obtained. No tendency for branching in small (of the order of 0.1 cm) overvolted discharge gaps was observed.

  1. Three-dimensional numerical modelling of gas discharges at atmospheric pressure incorporating photoionization phenomena

    Science.gov (United States)

    Papageorgiou, L.; Metaxas, A. C.; Georghiou, G. E.

    2011-02-01

    A three-dimensional (3D) numerical model for the characterization of gas discharges in air at atmospheric pressure incorporating photoionization through the solution of the Helmholtz equation is presented. Initially, comparisons with a two-dimensional (2D) axi-symmetric model are performed in order to assess the validity of the model. Subsequently several discharge instabilities (plasma spots and low pressure inhomogeneities) are considered in order to study their effect on streamer branching and off-axis propagation. Depending on the magnitude and position of the plasma spot, deformations and off-axis propagation of the main discharge channel were obtained. No tendency for branching in small (of the order of 0.1 cm) overvolted discharge gaps was observed.

  2. High frequency glow discharges at atmospheric pressure with micro-structured electrode arrays

    International Nuclear Information System (INIS)

    Micro-structured electrode (MSE) arrays allow the generation of large-area uniform glow discharges over a wide pressure range up to atmospheric pressure. The electrode widths, thicknesses and distances in the micrometre range are realized by means of modern micro-machining and galvanic techniques. The electrode distance, the gap width d, is small enough to generate sufficiently high electric field strengths to ignite gas discharges by applying only moderate radio frequency (RF, 13.56 MHz) voltages (80-390 V in Ne, He, Ar, N2 and air). The non-thermal plasma system is characterized by a special probe measuring the electric parameters. We tested MSE arrays with d = 70, 25 and 15 μm. The MSE driven plasmas show a different behaviour from conventional RF discharge plasmas. Due to the very small electrode gap width we can describe the behaviour of the charged particles in the RF field of our system with the dc Townsend breakdown theory, depending on the pressure range and gas. With decreasing pressure, the gas discharges, especially in Ne and He, are increasingly dominated by field electron emission. With the MSE arrays as plasma sources several applications were developed and successfully tested, e.g. decomposition of waste gases and sterilization of food packaging materials at atmospheric pressure

  3. High frequency glow discharges at atmospheric pressure with micro-structured electrode arrays

    Science.gov (United States)

    Baars-Hibbe, L.; Sichler, P.; Schrader, C.; Lucas, N.; Gericke, K.-H.; Büttgenbach, S.

    2005-02-01

    Micro-structured electrode (MSE) arrays allow the generation of large-area uniform glow discharges over a wide pressure range up to atmospheric pressure. The electrode widths, thicknesses and distances in the micrometre range are realized by means of modern micro-machining and galvanic techniques. The electrode distance, the gap width d, is small enough to generate sufficiently high electric field strengths to ignite gas discharges by applying only moderate radio frequency (RF, 13.56 MHz) voltages (80-390 V in Ne, He, Ar, N2 and air). The non-thermal plasma system is characterized by a special probe measuring the electric parameters. We tested MSE arrays with d = 70, 25 and 15 µm. The MSE driven plasmas show a different behaviour from conventional RF discharge plasmas. Due to the very small electrode gap width we can describe the behaviour of the charged particles in the RF field of our system with the dc Townsend breakdown theory, depending on the pressure range and gas. With decreasing pressure, the gas discharges, especially in Ne and He, are increasingly dominated by field electron emission. With the MSE arrays as plasma sources several applications were developed and successfully tested, e.g. decomposition of waste gases and sterilization of food packaging materials at atmospheric pressure.

  4. Translational, rotational and vibrational temperatures of a gliding arc discharge at atmospheric pressure air

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas; Li, Zhongshan; Aldén, Marcus; Salewski, Mirko; Leipold, Frank; Kusano, Yukihiro

    2014-01-01

    Gliding arc discharges have generally been used to generate non-equilibrium plasma at atmospheric pressure. Temperature distributions of a gliding arc are of great interest both for fundamental plasma research and for practical applications. In the presented studies, translational, rotational and...... vibrational temperatures of a gliding arc generated at atmospheric pressure air are investigated. Translational temperatures (about 1100 K) were measured by laser-induced Rayleigh scattering, and two-dimensional temperature imaging was performed. Rotational and vibrational temperatures (about 3600 K and 6700...

  5. 2D fluid simulations of discharges at atmospheric pressure in reactive gas mixtures

    Science.gov (United States)

    Bourdon, Anne

    2015-09-01

    Since a few years, low-temperature atmospheric pressure discharges have received a considerable interest as they efficiently produce many reactive chemical species at a low energy cost. This potential is of great interest for a wide range of applications as plasma assisted combustion or biomedical applications. Then, in current simulations of atmospheric pressure discharges, there is the need to take into account detailed kinetic schemes. It is interesting to note that in some conditions, the kinetics of the discharge may play a role on the discharge dynamics itself. To illustrate this, we consider the case of the propagation of He-N2 discharges in long capillary tubes, studied for the development of medical devices for endoscopic applications. Simulation results put forward that the discharge dynamics and structure depend on the amount of N2 in the He-N2 mixture. In particular, as the amount of N2 admixture increases, the discharge propagation velocity in the tube increases, reaches a maximum for about 0 . 1 % of N2 and then decreases, in agreement with experiments. For applications as plasma assisted combustion with nanosecond repetitively pulsed discharges, there is the need to handle the very different timescales of the nanosecond discharge with the much longer (micro to millisecond) timescales of combustion processes. This is challenging from a computational point of view. It is also important to better understand the coupling of the plasma induced chemistry and the gas heating. To illustrate this, we present the simulation of the flame ignition in lean mixtures by a nanosecond pulsed discharge between two point electrodes. In particular, among the different discharge regimes of nanosecond repetitively pulsed discharges, a ``spark'' regime has been put forward in the experiments, with an ultra-fast local heating of the gas. For other discharge regimes, the gas heating is much weaker. We have simulated the nanosecond spark regime and have observed shock waves

  6. Atmospheric Pressure Dielectric Barrier Discharges: A Low-Cost System for Surface Modification

    International Nuclear Information System (INIS)

    Plasma treatment is a common way for modifying the surface of a material. A simple but effective source for a low-temperature nonequilibrium plasma is dielectric barrier discharges (DBDs), also referred to as silent discharges. DBDs are characterized by the presence of at least one insulating (dielectric) layer in the discharge gap between two metal electrodes. When a high voltage is applied to the DBD configuration, tiny breakdown channels are formed in the discharge gap. These microdischarges are characterized as a weakly ionized plasma containing electrons with energies up to 10 eV and ions at room temperature. The energetic electrons provide an effective tool for chemical surface modification. Typical setups for DBD treatments consist of vacuum chambers and vacuum equipment, and so are very cost-intensive. Atmospheric pressure discharges provide a possibility for low-cost surface chemistry, because the setup consists only of the discharge set-up in normal air or in a specified inert gas atmosphere and a high-voltage amplifier coupled with a frequency generator. Silent discharges in air increase the wettability of polymer foils such as PTFE and FEP, sufficient for cell growth and further for surface-chemical binding of proteins onto the polymer. Thereby a simple and low-cost process to achieve protein chips for biomedical applications may be envisaged

  7. Radio frequency atmospheric pressure glow discharge in α and γ modes between two coaxial electrodes

    Science.gov (United States)

    Shang, Wanli; Wang, Dezhen; Zhang, Yuantao

    2008-09-01

    The discharge in pure helium and the influence of small nitrogen impurities at atmospheric pressure are investigated based on a one-dimensional self-consistent fluid model controlled by a dielectric barrier between two coaxial electrodes. The simulation of the radiofrequency (rf) discharge is based on the one-dimensional continuity equations for electrons, ions, metastable atoms, and molecules, with the much simpler current conservation law replacing the Poisson equation for electric field. Through a computational study of rf atmospheric glow discharges over a wide range of current density, this paper presents evidence of at least two glow discharge modes, namely the α mode and the γ mode. The simulation results show the asymmetry of the discharge set exercises great influence on the discharge mechanisms compared to that with parallel-plane electrodes. It is shown that the particle densities are not uniform in the discharge region but increase gradually from the outer to the inner electrode in both modes. The contrasting dynamic behaviors of the two glow modes are studied. Secondary electron emission strongly influences gas ionization in the γ mode yet matters little in the α mode.

  8. Numerical studies of atmospheric pressure glow discharge controlled by a dielectric barrier between two coaxial electrodes

    Institute of Scientific and Technical Information of China (English)

    Zhang Hong-Yan; Wang De-Zhen; Wang Xiao-Gang

    2007-01-01

    The glow discharge in pure helium at atmospheric pressure, controlled by a dielectric barrier between coaxial electrodes, is investigated based on a one-dimensional self-consistent fluid model. By solving the continuity equations for electrons, ions, and excited atoms, with the current conservation equation and the electric field profile, the time evolution of the discharge current, gas voltage and the surface density of charged particles on the dielectric barrier are calculated. The simulation results show that the peak values of the discharge current, gas voltage and electric field in the first half period are asymmetric to the second half. When the current reaches its positive or negative maximum,the electric field profile, and the electron and ion densities represent similar properties to the typical glow discharge at low pressures. Obviously there exist a cathode fall, a negative glow region, and a positive column. Effects of the barrier position in between the two coaxial electrodes and the discharge gap width on discharge current characteristics are also analysed. The result indicates that, in the case when the dielectric covering the outer electrode only, the gas is punctured earlier during the former half period and later during the latter half period than other cases, also the current peak value is higher, and the difference of pulse width between the two half periods is more obvious. On reducing the gap width, the multiple current pulse discharge happens.

  9. Influence of oxygen traces on an atmospheric-pressure radio-frequency capacitive argon plasma discharge

    International Nuclear Information System (INIS)

    An atmospheric-pressure capacitive discharge source driven by radio-frequency power supply at 13.56 MHz has been developed experimentally that is capable of producing a homogeneous and cold glow discharge in O2/Ar. With respect to the influence of oxygen component when diluted into argon plasma discharge on the discharge characteristics, the measurements of the electrical parameters (impedance, phase angle, resistance, and reactance) are made systematically and the densities of the metastable and resonant state of argon are determined by means of optical emission spectroscopy (OES). It is shown that the admixture of oxygen into argon plasma not only changes the electric characteristics but also alters the optical emission spectra greatly due to strong interaction between the oxygen content and the argon in the plasma environment.

  10. Plasma propagation of a 13.56 MHz asymmetric surface barrier discharge in atmospheric pressure air

    Energy Technology Data Exchange (ETDEWEB)

    Dedrick, J; Boswell, R W; Charles, C [Space Plasma, Power and Propulsion Group, Research School of Physics and Engineering, The Australian National University, ACT 0200 (Australia); Audier, P; Rabat, H; Hong, D, E-mail: james.dedrick@anu.edu.au [GREMI - UMR6606 CNRS/Universite d' Orleans, Polytech' Orleans, 14, rue d' Issoudun - BP6744, 45067 ORLEANS Cedex 2 (France)

    2011-05-25

    The propagation of an rf asymmetric surface barrier discharge in atmospheric pressure air has been investigated. Measurements of the pulse-modulated 13.56 MHz voltage and current together with ICCD images of the plasma were recorded to study the visible plasma structure with respect to the rf pulses, time within the pulses and the rf waveforms. When exposing images over full rf pulses, which comprise over 150 oscillations of the applied voltage, clearly defined filamentary structures are observed indicating a strong memory effect. The discharge intensity decreases exponentially with distance from the electrode edge, and the average propagation length increases linearly with the applied voltage. Similar to some lower frequency asymmetric surface dielectric barrier discharges, two distinct breakdown events occur during one period of the voltage waveform. The number of filaments is found to be the same for both breakdown events, and collective effects are observed in both discharges.

  11. Sterilisation of Hydroponic Culture Solution Contaminated by Fungi using an Atmospheric Pressure Corona Discharge

    Science.gov (United States)

    Mizukami, Kohji; Satoh, Kohki; Kanayama, Hiroshi; Itoh, Hidenori; Tagashira, Hiroaki; Shimozuma, Mitsuo; Okamoto, Hiroyuki; Takasaki, Satoko; Kinoshita, Muneshige

    The hydroponic culture solution contaminated by fungi is sterilised by a DC corona discharge, and the sterilisation characteristics are investigated in this work. A DC streamer corona discharge is generated at atmospheric pressure in air between needle clusters and a water bath containing contaminated solution by fungus such as Fusarium oxysporum f. sp. spinaciae or Fusarium sp.. It is found that the fungi are killed by the exposure of the corona discharge, and that the death rates of the fungi chiefly depend on the concentration of the hydroponic culture solutions. It is also found that the number densities of the fungi decrease exponentially with the energy expenditure of the corona discharge, and that damping coefficients of the fungi densities depend on the concentration of the hydroponic culture solutions. This suggests that the fungi are chiefly inactivated by electroporation.

  12. Plasma sterilization of polyethylene terephthalate bottles by pulsed corona discharge at atmospheric pressure.

    Science.gov (United States)

    Masaoka, Satoshi

    2007-06-01

    A pulsed power supply was used to generate a corona discharge on a polyethylene terephthalate bottle, to conduct plasma sterilization at atmospheric pressure. Before generating such a discharge, minute quantities of water were attached to the inner surface of the bottle and to the surface of a high voltage (HV) electrode inserted into the bottle. Next, high-voltage pulses of electricity were discharged between electrodes for 6.0s, while rotating the bottle. The resulting spore log reduction values of Bacillus subtilis and Aspergillus niger on the inner surface of the bottle were 5.5 and 6 or higher, respectively, and those on the HV electrode surface were each 6 or higher for both strains. The presence of the by-products gaseous ozone, hydrogen peroxide, and nitric ions resulting from the electrical discharge was confirmed. PMID:17629247

  13. Generation of uniform atmospheric pressure argon glow plasma by dielectric barrier discharge

    Indian Academy of Sciences (India)

    Raju Bhai Tyata; Deepak Prasad Subedi; Rajendra Shrestha; Chiow San Wong

    2013-03-01

    In this paper, atmospheric pressure glow discharges (APGD) in argon generated in parallel plate dielectric barrier discharge system is investigated by means of electrical and optical measurements. Using a high voltage (0–20 kV) power supply operating at 10–30 kHz, homogeneous and steady APGD has been observed between the electrodes with gap spacing from 0.5 mm to 2 mm and with a dielectric barrier of thickness 2 mm while argon gas is fed at a controlled flow rate of 11/min. The electron temperature and electron density of the plasma are determined by means of optical emission spectroscopy. Our results show that the electron density of the discharge obtained is of the order of 1016 cm-3 while the electron temperature is estimated to be 0.65 eV. The important result is that electron density determined from the line intensity ratio method and stark broadening method are in very good agreement. The Lissajous figure is used to estimate the energy deposited to the glow discharge. It is found that the energy deposited to the discharge is in the range of 20 to 25 $\\$J with a discharge voltage of 1.85 kV. The energy deposited to the discharge is observed to be higher at smaller gas spacing. The glow discharge plasma is tested to be effective in reducing the hydrophobicity of polyethylene film significantly.

  14. Analytical–numerical global model of atmospheric-pressure radio-frequency capacitive discharges

    International Nuclear Information System (INIS)

    A one-dimensional hybrid analytical–numerical global model of atmospheric-pressure, radio-frequency (rf) driven capacitive discharges is developed. The feed gas is assumed to be helium with small admixtures of oxygen or nitrogen. The electrical characteristics are modeled analytically as a current-driven homogeneous discharge. The electron power balance is solved analytically to determine a time-varying Maxwellian electron temperature, which oscillates on the rf timescale. Averaging over the rf period yields effective rate coefficients for gas phase activated processes. The particle balance relations for all species are then integrated numerically to determine the equilibrium discharge parameters. The coupling of analytical solutions of the time-varying discharge and electron temperature dynamics, and numerical solutions of the discharge chemistry, allows for a fast solution of the discharge equilibrium. Variations of discharge parameters with discharge composition and rf power are determined. Comparisons are made to more accurate but numerically costly fluid models, with space and time variations, but with the range of parameters limited by computational time. (paper)

  15. Carbon Nanostructures Production by AC Arc Discharge Plasma Process at Atmospheric Pressure

    OpenAIRE

    Shenqiang Zhao; Ruoyu Hong; Zhi Luo; Haifeng Lu; Biao Yan

    2011-01-01

    Carbon nanostructures have received much attention for a wide range of applications. In this paper, we produced carbon nanostructures by decomposition of benzene using AC arc discharge plasma process at atmospheric pressure. Discharge was carried out at a voltage of 380 V, with a current of 6 A–20 A. The products were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (XRD), and Raman spectra. The results sho...

  16. Radial Evolution of the Atmospheric Pressure Glow Discharge in Helium Controlled by Dielectric Barrier

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yuan-Tao; WANG De-Zhen; WANG Yan-Hui; LIU Cheng-Sen

    2005-01-01

    @@ The radial evolution of atmospheric pressure glow discharge in helium is presented by numerical simulation. The calculations reveal the mechanism of two current peaks per half cycle. The first breakdown occurs firstly in the central region of the electrode, and then spreads to the edge, while the second breakdown ignites at the periphery firstly, and then propagates toward the discharge central region. The simulations indicate that radial electric fields and radial sheath play an important role in the evolution of the second peak. These results agree fundamentally with the experimental observations.

  17. Energy distribution of runaway electrons generated by a nanosecond discharge in atmospheric-pressure air

    Science.gov (United States)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Kostyrya, I. D.; Lomaev, M. I.; Petin, V. K.; Rybka, D. V.; Shlyakhtun, S. V.

    2008-12-01

    The spectra of an ultrashort avalanche electron beam generated by a nanosecond discharge in atmospheric-pressure air were investigated. The temporal characteristics of the beam current pulses, gap voltage, and discharge current in a gas diode were measured with a time resolution of ˜0.1 ns. A simple technique was developed for recovering electron spectra from the curves of beam attenuation by aluminum foils. The effect of the cathode design, electrode gap length, and generator parameters on the electron spectra were studied using seven setups. It is shown that generation of electrons with anomalously high energies requires the use of cathodes with increased curvature radius.

  18. Corona discharge secondary ionization of laser desorbed neutral molecules from a liquid matrix at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Turney, Kevin [Department of Chemistry, University of Florida, Gainesville, Florida 32611 (United States); Harrison, W.W. [Department of Chemistry, University of Florida, Gainesville, Florida 32611 (United States)]. E-mail: harrison@chem.ufl.edu

    2006-06-15

    Matrix assisted laser desorption/ionization (MALDI) is studied at atmospheric pressure using liquid sampling methods. A time-of-flight mass spectrometer couples to an open sample stage accessed by a UV laser for desorption and ionization. Also coupled to the sampling state is a corona discharge for auxiliary ionization of desorbed neutral molecules. The interaction of the laser desorption and corona ionization is studied for a range of desorption conditions, showing enhanced analyte ionization, but the effect is analytically advantageous only at low desorption rates. The effect of corona discharge voltage was also explored. The decoupling of neutral molecule formation and subsequent ionization provides an opportunity to study each process separately.

  19. Study of Dielectric Barrier Discharges in nitrogen and afterglows at atmospheric pressure

    International Nuclear Information System (INIS)

    This article is devoted to the study of Dielectric Barrier Discharges (DBD) and afterglows obtained at atmospheric pressure in nitrogen. Electrical and optical analysis of the DBD reactor are carried out in order to characterize specific activated gaseous species, which can travel with low energy dispersion for long distances in tubes. A hypothesis for the explanation of the presence of long-lived species in such afterglows is finally explained as related to a solitary wave effect.

  20. Study of Dielectric Barrier Discharges in nitrogen and afterglows at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Clement, F; Panousis, E; Lecoq, E; Loiseau, J-F; Held, B [Universite de Pau - LEGP, IPREM - 64000 Pau (France); Ricard, A [Universite Paul Sabatier - LAPLACE - 31000 Toulouse (France)

    2010-01-01

    This article is devoted to the study of Dielectric Barrier Discharges (DBD) and afterglows obtained at atmospheric pressure in nitrogen. Electrical and optical analysis of the DBD reactor are carried out in order to characterize specific activated gaseous species, which can travel with low energy dispersion for long distances in tubes. A hypothesis for the explanation of the presence of long-lived species in such afterglows is finally explained as related to a solitary wave effect.

  1. Effect of Atmospheric Pressure Glow Discharge Treatment on Polymerization of Acrylic Fabric and Its Printing Behavior

    Directory of Open Access Journals (Sweden)

    D M El-Zeer

    2014-03-01

    Full Text Available Acrylic fibers have been treated by atmospheric pressure glow discharge (APGD plasma in open air to enhance surface antistatic properties. The treated surfaces are investigated by scanning electron microscopy (SEM, Fourier-Transition Infrared Spectroscopy (FTIR and Atomic Force Microscope (AFM. Plasma treatment of acrylic fabric has been found to increase the surface roughness, modify the nature and density of surface functionalities, and drastically improve the wettability and antistatic ability of acrylic fibers.

  2. Concentric-Ring Patterns in a Helium Dielectric Barrier Discharge at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    SHANG Wan-Li; WANG De-Zhen

    2007-01-01

    We perform the theoretical simulation of the concentric-ring patterns between two parallel electrodes covered with thin dielectric layers within the scope of a two-dimensional diffusion-drift model at atmospheric pressure. The time evolution of the discharge patterns is studied and the concentric-ring patterns with different radii shift alternately. The spatial-temporal evolution of electron density in a cycle at different time scales is performed.

  3. Self-Organized Filaments in Dielectric Barrier Discharge in Air at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    DONG Li-Fang; LI Xue-Chen; YINZeng-Qian; QIAN Sheng-Fa; OUYANG Ji-Ting; WANG Long

    2001-01-01

    The self-organized filament pattern created by dielectric barrier discharges in air at atmospheric pressure is investigated experimentally. The density and dimension of filament are analysed quantitatively. The experimental results show that the distance between neighbouring filaments decreases with the increased applied voltage or with the decreased width of the gas gap. Also, the diameter of the filament decreases with the increased applied voltages or with the decreased width of the gas gap.

  4. The measurement of the electron temperature in a spark discharge in air at atmospheric pressure

    International Nuclear Information System (INIS)

    The electron temperature in atmospheric pressure spark surface discharge was measured from the relative intensity ratio using several well-resolved atomic N I, N II, O II lines. The evaluated value is of 18 000 K. The repeated sparks were glowed by a pulsed high voltage source which restricted the are phase of sparks by appropriate low value of capacitors in voltage multiplier. (Authors)

  5. Ionic wind generation by a wire-cylinder-plate corona discharge in air at atmospheric pressure

    OpenAIRE

    Colas, Dorian,; Ferret, Antoine; Pai, David,; Lacoste, Deanna,; Laux, C.

    2010-01-01

    A wire-cylinder-plate electrode configuration is presented to generate ionic wind with a dc corona discharge in air at atmospheric pressure. The objective of the work is to maximize the power supplied to the flow in order to increase acceleration while avoiding breakdown. Thus, the proposed experimental setup addresses the problem of decoupling the mechanism of ion generation from that of ion acceleration. Using a wire-plate configuration as a reference, we have focused on improving the topog...

  6. Ellipsometric investigations during plasma cleaning: Comparison between low-pressure rf-plasma and barrier discharge at atmospheric pressure

    International Nuclear Information System (INIS)

    The removal of hydrocarbon containing compounds using a barrier discharge at atmospheric pressure (air) as well as a capacitively coupled 13.56 MHz low-pressure rf-discharge has been examined. Al plates, Si-wafer and Al coated Si-wafer served as substrate materials. In the rf-discharge, power and gas pressure were varied. Argon, oxygen, and hydrogen were used as process gases. In the barrier discharge, power variation was investigated. Spectroscopic ellipsometry was used to determine thickness and optical properties of the contamination. The removal of the contamination layers was observed by means of in-situ kinetic ellipsometry. In the rf-discharge the thickness of the lubricant decreases linearly with the treatment time. The determined removal rates per discharge power are 0.1 nm/Ws for O2 and about 0.01 nm/Ws for Ar and H2. In the barrier discharge the etching rate decreases about exponentially with treatment time. This is due to a beginning polymerization shown by the increase of the optical constants of the lubricant. The etching rate reaches values up to 0. 1 mm/Ws. After the removal of the lubricant the thickness of the surface oxide increases significantly. (author)

  7. Multiscale simulation of atmospheric pressure pulsed discharges used in polymer surface functionalization

    Science.gov (United States)

    Bhoj, Ananth N.

    Atmospheric pressure pulsed plasma discharges are widely used for surface functionalization or treatment of commodity polymers to improve properties such as adhesion and wettability. Newer applications include textile fabric treatment to improve color fastness and biomedical surface functionalization. In this work, an unstructured mesh-based two-dimensional Plasma Equipment Model (PEM) was developed to investigate the physical and chemical processes in these discharges, which occur on temporal and spatial scales spanning many orders of magnitude and affect their interaction with polymer surfaces. Better insight into these processes will enable the tailoring and optimization of processing conditions. Transient phenomena (time variation of plasma properties) during breakdown in atmospheric pressure discharges are addressed, since the spatial distribution of radicals generated in the discharge is determined by the dynamics of breakdown. The breakdown dynamics is governed by a multitude of physical and chemical processes such as reaction kinetics, photoionization, electron energy transport, charged species and neutral transport. The ability to address non-equilibrium electron energy transport in plasma discharges was developed by enhancing an existing electron Monte-Carlo simulation to address multiple regions of nonequilibrium, and was demonstrated for breakdown in high pressure discharges. A high degree of uniformity in surface treatment is important for value-added materials. Increasing the proximity of reactive plasma produced species to the surface enables better uniformity, especially with polymers having complex surface shapes. The propagation of atmospheric pressure discharges in microchannels, such as those used in lab-on-a-chip devices was investigated to determine the possibility of producing reactive gas-phase radicals within small spaces, close to the surfaces requiring treatment. An integrated surface kinetics module was developed to address the

  8. Runaway electrons and x-rays from a corona discharge in atmospheric pressure air

    International Nuclear Information System (INIS)

    The characteristics of a corona discharge in atmospheric pressure air are studied using pulsed power generators that produce voltage pulses of different durations, polarities and shapes. The characteristics are measured in the single pulse, batch, and repetitively pulsed modes. It is shown that no matter what the voltage pulse polarity is, a corona discharge starts developing as a conical diffuse discharge near the electrode tip with a voltage rate of increase of ∼1015 V s-1 across an electrode of small curvature radius. With lower voltage rate of increase (∼1013 V s-1 or lower), one or several diffuse jets develop from this electrode. The diameter of the jets at their front is less than 1 mm and depends on many factors (voltage pulse amplitude and increase, inter-electrode gap width, pulse repetition rate, etc). It is found that at long voltage pulse durations, the radiation spectrum of the corona discharge changes, and the bands and lines of the material of the electrode appear in the UV region at 200-300 nm. It is demonstrated that a runaway electron beam in a corona discharge is generated and detected at a distance several times greater than the brightly glowing plasma region of the corona discharge. It is shown that x-rays are generated from a corona discharge at high pulse repetition rates of up to 1 kHz. (paper)

  9. Atmospheric Pressure Glow Discharge Plasma and Surface Modification of PET Textile by APGDP

    Science.gov (United States)

    Gu, Biao; Chen, Ru; Xu, Yin; Deng, Xiang; Shi, Qingjun

    2002-11-01

    Comparing with traditional chemistry method, surface modification of Polyethylene terephthalate (PET) fabrics by using of Atmospheric Pressure Glow Discharge Plasma (APGDP) has many advantages, such as low cost, low pollution and low energy consumption. So it has huge application in textile industry due to no requirement for vacuum system. In this paper, the generation and the characteristics of APGDP on a homemade device were investigated experimentally. The volt-ampere characteristic and the Lissajous figure demonstrated that, different from dielectric barrier discharge (DBD), there is no filaments appeared between electrodes. It is a glow discharge in one atmospheric pressure. Furthermore we investigated the surface modification of PET by APGDP. The relationship between PET characteristics (wettability, critical surface tension, timing-effect, dyeablity etc.) and various discharge parameters are discussed. At last, the measurements of ATR-FTIR (Attenuated Total Refraction-Fourier Transform Infarared Spectroscopy) and dyeing properties are demonstrated, and the mechanism of modification is analyzed basically. Key words: APGDP£¬Surface modification , PET

  10. Non-Thermal Equilibrium Atmospheric Pressure Glow-Like Discharge Plasma Jet

    Science.gov (United States)

    Chang, Zhengshi; Yao, Congwei; Zhang, Guanjun

    2016-01-01

    Non-thermal equilibrium atmospheric pressure plasma jet (APPJ) is a cold plasma source that promises various innovative applications, and the uniform APPJ is more favored. Glow discharge is one of the most effective methods to obtain the uniform discharge. Compared with the glow dielectric barrier discharge (DBD) in atmospheric pressure, pure helium APPJ shows partial characteristics of both the glow discharge and the streamer. In this paper, considering the influence of the Penning effect, the electrical and optical properties of He APPJ and Ar/NH3 APPJ were researched. A word “Glow-like APPJ” is used to characterize the uniformity of APPJ, and it was obtained that the basic characteristics of the glow-like APPJ are driven by the kHz AC high voltage. The results can provide a support for generating uniform APPJ, and lay a foundation for its applications. supported by National Natural Science Foundation of China (Nos. 51307133, 51125029, 51221005) and the Fundamental Research Funds for the Central Universities of China (Nos. xjj2012132, xkjc2013004)

  11. Surface Treatment of Polyethylene Terephthalate Film Using Atmospheric Pressure Glow Discharge in Air

    Institute of Scientific and Technical Information of China (English)

    方志; 邱毓昌; 王辉

    2004-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in polymer surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of Polyethylene terephthalate (PET) film surface for improving hydrophilicity using the non-thermal plasma generated by atmospheric pressure glow discharge (APGD) in air is conducted.The discharge characteristics of APGD are shown by measurement of their electrical discharge parameters and observation of light-emission phenomena, and the surface properties of PET before and after the APGD treatment are studied using contact angle measurement, x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It is found that the APGD is homogeneous and stable in the whole gas gap, which differs from the commonly filamentary dielectric barrier discharge (DBD). A short time (several seconds) APGD treatment can modify the surface characteristics of PET film markedly and uniformly. After 10 s APGD treatment, the surface oxygen content of PET surface increases to 39%, and the water contact angle decreases to 19°, respectively.

  12. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    International Nuclear Information System (INIS)

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure α-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images

  13. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    Science.gov (United States)

    Sun, Wen-Ting; Li, Guo; Li, He-Ping; Bao, Cheng-Yu; Wang, Hua-Bo; Zeng, Shi; Gao, Xing; Luo, Hui-Ying

    2007-06-01

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure α-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images.

  14. Characterization of transient discharges under atmospheric pressure conditions applying nitrogen photoemission and current measurements

    CERN Document Server

    Keller, Sandra; Bibinov, Nikita; Awakowicz, Peter

    2011-01-01

    Plasma parameters of three transient discharges (filamentary and homogeneous dielectric barrier discharges in air, and the spark discharge of an argon plasma coagulator) operated at atmospheric pressure conditions are determined applying a combination of diagnostics methods, namely numerical simulation, current measurement, and optical emission spectroscopy. These diagnostic methods supplement each other and resolve problems, which arise when these methods are used separately. Nitrogen is used as sensor gas and is admixed to argon for studying the argon plasma coagulator. The Boltzmann equation is solved in 'local' approximation to determine electron velocity distribution function. Drift velocity, electron-impact excitation rate constants for nitrogen molecular emission, electric current density, and emission spectrum of nitrogen molecule are calculated. Plasma parameters (electron velocity distribution function and electron density) are determined applying calculated as far as measured electric current, and ...

  15. Deposition of vertically oriented carbon nanofibers in atmospheric pressure radio frequency discharge

    International Nuclear Information System (INIS)

    Deposition of vertically oriented carbon nanofibers (CNFs) has been studied in an atmospheric pressure radio frequency discharge without dielectric barrier covering the metallic electrodes. When the frequency is sufficiently high so that ions reside in the gap for more than one rf cycle ('trapped ions'), the operating voltage decreases remarkably and the transition from a uniform glow discharge to an arc discharge is suppressed even without dielectric barriers. More importantly, the trapped ions are able to build up a cathodic ion sheath. A large potential drop is created in the sheath between the bulk plasma and the electrode, which is essential for aligning growing CNFs. At the same time, the damage to CNFs due to ion bombardment can be minimized at atmospheric pressure. The primary interest of the present work is in identifying the cathodic ion sheath and investigating how it influences the alignment of growing CNFs in atmospheric pressure plasma-enhanced chemical-vapor deposition. Spectral emission profiles of He (706 nm), Hα (656 nm), and CH (432 nm) clearly showed that a dark space is formed between the cathode layer and the heated bottom electrode. However, increasing the rf power induced the transition to a nonuniform γ-mode discharge which creates intense plasma spots in the dark space. Aligned CNFs can be grown at moderate input power during the initial stage of the deposition process. Catalyst particles were heavily contaminated by precipitated carbon in less than 5 min. Alignment deteriorates as CNFs grow and deposition was virtually terminated by the deactivation of catalyst particles

  16. An experimental study of atmospheric pressure dielectric barrier discharge (DBD) in argon

    Energy Technology Data Exchange (ETDEWEB)

    Subedi, D. P. [Department of Natural Sciences, School of Science, Kathmandu University, Dhulikhel (Nepal); Tyata, R. B. [Department of Natural Sciences, School of Science, Kathmandu University, Dhulikhel, Nepal and Department of Electrical, Khwopa College of Engineering, Libali-2, Bhaktapur (Nepal); Shrestha, R. [Department of Natural Sciences, School of Science, Kathmandu University, Dhulikhel, Nepal and Department of Physics, Basu College, Kalighat, Byasi, Bhaktapur (Nepal); Wong, C. S. [Plasma Technology Research Centre, Physics Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-03-05

    In this paper, experimental results on atmospheric pressure argon dielectric barrier discharge (DBD) have been presented. The discharge was generated using a high voltage (0 to 20 kV) power supply operating at frequency of 10 to 30 kHz and was studied by means of electrical and optical measurements. A homogeneous and steady discharge was observed between the electrodes with gap spacing from 1 mm to 3 mm and with a dielectric barrier of thickness 1.5 mm while argon gas is fed at a controlled flow rate of 2liter per min. The electron temperature (T{sub e}) and electron density (n{sub e}) of the plasma have been determined by means of optical emission spectroscopy. Our results show that the electron density is of the order of 10{sup 16} cm{sup −3} while the electron temperature is estimated to be ∼ 1 eV. The homogeneity and non-thermal nature of the discharge were utilized in the investigation of the change in wettabilty of a polymer sample subjected to the treatment by the discharge. Contact angle analysis showed that the discharge was effective in improving the wettability of low density Polyethylene (LDPE) polymer sample after the treatment.

  17. An experimental study of atmospheric pressure dielectric barrier discharge (DBD) in argon

    International Nuclear Information System (INIS)

    In this paper, experimental results on atmospheric pressure argon dielectric barrier discharge (DBD) have been presented. The discharge was generated using a high voltage (0 to 20 kV) power supply operating at frequency of 10 to 30 kHz and was studied by means of electrical and optical measurements. A homogeneous and steady discharge was observed between the electrodes with gap spacing from 1 mm to 3 mm and with a dielectric barrier of thickness 1.5 mm while argon gas is fed at a controlled flow rate of 2liter per min. The electron temperature (Te) and electron density (ne) of the plasma have been determined by means of optical emission spectroscopy. Our results show that the electron density is of the order of 1016 cm−3 while the electron temperature is estimated to be ∼ 1 eV. The homogeneity and non-thermal nature of the discharge were utilized in the investigation of the change in wettabilty of a polymer sample subjected to the treatment by the discharge. Contact angle analysis showed that the discharge was effective in improving the wettability of low density Polyethylene (LDPE) polymer sample after the treatment

  18. Methane Conversion to C2 Hydrocarbons by Abnormal Glow Discharge at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    Dai Wei; Yu Hui; Chen Qi; Yin Yongxiang; Dai Xiaoyan

    2005-01-01

    Methane conversion to C2 hydrocarbons has been investigated with the addition of hydrogen in a plasma reactor of abnormal glow discharge at atmospheric pressure. The aim of this experiment is to minimize coke formation and improve discharge stability. The typical conditions in the experiment are 300 ml of total feed flux and 400 W of discharge power. The experimental results show that methane conversion is from 91.6% to 35.2% in mol, acetylene selectivity is from 90.2% to 57.6%, and ethylene selectivity is approximately from 7.8% to 3.6%,where the coke increases gradually along with the increase of CH4/H2 from 2: 8 to 9: 1. A stable discharge for a considerable running time can be obtained only at a lower ratio of CH4/H2= 2:8 or 3: 7. These phenomena indicate that the coke deposition during methane conversion is obviously reduced by adding a large amount of hydrogen during an abnormal glow discharge.A qualitative interpretation is presented, namely, with abundant hydrogen, the possibility that hydrogen molecules are activated to hydrogen radicals is increased with the help of the abnormal glow discharge. These hydrogen radicals react with carbon radicals to form C2 hydrocarbon products. Therefore, the deposition of coke is restrained.

  19. Conversion of carbon dioxide to value-added chemicals in atmospheric pressure dielectric barrier discharges

    International Nuclear Information System (INIS)

    The aim of this work consists of the evaluation of atmospheric pressure dielectric barrier discharges for the conversion of greenhouse gases into useful compounds. Therefore, pure CO2 feed flows are administered to the discharge zone at varying discharge frequency, power input, gas temperature and feed flow rates, aiming at the formation of CO and O2. The discharge obtained in CO2 is characterized as a filamentary mode with a microdischarge zone in each half cycle of the applied voltage. It is shown that the most important parameter affecting the CO2-conversion levels is the gas flow rate. At low flow rates, both the conversion and the CO-yield are significantly higher. In addition, also an increase in the gas temperature and the power input give rise to higher conversion levels, although the effect on the CO-yield is limited. The optimum discharge frequency depends on the power input level and it cannot be unambiguously stated that higher frequencies give rise to increased conversion levels. A maximum CO2 conversion of 30% is achieved at a flow rate of 0.05 L min-1, a power density of 14.75 W cm-3 and a frequency of 60 kHz. The most energy efficient conversions are achieved at a flow rate of 0.2 L min-1, a power density of 11 W cm-3 and a discharge frequency of 30 kHz.

  20. An experimental study of atmospheric pressure dielectric barrier discharge (DBD) in argon

    Science.gov (United States)

    Subedi, D. P.; Tyata, R. B.; Shrestha, R.; Wong, C. S.

    2014-03-01

    In this paper, experimental results on atmospheric pressure argon dielectric barrier discharge (DBD) have been presented. The discharge was generated using a high voltage (0 to 20 kV) power supply operating at frequency of 10 to 30 kHz and was studied by means of electrical and optical measurements. A homogeneous and steady discharge was observed between the electrodes with gap spacing from 1 mm to 3 mm and with a dielectric barrier of thickness 1.5 mm while argon gas is fed at a controlled flow rate of 2liter per min. The electron temperature (Te) and electron density (ne) of the plasma have been determined by means of optical emission spectroscopy. Our results show that the electron density is of the order of 1016 cm-3 while the electron temperature is estimated to be ˜ 1 eV. The homogeneity and non-thermal nature of the discharge were utilized in the investigation of the change in wettabilty of a polymer sample subjected to the treatment by the discharge. Contact angle analysis showed that the discharge was effective in improving the wettability of low density Polyethylene (LDPE) polymer sample after the treatment.

  1. Numerical simulation and experimental validation of a direct current air corona discharge under atmospheric pressure

    International Nuclear Information System (INIS)

    Air corona discharge is one of the critical problems associated with high-voltage equipment. Investigating the corona mechanism plays a key role in enhancing the electrical insulation performance. An improved self-consistent multi-component two-dimensional plasma hybrid model is presented for the simulation of a direct current atmospheric pressure corona discharge in air. The model is based on plasma hydrodynamic and chemical models, and includes 12 species and 26 reactions. In addition, the photoionization effect is introduced into the model. The simulation on a bar-plate electrode configuration with an inter-electrode gap of 5.0 mm is carried out. The discharge voltage—current characteristics and the current density distribution predicted by the hybrid model agree with the experimental measurements. In addition, the dynamics of volume charged species generation, discharge current waveform, current density distribution at an electrode, charge density, electron temperature, and electric field variations are investigated in detail based on the model. The results indicate that the model can contribute valuable insights into the physics of an air plasma discharge. (physics of gases, plasmas, and electric discharges)

  2. Pulsed RF discharges, glow and filamentary mode at atmospheric pressure in argon

    International Nuclear Information System (INIS)

    The properties of a pulsed radio frequency capacitive discharge are investigated at atmospheric pressure in argon. The discharge can operate in two different modes: a homogeneous glow discharge or turn into filaments. By pulsing the 13.56 MHz generator both the filamentary and the glow modes can be selected depending on the pulse width and period. For a 5 μs pulse width (∼70 RF cycles in the pulse), short pulse periods (less than 100 μs) result in a filamentary discharge while long pulse periods (greater than 1 ms) result in a glow discharge. Optical emission spectroscopy and power measurements were performed to estimate the plasma temperature and density. Water vapour was introduced to the discharge as a source of hydrogen and the Stark broadening of the Balmer Hβ line was measured to allow the plasma density to be estimated as 1015 cm-3 in the filamentary mode. The estimation of the glow mode density was based on power balance and yielded a density of 5 x 1011 cm-3. Emission line ratio measurements coupled with the Saha equation resulted in an estimate of electron temperature of approximatively 1.3 eV for the glow mode and 1.7 eV for the filaments. Using the glow mode at a duty cycle of 10% is effective in decreasing the hydrophobicity of polymer films while keeping the temperature low

  3. Plasma polymerization of ethylene in an atmospheric pressure-pulsed discharge

    Science.gov (United States)

    Donohoe, K.; Wydeven, T.

    1979-01-01

    The polymerization of ethylene in an atmospheric pressure-pulsed discharge has been studied. Partial pressures of ethylene up to 4 kN/sq m were used with helium as a diluent. Deposition rates (on glass slides) were the same throughout the discharge volume over a wide range of operating conditions. These rates were in the 1-2 A/sec range. The films were clear, soft, and showed good adhesion to the glass substrates. Oligomers large enough to visibly scatter 637.8-nm light were observed in the gas phase under all conditions in which film deposition occurred. The experimental results suggest that Brownian diffusion of these oligomers was the rate-limiting step in the film deposition process.

  4. Advances in the optical diagnostics of kinetic processes in atmospheric pressure dielectric barrier discharges

    Energy Technology Data Exchange (ETDEWEB)

    Dilecce, G; Ambrico, P F; De Benedictis, S [Istituto di Metodologie Inorganiche e dei Plasmi-CNR, sede di Bari, Via Orabona, 4, 70126 Bari (Italy)], E-mail: giorgio.dilecce@ba.imip.cnr.it

    2008-10-01

    Dielectric barrier discharges at atmospheric pressure have recently received a growing interest because of their potentially advantageous use in a number of applicative fields, in both their main classes of 'volume' and 'surface' geometric arrangements. From a diagnostic point of view, the high pressure regime adds problems relevant to an enhanced role of collision quenching, vibrational and rotational relaxation, while maintaining many of the demands of a highly non-equilibrium system for a detailed characterization of its degrees of freedom. In addition, filamentary DBDs are intrinsically pulsed systems, in which the electron impact excitation is confined in small space regions and very short time intervals, such that a prominent afterglow phase, both spatial and temporal, is present in the discharge volume, and kinetic processes involving long-lived species, chemi-luminescent reactions, recombinations (aided by the large pressure) can competitively come into play in the excitation of electronic states. We have applied our ensemble of diagnostic methods, based on time resolved emission and laser spectroscopy, to the investigation of elementary kinetics in DBDs. Here we present our last two years results that include: Optical-Optical Double Resonance (OODR)-LIF measurements of N2(A{sup 3}{sigma}{sup +}{sub u}) density, in a volume DBD that is of relevance in the debate upon the mechanisms for establishing the glow regime; OODR-LIF and emission study on a Masuda type surface discharge; measurement of N2 (C{sup 3}II{sub U}, v) quenching and vibrational relaxation rate constants and its relevance to nitrogen Second Positive System emission diagnostics at atmospheric pressure; kinetics of CN(B{sup 2}{sigma}{sup +}, v) formation and violet system emission in N{sub 2}-CH{sub 4} discharges. The latter issue shows in addition a correlation between emissions and surface status (i.e. the presence of a deposit) that is a clear monitor of a gas

  5. Advances in the optical diagnostics of kinetic processes in atmospheric pressure dielectric barrier discharges

    International Nuclear Information System (INIS)

    Dielectric barrier discharges at atmospheric pressure have recently received a growing interest because of their potentially advantageous use in a number of applicative fields, in both their main classes of 'volume' and 'surface' geometric arrangements. From a diagnostic point of view, the high pressure regime adds problems relevant to an enhanced role of collision quenching, vibrational and rotational relaxation, while maintaining many of the demands of a highly non-equilibrium system for a detailed characterization of its degrees of freedom. In addition, filamentary DBDs are intrinsically pulsed systems, in which the electron impact excitation is confined in small space regions and very short time intervals, such that a prominent afterglow phase, both spatial and temporal, is present in the discharge volume, and kinetic processes involving long-lived species, chemi-luminescent reactions, recombinations (aided by the large pressure) can competitively come into play in the excitation of electronic states. We have applied our ensemble of diagnostic methods, based on time resolved emission and laser spectroscopy, to the investigation of elementary kinetics in DBDs. Here we present our last two years results that include: Optical-Optical Double Resonance (OODR)-LIF measurements of N2(A3σ+u) density, in a volume DBD that is of relevance in the debate upon the mechanisms for establishing the glow regime; OODR-LIF and emission study on a Masuda type surface discharge; measurement of N2 (C3IIU, v) quenching and vibrational relaxation rate constants and its relevance to nitrogen Second Positive System emission diagnostics at atmospheric pressure; kinetics of CN(B2σ+, v) formation and violet system emission in N2-CH4 discharges. The latter issue shows in addition a correlation between emissions and surface status (i.e. the presence of a deposit) that is a clear monitor of a gas-surface interplay.

  6. Numerical and experimental investigation of the stability of radio-frequency (RF) discharges at atmospheric pressure

    International Nuclear Information System (INIS)

    The stability and uniformity of a radio-frequency (RF) discharge is limited by a critical power density. Beyond this critical power density, instability occurs in the form of physical changes in the plasma (such as contraction due to arcing). The RF discharge used in this study is the non-equilibrium Atmospheric Pressure Plasma Jet (APPJ (registered) ) developed by Apjet, Inc. This discharge is known to operate uniformly in helium gas. However, for some proposed applications such as surface modification, there is a need to operate with reactive gases such as O2. Our experimental studies show that addition of molecular gas to a discharge operating in helium increases its power density (W cm-2), until it reaches the critical unstable arcing limit. Moreover, an increase in the frequency of operation (from 13 to 27 MHz) allows the plasma to sustain higher molecular gas concentrations and power densities before instability occurs. Further, it is observed that this critical power density is dependent on the type of molecular gas added. These results provide a motivation for the development of a mathematical model that can provide insight into the causes of instability and potential methods of suppression. The two commonly studied modes of instability are (1) thermal instability (TI) and (2) α-γ-arc mode transition. For the APPJ (registered) discharge conditions, the development time scales of TI are much longer (∼1 ms) as compared with discharge oscillation period (∼100 ns). Hence, if the instability was indeed thermal, discharge frequency increase would have no consequence, contrary to experimental findings. A 1D fluid model based on the local field approximation is developed to study instability in APPJ (registered) discharge. The analysis of modeling results confirmed our hypothesis that the instability development actually takes place via breakdown of sheath i.e. α-γ-arc mode transition and not by TI.

  7. Three distinct modes in a surface micro-discharge in atmospheric pressure He + N2 mixtures

    Science.gov (United States)

    Li, Dong; Liu, Dingxin; He, Tongtong; Li, Qiaosong; Wang, Xiaohua; Kong, Michael G.

    2015-12-01

    A surface micro-discharge in atmospheric pressure He + N2 mixtures is studied in this paper with an emphasis on the discharge modes. With the N2 admixture increasing from 0.1% to 20%, the discharge evolves from a spatially diffuse mode to a filamentary mode during positive half-cycles of the applied voltage. However during the negative half-cycles, an additional patterned mode emerges between the diffuse and the filamentary modes, which has not been reported before to exist in surface micro-discharges. In the diffuse and patterned modes, the plasmas cover almost the entirety of the mesh area during one cycle after plasma ignition in all mesh elements, and the discharge power increases linearly with the applied voltage. In contrast, plasma coverage of the mesh area is only partial in the filamentary mode and the plasma is more unstable with the discharge power increasing exponentially with the applied voltage. As the surface micro-discharge evolves through the three modes, the density of excited species changes significantly, for instance, the density of N2+(B) drops by ˜20-fold from [N2] = 0.2% to 20%. The N2+(B) is predicted to be generated mainly through successive processes of Penning ionization by helium metastables and electron-impact excitation of N2+(X), the latter is most responsible for the density decrease of N2+(B) because much more N2+(X) is converted to N4+(X) as the increase of N2 fraction. Also, the electron density and electron temperature decrease with the discharge mode transition.

  8. Analytical model of atmospheric pressure, helium/trace gas radio-frequency capacitive Penning discharges

    Science.gov (United States)

    Lieberman, M. A.

    2015-04-01

    Atmospheric and near-atmospheric pressure, helium/trace gas radio-frequency capacitive discharges have wide applications. An analytic equilibrium solution is developed based on a homogeneous, current-driven discharge model that includes sheath and electron multiplication effects and contains two electron populations. A simplified chemistry is used with four unknown densities: hot electrons, warm electrons, positive ions and metastables. The dominant electron-ion pair production is Penning ionization, and the dominant ion losses are to the walls. The equilibrium particle balances are used to determine a single ionization balance equation for the warm electron temperature, which is solved, both approximately within the α- and γ-modes, and exactly by conventional root-finding techniques. All other discharge parameters are found, the extinction and α-γ transitions are determined, and a similarity law is given, in which the equilibrium for a short gap at high pressure can be rescaled to a longer gap at lower pressure. Within the α-mode, we find the scaling of the discharge parameters with current density, frequency, gas density and gap width. The analytic results are compared to hybrid and particle-in-cell (PIC) results for He/0.1%N2, and to hybrid results for He/0.1%H2O. For nitrogen, a full reaction set is used for the hybrid calculations and a simplified reaction set for the PIC simulations. For the chemically complex water trace gas, a set of 209 reactions among 43 species is used. The analytic results are found to be in reasonably good agreement with the more elaborate hybrid and PIC calculations.

  9. TOPICAL REVIEW: Numerical modelling of atmospheric pressure gas discharges leading to plasma production

    Science.gov (United States)

    Georghiou, G. E.; Papadakis, A. P.; Morrow, R.; Metaxas, A. C.

    2005-10-01

    In this paper, we give a detailed review of recent work carried out on the numerical characterization of non-thermal gas discharge plasmas in air at atmospheric pressure. First, we briefly describe the theory of discharge development for dielectric barrier discharges, which is central to the production of non-equilibrium plasma, and we present a hydrodynamic model to approximate the evolution of charge densities. The model consists of the continuity equations for electrons, positive and negative ions coupled to Poisson's equation for the electric field. We then describe features of the finite element flux corrected transport algorithm, which has been developed to specifically aim for accuracy (no spurious diffusion or oscillations), efficiency (through the use of unstructured grids) and ease of extension to complex 3D geometries in the framework of the hydrodynamic model in gas discharges. We summarize the numerical work done by other authors who have applied different methods to various models and then we present highlights of our own work, which includes code validation, comparisons with existing results and modelling of radio frequency systems, dc discharges, secondary effects such as photoionization and plasma production in the presence of dielectrics. The extension of the code to 3D for more realistic simulations is demonstrated together with the adaptive meshing technique, which serves to achieve higher efficiency. Finally, we illustrate the versatility of our scheme by using it to simulate the transition from non-thermal to thermal discharges. We conclude that numerical modelling and, in particular, the extension to 3D can be used to shed new light on the processes involved with the production and control of atmospheric plasma, which plays an important role in a host of emerging technologies.

  10. Numerical modelling of atmospheric pressure gas discharges leading to plasma production

    Energy Technology Data Exchange (ETDEWEB)

    Georghiou, G E [Electronics and Computer Science, University of Southampton, Highfield, Southampton, SO17 1BJ (United Kingdom); Papadakis, A P [Electricity Utilization Group (EUG), Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ (United Kingdom); Morrow, R [Applied and Plasma Physics, School of Physics, University of Sydney, Sydney, NSW (Australia); Metaxas, A C [St John' s College, University of Cambridge, Cambridge, CB2 1TP (United Kingdom)

    2005-10-21

    In this paper, we give a detailed review of recent work carried out on the numerical characterization of non-thermal gas discharge plasmas in air at atmospheric pressure. First, we briefly describe the theory of discharge development for dielectric barrier discharges, which is central to the production of non-equilibrium plasma, and we present a hydrodynamic model to approximate the evolution of charge densities. The model consists of the continuity equations for electrons, positive and negative ions coupled to Poisson's equation for the electric field. We then describe features of the finite element flux corrected transport algorithm, which has been developed to specifically aim for accuracy (no spurious diffusion or oscillations), efficiency (through the use of unstructured grids) and ease of extension to complex 3D geometries in the framework of the hydrodynamic model in gas discharges. We summarize the numerical work done by other authors who have applied different methods to various models and then we present highlights of our own work, which includes code validation, comparisons with existing results and modelling of radio frequency systems, dc discharges, secondary effects such as photoionization and plasma production in the presence of dielectrics. The extension of the code to 3D for more realistic simulations is demonstrated together with the adaptive meshing technique, which serves to achieve higher efficiency. Finally, we illustrate the versatility of our scheme by using it to simulate the transition from non-thermal to thermal discharges. We conclude that numerical modelling and, in particular, the extension to 3D can be used to shed new light on the processes involved with the production and control of atmospheric plasma, which plays an important role in a host of emerging technologies. (topical review)

  11. Numerical simulation and experimental validation of a direct current air corona discharge under atmospheric pressure

    Institute of Scientific and Technical Information of China (English)

    Liu Xing-Hua; He Wei; Yang Fan; Wang Hong-Yu; Liao Rui-Jin; Xiao Han-Guang

    2012-01-01

    Air corona discharge is one of the critical problems associated with high-voltage equipment.Investigating the corona mechanism plays a key role in enhancing the electrical insulation performance.An improved self-consistent multi-component two-dimensional plasma hybrid model is presented for the simulation of a direct current atmospheric pressure corona discharge in air.The model is based on plasma hydrodynamic and chemical models,and includes 12 species and 26 reactions.In addition,the photoionization effect is introduced into the model.The simulation on a bar-plate electrode configuration with an inter-electrode gap of 5.0 mm is carried out.The discharge voltage-current characteristics and the current density distribution predicted by the hybrid model agree with the experimental measurements.In addition,the dynamics of volume charged species generation,discharge current waveform,current density distribution at an electrode,charge density,electron temperature,and electric field variations are investigated in detail based on the model.The results indicate that the model can contribute valuable insights into the physics of an air plasma discharge.

  12. X-ray radiation from the volume discharge in atmospheric-pressure air

    Science.gov (United States)

    Bratchikov, V. B.; Gagarinov, K. A.; Kostyrya, I. D.; Tarasenko, V. F.; Tkachev, A. N.; Yakovlenko, S. I.

    2007-07-01

    X-ray radiation from the volume discharge in atmospheric-pressure air is studied under the conditions when the voltage pulse rise time varies from 0.5 to 100 ns and the open-circuit voltage amplitude of the generator varies from 20 to 750 kV. It is shown that a volume discharge from a needle-like cathode forms at a relatively wide voltage pulse (to ≈60 ns in this work). The volume character of the discharge is due to preionization by fast electrons, which arise when the electric field concentrates at the cathode and in the discharge gap. As the voltage pulse rise time grows, X-ray radiation comes largely from the discharge gap in accordance with previous experiments. Propagation of fast avalanche electrons in nitrogen subjected to a nonuniform unsteady electric field is simulated. It is demonstrated that the amount of hard X-ray photons grows not only with increasing voltage amplitude but also with shortening pulse rise time.

  13. Mechanisms for negative reactant ion formation in an atmospheric pressure corona discharge

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Robert G.; Waltman, Melanie J.

    2009-06-02

    In an effort to better understand the formation of negative reactant ions in air produced by an atmospheric pressure corona discharge source, the neutral vapors generated by the corona were introduced in varying amounts into the ionization region of an ion mobility spectrometer/mass spectrometer containing a 63Ni ionization source. With no discharge gas the predominant ions were O2- , however, upon the introduction of low levels of discharge gas the NO2- ion quickly became the dominant species. As the amount of discharge gas increased the appearance of CO3- was observed followed by the appearance of NO3-. At very high levels, NO3- species became effectively the only ion present and appeared as two peaks in the IMS spectrum, NO3- and the NO3-•HNO3 adduct, with separate mobilities. Since explosive compounds typically ionize in the presence of negative reactant ions, the ionization of an explosive, RDX, was examined in order to investigate the ionization properties with these three primary ions. It was found that RDX forms a strong adduct with both NO2- and NO3- with reduced mobility values of 1.49 and 1.44 cm2V-1s-1, respectively. No adduct was observed for RDX with CO3- although this adduct has been observed with a corona discharge mass spectrometer. It is believed that this adduct, although formed, does not have a sufficiently long lifetime (greater than 10 ms) to be observed in an ion mobility spectrometer.

  14. Space Charge Transient Kinetic Characteristics in DC Air Corona Discharge at Atmospheric Pressure

    Science.gov (United States)

    Liu, Xinghua; Xian, Richang; Sun, Xuefeng; Wang, Tao; Lv, Xuebin; Chen, Suhong; Yang, Fan

    2014-08-01

    Investigating the corona mechanism plays a key role in enhancing the performance of electrical insulation systems. Numerical simulation offers a better understanding of the physical characteristics of air corona discharges. Using a two-dimensional axisymmetrical kinetics model, into which the photoionization effect is incorporated, the DC air corona discharge at atmosphere pressure is studied. The plasma model is based on a self-consistent, multi-component, and continuum description of the air discharge, which is comprised of 12 species and 22 reactions. The discharge voltage-current characteristic predicted by the model is found to be in quite good agreement with experimental measurements. The behavior of the electronic avalanche progress is also described. O2+ and N2+ are the dominant positive ions, and the values of O- and O2- densities are much smaller than that of the electron. The electron and positive ion have a low-density thin layer near the anode, which is a result of the surface reaction and absorption effect of the electrode. As time progresses, the electric field increases and extends along the cathode surface, whereas the cathode fall shrinks after the corona discharge hits the cathode; thus, in the cathode sheath, the electron temperature increases and the position of its peak approaches to the cathode. The present computational model contributes to the understanding of this physical mechanism, and suggests ways to improve the electrical insulation system.

  15. Atmospheric pressure chemical ionization of explosives using alternating current corona discharge ion source.

    Science.gov (United States)

    Usmanov, D T; Chen, L C; Yu, Z; Yamabe, S; Sakaki, S; Hiraoka, K

    2015-04-01

    The high-sensitive detection of explosives is of great importance for social security and safety. In this work, the ion source for atmospheric pressure chemical ionization/mass spectrometry using alternating current corona discharge was newly designed for the analysis of explosives. An electromolded fine capillary with 115 µm inner diameter and 12 mm long was used for the inlet of the mass spectrometer. The flow rate of air through this capillary was 41 ml/min. Stable corona discharge could be maintained with the position of the discharge needle tip as close as 1 mm to the inlet capillary without causing the arc discharge. Explosives dissolved in 0.5 µl methanol were injected to the ion source. The limits of detection for five explosives with 50 pg or lower were achieved. In the ion/molecule reactions of trinitrotoluene (TNT), the discharge products of NOx (-) (x = 2,3), O3 and HNO3 originating from plasma-excited air were suggested to contribute to the formation of [TNT - H](-) (m/z 226), [TNT - NO](-) (m/z 197) and [TNT - NO + HNO3 ](-) (m/z 260), respectively. Formation processes of these ions were traced by density functional theory calculations. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26149109

  16. Space Charge Transient Kinetic Characteristics in DC Air Corona Discharge at Atmospheric Pressure

    International Nuclear Information System (INIS)

    Investigating the corona mechanism plays a key role in enhancing the performance of electrical insulation systems. Numerical simulation offers a better understanding of the physical characteristics of air corona discharges. Using a two-dimensional axisymmetrical kinetics model, into which the photoionization effect is incorporated, the DC air corona discharge at atmosphere pressure is studied. The plasma model is based on a self-consistent, multi-component, and continuum description of the air discharge, which is comprised of 12 species and 22 reactions. The discharge voltage-current characteristic predicted by the model is found to be in quite good agreement with experimental measurements. The behavior of the electronic avalanche progress is also described. O2+ and N2+ are the dominant positive ions, and the values of O− and O2− densities are much smaller than that of the electron. The electron and positive ion have a low-density thin layer near the anode, which is a result of the surface reaction and absorption effect of the electrode. As time progresses, the electric field increases and extends along the cathode surface, whereas the cathode fall shrinks after the corona discharge hits the cathode; thus, in the cathode sheath, the electron temperature increases and the position of its peak approaches to the cathode. The present computational model contributes to the understanding of this physical mechanism, and suggests ways to improve the electrical insulation system

  17. Spatial and temporal evolutions of ozone in a nanosecond pulse corona discharge at atmospheric pressure

    Science.gov (United States)

    Duten, X.; Redolfi, M.; Aggadi, N.; Vega, A.; Hassouni, K.

    2011-10-01

    This paper deals with the experimental determination of the spatial and temporal evolutions of the ozone concentration in an atmospheric pressure pulsed plasma, working in the nanosecond regime. We observed that ozone was produced in the localized region of the streamer. The ozone transport requires a characteristic time well above the millisecond. The numerical modelling of the streamer expansion confirms that the hydrodynamic expansion of the filamentary discharge region during the streamer propagation does not lead to a significant transport of atomic oxygen and ozone. It appears therefore that only diffusional transport can take place, which requires a characteristic time of the order of 50 ms.

  18. Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium

    International Nuclear Information System (INIS)

    Due to low gas temperatures and high densities of active species, atmospheric-pressure glow discharges (APGDs) would have potential applications in the fields of plasma-based sterilization, gene mutation, etc. In this letter, the genetic effects of helium radio-frequency APGD plasmas with the plasmid DNA and oligonucleotide as the treated biomaterials are presented. The experimental results show that it is the chemically active species, instead of heat, ultraviolet radiation, intense electric field, and/or charged particles, that break the double chains of the plasmid DNA. The genetic effects depend on the plasma operating parameters, e.g., power input, helium flow rate, processing distance, time, etc

  19. Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium

    Science.gov (United States)

    Li, Guo; Li, He-Ping; Wang, Li-Yan; Wang, Sen; Zhao, Hong-Xin; Sun, Wen-Ting; Xing, Xin-Hui; Bao, Cheng-Yu

    2008-06-01

    Due to low gas temperatures and high densities of active species, atmospheric-pressure glow discharges (APGDs) would have potential applications in the fields of plasma-based sterilization, gene mutation, etc. In this letter, the genetic effects of helium radio-frequency APGD plasmas with the plasmid DNA and oligonucleotide as the treated biomaterials are presented. The experimental results show that it is the chemically active species, instead of heat, ultraviolet radiation, intense electric field, and/or charged particles, that break the double chains of the plasmid DNA. The genetic effects depend on the plasma operating parameters, e.g., power input, helium flow rate, processing distance, time, etc.

  20. LIF diagnostics in volume and surface dielectric barrier discharges at atmospheric pressure

    International Nuclear Information System (INIS)

    In this paper we review our recent work based on Laser Induced Fluorescence (LIF) diagnostics applied to Dielectric Barrier Discharges (DBD) at atmospheric pressures. Emphasis is given to the main issues that have to be faced in this application through the detailed description of the most difficult case, that of CH LIF detection. The application to kinetic studies of LIF diagnostics is then illustrated through the application of LIF to the CN radical and of Optical-Optical Double Resonance (OODR) LIF to the measurement of N2(A3Σ+u) metastable.

  1. LIF diagnostics in volume and surface dielectric barrier discharges at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Dilecce, G; Ambrico, P F; De Benedictis, S [Istituto di Metodologie Inorganiche e dei Plasmi CNR, sede di Bari - Via Orabona 4, 70125 Bari (Italy); Simek, M, E-mail: giorgio.dilecce@ba.imip.cnr.i [Institute of Plasma Physics, Za Slovankou 3, 18200 Prague (Czech Republic)

    2010-05-01

    In this paper we review our recent work based on Laser Induced Fluorescence (LIF) diagnostics applied to Dielectric Barrier Discharges (DBD) at atmospheric pressures. Emphasis is given to the main issues that have to be faced in this application through the detailed description of the most difficult case, that of CH LIF detection. The application to kinetic studies of LIF diagnostics is then illustrated through the application of LIF to the CN radical and of Optical-Optical Double Resonance (OODR) LIF to the measurement of N{sub 2}(A{sup 3{Sigma}+}{sub u}) metastable.

  2. Spatial and temporal evolutions of ozone in a nanosecond pulse corona discharge at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Duten, X; Redolfi, M; Aggadi, N; Vega, A; Hassouni, K, E-mail: duten@lspm.cnrs.fr [LSPM-CNRS UPR 3407, Universite Paris Nord, 90 Avenue J.B. Clement, 93430 Villetaneuse (France)

    2011-10-19

    This paper deals with the experimental determination of the spatial and temporal evolutions of the ozone concentration in an atmospheric pressure pulsed plasma, working in the nanosecond regime. We observed that ozone was produced in the localized region of the streamer. The ozone transport requires a characteristic time well above the millisecond. The numerical modelling of the streamer expansion confirms that the hydrodynamic expansion of the filamentary discharge region during the streamer propagation does not lead to a significant transport of atomic oxygen and ozone. It appears therefore that only diffusional transport can take place, which requires a characteristic time of the order of 50 ms.

  3. Treatment of polycarbonate by dielectric barrier discharge (DBD) at atmospheric pressure

    Science.gov (United States)

    Kostov, K. G.; Hamia, Y. A. A.; Mota, R. P.; dos Santos, A. L. R.; Nascente, P. A. P.

    2014-05-01

    Generally most plastic materials are intrinsically hydrophobic, low surface energy materials, and thus do not adhere well to other substances. Surface treatment of polymers by discharge plasmas is of great and increasing industrial application because it can uniformly modify the surface of sample without changing the material bulk properties and is environmentally friendly. The plasma processes that can be conducted under ambient pressure and temperature conditions have attracted special attention because of their easy implementation in industrial processing. Present work deals with surface modification of polycarbonate (PC) by a dielectric barrier discharge (DBD) at atmospheric pressure. The treatment was performed in a parallel plate reactor driven by a 60Hz power supply. The DBD plasmas at atmospheric pressure were generated in air and nitrogen. Material characterization was carried out by contact angle measurements, and X-ray photoelectron spectroscopy (XPS). The surface energy of the polymer surface was calculated from contact angle data by Owens-Wendt method using distilled water and diiodomethane as test liquids. The plasma-induced chemical modifications are associated with incorporation of polar oxygen and nitrogen containing groups on the polymer surface. Due to these surface modifications the DBD-treated polymers become more hydrophilic. Aging behavior of the treated samples revealed that the polymer surfaces were prone to hydrophobic recovery although they did not completely recover their original wetting properties.

  4. Simulation of a runaway electron avalanche developing in an atmospheric pressure air discharge

    International Nuclear Information System (INIS)

    To gain a better understanding of the operation of atmospheric pressure air discharges, the formation of a runaway electron beam at an individual emission site on the cathode has been numerically simulated. The model provides a description of the dynamics of the fast electrons emitted into an air gap from the surface of the emission zone by solving numerically two-dimensional equations for the electrons. It is supposed that the electric field at the surface of the emission zone is enhanced, providing conditions for continuous acceleration of the emitted electrons. It is shown that the formation of a runaway electron beam in a highly overvolted discharge is largely associated with avalanche-type processes and that the number of electrons in the avalanche reaches 50% of the total number of runaway electrons

  5. Simulations of nanosecond-pulsed dielectric barrier discharges in atmospheric pressure air

    Energy Technology Data Exchange (ETDEWEB)

    Soo Bak, Moon; Cappelli, Mark A. [Mechanical Engineering Department, Stanford University, Stanford, California 94305 (United States)

    2013-03-21

    This paper describes simulations of nanosecond pulse plasma formation between planer electrodes covered by dielectric barriers in air at atmospheric pressure and 340 K. The plasma formation process starts as electrons detach from negative ions of molecular oxygen that are produced from the previous discharge pulse. An ionization front is found to form close to the positively biased electrode and then strengthens and propagates towards the grounded electrode with increasing gap voltage. Charge accumulation and secondary emission from the grounded electrode eventually lead to sheath collapse. One interesting feature is a predicted reversal in gap potential due to the accumulated charge, even when there is no reversal in applied potential. The simulation results are compared to recent measurement of mid-gap electric field under the same discharge conditions [Ito et al., Phys. Rev. Lett. 107, 065002 (2011)].

  6. Simulation of stationary glow patterns in dielectric barrier discharges at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fucheng, E-mail: hdlfc@hbu.cn; He, Yafeng; Dong, Lifang [Hebei Key Lab of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002 (China)

    2014-12-15

    Self-organized stationary patterns in dielectric barrier discharges operating in glow regime at atmospheric pressure are investigated by a self-consistent two-dimensional fluid model. The simulation results show that two different modes, namely, the diffuse mode and the static patterned mode, can be formed in different ranges of the driving frequency. The discharge operates in Townsend regime in the diffuse mode, while it operates in a glow regime inside the filaments and in a Townsend regime outside the filaments in the stable pattered mode. The forming process of the stationary filaments can be divided into three stages, namely, destabilizing stage, self-assembling stage, and stable stage. The space charge associated with residual electron density and surface charge is responsible for the formation of these stationary glow patterns.

  7. Simulation of stationary glow patterns in dielectric barrier discharges at atmospheric pressure

    International Nuclear Information System (INIS)

    Self-organized stationary patterns in dielectric barrier discharges operating in glow regime at atmospheric pressure are investigated by a self-consistent two-dimensional fluid model. The simulation results show that two different modes, namely, the diffuse mode and the static patterned mode, can be formed in different ranges of the driving frequency. The discharge operates in Townsend regime in the diffuse mode, while it operates in a glow regime inside the filaments and in a Townsend regime outside the filaments in the stable pattered mode. The forming process of the stationary filaments can be divided into three stages, namely, destabilizing stage, self-assembling stage, and stable stage. The space charge associated with residual electron density and surface charge is responsible for the formation of these stationary glow patterns

  8. Influence of longitudinal argon flow on DC glow discharge at atmospheric pressure

    Science.gov (United States)

    Zhu, Sha; Jiang, Weiman; Tang, Jie; Xu, Yonggang; Wang, Yishan; Zhao, Wei; Duan, Yixiang

    2016-05-01

    A one-dimensional self-consistent fluid model was employed to investigate the influence of longitudinal argon flow on the DC glow discharge at atmospheric pressure. It is found that the charges exhibit distinct dynamic behaviors at different argon flow velocities, accompanied by a considerable change in the discharge structure. The positive argon flow allows for the reduction of charge densities in the positive column and negative glow regions, and even leads to the disappearance of negative glow. The negative argon flow gives rise to the enhancement of charge densities in the positive column and negative glow regions. These observations are attributed to the fact that the gas flow convection influences the transport of charges through different manners by comparing the argon flow velocity with the ion drift velocity. The findings are important for improving the chemical activity and work efficiency of the plasma source by controlling the gas flow in practical applications.

  9. FAST TRACK COMMUNICATION: Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges

    Science.gov (United States)

    Walsh, J. L.; Liu, D. X.; Iza, F.; Rong, M. Z.; Kong, M. G.

    2010-01-01

    Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium-oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O2 by helium metastables is significantly more efficient than electron dissociative excitation of O2, electron excitation of O and ion-ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He-O2 plasmas for excited atomic oxygen based chemistry.

  10. Array of surface-confined glow discharges in atmospheric pressure helium: Modes and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.; Liu, D. X., E-mail: liudingxin@gmail.com, E-mail: mglin5g@gmail.com [Center for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Shaanxi (China); Nie, Q. Y.; Li, H. P. [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Chen, H. L. [Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, Virginia 23508 (United States); Kong, M. G., E-mail: liudingxin@gmail.com, E-mail: mglin5g@gmail.com [Center for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Shaanxi (China); Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, Virginia 23508 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529 (United States)

    2014-05-19

    Array of atmospheric pressure surface discharges confined by a two-dimensional hexagon electrode mesh is studied for its discharge modes and temporal evolution so as to a theoretical underpinning to their growing applications in medicine, aerodynamic control, and environmental remediation. Helium plasma surface-confined by one hexagon-shaped rim electrode is shown to evolve from a Townsend mode to a normal and abnormal glow mode, and its evolution develops from the rim electrodes as six individual microdischarges merging in the middle of the hexagon mesh element. Within one hexagon element, microdischarges remain largely static with the mesh electrode being the instantaneous cathode, but move towards the hexagon center when the electrode is the instantaneous anode. On the entire array electrode surface, plasma ignition is found to beat an unspecific hexagon element and then spreads to ignite surrounding hexagon elements. The spreading of microdischarges is in the form of an expanding circle at a speed of about 3 × 10{sup 4} m/s, and their quenching starts in the location of the initial plasma ignition. Plasma modes influence how input electrical power is used to generate and accelerate electrons and as such the reaction chemistry, whereas plasma dynamics are central to understand and control plasma instabilities. The present study provides an important aspect of plasma physics of the atmospheric surface-confined discharge array and a theoretical underpinning to its future technological innovation.

  11. Nanosecond Repetitively Pulsed Discharges in Air at Atmospheric Pressure -- Experiment and Theory of Regime Transitions

    Science.gov (United States)

    Pai, David; Lacoste, Deanna; Laux, Christophe

    2009-10-01

    In atmospheric pressure air preheated from 300 to 1000 K, the Nanosecond Repetitively Pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and inter-electrode gap distance) of each discharge regime. Notably, there is a minimum gap distance for the existence of the glow regime that increases with decreasing gas temperature. A theory is developed to describe the Corona-to-Glow (C-G) and Glow-to-Spark (G-S) transitions for NRP discharges. The C-G transition is shown to depend on the Avalanche-to-Streamer Transition (AST) as well as the electric field strength in the positive column. The G-S transition is due to the thermal ionization instability. The minimum gap distance for the existence of the glow regime can be understood by considering that the applied voltage of the AST must be lower than that of the thermal ionization instability. This is a previously unknown criterion for generating glow discharges, as it does not correspond to the Paschen minimum or to the Meek-Raether criterion.

  12. Particle densities of the pulsed dielectric barrier discharges in nitrogen at atmospheric pressure

    Science.gov (United States)

    Pan, Jie; Li, Li

    2015-02-01

    Pulsed dielectric barrier discharges (DBDs) have become a promising solution to generate atmospheric-pressure non-equilibrium plasmas. In this work, a one-dimensional fluid model is carried out to research particle densities of the pulsed nitrogen DBDs at atmospheric pressure. Averaged particle densities, time evolutions of axial distributions of particle densities and influences of discharge gap distance dg on the particle densities are systematically illustrated and discussed. The calculation results show that averaged electron densities are lower than averaged N2+ densities, but higher than other averaged ion densities. Time evolutions of axial distributions of electron, N+ and N2+ densities show two peaks during rising and falling phases of applied voltage when dg is 0.2 cm but present gradual increases during pulse width when dg is 0.6 cm, which are similar to those of N2(a‧) and N2(B). Maximums of N3+ densities are close to the momentary cathode under dg of 0.2 cm but locate near the grounded electrode under dg of 0.6 cm, which are alike to those of N2(A) and N2(C). Besides, N4+ densities nearby the momentary anode are higher than those nearby the momentary cathode when dg is 0.2 cm. N(2D) has low averaged particle densities and complex time evolutions compared to N.

  13. Decomposition of toluene in a steady-state atmospheric-pressure glow discharge

    Science.gov (United States)

    Trushkin, A. N.; Grushin, M. E.; Kochetov, I. V.; Trushkin, N. I.; Akishev, Yu. S.

    2013-02-01

    Results are presented from experimental studies of decomposition of toluene (C6H5CH3) in a polluted air flow by means of a steady-state atmospheric pressure glow discharge at different water vapor contents in the working gas. The experimental results on the degree of C6H5CH3 removal are compared with the results of computer simulations conducted in the framework of the developed kinetic model of plasma chemical decomposition of toluene in the N2: O2: H2O gas mixture. A substantial influence of the gas flow humidity on toluene decomposition in the atmospheric pressure glow discharge is demonstrated. The main mechanisms of the influence of humidity on C6H5CH3 decomposition are determined. The existence of two stages in the process of toluene removal, which differ in their duration and the intensity of plasma chemical decomposition of C6H5CH3 is established. Based on the results of computer simulations, the composition of the products of plasma chemical reactions at the output of the reactor is analyzed as a function of the specific energy deposition and gas flow humidity. The existence of a catalytic cycle in which hydroxyl radical OH acts a catalyst and which substantially accelerates the recombination of oxygen atoms and suppression of ozone generation when the plasma-forming gas contains water vapor is established.

  14. Ion kinetics and self pulsing in DC microplasma discharges at atmospheric and higher pressure

    Science.gov (United States)

    Mahamud, Rajib; Farouk, Tanvir I.

    2016-04-01

    Atmospheric pressure microplasma devices have been the subject of considerable interest and research during the last decade. Most of the operation regime of the plasma discharges studied fall in the ‘abnormal’, ‘normal’ and ‘corona’ modes—increasing and a ‘flat’ voltage current characteristics. However, the negative differential resistance regime at atmospheric and high pressures has been less studied and possesses unique characteristics that can be employed for novel applications. In this work, the role of ion kinetics especially associated with trace impurities; on the self pulsing behavior has been investigated. Detailed numerical simulations have been conducted with a validated model for a helium-nitrogen feed gas mixture. Different oscillatory modes were observed where the discharge was found to undergo complete or partial relaxation. Trace amount of nitrogen was found to significantly alter the pulsing characteristics. External parameters influencing these self oscillations are also studied and aspects of the ion kinetics on the oscillatory behavior are discussed.

  15. Particle densities of the pulsed dielectric barrier discharges in nitrogen at atmospheric pressure

    International Nuclear Information System (INIS)

    Pulsed dielectric barrier discharges (DBDs) have become a promising solution to generate atmospheric-pressure non-equilibrium plasmas. In this work, a one-dimensional fluid model is carried out to research particle densities of the pulsed nitrogen DBDs at atmospheric pressure. Averaged particle densities, time evolutions of axial distributions of particle densities and influences of discharge gap distance dg on the particle densities are systematically illustrated and discussed. The calculation results show that averaged electron densities are lower than averaged N2+ densities, but higher than other averaged ion densities. Time evolutions of axial distributions of electron, N+ and N2+ densities show two peaks during rising and falling phases of applied voltage when dg is 0.2 cm but present gradual increases during pulse width when dg is 0.6 cm, which are similar to those of N2(a′) and N2(B). Maximums of N3+ densities are close to the momentary cathode under dg of 0.2 cm but locate near the grounded electrode under dg of 0.6 cm, which are alike to those of N2(A) and N2(C). Besides, N4+ densities nearby the momentary anode are higher than those nearby the momentary cathode when dg is 0.2 cm. N(2D) has low averaged particle densities and complex time evolutions compared to N. (paper)

  16. A time-resolved imaging and electrical study on a high current atmospheric pressure spark discharge

    Science.gov (United States)

    Palomares, J. M.; Kohut, A.; Galbács, G.; Engeln, R.; Geretovszky, Zs.

    2015-12-01

    We present a time-resolved imaging and electrical study of an atmospheric pressure spark discharge. The conditions of the present study are those used for nanoparticle generation in spark discharge generator setups. The oscillatory bipolar spark discharge was generated between two identical Cu electrodes in different configurations (cylindrical flat-end or tipped-end geometries, electrode gap from 0.5 to 4 mm), in a controlled co-axial N2 flow, and was supplied by a high voltage capacitor. Imaging data with nanosecond time resolution were collected using an intensified CCD camera. This data were used to study the time evolution of plasma morphology, total light emission intensity, and the rate of plasma expansion. High voltage and high current probes were employed to collect electrical data about the discharge. The electrical data recorded allowed, among others, the calculation of the equivalent resistance and inductance of the circuit, estimations for the energy dissipated in the spark gap. By combining imaging and electrical data, observations could be made about the correlation of the evolution of total emitted light and the dissipated power. It was also observed that the distribution of light emission of the plasma in the spark gap is uneven, as it exhibits a "hot spot" with an oscillating position in the axial direction, in correlation with the high voltage waveform. The initial expansion rate of the cylindrical plasma front was found to be supersonic; thus, the discharge releases a strong shockwave. Finally, the results on equivalent resistance and channel expansion are comparable to those of unipolar arcs. This shows the spark discharge has a similar behavior to the arc regime during the conductive phase and until the current oscillations stop.

  17. Conversion of carbon dioxide to value-added chemicals in atmospheric pressure dielectric barrier discharges

    Energy Technology Data Exchange (ETDEWEB)

    Paulussen, Sabine; Verheyde, Bert [VITO, Vlaamse Instelling voor Technologisch Onderzoek, Materials Technology, Mol (Belgium); Tu Xin; Sels, Bert [Center for Surface Chemistry and Catalysis, Katholieke Universiteit Leuven, Heverlee (Belgium); De Bie, Christophe; Martens, Tom; Petrovic, Dragana; Bogaerts, Annemie, E-mail: sabine.paulussen@vito.b [University of Antwerp, Research Group PLASMANT, Wilrijk (Belgium)

    2010-06-15

    The aim of this work consists of the evaluation of atmospheric pressure dielectric barrier discharges for the conversion of greenhouse gases into useful compounds. Therefore, pure CO{sub 2} feed flows are administered to the discharge zone at varying discharge frequency, power input, gas temperature and feed flow rates, aiming at the formation of CO and O{sub 2}. The discharge obtained in CO{sub 2} is characterized as a filamentary mode with a microdischarge zone in each half cycle of the applied voltage. It is shown that the most important parameter affecting the CO{sub 2}-conversion levels is the gas flow rate. At low flow rates, both the conversion and the CO-yield are significantly higher. In addition, also an increase in the gas temperature and the power input give rise to higher conversion levels, although the effect on the CO-yield is limited. The optimum discharge frequency depends on the power input level and it cannot be unambiguously stated that higher frequencies give rise to increased conversion levels. A maximum CO{sub 2} conversion of 30% is achieved at a flow rate of 0.05 L min{sup -1}, a power density of 14.75 W cm{sup -3} and a frequency of 60 kHz. The most energy efficient conversions are achieved at a flow rate of 0.2 L min{sup -1}, a power density of 11 W cm{sup -3} and a discharge frequency of 30 kHz.

  18. Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the spark regime

    International Nuclear Information System (INIS)

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 1015 cm-3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 1011 cm-3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 108 cm-3.

  19. Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the spark regime

    Energy Technology Data Exchange (ETDEWEB)

    Pai, David Z; Lacoste, Deanna A; Laux, Christophe O [Laboratoire EM2C, CNRS UPR288, Ecole Centrale Paris, 92295 Chatenay-Malabry (France)

    2010-12-15

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N{sub 2} (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 10{sup 15} cm{sup -3} towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 10{sup 11} cm{sup -3} produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 10{sup 8} cm{sup -3}.

  20. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    OpenAIRE

    Pai, David,; Lacoste, Deanna,; Laux, C.

    2010-01-01

    International audience In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determi...

  1. Simulation Tool for Dielectric Barrier Discharge Plasma Actuators at Atmospheric and Sub-Atmospheric Pressures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Traditional approaches for active flow separation control using dielectric barrier discharge (DBD) plasma actuators are limited to relatively low-speed flows and...

  2. Nucleation and aerosol processing in atmospheric pressure electrical discharges: powders production, coatings and filtration

    International Nuclear Information System (INIS)

    This review addresses the production of nano-particles and the processing of particles injected in atmospheric pressure electrical discharges (APED). The mechanisms of formation and the evolution of particles suspended in gases are first presented, with numerical and experimental facilities. Different APED and related properties are then introduced for dc corona, streamer and spark filamentary discharges (FD), as well as for ac filamentary and homogeneous dielectric barrier discharges (DBD). Two mechanisms of particle production are depicted in APED: when FD interact with the surface of electrodes or dielectrics and when filamentary and homogeneous DBD induce reactions with gaseous precursors in volume. In both cases, condensable gaseous species are produced, leading to nano-sized particles by physical and chemical routes of nucleation. The evolution of the so-formed nano-particles, i.e. the growth by coagulation/condensation, the charging and the collection are detailed for each APED, with respect to fine powders production and thin films deposition. Finally, when particles are injected in APED, they undergo interfacial processes. Non-thermal plasmas charge particles for electro-collection and trigger heterogeneous chemical reactions for organic and inorganic films deposition. Heat exchanges in thermal plasmas enable powder purification, shaping, melting for hard coatings and fine powders production by reactive evaporation. (topical review)

  3. TOPICAL REVIEW: Nucleation and aerosol processing in atmospheric pressure electrical discharges: powders production, coatings and filtration

    Science.gov (United States)

    Borra, Jean-Pascal

    2006-01-01

    This review addresses the production of nano-particles and the processing of particles injected in atmospheric pressure electrical discharges (APED). The mechanisms of formation and the evolution of particles suspended in gases are first presented, with numerical and experimental facilities. Different APED and related properties are then introduced for dc corona, streamer and spark filamentary discharges (FD), as well as for ac filamentary and homogeneous dielectric barrier discharges (DBD). Two mechanisms of particle production are depicted in APED: when FD interact with the surface of electrodes or dielectrics and when filamentary and homogeneous DBD induce reactions with gaseous precursors in volume. In both cases, condensable gaseous species are produced, leading to nano-sized particles by physical and chemical routes of nucleation. The evolution of the so-formed nano-particles, i.e. the growth by coagulation/condensation, the charging and the collection are detailed for each APED, with respect to fine powders production and thin films deposition. Finally, when particles are injected in APED, they undergo interfacial processes. Non-thermal plasmas charge particles for electro-collection and trigger heterogeneous chemical reactions for organic and inorganic films deposition. Heat exchanges in thermal plasmas enable powder purification, shaping, melting for hard coatings and fine powders production by reactive evaporation.

  4. Theoretical Study of Plasma Parameters Dependence on Gas Temperature in an Atmospheric Pressure Argon Microwave Discharge

    International Nuclear Information System (INIS)

    The gas temperature is an important parameter in many applications of atmospheric pressure microwave discharges (MW). That is why it is necessary to study the influence of that temperature on the plasma characteristics. Our investigation is based on a self-consistent model including the wave electrodynamics and gas-discharge kinetics. We adopt a blocks' energy structure of the argon excited atom. More specifically, we consider 7 different blocks of states, namely 4s, 4p, 3d, 5s, 5p, 4d, and 6s. Each block k is characterized by its effective energy uk (derived as an average energy of all levels in the block), as well as its effective g-factor and population. The argon dimmer, atomic and molecular ions are also taken into account in the model. We solve the Boltzmann equation in order to get the electron energy distribution function and the necessary rate constants of the elementary processes. The collisional-radiative part of the model is based on 87 processes. As a result we obtain the electron and ions' number densities, mean electron energy, mean power for sustaining an electron--ion pair in the discharge bulk, as well as the population of the excited blocks of states of the argon atom as functions of the gas temperature

  5. Theoretical Study of Plasma Parameters Dependence on Gas Temperature in an Atmospheric Pressure Argon Microwave Discharge

    Science.gov (United States)

    Pencheva, M.; Benova, E.; Zhelyazkov, I.

    2008-03-01

    The gas temperature is an important parameter in many applications of atmospheric pressure microwave discharges (MW). That is why it is necessary to study the influence of that temperature on the plasma characteristics. Our investigation is based on a self-consistent model including the wave electrodynamics and gas-discharge kinetics. We adopt a blocks' energy structure of the argon excited atom. More specifically, we consider 7 different blocks of states, namely 4s, 4p, 3d, 5s, 5p, 4d, and 6s. Each block k is characterized by its effective energy uk (derived as an average energy of all levels in the block), as well as its effective g-factor and population. The argon dimmer, atomic and molecular ions are also taken into account in the model. We solve the Boltzmann equation in order to get the electron energy distribution function and the necessary rate constants of the elementary processes. The collisional-radiative part of the model is based on 87 processes. As a result we obtain the electron and ions' number densities, mean electron energy, mean power for sustaining an electron—ion pair in the discharge bulk, as well as the population of the excited blocks of states of the argon atom as functions of the gas temperature.

  6. Laser-Ionization TOF Mass Spectrometer Characterization of Benzene Destruction in Atmospheric Pressure Pulsed Discharge

    Institute of Scientific and Technical Information of China (English)

    LIU Jiahong; XIAO Qingmei; WANG Liping; YAO Zhi; DING Hongbin

    2009-01-01

    Benzene is.a major industrial air pollutant and can cause serious human health disorders. In this paper an investigation on benzene destruction, in an atmospheric-pressure fast-flow pulsed DC-discharge by means of laser ionization combined with time-of-flight (TOF) mass spectrometry, is reported. Most by-products including transient reactive species from the benzene discharge were characterized by molecular beam sampling combined with TOF mass spectrometry.It is showed that, with a gas mixture of 0.5% C6H6 in Ar, benzene can be effectively destroyed by discharge plasma. The intermediate species consisted of small fragments of CNHm (n=3~5,m =1~11), cycle-chain species of CNHm (n=6~9, m = 7~10) and polycyclic species CNHm (n ≥9,m = 8~12). The alternation of mass peaks (intensity) with even/odd electrons was observed in the measured mass spectra. The results indicated that the alternation is mainly due to the different ionization potentials of the open shell and close shell species. Based on the examination of the features of the species' composition, the primary reaction pathways are proposed and discussed.

  7. A novel Y-type reactor for selective excitation of atmospheric pressure glow discharge plasma

    Science.gov (United States)

    Xia, Guan-Guang; Wang, Jin-Yun; Huang, Aimin; Suib, Steven L.; Hayashi, Yuji; Matsumoto, Hiroshige

    2001-02-01

    A novel Y-type atmospheric pressure ac glow discharge plasma reactor has been designed and tested in CO reduction with hydrogen and the reverse water-gas shift reaction. The reactor consists of a Y-type quartz tube with an angle of 120°-180° between the two long arms, two metal rod electrodes serving as high voltage terminals and two pieces of aluminum foil which were wrapped outside of the quartz tubes as a ground electrode. Different combinations of input power applied on this three- electrode system can lead to selective plasmas on one side, two sides, or can also generate a stable arc between the two high voltage terminal electrodes. The ability to selectively activate different species with this type of apparatus can help to minimize side reactions in plasmas to obtain desirable products. The Y-type reactor may provide a novel means to study fundamental problems regarding radical reactions.

  8. Surface modification for biomedical purposes utilizing dielectric barrier discharges at atmospheric pressure

    International Nuclear Information System (INIS)

    Using dielectric barrier discharges (DBD) at atmospheric pressure, glass or polymer surfaces were equipped with epoxide groups or amino groups by plasma deposition from suitable monomers or - in case of polymers - DBD treatment in nitrogen-containing gases. Functional group densities have been estimated using absorption and fluorescence measurements or by X-ray photoelectron spectroscopy. Amino group densities are comparable or even larger than those of aminosilylated surfaces. Fluorescence-labeled streptavidin has been used to investigate the binding capacity of surfaces equipped with covalently bound biotin molecules, starting either from epoxide or from amino groups. As an example of a Plasma Printing process, the generation of an array amino-functionalized spots, 400-μm in diameter on a polymer surface by local deposition from aminopropyl-trimethoxysilane is demonstrated

  9. Global Model for the Plasma of a Pulsed Microwave Discharge in Nitrogen at Atmospheric Pressure

    International Nuclear Information System (INIS)

    A global numerical model has been formulated for a pulsed microwave discharge plasma in nitrogen at atmospheric pressure. The object modeled is a microwave plasma torch. A two-temperature plasma model is adopted. The most important collisional processes in the nitrogen plasma are only taken into account. The rate coefficients for the processes involving collisions with electrons are calculated based on the solution of the Boltzmann equation for electrons. The Newton-Raphson algorithm for systems of nonlinear algebraic equations is used for determining the initial plasma state corresponding to the continuous component of the power input. Next, the set of differential equations is integrated along the subsequent pulse repetition intervals using an adaptive step size procedure for the Runge-Kutta algorithm. The work is in progress. (author)

  10. Supershort electron beam and voluminous heavy-current air discharge at atmospheric pressure

    International Nuclear Information System (INIS)

    The conditions of the electron beam and voluminous discharge formation in the air at the atmospheric pressure and subnanosecond pulse tension front are studied. It is shown that the electron beam in the gaseous diode originates at the pulse tension front over time of ∼ 0.5 ns and has duration at the semiheight of ≤0.4 ns. The electron beam with the electrons average energy of 60-80 keV and current amplitude of ≥70 A is obtained. It is assumed that the electron beam is formed from the electron avalanches, originating in the gap on the account of the gas ionization by fast electrons at achieving the critical field between the expanding plasma cloud front and anode

  11. Preparation of Copper Nanoparticles Using Dielectric Barrier Discharge at Atmospheric Pressure and its Mechanism

    International Nuclear Information System (INIS)

    Dielectric barrier discharge (DBD) cold plasma at atmospheric pressure was used for preparation of copper nanoparticles by reduction of copper oxide (CuO). Power X-ray diffraction (XRD) was used to characterize the structure of the copper oxide samples treated by DBD plasma. Influences of H2 content and the treating time on the reduction of copper oxide by DBD plasma were investigated. The results show that the reduction ratio of copper oxide was increased initially and then decreased with increasing H2 content, and the highest reduction ratio was achieved at 20% H2 content. Moreover, the copper oxide samples were gradually reduced by DBD plasma into copper nanoparticles with the increase in treating time. However, the average reduction rate was decreased as a result of the diffusion of the active hydrogen species. Optical emission spectra (OES) were observed during the reduction of the copper oxide samples by DBD plasma, and the reduction mechanism was explored accordingly. Instead of high-energy electrons, atomic hydrogen (H) radicals, and the heating effect, excited-state hydrogen molecules are suspected to be one kind of important reducing agents. Atmospheric-pressure DBD cold plasma is proved to be an efficient method for preparing copper nanoparticles. (plasma technology)

  12. Collisional-radiative model of helium microwave discharges at atmospheric pressure

    Science.gov (United States)

    Santos, M.; Alves, L. L.; Gadonna, K.; Belmonte, T.

    2011-10-01

    This paper presents a stationary collisional-radiative model to describe the behavior of helium microwave discharges (2.45 GHz), produced in cylindrical geometry (1 mm radius) at atmospheric pressure. The model couples the rate balance equations for the charged particles (electrons, He+ and He2+ions), the He(n Townsend ionization coefficient. The model was solved for typical 5x1014 cm-3 electron density and 2500 K gas temperature, yielding [He2+]/[He+] ~ 0.92 and [He2*]/[He] ~ 3.4x10-8. Results show also that the He2+ions are produced mainly from the 3-body conversion of He+ ions and lost by the corresponding reverse reaction together with diffusion and dissociative recombination. The He2*is produced by a 3-body reaction involving the 23P states and by the electron-stabilized recombination of He2+and is lost by electron dissociation. This paper presents a stationary collisional-radiative model to describe the behavior of helium microwave discharges (2.45 GHz), produced in cylindrical geometry (1 mm radius) at atmospheric pressure. The model couples the rate balance equations for the charged particles (electrons, He+ and He2+ions), the He(n Townsend ionization coefficient. The model was solved for typical 5x1014 cm-3 electron density and 2500 K gas temperature, yielding [He2+]/[He+] ~ 0.92 and [He2*]/[He] ~ 3.4x10-8. Results show also that the He2+ions are produced mainly from the 3-body conversion of He+ ions and lost by the corresponding reverse reaction together with diffusion and dissociative recombination. The He2*is produced by a 3-body reaction involving the 23P states and by the electron-stabilized recombination of He2+and is lost by electron dissociation. Work supported by FCT-MCTES under PTDC/FIS/65924/2006.

  13. Collision-induced dissociation analysis of negative atmospheric ion adducts in atmospheric pressure corona discharge ionization mass spectrometry.

    Science.gov (United States)

    Sekimoto, Kanako; Takayama, Mitsuo

    2013-05-01

    Collision-induced dissociation (CID) experiments were performed on atmospheric ion adducts [M + R](-) formed between various types of organic compounds M and atmospheric negative ions R(-) [such as O2(-), HCO3(-), COO(-)(COOH), NO2(-), NO3(-), and NO3(-)(HNO3)] in negative-ion mode atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. All of the [M + R](-) adducts were fragmented to form deprotonated analytes [M - H](-) and/or atmospheric ions R(-), whose intensities in the CID spectra were dependent on the proton affinities of the [M - H](-) and R(-) fragments. Precursor ions [M + R](-) for which R(-) have higher proton affinities than [M - H](-) formed [M - H](-) as the dominant product. Furthermore, the CID of the adducts with HCO3(-) and NO3(-)(HNO3) led to other product ions such as [M + HO](-) and NO3(-), respectively. The fragmentation behavior of [M + R](-) for each R(-) observed was independent of analyte type (e.g., whether the analyte was aliphatic or aromatic, or possessed certain functional groups). PMID:23479312

  14. Simulation study of one-dimensional self-organized pattern in an atmospheric-pressure dielectric barrier discharge

    International Nuclear Information System (INIS)

    A two-dimensional fluid model is developed to simulate the one-dimensional self-organized patterns in an atmospheric-pressure dielectric barrier discharge (DBD) driven by sinusoidal voltage in argon. Under certain conditions, by changing applied voltage amplitude, the transversely uniform discharge can evolve into the patterned discharge and the varied self-organized patterned discharges with different numbers and arrangements of discharge channels can be observed. Similar to the uniform atmospheric-pressure DBD, the patterned discharge mode is found to undergo a transition from Townsend regime, sub-glow regime to glow regime with increasing applied voltage amplitude. In the different regimes, charged particles and electric field display different dynamical behaviors. If the voltage amplitude is increased over a certain value, the discharge enters an asymmetric patterned discharge mode, and then transforms into the spatially chaotic state with out-of-order discharge channels. The reason for forming the one-dimensional self-organized pattern is mainly due to the so-called activation-inhibition effect resulting from the local high electron density region appearing in discharge space. Electrode arrangement is the reason that induces local high electron density

  15. Low-temperature hydrogenation of diamond nanoparticles using diffuse coplanar surface barrier discharge at atmospheric pressure

    Czech Academy of Sciences Publication Activity Database

    Kromka, Alexander; Čech, J.; Kozak, Halyna; Artemenko, Anna; Ižák, Tibor; Čermák, Jan; Rezek, Bohuslav; Černák, M.

    2015-01-01

    Roč. 252, č. 11 (2015), s. 2602-2607. ISSN 0370-1972 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : atmospheric plasma * diamond nanoparticles * diffuse coplanar surface barrier discharge * FTIR * XPS Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.489, year: 2014

  16. Discoloration of Congo Red by Rod-Plate Dielectric Barrier Discharge Processes at Atmospheric Pressure

    Science.gov (United States)

    Wu, Haixia; Fang, Zhi; Zhou, Tong; Lu, Chen; Xu, Yanhua

    2016-05-01

    A dielectric barrier discharge (DBD) reactor with a rod-plate electrode configuration was used for the oxidative decomposition of Congo red dye in an aqueous solution. Plasma was generated in the gas space above the water interface under atmospheric pressure. Discharge characteristics were analyzed by voltage-current waveforms. Effects of applied voltage, initial conductivity, and initial concentration were also analyzed. Congo red discoloration increased with increased applied voltage and decreased conductivity. The initial conductivity significantly influenced the Congo red discoloration. Under the same conditions, the highest discoloration rate was obtained at 25 mg/L. The presence of ferrous ions in the solutions had a substantial positive effect on Fenton dye degradation and flocculation. At an applied voltage of 20 kV, about 100% of dye was degraded after 4 min of Fe2+/DBD treatment. Results showed that adding a certain dosage of hydrogen peroxide to the wastewater could enhance the discoloration rate. Possible pathways of Congo red discoloration by DBD plasma were proposed based on GC/MS, FTIR, and UV-vis spectroscopy analyses. supported by National Natural Science Foundation of China (No. 51377075), the Natural Science Foundation of Jiangsu Province of China (Nos. BK20131412, BK20150951)

  17. Deposition of hard thin films from HMDSO in atmospheric pressure dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Trunec, D; Zajickova, L; BursIkova, V; Studnicka, F; Stahel, P; Prysiazhnyi, V; Navratil, Z; Franta, D [Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Perina, V [Institute of Nuclear Physics, Academy of Sciences of the Czech Republic, 250 68 Rez (Czech Republic); Houdkova, J, E-mail: trunec@physics.muni.c [Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 162 53 Prague (Czech Republic)

    2010-06-09

    An atmospheric pressure dielectric barrier discharge burning in nitrogen with a small admixture of hexamethyldisiloxane (HMDSO) was used for the deposition of thin organosilicon films. The thin films were deposited on glass, silicon and polycarbonate substrates, and the substrate temperature during the deposition process was increased up to values within the range 25-150 {sup 0}C in order to obtain hard SiO{sub x}-like thin films. The properties of the discharge were studied by means of optical emission spectroscopy and electrical measurements. The deposited films were characterized by the Rutherford backscattering and elastic recoil detection methods, x-ray photoelectron spectroscopy, infrared spectroscopy measurements, ellipsometry and the depth sensing indentation technique. It was found that the films' properties depend significantly on the substrate temperature at deposition. An increase in substrate temperature from 25 to 150 {sup 0}C led to an increase in film hardness from 0.4 to 7 GPa and the film chemical composition changed from CH{sub x}Si{sub y}O{sub z} to SiO{sub x}H{sub y}. The films were transparent in the visible range.

  18. Polymer Surface Treatment by Atmospheric Pressure Low Temperature Surface Discharge Plasma:Its Characteristics and Comparison with Low Pressure Oxygen Plasma Treatment

    Institute of Scientific and Technical Information of China (English)

    Atsushi KUWABARA; Shin-ichi KURODA; Hitoshi KUBOTA

    2007-01-01

    The polymer treatment with a low-temperature plasma jet generated on the atmospheric pressure surface discharge (SD) plasma is performed.The change of the surface property over time,in comparison with low pressure oxygen (O2) plasma treatment,is examined.As one compares the treatment by atmospheric pressure plasma to that by the low pressure O2 plasma of PS (polystyrene) the treatment effects were almost in complete agreement.However,when the atmospheric pressure plasma was used for PP(polypropylene),it produced remarkable hydrophilic effects.

  19. DC negative corona discharge in atmospheric pressure helium: transition from the corona to the ‘normal’ glow regime

    Science.gov (United States)

    Hasan, Nusair; Antao, Dion S.; Farouk, Bakhtier

    2014-06-01

    Direct current (dc) negative corona discharges in atmospheric pressure helium are simulated via detailed numerical modeling. Simulations are conducted to characterize the discharges in atmospheric helium for a pin plate electrode configuration. A self-consistent two-dimensional hybrid model is developed to simulate the discharges and the model predictions are validated with experimental measurements. The discharge model considered consists of momentum and energy conservation equations for a multi-component (electrons, ions, excited species and neutrals) gas mixture, conservation equations for each component of the mixture and state relations. A drift-diffusion approximation for the electron and the ion fluxes is used. A model for the external circuit driving the discharge is also considered and solved along with the discharge model. Many of the key features of a negative corona discharge, namely non-linear current-voltage characteristics, spatially flat cathode current density and glow-like discharge in the high current regime are displayed in the predictions. A transition to the ‘normal’ glow discharge from the corona discharge regime is also observed. The transition is identified from the calculated current-voltage characteristic curve and is characterized by the radial growth of the negative glow and the engulfment of the cathode wire.

  20. DC negative corona discharge in atmospheric pressure helium: transition from the corona to the ‘normal’ glow regime

    International Nuclear Information System (INIS)

    Direct current (dc) negative corona discharges in atmospheric pressure helium are simulated via detailed numerical modeling. Simulations are conducted to characterize the discharges in atmospheric helium for a pin plate electrode configuration. A self-consistent two-dimensional hybrid model is developed to simulate the discharges and the model predictions are validated with experimental measurements. The discharge model considered consists of momentum and energy conservation equations for a multi-component (electrons, ions, excited species and neutrals) gas mixture, conservation equations for each component of the mixture and state relations. A drift–diffusion approximation for the electron and the ion fluxes is used. A model for the external circuit driving the discharge is also considered and solved along with the discharge model. Many of the key features of a negative corona discharge, namely non-linear current–voltage characteristics, spatially flat cathode current density and glow-like discharge in the high current regime are displayed in the predictions. A transition to the ‘normal’ glow discharge from the corona discharge regime is also observed. The transition is identified from the calculated current–voltage characteristic curve and is characterized by the radial growth of the negative glow and the engulfment of the cathode wire. (paper)

  1. Numerical simulation of evolution features of the atmospheric-pressure CF4 plasma generated by the pulsed dielectric barrier discharge

    Science.gov (United States)

    Pan, Jie; Li, Li; Chen, Bo; Song, Yuzhi; Zhao, Yuefeng; Xiu, Xianwu

    2016-06-01

    The atmospheric-pressure CF4 plasma has the high application potential in the field of semiconductor fabrication since it can combine the excellent capability for the CF4 plasma etching with the easy atmospheric-pressure operation. In this work, the fluid model has been carried out to numerically research evolution features of the atmospheric-pressure CF4 plasma generated by the pulsed dielectric barrier discharge. The computational results show that the averaged electron temperature dramatically increases during the rising and the falling phases of the applied voltage pulse, and then swiftly decreases. The discharge current density has the waveform of two bipolar short pulses. The electrons and CF3 + ions form the cathode sheath at the discharge duration. However, the CF3 - and F- negative ions take the place of the electrons to sustain the cathode sheath of the CF4 discharge plasma at the time interval between the two bipolar discharge pulses. During the time interval of the two adjacent applied voltage pulses the discharge region is the quasi-neutral plasma region, and meanwhile CF2 + and CF3 - are the dominated charged species. Moreover, F and CF3 maintain the relatively stable high densities and uniform axial distributions during the whole period of the applied voltage.

  2. Dynamic model of streamer coupling for the homogeneity of glowlike dielectric barrier discharges at near-atmospheric pressure.

    Science.gov (United States)

    Li, Qing; Pu, Yi-Kang; Lieberman, Michael A; Economou, Demetre J

    2011-04-01

    A streamer coupling theory is developed to describe the formation of homogenous emission and the high propagation speed of emission patterns in near-atmospheric pressure discharges. By considering the effects of both electron diffusion and electronic drift in the streamer head, the minimum required preionization level n(min) for the formation of streamer coupling is found to be dependent on electric field strength, gas pressure, and electron temperature. The final stage of discharge is a microdischarge, when the preionization level n(0) is smaller than n(min). However, when n(0) is larger than n(min), streamers can couple to each other and form a glowlike discharge, and the homogeneity and propagation speed of the emission pattern in the streamer coupling head increases with the preionization level. The streamer coupling model can also be possibly used to explain many phenomenon in near-atmospheric pressure discharges, such as the bulletlike luminous discharge when atmospheric pressure plasma jets eject into ambient air. PMID:21599314

  3. Diagnostics and modelling of noble gas atmospheric pressure dielectric barrier discharges in homogeneous or diverging electric fields

    International Nuclear Information System (INIS)

    We present experimental results of 'atmospheric pressure glow discharges' in two different electrode configurations, plane-plane and cylinder-plane. Although many of the phenomena we report here have been observed in different noble gases, we restrict this presentation primarily to the case of helium. Discharge diagnostics have been carried out using ultra-high speed imaging, and synchronous detection of light emission and current-voltage measurements, the former using a photomultiplier. The discharge physics is discussed with reference to recent work reported by the present authors and others

  4. Thermal and hydrodynamic effects of nanosecond discharges in atmospheric pressure air

    International Nuclear Information System (INIS)

    We present quantitative schlieren measurements and numerical analyses of the thermal and hydrodynamic effects of a nanosecond repetitively pulsed (NRP) discharge in atmospheric pressure air at 300 and 1000 K. The plasma is created by voltage pulses at an amplitude of 10 kV and a duration of 10 ns, applied at a frequency of 1–10 kHz between two pin electrodes separated by 2 or 4 mm. The electrical energy of each pulse is of the order of 1 mJ. We recorded single-shot schlieren images starting from 50 ns to 3 µs after the discharge. The time-resolved images show the shock-wave propagation and the expansion of the heated gas channel. Gas density profiles simulated in 1D cylindrical coordinates have been used to reconstruct numerical schlieren images for comparison with experimental ones. We propose an original method to determine the initial gas temperature and the fraction of energy transferred into ultrafast gas heating, using a comparison of the contrast profiles obtained from experimental and numerical schlieren images. This method is found to be much more sensitive to these parameters than the direct comparison of measured and predicted shock-wave and heated channel radii. The results show that a significant fraction of the electric energy is converted into gas heating within a few tens of ns. The values range from about 25% at a reduced electric field of 164 Td to about 75% at 270 Td, with a strong dependance on the initial gas temperature. These experiments support the fast heating processes via dissociative quenching of N2(B3 Πg, C3 Πu) by molecular oxygen. (paper)

  5. Surface modification of acrylate intraocular lenses with dielectric barrier discharge plasma at atmospheric pressure

    Institute of Scientific and Technical Information of China (English)

    WANG Yao; LIU ZhenMei; XU ZhiKang; YAO Ke

    2009-01-01

    Surface modification with dielectric barrier discharge (DBD) plasma was carried out at atmospheric pressure (argon as the discharge gas) to improve the biocompatibility of hydrophobic acrylate intraocular lens (IOL). Changes of the plasma-treated IOL surface in chemical composition,morphology and hydrophilicity were comprehensively evaluated by X-ray photoelectron spectroscopy (XPS),field emission scanning electron microscopy (FESEM),atomic force microscopy (AFM) and water contact angle (WCA) measurements. The surface biocompatibility of the untreated and plasma-treated IOLs was compared with the adhesion behavior of platelets,macrophages and lens epithelial cells (LECs) in vitro. After DBD plasma treatment,the hydrophilicity of the IOL surface was obviously improved. The changes in WCA with treatment extension may be attributed to both the introduction of oxygen or/and nitrogen-containing polar groups and the increase of surface roughness induced by plasma etching effect. The existence of low molecular weight oxidized material (LMWOM) was proved on the plasma treated IOL which was caused by the chain scission effect of the plasma treatment. The plasma-treated lOLs resisted the adhesion of platelets and macrophages significantly. The LECs spreading and proliferation were postponed on the lOLs plasma-treated for more than 180 s,with a well maintained epithelial phenotype of LECs. The IOL biocompatibility was improved after the DBD plasma treatment. We speculate that slighter foreign-body reaction and later incidence of anterior capsule opacification (ACO) may be expected after implantation of the argon DBD plasma-treated IOL.

  6. Surface modification of acrylate intraocular lenses with dielectric barrier discharge plasma at atmospheric pressure

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Surface modification with dielectric barrier discharge(DBD) plasma was carried out at atmospheric pressure(argon as the discharge gas) to improve the biocompatibility of hydrophobic acrylate intraocular lens(IOL).Changes of the plasma-treated IOL surface in chemical composition,morphology and hydrophilicity were comprehensively evaluated by X-ray photoelectron spectroscopy(XPS),field emission scanning electron microscopy(FESEM),atomic force microscopy(AFM) and water contact angle(WCA) measurements.The surface biocompatibility of the untreated and plasma-treated IOLs was compared with the adhesion behavior of platelets,macrophages and lens epithelial cells(LECs) in vitro.After DBD plasma treatment,the hydrophilicity of the IOL surface was obviously improved.The changes in WCA with treatment extension may be attributed to both the introduction of oxygen or/and nitrogen-containing polar groups and the increase of surface roughness induced by plasma etching effect.The existence of low molecular weight oxidized material(LMWOM) was proved on the plasma-treated IOL which was caused by the chain scission effect of the plasma treatment.The plasma-treated IOLs resisted the adhesion of platelets and macrophages significantly.The LECs spreading and proliferation were postponed on the IOLs plasma-treated for more than 180 s,with a well maintained epithelial phenotype of LECs.The IOL biocompatibility was improved after the DBD plasma treatment.We speculate that slighter foreign-body reaction and later incidence of anterior capsule opacification(ACO) may be expected after implantation of the argon DBD plasma-treated IOL.

  7. A passive measurement of dissociated atom densities in atmospheric pressure air discharge plasmas using vacuum ultraviolet self-absorption spectroscopy

    International Nuclear Information System (INIS)

    We demonstrate a method for determining the dissociation degree of atmospheric pressure air discharges by measuring the self-absorption characteristics of vacuum ultraviolet radiation from O and N atoms in the plasma. The atom densities are determined by modeling the amount of radiation trapping present in the discharge, without the use of typical optical absorption diagnostic techniques which require external sources of probing radiation into the experiment. For an 8.0 mm spark discharge between needle electrodes at atmospheric pressure, typical peak O atom densities of 8.5 × 1017 cm−3 and peak N atom densities of 9.9 × 1017 cm−3 are observed within the first ∼1.0 mm of plasma near the anode tip by analyzing the OI and NI transitions in the 130.0–132.0 nm band of the vacuum ultraviolet spectrum

  8. Surface modification of polyimide (PI) film using water cathode atmospheric pressure glow discharge plasma

    Science.gov (United States)

    Zheng, Peichao; Liu, Keming; Wang, Jinmei; Dai, Yu; Yu, Bin; Zhou, Xianju; Hao, Honggang; Luo, Yuan

    2012-10-01

    The industrial use of polyimide film is limited because of undesirable properties such as poor wettability. In the present paper, a new kind of equipment called water cathode atmospheric pressure glow discharge was used to improve the surface properties of polyimide films and made them useful to technical applications. The changes in hydrophilicity of modified polyimide film surfaces were investigated by contact angle, surface energy and water content measurements as a function of treatment time. The results obtained show good treatment homogeneity and that the variation trends of contact angles are different for polar and non-polar testing liquids, while surface energy and water content are significantly enhanced with the increase of treatment time until they achieve saturated values after 60 s plasma treatment. Also, the thickness of liquid layer plays an important role in plasma processing and directly affects the treatment effect. Changes in morphology of polyimide films were analyzed by atomic force microscope and the results indicate that surface hydrophilicity after plasma treatment are improved partly due to the increase in the roughness. In addition, polyimide films treated by plasma are subjected to an ageing process to determine the durability of plasma treatment. It is found that the hydrophilicity is still better than untreated ones though the hydrophobic character partly recovers after long-term storage in ambient air.

  9. Electric field development in γ-mode radiofrequency atmospheric pressure glow discharge in helium

    Science.gov (United States)

    Navrátil, Zdeněk; Josepson, Raavo; Cvetanović, Nikola; Obradović, Bratislav; Dvořák, Pavel

    2016-06-01

    Time development of electric field strength during radio-frequency sheath formation was measured using Stark polarization spectroscopy in a helium γ-mode radio-frequency (RF, 13.56 MHz) atmospheric pressure glow discharge at high current density (3 A cm-2). A method of time-correlated single photon counting was applied to record the temporal development of spectral profile of He I 492.2 nm line with a sub-nanosecond temporal resolution. By fitting the measured profile of the line with a combination of pseudo-Voigt profiles for forbidden (2 1P-4 1F) and allowed (2 1P-4 1D) helium lines, instantaneous electric fields up to 32 kV cm-1 were measured in the RF sheath. The measured electric field is in agreement with the spatially averaged value of 40 kV cm-1 estimated from homogeneous charge density RF sheath model. The observed rectangular waveform of the electric field time development is attributed to increased sheath conductivity by the strong electron avalanches occurring in the γ-mode sheath at high current densities.

  10. Numerical study of the anode boundary layer in atmospheric pressure arc discharges

    Science.gov (United States)

    Semenov, I. L.; Krivtsun, I. V.; Reisgen, U.

    2016-03-01

    The anode boundary layer in atmospheric pressure arc discharges is studied numerically on the basis of the hydrodynamic (diffusion) equations for plasma components. The governing equations are formulated in a unified manner without the assumptions of thermal equilibrium, ionization equilibrium or quasi-neutrality. For comparison, a quasi-neutral model of the anode layer is also considered. The numerical computations are performed for an argon arc at typical values of the current density in anode layers (500-2000 A cm-2). The results of numerical modelling show that the common collisionless model of the sheath fails to describe the sheath region for the problem under consideration. For this reason, a detailed analysis of the anode sheath is performed using the results of unified modelling. In addition, the distributions of plasma parameters in the anode layer are analysed and the basic characteristics of the layer (anode voltage drop, sheath voltage drop, anode layer thickness, sheath thickness, heat flux to the anode) are calculated. Our results are found to be in good agreement with the existing theoretical predictions and experimental data. The dependence of the anode layer characteristics on the current density is also discussed.

  11. Surface diffuse discharge mechanism of well-aligned atmospheric pressure microplasma arrays

    Science.gov (United States)

    Ren-Wu, Zhou; Ru-Sen, Zhou; Jin-Xing, Zhuang; Jiang-Wei, Li; Mao-Dong, Chen; Xian-Hui, Zhang; Dong-Ping, Liu; Kostya (Ken, Ostrikov; Si-Ze, Yang

    2016-04-01

    A stable and homogeneous well-aligned air microplasma device for application at atmospheric pressure is designed and its electrical and optical characteristics are investigated. Current-voltage measurements and intensified charge coupled device (ICCD) images show that the well-aligned air microplasma device is able to generate a large-area and homogeneous discharge at the applied voltages ranging from 12 kV to 14 kV, with a repetition frequency of 5 kHz, which is attributed to the diffusion effect of plasma on dielectric surface. Moreover, this well-aligned microplasma device may result in the uniform and large-area surface modification of heat-sensitive PET polymers without damage, such as optimization in hydrophobicity and biocompatibility. In the biomedical field, the utility of this well-aligned microplasma device is further testified. It proves to be very efficient for the large-area and uniform inactivation of E. coli cells with a density of 103/cm2 on LB agar plate culture medium, and inactivation efficiency can reach up to 99% for 2-min treatment. Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2014J01025), the National Natural Science Foundation of China (Grant No. 11275261), the Natural Science Foundation of Guangdong Province, China (Grant No. 2015A030313005), and the Fund from the Fujian Provincial Key Laboratory for Plasma and Magnetic Resonance, China.

  12. CFC-11 destruction by microwave torch generated atmospheric-pressure nitrogen discharge

    Energy Technology Data Exchange (ETDEWEB)

    Jasinski, Mariusz; Mizeraczyk, Jerzy; Zakrzewski, Zenon [Centre for Plasma and Laser Engineering, Institute of Fluid Flow Machinery, Polish Academy of Sciences, Gdansk (Poland); Ohkubo, Toshikazu [Department of Electrical and Electronic Engineering, Oita University, Oita (Japan); Chang Jenshih [Department of Engineering Physics, McMaster University, Hamilton, ON (Canada)

    2002-09-21

    A novel plasma method and its application for destruction of Freons using a moderate-power (several hundred watts) microwave torch discharge (MTD) in atmospheric-pressure flowing nitrogen are presented. The capability of the MTD to decompose Freons is demonstrated using a chlorofluorocarbon CCl{sub 3}F (Freon CFC-11) as an example. The gas flow rate and microwave power (2.45 GHz) delivered to the MTD were 1-3 litre min{sup -1} and 200-400 W, respectively. Concentration of the CFC-11 in the nitrogen was up to 50%. The results show that the decomposition efficiency of CFC-11 is up to 100% with the removal rate of several hundred g h{sup -1} and energy efficiency of about 1 kg kWh{sup -1}. This impressive performance, superior to that of other methods, is achieved without generating any significant unwanted by-products. As a result of this investigation, a relatively low-cost prototype system for Freon destruction based on a moderate-power MTD and a scrubber is proposed. (author)

  13. Application of diffuse discharges of atmospheric pressure formed by runaway electrons for modification of copper and stainless steel surface

    Energy Technology Data Exchange (ETDEWEB)

    Tarasenko, V. F., E-mail: VFT@loi.hcei.tsc.ru; Shulepov, M. A.; Erofeev, M. V. [Russian Academy of Sciences, Institute of High Current Electronics, Siberian Branch (Russian Federation)

    2015-12-15

    The results of studies devoted to the influence of a runaway electron pre-ionized diffuse discharge (REP DD) formed in air and nitrogen at atmospheric pressure on the surface of copper and stainless steel are presented. Nanosecond high-voltage pulses were used to obtain REP DD in different gases at high pressures in a chamber with a flat anode and a cathode possessing a small radius of curvature. This mode of discharge was implemented owing to the generation of runaway electrons and X-rays. The conditions under which the surface of copper and stainless steel was cleaned from carbon and oxidized are described.

  14. Asymmetric surface dielectric barrier discharge in air at atmospheric pressure: electrical properties and induced airflow characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Pons, Jerome; Moreau, Eric; Touchard, Gerard [LEA, University of Poitiers/CNRS/ENSMA, Bd. Curie, Teleport 2, BP 30179, 86962 Futuroscope Cedex (France)

    2005-10-07

    The electrical properties of an asymmetric surface dielectric barrier discharge in atmospheric air have been investigated experimentally. The discharge is used for airflow production close to the dielectric surface, and the time-averaged flow velocity spatial profiles have been measured. Velocities of up to 3.5 m s{sup -1} at heights of 1-2 mm are reached when filamentary discharges with current peaks up to 20 mA are produced along the surface. In terms of powers, mechanical powers (output) of a few milliwatts are obtained for electrical powers (input) up to 10 W. Variation laws or behaviour with several discharge parameters (applied voltage waveform, distance between electrodes, dielectric thickness and permittivity) have been experimentally determined.

  15. Influence of the external electrical circuit on the regimes of a nanosecond repetitively pulsed discharge in air at atmospheric pressure

    International Nuclear Information System (INIS)

    This paper presents 2D simulations of nanosecond repetitively pulsed discharges in air at atmospheric pressure coupled with a model of the external electrical circuit used in experiments. Then, during the pulsed discharge, the voltage applied to the electrodes varies in time as a function of the time dependent value of the plasma channel conductivity. In this work, we have simulated several consecutive nanosecond pulsed discharges between two point electrodes in air initially at 1000 K at a frequency of 10 kHz. First, we have simulated three consecutive nanosecond spark discharges. We have shown that the air temperature increases significantly pulse after pulse in the discharge channel. As a consequence, for the three consecutive simulated nanosecond spark discharges, we have put forward a decrease in the discharge radius, pulse after pulse. Then, to further limit the discharge current, a ballast resistance R has been added into the electrical circuit and the results are presented for seven consecutive nanosecond discharges. For a value of R = 1000 Ω in the conditions studied in this work, we have shown that the first nanosecond discharges are in the glow regime, with a small gas heating per pulse. However, as the number of pulses increases due to the gas heating by each pulse, the discharge may transit to a multipulse nanosecond spark regime. For a higher value of R = 10 000 Ω, we have put forward that the gas heating by each nanosecond discharge becomes negligible and then the multipulse nanosecond discharge remains in this case in a stable ‘quasi-periodic’ multipulse glow regime. (paper)

  16. On the physical processes ruling an atmospheric pressure air glow discharge operating in an intermediate current regime

    International Nuclear Information System (INIS)

    Low-frequency (100 Hz), intermediate-current (50 to 200 mA) glow discharges were experimentally investigated in atmospheric pressure air between blunt copper electrodes. Voltage–current characteristics and images of the discharge for different inter-electrode distances are reported. A cathode-fall voltage close to 360 V and a current density at the cathode surface of about 11 A/cm2, both independent of the discharge current, were found. The visible emissive structure of the discharge resembles to that of a typical low-pressure glow, thus suggesting a glow-like electric field distribution in the discharge. A kinetic model for the discharge ionization processes is also presented with the aim of identifying the main physical processes ruling the discharge behavior. The numerical results indicate the presence of a non-equilibrium plasma with rather high gas temperature (above 4000 K) leading to the production of components such as NO, O, and N which are usually absent in low-current glows. Hence, the ionization by electron-impact is replaced by associative ionization, which is independent of the reduced electric field. This leads to a negative current-voltage characteristic curve, in spite of the glow-like features of the discharge. On the other hand, several estimations show that the discharge seems to be stabilized by heat conduction; being thermally stable due to its reduced size. All the quoted results indicate that although this discharge regime might be considered to be close to an arc, it is still a glow discharge as demonstrated by its overall properties, supported also by the presence of thermal non-equilibrium

  17. On the physical processes ruling an atmospheric pressure air glow discharge operating in an intermediate current regime

    Energy Technology Data Exchange (ETDEWEB)

    Prevosto, L., E-mail: prevosto@waycom.com.ar; Mancinelli, B.; Chamorro, J. C.; Cejas, E. [Grupo de Descargas Eléctricas, Departamento Ing. Electromecánica, Facultad Regional Venado Tuerto (UTN), Laprida 651, Venado Tuerto (2600), Santa Fe (Argentina); Kelly, H. [Grupo de Descargas Eléctricas, Departamento Ing. Electromecánica, Facultad Regional Venado Tuerto (UTN), Laprida 651, Venado Tuerto (2600), Santa Fe (Argentina); Instituto de Física del Plasma (CONICET), Facultad de Ciencias Exactas y Naturales (UBA) Ciudad Universitaria Pab. I, 1428, Buenos Aires (Argentina)

    2015-02-15

    Low-frequency (100 Hz), intermediate-current (50 to 200 mA) glow discharges were experimentally investigated in atmospheric pressure air between blunt copper electrodes. Voltage–current characteristics and images of the discharge for different inter-electrode distances are reported. A cathode-fall voltage close to 360 V and a current density at the cathode surface of about 11 A/cm{sup 2}, both independent of the discharge current, were found. The visible emissive structure of the discharge resembles to that of a typical low-pressure glow, thus suggesting a glow-like electric field distribution in the discharge. A kinetic model for the discharge ionization processes is also presented with the aim of identifying the main physical processes ruling the discharge behavior. The numerical results indicate the presence of a non-equilibrium plasma with rather high gas temperature (above 4000 K) leading to the production of components such as NO, O, and N which are usually absent in low-current glows. Hence, the ionization by electron-impact is replaced by associative ionization, which is independent of the reduced electric field. This leads to a negative current-voltage characteristic curve, in spite of the glow-like features of the discharge. On the other hand, several estimations show that the discharge seems to be stabilized by heat conduction; being thermally stable due to its reduced size. All the quoted results indicate that although this discharge regime might be considered to be close to an arc, it is still a glow discharge as demonstrated by its overall properties, supported also by the presence of thermal non-equilibrium.

  18. Restraint Effect of Filaments on Applied Voltage in Atmospheric Pressure Glow Discharge

    International Nuclear Information System (INIS)

    In this study, argon and nitrogen were used as the discharge gases in radio-frequency (RF: 13.56 MHz) powered dielectric barrier atmospheric plasma. It was noticed that in single dielectric barrier discharge (DBD) with nitrogen as the discharge gas, or in argon plasma with a high applied power, micro-filament channels were easily formed. The channels in these two kinds of discharge were both constrictive on the bare metallic electrode and expansive on the opposite electrode covered with a quartz layer. The number of micro-channels was increased along with the input power, which caused the change in the I-V curve shape, i.e., the current kept increasing and the voltage fluctuated within a confined range. With double dielectric layers, however, no micro-channels appeared in the ICCD images, and the I-V curve demonstrated a totally different shape. It was assumed that micro-filaments exhibited a restraining effect on the discharge voltage. The mechanism of this restraining effect was explored in this work.

  19. Online diagnosis of electron excitation temperature in CH4+H2 discharge plasma at atmospheric pressure by optical emission spectra

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Methane coupling under low temperature plasmas at atmospheric pressure is a green process by use of renewable sources of energy. In this study, CH4+H2 dis- charge plasma was on-line diagnosed by optical emission spectra so as to char- acterize the discharge system and to do spade work for the optimization of the technical parameters for future commercial production of methane coupling under plasmas. The study was focused on a calculation method for the online diagnosis of the electron excitation temperature in CH4+H2 discharge plasma at atmospheric pressure. The diagnostic method is easy, efficient and fairly precise. A serious er- ror in a literature was corrected during the reasoning of its series of equations formerly used to calculate electron temperatures in plasmas.

  20. Electrical Characteristics of Dielectric-Barrier Discharges in Atmospheric Pressure Air Using a Power-Frequency Voltage Source

    International Nuclear Information System (INIS)

    Dielectric-barrier discharges (DBDs) in atmospheric pressure air have been studied by using a power-frequency voltage source. In this paper the electrical characteristics of DBDs using glass and alumina dielectrics have been investigated experimentally. According to the Lissajous figures of voltage-charges, it is discovered that the discharge power for an alumina dielectric is much higher than that for a glass dielectric at the same applied voltage. Also, the voltage-current curves of the glass and alumina dielectrics confirm the fact that the dielectric barriers behave like semiconducting materials at certain applied voltages. (low temperature plasma)

  1. Development of an atmospheric-pressure homogeneous and cold Ar/O2 plasma source operating in glow discharge

    International Nuclear Information System (INIS)

    An atmospheric-pressure Ar/O2 glow discharge is generated in a parallel bare metal plate reactor with a radio-frequency power supply by introducing a dielectric strip in the inlet of the gas flow. The role of the dielectric strip is discussed experimentally. The allowable oxygen-to-argon ratio reaches 1.0 vol % and the generated Ar/O2 plasma discharge is characterized by a low gas temperature and good spatial homogeneity, implying its feasible application as a type of material treatment for a large-area surface, as illustrated experimentally by the ashing of carbon black.

  2. Spatial-Temporal Patterns in a Dielectric Barrier Discharge under Narrow Boundary Conditions in Argon at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    LI Xue-Chen; JIA Peng-Ying; ZHAO Na

    2011-01-01

    @@ Pattern formation phenomena are investigated in a dielectric barrier discharge under narrow boundary conditions in argon at atmospheric pressure.The discharge shows various scenarios with the increasing applied voltage.This is the first observation of alternating single spot and pair spots pattern and of a moving striation pattern in a dielectric barrier discharge system.The spatial-temporal correlations between discharge filaments in these patterns are measured by an optical method.The results show that the zigzag pattern is an interleaving of two sub-structure patterns, which ignites once for each sub-pattern per half cycle of the applied voltage.There is a temporal sequence inversion in consecutive half-cycles for the two sub-patterns.The pattern of alternating single spot and pair spots is also an interleaving of two sub-structure patterns.However, the pair spots sub-pattern ignites twice and the single spot sub-pattern ignites once per half cycle of the applied voltage.%Pattern formation phenomena are investigated in a dielectric barrier discharge under narrow boundary conditions in argon at atmospheric pressure. The discharge shows various scenarios with the increasing applied voltage.This is the first observation of alternating single spot and pair spots pattern and of a moving striation pattern in a dielectric barrier discharge system. The spatial-temporal correlations between discharge filaments in these patterns are measured by an optical method. The results show that the zigzag pattern is an interleaving of two sub-structure patterns, which ignites once for each sub-pattern per half cycle of the applied voltage. There is a temporal sequence inversion in consecutive half-cycles for the two sub-patterns. The pattern of alternating single spot and pair spots is also an interleaving of two sub-structure patterns. However, the pair spots sub-pattern ignites twice and the single spot sub-pattern ignites once per half cycle of the applied voltage.

  3. Influence of surface charges on the structure of a dielectric barrier discharge in air at atmospheric pressure: experiment and modeling

    OpenAIRE

    Celestin, S.; Bonaventura, Z.; Guaitella, O; Rousseau, A.; A. Bourdon

    2009-01-01

    Abstract Dielectric barrier discharges (DBD) in air at atmospheric pressure and at low frequency are mainly constituted of thin transient plasma filaments (or microdischarges) with radii of a few hundreds of micrometers. In this work, we consider a point-to-plane geometry with the dielectric covering the plane electrode. Plasma filaments are initiated by streamers, starting from the high-field region close to the point electrode. The plasma filaments deposit charges on the ...

  4. The back-diffusion effect of air on the discharge characteristics of atmospheric-pressure radio-frequency glow discharges using bare metal electrodes

    International Nuclear Information System (INIS)

    Radio-frequency (RF), atmospheric-pressure glow discharge (APGD) plasmas using bare metal electrodes have promising prospects in the fields of plasma-aided etching, deposition, surface treatment, disinfection, sterilization, etc. In this paper, the discharge characteristics, including the breakdown voltage and the discharge voltage for sustaining a stable and uniform α mode discharge of the RF APGD plasmas are presented. The experiments are conducted by placing the home-made planar-type plasma generator in ambient and in a vacuum chamber, respectively, with helium as the primary plasma-forming gas. When the discharge processes occur in ambient, particularly for the lower plasma-working gas flow rates, the experimental measurements show that it is the back-diffusion effect of air in atmosphere, instead of the flow rate of the gas, that results in the obvious decrease in the breakdown voltage with increasing plasma-working gas flow rate. Further studies on the discharge characteristics, e.g. the luminous structures, the concentrations and distributions of chemically active species in plasmas, with different plasma-working gases or gas mixtures need to be conducted in future work

  5. The back-diffusion effect of air on the discharge characteristics of atmospheric-pressure radio-frequency glow discharges using bare metal electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sun Wenting; Liang Tianran; Wang Huabo; Li Heping; Bao Chengyu [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

    2007-05-15

    Radio-frequency (RF), atmospheric-pressure glow discharge (APGD) plasmas using bare metal electrodes have promising prospects in the fields of plasma-aided etching, deposition, surface treatment, disinfection, sterilization, etc. In this paper, the discharge characteristics, including the breakdown voltage and the discharge voltage for sustaining a stable and uniform {alpha} mode discharge of the RF APGD plasmas are presented. The experiments are conducted by placing the home-made planar-type plasma generator in ambient and in a vacuum chamber, respectively, with helium as the primary plasma-forming gas. When the discharge processes occur in ambient, particularly for the lower plasma-working gas flow rates, the experimental measurements show that it is the back-diffusion effect of air in atmosphere, instead of the flow rate of the gas, that results in the obvious decrease in the breakdown voltage with increasing plasma-working gas flow rate. Further studies on the discharge characteristics, e.g. the luminous structures, the concentrations and distributions of chemically active species in plasmas, with different plasma-working gases or gas mixtures need to be conducted in future work.

  6. The back-diffusion effect of air on the discharge characteristics of atmospheric-pressure radio-frequency glow discharges using bare metal electrodes

    Science.gov (United States)

    Sun, Wen-Ting; Liang, Tian-Ran; Wang, Hua-Bo; Li, He-Ping; Bao, Cheng-Yu

    2007-05-01

    Radio-frequency (RF), atmospheric-pressure glow discharge (APGD) plasmas using bare metal electrodes have promising prospects in the fields of plasma-aided etching, deposition, surface treatment, disinfection, sterilization, etc. In this paper, the discharge characteristics, including the breakdown voltage and the discharge voltage for sustaining a stable and uniform α mode discharge of the RF APGD plasmas are presented. The experiments are conducted by placing the home-made planar-type plasma generator in ambient and in a vacuum chamber, respectively, with helium as the primary plasma-forming gas. When the discharge processes occur in ambient, particularly for the lower plasma-working gas flow rates, the experimental measurements show that it is the back-diffusion effect of air in atmosphere, instead of the flow rate of the gas, that results in the obvious decrease in the breakdown voltage with increasing plasma-working gas flow rate. Further studies on the discharge characteristics, e.g. the luminous structures, the concentrations and distributions of chemically active species in plasmas, with different plasma-working gases or gas mixtures need to be conducted in future work.

  7. Final Report DE-FG02-00ER54583: 'Physics of Atmospheric Pressure Glow Discharges' and 'Nanoparticle Nucleation and Dynamics in Low-Pressure Plasmas'

    International Nuclear Information System (INIS)

    This project was funded over two periods of three years each, with an additional year of no-cost extension. Research in the first funding period focused on the physics of uniform atmospheric pressure glow discharges, the second funding period was devoted to the study of the dynamics of nanometer-sized particles in plasmas.

  8. Self-rotating dc atmospheric-pressure discharge over a water-surface electrode: regimes of operation

    International Nuclear Information System (INIS)

    A dc atmospheric-pressure glow discharge produced between a metallic electrode and a water electrode is studied in this experiment. The discharge is characterized by means of visualization, high-speed imaging, voltage-current measurements, mass spectrometry and temperature measurements. Under certain conditions, the discharge exhibits a distinctive rotating motion in which the cathode spot remains stationary and the anode spot traces a circular pattern. Regimes of rotation occur in general at lower currents, at larger discharge gap lengths and when the water surface is the anode. Temperature measurements made in the rotating and stationary regimes show similar trends. Various metallic electrode materials, electrode geometries and discharge gases are investigated to determine the conditions under which rotation occurs. Rotation is only observed with a smooth cathode and a non-oxidizing anode material, such as water (or gold surface) that is either flat or otherwise provides no hindrances to the movement of the anode spot. Rotation is observed to occur in air and N2-H2 mixtures but not in pure N2, H2 or He; this suggests chemical mechanisms resulting in the formation of electronegative species as a possible cause for the rotation. Finally, measurements of the frequency of rotation of the discharge with respect to discharge length and current are made. These qualitative and quantitative results are used to evaluate various types of interactions as potential causes of this behavior.

  9. Student Award Finalist - Simulation of the reignition of atmospheric pressure air discharges behind dielectric obstacles: comparison with experiments

    Science.gov (United States)

    Pechereau, Francois; Bourdon, Anne

    2013-09-01

    In recent years, experimental studies on plasma assisted catalysis for flue gas treatment have shown a significant reduction of pollutants at a low energetic cost. Catalyst supports are either random or organized two phase media such as pellets, monoliths or porous media. Then, in plasma reactors, atmospheric pressure discharges have to interact with many obstacles and to propagate in microcavities and pores. To better understand the discharge dynamics in these complex structures, experiments have been carried out at LPGP (Orsay, France) in a point-to-plane geometry with a dielectric plane obstacle placed in the discharge path. In this work, we have carried out discharge simulations in the experimental geometry. We have compared the dynamics of the discharge ignited at the point and its impact on the dielectric surface. Then, we have compared the conditions of a discharge reignition behind the dielectric obstacle. A good qualitative agreement with experiments has been obtained but to improve the quantitative comparison, we have carried out a detailed parametric numerical study. In this work, we will focus on the influence of the level of seed charges on the discharge reignition and discuss several physical processes that could have an impact on the level of seed charges. ALVEOPLAS project (Grant No. ANR-08-BLAN-0159-01).

  10. Determination of the electron temperature in plane-to-plane He dielectric barrier discharges at atmospheric pressure

    Science.gov (United States)

    Gangwar, R. K.; Levasseur, O.; Naudé, N.; Gherardi, N.; Massines, F.; Margot, J.; Stafford, L.

    2016-02-01

    Optical emission spectroscopy (OES) measurements coupled with a collisional-radiative model were used to characterize a plane-to-plane dielectric barrier discharge at atmospheric pressure operated in nominally pure helium. The model predicts the population densities for the n  =  3 levels of He excited by electron impact processes from either ground or metastable states and takes into account excitation transfer processes between He n  =  3 levels as well as all relevant radiative decays and quenching reactions. Time-resolved OES measurements indicate that line ratios from He n  =  3 triplet states (for example, 587.5 nm-to-706.5 nm) and singlet states (for example, 667.8 nm-to-728.1 nm) first sharply rise as the discharge ignites and then slowly decrease as it extinguishes. Assuming that n  =  3 levels are first populated only by electron impact on ground state He atoms and then only by electron impact on metastable He atoms as the discharge current and thus the metastable number density rise, triplet and singlet line ratios predicted by the model become in each opposite case solely dependent on the electron temperature T e (assuming Maxwellian electron energy distribution function). The values of T e deduced from the analysis of both ratios were relatively high early in the discharge cycle (around 1.0-1.4 eV) and then much lower near discharge extinction (around 0.15 eV). For analysis of time-integrated (or cycle-averaged) OES measurements, the electron temperatures were closer to the 0.15 eV values near the end of the discharge cycle, in good agreement with the values expected from theoretical predictions in the positive columns of He glow discharges at atmospheric pressure.

  11. A volume pulsed corona formed during nanosecond pulsed periodic discharge of negative polarity in narrow gaps with airflow at atmospheric pressure

    Science.gov (United States)

    Lepekhin, N. M.; Priseko, Yu. S.; Puresev, N. I.; Filippov, V. G.

    2014-06-01

    A volume mode of spatially homogeneous nanosecond pulsed-periodic corona discharge of negative polarity has been obtained using an edge-to-edge electrode geometry in narrow gaps with airflow at atmospheric pressure and natural humidity. The parameters of discharge are estimated, and a factor limiting the power deposited in discharge is determined.

  12. Self-organized pattern formation of an atmospheric-pressure, ac glow discharge with an electrolyte electrode

    International Nuclear Information System (INIS)

    An atmospheric-pressure plasma sustained by an ac power supply was generated using electrolyte solution as one of the electrodes. By altering the power supply, ring-like patterns, double-ring patterns and plasma-spot patterns were observed at the electrolyte–electrode surface. Synchronous current–voltage characteristics and time-resolved images were measured. Important factors for the self-organized patterns, including the electrode gap, power, frequency and electrolyte concentration, were explored. The optical spectrum characteristics of the device were investigated. The pH of the solution after discharge was also explored and the results show that the pH of the solution is evidently reduced after the discharge, implying that acidic components are produced in the solution. This study provides an alternative discharge method for producing patterns on a water surface. (paper)

  13. [Research on electron density in DC needle-plate corona discharge at atmospheric pressure].

    Science.gov (United States)

    Liu, Zhi-Qiang; Guo, Wei; Liu, Tao-Tao; Wu, Wen-Shuo; Liu, Shu-Min

    2013-11-01

    Using needle-plate discharge device, corona discharge experiment was done in the atmosphere. Through photo of spot size of light-emitting area, the relationship between the voltage and thickness of corona layer was discussed. When the distance between tip and plate is fixed, the thickness of corona layer increases with the increase in voltage; when the voltage is fixed, the thickness of corona layer decreases with the increase in the distance between tip and plate. As spectral intensity of N2 (C3pi(u)) (337.1 nm)reflects high energy electron density, it was measured with emission spectrometry. The results show that high energy electron density is the biggest near the needle tip and the relationship between high energy electron density and voltage is basically linear increasing. Fixing voltage, high energy electron density decreases with the increase in the distance between tip and plate. When the voltage and the distance between tip and plate are fixed, the high energy electron density increases with the decrease in the curvature radius of needle tip. These results are of great importance for the study of plasma parameters of corona discharge. PMID:24555347

  14. Cold Atmospherical Gas Discharge

    International Nuclear Information System (INIS)

    It is shown that the gas discharge with a cold neutral component and the hot electrons can exist in a relatively dry air at the standard and much low pressure. The discharge existence region have been determined with balance between the nitrogen ionization processes by an electric field and attachment of electrons to the water and oxygen atoms. A discharge can exist only at such (w≤10-2) values of relative humidity and definite reduced electric field (E/p) values which respond threshold electric field strength Elhr at given pressure ρ. At standard pressure the threshold field compose 4.65 kV/cm. A plasma parameter calculation carried out at the local temperature and charged particle density balance conditions

  15. Three distinct modes in a surface micro-discharge in atmospheric pressure He + N{sub 2} mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dong; Liu, Dingxin, E-mail: liudingxin@mail.xjtu.edu.cn; He, Tongtong; Li, Qiaosong; Wang, Xiaohua [State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi' an Jiaotong University, Xi' an 710049 (China); Kong, Michael G. [State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi' an Jiaotong University, Xi' an 710049 (China); Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, Virginia 23508 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529 (United States)

    2015-12-15

    A surface micro-discharge in atmospheric pressure He + N{sub 2} mixtures is studied in this paper with an emphasis on the discharge modes. With the N{sub 2} admixture increasing from 0.1% to 20%, the discharge evolves from a spatially diffuse mode to a filamentary mode during positive half-cycles of the applied voltage. However during the negative half-cycles, an additional patterned mode emerges between the diffuse and the filamentary modes, which has not been reported before to exist in surface micro-discharges. In the diffuse and patterned modes, the plasmas cover almost the entirety of the mesh area during one cycle after plasma ignition in all mesh elements, and the discharge power increases linearly with the applied voltage. In contrast, plasma coverage of the mesh area is only partial in the filamentary mode and the plasma is more unstable with the discharge power increasing exponentially with the applied voltage. As the surface micro-discharge evolves through the three modes, the density of excited species changes significantly, for instance, the density of N{sub 2}{sup +}(B) drops by ∼20-fold from [N{sub 2}] = 0.2% to 20%. The N{sub 2}{sup +}(B) is predicted to be generated mainly through successive processes of Penning ionization by helium metastables and electron-impact excitation of N{sub 2}{sup +}(X), the latter is most responsible for the density decrease of N{sub 2}{sup +}(B) because much more N{sub 2}{sup +}(X) is converted to N{sub 4}{sup +}(X) as the increase of N{sub 2} fraction. Also, the electron density and electron temperature decrease with the discharge mode transition.

  16. Influence of surface emission processes on a fast-pulsed dielectric barrier discharge in air at atmospheric pressure

    Science.gov (United States)

    Pechereau, François; Bonaventura, Zdeněk; Bourdon, Anne

    2016-08-01

    This paper presents simulations of an atmospheric pressure air discharge in a point-to-plane geometry with a dielectric layer parallel to the cathode plane. Experimentally, a discharge reignition in the air gap below the dielectrics has been observed. With a 2D fluid model, it is shown that due to the fast rise of the high voltage applied and the sharp point used, a first positive spherical discharge forms around the point. Then this discharge propagates axially and impacts the dielectrics. As the first discharge starts spreading on the upper dielectric surface, in the second air gap with a low preionization density of {{10}4}~\\text{c}{{\\text{m}}-3} , the 2D fluid model predicts a rapid reignition of a positive discharge. As in experiments, the discharge reignition is much slower, a discussion on physical processes to be considered in the model to increase the reignition delay is presented. The limit case with no initial seed charges in the second air gap has been studied. First, we have calculated the time to release an electron from the cathode surface by thermionic and field emission processes for a work function φ \\in ≤ft[3,4\\right] eV and an amplification factor β \\in ≤ft[100,220\\right] . Then a 3D Monte Carlo model has been used to follow the dynamics of formation of an avalanche starting from a single electron emitted at the cathode. Due to the high electric field in the second air gap, we have shown that in a few nanoseconds, a Gaussian cloud of seed charges is formed at a small distance from the cathode plane. This Gaussian cloud has been used as the initial condition of the 2D fluid model in the second air gap. In this case, the propagation of a double headed discharge in the second air gap has been observed and the reignition delay is in rather good agreement with experiments.

  17. On the use of pulsed Dielectric Barrier Discharges to control the gas-phase composition of atmospheric pressure air plasmas

    International Nuclear Information System (INIS)

    We presents results obtained from the numerical simulation of the gas-phase chemical kinetics in atmospheric pressure air non-equilibrium plasmas. In particular we have addressed the effect of pulsed operation mode of a plane dielectric barrier discharge. It was conjectured that the large difference in the time scales involved in the fast dissociation of oxygen molecules in plasma and their subsequent reactions to produce ozone and nitrogen oxides, makes the presence of a continuously repeated plasma production unnecessary and a waste of electrical power and thus efficiency. In order to test such suggestion we have performed a numerical study of the composition and the temporal evolution of the gas-phase of atmospheric pressure air non-equilibrium plasmas. Comparison with experimental findings in a dielectric barrier discharge with an electrode configuration symmetrical and almost ideally plane is briefly addressed too, using plasma diagnostics to extract the properties of the single micro-discharges and a sensor to measure the concentration of ozone produced by the plasma

  18. Model of a surface-wave discharge at atmospheric pressure with a fixed profile of the gas temperature

    Science.gov (United States)

    Nikovski, M.; Kiss'ovski, Zh; Tatarova, E.

    2016-03-01

    We present a 3D model of a surface-wave-sustained discharge at 2.45 GHz at atmospheric pressure. A small plasma source creates a plasma column in a dielectric tube and a plasma torch is observed above the top. The plasma parameters and the axial profile of the gas temperature are significantly changed in the presence of the substrate above the plasma torch. The Boltzmann equation for electrons under the local approximation is solved, together with the heavy particle balance equations at a fixed axial profile of the gas temperature. The model of this finite length plasma column includes also the dispersion relation of azimuthally-symmetric surface waves. A detailed collisional-radiative model is also implemented for argon discharge at atmospheric pressure, which includes 21 rate balance equations for excited Ar atoms [(Ar(1s5-1s2), Ar(2p10-2p1), Ar(2s3d), Ar(3p)], for positive Ar+ and Ar2 + ions and for excited molecules. The changes in the EEDF shape and the mean electron energy along the plasma column are investigated and the axial structures of the discharge and plasma parameters are obtained.

  19. Influence of gas flow dynamics on discharge stability and on the uniformity of atmospheric pressure PECVD thin film

    Energy Technology Data Exchange (ETDEWEB)

    Caquineau, H; Enache, I; Gherardi, N; Naude, N [Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, F-31062 Toulouse Cedex 9 (France); Massines, F, E-mail: caquineau@laplace.univ-tlse.f [PROMES-CNRS, Tecnosud, Rambla de la Thermodynamique, F-66100 (France)

    2009-06-21

    The aim of this paper is to improve the understanding of the mechanisms controlling the uniformity of thin films made by atmospheric pressure plasma enhanced chemical vapour deposition (AP-PECVD). To reach this goal, the influence of the gas flow-rate and injection design on the thin film thickness uniformity is studied through experiments and numerical simulation in the case of silica-like layers deposited from silane and nitrous oxide using a nitrogen Townsend dielectric barrier discharge. Results show that whatever the gas flow-rate, when the gas is injected uniformly parallel to the substrate, the obtained layer is always uniform along the substrate width, while when the gas is injected perpendicularly to the substrate, the width-uniformity of the layers decreases when the gas flow-rate increases. The layer non-uniformity is related to the penetration of gas recirculation into the discharge zone, which was confirmed by computational fluid dynamics. This link is corroborated experimentally by a clear improvement of the deposit uniformity when the discharge cell dimensions are modified in order to reduce the recirculation influence on the discharge. A plausible hypothesis for the layer uniformity dependence on the recirculation is the possible enhancement of powder formation and growth in the recirculation zone: when the particle size is large enough, electrons may attach on the powder inducing electron depletion at the origin of the discharge instabilities.

  20. Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration

    Institute of Scientific and Technical Information of China (English)

    WANG Yanhui; YE Huanhuan; ZHANG Jiao; WANG Qi; ZHANG Jie; WANG Dezhen

    2016-01-01

    In this paper,we study the characteristics of atmospheric-pressure pulsed dielectric barrier discharge (DBD) under the needle-plate electrode configuration using a one-dimensional self-consistent fluid model.The results show that,the DBDs driven by positive pulse,negative pulse and bipolar pulse possess different behaviors.Moreover,the two discharges appearing at the rising and the falling phases of per voltage pulse also have different discharge regimes.For the case of the positive pulse,the breakdown field is much lower than that of the negative pulse,and its propagation characteristic is different from the negative pulse DBD.When the DBD is driven by a bipolar pulse voltage,there exists the interaction between the positive and negative pulses,resulting in the decrease of the breakdown field of the negative pulse DBD and causing the change of the discharge behaviors.In addition,the effects of the discharge parameters on the behaviors of pulsed DBD in the needle-plate electrode configuration are also studied.

  1. Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration

    Science.gov (United States)

    Wang, Yanhui; Ye, Huanhuan; Zhang, Jiao; Wang, Qi; Zhang, Jie; Wang, Dezhen

    2016-05-01

    In this paper, we study the characteristics of atmospheric-pressure pulsed dielectric barrier discharge (DBD) under the needle-plate electrode configuration using a one-dimensional self-consistent fluid model. The results show that, the DBDs driven by positive pulse, negative pulse and bipolar pulse possess different behaviors. Moreover, the two discharges appearing at the rising and the falling phases of per voltage pulse also have different discharge regimes. For the case of the positive pulse, the breakdown field is much lower than that of the negative pulse, and its propagation characteristic is different from the negative pulse DBD. When the DBD is driven by a bipolar pulse voltage, there exists the interaction between the positive and negative pulses, resulting in the decrease of the breakdown field of the negative pulse DBD and causing the change of the discharge behaviors. In addition, the effects of the discharge parameters on the behaviors of pulsed DBD in the needle-plate electrode configuration are also studied. supported by National Natural Science Foundation of China (No. 11405022)

  2. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    Science.gov (United States)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-05-01

    In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determined, with the notable result that there exists a minimum and maximum gap distance for its existence at a given ambient gas temperature. The minimum gap distance increases with decreasing gas temperature, whereas the maximum does not vary appreciably. To explain the experimental results, an analytical model is developed to explain the corona-to-glow (C-G) and glow-to-spark (G-S) transitions. The C-G transition is analyzed in terms of the avalanche-to-streamer transition and the breakdown field during the conduction phase following the establishment of a conducting channel across the discharge gap. The G-S transition is determined by the thermal ionization instability, and we show analytically that this transition occurs at a certain reduced electric field for the NRP discharges studied here. This model shows that the electrode geometry plays an important role in the existence of the NRP glow regime at a given gas temperature. We derive a criterion for the existence of the NRP glow regime as a function of the ambient gas temperature, pulse repetition frequency, electrode radius of curvature, and interelectrode gap distance.

  3. NO density and gas temperature measurements in atmospheric pressure nanosecond repetitively pulsed (NRP) discharges by Mid-IR QCLAS

    Science.gov (United States)

    Simeni Simeni, Marien; Stancu, Gabi-Daniel; Laux, Christophe

    2014-10-01

    Nitric oxide is a key species for many processes: in combustion, in human skin physiology... Recently, NO-ground state absolute density measurements produced by atmospheric pressure NRP discharges were carried out in air as a function of the discharge parameters, using Quantum Cascade Laser Absorption Spectroscopy. These measurements were space averaged and performed in the post-discharge region in a large gas volume. Here we present radial profiles of NO density and temperature measured directly in the discharge for different configurations. Small plasma volume and species densities, high temperature and EM noise environment make the absorption diagnostic challenging. For this purpose the QCLAS sensitivity was improved using a two-detector system. We conducted lateral absorbance measurements with a spatial resolution of 300 μm for two absorption features at 1900.076 and 1900.517 cm-1. The radial temperature and NO density distributions were obtained from the Abel inverted lateral measurements. Time averaged NO densities of about 1.E16 cm-3 and gas temperature of about 1000K were obtained in the center of the discharge. PLASMAFLAME Project (Grant No ANR-11-BS09-0025).

  4. Electron-beam-sustained discharge revisited - light emission from combined electron beam and microwave excited argon at atmospheric pressure

    CERN Document Server

    Dandl, T; Neumeier, A; Wieser, J; Ulrich, A

    2015-01-01

    A novel kind of electron beam sustained discharge is presented in which a 12keV electron beam is combined with a 2.45GHz microwave power to excite argon gas at atmospheric pressure in a continuous mode of operation. Optical emission spectroscopy is performed over a wide wavelength range from the vacuum ultraviolet (VUV) to the near infrared (NIR). Several effects which modify the emission spectra compared to sole electron beam excitation are observed and interpreted by the changing plasma parameters such as electron density, electron temperature and gas temperature.

  5. Development of a diffuse air-argon plasma source using a dielectric-barrier discharge at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Tang Jie; Jiang Weiman; Zhao Wei; Wang Yishan; Li Shibo; Wang Haojing [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics of CAS, Xi' an 710119 (China); Duan Yixiang [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics of CAS, Xi' an 710119 (China); Research Center of Analytical Instrumentation, Sichuan University, Chengdu 610064 (China)

    2013-01-21

    A stable diffuse large-volume air plasma source was developed by using argon-induced dielectric-barrier discharges at atmospheric pressure. This plasma source can be operated in a filamentary discharge with the average areal power density of 0.27 W/cm{sup 2} and the gas temperature of 315{+-}3 K. Spatial measurement of emission spectrum and temperature indicates that this plasma is uniform in the central region along the transverse direction. It is also found that the formation of diffuse air plasma mainly lies in the creation of sufficient seed electrons by the Penning effect through collisions between two argon or nitrogen metastables at low electric fields.

  6. Time-resolved characterization of a filamentary argon discharge at atmospheric pressure in a capillary using emission and absorption spectroscopy

    Science.gov (United States)

    Schröter, Sandra; Pothiraja, Ramasamy; Awakowicz, Peter; Bibinov, Nikita; Böke, Marc; Niermann, Benedikt; Winter, Jörg

    2013-11-01

    An argon/nitrogen (0.999/0.001) filamentary pulsed discharge operated at atmospheric pressure in a quartz tube is characterized using voltage-current measurements, microphotography, optical emission spectroscopy (OES) and absorption spectroscopy. Nitrogen is applied as a sensor gas for the purpose of OES diagnostic. The density of argon metastable atoms Ar(3P2) is determined using tunable diode laser absorption spectroscopy (TDLAS). Using a plasma chemical model the measured OES data are applied for the characterization of the plasma conditions. Between intense positive pulses the discharge current oscillates with a damped amplitude. It is established that an electric current flows in this discharge not only through a thin plasma filament that is observed in the discharge image but also through the whole cross section of the quartz tube. A diffuse plasma fills the quartz tube during a time between intense current pulses. Ionization waves are propagating in this plasma between the spike and the grounded area of the tube producing thin plasma channels. The diameter of these channels increases during the pause between the propagation of ionization waves probably because of thermal expansion and diffusion. Inside the channels electron densities of ˜2 × 1013 cm-3, argon metastable densities ˜1014 cm-3 and a reduced electric field about 10 Td are determined.

  7. A model for plasma modification of polypropylene using atmospheric pressure discharges

    CERN Document Server

    Dorai, R

    2003-01-01

    Atmospheric pressure plasmas are commonly used to improve the wetting and adhesion properties of polymers. In spite of their use, the mechanisms for achieving these properties are unclear. In this regard, we report on a computational investigation of the gas phase and surface kinetics during humid-air corona treatment of polypropylene (PP) and the resulting modification of its surface properties while varying energy deposition, relative humidity (RH), web speed, and gas temperature. Using results from a global plasma chemistry model validated against experiments, we found that increasing energy deposition increased the densities of alcohol, carbonyl, acid, and peroxy radicals on the PP surface. In doing so, significant amounts of gas phase O sub 3 and N sub x O sub y are produced. Increasing the RH increased the production of peroxy and acid groups, while decreasing those of alcohol and carbonyl groups. Production of O sub 3 decreased while that of HNO sub 3 increased. Increasing the temperature decreased the...

  8. Effect of dielectric material on bipolar nanosecond pulse diffuse dielectric barrier discharge in air at atmospheric pressure

    Science.gov (United States)

    Tang, Kai; Wang, Wenchun; Yang, Dezheng; Zhang, Shuai; Yang, Yang; Liu, Zhijie

    2013-08-01

    In this paper, dielectric plates made by ceramic, quartz and polytetrafluoroethylene (PTFE) respectively are employed to generate low gas temperature, diffuse dielectric barrier discharge plasma by using a needle-plate electrode configuration in air at atmospheric pressure. Both discharge images and the optical emission spectra are obtained while ceramic, quartz and PTFE are used as dielectric material. Plasma gas temperature is also calculated by comparing the experimental emission spectra with the best fitted spectra of N2 (C3Πu → B3Πg 1-3) and N2 (C3Πu → B3Πg 0-2). The effects of different pulse peak voltages and gas gap distances on the emission intensity of N2 (C3Πu → B3Πg, 0-0, 337.1 nm) and the plasma area on dielectric surface are investigated while ceramic, quartz and PTFE are used as dielectric material. It is found that the permittivity of dielectric material plays an important role in the discharge homogeneity, plasma gas temperature, emission spectra intensity of the discharge, etc. Dielectric with higher permittivity i.e., ceramic means brighter discharge luminosity and stronger emission spectra intensity of N2 (C3Πu → B3Πg, 0-0, 337.1 nm) among the three dielectric materials. However, more homogeneous, larger plasma area on dielectric surface and lower plasma gas temperature can be obtained under dielectric with lower permittivity i.e., PTFE. The emission spectra intensity and plasma gas temperature of the discharge while the dielectric plate is made by quartz are smaller than that while ceramic is used as dielectric material and bigger than that when PTFE is used as dielectric material.

  9. AIR ATMOSPHERIC-PRESSURE DISCHARGERS FOR OPERATION IN HIGH-FREQUENCY SWITCHING MODE.

    Directory of Open Access Journals (Sweden)

    L.S. Yevdoshenko

    2013-10-01

    Full Text Available Operation of two designs of compact multigap dischargers has been investigated in a high-frequency switching mode. It is experimentally revealed that the rational length of single discharge gaps in the designs is 0.3 mm, and the maximum switching frequency is 27000 discharges per second under long-term stable operation of the dischargers. It is shown that in pulsed corona discharge reactors, the pulse front sharpening results in increasing the operating electric field strength by 1.3 – 1.8 times.

  10. Atmospheric Pressure Radio Frequency Dielectric Barrier Discharges in Nitrogen/Argon

    International Nuclear Information System (INIS)

    This work reports the experimental results on the characteristics of radio frequency dielectric barrier N2/Ar discharges. Depending on the nitrogen content in the feed gas and the input power, the discharge can operate in two different modes: a homogeneous glow discharge and a constricted discharge. With increasing input power, the number of discharge columns increases. The discharge columns have starlike structures and exhibit symmetric self-organized arrangement. Optical emission spectroscopy was performed to estimate the plasma temperature. Spatially resolved gas temperature measurements, determined from NO emission rotational spectroscopy were taken across the 4.4 mm gap filled by the discharge. Gas temperature in the middle of the gas gap is lower than that close to the electrodes

  11. Modelling of the homogeneous barrier discharge in helium at atmospheric pressure

    International Nuclear Information System (INIS)

    Numerical calculations of spatio-temporal characteristics of the homogeneous barrier discharge in helium are performed by means of a one-dimensional fluid model. The influence of the elementary processes on the discharge behaviour is studied by variation of the corresponding rate constants. The simulation and the analytical interpretation are carried out for two basic modes of the homogeneous barrier discharge, i.e. the Townsend and glow modes. The Townsend discharge is characterized by the absence of quasineutral plasma; several current peaks may occur during the half-cycle. The oscillations of the current are caused by a lag between the ion production nearby the anode and the subsequent ion-electron emission on the cathode. The specificity of the glow discharge is the development of a cathode region and a positive column during the breakdown, as well as the presence of quasineutral plasma in subsequent phases. The positive column occurs because the shielding of the external field by the plasma is not instantaneous. The dependence of the discharge behaviour on the external parameters, such as the amplitude and frequency of the applied voltage, discharge gap width, and thickness of dielectric barriers, is analysed. The mode of the discharge is governed mostly by the gap width and barrier thickness and depends weakly on the amplitude and frequency of the applied voltage. As the barriers are thin and the discharge gap is sufficiently wide, the glow mode occurs; otherwise, the discharge is Townsend

  12. Experimental Study of an Atmospheric Pressure Dielectric Barrier Discharge and PET Surface Modification

    OpenAIRE

    Shrestha, R; D. P. Subedi

    2015-01-01

    A homogeneous dielectric barrier discharge (DBD) in argon was produced by applying high voltage A.C. source of potential difference (0-20) kV operating at a frequency of 10-30 kHz across two parallel plate electrodes with glass as dielectric barrier. The discharge was characterized by optical emission spectroscopy (OES) and electrical measurement. Four argon emission lines from the discharge were analyzed and the electron temperature was estimated by line intensity ratio method. T...

  13. Modification of surface layers of copper under the action of the volumetric discharge initiated by an avalanche electron beam in nitrogen and CO2 at atmospheric pressure

    Science.gov (United States)

    Shulepov, M. A.; Akhmadeev, Yu. Kh.; Tarasenko, V. F.; Kolubaeva, Yu. A.; Krysina, O. V.; Kostyrya, I. D.

    2011-05-01

    The results of experimental investigations of the action of the volumetric discharge initiated by an avalanche electron beam on the surface of copper specimens are presented. The volumetric (diffuse) discharge in nitrogen and CO2 at atmospheric pressure was initiated by applying high voltage pulses of nanosecond duration to a tubular foil cathode. It has been found that the treatment of a copper surface by this type of discharge increases the hardness of the surface layer due to oxidation.

  14. Gas temperature determination in microwave discharges at atmospheric pressure by using different Optical Emission Spectroscopy techniques

    International Nuclear Information System (INIS)

    Non-thermal plasmas sustained at atmospheric pressure are considered as a very promising technology for different purposes, in which the knowledge of the gas temperature is an important issue. In this paper, the gas temperatures of different argon microwave (2.45 GHz) plasma torches were determined by using different Optical Emission Spectroscopy techniques. Thus, they were estimated through the analysis of N2+(B-X) and OH(A-X) molecular spectra. On the other hand, a method based on the measurement of the van der Waals broadening of 588.99 nm Na I line was employed, and the temperatures obtained from it were compared to the rotational temperatures derived from N2+(B-X) and OH(A-X) rotational bands. A reasonable good agreement was found between the values of temperatures obtained by using the 588.99 nm Na I line and those obtained from N2+ rotational band. - Highlights: • We measured the gas temperatures of different 2.45 GHz plasmas. • We obtained the gas temperature from N2 and OH molecular spectra. • We compared with an alternative method using 588.99 and 589.59 nm Na I lines. • A very good agreement between the values of Tgas obtained was found. • Τhe alternative method could be very helpful in plasmas containing nitrogen

  15. A computational modeling study on the helium atmospheric pressure plasma needle discharge

    Science.gov (United States)

    Qian, Mu-Yang; Yang, Cong-Ying; Liu, San-Qiu; Wang, Zhen-Dong; Lv, Yan; Wang, De-Zhen

    2015-12-01

    A two-dimensional coupled model of neutral gas flow and plasma dynamics is employed to investigate the streamer dynamics in a helium plasma needle at atmospheric pressure. A parametric study of the streamer propagation as a function of needle tip curvature radius and helium gas flow rate is presented. The key chemical reactions at the He/air mixing layer which drive the streamer propagation are the direct ionization via collision with electrons, the Penning effect being not so crucial. With increasing the gas flow rate from 0.2 standard liter per minute (SLM) to 0.8 SLM, however, the emissions resulting from reactive oxygen and nitrogen species change from a solid circle to a hollow profile and the average streamer propagation velocity decreases. Air impurities (backdiffusion from ambient air) in the helium jet result in a significant increase in the streamer propagation velocity. Besides, with decreasing the tip curvature radiusfrom 200 μm to 100 μm, the electron avalanche process around the near-tip region is more pronounced. However, the spatially resolved plasma parameters distributions (electron, helium metastables, ground state atomic oxygen, etc.) remain almost the same, except that around the near-tip region where their peak values are more than doubled. Project supported partly by the National Natural Science Foundation of China (Grant No. 11465013), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20151BAB212012), and in part by the International Science and Technology Cooperation Program of China (Grant No. 2015DFA61800).

  16. Dependence of Ozone Generation on Gas Temperature Distribution in AC Atmospheric Pressure Dielectric Barrier Discharge in Oxygen

    Science.gov (United States)

    Takahashi, Go; Akashi, Haruaki

    AC atmospheric pressure multi-filament dielectric barrier discharge in oxygen has been simulated using two dimensional fluid model. In the discharge, three kinds of streamers have been obtained. They are primary streamers, small scale streamers and secondary streamers. The primary streamers are main streamers in the discharge and the small scale streamers are formed after the ceasing of the primary streamers. And the secondary streamers are formed on the trace of the primary streamers. In these streamers, the primary and the small scale streamers are very effective to generate O(3P) oxygen atoms which are precursor of ozone. And the ozone is generated mainly in the vicinity of the dielectrics. In high gas temperature region, ozone generation decreases in general. However, increase of the O(3P) oxygen atom density in high gas temperature region compensates decrease of ozone generation rate coefficient. As a result, amount of ozone generation has not changed. But if the effect of gas temperature was neglected, amount of ozone generation increases 10%.

  17. Dielectric barrier discharges in helium at atmospheric pressure: experiments and model in the needle-plane geometry

    International Nuclear Information System (INIS)

    We present an experimental and numerical modelling study of dielectric barrier discharges in pure, flowing helium at atmospheric pressure, in a 3.0 mm length needle-plane gap. Ultra-high speed imaging and synchronous, real-time dual detection (optical-electrical) diagnostics have been carried out. The high-voltage electrode was a hyperboloidal steel needle with a sharp point of 40 μm radius, while the grounded electrode was covered with 1.6 mm of Al2O3. The surface of the latter was either bare (case 1) or coated with ∼20 nm of semiconducting graphite (case 2) or metallic aluminium (case 3), all at floating potential. Axial [z(t)] and radial [r(t)] time-evolutions (≤2 μs) of discharge propagation across the gap were found to depend very strongly upon surface charging or conduction (cases 1-3). A two-dimensional model of the needle-plane discharge, based on coupled solution of the continuity equations for electrons, ions and excited neutral particles and of Poisson's equation, was found to agree very well with the observed [r,z](t) behaviour

  18. Role of active species in surface cleaning by an Ar-N2 atmospheric pressure post-discharge

    International Nuclear Information System (INIS)

    Post-discharge cleaning at atmospheric pressure of oxidized iron foils rinsed by acetone and methanol is studied by XPS. The influence of the temperature (T<450 K) and the UV photons on cleaning is negligible. When pure rare gases (He, Ne, Ar) are used, metastable species in post-discharge are transported downstream the plasma and relax their energy on the surface. C-C bonds are mainly removed by this process. When nitrogen is added to the rare gas (from 0 to 4.6 vol.% ), a selective influence on the etching process of the surface contaminants by nitrogen atoms is observed. The removal kinetics of chemical groups analysed by XPS is determined by using an exponential decay function corresponding to a first-order abstraction process. The decrease of C(1s) in N-C, O(1s) in N-C-O and N(1s) XPS peaks is correlated with the nitrogen atom concentration in the carrier gas. Reactions between nitrogen atoms and specific carbon containing groups occur (probably C-OH bonds of methanol). Stronger bonds like C=O (probably from acetone) are not removed by the post-discharge. (author)

  19. Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure

    Science.gov (United States)

    Wang, Xiaolong; Tan, Zhenyu; Pan, Jie; Chen, Xinxian

    2016-08-01

    In this work the effects of O2 concentration on the pulsed dielectric barrier discharge in helium-oxygen mixture at atmospheric pressure have been numerically researched by using a one-dimensional fluid model in conjunction with the chosen key species and chemical reactions. The reliability of the used model has been examined by comparing the calculated discharge current with the reported experiments. The present work presents the following significant results. The dominative positive and negative particles are He2+ and O2‑, respectively, the densities of the reactive oxygen species (ROS) get their maxima nearly at the central position of the gap, and the density of the ground state O is highest in the ROS. The increase of O2 concentration results in increasingly weak discharge and the time lag of the ignition. For O2 concentrations below 1.1%, the density of O is much higher than other species, the averaged dissipated power density presents an evident increase for small O2 concentration and then the increase becomes weak. In particular, the total density of the reactive oxygen species reaches its maximums at the O2 concentration of about 0.5%. This characteristic further convinces the experimental observation that the O2 concentration of 0.5% is an optimal O2/He ratio in the inactivation of bacteria and biomolecules when radiated by using the plasmas produced in a helium oxygen mixture. supported by the Fundamental Research Funds of Shandong University, China (No. 2016JC016)

  20. Electrical and spectroscopic analysis of mono- and multi-tip pulsed corona discharges in air at atmospheric pressure

    International Nuclear Information System (INIS)

    This work is devoted to the analysis of experimental results obtained in dry air at atmospheric pressure in a positive point-to-plane corona discharge under a pulsed applied voltage in the cases of anodic mono- and multi-tips. In the mono-tip case, the peak corona current is analysed as a function of several experimental parameters such as magnitude, frequency and duration of pulsed voltage and gap distance. The variation of the corona discharge current is correlated with the ozone production. Then in the multi-tip case, the electrical behaviour is analysed as a function of the distance between two contiguous tips and the tip number in order to highlight the region of creation active species for the lowest dissipated power. Intensified charge-coupled device pictures and electric field calculations as a function of inter-tip distance are performed to analyse the mutual effect between two contiguous tips. The optical emission spectra are measured in the UV–visible–NIR wavelength range between 200 nm and 800 nm, in order to identify the main excited species formed in an air corona discharge such as the usual first and second positive systems with first negative systems of molecular nitrogen. The identification of atomic species (O triplet and N) and the quenching of NOγ emission bands are also emphasized.

  1. Discharge Characteristics of an Atmospheric Pressure Argon Plasma Jet Generated with Screw Ring-Ring Electrodes in Surface Dielectric Barrier Discharge

    International Nuclear Information System (INIS)

    An atmospheric-pressure argon plasma jet with screw ring-ring electrodes in surface dielectric barrier discharge is generated by a sinusoidal excitation voltage at 8 kHz. The discharge characteristics, such as rotational and vibrational temperature of nitrogen, electronic excitation temperature, oxygen atomic density, nitrogen molecular density, and average electron density, are estimated. It is found that the rotational temperature of nitrogen is in the range of 352 ∼ 392 K by comparing the simulated spectrum with the measured spectrum at the C3Πu → B3Πg(Δv = −2) band transition, the electronic excitation temperature is found to be in the range of 3127 ∼ 3230 K by using the Boltzmann plot method, the oxygen atomic and nitrogen molecular density are of the order of magnitude of 1016 cm−3 by the actinometry method, and the average electron density is of the order of magnitude of 1012 cm−3 by the energy balance equation. Besides, the effective power, conduction, and displacement current are measured during the discharge. (low temperature plasma)

  2. Particle-in-cell and global simulations of α to γ transition in atmospheric pressure Penning-dominated capacitive discharges

    International Nuclear Information System (INIS)

    Atmospheric pressure radio-frequency (rf) capacitive micro-discharges are of interest due to emerging applications, especially in the bio-medical field. A previous global model did not consider high-power phenomena such as sheath multiplication, thus limiting its applicability to the lower power range. To overcome this, we use one-dimensional particle-in-cell (PIC) simulations of atmospheric He/0.1% N2 capacitive discharges over a wide range of currents and frequencies to guide the development of a more general global model which is also valid at higher powers. The new model includes sheath multiplication and two classes of electrons: the higher temperature ‘hot’ electrons associated with the sheaths, and the cooler ‘warm’ electrons associated with the bulk. The electric field and the electron power balance are solved analytically to determine the time-varying hot and warm temperatures and the effective rate coefficients. The particle balance equations are integrated numerically to determine the species densities. The model and PIC results are compared, showing reasonable agreement over the range of currents and frequencies studied. They indicate a transition from an α mode at low power characterized by relatively high electron temperature Te with a near uniform profile to a γ mode at high power with a Te profile strongly depressed in the bulk plasma. The transition is accompanied by an increase in density and a decrease in sheath widths. The current and frequency scalings of the model are confirmed by the PIC simulations. (paper)

  3. Note: On the use of Rogowski coils as current probes for atmospheric pressure dielectric barrier discharges.

    Science.gov (United States)

    Biganzoli, I; Barni, R; Riccardi, C

    2013-01-01

    A wide bandwidth current probe based on a Rogowski coil was proposed to work down to the nanosecond time scale. It was then used to record the discharge current pulses that characterize the streamer regime of the plasma in a dielectric barrier discharge device. Indeed such plasmas are often made up of intermittent and highly localized structures such as streamers or microdischarges. Characteristics and performances of the probes are discussed together with a few results concerning their application to investigate dielectric barrier discharges and the temporal structure of different pulses of the electrical current. PMID:23387707

  4. Modification of the Steel Surface Treated by a Volume Discharge Plasma in Nitrogen at Atmospheric Pressure

    Science.gov (United States)

    Erofeev, M. V.; Shulepov, M. A.; Ivanov, Yu. F.; Oskomov, K. V.; Tarasenko, V. F.

    2016-03-01

    Effect of volume discharge plasma initiated by an avalanche electron beam on the composition, structure, and properties of the surface steel layer is investigated. Voltage pulses with incident wave amplitude up to 30 kV, full width at half maximum of about 4 ns, and wave front of about 2.5 ns were applied to the gap with an inhomogeneous electric field. Changes indicating the hardening effect of the volume discharge initiated by an avalanche electron beam are revealed in St3-grade steel specimens treated by the discharge of this type.

  5. Modelling of atmospheric pressure dielectric barrier discharges with emphasis on stability issues

    International Nuclear Information System (INIS)

    The properties of a barrier discharge in nitrogen near the transition from the Townsend mode to the filamentary mode are studied on the basis of a two-dimensional fluid model. The formation of an intermediate mode (multipeak Townsend discharge) is discussed. The surface processes (ion-electron emission and photoemission) and the positive volume charge are proposed as the mechanisms of formation of a multipeak mode. It is shown that the Townsend mode is stable relative to radial fluctuations, whereas the glow mode is unstable and turns into a filamentary mode. The development of a radial fluctuation into a filament is demonstrated. The homogeneity of the barrier discharge depends on the barrier material. In particular, the widening of the stability region for the discharge with low-permittivity barriers is proved

  6. Modelling of atmospheric pressure dielectric barrier discharges with emphasis on stability issues

    Energy Technology Data Exchange (ETDEWEB)

    Maiorov, V A; Golubovskii, Yu B [Faculty of Physics, St Petersburg State University, Ulianovskaya ul., 1, 198904 Petrodvorets, St Petersburg (Russian Federation)

    2007-02-15

    The properties of a barrier discharge in nitrogen near the transition from the Townsend mode to the filamentary mode are studied on the basis of a two-dimensional fluid model. The formation of an intermediate mode (multipeak Townsend discharge) is discussed. The surface processes (ion-electron emission and photoemission) and the positive volume charge are proposed as the mechanisms of formation of a multipeak mode. It is shown that the Townsend mode is stable relative to radial fluctuations, whereas the glow mode is unstable and turns into a filamentary mode. The development of a radial fluctuation into a filament is demonstrated. The homogeneity of the barrier discharge depends on the barrier material. In particular, the widening of the stability region for the discharge with low-permittivity barriers is proved.

  7. A brush-shaped air plasma jet operated in glow discharge mode at atmospheric pressure

    Science.gov (United States)

    Li, Xuechen; Bao, Wenting; Jia, Pengying; Di, Cong

    2014-07-01

    Using ambient air as working gas, a direct-current plasma jet is developed to generate a brush-shaped plasma plume with fairly large volume. Although a direct-current power supply is used, the discharge shows a pulsed characteristic. Based on the voltage-current curve and fast photography, the brush-shaped plume, like the gliding arc plasma, is in fact a temporal superposition of a moving discharge filament in an arched shape. During it moves away from the nozzle, the discharge evolves from a low-current arc into a normal glow in one discharge cycle. The emission profile is explained qualitatively based on the dynamics of the plasma brush.

  8. Optical and electrical characteristics of hollow needle to plate atmospheric pressure discharge in nitrogen

    Czech Academy of Sciences Publication Activity Database

    Šimek, Milan; Schmidt, Jiří; Pekárek, S.; Khun, J.

    2006-01-01

    Roč. 51, č. 5 (2006), s. 27. ISSN 0003-0503. [Annual Gaseous Electronic Conference/59nd./. Columbus,Ohio, USA, 10.10.2006-13.10.2006] R&D Projects: GA AV ČR(CZ) IAA1043403 Institutional research plan: CEZ:AV0Z20430508 Keywords : positive corona discharge * streamer * mean repetition frequency * mean propagation velocity Subject RIV: BL - Plasma and Gas Discharge Physics

  9. Phase resolved cross-correlation spectroscopy on surface barrier discharges in air at atmospheric pressure

    OpenAIRE

    Brandenburg, R; Grosch, H; Hoder, T.; Weltmann, K.-D.

    2011-01-01

    Abstract Microdischarges in a surface barrier discharge with special asymmetric needle-needle arrangement were investigated by means of cross-correlation spectroscopy (with sub-ns and sub-mm resolution) and an intensified CCD camera equipped with a far field microscope. The surface barrier discharge was driven at conditions (overvoltage) resulting in several microdischarges per half period of the applied sinusoidal voltage. At these conditions and in this arrangement regular patter...

  10. Optical diagnostics of the hollow needle to plate electrical discharge in air at atmospheric pressure

    Czech Academy of Sciences Publication Activity Database

    Pekárek, S.; Šimek, Milan

    2004-01-01

    Roč. 54, suppl. C (2004), C728-C734. ISSN 0011-4626. [Symposium on Plasma Physics and Technology /21./. Praha, 14.06.2004-17.06.2004] R&D Projects: GA AV ČR IAA1043403 Institutional research plan: CEZ:AV0Z2043910 Keywords : optical diagnostics, electrical discharge, ozone generation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.292, year: 2004

  11. PEO-like Plasma Polymers Prepared by Atmospheric Pressure Surface Dielectric Barrier Discharge

    Czech Academy of Sciences Publication Activity Database

    Gordeev, I.; Choukourov, A.; Šimek, Milan; Prukner, Václav; Biederman, H.

    2012-01-01

    Roč. 9, č. 8 (2012), s. 782-791. ISSN 1612-8850 R&D Projects: GA ČR(CZ) GD104/09/H080 Institutional research plan: CEZ:AV0Z20430508 Keywords : fibrinogen * non-fouling properties * PEO * plasma polymerization * surface dielectric barrier discharge Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.730, year: 2012

  12. Surface modification of polyethylene and polypropylene in atmospheric pressure glow discharge

    Czech Academy of Sciences Publication Activity Database

    Šíra, M.; Trunec, D.; Sťahel, P.; Buršíková, V.; Navrátil, Z.; Buršík, Jiří

    2005-01-01

    Roč. 38, č. 4 (2005), s. 621-627. ISSN 0022-3727 R&D Projects: GA ČR(CZ) GA202/02/0880; GA ČR(CZ) GP202/02/D097 Institutional research plan: CEZ:AV0Z20410507 Keywords : glow discharge * surface * electron microscopy Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.957, year: 2005

  13. Effects of pulse parameters on the atmospheric-pressure dielectric barrier discharges driven by the high-voltage pulses in Ar and N2

    International Nuclear Information System (INIS)

    In this work, the atmospheric-pressure dielectric barrier discharges in Ar and N2 excited by repetitive voltage pulses have been numerically studied using a 1D fluid model. The differences between the discharge characteristics for Ar and N2 have been presented when changing the parameters of the applied pulse voltage. In this work we present the following significant results. With an increase of the amplitude of the applied pulse voltage, the increase of the maximum discharge current density in Ar is evident, compared with N2; and the discharge mode changes from the weak atmospheric-pressure glow discharge (APGD) to the standard APGD for Ar, and from the atmospheric-pressure Townsend discharge to the APGD for N2. In addition, the increase of the averaged electron density in N2 is more evident than that in Ar, especially when the standard APGD occurs in N2. The increasing frequency leads to lower maximum discharge current density for Ar, however, the reverse is true for N2. With an increase of the pulse width of the applied pulse voltage, the averaged electron density and the maximum discharge current density change slightly in Ar, but they increase drastically in N2. (paper)

  14. Alternating nonsteady gas-discharge modes in an atmospheric-pressure air flow blown through a point-plane gap

    International Nuclear Information System (INIS)

    The electric and spectral characteristics of a nonsteady discharge in an atmospheric air flow blown through a point-plane interelectrode gap were investigated experimentally. The discharge was produced by applying a constant positive voltage to the point electrode, the amplitude of the applied voltage being much higher than the corona ignition voltage. The nonsteady character of the discharge is due to the spontaneously repeating streamer-spark breakdown, followed by the formation of either a diffuse ultracorona or a filamentary glow discharge. In the latter case, the length of the plasma column increases progressively, being blown off by the gas flow from the discharge gap. The extinction of a filamentary discharge is unrelated to the break of the current channel: the discharge decays abruptly when the filament length reaches its critical value. The distribution of active particles (O, OH, and N*2) carried out from the discharge gap is determined from the data of spectral measurements

  15. Thin film deposition at atmospheric pressure using dielectric barrier discharges: Advances on three-dimensional porous substrates and functional coatings

    Science.gov (United States)

    Fanelli, Fiorenza; Bosso, Piera; Mastrangelo, Anna Maria; Fracassi, Francesco

    2016-07-01

    Surface processing of materials by atmospheric pressure dielectric barrier discharges (DBDs) has experienced significant growth in recent years. Considerable research efforts have been directed for instance to develop a large variety of processes which exploit different DBD electrode geometries for the direct and remote deposition of thin films from precursors in gas, vapor and aerosol form. This article briefly reviews our recent progress in thin film deposition by DBDs with particular focus on process optimization. The following examples are provided: (i) the plasma-enhanced chemical vapor deposition of thin films on an open-cell foam accomplished by igniting the DBD throughout the entire three-dimensional (3D) porous structure of the substrate, (ii) the preparation of hybrid organic/inorganic nanocomposite coatings using an aerosol-assisted process, (iii) the DBD jet deposition of coatings containing carboxylic acid groups and the improvement of their chemical and morphological stability upon immersion in water.

  16. Modelling of the homogeneous barrier discharge in helium at atmospheric pressure

    CERN Document Server

    Golubovskii, Y B; Behnke, J; Behnke, J F

    2003-01-01

    Numerical calculations of spatio-temporal characteristics of the homogeneous barrier discharge in helium are performed by means of a one-dimensional fluid model. The influence of the elementary processes on the discharge behaviour is studied by variation of the corresponding rate constants. The simulation and the analytical interpretation are carried out for two basic modes of the homogeneous barrier discharge, i.e. the Townsend and glow modes. The Townsend discharge is characterized by the absence of quasineutral plasma; several current peaks may occur during the half-cycle. The oscillations of the current are caused by a lag between the ion production nearby the anode and the subsequent ion-electron emission on the cathode. The specificity of the glow discharge is the development of a cathode region and a positive column during the breakdown, as well as the presence of quasineutral plasma in subsequent phases. The positive column occurs because the shielding of the external field by the plasma is not instan...

  17. Experimental Study of an Atmospheric Pressure Dielectric Barrier Discharge and PET Surface Modification

    Directory of Open Access Journals (Sweden)

    R. Shrestha

    2015-05-01

    Full Text Available A homogeneous dielectric barrier discharge (DBD in argon was produced by applying high voltage A.C. source of potential difference (0-20 kV operating at a frequency of 10-30 kHz across two parallel plate electrodes with glass as dielectric barrier. The discharge was characterized by optical emission spectroscopy (OES and electrical measurement. Four argon emission lines from the discharge were analyzed and the electron temperature was estimated by line intensity ratio method. The electron density in the discharge was estimated by power balance method. An investigation of the effect of inter-electrode distance on the electron density was made. The results showed that the electron temperature is less than 1 eV and the electron density is of the order of 1011cm-3 which varied with the inter electrode distance. Discharge was applied for surface modification of polyethylene terepthalate (PET. Modified surfaces were studied by contact angle measurement and FTIR spectroscopy.

  18. Degradation of Aniline Wastewater Using Dielectric Barrier Discharges at Atmospheric Pressure

    Science.gov (United States)

    WU, Haixia; FANG, Zhi; XU, Yanhua

    2015-03-01

    Aniline is a toxic water pollutant detected in drinking water and surface water, and this chemical is harmful to both human and aquatic life. A dielectric barrier discharge (DBD) reactor was designed in this study to investigate the treatment of aniline in aqueous solution. Discharge characteristics were assessed by measuring voltage and current waveforms, capturing light emission images, and obtaining optical emission spectra. The effects of several parameters were analyzed, including treatment distance, discharge power, DBD treatment time, initial pH of aniline solutions, and addition of sodium carbonate and hydrogen peroxide to the treatment. Aniline degradation increased with increasing discharge power. Under the same conditions, higher degradation was obtained at a treatment distance of 0 mm than at other treatment distances. At a discharge power of 21.5 W, 84.32% of aniline was removed after 10 min of DBD treatment. Initial pH significantly influenced aniline degradation. Adding a certain dosage of sodium carbonate and hydrogen peroxide to the wastewater can accelerate the degradation rate of aniline. Possible degradation pathways of aniline by DBD plasmas were proposed based on the analytical data of GC/MS and TOC. supported by National Natural Science Foundation of China (No. 51377075), the Natural Science Foundation of Jiangsu Province of China (No. BK20131412), the Environmental Protection Scientific Foundation of Jiangsu Province of China (No. 201004)

  19. Surface modification of nanofibrillated cellulose films by atmospheric pressure dielectric barrier discharge

    DEFF Research Database (Denmark)

    Siró, Istvan; Kusano, Yukihiro; Norrman, Kion;

    2013-01-01

    A dielectric barrier discharge in a gas mixture of tetrafluoromethane (CF4) and O2 was used for tailoring the surface properties of nanofibrillated cellulose (NFC) films. The surface chemical composition of plasma-modified NFC was characterized by means of X-ray photoelectron spectroscopy and time...

  20. Deposition of hard thin films from HMDSO in atmospheric pressure dielectric barrier discharge

    Czech Academy of Sciences Publication Activity Database

    Trunec, D.; Zajíčková, L.; Bursíková, V.; Studnička, F.; Sťahel, P.; Prysiazhnyi, V.; Peřina, Vratislav; Houdková, Jana; Navrátil, Z.; Franta, D.

    2010-01-01

    Roč. 43, č. 22 (2010), 225403/1-225403/8. ISSN 0022-3727 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100521 Keywords : GLOW-DISCHARGE * CHEMICAL-STRUCTURE * PLASMA Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.105, year: 2010

  1. Changes in the electro-physical properties of MCT epitaxial films affected by a plasma volume discharge induced by an avalanche beam in atmospheric-pressure air

    Science.gov (United States)

    Grigoryev, D. V.; Voitsekhovskii, A. V.; Lozovoy, K. A.; Tarasenko, V. F.; Shulepov, M. A.

    2015-11-01

    In this paper the influence of the plasma volume discharge of nanosecond duration formed in a non-uniform electric field at atmospheric pressure on samples of epitaxial films HgCdTe (MCT) films are discussed. The experimental data show that the action of pulses of nanosecond volume discharge in air at atmospheric pressure leads to changes in the electrophysical properties of MCT epitaxial films due to formation of a near-surface high- conductivity layer of the n-type conduction. The preliminary results show that it is possible to use such actions in the development of technologies for the controlled change of the properties of MCT.

  2. Decomposition of halogenated molecules in a micro-structured electrode glow discharge at atmospheric pressure

    International Nuclear Information System (INIS)

    A Micro-Structured Electrode (MSE) discharge operating at 1 bar is applied as a detector of halogenated hydrocarbons. Due to its physical properties (T ∼ 2000 K and high electron number densities of about 1015 -1016/cm3) this microplasma has comparable performances as classical plasmas used in analytical spectroscopy. The small size (micro m range) and a low power consumption makes it suitable for integration in miniaturized devices for chemical analysis. (author)

  3. Production characteristics of reactive oxygen/nitrogen species in water using atmospheric pressure discharge plasmas

    Science.gov (United States)

    Takahashi, Kazuhiro; Satoh, Kohki; Itoh, Hidenori; Kawaguchi, Hideki; Timoshkin, Igor; Given, Martin; MacGregor, Scott

    2016-07-01

    A pulsed discharge, a DC corona discharge, and a plasma jet are separately generated above a water surface, and reactive oxygen species and reactive nitrogen species (ROS/RNS) in the water are investigated. ROS/RNS in water after the sparging of the off-gas of a packed-bed dielectric barrier discharge (PB-DBD) are also investigated. H2O2, NO2 ‑, and NO3 ‑ are detected after plasma exposure and only NO3 ‑ after off-gas sparging. Short-lifetime species in plasma are found to play an important role in H2O2 and NO2 ‑ production and long-lifetime species in NO3 ‑ production. NO x may inhibit H2O2 production through OH consumption to produce HNO2 and HNO3. O3 does not contribute to ROS/RNS production. The pulsed plasma exposure is found to be effective for the production of H2O2 and NO2 ‑, and the off-gas sparging of the PB-DBD for the production of NO3 ‑.

  4. Modification of hydrophobic acrylic intraocular lens with poly(ethylene glycol) by atmospheric pressure glow discharge: A facile approach

    International Nuclear Information System (INIS)

    To improve the anterior surface biocompatibility of hydrophobic acrylic intraocular lens (IOL) in a convenient and continuous way, poly(ethylene glycol)s (PEGs) were immobilized by atmospheric pressure glow discharge (APGD) treatment using argon as the discharge gas. The hydrophilicity and chemical changes on the IOL surface were characterized by static water contact angle and X-ray photoelectron spectroscopy to confirm the covalent binding of PEG. The morphology of the IOL surface was observed under field emission scanning electron microscopy and atomic force microscopy. The surface biocompatibility was evaluated by adhesion experiments with platelets, macrophages, and lens epithelial cells (LECs) in vitro. The results revealed that the anterior surface of the PEG-grafted IOL displayed significantly and permanently improved hydrophilicity. Cell repellency was observed, especially in the PEG-modified IOL group, which resisted the attachment of platelets, macrophages and LECs. Moreover, the spread and growth of cells were suppressed, which may be attributed to the steric stabilization force and chain mobility effect of the modified PEG. All of these results indicated that hydrophobic acrylic IOLs can be hydrophilic modified by PEG through APGD treatment in a convenient and continuous manner which will provide advantages for further industrial applications.

  5. Modeling of recovery mechanism of ozone zero phenomenaby adding small amount of nitrogen in atmospheric pressure oxygen dielectric barrier discharges

    Science.gov (United States)

    Akashi, Haruaki; Yoshinaga, Tomokazu

    2013-09-01

    Ozone zero phenomena in an atmospheric pressure oxygen dielectric barrier discharges have been one of the major problems during a long time operation of ozone generators. But it is also known that the adding a small amount of nitrogen makes the recover from the ozone zero phenomena. To make clear the mechanism of recovery, authors have been simulated the discharges with using the results of Ref. 3. As a result, the recovery process can be seen and ozone density increased. It is found that the most important species would be nitrogen atoms. The reaction of nitrogen atoms and oxygen molecules makes oxygen atoms which is main precursor species of ozone. This generation of oxygen atoms is effective to increase ozone. The dependence of oxygen atom density (nO) and nitrogen atom density (nN) ratio was examined in this paper. In the condition of low nN/nO ratio case, generation of nitrogen oxide is low, and the quenching of ozone by the nitrogen oxide would be low. But in the high ratio condition, the quenching of ozone by nitrogen oxide would significant. This work was supported by KAKENHI(23560352).

  6. Influence of pulsed nanosecond volume discharge in atmospheric-pressure air on the electrical characteristics of MCT epitaxial films

    Science.gov (United States)

    Grigoryev, Denis V.; Voitsekhovskii, Alexandr V.; Lozovoy, Kirill A.; Nesmelov, Sergey N.; Dzyadukh, Stanislav M.; Tarasenko, Viktor F.; Shulepov, Michail A.; Dvoretskii, Sergei A.

    2015-12-01

    The purpose of this paper was investigating the effect of volume nanosecond discharge in air at atmospheric pressure on the electro-physical properties of the HgCdTe (MCT) epitaxial films grown by molecular beam epitaxy. Hall measurements of electro-physical parameters of MCT samples after irradiation have shown that there is a layer of epitaxial films exhibiting n-type conductivity that is formed in the near-surface area. After more than 600 pulses of influence parameters and thickness of the resulting n-layer is such that the measured field dependence of Hall coefficient corresponds to the material of n-type conductivity. Also it is shown that the impact of the discharge leads to significant changes in electro-physical characteristics of MIS structures. This fact is demonstrated by increase in density of positive fixed charge, change in the hysteresis type of the capacitance-voltage characteristic, an increase in density of surface states. The preliminary results show that it is possible to use such actions in the development of technologies of the controlled change in the properties of MCT.

  7. Atmospheric pressure argon surface discharges propagated in long tubes: physical characterization and application to bio-decontamination

    Science.gov (United States)

    Kovalova, Zuzana; Leroy, Magali; Jacobs, Carolyn; Kirkpatrick, Michael J.; Machala, Zdenko; Lopes, Filipa; Laux, Christophe O.; DuBow, Michael S.; Odic, Emmanuel

    2015-11-01

    Pulsed corona discharges propagated in argon (or in argon with added water vapor) at atmospheric pressure on the interior surface of a 49 cm long quartz tube were investigated for the application of surface bio-decontamination. H2O molecule dissociation in the argon plasma generated reactive species (i.e. OH in ground and excited states) and UV emission, which both directly affected bacterial cells. In order to facilitate the evaluation of the contribution of UV radiation, a DNA damage repair defective bacterial strain, Escherichia coli DH-1, was used. Discharge characteristics, including propagation velocity and plasma temperature, were measured. Up to ~5.5 and ~5 log10 reductions were observed for E. coli DH-1 bacteria (from 106 initial load) exposed 2 cm and 44 cm away from the charged electrode, respectively, for a 20 min plasma treatment. The factors contributing to the observed bactericidal effect include desiccation, reactive oxygen species (OH) plus H2O2 accumulation in the liquid phase, and UV-B (and possibly VUV) emission in dry argon. The steady state temperature measured on the quartz tube wall did not exceeded 29 °C the contribution of heating, along with that of H2O2 accumulation, was estimated to be low. The effect of UV-B emission alone or in combination with the other stress factors of the plasma process was examined for different operating conditions.

  8. Atmospheric pressure plasma produced inside a closed package by a dielectric barrier discharge in Ar/CO2 for bacterial inactivation of biological samples

    DEFF Research Database (Denmark)

    Chiper, Alina Silvia; Chen, Weifeng; Mejlholm, Ole;

    2011-01-01

    The generation and evaluation of a dielectric barrier discharge produced inside a closed package made of a commercially available packaging film and filled with gas mixtures of Ar/CO2 at atmospheric pressure is reported. The discharge parameters were analysed by electrical measurements and optical...... emission spectroscopy in two modes of operation: trapped gas atmosphere and flowing gas atmosphere. Gas temperature was estimated using the OH(A–X) emission spectrum and the rotational temperature reached a saturation level after a few minutes of plasma running. The rotational temperature was almost three...

  9. Influences of oxygen content on characteristics of atmospheric pressure dielectric barrier discharge in argon/oxygen mixtures

    Science.gov (United States)

    Fang, Zhi; Shao, Tao; Wang, Ruixue; Yang, Jing; Zhang, Cheng

    2016-04-01

    The dielectric barrier discharge generated in argon/oxygen mixtures at atmospheric pressure is investigated, and the effect of oxygen content on discharge characteristics at applied voltage of 4.5 kV is studied by means of electrical measurements and optical diagnostics. The results show that the filaments in the discharge regime become more densely packed with the increasing in the oxygen content, and the distribution of the filaments is more uniform in the gap. An increase in the oxygen content results in a decrease in the average power consumed and transported charges, while there exists an optimal value of oxygen content for the production of oxygen radicals. The maximal yield of oxygen radicals is obtained in mixtures of argon with 0.3% oxygen addition, and the oxygen radicals then decrease with the further increase in the oxygen content. The oxygen/argon plasma is employed to modify surface hydrophilicity of the PET films to estimate the influence of oxygen content on the surface treatment, and the static contact angles before and after the treatments are measured. The lowest contact angle is obtained at a 0.3% addition of oxygen to argon, which is in accordance with the optimum oxygen content for oxygen radicals generation. The electron density and electron temperature are estimated from the measured current and optical emission spectroscopy, respectively. The electron density is found to reduce significantly at a higher oxygen content due to the increased electron attachment, while the estimated electron temperature do not change apparently with the oxygen content. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.

  10. Simulations of atmospheric pressure discharge in a high-voltage nanosecond pulse using the particle-in-cell Monte Carlo collision model in noble gases

    International Nuclear Information System (INIS)

    Atmospheric pressure discharge nonequilibrium plasmas have been applied to plasma processing with modern technology. Simulations of discharge in pure Ar and pure He gases at one atmospheric pressure by a high voltage trapezoidal nanosecond pulse have been performed using a one-dimensional particle-in-cell Monte Carlo collision (PIC-MCC) model coupled with a renormalization and weighting procedure (mapping algorithm). Numerical results show that the characteristics of discharge in both inert gases are very similar. There exist the effects of local reverse field and double-peak distributions of charged particles' density. The electron and ion energy distribution functions are also observed, and the discharge is concluded in the view of ionization avalanche in number. Furthermore, the independence of total current density is a function of time, but not of position

  11. Simulations of atmospheric pressure discharge in a high-voltage nanosecond pulse using the particle-in-cell Monte Carlo collision model in noble gases

    Science.gov (United States)

    Shi, Feng; Wang, Dezhen; Ren, Chunsheng

    2008-06-01

    Atmospheric pressure discharge nonequilibrium plasmas have been applied to plasma processing with modern technology. Simulations of discharge in pure Ar and pure He gases at one atmospheric pressure by a high voltage trapezoidal nanosecond pulse have been performed using a one-dimensional particle-in-cell Monte Carlo collision (PIC-MCC) model coupled with a renormalization and weighting procedure (mapping algorithm). Numerical results show that the characteristics of discharge in both inert gases are very similar. There exist the effects of local reverse field and double-peak distributions of charged particles' density. The electron and ion energy distribution functions are also observed, and the discharge is concluded in the view of ionization avalanche in number. Furthermore, the independence of total current density is a function of time, but not of position.

  12. Atmospheric-pressure microwave torch discharge generated γ-Fe2O3 nanopowder

    Czech Academy of Sciences Publication Activity Database

    David, Bohumil; Schneeweiss, Oldřich; Pizúrová, Naděžda; Šantavá, Eva; Kudrle, V.; Synek, P.; Jašek, O.

    2013-01-01

    Roč. 44, č. 1 (2013), s. 206-212. ISSN 1875-3892. [International Conference on Solid State Chemistry /10./. Pardubice, 10.06.2012-14.06.2012] R&D Projects: GA ČR GA106/08/1440; GA ČR GA202/08/0178; GA MŠk(CZ) ED1.1.00/02.0068; GA MŠk 1M0512 Institutional research plan: CEZ:AV0Z10100520 Institutional support: RVO:68081723 Keywords : maghemite * microwave discharge * Mossbauer spectroscopy * magnetic measurements Subject RIV: BM - Solid Matter Physics ; Magnetism

  13. Simulation of a wire-cylinder-plate positive corona discharge in nitrogen gas at atmospheric pressure

    OpenAIRE

    Martins, Alexandre A.

    2012-01-01

    In this work we are going to perform a simulation of a wire-cylinder-plate positive corona discharge in nitrogen gas, and compare our results with already published experimental results in air for the same structure. We have chosen to simulate this innovative geometry because it has been established experimentally that it can generate a thrust per unit electrode length transmitted to the gas of up to 0.35 N/m and is also able to induce an ion wind top velocity in the range of 8-9 m/s in air. ...

  14. Simulation of a wire-cylinder-plate positive corona discharge in nitrogen gas at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Alexandre A. [Institute for Plasmas and Nuclear Fusion and Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2012-06-15

    In this work, we are going to perform a simulation of a wire-cylinder-plate positive corona discharge in nitrogen gas, and compare our results with already published experimental results in air for the same structure. We have chosen to simulate this innovative geometry because it has been established experimentally that it can generate a thrust per unit electrode length transmitted to the gas of up to 0.35 N/m and is also able to induce an ion wind top velocity in the range of 8-9 m/s in air. In our model, the used ion source is a small diameter wire, which generates a positive corona discharge in nitrogen gas directed to the ground electrode, after which the generated positive ions are further accelerated in the acceleration channel between the ground and cathode. By applying the fluid dynamic and electrostatic theories, all hydrodynamic and electrostatic forces that act on the considered geometries will be computed in an attempt to theoretically confirm the generated ion wind profile and also the thrust per unit electrode length. These results are important to establish the validity of this simulation tool for the future study and development of this effect for practical purposes.

  15. Simulation of a wire-cylinder-plate positive corona discharge in nitrogen gas at atmospheric pressure

    CERN Document Server

    Martins, Alexandre A

    2012-01-01

    In this work we are going to perform a simulation of a wire-cylinder-plate positive corona discharge in nitrogen gas, and compare our results with already published experimental results in air for the same structure. We have chosen to simulate this innovative geometry because it has been established experimentally that it can generate a thrust per unit electrode length transmitted to the gas of up to 0.35 N/m and is also able to induce an ion wind top velocity in the range of 8-9 m/s in air. In our model, the used ion source is a small diameter wire, which generates a positive corona discharge in nitrogen gas directed to the ground electrode, after which the generated positive ions are further accelerated in the acceleration channel between the ground and cathode. By applying the fluid dynamic and electrostatic theories all hydrodynamic and electrostatic forces that act on the considered geometries will be computed in an attempt to theoretically confirm the generated ion wind profile and also the thrust per u...

  16. Improving the low temperature dyeability of polyethylene terephthalate fabric with dispersive dyes by atmospheric pressure plasma discharge

    Science.gov (United States)

    Elabid, Amel E. A.; Zhang, Jie; Shi, Jianjun; Guo, Ying; Ding, Ke; Zhang, Jing

    2016-07-01

    Polyethylene terephthalate (PET) fiber and textile is one of the largest synthetic polymer commodity in the world. The great energy consumption and pollution caused by the high temperature and pressure dyeing of PET fibers and fabrics with disperse dyes has been caused concern these years. In this study, an atmospheric pressure plasma with fine and uniform filament discharge operated at 20 kHz has been used to improve the low temperature dyeability of PET fabric at 95 °C with three cation disperse dyes: Red 73, Blue 183 and Yellow 211. The dyes uptake percentage of the treated PET fabrics was observed to increase as twice as much of untreated fabric. The color strength rate was increased more than 20%. The reducing of the water contact angle and the raising of the capillary height of treated PET fabric strip indicate its hydrophilicity improvement. Scanning electron microscope (SEM) results display nano to micro size of etching pits appeared uniformly on the fiber surface of the treated PET. Simultaneously, X-ray photoelectron spectroscopy (XPS) analysis indicates an increase of the oxygen content in the surface caused by the introduction of polar groups such as Cdbnd O and COOH. The rough surface with improved polar oxygen groups showed hydrophilicity and affinity to C.I. dispersive dyes and is believed to be caused by the strong and very fine filament discharge appearing randomly at one place at an instant but evenly at many places at a longer period. This increases the diffusion and absorption of the C.I. disperse dyes on the PET fiber surface, which improve its low temperature dyeability.

  17. The development of potential electrode new construction which is cathode for obtaining of nano-second volume discharge glow in the air at atmospheric pressure

    International Nuclear Information System (INIS)

    The present paper is dedicated to investigations of nanosecond pulsed discharge in the air at the atmospheric pressure. The new construction of potential electrode, which is cathode with use of dielectric porcelain and fluoroplastic capping has been developed. The influence factor of capping on the rod with radius of curvature 1 mm on charge glow region size is shown. The mechanism of discharge glow region expansion with formation of running electrons in cathode plasma has been considered

  18. X-ray emission from a nanosecond-pulse discharge in an inhomogeneous electric field at atmospheric pressure

    International Nuclear Information System (INIS)

    This paper describes experimental studies of the dependence of the X-ray intensity on the anode material in nanosecond high-voltage discharges. The discharges were generated by two nanosecond-pulse generators in atmospheric air with a highly inhomogeneous electric field by a tube-plate gap. The output pulse of the first generator (repetitive pulse generator) has a rise time of about 15 ns and a full width at half maximum of 30–40 ns. The output of the second generator (single pulse generator) has a rise time of about 0.3 ns and a full width at half maximum of 1 ns. The electrical characteristics and the X-ray emission of nanosecond-pulse discharge in atmospheric air are studied by the measurement of voltage-current waveforms, discharge images, X-ray count and dose. Our experimental results showed that the anode material rarely affects electrical characteristics, but it can significantly affect the X-ray density. Comparing the density of X-rays, it was shown that the highest x-rays density occurred in the diffuse discharge in repetitive pulse mode, then the spark discharge with a small air gap, and then the corona discharge with a large air gap, in which the X-ray density was the lowest. Therefore, it could be confirmed that the bremsstrahlung at the anode contributes to the X-ray emission from nanosecond-pulse discharges.

  19. Detection of x-ray emission in a nanosecond discharge in air at atmospheric pressure.

    Science.gov (United States)

    Zhang, Cheng; Shao, Tao; Yu, Yang; Niu, Zheng; Yan, Ping; Zhou, Yuanxiang

    2010-12-01

    Measurement of x-ray emission is an important parameter to investigate runaway behavior of fast electrons produced in nanosecond-pulse gas discharge. An online detection system of x rays is described in this paper, and the system consists of an x-ray detector with NaI (Tl) scintillator and photomultiplier tube, and an integrated multichannel analyzer. The system is responsible for detecting x-ray emission signal, processing the detected signals, and scaling the energy distribution. The calibration results show that every channel of the detection system represents a given x-ray energy and various x rays can be divided into different energy ranges between 10 and 130 keV. For a repetitive nanosecond-pulse breakdown between highly nonuniform gaps in open air, an energy distribution is obtained using the online detection system. It shows that the x-ray emission is a continuous spectrum and the x rays of above 60 keV dominate in the detected energy distribution. PMID:21198017

  20. Surface treatment of para-aramid fiber by argon dielectric barrier discharge plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Highlights: ► We use DBD technique to modify the surface of Kelvar29 fibers. ► The changed parameters include treated power, time and argon flux. ► There exists an optimum experimental condition of plasma treatment. ► Adhesion and wettability properties of fibers are improved through plasma treatment. - Abstract: This paper is focused on influence of argon dielectric barrier discharge (DBD) plasma on the adhesive performance and wettability of para-aramid fibers and three parameters including treated power, exposure time and argon flux were detected. The interfacial shear strength (IFSS) was greatly increased by 28% with 300 W, 60 s, 2 L min−1 argon flux plasma treatment. The content of oxygen atom and oxygen-containing polar functional groups were enhanced after the argon plasma treated, so as the surface roughness, which contributed to the improvement of surface wettability and the decrease of contact angle with water. However, long-time exposure, exorbitant power or overlarge argon flux could partly destroy the prior effects of the treatment and damage the mechanical properties of fibers to some degree.

  1. N-2(A(3)Sigma(+)(u)) time evolution in N-2 atmospheric pressure surface dielectric barrier discharge driven by ac voltage under modulated regime

    Czech Academy of Sciences Publication Activity Database

    Ambrico, P. F.; Šimek, Milan; Dilecce, G.; De Benedictis, S.

    2009-01-01

    Roč. 94, č. 23 (2009), s. 231503-231503. ISSN 0003-6951 R&D Projects: GA ČR GA202/08/1106 Institutional research plan: CEZ:AV0Z20430508 Keywords : Atmospheric pressure surface-DBD * Nitrogen metastable * LIF * Optical emission spectroscopy Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.554, year: 2009

  2. Diagnostics of atmospheric-pressure pulsed-dc discharge with metal and liquid anodes by multiple laser-aided methods

    Science.gov (United States)

    Urabe, Keiichiro; Shirai, Naoki; Tomita, Kentaro; Akiyama, Tsuyoshi; Murakami, Tomoyuki

    2016-08-01

    The density and temperature of electrons and key heavy particles were measured in an atmospheric-pressure pulsed-dc helium discharge plasma with a nitrogen molecular impurity generated using system with a liquid or metal anode and a metal cathode. To obtain these parameters, we conducted experiments using several laser-aided methods: Thomson scattering spectroscopy to obtain the spatial profiles of electron density and temperature, Raman scattering spectroscopy to obtain the neutral molecular nitrogen rotational temperature, phase-modulated dispersion interferometry to determine the temporal variation of the electron density, and time-resolved laser absorption spectroscopy to analyze the temporal variation of the helium metastable atom density. The electron density and temperature measured by Thomson scattering varied from 2.4  ×  1014 cm‑3 and 1.8 eV at the center of the discharge to 0.8  ×  1014 cm‑3 and 1.5 eV near the outer edge of the plasma in the case of the metal anode, respectively. The electron density obtained with the liquid anode was approximately 20% smaller than that obtained with the metal anode, while the electron temperature was not significantly affected by the anode material. The molecular nitrogen rotational temperatures were 1200 K with the metal anode and 1650 K with the liquid anode at the outer edge of the plasma column. The density of helium metastable atoms decreased by a factor of two when using the liquid anode.

  3. Effects and Mechanism of Atmospheric-Pressure Dielectric Barrier Discharge Cold Plasma on Lactate Dehydrogenase (LDH) Enzyme

    Science.gov (United States)

    Zhang, Hao; Xu, Zimu; Shen, Jie; Li, Xu; Ding, Lili; Ma, Jie; Lan, Yan; Xia, Weidong; Cheng, Cheng; Sun, Qiang; Zhang, Zelong; Chu, Paul K.

    2015-05-01

    Proteins are carriers of biological functions and the effects of atmospheric-pressure non-thermal plasmas on proteins are important to applications such as sterilization and plasma-induced apoptosis of cancer cells. Herein, we report our detailed investigation of the effects of helium-oxygen non-thermal dielectric barrier discharge (DBD) plasmas on the inactivation of lactate dehydrogenase (LDH) enzyme solutions. Circular dichroism (CD) and dynamic light scattering (DLS) indicate that the loss of activity stems from plasma-induced modification of the secondary molecular structure as well as polymerization of the peptide chains. Raising the treatment intensity leads to a reduced alpha-helix content, increase in the percentage of the beta-sheet regions and random sequence, as well as gradually decreasing LDH activity. However, the structure of the LDH plasma-treated for 300 seconds exhibits a recovery trend after storage for 24 h and its activity also increases slightly. By comparing direct and indirect plasma treatments, plasma-induced LDH inactivation can be attributed to reactive species (RS) in the plasma, especially ones with a long lifetime including hydrogen peroxide, ozone, and nitrate ion which play the major role in the alteration of the macromolecular structure and molecular diameter in lieu of heat, UV radiation, and charged particles.

  4. Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet

    International Nuclear Information System (INIS)

    Because of some disadvantages of chemical disinfection in dental practice (especially denture cleaning), we investigated the effects of physical methods on Candida albicans biofilms. For this purpose, the antifungal efficacy of three different low-temperature plasma devices (an atmospheric pressure plasma jet and two different dielectric barrier discharges (DBDs)) on Candida albicans biofilms grown on titanium discs in vitro was investigated. As positive treatment controls, we used 0.1% chlorhexidine digluconate (CHX) and 0.6% sodium hypochlorite (NaOCl). The corresponding gas streams without plasma ignition served as negative treatment controls. The efficacy of the plasma treatment was determined evaluating the number of colony-forming units (CFU) recovered from titanium discs. The plasma treatment reduced the CFU significantly compared to chemical disinfectants. While 10 min CHX or NaOCl exposure led to a CFU log10 reduction factor of 1.5, the log10 reduction factor of DBD plasma was up to 5. In conclusion, the use of low-temperature plasma is a promising physical alternative to chemical antiseptics for dental practice.

  5. Conceptual Demonstration of Ambient Desorption-Optical Emission Spectroscopy Using a Liquid Sampling-Atmospheric Pressure Glow Discharge Microplasma Source.

    Science.gov (United States)

    Marcus, R Kenneth; Paing, Htoo W; Zhang, Lynn X

    2016-06-01

    The concept of ambient desorption-optical emission spectroscopy (AD-OES) is demonstrated using a liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma as the desorption/excitation source. The LS-APGD has previously been employed for elemental analysis of solution samples and particulates introduced via laser ablation in both the optical emission and mass spectrometries (OES, MS) modes. In addition, the device has been shown to be effective for the analysis of elemental and molecular species operating in an ambient desorption/ionization mass spectrometry (ADI-MS) mode. Proof-of-concept is presented here in the use of the LS-APGD to volatilize three very diverse sample forms (metallic thin films, dry solution residues, and bulk materials), with the liberated material excited within the microplasma and detected via OES, i.e., AD-OES. While the demonstration is principally qualitative at this point, it is believed that the basic approach may find application across a broad spectrum of analytical challenges requiring elemental analysis, including metals, soils, and volume-limited solutions, analogous to what has been seen in the development of the field of ADI-MS for molecular species determinations. PMID:27175512

  6. Comparison of sinusoidal and pulsed-operated dielectric barrier discharges in an O2/N2 mixture at atmospheric pressure

    International Nuclear Information System (INIS)

    Experiments on the spatial and temporal structure of the breakdown process of sinusoidal- and pulsed-operated dielectric barrier microdischarges (MDs) are compared. Three different waveforms are considered: a sinusoidal waveform at 20 kHz and pulsed-bipolar and unipolar-voltage profiles at 10 kHz with varying duty cycles (asymmetric pulse). Electrical data and simultaneous streak and iCCD images of individual MDs in dielectric barrier discharges (DBDs) with 1 mm gap in a gas mixture of 0.1 vol% O2 in N2 at atmospheric pressure are recorded. For sinusoidal-operated DBDs there are no significant differences between the MDs at positive and negative half-periods. Sinusoidal operation corresponds to pulsed-bipolar operation with symmetrical pulses, but with lower streamer velocities and different spatio-temporal emission distribution. The development of pulsed-driven MDs is determined by the voltage between both electrodes and not by the polarity of the driven electrode, resulting in nearly the same behavior of bipolar- and unipolar-pulsed-driven MDs. DBDs operated with asymmetric pulses show a significant difference in the spatial structure and in the temporal behavior between the rising and falling slopes of the high voltage pulse. (paper)

  7. Plasma treatment of poly(dimethylsiloxane) surfaces using a compact atmospheric pressure dielectric barrier discharge device for adhesion improvement

    Science.gov (United States)

    do Nascimento, Fellype; Parada, Sergio; Moshkalev, Stanislav; Machida, Munemasa

    2016-02-01

    Results of the treatment of poly(dimethylsiloxane) (PDMS) surfaces using novel atmospheric pressure pulsed dielectric barrier discharge plasmas are presented. Different gases (argon, helium, nitrogen) as well as their mixtures with water vapor were compared in terms of the improvement of adhesion between two PDMS samples after processing by plasma. The plasma was characterized by optical emission spectroscopy to identify the emitting species and determine the plasma temperatures. For all the gases studied, plasma processing resulted in increase of adhesion between PDMS samples if long exposure time (larger than 150 s) is applied. However, for very short treatment times (20 plasma pulses, total processing time about 3 s) the highest efficiency was found for helium plasmas. Water contact angles at PDMS surfaces as function of plasma processing time was analyzed. Atomic force microscopy analysis was performed to show reduction in the surface roughness after plasma treatment, which is likely to be the responsible for increase of the surface contact area and thus the adhesion between two PDMS surfaces. The role of the two mechanisms in the improvement of adhesion (enhanced wettability and changes in the surface morphology), for different time scales, is discussed. Interestingly, for the minimum processing time (20 plasma pulses), the improvement in adhesion and reduction of surface roughness are observed although the changes in the water contact angle are insignificant.

  8. Atmospheric-pressure plasma CVD of TiO{sub 2} photocatalytic films using surface dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Di Lanbo; Li Xiaosong; Shi Chuan; Xu Yong; Zhao Dezhi; Zhu Aimin, E-mail: amzhu@dlut.edu.c [Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Dalian 116024 (China)

    2009-02-07

    Surface dielectric barrier discharge (DBD) was used for atmospheric-pressure plasma CVD of TiO{sub 2} films from TiCl{sub 4} and O{sub 2} for the first time. Under this experiment, the deposition rate was estimated at 22 nm min{sup -1} by scanning electron microscope observation and the as-deposited TiO{sub 2} films were amorphous as evidenced by Raman analysis. The photocatalytic application of TiO{sub 2} films in removing HCHO from simulated air was examined in a continuous flow reactor. The TiO{sub 2} films after calcination at 350 or 450 deg. C were notably photocatalytically active for complete oxidation of formaldehyde to an innocuous product (CO{sub 2}), which was consistent with the results of Raman analysis. Using the TiO{sub 2} films, an extremely harmful by-product, CO, was not detected from photocatalytic oxidation of HCHO in a simulated air stream. (fast track communication)

  9. A corona discharge atmospheric pressure chemical ionization source with selective NO(+) formation and its application for monoaromatic VOC detection.

    Science.gov (United States)

    Sabo, Martin; Matejčík, Štefan

    2013-11-21

    We have developed a new type of corona discharge (CD) for atmospheric pressure chemical ionization (APCI) for application in ion mobility spectrometry (IMS) as well as in mass spectrometry (MS). While the other CD-APCI sources are able to generate H3O(+)·(H2O)n as the major reactant ions in N2 or in zero air, the present CD-APCI source has the ability to generate up to 84% NO(+)·(H2O)n reactant ions in zero air. The change of the working gas from zero air to N2 allows us to change the major reactant ions from NO(+)·(H2O)n to H3O(+)·(H2O)n. In this paper we present the description of the new CD-APCI and discuss the processes associated with the NO(+) formation. The selective formation of NO(+)·(H2O)n reactant ions offers chemical ionization based on these ions which can be of great advantage for some classes of chemicals. We demonstrate here a significant increase in the sensitivity of the IMS-MS instrument for monoaromatic volatile organic compound (VOC) detection upon NO(+)·(H2O)n chemical ionization. PMID:24081306

  10. Production and Utilization of CO3- Produced by a Corona Discharge in Air for Atmospheric Pressure Chemical Ionization

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Robert G.; Waltman, Melanie J.

    2010-12-14

    Atmospheric pressure chemical ionization is a multistep ionization process used in mass spectrometry and ion mobility spectrometry. The formation of product ions depends upon interactions with the analyte and the reactant ion species formed in the ionization source. The predominant reactant ion observed in a point-to-plane corona discharge in air occurs at m/z 60. There have been multiple references in the literature to the identity of this ion with some disagreement. It was postulated to be either CO3- or N2O2-. The identity of this ion is important as it is a key to the ionization of analytes. It was determined here to be CO3- through the use of 18O labeled oxygen. Further confirmation was provided through MS/MS studies. The ionization of nitroglycerine (NG) with CO3- produced the adduct NG•CO3-. This was compared to ionization with NO3- and Cl- reactant ions that also formed adducts with NG. The fragmentation patterns of these three adducts provides insight into the charge distribution and indicates that CO3- has a relatively high electron affinity similar to that of nitrate.

  11. Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Koban, Ina; Welk, Alexander; Meisel, Peter; Holtfreter, Birte; Kocher, Thomas [Unit of Periodontology, Dental School, University of Greifswald, Rotgerberstr. 8, 17475 Greifswald (Germany); Matthes, Rutger; Huebner, Nils-Olaf; Kramer, Axel [Institute for Hygiene and Environmental Medicine, University of Greifswald, Walther-Rathenau-Str. 49 a, 17487 Greifswald (Germany); Sietmann, Rabea [Institute of Microbiology, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald (Germany); Kindel, Eckhard; Weltmann, Klaus-Dieter, E-mail: ina.koban@uni-greifswald.d [Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)

    2010-07-15

    Because of some disadvantages of chemical disinfection in dental practice (especially denture cleaning), we investigated the effects of physical methods on Candida albicans biofilms. For this purpose, the antifungal efficacy of three different low-temperature plasma devices (an atmospheric pressure plasma jet and two different dielectric barrier discharges (DBDs)) on Candida albicans biofilms grown on titanium discs in vitro was investigated. As positive treatment controls, we used 0.1% chlorhexidine digluconate (CHX) and 0.6% sodium hypochlorite (NaOCl). The corresponding gas streams without plasma ignition served as negative treatment controls. The efficacy of the plasma treatment was determined evaluating the number of colony-forming units (CFU) recovered from titanium discs. The plasma treatment reduced the CFU significantly compared to chemical disinfectants. While 10 min CHX or NaOCl exposure led to a CFU log{sub 10} reduction factor of 1.5, the log{sub 10} reduction factor of DBD plasma was up to 5. In conclusion, the use of low-temperature plasma is a promising physical alternative to chemical antiseptics for dental practice.

  12. Production mechanism of atomic nitrogen in atmospheric pressure pulsed corona discharge measured using two-photon absorption laser-induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Teramoto, Yoshiyuki; Ono, Ryo [Department of Advanced Energy, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 227-8568 (Japan); Oda, Tetsuji [Department of Electrical Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2012-06-01

    To study the production mechanism of atomic nitrogen, the temporal profile and spatial distribution of atomic nitrogen are measured in atmospheric pressure pulsed positive corona discharge using two-photon absorption laser-induced fluorescence. The absolute atomic nitrogen density in the streamer filaments is estimated from decay rate of atomic nitrogen in N{sub 2} discharge. The results indicate that the absolute atomic nitrogen density is approximately constant against discharge energy. When the discharge voltage is 21.5 kV, production yield of atomic nitrogen produced by an N{sub 2} discharge pulse is estimated to be 2.9 - 9.8 Multiplication-Sign 10{sup 13} atoms and the energy efficiency of atomic nitrogen production is estimated to be about 1.8 - 6.1 Multiplication-Sign 10{sup 16} atoms/J. The energy efficiency of atomic nitrogen production in N{sub 2} discharge is constant against the discharge energy, while that in N{sub 2}/O{sub 2} discharge increases with discharge energy. In the N{sub 2}/O{sub 2} discharge, two-step process of N{sub 2} dissociation plays significant role for atomic nitrogen production.

  13. Production mechanism of atomic nitrogen in atmospheric pressure pulsed corona discharge measured using two-photon absorption laser-induced fluorescence

    International Nuclear Information System (INIS)

    To study the production mechanism of atomic nitrogen, the temporal profile and spatial distribution of atomic nitrogen are measured in atmospheric pressure pulsed positive corona discharge using two-photon absorption laser-induced fluorescence. The absolute atomic nitrogen density in the streamer filaments is estimated from decay rate of atomic nitrogen in N2 discharge. The results indicate that the absolute atomic nitrogen density is approximately constant against discharge energy. When the discharge voltage is 21.5 kV, production yield of atomic nitrogen produced by an N2 discharge pulse is estimated to be 2.9 - 9.8 × 1013 atoms and the energy efficiency of atomic nitrogen production is estimated to be about 1.8 - 6.1 × 1016 atoms/J. The energy efficiency of atomic nitrogen production in N2 discharge is constant against the discharge energy, while that in N2/O2 discharge increases with discharge energy. In the N2/O2 discharge, two-step process of N2 dissociation plays significant role for atomic nitrogen production.

  14. Deactivation of Streptococcus mutans Biofilms on a Tooth Surface Using He Dielectric Barrier Discharge at Atmospheric Pressure

    Science.gov (United States)

    Imola, Molnar; Judit, Papp; Alpar, Simon; Sorin, Dan Anghel

    2013-06-01

    This paper presents a study of the effect of the low temperature atmospheric helium dielectric barrier discharge (DBD) on the Streptococcus mutans biofilms formed on tooth surface. Pig jaws were also treated by plasma to detect if there is any harmful effect on the gingiva. The plasma was characterized by using optical emission spectroscopy. Experimental data indicated that the discharge is very effective in deactivating Streptococcus mutans biofilms. It can destroy them with an average decimal reduction time (D-time) of 19 s and about 98% of them were killed after a treatment time of 30 s. According to the survival curve kinetic an overall 32 s treatment time would be necessary to perform a complete sterilization. The experimental results presented in this study indicated that the helium dielectric barrier discharge, in plan-parallel electrode configuration, could be a very effective tool for deactivation of oral bacteria and might be a promising technique in various dental clinical applications.

  15. Experimental and modeling study of the oxidation of acetaldehyde in an atmospheric-pressure pulsed corona discharge

    Science.gov (United States)

    Klett, C.; Touchard, S.; Vega-Gonzalez, A.; Redolfi, M.; Bonnin, X.; Hassouni, K.; Duten, X.

    2012-08-01

    This paper reports the results obtained for the degradation of acetaldehyde by an atmospheric plasma corona discharge working in a pulsed regime. It was shown that a few hundred ppm of acetaldehyde diluted in a pure N2 gas flow can be removed up to 80% by a discharge fed with an electric power lower than 1 W. Under the same conditions, adding up to 5% of O2 allowed the removal of up to 95% of the initial acetaldehyde. The main identified end products were CO2, CO and methanol. A quasi-homogeneous zero-dimensional chemical model was developed to investigate the respective efficiency of the discharge and post-discharge periods in the global removal of the pollutant. The identified main pathways of acetaldehyde degradation were quenching of N2 metastable states during plasma pulses and oxidation by O and OH radicals during the post-discharge. This latter contribution increased with input power because of ozone accumulation in the gas mixture acting as an additional oxygen reservoir.

  16. Absolute nitrogen atom density measurements by two-photon laser-induced fluorescence spectroscopy in atmospheric pressure dielectric barrier discharges of pure nitrogen

    International Nuclear Information System (INIS)

    In this paper, two-photon absorption laser induced fluorescence spectroscopy is used to follow the nitrogen atom density in flowing dielectric barrier discharges fed with pure nitrogen and operating at atmospheric pressure. Two different dielectric barrier discharge regimes are investigated: the Townsend regime, which is homogeneous although operating at atmospheric pressure, and the more common filamentary regime. In both regimes, densities as high as 3x1014/cm3 are detected. However, the N atoms kinetic formation depends on the discharge regime. The saturation level is reached more rapidly with a filamentary discharge. For a given discharge regime, the N atom density depends strongly on the energy dissipated in the plasma between the gas inlet and the measurement position, whether the energy is varied by varying the position of the measurements, the gas flow, or the dissipated power. Experiments performed in the postdischarge show that the N atom decay cannot be simply attributed to three-body recombination of atomic nitrogen with nitrogen molecules, meaning that other mechanisms such as surface recombination or gas impurities play a role.

  17. Space and time analysis of the nanosecond scale discharges in atmospheric pressure air: I. Gas temperature and vibrational distribution function of N2 and O2

    International Nuclear Information System (INIS)

    Reliable experimental data on nanosecond discharge plasmas in air become more and more crucial considering their interest in a wide field of applications. However, the investigations on such nonequilibrium plasmas are made difficult by the spatial non-homogeneities, in particular under atmospheric pressure, the wide range of time scales, and the complexity of multi-physics processes involved therein. In this study, we report spatiotemporal experimental analysis on the gas temperature and the vibrational excitation of N2 and O2 in their ground electronic state during the post-discharge of an overvoltage nanosecond-pulsed discharge generated in a pin-to-plane gap of air at atmospheric pressure. The gas temperature during the pulsed discharge is measured by optical emission spectroscopy related to the rotational bands of the 0–0 vibrational transition N2(C 3 Πu, v = 0) → N2(B3 Πg, v = 0) of nitrogen. The results show a rapid gas heating up to 700 K in tens of nanoseconds after the current rise. This fast gas heating leads to a high gas temperature up to 1000 K measured at 150 ns in the first stages of the post-discharge using spontaneous Raman scattering (SRS). The spatiotemporal measurements of the gas temperature and the vibrational distribution function of N2 and O2, also obtained by SRS, over the post-discharge show the spatial expansion of the high vibrational excitation of N2, and the gas heating during the post-discharge. The present measurements, focused on thermal and energetic aspect of the discharge, provide a base for spatiotemporal analysis of gas number densities of N2, O2 and O atoms and hydrodynamic effects achieved during the post-discharge in part II of this investigation. All these results provide space and time database for the validation of plasma chemical models for nanosecond-pulsed discharges at atmospheric pressure air. (paper)

  18. A New Approach to Plasma CVD of TiO2 Photocatalyst on γ-Al2O3 Pellet Filled in Dielectric Barrier Discharges at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    朱爱民; 聂龙辉; 张秀玲; 石川; 宋志民; 徐勇

    2004-01-01

    A supported TiO2/γ-Al2O3 photocatalyst has been prepared by γ-Al2O3 pellet-filled dielectric barrier discharges induced plasma CVD at atmospheric pressure and room temperature.The TiO2/γ-Al2O3 photocatalyst exhibits higher photocatalytic activity than Degussa P25, and much higher photocatalytic activity than that prepared by thermal CVD.

  19. Surface treatment of high density polyethylene (HDPE) film by 50 Hz dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure

    OpenAIRE

    Joshi Ujjwal Man; Subedi Deepak Prasad

    2015-01-01

    Thin films of high density polyethylene (HDPE) are treated for improving hydrophilicity using non-thermal plasma generated by 50 Hz line frequency dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure. HDPE samples before and after the treatment are studied using contact angle measurements, surface free energy calculations and atomic force microscopy (AFM). Distilled water (H2O), glycerol (C3H8O3) and diiodomethane (CH2I2) are used as test liqu...

  20. Dynamics of the atmospheric pressure diffuse dielectric barrier discharge between cylindrical electrodes in roll-to-roll PECVD reactor

    Science.gov (United States)

    Starostin, Sergey A.; Welzel, Stefan; Liu, Yaoge; van der Velden-Schuermans, Bernadette; Bouwstra, Jan B.; van de Sanden, Mauritius C. M.; de Vries, Hindrik W.

    2015-07-01

    The high current diffuse dielectric barrier discharge (DBD) was operated in a bi-axial cylindrical electrode configuration using nitrogen, oxygen and argon gas flow with the addition of tetraethyl orthosilicate as precursor for silica-like film deposition. The behaviour of the transient plasma was visualized by means of fast imaging from two orthogonal directions. The formation and propagation (~3 × 104 m s-1) of lateral ionization waves with the transverse light emission structure similar to the low pressure glow discharge was observed at time scales below 1 µs. Despite plasma non-uniformity at nanosecond time scale the deposition process on the web-rolled polymer results in smooth well adherent films with good film uniformity and excellent gas diffusion barrier properties. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  1. The effect of frequency on atmospheric pressure glow discharge in a pin-to-plate gap sustained by a resonant power supply

    Science.gov (United States)

    Wang, Yong Sheng; Ding, Wei Dong; Wang, Ya Nan; Wang, Jia Chen; Li, Fang; Fan, Chuan

    2016-06-01

    More and more researchers have been attracted to the research of atmospheric pressure glow discharge (APGD) because of its great prospect in numerous industrial applications. Nevertheless, almost all of the industrial applications are based on achievement of stable, large-volume, and uniform APGD. In a previous study, stable filamentary APGD was obtained by applying a resonant power supply between pin-to-plate electrodes which could limit the peak value of discharge current to supress the glow-to-arc transition through a series-wound resonance principle. The filamentary APGD is centimeter-level in the length but only several millimeters in diameter. Therefore, in order to obtain large-volume and uniform APGD, it is significant to study how to diffuse filamentary APGD in radial direction. With the increasing resonant frequency of alternating current discharge, excited particles (mainly including energetic electrons and trapped ions left from the previous half-cycle discharge) in the electrodes gap increase, which benefits obtaining stable self-sustaining APGD. In this paper, mechanism and law of the influence of resonant frequency on the diffusion of filamentary APGD in ambient air were studied. By comparing the photos of discharge plasma and waveforms of the discharge voltage and current, it is found that the volume of the glow discharge plasma enlarges as the resonant frequency of the power supply increases. It is very significant and anticipating to study how to obtain stable, large-volume, and uniform APGD in ambient air by the resonant power supply.

  2. Improving the homogeneity of alternating current-drive atmospheric pressure dielectric barrier discharges in helium with an additional low-amplitude radio frequency power source: A numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Wang Qi [Dalian Institute of Semiconductor Technology, School of Electronics Science and Technology, Dalian University of Technology, Dalian 116023 (China); Sun Jizhong; Zhang Jianhong; Wang Dezhen [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China); Liu Liying [Department of Electrical Engineering, Shenyang Institute of Engineering, Shenyang 110136 (China)

    2013-04-15

    It was proposed in this paper that the homogeneity of the atmospheric pressure discharge driven by an ac power source could be improved by applying an auxiliary low-amplitude rf power source. To verify the idea, a two-dimensional fluid model then was applied to study the atmospheric discharges in helium driven by ac power, low-amplitude rf power, and combined ac and low-amplitude rf power, respectively. Simulation results confirmed that an auxiliary rf power could improve the homogeneity of a discharge driven by an ac power source. It was further found that there existed a threshold voltage of the rf power source leading to the transition from inhomogeneous to homogeneous discharge. As the frequency of the rf power source increased from 2 to 22 MHz, the magnitude of the threshold voltage dropped first rapidly and then to a constant value. When the frequency was over 13.56 MHz, the magnitude of the threshold voltage was smaller than one-sixth of the ac voltage amplitude under the simulated discharge parameters.

  3. Improving the homogeneity of alternating current-drive atmospheric pressure dielectric barrier discharges in helium with an additional low-amplitude radio frequency power source: A numerical study

    International Nuclear Information System (INIS)

    It was proposed in this paper that the homogeneity of the atmospheric pressure discharge driven by an ac power source could be improved by applying an auxiliary low-amplitude rf power source. To verify the idea, a two-dimensional fluid model then was applied to study the atmospheric discharges in helium driven by ac power, low-amplitude rf power, and combined ac and low–amplitude rf power, respectively. Simulation results confirmed that an auxiliary rf power could improve the homogeneity of a discharge driven by an ac power source. It was further found that there existed a threshold voltage of the rf power source leading to the transition from inhomogeneous to homogeneous discharge. As the frequency of the rf power source increased from 2 to 22 MHz, the magnitude of the threshold voltage dropped first rapidly and then to a constant value. When the frequency was over 13.56 MHz, the magnitude of the threshold voltage was smaller than one-sixth of the ac voltage amplitude under the simulated discharge parameters.

  4. Plasma density enhancement in atmospheric-pressure dielectric-barrier discharges by high-voltage nanosecond pulse in the pulse-on period: a PIC simulation

    Energy Technology Data Exchange (ETDEWEB)

    Sang Chaofeng; Sun Jizhong; Wang Dezhen, E-mail: wangdez@dlut.edu.c [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2010-02-03

    A particle-in-cell (PIC) plus Monte Carlo collision simulation is employed to investigate how a sustainable atmospheric pressure single dielectric-barrier discharge responds to a high-voltage nanosecond pulse (HVNP) further applied to the metal electrode. The results show that the HVNP can significantly increase the plasma density in the pulse-on period. The ion-induced secondary electrons can give rise to avalanche ionization in the positive sheath, which widens the discharge region and enhances the plasma density drastically. However, the plasma density stops increasing as the applied pulse lasts over certain time; therefore, lengthening the pulse duration alone cannot improve the discharge efficiency further. Physical reasons for these phenomena are then discussed.

  5. Plasma density enhancement in atmospheric-pressure dielectric-barrier discharges by high-voltage nanosecond pulse in the pulse-on period: a PIC simulation

    International Nuclear Information System (INIS)

    A particle-in-cell (PIC) plus Monte Carlo collision simulation is employed to investigate how a sustainable atmospheric pressure single dielectric-barrier discharge responds to a high-voltage nanosecond pulse (HVNP) further applied to the metal electrode. The results show that the HVNP can significantly increase the plasma density in the pulse-on period. The ion-induced secondary electrons can give rise to avalanche ionization in the positive sheath, which widens the discharge region and enhances the plasma density drastically. However, the plasma density stops increasing as the applied pulse lasts over certain time; therefore, lengthening the pulse duration alone cannot improve the discharge efficiency further. Physical reasons for these phenomena are then discussed.

  6. Plasma density enhancement in atmospheric-pressure dielectric-barrier discharges by high-voltage nanosecond pulse in the pulse-on period: a PIC simulation

    Science.gov (United States)

    Sang, Chaofeng; Sun, Jizhong; Wang, Dezhen

    2010-02-01

    A particle-in-cell (PIC) plus Monte Carlo collision simulation is employed to investigate how a sustainable atmospheric pressure single dielectric-barrier discharge responds to a high-voltage nanosecond pulse (HVNP) further applied to the metal electrode. The results show that the HVNP can significantly increase the plasma density in the pulse-on period. The ion-induced secondary electrons can give rise to avalanche ionization in the positive sheath, which widens the discharge region and enhances the plasma density drastically. However, the plasma density stops increasing as the applied pulse lasts over certain time; therefore, lengthening the pulse duration alone cannot improve the discharge efficiency further. Physical reasons for these phenomena are then discussed.

  7. On the formation mechanisms of the diffuse atmospheric pressure dielectric barrier discharge in CVD processes of thin silica-like films

    International Nuclear Information System (INIS)

    Pathways of formation and temporal evolution of the diffuse dielectric barrier discharge at atmospheric pressure were experimentally studied in this work by means of optical (fast imaging camera) and electrical diagnostics. The chosen model system is relevant for applications of plasma-enhanced chemical vapor deposition of thin silica-like film on the polymeric substrate, from cost-efficient gas mixtures of Ar/N2/O2/hexamethyldisiloxane. It was found that the discharge can gradually experience the phases of homogeneous low current Townsend-like mode, local Townsend to glow transition and expanding high current density (∼0.7 A cm-2) glow-like mode. While the glow-like current spot occupies momentarily only a small part of the electrode area, its expanding behavior provides uniform treatment of the whole substrate surface. Alternatively, it was observed that a visually uniform discharge can be formed by the numerous microdischarges overlapping over the large electrode area.

  8. Identification of the different diffuse dielectric barrier discharges obtained between 50 kHz to 9 MHz in Ar/NH3 at atmospheric pressure

    International Nuclear Information System (INIS)

    The aim of this work was to identify the different diffuse dielectric barrier discharges (DBDs) obtained in the same electrode configuration and in the same gas for an excitation frequency ranging from 50 kHz to 9 MHz. The gas mixture was argon with 133 ppm of NH3. This Penning mixture is useful to obtain both low-frequency glow DBDs (GDBDs) and diffuse radio-frequency (RF) discharges. Electrical measurements and short exposure time photographs showed that whatever the frequency, a discharge free of micro-discharge was obtained. In the same configuration, the discharge was a GDBD up to 200 kHz. For frequencies higher than 250 kHz, the discharge behavior was that of a Townsend-like discharge associated with a maximum energy transfer close to the anode and a higher power (about twice that of the GDBD). The cathode fall formation was no longer observed during the discharge current increase because of ion trapping in the gas gap by the rapid electric field oscillations. In the same configuration, the alpha RF mode was observed from 1.3 MHz. Gamma secondary electron emission gave way to electron acceleration by the cathode sheath formation. Bulk ionization was important due to the high electron collision rate at atmospheric pressure. One consequence of the transition from low-frequency to high-frequency discharge was a significant increase in the power (factor ≈30), which reached 35 W cm−3, while the breakdown voltage decreased from 900 V to less than 200 V. (paper)

  9. Effects of Environmental Humidity and Temperature on Sterilization Efficiency of Dielectric Barrier Discharge Plasmas in Atmospheric Pressure Air

    Science.gov (United States)

    Kikuchi, Yusuke; Miyamae, Masanori; Nagata, Masayoshi; Fukumoto, Naoyuki

    2011-01-01

    The inactivation of Bacillus atrophaeus spores by a dielectric barrier discharge (DBD) plasma in atmospheric humid air was investigated in order to develop a low-temperature, low-cost, and high-speed plasma sterilization technique. The biological indicators covered with a Tyvek sheet were set just outside the DBD plasma region, where air temperature and humidity as a discharge gas were precisely controlled by an environmental test chamber. The results show that the inactivation of B. atrophaeus spores was found to be dependent strongly on humidity, and was completed within 15 min at a relative humidity of 90% and a temperature of 30 °C. The treatment time for sterilization is shorter than those of conventional sterilization methods using ethylene oxide gas and dry heat treatment. The inactivation rates depend on not only relative humidity but also temperature, so that water content in air could determine the generation of reactive species such as hydroxyl radicals that are effective for the inactivation of B. atrophaeus spores.

  10. Comparison of dielectric barrier discharge, atmospheric pressure radiofrequency-driven glow discharge and direct analysis in real time sources for ambient mass spectrometry of acetaminophen

    Energy Technology Data Exchange (ETDEWEB)

    Kratzer, Jan [Institute for National Measurement Standards, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6 (Canada); Institute of Analytical Chemistry of the ASCR, v.v.i., Veveri 97, CZ-602 00 Brno (Czech Republic); Mester, Zoltan [Institute for National Measurement Standards, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6 (Canada); Sturgeon, Ralph E., E-mail: Ralph.Sturgeon@nrc-cnrc.gc.ca [Institute for National Measurement Standards, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6 (Canada)

    2011-08-15

    Three plasma-based ambient pressure ion sources were investigated; laboratory constructed dielectric barrier and rf glow discharges, as well as a commercial corona discharge (DART source). All were used to desorb and ionize a model analyte, providing sampling techniques for ambient mass spectrometry (MS). Experimental parameters were optimized to achive highest signal for acetaminophen as the analyte. Insight into the mechanisms of analyte desorption and ionization was obtained by means of emission spectrometry and ion current measurements. Desorption and ionization mechanisms for this analyte appear to be identical for all three plasma sources. Emission spectra differ only in the intensities of various lines and bands. Desorption of solid analyte requires transfer of thermal energy from the plasma source to sample surface, in the absence of which complete loss of MS response occurs. For acetaminophen, helium was the best plasma gas, providing 100- to 1000-fold higher analyte response than with argon or nitrogen. The same trend was also evident with background ions (protonated water clusters). MS analyte signal intensity correlates with the ion density (expressed as ion current) in the plasma plume and with emission intensity from excited state species in the plasma. These observations support an ionization process which occurs via proton transfer from protonated water clusters to analyte molecules.

  11. Comparison of dielectric barrier discharge, atmospheric pressure radiofrequency-driven glow discharge and direct analysis in real time sources for ambient mass spectrometry of acetaminophen

    International Nuclear Information System (INIS)

    Three plasma-based ambient pressure ion sources were investigated; laboratory constructed dielectric barrier and rf glow discharges, as well as a commercial corona discharge (DART source). All were used to desorb and ionize a model analyte, providing sampling techniques for ambient mass spectrometry (MS). Experimental parameters were optimized to achive highest signal for acetaminophen as the analyte. Insight into the mechanisms of analyte desorption and ionization was obtained by means of emission spectrometry and ion current measurements. Desorption and ionization mechanisms for this analyte appear to be identical for all three plasma sources. Emission spectra differ only in the intensities of various lines and bands. Desorption of solid analyte requires transfer of thermal energy from the plasma source to sample surface, in the absence of which complete loss of MS response occurs. For acetaminophen, helium was the best plasma gas, providing 100- to 1000-fold higher analyte response than with argon or nitrogen. The same trend was also evident with background ions (protonated water clusters). MS analyte signal intensity correlates with the ion density (expressed as ion current) in the plasma plume and with emission intensity from excited state species in the plasma. These observations support an ionization process which occurs via proton transfer from protonated water clusters to analyte molecules.

  12. Comparison of dielectric barrier discharge, atmospheric pressure radiofrequency-driven glow discharge and direct analysis in real time sources for ambient mass spectrometry of acetaminophen

    Science.gov (United States)

    Kratzer, Jan; Mester, Zoltán; Sturgeon, Ralph E.

    2011-08-01

    Three plasma-based ambient pressure ion sources were investigated; laboratory constructed dielectric barrier and rf glow discharges, as well as a commercial corona discharge (DART source). All were used to desorb and ionize a model analyte, providing sampling techniques for ambient mass spectrometry (MS). Experimental parameters were optimized to achive highest signal for acetaminophen as the analyte. Insight into the mechanisms of analyte desorption and ionization was obtained by means of emission spectrometry and ion current measurements. Desorption and ionization mechanisms for this analyte appear to be identical for all three plasma sources. Emission spectra differ only in the intensities of various lines and bands. Desorption of solid analyte requires transfer of thermal energy from the plasma source to sample surface, in the absence of which complete loss of MS response occurs. For acetaminophen, helium was the best plasma gas, providing 100- to 1000-fold higher analyte response than with argon or nitrogen. The same trend was also evident with background ions (protonated water clusters). MS analyte signal intensity correlates with the ion density (expressed as ion current) in the plasma plume and with emission intensity from excited state species in the plasma. These observations support an ionization process which occurs via proton transfer from protonated water clusters to analyte molecules.

  13. Development of a real time monitor and multivariate method for long term diagnostics of atmospheric pressure dielectric barrier discharges: application to He, He/N2, and He/O2 discharges.

    Science.gov (United States)

    O'Connor, N; Milosavljević, V; Daniels, S

    2011-08-01

    In this paper we present the development and application of a real time atmospheric pressure discharge monitoring diagnostic. The software based diagnostic is designed to extract latent electrical and optical information associated with the operation of an atmospheric pressure dielectric barrier discharge (APDBD) over long time scales. Given that little is known about long term temporal effects in such discharges, the diagnostic methodology is applied to the monitoring of an APDBD in helium and helium with both 0.1% nitrogen and 0.1% oxygen gas admixtures over periods of tens of minutes. Given the large datasets associated with the experiments, it is shown that this process is much expedited through the novel application of multivariate correlations between the electrical and optical parameters of the corresponding chemistries which, in turn, facilitates comparisons between each individual chemistry also. The results of these studies show that the electrical and optical parameters of the discharge in helium and upon the addition of gas admixtures evolve over time scales far longer than the gas residence time and have been compared to current modelling works. It is envisaged that the diagnostic together with the application of multivariate correlations will be applied to rapid system identification and prototyping in both experimental and industrial APDBD systems in the future. PMID:21895242

  14. A mass spectrometric study of ions extracted from a point-to-plane dc corona discharge in N{sub 2}O at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Skalny, J D; Orszagh, J [Department of Plasma Physics, Comenius University, Mlynska dolina F-2, 84248 Bratislava (Slovakia); Mason, N J [Department of Physics and Astronomy, Centre of Molecular and Optical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Rees, J A; Aranda-Gonzalvo, Y; Whitmore, T D [Plasma and Surface Analysis Division, Hiden Analytical Ltd, 420 Europa Boulevard, Warrington WA5 7UN (United Kingdom)], E-mail: Skalny@fmph.uniba.sk

    2008-04-21

    In this paper we report the first study of ions formed in both positive and negative point-to-plane corona discharges fed by N{sub 2}O containing less than 0.1% of H{sub 2}O at atmospheric pressure. Considerable differences were observed in the mass spectra of the ions produced from corona discharges of different polarities. In all the discharges the product ions were observed mainly in the form of clusters. However, in positive corona discharges only four major groups of cluster ions were monitored whereas in all corona discharges operated with negative polarity a much more varied and complex variety of negative ions was observed. The spectrum of positive ions is highly sensitive to the content of water vapour in nitrous oxide with H{sub 3} O{sup +} {center_dot} (H{sub 2}O){sub n} clusters (especially H{sub 3}O{sup +} {center_dot} (H{sub 2}O){sub 3}) and NO{sup +} {center_dot} (H{sub 2}O){sub n} clusters being the dominant products. The yield of NO{sup +} {center_dot} (H{sub 2}O){sub n} was found to increase strongly with increasing discharge current while the yield of H{sub 3}O{sup +} {center_dot} (H{sub 2}O){sub n} clusters was reduced. Spectra of ions detected in negative corona discharges contain clusters of NO{sup -}, NO{sub 2}{sup -}, NO{sub 3}{sup -} ions and also HNO{sub 3}{sup -} clustered with N{sub 2}O, NO, NO{sub 2}, H{sub 2}O and HNO{sub 3}. This paper reports how the yield of such ions is influenced by the plasma characteristics and discusses how these results may be explained by physical and chemical processes in the plasma.

  15. A mass spectrometric study of ions extracted from a point-to-plane dc corona discharge in N2O at atmospheric pressure

    International Nuclear Information System (INIS)

    In this paper we report the first study of ions formed in both positive and negative point-to-plane corona discharges fed by N2O containing less than 0.1% of H2O at atmospheric pressure. Considerable differences were observed in the mass spectra of the ions produced from corona discharges of different polarities. In all the discharges the product ions were observed mainly in the form of clusters. However, in positive corona discharges only four major groups of cluster ions were monitored whereas in all corona discharges operated with negative polarity a much more varied and complex variety of negative ions was observed. The spectrum of positive ions is highly sensitive to the content of water vapour in nitrous oxide with H3 O+ · (H2O)n clusters (especially H3O+ · (H2O)3) and NO+ · (H2O)n clusters being the dominant products. The yield of NO+ · (H2O)n was found to increase strongly with increasing discharge current while the yield of H3O+ · (H2O)n clusters was reduced. Spectra of ions detected in negative corona discharges contain clusters of NO-, NO2-, NO3- ions and also HNO3- clustered with N2O, NO, NO2, H2O and HNO3. This paper reports how the yield of such ions is influenced by the plasma characteristics and discusses how these results may be explained by physical and chemical processes in the plasma

  16. Characterizing uniform discharge in atmospheric helium by numerical modelling

    Institute of Scientific and Technical Information of China (English)

    Lü Bo; Wang Xin-Xin; Luo Hai-Yun; Liang Zhuo

    2009-01-01

    One-dimensional fluid model of dielectric barrier discharge (DBD) in helium at atmospheric pressure was estab-lished and the discharge was numerically simulated. It was found that not only the spatial distributions of the internal parameters such as the electric field, the electron density and ion density are similar to those in a low-pressure glow discharge, but also the visually apparent attribute (light emission) is exactly the same as the observable feature of a low-pressure glow discharge. This confirms that the uniform DBD in atmosphcric helium is a glow type discharge. The fact that the thickness of the cathode fall layer is about 0.5 ram, much longer than that of a normal glow dischargc in helium at atmospheric pressure, indicates the discharge being a sub-normal glow discharge close to normal one. The multipulse phenomenon was reproduced in the simulation and a much less complicated explanation for this phenomenon was given.

  17. Characteristics of Coaxial Dielectric Barrier Discharge at an Atmospheric Pressure with a Swirling Gas Argon/Oxygen Mixture for the Surface Modification of Polyester Fiber Cord

    International Nuclear Information System (INIS)

    A newly developed coaxial dielectric barrier discharge reactor with a length of 1000 mm at an atmospheric pressure was used for plasma treatment of polyester fiber cord in a roll-to-roll manner. In this reactor, swirling mixture gases of oxygen of about 1% and argon with a flow rate of 1.5 L/min to 2.7 L/min ensured the gas usage sparing, discharge uniformity and efficient fiber surface modification. The water contact angle and surface morphology of the treated fiber were measured. The results show that the surface oxygenation is mainly responsible for the wettability improvement of the fiber cord when passing through the plasma zone at a linear speed of 3 m/min to 8 m/min. The specimens of modified-polyester fiber reinforced rubber composite were also prepared for the interfacial shear strength tests. Furthermore, the effect of adding oxygen into argon discharge on the fiber surface oxidation was correlated with optical emission spectroscopy. Finally, the effect of adding oxygen into argon discharge on the kinetic processes of the active species generation were also analyzed.

  18. Sterilization and Mechanism of Microorganisms on A4 Paper by Dielectric Barrier Discharges Plasma at Atmospheric Pressure

    Science.gov (United States)

    Xianghong, Jia; Jun, Wan; Jinhua, Yang; Feng, Xu; Shouguo, Wang

    2009-10-01

    This study investigated the microorganisms' sterilization and mechanism by a DBD plasma device at atmospheric pressure. The device including a transfer system and two roller-electrodes is driven by sine-wave high voltages at frequencies of 15 kHz. Normal A4 papers were used to study the effects of the sterilization on their surfaces by analyzing the number of the living bacteria cells. The state of Escherichia coil's DNA were also measured by agarose gel electrophoresis after sterilization to analyze the inactivation mechanisms. Experimental results indicated that microorganisms on the surface of A4 Papers almost were destroyed while the papers went through the device and there was no any damage of the paper during the process. The main reason engendered bacteria death was due to the double chains of the DNA broken by the plasma.

  19. Relationship between rotational temperature and energy density in atmospheric pressure hollow-needle to plate electrical discharge

    Czech Academy of Sciences Publication Activity Database

    Pekárek, S.; Šimek, Milan

    2004-01-01

    Roč. 49, č. 5 (2004), s. 66. ISSN 0003-0503. [Annual Gaseous Electronics Conference /57./. Bunratty, 26.09.2004-29.09.2004] R&D Projects: GA AV ČR IAA1043403 Institutional research plan: CEZ:AV0Z2043910 Keywords : hollow needle to plate discharge, rotational temperature, vibrational distribution Subject RIV: BL - Plasma and Gas Discharge Physics

  20. Detection of Amines and Ammonia with an Ambient Pressure Mass Spectrometer using a Corona Discharge Ion Source, in an Urban Atmosphere and in a Teflon Film Chamber

    Science.gov (United States)

    Alves, M.; Hanson, D. R.; Grieves, C.; Ortega, J. V.

    2015-12-01

    Amines and ammonia are an important group of molecules that can greatly affect atmospheric particle formation that can go on to impact cloud formation and their scattering of thermal and solar radiation, and as a result human health and ecosystems. In this study, an Ambient Pressure Mass Spectrometer (AmPMS) that is selective and sensitive to molecules with a high proton affinity, such as amines, was coupled with a newly built corona discharge ion source. AmPMS was used to monitor many different nitrogenous compound that are found in an urban atmosphere (July 2015, Minneapolis), down to the single digit pmol/mol level. Simultaneous to this, a proton transfer mass spectrometer also sampled the atmosphere through an inlet within 20 m of the AmPMS inlet. In another set of studies, a similar AmPMS was attached to a large Teflon film chamber at the Atmospheric Chemistry Division at NCAR (August 2015, Boulder). Exploratory studies are planned on the sticking of amines to the chamber walls as well as oxidizing the amine and monitoring products. Depending on the success of these studies, results will be presented on the reversability of amine partitioning and mass balance for these species in the chamber.

  1. Nano-particle size-dependent charging and electro-deposition in dielectric barrier discharges at atmospheric pressure for thin SiO{sub x} film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jidenko, N [Equipe Decharges Electriques et Environnement du Laboratoire de Physique des Gaz et des Plasmas, UMR 8578 CNRS - Universite Paris-Sud Orsay, F-91405 Supelec, Plateau Moulon, F-91192 Gif Sur Yvette (France); Jimenez, C [Laboratoire de Genie Electrique de Toulouse, CNRS - Universite Paul Sabatier, Universite Paul Sabatier, 118 route de Narbonne, 31060 Toulouse (France); Massines, F [Laboratoire de Genie Electrique de Toulouse, CNRS - Universite Paul Sabatier, 118 route de Narbonne, 31060 Toulouse (France); Borra, J-P [Equipe Decharges Electriques et Environnement du Laboratoire de Physique des Gaz et des Plasmas, UMR 8578 CNRS - Universite Paris-Sud Orsay, F-91405 Supelec, Plateau Moulon, F-91192 Gif Sur Yvette (France)

    2007-07-21

    This paper focuses on charging and electro-deposition of nano-particles produced in a mixture of silane and nitrous oxide diluted in N{sub 2}, by dielectric barrier discharge (DBD) at atmospheric pressure for SiO{sub x} film deposition. Townsend discharge (TD) and filamentary discharge (FD) are compared with and without SiH{sub 4}. Without SiH{sub 4}, particles are produced by filament-surface interaction. Both filament-surface and plasma-silane interactions lead to bimodal particle size distributions from nucleation and agglomeration. With SiH{sub 4}, particle formation and growth imply the same mechanisms in TD and FD. Faster dynamics in FD are related to higher local volume energy density than in TD. From scanning electron microscope images of the film and measurements downstream of the DBD reactor, the diameter of the particle produced is below 50 nm. An analytical model of electro-collection in an ac electric field is used to investigate nano-particle charging. To account for selective electro-deposition leading to particles smaller than 50 nm being included in the layer and to particle size distribution measured downstream of the DBD, the same size-dependent charging and electro-deposition of particle are involved, with different charging dynamics in TD and FD.

  2. Hybrid model of atmospheric pressure Ar/O2/TiCl4 radio-frequency capacitive discharge for TiO2 deposition

    International Nuclear Information System (INIS)

    A hybrid global-analytical model of an atmospheric pressure radio-frequency driven capacitive discharge is applied to determine the plasma conditions for TiO2 film deposition. The feed gas is mainly argon with a small fraction of O2 and a smaller fraction of TiCl4. Variations of the discharge parameters and species densities with O2 concentration, discharge power, and flow rate are determined. A simplified chemistry model is developed and compared with the simulation results, showing good agreement. For a base case with Ar/O2/TiCl4 flow rates of 203/30/0.17 sccm, the results indicate that a minimum O2 fraction of 7.3 × 10−4 is required for pure (un-chlorinated) TiO2 film deposition that the active precursor species is TiO2Cl3, with subsequent abstraction of Cl atoms by dissociative electron attachment and that the deposition rates are around 1 nm/s

  3. Surface treatment of polypropylene (PP) film by 50 Hz dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure

    International Nuclear Information System (INIS)

    Thin films of polypropylene (PP) are treated for improving hydrophilicity using non-thermal plasma generated by 50 Hz line frequency dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure. PP samples before and after the treatments are studied using contact angle measurements, surface free energy calculations and scanning electron microscopy (SEM). Distilled water (H2O), glycerol (C3H8O3) and diiodomethane (CH2I2) are used as test liquids. The contact angle measurements between test liquids and PP samples are used to determine total surface free energy using sessile drop technique. PP films show a remarkable increase in surface free energy after plasma treatment. SEM analysis of the plasma-treated PP films shows that plasma treatment introduces greater roughness on the surface leading to the increased surface free energy. Furthermore, it is found that introducing a small quantity of argon can enhance the surface treatment remarkably

  4. Surface treatment of high density polyethylene (HDPE film by 50 Hz dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure

    Directory of Open Access Journals (Sweden)

    Joshi Ujjwal Man

    2015-03-01

    Full Text Available Thin films of high density polyethylene (HDPE are treated for improving hydrophilicity using non-thermal plasma generated by 50 Hz line frequency dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure. HDPE samples before and after the treatment are studied using contact angle measurements, surface free energy calculations and atomic force microscopy (AFM. Distilled water (H2O, glycerol (C3H8O3 and diiodomethane (CH2I2 are used as test liquids. The contact angle measurements between test liquids and HDPE samples are used to determine total surface free energy using sessile drop technique. HDPE films show a remarkable increase in surface free energy after plasma treatment. AFM analysis of the plasma-treated HDPE films shows that plasma treatment introduces greater roughness on the surface leading to the increased surface free energy. Furthermore, it is found that introducing a small quantity of argon can enhance the surface treatment remarkably.

  5. Liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source for elemental mass spectrometry: preliminary parametric evaluation and figures of merit.

    Science.gov (United States)

    Quarles, C Derrick; Carado, Anthony J; Barinaga, Charles J; Koppenaal, David W; Marcus, R Kenneth

    2012-01-01

    A new, low-power ionization source for the elemental analysis of aqueous solutions has recently been described. The liquid sampling-atmospheric pressure glow discharge (LS-APGD) source operates at relatively low currents (elements indicate that sodium concentrations of up to 50 μg mL(-1) generally cause suppressions of less than 50%, dependant upon the analyte species. Based on the results of this series of studies, preliminary limits of detection (LOD) have been established through the generation of calibration functions. While solution-based concentration LOD levels of 0.02-2 μg mL(-1) are not impressive on the surface, the fact that they are determined via discrete 5 μL injections leads to mass-based detection limits at picogram to single-nanogram levels. The overhead costs associated with source operation (10 W d.c. power, solution flow rates of elemental mass spectrometry. PMID:21910014

  6. Surface treatment of polypropylene (PP) film by 50 Hz dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure

    Science.gov (United States)

    Joshi, Ujjwal Man; Subedi, Deepak Prasad

    2015-07-01

    Thin films of polypropylene (PP) are treated for improving hydrophilicity using non-thermal plasma generated by 50 Hz line frequency dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure. PP samples before and after the treatments are studied using contact angle measurements, surface free energy calculations and scanning electron microscopy (SEM). Distilled water (H2O), glycerol (C3H8O3) and diiodomethane (CH2I2) are used as test liquids. The contact angle measurements between test liquids and PP samples are used to determine total surface free energy using sessile drop technique. PP films show a remarkable increase in surface free energy after plasma treatment. SEM analysis of the plasma-treated PP films shows that plasma treatment introduces greater roughness on the surface leading to the increased surface free energy. Furthermore, it is found that introducing a small quantity of argon can enhance the surface treatment remarkably.

  7. Investigation of the coplanar barrier discharge in synthetic air at atmospheric pressure by cross-correlation spectroscopy

    International Nuclear Information System (INIS)

    The barrier discharge in the coplanar arrangement operating in a single-filament mode was studied spectroscopically. The evolution of the discharge luminosity was measured by the technique of cross-correlation spectroscopy. The 1D-spatially and temporally resolved luminosities of the first negative (at 391.5 nm) and the second positive (at 337.1 nm) system of molecular nitrogen were recorded using the above-mentioned technique. A cathode-directed ionizing wave (IW) was clearly seen on the plot for radiation intensity at 337.1 nm. In addition to this, also observed was a wave of the enhanced electric field propagating over the anode. In this paper, the propagation of these waves is described and their velocities are determined. The discharge evolution is divided into three phases-the Townsend phase, the phase of the IWs propagation and the extinction phase. Since the above-mentioned luminosity distributions could be interpreted approximately as the electric field (for 391.5 nm) and the electron density (for 337.1 nm) distribution, the qualitative description of the discharge is made accordingly. All these parameters are compared with similar measurements of the volume discharge. Apart from this, an attempt to determine the reduced electric field is made according to the kinetic model

  8. Vibrational and rotational CARS measurements of nitrogen in afterglow of streamer discharge in atmospheric pressure fuel/air mixtures

    International Nuclear Information System (INIS)

    The use of nonequilibrium plasma generated by nanosecond discharges to ignite fuel/air mixtures, known as transient plasma ignition (TPI), has been shown to effectively reduce ignition delay and improve engine performance relative to spark ignition for combustion engines. While this method is potentially useful for many engine applications, at present the underlying physics are poorly understood. This work uses coherent anti-Stokes Raman spectroscopy (CARS) to measure the rotational and vibrational excitation of nitrogen molecules in the discharge afterglow in a variety of fuel/air mixtures outside the limits of combustion in order to elucidate the thermal behaviour of TPI. The time evolution of relative populations of vibrationally excited states of nitrogen in the electronic ground state are reported for each gas mixture; it is shown that generation of these vibrationally excited states is inefficient during the discharge in air but that generation occurs at a high rate roughly 5 µs following the discharge; with the addition of fuels vibrationally excited states are observed during the discharge but an increase in population is still seen at 5 µs. Possible mechanisms for this behaviour are discussed. In addition, rotational temperature increases of at least 500 K are reported for all gas mixtures. The effect of this temperature increase on ignition, reaction rates, and thermal energy pathways are discussed.

  9. Absolute OH density measurements by broadband UV absorption in diffuse atmospheric-pressure He–H2O RF glow discharges

    International Nuclear Information System (INIS)

    The measurement of radical densities in atmospheric-pressure plasmas has gained increasing importance in recent years in view of their crucial role in many applications. In this paper we present absolute OH density measurements by broadband UV absorption in diffuse atmospheric-pressure RF glow discharges in mixtures of He and H2O. The use of a 310 nm light-emitting diode as a light source and a very high resolution spectrometer (2.6 pm resolution) made the estimation of the total OH density possible by simultaneously measuring the absorption rates of different spectrally resolved rotational lines of the OH(A–X) transition. For different RF powers and water concentrations, OH densities and gas temperatures ranging between 6 × 1019and 4 × 1020 m−3 and 345 and 410 K, respectively, were obtained. The gas temperature Tg was also measured by three different methods. Tg deduced from the rotational temperature of N2(C–B) emission, nitrogen being present as a trace impurity, provided the most reliable value. The rotational temperature Tr of the ground state OH(X) presented values with a maximum deviation of 25 K compared with Tg. To obtain the gas temperature from the emission intensities of OH(A–X) rotational lines, the recorded intensities of different lines must be corrected for the effect of self-absorption inside the plasma. (paper)

  10. Characteristics of SiOX thin films deposited by atmospheric pressure chemical vapor deposition using a double-discharge system

    International Nuclear Information System (INIS)

    SiOX thin films were deposited using a gas mixture of hexamethyldisilazane (HMDS)/O2/He/Ar from a remote-type dielectric barrier discharges (DBD) source, with/without the additional direct-type DBD just above the substrate (double discharge), and the effect of the double discharge on the characteristics of the SiOX thin film was investigated. The increase of HMDS flow rate and the decrease of oxygen flow rate in the gas mixture increased the SiOX-thin-film deposition rate. The improvement of the mechanical properties for SiOX film, in addition to the increase of deposition rate, is believed to be related not only to the higher gas dissociation because of the higher power deposition but also to the lesser recombination of oxygen atoms and dissociated HMDS due to the shorter diffusion length to the substrate.

  11. 针-板DBD微流注与微辉光交替生成的机理研究%Atmospheric pressure streamer and glow-discharge generated alternately by pin-to-plane dielectric barrier discharge in air

    Institute of Scientific and Technical Information of China (English)

    俞哲; 张芝涛; 于清旋; 许少杰; 姚京; 白敏冬; 田一平; 刘开颖

    2012-01-01

    Performance of producing a high energy electron can be improved, if the glow discharge is generated in a system of dielectric barrier discharge. In this paper, different discharge modes of pin-to-plane dielectric barrier discharge are investigated in atmospheric pressure. Different discharge modes are observed in the positive half-period and negative half-period of the discharge. When and applied voltage is 3 kV, a streamer mode appear in the positive half-period and a corona (or Trichel discharge) mode occurs in negative half-period. When the applied voltage is 6 kV, a streamer emerges in the positive half-period and a micro glow discharge is present in the negative half-period. The micro glow discharge has hierarchical structure like that typical low pressure glow discharge produces. The generation of micro glow discharge is due to, enough strong cathode electric field strength and effective secondary electron emission process around naked negative electrode. The glow discharge transforming to arc discharge is avoided due to dielectric layer.%在介质阻挡放电体系中产生辉光放电可以有效的提高放电体系产生高能电子的性能,为等离子体化学反应提供更加丰富的活性粒子.本文对针一板介质阻挡放电体系下的放电模式进行了研究,实验发现放电正负半周期表现出不同的放电模式,激励电压为3kV时放电正负半周期分别为微流注放电和电晕放电(或者Trichel脉冲放电),激励电压为6kV时放电正负半周期分别为微流注放电和微辉光放电.微辉光放电形貌具有与典型辉光放电相同的分层次放电结构,分析了激励电压6kV时的放电过程,认为足够强的阴极电场强度和裸露针状电极形成的有效的二次电子发射过程是形成微辉光放电的主要因素,绝缘介质层的存在避免了微辉光放电向弧光放电过渡.

  12. Formation of NOx from N2 and O2 in catalyst-pellet filled dielectric barrier discharges at atmospheric pressure.

    Science.gov (United States)

    Sun, Qi; Zhu, Aimin; Yang, Xuefeng; Niu, Jinhai; Xu, Yong

    2003-06-21

    At temperatures above 350 degrees C, significant amounts of NOx formed from N2 and O2 have been observed in Cu-ZSM-5 catalyst-pellet filled dielectric barrier discharges, indicating the necessity of using low-temperature performance in all plasma-catalytic processes for removal of air pollutants. PMID:12841270

  13. Removal of Water Pollutants by Pulsed Discharge Plasma and Observation of Its Optical Emission Intensity at Atmospheric Pressure

    Science.gov (United States)

    Hayashi, Yui; Wahyudiono; Machmudah, Siti; Kanda, Hideki; Takada, Noriharu; Sasaki, Koichi; Goto, Motonobu

    2013-11-01

    Pulsed discharge plasma over the liquid surface was observed in the needle electrode configuration. The characteristics of streamer propagation including its optical emission intensity were investigated by using the intensified charge coupled device (ICCD) camera. The experiment was conducted at 313 K, 0.1 MPa argon in a batch-type reactor with methyl orange as a starting material. The characteristic of pulsed streamers were started from the electrode placed above the methyl orange liquid surface and then reached the methyl orange liquid surface, where they propagated on it. The propagation of pulsed streamers and their progression distance increased with the increase in peak voltage value. The optical emission intensity increased immediately after the breakdown; and it increased to its peak value when the applied voltage reached its peak value. After pulsed discharge plasma treatment, methyl orange degraded into its derived compounds with the appearance of light color. UV-vis spectrophotometer analyzed that the intermediate compounds from the degradation of methyl orange consist primarily of aromatic compounds which contain nitrogen functional groups. The degradation of methyl orange is 99% when the number of discharge plasma was 20000×. With increasing the pulse discharge numbers, the pH and the conductivity of methyl orange solution changed clearly.

  14. Comparison of dielectric barrier discharge, atmospheric pressure radiofrequency-driven glow discharge and direct analysis in real time sources for ambient mass spectrometry of acetaminophen

    Czech Academy of Sciences Publication Activity Database

    Kratzer, Jan; Mester, Z.; Sturgeon, R. E.

    2011-01-01

    Roč. 66, č. 8 (2011), s. 594-603. ISSN 0584-8547 Grant ostatní: Akademie věd České republiky(CZ) M200310971 Institutional research plan: CEZ:AV0Z40310501 Keywords : ambient mass spectrometry * direct analysis in real time * dielectric barrier discharge Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.876, year: 2011

  15. Synthesis of Nanoparticles using Atmospheric Microplasma Discharge

    International Nuclear Information System (INIS)

    Silver nanoparticles have been synthesized by the reduction of aqueous AgNO3 solution, with sucrose as a stabilizing agent, using Atmospheric Microplasma discharge (AMP). The microplasma caused the aqueous metal ions present in the solution to reduce and nucleate into nanoparticles at ambient conditions (room temperature and atmospheric pressure) without presence of any chemical reducing agents. Highly mono-dispersed silver nanoparticles were obtained and analyzed using FESEM, UV/Visible absorption and DLS (Dynamic Light Scattering). This AMP based nanofabrication offers a simple, fast, cost effective and an environment friendly technique for the fabrication of silver nanoparticles which in principle can be extended to the reduction of any cationic species through plasma-liquid coupling. (author)

  16. Electrohydrodynamic force produced by a wire-to-cylinder dc corona discharge in air at atmospheric pressure

    Science.gov (United States)

    Moreau, Eric; Benard, Nicolas; Lan-Sun-Luk, Jean-Daniel; Chabriat, Jean-Pierre

    2013-11-01

    Wire-to-cylinder corona discharges are studied to better understand the electrohydrodynamic (EHD) phenomena that govern the performances of electric propulsion systems. First, theory associated with EHD thrusters is presented in order to be compared with experimental results. Secondly, direct thrust measurements are carried out to optimize the electrical and geometrical parameters of such devices. The main results are as follows: (1) the discharge current I is proportional to the square root of the grounded electrode diameter and to 1/d2 where d is the electrode gap; (2) for d ⩽ 20 mm, the mobility of negative ions is higher than that of positive ions while the mobility of both ions is equal for higher gaps; (3) therefore, for gap ⩾30 mm, positive and negative coronas results in the same current-to-thrust conversion; (4) the current-to-thrust conversion is equal to 33 N A-1 per centimetre of gap, and it is proportional to the gap; (5) the thruster effectiveness θ increases with \\sqrt d , decreases with the square root of thrust and reaches about 15 N kW-1 for d = 40 mm (6) the force computed from experimental velocity profiles is overestimated compared with the values measured with a balance, showing that this method cannot be used for thrust determination.

  17. Measurement of metastable He*(23S1) density in dielectric barrier discharges with two different configurations operating at around atmospheric pressure

    International Nuclear Information System (INIS)

    We have measured the density of metastable He atoms in the lowest triplet state (23S1) with a diode-laser absorption spectroscopic technique in atmospheric pressure plasmas produced by dielectric barrier discharge schemes. Two different types of electrode configuration are employed: one is a conventional parallel-plate system and the other is a microdischarge integrated system with stacked metal-mesh electrodes covered by insulating films. We have analyzed the pressure-broadened spectral line corresponding to the 23S1→23PJ (J=0-2) transition to derive the broadening coefficient and to calibrate absolute densities. The measured density ranges from 1011 to 1012 cm-3, but the values in the mesh-type system are larger than those in the parallel-plate system by about one order of magnitude. The density, however, depends strongly on the gas flow rate, showing the influence of quenching by the Penning-ionization process with impurities. Those behaviors are consistent with the variation of the electron density estimated by millimeter-wave transmittance measurement

  18. Effects of N2O and O2 addition to nitrogen Townsend dielectric barrier discharges at atmospheric pressure on the absolute ground-state atomic nitrogen density

    KAUST Repository

    Es-sebbar, Et-touhami

    2012-11-27

    Absolute ground-state density of nitrogen atoms N (2p3 4S3/2) in non-equilibrium Townsend dielectric barrier discharges (TDBDs) at atmospheric pressure sustained in N2/N2O and N2/O2 gas mixtures has been measured using Two-photon absorption laser-induced fluorescence (TALIF) spectroscopy. The quantitative measurements have been obtained by TALIF calibration using krypton as a reference gas. We previously reported that the maximum of N (2p3 4S3/2) atom density is around 3 × 1014 cm-3 in pure nitrogen TDBD, and that this maximum depends strongly on the mean energy dissipated in the gas. In the two gas mixtures studied here, results show that the absolute N (2p3 4S3/2) density is strongly affected by the N2O and O2 addition. Indeed, the density still increases exponentially with the energy dissipated in the gas but an increase in N2O and O2 amounts (a few hundreds of ppm) leads to a decrease in nitrogen atom density. No discrepancy in the order of magnitude of N (2p3 4S3/2) density is observed when comparing results obtained in N2/N2O and N2/O2 mixtures. Compared with pure nitrogen, for an energy of ∼90 mJ cm-3, the maximum of N (2p3 4S3/2) density drops by a factor of 3 when 100 ppm of N2O and O2 are added and it reduces by a factor of 5 for 200 ppm, to reach values close to our TALIF detection sensitivity for 400 ppm (1 × 1013 cm -3 at atmospheric pressure). © 2013 IOP Publishing Ltd.

  19. The dynamics of ozone generation and mode transition in air surface micro-discharge plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    We present the transient, dynamic behavior of ozone production in surface micro-discharge (SMD) plasma in ambient air. Ultraviolet absorption spectroscopy at 254 nm was used to measure the time development of ozone density in a confined volume. We observed that ozone density increases monotonically over 1000 ppm for at least a few minutes when the input power is lower than ∼0.1 W/cm2. Interestingly, when input power is higher than ∼0.1 W/cm2, ozone density starts to decrease in a few tens of seconds at a constant power density, showing a peak ozone density. A model calculation suggests that the ozone depletion at higher power density is caused by quenching reactions with nitrogen oxides that are in turn created by vibrationally excited nitrogen molecules reacting with O atoms. The observed mode transition is significantly different from classical ozone reactors in that the transition takes place over time at a constant power. In addition, we observed a positive correlation between time-averaged ozone density and the inactivation rate of Escherichia coli on adjacent agar plates, suggesting that ozone plays a key role in inactivating bacteria under the conditions considered here. (paper)

  20. Ozone kinetics in low-pressure discharges

    Science.gov (United States)

    Guerra, Vasco; Marinov, Daniil; Guaitella, Olivier; Rousseau, Antoine

    2012-10-01

    Ozone kinetics is quite well established at atmospheric pressure, due to the importance of ozone in atmospheric chemistry and to the development of industrial ozone reactors. However, as the pressure is decreased and the dominant three-body reactions lose importance, the main mechanisms involved in the creation and destruction of ozone are still surrounded by important uncertainties. In this work we develop a self-consistent model for a pulsed discharge and its afterglow operating in a Pyrex reactor with inner radius 1 cm, at pressures in the range 1-5 Torr and discharge currents of 40-120 mA. The model couples the electron Boltzmann equation with a system of equations for the time evolution of the heavy particles. The calculations are compared with time-dependent measurements of ozone and atomic oxygen. Parametric studies are performed in order to clarify the role of vibrationally excited ozone in the overall kinetics and to establish the conditions where ozone production on the surface may become important. It is shown that vibrationally excited ozone does play a significant role, by increasing the time constants of ozone formation. Moreover, an upper limit for the ozone formation at the wall in these conditions is set at 10(-4).

  1. Surface treatment of polypropylene (PP) film by 50 Hz dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ujjwal Man, E-mail: umjoshi@gmail.com; Subedi, Deepak Prasad, E-mail: deepaksubedi2001@yahoo.com [Department of Natural Sciences (Physics), School of Science, Kathmandu University P. O. Box No. 6250, Dhulikhel, Kathmandu, Nepal (India)

    2015-07-31

    Thin films of polypropylene (PP) are treated for improving hydrophilicity using non-thermal plasma generated by 50 Hz line frequency dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure. PP samples before and after the treatments are studied using contact angle measurements, surface free energy calculations and scanning electron microscopy (SEM). Distilled water (H{sub 2}O), glycerol (C{sub 3}H{sub 8}O{sub 3}) and diiodomethane (CH{sub 2}I{sub 2}) are used as test liquids. The contact angle measurements between test liquids and PP samples are used to determine total surface free energy using sessile drop technique. PP films show a remarkable increase in surface free energy after plasma treatment. SEM analysis of the plasma-treated PP films shows that plasma treatment introduces greater roughness on the surface leading to the increased surface free energy. Furthermore, it is found that introducing a small quantity of argon can enhance the surface treatment remarkably.

  2. Preliminary Figures of Merit for Isotope Ratio Measurements: The Liquid Sampling-Atmospheric Pressure Glow Discharge Microplasma Ionization Source Coupled to an Orbitrap Mass Analyzer

    Science.gov (United States)

    Hoegg, Edward D.; Barinaga, Charles J.; Hager, George J.; Hart, Garret L.; Koppenaal, David W.; Marcus, R. Kenneth

    2016-08-01

    In order to meet a growing need for fieldable mass spectrometer systems for precise elemental and isotopic analyses, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) has a number of very promising characteristics. One key set of attributes that await validation deals with the performance characteristics relative to isotope ratio precision and accuracy. Owing to its availability and prior experience with this research team, the initial evaluation of isotope ratio (IR) performance was performed on a Thermo Scientific Exactive Orbitrap instrument. While the mass accuracy and resolution performance for Orbitrap analyzers are well-documented, no detailed evaluations of the IR performance have been published. Efforts described here involve two variables: the inherent IR precision and accuracy delivered by the LS-APGD microplasma and the inherent IR measurement qualities of Orbitrap analyzers. Important to the IR performance, the various operating parameters of the Orbitrap sampling interface, high-energy collisional dissociation (HCD) stage, and ion injection/data acquisition have been evaluated. The IR performance for a range of other elements, including natural, depleted, and enriched uranium isotopes was determined. In all cases, the precision and accuracy are degraded when measuring low abundance (abundance species. The results suggest that the LS-APGD is a promising candidate for field deployable MS analysis and that the high resolving powers of the Orbitrap may be complemented with a here-to-fore unknown capacity to deliver high-precision IRs.

  3. Influence of complex impact of the picosecond electron beam and volume discharge in atmospheric-pressure air on the electronic properties of MCT epitaxial films surface

    Science.gov (United States)

    Grigoryev, Denis V.; Novikov, Vadim A.; Bezrodnyy, Dmitriy A.; Tarasenko, Viktor F.; Shulepov, Michail A.; Dvoretskii, Sergei A.

    2015-12-01

    In the present report we studied the distribution of surface potential of the HgCdTe epitaxial films grown by molecular beam epitaxy after the impact of picosecond electron beam and volume discharge in atmospheric-pressure air. The surface potential distribution was studied by the Kelvin Force Probe Microscopy. The experimental data obtained for the variation of the contact potential difference (ΔCPD) between the V-defect and the main matrix of the epitaxial film. The investigation of the origin epitaxial films show that variation of the spatial distribution of surface potential in the V-defect region can be related to the variation of the material composition. The experimental data obtained for the irradiated samples show that the mean value of ΔCPD for the original surface differs from the one for the irradiated surface for 55 eV. At the same time the mean value of ΔCPD changes its sign indicating that the original surface of the epitaxial HgCdTe film predominantly contains the grains with increased cadmium content while after the irradiation the grains possess an increased content of mercury. Therefore, during the irradiation process a decrease of the mercury content in the near-surface region of the semiconductor takes place resulting in the alteration of the electrophysical properties in the films near-surface region.

  4. Effects of H3O+, OH-, \\text{O}_{2}^{-} , \\text{NO}_{\\text{x}}^{-} and NO x for Escherichia coli inactivation in atmospheric pressure DC corona discharges

    Science.gov (United States)

    Sekimoto, Kanako; Gonda, Rena; Takayama, Mitsuo

    2015-08-01

    The effects of ionic and neutral species such as H3O+, OH-, \\text{O}2- , \\text{NO}x- (x = 2, 3), and NO x on Escherichia coli (E. coli) inactivation in gas and liquid phases was investigated using atmospheric pressure DC corona discharges with point-to-plane electrodes. The above chemical species as well as OH and O3 were selectively irradiated onto E. coli suspensions on agar plates using a needle angle of 45° with respect to the plates, airflow, and a grid plate. Irradiation with the positive ion H3O+ did not inactivate E. coli, while the negative ions OH-/\\text{O}2- resulted in bactericidal inactivation, in both gas and liquid phases. In contrast, the negative ions \\text{NO}x- and neutral species NO x in the gas phase had quite strong bactericidal effects on E. coli compared to those species in the liquid phase. These results suggest that liquid-phase HNO3, formed primarily via the reaction of gas-phase \\text{NO}x- and NO x with H2O in agar, has only a weak inactivation effect on E. coli. Furthermore, using naphthylethylenediamine spectrophotometry, the threshold amount of gas-phase \\text{NO}x- and NO x for E. coli inactivation was determined to be  ≈1.3   ×   10-9 mol mm-1.

  5. Integrated coaxial-hollow micro dielectric-barrier-discharges for a large-area plasma source operating at around atmospheric pressure

    International Nuclear Information System (INIS)

    An integrated structure of coaxial-hollow micro dielectric-barrier-discharges has been developed by stacking two metal meshes covered with insulating material. The test panel has an effective area of 50 mm diameter in which hundreds of hollow structures are assembled with a unit hollow area of 0.2 x 1.7 mm2. He or N2 was used as the discharge gas in the pressure range from 20 to 100 kPa and the firing voltage was less than 2 kV, even at the maximum pressure. The intensity of each microdischarge was observed to be uniform over the whole area throughout the pressure range, and its time evolution during one discharge pulse was analysed through two-dimensional microscopic observation with a gated CCD camera. In a gas flow regime through the coaxial hollow structures, several significant changes of the discharge properties were observed, such as impurity reduction, decrease in discharge voltage and cooling of the neutral gas. The fundamental plasma parameters were measured using a single probe in the downstream region of microdischarges using an auxiliary flat electrode set apart from the mesh electrode plane. The occurrence of an extended glow with a length of some millimetres was observed in He but not in N2. The electron density derived by the probe data in He at 100 kPa was ∼3 x 1011 cm-3, suggesting a value of more than 1012 cm-3 in the active microdischarge region

  6. Atmospheric pressure plasma jet applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.; Herrmann, H.W.; Henins, I.; Selwyn, G.S. [Los Alamos National Lab., NM (United States)

    1998-12-31

    The atmospheric pressure plasma jet (APPJ) is a non-thermal, high pressure plasma discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g., He/O2/H2O) which flows between two concentric cylindrical electrodes: an outer grounded electrode and an inner electrode powered at 13.56 MHz RF. While passing through the plasma, the feedgas becomes excited, ionized or dissociated by electron impact. The fast-flowing effluent consists of ions and electrons, which are rapidly lost by recombination, highly reactive radicals (e.g., O, OH), and metastable species (e.g., O2). The metastable O2, which is reactive to hydrocarbon and other organic species, has been observed through optical emission spectroscopy to decrease by a factor of 2 from the APPJ nozzle exit to a distance of 10 cm. Unreacted metastable O2, and that which does not impinge on a surface, will then decay back to ordinary ground state O2, resulting in a completely dry, environmentally-benign form of surface cleaning. Applications such as removal of photoresist, oxide films and organic residues from wafers for the electronics industry, decontamination of civilian and military areas and personnel exposed to chemical or biological warfare agents, and paint (e.g., graffiti) removal are being considered.

  7. Preliminary Figures of Merit for Isotope Ratio Measurements: The Liquid Sampling-Atmospheric Pressure Glow Discharge Microplasma Ionization Source Coupled to an Orbitrap Mass Analyzer

    Science.gov (United States)

    Hoegg, Edward D.; Barinaga, Charles J.; Hager, George J.; Hart, Garret L.; Koppenaal, David W.; Marcus, R. Kenneth

    2016-04-01

    In order to meet a growing need for fieldable mass spectrometer systems for precise elemental and isotopic analyses, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) has a number of very promising characteristics. One key set of attributes that await validation deals with the performance characteristics relative to isotope ratio precision and accuracy. Owing to its availability and prior experience with this research team, the initial evaluation of isotope ratio (IR) performance was performed on a Thermo Scientific Exactive Orbitrap instrument. While the mass accuracy and resolution performance for Orbitrap analyzers are well-documented, no detailed evaluations of the IR performance have been published. Efforts described here involve two variables: the inherent IR precision and accuracy delivered by the LS-APGD microplasma and the inherent IR measurement qualities of Orbitrap analyzers. Important to the IR performance, the various operating parameters of the Orbitrap sampling interface, high-energy collisional dissociation (HCD) stage, and ion injection/data acquisition have been evaluated. The IR performance for a range of other elements, including natural, depleted, and enriched uranium isotopes was determined. In all cases, the precision and accuracy are degraded when measuring low abundance (<0.1% isotope fractions). In the best case, IR precision on the order of 0.1% RSD can be achieved, with values of 1%-3% RSD observed for low-abundance species. The results suggest that the LS-APGD is a promising candidate for field deployable MS analysis and that the high resolving powers of the Orbitrap may be complemented with a here-to-fore unknown capacity to deliver high-precision IRs.

  8. Electrical and spectral characteristics of an atmospheric pressure argon plasma jet generated with tube-ring electrodes in surface dielectric barrier discharge

    International Nuclear Information System (INIS)

    An atmospheric-pressure argon plasma jet is generated with tube-ring electrodes in surface dielectric barrier discharge by a sinusoidal excitation voltage at 8 kHz. The electrical and spectral characteristics are estimated such as conduction and displacement current, electric-field, electron temperature, rotational temperature of N2 and OH, electronic excitation temperature, and oxygen atomic density. It is found that the electric-field magnitudes in the top area of the ground electrode are higher than that in the bottom area of the power electrode, and the electron temperature along radial direction is in the range of 9.6–10.4 eV and along axial direction in the range of 4.9–10 eV. The rotational temperature of N2 obtained by comparing the simulated spectrum with the measured spectrum at the C3Πu → B3Πg(Δv = − 2) band transition is in the range of 342–387 K, the electronic excitation temperature determined by Boltzmann's plot method is in the range of 3188–3295 K, and the oxygen atomic density estimated by the spectral intensity ratio of atomic oxygen line λ = 844.6 nm to argon line λ = 750.4 nm is in the order of magnitude of 1016 cm−3, respectively. - Highlights: ► The conduction and displacement current are calculated by equivalent circuit diagram. ► The 2D distribution of electric-field magnitude is calculated by ElecNet software. ► The electron temperature along axial direction is in the range of 4.9–10 eV. ► The oxygen atomic density is about a magnitude of 1016 cm−3

  9. Preliminary Figures of Merit for Isotope Ratio Measurements: The Liquid Sampling-Atmospheric Pressure Glow Discharge Microplasma Ionization Source Coupled to an Orbitrap Mass Analyzer

    Science.gov (United States)

    Hoegg, Edward D.; Barinaga, Charles J.; Hager, George J.; Hart, Garret L.; Koppenaal, David W.; Marcus, R. Kenneth

    2016-08-01

    In order to meet a growing need for fieldable mass spectrometer systems for precise elemental and isotopic analyses, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) has a number of very promising characteristics. One key set of attributes that await validation deals with the performance characteristics relative to isotope ratio precision and accuracy. Owing to its availability and prior experience with this research team, the initial evaluation of isotope ratio (IR) performance was performed on a Thermo Scientific Exactive Orbitrap instrument. While the mass accuracy and resolution performance for Orbitrap analyzers are well-documented, no detailed evaluations of the IR performance have been published. Efforts described here involve two variables: the inherent IR precision and accuracy delivered by the LS-APGD microplasma and the inherent IR measurement qualities of Orbitrap analyzers. Important to the IR performance, the various operating parameters of the Orbitrap sampling interface, high-energy collisional dissociation (HCD) stage, and ion injection/data acquisition have been evaluated. The IR performance for a range of other elements, including natural, depleted, and enriched uranium isotopes was determined. In all cases, the precision and accuracy are degraded when measuring low abundance (<0.1% isotope fractions). In the best case, IR precision on the order of 0.1% RSD can be achieved, with values of 1%-3% RSD observed for low-abundance species. The results suggest that the LS-APGD is a promising candidate for field deployable MS analysis and that the high resolving powers of the Orbitrap may be complemented with a here-to-fore unknown capacity to deliver high-precision IRs.

  10. Measurement of ion density in an atmospheric pressure argon with pin-to-plate dielectric barrier discharge by resonance of plasma radiation

    International Nuclear Information System (INIS)

    The measurements of the ion densities in the atmospheric AC barrier corona argon discharge are carried out by receiving and analyzing the frequencies of the electromagnetic radiation emitted from the plasma. An auxiliary excitation source composed of a pin-to-pin discharge system is introduced to excite the oscillations of the main discharge. To analyze the resonance mechanism, a complemented model based on a one-dimensional description of forced vibrations is given. Calculations indicate that Ar2+ is the dominant ion (∼89% in number density). By analyzing resonance frequencies, the ion densities of Ar2+ are in the order of 1019∼1020m−3 and increase slowly as the applied voltage increases

  11. ICCD microscopy and spectroscopy of a single surface coplanar DBD micro-discharge driven in N2, O2 and in synthetic air at atmospheric pressure

    Czech Academy of Sciences Publication Activity Database

    Šimek, Milan

    Vol. 1. Bratislava: Comenius University, 2010 - (Országh, J.; Papp, P.; Matejčík, Š.), s. 188-192 ISBN 978-80-89186-72-3. [International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XII)/12th./. Kúpeľná Dvorana, Trenčianske Teplice (SK), 12.09.2010-17.09.2010] R&D Projects: GA ČR GA202/08/1106 Institutional research plan: CEZ:AV0Z20430508 Keywords : Coplanar surface dielectric barrier discharge * metastables * ICCD microscopy Subject RIV: BL - Plasma and Gas Discharge Physics http://neon.dpp.fmph.uniba.sk/hakoneXII

  12. A change in the electro-physical properties of narrow-band CdHgTe solid solutions acted upon by a volume discharge induced by an avalanche electron beam in the air at atmospheric pressure

    Science.gov (United States)

    Voitsekhovskii, A. V.; Grigor'ev, D. V.; Korotaev, A. G.; Kokhanenko, A. P.; Tarasenko, V. F.; Shulepov, M. A.

    2012-03-01

    The effect of a nanosecond volume discharge forming in an inhomogeneous electrical field at atmospheric pressure on the CdHgTe (MCT) epitaxial films of the p-type conduction with the hole concentration 2·1016 cm3 and mobility 500 cm2·V-1·s-1 is studied. The measurement of the electrophysical parameters of the MCT specimens upon irradiation shows that a layer exhibiting the n-type conduction is formed in the near-surface region of the epitaxial films. After 600 pulses and more, the thickness and the parameters of the layer are such that the measured field dependence of the Hall coefficient corresponds to the material of the n-type conduction. Analysis of the preliminary results reveals that the foregoing nanosecond volume discharge in the air at atmospheric pressure is promising for modification of electro-physical MCT properties.

  13. Discharge models through the pressurizer valves

    International Nuclear Information System (INIS)

    A reliable estimate of discharge through the pressurizer relief and safety valves is of concern to adequately predict the behaviour of RCS pressure during transients. It's investigated the discharge models used by the ALMOD code, and to implement alternative models from the available literature, which are recommended for different conditions of flow that shall exist during transients requiring discharge through the relief and safety valves. (Author)

  14. Atmospheric discharges and particle fluxes

    Science.gov (United States)

    Chilingarian, A.; Chilingaryan, S.; Reymers, A.

    2015-07-01

    Fluxes of the electrons, gamma rays, and neutrons observed by particle detectors located on the Earth's surface during thunderstorms originate so-called Thunderstorm Ground Enhancements (TGEs). The relativistic runaway electron avalanches giving rise to TGEs originate in the thundercloud's lower dipole between the main negatively charged region in the middle of the thundercloud and transient lower positively charged region. Acceleration of electrons in the upper dipole between main negative and main positive charge regions leads to initiation of the terrestrial gamma flashes (TGFs) intensive researched during the last two decades by orbiting gamma ray observatories. TGFs are exceptionally intense, submillisecond bursts of electromagnetic radiation directed to the open space from the thunderstorm atmosphere. Unlike visible lightning, TGF beams do not create a hot plasma channel and optical flash; hence, in the literature they got name "dark lightning." We investigate the TGEs development in 1 min and 1 s time series of particle detector count rates. Synchronized time series of the near-surface electric field and lightning occurrences allows interconnecting two atmospheric phenomena. Registration of the Extensive Air Showers allows approaching problems of relation of the lightning occurrences and particle fluxes.

  15. Effect of Pulse Nanosecond Volume Discharge in Air at Atmospheric Pressure on Electrical Properties of Mis Structures Based on p-HgCdTe Grown by Molecular Beam Epitaxy

    Science.gov (United States)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.; Grigor'ev, D. V.; Tarasenko, V. F.; Shulepov, M. A.

    2015-11-01

    The effect of the pulse nanosecond volume discharge in air at atmospheric pressure on the admittance of MIS structures based on MBE graded-gap p-Hg0.78Cd0.22Te is studied in a wide range of frequencies and temperatures. It is shown that the impact of the discharge leads to significant changes in electrical characteristics of MIS structures (the density of positive fixed charge increases), to the changes in the nature of the hysteresis of capacitance-voltage characteristics, and to an increase in the density of surface states. A possible reason for the changes in the characteristics of MIS structures after exposure to the discharge is substantial restructuring of the defect-impurity system of the semiconductor near the interface.

  16. A comparative study on the frequency effects of the electrical characteristics of the pulsed dielectric barrier discharge in He/O2 and in Ar/O2 at atmospheric pressure

    Science.gov (United States)

    Pan, Guangsheng; Tan, Zhenyu; Pan, Jie; Wang, Xiaolong; Shan, Chunhong

    2016-04-01

    In this work, a comparative study on the frequency effects of the electrical characteristics of the pulsed dielectric barrier discharges in He/O2 and in Ar/O2 at atmospheric pressure has been performed by means of the numerical simulation based on a 1-D fluid model at frequencies below 100 kHz. The frequency dependences of the characteristic quantities of the discharges in the two gases have been systematically calculated and analyzed under the oxygen concentrations below 2%. The characteristic quantities include the discharge current density, the averaged electron density, the electric field, and the averaged electron temperature. Especially, the frequency effects on the averaged particle densities of the reactive species have also been calculated. This work gives the following significant results. For the two gases, there are two bipolar discharges in one period of applied voltage pulse under the considered frequency range and oxygen concentrations, as occurred in the pure noble gases. The frequency affects the two discharges in He/O2, but in Ar/O2, it induces a strong effect only on the first discharge. For the first discharge in each gas, there is a characteristic frequency at which the characteristic quantities reach their respective minimum, and this frequency appears earlier for Ar/O2. For the second discharge in Ar/O2, the averaged electron density presents a slight variation with the frequency. In addition, the discharge in Ar/O2 is strong and the averaged electron temperature is low, compared to those in He/O2. The total averaged particle density of the reactive species in Ar/O2 is larger than those in He/O2 by about one order of magnitude.

  17. Research on atmospheric pressure plasma processing sewage

    Science.gov (United States)

    Song, Gui-cai; Na, Yan-xiang; Dong, Xiao-long; Sun, Xiao-liang

    2013-08-01

    The water pollution has become more and more serious with the industrial progress and social development, so it become a worldwide leading environmental management problem to human survival and personal health, therefore, countries are looking for the best solution. Generally speaking, in this paper the work has the following main achievements and innovation: (1) Developed a new plasma device--Plasma Water Bed. (2) At atmospheric pressure condition, use oxygen, nitrogen, argon and helium as work gas respectively, use fiber spectrometer to atmospheric pressure plasma discharge the emission spectrum of measurement, due to the different work gas producing active particle is different, so can understand discharge, different particle activity, in the treatment of wastewater, has the different degradation effects. (3) Methyl violet solution treatment by plasma water bed. Using plasma drafting make active particles and waste leachate role, observe the decolorization, measurement of ammonia nitrogen removal.

  18. Treatment of fluorocarbon using atmospheric non-thermal plasma produced by streamer corona discharge

    International Nuclear Information System (INIS)

    The non-thermal plasma produced by the streamer corona discharge at atmospheric pressure was utilized for the vanishing of fluorocarbon. The effective treatment of fluorocarbon is attempted controlling discharge parameters of the plasma. The decomposition rate of fluorocarbon is investigated changing discharge modes and discharge characteristics i.e. applied voltage VA-K of a main discharge gap and its steepness dVA-K/dt. (author)

  19. Diagnostics of atmospheric pressure air plasmas

    International Nuclear Information System (INIS)

    Atmospheric pressure air plasmas are often thought to be in Local Thermodynamics Equilibrium (LTE) owing to fast interspecies collisional exchanges at high pressure. As will be seen here, this assumption cannot be relied upon, particularly with respect to optical diagnostics. Large velocity gradients in flowing plasmas and/or elevated electron temperatures created by electrical discharges can result in large departures from chemical and thermal equilibrium. Diagnostic techniques based on optical emission spectroscopy (OES) and Cavity Ring-Down Spectroscopy (CRDS) have been developed and applied at Stanford University to the investigation of atmospheric pressure plasmas under conditions ranging from thermal and chemical equilibrium to thermochemical nonequilibrium. This article presents a review of selected temperature and species concentration measurement techniques useful for the study of air and nitrogen plasmas

  20. Experimental investigation on the characteristics of dielectric barrier discharge with a large gap width at atmospheric pressure%大气压下较大气隙宽度介质阻挡放电的实验研究

    Institute of Scientific and Technical Information of China (English)

    李雪辰; 刘润甫; 贾鹏英; 赵欢欢; 常媛媛

    2013-01-01

    A dielectric barrier discharge with a fairly large gap width is realized in atmospheric pressure argon because the critical voltage value for gas gap breakdown is sharply lowered through using a wedged gas gap. The discharge behavior is investigated experimentally through analyzing images taken with exposure time of several milliseconds. Results indicate that a stripe pattern with a homogeneous corona around can be observed under a lower voltage, and the discharge turns quite homogeneous at a higher voltage. It has been found that the micro-discharges tend to be generated at the region with small gap width, and then move to the region with large gap width along the flowing gas. Therefore, dielectric barrier discharge with a fairly large gap width can be obtained at a rather lowered voltage. Based on the visualization of the discharge with exposure time of several microseconds, it has been found that micro-discharge filament consists of the volumetric discharge between the two electrodes and the stochastic surface discharge on the dielectric for the filamentary discharge. The stripe on the image taken with exposure time of several milliseconds results from the moving of the volumetric discharge along the gas flow, and the homogeneous corona is a superimposition of the surface discharge at different half cycles. These results are of great importance for industrial applications of the atmospheric pressure uniform discharge.%利用楔形气隙极大地降低了气隙的击穿电压,从而在流动氩气中实现了大气压下较大气隙宽度的介质阻挡放电。通过毫秒量级曝光时间拍照,对放电的动力学行为进行了研究。结果发现:外加电压较低时放电为条纹斑图,且在条纹的周围伴有均匀的晕;随外加电压升高,放电会过渡到均匀模式。研究表明微放电总是产生于窄气隙区域,然后沿着气流向大间隙方向定向移动,因此在较低电压下实现了大气隙宽度的介质

  1. Application of an antenna excited high pressure microwave discharge to compact discharge lamps

    International Nuclear Information System (INIS)

    A novel type of high pressure microwave discharge has been investigated to feed the microwave power at the centre of the compact high pressure discharge lamps using the antenna effect. This method of microwave discharge is named as the antenna excited microwave discharge (AEMD). The 2.45 GHz microwave of around 50 W from the solid state microwave generator can sustain a stable plasma column in the small gap between a couple of antennas fitted on the compact lamp filled with discharge gases at a pressure higher than atmosphere. The AEMD has been applied to a compact metal halide lamp and an extremely high pressure mercury discharge lamp. As a result, the metal halide lamp showed high luminous efficacy of around 130 lm W-1. The excellent lamp properties obtained here can be explained by the low heating loss at the antennas and the lamp wall. The profiles of the microwave electric field in the lamp and the microwave launcher have been numerically calculated to consider the microwave power supply into the lamp

  2. Special issue: diagnostics of atmospheric pressure microplasmas

    Science.gov (United States)

    Bruggeman, Peter; Czarnetzki, Uwe; Tachibana, Kunihide

    2013-11-01

    In recent decades, a strong revival of non-equilibrium atmospheric pressure plasma studies has developed in the form of microplasmas. Microplasmas have typical scales of 1 mm or less and offer a very exciting research direction in the field of plasma science and technology as the discharge physics can be considerably different due to high collisionality and the importance of plasma-surface interaction. These high-pressure small-scale plasmas have a diverse range of physical and chemical properties. This diversity coincides with various applications including light/UV sources [1], material processing [2], chemical analysis [3], material synthesis [4], electromagnetics [5], combustion [6] and even medicine [7]. At atmospheric pressure, large scale plasmas have the tendency to become unstable due to the high collision rates leading to enhanced heating and ionization compared to their low-pressure counterparts. As low-pressure plasmas typically operate in reactors with sizes of tens of centimetres, scaling up the pressure to atmospheric pressure the size of the plasma reduces to typical sizes below 1 mm. A natural approach of stabilizing atmospheric pressure plasmas is thus the use of microelectrode geometries. Traditionally microplasmas have been produced in confined geometries which allow one to stabilize dc excited discharges. This stabilization is intrinsically connected to the large surface-to-volume ratio which enhances heat transfer and losses of charged and excited species to the walls. Currently challenging boundaries are pushed by producing microcavity geometries with dimensions of the order of 1 µm [8]. The subject of this special issue, diagnostics of microplasmas, is motivated by the many challenges in microplasma diagnostics in view of the complex chemistry and strong spatial (and even temporal) gradients of species densities and plasma properties. Atmospheric pressure plasmas have a very long history dating back more than 100 years, with early work of

  3. Temporal modulation of plasma species in atmospheric dielectric barrier discharges

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Aijun; Wang, Xiaohua, E-mail: xhw@mail.xjtu.edu.cn, E-mail: mzrong@mail.xjtu.edu.cn; Liu, Dingxin; Rong, Mingzhe, E-mail: xhw@mail.xjtu.edu.cn, E-mail: mzrong@mail.xjtu.edu.cn [Centre for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Kong, Michael G. [Centre for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Frank Reidy Research Center for Bioelectrics, Department of Electrical and Computer Engineering, Old Dominion University, Virginia 23508 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529 (United States)

    2014-07-15

    The atmospheric pressure dielectric barrier discharge in helium is a pulsed discharge in nature and the moment of maximum species densities is almost consistent with peak discharge current density. In this paper, a one-dimensional fluid model is used to investigate the temporal structure of plasma species in an atmospheric He-N{sub 2} dielectric barrier discharge (DBD). It is demonstrated that there exist microsecond delays of the moments of the maximum electron and ion densities from the peak of discharge current density. These time delays are caused by a competition between the electron impact and Penning ionizations, modulated by the N{sub 2} level in the plasma-forming gas. Besides, significant electron wall losses lead to the DBD being more positively charged and, with a distinct temporal separation in the peak electron and cation densities, the plasma is characterized with repetitive bursts of net positive charges. The temporal details of ionic and reactive plasma species may provide a new idea for some biological processes.

  4. Characteristics of RF Cold Plasma at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    QIU Liang; MENG Yuedong; SHU Xingsheng

    2007-01-01

    The characteristics of a stable discharge at atmospheric pressure is investigated.The plasma source consisted of two closely spaced parallel-plated perforated electrodes,driven by a radio frequency power to generate a uniform cold plasma in Helium at atmospheric pressure.Both alpha and gamma modes were clearly observed.The hollow cathode effects were found in the discharge.The influence of the dielectric barrier on the discharge was also investigated by utilizing a surface-anodized aluminium electrode as the anode.

  5. Transition from Spark Discharge to Constricted Glow Discharge in Atmospheric Air by Capacitor Coupled Discharge

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yutao; REN Chunsheng; XU Zhenfeng; MA Tengcai; QI Bing; WANG Dezhen; WANG Younian

    2007-01-01

    The transition from a spark discharge to a constricted glow discharge in atmospheric air was studied with a capacitor coupled pin-to-water plasma reactor. The reason of the transition is considered to be of various factors, namely the change of the air gap due to the polarization of water molecules by the electric field, the feedback effect of the capacitors, and the ion trapping mechanism. The effects of the frequency of the power supply, inter-electrode gap, and coupled capacitance on the discharge transition were also investigated.

  6. Atmospheric pressure plasma research activity in korea

    International Nuclear Information System (INIS)

    Plasma is generated by electrical discharge. Most plasma generation has been carried out at low-pressure gas typically less than one millionth of atmospheric pressure. Plasmas are in general generated from impact ionizations of neutral gas molecules by accelerated electrons. The energy gain of electrons accelerated in an electrical field is proportional to the mean free path. Electrons gain more energy at low-pressure gas and generate plasma easily by the ionization of neutrals, because the mean free path is longer. For this reason conventional plasma generation is carried out at low pressures. However, many practical applications require plasmas at high-pressure. In order to avoid the requirement for vacuum pump, researchers in Korea start to develop plasmas in high-pressure chambers where the pressure is 1 atmosphere or greater. Material processing, environmental protection/restoration and improved energy production efficiency using plasma are only possible for inexpensive bulk plasmas. We thus generate plasmas by new methods and plan to set foundations for new plasma technologies for 21st century industries. This technological research will play a central role in material processing, environmental and energy production industries

  7. Microplasma jet at atmospheric pressure

    International Nuclear Information System (INIS)

    A nitrogen microplasma jet operated at atmospheric pressure was developed for treating thermally sensitive materials. For example, the plasma sources in treatment of vulnerable biological materials must operate near the room temperature at the atmospheric pressure, without any risk of arcing or electrical shock. The microplasma jet device operated by an electrical power less than 10 W exhibited a long plasma jet of about 6.5 cm with temperature near 300 K, not causing any harm to human skin. Optical emission measured at the wide range of 280-800 nm indicated various reactive species produced by the plasma jet

  8. Surface dielectric barrier discharges exhibiting field emission at high pressures

    International Nuclear Information System (INIS)

    Surface dielectric barrier discharges (DBDs) are investigated experimentally in CO2 from atmospheric pressure up to supercritical conditions. Two discharge regimes are generated using 10 kHz ac excitation. The ‘standard’ regime is similar to previously studied surface DBDs in terms of onset voltage as a function of pressure, as well as electrical and optical emission characteristics. However, a ‘field-emitting’ regime emerges starting from 0.7 MPa that exhibits constant onset voltage up to 7.9 MPa, purely continuum emission spectra in the visible/near-infrared range and current waveforms similar to an atmospheric-pressure Townsend discharge with ionization instabilities. The maximum amount of negative charge deposited as a function of the applied voltage amplitude is consistent with the Fowler–Nordheim equation, which demonstrates the presence of field emission. Furthermore, this behavior cannot be attributed to the Townsend or streamer ionization mechanisms, secondary electron emission or non-discharge processes. No field-emitting structures are specially added to the electrodes. The onset voltage of the field-emitting regime does not follow the modified Paschen's law for field emission-assisted breakdown. (paper)

  9. Period-two discharge characteristics in argon atmospheric dielectric-barrier discharges

    International Nuclear Information System (INIS)

    Period multiplication and chaos behaviors in atmospheric glow discharges are important to understand atmospheric glow plasma stability and to optimize its applications. In this paper, we study the period-two discharge characteristics in argon atmospheric dielectric-barrier discharges using a one-dimension fluid model. Under certain conditions, period-two discharges can occur at different excitation frequencies and exhibit different current and voltage behaviors. When the discharge current becomes highly symmetrical the period-two discharge can reach to a steady state, which sustains over a broad frequency range. At the sufficiently high excitation frequency, the period-two discharge in atmospheric argon shows noticeably different behaviors from the discharges generated at kilohertz frequency. The spatial characteristics of period-two discharge as well as the influence of driving frequency on period-two discharge behaviors are also investigated.

  10. High pressure, high temperature microwave discharges for application in plasma chemistry

    International Nuclear Information System (INIS)

    The development of the microwave electrothermal thruster has created the technology to produce high pressure (50 Torr-2 atmosphere) electrodless microwave discharges in flowing inert and molecular gases. These discharges are located inside a quartz tube which passes coaxially through a cylindrical microwave cavity. The discharge is created with 100 to 2,000W input power at 2.45 GHz by exciting the cavity in the TM/sub 012/ or TM/sub 011/ mode. If the discharge pressure is increased from 20 or 30 Torr to higher pressures the discharge separates from the enclosing quartz walls and floats in the center of the cavity. The center of the discharge has a gas temperature that is considerably higher than the temperature of the gas adjacent to the quartz walls. Thus, the discharge is thermally inhomogenous with a hot central core, and sharp temperature gradients exist between the center and the surrounding cooler gas outside the discharge. These discharges, called microwave arcs, take on volumes that increase with input power and decrease with increases in pressure. Measured microwave coupling efficiencies are in excess of 95% over an operating pressure range of 100 Torr - 2 atmosphere. These high pressure, high temperature discharges may have uses in plasma chemistry. This paper reviews the basic principles of ignition and operation of these discharges and compares their known behavior to the lower frequency induction plasma discharges

  11. Study of atmospheric pressure chemical vapor deposition by using a double discharge system for SiOx thin-film deposition with a HMDS/Ar/He/O2 gas mixture

    International Nuclear Information System (INIS)

    SiOx thin films were deposited at atmospheric pressure by using a double discharge system composed of a remote-type dielectric barrier discharge (DBD) formed above the substrate and a direct-type DBD formed by applying an AC power to the substrate with a gas mixture of hexamethyldisilazane (HMDS)/O2/He/Ar. Instead of using a single DBD, the use of the double discharge system not only showed higher SiOx thin film deposition rates but also produced fewer impurities in the deposited SiOx thin film. The improvement was partially related to the increased gas dissociation near the substrate through the direct-type DBD and to the remote-type DBD. A 7-kV, 30-kHz AC voltage was applied to the remote-type DBD and a 5-kV, 20-kHz AC voltage was applied to the direct-type DBD, with a gas mixture of HMDS (400 sccm)/O2 (20 slm)/He (5 slm)/Ar (3 slm). As a result, a SiOx deposition rate of 58.29 nm/scan could be obtained while moving the substrate at a speed of 0.25 meter/min.

  12. Formation Mechanism of Atmospheric Pressure Plasma Jet

    CERN Document Server

    Jiang, Nan; Cao, Zexian

    2008-01-01

    Atmospheric pressure plasma jet can protrude some 5.0 cm into air. It holds promise for multivarious innovative applications, but its formation mechanism remains unsettled. We show that the plasma jet is essentially a streamer corona totally independent of, but obscured by, dielectric barrier discharge. Consequently, the jets can be equally successfully generated even with one single bare metal electrode attached to the tube orifice, both downstream and upstream simultaneously, and at a significantly reduced voltage. These results will help understand the underlying physics and facilitate a safer and more flexible implementation of this marvelous plasma source.

  13. Study of organic pollutants oxidation by atmospheric plasma discharge

    Science.gov (United States)

    Gumuchian, Diane; Cavadias, Simeon; Duten, Xavier; Tatoulian, Michael; da Costa, Patrick; Ognier, Stephanie

    2013-09-01

    Ozonation is one of the usual steps in water treatment processes. However, some organic molecules (acetic acid) cannot be decomposed during ozonation. In that context, we are developing an Advanced Oxidation Process based on the use of a needle plate discharge at atmospheric pressure. The process is a reactor with a plasma discharge between a high voltage electrode and the solution in controlled atmosphere. Characterizations of the plasma obtained in different atmospheres were carried out (Optical Emission Spectroscopy, iCCD camera observations, etc). The efficiency of the process was evaluated by the percentage of degradation of the model-pollutant, measured by liquid chromatography analysis. Treatments in nitrogen lead to the formation of NOx species that decrease the efficiency of the process. Indeed, NOx lead to the consumption of actives species created. Treatments in argon are the most efficient. Two hypotheses are considered: (i) metastable argon participates to the degradation of acetic acid or to the formation of radicals (ii) discharges in argon lead to the formation of many streamers of low energy that increase the interface plasma/solution.

  14. Domestic atmospheric pressure thermal deaerators

    Science.gov (United States)

    Egorov, P. V.; Gimmelberg, A. S.; Mikhailov, V. G.; Baeva, A. N.; Chuprakov, M. V.; Grigoriev, G. V.

    2016-04-01

    Based on many years of experience and proven technical solutions, modern atmospheric pressure deaerators of the capacity of 0.4 to 800 t/h were designed and developed. The construction of such deaerators is based on known and explored technical solutions. A two-stage deaeration scheme is applied where the first stage is a jet dripping level (in a column) and the second one is a bubble level (in a tank). In the design of deaeration columns, low-pressure hydraulic nozzles (Δ p TPP at heating and industrial-heating plants. The atmospheric pressure thermal deaerators developed at NPO TsKTI with consideration of the current requirements are recommended for the use in water preparation schemes of various power facilities.

  15. Characteristics of dielectric barrier discharge plasmas in atmospheric humid air

    Science.gov (United States)

    Fukuda, Y.; Fukui, K.; Iwami, R.; Matsuoka, Y.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    Atmospheric pressure plasmas have a great advantage for industrial applications such as surface modifications, sterilization and film preparation. In particular, reactive plasmas including OH radicals can be generated in humid air. On the other hand, it is known that dielectric barrier discharge (DBD) plasmas in air are strongly affected by humidity. In this study, a twisted pair sample is used as a DBD electrode. The twisted pair consists of two enameled wires, and it is installed in a climate chamber to control ambient temperature and humidity. Repetitive impulse voltage pulses were applied to the twisted pair to produce DBD plasmas. Light emission, electromagnetic wave and current pulses were used to detect discharge activities. The discharge inception voltage (DIV) is basically determined by Paschen curve in air, however, the DIV was decreased by increasing the humidity. In addition, it was found that there were largely scattered data of DIV at the low humidity condition. After the pre-discharges, the DIV reached to the steady state value. On the other hand, there was no scattering of the observed DIV at the high humidity condition. Measurements of surface potential of the sample after the discharge show these behaviors could be explained by surface charge accumulation on the enameled wire. It is noted that there was no fluctuation in the DIV data in the case of unipolar voltage pulse.

  16. N2(A3+u) behaviour in a N2-NO surface dielectric barrier discharge in the modulated ac regime at atmospheric pressure

    Czech Academy of Sciences Publication Activity Database

    Šimek, Milan; Ambrico, P. F.; Dilecce, G.; Prukner, Václav; Schmidt, Jiří; De Benedictis, S.

    2010-01-01

    Roč. 43, č. 12 (2010), s. 124003-124003. ISSN 0022-3727 R&D Projects: GA ČR GA202/08/1106 Institutional research plan: CEZ:AV0Z20430508 Keywords : surface barier discharge * laser induced fluorescence * metastables * nitric oxide Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.105, year: 2010 http://iopscience.iop.org/0022-3727/43/12/124003/pdf/0022-3727_43_12_124003.pdf

  17. RF impedance measurements of DC atmospheric micro-discharges

    CERN Document Server

    Overzet, Lawrence J; Mandra, Monali; Goeckner, Matthew; Dufour, Thierry; Dussart, Remi; Lefaucheux, Philippe

    2016-01-01

    The available diagnostics for atmospheric micro-plasmas remain limited and relatively complex to implement; so we present a radio-frequency technique for diagnosing a key parameter here. The technique allows one to estimate the dependencies of the electron density by measuring the RF-impedance of the micro-plasma and analyzing it with an appropriate equivalent circuit. This technique is inexpensive, can be used in real time and gives reasonable results for argon and helium DC micro-plasmas in holes over a wide pressure range. The electron density increases linearly with current in the expected range consistent with normal glow discharge behavior.

  18. Characteristics of SiO{sub X} thin films deposited by atmospheric pressure chemical vapor deposition using a double-discharge system

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaebeom [SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon, Kyunggi-do 440-746 (Korea, Republic of); Oh, Jongsik; Gil, Elly [Department of Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 440-746 (Korea, Republic of); Yeom, Geun Young, E-mail: gyyeom@skku.edu [SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon, Kyunggi-do 440-746 (Korea, Republic of); Department of Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 440-746 (Korea, Republic of)

    2012-10-15

    SiO{sub X} thin films were deposited using a gas mixture of hexamethyldisilazane (HMDS)/O{sub 2}/He/Ar from a remote-type dielectric barrier discharges (DBD) source, with/without the additional direct-type DBD just above the substrate (double discharge), and the effect of the double discharge on the characteristics of the SiO{sub X} thin film was investigated. The increase of HMDS flow rate and the decrease of oxygen flow rate in the gas mixture increased the SiO{sub X}-thin-film deposition rate. The improvement of the mechanical properties for SiO{sub X} film, in addition to the increase of deposition rate, is believed to be related not only to the higher gas dissociation because of the higher power deposition but also to the lesser recombination of oxygen atoms and dissociated HMDS due to the shorter diffusion length to the substrate.

  19. Optical and electrical characteristics of a single surface DBD micro-discharge produced in atmospheric-pressure nitrogen and synthetic air

    Czech Academy of Sciences Publication Activity Database

    Šimek, Milan; Prukner, Václav; Schmidt, Jiří

    2011-01-01

    Roč. 20, č. 2 (2011), 025009-025009. ISSN 0963-0252. [European Sectional Conference on Atomic and Molecular Physics of Ionized Gases (ESCAMPIGXX)/20th./. Novi Sad, SERBIA , 13.07.2010-17.07.2010] R&D Projects: GA ČR GA202/08/1106 Institutional research plan: CEZ:AV0Z20430508 Keywords : surface barier discharge * streamer Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.521, year: 2011 http://iopscience.iop.org/0963-0252/20/2/025009/pdf/0963-0252_20_2_025009.pdf

  20. Physics of Atmospheric Electric Discharges in Gases: An Informal Introduction

    CERN Document Server

    Treumann, R A; Parrot, M

    2007-01-01

    A short account of the physics of electrical discharges in gases is given in view of its historical evolution and application to planetary atmospheres. As such it serves as an introduction to the articles on particular aspects of electric discharges contained in this book, in particular in the chapters on lightning and the violent discharges which in the recent two decades have been observed to take place in Earth's upper atmosphere. In addition of briefly reviewing the early history of gas discharge physics we discuss the main parameters affecting violent atmospheric discharges like collision frequency, mean free path and critical electric field strength. Any discharge current in the atmosphere is clearly carried only by electrons. Above the lower bound of the mesosphere the electrons must be considered magnetized with the conductivity becoming a tensor. Moreover, the collisional mean free path in the upper atmosphere becomes relatively large which lowers the critical electric field there and more easily ena...

  1. High-pressure dc glow discharges in hollow diamond cathodes

    Science.gov (United States)

    Truscott, B. S.; Turner, C.; May, P. W.

    2016-04-01

    We report the generation and characterization of dc helium microdischarges at several times atmospheric pressure in monolithic diamond hollow-cathode devices having cavity diameters on the order of 100 μm. I-V characteristics indicated operation in the glow discharge regime even at nearly 10 atm, while spectroscopic measurements of the N2 C3Πu  →  B3Πg emission returned rotational temperatures always around 420 K, with a pressure-dependent vibrational population distribution. The variation of breakdown voltage with pressure closely followed Paschen’s law, but with offsets in both axes that we tentatively ascribe to strong diffusive loss and a partial thermalization of electron energies under the high pressures considered here.

  2. Impact of the nanosecond volume discharge in atmospheric pressure air on the distribution of the surface potential of epitaxial HgCdTe

    Science.gov (United States)

    Novikov, V. A.; Grigoryev, D. V.; Bezrodnyy, D. A.; Tarasenko, V. F.; Shulepov, M. A.; Dvoretsky, S. A.; Mikhailov, N. N.

    2016-03-01

    In this paper we present the results of our research of the impact of nanosecond volume discharge on the electronic properties of the near-surface region of epitaxial Hg1-x Cd x Te films. We show that the distribution of the surface potential and, as a consequence, the material composition of the individual crystal grains that form V-defects possess a complex structure and contain regions with elevated content of both mercury and cadmium. The volume discharge treatment of the film surface leads to a decrease of the mercury content in individual crystal grains compared to the bulk of Hg1-x Cd x Te epitaxial film. This indicates a higher mercury desorption rate from the V-defect region.

  3. Observations of different core water cluster ions Y-(H2O)n (Y = O2, HOx, NOx, COx) and magic number in atmospheric pressure negative corona discharge mass spectrometry.

    Science.gov (United States)

    Sekimoto, Kanako; Takayama, Mitsuo

    2011-01-01

    Reliable mass spectrometry data from large water clusters Y(-)(H(2)O)(n) with various negative core ions Y(-) such as O(2)(-), HO(-), HO(2)(-), NO(2)(-), NO(3)(-), NO(3)(-)(HNO(3))(2), CO(3)(-) and HCO(4)(-) have been obtained using atmospheric pressure negative corona discharge mass spectrometry. All the core Y(-) ions observed were ionic species that play a central role in tropospheric ion chemistry. These mass spectra exhibited discontinuities in ion peak intensity at certain size clusters Y(-)(H(2)O)(m) indicating specific thermochemical stability. Thus, Y(-)(H(2)O)(m) may correspond to the magic number or first hydrated shell in the cluster series Y(-)(H(2)O)(n). The high intensity discontinuity at HO(-)(H(2)O)(3) observed was the first mass spectrometric evidence for the specific stability of HO(-)(H(2)O)(3) as the first hydrated shell which Eigen postulated in 1964. The negative ion water clusters Y(-)(H(2)O)(n) observed in the mass spectra are most likely to be formed via core ion formation in the ambient discharge area (760 torr) and the growth of water clusters by adiabatic expansion in the vacuum region of the mass spectrometers (≈1 torr). The detailed mechanism of the formation of the different core water cluster ions Y(-)(H(2)O)(n) is described. PMID:21184434

  4. N2(A3u+) detection in N2/O2 atmospheric pressure surface dielectric barrier discharge by OODR-LIF

    Czech Academy of Sciences Publication Activity Database

    Ambrico, P. F.; DeBenedictis, S.; Dilecce, G.; Šimek, Milan

    Praha, 2006 - (Cacciatore, M.; DeBenedictis, S.; Ambrico, P.; Rutigliano, M.). s. 397-398 ISBN 2-914771-38-X. [The 18th European Conference on Atomic and Molecular Physics of Ionised Gases (ESCAMPIG XVIII )/18th./. 12.7.2006-16.7.2006, Lecce, Italy] R&D Projects: GA AV ČR(CZ) IAA1043403 Institutional research plan: CEZ:AV0Z20430508 Keywords : DBD * streamer * LIF * OODR-LIF * emission * nitrogen Subject RIV: BL - Plasma and Gas Discharge Physics

  5. An intracloud discharge caused by extensive atmospheric shower

    International Nuclear Information System (INIS)

    The observational evidence of RB-EAS discharge in a thunderstorm atmosphere is presented. After RB-EAS discharge we name a discharge of a special type developing due to the runaway breakdown (RB) mechanism while an extensive atmosphere shower (EAS) passes through a thundercloud electric field. The observations were fulfilled at the Tien-Shan Mountain Cosmic Ray Station. The widely spread system of oscillation detectors, the special EAS trigger array and the HF radio interferometer were used for measurements.

  6. An intracloud discharge caused by extensive atmospheric shower

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, A.V., E-mail: alex@lpi.r [P.N.Lebedev Physical Institute of RAS, Moscow (Russian Federation); Mitko, G.G. [P.N.Lebedev Physical Institute of RAS, Moscow (Russian Federation); Antonova, V.P. [Ionosphere Institute, Almaty (Kazakhstan); Chubenko, A.P. [P.N.Lebedev Physical Institute of RAS, Moscow (Russian Federation); Karashtin, A.N. [Research Radiophysics Institute, Nizhny Novgorod (Russian Federation); Kryukov, S.V. [Ionosphere Institute, Almaty (Kazakhstan); Naumov, A.S.; Pavljuchenko, L.V.; Ptitsyn, M.O.; Ryabov, V.A.; Shalamova, S.Ya.; Shepetov, A.L. [P.N.Lebedev Physical Institute of RAS, Moscow (Russian Federation); Shlyugaev, Yu.V. [Research Radiophysics Institute, Nizhny Novgorod (Russian Federation); Vildanova, L.I. [Tien-Shan Mountain Cosmic Ray Station, Almaty (Kazakhstan); Zybin, K.P. [P.N.Lebedev Physical Institute of RAS, Moscow (Russian Federation)

    2009-09-21

    The observational evidence of RB-EAS discharge in a thunderstorm atmosphere is presented. After RB-EAS discharge we name a discharge of a special type developing due to the runaway breakdown (RB) mechanism while an extensive atmosphere shower (EAS) passes through a thundercloud electric field. The observations were fulfilled at the Tien-Shan Mountain Cosmic Ray Station. The widely spread system of oscillation detectors, the special EAS trigger array and the HF radio interferometer were used for measurements.

  7. Atmospheric pressure plasmas for aerosols processes in materials and environment

    OpenAIRE

    Borra, J.P.; Jidenko, N; Bourgeois, E

    2009-01-01

    Abstract The paper highlights applications of some atmospheric pressure plasmas (dc-corona, streamer and spark and ac-Dielectric Barrier Discharges) to aerosol processes for Materials and Environment (filtration, diagnostics). The production of vapor i.e. condensable gaseous species, leads to nano-sized particles by physical and chemical routes of nucleation in these AP plasmas: (i) when dc streamer and spark filamentary discharges as well as ac filamenta...

  8. A novel synthesis technique for the fabrication of nanostructures combining atmospheric Microplasma Discharge and Electrodeposition

    International Nuclear Information System (INIS)

    Electrodeposition into the pores of AAO (Anodic Alumina) membranes has long been utilized for the preparation of metallic, semiconducting and polymeric, nanowires and nanotubes arrays. Meanwhile atmospheric plasma discharges in reduced dimensions also known as Atmospheric Microplasma discharge have been shown to cause reduction of aqueous metal salts to produce colloidal dispersion of nanoparticles. They have become popular because of their small size, ease of working and stable operation at atmospheric pressure. In the present work we have combined Electrodeposition and Atmospheric Microplasma techniques to fabricate nanostructures of metals using aqueous acidic metal salt solutions. (author)

  9. CH spectroscopic observables in He-CH{sub 4} and N{sub 2}-CH{sub 4} atmospheric pressure dielectric barrier discharges

    Energy Technology Data Exchange (ETDEWEB)

    Dilecce, G; Ambrico, P F; De Benedictis, S, E-mail: giorgio.dilecce@ba.imip.cnr.i [Istituto di Metodologie Inorganiche e dei Plasmi-CNR, sede di Bari, Via Orabona, 4, 70126 Bari (Italy)

    2010-03-31

    In this paper we report on a spectroscopic study on CH observables including laser induced fluorescence (LIF) on CH and emission spectroscopy on the CH Geroe band. Direct observation by LIF has been found to be very difficult, both because of technical difficulties and an overall low CH density in the discharge. Analysis of CH(A) emission shows that it is due to CH{sub 4} dissociative excitation processes, by He(2{sup 3}S) in He-based mixtures, and by electron impact in N{sub 2}-CH{sub 4}. The analysis of spectra evidences the need for more precise knowledge on the collision quenching of electronically excited states and on the electron energy distribution function.

  10. Atmospheric pressure barrier torch discharge and its optimization for flexible deposition of TiO.sub.2./sub. thin coatings on various surfaces

    Czech Academy of Sciences Publication Activity Database

    Kment, Štěpán; Klusoň, Petr; Žabová, Hana; Churpita, Olexandr; Chichina, Mariya; Čada, Martin; Gregora, Ivan; Krýsa, J.; Hubička, Zdeněk

    2009-01-01

    Roč. 204, č. 5 (2009), s. 667-675. ISSN 0257-8972 R&D Projects: GA AV ČR KJB100100703; GA AV ČR KAN301370701; GA AV ČR KAN400720701; GA ČR GA202/09/0800 Institutional research plan: CEZ:AV0Z10100522; CEZ:AV0Z40720504 Keywords : atmospheric plasma * thin layers * titanium dioxide * PECVD * optical emmision spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.793, year: 2009

  11. The effect of O2 in a humid O2/N2/NOx gas mixture on NOx and N2O remediation by an atmospheric pressure dielectric barrier discharge

    DEFF Research Database (Denmark)

    Teodoru, Steluta; Kusano, Yukihiro; Bogaerts, Annemie

    2012-01-01

    A numerical model for NxOy remediation in humid air plasma produced with a dielectric barrier discharge at atmospheric pressure is presented. Special emphasis is given to NO2 and N2O reduction with the decrease of O2 content in the feedstock gas. A detailed reaction mechanism including electronic...

  12. Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Mortensen, Henrik Junge; Stenum, Bjarne; Goutianos, Stergios; Mitra, Susanta; Ghanbari-Siahkali, Afshin; Kingshott, Peter; Sørensen, Bent F.; Bindslev, Henrik

    2007-01-01

    Glassy carbon plates were treated with an atmospheric pressure dielectric barrier discharge (DBD). He gas, gas mixtures of He and reactive gases such as O2, CO2 and NH3, Ar gas and Ar/NH3 gas mixture were used as treatment gases. The oxygen and nitrogen contents on the surface as well as defect...

  13. Spacecraft Sterilization Using Non-Equilibrium Atmospheric Pressure Plasma

    Science.gov (United States)

    Cooper, Moogega; Vaze, Nachiket; Anderson, Shawn; Fridman, Gregory; Vasilets, Victor N.; Gutsol, Alexander; Tsapin, Alexander; Fridman, Alexander

    2007-01-01

    As a solution to chemically and thermally destructive sterilization methods currently used for spacecraft, non-equilibrium atmospheric pressure plasmas are used to treat surfaces inoculated with Bacillus subtilis and Deinococcus radiodurans. Evidence of significant morphological changes and reduction in viability due to plasma exposure will be presented, including a 4-log reduction of B. subtilis after 2 minutes of dielectric barrier discharge treatment.

  14. Determination of Hg{sup 2+} by on-line separation and pre-concentration with atmospheric-pressure solution-cathode glow discharge atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qing [Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050 (China); Zhang, Zhen [Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050 (China); School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Wang, Zheng, E-mail: wangzheng@mail.sic.ac.cn [Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050 (China)

    2014-10-03

    Highlights: • A modified SBA-15 mesoporous silica (SH-SBA-15) was synthesized as a sorbent. • On-line SPE combined with SCGD-AES based on FIA was used to detect Hg{sup 2+} firstly. • A simple, low-cost Hg{sup 2+} analysis in a complex matrix was established. • The sensitive detection of Hg{sup 2+} was achieved with a detection limit of 0.75 μg L{sup −1}. - Abstract: A simple and sensitive method to determine Hg{sup 2+} was developed by combining solution-cathode glow discharge atomic emission spectrometry (SCGD-AES) with flow injection (FI) based on on-line solid-phase extraction (SPE). We synthesized L-cysteine-modified mesoporous silica and packed it in an SPE microcolumn, which was experimentally determined to possess a good mercury adsorption capacity. An enrichment factor of 42 was achieved under optimized Hg{sup 2+} elution conditions, namely, an FI flow rate of 2.0 mL min{sup −1} and an eluent comprised of 10% thiourea in 0.2 mol L{sup −1} HNO{sub 3}. The detection limit of FI–SCGD-AES was determined to be 0.75 μg L{sup −1}, and the precision of the 11 replicate Hg{sup 2+} measurements was 0.86% at a concentration of 100 μg L{sup −1}. The proposed method was validated by determining Hg{sup 2+} in certified reference materials such as human hair (GBW09101b) and stream sediment (GBW07310)

  15. Electrical characterization of atmospheric pressure DBD in air

    International Nuclear Information System (INIS)

    Atmospheric pressure dielectric barrier discharge (DBD) in air was generated between two rectangular copper electrodes covering the lower electrode with a dielectric (glass or polycarbonate -PC) using low frequency (line frequency-50Hz) high voltage power supply. The discharge was studied for inter-electrode gap spacing in the range of 2 mm – 5 mm and their influence on breakdown voltage. Voltage-current characteristics and the analysis of the distribution of current pulses per half cycle of the current waveform indicated that the discharge is more uniform in 3 mm inter-electrode gap spacing with PC as a dielectric rather than glass. (author)

  16. Lightning and middle atmospheric discharges in the atmosphere

    Science.gov (United States)

    Siingh, Devendraa; Singh, R. P.; Kumar, Sarvan; Dharmaraj, T.; Singh, Abhay K.; Singh, Ashok K.; Patil, M. N.; Singh, Shubha

    2015-11-01

    Recent development in lightning discharges including transient luminous events (TLEs) and global electric circuit are discussed. Role of solar activity, convective available potential energy, surface temperature and difference of land-ocean surfaces on convection process are discussed. Different processes of discharge initiation are discussed. Events like sprites and halos are caused by the upward quasi-electrostatic fields associated with intense cloud-to-ground discharges while jets (blue starter, blue jet, gigantic jet) are caused by charge imbalance in thunderstorm during lightning discharges but they are not associated with a particular discharge flash. Elves are generated by the electromagnetic pulse radiated during lightning discharges. The present understanding of global electric circuit is also reviewed. Relation between lightning activity/global electric circuit and climate is discussed.

  17. The main properties of microwave argon plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Plasma torch sustained by surface wave at atmospheric pressure is theoretically studied by means of 1D model. A steady-state Boltzmann equation in an effective field approximation coupled with a collisional-radiative model for high-pressure argon discharge is numerically solved together with Maxwell's equations for an azimuthally symmetric TM surface wave. The axial dependences of the electrons, excited atoms, atomic and molecular ions densities as well as the electron temperature, the mean power per electron and the effective electron-neutral collision frequency are determined. A strong dependence of the plasma properties on the discharge conditions and the gas temperature is obtained.

  18. The main properties of microwave argon plasma at atmospheric pressure

    Science.gov (United States)

    Benova, E.; Pencheva, M.

    2010-01-01

    Plasma torch sustained by surface wave at atmospheric pressure is theoretically studied by means of 1D model. A steady-state Boltzmann equation in an effective field approximation coupled with a collisional-radiative model for high-pressure argon discharge is numerically solved together with Maxwell's equations for an azimuthally symmetric TM surface wave. The axial dependences of the electrons, excited atoms, atomic and molecular ions densities as well as the electron temperature, the mean power per electron and the effective electron-neutral collision frequency are determined. A strong dependence of the plasma properties on the discharge conditions and the gas temperature is obtained.

  19. The main properties of microwave argon plasma at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Benova, E; Pencheva, M, E-mail: benova_phys@deo.uni-sofia.b [Department for Language Teaching and International Students, University of Sofia, 27 Kosta Loulchev Street, BG-1111 Sofia (Bulgaria)

    2010-01-01

    Plasma torch sustained by surface wave at atmospheric pressure is theoretically studied by means of 1D model. A steady-state Boltzmann equation in an effective field approximation coupled with a collisional-radiative model for high-pressure argon discharge is numerically solved together with Maxwell's equations for an azimuthally symmetric TM surface wave. The axial dependences of the electrons, excited atoms, atomic and molecular ions densities as well as the electron temperature, the mean power per electron and the effective electron-neutral collision frequency are determined. A strong dependence of the plasma properties on the discharge conditions and the gas temperature is obtained.

  20. Complex dynamic behaviors of nonequilibrium atmospheric dielectric-barrier discharges

    International Nuclear Information System (INIS)

    In this paper, a one-dimensional fluid model is used to investigate complex dynamic behaviors of a nonequilibrium dielectric-barrier discharge (DBD) in atmospheric helium. By projecting its evolution trajectory in the three-dimensional phase space of gas voltage, discharge current density, and electrode-surface charge density, the atmospheric DBD is shown to undergo a sequence of complex bifurcation processes when the applied voltage is increased from prebreakdown to many times of the breakdown voltage. Once the gas voltage exceeds the breakdown voltage, the discharge plasma is found to acquire negative differential conductivity and as a result its stability is compromised. For atmospheric DBD, however, the resulting low plasma stability is mitigated by a rapid accumulation of surface charges on the electrodes, thus allowing the atmospheric DBD to retain their character as a glow discharge. At certain values of the applied voltage, a highly complex phenomenon of period multiplication is observed in which the period of the discharge current is three times that of the applied voltage. This suggests that nonequilibrium atmospheric DBD may support evolution patterns that are quasiperiodic or even chaotic. These complex dynamic behaviors are likely to be critical to a full understanding of plasma stability of nonequilibrium atmospheric discharges and to the development of their instability control strategies

  1. Special issue: diagnostics of atmospheric pressure microplasmas

    Science.gov (United States)

    Bruggeman, Peter; Czarnetzki, Uwe; Tachibana, Kunihide

    2013-11-01

    In recent decades, a strong revival of non-equilibrium atmospheric pressure plasma studies has developed in the form of microplasmas. Microplasmas have typical scales of 1 mm or less and offer a very exciting research direction in the field of plasma science and technology as the discharge physics can be considerably different due to high collisionality and the importance of plasma-surface interaction. These high-pressure small-scale plasmas have a diverse range of physical and chemical properties. This diversity coincides with various applications including light/UV sources [1], material processing [2], chemical analysis [3], material synthesis [4], electromagnetics [5], combustion [6] and even medicine [7]. At atmospheric pressure, large scale plasmas have the tendency to become unstable due to the high collision rates leading to enhanced heating and ionization compared to their low-pressure counterparts. As low-pressure plasmas typically operate in reactors with sizes of tens of centimetres, scaling up the pressure to atmospheric pressure the size of the plasma reduces to typical sizes below 1 mm. A natural approach of stabilizing atmospheric pressure plasmas is thus the use of microelectrode geometries. Traditionally microplasmas have been produced in confined geometries which allow one to stabilize dc excited discharges. This stabilization is intrinsically connected to the large surface-to-volume ratio which enhances heat transfer and losses of charged and excited species to the walls. Currently challenging boundaries are pushed by producing microcavity geometries with dimensions of the order of 1 µm [8]. The subject of this special issue, diagnostics of microplasmas, is motivated by the many challenges in microplasma diagnostics in view of the complex chemistry and strong spatial (and even temporal) gradients of species densities and plasma properties. Atmospheric pressure plasmas have a very long history dating back more than 100 years, with early work of

  2. Nonlinear behavior in the time domain in argon atmospheric dielectric-barrier discharges

    International Nuclear Information System (INIS)

    A vast majority of nonlinear behavior in atmospheric pressure discharges has so far been studied in the space domain, and their time-domain characters are often believed to exact the periodicity of the externally applied voltage. In this paper, based on one-dimensional fluid mode, we study complex nonlinear behavior in the time domain in argon atmospheric dielectric-barrier discharges at very broad frequency range from kilohertz to megahertz. Under certain conditions, the discharge not only can be driven to chaos from time-periodic state through period-doubling bifurcation, but also can return stable periodic motion from chaotic state through an inverse period-doubling bifurcation sequence. Upon changing the parameter the discharge undergoes alternatively chaotic and periodic behavior. Some periodic windows embedded in chaos, as well as the secondary bifurcation occurring in the periodic windows can also be observed. The corresponding discharge characteristics are investigated.

  3. Use of Atmospheric Glow Discharge Plasma to Modify Spaceport Materials

    Science.gov (United States)

    Trigwell, S.; Shuerger, A. C.; Buhler, C. R.; Calle, C. J.

    2006-01-01

    Numerous materials used in spaceport operations require stringent evaluation before they can be utilized. It is critical for insulative polymeric materials that any surface charge be dissipated as rapidly as possible to avoid Electrostatic Discharges (ESD) that could present a danger. All materials must pass the Kennedy Space Center (KSC) standard electrostatic test [1]; however several materials that are considered favorable for Space Shuttle and International Space Station use have failed. Moreover, to minimize contamination of Mars spacecraft, spacecraft are assembled under cleanroom conditions and specific cleaning and sterilizing procedures are required for all materials. However, surface characteristics of these materials may allow microbes to survive by protecting them from sterilization and cleaning techniques. In this study, an Atmospheric Pressure Glow Discharge Plasma (APGD) [2] was used to modify the surface of several materials. This allowed the materials surface to be modified in terms of hydrophilicity, roughness, and conductivity without affecting the bulk properties. The objectives of this study were to alter the surface properties of polymers for improved electrostatic dissipation characteristics, and to determine whether the consequent surface modification on spaceport materials enhanced or diminished microbial survival.

  4. The transition mechanism from a symmetric single period discharge to a period-doubling discharge in atmospheric helium dielectric-barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dingzong; Wang, Yanhui; Wang, Dezhen [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2013-06-15

    Period-doubling and chaos phenomenon have been frequently observed in atmospheric-pressure dielectric-barrier discharges. However, how a normal single period discharge bifurcates into period-doubling state is still unclear. In this paper, by changing the driving frequency, we study numerically the transition mechanisms from a normal single period discharge to a period-doubling state using a one-dimensional self-consistent fluid model. The results show that before a discharge bifurcates into a period-doubling state, it first deviates from its normal operation and transforms into an asymmetric single period discharge mode. Then the weaker discharge in this asymmetric discharge will be enhanced gradually with increasing of the frequency until it makes the subsequent discharge weaken and results in the discharge entering a period-doubling state. In the whole transition process, the spatial distribution of the charged particle density and the electric field plays a definitive role. The conclusions are further confirmed by changing the gap width and the amplitude of the applied voltage.

  5. Dual-frequency glow discharges in atmospheric helium

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaojiang; Guo, Ying [College of Science, Donghua University, Shanghai 201620 (China); Magnetic Confinement Fusion Research Center, Ministry of Education of the People' s Republic of China, Shanghai 201620 (China); Dai, Lu [School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009 (China); Zhang, Jing; Shi, J. J., E-mail: JShi@dhu.edu.cn [College of Science, Donghua University, Shanghai 201620 (China); Magnetic Confinement Fusion Research Center, Ministry of Education of the People' s Republic of China, Shanghai 201620 (China); State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620 (China)

    2015-10-15

    In this paper, the dual-frequency (DF) glow discharges in atmospheric helium were experimented by electrical and optical measurements in terms of current voltage characteristics and optical emission intensity. It is shown that the waveforms of applied voltages or discharge currents are the results of low frequency (LF) waveforms added to high frequency (HF) waveforms. The HF mainly influences discharge currents, and the LF mainly influences applied voltages. The gas temperatures of DF discharges are mainly affected by HF power rather than LF power.

  6. Dual-frequency glow discharges in atmospheric helium

    International Nuclear Information System (INIS)

    In this paper, the dual-frequency (DF) glow discharges in atmospheric helium were experimented by electrical and optical measurements in terms of current voltage characteristics and optical emission intensity. It is shown that the waveforms of applied voltages or discharge currents are the results of low frequency (LF) waveforms added to high frequency (HF) waveforms. The HF mainly influences discharge currents, and the LF mainly influences applied voltages. The gas temperatures of DF discharges are mainly affected by HF power rather than LF power

  7. A simplified nitrogen laser setup operated at atmospheric pressure

    Science.gov (United States)

    Ruangsri, Artit; Wungmool, Piyachat; Tesana, Siripong; Suwanatus, Suchat; Hormwantha, Tongchai; Chiangga, Surasak; Luengviriya, Chaiya

    2015-07-01

    A transversely excited atmospheric pressure nitrogen laser (TEA N2 Laser) is a molecular pulse gas laser, operated at atmospheric pressure, which generates an electromagnetic wave in ultraviolet wavelength of 337.1 nm. It can operate without an optical resonator. We present a TEA N2 laser setup excited by an electronic discharge circuit known as the Blumlein circuit. Our setup is composed of simple components commonly found in everyday life. The setup can be utilized in classroom to demonstrate the dependence of the laser intensity on the flow rate of nitrogen gas.

  8. The Nonlinear Behaviors in Atmospheric Dielectric Barrier Multi Pulse Discharges

    Science.gov (United States)

    Zhang, Dingzong; Wang, Yanhui; Wang, Dezhen

    2016-08-01

    An in-depth and comprehensive understanding of the complex nonlinear behaviors in atmospheric dielectric barrier discharge is significant for the stable operation and effective control of the plasma. In this paper, we study the nonlinear behaviors in argon atmospheric dielectric barrier multi pulse discharges by a one-dimensional fluid model. Under certain conditions, the multi pulse discharge becomes very sensitive with the increase of frequency, and the multi pulse period-doubling bifurcation, inverse period-doubling bifurcation and chaos appear frequently. The discharge can reach a relatively steady state only when the discharges are symmetrical between positive and negative half cycle. In addition, the effects of the voltage on these nonlinear discharges are also studied. It is found that the amplitude of voltage has no effects on the number of discharge pulses in multi-pulse period-doubling bifurcation sequences; however, to a relatively stable periodic discharge, the discharge pulses are proportional to the amplitude of the applied voltage within a certain range. supported by National Natural Science Foundation of China (No. 11447244), the Science Foundation of Hengyang Normal University of China (No. 14B41), the Construct Program of the Key Discipline in Hunan Province, and the Hunan Provincial Applied Basic Research Base of Optoelectronic Information Technology of China (No. GDXX010)

  9. Modification of various metals by volume discharge in air atmosphere

    Science.gov (United States)

    Shulepov, Mikhail A.; Erofeev, Mikhail V.; Oskomov, Konstantin V.; Tarasenko, Victor F.

    2015-12-01

    The results of the modification of stainless steel, niobium and titanium by volume discharge induced by a beam of runaway electrons in air under normal pressure are presented. Changes in the chemical composition of the surface layers of metal by the action of the discharge, structural changes and changes of hardness were studied. It has been found that the concentration of oxygen and carbon in the surface layers of the samples depend on the number of discharge pulses. The aim of this work is to find possible application of this type of discharge in science and industrial production.

  10. Pulse volume discharges in high pressure gases

    Science.gov (United States)

    Yamshchikov, V. A.

    2015-11-01

    New approach for suppression of plasma inhomogeneities and instabilities in the volume self-sustained discharge is offered. The physical model is offered and conditions of obtaining extremely homogeneous self-sustained discharge are defined (with full suppression of plasma inhomogeneity and instability). Results of calculations agree with experiments.

  11. Excitation temperatures of atmospheric argon in dielectric barrier discharges

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yu; Wen Xiaohui; Yang Weihong [CAS Key Laboratory of Basic Plasma Physics and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2007-08-15

    A method for the determination of excitation temperatures based on optical emission spectroscopy and Fermi-Dirac distribution was set up and experiments were performed on atmospheric argon dielectric barrier discharges. Local thermodynamic equilibrium was proved to exist in the discharge and the validity of Boltzmann distribution is discussed. The main aim of this paper is to obtain the temperatures of atmospheric Ar II as a function of the discharge voltage, discharge frequency, argon flow rate and the argon fraction. It was found that the excitation temperatures are in the range 3800-4950 K. Besides, an increase in the argon flow rate resulting in a slight growth of the temperature and the add-in of air leading to the decrease in temperature was observed.

  12. Low pressure gas discharge in magnetically insulated diode

    International Nuclear Information System (INIS)

    The characteristics of the low pressure discharge in crossed electric and magnetic fields is described in this work for the case of magnetically insulated diode and electron anode layer with free cathode boundary. The theory is compared with experimental characteristics of Hall-type ion source ''Radical'' such as breakdown curves, current-voltage characteristics, dependences of discharge current on magnetic field and pressure. As a result of the carried out analysis, the mechanism of the discharge evolution dependence on boundary conditions is proposed. The mechanism of discharge initiation based on combined ionization of gas by electron avalanches and high energy ?-electrons is considered as well

  13. Bacteria Inactivation Using DBD Plasma Jet in Atmospheric Pressure Argon

    International Nuclear Information System (INIS)

    A coaxial dielectric barrier discharge plasma jet was designed, which can be operated in atmospheric pressure argon under an intermediate frequency sinusoidal resonant power supply, and an atmospheric pressure glow-like discharge was achieved. Two kinds of typical bacteria, i.e., the Staphylococcus aureus (S. aureus) and Escherichia coil (E. coil), were employed to study the bacterial inactivation mechanism by means of the non-thermal plasma. The killing log value (KLV) of S. aureus reached up to 5.38 with a treatment time of 90 s and that of E. coil up to 5.36 with 60 s, respectively. According to the argon emission spectra of the plasma jet and the scanning electron microscope (SEM) images of the two bacteria before and after the plasma treatment, it is concluded that the reactive species in the argon plasma played a major role in the bacterial inactivation, while the heat, electric field and UV photons had little effect. (plasma technology)

  14. Heat transport of nitrogen in helium atmospheric pressure microplasma

    CERN Document Server

    Xu, Shaofeng

    2013-01-01

    Stable DC atmospheric pressure normal glow discharges in ambient air were produced between the water surface and the metallic capillary coupled with influx of helium gas. Multiple independent repeated trials indicated that vibrational temperature of nitrogen rises from 3200 to 4622 K, and rotational temperature of nitrogen decreases from 1270 to 570 K as gas flux increasing from 20 to 80 sccm and discharge current decreasing from 11 to 3 mA. Furthermore, it was found that the vibrational degree of the nitrogen molecule has priority to gain energy than the rotational degree of nitrogen molecule in nonequilibrium helium microplasma.

  15. Spectral measurement of atmospheric pressure plasma by means of digital camera

    International Nuclear Information System (INIS)

    A digital camera measuring system has been used successfully to measure the space fluctuation behaviors of Induced Dielectric Barrier Discharge (IDBD) plasma at atmospheric pressure. The experimental results showed that: (1) The uniformity of electron temperature in space depends on discharge condition and structure of web electrode. For a certain web electrode the higher the discharge voltage is, the more uniform distribution of electron temperature in space will be. For a certain discharge the finer and denser the holes on web electrode are, the more uniform distribution of electron temperature in space will be. (2) Digital camera is an available equipment to measure some behaviors of the plasma working at atmospheric pressure

  16. Heating effects of a non-equilibrium RF corona discharge in atmospheric air

    Energy Technology Data Exchange (ETDEWEB)

    Auzas, F; Makarov, M; Agneray, A [Technocentre Renault, 1 Avenue du Golf, 78288 Guyancourt (France); Tardiveau, P; Puech, V, E-mail: pierre.tardiveau@u-psud.f [Laboratoire de Physique des Gaz et des Plasmas, Bat 210, Universite Paris-Sud, 91405 Orsay Cedex (France)

    2010-12-15

    Electrical and thermal properties of a single electrode configuration corona discharge generated under radiofrequency high voltage inside an open air gap at pressures above 1 bar is investigated. Time-resolved imaging of the discharge shows a four-step development of the discharge at atmospheric pressure starting by streamers' inception and propagation, evolving in heating waves and stabilizing in a stationary regime until the power supply is switched off. The mean gas temperature reaches about 1700 K in tens of microseconds with electrical energy release around tens of millijoules. Heating has been attributed to ion collisions and excited species relaxation, promoted by the successive time periods of the power supply. At higher pressures, beyond 3 bar, this behaviour changes and heating occurs at the same time as the discharge propagates. It leads to hot channels which constrict near the electrode as long as the voltage pulse is applied. Temperature gets higher and saturates at 2600 K whatever the voltage and the pressure. Considering the change in the electrical energy density released within the plasma channels with pressure and voltage, temperature saturation seems to be an effect of heat confining within the channels due to pressure. The large and non-thermal plasma generated by the RF corona discharge is a very good candidate for car engine lean mixtures ignition issues.

  17. Heating effects of a non-equilibrium RF corona discharge in atmospheric air

    International Nuclear Information System (INIS)

    Electrical and thermal properties of a single electrode configuration corona discharge generated under radiofrequency high voltage inside an open air gap at pressures above 1 bar is investigated. Time-resolved imaging of the discharge shows a four-step development of the discharge at atmospheric pressure starting by streamers' inception and propagation, evolving in heating waves and stabilizing in a stationary regime until the power supply is switched off. The mean gas temperature reaches about 1700 K in tens of microseconds with electrical energy release around tens of millijoules. Heating has been attributed to ion collisions and excited species relaxation, promoted by the successive time periods of the power supply. At higher pressures, beyond 3 bar, this behaviour changes and heating occurs at the same time as the discharge propagates. It leads to hot channels which constrict near the electrode as long as the voltage pulse is applied. Temperature gets higher and saturates at 2600 K whatever the voltage and the pressure. Considering the change in the electrical energy density released within the plasma channels with pressure and voltage, temperature saturation seems to be an effect of heat confining within the channels due to pressure. The large and non-thermal plasma generated by the RF corona discharge is a very good candidate for car engine lean mixtures ignition issues.

  18. Experimental Investigation of Low Pressure Audio Frequency Discharge in Argon

    International Nuclear Information System (INIS)

    Experimental data obtained on audio frequency (100–10000 Hz) discharge in argon at four pressures 50, 60, 70, and 80 mTorr are presented. The data show significant changes of the discharge current waveform with frequency. These changes seem to be associated with the glow discharge profile and colour. An empirical model based on the assumption of a frequency-dependent breakdown voltage is used to describe the experimental data

  19. Low Temperature Atmospheric Pressure Plasma Sterilization Shower

    Science.gov (United States)

    Gandhiraman, R. P.; Beeler, D.; Meyyappan, M.; Khare, B. N.

    2012-10-01

    Low-temperature atmospheric pressure plasma sterilization shower to address both forward and backward biological contamination issues is presented. The molecular effects of plasma exposure required to sterilize microorganisms is also analysed.

  20. Atmospheric and sub-atmospheric dielectric barrier discharges in helium and nitrogen

    International Nuclear Information System (INIS)

    Dielectric barrier discharges (DBDs) are investigated in helium and nitrogen as a function of pressure from 5 to 1000 mbar. Different regimes are observed: glow, Townsend, multi-peak and filamentary, depending on pressure, power and electrode gap. In helium, DBD is a glow-like discharge with a transition to multi-peak or Townsend discharge at high power. In nitrogen, the discharge is Townsend-like and shows a transition to multi-peak mode below 300 mbar. Transition to filamentary mode is observed for large gaps. Fast exposure imaging is used to investigate multi-peak mode in nitrogen. Electrical measurements and time-resolved optical emission spectroscopy are used to characterize the discharge, to study the evolution of metastable species as a function of the pressure and to analyse the discharge startup. These results offer new perspectives for the operation of DBDs in low vacuum

  1. Reconstructing the history of 14C discharges from Sellafield: Part 1--atmospheric discharges

    International Nuclear Information System (INIS)

    14C specific activities, above ambient background levels, were determined in individual tree-rings (corresponding to the years 1950-1999) sectioned from an oak tree that was felled in autumn 1999, from a location 1.5 km east of the Sellafield nuclear fuel reprocessing plant in Cumbria, north-west England. The data were used to produce a new, improved, reconstruction of Sellafield's annual atmospheric 14C discharges between 1951 and 1999, using the most reliable discharge data set (1994-1999) as the primary basis for the determination of a new calibration factor that relates excess 14C activity in individual tree rings to the annual discharge during the corresponding year. The results indicate that the current British Nuclear Fuels plc (BNFL) estimate of total 14C discharges to the atmosphere prior to 1978 is significantly overestimated, while the current estimate of total 14C discharges after 1978 is very similar to that determined in this study. In this study, the total activity of 14C discharged to the atmosphere from Sellafield between 1951 and 1999 is estimated to be 259±63 TBq (at 2 std. dev.). The BNFL current estimate is 360 TBq

  2. Diagnostics for environmental aspects of pulsed atmospheric discharges

    International Nuclear Information System (INIS)

    Diagnostics for the study of pulsed atmospheric discharges are discussed. To obtain parameters for describing conversion processes of pollutants into harmless products many diagnostic techniques are in use and under development. In this contribution electrical, optical and chemical diagnostics used in air and wastewater remediation are reviewed

  3. Atmospheric-pressure guided streamers for liposomal membrane disruption

    Science.gov (United States)

    Svarnas, P.; Matrali, S. H.; Gazeli, K.; Aleiferis, Sp.; Clément, F.; Antimisiaris, S. G.

    2012-12-01

    The potential to use liposomes (LIPs) as a cellular model in order to study interactions of cold atmospheric-pressure plasma with cells is herein investigated. Cold atmospheric-pressure plasma is formed by a dielectric-barrier discharge reactor. Large multilamellar vesicle liposomes, consisted of phosphatidylcholine and cholesterol, are prepared by the thin film hydration technique, to encapsulate a small hydrophilic dye, i.e., calcein. The plasma-induced release of calcein from liposomes is then used as a measure of liposome membrane integrity and, consequently, interaction between the cold atmospheric plasma and lipid bilayers. Physical mechanisms leading to membrane disruption are suggested, based on the plasma characterization including gas temperature calculation.

  4. Atmospheric-pressure guided streamers for liposomal membrane disruption

    International Nuclear Information System (INIS)

    The potential to use liposomes (LIPs) as a cellular model in order to study interactions of cold atmospheric-pressure plasma with cells is herein investigated. Cold atmospheric-pressure plasma is formed by a dielectric-barrier discharge reactor. Large multilamellar vesicle liposomes, consisted of phosphatidylcholine and cholesterol, are prepared by the thin film hydration technique, to encapsulate a small hydrophilic dye, i.e., calcein. The plasma-induced release of calcein from liposomes is then used as a measure of liposome membrane integrity and, consequently, interaction between the cold atmospheric plasma and lipid bilayers. Physical mechanisms leading to membrane disruption are suggested, based on the plasma characterization including gas temperature calculation.

  5. Atmospheric-pressure guided streamers for liposomal membrane disruption

    Energy Technology Data Exchange (ETDEWEB)

    Svarnas, P.; Aleiferis, Sp. [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, Rion 26504 (Greece); Matrali, S. H. [Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion 26504 (Greece); Gazeli, K. [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, Rion 26504 (Greece); IPREM-LCABIE, Plasmas et Applications, UPPA, 64000 Pau (France); Clement, F. [IPREM-LCABIE, Plasmas et Applications, UPPA, 64000 Pau (France); Antimisiaris, S. G. [Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion 26504 (Greece); Institute of Chemical Engineering Sciences (ICES)-FORTH, Rion 26504 (Greece)

    2012-12-24

    The potential to use liposomes (LIPs) as a cellular model in order to study interactions of cold atmospheric-pressure plasma with cells is herein investigated. Cold atmospheric-pressure plasma is formed by a dielectric-barrier discharge reactor. Large multilamellar vesicle liposomes, consisted of phosphatidylcholine and cholesterol, are prepared by the thin film hydration technique, to encapsulate a small hydrophilic dye, i.e., calcein. The plasma-induced release of calcein from liposomes is then used as a measure of liposome membrane integrity and, consequently, interaction between the cold atmospheric plasma and lipid bilayers. Physical mechanisms leading to membrane disruption are suggested, based on the plasma characterization including gas temperature calculation.

  6. Equilibrium analysis of tokamak discharges with anisotropic pressure

    International Nuclear Information System (INIS)

    Equilibrium reconstruction is the essential tool for determining the field configuration and current density in a tokamak discharge. Most equilibrium reconstruction codes use the Grad-Shafranov equation, which relies on the assumption of isotropic pressure. This property is often violated for additionally heated discharges. We report on the implementation of an anisotropic pressure model for the equilibrium reconstruction code EFIT. The anisotropy model exhibits more degrees of freedom and makes the reconstruction more sensitive to experimental errors. We use a regularisation technique (L-curve) that attempts to generate an optimal equilibrium. The algorithm is applied to selected high performance discharges of the tokamaks JET and Tore Supra. (authors)

  7. Micro-structured electrode arrays : high-frequency discharges at atmospheric pressure—characterization and new applications

    NARCIS (Netherlands)

    Baars-Hibbe, Lutz; Schrader, Christian; Sichler, Philipp; Cordes, Thorben; Gericke, Karl-Heinz; Büttgenbach, Stephanus; Draeger, Siegfried

    2004-01-01

    Micro-structured electrode (MSE) arrays allow to generate large-area uniform glow discharges over a wide pressure range up to atmospheric pressure. The electrode dimensions in the µm-range realized by means of modern micro-machining and galvanic techniques are small enough to generate sufficiently h

  8. Potential industrial applications of the one atmosphere uniform glow discharge plasma operating in ambient air

    International Nuclear Information System (INIS)

    The majority of industrial plasma processing is conducted with glow discharges at pressures below 10 Torr. This tends to limit such applications to high value workpieces, as a result of the high capital cost of vacuum systems and the production constraints of batch processing. It has long been recognized that glow discharges would play a much larger industrial role if they could be generated at 1 atm and in air. The one atmosphere uniform glow discharge plasma (OAUGDP registered ) has these capabilities. As a normal glow discharge, the OAUGDP registered can operate with maximum electrical efficiency at the Stoletow point, where the energy input per ion-electron pair is a minimum. This paper will survey exploratory investigations at the University of Tennessee's Plasma Sciences Laboratory of seven potential industrial applications of the OAUGDP registered which can be conducted at 1 atm and at room temperature with air as the working gas

  9. Measurement of the First Townsend's Ionization Coefficients in Helium, Air, and Nitrogen at Atmospheric Pressure

    Science.gov (United States)

    Ran, Junxia; Luo, Haiyun; Yue, Yang; Wang, Xinxin

    2014-07-01

    In the past the first Townsend’s ionization coefficient α could only be measured with Townsend discharge in gases at low pressure. After realizing Townsend discharge in some gases at atmospheric pressure by using dielectric barrier electrodes, we had developed a new method for measuring α coefficient at atmospheric pressure, a new optical method based on the discharge images taken with ICCD camera. With this newly developed method α coefficient in helium, nitrogen and air at atmospheric pressure were measured. The results were found to be in good agreement with the data obtained at lower pressure but same reduced field E/p by other groups. It seems that the value of α coefficient is sensitive to the purity of the working gas.

  10. Removal of priority pollutants from water by means of dielectric barrier discharge atmospheric plasma

    OpenAIRE

    Hijosa-Valsero, M.; Molina, R.; Schikora, H.; Müller, M.; Bayona, J M

    2013-01-01

    Two different nonthermal plasma reactors at atmospheric pressure were assessed for the removal of organic micropollutants (atrazine, chlorfenvinfos, 2,4-dibromophenol, and lindane) from aqueous solutions (1-5 mg L-1) at laboratory scale. Both devices were dielectric barrier discharge (DBD) reactors; one was a conventional batch reactor (R1) and the other a coaxial thin-falling-water-film reactor (R2). A first-order degradation kinetics was proposed for both experiments. The kinetic constants ...

  11. PWR pressurizer discharge piping system on-site testing

    International Nuclear Information System (INIS)

    Framatome PWR systems includes the installation of safety valves and relief valves wich permit the discharge of steam from the pressurizer to the pressurizer relief tank through discharge piping system. Water seal expulsion pluration then depends on valve stem lift dynamics which can vary according to water-stem interaction. In order to approaches the different phenomenons, it was decided to perform a test on a 900 MWe French plant, test wich objectives are: characterize the mechanical response of the discharge piping to validate a mechanical model; open one, two or several valves among the following: one safety valve and three pilot operated relief valves, at a time or sequentially and measure the discharge piping transient response, the support loads, the

  12. Diagnostics and modeling of high pressure streamer induced discharges

    International Nuclear Information System (INIS)

    A great variety of diagnostic has been applied to gain information on basic parameter governing high pressure nonthermal filamentary plasmas (and namely streamer induced filamentary discharges). Apart from electrical diagnostics, gas discharge, in contrast with solid state physics, can greatly benefit from all optical techniques owing to its ''transparent'' state. Emission and absorption spectroscopy, as well as LIF or CARS (talk are given during this meeting on these two techniques) are among such specific possibilities. The figures gained from these diagnostic measurements has generally no meaning by itself. They must be worked out, by means of calibrated former results, and/or by using them as input in high pressure plasma modeling. Mixing experimental and modeling approach is necessary for reaching relevant physical knowledge of the high pressure filamentary discharges processes. It is shown that diffusion, and thermal space and time distribution, must fully be taken into account

  13. Basic characteristics of an atmospheric pressure rf generated plasma jet

    Institute of Scientific and Technical Information of China (English)

    Wang Shou-Guo; Li Hai-Jiang; Ye Tian-Chun; Zhao Ling-Li

    2004-01-01

    A plasma jet has been developed which operates using radio frequency (rf) power and produces a stable homogeneous discharge at atmospheric pressure. Its discharge characteristics, especially the dependence of stable discharge operating range on the feed gas, were studied, and the electric parameters such as RMS current, RMS voltage and reflected power were obtained with different gas flows. These studies indicate that there is an optimum range of operation of the plasma jet for a filling with a gas mixture of He and O2. Two "failure" modes of the discharge are identified.One is a filamentary arc when the input power is raised above a critical level, another is that the discharge disappears gradually as the addition of O2 approaches 3.2%. Possible explanations for the two failure modes have been given. The current and voltage waveform measurements show that there is a clear phase shift between normal and failure modes.In addition, Ⅰ-Ⅴ curves as a function of pure helium and for 1% addition of oxygen have been studied.

  14. Study of short atmospheric pressure dc glow microdischarge in air

    Science.gov (United States)

    Kudryavtsev, Anatoly; Bogdanov, Eugene; Chirtsov, Alexander; Emelin, Sergey

    2011-10-01

    The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen and oxygen atoms; ozone molecule; and different nitrogen and oxygen ions with different plasmochemical reactions between them. Simulations predicted the main regions of the dc glow discharges including cathode and anode sheath and plasma of negative glow, Faraday dark space and transition region. Gas heating plays an important role in shaping the discharge profiles. The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen

  15. Response of cyanobacteria to low atmospheric pressure

    Science.gov (United States)

    Qin, Lifeng; Yu, Qingni; Ai, Weidang; Tang, Yongkang; Ren, Jin; Guo, Shuangsheng

    2014-10-01

    Maintaining a low pressure environment in a controlled ecological life support system would reduce the technological complexity and resupply cost in the course of the construction of a future manned lunar base. To estimate the effect of a hypobaric environment in a lunar base on biological components, such as higher plants, microbes, and algae, cyanobacteria was used as the model by determining their response of growth, morphology, and physiology when exposed to half of standard atmospheric pressure for 16 days (brought back to standard atmospheric pressure 30 minutes every two days for sampling). The results indicated that the decrease of atmospheric pressure from 100 kPa to 50 kPa reduced the growth rates of Microcystis aeruginosa, Merismopedia sp., Anabaena sp. PCC 7120, and Anabaena flos-aquae. The ratio of carotenoid to chlorophyll a content in the four tested strains increased under low pressure conditions compared to ambient conditions, resulting from the decrease of chlorophyll a and the increase of carotenoid in the cells. Moreover, low pressure induced the reduction of the phycocyanin content in Microcystis aeruginosa, Anabaena sp. PCC 7120, and Anabaena flos-aquae. The result from the ultrastructure observed using SEM indicated that low pressure promoted the production of more extracellular polymeric substances (EPSs) compared to ambient conditions. The results implied that the low pressure environment of 50 kPa in a future lunar base would induce different effects on biological components in a CELSS, which must be considered during the course of designing a future lunar base. The results will be a reference for exploring the response of other biological components, such as plants, microbes, and animals, living in the life support system of a lunar base.

  16. Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Mortensen, Henrik Junge; Stenum, Bjarne;

    2007-01-01

    density increased with the plasma treatments. Adhesion test of the treated glassy carbon covered with cured epoxy showed cohesive failure, indicating strong bonding after the treatments. This is in contrast to the adhesion tests of untreated samples where the epoxy readily peeled off the glassy carbon.......Glassy carbon plates were treated with an atmospheric pressure dielectric barrier discharge (DBD). He gas, gas mixtures of He and reactive gases such as O2, CO2 and NH3, Ar gas and Ar/NH3 gas mixture were used as treatment gases. The oxygen and nitrogen contents on the surface as well as defect...

  17. Generation of subnanosecond electron beams in air at atmospheric pressure

    Science.gov (United States)

    Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.

    2009-11-01

    Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.

  18. Atmospheric pressure plasma surface modification of carbon fibres

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Løgstrup Andersen, Tom; Michelsen, Poul

    2008-01-01

    Carbon fibres are continuously treated with dielectric barrier discharge plasma at atmospheric pressure in various gas conditions for adhesion improvement in mind. An x-ray photoelectron spectroscopic analysis indicated that oxygen is effectively introduced onto the carbon fibre surfaces by He, He...... temperature for a month the O/C ratio at the plasma treated surfaces decreased to 0.151, which is close to that of the untreated ones. It can be attributed to the adsorption of hydrocarbon contamination at the plasma treated surfaces....

  19. PWR pressurizer discharge piping system on-site testing

    International Nuclear Information System (INIS)

    Pilot operated relief valves (PORV) and spring-loaded safety valves (SV) are protected against leakage by a water seal. When a valve pops open, this water seal is pushed into the discharge piping and produces substantial transient loads on piping supports (snubbers, guides...) lasting some hundred milliseconds. Until 1982, no qualified code was available to modelize flashing and discharge and FRAMATOME has experienced failures on discharge line supports during hot functional tests. In 1979, an in-plant discharge test was scheduled in order to improve piping support behaviour and condensation efficiency in the pressure relief tank (PRT), and also to qualify thermohydraulic computer codes. Twelve steam discharge tests were conducted in November 1981 with and without water seal through PORV or SV. During all the tests, the SV was assisted with a pneumatic ram. PORV and SV were opened separately or sequentially. The piping system had been previously excited in six different points with an unbalanced shaker in order to determine dynamic characteristics (natural frequencies, mode shapes and damping values) helpfull to adjust a mechanical model. Tri-axial accelerations where measured in ten points for each location of the shaker. Mechanical tests were run before the hot functional tests, discharge tests extended hot functional tests by eleven days. A total of 132 channels were installed from the pressurizer nozzle, down to the PRT, and recorded on a fast digital acquisition system (120 channels) and on two analog recorders. (orig./RW)

  20. Plasma Processing with a One Atmosphere Uniform Glow Discharge Plasma (OAUGDP)

    Science.gov (United States)

    Reece Roth, J.

    2000-10-01

    The vast majority of all industrial plasma processing is conducted with glow discharges at pressures below 10 torr. This has limited applications to high value workpieces as a result of the large capital cost of vacuum systems and the production constraints of batch processing. It has long been recognized that glow discharges would play a much larger industrial role if they could be operated at one atmosphere. The One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) has been developed at the University of Tennessee Plasma Sciences Laboratory. The OAUGDP is non-thermal RF plasma with the time-resolved characteristics of a classical low pressure DC normal glow discharge. An interdisciplinary team was formed to conduct exploratory investigations of the physics and applications of the OAUGDP. This team includes collaborators from the UTK Textiles and Nonwovens Development Center (TANDEC) and the Departments of Electrical and Computer Engineering, Microbiology, Food Science and Technology, and Mechanical and Aerospace Engineering and Engineering Science. Exploratory tests were conducted on a variety of potential plasma processing and other applications. These include the use of OAUGDP to sterilize medical and dental equipment and air filters; diesel soot removal; plasma aerodynamic effects; electrohydrodynamic (EDH) flow control of the neutral working gas; increasing the surface energy of materials; increasing the wettability and wickability of fabrics; and plasma deposition and directional etching. A general overview of these topics will be presented.

  1. EDITORIAL: Atmospheric pressure non-thermal plasmas for processing and other applications

    Science.gov (United States)

    Massines, Françoise

    2005-02-01

    Interest has grown over the past few years in applying atmospheric pressure plasmas to plasma processing for the benefits this can offer to existing and potential new processes, because they do not require expensive vacuum systems and batch processing. There have been considerable efforts to efficiently generate large volumes of homogeneous atmospheric pressure non-thermal plasmas to develop environmentally friendly alternatives for surface treatment, thin film coating, sterilization, decontamination, etc. Many interesting questions have arisen that are related to both fundamental and applied research in this field. Many concern the generation of a large volume discharge which remains stable and uniform at atmospheric pressure. At this pressure, depending on the experimental conditions, either streamer or Townsend breakdown may occur. They respectively lead to micro-discharges or to one large radius discharge, Townsend or glow. However, the complexity arises from the formation of large radius streamers due to avalanche coupling and from the constriction of the glow discharge due to too low a current. Another difficulty is to visually distinguish many micro-discharges from one large radius discharge. Other questions relate to key chemical reactions in the plasma and at the surface. Experimental characterization and modelling also need to be developed to answer these questions. This cluster collects up-to-date research results related to the understanding of different discharges working at atmospheric pressure and the application to polymer surface activation and thin film coating. It presents different solutions for generating and sustaining diffuse discharges at atmospheric pressure. DC, low-frequency and radio-frequency excitations are considered in noble gases, nitrogen or air. Two specific methods developed to understand the transition from Townsend to streamer breakdown are also presented. They are based on the cross-correlation spectroscopy and an electrical

  2. Chaotic characteristics of corona discharges in atmospheric air

    International Nuclear Information System (INIS)

    A point-plane electrode system in atmospheric air is established to investigate the mechanism of the corona discharge. By using this system, the current pulses of the corona discharges under the 50 Hz ac voltage are measured using partial discharge (PD) measurement instrument and constitute the point-plane voltage-current (V-I) characteristic equation together with the voltage. Then, this paper constructs the nonlinear circuit model and differential equations of the system in an attempt to give the underlying dynamic mechanism based on the nonlinear V-I characteristics of the point-plane corona discharges. The results show that the chaotic phenomenon is found in the corona circuit by the experimental study and nonlinear dynamic analysis. The basic dynamic characteristics, including the Lyapunov exponent, the existence of the strange attractors, and the equilibrium points, are also found and analyzed in the development process of the corona circuit. Moreover, the time series of the corona current pulses obtained in the experiment is used to demonstrate the chaotic characteristics of the corona current based on the nonlinear dynamic circuit theory and the experimental basis. It is pointed out that the corona phenomenon is not a purely stochastic phenomenon but a short term deterministic chaotic activity

  3. Breakdown and dc discharge in low-pressure water vapour

    Science.gov (United States)

    Sivoš, J.; Škoro, N.; Marić, D.; Malović, G.; Petrović, Z. Lj

    2015-10-01

    In this paper we report studies of basic properties of breakdown, low-current Townsend discharge and high-current discharge regimes in water vapour. Paschen curves and the corresponding distributions of emission intensities at low current were recorded in the range of pd (pressure x electrode gap) from 0.1 to 10 Torrcm covering the region of Paschen minimum. From the experimental profiles we obtained effective ionization coefficient of water vapour for the E/N range 650 Td-7 kTd and fitted the results by using the extended Townsend analytical formula. Using the obtained ionization coefficient, we calculated the effective yield of secondary electrons from the copper cathode. Results of the measurements of Volt-Ampere characteristics in water vapour were presented together with the images of the axial structure of the discharge in a wide range of discharge currents for two pd values. Recorded profiles showed development of the spatial structure of the discharge in different operating regimes. We were able to identify conditions where processes induced by heavy particles, probably fast hydrogen atoms, are dominant in inducing emission from the discharge. Finally, standard scaling laws were tested for low current and glow discharges in water vapour.

  4. High-pressure pulsed avalanche discharges: Formulas for required preionization density and rate for homogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Brenning, N.; Axnaes, I.; Nilsson, J.O.; Eninger, J.E. [Royal Inst. of Tech., Stockholm (Sweden)

    1997-02-01

    The requirements on preionization for the formation of spatially homogeneous pulsed avalanche discharges are examined. The authors derive two formulas which apply in the case of a slowly rising electric field, one which gives the required preionization density at breakdown, and one which gives the required preionization rate. These quantities are expressed as functions of the electrochemical properties of the gas, the neutral density, and the electric field rise time. They also treat the statistical effect that the electrons tend to form groups, in contrast to being randomly distributed in space, during the prebreakdown phase. This process is found to increase the required preionization rate significantly, typically by a factor of five for a discharge at atmospheric pressure. Homogeneous high-pressure discharges have been used for laser excitation, and have also been proposed for chemical plasma processing (ozone production) because of their good scaling properties and high efficiency.

  5. Diagnostics of atmospheric pressure capillary DBD oxygen plasma jet

    CERN Document Server

    Roy, N C; Pramanik, B K

    2015-01-01

    Atmospheric pressure capillary dielectric barrier oxygen discharge plasma jet is developed to generate non-thermal plasma using unipolar positive pulse power supply. Both optical and electrical techniques are used to investigate the characteristics of the produced plasma as function of applied voltage and gas flow rate. Analytical results obtained from the optical emission spectroscopic data reveal the gas temperature, rotational temperature, excitation temperature and electron density. Gas temperature and rotational temperature are found to decrease with increasing oxygen flow rate but increase linearly with applied voltage. It is exposed that the electron density is boosting up with enhanced applied voltage and oxygen flow rate, while the electron excitation temperature is reducing with rising oxygen flow rate. Electrical characterization demonstrates that the discharge frequency is falling with flow rate but increasing with voltage. The produced plasma is applied preliminarily to study the inactivation yie...

  6. 大气压直流正电晕放电暂态空间电荷分布仿真研究%Numerical simulation of transient space charge distribution of DC positive corona discharge under atmospheric pressure air

    Institute of Scientific and Technical Information of China (English)

    廖瑞金; 伍飞飞; 刘兴华; 杨帆; 杨丽君; 周之; 翟蕾

    2012-01-01

    DC positive corona discharge under atmospheric environment. The model is based on the plasma hydrodynamics and the chemical dynamics, and it includes 12 species and 27 reactions. Besides, the photoionization effect is also considered in the proposed model. The simulation and the experiment on bar-plate electrode configuration with an inter-electrode gap of 5.0 mm at 2-5.5 kV are carried out. The discharge voltage-current characteristics and single pulse waveform are in good agreement with the experimental measurements. Based on this model, the electric field distribution, the electron temperature distribution, and the evolution of charged species distribution are investigated in detail. The results show that distributions of electron temperature and electric field have the same patterns, In the process of discharge, electron density is kept at 10^19 m-3 or so. O4+ is dominant compared with the other charged heavy species, and O+ and N+ play the key role in secondary electron emission: the unmbers of O~ and O are the largest in negative ions and neutral particle respectively, they play a negligible role in discharge process.

  7. Development of a cascade arc discharge source for an atmosphere-vacuum interface device

    Science.gov (United States)

    Namba, S.; Endo, T.; Fujino, S.; Suzuki, C.; Tamura, N.

    2016-08-01

    To realize a novel vacuum-atmosphere interface that does not require a large differential pumping system, a robust cascade arc discharge source called a plasma window is constructed and tested for long-term operation. By modifying a test plasma with a direct current discharge, a vacuum interface with a high gas pressure ratio of 1/407 between the discharge and expansion sections is demonstrated for currents as high as 20 A. No significant damage to the electrodes is observed during the operation. Analysis of the visible emission spectra reveals that a stationary, stable argon plasma having a temperature of 1 eV and a density of 1.5 × 1016 cm-3 is generated in the plasma channel.

  8. Development of a cascade arc discharge source for an atmosphere-vacuum interface device.

    Science.gov (United States)

    Namba, S; Endo, T; Fujino, S; Suzuki, C; Tamura, N

    2016-08-01

    To realize a novel vacuum-atmosphere interface that does not require a large differential pumping system, a robust cascade arc discharge source called a plasma window is constructed and tested for long-term operation. By modifying a test plasma with a direct current discharge, a vacuum interface with a high gas pressure ratio of 1/407 between the discharge and expansion sections is demonstrated for currents as high as 20 A. No significant damage to the electrodes is observed during the operation. Analysis of the visible emission spectra reveals that a stationary, stable argon plasma having a temperature of 1 eV and a density of 1.5 × 10(16) cm(-3) is generated in the plasma channel. PMID:27587119

  9. Supershort avalanche electron beams and x-ray in high-pressure nanosecond discharges

    International Nuclear Information System (INIS)

    The properties of a supershort avalanche electron beam (S AEB) and X-ray radiation produced using a nanosecond volume discharge are examined. An electron beam of the runaway electrons with amplitude of ∼ 50 A has been obtained in air atmospheric pressure. It is reported that S AEB is formed in the angle above 2π sr. Three groups of the runaway electrons are formed in a gas diode under atmospheric air pressure, when nanosecond voltage pulses with amplitude of hundreds of kilovolts are applied. The electron beam has been generated behind a 45 μm thick AlBe foil in SF6 and Xe under the pressure of 2 arm, and in He under the pressure of about 12 atm. The paper gives the analysis of a generation mechanism of SAEB.

  10. Supershort avalanche electron beams and x-ray in high-pressure nanosecond discharges

    Science.gov (United States)

    Tarasenko, V. F.; Baksht, E. H.; Kostyrya, I. D.; Lomaev, M. I.; Rybka, D. V.

    2008-10-01

    The properties of a supershort avalanche electron beam (S AEB) and X-ray radiation produced using a nanosecond volume discharge are examined. An electron beam of the runaway electrons with amplitude of ~ 50 A has been obtained in air atmospheric pressure. It is reported that S AEB is formed in the angle above 2π sr. Three groups of the runaway electrons are formed in a gas diode under atmospheric air pressure, when nanosecond voltage pulses with amplitude of hundreds of kilovolts are applied. The electron beam has been generated behind a 45 μm thick AlBe foil in SF6 and Xe under the pressure of 2 arm, and in He under the pressure of about 12 atm. The paper gives the analysis of a generation mechanism of SAEB.

  11. Determination of Ionization Coefficient of Atmospheric Helium in Dielectric Barrier Discharge

    International Nuclear Information System (INIS)

    A weakly luminous layer close to the anode is observed at time far ahead of the current pulse in dielectric barrier discharge of helium at atmospheric pressure and it is considered as the result of a very weak Townsend discharge. Based on the assumption that the space charge produced by this Townsend discharge is too small to distort the uniform electric field in the gas gap, the electrons have more or less the same energy over the entire gap and the spatial distribution of the discharge light is proportional to the distribution of electron density. This light distribution is obtained by processing side-view photograph of discharge gap using an intensified charge coupled device camera with an exposure time of 20 ns. By fitting a theoretically derived formula with the measured curve of light distribution, the Townsend electron ionization coefficient a is determined to be 31 cm−1 at E/p = 3.6 V·cm−1·Torr−1, which is much higher than that obtained by solving the Boltzmann equation of pure helium. It is believed that penning ionization of helium metastables with impurity of nitrogen molecules makes great contribution to the experimentally determined α value. The contribution of this penning ionization to α is roughly estimated. (physics of gases, plasmas, and electric discharges)

  12. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nastuta, Andrei Vasile; Topala, Ionut; Pohoata, Valentin; Popa, Gheorghe [Faculty of Physics, Alexandru Ioan Cuza University, Bd. Carol No. 11, 700506, Iasi (Romania); Grigoras, Constantin, E-mail: andrei.nastuta@uaic.ro [Physiopathology Department, Grigore T. Popa University of Medicine and Pharmacy, 700115, Iasi (Romania)

    2011-03-16

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  13. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    International Nuclear Information System (INIS)

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  14. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    Science.gov (United States)

    Vasile Nastuta, Andrei; Topala, Ionut; Grigoras, Constantin; Pohoata, Valentin; Popa, Gheorghe

    2011-03-01

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  15. A dc non-thermal atmospheric-pressure plasma microjet

    International Nuclear Information System (INIS)

    A direct current (dc), non-thermal, atmospheric-pressure plasma microjet is generated with helium/oxygen gas mixture as working gas. The electrical property is characterized as a function of the oxygen concentration and show distinctive regions of operation. Side-on images of the jet were taken to analyze the mode of operation as well as the jet length. A self-pulsed mode is observed before the transition of the discharge to normal glow mode. Optical emission spectroscopy is employed from both end-on and side-on along the jet to analyze the reactive species generated in the plasma. Line emissions from atomic oxygen (at 777.4 nm) and helium (at 706.5 nm) were studied with respect to the oxygen volume percentage in the working gas, flow rate and discharge current. Optical emission intensities of Cu and OH are found to depend heavily on the oxygen concentration in the working gas. Ozone concentration measured in a semi-confined zone in front of the plasma jet is found to be from tens to ∼120 ppm. The results presented here demonstrate potential pathways for the adjustment and tuning of various plasma parameters such as reactive species selectivity and quantities or even ultraviolet emission intensities manipulation in an atmospheric-pressure non-thermal plasma source. The possibilities of fine tuning these plasma species allows for enhanced applications in health and medical related areas. (paper)

  16. Compact atmospheric pressure plasma self-resonant drive circuits

    Science.gov (United States)

    Law, V. J.; Anghel, S. D.

    2012-02-01

    This paper reports on compact solid-state self-resonant drive circuits that are specifically designed to drive an atmospheric pressure plasma jet and a parallel-plate dielectric barrier discharge of small volume (0.5 cm3). The atmospheric pressure plasma (APP) device can be operated with helium, argon or a mixture of both. Equivalent electrical models of the self-resonant drive circuits and discharge are developed and used to estimate the plasma impedance, plasma power density, current density or electron number density of three APP devices. These parameters and the kinetic gas temperature are dependent on the self-resonant frequency of the APP device. For a fixed switching frequency and APP device geometry, the plasma parameters are controlled by adjusting the dc voltage at the primary coil and the gas flow rate. The resonant frequency is controlled by the selection of the switching power transistor and means of step-up voltage transformation (ferrite core, flyback transformer, or Tesla coil). The flyback transformer operates in the tens of kHz, the ferrite core in the hundreds of kHz and Tesla coil in the MHz range. Embedded within this work is the principle of frequency pulling which is exemplified in the flyback transformer circuit that utilizes a pickup coil for feedback control of the switching frequency.

  17. Compact atmospheric pressure plasma self-resonant drive circuits

    International Nuclear Information System (INIS)

    This paper reports on compact solid-state self-resonant drive circuits that are specifically designed to drive an atmospheric pressure plasma jet and a parallel-plate dielectric barrier discharge of small volume (0.5 cm3). The atmospheric pressure plasma (APP) device can be operated with helium, argon or a mixture of both. Equivalent electrical models of the self-resonant drive circuits and discharge are developed and used to estimate the plasma impedance, plasma power density, current density or electron number density of three APP devices. These parameters and the kinetic gas temperature are dependent on the self-resonant frequency of the APP device. For a fixed switching frequency and APP device geometry, the plasma parameters are controlled by adjusting the dc voltage at the primary coil and the gas flow rate. The resonant frequency is controlled by the selection of the switching power transistor and means of step-up voltage transformation (ferrite core, flyback transformer, or Tesla coil). The flyback transformer operates in the tens of kHz, the ferrite core in the hundreds of kHz and Tesla coil in the MHz range. Embedded within this work is the principle of frequency pulling which is exemplified in the flyback transformer circuit that utilizes a pickup coil for feedback control of the switching frequency. (paper)

  18. Time lags of positive corona discharges in atmospheric air

    International Nuclear Information System (INIS)

    Positive impulse voltage was applied to the rod-plane gap in the box and the time lag of the first corona discharge was measured under three atmospheric conditions. In the laboratory air and the air which was passed through the airfilter, the rates of production of the primary electron to start the corona discharge were increased with the time after the application of impulse voltage. Their values were 1.0 x 10-2 -- 3.5 x 10-1 and 2.0 x 10-2 -- 1.0 [cm-3.μsec-1] respectively. By diffusion of the negative ions, the rate of production of the primary electron in the discharge space was constant with time. Its value was 4.0 x 10-1 -- 2.6 [cm-3μsec-1]. On the assumption of the collisional detachment processes from 02- ions, the data of the air with diffused negative ions was examined theoretically. (auth.)

  19. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion;

    2012-01-01

    Efficiency of atmospheric pressure plasma treatment can be highly enhanced by simultaneous high power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above ∼140 dB can reduce the thickness of a boundary gas layer between the plasma....... The ultrasonic irradiation during the plasma treatment consistently enhanced the treatment efficiency. The principal effect of ultrasonic irradiation can be attributed to enhancing surface oxidation during plasma treatment. In addition, ultrasonic irradiation can suppress arcing, and the uniformity of...... and the material surface, and thus, many reactive species generated in the plasma can reach the surface before they are inactivated and can be efficiently utilised for surface modification. In the present work, glass fibre reinforced polyester plates were treated using a dielectric barrier discharge...

  20. Corona discharge experiments in admixtures of N2 and CH4: a laboratory simulation of Titan's atmosphere

    International Nuclear Information System (INIS)

    A positive corona discharge fed by a N2 : CH4 mixture (98 : 2) at atmospheric pressure and ambient temperature has been studied as a laboratory mimic of the chemical processes occurring in the atmosphere of Titan, Saturn's largest moon. In situ measurements of UV and IR transmission spectra within the discharge have shown that the main chemical product is C2H2, produced by dissociation of CH4, with small but significant traces of ethane and HCN, all species that have been detected in Titan's atmosphere. A small amount (0.2%) of CH4 was decomposed after 12 min of treatment requiring an average energy of 2.7 kWh g-1. After 14 min the discharge was terminated due to the formation of a solid yellow deposit on the central wire electrode. Such a deposit is similar to that observed in other discharges and is believed to be an analogue of the aerosol and dust observed in Titan's atmosphere and is composed of chemical species commonly known as 'tholins'. We have also explored the electrical properties of the discharge. The admixture of methane into nitrogen caused an increase in the onset voltage of the discharge and consequently led to a reduction in the measured discharge current.

  1. Study on the hydrogen negative ion in low pressure discharges

    International Nuclear Information System (INIS)

    A new use of negative hydrogen ions is the production of intense fast neutral atom beams useful in plasma heating in thermonuclear heating. That is one of the reasons that started this study. The density of negative hydrogen ions in diffusion, and multipole-type low pressure (10-3 - 10-2 Torr) discharges is deduced from the various formation and destruction processes of the species present in these discharges. The H- ions are essentially produced by dissociative attachment to vibrationally excited molecules and destroyed by processes the relative importance of which is discussed as a function of the discharge parameters. The experimental study of the density of the H- ions, measured by photodetachment, as a function of these parameters, coroborates the theoretical model

  2. Sub-nanosecond dynamics of atmospheric air discharge under highly inhomogeneous and transient electric field

    Science.gov (United States)

    Tardiveau, Pierre; Magne, Lionel; Pasquiers, Stephane; Jeanney, Pascal; Bournonville, Blandine

    2015-09-01

    The effects of the application of extreme overvoltages (>500%) in air gaps over less than a few nanoseconds bring us to reconsider the classical physics of streamer used to describe air discharges at atmospheric pressure. Non equilibrium discharges created by extremely transient and intense electric fields in standard conditions of pressure and temperature exhibit unusual diffuse and large structure. In point-to-plane electrode configurations, a plasma cloud is observed which properties depend on voltage pulses features (amplitude, rise time, length, and frequency) and electrodes properties (material, shape, and gap length). Our parametric experimental study is based on fast electrical characterization and sub-nanosecond imaging and shows the different stages of propagation of the cloud. This work details the conditions to maximize the cloud size without moving towards a multi-channel streamer regime. Based on the analysis and the Abel transform processing of the emission of excited states of nitrogen from the discharge, a focus is made on the structuration of the plasma cloud while it is propagating. It shows how much, according to the experimental conditions, the external electric field can be screened by the plasma and, inversely, how deep and how long a high electric field can be sustained in the gap, that is challenging for pulsed atmospheric plasmas applications. This work benefits from the financial support of the National Agency of Research within the framework of the project ANR-13-BS09-0014.

  3. Atmospheric Pressure Plasma Processing for Polymer Adhesion: A Review

    DEFF Research Database (Denmark)

    Kusano, Yukihiro

    2014-01-01

    Atmospheric pressure plasma processing has attracted significant interests over decades due to its usefulness and a variety of applications. Adhesion improvement of polymer surfaces is among the most important applications of atmospheric pressure plasma treatment. Reflecting recent significant de...

  4. Laser diagnostics of high-pressure discharges: laser induced fluorescence detection of OH in He/Ar–H2O dielectric barrier discharges

    International Nuclear Information System (INIS)

    In this paper we describe in detail the application of laser induced fluorescence (LIF) to the OH density measurement in a dielectric barrier discharge (DBD) at atmospheric pressure in Ar–H2O, He–H2O mixtures, and with small N2 additions. Measurements are reported in which OH density is measured in a pulsed DBD, together with its decay in the post-discharge. The variation of macroscopic discharge parameters, such as the applied voltage, the water vapour content, the gas mixture composition and the discharge duration, has a large effect on the OH loss rate and a smaller one on OH density. These effects are described and briefly discussed as a valuable help for the understanding of the complex microscopic kinetics of water containing discharges.

  5. Pulse high-current discharge in helium at high pressure

    International Nuclear Information System (INIS)

    Practical interest to pulse arcs is associated with investigations into powerful light sources, development of fast-response current commutators and pulsed electric-arc heaters. The results of investigations into a high-current (100kA) pulse (100μs) arc discharge in helium under high initial gas pressure of 10-100 atm are presented. Volt-ampere characteristics and parameters of unsteady arc plasma are calculated. Comparison of the theory with the experiment is made

  6. Plasma pressure in the discharge column of the Novillo Tokamak

    International Nuclear Information System (INIS)

    The design and construction of an acquisition system for the measurement of the plasma pressure in the Novillo Tokamak is described in detail. The system includes a high voltage ramp generator, a hardware and a software interface with a personal computer. It is used to determine experimentally the variations of the pressure in the plasma column in the cleaning and main discharges. The measurement of the pressure is made with a Pirani sensor adapted to the acquisition hardware and synchronized with the discharge in the plasma. The software is made in object oriented programming as a graphic interface designed to be used easily. It controls the acquisition, records the data, displays in graphic form the results and save the measurements. The graphic interface is a building block that can be used in different acquisition tasks. The ramp generator can deliver a signal of 200 V peak to peak with a current of 200 m A and offset control. The acquisition time is 2.5 μ s for every measurement, 8192 measurements can be stored in the acquisition board for every discharge. (Author)

  7. Determination of Ionization Coefficient of Atmospheric Helium in Dielectric Barrier Discharge

    Institute of Scientific and Technical Information of China (English)

    LIANG Zhuo; LUO Hai-Yun; Wang Xin-Xin; LV Bo; GUAN Zhi-Cheng; WANG Li-Ming

    2008-01-01

    A weakly luminous layer close to the anode is observed at time far ahead of the current pulse in dielectric barrier discharge of helium at atmospheric pressure and it is considered as the result of a very weak Townsend discharge. Based on the assumption that the space charge produced by this Townsend discharge is too small to distort the uniform electric field in the gas gap, the electrons have more or less the same energy over the entire gap and the spatial distribution of the discharge light is proportional to the distribution of electron density. This light distribution is obtained by processing side-view photograph of discharge gap using an intensified charge coupled device camera with an exposure time of 20ns. By fitting a theoretically derived formula with the measured curve of light distribution, the Townsend electron ionization coefficient α is determined to be 31 cm-1 at E/p = 3.6 V.cm-1.Torr-1, which is much higher than that obtained by solving the Boltzmann equation of pure helium. It is believed that penning ionization of helium metastables with impurity of nitrogen molecules makes great contribution to the experimentally determined α value. The contribution of this penning ionization to a is roughly estimated.

  8. Corona discharge experiments in admixtures of N2 and CH4: a laboratory simulation of Titan's atmosphere

    OpenAIRE

    Horvath, G.; Skalny, J. D.; Mason, N.J.; Klas, M.; Zahoran, M.; Vladoiu, R.; Manole, M.

    2009-01-01

    A positive corona discharge fed by a N2:CH4 mixture (98:2) at atmospheric pressure and ambient temperature has been studied as a laboratory mimic of the chemical processes occurring in the atmosphere of Titan, Saturn's largest moon. In-situ measurements of UV and IR transmission spectra within the discharge have shown that the main chemical product is C2H2, produced by dissociation of CH4, with small but significant traces of ethane and HCN, all species that have been detected in Titan's atmo...

  9. Mass spectrometric diagnosis of an atmospheric pressure helium microplasma jet

    International Nuclear Information System (INIS)

    Ambient molecular beam mass spectrometry (MBMS) has been used to study how different capillary widths (530 µm and 2.4 mm) and excitation waveforms (continuous wave kHz and pulsed dc) affect the ionic composition of atmospheric pressure plasma jets. It is shown from time-averaged ion intensities that reducing the width of the jet capillary results in a significant increase in the variety of both positive and negative ions detected within the discharge. We discuss this in terms of changes in flow velocity and the onset of turbulence within the plasma plume. Changing the mode of excitation had little effect on the ionic species detected from the microplasma jet; however, there was a notable shift in dominance towards higher mass ions when operated in a continuous wave kHz mode. The temporal evolution of the ions within the microplasma jet was observed for both excitation sources, operated at 5 and 15 kHz. Positive ions were created during periods correlated with the positive and negative peaks in discharge current, while negative ions were predominantly created at times when the discharge current peak was negative. This phenomenon was independent of the driving waveform. For pulsed dc excitation, considerably fewer positive ions were created in periods related to the negative current peaks, especially at higher frequencies. We propose a simple explanation for these processes based on ideas of streamer propagation and the influence of self-induced electric fields in the plasma plume. (paper)

  10. Comparison of optical emission spectrums of cold flowing discharge and the post-discharge plasmas of air at low pressure

    OpenAIRE

    İlik, Erkan; AKAN, Tamer; Durmuş, Çağrı; Tanışlı, Murat; Şahin, Neslihan; Mertadam, Sercan

    2015-01-01

    The main differences between cold flowing discharge and the post-discharge plasmas of any gas are intended with the help of new designed plasma generation reactor which Works at low pressure. The up and the middle flanges which made of stainless steel are served as ring electrodes on the plasma generation reactor at low pressure and low temperature. The discharge and the post-discharge plasmas of air are created by means of a d.c. power supply. The reactor both generating post – discharge pla...

  11. Computational studies for plasma filamentation by magnetic field in atmospheric microwave discharge

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Masayuki; Ohnishi, Naofumi [Department of Aerospace Engineering, Tohoku University, Sendai 980-8579 (Japan)

    2014-12-01

    Plasma filamentation is induced by an external magnetic field in an atmospheric discharge using intense microwaves. A discrete structure is obtained at low ambient pressure if a strong magnetic field of more than 1 T is applied, due to the suppression of electron diffusion, whereas a diffusive pattern is generated with no external field. Applying a magnetic field can slow the discharge front propagation due to magnetic confinement of the electron transport. If the resonance conditions are satisfied for electron cyclotron resonance and its higher harmonics, the propagation speed increases because the heated electrons easily ionize neutral particles. The streamer velocity and the pattern of the microwave plasma are positively controlled by adjusting two parameters—the electron diffusion coefficient and the ionization frequency—through the resonance process and magnetic confinement, and hot, dense filamentary plasma can be concentrated in a compact volume to reduce energy loss in a plasma device like a microwave rocket.

  12. Glow-Discharge Production of Oxygen from the Martian Atmosphere

    Science.gov (United States)

    Hughes, Caleb; Outlaw, Ronald

    One of the most crucial aspects of any mission to Mars is a continual supply of oxygen for astronaut respiration on site. The most popular approach to this problem favors in-situ oxygen production on Mars, utilizing the CO2 Martian atmosphere. However, this requires a large energy budget. NASA's current plans for Mars include sending a system called MOXIE, which produces oxygen through solid oxide electrolysis at high temperatures. An alternative approach utilizes the 6 Torr Martian atmosphere to provide a continual source of oxygen by breaking down the molecule into CO and O using a glow-discharge. After dissociation, a thin film Agmembrane uniquely permeates the atomic oxygen which then recombines to O2 on the downstream side, where it is subsequently stored. By taking advantage of recent advances in thin film technology to reduce the thickness of the film to many orders of magnitude less than used in the initial study, a corresponding increase in O2 flux can be realized. The Ag thin film requires the support of a porous ceramic substructure. With this system, it is shown that this method produces a viable energy efficient alternative to MOXIE.

  13. Generation of Atmospheric Pressure Plasma by Repetitive Nanosecond Pulses in Air Using Water Electrodes

    International Nuclear Information System (INIS)

    Dielectric barrier discharge (DBD) excitated by pulsed power is a promising method for producing nonthermal plasma at atmospheric pressure. Discharge characteristic in a DBD with salt water as electrodes by a home-made unipolar nanosecond-pulse power source is presented in this paper. The generator is capable of providing repetitive pulses with the voltage up to 30 kV and duration of 70 ns at a 300 Ω resistive load. Applied voltage and discharge current are measured under various experimental conditions. The DBD created between two liquid electrodes shows that the discharge is homogeneous and diffuse in the whole discharge regime. Spectra diagnosis is conducted by an optical emission spectroscopy. The air plasma has strong emission from nitrogen species below 400 nm, notably the nitrogen second positive system. (15th asian conference on electrical discharge)

  14. Response of cyanobacteria to low atmosphere pressure

    Science.gov (United States)

    Qin, Lifeng; Ai, Weidang; Guo, Shuangsheng; Tang, Yongkang; Yu, Qingni; Shen, Yunze; Ren, Jin

    Maintaining a low pressure environment would reduce the technological complexity and constructed cost of future lunar base. To estimate the effect of hypobaric of controlled ecological life support system in lunar base on terrestrial life, cyanobacteria was used as the model to exam the response of growth, morphology, physiology to it. The decrease of atmosphere pressure from 100 KPa to 50 KPa reducing the growth rates of Microcystis aeruginosa, Merismopedia.sp, Anabaena sp. PCC 7120, Anabaena Hos-aquae, the chlorophyll a content in Microcystis aeruginosa, Merismopedia.sp, Anabaena Hos-aquae, the carotenoid content in Microcystis aeruginosa, Merismopedia.sp and Anabaena sp. PCC 7120, the phycocyanin content in Microcystis aeruginosa. This study explored the biological characteristics of the cyanobacteria under low pressure condition, which aimed at understanding the response of the earth's life to environment for the future moon base, the results enrich the research contents of the lunar biology and may be referred for the research of other terrestrial life, such as human, plant, microbe and animal living in life support system of lunar base.

  15. Electron-ion recombination study in argon at atmospheric pressure

    International Nuclear Information System (INIS)

    This study deals with a wall-stabilized arc burning in argon at atmospheric pressure. A transient mode is obtained using a fast thyristor connected to the electrodes, which short-circuits the discharge. By means of two wavelengths laser interferometry and spectroscopy measurements we have determined the temporal changes of the electron density, ground state atom density and excited atom density. We have shown that, when the electric field is suppressed, the electron temperature rapidly decreases to the gas temperature before changing electron and atom densities. This phenomenon is applied to determine the gas temperature and to evaluate the role played by ionization in electron density balance. The coefficients of ambipolar diffusion, ionization and recombination and an apparent recombination coefficient are determined versus electron temperature and compared with theoretical values

  16. Deposition of carbon nanostructures on metal substrates at atmospheric pressure

    Science.gov (United States)

    Dimitrov, Zh; Nikovski, M.; Kiss'ovski, Zh

    2016-03-01

    The microwave-plasma-enhanced CVD of carbon nanostructures at atmospheric pressure allows shorter deposition times and reduces the complexity of the experimental set-up. In our study, the substrate temperature was varied in a wide range (300 – 700 C) using microwave plasma heating, as well as an additional heater. The distance between the substrate and the plasma flame was also varied in order to establish the conditions for an efficient deposition process, the latter being carried out at specific argon/hydrogen/methane gas mixtures. Optical measurements of the plasma flame spectrum were conducted to obtain the gas temperature and the plasma density and to analyze the existence of reactive species. The carbon nanostructures deposited on the metal samples were investigated by SEM. The relation between the morphology and the gas-discharge conditions is discussed.

  17. Etching process of silicon dioxide with nonequilibrium atmospheric pressure plasma

    International Nuclear Information System (INIS)

    An ultrahigh etch rate (14 μm/min) of SiO2 and a high selectivity of SiO2/Si over 200 were achieved using a microwave-excited nonequilibrium atmospheric pressure plasma source employing He, NF3, and H2O gases, which have been developed for application to microelectromechanical systems and other bionanotechnology fields. In order to clarify the etching mechanism, two diagnostic methods have been performed: (1) imaging of plasma emission with an intensified charge-coupled device camera, and (2) absorption measurements using Fourier transform infrared spectroscopy. The etching characteristics are discussed in relation to the spatial distributions of the species involved. The etch rate depended considerably on the distance between the plasma and the substrate. Some radicals generated from the feed gases reached the substrate directly, while other radicals recombined into different species, which reached the substrate. An abundance of HF molecules were produced through a reaction between radicals generated by the atmospheric pressure discharge of NF3 and H2O. From these measurements, it has been found that the HF molecules generated played a role in producing the high etch rate of SiO2 and high etch selectivity of SiO2/Si

  18. Pulsed high-current discharges in helium at high pressures

    International Nuclear Information System (INIS)

    Pulsed arcs are of practical interest in connection with studies of high-power light sources and with the creation of fast-acting current switches and pulsed electric-arc heaters. The variety of applications has led to research on pulsed arcs over a wide range of parameters. Here, results are presented from a study of high-current (Jm ∼ 100 kA) arc discharges in helium with high initial gas pressures (p0 ∼ 10-100 atm). The current-voltage characteristics and plasma parameters of the nonstationary arc are calculated. Theory and experiment are compared

  19. Photocatalyst activation in a pulsed low pressure discharge

    International Nuclear Information System (INIS)

    The effect of combining plasma and photocatalyst for Volatile Organic Compounds (VOC) removal was investigated in a pulsed low-pressure dc discharge. The photocatalyst was TiO2 while the VOC was acetylene (1000 ppm) diluted in dry air. The temporal evolution of C2H2 concentration was measured by Tunable Diode Laser Absorption Spectroscopy (TDLAS) in the mid-infrared region during the plasma pulse (one second). The contribution of external ultraviolet radiation and plasma exposure were quantified, both with and without a photocatalyst. The synergetic effect was clearly demonstrated

  20. Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the spark regime

    Science.gov (United States)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-12-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 1015 cm-3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 1011 cm-3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 108 cm-3.

  1. Impulse Characteristics of the Atmospheric Negative Corona Discharge

    International Nuclear Information System (INIS)

    In many practical applications, such as xerography and static charge elimination, a number of point corona electrodes may be employed in parallel; another growing application of corona discharges is the cleaning effect on gases by means of precipitators. High geoelectric field intensity occurring as a result of meteorological situations also gives rise to corona discharges at the tree tops. These discharges are also multiple point discharges, especially on coniferous trees. This paper presents the experimental results obtained with the multineedle discharge electrodes, and the modelling of the negative corona discharge on living objects by multiple point - to - plane corona is also presented. (author)

  2. Surface modification of non-fabricated polypropylene textile in low-temperature plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    The plasma activation of polypropylene (PP) non-fabricated textile in low temperature plasma at atmospheric pressure has been studied. The aim of the present work was the study of the surface modification of non-fabricated textiles in order to improve their hydrophilic properties. The surface treatment has been provided by nonequilibrium discharges as barrier discharge and surface discharge. The surface properties have been characterized by measuring the contact angle of PP textiles with liquid, standard industrial permeability measurements and absorption tests. The degradation of treated PP samples has also been studied. (author)

  3. Optical emission and mass spectra observations during hydrogen combustion in atmospheric pressure microwave plasma

    International Nuclear Information System (INIS)

    We experimentally investigated hydrogen combustion by atmospheric pressure plasma generated by a 2.45 GHz microwave discharge. Small amounts of hydrogen and oxygen were mixed in the operational argon gas during discharge. To clarify the details of combustion, optical emission was measured. The constituents of combustion-processed gases were observed by a quadruple mass spectrometer. The degree of hydrogen oxidation, the so-called conversion rate, increased with input microwave power. The maximum hydrogen conversion rate was greater than 80% under these experimental conditions. During discharge, an optical emission peak due to OH radicals was observed. (author)

  4. Potential Industrial Applications of the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) Operating in Ambient Air

    Science.gov (United States)

    Reece Roth, J.

    2004-11-01

    The majority of industrial plasma processing with glow discharges has been conducted at pressures below 10 torr. This tends to limit applications to high value workpieces as a result of the high capital cost of vacuum systems and the production constraints of batch processing. It has long been recognized that glow discharge plasmas would play a much larger industrial role if they could be generated at one atmosphere. The One Atmosphere Uniform Glow Discharge Plasma (OAUGDP), developed at the University of Tennessee's Plasma Sciences Laboratory, is a non-thermal RF plasma operating on displacement currents with the time-resolved characteristics of a classical low pressure DC normal glow discharge. As a glow discharge, the OAUGDP operates with maximum electrical efficiency at the Stoletow point, where the energy input per ion-electron pair is a minimum [1, 2]. Several interdisciplinary teams have investigated potential applications of the OAUGDP. These teams included collaborators from the UTK Textiles and Nonwovens Development Center (TANDEC), and the Departments of Electrical and Computer Engineering, Microbiology, and Food Science and Technology, as well as the NASA Langley Research Center. The potential applications of the OAUGDP have all been at one atmosphere and room temperature, using air as the working gas. These applications include sterilizing medical and dental equipment; sterilizable air filters to deal with the "sick building syndrome"; removal of soot from Diesel engine exhaust; subsonic plasma aerodynamic effects, including flow re-attachment to airfoils and boundary layer modification; electrohydrodynamic (EDH) flow control of working gases; increasing the surface energy of materials; improving the adhesion of paints and electroplated layers: improving the wettability and wickability of fabrics; stripping of photoresist; and plasma deposition and directional etching of potential microelectronic relevance. [1] J. R. Roth, Industrial Plasma Engineering

  5. Diffuse mode and diffuse-to-filamentary transition in a high pressure nanosecond scale corona discharge under high voltage

    Energy Technology Data Exchange (ETDEWEB)

    Tardiveau, P; Moreau, N; Bentaleb, S; Postel, C; Pasquiers, S, E-mail: pierre.tardiveau@u-psud.f [Laboratoire de Physique des Gaz et des Plasmas, Bat 210, Universite Paris-Sud, 91405 Orsay Cedex (France)

    2009-09-07

    The dynamics of a point-to-plane corona discharge induced in high pressure air under nanosecond scale high overvoltage is investigated. The electrical and optical properties of the discharge can be described in space and time with fast and precise current measurements coupled to gated and intensified imaging. Under atmospheric pressure, the discharge exhibits a diffuse pattern like a multielectron avalanche propagating through a direct field ionization mechanism. The diffuse regime can exist since the voltage rise time is much shorter than the characteristic time of the field screening effects, and as long as the local field is higher than the critical ionization field in air. As one of these conditions is not fulfilled, the discharge turns into a multi-channel regime and the diffuse-to-filamentary transition strongly depends on the overvoltage, the point-to-plane gap length and the pressure. When pressure is increased above atmospheric pressure, the diffuse stage and its transition to streamers seem to satisfy similarity rules as the key parameter is the reduced critical ionization field only. However, above 3 bar, neither diffuse avalanche nor streamer filaments are observed but a kind of streamer-leader regime, due to the fact that mechanisms such as photoionization and heat diffusion are not similar to pressure.

  6. Regulation of radionuclides discharges to the atmosphere and emissions to the water from Ukraine NPPs

    International Nuclear Information System (INIS)

    The possible order of radionuclides discharges to the atmosphere and emissions to the water from Ukraine NPPs regulation is given allowance for laws and norms of Ukraine and ICRP and IAEA guidelines. For definition of a dose relevant to marginal discharges to the atmosphere and emissions to the water of separate radionuclides are counted dose coefficients (Sv/Bg). Considered three critical age groups: the babies (up to 1 year), children (till 10 years) and adult. The age group being critical for discharges to the atmosphere and emissions to the water are determined. The radionuclides producing the greatest contribution to a dose are determined. Guidelines on calculation of marginal radionuclides discharges to the atmosphere and emissions to the water of Ukraine NPPs are given. Matching of doses from actual radionuclides discharges to the atmosphere and emissions to the water of Ukraine NPPs with quotas, assigned in RSNU-97 is carried out

  7. Atmospheric pressure variations and abdominal aortic aneurysm rupture.

    LENUS (Irish Health Repository)

    Killeen, S D

    2012-02-03

    BACKGROUND: Ruptured abdominal aortic aneurysm (RAAA) presents with increased frequency in the winter and spring months. Seasonal changes in atmospheric pressure mirrors this pattern. AIM: To establish if there was a seasonal variation in the occurrence of RAAA and to determine if there was any association with atmospheric pressure changes. METHODS: A retrospective cohort-based study was performed. Daily atmospheric pressure readings for the region were obtained. RESULTS: There was a statistically significant monthly variation in RAAA presentation with 107 cases (52.5%) occurring from November to March. The monthly number of RAAA and the mean atmospheric pressure in the previous month were inversely related (r = -0.752, r (2) = 0.566, P = 0.03), and there was significantly greater daily atmospheric pressure variability on days when patients with RAAA were admitted. CONCLUSION: These findings suggest a relationship between atmospheric pressure and RAAA.

  8. A novel cold plasma jet generated by capillary atmospheric dielectric barrier discharge

    International Nuclear Information System (INIS)

    An easy-operated and effective scheme is presented to generate a novel kind of atmospheric cold plasma millimeter jet. The jet operates with many kinds of working gas at atmosphere pressure, such as Ar, He and N2, in a capillary quartz dielectric barrier discharge (DBD) system powered by a pulsed power source with a frequency of 33 kHz and variable voltage of 1-12 kV. Via a CCD imager, the initial discharge filaments in the DBD gap are found to be transformed into diffusion discharge or glow-like discharge by the flowing gas through the DBD gap, and a plasma jet formed in the outlet of the capillary is viewed simultaneously. The critical velocity of the gas flow for the plasma jet formation is determined to be 3-8 m/s for different working gases by a well-designed enthalpy probe. The jet range for a special gas can be changed by the increase of the gas flow velocity while the jet range for different gases varies a lot and the helium jet takes the longest range of about 44 mm when the helium flows at a velocity of about 20 m/s. Beyond the velocity limit of 20 m/s for laminar helium flow, the jet of helium plasma becomes torrent and unstable and its range turns shorter. Based on the OES analysis of He plasma jets, it is determined that the excitation temperature of He jets lay in the range 2000 K-3000 K, which is much lower than the excitation temperature of a normal arc plasma torch and hints that the jet is cold especially when compared to the arc plasma torch. (authors)

  9. Helium atmospheric pressure plasma jets touching dielectric and metal surfaces

    Science.gov (United States)

    Norberg, Seth A.; Johnsen, Eric; Kushner, Mark J.

    2015-07-01

    Atmospheric pressure plasma jets (APPJs) are being investigated in the context plasma medicine and biotechnology applications, and surface functionalization. The composition of the surface being treated ranges from plastics, liquids, and biological tissue, to metals. The dielectric constant of these materials ranges from as low as 1.5 for plastics to near 80 for liquids, and essentially infinite for metals. The electrical properties of the surface are not independent variables as the permittivity of the material being treated has an effect on the dynamics of the incident APPJ. In this paper, results are discussed from a computational investigation of the interaction of an APPJ incident onto materials of varying permittivity, and their impact on the discharge dynamics of the plasma jet. The computer model used in this investigation solves Poisson's equation, transport equations for charged and neutral species, the electron energy equation, and the Navier-Stokes equations for the neutral gas flow. The APPJ is sustained in He/O2 = 99.8/0.2 flowing into humid air, and is directed onto dielectric surfaces in contact with ground with dielectric constants ranging from 2 to 80, and a grounded metal surface. Low values of relative permittivity encourage propagation of the electric field into the treated material and formation and propagation of a surface ionization wave. High values of relative permittivity promote the restrike of the ionization wave and the formation of a conduction channel between the plasma discharge and the treated surface. The distribution of space charge surrounding the APPJ is discussed.

  10. Physics of mercury-free high-pressure discharge lamps

    International Nuclear Information System (INIS)

    This paper gives a summary of recent results about the replacement of mercury in high-pressure discharge lamps by metallic zinc. Actually, this topic is of high relevance for the lighting industry due to the need of more environmentally friendly products. The work presented here is supported by the German government under contract no 13N8072 and 13N8264. Due to upcoming European legislations which are expected for the year 2003, the replacement of mercury in lighting products is a high priority task. For example, mercury-free headlight discharge lamps are requested by the automotive industry. Pure zinc/argon discharges as well as lamps including zinc or mercury and metal halide additives are investigated. Experimental data are compared with model calculations of the energy balance involving the transport of heat and radiation. Since the excitation energies of relevant zinc transitions are lower than for mercury, axis temperatures of pure zinc lamps are about 300 K below the value of mercury arcs. In addition, the thermal conductivity of zinc including the contribution of radiation diffusion is larger than compared to mercury. From lamp voltage measurements it is found that the cross section for elastical electron scattering by zinc atoms is about the same than for mercury. When adding metal halides to a pure zinc discharge with argon as a starting gas, i.e. NaI, TlI, DyI3, axis temperatures decrease to about 5100 K due to strong radiation cooling. In order to obtain sufficiently large lamp voltages, wall temperatures of more than 1300 K are adjusted by means of polycrystalline aluminaoxide (Al2O3) as a wall material. Electric field strengths of 6.0 and 8.6 V mm-1 are measured for metal halide lamps containing zinc or mercury, respectively. The light technical data of the discharges are very close, since mercury and zinc do not contribute significantly to the radiation in the visible range. Efficacies of up to 93 and 100 lm W-1 are found in metal halide lamps with

  11. Preparation of Fluorescent Carbon Nanoparticles by Glow Discharge Plasma at Atmospheric Pressure%常压辉光放电等离子体制备荧光碳纳米粒子

    Institute of Scientific and Technical Information of China (English)

    谢春香; 张禹涛; 马腾才

    2012-01-01

    Superfine fluorescent carbon nanoparticles were prepared by glow discharge plasma,which generated a large amout of active particles such as high-energy electrons to decompose ethanol,and then to initiate the free radical reactions for producing the carbon nanoparticles.Either polyethylene glycol(PEG) 2000 or polyvinylpyrrolidone(PVP) 20000 was used as surfactant or surface modifier for the ethanol.The fluorescent properties and morphology of the carbon nanoparticles were characterized by fluorescence spectrophotometer and transmission electron microscopy(TEM),respectively.The results show that the morphology of fluorescent carbon nanoparticles is graphitic.The fluorescent intensities of the nanoparticles increase with reaction time,and they are higher in the resultants modified by PEG-2000 than by PVP-20000,as well as for those generated under streamer discharge mode than under glow discharge one.The quantum yield of photoluminescence is 46.58% for carbon nanoparticles prepared.%采用常压辉光放电等离子体制备了超细荧光碳纳米粒子。分别采用聚乙二醇(PEG)2000和聚乙烯吡咯烷酮(PVP)20000作为表面活性剂和表面修饰剂,利用辉光放电等离子体射流产生的大量高能电子等活性粒子分解乙醇溶液制备碳纳米粒子。采用透射电子显微镜和荧光分光光度计对生成物的形貌和荧光特性进行了检测。结果表明,生成物为石墨相的荧光碳纳米颗粒。随着反应时间的延长,生成物的荧光强度增强;采用PEG-2000修饰后产物的荧光强度比采用PVP-20000更强;丝状放电模式下生成物的荧光强度高于辉光放电模式。制备的碳纳米颗粒的荧光量子产率为46.58%。

  12. Decontamination of a rotating cutting tool during operation by means of atmospheric pressure plasmas

    DEFF Research Database (Denmark)

    Leipold, Frank; Kusano, Yukihiro; Hansen, F.;

    2010-01-01

    The decontamination of a rotating cutting tool used for slicing in the meat industry by means of atmospheric pressure plasmas is investigated. The target is Listeria monocytogenes, a bacterium which causes listeriosis and can be found in plants and food. The non-pathogenic species, Listeria innocua......, is used for the experiments. A rotating knife was inoculated with L. innocua. The surface of the rotating knife was partly exposed to an atmospheric pressure dielectric barrier discharge operated in air, where the knife itself served as a ground electrode. The rotation of the knife ensures a...

  13. Force interaction of high pressure glow discharge with fluid flow for active separation control

    International Nuclear Information System (INIS)

    Radio frequency based discharges at atmospheric pressures are the focus of increased interest in aerodynamics because of the wide range of potential applications including, specifically, actuation in flows at moderate speeds. Recent literature describing promising experimental observations, especially on separation control, has spurred efforts in the development of parallel theoretical modeling to lift limitations in the current understanding of the actuation mechanism. The present effort demonstrates higher fidelity first-principle models in a multidimensional finite-element framework to predict surface discharge-induced momentum exchange. The complete problem of a dielectric barrier discharge at high pressure with axially displaced electrodes is simulated in a self-consistent manner. Model predictions for charge densities, the electric field, and gas velocity distributions are shown to mimic trends reported in the experimental literature. Results show that a residual of electrons remains deposited on the dielectric surface downstream of the exposed powered electrode for the entire duration of the cycle and causes a net electric force in the direction from the electrode to the downstream surface. For the first time, results document the mitigation process of a separation bubble formed due to flow past a flat plate inclined at 12 degree sign angle of attack. This effort sets the basis for extending the formulation further to include polyphase power input in multidimensional settings, and to apply the simulation method to flows past common aerodynamic configurations

  14. Super-atmospheric pressure ionization mass spectrometry and its application to ultrafast online protein digestion analysis.

    Science.gov (United States)

    Chen, Lee Chuin; Ninomiya, Satoshi; Hiraoka, Kenzo

    2016-06-01

    Ion source pressure plays a significant role in the process of ionization and the subsequent ion transmission inside a mass spectrometer. Pressurizing the ion source to a gas pressure greater than atmospheric pressure is a relatively new approach that aims to further improve the performance of atmospheric pressure ionization sources. For example, under a super-atmospheric pressure environment, a stable electrospray can be sustained for liquid with high surface tension such as pure water, because of the suppression of electric discharge. Even for nano-electrospray ionization (nano-ESI), which is known to work with aqueous solution, its stability and sensitivity can also be enhanced, particularly in the negative mode when the ion source is pressurized. A brief review on the development of super-atmospheric pressure ion sources, including high-pressure electrospray, field desorption and superheated ESI, and the strategies to interface these ion sources to a mass spectrometer will be given. Using a recent ESI prototype with an operating temperature at 220 °C under 27 atm, we also demonstrate that it is possible to achieve an online Asp-specific protein digestion analysis in which the whole processes of digestion, ionization and MS acquisition could be completed on the order of a few seconds. This method is fast, and the reaction can even be monitored on a near-real-time basis. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27270863

  15. Sterilization of Surfaces with a Handheld Atmospheric Pressure Plasma

    Science.gov (United States)

    Hicks, Robert; Habib, Sara; Chan, Wai; Gonzalez, Eleazar; Tijerina, A.; Sloan, Mark

    2009-10-01

    Low temperature, atmospheric pressure plasmas have shown great promise for decontaminating the surfaces of materials and equipment. In this study, an atmospheric pressure, oxygen and argon plasma was investigated for the destruction of viruses, bacteria, and spores. The plasma was operated at an argon flow rate of 30 L/min, an oxygen flow rate of 20 mL/min, a power density of 101.0 W/cm^3 (beam area = 5.1 cm^2), and at a distance from the surface of 7.1 mm. An average 6log10 reduction of viable spores was obtained after only 45 seconds of exposure to the reactive gas. By contrast, it takes more than 35 minutes at 121^oC to sterilize anthrax in an autoclave. The plasma properties were investigated by numerical modeling and chemical titration with nitric oxide. The numerical model included a detailed reaction mechanism for the discharge as well as for the afterglow. It was predicted that at a delivered power density of 29.3 W/cm^3, 30 L/min argon, and 0.01 volume% O2, the plasma generated 1.9 x 10^14 cm-3 O atoms, 1.6 x 10^12 cm-3 ozone, 9.3 x 10^13 cm-3 O2(^1δg), and 2.9 x 10^12 cm-3 O2(^1σ^+g) at 1 cm downstream of the source. The O atom density measured by chemical titration with NO was 6.0 x 10^14 cm-3 at the same conditions. It is believe that the oxygen atoms and the O2(^1δg) metastables were responsible for killing the anthrax and other microorganisms.

  16. Low-Pressure Plane Plasma Discharge Sputtering System

    International Nuclear Information System (INIS)

    Ultra-thin semiconductors and metal films have gained high technological importance in recent years. Sputtering is considered to be the preferable way for industrial thin semiconductor systems preparation. The main goal of our work was to develop a sputtering based method suitable for fine electronic and opto-electronic applications. The basic idea behind the developed method was to create a plane of gas discharge placed between the sputtering target and the growing film in order to enable the sputtered atoms to reach the substrate without collisions. Thus, the shape of the created plasma is viewed as a thin wall. The work was devoted to the modeling and practical implementation of the novel sputtering method. The mean free path of the gas molecules in the vacuum chamber is chosen as the critical parameter that defines the type of the sputtered particle transport and the level of the gas pressure used in the vacuum chamber. The properties and behavior of the plane plasma are considered under the conditions of ballistics (collisionless) and boundary transfer of the sputtered atoms (taking into account the diffusion part as well). The basic properties of the plane plasma were experimentally studied with the Langmuir probe introduced in plasma. The evaluation of electron temperature and ion concentrations was done using the Bohm approximation for collisionless conditions, which were created in the designed system. The measurements were taken in a gas pressure range from 0.2 mTorr up to 5 mTorr in various points of the vacuum chamber: along the plasma plane and in its vicinity. It was found that the electrons with the maximum temperature of about 7-7.5 eV occur along the plasma plane. Positive argon ion concentration was found to vary in the range from 3.5x1011 cm-3 to 6x1011 cm-3 on the plasma axis, depending on the gas pressure. The substrate in the novel system is completely protected from the plasma and the electron irradiation. The substrate temperature does not

  17. Improving Hydrophobicity of Glass Surface Using Dielectric Barrier Discharge Treatment in Atmospheric Air

    International Nuclear Information System (INIS)

    Non-thermal plasmas under atmospheric pressure are of great interest in industrial applications, especially in material surface treatment. In this paper, the treatment of a glass surface for improving hydrophobicity using the non-thermal plasma generated by dielectric barrier discharge (DBD) at atmospheric pressure in ambient air is conducted, and the surface properties of the glass before and after the DBD treatment are studied by using contact angle measurement, surface resistance measurement and wet flashover voltage tests. The effects of the applied voltage and time duration of DBD on the surface modification are studied, and the optimal conditions for the treatment are obtained. It is found that a layer of hydrophobic coating is formed on the glass surface after spraying a thin layer of silicone oil and undergoing the DBD treatment, and the improvement of hydrophobicity depends on DBD voltage and treating time. It seems that there exists an optimum treating time for a certain applied voltage of DBD during the surface treatment. The test results of thermal aging and chemical aging show that the hydrophobic layer has quite stable characteristics. The interaction mechanism between the DBD plasma and the glass surface is discussed. It is concluded that CH3 and large molecule radicals can react with the radicals in the glass surface to replace OH, and the hydrophobicity of the glass surface is improved accordingly

  18. Improving Hydrophobicity of Glass Surface Using Dielectric Barrier Discharge Treatment in Atmospheric Air

    Institute of Scientific and Technical Information of China (English)

    FANG Zhi; QIU Yuchang; WANG Hui; E. KUFFEL

    2007-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in industrial applications, especially in material surface treatment. In this paper, the treatment of a glass surface for improving hydrophobicity using the non-thermal plasma generated by dielectric barrier discharge (DBD) at atmospheric pressure in ambient air is conducted, and the surface properties of the glass before and after the DBD treatment are studied by using contact angle measurement, surface resistance measurement and wet flashover voltage tests. The effects of the applied voltage and time duration of DBD on the surface modification are studied, and the optimal conditions for the treatment are obtained. It is found that a layer of hydrophobic coating is formed on the glass surface after spraying a thin layer of silicone oil and undergoing the DBD treatment, and the improvement of hydrophobicity depends on DBD voltage and treating time. It seems that there exists an optimum treating time for a certain applied voltage of DBD during the surface treatment. The test results of thermal aging and chemical aging show that the hydrophobic layer has quite stable characteristics. The interaction mechanism between the DBD plasma and the glass surface is discussed. It is concluded that CH3 and large molecule radicals can react with the radicals in the glass surface to replace OH, and the hydrophobicity of the glass surface is improved accordingly.

  19. An atmospheric pressure plasma source driven by a train of monopolar high voltage pulses superimposed to a dc voltage

    OpenAIRE

    Stoican, O.S.

    2011-01-01

    Abstract An atmospheric pressure plasma source supplied by an electrical circuit consisting of two voltage sources in parallel connection is reported. One of them is a low-power self-oscillating flyback converter which produces negative voltage pulses with an amplitude of several kilovolts. The high voltage pulses are necessary to ignite an electrical discharge between the electrodes at atmospheric pressure. An additional dc source delivering several hundreds of volts at a few hund...

  20. Requirements for plasma synthesis of nanocrystals at atmospheric pressures

    International Nuclear Information System (INIS)

    While well-defined high quality semiconductor nanocrystals have been synthesized successfully in low pressure nonthermal plasmas, moving the field of plasma nanoparticle synthesis to atmospheric pressures is important for lowering its cost and making the process attractive for some industrial applications. Here we present a heating and charging model for silicon nanoparticles during their synthesis in plasmas maintained over a wide range of pressures (10 − 105 Pa). We consider three collisionality regimes and determine the dominant contribution of each regime to heating and charging of nanoparticles under various plasma conditions. For plasmas maintained at atmospheric pressures we find that the ion current is mainly due to the collisional hydrodynamic contribution. Based on the model, we predict that the formation of nanocrystals at atmospheric pressure requires significantly higher plasma densities than those at low pressures. Strong nanoparticle cooling at atmospheric pressures necessitates high ion densities to reach temperatures required for crystallization of nanoparticles. Using experimentally determined plasma properties from the literature we estimate the nanoparticle temperature that can be achieved during synthesis at atmospheric pressures and predict that temperatures well above those required for crystallization can be achieved. Based on these results we suggest design principles for nanocrystal synthesis at atmospheric pressures. (paper)