WorldWideScience

Sample records for atmospheric pressure discharges

  1. Runaway electron beam in atmospheric pressure discharges

    Science.gov (United States)

    Oreshkin, E. V.; Barengolts, S. A.; Chaikovsky, S. A.; Oreshkin, V. I.

    2015-11-01

    A numerical simulation was performed to study the formation of a runaway electron (RAE) beam from an individual emission zone in atmospheric pressure air discharges with a highly overvolted interelectrode gap. It is shown that the formation of a RAE beam in discharges at high overvoltages is much contributed by avalanche processes.

  2. Structure formation of atmospheric pressure discharge

    Science.gov (United States)

    Medvedev, Alexey E.

    2016-02-01

    In this paper it is shown, by analyzing the results of experimental studies, that the outer boundary of the atmospheric pressure discharge pinch is determined by the condition of equality of plasma flows based on the thermal and electric field energy. In most cases, the number of charged particles coming from near-electrode zones is sufficient to compensate for losses in the discharge bulk. At large currents and enhanced heating, plasma is in the diffusion mode of losses, with recombination of charged particles at the pinch boundary. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.

  3. Atmospheric Pressure Glow Discharge with Liquid Electrode

    Science.gov (United States)

    Tochikubo, Fumiyoshi

    2013-09-01

    Nonthermal atmospheric pressure plasmas in contact with liquid are widely studied aiming variety of plasma applications. DC glow discharge with liquid electrode is an easy method to obtain simple and stable plasma-liquid interface. When we focus attention on liquid-phase reaction, the discharge system is considered as electrolysis with plasma electrode. The plasma electrode will supply electrons and positive ions to the liquid surface in a different way from the conventional metal electrode. However, the phenomena at plasma-liquid interface have not been understood well. In this work, we studied physical and chemical effect in liquid induced by dc atmospheric pressure glow discharge with liquid electrode. The experiment was carried out using H-shaped Hoffman electrolysis apparatus filled with electrolyte, to separate the anodic and cathodic reactions. Two nozzle electrodes made of stainless steel are set about 2 mm above the liquid surface. By applying a dc voltage between the nozzle electrodes, dc glow discharges as plasma electrodes are generated in contact with liquid. As electrolyte, we used aqueous solutions of NaCl, Na2SO4, AgNO3 and HAuCl4. AgNO3 and HAuCl4 are to discuss the reduction process of metal ions for synthesis of nanoparticles (NPs). OH radical generation yield in liquid was measured by chemical probe method using terephthalic acid. Discharge-induced liquid flow was visualized by Schlieren method. Electron irradiation to liquid surface (plasma cathode) generated OH- and OH radical in liquid while positive ion irradiation (plasma anode) generated H+ and OH radical. The generation efficiency of OH radical was better with plasma anode. Both Ag NPs in AgNO3 and Au NPs in HAuCl4 were synthesized with plasma cathode while only Au NPs were generated with plasma anode. Possible reaction process is qualitatively discussed. The discharge-induced liquid flow such as convection pattern was strongly influenced by the gas flow on the liquid surface. This work

  4. Thermally induced atmospheric pressure gas discharges using pyroelectric crystals

    Science.gov (United States)

    Johnson, Michael J.; Linczer, John; Go, David B.

    2014-12-01

    Using a heated pyroelectric crystal, an atmospheric pressure gas discharge was generated through the input of heat. When put through a change in temperature, the polarization of a pyroelectric can change significantly, creating a substantial electric potential at its surface. When configured with a grounded sharp counter electrode, a large inhomogeneous electric field forms in the interstitial gas to initiate a corona-like discharge. Under constant heating conditions, gaseous ions drifting to the pyroelectric accumulate and screen the electric field, extinguishing the discharge. By thermally cycling the pyroelectric, negative and positive discharges are generated during heating and cooling, respectively, with peak currents on the order of 80 nA. Time-integrated visualization confirmed the generation of both a corona-like discharge and a surface discharge on the pyroelectric. Parametric studies identified that thermal cycling conditions significantly influence discharge formation for this new atmospheric pressure discharge approach.

  5. Dynamics behavior of homogeneous dielectric barrier discharge at atmospheric pressure

    Science.gov (United States)

    Zhang, Yan; Gu, Biao; Wang, Wenchun; Wang, Dezhen; Peng, Xuwen

    2009-07-01

    An experimental study on the dynamics behavior of homogeneous dielectric barrier discharge (HDBD) at atmospheric pressure is described in this paper. Two kinds of discharge mode, glow and Townsend discharge modes, can be easily identified according to the differential conductivity of current-voltage relationship in the ascent stage of discharge current for the atmospheric HDBD. A (three-dimensional) 3D phase space made by discharge current, gas gap voltage, and charge density of dielectric-plate surface was utilized in the study. By projecting the discharge evolution trajectory in the 3D space, the 3D trajectory of multiple current peaks discharge in atmospheric helium shows a limited cycle with convolutions and undergoes a series of bifurcation process; however, the 3D trajectory of atmospheric N2 HDBD is a limited cycle without any convolution and bifurcation process. In addition, the first ionization coefficient of working gas plays a key role to determine the discharge mode of atmospheric HDBD, the transition of discharge mode and the dynamics stability of atmospheric HDBD.

  6. Experiment and Simulation of Atmospheric Pressure Glow Surface Discharge

    Institute of Scientific and Technical Information of China (English)

    江中和; 胡希伟; 刘明海; 辜承林; 潘垣

    2003-01-01

    Atmospheric pressure glow discharge was observed in a surface discharge generator. The frequency of ac power supply is more than 9 kHz and the sinusoidal peak-to-peak applied voltage is 9 Ky. The electric field intensity in a kind of surface discharge generators is calculated with the boundary element method. Then a two-dimensional fluid model was used to simulate the ion trapping and electron trapping in a surface discharge just before the breakdown. The simulation results are in good agreement with our observation.

  7. Simulation of low temperature atmospheric pressure corona discharge in helium

    Science.gov (United States)

    Bekasov, Vladimir; Kirsanov, Gennady; Eliseev, Stepan; Kudryavtsev, Anatoly; Sisoev, Sergey

    2015-11-01

    The main objective of this work was to construct a numerical model of corona discharge in helium at atmospheric pressure. The calculation was based on the two-dimensional hybrid model. Two different plasma-chemical models were considered. Models were built for RF corona and negative DC corona discharge. The system of equations is solved by the finite element method in the COMSOL Multiphysics. Main parameters of the discharge (the density of charged and excited particles, the electron temperature) and their dependence on the input parameters of the model (geometry, electrode voltage, power) were calculated. The calculations showed that the shape of the electron distribution near the electrode depends on the discharge power. The neutral gas heating data obtained will allow predicting the temperature of the gases at the designing of atmospheric pressure helium plasma sources.

  8. Simulation of nonstationary phenomena in atmospheric-pressure glow discharge

    Science.gov (United States)

    Korolev, Yu. D.; Frants, O. B.; Nekhoroshev, V. O.; Suslov, A. I.; Kas'yanov, V. S.; Shemyakin, I. A.; Bolotov, A. V.

    2016-06-01

    Nonstationary processes in atmospheric-pressure glow discharge manifest themselves in spontaneous transitions from the normal glow discharge into a spark. In the experiments, both so-called completed transitions in which a highly conductive constricted channel arises and incomplete transitions accompanied by the formation of a diffuse channel are observed. A model of the positive column of a discharge in air is elaborated that allows one to interpret specific features of the discharge both in the stationary stage and during its transition into a spark and makes it possible to calculate the characteristic oscillatory current waveforms for completed transitions into a spark and aperiodic ones for incomplete transitions. The calculated parameters of the positive column in the glow discharge mode agree well with experiment. Data on the densities of the most abundant species generated in the discharge (such as atomic oxygen, metastable nitrogen molecules, ozone, nitrogen oxides, and negative oxygen ions) are presented.

  9. Electrical characterization of atmospheric pressure dielectric barrier discharge in air

    International Nuclear Information System (INIS)

    This paper reports the electrical characterization of dielectric barrier discharge produced at atmospheric pressure using a high voltage power supply operating at 50Hz. The characteristics of the discharge have been studied under different values as such applied voltage and the electrode gap width. The results presented in this work can be helpful in understanding the influence of dielectric material on the nature of the discharge. An attempt has also been made to investigate the influence of ballast resistor on the magnitude of discharge current and also the density of micro-discharges. Our results indicated that with this power supply and electrode geometry, a relatively more homogenous discharge is observed for 3 mm spacing. (author)

  10. Discharge Characteristics in Atmospheric Pressure Glow Surface Discharge in Helium Gas

    Institute of Scientific and Technical Information of China (English)

    LI Xue-Chen; WANG Long

    2005-01-01

    @@ Atmospheric pressure glow discharge is observed for the first time in a surface discharge generator in flowing helium. Electrical and optical methods are used to measure the characteristics of atmospheric pressure glow discharge for different voltages. The results show that discharge current waveforms are asymmetric for the different polarities of the applied voltage. A continuous discharge profile with a width of several microseconds appears for per half cycle of the applied voltage when the voltage is increased to a certain value. The short-pulsed discharge and the continuous current would result from the Townsend breakdown and glow discharge mechanisms respectively. The properties of surface discharge in stagnant helium are completely different from that in flowing helium.

  11. Interaction between pulsed discharge and radio frequency discharge burst at atmospheric pressure

    Science.gov (United States)

    Zhang, Jie; Guo, Ying; Shi, Yuncheng; Zhang, Jing; Shi, J. J.

    2015-08-01

    The atmospheric pressure glow discharges (APGD) with dual excitations in terms of pulsed voltage and pulse-modulation radio frequency (rf) power are studied experimentally between two parallel plates electrodes. Pulse-modulation applied in rf APGD temporally separates the discharge into repetitive discharge bursts, between which the high voltage pulses are introduced to ignite sub-microsecond pulsed discharge. The discharge characteristics and spatio-temporal evolution are investigated by means of current voltage characteristics and time resolved imaging, which suggests that the introduced pulsed discharge assists the ignition of rf discharge burst and reduces the maintain voltage of rf discharge burst. Furtherly, the time instant of pulsed discharge between rf discharge bursts is manipulated to study the ignition dynamics of rf discharge burst.

  12. Interaction between pulsed discharge and radio frequency discharge burst at atmospheric pressure

    International Nuclear Information System (INIS)

    The atmospheric pressure glow discharges (APGD) with dual excitations in terms of pulsed voltage and pulse-modulation radio frequency (rf) power are studied experimentally between two parallel plates electrodes. Pulse-modulation applied in rf APGD temporally separates the discharge into repetitive discharge bursts, between which the high voltage pulses are introduced to ignite sub-microsecond pulsed discharge. The discharge characteristics and spatio-temporal evolution are investigated by means of current voltage characteristics and time resolved imaging, which suggests that the introduced pulsed discharge assists the ignition of rf discharge burst and reduces the maintain voltage of rf discharge burst. Furtherly, the time instant of pulsed discharge between rf discharge bursts is manipulated to study the ignition dynamics of rf discharge burst

  13. Interaction between pulsed discharge and radio frequency discharge burst at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie [State Key Lab for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); College of Science, Donghua University, Shanghai 201620 (China); Guo, Ying; Shi, Yuncheng [College of Science, Donghua University, Shanghai 201620 (China); Magnetic Confinement Fusion Research Center, Ministry of Education of the People' s Republic of China, Shanghai 201620 (China); Zhang, Jing; Shi, J. J., E-mail: JShi@dhu.edu.cn [State Key Lab for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); College of Science, Donghua University, Shanghai 201620 (China); Magnetic Confinement Fusion Research Center, Ministry of Education of the People' s Republic of China, Shanghai 201620 (China)

    2015-08-15

    The atmospheric pressure glow discharges (APGD) with dual excitations in terms of pulsed voltage and pulse-modulation radio frequency (rf) power are studied experimentally between two parallel plates electrodes. Pulse-modulation applied in rf APGD temporally separates the discharge into repetitive discharge bursts, between which the high voltage pulses are introduced to ignite sub-microsecond pulsed discharge. The discharge characteristics and spatio-temporal evolution are investigated by means of current voltage characteristics and time resolved imaging, which suggests that the introduced pulsed discharge assists the ignition of rf discharge burst and reduces the maintain voltage of rf discharge burst. Furtherly, the time instant of pulsed discharge between rf discharge bursts is manipulated to study the ignition dynamics of rf discharge burst.

  14. Development of ac corona discharge modes at atmospheric pressure

    International Nuclear Information System (INIS)

    Corona discharges in gases exist under several distinctive forms. In this paper, a survey study has been made of ac corona discharge modes generated in some different gases fed in a wire-duct reactor with a constant rate of flowing at atmospheric pressure. The properties of different corona modes are analyzed under some condition transitions from Trichel pulses to a steady glow. In the course of the presented experimental work, numerous apparent contradictions with earlier observations necessitated further study and are given to provide more information on the physical mechanisms of the ac corona discharges. Furthermore, we have gained insight into some new technologies and applications of the environmentally friendly corona and plasma discharges.

  15. Nonlinear lumped circuit modeling of an atmospheric pressure rf discharge

    Science.gov (United States)

    Lapke, M.; Ziegler, D.; Mussenbrock, T.; Gans, T.; Schulz-von der Gathen, V.

    2006-10-01

    The subject of our modeling approach is a specifically modified version of the atmospheric pressure plasma jet (APPJ, originally proposed by Selwyn and coworkers^1) with reduced discharge volume, the micro atmospheric pressure plasma jet (μ-APPJ). The μ-APPJ is a homogeneous nonequilibrium discharge operated with Argon or Helium as the feedstock gas and a percentage volume admixture of a molecular gas (O2, H2, N2). The efficiency of the discharge is mainly due to the dissociated and activated molecules in the effluent that can be selected depending on the application. A variety of applications in surface treatment have already been demonstrated, e.g., in semiconductor technology, restoration and bio-medicine. In this contribution we present and analyze a nonlinear lumped circuit model of the μ-APPJ. We apply a two-scale formalism. The bulk is modeled by a generalized Ohm's law, whereas the sheath is described on a considerably higher level of mathematical sophistication. The main focus lies on the spectrum of the discharge current in order to support the characterization of the discharge via model-based diagnostics, i.e., the estimation of the spatially averaged electron density from the frequency of certain self-excitated collective resonance modes. J. Park et al., Appl. Phy. Lett. 76, 288 (2000)

  16. Decomposition of benzene in a corona discharge at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Kohki [Department of Electrical and Electronic Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585 (Japan); Centre of Environmental Science and Disaster Mitigation for Advanced Research, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585 (Japan); Matsuzawa, Toshiharu; Itoh, Hidenori [Department of Electrical and Electronic Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585 (Japan)

    2008-05-01

    We investigated the decomposition characteristics of benzene in a positive DC corona discharge between multineedle and plane electrodes with a background gas of nitrogen-oxygen mixture at atmospheric pressure. We obtained C{sub 2}H{sub 2}, HCN, HCOOH, CO and CO{sub 2} as benzene fragments and by-products, and C{sub 2}H{sub 2} and HCN as minor intermediate products. Benzene was primarily converted into CO{sub 2} via CO at low oxygen concentrations (0.2%) and via CO and HCOOH at the atmospheric oxygen concentration (20%). Further, 57% and 24% of carbon atoms were deposited on the plane electrode and the discharge chamber at oxygen concentrations of 0.2% and 20%, respectively.

  17. Removal of paper microbial contamination by atmospheric pressure DBD discharge

    Science.gov (United States)

    Vrajova, J.; Chalupova, L.; Novotny, O.; Cech, J.; Krcma, F.; Stahel, P.

    2009-08-01

    In this paper the removal of the microbial contamination from paper material using the plasma treatment at atmospheric pressure is investigated. The Aspergillus niger has been chosen as a bio-indicator enabling to evaluate the effect of plasma assisted microbial inactivation. Dielectric barrier discharge (DBD) operated at atmospheric pressure was used for the paper sterilization. The working gas (nitrogen, argon and helium), plasma exposition time and the plasma power density were varied in order to see the effect of the plasma treatment on the fungi removal. After the treatment, the microbial abatement was evaluated by the standard plate count method. This proved a positive effect of the DBD plasma treatment on fungi removal. Morphological and colorimetric changes of paper substrate after plasma treatment were also investigated.

  18. Hazardous gas treatment using atmospheric pressure microwave discharges

    Energy Technology Data Exchange (ETDEWEB)

    Mizeraczyk, Jerzy; Jasinski, Mariusz; Zakrzewski, Zenon [Centre for Plasma and Laser Engineering, Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk (Poland)

    2005-12-15

    Atmospheric pressure microwave discharge methods and devices used for producing non-thermal plasmas for control of gaseous pollutants are described in this paper. The main part of the paper is concerned with microwave torch discharges (MTDs). Results of laboratory experiments on plasma abatement of several volatile organic compounds (VOCs) in their mixtures with either synthetic air or nitrogen in low ({approx}100 W) and moderate (200-400 W) microwave torch plasmas at atmospheric pressure are presented. Three types of MTD generators, i.e. low-power coaxial-line-based MTDs, moderate-power waveguide-based coaxial-line MTDs and moderate-power waveguide-based MTDs were used. The gas flow rate and microwave (2.45 GHz) power delivered to the discharge were in the range of 1-3 litre min{sup -1} and 100-400 W, respectively. The concentrations of the processed gaseous pollutants were from several to several tens of per cent. The results showed that the MTD plasmas fully decomposed the VOCs at a relatively low energy cost. The energy efficiency of decomposition of several gaseous pollutants reached 1000 g (kW-h){sup -1}. This suggests that MTD plasmas can be useful tools for decomposition of highly concentrated VOCs.

  19. Two-dimensional simulation of discharge channels in atmospheric-pressure single dielectric barrier discharges

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiao; Wang, Yanhui, E-mail: wangyh@dlut.edu.cn; Wang, Dezhen, E-mail: wangdez@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2015-11-15

    A two-dimensional fluid model is developed to study the filaments (or discharge channels) in atmospheric-pressure discharge with one plate electrode covered by a dielectric layer. Under certain discharge parameters, one or more stable filaments with wide radii could be regularly arranged in the discharge space. Different from the short-lived randomly distributed microdischarges, this stable and thick filament can carry more current and have longer lifetime. Because only one electrode is covered by a dielectric layer in the simulation, the formed discharge channel extends outwards near the dielectric layer and shrinks inwards near the naked electrode, agreeing with the experimental results. In this paper, the evolution of channel is studied, and its behavior is like a streamer or an ionization wave, but the propagation distance is short. The discharge parameters such as voltage amplitude, electrode width, and N{sub 2} impurities content could significantly influence the number of discharge channel, which is discussed in the paper.

  20. Diagnostics of Atmospheric Pressure Surface Discharge Plasmas in Argon

    Institute of Scientific and Technical Information of China (English)

    张锐; 詹如娟; 温晓辉

    2003-01-01

    Atmospheric pressure surface discharge is shown to have great prospects for a number of industrial applications.To acquire better results in application fields and considering that the study of the basic parameters including electron temperature and electron density is desirable,we develop an equivalent circuit model and the diagnostic techniques based on optical emission spectroscopy and electrical measurement in our laboratory.The electron temperature has been determined to be about 0.7eV by a Fermi-Dirac model.The electron density has been calculated to be near 1010 cm-3 from a time resolved electrical measurement(Ohmic heating method).

  1. Hydrogen discharges operating at atmospheric pressure in a semiconductor gas discharge system

    Science.gov (United States)

    Aktas, K.; Acar, S.; Salamov, B. G.

    2011-08-01

    Analyses of physical processes which initiate electrical breakdown and spatial stabilization of current and control it with a photosensitive cathode in a semiconductor gas discharge system (SGDS) are carried out in a wide pressure range up to atmospheric pressure p, interelectrode distance d and diameter D of the electrode areas of the semiconductor cathode. The study compares the breakdown and stability curves of the gas discharge in the planar SGDS where the discharge gap is filled with hydrogen and air in two cases. The impact of the ionizing component of the discharge plasma on the control of the stable operation of the planar SGDS is also investigated at atmospheric pressure. The loss of stability is primarily due to modification of the semiconductor-cathode properties on the interaction with low-energy hydrogen ions and the formation of a space charge of positive ions in the discharge gap which changes the discharge from Townsend to glow type. The experimental results show that the discharge current in H2 is more stable than in air. The breakdown voltages are measured for H2 and air with parallel-plane electrodes, for pressures between 28 and 760 Torr. The effective secondary electron emission (SEE) coefficient is then determined from the breakdown voltage results and compared with the experimental results. The influence of the SEE coefficient is stated in terms of the differences between the experimental breakdown law.

  2. Hydrogen discharges operating at atmospheric pressure in a semiconductor gas discharge system

    Energy Technology Data Exchange (ETDEWEB)

    Aktas, K; Acar, S; Salamov, B G [Physics Department, Faculty of Arts and Sciences, Gazi University, 06500 Ankara (Turkey)

    2011-08-15

    Analyses of physical processes which initiate electrical breakdown and spatial stabilization of current and control it with a photosensitive cathode in a semiconductor gas discharge system (SGDS) are carried out in a wide pressure range up to atmospheric pressure p, interelectrode distance d and diameter D of the electrode areas of the semiconductor cathode. The study compares the breakdown and stability curves of the gas discharge in the planar SGDS where the discharge gap is filled with hydrogen and air in two cases. The impact of the ionizing component of the discharge plasma on the control of the stable operation of the planar SGDS is also investigated at atmospheric pressure. The loss of stability is primarily due to modification of the semiconductor-cathode properties on the interaction with low-energy hydrogen ions and the formation of a space charge of positive ions in the discharge gap which changes the discharge from Townsend to glow type. The experimental results show that the discharge current in H{sub 2} is more stable than in air. The breakdown voltages are measured for H{sub 2} and air with parallel-plane electrodes, for pressures between 28 and 760 Torr. The effective secondary electron emission (SEE) coefficient is then determined from the breakdown voltage results and compared with the experimental results. The influence of the SEE coefficient is stated in terms of the differences between the experimental breakdown law.

  3. Atmospheric pressure dielectric barrier discharges for sterilization and surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chin, O. H.; Lai, C. K.; Choo, C. Y.; Wong, C. S.; Nor, R. M. [Plasma Technology Research Centre, Physics Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Thong, K. L. [Microbiology Division, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-04-24

    Atmospheric pressure non-thermal dielectric barrier discharges can be generated in different configurations for different applications. For sterilization, a parallel-plate electrode configuration with glass dielectric that discharges in air was used. Gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and Gram-positive bacteria (Bacillus cereus) were successfully inactivated using sinusoidal high voltage of ∼15 kVp-p at 8.5 kHz. In the surface treatment, a hemisphere and disc electrode arrangement that allowed a plasma jet to be extruded under controlled nitrogen gas flow (at 9.2 kHz, 20 kVp-p) was applied to enhance the wettability of PET (Mylar) film.

  4. Mass Spectrometry of Atmospheric Pressure Surface Wave Discharges

    Science.gov (United States)

    Ridenti, M. A.; Souza-Corrêa, J. A.; Amorim, J.

    2016-05-01

    By applying mass spectrometry techniques, we carried out measurements of ionic mass spectrum and their energy distribution in order to investigate an atmospheric argon discharge by using a surfatron surface-wave device. The mass and energy distribution measurements were performed with fixed flow rate (2.5 SLM) of pure argon gas (99.999%) and different Ar-O2 gas mixture compositions (99-1, 98-2 and 97-3). The mass spectra and energy distributions were recorded for Ar+, O+, O+ 2, N+ and N2 +. The axial distribution profiles of ionic mass and their energy were obtained for different experimental conditions as a function of the plasma length. The results showed that the peak of the positive ion energy distributions shifted to higher energies and also that the distribution width increased as the distance between the sampling orifice and the launcher gap was increased. It was also found that under certain experimental conditions the ion flux of atomic species were higher than the ion flux of their diatomic counterpart. The motivation of this study was to obtain a better understanding of a surface wave discharge in atmospheric pressure that may play a key role on new second generation biofuel technologies.

  5. Sterilization of Turmeric by Atmospheric Pressure Dielectric Barrier Discharge Plasma

    Science.gov (United States)

    Setareh, Salarieh; Davoud, Dorranian

    2013-11-01

    In this study atmospheric pressure dielectric barrier discharge (DBD) plasma has been employed for sterilizing dry turmeric powders. A 6 kV, 6 kHz frequency generator was used to generate plasma with Ar, Ar/O2, He, and He/O2 gases between the 5 mm gap of two quartz covered electrodes. The complete sterilization time of samples due to plasma treatment was measured. The most important contaminant of turmeric is bacillus subtilis. The results show that the shortest sterilization time of 15 min is achieved by exposing the samples to Ar/O2 plasma. Survival curves of samples are exponential functions of time and the addition of oxygen to plasma leads to a significant increase of the absolute value of time constant of the curves. Magnitudes of protein and DNA in treated samples were increased to a similar value for all samples. Taste, color, and solubility of samples were not changed after the plasma treatment.

  6. Atmospheric pressure arc discharge with ablating graphite anode

    Energy Technology Data Exchange (ETDEWEB)

    Nemchinsky, V. A. [Keiser University, Fort Lauderdale Campus, FL, 33309, USA; Raitses, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2015-05-18

    The anodic carbon arc discharge is used to produce carbon nanoparticles. Recent experiments with the carbon arc at atmospheric pressure helium demonstrated the enhanced ablation rate for narrow graphite anodes resulting in high deposition rates of carbonaceous products on the copper cathode (Fetterman et al 2008 Carbon 46 1322–6). The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. When considering cathode functioning, the model predicts circulation of the particles in the near-cathode region: evaporation of the cathode material, ionization of evaporated atoms and molecules in the near-cathode plasma, return of the resulting ions to the cathode, surface recombination of ions and electrons followed again by cathode evaporation etc. In the case of the low anode ablation rate, the ion acceleration in the cathode sheath provides the major cathode heating mechanism. In the case of an intensive anode ablation, an additional cathode heating is due to latent fusion heat of the atomic species evaporated from the anode and depositing at the cathode. Using the experimental arc voltage as the only input discharge parameter, the model allows us to calculate the anode ablation rate. A comparison of the results of calculations with the available experimental data shows reasonable agreement.

  7. Behavior of ZnO-coated alumina dielectric barrier discharge in atmospheric pressure air

    CERN Document Server

    Li, Meng; Tao, Xiaoping

    2011-01-01

    A complete investigation of the discharge behavior of dielectric barrier discharge device using ZnO-coated dielectric layer in atmospheric pressure is made. Highly conductive ZnO film was deposited on the dielectric surface. Discharge characteristic of the dielectric barrier discharge are examined in different aspects. Experimental result shows that discharge uniformity is improved definitely in the case of ZnO-coated dielectric barrier discharge. And relevant theoretical models and explanation are presented to describing its discharge physics.

  8. Repetitively pulsed atmospheric pressure discharge treatment of rough polymer surfaces: I. Humid air discharges

    International Nuclear Information System (INIS)

    Plasmas generated at atmospheric pressure are used to functionalize the surfaces of polymers by creating new surface-resident chemical groups. The polymers used in textiles and biomedical applications often have non-planar surfaces whose functionalization requires penetration of plasma generated species into sometimes complex surface features. In this regard, the atmospheric pressure plasma treatment of a rough polypropylene surface was computationally investigated using a two-dimensional plasma hydrodynamics model integrated with a surface kinetics model. Repetitively pulsed discharges produced in a dielectric barrier-corona configuration in humid air were considered to affix O. Macroscopic non-uniformities in treatment result from the spatial variations in radical densities which depend on the polarity of the discharge. Microscopic non-uniformities arise due to the higher reactivity of plasma produced species, such as OH radicals, which are consumed before they can diffuse deeper into surface features. The consequences of applied voltage magnitude and polarity, and the relative humidity on discharge dynamics and radical generation leading to surface functionalization, are discussed.

  9. Repetitively pulsed atmospheric pressure discharge treatment of rough polymer surfaces: I. Humid air discharges

    Science.gov (United States)

    Bhoj, Ananth N.; Kushner, Mark J.

    2008-08-01

    Plasmas generated at atmospheric pressure are used to functionalize the surfaces of polymers by creating new surface-resident chemical groups. The polymers used in textiles and biomedical applications often have non-planar surfaces whose functionalization requires penetration of plasma generated species into sometimes complex surface features. In this regard, the atmospheric pressure plasma treatment of a rough polypropylene surface was computationally investigated using a two-dimensional plasma hydrodynamics model integrated with a surface kinetics model. Repetitively pulsed discharges produced in a dielectric barrier-corona configuration in humid air were considered to affix O. Macroscopic non-uniformities in treatment result from the spatial variations in radical densities which depend on the polarity of the discharge. Microscopic non-uniformities arise due to the higher reactivity of plasma produced species, such as OH radicals, which are consumed before they can diffuse deeper into surface features. The consequences of applied voltage magnitude and polarity, and the relative humidity on discharge dynamics and radical generation leading to surface functionalization, are discussed.

  10. Plasma Treatment of Industrial Landfill Leachate by Atmospheric Pressure Dielectric Barrier Discharges%Plasma Treatment of Industrial Landfill Leachate by Atmospheric Pressure Dielectric Barrier Discharges

    Institute of Scientific and Technical Information of China (English)

    赵迪; 王达成; 严贵; 马宏; 熊小京; 罗津晶; 张先徽; 刘东平; 杨思泽

    2011-01-01

    An dielectric barrier discharge (DBD) system in atmospheric pressure utilized for the treatment of industrial landfill leachate is reported. The discharge parameters, such as the operating frequency, gas flow rate, and treating duration, were found to affect significantly the removal of ammonia nitrogen (AN) in industrial landfill leachate. An increase in treating duration leads to an obvious increase in the removal efficiency of AN (up to 83%) and the leachate color changed from deep grey-black to transparent. Thus the dielectric barrier discharges in atmospheric pressure could degrade the landfill leachate effectively. Typical waveforms of both applied voltage and discharge current were also presented for analyzing the discharge processes under different discharge parameters. Optical emission spectra measurements indicate that oxidation species generated in oxygen DBD plasma play a crucial role in removing AN, oxidizing organic and inorganic substances and decolorizing the landfill leachate.

  11. Atmospheric pressure dielectric barrier discharges interacting with liquid covered tissue

    International Nuclear Information System (INIS)

    The interaction of plasmas with liquids is of increasing importance in biomedical applications. Tissues treated by atmospheric pressure dielectric barrier discharges (DBDs) in plasma medicine are often covered by a thin layer of liquid, typically a blood serum like water with dissolved gases and proteins up to hundreds of micrometres thick. The liquid processes the plasma-produced radicals and ions prior to their reaching the tissue. In this paper, we report on a computational investigation of the interaction of DBDs in humid air with a thin water layer covering tissue. The water layer, 50–400 µm thick, contains dissolved O2aq (aq means an aqueous species) and alkane-like hydrocarbons (RHaq). In the model, the DBDs are operated with multiple pulses at 100 Hz followed by a 1 s afterglow. Gas phase reactive oxygen and nitrogen species (RONS) intersect the water-vapour saturated air above the liquid and then solvate when reaching the water. The photolysis of water by plasma-produced UV/VUV plays a significant role in the production of radicals. Without RHaq, O2aq−, ONOOaq−, NO3aq− and hydronium (H3Oaq+) dominate the water ions with H3Oaq+ determining the pH. The dominant RONS in the liquid are O3aq, H2O2aq, and HNOxaq. Dissolved O2aq assists the production of HNO3aq and HOONOaq during the afterglow. With RHaq, reactive oxygen species are largely consumed, leaving an R·aq (alkyl radical) to reach the tissue. These results are sensitive to the thickness of the water layer. (paper)

  12. Simulation of transition from Townsend mode to glow discharge mode in a helium dielectric barrier discharge at atmospheric pressure

    Institute of Scientific and Technical Information of China (English)

    Li Xue-Chen; Niu Dong-Ying; Xu Long-Fei; Jia Peng-Ying; Chang Yuan-Yuan

    2012-01-01

    The dielectric barrier discharge characteristics in helium at atmospheric pressure are simulated based on a one-dimensional fluid model.Under some discharge conditions,the results show that one discharge pulse per half voltage cycle usually appears when the amplitude of external voltage is low,while a glow-like discharge occurs at high voltage.For the one discharge pulse per half voltage cycle,the maximum of electron density appears near the anode at the beginning of the discharge,which corresponds to a Townsend discharge mode.The maxima of the electron density and the intensity of electric field appear in the vicinity of the cathode when the discharge current increases to some extent,which indicates the formation of a cathode-fall region.Therefore,the discharge has a transition from the Townsend mode to the glow discharge mode during one discharge pulse,which is consistent with previous experimental results.

  13. Statistical modelling of discharge behavior of atmospheric pressure dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Tay, W. H.; Kausik, S. S.; Wong, C. S., E-mail: cswong@um.edu.my; Yap, S. L.; Muniandy, S. V. [Plasma Technology Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-11-15

    In this work, stochastic behavior of atmospheric pressure dielectric barrier discharge (DBD) has been investigated. The experiment is performed in a DBD reactor consisting of a pair of stainless steel parallel plate electrodes powered by a 50 Hz ac high voltage source. Current pulse amplitude distributions for different space gaps and the time separation between consecutive current pulses are studied. A probability distribution function is proposed to predict the experimental distribution function for the current pulse amplitudes and the occurrence of the transition regime of the pulse distribution. Breakdown voltage at different positions on the dielectric surface is suggested to be stochastic in nature. The simulated results based on the proposed distribution function agreed well with the experimental results and able to predict the regime of transition voltage. This model would be useful for the understanding of stochastic behaviors of DBD and the design of DBD device for effective operation and applications.

  14. Observation and interpretation of energy efficient, diffuse direct current glow discharge at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jie, E-mail: tangjie1979@opt.ac.cn; Jiang, Weiman; Wang, Yishan; Zhao, Wei [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics of CAS, Xi' an 710119 (China); Li, Jing [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics of CAS, Xi' an 710119 (China); Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaian 223003 (China); Duan, Yixiang [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics of CAS, Xi' an 710119 (China); Research Center of Analytical Instrumentation, Sichuan University, Chengdu 610064 (China)

    2015-08-24

    A diffuse direct-current glow discharge was realized with low energy consumption and high energy utilization efficiency at atmospheric pressure. The formation of diffuse discharge was demonstrated by examining and comparing the electrical properties and optical emissions of plasmas. In combination with theoretical derivation and calculation, we draw guidelines that appearance of nitrogen ions at low electron density is crucial to enhance the ambipolar diffusion for the expansion of discharge channel and the increasing ambipolar diffusion near the cathode plays a key role in the onset of diffuse discharge. An individual-discharge-channel expansion model is proposed to explain the diffuse discharge formation.

  15. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan;

    2014-01-01

    Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating...

  16. Plasma chemistry in an atmospheric pressure Ar/NH3 dielectric barrier discharge

    DEFF Research Database (Denmark)

    Fateev, A.; Leipold, F.; Kusano, Y.;

    2005-01-01

    An atmospheric pressure dielectric barrier discharge (DBD) in Ar/NH3 (0.1 - 10%) mixtures with a parallel plate electrode geometry was studied. The plasma was investigated by emission and absorption spectroscopy in the UV spectral range. Discharge current and voltage were measured as well. UV...... of an atmospheric pressure Ar/NH3 DBD are H-2, N-2 and N2H4. The hydrazine (N2H4) concentration in the plasma and in the exhaust gases at various ammonia concentrations and different discharge powers was measured. Thermal N2H4 decomposition into NH2 radicals may be used for NOx reduction processes....

  17. Characterization of a Dielectric Barrier Plasma Gun Discharging at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guang-Qiu; GE Yuan-Jing; ZHANG Yue-Fei; CHEN Guang-Liang

    2004-01-01

    @@ We develop a plasma gun based on dielectric barrier discharge and working at atmospheric pressure. A theoretical model to predict the gun discharge voltage is built, which is in agreement with the experimental results. After investigating the characterization of discharging gun and utilizing it for polymerization, we find that the gun can be used as a source to generate a stable uniform plasma for different plasma-processing technologies.

  18. Gas flow effects on the submicrosecond pulsed atmospheric pressure glow discharges

    International Nuclear Information System (INIS)

    The influence of gas flow on the discharge characteristics in the submicrosecond pulsed dielectric barrier discharge at atmospheric pressure was investigated by a one-dimensional self-consistent kinetic model. The convection-transport mechanism of the plasma species caused by a longitudinal gas flow was integrated into flux equation. Two discharge current pulses, the positive one and the negative one, are operated in a normal glow mode and a subnormal glow mode, respectively. It is shown that the gas flow has a significant impact on the discharge characteristics, especially on the positive discharge pulse. The spatial distribution of electrons is affected by the gas flow through the convection transport mechanism.

  19. Ultrasonic nebulization atmospheric pressure glow discharge - Preliminary study

    Science.gov (United States)

    Greda, Krzysztof; Jamroz, Piotr; Pohl, Pawel

    2016-07-01

    Atmospheric pressure glow microdischarge (μAPGD) generated between a small-sized He nozzle jet anode and a flowing liquid cathode was coupled with ultrasonic nebulization (USN) for analytical optical emission spectrometry (OES). The spatial distributions of the emitted spectra from the novel coupled USN-μAPGD system and the conventional μAPGD system were compared. In the μAPGD, the maxima of the intensity distribution profiles of the atomic emission lines Ca, Cd, In, K, Li, Mg, Mn, Na and Sr were observed in the near cathode region, whereas, in the case of the USN-μAPGD, they were shifted towards the anode. In the novel system, the intensities of the analytical lines of the studied metals were boosted from several to 35 times. As compared to the conventional μAPGD-OES with the introduction of analytes through the sputtering and/or the electrospray-like nebulization of the flowing liquid cathode solution, the proposed method with the USN introduction of analytes in the form of a dry aerosol provides improved detectability of the studied metals. The detection limits of metals achieved with the USN-μAPGD-OES method were in the range from 0.08 μg L- 1 for Li to 52 μg L- 1 for Mn.

  20. Specific interaction between negative atmospheric ions and organic compounds in atmospheric pressure corona discharge ionization mass spectrometry.

    Science.gov (United States)

    Sekimoto, Kanako; Sakai, Mami; Takayama, Mitsuo

    2012-06-01

    The interaction between negative atmospheric ions and various types of organic compounds were investigated using atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. Atmospheric negative ions such as O(2)(-), HCO(3)(-), COO(-)(COOH), NO(2)(-), NO(3)(-), and NO(3)(-)(HNO(3)) having different proton affinities served as the reactant ions for analyte ionization in APCDI in negative-ion mode. The individual atmospheric ions specifically ionized aliphatic and aromatic compounds with various functional groups as atmospheric ion adducts and deprotonated analytes. The formation of the atmospheric ion adducts under certain discharge conditions is most likely attributable to the affinity between the analyte and atmospheric ion and the concentration of the atmospheric ion produced under these conditions. The deprotonated analytes, in contrast, were generated from the adducts of the atmospheric ions with higher proton affinity attributable to efficient proton abstraction from the analyte by the atmospheric ion. PMID:22528201

  1. Specific interaction between negative atmospheric ions and organic compounds in atmospheric pressure corona discharge ionization mass spectrometry.

    Science.gov (United States)

    Sekimoto, Kanako; Sakai, Mami; Takayama, Mitsuo

    2012-06-01

    The interaction between negative atmospheric ions and various types of organic compounds were investigated using atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. Atmospheric negative ions such as O(2)(-), HCO(3)(-), COO(-)(COOH), NO(2)(-), NO(3)(-), and NO(3)(-)(HNO(3)) having different proton affinities served as the reactant ions for analyte ionization in APCDI in negative-ion mode. The individual atmospheric ions specifically ionized aliphatic and aromatic compounds with various functional groups as atmospheric ion adducts and deprotonated analytes. The formation of the atmospheric ion adducts under certain discharge conditions is most likely attributable to the affinity between the analyte and atmospheric ion and the concentration of the atmospheric ion produced under these conditions. The deprotonated analytes, in contrast, were generated from the adducts of the atmospheric ions with higher proton affinity attributable to efficient proton abstraction from the analyte by the atmospheric ion.

  2. Atmospheric pressure dc corona discharges: operating regimes and potential applications

    International Nuclear Information System (INIS)

    The operating regimes and the structures of dc corona discharges in air, nitrogen, helium and hydrogen-methane mixtures are studied for a point to plate electrode configuration. The characteristics of the dc negative corona discharge are investigated. In addition to the bright glow at the cathode (pin) region, a uniform diffuse glow is observed near the anode (plate) surface for the negative corona. This diffuse glow is observed in air and hydrogen-methane discharges only and not in nitrogen discharges. The presence of a glow near the planar anode is perhaps due to the increased electric field caused by a negative ion sheath formed only in electronegative gases. Optical emission spectroscopy (OES) was used to obtain species, spatially resolved temperature measurements and electric field estimations for the corona discharges in air. For the negative corona, the presence of a weak glow indicates an active plasma region near the positive planar electrode which may be useful for processing techniques such as plasma enhanced chemical vapor deposition. The dc negative corona discharge was observed to deposit films on the anode surface for air and methane.

  3. Diffuse α-mode atmospheric pressure radio-frequency discharge in neon

    International Nuclear Information System (INIS)

    In this work, a radio-frequency (RF) atmospheric pressure glow discharge burning in neon between planar metal electrodes is achieved for the first time. The RF discharge can operate in two stable modes: in a diffuse α-mode with uniformly covered electrode surfaces and in a constricted γ-mode. Similarities are revealed when the discharge is compared against the RF atmospheric pressure glow discharge in helium, namely both discharges show a discontinuity and a hysteresis in the current–voltage characteristic at the mode transition; the spatio-temporal profiles of the light emission in the α-mode from neon, helium and atomic oxygen are also similar. (fast track communication)

  4. An Experimental Study on Atmospheric Pressure Glow Discharge in Different Gases

    Institute of Scientific and Technical Information of China (English)

    刘鹏; 詹如娟; 等

    2002-01-01

    Usually,the electrical breakdown of dielectric barrier discharge(DBD) at atmospheric pressure leads to a filamentary non-homogeneous discharge,However,it is also possible to obtain a diffuse DBD in homogeneous form,called atmospheric pressure glow discharge(APGD).We obtained a uniform APGD in helium and in the mixture of argon with alcohol,and studied the electrical characteristics of helium APGD.It if found that the relationship between discharge current and source frequency is different depending on the difference in gas gap when the applied voltage is kept constant.The discharge current shows an increasing trend with the increased frequency when gas gap is 0.8cm ,but the discharge current tends to decrease with the increased frequency when the gas gap increases.The discharge current always increases with the increased applied voltage when the source frequency is kept constant.We also observed a glow-like discharge in nitrogen at atmospheric pressure.

  5. Discharge processes and an electrical model of atmospheric pressure plasma jets in argon

    Science.gov (United States)

    Fang, Zhi; Shao, Tao; Yang, Jing; Zhang, Cheng

    2016-01-01

    In this paper, an atmospheric pressure plasma discharge in argon was generated using a needle-to-ring electrode configuration driven by a sinusoidal excitation voltage. The electric discharge processes and discharge characteristics were investigated by inspecting the voltage-current waveforms, Lissajous curves and lighting emission images. The change in discharge mode with applied voltage amplitude was studied and characterised, and three modes of corona discharge, dielectric barrier discharge (DBD) and jet discharge were identified, which appeared in turn with increasing applied voltage and can be distinguished clearly from the measured voltage-current waveforms, light-emission images and the changing gradient of discharge power with applied voltage. Based on the experimental results and discharge mechanism analysis, an equivalent electrical model and the corresponding equivalent circuit for characterising the whole discharge processes accurately was proposed, and the three discharge stages were characterised separately. A voltage-controlled current source (VCCS) associated with a resistance and a capacitance were used to represent the DBD stage, and the plasma plume and corona discharge were modelled by a variable capacitor in series with a variable resistor. Other factors that can influence the discharge, such as lead and stray capacitance values of the circuit, were also considered in the proposed model. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.

  6. Gas Breakdown of Radio Frequency Glow Discharges in Helium at near Atmospheric Pressure

    Science.gov (United States)

    Liu, Xinkun; Xu, Jinzhou; Cui, Tongfei; Guo, Ying; Zhang, Jing; Shi, Jianjun

    2013-07-01

    A one-dimensional self-consistent fluid model was developed for radio frequency glow discharge in helium at near atmospheric pressure, and was employed to study the gas breakdown characteristics in terms of breakdown voltage. The effective secondary electron emission coefficient and the effective electric field for ions were demonstrated to be important for determining the breakdown voltage of radio frequency glow discharge at near atmospheric pressure. The constant of A was estimated to be 64±4 cm-1Torr-1, which was proportional to the first Townsend coefficient and could be employed to evaluate the gas breakdown voltage. The reduction in the breakdown voltage of radio frequency glow discharge with excitation frequency was studied and attributed to the electron trapping effect in the discharge gap.

  7. Characteristics of a glow discharge in atmospheric pressure air over the water surface

    Science.gov (United States)

    Shuaibov, A. K.; Chuchman, M. P.; Mesarosh, L. V.

    2014-06-01

    The current-voltage characteristics, the amount of cathode fall, and the spectra of plasma radiation from different spatial domains are presented versus the molecular band intensity of products arising in an atmospheric-pressure air glow discharge over the distilled water surface. The plasma electron temperature is also reported. The distance to a liquid cathode or anode is varied from 1 to 10 mm at a discharge mean current of 10-36 mA.

  8. Surface-initiated graft polymerization on multiwalled carbon nanotubes pretreated by corona discharge at atmospheric pressure.

    Science.gov (United States)

    Xu, Lihua; Fang, Zhengping; Song, Ping'an; Peng, Mao

    2010-03-01

    Surface-initiated graft polymerization on multi-walled carbon nanotubes pretreated with a corona discharge at atmospheric pressure was explored. The mechanism of the corona-discharge-induced graft polymerization is discussed. The results indicate that MWCNTs were encapsulated by poly(glycidyl methacrylate) (PGMA), demonstrating the formation of PGMA-grafted MWCNTs (PGMA-g-MWCNTs), with a grafting ratio of about 22 wt%. The solubility of PGMA-g-MWCNTs in ethanol was dramatically improved compared to pristine MWCNTs, which could contribute to fabricating high-performance polymer/MWCNTs nanocomposites in the future. Compared with most plasma processes, which operate at low pressures, corona discharge has the merit of working at atmospheric pressure. PMID:20644821

  9. Concentric-ring structures in an atmospheric pressure helium dielectric barrier discharge

    Institute of Scientific and Technical Information of China (English)

    Shang Wan-Li; Zhang Yuan-Tao; Wang De-Zhen; Sang Chao-Feng; Jiang shao-En; Yang Jia-Min; Liu shen-Ye; M.G.Kong

    2011-01-01

    This paper performs a numerical simulation of concentric-ring discharge structures within the scope of a two-dimensional diffusion-drift model at atmospheric pressure between two parallel circular electrodes covered with thin dielectric layers. With a relative high frequency the discharge structures present different appearances of ring structures within different radii in time due to the evolvement of the filaments. The spontaneous electron density distributions help understanding the formation and development of seff-organized discharge structures. During a cycle the electron avalanches are triggered by the electric field strengthened by the feeding voltage and the residual charged particles on the barrier surface deposited in the previous discharges. The accumulation of charges is shown to play a dominant role in the generation and annihilation of the discharge structures. Besides, the rings split and unify to bring and annihilate rings which form a new discharge structure.

  10. treatment of polyimide by an atmospheric pressure plasma of capacitive rf discharge for liquid crystal alignment

    International Nuclear Information System (INIS)

    Uniform planar alignment of liquid crystals is obtained by polyimide films obliquely treated by a stream of argon plasma from capacitive RF discharge at atmospheric pressure. Two liquid crystal alignment modes are discovered differing by their longitudinal or transverse orientation with respect to treatment direction. Optimum parameters of the treatment for obtaining these orientation modes are determined.

  11. Preliminary Investigation of a Dielectric Barrier Discharge Lamp in Open Air at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    LIU Feng; WANG Wei-Wei; CHANG Xi-Jiang; LIANG Rong-Qing

    2011-01-01

    @@ A dielectric barrier discharge (DBD) lamp is investigated by using sinusoidal power with a 10 kHz frequency in open air at atmospheric pressure.With increasing applied voltages, the different discharge phenomena appear.At relatively low voltages, the discharge states are general stochastic filamentary discharges with weak light.However, at relatively high voltages, the walls of quartz tubes are heated sharply by plasma, and then the dazzling light is emitted very quickly to form the DBD Lamp, corresponding to the low maintaining voltage that is lower than the ignited voltage.The discharge state or mode of the DBD lamp that corresponds to the glow discharge is deduced according to the wave form of the circuit current, which is evidently different from the filamentary discharges.Under these conditions, the spectrum of the DBD lamp is continuous in the range 400-932nm, which is scanned in the range 300-932nm.It is also shown that there is another discharge state or mode that is different from the traditional filamentary discharges.Therefore, it is concluded that the discharge state or mode of the DBD lamp is a glow discharge.

  12. Prediction of atmospheric pressure glow discharge in dielectric-barrier system

    Science.gov (United States)

    Duan, Xiaoxi; He, Feng; Ouyang, Jiting

    2010-06-01

    A one-dimensional fluid model was used to investigate the breakdown mechanism and discharge mode in dielectric-barrier system. The results show that the dielectric barrier discharge mode depends strongly on the gas property (i.e., the electron multiplication). The atmospheric pressure dielectric barrier glow discharge could only be achieved in a gas (e.g., noble gas) in which the first Townsend ionization coefficient is sufficiently small and the electron multiplication does not rise up rapidly with the electric field, while could not be sustained in the gas (e.g., N2 and O2) in which the electron multiplication is sensitive to the field.

  13. Sterilization of E.coli bacterium with an atmospheric pressure surface barrier discharge

    Institute of Scientific and Technical Information of China (English)

    Xu Lei; Zhang Rui; Liu Peng; Ding Li-Li; Zhan Ru-Juan

    2004-01-01

    The atmospheric pressure surface barrier discharge (APSBD) in air has been used in killing Escherichia coli (E.coli). There is almost no bacterial colony in the sample after treatment by discharge plasma for 2 min. A diagnostic technique based on mass spectrum has been applied to the discharge gas and the mechanism of killing is discussed.Ozone and monatomic oxide are considered to be the major antimicrobial active species. There is almost no harmful by-product. The experiment proves that APSBD plasma is a very simple, effective and innocuous tool for sterilization.

  14. Surface modification of polyester film by glow discharge tunnel at atmospheric pressure

    Institute of Scientific and Technical Information of China (English)

    XU Xiang-yu; WANG Shou-guo; YE Tian-chun; JING Guang-yin; YU Da-peng

    2004-01-01

    A large-area improved dielectric barrier glow discharge tunnel has been developed for modifying the surface of polyester film at atmospheric pressure with argon and oxygen gas mixtures. The electrical properties of the glow discharge tunnel were studied by simultaneous measurement of the voltage and current. In addition, the effect of the glow discharge tunnel treatment on the surface of polyester film were studied. The resultant modifications of the surface properties of the treated samples were investigated through scanning probe microscopy and contact angle measurement.

  15. Three-dimensional numerical modelling of gas discharges at atmospheric pressure incorporating photoionization phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Papageorgiou, L; Georghiou, G E [Department of Electrical and Computer Engineering, University of Cyprus, 75 Kallipoleos Avenue, PO Box 20537 Nicosia, 1678 (Cyprus); Metaxas, A C [St John' s College, University of Cambridge, Cambridge CB2 1TP (United Kingdom)

    2011-02-02

    A three-dimensional (3D) numerical model for the characterization of gas discharges in air at atmospheric pressure incorporating photoionization through the solution of the Helmholtz equation is presented. Initially, comparisons with a two-dimensional (2D) axi-symmetric model are performed in order to assess the validity of the model. Subsequently several discharge instabilities (plasma spots and low pressure inhomogeneities) are considered in order to study their effect on streamer branching and off-axis propagation. Depending on the magnitude and position of the plasma spot, deformations and off-axis propagation of the main discharge channel were obtained. No tendency for branching in small (of the order of 0.1 cm) overvolted discharge gaps was observed.

  16. Three-dimensional numerical modelling of gas discharges at atmospheric pressure incorporating photoionization phenomena

    Science.gov (United States)

    Papageorgiou, L.; Metaxas, A. C.; Georghiou, G. E.

    2011-02-01

    A three-dimensional (3D) numerical model for the characterization of gas discharges in air at atmospheric pressure incorporating photoionization through the solution of the Helmholtz equation is presented. Initially, comparisons with a two-dimensional (2D) axi-symmetric model are performed in order to assess the validity of the model. Subsequently several discharge instabilities (plasma spots and low pressure inhomogeneities) are considered in order to study their effect on streamer branching and off-axis propagation. Depending on the magnitude and position of the plasma spot, deformations and off-axis propagation of the main discharge channel were obtained. No tendency for branching in small (of the order of 0.1 cm) overvolted discharge gaps was observed.

  17. Simulation of radio-frequency atmospheric pressure glow discharge in γ mode

    Institute of Scientific and Technical Information of China (English)

    Shang Wan-Li; Wang De-Zhen; Michael G. Kong

    2007-01-01

    The existence of two different discharge modes has been verified in an rf (radio-frequency) atmospheric pressure glow discharge (APGD) by Shi [J. Appl. Phys. 97, 023306 (2005)]. In the first mode, referred to as α mode, the discharge current density is relatively low and the bulk plasma electrons acquire the energy due to the sheath expansion.In the second mode, termed γ mode, the discharge current density is relatively high, the secondary electrons emitted by cathode under ion bombardment in the cathode sheath region play an important role in sustaining the discharge. In this paper, a one-dimensional self-consistent fluid model for rf APGDs is used to simulate the discharge mechanisms in the γmode in helium discharge between two parallel metallic planar electrodes. The results show that as the applied voltage increases, the discharge current becomes greater and the plasma density correspondingly increases, consequentially the discharge transits from the c mode into the γ mode. The high collisionality of the APGD plasma results in significant drop of discharge potential across the sheath region, and the electron Joule heating and the electron collisional energy loss reach their maxima in the region. The validity of the simulation is checked with the available experimental and numerical data.

  18. Characteristics of a Normal Glow Discharge Excited by DC Voltage in Atmospheric Pressure Air

    Science.gov (United States)

    Li, Xuechen; Zhao, Huanhuan; Jia, Pengying

    2013-11-01

    Atmospheric pressure glow discharges were generated in an air gap between a needle cathode and a water anode. Through changing the ballast resistor and gas gap width between the electrodes, it has been found that the discharges are in normal glow regime judged from the current-voltage characteristics and visualization of the discharges. Results indicate that the diameter of the positive column increases with increasing discharge current or increasing gap width. Optical emission spectroscopy is used to calculate the electron temperature and vibrational temperature. Both the electron temperature and the vibrational temperature increases with increasing discharge current or increasing gap width. Spatially resolved measurements show that the maxima of electron temperature and vibrational temperature appeared in the vicinity of the needle cathode.

  19. High frequency glow discharges at atmospheric pressure with micro-structured electrode arrays

    Science.gov (United States)

    Baars-Hibbe, L.; Sichler, P.; Schrader, C.; Lucas, N.; Gericke, K.-H.; Büttgenbach, S.

    2005-02-01

    Micro-structured electrode (MSE) arrays allow the generation of large-area uniform glow discharges over a wide pressure range up to atmospheric pressure. The electrode widths, thicknesses and distances in the micrometre range are realized by means of modern micro-machining and galvanic techniques. The electrode distance, the gap width d, is small enough to generate sufficiently high electric field strengths to ignite gas discharges by applying only moderate radio frequency (RF, 13.56 MHz) voltages (80-390 V in Ne, He, Ar, N2 and air). The non-thermal plasma system is characterized by a special probe measuring the electric parameters. We tested MSE arrays with d = 70, 25 and 15 µm. The MSE driven plasmas show a different behaviour from conventional RF discharge plasmas. Due to the very small electrode gap width we can describe the behaviour of the charged particles in the RF field of our system with the dc Townsend breakdown theory, depending on the pressure range and gas. With decreasing pressure, the gas discharges, especially in Ne and He, are increasingly dominated by field electron emission. With the MSE arrays as plasma sources several applications were developed and successfully tested, e.g. decomposition of waste gases and sterilization of food packaging materials at atmospheric pressure.

  20. High frequency glow discharges at atmospheric pressure with micro-structured electrode arrays

    International Nuclear Information System (INIS)

    Micro-structured electrode (MSE) arrays allow the generation of large-area uniform glow discharges over a wide pressure range up to atmospheric pressure. The electrode widths, thicknesses and distances in the micrometre range are realized by means of modern micro-machining and galvanic techniques. The electrode distance, the gap width d, is small enough to generate sufficiently high electric field strengths to ignite gas discharges by applying only moderate radio frequency (RF, 13.56 MHz) voltages (80-390 V in Ne, He, Ar, N2 and air). The non-thermal plasma system is characterized by a special probe measuring the electric parameters. We tested MSE arrays with d = 70, 25 and 15 μm. The MSE driven plasmas show a different behaviour from conventional RF discharge plasmas. Due to the very small electrode gap width we can describe the behaviour of the charged particles in the RF field of our system with the dc Townsend breakdown theory, depending on the pressure range and gas. With decreasing pressure, the gas discharges, especially in Ne and He, are increasingly dominated by field electron emission. With the MSE arrays as plasma sources several applications were developed and successfully tested, e.g. decomposition of waste gases and sterilization of food packaging materials at atmospheric pressure

  1. Translational, rotational and vibrational temperatures of a gliding arc discharge at atmospheric pressure air

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas;

    2014-01-01

    Gliding arc discharges have generally been used to generate non-equilibrium plasma at atmospheric pressure. Temperature distributions of a gliding arc are of great interest both for fundamental plasma research and for practical applications. In the presented studies, translational, rotational...... and vibrational temperatures of a gliding arc generated at atmospheric pressure air are investigated. Translational temperatures (about 1100 K) were measured by laser-induced Rayleigh scattering, and two-dimensional temperature imaging was performed. Rotational and vibrational temperatures (about 3600 K and 6700...

  2. Simulation of the propagation and reignition of atmospheric pressure air discharges behind a dielectric plane obstacle

    Science.gov (United States)

    Pechereau, Francois; Jansky, Jaroslav; Bourdon, Anne

    2012-10-01

    In recent years, experimental studies on flue gas treatment have demonstrated the efficiency of plasma assisted catalysis for the treatment of a wide range of pollutants at a low energetic cost. In plasma reactors, usual catalyst supports are pellets, monoliths or porous media, and then atmospheric pressure discharges have to interact with many obstacles and to propagate in microcavities and pores. As a first step to better understand atmospheric pressure discharge dynamics in these complex geometries, in this work, we have carried out numerical simulations using a 2D-axisymmetric fluid model for a point-to-plane discharge with a dielectric plane obstacle placed in the path of the discharge. First, we have simulated the discharge ignition at the point electrode, its propagation in the gap and its impact and expansion on the dielectric plane. Depending on the applied voltage, the dielectric plane geometry and permittivity, we have identified conditions for the reignition of a second discharge behind the plane obstacle. These conditions will be discussed and compared with recent experimental results on the same configuration.

  3. 2D fluid simulations of discharges at atmospheric pressure in reactive gas mixtures

    Science.gov (United States)

    Bourdon, Anne

    2015-09-01

    Since a few years, low-temperature atmospheric pressure discharges have received a considerable interest as they efficiently produce many reactive chemical species at a low energy cost. This potential is of great interest for a wide range of applications as plasma assisted combustion or biomedical applications. Then, in current simulations of atmospheric pressure discharges, there is the need to take into account detailed kinetic schemes. It is interesting to note that in some conditions, the kinetics of the discharge may play a role on the discharge dynamics itself. To illustrate this, we consider the case of the propagation of He-N2 discharges in long capillary tubes, studied for the development of medical devices for endoscopic applications. Simulation results put forward that the discharge dynamics and structure depend on the amount of N2 in the He-N2 mixture. In particular, as the amount of N2 admixture increases, the discharge propagation velocity in the tube increases, reaches a maximum for about 0 . 1 % of N2 and then decreases, in agreement with experiments. For applications as plasma assisted combustion with nanosecond repetitively pulsed discharges, there is the need to handle the very different timescales of the nanosecond discharge with the much longer (micro to millisecond) timescales of combustion processes. This is challenging from a computational point of view. It is also important to better understand the coupling of the plasma induced chemistry and the gas heating. To illustrate this, we present the simulation of the flame ignition in lean mixtures by a nanosecond pulsed discharge between two point electrodes. In particular, among the different discharge regimes of nanosecond repetitively pulsed discharges, a ``spark'' regime has been put forward in the experiments, with an ultra-fast local heating of the gas. For other discharge regimes, the gas heating is much weaker. We have simulated the nanosecond spark regime and have observed shock waves

  4. Numerical studies of atmospheric pressure glow discharge controlled by a dielectric barrier between two coaxial electrodes

    Institute of Scientific and Technical Information of China (English)

    Zhang Hong-Yan; Wang De-Zhen; Wang Xiao-Gang

    2007-01-01

    The glow discharge in pure helium at atmospheric pressure, controlled by a dielectric barrier between coaxial electrodes, is investigated based on a one-dimensional self-consistent fluid model. By solving the continuity equations for electrons, ions, and excited atoms, with the current conservation equation and the electric field profile, the time evolution of the discharge current, gas voltage and the surface density of charged particles on the dielectric barrier are calculated. The simulation results show that the peak values of the discharge current, gas voltage and electric field in the first half period are asymmetric to the second half. When the current reaches its positive or negative maximum,the electric field profile, and the electron and ion densities represent similar properties to the typical glow discharge at low pressures. Obviously there exist a cathode fall, a negative glow region, and a positive column. Effects of the barrier position in between the two coaxial electrodes and the discharge gap width on discharge current characteristics are also analysed. The result indicates that, in the case when the dielectric covering the outer electrode only, the gas is punctured earlier during the former half period and later during the latter half period than other cases, also the current peak value is higher, and the difference of pulse width between the two half periods is more obvious. On reducing the gap width, the multiple current pulse discharge happens.

  5. Plasma sterilization of polyethylene terephthalate bottles by pulsed corona discharge at atmospheric pressure.

    Science.gov (United States)

    Masaoka, Satoshi

    2007-06-01

    A pulsed power supply was used to generate a corona discharge on a polyethylene terephthalate bottle, to conduct plasma sterilization at atmospheric pressure. Before generating such a discharge, minute quantities of water were attached to the inner surface of the bottle and to the surface of a high voltage (HV) electrode inserted into the bottle. Next, high-voltage pulses of electricity were discharged between electrodes for 6.0s, while rotating the bottle. The resulting spore log reduction values of Bacillus subtilis and Aspergillus niger on the inner surface of the bottle were 5.5 and 6 or higher, respectively, and those on the HV electrode surface were each 6 or higher for both strains. The presence of the by-products gaseous ozone, hydrogen peroxide, and nitric ions resulting from the electrical discharge was confirmed. PMID:17629247

  6. Generation of large-area and glow-like surface discharge in atmospheric pressure air

    Science.gov (United States)

    Song, Ying; Xia, Yang; Bi, Zhenhua; Wang, Xueyang; Qi, Zhihua; Ji, Longfei; Li, Bin; Liu, Dongping

    2016-08-01

    A large-area (6 cm × 6 cm) air surface dielectric barrier discharge has been generated at atmospheric pressure by using well-aligned and micron-sized dielectric tubes with tungsten wire electrodes. Intensified CCD images with an exposure time of 5 ns show that the uniform surface air discharge can be generated during the rising and falling time of pulsed DC voltage. Current and voltage and optical measurements confirm the formation of glow-like air discharges on the surface of micron-sized dielectric tubes. Simulation results indicate that the microelectrode configuration contributes to the formation of strong surface electric field and plays an important role in the generation of uniform surface air discharge.

  7. Sterilisation of Hydroponic Culture Solution Contaminated by Fungi using an Atmospheric Pressure Corona Discharge

    Science.gov (United States)

    Mizukami, Kohji; Satoh, Kohki; Kanayama, Hiroshi; Itoh, Hidenori; Tagashira, Hiroaki; Shimozuma, Mitsuo; Okamoto, Hiroyuki; Takasaki, Satoko; Kinoshita, Muneshige

    The hydroponic culture solution contaminated by fungi is sterilised by a DC corona discharge, and the sterilisation characteristics are investigated in this work. A DC streamer corona discharge is generated at atmospheric pressure in air between needle clusters and a water bath containing contaminated solution by fungus such as Fusarium oxysporum f. sp. spinaciae or Fusarium sp.. It is found that the fungi are killed by the exposure of the corona discharge, and that the death rates of the fungi chiefly depend on the concentration of the hydroponic culture solutions. It is also found that the number densities of the fungi decrease exponentially with the energy expenditure of the corona discharge, and that damping coefficients of the fungi densities depend on the concentration of the hydroponic culture solutions. This suggests that the fungi are chiefly inactivated by electroporation.

  8. Interplay of discharge and gas flow in atmospheric pressure plasma jets

    Science.gov (United States)

    Jiang, Nan; Yang, JingLong; He, Feng; Cao, Zexian

    2011-05-01

    Interplay of discharge and gas flow in the atmospheric pressure plasma jets generated with three different discharge modes [N. Jiang, A. L. Ji, and Z. X. Cao, J. Appl. Phys. 106, 013308 (2009); N. Jiang, A. L. Ji, and Z. X. Cao, J. Appl. Phys. 108, 033302 (2010)] has been investigated by simultaneous photographing of both plasma plumes and gas flows in the ambient, with the former being visualized by using an optical schlieren system. Gas flow gains a forward momentum from discharge except for the case of overflow jets at smaller applied voltages. Larger applied voltage implies an elongated plasma jet only for single-electrode mode; for dielectric barrier discharge jet the plume length maximizes at a properly applied voltage. These findings can help understand the underlying processes, and are useful particularly for the economic operation of tiny helium plasma jets and jet arrays.

  9. Analytical–numerical global model of atmospheric-pressure radio-frequency capacitive discharges

    International Nuclear Information System (INIS)

    A one-dimensional hybrid analytical–numerical global model of atmospheric-pressure, radio-frequency (rf) driven capacitive discharges is developed. The feed gas is assumed to be helium with small admixtures of oxygen or nitrogen. The electrical characteristics are modeled analytically as a current-driven homogeneous discharge. The electron power balance is solved analytically to determine a time-varying Maxwellian electron temperature, which oscillates on the rf timescale. Averaging over the rf period yields effective rate coefficients for gas phase activated processes. The particle balance relations for all species are then integrated numerically to determine the equilibrium discharge parameters. The coupling of analytical solutions of the time-varying discharge and electron temperature dynamics, and numerical solutions of the discharge chemistry, allows for a fast solution of the discharge equilibrium. Variations of discharge parameters with discharge composition and rf power are determined. Comparisons are made to more accurate but numerically costly fluid models, with space and time variations, but with the range of parameters limited by computational time. (paper)

  10. Generation of uniform atmospheric pressure argon glow plasma by dielectric barrier discharge

    Indian Academy of Sciences (India)

    Raju Bhai Tyata; Deepak Prasad Subedi; Rajendra Shrestha; Chiow San Wong

    2013-03-01

    In this paper, atmospheric pressure glow discharges (APGD) in argon generated in parallel plate dielectric barrier discharge system is investigated by means of electrical and optical measurements. Using a high voltage (0–20 kV) power supply operating at 10–30 kHz, homogeneous and steady APGD has been observed between the electrodes with gap spacing from 0.5 mm to 2 mm and with a dielectric barrier of thickness 2 mm while argon gas is fed at a controlled flow rate of 11/min. The electron temperature and electron density of the plasma are determined by means of optical emission spectroscopy. Our results show that the electron density of the discharge obtained is of the order of 1016 cm-3 while the electron temperature is estimated to be 0.65 eV. The important result is that electron density determined from the line intensity ratio method and stark broadening method are in very good agreement. The Lissajous figure is used to estimate the energy deposited to the glow discharge. It is found that the energy deposited to the discharge is in the range of 20 to 25 $\\$J with a discharge voltage of 1.85 kV. The energy deposited to the discharge is observed to be higher at smaller gas spacing. The glow discharge plasma is tested to be effective in reducing the hydrophobicity of polyethylene film significantly.

  11. Corona discharge secondary ionization of laser desorbed neutral molecules from a liquid matrix at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Turney, Kevin [Department of Chemistry, University of Florida, Gainesville, Florida 32611 (United States); Harrison, W.W. [Department of Chemistry, University of Florida, Gainesville, Florida 32611 (United States)]. E-mail: harrison@chem.ufl.edu

    2006-06-15

    Matrix assisted laser desorption/ionization (MALDI) is studied at atmospheric pressure using liquid sampling methods. A time-of-flight mass spectrometer couples to an open sample stage accessed by a UV laser for desorption and ionization. Also coupled to the sampling state is a corona discharge for auxiliary ionization of desorbed neutral molecules. The interaction of the laser desorption and corona ionization is studied for a range of desorption conditions, showing enhanced analyte ionization, but the effect is analytically advantageous only at low desorption rates. The effect of corona discharge voltage was also explored. The decoupling of neutral molecule formation and subsequent ionization provides an opportunity to study each process separately.

  12. Carbon Nanostructures Production by AC Arc Discharge Plasma Process at Atmospheric Pressure

    OpenAIRE

    Shenqiang Zhao; Ruoyu Hong; Zhi Luo; Haifeng Lu; Biao Yan

    2011-01-01

    Carbon nanostructures have received much attention for a wide range of applications. In this paper, we produced carbon nanostructures by decomposition of benzene using AC arc discharge plasma process at atmospheric pressure. Discharge was carried out at a voltage of 380 V, with a current of 6 A–20 A. The products were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (XRD), and Raman spectra. The results sho...

  13. Radial Evolution of the Atmospheric Pressure Glow Discharge in Helium Controlled by Dielectric Barrier

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yuan-Tao; WANG De-Zhen; WANG Yan-Hui; LIU Cheng-Sen

    2005-01-01

    @@ The radial evolution of atmospheric pressure glow discharge in helium is presented by numerical simulation. The calculations reveal the mechanism of two current peaks per half cycle. The first breakdown occurs firstly in the central region of the electrode, and then spreads to the edge, while the second breakdown ignites at the periphery firstly, and then propagates toward the discharge central region. The simulations indicate that radial electric fields and radial sheath play an important role in the evolution of the second peak. These results agree fundamentally with the experimental observations.

  14. Energy distribution of runaway electrons generated by a nanosecond discharge in atmospheric-pressure air

    Science.gov (United States)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Kostyrya, I. D.; Lomaev, M. I.; Petin, V. K.; Rybka, D. V.; Shlyakhtun, S. V.

    2008-12-01

    The spectra of an ultrashort avalanche electron beam generated by a nanosecond discharge in atmospheric-pressure air were investigated. The temporal characteristics of the beam current pulses, gap voltage, and discharge current in a gas diode were measured with a time resolution of ˜0.1 ns. A simple technique was developed for recovering electron spectra from the curves of beam attenuation by aluminum foils. The effect of the cathode design, electrode gap length, and generator parameters on the electron spectra were studied using seven setups. It is shown that generation of electrons with anomalously high energies requires the use of cathodes with increased curvature radius.

  15. Characteristics of meter-scale surface electrical discharge propagating along water surface at atmospheric pressure

    Science.gov (United States)

    Hoffer, Petr; Sugiyama, Yuki; Hosseini, S. Hamid R.; Akiyama, Hidenori; Lukes, Petr; Akiyama, Masahiro

    2016-10-01

    This paper reports physical characteristics of water surface discharges. Discharges were produced by metal needle-to-water surface geometry, with the needle electrode driven by 47 kV (FWHM) positive voltage pulses of 2 µs duration. Propagation of discharges along the water surface was confined between glass plates with 2 mm separation. This allowed generation of highly reproducible 634 mm-long plasma filaments. Experiments were performed using different atmospheres: air, N2, and O2, each at atmospheric pressure. Time- and spatially-resolved spectroscopic measurements revealed that early spectra of discharges in air and nitrogen atmospheres were dominated by N2 2nd positive system. N2 radiation disappeared after approx. 150 ns, replaced by emissions from atomic hydrogen. Spectra of discharges in O2 atmosphere were dominated by emissions from atomic oxygen. Time- and spatially-resolved emission spectra were used to determine temperatures in plasma. Atomic hydrogen emissions showed excitation temperature of discharges in air to be about 2  ×  104 K. Electron number densities determined by Stark broadening of the hydrogen H β line reached a maximum value of ~1018 cm-3 just after plasma initiation. Electron number densities and temperatures depended only slightly on distance from needle electrode, indicating formation of high conductivity leader channels. Direct observation of discharges by high speed camera showed that the average leader head propagation speed was 412 km · s-1, which is substantially higher value than that observed in experiments with shorter streamers driven by lower voltages.

  16. Effect of Atmospheric Pressure Glow Discharge Treatment on Polymerization of Acrylic Fabric and Its Printing Behavior

    Directory of Open Access Journals (Sweden)

    D M El-Zeer

    2014-03-01

    Full Text Available Acrylic fibers have been treated by atmospheric pressure glow discharge (APGD plasma in open air to enhance surface antistatic properties. The treated surfaces are investigated by scanning electron microscopy (SEM, Fourier-Transition Infrared Spectroscopy (FTIR and Atomic Force Microscope (AFM. Plasma treatment of acrylic fabric has been found to increase the surface roughness, modify the nature and density of surface functionalities, and drastically improve the wettability and antistatic ability of acrylic fibers.

  17. The measurement of the electron temperature in a spark discharge in air at atmospheric pressure

    International Nuclear Information System (INIS)

    The electron temperature in atmospheric pressure spark surface discharge was measured from the relative intensity ratio using several well-resolved atomic N I, N II, O II lines. The evaluated value is of 18 000 K. The repeated sparks were glowed by a pulsed high voltage source which restricted the are phase of sparks by appropriate low value of capacitors in voltage multiplier. (Authors)

  18. Ionic wind generation by a wire-cylinder-plate corona discharge in air at atmospheric pressure

    OpenAIRE

    Colas, Dorian,; Ferret, Antoine; Pai, David,; Lacoste, Deanna,; Laux, C.

    2010-01-01

    A wire-cylinder-plate electrode configuration is presented to generate ionic wind with a dc corona discharge in air at atmospheric pressure. The objective of the work is to maximize the power supplied to the flow in order to increase acceleration while avoiding breakdown. Thus, the proposed experimental setup addresses the problem of decoupling the mechanism of ion generation from that of ion acceleration. Using a wire-plate configuration as a reference, we have focused on improving the topog...

  19. Concentric-Ring Patterns in a Helium Dielectric Barrier Discharge at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    SHANG Wan-Li; WANG De-Zhen

    2007-01-01

    We perform the theoretical simulation of the concentric-ring patterns between two parallel electrodes covered with thin dielectric layers within the scope of a two-dimensional diffusion-drift model at atmospheric pressure. The time evolution of the discharge patterns is studied and the concentric-ring patterns with different radii shift alternately. The spatial-temporal evolution of electron density in a cycle at different time scales is performed.

  20. Self-Organized Filaments in Dielectric Barrier Discharge in Air at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    DONG Li-Fang; LI Xue-Chen; YINZeng-Qian; QIAN Sheng-Fa; OUYANG Ji-Ting; WANG Long

    2001-01-01

    The self-organized filament pattern created by dielectric barrier discharges in air at atmospheric pressure is investigated experimentally. The density and dimension of filament are analysed quantitatively. The experimental results show that the distance between neighbouring filaments decreases with the increased applied voltage or with the decreased width of the gas gap. Also, the diameter of the filament decreases with the increased applied voltages or with the decreased width of the gas gap.

  1. Multiscale simulation of atmospheric pressure pulsed discharges used in polymer surface functionalization

    Science.gov (United States)

    Bhoj, Ananth N.

    Atmospheric pressure pulsed plasma discharges are widely used for surface functionalization or treatment of commodity polymers to improve properties such as adhesion and wettability. Newer applications include textile fabric treatment to improve color fastness and biomedical surface functionalization. In this work, an unstructured mesh-based two-dimensional Plasma Equipment Model (PEM) was developed to investigate the physical and chemical processes in these discharges, which occur on temporal and spatial scales spanning many orders of magnitude and affect their interaction with polymer surfaces. Better insight into these processes will enable the tailoring and optimization of processing conditions. Transient phenomena (time variation of plasma properties) during breakdown in atmospheric pressure discharges are addressed, since the spatial distribution of radicals generated in the discharge is determined by the dynamics of breakdown. The breakdown dynamics is governed by a multitude of physical and chemical processes such as reaction kinetics, photoionization, electron energy transport, charged species and neutral transport. The ability to address non-equilibrium electron energy transport in plasma discharges was developed by enhancing an existing electron Monte-Carlo simulation to address multiple regions of nonequilibrium, and was demonstrated for breakdown in high pressure discharges. A high degree of uniformity in surface treatment is important for value-added materials. Increasing the proximity of reactive plasma produced species to the surface enables better uniformity, especially with polymers having complex surface shapes. The propagation of atmospheric pressure discharges in microchannels, such as those used in lab-on-a-chip devices was investigated to determine the possibility of producing reactive gas-phase radicals within small spaces, close to the surfaces requiring treatment. An integrated surface kinetics module was developed to address the

  2. Runaway electrons and x-rays from a corona discharge in atmospheric pressure air

    International Nuclear Information System (INIS)

    The characteristics of a corona discharge in atmospheric pressure air are studied using pulsed power generators that produce voltage pulses of different durations, polarities and shapes. The characteristics are measured in the single pulse, batch, and repetitively pulsed modes. It is shown that no matter what the voltage pulse polarity is, a corona discharge starts developing as a conical diffuse discharge near the electrode tip with a voltage rate of increase of ∼1015 V s-1 across an electrode of small curvature radius. With lower voltage rate of increase (∼1013 V s-1 or lower), one or several diffuse jets develop from this electrode. The diameter of the jets at their front is less than 1 mm and depends on many factors (voltage pulse amplitude and increase, inter-electrode gap width, pulse repetition rate, etc). It is found that at long voltage pulse durations, the radiation spectrum of the corona discharge changes, and the bands and lines of the material of the electrode appear in the UV region at 200-300 nm. It is demonstrated that a runaway electron beam in a corona discharge is generated and detected at a distance several times greater than the brightly glowing plasma region of the corona discharge. It is shown that x-rays are generated from a corona discharge at high pulse repetition rates of up to 1 kHz. (paper)

  3. Non-Thermal Equilibrium Atmospheric Pressure Glow-Like Discharge Plasma Jet

    Science.gov (United States)

    Chang, Zhengshi; Yao, Congwei; Zhang, Guanjun

    2016-01-01

    Non-thermal equilibrium atmospheric pressure plasma jet (APPJ) is a cold plasma source that promises various innovative applications, and the uniform APPJ is more favored. Glow discharge is one of the most effective methods to obtain the uniform discharge. Compared with the glow dielectric barrier discharge (DBD) in atmospheric pressure, pure helium APPJ shows partial characteristics of both the glow discharge and the streamer. In this paper, considering the influence of the Penning effect, the electrical and optical properties of He APPJ and Ar/NH3 APPJ were researched. A word “Glow-like APPJ” is used to characterize the uniformity of APPJ, and it was obtained that the basic characteristics of the glow-like APPJ are driven by the kHz AC high voltage. The results can provide a support for generating uniform APPJ, and lay a foundation for its applications. supported by National Natural Science Foundation of China (Nos. 51307133, 51125029, 51221005) and the Fundamental Research Funds for the Central Universities of China (Nos. xjj2012132, xkjc2013004)

  4. Surface Treatment of Polyethylene Terephthalate Film Using Atmospheric Pressure Glow Discharge in Air

    Institute of Scientific and Technical Information of China (English)

    方志; 邱毓昌; 王辉

    2004-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in polymer surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of Polyethylene terephthalate (PET) film surface for improving hydrophilicity using the non-thermal plasma generated by atmospheric pressure glow discharge (APGD) in air is conducted.The discharge characteristics of APGD are shown by measurement of their electrical discharge parameters and observation of light-emission phenomena, and the surface properties of PET before and after the APGD treatment are studied using contact angle measurement, x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It is found that the APGD is homogeneous and stable in the whole gas gap, which differs from the commonly filamentary dielectric barrier discharge (DBD). A short time (several seconds) APGD treatment can modify the surface characteristics of PET film markedly and uniformly. After 10 s APGD treatment, the surface oxygen content of PET surface increases to 39%, and the water contact angle decreases to 19°, respectively.

  5. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    Science.gov (United States)

    Sun, Wen-Ting; Li, Guo; Li, He-Ping; Bao, Cheng-Yu; Wang, Hua-Bo; Zeng, Shi; Gao, Xing; Luo, Hui-Ying

    2007-06-01

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure α-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images.

  6. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    International Nuclear Information System (INIS)

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure α-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images

  7. Characterization of transient discharges under atmospheric pressure conditions applying nitrogen photoemission and current measurements

    CERN Document Server

    Keller, Sandra; Bibinov, Nikita; Awakowicz, Peter

    2011-01-01

    Plasma parameters of three transient discharges (filamentary and homogeneous dielectric barrier discharges in air, and the spark discharge of an argon plasma coagulator) operated at atmospheric pressure conditions are determined applying a combination of diagnostics methods, namely numerical simulation, current measurement, and optical emission spectroscopy. These diagnostic methods supplement each other and resolve problems, which arise when these methods are used separately. Nitrogen is used as sensor gas and is admixed to argon for studying the argon plasma coagulator. The Boltzmann equation is solved in 'local' approximation to determine electron velocity distribution function. Drift velocity, electron-impact excitation rate constants for nitrogen molecular emission, electric current density, and emission spectrum of nitrogen molecule are calculated. Plasma parameters (electron velocity distribution function and electron density) are determined applying calculated as far as measured electric current, and ...

  8. An experimental study of atmospheric pressure dielectric barrier discharge (DBD) in argon

    Energy Technology Data Exchange (ETDEWEB)

    Subedi, D. P. [Department of Natural Sciences, School of Science, Kathmandu University, Dhulikhel (Nepal); Tyata, R. B. [Department of Natural Sciences, School of Science, Kathmandu University, Dhulikhel, Nepal and Department of Electrical, Khwopa College of Engineering, Libali-2, Bhaktapur (Nepal); Shrestha, R. [Department of Natural Sciences, School of Science, Kathmandu University, Dhulikhel, Nepal and Department of Physics, Basu College, Kalighat, Byasi, Bhaktapur (Nepal); Wong, C. S. [Plasma Technology Research Centre, Physics Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-03-05

    In this paper, experimental results on atmospheric pressure argon dielectric barrier discharge (DBD) have been presented. The discharge was generated using a high voltage (0 to 20 kV) power supply operating at frequency of 10 to 30 kHz and was studied by means of electrical and optical measurements. A homogeneous and steady discharge was observed between the electrodes with gap spacing from 1 mm to 3 mm and with a dielectric barrier of thickness 1.5 mm while argon gas is fed at a controlled flow rate of 2liter per min. The electron temperature (T{sub e}) and electron density (n{sub e}) of the plasma have been determined by means of optical emission spectroscopy. Our results show that the electron density is of the order of 10{sup 16} cm{sup −3} while the electron temperature is estimated to be ∼ 1 eV. The homogeneity and non-thermal nature of the discharge were utilized in the investigation of the change in wettabilty of a polymer sample subjected to the treatment by the discharge. Contact angle analysis showed that the discharge was effective in improving the wettability of low density Polyethylene (LDPE) polymer sample after the treatment.

  9. Numerical simulation and experimental validation of a direct current air corona discharge under atmospheric pressure

    International Nuclear Information System (INIS)

    Air corona discharge is one of the critical problems associated with high-voltage equipment. Investigating the corona mechanism plays a key role in enhancing the electrical insulation performance. An improved self-consistent multi-component two-dimensional plasma hybrid model is presented for the simulation of a direct current atmospheric pressure corona discharge in air. The model is based on plasma hydrodynamic and chemical models, and includes 12 species and 26 reactions. In addition, the photoionization effect is introduced into the model. The simulation on a bar-plate electrode configuration with an inter-electrode gap of 5.0 mm is carried out. The discharge voltage—current characteristics and the current density distribution predicted by the hybrid model agree with the experimental measurements. In addition, the dynamics of volume charged species generation, discharge current waveform, current density distribution at an electrode, charge density, electron temperature, and electric field variations are investigated in detail based on the model. The results indicate that the model can contribute valuable insights into the physics of an air plasma discharge. (physics of gases, plasmas, and electric discharges)

  10. An experimental study of atmospheric pressure dielectric barrier discharge (DBD) in argon

    International Nuclear Information System (INIS)

    In this paper, experimental results on atmospheric pressure argon dielectric barrier discharge (DBD) have been presented. The discharge was generated using a high voltage (0 to 20 kV) power supply operating at frequency of 10 to 30 kHz and was studied by means of electrical and optical measurements. A homogeneous and steady discharge was observed between the electrodes with gap spacing from 1 mm to 3 mm and with a dielectric barrier of thickness 1.5 mm while argon gas is fed at a controlled flow rate of 2liter per min. The electron temperature (Te) and electron density (ne) of the plasma have been determined by means of optical emission spectroscopy. Our results show that the electron density is of the order of 1016 cm−3 while the electron temperature is estimated to be ∼ 1 eV. The homogeneity and non-thermal nature of the discharge were utilized in the investigation of the change in wettabilty of a polymer sample subjected to the treatment by the discharge. Contact angle analysis showed that the discharge was effective in improving the wettability of low density Polyethylene (LDPE) polymer sample after the treatment

  11. An experimental study of atmospheric pressure dielectric barrier discharge (DBD) in argon

    Science.gov (United States)

    Subedi, D. P.; Tyata, R. B.; Shrestha, R.; Wong, C. S.

    2014-03-01

    In this paper, experimental results on atmospheric pressure argon dielectric barrier discharge (DBD) have been presented. The discharge was generated using a high voltage (0 to 20 kV) power supply operating at frequency of 10 to 30 kHz and was studied by means of electrical and optical measurements. A homogeneous and steady discharge was observed between the electrodes with gap spacing from 1 mm to 3 mm and with a dielectric barrier of thickness 1.5 mm while argon gas is fed at a controlled flow rate of 2liter per min. The electron temperature (Te) and electron density (ne) of the plasma have been determined by means of optical emission spectroscopy. Our results show that the electron density is of the order of 1016 cm-3 while the electron temperature is estimated to be ˜ 1 eV. The homogeneity and non-thermal nature of the discharge were utilized in the investigation of the change in wettabilty of a polymer sample subjected to the treatment by the discharge. Contact angle analysis showed that the discharge was effective in improving the wettability of low density Polyethylene (LDPE) polymer sample after the treatment.

  12. Methane Conversion to C2 Hydrocarbons by Abnormal Glow Discharge at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    Dai Wei; Yu Hui; Chen Qi; Yin Yongxiang; Dai Xiaoyan

    2005-01-01

    Methane conversion to C2 hydrocarbons has been investigated with the addition of hydrogen in a plasma reactor of abnormal glow discharge at atmospheric pressure. The aim of this experiment is to minimize coke formation and improve discharge stability. The typical conditions in the experiment are 300 ml of total feed flux and 400 W of discharge power. The experimental results show that methane conversion is from 91.6% to 35.2% in mol, acetylene selectivity is from 90.2% to 57.6%, and ethylene selectivity is approximately from 7.8% to 3.6%,where the coke increases gradually along with the increase of CH4/H2 from 2: 8 to 9: 1. A stable discharge for a considerable running time can be obtained only at a lower ratio of CH4/H2= 2:8 or 3: 7. These phenomena indicate that the coke deposition during methane conversion is obviously reduced by adding a large amount of hydrogen during an abnormal glow discharge.A qualitative interpretation is presented, namely, with abundant hydrogen, the possibility that hydrogen molecules are activated to hydrogen radicals is increased with the help of the abnormal glow discharge. These hydrogen radicals react with carbon radicals to form C2 hydrocarbon products. Therefore, the deposition of coke is restrained.

  13. A tomographic visualization of electric discharge sound fields in atmospheric pressure plasma using laser diffraction

    Science.gov (United States)

    Nakamiya, Toshiyuki; Mitsugi, Fumiaki; Iwasaki, Yoichiro; Ikegami, Tomoaki; Tsuda, Ryoichi; Sonoda, Yoshito; Danuta Stryczewska, Henryka

    2013-02-01

    The phase modulation of transparent gas can be detected using Fraunhofer diffraction technique, which we call optical wave microphone (OWM). The OWM is suitable for the detection of sonic wave from audible sound to ultrasonic wave. Because this technique has no influence on sound field or electric field during the measurement, we have applied it to the sound detection for the electric discharges. There is almost no research paper that uses the discharge sound to examine the electrical discharge phenomenon. Two-dimensional visualization of the sound field using the OWM is also possible when the computerized tomography (CT) is combined. In this work, coplanar dielectric barrier discharge sin different gases of Ar, N2, He were characterized via the OWM as well as applied voltage and discharge current. This is the first report to investigate the influence of the type of the atmospheric gas on the two-dimensional sound field distribution for the coplanar dielectric barrier discharge using the OWM with CT. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  14. Plasma polymerization of ethylene in an atmospheric pressure-pulsed discharge

    Science.gov (United States)

    Donohoe, K.; Wydeven, T.

    1979-01-01

    The polymerization of ethylene in an atmospheric pressure-pulsed discharge has been studied. Partial pressures of ethylene up to 4 kN/sq m were used with helium as a diluent. Deposition rates (on glass slides) were the same throughout the discharge volume over a wide range of operating conditions. These rates were in the 1-2 A/sec range. The films were clear, soft, and showed good adhesion to the glass substrates. Oligomers large enough to visibly scatter 637.8-nm light were observed in the gas phase under all conditions in which film deposition occurred. The experimental results suggest that Brownian diffusion of these oligomers was the rate-limiting step in the film deposition process.

  15. TOPICAL REVIEW: Numerical modelling of atmospheric pressure gas discharges leading to plasma production

    Science.gov (United States)

    Georghiou, G. E.; Papadakis, A. P.; Morrow, R.; Metaxas, A. C.

    2005-10-01

    In this paper, we give a detailed review of recent work carried out on the numerical characterization of non-thermal gas discharge plasmas in air at atmospheric pressure. First, we briefly describe the theory of discharge development for dielectric barrier discharges, which is central to the production of non-equilibrium plasma, and we present a hydrodynamic model to approximate the evolution of charge densities. The model consists of the continuity equations for electrons, positive and negative ions coupled to Poisson's equation for the electric field. We then describe features of the finite element flux corrected transport algorithm, which has been developed to specifically aim for accuracy (no spurious diffusion or oscillations), efficiency (through the use of unstructured grids) and ease of extension to complex 3D geometries in the framework of the hydrodynamic model in gas discharges. We summarize the numerical work done by other authors who have applied different methods to various models and then we present highlights of our own work, which includes code validation, comparisons with existing results and modelling of radio frequency systems, dc discharges, secondary effects such as photoionization and plasma production in the presence of dielectrics. The extension of the code to 3D for more realistic simulations is demonstrated together with the adaptive meshing technique, which serves to achieve higher efficiency. Finally, we illustrate the versatility of our scheme by using it to simulate the transition from non-thermal to thermal discharges. We conclude that numerical modelling and, in particular, the extension to 3D can be used to shed new light on the processes involved with the production and control of atmospheric plasma, which plays an important role in a host of emerging technologies.

  16. Numerical modelling of atmospheric pressure gas discharges leading to plasma production

    Energy Technology Data Exchange (ETDEWEB)

    Georghiou, G E [Electronics and Computer Science, University of Southampton, Highfield, Southampton, SO17 1BJ (United Kingdom); Papadakis, A P [Electricity Utilization Group (EUG), Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ (United Kingdom); Morrow, R [Applied and Plasma Physics, School of Physics, University of Sydney, Sydney, NSW (Australia); Metaxas, A C [St John' s College, University of Cambridge, Cambridge, CB2 1TP (United Kingdom)

    2005-10-21

    In this paper, we give a detailed review of recent work carried out on the numerical characterization of non-thermal gas discharge plasmas in air at atmospheric pressure. First, we briefly describe the theory of discharge development for dielectric barrier discharges, which is central to the production of non-equilibrium plasma, and we present a hydrodynamic model to approximate the evolution of charge densities. The model consists of the continuity equations for electrons, positive and negative ions coupled to Poisson's equation for the electric field. We then describe features of the finite element flux corrected transport algorithm, which has been developed to specifically aim for accuracy (no spurious diffusion or oscillations), efficiency (through the use of unstructured grids) and ease of extension to complex 3D geometries in the framework of the hydrodynamic model in gas discharges. We summarize the numerical work done by other authors who have applied different methods to various models and then we present highlights of our own work, which includes code validation, comparisons with existing results and modelling of radio frequency systems, dc discharges, secondary effects such as photoionization and plasma production in the presence of dielectrics. The extension of the code to 3D for more realistic simulations is demonstrated together with the adaptive meshing technique, which serves to achieve higher efficiency. Finally, we illustrate the versatility of our scheme by using it to simulate the transition from non-thermal to thermal discharges. We conclude that numerical modelling and, in particular, the extension to 3D can be used to shed new light on the processes involved with the production and control of atmospheric plasma, which plays an important role in a host of emerging technologies. (topical review)

  17. Mechanisms for negative reactant ion formation in an atmospheric pressure corona discharge

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Robert G.; Waltman, Melanie J.

    2009-06-02

    In an effort to better understand the formation of negative reactant ions in air produced by an atmospheric pressure corona discharge source, the neutral vapors generated by the corona were introduced in varying amounts into the ionization region of an ion mobility spectrometer/mass spectrometer containing a 63Ni ionization source. With no discharge gas the predominant ions were O2- , however, upon the introduction of low levels of discharge gas the NO2- ion quickly became the dominant species. As the amount of discharge gas increased the appearance of CO3- was observed followed by the appearance of NO3-. At very high levels, NO3- species became effectively the only ion present and appeared as two peaks in the IMS spectrum, NO3- and the NO3-•HNO3 adduct, with separate mobilities. Since explosive compounds typically ionize in the presence of negative reactant ions, the ionization of an explosive, RDX, was examined in order to investigate the ionization properties with these three primary ions. It was found that RDX forms a strong adduct with both NO2- and NO3- with reduced mobility values of 1.49 and 1.44 cm2V-1s-1, respectively. No adduct was observed for RDX with CO3- although this adduct has been observed with a corona discharge mass spectrometer. It is believed that this adduct, although formed, does not have a sufficiently long lifetime (greater than 10 ms) to be observed in an ion mobility spectrometer.

  18. Atmospheric pressure chemical ionization of explosives using alternating current corona discharge ion source.

    Science.gov (United States)

    Usmanov, D T; Chen, L C; Yu, Z; Yamabe, S; Sakaki, S; Hiraoka, K

    2015-04-01

    The high-sensitive detection of explosives is of great importance for social security and safety. In this work, the ion source for atmospheric pressure chemical ionization/mass spectrometry using alternating current corona discharge was newly designed for the analysis of explosives. An electromolded fine capillary with 115 µm inner diameter and 12 mm long was used for the inlet of the mass spectrometer. The flow rate of air through this capillary was 41 ml/min. Stable corona discharge could be maintained with the position of the discharge needle tip as close as 1 mm to the inlet capillary without causing the arc discharge. Explosives dissolved in 0.5 µl methanol were injected to the ion source. The limits of detection for five explosives with 50 pg or lower were achieved. In the ion/molecule reactions of trinitrotoluene (TNT), the discharge products of NOx (-) (x = 2,3), O3 and HNO3 originating from plasma-excited air were suggested to contribute to the formation of [TNT - H](-) (m/z 226), [TNT - NO](-) (m/z 197) and [TNT - NO + HNO3 ](-) (m/z 260), respectively. Formation processes of these ions were traced by density functional theory calculations. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26149109

  19. Space Charge Transient Kinetic Characteristics in DC Air Corona Discharge at Atmospheric Pressure

    International Nuclear Information System (INIS)

    Investigating the corona mechanism plays a key role in enhancing the performance of electrical insulation systems. Numerical simulation offers a better understanding of the physical characteristics of air corona discharges. Using a two-dimensional axisymmetrical kinetics model, into which the photoionization effect is incorporated, the DC air corona discharge at atmosphere pressure is studied. The plasma model is based on a self-consistent, multi-component, and continuum description of the air discharge, which is comprised of 12 species and 22 reactions. The discharge voltage-current characteristic predicted by the model is found to be in quite good agreement with experimental measurements. The behavior of the electronic avalanche progress is also described. O2+ and N2+ are the dominant positive ions, and the values of O− and O2− densities are much smaller than that of the electron. The electron and positive ion have a low-density thin layer near the anode, which is a result of the surface reaction and absorption effect of the electrode. As time progresses, the electric field increases and extends along the cathode surface, whereas the cathode fall shrinks after the corona discharge hits the cathode; thus, in the cathode sheath, the electron temperature increases and the position of its peak approaches to the cathode. The present computational model contributes to the understanding of this physical mechanism, and suggests ways to improve the electrical insulation system

  20. X-ray radiation from the volume discharge in atmospheric-pressure air

    Science.gov (United States)

    Bratchikov, V. B.; Gagarinov, K. A.; Kostyrya, I. D.; Tarasenko, V. F.; Tkachev, A. N.; Yakovlenko, S. I.

    2007-07-01

    X-ray radiation from the volume discharge in atmospheric-pressure air is studied under the conditions when the voltage pulse rise time varies from 0.5 to 100 ns and the open-circuit voltage amplitude of the generator varies from 20 to 750 kV. It is shown that a volume discharge from a needle-like cathode forms at a relatively wide voltage pulse (to ≈60 ns in this work). The volume character of the discharge is due to preionization by fast electrons, which arise when the electric field concentrates at the cathode and in the discharge gap. As the voltage pulse rise time grows, X-ray radiation comes largely from the discharge gap in accordance with previous experiments. Propagation of fast avalanche electrons in nitrogen subjected to a nonuniform unsteady electric field is simulated. It is demonstrated that the amount of hard X-ray photons grows not only with increasing voltage amplitude but also with shortening pulse rise time.

  1. Space Charge Transient Kinetic Characteristics in DC Air Corona Discharge at Atmospheric Pressure

    Science.gov (United States)

    Liu, Xinghua; Xian, Richang; Sun, Xuefeng; Wang, Tao; Lv, Xuebin; Chen, Suhong; Yang, Fan

    2014-08-01

    Investigating the corona mechanism plays a key role in enhancing the performance of electrical insulation systems. Numerical simulation offers a better understanding of the physical characteristics of air corona discharges. Using a two-dimensional axisymmetrical kinetics model, into which the photoionization effect is incorporated, the DC air corona discharge at atmosphere pressure is studied. The plasma model is based on a self-consistent, multi-component, and continuum description of the air discharge, which is comprised of 12 species and 22 reactions. The discharge voltage-current characteristic predicted by the model is found to be in quite good agreement with experimental measurements. The behavior of the electronic avalanche progress is also described. O2+ and N2+ are the dominant positive ions, and the values of O- and O2- densities are much smaller than that of the electron. The electron and positive ion have a low-density thin layer near the anode, which is a result of the surface reaction and absorption effect of the electrode. As time progresses, the electric field increases and extends along the cathode surface, whereas the cathode fall shrinks after the corona discharge hits the cathode; thus, in the cathode sheath, the electron temperature increases and the position of its peak approaches to the cathode. The present computational model contributes to the understanding of this physical mechanism, and suggests ways to improve the electrical insulation system.

  2. Numerical simulation and experimental validation of a direct current air corona discharge under atmospheric pressure

    Institute of Scientific and Technical Information of China (English)

    Liu Xing-Hua; He Wei; Yang Fan; Wang Hong-Yu; Liao Rui-Jin; Xiao Han-Guang

    2012-01-01

    Air corona discharge is one of the critical problems associated with high-voltage equipment.Investigating the corona mechanism plays a key role in enhancing the electrical insulation performance.An improved self-consistent multi-component two-dimensional plasma hybrid model is presented for the simulation of a direct current atmospheric pressure corona discharge in air.The model is based on plasma hydrodynamic and chemical models,and includes 12 species and 26 reactions.In addition,the photoionization effect is introduced into the model.The simulation on a bar-plate electrode configuration with an inter-electrode gap of 5.0 mm is carried out.The discharge voltage-current characteristics and the current density distribution predicted by the hybrid model agree with the experimental measurements.In addition,the dynamics of volume charged species generation,discharge current waveform,current density distribution at an electrode,charge density,electron temperature,and electric field variations are investigated in detail based on the model.The results indicate that the model can contribute valuable insights into the physics of an air plasma discharge.

  3. Influence of discharge and jet flow coupling on atmospheric pressure plasma homogeneity

    Science.gov (United States)

    Nizard, H.; Gaudy, T.; Toutant, A.; Iacono, J.; Descamps, P.; Leempoel, P.; Massines, F.

    2015-10-01

    The effect of flow dynamics on the discharge mode is studied in order to design a technical solution for thin film coating on large surfaces. The configuration consists in two atmospheric pressure helium plasma jets impacting a surface and confined in a tube. This system operates in open air. It has been studied by short exposure time pictures, current and voltage measurements, optical emission spectroscopy, schlieren flow visualization and computational fluid dynamics. Two discharge regimes directly connected to the gas flow dynamic have been pointed out. One is localized from the point electrodes to the surface; the other one entirely fills the confinement tube. A correlation between air intake inside the confinement tube and the discharge mode has been highlighted. Indeed, the discharge only develops in helium and the air intake confines the helium jets in volumes smaller than the confinement tube. The air intake is determined by the gas flow rate and the distance from the tube bottom to the substrate surface, parameters which have been linked to the change from laminar to turbulent flow. Finally, the understanding of flow dynamics and discharge plasma coupling allowed the design of a technical solution favoring plasma homogeneity for large surface treatment.

  4. Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium

    Science.gov (United States)

    Li, Guo; Li, He-Ping; Wang, Li-Yan; Wang, Sen; Zhao, Hong-Xin; Sun, Wen-Ting; Xing, Xin-Hui; Bao, Cheng-Yu

    2008-06-01

    Due to low gas temperatures and high densities of active species, atmospheric-pressure glow discharges (APGDs) would have potential applications in the fields of plasma-based sterilization, gene mutation, etc. In this letter, the genetic effects of helium radio-frequency APGD plasmas with the plasmid DNA and oligonucleotide as the treated biomaterials are presented. The experimental results show that it is the chemically active species, instead of heat, ultraviolet radiation, intense electric field, and/or charged particles, that break the double chains of the plasmid DNA. The genetic effects depend on the plasma operating parameters, e.g., power input, helium flow rate, processing distance, time, etc.

  5. Synthesis of Crystalline Carbon Nitride Thin Films by Pulsed Arc Discharge at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    SHI Changyong; MA Zhibin

    2007-01-01

    The preparation of crystalline C3N4 films was investigated using pulsed arc discharge from mixed methanol and ammonia water at atmospheric pressure.The X-ray diffraction(XRD)patterns of the films prepared at a substrate temperature of 450℃ suggested that the film was composed of α-C3N4 and β-C3N4 crystallites.Raman spectra exhibited distinct peaks which are in good agreement with those predicted theoretically for C3N4 crystallites.

  6. Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium

    International Nuclear Information System (INIS)

    Due to low gas temperatures and high densities of active species, atmospheric-pressure glow discharges (APGDs) would have potential applications in the fields of plasma-based sterilization, gene mutation, etc. In this letter, the genetic effects of helium radio-frequency APGD plasmas with the plasmid DNA and oligonucleotide as the treated biomaterials are presented. The experimental results show that it is the chemically active species, instead of heat, ultraviolet radiation, intense electric field, and/or charged particles, that break the double chains of the plasmid DNA. The genetic effects depend on the plasma operating parameters, e.g., power input, helium flow rate, processing distance, time, etc

  7. Spatial and temporal evolutions of ozone in a nanosecond pulse corona discharge at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Duten, X; Redolfi, M; Aggadi, N; Vega, A; Hassouni, K, E-mail: duten@lspm.cnrs.fr [LSPM-CNRS UPR 3407, Universite Paris Nord, 90 Avenue J.B. Clement, 93430 Villetaneuse (France)

    2011-10-19

    This paper deals with the experimental determination of the spatial and temporal evolutions of the ozone concentration in an atmospheric pressure pulsed plasma, working in the nanosecond regime. We observed that ozone was produced in the localized region of the streamer. The ozone transport requires a characteristic time well above the millisecond. The numerical modelling of the streamer expansion confirms that the hydrodynamic expansion of the filamentary discharge region during the streamer propagation does not lead to a significant transport of atomic oxygen and ozone. It appears therefore that only diffusional transport can take place, which requires a characteristic time of the order of 50 ms.

  8. Spatial and temporal evolutions of ozone in a nanosecond pulse corona discharge at atmospheric pressure

    Science.gov (United States)

    Duten, X.; Redolfi, M.; Aggadi, N.; Vega, A.; Hassouni, K.

    2011-10-01

    This paper deals with the experimental determination of the spatial and temporal evolutions of the ozone concentration in an atmospheric pressure pulsed plasma, working in the nanosecond regime. We observed that ozone was produced in the localized region of the streamer. The ozone transport requires a characteristic time well above the millisecond. The numerical modelling of the streamer expansion confirms that the hydrodynamic expansion of the filamentary discharge region during the streamer propagation does not lead to a significant transport of atomic oxygen and ozone. It appears therefore that only diffusional transport can take place, which requires a characteristic time of the order of 50 ms.

  9. Evolution of the Pulse Width in Dielectric Barrier Atmospheric Pressure Discharge

    Institute of Scientific and Technical Information of China (English)

    宋新新; 谭震宇; 陈波; 张远涛; 李清泉

    2012-01-01

    A study of the evolution of the pulse width in homogeneous dielectric barrier dis- charge at atmospheric pressure with helium as the working gas is reported by using a one- dimensional fluid model. In this paper, a new computational method is presented to estimate the pulse width through calculating the time interval between the breakdown voltage and the extinguishing voltage. The effects on the discharge characteristics of the applied voltage and exci- tation frequency are studied based on the computational data. The results of the simulation show that the pulse width is observed to be narrower and the time intervals between two consecutive current pulses decrease with increasing amplitude and excitation frequency, which indicates that the homogeneous discharge is susceptible to the filamentary mode. The simulation results support the conclusion that in order to restrain the transition from the glow mode to filamentary mode, the applied voltage and excitation frequency should be kept within an appropriate range.

  10. FAST TRACK COMMUNICATION: Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges

    Science.gov (United States)

    Walsh, J. L.; Liu, D. X.; Iza, F.; Rong, M. Z.; Kong, M. G.

    2010-01-01

    Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium-oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O2 by helium metastables is significantly more efficient than electron dissociative excitation of O2, electron excitation of O and ion-ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He-O2 plasmas for excited atomic oxygen based chemistry.

  11. Array of surface-confined glow discharges in atmospheric pressure helium: Modes and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.; Liu, D. X., E-mail: liudingxin@gmail.com, E-mail: mglin5g@gmail.com [Center for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Shaanxi (China); Nie, Q. Y.; Li, H. P. [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Chen, H. L. [Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, Virginia 23508 (United States); Kong, M. G., E-mail: liudingxin@gmail.com, E-mail: mglin5g@gmail.com [Center for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Shaanxi (China); Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, Virginia 23508 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529 (United States)

    2014-05-19

    Array of atmospheric pressure surface discharges confined by a two-dimensional hexagon electrode mesh is studied for its discharge modes and temporal evolution so as to a theoretical underpinning to their growing applications in medicine, aerodynamic control, and environmental remediation. Helium plasma surface-confined by one hexagon-shaped rim electrode is shown to evolve from a Townsend mode to a normal and abnormal glow mode, and its evolution develops from the rim electrodes as six individual microdischarges merging in the middle of the hexagon mesh element. Within one hexagon element, microdischarges remain largely static with the mesh electrode being the instantaneous cathode, but move towards the hexagon center when the electrode is the instantaneous anode. On the entire array electrode surface, plasma ignition is found to beat an unspecific hexagon element and then spreads to ignite surrounding hexagon elements. The spreading of microdischarges is in the form of an expanding circle at a speed of about 3 × 10{sup 4} m/s, and their quenching starts in the location of the initial plasma ignition. Plasma modes influence how input electrical power is used to generate and accelerate electrons and as such the reaction chemistry, whereas plasma dynamics are central to understand and control plasma instabilities. The present study provides an important aspect of plasma physics of the atmospheric surface-confined discharge array and a theoretical underpinning to its future technological innovation.

  12. Nanosecond Repetitively Pulsed Discharges in Air at Atmospheric Pressure -- Experiment and Theory of Regime Transitions

    Science.gov (United States)

    Pai, David; Lacoste, Deanna; Laux, Christophe

    2009-10-01

    In atmospheric pressure air preheated from 300 to 1000 K, the Nanosecond Repetitively Pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and inter-electrode gap distance) of each discharge regime. Notably, there is a minimum gap distance for the existence of the glow regime that increases with decreasing gas temperature. A theory is developed to describe the Corona-to-Glow (C-G) and Glow-to-Spark (G-S) transitions for NRP discharges. The C-G transition is shown to depend on the Avalanche-to-Streamer Transition (AST) as well as the electric field strength in the positive column. The G-S transition is due to the thermal ionization instability. The minimum gap distance for the existence of the glow regime can be understood by considering that the applied voltage of the AST must be lower than that of the thermal ionization instability. This is a previously unknown criterion for generating glow discharges, as it does not correspond to the Paschen minimum or to the Meek-Raether criterion.

  13. Decomposition of toluene in a steady-state atmospheric-pressure glow discharge

    Science.gov (United States)

    Trushkin, A. N.; Grushin, M. E.; Kochetov, I. V.; Trushkin, N. I.; Akishev, Yu. S.

    2013-02-01

    Results are presented from experimental studies of decomposition of toluene (C6H5CH3) in a polluted air flow by means of a steady-state atmospheric pressure glow discharge at different water vapor contents in the working gas. The experimental results on the degree of C6H5CH3 removal are compared with the results of computer simulations conducted in the framework of the developed kinetic model of plasma chemical decomposition of toluene in the N2: O2: H2O gas mixture. A substantial influence of the gas flow humidity on toluene decomposition in the atmospheric pressure glow discharge is demonstrated. The main mechanisms of the influence of humidity on C6H5CH3 decomposition are determined. The existence of two stages in the process of toluene removal, which differ in their duration and the intensity of plasma chemical decomposition of C6H5CH3 is established. Based on the results of computer simulations, the composition of the products of plasma chemical reactions at the output of the reactor is analyzed as a function of the specific energy deposition and gas flow humidity. The existence of a catalytic cycle in which hydroxyl radical OH acts a catalyst and which substantially accelerates the recombination of oxygen atoms and suppression of ozone generation when the plasma-forming gas contains water vapor is established.

  14. Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the spark regime

    International Nuclear Information System (INIS)

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 1015 cm-3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 1011 cm-3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 108 cm-3.

  15. A time-resolved imaging and electrical study on a high current atmospheric pressure spark discharge

    Science.gov (United States)

    Palomares, J. M.; Kohut, A.; Galbács, G.; Engeln, R.; Geretovszky, Zs.

    2015-12-01

    We present a time-resolved imaging and electrical study of an atmospheric pressure spark discharge. The conditions of the present study are those used for nanoparticle generation in spark discharge generator setups. The oscillatory bipolar spark discharge was generated between two identical Cu electrodes in different configurations (cylindrical flat-end or tipped-end geometries, electrode gap from 0.5 to 4 mm), in a controlled co-axial N2 flow, and was supplied by a high voltage capacitor. Imaging data with nanosecond time resolution were collected using an intensified CCD camera. This data were used to study the time evolution of plasma morphology, total light emission intensity, and the rate of plasma expansion. High voltage and high current probes were employed to collect electrical data about the discharge. The electrical data recorded allowed, among others, the calculation of the equivalent resistance and inductance of the circuit, estimations for the energy dissipated in the spark gap. By combining imaging and electrical data, observations could be made about the correlation of the evolution of total emitted light and the dissipated power. It was also observed that the distribution of light emission of the plasma in the spark gap is uneven, as it exhibits a "hot spot" with an oscillating position in the axial direction, in correlation with the high voltage waveform. The initial expansion rate of the cylindrical plasma front was found to be supersonic; thus, the discharge releases a strong shockwave. Finally, the results on equivalent resistance and channel expansion are comparable to those of unipolar arcs. This shows the spark discharge has a similar behavior to the arc regime during the conductive phase and until the current oscillations stop.

  16. Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the spark regime

    Energy Technology Data Exchange (ETDEWEB)

    Pai, David Z; Lacoste, Deanna A; Laux, Christophe O [Laboratoire EM2C, CNRS UPR288, Ecole Centrale Paris, 92295 Chatenay-Malabry (France)

    2010-12-15

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N{sub 2} (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 10{sup 15} cm{sup -3} towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 10{sup 11} cm{sup -3} produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 10{sup 8} cm{sup -3}.

  17. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    OpenAIRE

    Pai, David,; Lacoste, Deanna,; Laux, C.

    2010-01-01

    International audience In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determi...

  18. Simulation Tool for Dielectric Barrier Discharge Plasma Actuators at Atmospheric and Sub-Atmospheric Pressures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Traditional approaches for active flow separation control using dielectric barrier discharge (DBD) plasma actuators are limited to relatively low-speed flows and...

  19. TOPICAL REVIEW: Nucleation and aerosol processing in atmospheric pressure electrical discharges: powders production, coatings and filtration

    Science.gov (United States)

    Borra, Jean-Pascal

    2006-01-01

    This review addresses the production of nano-particles and the processing of particles injected in atmospheric pressure electrical discharges (APED). The mechanisms of formation and the evolution of particles suspended in gases are first presented, with numerical and experimental facilities. Different APED and related properties are then introduced for dc corona, streamer and spark filamentary discharges (FD), as well as for ac filamentary and homogeneous dielectric barrier discharges (DBD). Two mechanisms of particle production are depicted in APED: when FD interact with the surface of electrodes or dielectrics and when filamentary and homogeneous DBD induce reactions with gaseous precursors in volume. In both cases, condensable gaseous species are produced, leading to nano-sized particles by physical and chemical routes of nucleation. The evolution of the so-formed nano-particles, i.e. the growth by coagulation/condensation, the charging and the collection are detailed for each APED, with respect to fine powders production and thin films deposition. Finally, when particles are injected in APED, they undergo interfacial processes. Non-thermal plasmas charge particles for electro-collection and trigger heterogeneous chemical reactions for organic and inorganic films deposition. Heat exchanges in thermal plasmas enable powder purification, shaping, melting for hard coatings and fine powders production by reactive evaporation.

  20. Laser-Ionization TOF Mass Spectrometer Characterization of Benzene Destruction in Atmospheric Pressure Pulsed Discharge

    Institute of Scientific and Technical Information of China (English)

    LIU Jiahong; XIAO Qingmei; WANG Liping; YAO Zhi; DING Hongbin

    2009-01-01

    Benzene is.a major industrial air pollutant and can cause serious human health disorders. In this paper an investigation on benzene destruction, in an atmospheric-pressure fast-flow pulsed DC-discharge by means of laser ionization combined with time-of-flight (TOF) mass spectrometry, is reported. Most by-products including transient reactive species from the benzene discharge were characterized by molecular beam sampling combined with TOF mass spectrometry.It is showed that, with a gas mixture of 0.5% C6H6 in Ar, benzene can be effectively destroyed by discharge plasma. The intermediate species consisted of small fragments of CNHm (n=3~5,m =1~11), cycle-chain species of CNHm (n=6~9, m = 7~10) and polycyclic species CNHm (n ≥9,m = 8~12). The alternation of mass peaks (intensity) with even/odd electrons was observed in the measured mass spectra. The results indicated that the alternation is mainly due to the different ionization potentials of the open shell and close shell species. Based on the examination of the features of the species' composition, the primary reaction pathways are proposed and discussed.

  1. Nucleation and aerosol processing in atmospheric pressure electrical discharges: powders production, coatings and filtration

    International Nuclear Information System (INIS)

    This review addresses the production of nano-particles and the processing of particles injected in atmospheric pressure electrical discharges (APED). The mechanisms of formation and the evolution of particles suspended in gases are first presented, with numerical and experimental facilities. Different APED and related properties are then introduced for dc corona, streamer and spark filamentary discharges (FD), as well as for ac filamentary and homogeneous dielectric barrier discharges (DBD). Two mechanisms of particle production are depicted in APED: when FD interact with the surface of electrodes or dielectrics and when filamentary and homogeneous DBD induce reactions with gaseous precursors in volume. In both cases, condensable gaseous species are produced, leading to nano-sized particles by physical and chemical routes of nucleation. The evolution of the so-formed nano-particles, i.e. the growth by coagulation/condensation, the charging and the collection are detailed for each APED, with respect to fine powders production and thin films deposition. Finally, when particles are injected in APED, they undergo interfacial processes. Non-thermal plasmas charge particles for electro-collection and trigger heterogeneous chemical reactions for organic and inorganic films deposition. Heat exchanges in thermal plasmas enable powder purification, shaping, melting for hard coatings and fine powders production by reactive evaporation. (topical review)

  2. Study of a new direct current atmospheric pressure glow discharge in helium

    Energy Technology Data Exchange (ETDEWEB)

    Gielniak, B. [University of Hamburg, Institute for Inorganic and Applied Chemistry, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Fiedler, T. [Johannes Gutenberg-University Mainz, Institute for Inorganic and Analytical Chemistry, Duesbergweg 10-14, 55128 Mainz (Germany); Broekaert, J.A.C., E-mail: jose.broekaert@chemie.uni-hamburg.de [University of Hamburg, Institute for Inorganic and Applied Chemistry, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)

    2011-01-15

    In this study a new DC-APGD operated in He was developed and characterized. The discharge is operated at 0.9 kV and about 25-35 mA and at a gas flow of 100 ml/min. The source was spectroscopically studied and parameters such as the rotational temperature (T{sub rot}), the excitation temperature (T{sub exc}), the ionization temperature (T{sub ion}) and the electron number density (n{sub e}) were determined. The current-voltage characteristic of the source was studied as well. At optimized conditions the discharge operates in the normal region of the current-voltage characteristic. Rotational and excitation temperatures determined with the use of OH band and Fe I lines as thermometric species were of the order of about 900-1200 and 4500-5500 K, respectively. This indicates that despite of the atmospheric pressure, the discharge is not in LTE. Spatially resolved temperature measurements were performed with axial as well as radial resolution and showed relatively flat profiles. Axially resolved emission intensity profiles for several species such as H, N{sub 2}, N{sub 2}{sup +}, OH, He and Hg were determined. It also was found that H{sub 2} introduced into the He by electrolysis of acid solutions such as in ECHG considerably increases the spectroscopically measured gas temperatures but decreases the analyte line intensities, as shown for Hg.

  3. Restraint Effect of Filaments on Applied Voltage in Atmospheric Pressure Glow Discharge%Restraint Effect of Filaments on Applied Voltage in Atmospheric Pressure Glow Discharge

    Institute of Scientific and Technical Information of China (English)

    李森; 陈强; 刘忠伟

    2012-01-01

    In this study, argon and nitrogen were used as the discharge gases in radio-frequency (RF: 13.56 MHz) powered dielectric barrier atmospheric plasma. It was noticed that in single dielectric barrier discharge (DBD) with nitrogen as the discharge gas, or in argon plasma with a high applied power, micro-filament channels were easily formed. The channels in these two kinds of discharge were both constrictive on the bare metallic electrode and expansive on the opposite electrode covered with a quartz layer. The number of micro-channels was increased along with the input power, which caused the change in the I-V curve shape, i.e., the current kept increasing and the voltage fluctuated within a confined range. With double dielectric layers, however, no micro-channels appeared in the ICCD images, and the I-V curve demonstrated a totally different shape. It was assumed that micro-filaments exhibited a restraining effect on the discharge voltage. The mechanism of this restraining effect was explored in this work.

  4. Surface Modification of Polyimide Film by Dielectric Barrier Discharge at Atmospheric Pressure

    Science.gov (United States)

    Peng, Shi; Li, Lingjun; Li, Wei; Wang, Chaoliang; Guo, Ying; Shi, Jianjun; Zhang, Jing

    2016-04-01

    In this paper, polyimide (PI) films are modified using an atmospheric pressure plasma generated by a dielectric barrier discharge (DBD) in argon. Surface performance of PI film and its dependence on exposure time from 0 s to 300 s are investigated by dynamic water contact angle (WCA), field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy in attenuated total multiple reflection mode (FTIR-ATR). The study demonstrates that dynamic WCA exhibits a minimum with 40 s plasma treatment, and evenly distributed nano-dots and shadow concaves appeared for 40 s and 12 s Ar plasma treatment individually. A short period of plasma modification can contribute to the scission of the imide ring and the introduction of C-O and C=O (-COOH) by detailed analysis of FTIR-ATR.

  5. Supershort electron beam and voluminous heavy-current air discharge at atmospheric pressure

    International Nuclear Information System (INIS)

    The conditions of the electron beam and voluminous discharge formation in the air at the atmospheric pressure and subnanosecond pulse tension front are studied. It is shown that the electron beam in the gaseous diode originates at the pulse tension front over time of ∼ 0.5 ns and has duration at the semiheight of ≤0.4 ns. The electron beam with the electrons average energy of 60-80 keV and current amplitude of ≥70 A is obtained. It is assumed that the electron beam is formed from the electron avalanches, originating in the gap on the account of the gas ionization by fast electrons at achieving the critical field between the expanding plasma cloud front and anode

  6. A novel Y-type reactor for selective excitation of atmospheric pressure glow discharge plasma

    Science.gov (United States)

    Xia, Guan-Guang; Wang, Jin-Yun; Huang, Aimin; Suib, Steven L.; Hayashi, Yuji; Matsumoto, Hiroshige

    2001-02-01

    A novel Y-type atmospheric pressure ac glow discharge plasma reactor has been designed and tested in CO reduction with hydrogen and the reverse water-gas shift reaction. The reactor consists of a Y-type quartz tube with an angle of 120°-180° between the two long arms, two metal rod electrodes serving as high voltage terminals and two pieces of aluminum foil which were wrapped outside of the quartz tubes as a ground electrode. Different combinations of input power applied on this three- electrode system can lead to selective plasmas on one side, two sides, or can also generate a stable arc between the two high voltage terminal electrodes. The ability to selectively activate different species with this type of apparatus can help to minimize side reactions in plasmas to obtain desirable products. The Y-type reactor may provide a novel means to study fundamental problems regarding radical reactions.

  7. Collisional-radiative model of helium microwave discharges at atmospheric pressure

    Science.gov (United States)

    Santos, M.; Alves, L. L.; Gadonna, K.; Belmonte, T.

    2011-10-01

    This paper presents a stationary collisional-radiative model to describe the behavior of helium microwave discharges (2.45 GHz), produced in cylindrical geometry (1 mm radius) at atmospheric pressure. The model couples the rate balance equations for the charged particles (electrons, He+ and He2+ions), the He(n Townsend ionization coefficient. The model was solved for typical 5x1014 cm-3 electron density and 2500 K gas temperature, yielding [He2+]/[He+] ~ 0.92 and [He2*]/[He] ~ 3.4x10-8. Results show also that the He2+ions are produced mainly from the 3-body conversion of He+ ions and lost by the corresponding reverse reaction together with diffusion and dissociative recombination. The He2*is produced by a 3-body reaction involving the 23P states and by the electron-stabilized recombination of He2+and is lost by electron dissociation. This paper presents a stationary collisional-radiative model to describe the behavior of helium microwave discharges (2.45 GHz), produced in cylindrical geometry (1 mm radius) at atmospheric pressure. The model couples the rate balance equations for the charged particles (electrons, He+ and He2+ions), the He(n Townsend ionization coefficient. The model was solved for typical 5x1014 cm-3 electron density and 2500 K gas temperature, yielding [He2+]/[He+] ~ 0.92 and [He2*]/[He] ~ 3.4x10-8. Results show also that the He2+ions are produced mainly from the 3-body conversion of He+ ions and lost by the corresponding reverse reaction together with diffusion and dissociative recombination. The He2*is produced by a 3-body reaction involving the 23P states and by the electron-stabilized recombination of He2+and is lost by electron dissociation. Work supported by FCT-MCTES under PTDC/FIS/65924/2006.

  8. Collision-induced dissociation analysis of negative atmospheric ion adducts in atmospheric pressure corona discharge ionization mass spectrometry.

    Science.gov (United States)

    Sekimoto, Kanako; Takayama, Mitsuo

    2013-05-01

    Collision-induced dissociation (CID) experiments were performed on atmospheric ion adducts [M + R](-) formed between various types of organic compounds M and atmospheric negative ions R(-) [such as O2(-), HCO3(-), COO(-)(COOH), NO2(-), NO3(-), and NO3(-)(HNO3)] in negative-ion mode atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. All of the [M + R](-) adducts were fragmented to form deprotonated analytes [M - H](-) and/or atmospheric ions R(-), whose intensities in the CID spectra were dependent on the proton affinities of the [M - H](-) and R(-) fragments. Precursor ions [M + R](-) for which R(-) have higher proton affinities than [M - H](-) formed [M - H](-) as the dominant product. Furthermore, the CID of the adducts with HCO3(-) and NO3(-)(HNO3) led to other product ions such as [M + HO](-) and NO3(-), respectively. The fragmentation behavior of [M + R](-) for each R(-) observed was independent of analyte type (e.g., whether the analyte was aliphatic or aromatic, or possessed certain functional groups). PMID:23479312

  9. Collision-induced dissociation analysis of negative atmospheric ion adducts in atmospheric pressure corona discharge ionization mass spectrometry.

    Science.gov (United States)

    Sekimoto, Kanako; Takayama, Mitsuo

    2013-05-01

    Collision-induced dissociation (CID) experiments were performed on atmospheric ion adducts [M + R](-) formed between various types of organic compounds M and atmospheric negative ions R(-) [such as O2(-), HCO3(-), COO(-)(COOH), NO2(-), NO3(-), and NO3(-)(HNO3)] in negative-ion mode atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. All of the [M + R](-) adducts were fragmented to form deprotonated analytes [M - H](-) and/or atmospheric ions R(-), whose intensities in the CID spectra were dependent on the proton affinities of the [M - H](-) and R(-) fragments. Precursor ions [M + R](-) for which R(-) have higher proton affinities than [M - H](-) formed [M - H](-) as the dominant product. Furthermore, the CID of the adducts with HCO3(-) and NO3(-)(HNO3) led to other product ions such as [M + HO](-) and NO3(-), respectively. The fragmentation behavior of [M + R](-) for each R(-) observed was independent of analyte type (e.g., whether the analyte was aliphatic or aromatic, or possessed certain functional groups).

  10. Deposition of hard thin films from HMDSO in atmospheric pressure dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Trunec, D; Zajickova, L; BursIkova, V; Studnicka, F; Stahel, P; Prysiazhnyi, V; Navratil, Z; Franta, D [Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Perina, V [Institute of Nuclear Physics, Academy of Sciences of the Czech Republic, 250 68 Rez (Czech Republic); Houdkova, J, E-mail: trunec@physics.muni.c [Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 162 53 Prague (Czech Republic)

    2010-06-09

    An atmospheric pressure dielectric barrier discharge burning in nitrogen with a small admixture of hexamethyldisiloxane (HMDSO) was used for the deposition of thin organosilicon films. The thin films were deposited on glass, silicon and polycarbonate substrates, and the substrate temperature during the deposition process was increased up to values within the range 25-150 {sup 0}C in order to obtain hard SiO{sub x}-like thin films. The properties of the discharge were studied by means of optical emission spectroscopy and electrical measurements. The deposited films were characterized by the Rutherford backscattering and elastic recoil detection methods, x-ray photoelectron spectroscopy, infrared spectroscopy measurements, ellipsometry and the depth sensing indentation technique. It was found that the films' properties depend significantly on the substrate temperature at deposition. An increase in substrate temperature from 25 to 150 {sup 0}C led to an increase in film hardness from 0.4 to 7 GPa and the film chemical composition changed from CH{sub x}Si{sub y}O{sub z} to SiO{sub x}H{sub y}. The films were transparent in the visible range.

  11. Discoloration of Congo Red by Rod-Plate Dielectric Barrier Discharge Processes at Atmospheric Pressure

    Science.gov (United States)

    Wu, Haixia; Fang, Zhi; Zhou, Tong; Lu, Chen; Xu, Yanhua

    2016-05-01

    A dielectric barrier discharge (DBD) reactor with a rod-plate electrode configuration was used for the oxidative decomposition of Congo red dye in an aqueous solution. Plasma was generated in the gas space above the water interface under atmospheric pressure. Discharge characteristics were analyzed by voltage-current waveforms. Effects of applied voltage, initial conductivity, and initial concentration were also analyzed. Congo red discoloration increased with increased applied voltage and decreased conductivity. The initial conductivity significantly influenced the Congo red discoloration. Under the same conditions, the highest discoloration rate was obtained at 25 mg/L. The presence of ferrous ions in the solutions had a substantial positive effect on Fenton dye degradation and flocculation. At an applied voltage of 20 kV, about 100% of dye was degraded after 4 min of Fe2+/DBD treatment. Results showed that adding a certain dosage of hydrogen peroxide to the wastewater could enhance the discoloration rate. Possible pathways of Congo red discoloration by DBD plasma were proposed based on GC/MS, FTIR, and UV-vis spectroscopy analyses. supported by National Natural Science Foundation of China (No. 51377075), the Natural Science Foundation of Jiangsu Province of China (Nos. BK20131412, BK20150951)

  12. Polymer Surface Treatment by Atmospheric Pressure Low Temperature Surface Discharge Plasma:Its Characteristics and Comparison with Low Pressure Oxygen Plasma Treatment

    Institute of Scientific and Technical Information of China (English)

    Atsushi KUWABARA; Shin-ichi KURODA; Hitoshi KUBOTA

    2007-01-01

    The polymer treatment with a low-temperature plasma jet generated on the atmospheric pressure surface discharge (SD) plasma is performed.The change of the surface property over time,in comparison with low pressure oxygen (O2) plasma treatment,is examined.As one compares the treatment by atmospheric pressure plasma to that by the low pressure O2 plasma of PS (polystyrene) the treatment effects were almost in complete agreement.However,when the atmospheric pressure plasma was used for PP(polypropylene),it produced remarkable hydrophilic effects.

  13. DC negative corona discharge in atmospheric pressure helium: transition from the corona to the ‘normal’ glow regime

    Science.gov (United States)

    Hasan, Nusair; Antao, Dion S.; Farouk, Bakhtier

    2014-06-01

    Direct current (dc) negative corona discharges in atmospheric pressure helium are simulated via detailed numerical modeling. Simulations are conducted to characterize the discharges in atmospheric helium for a pin plate electrode configuration. A self-consistent two-dimensional hybrid model is developed to simulate the discharges and the model predictions are validated with experimental measurements. The discharge model considered consists of momentum and energy conservation equations for a multi-component (electrons, ions, excited species and neutrals) gas mixture, conservation equations for each component of the mixture and state relations. A drift-diffusion approximation for the electron and the ion fluxes is used. A model for the external circuit driving the discharge is also considered and solved along with the discharge model. Many of the key features of a negative corona discharge, namely non-linear current-voltage characteristics, spatially flat cathode current density and glow-like discharge in the high current regime are displayed in the predictions. A transition to the ‘normal’ glow discharge from the corona discharge regime is also observed. The transition is identified from the calculated current-voltage characteristic curve and is characterized by the radial growth of the negative glow and the engulfment of the cathode wire.

  14. DC negative corona discharge in atmospheric pressure helium: transition from the corona to the ‘normal’ glow regime

    International Nuclear Information System (INIS)

    Direct current (dc) negative corona discharges in atmospheric pressure helium are simulated via detailed numerical modeling. Simulations are conducted to characterize the discharges in atmospheric helium for a pin plate electrode configuration. A self-consistent two-dimensional hybrid model is developed to simulate the discharges and the model predictions are validated with experimental measurements. The discharge model considered consists of momentum and energy conservation equations for a multi-component (electrons, ions, excited species and neutrals) gas mixture, conservation equations for each component of the mixture and state relations. A drift–diffusion approximation for the electron and the ion fluxes is used. A model for the external circuit driving the discharge is also considered and solved along with the discharge model. Many of the key features of a negative corona discharge, namely non-linear current–voltage characteristics, spatially flat cathode current density and glow-like discharge in the high current regime are displayed in the predictions. A transition to the ‘normal’ glow discharge from the corona discharge regime is also observed. The transition is identified from the calculated current–voltage characteristic curve and is characterized by the radial growth of the negative glow and the engulfment of the cathode wire. (paper)

  15. Simulation Tool for Dielectric Barrier Discharge Plasma Actuators at Atmospheric and Sub-Atmospheric Pressures: SBIR Phase I Final Report

    Science.gov (United States)

    Likhanskii, Alexandre

    2012-01-01

    This report is the final report of a SBIR Phase I project. It is identical to the final report submitted, after some proprietary information of administrative nature has been removed. The development of a numerical simulation tool for dielectric barrier discharge (DBD) plasma actuator is reported. The objectives of the project were to analyze and predict DBD operation at wide range of ambient gas pressures. It overcomes the limitations of traditional DBD codes which are limited to low-speed applications and have weak prediction capabilities. The software tool allows DBD actuator analysis and prediction for subsonic to hypersonic flow regime. The simulation tool is based on the VORPAL code developed by Tech-X Corporation. VORPAL's capability of modeling DBD plasma actuator at low pressures (0.1 to 10 torr) using kinetic plasma modeling approach, and at moderate to atmospheric pressures (1 to 10 atm) using hydrodynamic plasma modeling approach, were demonstrated. In addition, results of experiments with pulsed+bias DBD configuration that were performed for validation purposes are reported.

  16. Numerical simulation of evolution features of the atmospheric-pressure CF4 plasma generated by the pulsed dielectric barrier discharge

    Science.gov (United States)

    Pan, Jie; Li, Li; Chen, Bo; Song, Yuzhi; Zhao, Yuefeng; Xiu, Xianwu

    2016-06-01

    The atmospheric-pressure CF4 plasma has the high application potential in the field of semiconductor fabrication since it can combine the excellent capability for the CF4 plasma etching with the easy atmospheric-pressure operation. In this work, the fluid model has been carried out to numerically research evolution features of the atmospheric-pressure CF4 plasma generated by the pulsed dielectric barrier discharge. The computational results show that the averaged electron temperature dramatically increases during the rising and the falling phases of the applied voltage pulse, and then swiftly decreases. The discharge current density has the waveform of two bipolar short pulses. The electrons and CF3 + ions form the cathode sheath at the discharge duration. However, the CF3 - and F- negative ions take the place of the electrons to sustain the cathode sheath of the CF4 discharge plasma at the time interval between the two bipolar discharge pulses. During the time interval of the two adjacent applied voltage pulses the discharge region is the quasi-neutral plasma region, and meanwhile CF2 + and CF3 - are the dominated charged species. Moreover, F and CF3 maintain the relatively stable high densities and uniform axial distributions during the whole period of the applied voltage.

  17. Surface modification of acrylate intraocular lenses with dielectric barrier discharge plasma at atmospheric pressure

    Institute of Scientific and Technical Information of China (English)

    WANG Yao; LIU ZhenMei; XU ZhiKang; YAO Ke

    2009-01-01

    Surface modification with dielectric barrier discharge (DBD) plasma was carried out at atmospheric pressure (argon as the discharge gas) to improve the biocompatibility of hydrophobic acrylate intraocular lens (IOL). Changes of the plasma-treated IOL surface in chemical composition,morphology and hydrophilicity were comprehensively evaluated by X-ray photoelectron spectroscopy (XPS),field emission scanning electron microscopy (FESEM),atomic force microscopy (AFM) and water contact angle (WCA) measurements. The surface biocompatibility of the untreated and plasma-treated IOLs was compared with the adhesion behavior of platelets,macrophages and lens epithelial cells (LECs) in vitro. After DBD plasma treatment,the hydrophilicity of the IOL surface was obviously improved. The changes in WCA with treatment extension may be attributed to both the introduction of oxygen or/and nitrogen-containing polar groups and the increase of surface roughness induced by plasma etching effect. The existence of low molecular weight oxidized material (LMWOM) was proved on the plasma treated IOL which was caused by the chain scission effect of the plasma treatment. The plasma-treated lOLs resisted the adhesion of platelets and macrophages significantly. The LECs spreading and proliferation were postponed on the lOLs plasma-treated for more than 180 s,with a well maintained epithelial phenotype of LECs. The IOL biocompatibility was improved after the DBD plasma treatment. We speculate that slighter foreign-body reaction and later incidence of anterior capsule opacification (ACO) may be expected after implantation of the argon DBD plasma-treated IOL.

  18. Surface modification of acrylate intraocular lenses with dielectric barrier discharge plasma at atmospheric pressure

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Surface modification with dielectric barrier discharge(DBD) plasma was carried out at atmospheric pressure(argon as the discharge gas) to improve the biocompatibility of hydrophobic acrylate intraocular lens(IOL).Changes of the plasma-treated IOL surface in chemical composition,morphology and hydrophilicity were comprehensively evaluated by X-ray photoelectron spectroscopy(XPS),field emission scanning electron microscopy(FESEM),atomic force microscopy(AFM) and water contact angle(WCA) measurements.The surface biocompatibility of the untreated and plasma-treated IOLs was compared with the adhesion behavior of platelets,macrophages and lens epithelial cells(LECs) in vitro.After DBD plasma treatment,the hydrophilicity of the IOL surface was obviously improved.The changes in WCA with treatment extension may be attributed to both the introduction of oxygen or/and nitrogen-containing polar groups and the increase of surface roughness induced by plasma etching effect.The existence of low molecular weight oxidized material(LMWOM) was proved on the plasma-treated IOL which was caused by the chain scission effect of the plasma treatment.The plasma-treated IOLs resisted the adhesion of platelets and macrophages significantly.The LECs spreading and proliferation were postponed on the IOLs plasma-treated for more than 180 s,with a well maintained epithelial phenotype of LECs.The IOL biocompatibility was improved after the DBD plasma treatment.We speculate that slighter foreign-body reaction and later incidence of anterior capsule opacification(ACO) may be expected after implantation of the argon DBD plasma-treated IOL.

  19. Surface diffuse discharge mechanism of well-aligned atmospheric pressure microplasma arrays

    Science.gov (United States)

    Ren-Wu, Zhou; Ru-Sen, Zhou; Jin-Xing, Zhuang; Jiang-Wei, Li; Mao-Dong, Chen; Xian-Hui, Zhang; Dong-Ping, Liu; Kostya (Ken, Ostrikov; Si-Ze, Yang

    2016-04-01

    A stable and homogeneous well-aligned air microplasma device for application at atmospheric pressure is designed and its electrical and optical characteristics are investigated. Current-voltage measurements and intensified charge coupled device (ICCD) images show that the well-aligned air microplasma device is able to generate a large-area and homogeneous discharge at the applied voltages ranging from 12 kV to 14 kV, with a repetition frequency of 5 kHz, which is attributed to the diffusion effect of plasma on dielectric surface. Moreover, this well-aligned microplasma device may result in the uniform and large-area surface modification of heat-sensitive PET polymers without damage, such as optimization in hydrophobicity and biocompatibility. In the biomedical field, the utility of this well-aligned microplasma device is further testified. It proves to be very efficient for the large-area and uniform inactivation of E. coli cells with a density of 103/cm2 on LB agar plate culture medium, and inactivation efficiency can reach up to 99% for 2-min treatment. Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2014J01025), the National Natural Science Foundation of China (Grant No. 11275261), the Natural Science Foundation of Guangdong Province, China (Grant No. 2015A030313005), and the Fund from the Fujian Provincial Key Laboratory for Plasma and Magnetic Resonance, China.

  20. Surface modification of polyimide (PI) film using water cathode atmospheric pressure glow discharge plasma

    Science.gov (United States)

    Zheng, Peichao; Liu, Keming; Wang, Jinmei; Dai, Yu; Yu, Bin; Zhou, Xianju; Hao, Honggang; Luo, Yuan

    2012-10-01

    The industrial use of polyimide film is limited because of undesirable properties such as poor wettability. In the present paper, a new kind of equipment called water cathode atmospheric pressure glow discharge was used to improve the surface properties of polyimide films and made them useful to technical applications. The changes in hydrophilicity of modified polyimide film surfaces were investigated by contact angle, surface energy and water content measurements as a function of treatment time. The results obtained show good treatment homogeneity and that the variation trends of contact angles are different for polar and non-polar testing liquids, while surface energy and water content are significantly enhanced with the increase of treatment time until they achieve saturated values after 60 s plasma treatment. Also, the thickness of liquid layer plays an important role in plasma processing and directly affects the treatment effect. Changes in morphology of polyimide films were analyzed by atomic force microscope and the results indicate that surface hydrophilicity after plasma treatment are improved partly due to the increase in the roughness. In addition, polyimide films treated by plasma are subjected to an ageing process to determine the durability of plasma treatment. It is found that the hydrophilicity is still better than untreated ones though the hydrophobic character partly recovers after long-term storage in ambient air.

  1. Numerical study of the anode boundary layer in atmospheric pressure arc discharges

    Science.gov (United States)

    Semenov, I. L.; Krivtsun, I. V.; Reisgen, U.

    2016-03-01

    The anode boundary layer in atmospheric pressure arc discharges is studied numerically on the basis of the hydrodynamic (diffusion) equations for plasma components. The governing equations are formulated in a unified manner without the assumptions of thermal equilibrium, ionization equilibrium or quasi-neutrality. For comparison, a quasi-neutral model of the anode layer is also considered. The numerical computations are performed for an argon arc at typical values of the current density in anode layers (500-2000 A cm-2). The results of numerical modelling show that the common collisionless model of the sheath fails to describe the sheath region for the problem under consideration. For this reason, a detailed analysis of the anode sheath is performed using the results of unified modelling. In addition, the distributions of plasma parameters in the anode layer are analysed and the basic characteristics of the layer (anode voltage drop, sheath voltage drop, anode layer thickness, sheath thickness, heat flux to the anode) are calculated. Our results are found to be in good agreement with the existing theoretical predictions and experimental data. The dependence of the anode layer characteristics on the current density is also discussed.

  2. Electric field development in γ-mode radiofrequency atmospheric pressure glow discharge in helium

    Science.gov (United States)

    Navrátil, Zdeněk; Josepson, Raavo; Cvetanović, Nikola; Obradović, Bratislav; Dvořák, Pavel

    2016-06-01

    Time development of electric field strength during radio-frequency sheath formation was measured using Stark polarization spectroscopy in a helium γ-mode radio-frequency (RF, 13.56 MHz) atmospheric pressure glow discharge at high current density (3 A cm-2). A method of time-correlated single photon counting was applied to record the temporal development of spectral profile of He I 492.2 nm line with a sub-nanosecond temporal resolution. By fitting the measured profile of the line with a combination of pseudo-Voigt profiles for forbidden (2 1P-4 1F) and allowed (2 1P-4 1D) helium lines, instantaneous electric fields up to 32 kV cm-1 were measured in the RF sheath. The measured electric field is in agreement with the spatially averaged value of 40 kV cm-1 estimated from homogeneous charge density RF sheath model. The observed rectangular waveform of the electric field time development is attributed to increased sheath conductivity by the strong electron avalanches occurring in the γ-mode sheath at high current densities.

  3. CFC-11 destruction by microwave torch generated atmospheric-pressure nitrogen discharge

    Energy Technology Data Exchange (ETDEWEB)

    Jasinski, Mariusz; Mizeraczyk, Jerzy; Zakrzewski, Zenon [Centre for Plasma and Laser Engineering, Institute of Fluid Flow Machinery, Polish Academy of Sciences, Gdansk (Poland); Ohkubo, Toshikazu [Department of Electrical and Electronic Engineering, Oita University, Oita (Japan); Chang Jenshih [Department of Engineering Physics, McMaster University, Hamilton, ON (Canada)

    2002-09-21

    A novel plasma method and its application for destruction of Freons using a moderate-power (several hundred watts) microwave torch discharge (MTD) in atmospheric-pressure flowing nitrogen are presented. The capability of the MTD to decompose Freons is demonstrated using a chlorofluorocarbon CCl{sub 3}F (Freon CFC-11) as an example. The gas flow rate and microwave power (2.45 GHz) delivered to the MTD were 1-3 litre min{sup -1} and 200-400 W, respectively. Concentration of the CFC-11 in the nitrogen was up to 50%. The results show that the decomposition efficiency of CFC-11 is up to 100% with the removal rate of several hundred g h{sup -1} and energy efficiency of about 1 kg kWh{sup -1}. This impressive performance, superior to that of other methods, is achieved without generating any significant unwanted by-products. As a result of this investigation, a relatively low-cost prototype system for Freon destruction based on a moderate-power MTD and a scrubber is proposed. (author)

  4. Application of diffuse discharges of atmospheric pressure formed by runaway electrons for modification of copper and stainless steel surface

    Energy Technology Data Exchange (ETDEWEB)

    Tarasenko, V. F., E-mail: VFT@loi.hcei.tsc.ru; Shulepov, M. A.; Erofeev, M. V. [Russian Academy of Sciences, Institute of High Current Electronics, Siberian Branch (Russian Federation)

    2015-12-15

    The results of studies devoted to the influence of a runaway electron pre-ionized diffuse discharge (REP DD) formed in air and nitrogen at atmospheric pressure on the surface of copper and stainless steel are presented. Nanosecond high-voltage pulses were used to obtain REP DD in different gases at high pressures in a chamber with a flat anode and a cathode possessing a small radius of curvature. This mode of discharge was implemented owing to the generation of runaway electrons and X-rays. The conditions under which the surface of copper and stainless steel was cleaned from carbon and oxidized are described.

  5. On the physical processes ruling an atmospheric pressure air glow discharge operating in an intermediate current regime

    Energy Technology Data Exchange (ETDEWEB)

    Prevosto, L., E-mail: prevosto@waycom.com.ar; Mancinelli, B.; Chamorro, J. C.; Cejas, E. [Grupo de Descargas Eléctricas, Departamento Ing. Electromecánica, Facultad Regional Venado Tuerto (UTN), Laprida 651, Venado Tuerto (2600), Santa Fe (Argentina); Kelly, H. [Grupo de Descargas Eléctricas, Departamento Ing. Electromecánica, Facultad Regional Venado Tuerto (UTN), Laprida 651, Venado Tuerto (2600), Santa Fe (Argentina); Instituto de Física del Plasma (CONICET), Facultad de Ciencias Exactas y Naturales (UBA) Ciudad Universitaria Pab. I, 1428, Buenos Aires (Argentina)

    2015-02-15

    Low-frequency (100 Hz), intermediate-current (50 to 200 mA) glow discharges were experimentally investigated in atmospheric pressure air between blunt copper electrodes. Voltage–current characteristics and images of the discharge for different inter-electrode distances are reported. A cathode-fall voltage close to 360 V and a current density at the cathode surface of about 11 A/cm{sup 2}, both independent of the discharge current, were found. The visible emissive structure of the discharge resembles to that of a typical low-pressure glow, thus suggesting a glow-like electric field distribution in the discharge. A kinetic model for the discharge ionization processes is also presented with the aim of identifying the main physical processes ruling the discharge behavior. The numerical results indicate the presence of a non-equilibrium plasma with rather high gas temperature (above 4000 K) leading to the production of components such as NO, O, and N which are usually absent in low-current glows. Hence, the ionization by electron-impact is replaced by associative ionization, which is independent of the reduced electric field. This leads to a negative current-voltage characteristic curve, in spite of the glow-like features of the discharge. On the other hand, several estimations show that the discharge seems to be stabilized by heat conduction; being thermally stable due to its reduced size. All the quoted results indicate that although this discharge regime might be considered to be close to an arc, it is still a glow discharge as demonstrated by its overall properties, supported also by the presence of thermal non-equilibrium.

  6. Restraint Effect of Filaments on Applied Voltage in Atmospheric Pressure Glow Discharge

    International Nuclear Information System (INIS)

    In this study, argon and nitrogen were used as the discharge gases in radio-frequency (RF: 13.56 MHz) powered dielectric barrier atmospheric plasma. It was noticed that in single dielectric barrier discharge (DBD) with nitrogen as the discharge gas, or in argon plasma with a high applied power, micro-filament channels were easily formed. The channels in these two kinds of discharge were both constrictive on the bare metallic electrode and expansive on the opposite electrode covered with a quartz layer. The number of micro-channels was increased along with the input power, which caused the change in the I-V curve shape, i.e., the current kept increasing and the voltage fluctuated within a confined range. With double dielectric layers, however, no micro-channels appeared in the ICCD images, and the I-V curve demonstrated a totally different shape. It was assumed that micro-filaments exhibited a restraining effect on the discharge voltage. The mechanism of this restraining effect was explored in this work.

  7. Online diagnosis of electron excitation temperature in CH4+H2 discharge plasma at atmospheric pressure by optical emission spectra

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Methane coupling under low temperature plasmas at atmospheric pressure is a green process by use of renewable sources of energy. In this study, CH4+H2 dis- charge plasma was on-line diagnosed by optical emission spectra so as to char- acterize the discharge system and to do spade work for the optimization of the technical parameters for future commercial production of methane coupling under plasmas. The study was focused on a calculation method for the online diagnosis of the electron excitation temperature in CH4+H2 discharge plasma at atmospheric pressure. The diagnostic method is easy, efficient and fairly precise. A serious er- ror in a literature was corrected during the reasoning of its series of equations formerly used to calculate electron temperatures in plasmas.

  8. Electrical Characteristics of Dielectric-Barrier Discharges in Atmospheric Pressure Air Using a Power-Frequency Voltage Source

    Institute of Scientific and Technical Information of China (English)

    TAO Xiaoping; LU Rongde; LI Hui

    2012-01-01

    Dielectric-barrier discharges (DBDs) in atmospheric pressure air have been studied by using a power-frequency voltage source. In this paper the electrical characteristics of DBDs us- ing glass and alumina dielectrics have been investigated experimentally. According to the Lissajous figures of voltage-charges, it is discovered that the discharge power for an alumina dielectric is much higher than that for a glass dielectric at the same applied voltage. Also~ the voltage-current curves of the glass and alumina dielectrics confirm the fact that the dielectric barriers behave like semiconducting materials at certain applied voltages.

  9. Spatial-Temporal Patterns in a Dielectric Barrier Discharge under Narrow Boundary Conditions in Argon at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    LI Xue-Chen; JIA Peng-Ying; ZHAO Na

    2011-01-01

    @@ Pattern formation phenomena are investigated in a dielectric barrier discharge under narrow boundary conditions in argon at atmospheric pressure.The discharge shows various scenarios with the increasing applied voltage.This is the first observation of alternating single spot and pair spots pattern and of a moving striation pattern in a dielectric barrier discharge system.The spatial-temporal correlations between discharge filaments in these patterns are measured by an optical method.The results show that the zigzag pattern is an interleaving of two sub-structure patterns, which ignites once for each sub-pattern per half cycle of the applied voltage.There is a temporal sequence inversion in consecutive half-cycles for the two sub-patterns.The pattern of alternating single spot and pair spots is also an interleaving of two sub-structure patterns.However, the pair spots sub-pattern ignites twice and the single spot sub-pattern ignites once per half cycle of the applied voltage.%Pattern formation phenomena are investigated in a dielectric barrier discharge under narrow boundary conditions in argon at atmospheric pressure. The discharge shows various scenarios with the increasing applied voltage.This is the first observation of alternating single spot and pair spots pattern and of a moving striation pattern in a dielectric barrier discharge system. The spatial-temporal correlations between discharge filaments in these patterns are measured by an optical method. The results show that the zigzag pattern is an interleaving of two sub-structure patterns, which ignites once for each sub-pattern per half cycle of the applied voltage. There is a temporal sequence inversion in consecutive half-cycles for the two sub-patterns. The pattern of alternating single spot and pair spots is also an interleaving of two sub-structure patterns. However, the pair spots sub-pattern ignites twice and the single spot sub-pattern ignites once per half cycle of the applied voltage.

  10. The back-diffusion effect of air on the discharge characteristics of atmospheric-pressure radio-frequency glow discharges using bare metal electrodes

    Science.gov (United States)

    Sun, Wen-Ting; Liang, Tian-Ran; Wang, Hua-Bo; Li, He-Ping; Bao, Cheng-Yu

    2007-05-01

    Radio-frequency (RF), atmospheric-pressure glow discharge (APGD) plasmas using bare metal electrodes have promising prospects in the fields of plasma-aided etching, deposition, surface treatment, disinfection, sterilization, etc. In this paper, the discharge characteristics, including the breakdown voltage and the discharge voltage for sustaining a stable and uniform α mode discharge of the RF APGD plasmas are presented. The experiments are conducted by placing the home-made planar-type plasma generator in ambient and in a vacuum chamber, respectively, with helium as the primary plasma-forming gas. When the discharge processes occur in ambient, particularly for the lower plasma-working gas flow rates, the experimental measurements show that it is the back-diffusion effect of air in atmosphere, instead of the flow rate of the gas, that results in the obvious decrease in the breakdown voltage with increasing plasma-working gas flow rate. Further studies on the discharge characteristics, e.g. the luminous structures, the concentrations and distributions of chemically active species in plasmas, with different plasma-working gases or gas mixtures need to be conducted in future work.

  11. The back-diffusion effect of air on the discharge characteristics of atmospheric-pressure radio-frequency glow discharges using bare metal electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sun Wenting; Liang Tianran; Wang Huabo; Li Heping; Bao Chengyu [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

    2007-05-15

    Radio-frequency (RF), atmospheric-pressure glow discharge (APGD) plasmas using bare metal electrodes have promising prospects in the fields of plasma-aided etching, deposition, surface treatment, disinfection, sterilization, etc. In this paper, the discharge characteristics, including the breakdown voltage and the discharge voltage for sustaining a stable and uniform {alpha} mode discharge of the RF APGD plasmas are presented. The experiments are conducted by placing the home-made planar-type plasma generator in ambient and in a vacuum chamber, respectively, with helium as the primary plasma-forming gas. When the discharge processes occur in ambient, particularly for the lower plasma-working gas flow rates, the experimental measurements show that it is the back-diffusion effect of air in atmosphere, instead of the flow rate of the gas, that results in the obvious decrease in the breakdown voltage with increasing plasma-working gas flow rate. Further studies on the discharge characteristics, e.g. the luminous structures, the concentrations and distributions of chemically active species in plasmas, with different plasma-working gases or gas mixtures need to be conducted in future work.

  12. The back-diffusion effect of air on the discharge characteristics of atmospheric-pressure radio-frequency glow discharges using bare metal electrodes

    International Nuclear Information System (INIS)

    Radio-frequency (RF), atmospheric-pressure glow discharge (APGD) plasmas using bare metal electrodes have promising prospects in the fields of plasma-aided etching, deposition, surface treatment, disinfection, sterilization, etc. In this paper, the discharge characteristics, including the breakdown voltage and the discharge voltage for sustaining a stable and uniform α mode discharge of the RF APGD plasmas are presented. The experiments are conducted by placing the home-made planar-type plasma generator in ambient and in a vacuum chamber, respectively, with helium as the primary plasma-forming gas. When the discharge processes occur in ambient, particularly for the lower plasma-working gas flow rates, the experimental measurements show that it is the back-diffusion effect of air in atmosphere, instead of the flow rate of the gas, that results in the obvious decrease in the breakdown voltage with increasing plasma-working gas flow rate. Further studies on the discharge characteristics, e.g. the luminous structures, the concentrations and distributions of chemically active species in plasmas, with different plasma-working gases or gas mixtures need to be conducted in future work

  13. Final Report DE-FG02-00ER54583: 'Physics of Atmospheric Pressure Glow Discharges' and 'Nanoparticle Nucleation and Dynamics in Low-Pressure Plasmas'

    International Nuclear Information System (INIS)

    This project was funded over two periods of three years each, with an additional year of no-cost extension. Research in the first funding period focused on the physics of uniform atmospheric pressure glow discharges, the second funding period was devoted to the study of the dynamics of nanometer-sized particles in plasmas.

  14. Surface modification of nanofibrillated cellulose films by atmospheric pressure dielectric barrier discharge

    DEFF Research Database (Denmark)

    Siró, Istvan; Kusano, Yukihiro; Norrman, Kion;

    2013-01-01

    of atmospheric pressure plasma treatment, the water contact angle of NFC films increased and the values were comparable with those of PLA films. On the other hand, surface chemical characterization revealed inhomogeneity of the plasma treatment and limited improvement in adhesion between NFC and PLA films...

  15. Student Award Finalist - Simulation of the reignition of atmospheric pressure air discharges behind dielectric obstacles: comparison with experiments

    Science.gov (United States)

    Pechereau, Francois; Bourdon, Anne

    2013-09-01

    In recent years, experimental studies on plasma assisted catalysis for flue gas treatment have shown a significant reduction of pollutants at a low energetic cost. Catalyst supports are either random or organized two phase media such as pellets, monoliths or porous media. Then, in plasma reactors, atmospheric pressure discharges have to interact with many obstacles and to propagate in microcavities and pores. To better understand the discharge dynamics in these complex structures, experiments have been carried out at LPGP (Orsay, France) in a point-to-plane geometry with a dielectric plane obstacle placed in the discharge path. In this work, we have carried out discharge simulations in the experimental geometry. We have compared the dynamics of the discharge ignited at the point and its impact on the dielectric surface. Then, we have compared the conditions of a discharge reignition behind the dielectric obstacle. A good qualitative agreement with experiments has been obtained but to improve the quantitative comparison, we have carried out a detailed parametric numerical study. In this work, we will focus on the influence of the level of seed charges on the discharge reignition and discuss several physical processes that could have an impact on the level of seed charges. ALVEOPLAS project (Grant No. ANR-08-BLAN-0159-01).

  16. A volume pulsed corona formed during nanosecond pulsed periodic discharge of negative polarity in narrow gaps with airflow at atmospheric pressure

    Science.gov (United States)

    Lepekhin, N. M.; Priseko, Yu. S.; Puresev, N. I.; Filippov, V. G.

    2014-06-01

    A volume mode of spatially homogeneous nanosecond pulsed-periodic corona discharge of negative polarity has been obtained using an edge-to-edge electrode geometry in narrow gaps with airflow at atmospheric pressure and natural humidity. The parameters of discharge are estimated, and a factor limiting the power deposited in discharge is determined.

  17. [Research on electron density in DC needle-plate corona discharge at atmospheric pressure].

    Science.gov (United States)

    Liu, Zhi-Qiang; Guo, Wei; Liu, Tao-Tao; Wu, Wen-Shuo; Liu, Shu-Min

    2013-11-01

    Using needle-plate discharge device, corona discharge experiment was done in the atmosphere. Through photo of spot size of light-emitting area, the relationship between the voltage and thickness of corona layer was discussed. When the distance between tip and plate is fixed, the thickness of corona layer increases with the increase in voltage; when the voltage is fixed, the thickness of corona layer decreases with the increase in the distance between tip and plate. As spectral intensity of N2 (C3pi(u)) (337.1 nm)reflects high energy electron density, it was measured with emission spectrometry. The results show that high energy electron density is the biggest near the needle tip and the relationship between high energy electron density and voltage is basically linear increasing. Fixing voltage, high energy electron density decreases with the increase in the distance between tip and plate. When the voltage and the distance between tip and plate are fixed, the high energy electron density increases with the decrease in the curvature radius of needle tip. These results are of great importance for the study of plasma parameters of corona discharge. PMID:24555347

  18. Three distinct modes in a surface micro-discharge in atmospheric pressure He + N{sub 2} mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dong; Liu, Dingxin, E-mail: liudingxin@mail.xjtu.edu.cn; He, Tongtong; Li, Qiaosong; Wang, Xiaohua [State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi' an Jiaotong University, Xi' an 710049 (China); Kong, Michael G. [State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi' an Jiaotong University, Xi' an 710049 (China); Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, Virginia 23508 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529 (United States)

    2015-12-15

    A surface micro-discharge in atmospheric pressure He + N{sub 2} mixtures is studied in this paper with an emphasis on the discharge modes. With the N{sub 2} admixture increasing from 0.1% to 20%, the discharge evolves from a spatially diffuse mode to a filamentary mode during positive half-cycles of the applied voltage. However during the negative half-cycles, an additional patterned mode emerges between the diffuse and the filamentary modes, which has not been reported before to exist in surface micro-discharges. In the diffuse and patterned modes, the plasmas cover almost the entirety of the mesh area during one cycle after plasma ignition in all mesh elements, and the discharge power increases linearly with the applied voltage. In contrast, plasma coverage of the mesh area is only partial in the filamentary mode and the plasma is more unstable with the discharge power increasing exponentially with the applied voltage. As the surface micro-discharge evolves through the three modes, the density of excited species changes significantly, for instance, the density of N{sub 2}{sup +}(B) drops by ∼20-fold from [N{sub 2}] = 0.2% to 20%. The N{sub 2}{sup +}(B) is predicted to be generated mainly through successive processes of Penning ionization by helium metastables and electron-impact excitation of N{sub 2}{sup +}(X), the latter is most responsible for the density decrease of N{sub 2}{sup +}(B) because much more N{sub 2}{sup +}(X) is converted to N{sub 4}{sup +}(X) as the increase of N{sub 2} fraction. Also, the electron density and electron temperature decrease with the discharge mode transition.

  19. Influence of surface emission processes on a fast-pulsed dielectric barrier discharge in air at atmospheric pressure

    Science.gov (United States)

    Pechereau, François; Bonaventura, Zdeněk; Bourdon, Anne

    2016-08-01

    This paper presents simulations of an atmospheric pressure air discharge in a point-to-plane geometry with a dielectric layer parallel to the cathode plane. Experimentally, a discharge reignition in the air gap below the dielectrics has been observed. With a 2D fluid model, it is shown that due to the fast rise of the high voltage applied and the sharp point used, a first positive spherical discharge forms around the point. Then this discharge propagates axially and impacts the dielectrics. As the first discharge starts spreading on the upper dielectric surface, in the second air gap with a low preionization density of {{10}4}~\\text{c}{{\\text{m}}-3} , the 2D fluid model predicts a rapid reignition of a positive discharge. As in experiments, the discharge reignition is much slower, a discussion on physical processes to be considered in the model to increase the reignition delay is presented. The limit case with no initial seed charges in the second air gap has been studied. First, we have calculated the time to release an electron from the cathode surface by thermionic and field emission processes for a work function φ \\in ≤ft[3,4\\right] eV and an amplification factor β \\in ≤ft[100,220\\right] . Then a 3D Monte Carlo model has been used to follow the dynamics of formation of an avalanche starting from a single electron emitted at the cathode. Due to the high electric field in the second air gap, we have shown that in a few nanoseconds, a Gaussian cloud of seed charges is formed at a small distance from the cathode plane. This Gaussian cloud has been used as the initial condition of the 2D fluid model in the second air gap. In this case, the propagation of a double headed discharge in the second air gap has been observed and the reignition delay is in rather good agreement with experiments.

  20. An experimental study on discharge characteristics in a pulsed-dc atmospheric pressure CH3OH/Ar plasma jet

    Science.gov (United States)

    Qian, Muyang; Liu, Sanqiu; Yang, Congying; Pei, Xuekai; Lu, Xinpei; Zhang, Jialiang; Wang, Dezhen

    2016-10-01

    Recently, C/H/Ar plasma discharges found enormous potential and possibility in carbonaceous compounds conversion and production. In this work, a pulsed-dc CH3OH/Ar plasma jet generated at atmospheric pressure is investigated by means of optical and electrical diagnosis concerning the variation of its basic parameters, absolute concentration of OH radicals, and plasma temperature with different CH3OH/Ar volume ratios, in the core region of discharge with needle-to-ring electrode configuration. The voltage-current characteristics are also measured at different CH3OH/Ar ratios. Laser-induced fluorescence (LIF) results here show that only small amounts of added methanol vapor to argon plasma (about 0.05% CH3OH/Ar volume ratio) is favorable for the production of OH radicals. The optical emission lines of CH, CN, and C2 radicals have been detected in the CH3OH/Ar plasma. And, the plasma temperatures increase with successive amount of added methanol vapor to the growth plasma. Moreover, qualitative discussions are presented regarding the mechanisms for methanol dissociation and effect of the CH3OH component on the Ar plasma discharge at atmospheric pressure.

  1. Model of a surface-wave discharge at atmospheric pressure with a fixed profile of the gas temperature

    Science.gov (United States)

    Nikovski, M.; Kiss'ovski, Zh; Tatarova, E.

    2016-03-01

    We present a 3D model of a surface-wave-sustained discharge at 2.45 GHz at atmospheric pressure. A small plasma source creates a plasma column in a dielectric tube and a plasma torch is observed above the top. The plasma parameters and the axial profile of the gas temperature are significantly changed in the presence of the substrate above the plasma torch. The Boltzmann equation for electrons under the local approximation is solved, together with the heavy particle balance equations at a fixed axial profile of the gas temperature. The model of this finite length plasma column includes also the dispersion relation of azimuthally-symmetric surface waves. A detailed collisional-radiative model is also implemented for argon discharge at atmospheric pressure, which includes 21 rate balance equations for excited Ar atoms [(Ar(1s5-1s2), Ar(2p10-2p1), Ar(2s3d), Ar(3p)], for positive Ar+ and Ar2 + ions and for excited molecules. The changes in the EEDF shape and the mean electron energy along the plasma column are investigated and the axial structures of the discharge and plasma parameters are obtained.

  2. Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration

    Institute of Scientific and Technical Information of China (English)

    WANG Yanhui; YE Huanhuan; ZHANG Jiao; WANG Qi; ZHANG Jie; WANG Dezhen

    2016-01-01

    In this paper,we study the characteristics of atmospheric-pressure pulsed dielectric barrier discharge (DBD) under the needle-plate electrode configuration using a one-dimensional self-consistent fluid model.The results show that,the DBDs driven by positive pulse,negative pulse and bipolar pulse possess different behaviors.Moreover,the two discharges appearing at the rising and the falling phases of per voltage pulse also have different discharge regimes.For the case of the positive pulse,the breakdown field is much lower than that of the negative pulse,and its propagation characteristic is different from the negative pulse DBD.When the DBD is driven by a bipolar pulse voltage,there exists the interaction between the positive and negative pulses,resulting in the decrease of the breakdown field of the negative pulse DBD and causing the change of the discharge behaviors.In addition,the effects of the discharge parameters on the behaviors of pulsed DBD in the needle-plate electrode configuration are also studied.

  3. Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration

    Science.gov (United States)

    Wang, Yanhui; Ye, Huanhuan; Zhang, Jiao; Wang, Qi; Zhang, Jie; Wang, Dezhen

    2016-05-01

    In this paper, we study the characteristics of atmospheric-pressure pulsed dielectric barrier discharge (DBD) under the needle-plate electrode configuration using a one-dimensional self-consistent fluid model. The results show that, the DBDs driven by positive pulse, negative pulse and bipolar pulse possess different behaviors. Moreover, the two discharges appearing at the rising and the falling phases of per voltage pulse also have different discharge regimes. For the case of the positive pulse, the breakdown field is much lower than that of the negative pulse, and its propagation characteristic is different from the negative pulse DBD. When the DBD is driven by a bipolar pulse voltage, there exists the interaction between the positive and negative pulses, resulting in the decrease of the breakdown field of the negative pulse DBD and causing the change of the discharge behaviors. In addition, the effects of the discharge parameters on the behaviors of pulsed DBD in the needle-plate electrode configuration are also studied. supported by National Natural Science Foundation of China (No. 11405022)

  4. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    Science.gov (United States)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-05-01

    In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determined, with the notable result that there exists a minimum and maximum gap distance for its existence at a given ambient gas temperature. The minimum gap distance increases with decreasing gas temperature, whereas the maximum does not vary appreciably. To explain the experimental results, an analytical model is developed to explain the corona-to-glow (C-G) and glow-to-spark (G-S) transitions. The C-G transition is analyzed in terms of the avalanche-to-streamer transition and the breakdown field during the conduction phase following the establishment of a conducting channel across the discharge gap. The G-S transition is determined by the thermal ionization instability, and we show analytically that this transition occurs at a certain reduced electric field for the NRP discharges studied here. This model shows that the electrode geometry plays an important role in the existence of the NRP glow regime at a given gas temperature. We derive a criterion for the existence of the NRP glow regime as a function of the ambient gas temperature, pulse repetition frequency, electrode radius of curvature, and interelectrode gap distance.

  5. NO density and gas temperature measurements in atmospheric pressure nanosecond repetitively pulsed (NRP) discharges by Mid-IR QCLAS

    Science.gov (United States)

    Simeni Simeni, Marien; Stancu, Gabi-Daniel; Laux, Christophe

    2014-10-01

    Nitric oxide is a key species for many processes: in combustion, in human skin physiology... Recently, NO-ground state absolute density measurements produced by atmospheric pressure NRP discharges were carried out in air as a function of the discharge parameters, using Quantum Cascade Laser Absorption Spectroscopy. These measurements were space averaged and performed in the post-discharge region in a large gas volume. Here we present radial profiles of NO density and temperature measured directly in the discharge for different configurations. Small plasma volume and species densities, high temperature and EM noise environment make the absorption diagnostic challenging. For this purpose the QCLAS sensitivity was improved using a two-detector system. We conducted lateral absorbance measurements with a spatial resolution of 300 μm for two absorption features at 1900.076 and 1900.517 cm-1. The radial temperature and NO density distributions were obtained from the Abel inverted lateral measurements. Time averaged NO densities of about 1.E16 cm-3 and gas temperature of about 1000K were obtained in the center of the discharge. PLASMAFLAME Project (Grant No ANR-11-BS09-0025).

  6. Enhancement of antioxidant effects of naringin after atmospheric pressure dielectric barrier discharge plasma treatment.

    Science.gov (United States)

    Kim, Tae Hoon; Jang, Soo Jeung; Chung, Hyung-Wook; Kim, Hyun-Joo; Yong, Hae In; Choe, Wonho; Jo, Cheorun

    2015-03-15

    Naringin is the natural chief bitter flavonoid found in Citrus species. Herein, bitter naringin was treated with atmospheric pressure plasma to afford two new converted flavonoids, narinplasmins A (2) and B (3), along with the known compound, 2R-naringin. The structures of the two new naringin derivatives were elucidated on the basis of spectroscopic methods. The antioxidant activity of all isolates was evaluated based on 1,1-diphenyl-2-picrylhydrazyl and peroxynitrite (ONOO(-)) scavenging assays. The new flavanone glycoside 2 containing a methoxyalkyl group exhibited significantly improved antioxidant properties in these assays relative to the parent naringin.

  7. Time-resolved characterization of a filamentary argon discharge at atmospheric pressure in a capillary using emission and absorption spectroscopy

    Science.gov (United States)

    Schröter, Sandra; Pothiraja, Ramasamy; Awakowicz, Peter; Bibinov, Nikita; Böke, Marc; Niermann, Benedikt; Winter, Jörg

    2013-11-01

    An argon/nitrogen (0.999/0.001) filamentary pulsed discharge operated at atmospheric pressure in a quartz tube is characterized using voltage-current measurements, microphotography, optical emission spectroscopy (OES) and absorption spectroscopy. Nitrogen is applied as a sensor gas for the purpose of OES diagnostic. The density of argon metastable atoms Ar(3P2) is determined using tunable diode laser absorption spectroscopy (TDLAS). Using a plasma chemical model the measured OES data are applied for the characterization of the plasma conditions. Between intense positive pulses the discharge current oscillates with a damped amplitude. It is established that an electric current flows in this discharge not only through a thin plasma filament that is observed in the discharge image but also through the whole cross section of the quartz tube. A diffuse plasma fills the quartz tube during a time between intense current pulses. Ionization waves are propagating in this plasma between the spike and the grounded area of the tube producing thin plasma channels. The diameter of these channels increases during the pause between the propagation of ionization waves probably because of thermal expansion and diffusion. Inside the channels electron densities of ˜2 × 1013 cm-3, argon metastable densities ˜1014 cm-3 and a reduced electric field about 10 Td are determined.

  8. Influence of the voltage waveform during nanocomposite layer deposition by aerosol-assisted atmospheric pressure Townsend discharge

    Science.gov (United States)

    Profili, J.; Levasseur, O.; Naudé, N.; Chaneac, C.; Stafford, L.; Gherardi, N.

    2016-08-01

    This work examines the growth dynamics of TiO2-SiO2 nanocomposite coatings in plane-to-plane Dielectric Barrier Discharges (DBDs) at atmospheric pressure operated in a Townsend regime using nebulized TiO2 colloidal suspension in hexamethyldisiloxane as the growth precursors. For low-frequency (LF) sinusoidal voltages applied to the DBD cell, with voltage amplitudes lower than the one required for discharge breakdown, Scanning Electron Microscopy of silicon substrates placed on the bottom DBD electrode reveals significant deposition of TiO2 nanoparticles (NPs) close to the discharge entrance. On the other hand, at higher frequencies (HF), the number of TiO2 NPs deposited strongly decreases due to their "trapping" in the oscillating voltage and their transport along the gas flow lines. Based on these findings, a combined LF-HF voltage waveform is proposed and used to achieve significant and spatially uniform deposition of TiO2 NPs across the whole substrate surface. For higher voltage amplitudes, in the presence of hexamethyldisiloxane and nitrous oxide for plasma-enhanced chemical vapor deposition of inorganic layers, it is found that TiO2 NPs become fully embedded into a silica-like matrix. Similar Raman spectra are obtained for as-prepared TiO2 NPs and for nanocomposite TiO2-SiO2 coating, suggesting that plasma exposure does not significantly alter the crystalline structure of the TiO2 NPs injected into the discharge.

  9. A model for plasma modification of polypropylene using atmospheric pressure discharges

    CERN Document Server

    Dorai, R

    2003-01-01

    Atmospheric pressure plasmas are commonly used to improve the wetting and adhesion properties of polymers. In spite of their use, the mechanisms for achieving these properties are unclear. In this regard, we report on a computational investigation of the gas phase and surface kinetics during humid-air corona treatment of polypropylene (PP) and the resulting modification of its surface properties while varying energy deposition, relative humidity (RH), web speed, and gas temperature. Using results from a global plasma chemistry model validated against experiments, we found that increasing energy deposition increased the densities of alcohol, carbonyl, acid, and peroxy radicals on the PP surface. In doing so, significant amounts of gas phase O sub 3 and N sub x O sub y are produced. Increasing the RH increased the production of peroxy and acid groups, while decreasing those of alcohol and carbonyl groups. Production of O sub 3 decreased while that of HNO sub 3 increased. Increasing the temperature decreased the...

  10. Standing striations due to ionization instability in atmospheric pressure He/H2O radio frequency capacitive discharges

    Science.gov (United States)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.

    2016-10-01

    One-dimensional particle-in-cell (PIC) simulations of a narrow gap atmospheric pressure He/2%{{\\text{H}}2}\\text{O} radio frequency capacitive discharge showed standing striations in the bulk plasma region while previously conducted PIC simulations of a narrow gap atmospheric pressure He/0.1%{{\\text{N}}2} discharges [1] showed no such instabilities. We successively modified the base He/{{\\text{H}}2}\\text{O} chemistry to make it more similar to the He/{{\\text{N}}2} chemistry in order to determine the cause of the striations. Setting the e–{{\\text{H}}2}\\text{O} scattering, attachment, vibrational and rotational excitation rates to zero did not suppress the striations. However, a systematic reduction of the e–ion recombination cross section resulted in a transition to a stable state with no striations. The results are interpreted in terms of a model in which the balance between bulk direct ionization and bulk recombination loss determines the bulk plasma equilibrium. Perturbing the equilibrium, we find that the striations are consistent with an ionization instability induced by non-local electron kinetics that form a spatially-varying high energy tail of the electron energy distribution, causing the ionization rate coefficient to decrease with increasing electron temperature T e and root-mean-square electric field E in the instability regime.

  11. Effect of dielectric material on bipolar nanosecond pulse diffuse dielectric barrier discharge in air at atmospheric pressure

    Science.gov (United States)

    Tang, Kai; Wang, Wenchun; Yang, Dezheng; Zhang, Shuai; Yang, Yang; Liu, Zhijie

    2013-08-01

    In this paper, dielectric plates made by ceramic, quartz and polytetrafluoroethylene (PTFE) respectively are employed to generate low gas temperature, diffuse dielectric barrier discharge plasma by using a needle-plate electrode configuration in air at atmospheric pressure. Both discharge images and the optical emission spectra are obtained while ceramic, quartz and PTFE are used as dielectric material. Plasma gas temperature is also calculated by comparing the experimental emission spectra with the best fitted spectra of N2 (C3Πu → B3Πg 1-3) and N2 (C3Πu → B3Πg 0-2). The effects of different pulse peak voltages and gas gap distances on the emission intensity of N2 (C3Πu → B3Πg, 0-0, 337.1 nm) and the plasma area on dielectric surface are investigated while ceramic, quartz and PTFE are used as dielectric material. It is found that the permittivity of dielectric material plays an important role in the discharge homogeneity, plasma gas temperature, emission spectra intensity of the discharge, etc. Dielectric with higher permittivity i.e., ceramic means brighter discharge luminosity and stronger emission spectra intensity of N2 (C3Πu → B3Πg, 0-0, 337.1 nm) among the three dielectric materials. However, more homogeneous, larger plasma area on dielectric surface and lower plasma gas temperature can be obtained under dielectric with lower permittivity i.e., PTFE. The emission spectra intensity and plasma gas temperature of the discharge while the dielectric plate is made by quartz are smaller than that while ceramic is used as dielectric material and bigger than that when PTFE is used as dielectric material.

  12. AIR ATMOSPHERIC-PRESSURE DISCHARGERS FOR OPERATION IN HIGH-FREQUENCY SWITCHING MODE.

    Directory of Open Access Journals (Sweden)

    L.S. Yevdoshenko

    2013-10-01

    Full Text Available Operation of two designs of compact multigap dischargers has been investigated in a high-frequency switching mode. It is experimentally revealed that the rational length of single discharge gaps in the designs is 0.3 mm, and the maximum switching frequency is 27000 discharges per second under long-term stable operation of the dischargers. It is shown that in pulsed corona discharge reactors, the pulse front sharpening results in increasing the operating electric field strength by 1.3 – 1.8 times.

  13. Atmospheric Pressure Radio Frequency Dielectric Barrier Discharges in Nitrogen/Argon

    International Nuclear Information System (INIS)

    This work reports the experimental results on the characteristics of radio frequency dielectric barrier N2/Ar discharges. Depending on the nitrogen content in the feed gas and the input power, the discharge can operate in two different modes: a homogeneous glow discharge and a constricted discharge. With increasing input power, the number of discharge columns increases. The discharge columns have starlike structures and exhibit symmetric self-organized arrangement. Optical emission spectroscopy was performed to estimate the plasma temperature. Spatially resolved gas temperature measurements, determined from NO emission rotational spectroscopy were taken across the 4.4 mm gap filled by the discharge. Gas temperature in the middle of the gas gap is lower than that close to the electrodes

  14. Experimental Study of an Atmospheric Pressure Dielectric Barrier Discharge and PET Surface Modification

    OpenAIRE

    Shrestha, R; D. P. Subedi

    2015-01-01

    A homogeneous dielectric barrier discharge (DBD) in argon was produced by applying high voltage A.C. source of potential difference (0-20) kV operating at a frequency of 10-30 kHz across two parallel plate electrodes with glass as dielectric barrier. The discharge was characterized by optical emission spectroscopy (OES) and electrical measurement. Four argon emission lines from the discharge were analyzed and the electron temperature was estimated by line intensity ratio method. T...

  15. Modification of surface layers of copper under the action of the volumetric discharge initiated by an avalanche electron beam in nitrogen and CO2 at atmospheric pressure

    Science.gov (United States)

    Shulepov, M. A.; Akhmadeev, Yu. Kh.; Tarasenko, V. F.; Kolubaeva, Yu. A.; Krysina, O. V.; Kostyrya, I. D.

    2011-05-01

    The results of experimental investigations of the action of the volumetric discharge initiated by an avalanche electron beam on the surface of copper specimens are presented. The volumetric (diffuse) discharge in nitrogen and CO2 at atmospheric pressure was initiated by applying high voltage pulses of nanosecond duration to a tubular foil cathode. It has been found that the treatment of a copper surface by this type of discharge increases the hardness of the surface layer due to oxidation.

  16. A computational modeling study on the helium atmospheric pressure plasma needle discharge

    Science.gov (United States)

    Qian, Mu-Yang; Yang, Cong-Ying; Liu, San-Qiu; Wang, Zhen-Dong; Lv, Yan; Wang, De-Zhen

    2015-12-01

    A two-dimensional coupled model of neutral gas flow and plasma dynamics is employed to investigate the streamer dynamics in a helium plasma needle at atmospheric pressure. A parametric study of the streamer propagation as a function of needle tip curvature radius and helium gas flow rate is presented. The key chemical reactions at the He/air mixing layer which drive the streamer propagation are the direct ionization via collision with electrons, the Penning effect being not so crucial. With increasing the gas flow rate from 0.2 standard liter per minute (SLM) to 0.8 SLM, however, the emissions resulting from reactive oxygen and nitrogen species change from a solid circle to a hollow profile and the average streamer propagation velocity decreases. Air impurities (backdiffusion from ambient air) in the helium jet result in a significant increase in the streamer propagation velocity. Besides, with decreasing the tip curvature radiusfrom 200 μm to 100 μm, the electron avalanche process around the near-tip region is more pronounced. However, the spatially resolved plasma parameters distributions (electron, helium metastables, ground state atomic oxygen, etc.) remain almost the same, except that around the near-tip region where their peak values are more than doubled. Project supported partly by the National Natural Science Foundation of China (Grant No. 11465013), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20151BAB212012), and in part by the International Science and Technology Cooperation Program of China (Grant No. 2015DFA61800).

  17. Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure

    Science.gov (United States)

    Wang, Xiaolong; Tan, Zhenyu; Pan, Jie; Chen, Xinxian

    2016-08-01

    In this work the effects of O2 concentration on the pulsed dielectric barrier discharge in helium-oxygen mixture at atmospheric pressure have been numerically researched by using a one-dimensional fluid model in conjunction with the chosen key species and chemical reactions. The reliability of the used model has been examined by comparing the calculated discharge current with the reported experiments. The present work presents the following significant results. The dominative positive and negative particles are He2+ and O2-, respectively, the densities of the reactive oxygen species (ROS) get their maxima nearly at the central position of the gap, and the density of the ground state O is highest in the ROS. The increase of O2 concentration results in increasingly weak discharge and the time lag of the ignition. For O2 concentrations below 1.1%, the density of O is much higher than other species, the averaged dissipated power density presents an evident increase for small O2 concentration and then the increase becomes weak. In particular, the total density of the reactive oxygen species reaches its maximums at the O2 concentration of about 0.5%. This characteristic further convinces the experimental observation that the O2 concentration of 0.5% is an optimal O2/He ratio in the inactivation of bacteria and biomolecules when radiated by using the plasmas produced in a helium oxygen mixture. supported by the Fundamental Research Funds of Shandong University, China (No. 2016JC016)

  18. Electrical and spectroscopic analysis of mono- and multi-tip pulsed corona discharges in air at atmospheric pressure

    International Nuclear Information System (INIS)

    This work is devoted to the analysis of experimental results obtained in dry air at atmospheric pressure in a positive point-to-plane corona discharge under a pulsed applied voltage in the cases of anodic mono- and multi-tips. In the mono-tip case, the peak corona current is analysed as a function of several experimental parameters such as magnitude, frequency and duration of pulsed voltage and gap distance. The variation of the corona discharge current is correlated with the ozone production. Then in the multi-tip case, the electrical behaviour is analysed as a function of the distance between two contiguous tips and the tip number in order to highlight the region of creation active species for the lowest dissipated power. Intensified charge-coupled device pictures and electric field calculations as a function of inter-tip distance are performed to analyse the mutual effect between two contiguous tips. The optical emission spectra are measured in the UV–visible–NIR wavelength range between 200 nm and 800 nm, in order to identify the main excited species formed in an air corona discharge such as the usual first and second positive systems with first negative systems of molecular nitrogen. The identification of atomic species (O triplet and N) and the quenching of NOγ emission bands are also emphasized.

  19. Dependence of Ozone Generation on Gas Temperature Distribution in AC Atmospheric Pressure Dielectric Barrier Discharge in Oxygen

    Science.gov (United States)

    Takahashi, Go; Akashi, Haruaki

    AC atmospheric pressure multi-filament dielectric barrier discharge in oxygen has been simulated using two dimensional fluid model. In the discharge, three kinds of streamers have been obtained. They are primary streamers, small scale streamers and secondary streamers. The primary streamers are main streamers in the discharge and the small scale streamers are formed after the ceasing of the primary streamers. And the secondary streamers are formed on the trace of the primary streamers. In these streamers, the primary and the small scale streamers are very effective to generate O(3P) oxygen atoms which are precursor of ozone. And the ozone is generated mainly in the vicinity of the dielectrics. In high gas temperature region, ozone generation decreases in general. However, increase of the O(3P) oxygen atom density in high gas temperature region compensates decrease of ozone generation rate coefficient. As a result, amount of ozone generation has not changed. But if the effect of gas temperature was neglected, amount of ozone generation increases 10%.

  20. Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure

    Science.gov (United States)

    Wang, Xiaolong; Tan, Zhenyu; Pan, Jie; Chen, Xinxian

    2016-08-01

    In this work the effects of O2 concentration on the pulsed dielectric barrier discharge in helium-oxygen mixture at atmospheric pressure have been numerically researched by using a one-dimensional fluid model in conjunction with the chosen key species and chemical reactions. The reliability of the used model has been examined by comparing the calculated discharge current with the reported experiments. The present work presents the following significant results. The dominative positive and negative particles are He2+ and O2‑, respectively, the densities of the reactive oxygen species (ROS) get their maxima nearly at the central position of the gap, and the density of the ground state O is highest in the ROS. The increase of O2 concentration results in increasingly weak discharge and the time lag of the ignition. For O2 concentrations below 1.1%, the density of O is much higher than other species, the averaged dissipated power density presents an evident increase for small O2 concentration and then the increase becomes weak. In particular, the total density of the reactive oxygen species reaches its maximums at the O2 concentration of about 0.5%. This characteristic further convinces the experimental observation that the O2 concentration of 0.5% is an optimal O2/He ratio in the inactivation of bacteria and biomolecules when radiated by using the plasmas produced in a helium oxygen mixture. supported by the Fundamental Research Funds of Shandong University, China (No. 2016JC016)

  1. Modification of the Steel Surface Treated by a Volume Discharge Plasma in Nitrogen at Atmospheric Pressure

    Science.gov (United States)

    Erofeev, M. V.; Shulepov, M. A.; Ivanov, Yu. F.; Oskomov, K. V.; Tarasenko, V. F.

    2016-03-01

    Effect of volume discharge plasma initiated by an avalanche electron beam on the composition, structure, and properties of the surface steel layer is investigated. Voltage pulses with incident wave amplitude up to 30 kV, full width at half maximum of about 4 ns, and wave front of about 2.5 ns were applied to the gap with an inhomogeneous electric field. Changes indicating the hardening effect of the volume discharge initiated by an avalanche electron beam are revealed in St3-grade steel specimens treated by the discharge of this type.

  2. A brush-shaped air plasma jet operated in glow discharge mode at atmospheric pressure

    Science.gov (United States)

    Li, Xuechen; Bao, Wenting; Jia, Pengying; Di, Cong

    2014-07-01

    Using ambient air as working gas, a direct-current plasma jet is developed to generate a brush-shaped plasma plume with fairly large volume. Although a direct-current power supply is used, the discharge shows a pulsed characteristic. Based on the voltage-current curve and fast photography, the brush-shaped plume, like the gliding arc plasma, is in fact a temporal superposition of a moving discharge filament in an arched shape. During it moves away from the nozzle, the discharge evolves from a low-current arc into a normal glow in one discharge cycle. The emission profile is explained qualitatively based on the dynamics of the plasma brush.

  3. Effect of oxygen impurities on atmospheric-pressure surface streamer discharge in argon for large gap arc breakdown

    Science.gov (United States)

    Sharma, Ashish; Levko, Dmitry; Raja, Laxminarayan L.

    2016-10-01

    We report the results of a computational study that investigates the effect of impurities (molecular oxygen) on the development of argon surface streamers at atmospheric-pressure conditions. A continuous surface streamer has been proposed as a low-voltage mechanism to generate a conductive bridge for arc breakdown of a large interelectrode gap at high pressures. The streamer discharge model is based on the self-consistent, multispecies, continuum description of the plasma. Below a threshold voltage, no streamer discharge is observed and charge is localized only in the vicinity of the anode in the form of a localized corona. Above this voltage threshold in pure argon, a continuous conductive streamer successfully bridges the gap between two electrodes indicating high probability of transition to the arc. For small oxygen impurities (less than 5%), the threshold voltage is found to decrease by a few hundred volts compared to the threshold voltage in pure argon while the streamer induction time increases. No noticeable changes in the streamer conductivity is obtained for low impurities of oxygen in the above range. An increase of the oxygen density above the 5% impurity level causes a significant decrease in the continuous streamer conductivity and leads to a decrease in the probability of transition to arc.

  4. Modelling of the homogeneous barrier discharge in helium at atmospheric pressure

    CERN Document Server

    Golubovskii, Y B; Behnke, J; Behnke, J F

    2003-01-01

    Numerical calculations of spatio-temporal characteristics of the homogeneous barrier discharge in helium are performed by means of a one-dimensional fluid model. The influence of the elementary processes on the discharge behaviour is studied by variation of the corresponding rate constants. The simulation and the analytical interpretation are carried out for two basic modes of the homogeneous barrier discharge, i.e. the Townsend and glow modes. The Townsend discharge is characterized by the absence of quasineutral plasma; several current peaks may occur during the half-cycle. The oscillations of the current are caused by a lag between the ion production nearby the anode and the subsequent ion-electron emission on the cathode. The specificity of the glow discharge is the development of a cathode region and a positive column during the breakdown, as well as the presence of quasineutral plasma in subsequent phases. The positive column occurs because the shielding of the external field by the plasma is not instan...

  5. Experimental Study of an Atmospheric Pressure Dielectric Barrier Discharge and PET Surface Modification

    Directory of Open Access Journals (Sweden)

    R. Shrestha

    2015-05-01

    Full Text Available A homogeneous dielectric barrier discharge (DBD in argon was produced by applying high voltage A.C. source of potential difference (0-20 kV operating at a frequency of 10-30 kHz across two parallel plate electrodes with glass as dielectric barrier. The discharge was characterized by optical emission spectroscopy (OES and electrical measurement. Four argon emission lines from the discharge were analyzed and the electron temperature was estimated by line intensity ratio method. The electron density in the discharge was estimated by power balance method. An investigation of the effect of inter-electrode distance on the electron density was made. The results showed that the electron temperature is less than 1 eV and the electron density is of the order of 1011cm-3 which varied with the inter electrode distance. Discharge was applied for surface modification of polyethylene terepthalate (PET. Modified surfaces were studied by contact angle measurement and FTIR spectroscopy.

  6. Thin film deposition at atmospheric pressure using dielectric barrier discharges: Advances on three-dimensional porous substrates and functional coatings

    Science.gov (United States)

    Fanelli, Fiorenza; Bosso, Piera; Mastrangelo, Anna Maria; Fracassi, Francesco

    2016-07-01

    Surface processing of materials by atmospheric pressure dielectric barrier discharges (DBDs) has experienced significant growth in recent years. Considerable research efforts have been directed for instance to develop a large variety of processes which exploit different DBD electrode geometries for the direct and remote deposition of thin films from precursors in gas, vapor and aerosol form. This article briefly reviews our recent progress in thin film deposition by DBDs with particular focus on process optimization. The following examples are provided: (i) the plasma-enhanced chemical vapor deposition of thin films on an open-cell foam accomplished by igniting the DBD throughout the entire three-dimensional (3D) porous structure of the substrate, (ii) the preparation of hybrid organic/inorganic nanocomposite coatings using an aerosol-assisted process, (iii) the DBD jet deposition of coatings containing carboxylic acid groups and the improvement of their chemical and morphological stability upon immersion in water.

  7. Atmospheric pressure glow discharge generated in nitrogen-methane gas mixture: PTR-MS analyzes of the exhaust gas

    Science.gov (United States)

    Torokova, Lucie; Mazankova, Vera; Krcma, Frantisek; Mason, Nigel J.; Matejcik, Stefan

    2015-07-01

    This paper reports the results of an extensive study of with the in situ mass spectrometry analysis of gaseous phase species produced by an atmospheric plasma glow discharge in N2-CH4 gas mixtures (with methane concentrations ranging from 1% to 4%). The products are studied using proton-transfer-reaction mass spectrometry (PTR-MS). HCN and CH3CN are identified as the main gaseous products. Hydrazine, methanimine, methyldiazene, ethylamine, cyclohexadiene, pyrazineacetylene, ethylene, propyne and propene are identified as minor compounds. All the detected compounds and their relative abundances are determined with respect to the experimental conditions (gas composition and applied power). The same molecules were observed by the Cassini-Huygens probe in Titan's atmosphere (which has same N2-CH4 gas mixtures). Such, experiments show that the formation of such complex organics in atmospheres containing C, N and H, like that of Titan, could be a source of prebiotic molecules. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  8. Changes in the electro-physical properties of MCT epitaxial films affected by a plasma volume discharge induced by an avalanche beam in atmospheric-pressure air

    Science.gov (United States)

    Grigoryev, D. V.; Voitsekhovskii, A. V.; Lozovoy, K. A.; Tarasenko, V. F.; Shulepov, M. A.

    2015-11-01

    In this paper the influence of the plasma volume discharge of nanosecond duration formed in a non-uniform electric field at atmospheric pressure on samples of epitaxial films HgCdTe (MCT) films are discussed. The experimental data show that the action of pulses of nanosecond volume discharge in air at atmospheric pressure leads to changes in the electrophysical properties of MCT epitaxial films due to formation of a near-surface high- conductivity layer of the n-type conduction. The preliminary results show that it is possible to use such actions in the development of technologies for the controlled change of the properties of MCT.

  9. Production characteristics of reactive oxygen/nitrogen species in water using atmospheric pressure discharge plasmas

    Science.gov (United States)

    Takahashi, Kazuhiro; Satoh, Kohki; Itoh, Hidenori; Kawaguchi, Hideki; Timoshkin, Igor; Given, Martin; MacGregor, Scott

    2016-07-01

    A pulsed discharge, a DC corona discharge, and a plasma jet are separately generated above a water surface, and reactive oxygen species and reactive nitrogen species (ROS/RNS) in the water are investigated. ROS/RNS in water after the sparging of the off-gas of a packed-bed dielectric barrier discharge (PB-DBD) are also investigated. H2O2, NO2 ‑, and NO3 ‑ are detected after plasma exposure and only NO3 ‑ after off-gas sparging. Short-lifetime species in plasma are found to play an important role in H2O2 and NO2 ‑ production and long-lifetime species in NO3 ‑ production. NO x may inhibit H2O2 production through OH consumption to produce HNO2 and HNO3. O3 does not contribute to ROS/RNS production. The pulsed plasma exposure is found to be effective for the production of H2O2 and NO2 ‑, and the off-gas sparging of the PB-DBD for the production of NO3 ‑.

  10. Modeling of recovery mechanism of ozone zero phenomenaby adding small amount of nitrogen in atmospheric pressure oxygen dielectric barrier discharges

    Science.gov (United States)

    Akashi, Haruaki; Yoshinaga, Tomokazu

    2013-09-01

    Ozone zero phenomena in an atmospheric pressure oxygen dielectric barrier discharges have been one of the major problems during a long time operation of ozone generators. But it is also known that the adding a small amount of nitrogen makes the recover from the ozone zero phenomena. To make clear the mechanism of recovery, authors have been simulated the discharges with using the results of Ref. 3. As a result, the recovery process can be seen and ozone density increased. It is found that the most important species would be nitrogen atoms. The reaction of nitrogen atoms and oxygen molecules makes oxygen atoms which is main precursor species of ozone. This generation of oxygen atoms is effective to increase ozone. The dependence of oxygen atom density (nO) and nitrogen atom density (nN) ratio was examined in this paper. In the condition of low nN/nO ratio case, generation of nitrogen oxide is low, and the quenching of ozone by the nitrogen oxide would be low. But in the high ratio condition, the quenching of ozone by nitrogen oxide would significant. This work was supported by KAKENHI(23560352).

  11. Influence of pulsed nanosecond volume discharge in atmospheric-pressure air on the electrical characteristics of MCT epitaxial films

    Science.gov (United States)

    Grigoryev, Denis V.; Voitsekhovskii, Alexandr V.; Lozovoy, Kirill A.; Nesmelov, Sergey N.; Dzyadukh, Stanislav M.; Tarasenko, Viktor F.; Shulepov, Michail A.; Dvoretskii, Sergei A.

    2015-12-01

    The purpose of this paper was investigating the effect of volume nanosecond discharge in air at atmospheric pressure on the electro-physical properties of the HgCdTe (MCT) epitaxial films grown by molecular beam epitaxy. Hall measurements of electro-physical parameters of MCT samples after irradiation have shown that there is a layer of epitaxial films exhibiting n-type conductivity that is formed in the near-surface area. After more than 600 pulses of influence parameters and thickness of the resulting n-layer is such that the measured field dependence of Hall coefficient corresponds to the material of n-type conductivity. Also it is shown that the impact of the discharge leads to significant changes in electro-physical characteristics of MIS structures. This fact is demonstrated by increase in density of positive fixed charge, change in the hysteresis type of the capacitance-voltage characteristic, an increase in density of surface states. The preliminary results show that it is possible to use such actions in the development of technologies of the controlled change in the properties of MCT.

  12. Modification of hydrophobic acrylic intraocular lens with poly(ethylene glycol) by atmospheric pressure glow discharge: A facile approach

    International Nuclear Information System (INIS)

    To improve the anterior surface biocompatibility of hydrophobic acrylic intraocular lens (IOL) in a convenient and continuous way, poly(ethylene glycol)s (PEGs) were immobilized by atmospheric pressure glow discharge (APGD) treatment using argon as the discharge gas. The hydrophilicity and chemical changes on the IOL surface were characterized by static water contact angle and X-ray photoelectron spectroscopy to confirm the covalent binding of PEG. The morphology of the IOL surface was observed under field emission scanning electron microscopy and atomic force microscopy. The surface biocompatibility was evaluated by adhesion experiments with platelets, macrophages, and lens epithelial cells (LECs) in vitro. The results revealed that the anterior surface of the PEG-grafted IOL displayed significantly and permanently improved hydrophilicity. Cell repellency was observed, especially in the PEG-modified IOL group, which resisted the attachment of platelets, macrophages and LECs. Moreover, the spread and growth of cells were suppressed, which may be attributed to the steric stabilization force and chain mobility effect of the modified PEG. All of these results indicated that hydrophobic acrylic IOLs can be hydrophilic modified by PEG through APGD treatment in a convenient and continuous manner which will provide advantages for further industrial applications.

  13. Particle-in-Cell Simulation for the Control of Electron Energy Distribution of Dielectric Barrier Discharges at Atmospheric Pressure

    Science.gov (United States)

    Bae, Hyo Won; Yel Lee, Jung; Lee, Ho-Jun; Lee, Hae June

    2011-10-01

    Recently, atmospheric pressure plasmas attract lots of interests for the useful applications such as surface modification and bio-medical treatment. In this study, a particle-in-cell Monte Carlo collision (PIC-MCC) simulation was adopted to investigate the discharge characteristics of a planar micro dielectric barrier discharge (DBD) with a driving frequency from 1 MHz to 50 MHz and with a gap distance from 60 to 500 micrometers. The variation of control parameters such as the gap distance, the driving wave form, and the applied voltage results in the change in the electron energy distribution function (EEDF). Through the relation between the ionization mean free path and the gap size, a significant change of EEDFs is achievable with the decrease of gap distance. Therefore, it is possible to categorize the operation range of DBDs for its applications by controlling the interactions between plasmas and neutral gas for the generation of preferable radicals. This work was supported by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 20104010100670).

  14. Modification of hydrophobic acrylic intraocular lens with poly(ethylene glycol) by atmospheric pressure glow discharge: A facile approach

    Energy Technology Data Exchange (ETDEWEB)

    Lin Lin; Wang Yao; Huang Xiaodan [Eye Center, Affiliated Second Hospital, College of Medicine, Zhejiang University, Hangzhou 310009 (China); Xu Zhikang [Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Yao Ke, E-mail: xlren@zju.edu.cn [Eye Center, Affiliated Second Hospital, College of Medicine, Zhejiang University, Hangzhou 310009 (China)

    2010-10-01

    To improve the anterior surface biocompatibility of hydrophobic acrylic intraocular lens (IOL) in a convenient and continuous way, poly(ethylene glycol)s (PEGs) were immobilized by atmospheric pressure glow discharge (APGD) treatment using argon as the discharge gas. The hydrophilicity and chemical changes on the IOL surface were characterized by static water contact angle and X-ray photoelectron spectroscopy to confirm the covalent binding of PEG. The morphology of the IOL surface was observed under field emission scanning electron microscopy and atomic force microscopy. The surface biocompatibility was evaluated by adhesion experiments with platelets, macrophages, and lens epithelial cells (LECs) in vitro. The results revealed that the anterior surface of the PEG-grafted IOL displayed significantly and permanently improved hydrophilicity. Cell repellency was observed, especially in the PEG-modified IOL group, which resisted the attachment of platelets, macrophages and LECs. Moreover, the spread and growth of cells were suppressed, which may be attributed to the steric stabilization force and chain mobility effect of the modified PEG. All of these results indicated that hydrophobic acrylic IOLs can be hydrophilic modified by PEG through APGD treatment in a convenient and continuous manner which will provide advantages for further industrial applications.

  15. Atmospheric pressure plasma produced inside a closed package by a dielectric barrier discharge in Ar/CO2 for bacterial inactivation of biological samples

    DEFF Research Database (Denmark)

    Chiper, Alina Silvia; Chen, Weifeng; Mejlholm, Ole;

    2011-01-01

    The generation and evaluation of a dielectric barrier discharge produced inside a closed package made of a commercially available packaging film and filled with gas mixtures of Ar/CO2 at atmospheric pressure is reported. The discharge parameters were analysed by electrical measurements and optical...... emission spectroscopy in two modes of operation: trapped gas atmosphere and flowing gas atmosphere. Gas temperature was estimated using the OH(A–X) emission spectrum and the rotational temperature reached a saturation level after a few minutes of plasma running. The rotational temperature was almost three...

  16. Simulation of a wire-cylinder-plate positive corona discharge in nitrogen gas at atmospheric pressure

    OpenAIRE

    Martins, Alexandre A.

    2012-01-01

    In this work we are going to perform a simulation of a wire-cylinder-plate positive corona discharge in nitrogen gas, and compare our results with already published experimental results in air for the same structure. We have chosen to simulate this innovative geometry because it has been established experimentally that it can generate a thrust per unit electrode length transmitted to the gas of up to 0.35 N/m and is also able to induce an ion wind top velocity in the range of 8-9 m/s in air. ...

  17. Kinetics and dynamics of nanosecond streamer discharge in atmospheric-pressure gas bubble suspended in distilled water under saturated vapor pressure conditions

    KAUST Repository

    Sharma, Ashish

    2016-09-08

    We perform computational studies of nanosecond streamer discharges generated in helium bubbles immersed in distilled water under atmospheric pressure conditions. The model takes into account the presence of water vapor in the gas bubble for an accurate description of the discharge kinetics. We find that the dynamic characteristics of the streamer discharge are different at low and high positive trigger voltages with the axial streamer evolution dominant for low voltages and a surface hugging mode favored for high voltages. We also find a substantial difference in initiation, transition and evolution stages of discharge for positive and negative trigger voltages with the volumetric distribution of species in the streamer channel much more uniform for negative trigger voltages on account of the presence of multiple streamers. We observe that the presence of water vapor does not affect the breakdown voltage even for oversaturated conditions but significantly influences the composition of dominant species in the trail of the streamer as well as the flux of the dominant species on the bubble surface. © 2016 IOP Publishing Ltd.

  18. Kinetics and dynamics of nanosecond streamer discharge in atmospheric-pressure gas bubble suspended in distilled water under saturated vapor pressure conditions

    Science.gov (United States)

    Sharma, Ashish; Levko, Dmitry; Raja, Laxminarayan L.; Cha, Min Suk

    2016-10-01

    We perform computational studies of nanosecond streamer discharges generated in helium bubbles immersed in distilled water under atmospheric pressure conditions. The model takes into account the presence of water vapor in the gas bubble for an accurate description of the discharge kinetics. We find that the dynamic characteristics of the streamer discharge are different at low and high positive trigger voltages with the axial streamer evolution dominant for low voltages and a surface hugging mode favored for high voltages. We also find a substantial difference in initiation, transition and evolution stages of discharge for positive and negative trigger voltages with the volumetric distribution of species in the streamer channel much more uniform for negative trigger voltages on account of the presence of multiple streamers. We observe that the presence of water vapor does not affect the breakdown voltage even for oversaturated conditions but significantly influences the composition of dominant species in the trail of the streamer as well as the flux of the dominant species on the bubble surface.

  19. Influences of oxygen content on characteristics of atmospheric pressure dielectric barrier discharge in argon/oxygen mixtures

    Science.gov (United States)

    Fang, Zhi; Shao, Tao; Wang, Ruixue; Yang, Jing; Zhang, Cheng

    2016-04-01

    The dielectric barrier discharge generated in argon/oxygen mixtures at atmospheric pressure is investigated, and the effect of oxygen content on discharge characteristics at applied voltage of 4.5 kV is studied by means of electrical measurements and optical diagnostics. The results show that the filaments in the discharge regime become more densely packed with the increasing in the oxygen content, and the distribution of the filaments is more uniform in the gap. An increase in the oxygen content results in a decrease in the average power consumed and transported charges, while there exists an optimal value of oxygen content for the production of oxygen radicals. The maximal yield of oxygen radicals is obtained in mixtures of argon with 0.3% oxygen addition, and the oxygen radicals then decrease with the further increase in the oxygen content. The oxygen/argon plasma is employed to modify surface hydrophilicity of the PET films to estimate the influence of oxygen content on the surface treatment, and the static contact angles before and after the treatments are measured. The lowest contact angle is obtained at a 0.3% addition of oxygen to argon, which is in accordance with the optimum oxygen content for oxygen radicals generation. The electron density and electron temperature are estimated from the measured current and optical emission spectroscopy, respectively. The electron density is found to reduce significantly at a higher oxygen content due to the increased electron attachment, while the estimated electron temperature do not change apparently with the oxygen content. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.

  20. Simulations of atmospheric pressure discharge in a high-voltage nanosecond pulse using the particle-in-cell Monte Carlo collision model in noble gases

    International Nuclear Information System (INIS)

    Atmospheric pressure discharge nonequilibrium plasmas have been applied to plasma processing with modern technology. Simulations of discharge in pure Ar and pure He gases at one atmospheric pressure by a high voltage trapezoidal nanosecond pulse have been performed using a one-dimensional particle-in-cell Monte Carlo collision (PIC-MCC) model coupled with a renormalization and weighting procedure (mapping algorithm). Numerical results show that the characteristics of discharge in both inert gases are very similar. There exist the effects of local reverse field and double-peak distributions of charged particles' density. The electron and ion energy distribution functions are also observed, and the discharge is concluded in the view of ionization avalanche in number. Furthermore, the independence of total current density is a function of time, but not of position

  1. Simulations of atmospheric pressure discharge in a high-voltage nanosecond pulse using the particle-in-cell Monte Carlo collision model in noble gases

    Science.gov (United States)

    Shi, Feng; Wang, Dezhen; Ren, Chunsheng

    2008-06-01

    Atmospheric pressure discharge nonequilibrium plasmas have been applied to plasma processing with modern technology. Simulations of discharge in pure Ar and pure He gases at one atmospheric pressure by a high voltage trapezoidal nanosecond pulse have been performed using a one-dimensional particle-in-cell Monte Carlo collision (PIC-MCC) model coupled with a renormalization and weighting procedure (mapping algorithm). Numerical results show that the characteristics of discharge in both inert gases are very similar. There exist the effects of local reverse field and double-peak distributions of charged particles' density. The electron and ion energy distribution functions are also observed, and the discharge is concluded in the view of ionization avalanche in number. Furthermore, the independence of total current density is a function of time, but not of position.

  2. Simulation of a wire-cylinder-plate positive corona discharge in nitrogen gas at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Alexandre A. [Institute for Plasmas and Nuclear Fusion and Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2012-06-15

    In this work, we are going to perform a simulation of a wire-cylinder-plate positive corona discharge in nitrogen gas, and compare our results with already published experimental results in air for the same structure. We have chosen to simulate this innovative geometry because it has been established experimentally that it can generate a thrust per unit electrode length transmitted to the gas of up to 0.35 N/m and is also able to induce an ion wind top velocity in the range of 8-9 m/s in air. In our model, the used ion source is a small diameter wire, which generates a positive corona discharge in nitrogen gas directed to the ground electrode, after which the generated positive ions are further accelerated in the acceleration channel between the ground and cathode. By applying the fluid dynamic and electrostatic theories, all hydrodynamic and electrostatic forces that act on the considered geometries will be computed in an attempt to theoretically confirm the generated ion wind profile and also the thrust per unit electrode length. These results are important to establish the validity of this simulation tool for the future study and development of this effect for practical purposes.

  3. Simulation of a wire-cylinder-plate positive corona discharge in nitrogen gas at atmospheric pressure

    CERN Document Server

    Martins, Alexandre A

    2012-01-01

    In this work we are going to perform a simulation of a wire-cylinder-plate positive corona discharge in nitrogen gas, and compare our results with already published experimental results in air for the same structure. We have chosen to simulate this innovative geometry because it has been established experimentally that it can generate a thrust per unit electrode length transmitted to the gas of up to 0.35 N/m and is also able to induce an ion wind top velocity in the range of 8-9 m/s in air. In our model, the used ion source is a small diameter wire, which generates a positive corona discharge in nitrogen gas directed to the ground electrode, after which the generated positive ions are further accelerated in the acceleration channel between the ground and cathode. By applying the fluid dynamic and electrostatic theories all hydrodynamic and electrostatic forces that act on the considered geometries will be computed in an attempt to theoretically confirm the generated ion wind profile and also the thrust per u...

  4. Improving the low temperature dyeability of polyethylene terephthalate fabric with dispersive dyes by atmospheric pressure plasma discharge

    Science.gov (United States)

    Elabid, Amel E. A.; Zhang, Jie; Shi, Jianjun; Guo, Ying; Ding, Ke; Zhang, Jing

    2016-07-01

    Polyethylene terephthalate (PET) fiber and textile is one of the largest synthetic polymer commodity in the world. The great energy consumption and pollution caused by the high temperature and pressure dyeing of PET fibers and fabrics with disperse dyes has been caused concern these years. In this study, an atmospheric pressure plasma with fine and uniform filament discharge operated at 20 kHz has been used to improve the low temperature dyeability of PET fabric at 95 °C with three cation disperse dyes: Red 73, Blue 183 and Yellow 211. The dyes uptake percentage of the treated PET fabrics was observed to increase as twice as much of untreated fabric. The color strength rate was increased more than 20%. The reducing of the water contact angle and the raising of the capillary height of treated PET fabric strip indicate its hydrophilicity improvement. Scanning electron microscope (SEM) results display nano to micro size of etching pits appeared uniformly on the fiber surface of the treated PET. Simultaneously, X-ray photoelectron spectroscopy (XPS) analysis indicates an increase of the oxygen content in the surface caused by the introduction of polar groups such as Cdbnd O and COOH. The rough surface with improved polar oxygen groups showed hydrophilicity and affinity to C.I. dispersive dyes and is believed to be caused by the strong and very fine filament discharge appearing randomly at one place at an instant but evenly at many places at a longer period. This increases the diffusion and absorption of the C.I. disperse dyes on the PET fiber surface, which improve its low temperature dyeability.

  5. Analysis of Ar plasma jets induced by single and double dielectric barrier discharges at atmospheric pressure

    Science.gov (United States)

    Judée, F.; Merbahi, N.; Wattieaux, G.; Yousfi, M.

    2016-09-01

    The aim is the comparison of different plasma parameters of single and double dielectric barrier discharge plasma jet configurations (S-DBD and D-DBD) which are potentially usable in biomedical applications. Both configurations are studied in terms of electric field distribution, electrical discharge characteristics, plasma parameters (estimated by optical emission spectroscopy analysis), and hydrodynamics of the plasma jet for electrical parameters of power supplies corresponding to an applied voltage of 10 kV, pulse duration of 1 μs, frequency of 9.69 kHz, and Ar flow of 2 l/min. We observed that the D-DBD configuration requires half the electrical power one needs to provide in the S-DBD case to generate a plasma jet with similar characteristics: excitation temperature around 4700 K, electron density around 2.5 × 1014 cm-3, gas temperature of about 320 K, a relatively high atomic oxygen concentration reaching up to 1000 ppm, the presence of reactive oxygen and nitrogen species (nitric oxide, hydroxyl radical, and atomic oxygen), and an irradiance in the UV-C range of about 20 μW cm-2. Moreover, it has been observed that D-DBD plasma jet is more sensitive to short pulse durations, probably due to the charge accumulation over the dielectric barrier around the internal electrode. This results in a significantly longer plasma length in the D-DBD configuration than in the S-DBD one up to a critical flow rate (2.25 l/min) before the occurrence of turbulence in the D-DBD case. Conversely, ionization wave velocities are significantly higher in the S-DBD setup (3.35 × 105 m/s against 1.02 × 105 m/s for D-DBD), probably due to the higher electrostatic field close to the high voltage electrode in the S-DBD plasma jet.

  6. Effect of Duty Cycle on the Characteristics of Pulse-Modulhted Radio-Frequency Atmospheric Pressure Dielectric Barrier Discharge

    Institute of Scientific and Technical Information of China (English)

    LI Xuechun; WANG Huan; DING Zhenfeng; WANG Younian

    2012-01-01

    Using a one-dimensional fluid model, the pulse-modulated radio-frequency dielectric barrier discharge in atmospheric helium is described. The influences of the pulse duty cycle on the discharge characteristics are studied. The numerical results show that the dependence of discharge characteristics on the duty cycle is sensitive in the region of around 40% duty cycle under the given simulation parameters. In the case of a larger duty cycle, the plasma density is higher, the discharge becomes more intense, but the power consumption is higher. When the duty cycle is lower, one can get a weaker discharge, lower plasma density and higher electron temperature in the bulk plasma. In practical applications, in order to get a higher plasma density and a lower power consumption, it is more important to choose a suitable duty cycle to modulate the RF power supply.

  7. Diagnostics of atmospheric-pressure pulsed-dc discharge with metal and liquid anodes by multiple laser-aided methods

    Science.gov (United States)

    Urabe, Keiichiro; Shirai, Naoki; Tomita, Kentaro; Akiyama, Tsuyoshi; Murakami, Tomoyuki

    2016-08-01

    The density and temperature of electrons and key heavy particles were measured in an atmospheric-pressure pulsed-dc helium discharge plasma with a nitrogen molecular impurity generated using system with a liquid or metal anode and a metal cathode. To obtain these parameters, we conducted experiments using several laser-aided methods: Thomson scattering spectroscopy to obtain the spatial profiles of electron density and temperature, Raman scattering spectroscopy to obtain the neutral molecular nitrogen rotational temperature, phase-modulated dispersion interferometry to determine the temporal variation of the electron density, and time-resolved laser absorption spectroscopy to analyze the temporal variation of the helium metastable atom density. The electron density and temperature measured by Thomson scattering varied from 2.4  ×  1014 cm-3 and 1.8 eV at the center of the discharge to 0.8  ×  1014 cm-3 and 1.5 eV near the outer edge of the plasma in the case of the metal anode, respectively. The electron density obtained with the liquid anode was approximately 20% smaller than that obtained with the metal anode, while the electron temperature was not significantly affected by the anode material. The molecular nitrogen rotational temperatures were 1200 K with the metal anode and 1650 K with the liquid anode at the outer edge of the plasma column. The density of helium metastable atoms decreased by a factor of two when using the liquid anode.

  8. A corona discharge atmospheric pressure chemical ionization source with selective NO(+) formation and its application for monoaromatic VOC detection.

    Science.gov (United States)

    Sabo, Martin; Matejčík, Štefan

    2013-11-21

    We have developed a new type of corona discharge (CD) for atmospheric pressure chemical ionization (APCI) for application in ion mobility spectrometry (IMS) as well as in mass spectrometry (MS). While the other CD-APCI sources are able to generate H3O(+)·(H2O)n as the major reactant ions in N2 or in zero air, the present CD-APCI source has the ability to generate up to 84% NO(+)·(H2O)n reactant ions in zero air. The change of the working gas from zero air to N2 allows us to change the major reactant ions from NO(+)·(H2O)n to H3O(+)·(H2O)n. In this paper we present the description of the new CD-APCI and discuss the processes associated with the NO(+) formation. The selective formation of NO(+)·(H2O)n reactant ions offers chemical ionization based on these ions which can be of great advantage for some classes of chemicals. We demonstrate here a significant increase in the sensitivity of the IMS-MS instrument for monoaromatic volatile organic compound (VOC) detection upon NO(+)·(H2O)n chemical ionization. PMID:24081306

  9. Production and Utilization of CO3- Produced by a Corona Discharge in Air for Atmospheric Pressure Chemical Ionization

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Robert G.; Waltman, Melanie J.

    2010-12-14

    Atmospheric pressure chemical ionization is a multistep ionization process used in mass spectrometry and ion mobility spectrometry. The formation of product ions depends upon interactions with the analyte and the reactant ion species formed in the ionization source. The predominant reactant ion observed in a point-to-plane corona discharge in air occurs at m/z 60. There have been multiple references in the literature to the identity of this ion with some disagreement. It was postulated to be either CO3- or N2O2-. The identity of this ion is important as it is a key to the ionization of analytes. It was determined here to be CO3- through the use of 18O labeled oxygen. Further confirmation was provided through MS/MS studies. The ionization of nitroglycerine (NG) with CO3- produced the adduct NG•CO3-. This was compared to ionization with NO3- and Cl- reactant ions that also formed adducts with NG. The fragmentation patterns of these three adducts provides insight into the charge distribution and indicates that CO3- has a relatively high electron affinity similar to that of nitrate.

  10. Effects and Mechanism of Atmospheric-Pressure Dielectric Barrier Discharge Cold Plasma on Lactate Dehydrogenase (LDH) Enzyme.

    Science.gov (United States)

    Zhang, Hao; Xu, Zimu; Shen, Jie; Li, Xu; Ding, Lili; Ma, Jie; Lan, Yan; Xia, Weidong; Cheng, Cheng; Sun, Qiang; Zhang, Zelong; Chu, Paul K

    2015-01-01

    Proteins are carriers of biological functions and the effects of atmospheric-pressure non-thermal plasmas on proteins are important to applications such as sterilization and plasma-induced apoptosis of cancer cells. Herein, we report our detailed investigation of the effects of helium-oxygen non-thermal dielectric barrier discharge (DBD) plasmas on the inactivation of lactate dehydrogenase (LDH) enzyme solutions. Circular dichroism (CD) and dynamic light scattering (DLS) indicate that the loss of activity stems from plasma-induced modification of the secondary molecular structure as well as polymerization of the peptide chains. Raising the treatment intensity leads to a reduced alpha-helix content, increase in the percentage of the beta-sheet regions and random sequence, as well as gradually decreasing LDH activity. However, the structure of the LDH plasma-treated for 300 seconds exhibits a recovery trend after storage for 24 h and its activity also increases slightly. By comparing direct and indirect plasma treatments, plasma-induced LDH inactivation can be attributed to reactive species (RS) in the plasma, especially ones with a long lifetime including hydrogen peroxide, ozone, and nitrate ion which play the major role in the alteration of the macromolecular structure and molecular diameter in lieu of heat, UV radiation, and charged particles.

  11. Atmospheric-pressure plasma CVD of TiO{sub 2} photocatalytic films using surface dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Di Lanbo; Li Xiaosong; Shi Chuan; Xu Yong; Zhao Dezhi; Zhu Aimin, E-mail: amzhu@dlut.edu.c [Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Dalian 116024 (China)

    2009-02-07

    Surface dielectric barrier discharge (DBD) was used for atmospheric-pressure plasma CVD of TiO{sub 2} films from TiCl{sub 4} and O{sub 2} for the first time. Under this experiment, the deposition rate was estimated at 22 nm min{sup -1} by scanning electron microscope observation and the as-deposited TiO{sub 2} films were amorphous as evidenced by Raman analysis. The photocatalytic application of TiO{sub 2} films in removing HCHO from simulated air was examined in a continuous flow reactor. The TiO{sub 2} films after calcination at 350 or 450 deg. C were notably photocatalytically active for complete oxidation of formaldehyde to an innocuous product (CO{sub 2}), which was consistent with the results of Raman analysis. Using the TiO{sub 2} films, an extremely harmful by-product, CO, was not detected from photocatalytic oxidation of HCHO in a simulated air stream. (fast track communication)

  12. Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet

    International Nuclear Information System (INIS)

    Because of some disadvantages of chemical disinfection in dental practice (especially denture cleaning), we investigated the effects of physical methods on Candida albicans biofilms. For this purpose, the antifungal efficacy of three different low-temperature plasma devices (an atmospheric pressure plasma jet and two different dielectric barrier discharges (DBDs)) on Candida albicans biofilms grown on titanium discs in vitro was investigated. As positive treatment controls, we used 0.1% chlorhexidine digluconate (CHX) and 0.6% sodium hypochlorite (NaOCl). The corresponding gas streams without plasma ignition served as negative treatment controls. The efficacy of the plasma treatment was determined evaluating the number of colony-forming units (CFU) recovered from titanium discs. The plasma treatment reduced the CFU significantly compared to chemical disinfectants. While 10 min CHX or NaOCl exposure led to a CFU log10 reduction factor of 1.5, the log10 reduction factor of DBD plasma was up to 5. In conclusion, the use of low-temperature plasma is a promising physical alternative to chemical antiseptics for dental practice.

  13. Conceptual Demonstration of Ambient Desorption-Optical Emission Spectroscopy Using a Liquid Sampling-Atmospheric Pressure Glow Discharge Microplasma Source.

    Science.gov (United States)

    Marcus, R Kenneth; Paing, Htoo W; Zhang, Lynn X

    2016-06-01

    The concept of ambient desorption-optical emission spectroscopy (AD-OES) is demonstrated using a liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma as the desorption/excitation source. The LS-APGD has previously been employed for elemental analysis of solution samples and particulates introduced via laser ablation in both the optical emission and mass spectrometries (OES, MS) modes. In addition, the device has been shown to be effective for the analysis of elemental and molecular species operating in an ambient desorption/ionization mass spectrometry (ADI-MS) mode. Proof-of-concept is presented here in the use of the LS-APGD to volatilize three very diverse sample forms (metallic thin films, dry solution residues, and bulk materials), with the liberated material excited within the microplasma and detected via OES, i.e., AD-OES. While the demonstration is principally qualitative at this point, it is believed that the basic approach may find application across a broad spectrum of analytical challenges requiring elemental analysis, including metals, soils, and volume-limited solutions, analogous to what has been seen in the development of the field of ADI-MS for molecular species determinations. PMID:27175512

  14. Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Koban, Ina; Welk, Alexander; Meisel, Peter; Holtfreter, Birte; Kocher, Thomas [Unit of Periodontology, Dental School, University of Greifswald, Rotgerberstr. 8, 17475 Greifswald (Germany); Matthes, Rutger; Huebner, Nils-Olaf; Kramer, Axel [Institute for Hygiene and Environmental Medicine, University of Greifswald, Walther-Rathenau-Str. 49 a, 17487 Greifswald (Germany); Sietmann, Rabea [Institute of Microbiology, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald (Germany); Kindel, Eckhard; Weltmann, Klaus-Dieter, E-mail: ina.koban@uni-greifswald.d [Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)

    2010-07-15

    Because of some disadvantages of chemical disinfection in dental practice (especially denture cleaning), we investigated the effects of physical methods on Candida albicans biofilms. For this purpose, the antifungal efficacy of three different low-temperature plasma devices (an atmospheric pressure plasma jet and two different dielectric barrier discharges (DBDs)) on Candida albicans biofilms grown on titanium discs in vitro was investigated. As positive treatment controls, we used 0.1% chlorhexidine digluconate (CHX) and 0.6% sodium hypochlorite (NaOCl). The corresponding gas streams without plasma ignition served as negative treatment controls. The efficacy of the plasma treatment was determined evaluating the number of colony-forming units (CFU) recovered from titanium discs. The plasma treatment reduced the CFU significantly compared to chemical disinfectants. While 10 min CHX or NaOCl exposure led to a CFU log{sub 10} reduction factor of 1.5, the log{sub 10} reduction factor of DBD plasma was up to 5. In conclusion, the use of low-temperature plasma is a promising physical alternative to chemical antiseptics for dental practice.

  15. Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet

    Science.gov (United States)

    Koban, Ina; Matthes, Rutger; Hübner, Nils-Olaf; Welk, Alexander; Meisel, Peter; Holtfreter, Birte; Sietmann, Rabea; Kindel, Eckhard; Weltmann, Klaus-Dieter; Kramer, Axel; Kocher, Thomas

    2010-07-01

    Because of some disadvantages of chemical disinfection in dental practice (especially denture cleaning), we investigated the effects of physical methods on Candida albicans biofilms. For this purpose, the antifungal efficacy of three different low-temperature plasma devices (an atmospheric pressure plasma jet and two different dielectric barrier discharges (DBDs)) on Candida albicans biofilms grown on titanium discs in vitro was investigated. As positive treatment controls, we used 0.1% chlorhexidine digluconate (CHX) and 0.6% sodium hypochlorite (NaOCl). The corresponding gas streams without plasma ignition served as negative treatment controls. The efficacy of the plasma treatment was determined evaluating the number of colony-forming units (CFU) recovered from titanium discs. The plasma treatment reduced the CFU significantly compared to chemical disinfectants. While 10 min CHX or NaOCl exposure led to a CFU log10 reduction factor of 1.5, the log10 reduction factor of DBD plasma was up to 5. In conclusion, the use of low-temperature plasma is a promising physical alternative to chemical antiseptics for dental practice.

  16. Production mechanism of atomic nitrogen in atmospheric pressure pulsed corona discharge measured using two-photon absorption laser-induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Teramoto, Yoshiyuki; Ono, Ryo [Department of Advanced Energy, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 227-8568 (Japan); Oda, Tetsuji [Department of Electrical Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2012-06-01

    To study the production mechanism of atomic nitrogen, the temporal profile and spatial distribution of atomic nitrogen are measured in atmospheric pressure pulsed positive corona discharge using two-photon absorption laser-induced fluorescence. The absolute atomic nitrogen density in the streamer filaments is estimated from decay rate of atomic nitrogen in N{sub 2} discharge. The results indicate that the absolute atomic nitrogen density is approximately constant against discharge energy. When the discharge voltage is 21.5 kV, production yield of atomic nitrogen produced by an N{sub 2} discharge pulse is estimated to be 2.9 - 9.8 Multiplication-Sign 10{sup 13} atoms and the energy efficiency of atomic nitrogen production is estimated to be about 1.8 - 6.1 Multiplication-Sign 10{sup 16} atoms/J. The energy efficiency of atomic nitrogen production in N{sub 2} discharge is constant against the discharge energy, while that in N{sub 2}/O{sub 2} discharge increases with discharge energy. In the N{sub 2}/O{sub 2} discharge, two-step process of N{sub 2} dissociation plays significant role for atomic nitrogen production.

  17. Production mechanism of atomic nitrogen in atmospheric pressure pulsed corona discharge measured using two-photon absorption laser-induced fluorescence

    International Nuclear Information System (INIS)

    To study the production mechanism of atomic nitrogen, the temporal profile and spatial distribution of atomic nitrogen are measured in atmospheric pressure pulsed positive corona discharge using two-photon absorption laser-induced fluorescence. The absolute atomic nitrogen density in the streamer filaments is estimated from decay rate of atomic nitrogen in N2 discharge. The results indicate that the absolute atomic nitrogen density is approximately constant against discharge energy. When the discharge voltage is 21.5 kV, production yield of atomic nitrogen produced by an N2 discharge pulse is estimated to be 2.9 - 9.8 × 1013 atoms and the energy efficiency of atomic nitrogen production is estimated to be about 1.8 - 6.1 × 1016 atoms/J. The energy efficiency of atomic nitrogen production in N2 discharge is constant against the discharge energy, while that in N2/O2 discharge increases with discharge energy. In the N2/O2 discharge, two-step process of N2 dissociation plays significant role for atomic nitrogen production.

  18. Deactivation of Streptococcus mutans Biofilms on a Tooth Surface Using He Dielectric Barrier Discharge at Atmospheric Pressure

    Science.gov (United States)

    Imola, Molnar; Judit, Papp; Alpar, Simon; Sorin, Dan Anghel

    2013-06-01

    This paper presents a study of the effect of the low temperature atmospheric helium dielectric barrier discharge (DBD) on the Streptococcus mutans biofilms formed on tooth surface. Pig jaws were also treated by plasma to detect if there is any harmful effect on the gingiva. The plasma was characterized by using optical emission spectroscopy. Experimental data indicated that the discharge is very effective in deactivating Streptococcus mutans biofilms. It can destroy them with an average decimal reduction time (D-time) of 19 s and about 98% of them were killed after a treatment time of 30 s. According to the survival curve kinetic an overall 32 s treatment time would be necessary to perform a complete sterilization. The experimental results presented in this study indicated that the helium dielectric barrier discharge, in plan-parallel electrode configuration, could be a very effective tool for deactivation of oral bacteria and might be a promising technique in various dental clinical applications.

  19. Experimental and modeling study of the oxidation of acetaldehyde in an atmospheric-pressure pulsed corona discharge

    Science.gov (United States)

    Klett, C.; Touchard, S.; Vega-Gonzalez, A.; Redolfi, M.; Bonnin, X.; Hassouni, K.; Duten, X.

    2012-08-01

    This paper reports the results obtained for the degradation of acetaldehyde by an atmospheric plasma corona discharge working in a pulsed regime. It was shown that a few hundred ppm of acetaldehyde diluted in a pure N2 gas flow can be removed up to 80% by a discharge fed with an electric power lower than 1 W. Under the same conditions, adding up to 5% of O2 allowed the removal of up to 95% of the initial acetaldehyde. The main identified end products were CO2, CO and methanol. A quasi-homogeneous zero-dimensional chemical model was developed to investigate the respective efficiency of the discharge and post-discharge periods in the global removal of the pollutant. The identified main pathways of acetaldehyde degradation were quenching of N2 metastable states during plasma pulses and oxidation by O and OH radicals during the post-discharge. This latter contribution increased with input power because of ozone accumulation in the gas mixture acting as an additional oxygen reservoir.

  20. A New Approach to Plasma CVD of TiO2 Photocatalyst on γ-Al2O3 Pellet Filled in Dielectric Barrier Discharges at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    朱爱民; 聂龙辉; 张秀玲; 石川; 宋志民; 徐勇

    2004-01-01

    A supported TiO2/γ-Al2O3 photocatalyst has been prepared by γ-Al2O3 pellet-filled dielectric barrier discharges induced plasma CVD at atmospheric pressure and room temperature.The TiO2/γ-Al2O3 photocatalyst exhibits higher photocatalytic activity than Degussa P25, and much higher photocatalytic activity than that prepared by thermal CVD.

  1. Surface treatment of high density polyethylene (HDPE) film by 50 Hz dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure

    OpenAIRE

    Joshi Ujjwal Man; Subedi Deepak Prasad

    2015-01-01

    Thin films of high density polyethylene (HDPE) are treated for improving hydrophilicity using non-thermal plasma generated by 50 Hz line frequency dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure. HDPE samples before and after the treatment are studied using contact angle measurements, surface free energy calculations and atomic force microscopy (AFM). Distilled water (H2O), glycerol (C3H8O3) and diiodomethane (CH2I2) are used as test liqu...

  2. Dynamics of the atmospheric pressure diffuse dielectric barrier discharge between cylindrical electrodes in roll-to-roll PECVD reactor

    Science.gov (United States)

    Starostin, Sergey A.; Welzel, Stefan; Liu, Yaoge; van der Velden-Schuermans, Bernadette; Bouwstra, Jan B.; van de Sanden, Mauritius C. M.; de Vries, Hindrik W.

    2015-07-01

    The high current diffuse dielectric barrier discharge (DBD) was operated in a bi-axial cylindrical electrode configuration using nitrogen, oxygen and argon gas flow with the addition of tetraethyl orthosilicate as precursor for silica-like film deposition. The behaviour of the transient plasma was visualized by means of fast imaging from two orthogonal directions. The formation and propagation (~3 × 104 m s-1) of lateral ionization waves with the transverse light emission structure similar to the low pressure glow discharge was observed at time scales below 1 µs. Despite plasma non-uniformity at nanosecond time scale the deposition process on the web-rolled polymer results in smooth well adherent films with good film uniformity and excellent gas diffusion barrier properties. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  3. Run-to-run variations, asymmetric pulses, and long time-scale transient phenomena in dielectric-barrier atmospheric pressure glow discharges

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jichul; Raja, Laxminarayan L [Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, TX 78712 (United States)

    2007-05-21

    The dielectric-barrier (DB) discharge is an important approach to generate uniform non-equilibrium atmospheric-pressure glow discharges. We report run-to-run variations, asymmetric pulse formation and long time-scale transient phenomena in these discharges. For similar DB discharge geometric and operating conditions, we observe significant run-to-run variations as manifested in the different voltage-current waveforms at the start of each new run. These run-to-run variations are also accompanied by asymmetric pulses at the start of each run. The variations are observed to drift to a repeatable true steady-state condition on time scales of order tens of minutes to hours. Asymmetric pulse waveforms drift to a symmetric pulse waveform at the true steady state. We explore reasons for these phenomena and rule out thermal drift during a discharge run and gas-phase impurity buildup as potential causes. The most plausible explanation appears to be variations in the surface characteristics of the DBs between two consecutive runs owing to varying inter-run environmental exposure and the conditioning of the dielectric surface during a run owing to plasma-surface interactions. We speculate that the dielectric surface state affects the secondary electron emission coefficient of the surface which in turn is manifested in the discharge properties. A zero-dimensional model of the discharge is used to explore the effect of secondary electron emission.

  4. The effect of frequency on atmospheric pressure glow discharge in a pin-to-plate gap sustained by a resonant power supply

    Science.gov (United States)

    Wang, Yong Sheng; Ding, Wei Dong; Wang, Ya Nan; Wang, Jia Chen; Li, Fang; Fan, Chuan

    2016-06-01

    More and more researchers have been attracted to the research of atmospheric pressure glow discharge (APGD) because of its great prospect in numerous industrial applications. Nevertheless, almost all of the industrial applications are based on achievement of stable, large-volume, and uniform APGD. In a previous study, stable filamentary APGD was obtained by applying a resonant power supply between pin-to-plate electrodes which could limit the peak value of discharge current to supress the glow-to-arc transition through a series-wound resonance principle. The filamentary APGD is centimeter-level in the length but only several millimeters in diameter. Therefore, in order to obtain large-volume and uniform APGD, it is significant to study how to diffuse filamentary APGD in radial direction. With the increasing resonant frequency of alternating current discharge, excited particles (mainly including energetic electrons and trapped ions left from the previous half-cycle discharge) in the electrodes gap increase, which benefits obtaining stable self-sustaining APGD. In this paper, mechanism and law of the influence of resonant frequency on the diffusion of filamentary APGD in ambient air were studied. By comparing the photos of discharge plasma and waveforms of the discharge voltage and current, it is found that the volume of the glow discharge plasma enlarges as the resonant frequency of the power supply increases. It is very significant and anticipating to study how to obtain stable, large-volume, and uniform APGD in ambient air by the resonant power supply.

  5. STUDENT AWARD FINALIST: Simulation of the ignition of a H2-air mixture at atmospheric pressure by a nanosecond repetitively pulsed discharge

    Science.gov (United States)

    Tholin, Fabien; Bourdon, Anne

    2012-10-01

    Nanosecond repetitively Pulsed Discharges (NRPD) have a great potential for many applications at atmospheric pressure due to their ability to produce efficiently many reactive chemical species at a low energy cost. Recent measurements have shown that in the ``spark'' regime of NRP discharges, an ultra-fast local heating of the gas could be obtained. This effect is of great interest for applications as flow control and plasma assisted combustion (PAC). In this work, we have carried out 2D numerical simulations of the coupling of the NRP discharge in air at atmospheric pressure in a point-point geometry with the background air. In particular, we have simulated shock waves generated by the NRPD in the spark regime and we have compared our results with experiments. Then, we have studied the production of active species by the NRP discharge in the spark regime. Finally, for plasma assisted combustion applications, we have simulated the ignition of a flame kernel in a lean H2-air mixture by a spark NRPD. Based on this work, the relative importance for the combustion ignition of gas heating and production of active species by the spark NRP is discussed.

  6. Plasma density enhancement in atmospheric-pressure dielectric-barrier discharges by high-voltage nanosecond pulse in the pulse-on period: a PIC simulation

    International Nuclear Information System (INIS)

    A particle-in-cell (PIC) plus Monte Carlo collision simulation is employed to investigate how a sustainable atmospheric pressure single dielectric-barrier discharge responds to a high-voltage nanosecond pulse (HVNP) further applied to the metal electrode. The results show that the HVNP can significantly increase the plasma density in the pulse-on period. The ion-induced secondary electrons can give rise to avalanche ionization in the positive sheath, which widens the discharge region and enhances the plasma density drastically. However, the plasma density stops increasing as the applied pulse lasts over certain time; therefore, lengthening the pulse duration alone cannot improve the discharge efficiency further. Physical reasons for these phenomena are then discussed.

  7. Plasma density enhancement in atmospheric-pressure dielectric-barrier discharges by high-voltage nanosecond pulse in the pulse-on period: a PIC simulation

    Science.gov (United States)

    Sang, Chaofeng; Sun, Jizhong; Wang, Dezhen

    2010-02-01

    A particle-in-cell (PIC) plus Monte Carlo collision simulation is employed to investigate how a sustainable atmospheric pressure single dielectric-barrier discharge responds to a high-voltage nanosecond pulse (HVNP) further applied to the metal electrode. The results show that the HVNP can significantly increase the plasma density in the pulse-on period. The ion-induced secondary electrons can give rise to avalanche ionization in the positive sheath, which widens the discharge region and enhances the plasma density drastically. However, the plasma density stops increasing as the applied pulse lasts over certain time; therefore, lengthening the pulse duration alone cannot improve the discharge efficiency further. Physical reasons for these phenomena are then discussed.

  8. Numerical Study on Atmospheric Pressure DBD in Helium: Single-breakdown and Multi-breakdown Discharges%Numerical Study on Atmospheric Pressure DBD in Helium: Single-breakdown and Multi-breakdown Discharges

    Institute of Scientific and Technical Information of China (English)

    王小华; 杨爱军; 荣命哲; 刘定新

    2011-01-01

    A 1-D fluid model for homogeneous dielectric barrier discharge (DBD) in helium is presented, aimed at unraveling the spatial-temporal characteristics of two basic discharge regimes: single-breakdown and multi-breakdown discharges. Discharge currents, gap voltages, charge densities, electron temperature and electric field profiles of the two regimes make it clear that these two regimes are qualitatively different. It is found that the multi-breakdown discharge has a more homogeneous flux on dielectrics compared to the single-breakdown discharge.

  9. A mass spectrometric study of ions extracted from a point-to-plane dc corona discharge in N{sub 2}O at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Skalny, J D; Orszagh, J [Department of Plasma Physics, Comenius University, Mlynska dolina F-2, 84248 Bratislava (Slovakia); Mason, N J [Department of Physics and Astronomy, Centre of Molecular and Optical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Rees, J A; Aranda-Gonzalvo, Y; Whitmore, T D [Plasma and Surface Analysis Division, Hiden Analytical Ltd, 420 Europa Boulevard, Warrington WA5 7UN (United Kingdom)], E-mail: Skalny@fmph.uniba.sk

    2008-04-21

    In this paper we report the first study of ions formed in both positive and negative point-to-plane corona discharges fed by N{sub 2}O containing less than 0.1% of H{sub 2}O at atmospheric pressure. Considerable differences were observed in the mass spectra of the ions produced from corona discharges of different polarities. In all the discharges the product ions were observed mainly in the form of clusters. However, in positive corona discharges only four major groups of cluster ions were monitored whereas in all corona discharges operated with negative polarity a much more varied and complex variety of negative ions was observed. The spectrum of positive ions is highly sensitive to the content of water vapour in nitrous oxide with H{sub 3} O{sup +} {center_dot} (H{sub 2}O){sub n} clusters (especially H{sub 3}O{sup +} {center_dot} (H{sub 2}O){sub 3}) and NO{sup +} {center_dot} (H{sub 2}O){sub n} clusters being the dominant products. The yield of NO{sup +} {center_dot} (H{sub 2}O){sub n} was found to increase strongly with increasing discharge current while the yield of H{sub 3}O{sup +} {center_dot} (H{sub 2}O){sub n} clusters was reduced. Spectra of ions detected in negative corona discharges contain clusters of NO{sup -}, NO{sub 2}{sup -}, NO{sub 3}{sup -} ions and also HNO{sub 3}{sup -} clustered with N{sub 2}O, NO, NO{sub 2}, H{sub 2}O and HNO{sub 3}. This paper reports how the yield of such ions is influenced by the plasma characteristics and discusses how these results may be explained by physical and chemical processes in the plasma.

  10. A mass spectrometric study of ions extracted from a point-to-plane dc corona discharge in N2O at atmospheric pressure

    International Nuclear Information System (INIS)

    In this paper we report the first study of ions formed in both positive and negative point-to-plane corona discharges fed by N2O containing less than 0.1% of H2O at atmospheric pressure. Considerable differences were observed in the mass spectra of the ions produced from corona discharges of different polarities. In all the discharges the product ions were observed mainly in the form of clusters. However, in positive corona discharges only four major groups of cluster ions were monitored whereas in all corona discharges operated with negative polarity a much more varied and complex variety of negative ions was observed. The spectrum of positive ions is highly sensitive to the content of water vapour in nitrous oxide with H3 O+ · (H2O)n clusters (especially H3O+ · (H2O)3) and NO+ · (H2O)n clusters being the dominant products. The yield of NO+ · (H2O)n was found to increase strongly with increasing discharge current while the yield of H3O+ · (H2O)n clusters was reduced. Spectra of ions detected in negative corona discharges contain clusters of NO-, NO2-, NO3- ions and also HNO3- clustered with N2O, NO, NO2, H2O and HNO3. This paper reports how the yield of such ions is influenced by the plasma characteristics and discusses how these results may be explained by physical and chemical processes in the plasma

  11. Characterizing uniform discharge in atmospheric helium by numerical modelling

    Institute of Scientific and Technical Information of China (English)

    Lü Bo; Wang Xin-Xin; Luo Hai-Yun; Liang Zhuo

    2009-01-01

    One-dimensional fluid model of dielectric barrier discharge (DBD) in helium at atmospheric pressure was estab-lished and the discharge was numerically simulated. It was found that not only the spatial distributions of the internal parameters such as the electric field, the electron density and ion density are similar to those in a low-pressure glow discharge, but also the visually apparent attribute (light emission) is exactly the same as the observable feature of a low-pressure glow discharge. This confirms that the uniform DBD in atmosphcric helium is a glow type discharge. The fact that the thickness of the cathode fall layer is about 0.5 ram, much longer than that of a normal glow dischargc in helium at atmospheric pressure, indicates the discharge being a sub-normal glow discharge close to normal one. The multipulse phenomenon was reproduced in the simulation and a much less complicated explanation for this phenomenon was given.

  12. Numerical studies of independent control of electron density and gas temperature via nonlinear coupling in dual-frequency atmospheric pressure dielectric barrier discharge plasmas

    Science.gov (United States)

    Zhang, Z. L.; Nie, Q. Y.; Wang, Z. B.; Gao, X. T.; Kong, F. R.; Sun, Y. F.; Jiang, B. H.

    2016-07-01

    Dielectric barrier discharges (DBDs) provide a promising technology of generating non-equilibrium cold plasmas in atmospheric pressure gases. For both application-focused and fundamental studies, it is important to explore the strategy and the mechanism for enabling effective independent tuning of key plasma parameters in a DBD system. In this paper, we report numerical studies of effects of dual-frequency excitation on atmospheric DBDs, and modulation as well as separate tuning mechanism, with emphasis on dual-frequency coupling to the key plasma parameters and discharge evolution. With an appropriately applied low frequency to the original high frequency, the numerical calculation demonstrates that a strong nonlinear coupling between two frequencies governs the process of ionization and energy deposition into plasma, and thus raises the electron density significantly (e.g., three times in this case) in comparisons with a single frequency driven DBD system. Nevertheless, the gas temperature, which is mainly determined by the high frequency discharge, barely changes. This method then enables a possible approach of controlling both averaged electron density and gas temperature independently.

  13. Detection of Amines and Ammonia with an Ambient Pressure Mass Spectrometer using a Corona Discharge Ion Source, in an Urban Atmosphere and in a Teflon Film Chamber

    Science.gov (United States)

    Alves, M.; Hanson, D. R.; Grieves, C.; Ortega, J. V.

    2015-12-01

    Amines and ammonia are an important group of molecules that can greatly affect atmospheric particle formation that can go on to impact cloud formation and their scattering of thermal and solar radiation, and as a result human health and ecosystems. In this study, an Ambient Pressure Mass Spectrometer (AmPMS) that is selective and sensitive to molecules with a high proton affinity, such as amines, was coupled with a newly built corona discharge ion source. AmPMS was used to monitor many different nitrogenous compound that are found in an urban atmosphere (July 2015, Minneapolis), down to the single digit pmol/mol level. Simultaneous to this, a proton transfer mass spectrometer also sampled the atmosphere through an inlet within 20 m of the AmPMS inlet. In another set of studies, a similar AmPMS was attached to a large Teflon film chamber at the Atmospheric Chemistry Division at NCAR (August 2015, Boulder). Exploratory studies are planned on the sticking of amines to the chamber walls as well as oxidizing the amine and monitoring products. Depending on the success of these studies, results will be presented on the reversability of amine partitioning and mass balance for these species in the chamber.

  14. Hybrid model of atmospheric pressure Ar/O2/TiCl4 radio-frequency capacitive discharge for TiO2 deposition

    International Nuclear Information System (INIS)

    A hybrid global-analytical model of an atmospheric pressure radio-frequency driven capacitive discharge is applied to determine the plasma conditions for TiO2 film deposition. The feed gas is mainly argon with a small fraction of O2 and a smaller fraction of TiCl4. Variations of the discharge parameters and species densities with O2 concentration, discharge power, and flow rate are determined. A simplified chemistry model is developed and compared with the simulation results, showing good agreement. For a base case with Ar/O2/TiCl4 flow rates of 203/30/0.17 sccm, the results indicate that a minimum O2 fraction of 7.3 × 10−4 is required for pure (un-chlorinated) TiO2 film deposition that the active precursor species is TiO2Cl3, with subsequent abstraction of Cl atoms by dissociative electron attachment and that the deposition rates are around 1 nm/s

  15. Vibrational and rotational CARS measurements of nitrogen in afterglow of streamer discharge in atmospheric pressure fuel/air mixtures

    International Nuclear Information System (INIS)

    The use of nonequilibrium plasma generated by nanosecond discharges to ignite fuel/air mixtures, known as transient plasma ignition (TPI), has been shown to effectively reduce ignition delay and improve engine performance relative to spark ignition for combustion engines. While this method is potentially useful for many engine applications, at present the underlying physics are poorly understood. This work uses coherent anti-Stokes Raman spectroscopy (CARS) to measure the rotational and vibrational excitation of nitrogen molecules in the discharge afterglow in a variety of fuel/air mixtures outside the limits of combustion in order to elucidate the thermal behaviour of TPI. The time evolution of relative populations of vibrationally excited states of nitrogen in the electronic ground state are reported for each gas mixture; it is shown that generation of these vibrationally excited states is inefficient during the discharge in air but that generation occurs at a high rate roughly 5 µs following the discharge; with the addition of fuels vibrationally excited states are observed during the discharge but an increase in population is still seen at 5 µs. Possible mechanisms for this behaviour are discussed. In addition, rotational temperature increases of at least 500 K are reported for all gas mixtures. The effect of this temperature increase on ignition, reaction rates, and thermal energy pathways are discussed.

  16. Surface treatment of polypropylene (PP) film by 50 Hz dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure

    International Nuclear Information System (INIS)

    Thin films of polypropylene (PP) are treated for improving hydrophilicity using non-thermal plasma generated by 50 Hz line frequency dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure. PP samples before and after the treatments are studied using contact angle measurements, surface free energy calculations and scanning electron microscopy (SEM). Distilled water (H2O), glycerol (C3H8O3) and diiodomethane (CH2I2) are used as test liquids. The contact angle measurements between test liquids and PP samples are used to determine total surface free energy using sessile drop technique. PP films show a remarkable increase in surface free energy after plasma treatment. SEM analysis of the plasma-treated PP films shows that plasma treatment introduces greater roughness on the surface leading to the increased surface free energy. Furthermore, it is found that introducing a small quantity of argon can enhance the surface treatment remarkably

  17. Surface treatment of high density polyethylene (HDPE film by 50 Hz dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure

    Directory of Open Access Journals (Sweden)

    Joshi Ujjwal Man

    2015-03-01

    Full Text Available Thin films of high density polyethylene (HDPE are treated for improving hydrophilicity using non-thermal plasma generated by 50 Hz line frequency dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure. HDPE samples before and after the treatment are studied using contact angle measurements, surface free energy calculations and atomic force microscopy (AFM. Distilled water (H2O, glycerol (C3H8O3 and diiodomethane (CH2I2 are used as test liquids. The contact angle measurements between test liquids and HDPE samples are used to determine total surface free energy using sessile drop technique. HDPE films show a remarkable increase in surface free energy after plasma treatment. AFM analysis of the plasma-treated HDPE films shows that plasma treatment introduces greater roughness on the surface leading to the increased surface free energy. Furthermore, it is found that introducing a small quantity of argon can enhance the surface treatment remarkably.

  18. Liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source for elemental mass spectrometry: preliminary parametric evaluation and figures of merit.

    Science.gov (United States)

    Quarles, C Derrick; Carado, Anthony J; Barinaga, Charles J; Koppenaal, David W; Marcus, R Kenneth

    2012-01-01

    A new, low-power ionization source for the elemental analysis of aqueous solutions has recently been described. The liquid sampling-atmospheric pressure glow discharge (LS-APGD) source operates at relatively low currents (elements indicate that sodium concentrations of up to 50 μg mL(-1) generally cause suppressions of less than 50%, dependant upon the analyte species. Based on the results of this series of studies, preliminary limits of detection (LOD) have been established through the generation of calibration functions. While solution-based concentration LOD levels of 0.02-2 μg mL(-1) are not impressive on the surface, the fact that they are determined via discrete 5 μL injections leads to mass-based detection limits at picogram to single-nanogram levels. The overhead costs associated with source operation (10 W d.c. power, solution flow rates of elemental mass spectrometry. PMID:21910014

  19. Surface treatment of polypropylene (PP) film by 50 Hz dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure

    Science.gov (United States)

    Joshi, Ujjwal Man; Subedi, Deepak Prasad

    2015-07-01

    Thin films of polypropylene (PP) are treated for improving hydrophilicity using non-thermal plasma generated by 50 Hz line frequency dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure. PP samples before and after the treatments are studied using contact angle measurements, surface free energy calculations and scanning electron microscopy (SEM). Distilled water (H2O), glycerol (C3H8O3) and diiodomethane (CH2I2) are used as test liquids. The contact angle measurements between test liquids and PP samples are used to determine total surface free energy using sessile drop technique. PP films show a remarkable increase in surface free energy after plasma treatment. SEM analysis of the plasma-treated PP films shows that plasma treatment introduces greater roughness on the surface leading to the increased surface free energy. Furthermore, it is found that introducing a small quantity of argon can enhance the surface treatment remarkably.

  20. Liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source for elemental mass spectrometry: preliminary parametric evaluation and figures of merit.

    Science.gov (United States)

    Quarles, C Derrick; Carado, Anthony J; Barinaga, Charles J; Koppenaal, David W; Marcus, R Kenneth

    2012-01-01

    A new, low-power ionization source for the elemental analysis of aqueous solutions has recently been described. The liquid sampling-atmospheric pressure glow discharge (LS-APGD) source operates at relatively low currents (LS-APGD has been interfaced to what is otherwise an organic, LC-MS mass analyzer, the Thermo Scientific Exactive Orbitrap without any modifications, other than removing the electrospray ionization source supplied with that instrument. A glow discharge is initiated between the surface of the test solution exiting a glass capillary and a metallic counter electrode mounted at a 90° angle and separated by a distance of ~5 mm. As with any plasma-based ionization source, there are key discharge operation and ion sampling parameters that affect the intensity and composition of the derived mass spectra, including signal-to-background ratios. We describe here a preliminary parametric evaluation of the roles of discharge current, solution flow rate, argon sheath gas flow rate, and ion sampling distance as they apply on this mass analyzer system. A cursive evaluation of potential matrix effects due to the presence of easily ionized elements indicate that sodium concentrations of up to 50 μg mL(-1) generally cause suppressions of less than 50%, dependant upon the analyte species. Based on the results of this series of studies, preliminary limits of detection (LOD) have been established through the generation of calibration functions. While solution-based concentration LOD levels of 0.02-2 μg mL(-1) are not impressive on the surface, the fact that they are determined via discrete 5 μL injections leads to mass-based detection limits at picogram to single-nanogram levels. The overhead costs associated with source operation (10 W d.c. power, solution flow rates of LS-APGD ion source may present a practical alternative to inductively coupled plasma sources typically employed in elemental mass spectrometry.

  1. Evaluation of the operating parameters of the liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source for elemental mass spectrometry.

    Science.gov (United States)

    Zhang, Lynn X; Manard, Benjamin T; Konegger-Kappel, Stefanie; Kappel, Stefanie Konegger; Marcus, R Kenneth

    2014-11-01

    The liquid sampling-atmospheric pressure glow discharge (LS-APGD) has been assessed as an ionization source for elemental analysis with an interdependent, parametric evaluation regarding sheath/cooling gas flow rate, discharge current, liquid flow rate, and the distance between the plasma and the sampling cone of the mass spectrometer. In order to better understand plasma processes (and different from previous reports), no form of collision/reaction processing was performed to remove molecular interferents. The evaluation was performed employing five test elements: cesium, silver, lead, lanthanum and nickel (10(-4) mol L(-1) in 1 mol L(-1) HNO3). The intensity of the atomic ions, levels of spectral background, the signal-to-background ratios, and the atomic-to-oxide/hydroxide adduct ratios were monitored in order to obtain fundamental understanding with regards to not only how each parameter effects the performance of this LS-APGD source, but also the inter-parametric effects. The results indicate that the discharge current and the liquid sampling flow rates are the key aspects that control the spectral composition. A compromise set of operating conditions was determined: sheath gas flow rate = 0.9 L min(-1), discharge current = 10 mA, solution flow rate = 10 μL min(-1), and sampling distance = 1 cm. Limits of detection (LODs) were calculated using the SBR-RSDB (signal-to-background ratio/relative standard deviation of the background) approach under the optimized condition. The LODs for the test elementals ranged from 15 to 400 ng mL(-1) for 10 μL injections, with absolute mass values from 0.2 to 4 ng.

  2. Characteristics of SiOX thin films deposited by atmospheric pressure chemical vapor deposition using a double-discharge system

    International Nuclear Information System (INIS)

    SiOX thin films were deposited using a gas mixture of hexamethyldisilazane (HMDS)/O2/He/Ar from a remote-type dielectric barrier discharges (DBD) source, with/without the additional direct-type DBD just above the substrate (double discharge), and the effect of the double discharge on the characteristics of the SiOX thin film was investigated. The increase of HMDS flow rate and the decrease of oxygen flow rate in the gas mixture increased the SiOX-thin-film deposition rate. The improvement of the mechanical properties for SiOX film, in addition to the increase of deposition rate, is believed to be related not only to the higher gas dissociation because of the higher power deposition but also to the lesser recombination of oxygen atoms and dissociated HMDS due to the shorter diffusion length to the substrate.

  3. 针-板DBD微流注与微辉光交替生成的机理研究%Atmospheric pressure streamer and glow-discharge generated alternately by pin-to-plane dielectric barrier discharge in air

    Institute of Scientific and Technical Information of China (English)

    俞哲; 张芝涛; 于清旋; 许少杰; 姚京; 白敏冬; 田一平; 刘开颖

    2012-01-01

    Performance of producing a high energy electron can be improved, if the glow discharge is generated in a system of dielectric barrier discharge. In this paper, different discharge modes of pin-to-plane dielectric barrier discharge are investigated in atmospheric pressure. Different discharge modes are observed in the positive half-period and negative half-period of the discharge. When and applied voltage is 3 kV, a streamer mode appear in the positive half-period and a corona (or Trichel discharge) mode occurs in negative half-period. When the applied voltage is 6 kV, a streamer emerges in the positive half-period and a micro glow discharge is present in the negative half-period. The micro glow discharge has hierarchical structure like that typical low pressure glow discharge produces. The generation of micro glow discharge is due to, enough strong cathode electric field strength and effective secondary electron emission process around naked negative electrode. The glow discharge transforming to arc discharge is avoided due to dielectric layer.%在介质阻挡放电体系中产生辉光放电可以有效的提高放电体系产生高能电子的性能,为等离子体化学反应提供更加丰富的活性粒子.本文对针一板介质阻挡放电体系下的放电模式进行了研究,实验发现放电正负半周期表现出不同的放电模式,激励电压为3kV时放电正负半周期分别为微流注放电和电晕放电(或者Trichel脉冲放电),激励电压为6kV时放电正负半周期分别为微流注放电和微辉光放电.微辉光放电形貌具有与典型辉光放电相同的分层次放电结构,分析了激励电压6kV时的放电过程,认为足够强的阴极电场强度和裸露针状电极形成的有效的二次电子发射过程是形成微辉光放电的主要因素,绝缘介质层的存在避免了微辉光放电向弧光放电过渡.

  4. 大气压氖气介质阻挡放电研究%Investigation on Dielectric Barrier Discharge in Neon at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    冉俊霞; 罗海云; 王新新

    2011-01-01

    为了加深对大气压氖气介质阻挡放电特性的认识,使用电特性测量、高速摄影的手段研究了平板结构大气压氖气介质阻挡放电的击穿电压、放电模式及其演化过程等。实验结果表明,在2~8mm大气压氖气中可很容易地实现均匀放电,并且其放电模式为辉光放电。相比同样条件下的氦气放电,氖气放电的电流密度略小、电流脉冲的半高宽较大。同时测量并比较了气隙的首次击穿与稳态击穿的差异,发现气隙的首次击穿电压较大、击穿时刻偏迟,并基于种子电子的作用对此做出了解释。利用ICCD高速相机拍摄了时间分辨的放电图像,侧面放电图像显示了汤森放电向辉光%In order to have a deep understanding of dielectric barrier discharge(DBD) in neon at atmospheric pressure,the breakdown voltage,the discharge mode and evolution of DBD in a parallel neon gap were investigated by means of electrical measurements and fast photography.Homogenous discharges could be easily produced in 2~8mm gaps in neon and were attributed to glow discharge.Compared to that in helium,the homogenous DBD in neon had a smaller discharge current density and a wider current pulse.The differences between the first breakdown and subsequent steady breakdowns were measured,it was revealed that the first breakdown usually had a higher gap voltage and a later phase,as explained by the seed electrons and penning ionization.High-speed time-resolved photographs of the homogenous discharge in neon were taken using an ICCD camera with an exposure time of 10ns.Side-view photographs showed an evolution from Townsend discharge to glow discharge,which was similar to that observed in helium discharge,while the positive column could hardly be observed in neon at the sub-normal stage of the discharge.The end-view photographs showed a radial development in neon discharge which was also similar to that in helium.

  5. 大气压空气介质阻挡汤森放电%Townsend Dielectric Barrier Discharge in Atmospheric Pressure Air

    Institute of Scientific and Technical Information of China (English)

    罗海云; 冉俊霞; 王新新

    2012-01-01

    In order to experimentally study the possibility of homogenous dielectric barrier discharge (DBD) in atmospheric pressure air as well as its characteristics, the homogenous DBD in 3 mm air gap was obtained at atmospheric pressure, using 1-2 kHz sinusoidal high voltage and no less than 1. 5 mm thick alumina as the dielectrics. The discharge was proven as an atmospheric pressure Townsend discharge after analyzing the 10 ns exposure high-speed photographs and the current waveform. The steady breakdown voltage for 3 mm air DBD was calculated to be about 5. 7 kV, much lower than 11. 2 kV, the static breakdown voltage of 3 mm air gap; Extraordinary extinction was also observed in air just like in nitrogen. Both the two phenomena indicated the existence of the shallow traps and consequently the second-electron emissidn in the alumina surface, which were important for ignition and maintaining stage of Townsend DBD. It is found that the thickness of alumina is important for air DBD, and the thickness less than 1.5 mm can not avoid the filamentary discharge. If two 1 mm thick quartz plates are used instead of alumina, it is impossible to get homogenous DBD at 670 PaN 0. 1 MPa in air. The mechanism of Townsend DBD in 3 mm air gap is attributed to the combined effects of the unique shallow traps in the alumina surface and the current-limitation of the dielectrics.%为了实验研究大气压空气介质阻挡均匀放电的可能性,使用1.5mm以上厚度的A120s陶瓷片作为阻挡介质及1-2kHz的高压激励,在大气压3mm空气平板间隙中获得均匀放电。通过ICCD高速摄影得到的放电图像以及电流波形的分析表明这种放电是汤森放电。3mm空气间隙的稳态击穿电压仅约为5.7kV,远低于静态击穿电压11.2kv;还发现了类似氮气DBD汤森放电的“反常熄灭”现象,这两个现象表明陶瓷表面可能存在浅位阱及二次电子发射机制,这对空气汤森放电的起始和维持阶段都

  6. Electrohydrodynamic force produced by a wire-to-cylinder dc corona discharge in air at atmospheric pressure

    Science.gov (United States)

    Moreau, Eric; Benard, Nicolas; Lan-Sun-Luk, Jean-Daniel; Chabriat, Jean-Pierre

    2013-11-01

    Wire-to-cylinder corona discharges are studied to better understand the electrohydrodynamic (EHD) phenomena that govern the performances of electric propulsion systems. First, theory associated with EHD thrusters is presented in order to be compared with experimental results. Secondly, direct thrust measurements are carried out to optimize the electrical and geometrical parameters of such devices. The main results are as follows: (1) the discharge current I is proportional to the square root of the grounded electrode diameter and to 1/d2 where d is the electrode gap; (2) for d ⩽ 20 mm, the mobility of negative ions is higher than that of positive ions while the mobility of both ions is equal for higher gaps; (3) therefore, for gap ⩾30 mm, positive and negative coronas results in the same current-to-thrust conversion; (4) the current-to-thrust conversion is equal to 33 N A-1 per centimetre of gap, and it is proportional to the gap; (5) the thruster effectiveness θ increases with \\sqrt d , decreases with the square root of thrust and reaches about 15 N kW-1 for d = 40 mm (6) the force computed from experimental velocity profiles is overestimated compared with the values measured with a balance, showing that this method cannot be used for thrust determination.

  7. Experimental Study on Surface Dielectric Barrier Discharge Plasma Actuator with Different Encapsulated Electrode Widths for Airflow Control at Atmospheric Pressure

    Science.gov (United States)

    Qi, Xiaohua; Yang, Liang; Yan, Huijie; Jin, Ying; Hua, Yue; Ren, Chunsheng

    2016-10-01

    The surface dielectric barrier discharge (SDBD) plasma actuator has shown great promise as an aerodynamic flow control device. In this paper, the encapsulated electrode width of a SDBD actuator is changed to study the airflow acceleration behavior. The effects of encapsulated electrode width on the actuator performance are experimentally investigated by measuring the dielectric layer surface potential, time-averaged ionic wind velocity and thrust force. Experimental results show that the airflow velocity and thrust force increase with the encapsulated electrode width. The results can be attributed to the distinct plasma distribution at different encapsulated electrode widths. supported by National Natural Science Foundation of China (No. 11175037), National Natural Science Foundation for Young Scientists of China (No. 11305017) and Special Fund for Theoretical Physics (No. 11247239)

  8. Effects of N2O and O2 addition to nitrogen Townsend dielectric barrier discharges at atmospheric pressure on the absolute ground-state atomic nitrogen density

    KAUST Repository

    Es-sebbar, Et-touhami

    2012-11-27

    Absolute ground-state density of nitrogen atoms N (2p3 4S3/2) in non-equilibrium Townsend dielectric barrier discharges (TDBDs) at atmospheric pressure sustained in N2/N2O and N2/O2 gas mixtures has been measured using Two-photon absorption laser-induced fluorescence (TALIF) spectroscopy. The quantitative measurements have been obtained by TALIF calibration using krypton as a reference gas. We previously reported that the maximum of N (2p3 4S3/2) atom density is around 3 × 1014 cm-3 in pure nitrogen TDBD, and that this maximum depends strongly on the mean energy dissipated in the gas. In the two gas mixtures studied here, results show that the absolute N (2p3 4S3/2) density is strongly affected by the N2O and O2 addition. Indeed, the density still increases exponentially with the energy dissipated in the gas but an increase in N2O and O2 amounts (a few hundreds of ppm) leads to a decrease in nitrogen atom density. No discrepancy in the order of magnitude of N (2p3 4S3/2) density is observed when comparing results obtained in N2/N2O and N2/O2 mixtures. Compared with pure nitrogen, for an energy of ∼90 mJ cm-3, the maximum of N (2p3 4S3/2) density drops by a factor of 3 when 100 ppm of N2O and O2 are added and it reduces by a factor of 5 for 200 ppm, to reach values close to our TALIF detection sensitivity for 400 ppm (1 × 1013 cm -3 at atmospheric pressure). © 2013 IOP Publishing Ltd.

  9. The dynamics of ozone generation and mode transition in air surface micro-discharge plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    We present the transient, dynamic behavior of ozone production in surface micro-discharge (SMD) plasma in ambient air. Ultraviolet absorption spectroscopy at 254 nm was used to measure the time development of ozone density in a confined volume. We observed that ozone density increases monotonically over 1000 ppm for at least a few minutes when the input power is lower than ∼0.1 W/cm2. Interestingly, when input power is higher than ∼0.1 W/cm2, ozone density starts to decrease in a few tens of seconds at a constant power density, showing a peak ozone density. A model calculation suggests that the ozone depletion at higher power density is caused by quenching reactions with nitrogen oxides that are in turn created by vibrationally excited nitrogen molecules reacting with O atoms. The observed mode transition is significantly different from classical ozone reactors in that the transition takes place over time at a constant power. In addition, we observed a positive correlation between time-averaged ozone density and the inactivation rate of Escherichia coli on adjacent agar plates, suggesting that ozone plays a key role in inactivating bacteria under the conditions considered here. (paper)

  10. Liquid Sampling-Atmospheric Pressure Glow Discharge (LS-APGD) Ionization Source for Elemental Mass Spectrometry: Preliminary Parametric Evaluation and Figures of Merit

    Energy Technology Data Exchange (ETDEWEB)

    Quarles, C. Derrick; Carado, Anthony J.; Barinaga, Charles J.; Koppenaal, David W.; Marcus, R. Kenneth

    2012-01-01

    A new, low power ionization source for the elemental analysis of aqueous solutions has recently been described. The liquid sampling-atmospheric pressure glow discharge (LS-APGD) source operates at relatively low currents (<20 mA) and solution flow rates (<50 μL min-1), yielding a relatively simple alternative for atomic mass spectrometry applications. The LS-APGD has been interfaced to what is otherwise an organic, LC-MS mass analyzer, the Thermo Scientific Exactive Orbitrap without any modifications; other than removing the electrospray ionization (ESI) source supplied with that instrument. A glow discharge is initiated between the surface of the test solution exiting a glass capillary and a metallic counter electrode mounted at a 90° angle and separated by a distance of ~5 mm. As with any plasma-based ionization source, there are key discharge operation and ion sampling parameters that affect the intensity and composition of the derived mass spectra; including signal-to-background ratios. We describe here a preliminary parametric evaluation of the roles of discharge current, solution flow rate, argon sheath gas flow rate, and ion sampling distance as they apply on this mass analyzer system. A cursive evaluation of potential matrix effects due to the presence of easily ionized elements (EIEs) indicate that sodium concentrations of up to 500 μg mL-1 generally cause suppressions of less than 50%, dependant upon the analyte species. Based on the results of this series of studies, preliminary limits of detection (LOD) have been established through the generation of calibration functions. Whilst solution-based concentrations LOD levels of 0.02 – 2 μg mL-1 3 are not impressive on the surface, the fact that they are determined via discrete 5 μL injections leads to mass-based detection limits at picogram to singlenanogram levels. The overhead costs associated with source operation (10 W d.c. power, solution flow rates of <50 μL min-1, and gas flow rates <10 mL min

  11. The effect of O2 in a humid O2/N2/NOx gas mixture on NOx and N2O remediation by an atmospheric pressure dielectric barrier discharge

    DEFF Research Database (Denmark)

    Teodoru, Steluta; Kusano, Yukihiro; Bogaerts, Annemie

    2012-01-01

    A numerical model for NxOy remediation in humid air plasma produced with a dielectric barrier discharge at atmospheric pressure is presented. Special emphasis is given to NO2 and N2O reduction with the decrease of O2 content in the feedstock gas. A detailed reaction mechanism including electronic...

  12. Ozone kinetics in low-pressure discharges

    Science.gov (United States)

    Guerra, Vasco; Marinov, Daniil; Guaitella, Olivier; Rousseau, Antoine

    2012-10-01

    Ozone kinetics is quite well established at atmospheric pressure, due to the importance of ozone in atmospheric chemistry and to the development of industrial ozone reactors. However, as the pressure is decreased and the dominant three-body reactions lose importance, the main mechanisms involved in the creation and destruction of ozone are still surrounded by important uncertainties. In this work we develop a self-consistent model for a pulsed discharge and its afterglow operating in a Pyrex reactor with inner radius 1 cm, at pressures in the range 1-5 Torr and discharge currents of 40-120 mA. The model couples the electron Boltzmann equation with a system of equations for the time evolution of the heavy particles. The calculations are compared with time-dependent measurements of ozone and atomic oxygen. Parametric studies are performed in order to clarify the role of vibrationally excited ozone in the overall kinetics and to establish the conditions where ozone production on the surface may become important. It is shown that vibrationally excited ozone does play a significant role, by increasing the time constants of ozone formation. Moreover, an upper limit for the ozone formation at the wall in these conditions is set at 10(-4).

  13. Influence of complex impact of the picosecond electron beam and volume discharge in atmospheric-pressure air on the electronic properties of MCT epitaxial films surface

    Science.gov (United States)

    Grigoryev, Denis V.; Novikov, Vadim A.; Bezrodnyy, Dmitriy A.; Tarasenko, Viktor F.; Shulepov, Michail A.; Dvoretskii, Sergei A.

    2015-12-01

    In the present report we studied the distribution of surface potential of the HgCdTe epitaxial films grown by molecular beam epitaxy after the impact of picosecond electron beam and volume discharge in atmospheric-pressure air. The surface potential distribution was studied by the Kelvin Force Probe Microscopy. The experimental data obtained for the variation of the contact potential difference (ΔCPD) between the V-defect and the main matrix of the epitaxial film. The investigation of the origin epitaxial films show that variation of the spatial distribution of surface potential in the V-defect region can be related to the variation of the material composition. The experimental data obtained for the irradiated samples show that the mean value of ΔCPD for the original surface differs from the one for the irradiated surface for 55 eV. At the same time the mean value of ΔCPD changes its sign indicating that the original surface of the epitaxial HgCdTe film predominantly contains the grains with increased cadmium content while after the irradiation the grains possess an increased content of mercury. Therefore, during the irradiation process a decrease of the mercury content in the near-surface region of the semiconductor takes place resulting in the alteration of the electrophysical properties in the films near-surface region.

  14. Effects of H3O+, OH-, \\text{O}_{2}^{-} , \\text{NO}_{\\text{x}}^{-} and NO x for Escherichia coli inactivation in atmospheric pressure DC corona discharges

    Science.gov (United States)

    Sekimoto, Kanako; Gonda, Rena; Takayama, Mitsuo

    2015-08-01

    The effects of ionic and neutral species such as H3O+, OH-, \\text{O}2- , \\text{NO}x- (x = 2, 3), and NO x on Escherichia coli (E. coli) inactivation in gas and liquid phases was investigated using atmospheric pressure DC corona discharges with point-to-plane electrodes. The above chemical species as well as OH and O3 were selectively irradiated onto E. coli suspensions on agar plates using a needle angle of 45° with respect to the plates, airflow, and a grid plate. Irradiation with the positive ion H3O+ did not inactivate E. coli, while the negative ions OH-/\\text{O}2- resulted in bactericidal inactivation, in both gas and liquid phases. In contrast, the negative ions \\text{NO}x- and neutral species NO x in the gas phase had quite strong bactericidal effects on E. coli compared to those species in the liquid phase. These results suggest that liquid-phase HNO3, formed primarily via the reaction of gas-phase \\text{NO}x- and NO x with H2O in agar, has only a weak inactivation effect on E. coli. Furthermore, using naphthylethylenediamine spectrophotometry, the threshold amount of gas-phase \\text{NO}x- and NO x for E. coli inactivation was determined to be  ≈1.3   ×   10-9 mol mm-1.

  15. Surface treatment of polypropylene (PP) film by 50 Hz dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ujjwal Man, E-mail: umjoshi@gmail.com; Subedi, Deepak Prasad, E-mail: deepaksubedi2001@yahoo.com [Department of Natural Sciences (Physics), School of Science, Kathmandu University P. O. Box No. 6250, Dhulikhel, Kathmandu, Nepal (India)

    2015-07-31

    Thin films of polypropylene (PP) are treated for improving hydrophilicity using non-thermal plasma generated by 50 Hz line frequency dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure. PP samples before and after the treatments are studied using contact angle measurements, surface free energy calculations and scanning electron microscopy (SEM). Distilled water (H{sub 2}O), glycerol (C{sub 3}H{sub 8}O{sub 3}) and diiodomethane (CH{sub 2}I{sub 2}) are used as test liquids. The contact angle measurements between test liquids and PP samples are used to determine total surface free energy using sessile drop technique. PP films show a remarkable increase in surface free energy after plasma treatment. SEM analysis of the plasma-treated PP films shows that plasma treatment introduces greater roughness on the surface leading to the increased surface free energy. Furthermore, it is found that introducing a small quantity of argon can enhance the surface treatment remarkably.

  16. Preliminary Figures of Merit for Isotope Ratio Measurements: The Liquid Sampling-Atmospheric Pressure Glow Discharge Microplasma Ionization Source Coupled to an Orbitrap Mass Analyzer

    Science.gov (United States)

    Hoegg, Edward D.; Barinaga, Charles J.; Hager, George J.; Hart, Garret L.; Koppenaal, David W.; Marcus, R. Kenneth

    2016-08-01

    In order to meet a growing need for fieldable mass spectrometer systems for precise elemental and isotopic analyses, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) has a number of very promising characteristics. One key set of attributes that await validation deals with the performance characteristics relative to isotope ratio precision and accuracy. Owing to its availability and prior experience with this research team, the initial evaluation of isotope ratio (IR) performance was performed on a Thermo Scientific Exactive Orbitrap instrument. While the mass accuracy and resolution performance for Orbitrap analyzers are well-documented, no detailed evaluations of the IR performance have been published. Efforts described here involve two variables: the inherent IR precision and accuracy delivered by the LS-APGD microplasma and the inherent IR measurement qualities of Orbitrap analyzers. Important to the IR performance, the various operating parameters of the Orbitrap sampling interface, high-energy collisional dissociation (HCD) stage, and ion injection/data acquisition have been evaluated. The IR performance for a range of other elements, including natural, depleted, and enriched uranium isotopes was determined. In all cases, the precision and accuracy are degraded when measuring low abundance (abundance species. The results suggest that the LS-APGD is a promising candidate for field deployable MS analysis and that the high resolving powers of the Orbitrap may be complemented with a here-to-fore unknown capacity to deliver high-precision IRs.

  17. 大气压氦气介质阻挡斑图放电与辉光放电的转换条件及其演化过程%Conversion and Evolution Process of Patterned Discharges to Glow Discharges in Atmospheric-pressure Helium Dielectric Barrier Discharge

    Institute of Scientific and Technical Information of China (English)

    郝艳摔; 郑彬; 刘耀阁

    2012-01-01

    discharge generated, a single-pulse glow discharge could be achieved when the applied voltage was adjusted to a lower voltage, a two-pulse discharge appeared at a higher voltage. At the same time, the radial size of each pattern became smaller, however, the number of the discharge channels increased. It is found that, with an increasing applied voltage, the discharge becomes uniform gradually and turns into multi-pulse glow discharges. The discharge current can not be used to diagnose the discharge mode. The conversion of a spatio-temporal patterned discharge to a glow barrier discharge with the increasing applied voltage is a progress that the discharge changed from a partial APGD {atmospheric pressure glow discharze) to a whole APGD.

  18. Preliminary Figures of Merit for Isotope Ratio Measurements: The Liquid Sampling-Atmospheric Pressure Glow Discharge Microplasma Ionization Source Coupled to an Orbitrap Mass Analyzer

    Science.gov (United States)

    Hoegg, Edward D.; Barinaga, Charles J.; Hager, George J.; Hart, Garret L.; Koppenaal, David W.; Marcus, R. Kenneth

    2016-04-01

    In order to meet a growing need for fieldable mass spectrometer systems for precise elemental and isotopic analyses, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) has a number of very promising characteristics. One key set of attributes that await validation deals with the performance characteristics relative to isotope ratio precision and accuracy. Owing to its availability and prior experience with this research team, the initial evaluation of isotope ratio (IR) performance was performed on a Thermo Scientific Exactive Orbitrap instrument. While the mass accuracy and resolution performance for Orbitrap analyzers are well-documented, no detailed evaluations of the IR performance have been published. Efforts described here involve two variables: the inherent IR precision and accuracy delivered by the LS-APGD microplasma and the inherent IR measurement qualities of Orbitrap analyzers. Important to the IR performance, the various operating parameters of the Orbitrap sampling interface, high-energy collisional dissociation (HCD) stage, and ion injection/data acquisition have been evaluated. The IR performance for a range of other elements, including natural, depleted, and enriched uranium isotopes was determined. In all cases, the precision and accuracy are degraded when measuring low abundance (<0.1% isotope fractions). In the best case, IR precision on the order of 0.1% RSD can be achieved, with values of 1%-3% RSD observed for low-abundance species. The results suggest that the LS-APGD is a promising candidate for field deployable MS analysis and that the high resolving powers of the Orbitrap may be complemented with a here-to-fore unknown capacity to deliver high-precision IRs.

  19. Preliminary Figures of Merit for Isotope Ratio Measurements: The Liquid Sampling-Atmospheric Pressure Glow Discharge Microplasma Ionization Source Coupled to an Orbitrap Mass Analyzer

    Science.gov (United States)

    Hoegg, Edward D.; Barinaga, Charles J.; Hager, George J.; Hart, Garret L.; Koppenaal, David W.; Marcus, R. Kenneth

    2016-08-01

    In order to meet a growing need for fieldable mass spectrometer systems for precise elemental and isotopic analyses, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) has a number of very promising characteristics. One key set of attributes that await validation deals with the performance characteristics relative to isotope ratio precision and accuracy. Owing to its availability and prior experience with this research team, the initial evaluation of isotope ratio (IR) performance was performed on a Thermo Scientific Exactive Orbitrap instrument. While the mass accuracy and resolution performance for Orbitrap analyzers are well-documented, no detailed evaluations of the IR performance have been published. Efforts described here involve two variables: the inherent IR precision and accuracy delivered by the LS-APGD microplasma and the inherent IR measurement qualities of Orbitrap analyzers. Important to the IR performance, the various operating parameters of the Orbitrap sampling interface, high-energy collisional dissociation (HCD) stage, and ion injection/data acquisition have been evaluated. The IR performance for a range of other elements, including natural, depleted, and enriched uranium isotopes was determined. In all cases, the precision and accuracy are degraded when measuring low abundance (<0.1% isotope fractions). In the best case, IR precision on the order of 0.1% RSD can be achieved, with values of 1%-3% RSD observed for low-abundance species. The results suggest that the LS-APGD is a promising candidate for field deployable MS analysis and that the high resolving powers of the Orbitrap may be complemented with a here-to-fore unknown capacity to deliver high-precision IRs.

  20. Preliminary Assessment of Potential for Metal-Ligand Speciation in Aqueous Solution via the Liquid Sampling-Atmospheric Pressure Glow Discharge (LS-APGD) Ionization Source: Uranyl Acetate.

    Science.gov (United States)

    Zhang, Lynn X; Manard, Benjamin T; Powell, Brian A; Marcus, R Kenneth

    2015-07-21

    The determination of metals, including the generation of metal-ligand speciation information, is essential across a myriad of biochemical, environmental, and industrial systems. Metal speciation is generally affected by the combination of some form of chromatographic separation (reflective of the metal-ligand chemistry) with element-specific detection for the quantification of the metal composing the chromatographic eluent. Thus, the identity of the metal-ligand is assigned by inference. Presented here, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) is assessed as an ionization source for metal speciation, with the uranyl ion-acetate system used as a test system. Molecular mass spectra can be obtained from the same source by simple modification of the sustaining electrolyte solution. Specifically, chemical information pertaining to the degree of acetate complexation of uranyl ion (UO2(2+)) is assessed as a function of pH in the spectral abundance of three metallic species: inorganic (nonligated) uranyl, UO2Ac(H2O)n(MeOH)m(+), and UO2Ac2(H2O)n(MeOH)(m)H(+) (n = 1, 2, 3, ...; m = 1, 2, 3, ...). The product mass spectra are different from what are obtained from electrospray ionization sources that have been applied to this system. The resulting relationships between the speciation and pH values have been compared to calculated concentrations of the corresponding uranyl species: UO2(2+), UO2Ac(+), UO2Ac2. The capacity for the LS-APGD to affect both atomic mass spectra and structurally significant spectra for organometallic complexes is a unique and potentially powerful combination.

  1. Electrical and spectral characteristics of an atmospheric pressure argon plasma jet generated with tube-ring electrodes in surface dielectric barrier discharge

    International Nuclear Information System (INIS)

    An atmospheric-pressure argon plasma jet is generated with tube-ring electrodes in surface dielectric barrier discharge by a sinusoidal excitation voltage at 8 kHz. The electrical and spectral characteristics are estimated such as conduction and displacement current, electric-field, electron temperature, rotational temperature of N2 and OH, electronic excitation temperature, and oxygen atomic density. It is found that the electric-field magnitudes in the top area of the ground electrode are higher than that in the bottom area of the power electrode, and the electron temperature along radial direction is in the range of 9.6–10.4 eV and along axial direction in the range of 4.9–10 eV. The rotational temperature of N2 obtained by comparing the simulated spectrum with the measured spectrum at the C3Πu → B3Πg(Δv = − 2) band transition is in the range of 342–387 K, the electronic excitation temperature determined by Boltzmann's plot method is in the range of 3188–3295 K, and the oxygen atomic density estimated by the spectral intensity ratio of atomic oxygen line λ = 844.6 nm to argon line λ = 750.4 nm is in the order of magnitude of 1016 cm−3, respectively. - Highlights: ► The conduction and displacement current are calculated by equivalent circuit diagram. ► The 2D distribution of electric-field magnitude is calculated by ElecNet software. ► The electron temperature along axial direction is in the range of 4.9–10 eV. ► The oxygen atomic density is about a magnitude of 1016 cm−3

  2. Preliminary Figures of Merit for Isotope Ratio Measurements: The Liquid Sampling-Atmospheric Pressure Glow Discharge Microplasma Ionization Source Coupled to an Orbitrap Mass Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Hoegg, Edward D.; Barinaga, Charles J.; Hager, George J.; Hart, Garret L.; Koppenaal, David W.; Marcus, R. Kenneth

    2016-03-01

    ABSTRACT In order to meet a growing need for fieldable mass spectrometer systems for precise elemental and isotopic analyses, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) has a number of very promising characteristics. One key set of attributes that await validation deals with the performance characteristics relative to isotope ratio precision and accuracy. Due to its availability and prior experience with this research team, the initial evaluation of isotope ratio (IR) performance was performed on a Thermo Scientific Exactive Orbitrap instrument. While the mass accuracy and resolution performance for orbitrap analyzers are very well documented, no detailed evaluations of the IR performance have been published. Efforts described here involve two variables: the inherent IR precision and accuracy delivered by the LSAPGD microplasma and the inherent IR measurement qualities of orbitrap analyzers. Important to the IR performance, the various operating parameters of the orbitrap sampling interface, HCD dissociation stage, and ion injection/data acquisition have been evaluated. The IR performance for a range of other elements, including natural, depleted, and enriched uranium isotopes was determined. In all cases the precision and accuracy are degraded when measuring low abundance (<0.1% isotope fractions). In the best case, IR precision on the order of 0.1 %RSD can be achieved, with values of 1-3 %RSD observed for low-abundance species. The results suggest that the LSAPGD is a very good candidate for field deployable MS analysis and that the high resolving powers of the orbitrap may be complemented with a here-to-fore unknown capacity to deliver high-precision isotope ratios.

  3. Atmospheric pressure plasma jet applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.; Herrmann, H.W.; Henins, I.; Selwyn, G.S. [Los Alamos National Lab., NM (United States)

    1998-12-31

    The atmospheric pressure plasma jet (APPJ) is a non-thermal, high pressure plasma discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g., He/O2/H2O) which flows between two concentric cylindrical electrodes: an outer grounded electrode and an inner electrode powered at 13.56 MHz RF. While passing through the plasma, the feedgas becomes excited, ionized or dissociated by electron impact. The fast-flowing effluent consists of ions and electrons, which are rapidly lost by recombination, highly reactive radicals (e.g., O, OH), and metastable species (e.g., O2). The metastable O2, which is reactive to hydrocarbon and other organic species, has been observed through optical emission spectroscopy to decrease by a factor of 2 from the APPJ nozzle exit to a distance of 10 cm. Unreacted metastable O2, and that which does not impinge on a surface, will then decay back to ordinary ground state O2, resulting in a completely dry, environmentally-benign form of surface cleaning. Applications such as removal of photoresist, oxide films and organic residues from wafers for the electronics industry, decontamination of civilian and military areas and personnel exposed to chemical or biological warfare agents, and paint (e.g., graffiti) removal are being considered.

  4. A change in the electro-physical properties of narrow-band CdHgTe solid solutions acted upon by a volume discharge induced by an avalanche electron beam in the air at atmospheric pressure

    Science.gov (United States)

    Voitsekhovskii, A. V.; Grigor'ev, D. V.; Korotaev, A. G.; Kokhanenko, A. P.; Tarasenko, V. F.; Shulepov, M. A.

    2012-03-01

    The effect of a nanosecond volume discharge forming in an inhomogeneous electrical field at atmospheric pressure on the CdHgTe (MCT) epitaxial films of the p-type conduction with the hole concentration 2·1016 cm3 and mobility 500 cm2·V-1·s-1 is studied. The measurement of the electrophysical parameters of the MCT specimens upon irradiation shows that a layer exhibiting the n-type conduction is formed in the near-surface region of the epitaxial films. After 600 pulses and more, the thickness and the parameters of the layer are such that the measured field dependence of the Hall coefficient corresponds to the material of the n-type conduction. Analysis of the preliminary results reveals that the foregoing nanosecond volume discharge in the air at atmospheric pressure is promising for modification of electro-physical MCT properties.

  5. Investigation on the reaction mechanisms of generation and loss of oxygen-related species in atmospheric-pressure pulsed dielectric barrier discharge in argon/oxygen mixture

    Science.gov (United States)

    Pan, Jie; Tan, Zhenyu; Pan, Guangsheng; Shan, Chunhong; Wang, Xiaolong; Liu, Yadi; Jiang, Jixiang

    2016-07-01

    This work presents a numerical investigation, using a 1-D fluid model, on the generation and loss of oxygen-related species and the spatial-temporal evolutions of the species densities in the atmospheric-pressure pulsed dielectric barrier discharge in the argon/oxygen mixture. The reaction pathways as well as their contributions to the generation and loss of oxygen-related species are given. The considered oxygen-related species include O, O(1D), O2(1Δg), O3, O+, O2+, O-, O2-, and O3-. The following significant results are obtained. O, O(1D), O2(1Δg), and O- are produced mainly via the electron impact with O2. Ar+ plays an essential role in the generation of O+ and O2+. Almost all of O3 derives from the reaction O2 + O2 + O → O3 + O2. The O3-related reactions produce an essential proportion of O2- and O3-. The substantial loss of O-, O2-, and O3- is induced by their reactions with O2+. Loss of O+, O, and O(1D) is mainly due to their reactions with O2, loss of O2(1Δg) due to O2(1Δg) impacts with O3 as well as the de-excitation reactions between O2(1Δg) and e, O2, and O, and loss of O3 due to the reactions between O3 and other neutral species. In addition, the densities of O+ and O(1D) present two obvious peaks at the pulse duration, but the densities of O2+, O, O2(1Δg), and O3 are almost unchanged. The densities of negative oxygen ions increase at the pulse duration and then decline. O- density is obviously large nearby the dielectric surfaces and the densities of O2- and O3- present generally uniform distributions.

  6. Effect of Pulse Nanosecond Volume Discharge in Air at Atmospheric Pressure on Electrical Properties of Mis Structures Based on p-HgCdTe Grown by Molecular Beam Epitaxy

    Science.gov (United States)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.; Grigor'ev, D. V.; Tarasenko, V. F.; Shulepov, M. A.

    2015-11-01

    The effect of the pulse nanosecond volume discharge in air at atmospheric pressure on the admittance of MIS structures based on MBE graded-gap p-Hg0.78Cd0.22Te is studied in a wide range of frequencies and temperatures. It is shown that the impact of the discharge leads to significant changes in electrical characteristics of MIS structures (the density of positive fixed charge increases), to the changes in the nature of the hysteresis of capacitance-voltage characteristics, and to an increase in the density of surface states. A possible reason for the changes in the characteristics of MIS structures after exposure to the discharge is substantial restructuring of the defect-impurity system of the semiconductor near the interface.

  7. A comparative study on the frequency effects of the electrical characteristics of the pulsed dielectric barrier discharge in He/O2 and in Ar/O2 at atmospheric pressure

    Science.gov (United States)

    Pan, Guangsheng; Tan, Zhenyu; Pan, Jie; Wang, Xiaolong; Shan, Chunhong

    2016-04-01

    In this work, a comparative study on the frequency effects of the electrical characteristics of the pulsed dielectric barrier discharges in He/O2 and in Ar/O2 at atmospheric pressure has been performed by means of the numerical simulation based on a 1-D fluid model at frequencies below 100 kHz. The frequency dependences of the characteristic quantities of the discharges in the two gases have been systematically calculated and analyzed under the oxygen concentrations below 2%. The characteristic quantities include the discharge current density, the averaged electron density, the electric field, and the averaged electron temperature. Especially, the frequency effects on the averaged particle densities of the reactive species have also been calculated. This work gives the following significant results. For the two gases, there are two bipolar discharges in one period of applied voltage pulse under the considered frequency range and oxygen concentrations, as occurred in the pure noble gases. The frequency affects the two discharges in He/O2, but in Ar/O2, it induces a strong effect only on the first discharge. For the first discharge in each gas, there is a characteristic frequency at which the characteristic quantities reach their respective minimum, and this frequency appears earlier for Ar/O2. For the second discharge in Ar/O2, the averaged electron density presents a slight variation with the frequency. In addition, the discharge in Ar/O2 is strong and the averaged electron temperature is low, compared to those in He/O2. The total averaged particle density of the reactive species in Ar/O2 is larger than those in He/O2 by about one order of magnitude.

  8. Atmospheric Pressure Indicator.

    Science.gov (United States)

    Salzsieder, John C.

    1995-01-01

    Discusses observable phenomena related to air pressure. Describes a simple, unobtrusive, semiquantitative device to monitor the changes in air pressure that are associated with altitude, using a soft-drink bottle and a balloon. (JRH)

  9. Treatment of fluorocarbon using atmospheric non-thermal plasma produced by streamer corona discharge

    International Nuclear Information System (INIS)

    The non-thermal plasma produced by the streamer corona discharge at atmospheric pressure was utilized for the vanishing of fluorocarbon. The effective treatment of fluorocarbon is attempted controlling discharge parameters of the plasma. The decomposition rate of fluorocarbon is investigated changing discharge modes and discharge characteristics i.e. applied voltage VA-K of a main discharge gap and its steepness dVA-K/dt. (author)

  10. Research on atmospheric pressure plasma processing sewage

    Science.gov (United States)

    Song, Gui-cai; Na, Yan-xiang; Dong, Xiao-long; Sun, Xiao-liang

    2013-08-01

    The water pollution has become more and more serious with the industrial progress and social development, so it become a worldwide leading environmental management problem to human survival and personal health, therefore, countries are looking for the best solution. Generally speaking, in this paper the work has the following main achievements and innovation: (1) Developed a new plasma device--Plasma Water Bed. (2) At atmospheric pressure condition, use oxygen, nitrogen, argon and helium as work gas respectively, use fiber spectrometer to atmospheric pressure plasma discharge the emission spectrum of measurement, due to the different work gas producing active particle is different, so can understand discharge, different particle activity, in the treatment of wastewater, has the different degradation effects. (3) Methyl violet solution treatment by plasma water bed. Using plasma drafting make active particles and waste leachate role, observe the decolorization, measurement of ammonia nitrogen removal.

  11. Atmospheric Pressure During Landing

    Science.gov (United States)

    1997-01-01

    This figure shows the variation with time of pressure (dots) measured by the Pathfinder MET instrument during the landing period shown in image PIA00797. The two diamonds indicate the times of bridal cutting and 1st impact. The overall trend in the data is of pressure increasing with time. This is almost certainly due to the lander rolling downhill by roughly 10 m. The spacing of the horizontal dotted lines indicates the pressure change expected from 10 m changes in altitude. Bounces may also be visible in the data.

  12. Experimental investigation on the characteristics of dielectric barrier discharge with a large gap width at atmospheric pressure%大气压下较大气隙宽度介质阻挡放电的实验研究

    Institute of Scientific and Technical Information of China (English)

    李雪辰; 刘润甫; 贾鹏英; 赵欢欢; 常媛媛

    2013-01-01

    A dielectric barrier discharge with a fairly large gap width is realized in atmospheric pressure argon because the critical voltage value for gas gap breakdown is sharply lowered through using a wedged gas gap. The discharge behavior is investigated experimentally through analyzing images taken with exposure time of several milliseconds. Results indicate that a stripe pattern with a homogeneous corona around can be observed under a lower voltage, and the discharge turns quite homogeneous at a higher voltage. It has been found that the micro-discharges tend to be generated at the region with small gap width, and then move to the region with large gap width along the flowing gas. Therefore, dielectric barrier discharge with a fairly large gap width can be obtained at a rather lowered voltage. Based on the visualization of the discharge with exposure time of several microseconds, it has been found that micro-discharge filament consists of the volumetric discharge between the two electrodes and the stochastic surface discharge on the dielectric for the filamentary discharge. The stripe on the image taken with exposure time of several milliseconds results from the moving of the volumetric discharge along the gas flow, and the homogeneous corona is a superimposition of the surface discharge at different half cycles. These results are of great importance for industrial applications of the atmospheric pressure uniform discharge.%利用楔形气隙极大地降低了气隙的击穿电压,从而在流动氩气中实现了大气压下较大气隙宽度的介质阻挡放电。通过毫秒量级曝光时间拍照,对放电的动力学行为进行了研究。结果发现:外加电压较低时放电为条纹斑图,且在条纹的周围伴有均匀的晕;随外加电压升高,放电会过渡到均匀模式。研究表明微放电总是产生于窄气隙区域,然后沿着气流向大间隙方向定向移动,因此在较低电压下实现了大气隙宽度的介质

  13. Temporal modulation of plasma species in atmospheric dielectric barrier discharges

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Aijun; Wang, Xiaohua, E-mail: xhw@mail.xjtu.edu.cn, E-mail: mzrong@mail.xjtu.edu.cn; Liu, Dingxin; Rong, Mingzhe, E-mail: xhw@mail.xjtu.edu.cn, E-mail: mzrong@mail.xjtu.edu.cn [Centre for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Kong, Michael G. [Centre for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Frank Reidy Research Center for Bioelectrics, Department of Electrical and Computer Engineering, Old Dominion University, Virginia 23508 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529 (United States)

    2014-07-15

    The atmospheric pressure dielectric barrier discharge in helium is a pulsed discharge in nature and the moment of maximum species densities is almost consistent with peak discharge current density. In this paper, a one-dimensional fluid model is used to investigate the temporal structure of plasma species in an atmospheric He-N{sub 2} dielectric barrier discharge (DBD). It is demonstrated that there exist microsecond delays of the moments of the maximum electron and ion densities from the peak of discharge current density. These time delays are caused by a competition between the electron impact and Penning ionizations, modulated by the N{sub 2} level in the plasma-forming gas. Besides, significant electron wall losses lead to the DBD being more positively charged and, with a distinct temporal separation in the peak electron and cation densities, the plasma is characterized with repetitive bursts of net positive charges. The temporal details of ionic and reactive plasma species may provide a new idea for some biological processes.

  14. Diagnostics of atmospheric pressure air plasmas

    International Nuclear Information System (INIS)

    Atmospheric pressure air plasmas are often thought to be in Local Thermodynamics Equilibrium (LTE) owing to fast interspecies collisional exchanges at high pressure. As will be seen here, this assumption cannot be relied upon, particularly with respect to optical diagnostics. Large velocity gradients in flowing plasmas and/or elevated electron temperatures created by electrical discharges can result in large departures from chemical and thermal equilibrium. Diagnostic techniques based on optical emission spectroscopy (OES) and Cavity Ring-Down Spectroscopy (CRDS) have been developed and applied at Stanford University to the investigation of atmospheric pressure plasmas under conditions ranging from thermal and chemical equilibrium to thermochemical nonequilibrium. This article presents a review of selected temperature and species concentration measurement techniques useful for the study of air and nitrogen plasmas

  15. Special issue: diagnostics of atmospheric pressure microplasmas

    Science.gov (United States)

    Bruggeman, Peter; Czarnetzki, Uwe; Tachibana, Kunihide

    2013-11-01

    In recent decades, a strong revival of non-equilibrium atmospheric pressure plasma studies has developed in the form of microplasmas. Microplasmas have typical scales of 1 mm or less and offer a very exciting research direction in the field of plasma science and technology as the discharge physics can be considerably different due to high collisionality and the importance of plasma-surface interaction. These high-pressure small-scale plasmas have a diverse range of physical and chemical properties. This diversity coincides with various applications including light/UV sources [1], material processing [2], chemical analysis [3], material synthesis [4], electromagnetics [5], combustion [6] and even medicine [7]. At atmospheric pressure, large scale plasmas have the tendency to become unstable due to the high collision rates leading to enhanced heating and ionization compared to their low-pressure counterparts. As low-pressure plasmas typically operate in reactors with sizes of tens of centimetres, scaling up the pressure to atmospheric pressure the size of the plasma reduces to typical sizes below 1 mm. A natural approach of stabilizing atmospheric pressure plasmas is thus the use of microelectrode geometries. Traditionally microplasmas have been produced in confined geometries which allow one to stabilize dc excited discharges. This stabilization is intrinsically connected to the large surface-to-volume ratio which enhances heat transfer and losses of charged and excited species to the walls. Currently challenging boundaries are pushed by producing microcavity geometries with dimensions of the order of 1 µm [8]. The subject of this special issue, diagnostics of microplasmas, is motivated by the many challenges in microplasma diagnostics in view of the complex chemistry and strong spatial (and even temporal) gradients of species densities and plasma properties. Atmospheric pressure plasmas have a very long history dating back more than 100 years, with early work of

  16. Transition from Spark Discharge to Constricted Glow Discharge in Atmospheric Air by Capacitor Coupled Discharge

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yutao; REN Chunsheng; XU Zhenfeng; MA Tengcai; QI Bing; WANG Dezhen; WANG Younian

    2007-01-01

    The transition from a spark discharge to a constricted glow discharge in atmospheric air was studied with a capacitor coupled pin-to-water plasma reactor. The reason of the transition is considered to be of various factors, namely the change of the air gap due to the polarization of water molecules by the electric field, the feedback effect of the capacitors, and the ion trapping mechanism. The effects of the frequency of the power supply, inter-electrode gap, and coupled capacitance on the discharge transition were also investigated.

  17. Characteristics of RF Cold Plasma at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    QIU Liang; MENG Yuedong; SHU Xingsheng

    2007-01-01

    The characteristics of a stable discharge at atmospheric pressure is investigated.The plasma source consisted of two closely spaced parallel-plated perforated electrodes,driven by a radio frequency power to generate a uniform cold plasma in Helium at atmospheric pressure.Both alpha and gamma modes were clearly observed.The hollow cathode effects were found in the discharge.The influence of the dielectric barrier on the discharge was also investigated by utilizing a surface-anodized aluminium electrode as the anode.

  18. Atmospheric pressure plasma research activity in korea

    International Nuclear Information System (INIS)

    Plasma is generated by electrical discharge. Most plasma generation has been carried out at low-pressure gas typically less than one millionth of atmospheric pressure. Plasmas are in general generated from impact ionizations of neutral gas molecules by accelerated electrons. The energy gain of electrons accelerated in an electrical field is proportional to the mean free path. Electrons gain more energy at low-pressure gas and generate plasma easily by the ionization of neutrals, because the mean free path is longer. For this reason conventional plasma generation is carried out at low pressures. However, many practical applications require plasmas at high-pressure. In order to avoid the requirement for vacuum pump, researchers in Korea start to develop plasmas in high-pressure chambers where the pressure is 1 atmosphere or greater. Material processing, environmental protection/restoration and improved energy production efficiency using plasma are only possible for inexpensive bulk plasmas. We thus generate plasmas by new methods and plan to set foundations for new plasma technologies for 21st century industries. This technological research will play a central role in material processing, environmental and energy production industries

  19. Study of organic pollutants oxidation by atmospheric plasma discharge

    Science.gov (United States)

    Gumuchian, Diane; Cavadias, Simeon; Duten, Xavier; Tatoulian, Michael; da Costa, Patrick; Ognier, Stephanie

    2013-09-01

    Ozonation is one of the usual steps in water treatment processes. However, some organic molecules (acetic acid) cannot be decomposed during ozonation. In that context, we are developing an Advanced Oxidation Process based on the use of a needle plate discharge at atmospheric pressure. The process is a reactor with a plasma discharge between a high voltage electrode and the solution in controlled atmosphere. Characterizations of the plasma obtained in different atmospheres were carried out (Optical Emission Spectroscopy, iCCD camera observations, etc). The efficiency of the process was evaluated by the percentage of degradation of the model-pollutant, measured by liquid chromatography analysis. Treatments in nitrogen lead to the formation of NOx species that decrease the efficiency of the process. Indeed, NOx lead to the consumption of actives species created. Treatments in argon are the most efficient. Two hypotheses are considered: (i) metastable argon participates to the degradation of acetic acid or to the formation of radicals (ii) discharges in argon lead to the formation of many streamers of low energy that increase the interface plasma/solution.

  20. Study of atmospheric pressure chemical vapor deposition by using a double discharge system for SiOx thin-film deposition with a HMDS/Ar/He/O2 gas mixture

    International Nuclear Information System (INIS)

    SiOx thin films were deposited at atmospheric pressure by using a double discharge system composed of a remote-type dielectric barrier discharge (DBD) formed above the substrate and a direct-type DBD formed by applying an AC power to the substrate with a gas mixture of hexamethyldisilazane (HMDS)/O2/He/Ar. Instead of using a single DBD, the use of the double discharge system not only showed higher SiOx thin film deposition rates but also produced fewer impurities in the deposited SiOx thin film. The improvement was partially related to the increased gas dissociation near the substrate through the direct-type DBD and to the remote-type DBD. A 7-kV, 30-kHz AC voltage was applied to the remote-type DBD and a 5-kV, 20-kHz AC voltage was applied to the direct-type DBD, with a gas mixture of HMDS (400 sccm)/O2 (20 slm)/He (5 slm)/Ar (3 slm). As a result, a SiOx deposition rate of 58.29 nm/scan could be obtained while moving the substrate at a speed of 0.25 meter/min.

  1. Atmospheric pressure plasma enhanced spatial ALD of silver

    NARCIS (Netherlands)

    Van Den Bruele, F.J.; Smets, M.; Illiberi, A.; Creyghton, Y.; Buskens, P.; Roozeboom, F.; Poodt, P.

    2014-01-01

    The authors have investigated the growth of thin silver films using a unique combination of atmospheric process elements: spatial atomic layer deposition and an atmospheric pressure surface dielectric barrier discharge plasma source. Silver films were grown on top of Si substrates with good purity a

  2. RF impedance measurements of DC atmospheric micro-discharges

    CERN Document Server

    Overzet, Lawrence J; Mandra, Monali; Goeckner, Matthew; Dufour, Thierry; Dussart, Remi; Lefaucheux, Philippe

    2016-01-01

    The available diagnostics for atmospheric micro-plasmas remain limited and relatively complex to implement; so we present a radio-frequency technique for diagnosing a key parameter here. The technique allows one to estimate the dependencies of the electron density by measuring the RF-impedance of the micro-plasma and analyzing it with an appropriate equivalent circuit. This technique is inexpensive, can be used in real time and gives reasonable results for argon and helium DC micro-plasmas in holes over a wide pressure range. The electron density increases linearly with current in the expected range consistent with normal glow discharge behavior.

  3. Analysis on Lissajous Figures of Dielectric Barrier Glow Discharge in Atmospheric-pressure Helium%大气压下氦气介质阻挡辉光放电过程的Lissajous图形分析

    Institute of Scientific and Technical Information of China (English)

    郝艳捧; 刘耀阁; 郑彬

    2012-01-01

    In order to investigate the variation of equivalent capacitance during dielectric barrier discharge (DBD), single pulse and multi-pulse discharges were obtained using a high-frequency power supply in atmospheric-pressure helium. By measuring applied voltage and loop current, Lissajous figures were calculated and compared with those which were directly measured. The equivalent capacitance of the gas gap and dielectrics during the discharging and cutting-off phases were calculated with the corresponding relationship between the peaks and valleys of current pulse and the points on Lissajous figures. The reasons of variation of the equivalent capacitance were analyzed, and the physical process of discharge was discussed. The results show that the equivalent capacitance can be studied by using calculated Lissajous figures instead of the measured ones. The equivalent capacitance keeps unchanged during the discharge cutting-off stage, but changes with current during the discharging stage and reaches its maximum at the peak point of current pulse. And the process of discharge is mainly affected by the changing rates of applied voltage and space charges.%为研究介质阻挡放电(DBD)过程中等效电容的变化情况,利用高频高压电源,进行了大气压氦气介质阻挡单脉冲和多脉冲辉光放电试验,利用外施电压、回路电流计算得到放电Lissajous图形,并与直接测量的Lissajous图形进行了对比。确定了放电电流波峰和波谷在Lissajous图形上的对应位置,计算了放电截止和放电进行阶段气隙和介质的等效电容,分析了等效电容变化的原因,并且探讨了放电的物理过程。结果表明:计算得到的Lissajous图形与测量所得的Lissajous图形一致;介质等效电容在放电截止阶段保持不变,但在放电进行阶段随电流脉冲变化而变化,并且在电流峰值处最大;放电物理过程主要受到外施电压和介质表面电荷量的变化速率影响。

  4. Characteristics of atmospheric pressure air uniform discharge generated by a plasma needle%大气压等离子体针产生空气均匀放电特性研究

    Institute of Scientific and Technical Information of China (English)

    李雪辰; 袁宁; 贾鹏英; 常媛媛; 嵇亚飞

    2011-01-01

    Cold plasma generated by atmospheric air discharge has wide application prospect in industry because it does not need vacuum equipment and mass production is possible.In this paper,a stable uniform discharge is generated in open air by a plasma needle.Discharge mechanism is investigated by optical method,and plasma parameters are given by the spatially resolved measurement of emission spectrum from the discharge.Results show that the discharges have two modes.One is a corona discharge mode and the other is plasma plume mode.In the stable plasma plume mode,a strong emission area and a weak emission one can be distinguished from each other.The development velocity of the weak emission area is much faster than that of the strong emission area.Furthermore,the electron energy and the plasma density in the weak emission area are also bigger than those in the strong emission area.Therefore,the discharge in the strong emission area is dominated by Townsend mechanism,while that in the weak emission area is dominated by streamer discharge.Gas temperature and vibration temperature are also studied in this paper.The experimental results are of great importance to the industrial applications of atmospheric pressure discharge.%大气压空气放电由于脱离了真空装置,易于实现流水线生产,因而在工业上具有广泛的应用.采用等离子体针装置在空气中产生了稳定的大气压均匀放电.利用光谱法对等离子体的相关参数进行了空间分辨率测量,并通过光学方法对放电机理进行了研究.结果表明,等离子体针产生的放电存在电晕放电和等离子体羽放电两种模式.在稳定的等离子体羽放电模式中,发光分为强光区和弱光区.弱光区放电的发展速度远大于强光区的发展速度,电子能量和电子密度均是弱光区比强光区大.对均匀放电的气体温度和振动温度的研究表明,强光区放电遵循汤生击穿机理而弱光区为流光放电.这些结果对

  5. Physics of Atmospheric Electric Discharges in Gases: An Informal Introduction

    CERN Document Server

    Treumann, R A; Parrot, M

    2007-01-01

    A short account of the physics of electrical discharges in gases is given in view of its historical evolution and application to planetary atmospheres. As such it serves as an introduction to the articles on particular aspects of electric discharges contained in this book, in particular in the chapters on lightning and the violent discharges which in the recent two decades have been observed to take place in Earth's upper atmosphere. In addition of briefly reviewing the early history of gas discharge physics we discuss the main parameters affecting violent atmospheric discharges like collision frequency, mean free path and critical electric field strength. Any discharge current in the atmosphere is clearly carried only by electrons. Above the lower bound of the mesosphere the electrons must be considered magnetized with the conductivity becoming a tensor. Moreover, the collisional mean free path in the upper atmosphere becomes relatively large which lowers the critical electric field there and more easily ena...

  6. Characteristics of Nanosecond Pulsed Discharges in Atmospheric Helium Microplasmas

    Science.gov (United States)

    Manish, Jugroot

    2016-10-01

    Microplasmas are very interesting due to their unique properties and achievable regimes maintained at atmospheric pressures. Due to the small scales, numerical modeling could contribute to the understanding of underlying phenomena as it provides access to local parameters—and complements experimental global characteristics. A self-consistent formalism, applied to nanosecond pulsed atmospheric non-equilibrium helium plasmas, reveals that several successive discharges can persist as a result of a combined volume and dielectric surface effects. The valuable insights provided by the spatiotemporal simulation results show the critical importance of coupled gas and plasma dynamics—namely gas heating and electric field reversals. supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) — Discovery Grant (No. 342369)

  7. Martian Atmospheric Pressure Static Charge Elimination Tool

    Science.gov (United States)

    Johansen, Michael R.

    2014-01-01

    A Martian pressure static charge elimination tool is currently in development in the Electrostatics and Surface Physics Laboratory (ESPL) at NASA's Kennedy Space Center. In standard Earth atmosphere conditions, static charge can be neutralized from an insulating surface using air ionizers. These air ionizers generate ions through corona breakdown. The Martian atmosphere is 7 Torr of mostly carbon dioxide, which makes it inherently difficult to use similar methods as those used for standard atmosphere static elimination tools. An initial prototype has been developed to show feasibility of static charge elimination at low pressure, using corona discharge. A needle point and thin wire loop are used as the corona generating electrodes. A photo of the test apparatus is shown below. Positive and negative high voltage pulses are sent to the needle point. This creates positive and negative ions that can be used for static charge neutralization. In a preliminary test, a floating metal plate was charged to approximately 600 volts under Martian atmospheric conditions. The static elimination tool was enabled and the voltage on the metal plate dropped rapidly to -100 volts. This test data is displayed below. Optimization is necessary to improve the electrostatic balance of the static elimination tool.

  8. Impact of the nanosecond volume discharge in atmospheric pressure air on the distribution of the surface potential of epitaxial HgCdTe

    Science.gov (United States)

    Novikov, V. A.; Grigoryev, D. V.; Bezrodnyy, D. A.; Tarasenko, V. F.; Shulepov, M. A.; Dvoretsky, S. A.; Mikhailov, N. N.

    2016-03-01

    In this paper we present the results of our research of the impact of nanosecond volume discharge on the electronic properties of the near-surface region of epitaxial Hg1-x Cd x Te films. We show that the distribution of the surface potential and, as a consequence, the material composition of the individual crystal grains that form V-defects possess a complex structure and contain regions with elevated content of both mercury and cadmium. The volume discharge treatment of the film surface leads to a decrease of the mercury content in individual crystal grains compared to the bulk of Hg1-x Cd x Te epitaxial film. This indicates a higher mercury desorption rate from the V-defect region.

  9. Observations of different core water cluster ions Y-(H2O)n (Y = O2, HOx, NOx, COx) and magic number in atmospheric pressure negative corona discharge mass spectrometry.

    Science.gov (United States)

    Sekimoto, Kanako; Takayama, Mitsuo

    2011-01-01

    Reliable mass spectrometry data from large water clusters Y(-)(H(2)O)(n) with various negative core ions Y(-) such as O(2)(-), HO(-), HO(2)(-), NO(2)(-), NO(3)(-), NO(3)(-)(HNO(3))(2), CO(3)(-) and HCO(4)(-) have been obtained using atmospheric pressure negative corona discharge mass spectrometry. All the core Y(-) ions observed were ionic species that play a central role in tropospheric ion chemistry. These mass spectra exhibited discontinuities in ion peak intensity at certain size clusters Y(-)(H(2)O)(m) indicating specific thermochemical stability. Thus, Y(-)(H(2)O)(m) may correspond to the magic number or first hydrated shell in the cluster series Y(-)(H(2)O)(n). The high intensity discontinuity at HO(-)(H(2)O)(3) observed was the first mass spectrometric evidence for the specific stability of HO(-)(H(2)O)(3) as the first hydrated shell which Eigen postulated in 1964. The negative ion water clusters Y(-)(H(2)O)(n) observed in the mass spectra are most likely to be formed via core ion formation in the ambient discharge area (760 torr) and the growth of water clusters by adiabatic expansion in the vacuum region of the mass spectrometers (≈1 torr). The detailed mechanism of the formation of the different core water cluster ions Y(-)(H(2)O)(n) is described. PMID:21184434

  10. Determining Atmospheric Pressure Using a Water Barometer

    Science.gov (United States)

    Lohrengel, C. Frederick, II; Larson, Paul R.

    2012-01-01

    The atmosphere is an envelope of compressible gases that surrounds Earth. Because of its compressibility and nonuniform heating by the Sun, it is in constant motion. The atmosphere exerts pressure on Earth's surface, but that pressure is in constant flux. This experiment allows students to directly measure atmospheric pressure by measuring the…

  11. Determination of Hg{sup 2+} by on-line separation and pre-concentration with atmospheric-pressure solution-cathode glow discharge atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qing [Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050 (China); Zhang, Zhen [Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050 (China); School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Wang, Zheng, E-mail: wangzheng@mail.sic.ac.cn [Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050 (China)

    2014-10-03

    Highlights: • A modified SBA-15 mesoporous silica (SH-SBA-15) was synthesized as a sorbent. • On-line SPE combined with SCGD-AES based on FIA was used to detect Hg{sup 2+} firstly. • A simple, low-cost Hg{sup 2+} analysis in a complex matrix was established. • The sensitive detection of Hg{sup 2+} was achieved with a detection limit of 0.75 μg L{sup −1}. - Abstract: A simple and sensitive method to determine Hg{sup 2+} was developed by combining solution-cathode glow discharge atomic emission spectrometry (SCGD-AES) with flow injection (FI) based on on-line solid-phase extraction (SPE). We synthesized L-cysteine-modified mesoporous silica and packed it in an SPE microcolumn, which was experimentally determined to possess a good mercury adsorption capacity. An enrichment factor of 42 was achieved under optimized Hg{sup 2+} elution conditions, namely, an FI flow rate of 2.0 mL min{sup −1} and an eluent comprised of 10% thiourea in 0.2 mol L{sup −1} HNO{sub 3}. The detection limit of FI–SCGD-AES was determined to be 0.75 μg L{sup −1}, and the precision of the 11 replicate Hg{sup 2+} measurements was 0.86% at a concentration of 100 μg L{sup −1}. The proposed method was validated by determining Hg{sup 2+} in certified reference materials such as human hair (GBW09101b) and stream sediment (GBW07310)

  12. Domestic atmospheric pressure thermal deaerators

    Science.gov (United States)

    Egorov, P. V.; Gimmelberg, A. S.; Mikhailov, V. G.; Baeva, A. N.; Chuprakov, M. V.; Grigoriev, G. V.

    2016-04-01

    Based on many years of experience and proven technical solutions, modern atmospheric pressure deaerators of the capacity of 0.4 to 800 t/h were designed and developed. The construction of such deaerators is based on known and explored technical solutions. A two-stage deaeration scheme is applied where the first stage is a jet dripping level (in a column) and the second one is a bubble level (in a tank). In the design of deaeration columns, low-pressure hydraulic nozzles (Δ p heat and mass exchange processes in the apparatus. The use of the two efficient stages in a column and a "flooded" sparger in a tank allows to reliably guarantee the necessary water heating and deaeration. Steam or "superheated" water of the temperature of t ≥ 125°C can be used as the coolant in the deaerators. The commissioning tests of the new deaerator prototypes of the capacity of 800 and 500 t/h in the HPP conditions showed their sustainable, reliable, and efficient work in the designed range of hydraulic and thermal loads. The content of solved oxygen and free carbon dioxide in make-up water after deaerators meets the requirements of State Standard GOST 16860-88, the operating rules and regulations, and the customer's specifications. Based on these results, the proposals were developed on the structure and the design of deaerators of the productivity of more than 800 t/h for the use in circuits of large heating systems and the preparation of feed water to the TPP at heating and industrial-heating plants. The atmospheric pressure thermal deaerators developed at NPO TsKTI with consideration of the current requirements are recommended for the use in water preparation schemes of various power facilities.

  13. Comparision Study of Dielectric Barrier Discharge in Inert Gases at Atmospheric Pressure%大气压不同惰性气体介质阻挡放电特性的比较

    Institute of Scientific and Technical Information of China (English)

    罗海云; 冉俊霞; 王新新

    2012-01-01

    To deeply understand dielectric barrier discharge in inert gases at atmospheric pressure, we investigated the breakdown voltage, the discharge mode, and evolution of DBD in a parallel gap by means of electrical measurements and fast photography in helium, neon, and argon at atmospheric pressure. Homogenous discharges could be easily produced in 2 - 8 mm gaps in helium and neon, and they were attributed to glow discharge. Compared to that in helium or neon, the homogenous DBD often covered only a part of the electrode in 2 mm-argon using the high frequency power. And with a small increase of the applied voltage, it would turn into a pattern mode. When the argon width was no less than 3mm, the DBD always resulted in bright filamentary streamers in which the current density could reach 7. 5 A/cm2. High-speed time-resolved photographs of the homogenous discharge in helium, neon and argon were taken using an ICCD camera. Side-view photographs showed an evolution from Townsend discharge to glow discharge. The end-view photographs exhibited a radial development. The spectroscopic diagnosis showed that the penning ionization between energetic metastabilty and impurities was the most important reason leading to a homogenous discharge. The N+ first negative system(B2∑u+ →X2∑g+ ), existing in helium discharge, could not be observed in the neon or argon, as was due to the lower energy level of metastable neon and argon states. Instead, the emission spectral lines of N2 second positive band system( C3 Пu→B3 Пg) were observed in neon and argon.%为了加深对大气压惰性气体介质阻挡放电的认识,使用电特性测量、高速摄影,发射光谱等手段研究了平板结构大气压惰性气体介质阻挡放电的放电模式、演化过程以及放电机理,并对不同气体的放电特性进行了比较。实验结果表明在2~8mm大气压氦气、氖气中可很容易的实现稳定的均匀放电,并且其放

  14. Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Mortensen, Henrik Junge; Stenum, Bjarne;

    2007-01-01

    Glassy carbon plates were treated with an atmospheric pressure dielectric barrier discharge (DBD). He gas, gas mixtures of He and reactive gases such as O2, CO2 and NH3, Ar gas and Ar/NH3 gas mixture were used as treatment gases. The oxygen and nitrogen contents on the surface as well as defect...

  15. Spacecraft Sterilization Using Non-Equilibrium Atmospheric Pressure Plasma

    Science.gov (United States)

    Cooper, Moogega; Vaze, Nachiket; Anderson, Shawn; Fridman, Gregory; Vasilets, Victor N.; Gutsol, Alexander; Tsapin, Alexander; Fridman, Alexander

    2007-01-01

    As a solution to chemically and thermally destructive sterilization methods currently used for spacecraft, non-equilibrium atmospheric pressure plasmas are used to treat surfaces inoculated with Bacillus subtilis and Deinococcus radiodurans. Evidence of significant morphological changes and reduction in viability due to plasma exposure will be presented, including a 4-log reduction of B. subtilis after 2 minutes of dielectric barrier discharge treatment.

  16. Formation of Dielectric Barrier Multi-Pulse Glow Discharges in Helium at Atmospheric Pressure%大气压氦气介质阻挡多脉冲辉光放电的形成条件

    Institute of Scientific and Technical Information of China (English)

    郝艳捧; 王晓蕾; 阳林

    2009-01-01

    Discharge currents are measured on single pulse, multi-pulse glow dielectric barrier discharges (DBDs) using high-frequency power supply in helium at atmospheric pressure. The influence of the applied voltage amplitude and frequency, as well as gas distance on multi-pulse glow DBD is discussed and analyzed. Conditions to form multi-pulse glow DBDs are proposed. The results show that the higher amplitude of the applied voltage, the lower voltage frequency can be useful to form a multi-pulse glow DBD. Moreover, the higher applied voltage is necessary to form multi-pulse glow DBDs.%利用高频高压电源,进行大气压氦气介质阻挡放电试验,测量了单脉冲和多脉冲辉光放电的放电回路电流波形,分析了外加电压峰.峰值和频率、放电间隙对多脉冲辉光放电过程的影响,探讨了大气压氦气介质阻挡多脉冲辉光放电的形成条件.研究表明:多脉冲辉光放电的形成条件是较高的外加电压峰-峰值、较低的电源频率,其中较高的外加电压峰-峰值是产生多脉冲辉光放电的必要条件.

  17. Lightning and middle atmospheric discharges in the atmosphere

    Science.gov (United States)

    Siingh, Devendraa; Singh, R. P.; Kumar, Sarvan; Dharmaraj, T.; Singh, Abhay K.; Singh, Ashok K.; Patil, M. N.; Singh, Shubha

    2015-11-01

    Recent development in lightning discharges including transient luminous events (TLEs) and global electric circuit are discussed. Role of solar activity, convective available potential energy, surface temperature and difference of land-ocean surfaces on convection process are discussed. Different processes of discharge initiation are discussed. Events like sprites and halos are caused by the upward quasi-electrostatic fields associated with intense cloud-to-ground discharges while jets (blue starter, blue jet, gigantic jet) are caused by charge imbalance in thunderstorm during lightning discharges but they are not associated with a particular discharge flash. Elves are generated by the electromagnetic pulse radiated during lightning discharges. The present understanding of global electric circuit is also reviewed. Relation between lightning activity/global electric circuit and climate is discussed.

  18. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion;

    Atmospheric pressure plasma treatment can be highly enhanced by simultaneous high-power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above approximately 140 dB can reduce the thickness of a boundary gas layer between the plasma...... and the material surface, and thus many reactive species generated in the plasma can reach the surface before inactivated, and be efficiently utilized for surface modification. In the present work polyester plates are treated using a dielectric barrier discharge (DBD) and a gliding arc at atmospheric pressure...

  19. Electrical characterization of atmospheric pressure DBD in air

    International Nuclear Information System (INIS)

    Atmospheric pressure dielectric barrier discharge (DBD) in air was generated between two rectangular copper electrodes covering the lower electrode with a dielectric (glass or polycarbonate -PC) using low frequency (line frequency-50Hz) high voltage power supply. The discharge was studied for inter-electrode gap spacing in the range of 2 mm – 5 mm and their influence on breakdown voltage. Voltage-current characteristics and the analysis of the distribution of current pulses per half cycle of the current waveform indicated that the discharge is more uniform in 3 mm inter-electrode gap spacing with PC as a dielectric rather than glass. (author)

  20. Use of Atmospheric Glow Discharge Plasma to Modify Spaceport Materials

    Science.gov (United States)

    Trigwell, S.; Shuerger, A. C.; Buhler, C. R.; Calle, C. J.

    2006-01-01

    Numerous materials used in spaceport operations require stringent evaluation before they can be utilized. It is critical for insulative polymeric materials that any surface charge be dissipated as rapidly as possible to avoid Electrostatic Discharges (ESD) that could present a danger. All materials must pass the Kennedy Space Center (KSC) standard electrostatic test [1]; however several materials that are considered favorable for Space Shuttle and International Space Station use have failed. Moreover, to minimize contamination of Mars spacecraft, spacecraft are assembled under cleanroom conditions and specific cleaning and sterilizing procedures are required for all materials. However, surface characteristics of these materials may allow microbes to survive by protecting them from sterilization and cleaning techniques. In this study, an Atmospheric Pressure Glow Discharge Plasma (APGD) [2] was used to modify the surface of several materials. This allowed the materials surface to be modified in terms of hydrophilicity, roughness, and conductivity without affecting the bulk properties. The objectives of this study were to alter the surface properties of polymers for improved electrostatic dissipation characteristics, and to determine whether the consequent surface modification on spaceport materials enhanced or diminished microbial survival.

  1. Dual-frequency glow discharges in atmospheric helium

    International Nuclear Information System (INIS)

    In this paper, the dual-frequency (DF) glow discharges in atmospheric helium were experimented by electrical and optical measurements in terms of current voltage characteristics and optical emission intensity. It is shown that the waveforms of applied voltages or discharge currents are the results of low frequency (LF) waveforms added to high frequency (HF) waveforms. The HF mainly influences discharge currents, and the LF mainly influences applied voltages. The gas temperatures of DF discharges are mainly affected by HF power rather than LF power

  2. Dual-frequency glow discharges in atmospheric helium

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaojiang; Guo, Ying [College of Science, Donghua University, Shanghai 201620 (China); Magnetic Confinement Fusion Research Center, Ministry of Education of the People' s Republic of China, Shanghai 201620 (China); Dai, Lu [School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009 (China); Zhang, Jing; Shi, J. J., E-mail: JShi@dhu.edu.cn [College of Science, Donghua University, Shanghai 201620 (China); Magnetic Confinement Fusion Research Center, Ministry of Education of the People' s Republic of China, Shanghai 201620 (China); State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620 (China)

    2015-10-15

    In this paper, the dual-frequency (DF) glow discharges in atmospheric helium were experimented by electrical and optical measurements in terms of current voltage characteristics and optical emission intensity. It is shown that the waveforms of applied voltages or discharge currents are the results of low frequency (LF) waveforms added to high frequency (HF) waveforms. The HF mainly influences discharge currents, and the LF mainly influences applied voltages. The gas temperatures of DF discharges are mainly affected by HF power rather than LF power.

  3. Special issue: diagnostics of atmospheric pressure microplasmas

    Science.gov (United States)

    Bruggeman, Peter; Czarnetzki, Uwe; Tachibana, Kunihide

    2013-11-01

    In recent decades, a strong revival of non-equilibrium atmospheric pressure plasma studies has developed in the form of microplasmas. Microplasmas have typical scales of 1 mm or less and offer a very exciting research direction in the field of plasma science and technology as the discharge physics can be considerably different due to high collisionality and the importance of plasma-surface interaction. These high-pressure small-scale plasmas have a diverse range of physical and chemical properties. This diversity coincides with various applications including light/UV sources [1], material processing [2], chemical analysis [3], material synthesis [4], electromagnetics [5], combustion [6] and even medicine [7]. At atmospheric pressure, large scale plasmas have the tendency to become unstable due to the high collision rates leading to enhanced heating and ionization compared to their low-pressure counterparts. As low-pressure plasmas typically operate in reactors with sizes of tens of centimetres, scaling up the pressure to atmospheric pressure the size of the plasma reduces to typical sizes below 1 mm. A natural approach of stabilizing atmospheric pressure plasmas is thus the use of microelectrode geometries. Traditionally microplasmas have been produced in confined geometries which allow one to stabilize dc excited discharges. This stabilization is intrinsically connected to the large surface-to-volume ratio which enhances heat transfer and losses of charged and excited species to the walls. Currently challenging boundaries are pushed by producing microcavity geometries with dimensions of the order of 1 µm [8]. The subject of this special issue, diagnostics of microplasmas, is motivated by the many challenges in microplasma diagnostics in view of the complex chemistry and strong spatial (and even temporal) gradients of species densities and plasma properties. Atmospheric pressure plasmas have a very long history dating back more than 100 years, with early work of

  4. The Nonlinear Behaviors in Atmospheric Dielectric Barrier Multi Pulse Discharges

    Science.gov (United States)

    Zhang, Dingzong; Wang, Yanhui; Wang, Dezhen

    2016-08-01

    An in-depth and comprehensive understanding of the complex nonlinear behaviors in atmospheric dielectric barrier discharge is significant for the stable operation and effective control of the plasma. In this paper, we study the nonlinear behaviors in argon atmospheric dielectric barrier multi pulse discharges by a one-dimensional fluid model. Under certain conditions, the multi pulse discharge becomes very sensitive with the increase of frequency, and the multi pulse period-doubling bifurcation, inverse period-doubling bifurcation and chaos appear frequently. The discharge can reach a relatively steady state only when the discharges are symmetrical between positive and negative half cycle. In addition, the effects of the voltage on these nonlinear discharges are also studied. It is found that the amplitude of voltage has no effects on the number of discharge pulses in multi-pulse period-doubling bifurcation sequences; however, to a relatively stable periodic discharge, the discharge pulses are proportional to the amplitude of the applied voltage within a certain range. supported by National Natural Science Foundation of China (No. 11447244), the Science Foundation of Hengyang Normal University of China (No. 14B41), the Construct Program of the Key Discipline in Hunan Province, and the Hunan Provincial Applied Basic Research Base of Optoelectronic Information Technology of China (No. GDXX010)

  5. Modification of various metals by volume discharge in air atmosphere

    Science.gov (United States)

    Shulepov, Mikhail A.; Erofeev, Mikhail V.; Oskomov, Konstantin V.; Tarasenko, Victor F.

    2015-12-01

    The results of the modification of stainless steel, niobium and titanium by volume discharge induced by a beam of runaway electrons in air under normal pressure are presented. Changes in the chemical composition of the surface layers of metal by the action of the discharge, structural changes and changes of hardness were studied. It has been found that the concentration of oxygen and carbon in the surface layers of the samples depend on the number of discharge pulses. The aim of this work is to find possible application of this type of discharge in science and industrial production.

  6. A simplified nitrogen laser setup operated at atmospheric pressure

    Science.gov (United States)

    Ruangsri, Artit; Wungmool, Piyachat; Tesana, Siripong; Suwanatus, Suchat; Hormwantha, Tongchai; Chiangga, Surasak; Luengviriya, Chaiya

    2015-07-01

    A transversely excited atmospheric pressure nitrogen laser (TEA N2 Laser) is a molecular pulse gas laser, operated at atmospheric pressure, which generates an electromagnetic wave in ultraviolet wavelength of 337.1 nm. It can operate without an optical resonator. We present a TEA N2 laser setup excited by an electronic discharge circuit known as the Blumlein circuit. Our setup is composed of simple components commonly found in everyday life. The setup can be utilized in classroom to demonstrate the dependence of the laser intensity on the flow rate of nitrogen gas.

  7. Pulse volume discharges in high pressure gases

    Science.gov (United States)

    Yamshchikov, V. A.

    2015-11-01

    New approach for suppression of plasma inhomogeneities and instabilities in the volume self-sustained discharge is offered. The physical model is offered and conditions of obtaining extremely homogeneous self-sustained discharge are defined (with full suppression of plasma inhomogeneity and instability). Results of calculations agree with experiments.

  8. Effect of Barrier Materials on Discharge Properties in Air at Low Pressure

    Institute of Scientific and Technical Information of China (English)

    LI Ming; LI Cheng-rong; ZHAN Hua-mao; XU Jin-bao; ZHANG Xian-jun

    2007-01-01

    Dielectric barrier discharge (DBD) is widely investigated in order to obtain uniform low-temperature plasma.Many studies have proved that some barrier materials,especially electrets,can improve the uniformity of discharge.It is regarded as an available way to get atmospheric pressure glow discharge (APGD).In this paper,discharge forms with 4 different barrier materials (alumina, quartz, PTFE and PET) are investigated, and the transition of discharge form depending on the air pressure are recorded to estimate the influence of barrier materials on discharge. By using electrets as barrier materials, homogeneous discharges can be obtained in a more wide pressure range. Under the same experimental conditions, discharges with electrets are more uniform or have larger uniform areas due to the storage and desorption of charges on the surface of electrets. The electrons deposited in the surface layer can be released on next half cycle when the polarity of the applied voltage changes, and provide a number of seed electrons, which makes the discharge more homogeneous. The capacitance and the permittivity of barrier materials have no effect on the discharge form directly.

  9. An Atmospheric Pressure Ping-Pong "Ballometer"

    Science.gov (United States)

    Kazachkov, Alexander; Kryuchkov, Dmitriy; Willis, Courtney; Moore, John C.

    2006-01-01

    Classroom experiments on atmospheric pressure focus largely on demonstrating its existence, often in a most impressive way. A series of amusing physics demonstrations is widely known and practiced by educators teaching the topic. However, measuring the value of atmospheric pressure(P[subscript atm]) is generally done in a rather mundane way,…

  10. Low pressure gas discharge in magnetically insulated diode

    International Nuclear Information System (INIS)

    The characteristics of the low pressure discharge in crossed electric and magnetic fields is described in this work for the case of magnetically insulated diode and electron anode layer with free cathode boundary. The theory is compared with experimental characteristics of Hall-type ion source ''Radical'' such as breakdown curves, current-voltage characteristics, dependences of discharge current on magnetic field and pressure. As a result of the carried out analysis, the mechanism of the discharge evolution dependence on boundary conditions is proposed. The mechanism of discharge initiation based on combined ionization of gas by electron avalanches and high energy ?-electrons is considered as well

  11. Heating effects of a non-equilibrium RF corona discharge in atmospheric air

    Energy Technology Data Exchange (ETDEWEB)

    Auzas, F; Makarov, M; Agneray, A [Technocentre Renault, 1 Avenue du Golf, 78288 Guyancourt (France); Tardiveau, P; Puech, V, E-mail: pierre.tardiveau@u-psud.f [Laboratoire de Physique des Gaz et des Plasmas, Bat 210, Universite Paris-Sud, 91405 Orsay Cedex (France)

    2010-12-15

    Electrical and thermal properties of a single electrode configuration corona discharge generated under radiofrequency high voltage inside an open air gap at pressures above 1 bar is investigated. Time-resolved imaging of the discharge shows a four-step development of the discharge at atmospheric pressure starting by streamers' inception and propagation, evolving in heating waves and stabilizing in a stationary regime until the power supply is switched off. The mean gas temperature reaches about 1700 K in tens of microseconds with electrical energy release around tens of millijoules. Heating has been attributed to ion collisions and excited species relaxation, promoted by the successive time periods of the power supply. At higher pressures, beyond 3 bar, this behaviour changes and heating occurs at the same time as the discharge propagates. It leads to hot channels which constrict near the electrode as long as the voltage pulse is applied. Temperature gets higher and saturates at 2600 K whatever the voltage and the pressure. Considering the change in the electrical energy density released within the plasma channels with pressure and voltage, temperature saturation seems to be an effect of heat confining within the channels due to pressure. The large and non-thermal plasma generated by the RF corona discharge is a very good candidate for car engine lean mixtures ignition issues.

  12. Heating effects of a non-equilibrium RF corona discharge in atmospheric air

    International Nuclear Information System (INIS)

    Electrical and thermal properties of a single electrode configuration corona discharge generated under radiofrequency high voltage inside an open air gap at pressures above 1 bar is investigated. Time-resolved imaging of the discharge shows a four-step development of the discharge at atmospheric pressure starting by streamers' inception and propagation, evolving in heating waves and stabilizing in a stationary regime until the power supply is switched off. The mean gas temperature reaches about 1700 K in tens of microseconds with electrical energy release around tens of millijoules. Heating has been attributed to ion collisions and excited species relaxation, promoted by the successive time periods of the power supply. At higher pressures, beyond 3 bar, this behaviour changes and heating occurs at the same time as the discharge propagates. It leads to hot channels which constrict near the electrode as long as the voltage pulse is applied. Temperature gets higher and saturates at 2600 K whatever the voltage and the pressure. Considering the change in the electrical energy density released within the plasma channels with pressure and voltage, temperature saturation seems to be an effect of heat confining within the channels due to pressure. The large and non-thermal plasma generated by the RF corona discharge is a very good candidate for car engine lean mixtures ignition issues.

  13. Comparison of atmospheric air plasmas excited by high-voltage nanosecond pulsed discharge and sinusoidal alternating current discharge

    Science.gov (United States)

    Zhang, Shuai; Wang, Wen-chun; Jiang, Peng-chao; Yang, De-zheng; Jia, Li; Wang, Sen

    2013-10-01

    In this paper, atmospheric pressure air discharge plasma in quartz tube is excited by 15 ns high-voltage nanosecond pulsed discharge (HVNPD) and sinusoidal alternating current discharge (SACD), respectively, and a comparison study of these two kinds of discharges is made through visual imaging, electrical characterization, optical detection of active species, and plasma gas temperature. The peak voltage of the power supplies is kept at 16 kV while the pulse repetition rate of nanosecond pulse power supply is 100 Hz, and the frequency of sinusoidal power supply is 10 kHz. Results show that the HVNPD is uniform while the SACD presents filamentary mode. For exciting the same cycles of discharge, the average energy consumption in HVNPD is about 1/13 of the SACD. However, the chemical active species generated by the HVNPD is about 2-9 times than that excited by the SACD. Meanwhile, the rotational and vibrational temperatures have been obtained via fitting the simulated spectrum of N2 (C3Πu → B3Πg, 0-2) with the measured one, and the results show that the plasma gas temperature in the HVNPD remains close to room temperature whereas the plasma gas temperature in the SACD is about 200 K higher than that in HVNPD in the initial phase and continually increases as discharge exposure time goes on.

  14. Adhesion improvement of fibres by continuous plasma treatment at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Løgstrup Andersen, Tom; Sørensen, Bent F.;

    2013-01-01

    Carbon fibres and ultra-high-molecular-weight polyethylene (UHMWPE) fibres were continuously treated by a dielectric barrier discharge plasma at atmospheric pressure for adhesion improvement with epoxy resins. The plasma treatment improved wettability, increased the oxygen containing polar...

  15. Spectral Measurement of Atmospheric Pressure Plasma by Means of Digital Camera

    Institute of Scientific and Technical Information of China (English)

    葛袁静; 张广秋; 刘益民; 赵志发

    2002-01-01

    A digital camera measuring system has been used successfully to measure the space fluctuation behaviors of Induced Dielectric Barrier Discharge (IDBD) plasma at atmospheric pressure. The experimental results showed that: (1) The uniformity of electron temperature in space depends on discharge condition and structure of web electrode. For a certain web electrode the higher the discharge voltage is, the more uniform distribution of electron temperature in space will be. For a certain discharge the finer and denser the holes on web electrode are, the more uniform distribution of electron temperature in space will be (2). Digital camera is an available equipment to measure some behaviors of the plasma working at atmospheric pressure.

  16. Spectral measurement of atmospheric pressure plasma by means of digital camera

    International Nuclear Information System (INIS)

    A digital camera measuring system has been used successfully to measure the space fluctuation behaviors of Induced Dielectric Barrier Discharge (IDBD) plasma at atmospheric pressure. The experimental results showed that: (1) The uniformity of electron temperature in space depends on discharge condition and structure of web electrode. For a certain web electrode the higher the discharge voltage is, the more uniform distribution of electron temperature in space will be. For a certain discharge the finer and denser the holes on web electrode are, the more uniform distribution of electron temperature in space will be. (2) Digital camera is an available equipment to measure some behaviors of the plasma working at atmospheric pressure

  17. Diagnostics for environmental aspects of pulsed atmospheric discharges

    International Nuclear Information System (INIS)

    Diagnostics for the study of pulsed atmospheric discharges are discussed. To obtain parameters for describing conversion processes of pollutants into harmless products many diagnostic techniques are in use and under development. In this contribution electrical, optical and chemical diagnostics used in air and wastewater remediation are reviewed

  18. High Pressure Micro-Slot Hollow Cathode Discharge

    Institute of Scientific and Technical Information of China (English)

    Wang Xinbing; Zhou Lina; Yao Xilin

    2005-01-01

    A direct current glow discharge source structure operating at high pressure based on the micro-slot hollow cathode is presented in this article. A 100 μm width slot cathode was fabricated of copper, and a stable DC glow discharge with an area of 0.5 mm2 was produced in noble gases (He, Ne) and air over a wide pressure range (kPa ~ 10 kPa). The current-voltage characteristics and the near UV radiation emission of the discharge were studied.

  19. Atmospheric-pressure guided streamers for liposomal membrane disruption

    Science.gov (United States)

    Svarnas, P.; Matrali, S. H.; Gazeli, K.; Aleiferis, Sp.; Clément, F.; Antimisiaris, S. G.

    2012-12-01

    The potential to use liposomes (LIPs) as a cellular model in order to study interactions of cold atmospheric-pressure plasma with cells is herein investigated. Cold atmospheric-pressure plasma is formed by a dielectric-barrier discharge reactor. Large multilamellar vesicle liposomes, consisted of phosphatidylcholine and cholesterol, are prepared by the thin film hydration technique, to encapsulate a small hydrophilic dye, i.e., calcein. The plasma-induced release of calcein from liposomes is then used as a measure of liposome membrane integrity and, consequently, interaction between the cold atmospheric plasma and lipid bilayers. Physical mechanisms leading to membrane disruption are suggested, based on the plasma characterization including gas temperature calculation.

  20. Atmospheric-pressure guided streamers for liposomal membrane disruption

    Energy Technology Data Exchange (ETDEWEB)

    Svarnas, P.; Aleiferis, Sp. [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, Rion 26504 (Greece); Matrali, S. H. [Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion 26504 (Greece); Gazeli, K. [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, Rion 26504 (Greece); IPREM-LCABIE, Plasmas et Applications, UPPA, 64000 Pau (France); Clement, F. [IPREM-LCABIE, Plasmas et Applications, UPPA, 64000 Pau (France); Antimisiaris, S. G. [Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion 26504 (Greece); Institute of Chemical Engineering Sciences (ICES)-FORTH, Rion 26504 (Greece)

    2012-12-24

    The potential to use liposomes (LIPs) as a cellular model in order to study interactions of cold atmospheric-pressure plasma with cells is herein investigated. Cold atmospheric-pressure plasma is formed by a dielectric-barrier discharge reactor. Large multilamellar vesicle liposomes, consisted of phosphatidylcholine and cholesterol, are prepared by the thin film hydration technique, to encapsulate a small hydrophilic dye, i.e., calcein. The plasma-induced release of calcein from liposomes is then used as a measure of liposome membrane integrity and, consequently, interaction between the cold atmospheric plasma and lipid bilayers. Physical mechanisms leading to membrane disruption are suggested, based on the plasma characterization including gas temperature calculation.

  1. Potential industrial applications of the one atmosphere uniform glow discharge plasma operating in ambient air

    International Nuclear Information System (INIS)

    The majority of industrial plasma processing is conducted with glow discharges at pressures below 10 Torr. This tends to limit such applications to high value workpieces, as a result of the high capital cost of vacuum systems and the production constraints of batch processing. It has long been recognized that glow discharges would play a much larger industrial role if they could be generated at 1 atm and in air. The one atmosphere uniform glow discharge plasma (OAUGDP registered ) has these capabilities. As a normal glow discharge, the OAUGDP registered can operate with maximum electrical efficiency at the Stoletow point, where the energy input per ion-electron pair is a minimum. This paper will survey exploratory investigations at the University of Tennessee's Plasma Sciences Laboratory of seven potential industrial applications of the OAUGDP registered which can be conducted at 1 atm and at room temperature with air as the working gas

  2. Evaporation of urea at atmospheric pressure.

    Science.gov (United States)

    Bernhard, Andreas M; Czekaj, Izabela; Elsener, Martin; Wokaun, Alexander; Kröcher, Oliver

    2011-03-31

    Aqueous urea solution is widely used as reducing agent in the selective catalytic reduction of NO(x) (SCR). Because reports of urea vapor at atmospheric pressure are rare, gaseous urea is usually neglected in computational models used for designing SCR systems. In this study, urea evaporation was investigated under flow reactor conditions, and a Fourier transform infrared (FTIR) spectrum of gaseous urea was recorded at atmospheric pressure for the first time. The spectrum was compared to literature data under vacuum conditions and with theoretical spectra of monomolecular and dimeric urea in the gas phase calculated with the density functional theory (DFT) method. Comparison of the spectra indicates that urea vapor is in the monomolecular form at atmospheric pressure. The measured vapor pressure of urea agrees with the thermodynamic data obtained under vacuum reported in the literature. Our results indicate that considering gaseous urea will improve the computational modeling of urea SCR systems.

  3. Micro-structured electrode arrays : high-frequency discharges at atmospheric pressure—characterization and new applications

    NARCIS (Netherlands)

    Baars-Hibbe, Lutz; Schrader, Christian; Sichler, Philipp; Cordes, Thorben; Gericke, Karl-Heinz; Büttgenbach, Stephanus; Draeger, Siegfried

    2004-01-01

    Micro-structured electrode (MSE) arrays allow to generate large-area uniform glow discharges over a wide pressure range up to atmospheric pressure. The electrode dimensions in the µm-range realized by means of modern micro-machining and galvanic techniques are small enough to generate sufficiently h

  4. Removal of priority pollutants from water by means of dielectric barrier discharge atmospheric plasma

    OpenAIRE

    Hijosa-Valsero, M.; Molina, R.; Schikora, H.; Müller, M.; Bayona, J M

    2013-01-01

    Two different nonthermal plasma reactors at atmospheric pressure were assessed for the removal of organic micropollutants (atrazine, chlorfenvinfos, 2,4-dibromophenol, and lindane) from aqueous solutions (1-5 mg L-1) at laboratory scale. Both devices were dielectric barrier discharge (DBD) reactors; one was a conventional batch reactor (R1) and the other a coaxial thin-falling-water-film reactor (R2). A first-order degradation kinetics was proposed for both experiments. The kinetic constants ...

  5. CO2 Dissociation using the Versatile Atmospheric Dielectric Barrier Discharge Experiment (VADER)

    OpenAIRE

    Michael Allen Lindon; Earl eScime

    2014-01-01

    Dissociation of CO2 is investigated in an atmospheric pressure dielectric barrier discharge (DBD) with a simple, zero dimensional (0-D) chemical model and through experiment. The model predicts that the primary CO2 dissociation pathway within a DBD is electron impact dissociation and electron-vibrational excitation. The relaxation kinetics following dissociation are dominated by atomic oxygen chemistry. The experiments included investigating the energy efficiencies and dissociation rates of...

  6. CO2 dissociation using the Versatile atmospheric dielectric barrier discharge experiment (VADER)

    OpenAIRE

    Lindon, Michael A.; Scime, Earl E.

    2014-01-01

    Dissociation of CO2 is investigated in an atmospheric pressure dielectric barrier discharge (DBD) with a simple, zero dimensional (0-D) chemical model and through experiment. The model predicts that the primary CO2 dissociation pathway within a DBD is electron impact dissociation and electron-vibrational excitation. The relaxation kinetics following dissociation are dominated by atomic oxygen chemistry. The experiments included investigating the energy efficiencies and dissociation rates of C...

  7. PWR pressurizer discharge piping system on-site testing

    International Nuclear Information System (INIS)

    Framatome PWR systems includes the installation of safety valves and relief valves wich permit the discharge of steam from the pressurizer to the pressurizer relief tank through discharge piping system. Water seal expulsion pluration then depends on valve stem lift dynamics which can vary according to water-stem interaction. In order to approaches the different phenomenons, it was decided to perform a test on a 900 MWe French plant, test wich objectives are: characterize the mechanical response of the discharge piping to validate a mechanical model; open one, two or several valves among the following: one safety valve and three pilot operated relief valves, at a time or sequentially and measure the discharge piping transient response, the support loads, the

  8. Measurement of the First Townsend's Ionization Coefficients in Helium, Air, and Nitrogen at Atmospheric Pressure

    Science.gov (United States)

    Ran, Junxia; Luo, Haiyun; Yue, Yang; Wang, Xinxin

    2014-07-01

    In the past the first Townsend’s ionization coefficient α could only be measured with Townsend discharge in gases at low pressure. After realizing Townsend discharge in some gases at atmospheric pressure by using dielectric barrier electrodes, we had developed a new method for measuring α coefficient at atmospheric pressure, a new optical method based on the discharge images taken with ICCD camera. With this newly developed method α coefficient in helium, nitrogen and air at atmospheric pressure were measured. The results were found to be in good agreement with the data obtained at lower pressure but same reduced field E/p by other groups. It seems that the value of α coefficient is sensitive to the purity of the working gas.

  9. Diagnostics and modeling of high pressure streamer induced discharges

    International Nuclear Information System (INIS)

    A great variety of diagnostic has been applied to gain information on basic parameter governing high pressure nonthermal filamentary plasmas (and namely streamer induced filamentary discharges). Apart from electrical diagnostics, gas discharge, in contrast with solid state physics, can greatly benefit from all optical techniques owing to its ''transparent'' state. Emission and absorption spectroscopy, as well as LIF or CARS (talk are given during this meeting on these two techniques) are among such specific possibilities. The figures gained from these diagnostic measurements has generally no meaning by itself. They must be worked out, by means of calibrated former results, and/or by using them as input in high pressure plasma modeling. Mixing experimental and modeling approach is necessary for reaching relevant physical knowledge of the high pressure filamentary discharges processes. It is shown that diffusion, and thermal space and time distribution, must fully be taken into account

  10. Graphene Membranes for Atmospheric Pressure Photoelectron Spectroscopy.

    Science.gov (United States)

    Weatherup, Robert S; Eren, Baran; Hao, Yibo; Bluhm, Hendrik; Salmeron, Miquel B

    2016-05-01

    Atmospheric pressure X-ray photoelectron spectroscopy (XPS) is demonstrated using single-layer graphene membranes as photoelectron-transparent barriers that sustain pressure differences in excess of 6 orders of magnitude. The graphene serves as a support for catalyst nanoparticles under atmospheric pressure reaction conditions (up to 1.5 bar), where XPS allows the oxidation state of Cu nanoparticles and gas phase species to be simultaneously probed. We thereby observe that the Cu(2+) oxidation state is stable in O2 (1 bar) but is spontaneously reduced under vacuum. We further demonstrate the detection of various gas-phase species (Ar, CO, CO2, N2, O2) in the pressure range 10-1500 mbar including species with low photoionization cross sections (He, H2). Pressure-dependent changes in the apparent binding energies of gas-phase species are observed, attributable to changes in work function of the metal-coated grids supporting the graphene. We expect atmospheric pressure XPS based on this graphene membrane approach to be a valuable tool for studying nanoparticle catalysis.

  11. THE RAMAN SCATTERING OF CARBON NANOTUBES PRODUCED IN DIFFERENT INERT GASES AND THEIR PRESSURES BY ARC DISCHARGE

    Institute of Scientific and Technical Information of China (English)

    ZHANG HAI-YAN; CHEN JIAN; LIU SONG-HAO; CHEN DI-HU; WU CHUN-YAN; HE YAN-YANG; LIANG LI-ZHENG; PENG SHAO-QI

    2000-01-01

    First- and second-order Raman spectra of carbon nanotubes produced in helium and argon atmospheres at a pressure ranging from 11 to 92 kPa by arc discharge have been measured and compared with each other. The position and bandwidth of the spectral lines depend on the kind of inert gases and their pressure. The Raman spectra of the nanotubes produced in argon gas atmosphere are much more similar to that of polycrystalline graphite than those of the nanotubes produced in helium gas atmosphere. The position and bandwidth of nanotube Raman peaks change with gas pressure in arc discharge because different diameter distribution of nanotubes is produced at different inert gas pressure. The Raman spectra of nanotubes produced at high pressure is much more like that of graphite than those produced in lower pressure

  12. Chaotic characteristics of corona discharges in atmospheric air

    International Nuclear Information System (INIS)

    A point-plane electrode system in atmospheric air is established to investigate the mechanism of the corona discharge. By using this system, the current pulses of the corona discharges under the 50 Hz ac voltage are measured using partial discharge (PD) measurement instrument and constitute the point-plane voltage-current (V-I) characteristic equation together with the voltage. Then, this paper constructs the nonlinear circuit model and differential equations of the system in an attempt to give the underlying dynamic mechanism based on the nonlinear V-I characteristics of the point-plane corona discharges. The results show that the chaotic phenomenon is found in the corona circuit by the experimental study and nonlinear dynamic analysis. The basic dynamic characteristics, including the Lyapunov exponent, the existence of the strange attractors, and the equilibrium points, are also found and analyzed in the development process of the corona circuit. Moreover, the time series of the corona current pulses obtained in the experiment is used to demonstrate the chaotic characteristics of the corona current based on the nonlinear dynamic circuit theory and the experimental basis. It is pointed out that the corona phenomenon is not a purely stochastic phenomenon but a short term deterministic chaotic activity

  13. Plasma Processing with a One Atmosphere Uniform Glow Discharge Plasma (OAUGDP)

    Science.gov (United States)

    Reece Roth, J.

    2000-10-01

    The vast majority of all industrial plasma processing is conducted with glow discharges at pressures below 10 torr. This has limited applications to high value workpieces as a result of the large capital cost of vacuum systems and the production constraints of batch processing. It has long been recognized that glow discharges would play a much larger industrial role if they could be operated at one atmosphere. The One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) has been developed at the University of Tennessee Plasma Sciences Laboratory. The OAUGDP is non-thermal RF plasma with the time-resolved characteristics of a classical low pressure DC normal glow discharge. An interdisciplinary team was formed to conduct exploratory investigations of the physics and applications of the OAUGDP. This team includes collaborators from the UTK Textiles and Nonwovens Development Center (TANDEC) and the Departments of Electrical and Computer Engineering, Microbiology, Food Science and Technology, and Mechanical and Aerospace Engineering and Engineering Science. Exploratory tests were conducted on a variety of potential plasma processing and other applications. These include the use of OAUGDP to sterilize medical and dental equipment and air filters; diesel soot removal; plasma aerodynamic effects; electrohydrodynamic (EDH) flow control of the neutral working gas; increasing the surface energy of materials; increasing the wettability and wickability of fabrics; and plasma deposition and directional etching. A general overview of these topics will be presented.

  14. Basic characteristics of an atmospheric pressure rf generated plasma jet

    Institute of Scientific and Technical Information of China (English)

    Wang Shou-Guo; Li Hai-Jiang; Ye Tian-Chun; Zhao Ling-Li

    2004-01-01

    A plasma jet has been developed which operates using radio frequency (rf) power and produces a stable homogeneous discharge at atmospheric pressure. Its discharge characteristics, especially the dependence of stable discharge operating range on the feed gas, were studied, and the electric parameters such as RMS current, RMS voltage and reflected power were obtained with different gas flows. These studies indicate that there is an optimum range of operation of the plasma jet for a filling with a gas mixture of He and O2. Two "failure" modes of the discharge are identified.One is a filamentary arc when the input power is raised above a critical level, another is that the discharge disappears gradually as the addition of O2 approaches 3.2%. Possible explanations for the two failure modes have been given. The current and voltage waveform measurements show that there is a clear phase shift between normal and failure modes.In addition, Ⅰ-Ⅴ curves as a function of pure helium and for 1% addition of oxygen have been studied.

  15. Atmospheric pressure femtosecond laser imaging mass spectrometry

    Science.gov (United States)

    Coello, Yves; Gunaratne, Tissa C.; Dantus, Marcos

    2009-02-01

    We present a novel imaging mass spectrometry technique that uses femtosecond laser pulses to directly ionize the sample. The method offers significant advantages over current techniques by eliminating the need of a laser-absorbing sample matrix, being suitable for atmospheric pressure sampling, and by providing 10μm resolution, as demonstrated here with a chemical image of vegetable cell walls.

  16. Breakdown and dc discharge in low-pressure water vapour

    Science.gov (United States)

    Sivoš, J.; Škoro, N.; Marić, D.; Malović, G.; Petrović, Z. Lj

    2015-10-01

    In this paper we report studies of basic properties of breakdown, low-current Townsend discharge and high-current discharge regimes in water vapour. Paschen curves and the corresponding distributions of emission intensities at low current were recorded in the range of pd (pressure x electrode gap) from 0.1 to 10 Torrcm covering the region of Paschen minimum. From the experimental profiles we obtained effective ionization coefficient of water vapour for the E/N range 650 Td-7 kTd and fitted the results by using the extended Townsend analytical formula. Using the obtained ionization coefficient, we calculated the effective yield of secondary electrons from the copper cathode. Results of the measurements of Volt-Ampere characteristics in water vapour were presented together with the images of the axial structure of the discharge in a wide range of discharge currents for two pd values. Recorded profiles showed development of the spatial structure of the discharge in different operating regimes. We were able to identify conditions where processes induced by heavy particles, probably fast hydrogen atoms, are dominant in inducing emission from the discharge. Finally, standard scaling laws were tested for low current and glow discharges in water vapour.

  17. Study of short atmospheric pressure dc glow microdischarge in air

    Science.gov (United States)

    Kudryavtsev, Anatoly; Bogdanov, Eugene; Chirtsov, Alexander; Emelin, Sergey

    2011-10-01

    The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen and oxygen atoms; ozone molecule; and different nitrogen and oxygen ions with different plasmochemical reactions between them. Simulations predicted the main regions of the dc glow discharges including cathode and anode sheath and plasma of negative glow, Faraday dark space and transition region. Gas heating plays an important role in shaping the discharge profiles. The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen

  18. High-pressure pulsed avalanche discharges: Formulas for required preionization density and rate for homogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Brenning, N.; Axnaes, I.; Nilsson, J.O.; Eninger, J.E. [Royal Inst. of Tech., Stockholm (Sweden)

    1997-02-01

    The requirements on preionization for the formation of spatially homogeneous pulsed avalanche discharges are examined. The authors derive two formulas which apply in the case of a slowly rising electric field, one which gives the required preionization density at breakdown, and one which gives the required preionization rate. These quantities are expressed as functions of the electrochemical properties of the gas, the neutral density, and the electric field rise time. They also treat the statistical effect that the electrons tend to form groups, in contrast to being randomly distributed in space, during the prebreakdown phase. This process is found to increase the required preionization rate significantly, typically by a factor of five for a discharge at atmospheric pressure. Homogeneous high-pressure discharges have been used for laser excitation, and have also been proposed for chemical plasma processing (ozone production) because of their good scaling properties and high efficiency.

  19. Generation of subnanosecond electron beams in air at atmospheric pressure

    Science.gov (United States)

    Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.

    2009-11-01

    Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.

  20. Response of cyanobacteria to low atmospheric pressure

    Science.gov (United States)

    Qin, Lifeng; Yu, Qingni; Ai, Weidang; Tang, Yongkang; Ren, Jin; Guo, Shuangsheng

    2014-10-01

    Maintaining a low pressure environment in a controlled ecological life support system would reduce the technological complexity and resupply cost in the course of the construction of a future manned lunar base. To estimate the effect of a hypobaric environment in a lunar base on biological components, such as higher plants, microbes, and algae, cyanobacteria was used as the model by determining their response of growth, morphology, and physiology when exposed to half of standard atmospheric pressure for 16 days (brought back to standard atmospheric pressure 30 minutes every two days for sampling). The results indicated that the decrease of atmospheric pressure from 100 kPa to 50 kPa reduced the growth rates of Microcystis aeruginosa, Merismopedia sp., Anabaena sp. PCC 7120, and Anabaena flos-aquae. The ratio of carotenoid to chlorophyll a content in the four tested strains increased under low pressure conditions compared to ambient conditions, resulting from the decrease of chlorophyll a and the increase of carotenoid in the cells. Moreover, low pressure induced the reduction of the phycocyanin content in Microcystis aeruginosa, Anabaena sp. PCC 7120, and Anabaena flos-aquae. The result from the ultrastructure observed using SEM indicated that low pressure promoted the production of more extracellular polymeric substances (EPSs) compared to ambient conditions. The results implied that the low pressure environment of 50 kPa in a future lunar base would induce different effects on biological components in a CELSS, which must be considered during the course of designing a future lunar base. The results will be a reference for exploring the response of other biological components, such as plants, microbes, and animals, living in the life support system of a lunar base.

  1. Investigation of Atmospheric Plasma Discharge and Its Application to Surface Modification of Textile Materials

    Institute of Scientific and Technical Information of China (English)

    TANG Xiao-liang; QIU Gao; FENG Xian-ping; YAN Yong-hui; SHI Yun-cheng; YAN Zhi-ren; WANG Liang

    2005-01-01

    In this paper, an improved quasi-stable atmospheric pressure dielectric barrier discharge (DBD) plasma source is achieved after carefully controlled discharge voltage and current, discharge power, working gas, treatment period,and gap between the electrodes. This plasma source has been used to modify the surface of Polybutylene Terephthalate (PBT) melt-blown nonwovens and Polyester(PET) fabrics, and the various influences on surface modification and the aging effeet of treated polymeric materials have been systematically investigated. In addition, the method of spectrum analysis is also used for diagnosing plasma parameters such as electron temperature.Experimental results indicate that both the wettablity and permeation of treated PBT melt-blown nonwovens and dyeing ability of treated PET fabrics are certainly improved.

  2. Development of a cascade arc discharge source for an atmosphere-vacuum interface device.

    Science.gov (United States)

    Namba, S; Endo, T; Fujino, S; Suzuki, C; Tamura, N

    2016-08-01

    To realize a novel vacuum-atmosphere interface that does not require a large differential pumping system, a robust cascade arc discharge source called a plasma window is constructed and tested for long-term operation. By modifying a test plasma with a direct current discharge, a vacuum interface with a high gas pressure ratio of 1/407 between the discharge and expansion sections is demonstrated for currents as high as 20 A. No significant damage to the electrodes is observed during the operation. Analysis of the visible emission spectra reveals that a stationary, stable argon plasma having a temperature of 1 eV and a density of 1.5 × 10(16) cm(-3) is generated in the plasma channel. PMID:27587119

  3. Development of a cascade arc discharge source for an atmosphere-vacuum interface device

    Science.gov (United States)

    Namba, S.; Endo, T.; Fujino, S.; Suzuki, C.; Tamura, N.

    2016-08-01

    To realize a novel vacuum-atmosphere interface that does not require a large differential pumping system, a robust cascade arc discharge source called a plasma window is constructed and tested for long-term operation. By modifying a test plasma with a direct current discharge, a vacuum interface with a high gas pressure ratio of 1/407 between the discharge and expansion sections is demonstrated for currents as high as 20 A. No significant damage to the electrodes is observed during the operation. Analysis of the visible emission spectra reveals that a stationary, stable argon plasma having a temperature of 1 eV and a density of 1.5 × 1016 cm-3 is generated in the plasma channel.

  4. 大气压直流正电晕放电暂态空间电荷分布仿真研究%Numerical simulation of transient space charge distribution of DC positive corona discharge under atmospheric pressure air

    Institute of Scientific and Technical Information of China (English)

    廖瑞金; 伍飞飞; 刘兴华; 杨帆; 杨丽君; 周之; 翟蕾

    2012-01-01

    DC positive corona discharge under atmospheric environment. The model is based on the plasma hydrodynamics and the chemical dynamics, and it includes 12 species and 27 reactions. Besides, the photoionization effect is also considered in the proposed model. The simulation and the experiment on bar-plate electrode configuration with an inter-electrode gap of 5.0 mm at 2-5.5 kV are carried out. The discharge voltage-current characteristics and single pulse waveform are in good agreement with the experimental measurements. Based on this model, the electric field distribution, the electron temperature distribution, and the evolution of charged species distribution are investigated in detail. The results show that distributions of electron temperature and electric field have the same patterns, In the process of discharge, electron density is kept at 10^19 m-3 or so. O4+ is dominant compared with the other charged heavy species, and O+ and N+ play the key role in secondary electron emission: the unmbers of O~ and O are the largest in negative ions and neutral particle respectively, they play a negligible role in discharge process.

  5. EDITORIAL: Atmospheric pressure non-thermal plasmas for processing and other applications

    Science.gov (United States)

    Massines, Françoise

    2005-02-01

    Interest has grown over the past few years in applying atmospheric pressure plasmas to plasma processing for the benefits this can offer to existing and potential new processes, because they do not require expensive vacuum systems and batch processing. There have been considerable efforts to efficiently generate large volumes of homogeneous atmospheric pressure non-thermal plasmas to develop environmentally friendly alternatives for surface treatment, thin film coating, sterilization, decontamination, etc. Many interesting questions have arisen that are related to both fundamental and applied research in this field. Many concern the generation of a large volume discharge which remains stable and uniform at atmospheric pressure. At this pressure, depending on the experimental conditions, either streamer or Townsend breakdown may occur. They respectively lead to micro-discharges or to one large radius discharge, Townsend or glow. However, the complexity arises from the formation of large radius streamers due to avalanche coupling and from the constriction of the glow discharge due to too low a current. Another difficulty is to visually distinguish many micro-discharges from one large radius discharge. Other questions relate to key chemical reactions in the plasma and at the surface. Experimental characterization and modelling also need to be developed to answer these questions. This cluster collects up-to-date research results related to the understanding of different discharges working at atmospheric pressure and the application to polymer surface activation and thin film coating. It presents different solutions for generating and sustaining diffuse discharges at atmospheric pressure. DC, low-frequency and radio-frequency excitations are considered in noble gases, nitrogen or air. Two specific methods developed to understand the transition from Townsend to streamer breakdown are also presented. They are based on the cross-correlation spectroscopy and an electrical

  6. Supershort avalanche electron beams and x-ray in high-pressure nanosecond discharges

    International Nuclear Information System (INIS)

    The properties of a supershort avalanche electron beam (S AEB) and X-ray radiation produced using a nanosecond volume discharge are examined. An electron beam of the runaway electrons with amplitude of ∼ 50 A has been obtained in air atmospheric pressure. It is reported that S AEB is formed in the angle above 2π sr. Three groups of the runaway electrons are formed in a gas diode under atmospheric air pressure, when nanosecond voltage pulses with amplitude of hundreds of kilovolts are applied. The electron beam has been generated behind a 45 μm thick AlBe foil in SF6 and Xe under the pressure of 2 arm, and in He under the pressure of about 12 atm. The paper gives the analysis of a generation mechanism of SAEB.

  7. Supershort avalanche electron beams and x-ray in high-pressure nanosecond discharges

    Science.gov (United States)

    Tarasenko, V. F.; Baksht, E. H.; Kostyrya, I. D.; Lomaev, M. I.; Rybka, D. V.

    2008-10-01

    The properties of a supershort avalanche electron beam (S AEB) and X-ray radiation produced using a nanosecond volume discharge are examined. An electron beam of the runaway electrons with amplitude of ~ 50 A has been obtained in air atmospheric pressure. It is reported that S AEB is formed in the angle above 2π sr. Three groups of the runaway electrons are formed in a gas diode under atmospheric air pressure, when nanosecond voltage pulses with amplitude of hundreds of kilovolts are applied. The electron beam has been generated behind a 45 μm thick AlBe foil in SF6 and Xe under the pressure of 2 arm, and in He under the pressure of about 12 atm. The paper gives the analysis of a generation mechanism of SAEB.

  8. Determination of Ionization Coefficient of Atmospheric Helium in Dielectric Barrier Discharge

    International Nuclear Information System (INIS)

    A weakly luminous layer close to the anode is observed at time far ahead of the current pulse in dielectric barrier discharge of helium at atmospheric pressure and it is considered as the result of a very weak Townsend discharge. Based on the assumption that the space charge produced by this Townsend discharge is too small to distort the uniform electric field in the gas gap, the electrons have more or less the same energy over the entire gap and the spatial distribution of the discharge light is proportional to the distribution of electron density. This light distribution is obtained by processing side-view photograph of discharge gap using an intensified charge coupled device camera with an exposure time of 20 ns. By fitting a theoretically derived formula with the measured curve of light distribution, the Townsend electron ionization coefficient a is determined to be 31 cm−1 at E/p = 3.6 V·cm−1·Torr−1, which is much higher than that obtained by solving the Boltzmann equation of pure helium. It is believed that penning ionization of helium metastables with impurity of nitrogen molecules makes great contribution to the experimentally determined α value. The contribution of this penning ionization to α is roughly estimated. (physics of gases, plasmas, and electric discharges)

  9. Luminous Activity Study of a Long Atmospheric Pressure DBD Afterglow

    Institute of Scientific and Technical Information of China (English)

    E.PANOUSIS; F.CLEMENT; N.SPYROU; J.F.LOISEAU; C.MONGE; B.HELD

    2007-01-01

    The experimental work reported here is devoted to the study of the luminous activity of a long dielectric barrier discharge (DBD) afterglow at atmospheric pressure.The discharge plasma is generated in a commercially available (AcXys Technologies) reactor,using a N2 flow of a few tens SL/min,whereas the luminous afterglow when channelled into a quartz tube extends at a distance of 50 cm,finishing in a luminous arrow at the tube's exit.The luminous activity of the afterglow is studied by means of photomultiplier scans and optical emission spectroscopy,revealing an interesting transient phase.An attempt is made to correlate this effect with the active species' creation and destruction mechanisms.

  10. Diagnostics of atmospheric pressure capillary DBD oxygen plasma jet

    CERN Document Server

    Roy, N C; Pramanik, B K

    2015-01-01

    Atmospheric pressure capillary dielectric barrier oxygen discharge plasma jet is developed to generate non-thermal plasma using unipolar positive pulse power supply. Both optical and electrical techniques are used to investigate the characteristics of the produced plasma as function of applied voltage and gas flow rate. Analytical results obtained from the optical emission spectroscopic data reveal the gas temperature, rotational temperature, excitation temperature and electron density. Gas temperature and rotational temperature are found to decrease with increasing oxygen flow rate but increase linearly with applied voltage. It is exposed that the electron density is boosting up with enhanced applied voltage and oxygen flow rate, while the electron excitation temperature is reducing with rising oxygen flow rate. Electrical characterization demonstrates that the discharge frequency is falling with flow rate but increasing with voltage. The produced plasma is applied preliminarily to study the inactivation yie...

  11. "Politically-Incorrect" Electron Behavior in Low Pressure RF Discharges

    Science.gov (United States)

    Godyak, Valery; Kolobov, Vladimir

    1996-10-01

    The main interaction of plasma electrons with electromagnetic fields for bounded plasma of an rf discharge occurs in the vicinity of its boundaries (in the rf sheath of a capacitive rf discharge and in the skin layer of an inductive one). On the other hand, due to plasma inhomogeneity, a dc ambipolar field is always present in the bounded plasma. in low pressure discharges the ambipolar potential well captures low energy electrons within the discharge center while high energy electrons freely overcome the ambipolar potential and reach the plasma boundaries where heating takes place. Being segregated in space, low energy electrons are discriminated from participation in the heating process. When Coulomb interaction between low and high energy electron groups is weak, their temperatures appear to be essentially different ( a low energy peak on the EEDF). In this presentation we present theoretical and experimental evidence of such an apartheid in the low and high energy electron populations of the EEDF in rf discharge and we outline discharge conditions where such abnormal EEDF behavior is possible.

  12. Time lags of positive corona discharges in atmospheric air

    International Nuclear Information System (INIS)

    Positive impulse voltage was applied to the rod-plane gap in the box and the time lag of the first corona discharge was measured under three atmospheric conditions. In the laboratory air and the air which was passed through the airfilter, the rates of production of the primary electron to start the corona discharge were increased with the time after the application of impulse voltage. Their values were 1.0 x 10-2 -- 3.5 x 10-1 and 2.0 x 10-2 -- 1.0 [cm-3.μsec-1] respectively. By diffusion of the negative ions, the rate of production of the primary electron in the discharge space was constant with time. Its value was 4.0 x 10-1 -- 2.6 [cm-3μsec-1]. On the assumption of the collisional detachment processes from 02- ions, the data of the air with diffused negative ions was examined theoretically. (auth.)

  13. A microwave pressure sounder. [for remote measurement of atmospheric pressure

    Science.gov (United States)

    Peckham, G. E.; Flower, D. A.

    1981-01-01

    A technique for the remote measurement of atmospheric surface pressure will be described. Such measurements could be made from a satellite in polar orbit and would cover many areas for which conventional meteorological data are not available. An active microwave instrument is used to measure the strength of return echoes from the ocean surface at a number of frequencies near the 60 GHz oxygen absorption band. Factors which affect the accuracy with which surface pressure can be deduced from these measurements will be discussed and an instrument designed to test the method by making measurements from an aircraft will be described.

  14. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    Science.gov (United States)

    Vasile Nastuta, Andrei; Topala, Ionut; Grigoras, Constantin; Pohoata, Valentin; Popa, Gheorghe

    2011-03-01

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  15. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nastuta, Andrei Vasile; Topala, Ionut; Pohoata, Valentin; Popa, Gheorghe [Faculty of Physics, Alexandru Ioan Cuza University, Bd. Carol No. 11, 700506, Iasi (Romania); Grigoras, Constantin, E-mail: andrei.nastuta@uaic.ro [Physiopathology Department, Grigore T. Popa University of Medicine and Pharmacy, 700115, Iasi (Romania)

    2011-03-16

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  16. Atmospheric pressure thermospray ionization using a heated microchip nebulizer.

    Science.gov (United States)

    Keski-Rahkonen, Pekka; Haapala, Markus; Saarela, Ville; Franssila, Sami; Kotiaho, Tapio; Kostiainen, Risto; Auriola, Seppo

    2009-10-30

    When a standard atmospheric pressure chemical ionization (APCI) or atmospheric pressure photoionization (APPI) ion source is used without applying the corona discharge or photoirradiation, atmospheric pressure thermospray ionization (APTSI) of various compounds can be achieved. Although largely ignored, this phenomenon has recently gained interest as an alternative ionization technique. In this study, this technique is performed for the first time on a miniaturized scale using a microchip nebulizer. Sample ionization with the presented microchip-APTSI (microAPTSI) is achieved by applying only heat and gas flow to a nebulizer chip, without any other methods to promote gas-phase ionization. To evaluate the performance of the described microAPTSI setup, ionization efficiency for a set of test compounds was monitored as the microchip positioning, temperature, nebulizer gas flow rate, sample solution composition, and solvent flow rate were varied. The microAPTSI mass spectra of the test compounds were also compared to those obtained with ESI and APCI. The microAPTSI produces ESI-like spectra with low background noise, favoring the formation of protonated or deprotonated molecules of compounds that are ionizable in solution. Multiple charging of peptides without in-source fragmentation was also observed. Unlike ESI, however, the microAPTSI source can tolerate the presence of mobile phase additives like trifluoroacetic acid (TFA) without significant ion suppression. The microAPTSI source can be used with standard mass spectrometer ion source hardware, being a unique alternative to the present interfacing techniques.

  17. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    International Nuclear Information System (INIS)

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  18. Corona discharge experiments in admixtures of N2 and CH4: a laboratory simulation of Titan's atmosphere

    International Nuclear Information System (INIS)

    A positive corona discharge fed by a N2 : CH4 mixture (98 : 2) at atmospheric pressure and ambient temperature has been studied as a laboratory mimic of the chemical processes occurring in the atmosphere of Titan, Saturn's largest moon. In situ measurements of UV and IR transmission spectra within the discharge have shown that the main chemical product is C2H2, produced by dissociation of CH4, with small but significant traces of ethane and HCN, all species that have been detected in Titan's atmosphere. A small amount (0.2%) of CH4 was decomposed after 12 min of treatment requiring an average energy of 2.7 kWh g-1. After 14 min the discharge was terminated due to the formation of a solid yellow deposit on the central wire electrode. Such a deposit is similar to that observed in other discharges and is believed to be an analogue of the aerosol and dust observed in Titan's atmosphere and is composed of chemical species commonly known as 'tholins'. We have also explored the electrical properties of the discharge. The admixture of methane into nitrogen caused an increase in the onset voltage of the discharge and consequently led to a reduction in the measured discharge current.

  19. Study on the hydrogen negative ion in low pressure discharges

    International Nuclear Information System (INIS)

    A new use of negative hydrogen ions is the production of intense fast neutral atom beams useful in plasma heating in thermonuclear heating. That is one of the reasons that started this study. The density of negative hydrogen ions in diffusion, and multipole-type low pressure (10-3 - 10-2 Torr) discharges is deduced from the various formation and destruction processes of the species present in these discharges. The H- ions are essentially produced by dissociative attachment to vibrationally excited molecules and destroyed by processes the relative importance of which is discussed as a function of the discharge parameters. The experimental study of the density of the H- ions, measured by photodetachment, as a function of these parameters, coroborates the theoretical model

  20. Compact atmospheric pressure plasma self-resonant drive circuits

    International Nuclear Information System (INIS)

    This paper reports on compact solid-state self-resonant drive circuits that are specifically designed to drive an atmospheric pressure plasma jet and a parallel-plate dielectric barrier discharge of small volume (0.5 cm3). The atmospheric pressure plasma (APP) device can be operated with helium, argon or a mixture of both. Equivalent electrical models of the self-resonant drive circuits and discharge are developed and used to estimate the plasma impedance, plasma power density, current density or electron number density of three APP devices. These parameters and the kinetic gas temperature are dependent on the self-resonant frequency of the APP device. For a fixed switching frequency and APP device geometry, the plasma parameters are controlled by adjusting the dc voltage at the primary coil and the gas flow rate. The resonant frequency is controlled by the selection of the switching power transistor and means of step-up voltage transformation (ferrite core, flyback transformer, or Tesla coil). The flyback transformer operates in the tens of kHz, the ferrite core in the hundreds of kHz and Tesla coil in the MHz range. Embedded within this work is the principle of frequency pulling which is exemplified in the flyback transformer circuit that utilizes a pickup coil for feedback control of the switching frequency. (paper)

  1. Compact atmospheric pressure plasma self-resonant drive circuits

    Science.gov (United States)

    Law, V. J.; Anghel, S. D.

    2012-02-01

    This paper reports on compact solid-state self-resonant drive circuits that are specifically designed to drive an atmospheric pressure plasma jet and a parallel-plate dielectric barrier discharge of small volume (0.5 cm3). The atmospheric pressure plasma (APP) device can be operated with helium, argon or a mixture of both. Equivalent electrical models of the self-resonant drive circuits and discharge are developed and used to estimate the plasma impedance, plasma power density, current density or electron number density of three APP devices. These parameters and the kinetic gas temperature are dependent on the self-resonant frequency of the APP device. For a fixed switching frequency and APP device geometry, the plasma parameters are controlled by adjusting the dc voltage at the primary coil and the gas flow rate. The resonant frequency is controlled by the selection of the switching power transistor and means of step-up voltage transformation (ferrite core, flyback transformer, or Tesla coil). The flyback transformer operates in the tens of kHz, the ferrite core in the hundreds of kHz and Tesla coil in the MHz range. Embedded within this work is the principle of frequency pulling which is exemplified in the flyback transformer circuit that utilizes a pickup coil for feedback control of the switching frequency.

  2. Bacteria Inactivation Using DBD Plasma Jet in Atmospheric Pressure Argon

    Institute of Scientific and Technical Information of China (English)

    XU Guimin; ZHANG Guanjun; SHI Xingmin; MA Yue; WANG Ning; LI Yuan

    2009-01-01

    A coaxial dielectric barrier discharge plasma jet Was designed,which can be operated in atmospheric pressure argon under an intermediate frequency sinusoidal resonant power supply,and an atmospheric pressure glow-like discharge Was achieved.Two kinds of typical bacteria,i.e.,the Staphylococcus aureus(S.aurens)and Escherichia coil(E.coil),were employed to study the bacterial inactivation mechanism by means of the non-thermal plasma.The killing log value (KLV)of S.aureus reached up to 5.38 with a treatment time of 90 s and that of E.coil up to 5.36 with 60 s,respectively.According to the argon emission spectra of the plasma jet and the scanning electron microscope (SEM) images of the two bacteria before and after the plasma treatment.it is concluded that the reactive species in the argon plasma played a major role in the bacterial inactivation,while the heat,electric field and UV photons had little effect.

  3. One-step preparation of transparent superhydrophobic coatings using atmospheric arc discharge

    Science.gov (United States)

    Li, Jian; Huang, Zhengyong; Wang, Feipeng; Yan, Xinzhu; Wei, Yuan

    2015-08-01

    In this letter, we report a fast, simple, and single step approach to the preparation of transparent super-hydrophobic coatings on a copper conductor via atmosphere pressure arc discharges. The preparation procedures, hydrophobic characteristics, anti-pollution capability, and transparency of the super-hydrophobic coating are presented. A dual micro- and nano-scale hierarchical structure is observed on the super-hydrophobic coating with a water contact angle greater than 150°. The coating is, thus, capable of removing a significant amount of contaminants with a small quantity of water droplets. Attenuated total reflection Fourier transform infrared spectroscopy indicates that hydrophobic methyl groups exist on the surface of the coating. The surface roughness measurement results prove that the super-hydrophobic surface obeys the Cassie-Baxter model and its light scattering is very weak. Results demonstrate the conceptual feasibility of production of optically transparent super-hydrophobic coating by arc spraying of polymers under the atmospheric pressure.

  4. Sub-nanosecond dynamics of atmospheric air discharge under highly inhomogeneous and transient electric field

    Science.gov (United States)

    Tardiveau, Pierre; Magne, Lionel; Pasquiers, Stephane; Jeanney, Pascal; Bournonville, Blandine

    2015-09-01

    The effects of the application of extreme overvoltages (>500%) in air gaps over less than a few nanoseconds bring us to reconsider the classical physics of streamer used to describe air discharges at atmospheric pressure. Non equilibrium discharges created by extremely transient and intense electric fields in standard conditions of pressure and temperature exhibit unusual diffuse and large structure. In point-to-plane electrode configurations, a plasma cloud is observed which properties depend on voltage pulses features (amplitude, rise time, length, and frequency) and electrodes properties (material, shape, and gap length). Our parametric experimental study is based on fast electrical characterization and sub-nanosecond imaging and shows the different stages of propagation of the cloud. This work details the conditions to maximize the cloud size without moving towards a multi-channel streamer regime. Based on the analysis and the Abel transform processing of the emission of excited states of nitrogen from the discharge, a focus is made on the structuration of the plasma cloud while it is propagating. It shows how much, according to the experimental conditions, the external electric field can be screened by the plasma and, inversely, how deep and how long a high electric field can be sustained in the gap, that is challenging for pulsed atmospheric plasmas applications. This work benefits from the financial support of the National Agency of Research within the framework of the project ANR-13-BS09-0014.

  5. Plasma pressure in the discharge column of the Novillo Tokamak

    International Nuclear Information System (INIS)

    The design and construction of an acquisition system for the measurement of the plasma pressure in the Novillo Tokamak is described in detail. The system includes a high voltage ramp generator, a hardware and a software interface with a personal computer. It is used to determine experimentally the variations of the pressure in the plasma column in the cleaning and main discharges. The measurement of the pressure is made with a Pirani sensor adapted to the acquisition hardware and synchronized with the discharge in the plasma. The software is made in object oriented programming as a graphic interface designed to be used easily. It controls the acquisition, records the data, displays in graphic form the results and save the measurements. The graphic interface is a building block that can be used in different acquisition tasks. The ramp generator can deliver a signal of 200 V peak to peak with a current of 200 m A and offset control. The acquisition time is 2.5 μ s for every measurement, 8192 measurements can be stored in the acquisition board for every discharge. (Author)

  6. Determination of Ionization Coefficient of Atmospheric Helium in Dielectric Barrier Discharge

    Institute of Scientific and Technical Information of China (English)

    LIANG Zhuo; LUO Hai-Yun; Wang Xin-Xin; LV Bo; GUAN Zhi-Cheng; WANG Li-Ming

    2008-01-01

    A weakly luminous layer close to the anode is observed at time far ahead of the current pulse in dielectric barrier discharge of helium at atmospheric pressure and it is considered as the result of a very weak Townsend discharge. Based on the assumption that the space charge produced by this Townsend discharge is too small to distort the uniform electric field in the gas gap, the electrons have more or less the same energy over the entire gap and the spatial distribution of the discharge light is proportional to the distribution of electron density. This light distribution is obtained by processing side-view photograph of discharge gap using an intensified charge coupled device camera with an exposure time of 20ns. By fitting a theoretically derived formula with the measured curve of light distribution, the Townsend electron ionization coefficient α is determined to be 31 cm-1 at E/p = 3.6 V.cm-1.Torr-1, which is much higher than that obtained by solving the Boltzmann equation of pure helium. It is believed that penning ionization of helium metastables with impurity of nitrogen molecules makes great contribution to the experimentally determined α value. The contribution of this penning ionization to a is roughly estimated.

  7. 大气压氦气冷等离子体射流放电-维数值模拟%One-dimensional Simulation of Helium Cold Plasma Jet Discharge at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    刘富成; 王德真

    2012-01-01

    为了明确大气压冷等离子体射流的形成机理,采用一维流体模型研究了针一板电极下大气压氦气冷等离子体射流中等离子体子弹的传播过程,得到并分析了等离子体子弹的空间结构。模拟结果表明,等离子体子弹实际上就是等离子体射流头部的电离区域,其传播过程即为该电离区域的推进过程。Penning电离可以为等离子体射流的传播提供种子电子。驱动电压的极性对等离子体射流的性质有着重要的影响,与正脉冲驱动等离子体射流不同,负脉冲驱动下的等离子体射流具有一个较窄的阴极位降区,且内部没有准中性区域。%In order to understand the formation mechanism of the atmospheric pressure cold plasma jet. Using one- dimensional simulation, we invesitgated plasma bullet propagatiofl in helium at atmospheric pressure cold plasma jet between needle-plane electrodes, and obtained a fine structure of plasma bullet. The simulation results show that the plasma bullet is treated as an ionization domain in the head of the plasma jet, and the advancement of this domain should be responsible for the propagation of the plasma bullet. Moreover, Penning ionization can provide the seed electrons ahead of the plasma jet. The polarity of applied voltage has a significant effect on the characteristics of plasma jets. In contrast to the positive plasma jet, there is a narrow cathode fall region, but no quasi neutral ionized channels exist in the plasma jet driven by a negative pulse.

  8. Corona discharge experiments in admixtures of N2 and CH4: a laboratory simulation of Titan's atmosphere

    OpenAIRE

    Horvath, G.; Skalny, J. D.; Mason, N.J.; Klas, M.; Zahoran, M.; Vladoiu, R.; Manole, M.

    2009-01-01

    A positive corona discharge fed by a N2:CH4 mixture (98:2) at atmospheric pressure and ambient temperature has been studied as a laboratory mimic of the chemical processes occurring in the atmosphere of Titan, Saturn's largest moon. In-situ measurements of UV and IR transmission spectra within the discharge have shown that the main chemical product is C2H2, produced by dissociation of CH4, with small but significant traces of ethane and HCN, all species that have been detected in Titan's atmo...

  9. Modification of Composite Material Fillers by Atmospheric Plasma Discharge

    Directory of Open Access Journals (Sweden)

    David Tichy

    2013-01-01

    Full Text Available This work is focused on the observation of the influence of cold atmospheric dielectric barrier discharge (DBD on a modification of textile samples. The main objective of the experiment is to research wettability change of textiles modified by different exposure times and also the observation of the influence of a modification ageing effect. An ambient air was used as a working gas for DBD plasma. The wettability evaluation was carried out by a drop method, in which an imprint of the dropwas observed on the textile surface during various time intervals. An ageing effect of the modification was monitored within an interval of 28 days. Considerable increase of wettability of all modified samples has been proved. A fibre surface analysis was carried out by means of SEM.

  10. Killing Microorganisms with the One Atmosphere Uniform Glow Discharge Plasma

    Science.gov (United States)

    South, Suzanne; Kelly-Wintenberg, Kimberly; Montie, T. C.; Reece Roth, J.; Sherman, Daniel; Morrison, Jim; Chen, Zhiyu; Karakaya, Fuat

    2000-10-01

    There is an urgent need for the development of new technologies for sterilization and decontamination in the fields of healthcare and industrial and food processing that are safe, cost-effective, broad-spectrum, and not deleterious to samples. One technology that meets these criteria is the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP). The OAUGDP operates in air and produces uniform plasma without filamentary discharges at room temperature, making this technology advantageous for sterilization of heat sensitive materials. The OAUGDP operates in a frequency band determined by the ion trapping mechanisms provided that, for air, the electric field is above 8.5kV/cm. The OAUGDP efficiently generates plasma reactive oxygen species (ROS) including atomic oxygen and oxygen free radicals without the requirement of a vacuum system. We have demonstrated the efficacy of the OAUGDP in killing microorganisms including bacteria, yeast, viruses, and spores in seconds to minutes on a variety of surfaces such as glass, films and fabrics, stainless steel, paper, and agar.

  11. Atmospheric Pressure Plasma Processing for Polymer Adhesion: A Review

    DEFF Research Database (Denmark)

    Kusano, Yukihiro

    2014-01-01

    Atmospheric pressure plasma processing has attracted significant interests over decades due to its usefulness and a variety of applications. Adhesion improvement of polymer surfaces is among the most important applications of atmospheric pressure plasma treatment. Reflecting recent significant...... development of the atmospheric pressure plasma processing, this work presents its fundamental aspects, applications, and characterization techniques relevant to adhesion....

  12. Computational studies for plasma filamentation by magnetic field in atmospheric microwave discharge

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Masayuki; Ohnishi, Naofumi [Department of Aerospace Engineering, Tohoku University, Sendai 980-8579 (Japan)

    2014-12-01

    Plasma filamentation is induced by an external magnetic field in an atmospheric discharge using intense microwaves. A discrete structure is obtained at low ambient pressure if a strong magnetic field of more than 1 T is applied, due to the suppression of electron diffusion, whereas a diffusive pattern is generated with no external field. Applying a magnetic field can slow the discharge front propagation due to magnetic confinement of the electron transport. If the resonance conditions are satisfied for electron cyclotron resonance and its higher harmonics, the propagation speed increases because the heated electrons easily ionize neutral particles. The streamer velocity and the pattern of the microwave plasma are positively controlled by adjusting two parameters—the electron diffusion coefficient and the ionization frequency—through the resonance process and magnetic confinement, and hot, dense filamentary plasma can be concentrated in a compact volume to reduce energy loss in a plasma device like a microwave rocket.

  13. New development of atmospheric pressure plasma polishing

    Institute of Scientific and Technical Information of China (English)

    Bo Wang; Jufan Zhang; Shen Dong

    2009-01-01

    Atmospheric pressure plasma polishing (APPP) is a precision machining technology used for manufacturing high quality optical surfaces. The changes of surface modulus and hardness after machining prove the distinct improvement of surface mechanical properties. The demonstrated decrease of surfacc residual stresses testifies the removal of the former deformation layer.And the surface topographies under atomic force microscope (AFM) and scanning electron microscope (SEM) indicate obvious amelioration of the surface status,showing that the 0.926-nm average surface roughness has been achieved.

  14. Nanocapillary Atmospheric Pressure Plasma Jet: A Tool for Ultrafine Maskless Surface Modification at Atmospheric Pressure.

    Science.gov (United States)

    Motrescu, Iuliana; Nagatsu, Masaaki

    2016-05-18

    With respect to microsized surface functionalization techniques we proposed the use of a maskless, versatile, simple tool, represented by a nano- or microcapillary atmospheric pressure plasma jet for producing microsized controlled etching, chemical vapor deposition, and chemical modification patterns on polymeric surfaces. In this work we show the possibility of size-controlled surface amination, and we discuss it as a function of different processing parameters. Moreover, we prove the successful connection of labeled sugar chains on the functionalized microscale patterns, indicating the possibility to use ultrafine capillary atmospheric pressure plasma jets as versatile tools for biosensing, tissue engineering, and related biomedical applications.

  15. Impulse Characteristics of the Atmospheric Negative Corona Discharge

    International Nuclear Information System (INIS)

    In many practical applications, such as xerography and static charge elimination, a number of point corona electrodes may be employed in parallel; another growing application of corona discharges is the cleaning effect on gases by means of precipitators. High geoelectric field intensity occurring as a result of meteorological situations also gives rise to corona discharges at the tree tops. These discharges are also multiple point discharges, especially on coniferous trees. This paper presents the experimental results obtained with the multineedle discharge electrodes, and the modelling of the negative corona discharge on living objects by multiple point - to - plane corona is also presented. (author)

  16. Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the spark regime

    Science.gov (United States)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-12-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 1015 cm-3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 1011 cm-3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 108 cm-3.

  17. Response of cyanobacteria to low atmosphere pressure

    Science.gov (United States)

    Qin, Lifeng; Ai, Weidang; Guo, Shuangsheng; Tang, Yongkang; Yu, Qingni; Shen, Yunze; Ren, Jin

    Maintaining a low pressure environment would reduce the technological complexity and constructed cost of future lunar base. To estimate the effect of hypobaric of controlled ecological life support system in lunar base on terrestrial life, cyanobacteria was used as the model to exam the response of growth, morphology, physiology to it. The decrease of atmosphere pressure from 100 KPa to 50 KPa reducing the growth rates of Microcystis aeruginosa, Merismopedia.sp, Anabaena sp. PCC 7120, Anabaena Hos-aquae, the chlorophyll a content in Microcystis aeruginosa, Merismopedia.sp, Anabaena Hos-aquae, the carotenoid content in Microcystis aeruginosa, Merismopedia.sp and Anabaena sp. PCC 7120, the phycocyanin content in Microcystis aeruginosa. This study explored the biological characteristics of the cyanobacteria under low pressure condition, which aimed at understanding the response of the earth's life to environment for the future moon base, the results enrich the research contents of the lunar biology and may be referred for the research of other terrestrial life, such as human, plant, microbe and animal living in life support system of lunar base.

  18. Atmospheric pressure plasma treatment of glass fibre composite for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Mortensen, H.; Stenum, Bjarne;

    2007-01-01

    Glass-fibre-reinforced polyester composite plates were treated with an atmospheric pressure dielectric barrier discharge. Synthetic air was used as the treatment gas. The water contact angle dropped markedly from 84 to 22° after a 2-s treatment, and decreased to 0° when the composite plates were...

  19. Potential Industrial Applications of the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) Operating in Ambient Air

    Science.gov (United States)

    Reece Roth, J.

    2004-11-01

    The majority of industrial plasma processing with glow discharges has been conducted at pressures below 10 torr. This tends to limit applications to high value workpieces as a result of the high capital cost of vacuum systems and the production constraints of batch processing. It has long been recognized that glow discharge plasmas would play a much larger industrial role if they could be generated at one atmosphere. The One Atmosphere Uniform Glow Discharge Plasma (OAUGDP), developed at the University of Tennessee's Plasma Sciences Laboratory, is a non-thermal RF plasma operating on displacement currents with the time-resolved characteristics of a classical low pressure DC normal glow discharge. As a glow discharge, the OAUGDP operates with maximum electrical efficiency at the Stoletow point, where the energy input per ion-electron pair is a minimum [1, 2]. Several interdisciplinary teams have investigated potential applications of the OAUGDP. These teams included collaborators from the UTK Textiles and Nonwovens Development Center (TANDEC), and the Departments of Electrical and Computer Engineering, Microbiology, and Food Science and Technology, as well as the NASA Langley Research Center. The potential applications of the OAUGDP have all been at one atmosphere and room temperature, using air as the working gas. These applications include sterilizing medical and dental equipment; sterilizable air filters to deal with the "sick building syndrome"; removal of soot from Diesel engine exhaust; subsonic plasma aerodynamic effects, including flow re-attachment to airfoils and boundary layer modification; electrohydrodynamic (EDH) flow control of working gases; increasing the surface energy of materials; improving the adhesion of paints and electroplated layers: improving the wettability and wickability of fabrics; stripping of photoresist; and plasma deposition and directional etching of potential microelectronic relevance. [1] J. R. Roth, Industrial Plasma Engineering

  20. Electron-ion recombination study in argon at atmospheric pressure

    International Nuclear Information System (INIS)

    This study deals with a wall-stabilized arc burning in argon at atmospheric pressure. A transient mode is obtained using a fast thyristor connected to the electrodes, which short-circuits the discharge. By means of two wavelengths laser interferometry and spectroscopy measurements we have determined the temporal changes of the electron density, ground state atom density and excited atom density. We have shown that, when the electric field is suppressed, the electron temperature rapidly decreases to the gas temperature before changing electron and atom densities. This phenomenon is applied to determine the gas temperature and to evaluate the role played by ionization in electron density balance. The coefficients of ambipolar diffusion, ionization and recombination and an apparent recombination coefficient are determined versus electron temperature and compared with theoretical values

  1. Formation of the high-intensity microsecond flow of electrons in the channel of high pressure arc discharge

    CERN Document Server

    Volkolupov, Yu Ya; Kolyada, Y E; Fedun, V I; Onishchenko, I N

    2000-01-01

    The possibility of microsecond duration powerful electron flows formation in the channel of high current arc discharge at atmosphere pressure has been experimentally demonstrated. The flow of electrons is formed at applying the high voltage pulse to the plasma source after plasma ejection and the pressure decreasing. Because the acceleration by the electric field prevails over the friction force due to collisions the conditions for arising of running electrons are fulfilled.

  2. Diffuse mode and diffuse-to-filamentary transition in a high pressure nanosecond scale corona discharge under high voltage

    Energy Technology Data Exchange (ETDEWEB)

    Tardiveau, P; Moreau, N; Bentaleb, S; Postel, C; Pasquiers, S, E-mail: pierre.tardiveau@u-psud.f [Laboratoire de Physique des Gaz et des Plasmas, Bat 210, Universite Paris-Sud, 91405 Orsay Cedex (France)

    2009-09-07

    The dynamics of a point-to-plane corona discharge induced in high pressure air under nanosecond scale high overvoltage is investigated. The electrical and optical properties of the discharge can be described in space and time with fast and precise current measurements coupled to gated and intensified imaging. Under atmospheric pressure, the discharge exhibits a diffuse pattern like a multielectron avalanche propagating through a direct field ionization mechanism. The diffuse regime can exist since the voltage rise time is much shorter than the characteristic time of the field screening effects, and as long as the local field is higher than the critical ionization field in air. As one of these conditions is not fulfilled, the discharge turns into a multi-channel regime and the diffuse-to-filamentary transition strongly depends on the overvoltage, the point-to-plane gap length and the pressure. When pressure is increased above atmospheric pressure, the diffuse stage and its transition to streamers seem to satisfy similarity rules as the key parameter is the reduced critical ionization field only. However, above 3 bar, neither diffuse avalanche nor streamer filaments are observed but a kind of streamer-leader regime, due to the fact that mechanisms such as photoionization and heat diffusion are not similar to pressure.

  3. Regulation of radionuclides discharges to the atmosphere and emissions to the water from Ukraine NPPs

    International Nuclear Information System (INIS)

    The possible order of radionuclides discharges to the atmosphere and emissions to the water from Ukraine NPPs regulation is given allowance for laws and norms of Ukraine and ICRP and IAEA guidelines. For definition of a dose relevant to marginal discharges to the atmosphere and emissions to the water of separate radionuclides are counted dose coefficients (Sv/Bg). Considered three critical age groups: the babies (up to 1 year), children (till 10 years) and adult. The age group being critical for discharges to the atmosphere and emissions to the water are determined. The radionuclides producing the greatest contribution to a dose are determined. Guidelines on calculation of marginal radionuclides discharges to the atmosphere and emissions to the water of Ukraine NPPs are given. Matching of doses from actual radionuclides discharges to the atmosphere and emissions to the water of Ukraine NPPs with quotas, assigned in RSNU-97 is carried out

  4. A Novel Atmospheric Pressure Plasma Fluidized Bed and Its Application in Mutation of Plant Seeds

    Institute of Scientific and Technical Information of China (English)

    CHEN Guang-Liang; WANG Zhen-Quan; HAN Er-Li; FU Ya-Bo; YANG Si-Ze; FAN Song-Hua; LI Chun-Ling; GU Wei-Chao; FENG Wen-Ran; ZHANG Gu-Ling; WANG Jiu-Li; Latif K.; ZHANG Shu-Gen

    2005-01-01

    @@ An atmospheric pressure plasma fluidized bed (APPFB) is designed to generate plasma using a dielectric barrier discharge (DBD) with one liquid electrode. In the APPFB system, the physical properties of DBD discharge and its application in plant-seed mutating are studied fundamentally. The results show that the generated plasma is a typical glow discharge free from filament and arc plasma, and the macro-temperature of the plasma fluidized bed is nearly at room temperature. There are no obvious changes in the pimientos when their seeds are treated by APPFB, but great changes are found for coxcombs.

  5. Surface modification of non-fabricated polypropylene textile in low-temperature plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    The plasma activation of polypropylene (PP) non-fabricated textile in low temperature plasma at atmospheric pressure has been studied. The aim of the present work was the study of the surface modification of non-fabricated textiles in order to improve their hydrophilic properties. The surface treatment has been provided by nonequilibrium discharges as barrier discharge and surface discharge. The surface properties have been characterized by measuring the contact angle of PP textiles with liquid, standard industrial permeability measurements and absorption tests. The degradation of treated PP samples has also been studied. (author)

  6. A novel cold plasma jet generated by capillary atmospheric dielectric barrier discharge

    International Nuclear Information System (INIS)

    An easy-operated and effective scheme is presented to generate a novel kind of atmospheric cold plasma millimeter jet. The jet operates with many kinds of working gas at atmosphere pressure, such as Ar, He and N2, in a capillary quartz dielectric barrier discharge (DBD) system powered by a pulsed power source with a frequency of 33 kHz and variable voltage of 1-12 kV. Via a CCD imager, the initial discharge filaments in the DBD gap are found to be transformed into diffusion discharge or glow-like discharge by the flowing gas through the DBD gap, and a plasma jet formed in the outlet of the capillary is viewed simultaneously. The critical velocity of the gas flow for the plasma jet formation is determined to be 3-8 m/s for different working gases by a well-designed enthalpy probe. The jet range for a special gas can be changed by the increase of the gas flow velocity while the jet range for different gases varies a lot and the helium jet takes the longest range of about 44 mm when the helium flows at a velocity of about 20 m/s. Beyond the velocity limit of 20 m/s for laminar helium flow, the jet of helium plasma becomes torrent and unstable and its range turns shorter. Based on the OES analysis of He plasma jets, it is determined that the excitation temperature of He jets lay in the range 2000 K-3000 K, which is much lower than the excitation temperature of a normal arc plasma torch and hints that the jet is cold especially when compared to the arc plasma torch. (authors)

  7. Physics of mercury-free high-pressure discharge lamps

    International Nuclear Information System (INIS)

    This paper gives a summary of recent results about the replacement of mercury in high-pressure discharge lamps by metallic zinc. Actually, this topic is of high relevance for the lighting industry due to the need of more environmentally friendly products. The work presented here is supported by the German government under contract no 13N8072 and 13N8264. Due to upcoming European legislations which are expected for the year 2003, the replacement of mercury in lighting products is a high priority task. For example, mercury-free headlight discharge lamps are requested by the automotive industry. Pure zinc/argon discharges as well as lamps including zinc or mercury and metal halide additives are investigated. Experimental data are compared with model calculations of the energy balance involving the transport of heat and radiation. Since the excitation energies of relevant zinc transitions are lower than for mercury, axis temperatures of pure zinc lamps are about 300 K below the value of mercury arcs. In addition, the thermal conductivity of zinc including the contribution of radiation diffusion is larger than compared to mercury. From lamp voltage measurements it is found that the cross section for elastical electron scattering by zinc atoms is about the same than for mercury. When adding metal halides to a pure zinc discharge with argon as a starting gas, i.e. NaI, TlI, DyI3, axis temperatures decrease to about 5100 K due to strong radiation cooling. In order to obtain sufficiently large lamp voltages, wall temperatures of more than 1300 K are adjusted by means of polycrystalline aluminaoxide (Al2O3) as a wall material. Electric field strengths of 6.0 and 8.6 V mm-1 are measured for metal halide lamps containing zinc or mercury, respectively. The light technical data of the discharges are very close, since mercury and zinc do not contribute significantly to the radiation in the visible range. Efficacies of up to 93 and 100 lm W-1 are found in metal halide lamps with

  8. Electrical and optical properties of Ar/NH3 atmospheric pressure plasma jet

    Science.gov (United States)

    Chang, Zheng-Shi; Yao, Cong-Wei; Chen, Si-Le; Zhang, Guan-Jun

    2016-09-01

    Inspired by the Penning effect, we obtain a glow-like plasma jet by mixing ammonia (NH3) into argon (Ar) gas under atmospheric pressure. The basic electrical and optical properties of an atmospheric pressure plasma jet (APPJ) are investigated. It can be seen that the discharge mode transforms from filamentary to glow-like when a little ammonia is added into the pure argon. The electrical and optical analyses contribute to the explanation of this phenomenon. The discharge mode, power, and current density are analyzed to understand the electrical behavior of the APPJ. Meanwhile, the discharge images, APPJ's length, and the components of plasma are also obtained to express its optical characteristics. Finally, we diagnose several parameters, such as gas temperature, electron temperature, and density, as well as the density number of metastable argon atoms of Ar/NH3 APPJ to help judge the usability in its applications.

  9. Atmospheric Pressure non-thermal plasmas for surface treatment of polymer films

    Science.gov (United States)

    Huang, Hsiao-Feng; Wen, Chun-Hsiang; Wei, Hsiao-Kuan; Kou, Chwung-Shan

    2006-10-01

    Interest has grown over the past few years in applying atmospheric pressure non-thermal plasmas to surface treatment. In this work, we used an asymmetric glow dielectric-barrier discharge (GDBD), at atmospheric pressure in nitrogen, to improve the surface hydrophilicity of three kinds of polymer films, biaxially oriented polypropylene (BOPP), polyimide (PI), and triacetyl cellulose (TAC). This set-up consists of two asymmetric electrodes covered by dielectrics. And to prevent the filamentary discharge occur, the frequency, gas flow rate and uniformity of gas flow distribution should be carefully controlled. The discharge performance is monitored through an oscilloscope, which is connected to a high voltage probe and a current monitor. The physical and chemical properties of polymer surfaces before and after GDBD treatment were analyzed via water contact angle (CA) measurements, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) techniques.

  10. Atmospheric pressure variations and abdominal aortic aneurysm rupture.

    LENUS (Irish Health Repository)

    Killeen, S D

    2012-02-03

    BACKGROUND: Ruptured abdominal aortic aneurysm (RAAA) presents with increased frequency in the winter and spring months. Seasonal changes in atmospheric pressure mirrors this pattern. AIM: To establish if there was a seasonal variation in the occurrence of RAAA and to determine if there was any association with atmospheric pressure changes. METHODS: A retrospective cohort-based study was performed. Daily atmospheric pressure readings for the region were obtained. RESULTS: There was a statistically significant monthly variation in RAAA presentation with 107 cases (52.5%) occurring from November to March. The monthly number of RAAA and the mean atmospheric pressure in the previous month were inversely related (r = -0.752, r (2) = 0.566, P = 0.03), and there was significantly greater daily atmospheric pressure variability on days when patients with RAAA were admitted. CONCLUSION: These findings suggest a relationship between atmospheric pressure and RAAA.

  11. Atmospheric pressure plasma assisted calcination of composite submicron fibers

    Science.gov (United States)

    Medvecká, Veronika; Kováčik, Dušan; Tučeková, Zlata; Zahoranová, Anna; Černák, Mirko

    2016-08-01

    The plasma assisted calcination of composite organic/inorganic submicron fibers for the preparation of inorganic fibers in submicron scale was studied. Aluminium butoxide/polyvinylpyrrolidone fibers prepared by electrospinning were treated using low-temperature plasma generated by special type of dielectric barrier discharge, so called diffuse coplanar surface barrier discharge (DCSBD) at atmospheric pressure in ambient air, synthetic air, oxygen and nitrogen. Effect of plasma treatment on base polymer removal was investigated by using Attenuated total reflectance - Fourier transform infrared (ATR-FTIR) spectroscopy. Influence of working gas on the base polymer reduction was studied by energy-dispersive X-ray spectroscopy (EDX) and CHNS elemental analysis. Changes in fibers morphology were observed by scanning electron microscopy (SEM). High efficiency of organic template removal without any degradation of fibers was observed after plasma treatment in ambient air. Due to the low-temperature approach and short exposure time, the plasma assisted calcination is a promising alternative to the conventional thermal calcination. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  12. A New Atmospheric Pressure Microwave Plasma Source (APMPS)

    Institute of Scientific and Technical Information of China (English)

    LIU Liang; ZHANG Guixin; LI Yinan; ZHU Zhijie; WANG Xinxin; LUO Chengmu

    2008-01-01

    An atmospheric pressure microwave plasma source (APMPS) that can generate a large volume of plasma at an atmospheric pressure has been developed at Tsinghua University. This paper presents the design of this APMPS, the theoretical consideration of microwave plasma ignition and the simulation results, including the distributions of the electric field and power density inside the cavity as well as the accuracy of the simulation results. In addition, a method of producing an atmospheric pressure microwave plasma and some relevant observations of the plasma are also provided. It. is expected that this research would be useful for further developing atmospheric pressure microwave plasma sources and expanding the scope of their applications.

  13. Preparation of Fluorescent Carbon Nanoparticles by Glow Discharge Plasma at Atmospheric Pressure%常压辉光放电等离子体制备荧光碳纳米粒子

    Institute of Scientific and Technical Information of China (English)

    谢春香; 张禹涛; 马腾才

    2012-01-01

    Superfine fluorescent carbon nanoparticles were prepared by glow discharge plasma,which generated a large amout of active particles such as high-energy electrons to decompose ethanol,and then to initiate the free radical reactions for producing the carbon nanoparticles.Either polyethylene glycol(PEG) 2000 or polyvinylpyrrolidone(PVP) 20000 was used as surfactant or surface modifier for the ethanol.The fluorescent properties and morphology of the carbon nanoparticles were characterized by fluorescence spectrophotometer and transmission electron microscopy(TEM),respectively.The results show that the morphology of fluorescent carbon nanoparticles is graphitic.The fluorescent intensities of the nanoparticles increase with reaction time,and they are higher in the resultants modified by PEG-2000 than by PVP-20000,as well as for those generated under streamer discharge mode than under glow discharge one.The quantum yield of photoluminescence is 46.58% for carbon nanoparticles prepared.%采用常压辉光放电等离子体制备了超细荧光碳纳米粒子。分别采用聚乙二醇(PEG)2000和聚乙烯吡咯烷酮(PVP)20000作为表面活性剂和表面修饰剂,利用辉光放电等离子体射流产生的大量高能电子等活性粒子分解乙醇溶液制备碳纳米粒子。采用透射电子显微镜和荧光分光光度计对生成物的形貌和荧光特性进行了检测。结果表明,生成物为石墨相的荧光碳纳米颗粒。随着反应时间的延长,生成物的荧光强度增强;采用PEG-2000修饰后产物的荧光强度比采用PVP-20000更强;丝状放电模式下生成物的荧光强度高于辉光放电模式。制备的碳纳米颗粒的荧光量子产率为46.58%。

  14. Super-Atmospheric Pressure Ion Sources: Application and Coupling to API Mass Spectrometer.

    Science.gov (United States)

    Chen, Lee Chuin; Rahman, Md Matiur; Hiraoka, Kenzo

    2014-01-01

    Pressurizing the ionization source to gas pressure greater than atmospheric pressure is a new tactic aimed at further improving the performance of atmospheric pressure ionization (API) sources. In principle, all API sources, such as ESI, APCI and AP-MALDI, can be operated at pressure higher than 1 atm if suitable vacuum interface is available. The gas pressure in the ion source can have different role for different ionization. For example, in the case of ESI, stable electrospray could be sustained for high surface tension liquid (e.g., pure water) under super-atmospheric pressure, owing to the absence of electric discharge. Even for nanoESI, which is known to work well with aqueous solution, its stability and sensitivity were found to be enhanced, particularly in the negative mode when the ion source was pressurized. For the gas phase ionization like APCI, measurement of gaseous compound also showed an increase in ion intensity with the ion source pressure until an optimum pressure at around 4-5 atm. The enhancement was due to the increased collision frequency among reactant ion and analyte that promoted the ion/molecule reaction and a higher intake rate of gas to the mass spectrometer. Because the design of vacuum interface for API instrument is based on the upstream pressure of 1 atm, some coupling aspects need to be considered when connecting the high pressure ion source to the mass spectrometer. Several coupling strategies are discussed in this paper.

  15. Atmospheric pressure changes and unexplained variability in INR measurements.

    Science.gov (United States)

    Ernst, Michael E; Shaw, Robert F; Ernst, Erika J; Alexander, Bruce; Kaboli, Peter J

    2009-06-01

    Changes in atmospheric pressure may influence hepatic blood flow and drug metabolism. Anecdotal experience suggests international normalized ratio (INR) variability may be temporally related to significant atmospheric pressure changes. We investigated this potential association in a large sample of patients with multiple INRs. This is a retrospective review of outpatient anticoagulation records from the Iowa City Veteran's Affairs Medical Center and affiliated outpatient clinics from October 1999 to July 2007. All patients, receiving at least one prescription for warfarin and INR at least 30 days or more from the date of the first warfarin prescription, were identified. INRs during periods of hospitalization and vitamin K use were excluded. Proximity analysis using geocoding of ZIP codes of identified patients to the nearest National Oceanic and Atmospheric Administration station was performed to assign atmospheric pressure with INR. Spearman's Rho and Pearson's correlation were used to evaluate atmospheric pressure and INR. Unique patients (1441) with 45 187 INRs were analyzed. When limited to nontherapeutic INRs following a previously therapeutic INR (1121 unique patients/5256 INRs), a small but clinically insignificant association between delta INR and delta atmospheric pressure was observed (r = -0.025; P = 0.038), but not for actual INR and atmospheric pressure (P = 0.06). Delta atmospheric pressure demonstrated greater variation during fall/winter months compared with spring/summer (0.23 vs. 0.15 inHg; P atmospheric pressure changes and INR variability. These findings refute the anecdotal experience seen in our anticoagulation clinic.

  16. Decontamination of a rotating cutting tool during operation by means of atmospheric pressure plasmas

    DEFF Research Database (Denmark)

    Leipold, Frank; Kusano, Yukihiro; Hansen, F.;

    2010-01-01

    The decontamination of a rotating cutting tool used for slicing in the meat industry by means of atmospheric pressure plasmas is investigated. The target is Listeria monocytogenes, a bacterium which causes listeriosis and can be found in plants and food. The non-pathogenic species, Listeria innocua......, is used for the experiments. A rotating knife was inoculated with L. innocua. The surface of the rotating knife was partly exposed to an atmospheric pressure dielectric barrier discharge operated in air, where the knife itself served as a ground electrode. The rotation of the knife ensures a treatment...

  17. The effect of atmospheric pressure on ventricular assist device output.

    Science.gov (United States)

    Goto, Takeshi; Sato, Masaharu; Yamazaki, Akio; Fukuda, Wakako; Watanabe, Ken-Ichi; Daitoku, Kazuyuki; Minakawa, Masahito; Fukui, Kozo; Suzuki, Yasuyuki; Fukuda, Ikuo

    2012-03-01

    The effect of cabin pressure change on the respiratory system during flight is well documented in the literature, but how the change in atmospheric pressure affects ventricular assist device (VAD) output flow has not been studied yet. The purpose of our study was to evaluate the change in VAD output using a mock circulatory system in a low-pressure chamber mimicking high altitude. Changes in output and driving pressure were measured during decompression from 1.0 to 0.7 atm and pressurization from 0.7 to 1.0 atm. Two driving systems were evaluated: the VCT system and the Mobart system. In the VCT system, output and driving pressure remained the same during decompression and pressurization. In the Mobart system, the output decreased as the atmospheric pressure dropped and recovered during pressurization. The lowest output was observed at 0.7 atm, which was 80% of the baseline driven by the Mobart system. Under a practical cabin pressure of 0.8 atm, the output driven by the Mobart system was 90% of the baseline. In the Mobart system, the output decreased as the atmospheric pressure dropped, and recovered during pressurization. However, the decrease in output was slight. In an environment where the atmospheric pressure changes, it is necessary to monitor the diaphragmatic motion of the blood pump and the driving air pressure, and to adjust the systolic:diastolic ratio as well as the positive and negative pressures in a VAD system.

  18. Improving Hydrophobicity of Glass Surface Using Dielectric Barrier Discharge Treatment in Atmospheric Air

    Institute of Scientific and Technical Information of China (English)

    FANG Zhi; QIU Yuchang; WANG Hui; E. KUFFEL

    2007-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in industrial applications, especially in material surface treatment. In this paper, the treatment of a glass surface for improving hydrophobicity using the non-thermal plasma generated by dielectric barrier discharge (DBD) at atmospheric pressure in ambient air is conducted, and the surface properties of the glass before and after the DBD treatment are studied by using contact angle measurement, surface resistance measurement and wet flashover voltage tests. The effects of the applied voltage and time duration of DBD on the surface modification are studied, and the optimal conditions for the treatment are obtained. It is found that a layer of hydrophobic coating is formed on the glass surface after spraying a thin layer of silicone oil and undergoing the DBD treatment, and the improvement of hydrophobicity depends on DBD voltage and treating time. It seems that there exists an optimum treating time for a certain applied voltage of DBD during the surface treatment. The test results of thermal aging and chemical aging show that the hydrophobic layer has quite stable characteristics. The interaction mechanism between the DBD plasma and the glass surface is discussed. It is concluded that CH3 and large molecule radicals can react with the radicals in the glass surface to replace OH, and the hydrophobicity of the glass surface is improved accordingly.

  19. Improving Hydrophobicity of Glass Surface Using Dielectric Barrier Discharge Treatment in Atmospheric Air

    International Nuclear Information System (INIS)

    Non-thermal plasmas under atmospheric pressure are of great interest in industrial applications, especially in material surface treatment. In this paper, the treatment of a glass surface for improving hydrophobicity using the non-thermal plasma generated by dielectric barrier discharge (DBD) at atmospheric pressure in ambient air is conducted, and the surface properties of the glass before and after the DBD treatment are studied by using contact angle measurement, surface resistance measurement and wet flashover voltage tests. The effects of the applied voltage and time duration of DBD on the surface modification are studied, and the optimal conditions for the treatment are obtained. It is found that a layer of hydrophobic coating is formed on the glass surface after spraying a thin layer of silicone oil and undergoing the DBD treatment, and the improvement of hydrophobicity depends on DBD voltage and treating time. It seems that there exists an optimum treating time for a certain applied voltage of DBD during the surface treatment. The test results of thermal aging and chemical aging show that the hydrophobic layer has quite stable characteristics. The interaction mechanism between the DBD plasma and the glass surface is discussed. It is concluded that CH3 and large molecule radicals can react with the radicals in the glass surface to replace OH, and the hydrophobicity of the glass surface is improved accordingly

  20. Super-atmospheric pressure ionization mass spectrometry and its application to ultrafast online protein digestion analysis.

    Science.gov (United States)

    Chen, Lee Chuin; Ninomiya, Satoshi; Hiraoka, Kenzo

    2016-06-01

    Ion source pressure plays a significant role in the process of ionization and the subsequent ion transmission inside a mass spectrometer. Pressurizing the ion source to a gas pressure greater than atmospheric pressure is a relatively new approach that aims to further improve the performance of atmospheric pressure ionization sources. For example, under a super-atmospheric pressure environment, a stable electrospray can be sustained for liquid with high surface tension such as pure water, because of the suppression of electric discharge. Even for nano-electrospray ionization (nano-ESI), which is known to work with aqueous solution, its stability and sensitivity can also be enhanced, particularly in the negative mode when the ion source is pressurized. A brief review on the development of super-atmospheric pressure ion sources, including high-pressure electrospray, field desorption and superheated ESI, and the strategies to interface these ion sources to a mass spectrometer will be given. Using a recent ESI prototype with an operating temperature at 220 °C under 27 atm, we also demonstrate that it is possible to achieve an online Asp-specific protein digestion analysis in which the whole processes of digestion, ionization and MS acquisition could be completed on the order of a few seconds. This method is fast, and the reaction can even be monitored on a near-real-time basis. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Super-atmospheric pressure ionization mass spectrometry and its application to ultrafast online protein digestion analysis.

    Science.gov (United States)

    Chen, Lee Chuin; Ninomiya, Satoshi; Hiraoka, Kenzo

    2016-06-01

    Ion source pressure plays a significant role in the process of ionization and the subsequent ion transmission inside a mass spectrometer. Pressurizing the ion source to a gas pressure greater than atmospheric pressure is a relatively new approach that aims to further improve the performance of atmospheric pressure ionization sources. For example, under a super-atmospheric pressure environment, a stable electrospray can be sustained for liquid with high surface tension such as pure water, because of the suppression of electric discharge. Even for nano-electrospray ionization (nano-ESI), which is known to work with aqueous solution, its stability and sensitivity can also be enhanced, particularly in the negative mode when the ion source is pressurized. A brief review on the development of super-atmospheric pressure ion sources, including high-pressure electrospray, field desorption and superheated ESI, and the strategies to interface these ion sources to a mass spectrometer will be given. Using a recent ESI prototype with an operating temperature at 220 °C under 27 atm, we also demonstrate that it is possible to achieve an online Asp-specific protein digestion analysis in which the whole processes of digestion, ionization and MS acquisition could be completed on the order of a few seconds. This method is fast, and the reaction can even be monitored on a near-real-time basis. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27270863

  2. Sterilization of Surfaces with a Handheld Atmospheric Pressure Plasma

    Science.gov (United States)

    Hicks, Robert; Habib, Sara; Chan, Wai; Gonzalez, Eleazar; Tijerina, A.; Sloan, Mark

    2009-10-01

    Low temperature, atmospheric pressure plasmas have shown great promise for decontaminating the surfaces of materials and equipment. In this study, an atmospheric pressure, oxygen and argon plasma was investigated for the destruction of viruses, bacteria, and spores. The plasma was operated at an argon flow rate of 30 L/min, an oxygen flow rate of 20 mL/min, a power density of 101.0 W/cm^3 (beam area = 5.1 cm^2), and at a distance from the surface of 7.1 mm. An average 6log10 reduction of viable spores was obtained after only 45 seconds of exposure to the reactive gas. By contrast, it takes more than 35 minutes at 121^oC to sterilize anthrax in an autoclave. The plasma properties were investigated by numerical modeling and chemical titration with nitric oxide. The numerical model included a detailed reaction mechanism for the discharge as well as for the afterglow. It was predicted that at a delivered power density of 29.3 W/cm^3, 30 L/min argon, and 0.01 volume% O2, the plasma generated 1.9 x 10^14 cm-3 O atoms, 1.6 x 10^12 cm-3 ozone, 9.3 x 10^13 cm-3 O2(^1δg), and 2.9 x 10^12 cm-3 O2(^1σ^+g) at 1 cm downstream of the source. The O atom density measured by chemical titration with NO was 6.0 x 10^14 cm-3 at the same conditions. It is believe that the oxygen atoms and the O2(^1δg) metastables were responsible for killing the anthrax and other microorganisms.

  3. Atmospheric discharges from nuclear facilities during decommissioning: German experiences

    Energy Technology Data Exchange (ETDEWEB)

    Braun, H.; Goertz, R.; Weil, L.

    1997-08-01

    In Germany, a substantial amount of experience is available with planning, licensing and realization of decommissioning projects. In total, a number of 18 nuclear power plants including prototype facilities as well as 6 research reactors and 3 fuel cycle facilities have been shut down finally and are at different stages of decommissioning. Only recently the final {open_quotes}green field{close_quotes} stage of the Niederaichbach Nuclear Power Plant total dismantlement project has been achieved. From the regulatory point of view, a survey of the decommissioning experience in Germany is presented highlighting the aspects of production and retention of airborne radioactivity. Nuclear air cleaning technology, discharge limits prescribed in licences and actual discharges are presented. As compared to operation, the composition of the discharged radioactivity is different as well as the off-gas discharge rate. In practically all cases, there is no significant amount of short-lived radionuclides. The discussion further includes lessons learned, for example inadvertent discharges of radionuclides expected not to be in the plants inventory. It is demonstrated that, as for operation of nuclear power plants, the limits prescribed in the Ordinance on Radiological Protection can be met using existing air cleaning technology, Optimization of protection results in public exposures substantially below the limits. In the frame of the regulatory investigation programme a study has been conducted to assess the airborne radioactivity created during certain decommissioning activities like decontamination, segmentation and handling of contaminated or activated parts. The essential results of this study are presented, which are supposed to support planning for decommissioning, for LWRs, Co-60 and Cs-137 are expected to be the dominant radionuclides in airborne discharges. 18 refs., 2 figs., 1 tab.

  4. Operation Mode on Pulse Modulation in Atmospheric Radio Frequency Glow Discharges

    Science.gov (United States)

    Zhang, Jie; Guo, Ying; Huang, Xiaojiang; Zhang, Jing; Shi, Jianjun

    2016-10-01

    The discharge operation regime of pulse modulated atmospheric radio frequency (RF) glow discharge in helium is investigated on the duty cycle and frequency of modulation pulses. The characteristics of radio frequency discharge burst in terms of breakdown voltage, alpha(α)-gamma(γ) mode transition voltage and current are demonstrated by the discharge current voltage characteristics. The minimum breakdown voltage of RF discharge burst was obtained at the duty cycle of 20% and frequency of 400 kHz, respectively. The α-γ mode transition of RF discharge burst occurs at higher voltage and current by reducing the duty cycle and elevating the modulation frequency before the RF discharge burst evolving into the ignition phase, in which the RF discharge burst can operate stably in the γ mode. It proposes that the intensity and stability of RF discharge burst can be improved by manipulating the duty cycle and modulation frequency in pulse modulated atmospheric RF glow discharge. supported by National Natural Science Foundation of China (Nos. 11475043 and 11375042)

  5. Non-linear macro evolution of a dc driven micro atmospheric glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S. F.; Zhong, X. X., E-mail: xxzhong@sjtu.edu.cn [The State Key Laboratory on Fiber Optic Local Area, Communication Networks and Advanced Optical Communication Systems, Key Laboratory for Laser Plasmas and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-10-15

    We studied the macro evolution of the micro atmospheric glow discharge generated between a micro argon jet into ambient air and static water. The micro discharge behaves similarly to a complex ecosystem. Non-linear behaviors are found for the micro discharge when the water acts as a cathode, different from the discharge when water behaves as an anode. Groups of snapshots of the micro discharge formed at different discharge currents are captured by an intensified charge-coupled device with controlled exposure time, and each group consisted of 256 images taken in succession. Edge detection methods are used to identify the water surface and then the total brightness is defined by adding up the signal counts over the area of the micro discharge. Motions of the water surface at different discharge currents show that the water surface lowers increasingly rapidly when the water acts as a cathode. In contrast, the water surface lowers at a constant speed when the water behaves as an anode. The light curves are similar to logistic growth curves, suggesting that a self-inhibition process occurs in the micro discharge. Meanwhile, the total brightness increases linearly during the same time when the water acts as an anode. Discharge-water interactions cause the micro discharge to evolve. The charged particle bomb process is probably responsible for the different behaviors of the micro discharges when the water acts as cathode and anode.

  6. Plasma polymerization of acrylic acid onto polystyrene by cyclonic plasma at atmospheric pressure

    Science.gov (United States)

    Chang, Yi-Jan; Lin, Chin-Ho; Huang, Chun

    2016-01-01

    The cyclonic atmospheric-pressure plasma is developed for chamberless deposition of poly(acrylic acid) film from argon/acrylic acid mixtures. The photoemission plasma species in atmospheric-pressure plasma polymerization was identified by optical emission spectroscopy (OES). The OES diagnosis data and deposition results indicated that in glow discharge, the CH and C2 species resulted from low-energy electron-impact dissociation that creates deposition species, but the strong CO emission lines are related to nondeposition species. The acrylic acid flow rate is seen as the key factor affecting the film growth. The film surface analysis results indicate that a smooth, continuous, and uniform surface of poly(acrylic acid) films can be formed at a relatively low plasma power input. This study reveals the potential of chamberless film growth at atmospheric pressure for large-area deposition of poly(acrylic acid) films.

  7. Corona discharge as a temperature probe of atmospheric air microwave plasma jet

    International Nuclear Information System (INIS)

    We developed and tested a new method for temperature measurements of near-LTE air plasmas at atmospheric pressure. This method is specifically suitable for plasmas at relatively low gas temperature (800-1700 K) with no appropriate radiation for direct spectroscopic temperature measurements. Corona discharge producing cold non-equilibrium plasma is employed as a source of excitation and is placed into the microwave plasma jet. The gas temperature of the microwave plasma jet is determined as the rotational temperature of N2* produced in the corona discharge. The corona probe temperature measurement was tested by the use of a thermocouple. We found a fairly good agreement between the two methods after correcting the thermocouple measured temperatures for radiative losses. The corona probe method can be generally applied to determine the temperature of the near-LTE plasmas and contrary to the thermocouple it can be used for higher plasma temperatures and is not affected by radiative losses and problems of interaction with the microwave plasma and electromagnetic fields.

  8. New high quality adaptive mesh generator utilized in modelling plasma streamer propagation at atmospheric pressures

    Science.gov (United States)

    Papadakis, A. P.; Georghiou, G. E.; Metaxas, A. C.

    2008-12-01

    A new adaptive mesh generator has been developed and used in the analysis of high-pressure gas discharges, such as avalanches and streamers, reducing computational times and computer memory needs significantly. The new adaptive mesh generator developed, uses normalized error indicators, varying from 0 to 1, to guarantee optimal mesh resolution for all carriers involved in the analysis. Furthermore, it uses h- and r-refinement techniques such as mesh jiggling, edge swapping and node addition/removal to develop an element quality improvement algorithm that improves the mesh quality significantly and a fast and accurate algorithm for interpolation between meshes. Finally, the mesh generator is applied in the characterization of the transition from a single electron to the avalanche and streamer discharges in high-voltage, high-pressure gas discharges for dc 1 mm gaps, RF 1 cm point-plane gaps and parallel-plate 40 MHz configurations, in ambient atmospheric air.

  9. New high quality adaptive mesh generator utilized in modelling plasma streamer propagation at atmospheric pressures

    Energy Technology Data Exchange (ETDEWEB)

    Papadakis, A P [Department of Electrical Engineering, Frederick University Cyprus, 7 Y Frederickou Street, Palouriotissa, Nicosia 1036 (Cyprus); Georghiou, G E [Department of Electrical and Computer Engineering, University of Cyprus, 75 Kallipoleos, PO Box 20577, 1678, Nicosia (Cyprus); Metaxas, A C [St John' s College, University of Cambridge, Cambridge, CB2 1TP (United Kingdom)], E-mail: eng.ap@frederick.ac.cy, E-mail: geg@ucy.ac.cy, E-mail: acm33@cam.ac.uk

    2008-12-07

    A new adaptive mesh generator has been developed and used in the analysis of high-pressure gas discharges, such as avalanches and streamers, reducing computational times and computer memory needs significantly. The new adaptive mesh generator developed, uses normalized error indicators, varying from 0 to 1, to guarantee optimal mesh resolution for all carriers involved in the analysis. Furthermore, it uses h- and r-refinement techniques such as mesh jiggling, edge swapping and node addition/removal to develop an element quality improvement algorithm that improves the mesh quality significantly and a fast and accurate algorithm for interpolation between meshes. Finally, the mesh generator is applied in the characterization of the transition from a single electron to the avalanche and streamer discharges in high-voltage, high-pressure gas discharges for dc 1 mm gaps, RF 1 cm point-plane gaps and parallel-plate 40 MHz configurations, in ambient atmospheric air.

  10. Helium atmospheric pressure plasma jets touching dielectric and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Norberg, Seth A., E-mail: norbergs@umich.edu; Johnsen, Eric, E-mail: ejohnsen@umich.edu [Department of Mechanical Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, Michigan 48109-2125 (United States); Kushner, Mark J., E-mail: mjkush@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122 (United States)

    2015-07-07

    Atmospheric pressure plasma jets (APPJs) are being investigated in the context plasma medicine and biotechnology applications, and surface functionalization. The composition of the surface being treated ranges from plastics, liquids, and biological tissue, to metals. The dielectric constant of these materials ranges from as low as 1.5 for plastics to near 80 for liquids, and essentially infinite for metals. The electrical properties of the surface are not independent variables as the permittivity of the material being treated has an effect on the dynamics of the incident APPJ. In this paper, results are discussed from a computational investigation of the interaction of an APPJ incident onto materials of varying permittivity, and their impact on the discharge dynamics of the plasma jet. The computer model used in this investigation solves Poisson's equation, transport equations for charged and neutral species, the electron energy equation, and the Navier-Stokes equations for the neutral gas flow. The APPJ is sustained in He/O{sub 2} = 99.8/0.2 flowing into humid air, and is directed onto dielectric surfaces in contact with ground with dielectric constants ranging from 2 to 80, and a grounded metal surface. Low values of relative permittivity encourage propagation of the electric field into the treated material and formation and propagation of a surface ionization wave. High values of relative permittivity promote the restrike of the ionization wave and the formation of a conduction channel between the plasma discharge and the treated surface. The distribution of space charge surrounding the APPJ is discussed.

  11. Role of ambient dielectric in propagation of Ar atmospheric pressure nonequilibrium plasma jets

    Science.gov (United States)

    Song, Jian; Tang, Jingfeng; Wang, Youyin; Wei, Liqiu; Ren, Chunsheng; Yu, Daren

    2015-05-01

    A single-electrode atmospheric pressure nonequilibrium plasma jet surrounded with different ambient dielectrics is investigated driven by AC power supply. Another three ambient dielectrics, distilled water, ethanol, and carbon tetrachloride, are adopted to compare with air. By examining electrical and optical characteristics, it was found that the molecular polarity of ambient dielectrics had its significant effect on the propagation of atmospheric pressure nonequilibrium plasma jets. When the polarization of molecules was enhanced, the discharge current and the bullet velocity were also increased. For nonpolar dielectric of carbon tetrachloride, this was mainly resulted from the electron polarization in the built-in electric field. For polar dielectrics of ethanol and distilled water, in addition to the electron polarization, orientation polarization was the main cause for the further increase in discharge current and bullet velocity.

  12. Promoted cell and material interaction on atmospheric pressure plasma treated titanium

    Energy Technology Data Exchange (ETDEWEB)

    Han, Inho [Convergence Technology Exam. Div. II, Korean Intellectual Patent Office, Daejeon (Korea, Republic of); Vagaska, Barbora [Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Seo, Hyok Jin [Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kang, Jae Kyeong [Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kwon, Byeong-Ju [Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Lee, Mi Hee [Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Park, Jong-Chul, E-mail: parkjc@yuhs.ac [Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of)

    2012-03-01

    Surface carbon contamination is a natural phenomenon. However, it interferes with cell-biomaterial interaction. In order to eliminate the interference, atmospheric pressure plasma treatment was employed. Dielectric barrier discharge treatment of titanium surface for less than 10 min turned titanium super-hydrophilic. Adsorption of fibronectin which is the major cell adhesive protein increased after plasma treatment. Cell attachment parameters of osteoblast cells such as population, cell area, perimeter, Feret's diameter and cytoskeleton development were also enhanced. Cell proliferation increased on the plasma treated titanium. In conclusion, dielectric barrier discharge type atmospheric pressure plasma system is effective to modify titanium surface and the modified titanium promotes cell and material interactions.

  13. Study on an Atmospheric Pressure Plasma Jet and its Application in Etching Photo-Resistant Materials

    Institute of Scientific and Technical Information of China (English)

    李海江; 王守国; 赵玲利; 叶甜春

    2004-01-01

    An atmospheric pressure radio-frequency plasma jet that can eject cold plasma has been developed. In this paper, the configuration of this type of plasma jet is illustrated and its discharge characteristics curves are studied with a current and a voltage probe. A thermal couple is used to measure the temperature distribution along the axis of the jet stream. The temperature distribution curve is generated for the He/O2 jet stream at the discharge power of 150W. This jet can etch the photo-resistant material at an average rate of 100nm/min on the surface of silicon wafers at a right angle.

  14. CO2 Dissociation using the Versatile Atmospheric Dielectric Barrier Discharge Experiment (VADER)

    Science.gov (United States)

    Lindon, Michael Allen

    As of 2013, the Carbon Dioxide Information Analysis Center (CDIAC) estimates that the world emits approximately 36 trillion metric tons of Carbon Dioxide (CO2) into the atmosphere every year. These large emissions have been correlated to global warming trends that have many consequences across the globe, including glacial retraction, ocean acidification and increased severity of weather events. With green technologies still in the infancy stage, it can be expected that CO2 emissions will stay this way for along time to come. Approximately 41% of the emissions are due to electricity production, which pump out condensed forms of CO2. This danger to our world is why research towards new and innovative ways of controlling CO2 emissions from these large sources is necessary. As of now, research is focused on two primary methods of CO2 reduction from condensed CO2 emission sources (like fossil fuel power plants): Carbon Capture and Sequestration (CCS) and Carbon Capture and Utilization (CCU). CCS is the process of collecting CO2 using absorbers or chemicals, extracting the gas from those absorbers and finally pumping the gas into reservoirs. CCU on the other hand, is the process of reacting CO2 to form value added chemicals, which can then be recycled or stored chemically. A Dielectric Barrier discharge (DBD) is a pulsed, low temperature, non-thermal, atmospheric pressure plasma which creates high energy electrons suitable for dissociating CO2 into its components (CO and O) as one step in the CCU process. Here I discuss the viability of using a DBD for CO2 dissociation on an industrial scale as well as the fundamental physics and chemistry of a DBD for CO2 dissociation. This work involved modeling the DBD discharge and chemistry, which showed that there are specific chemical pathways and plasma parameters that can be adjusted to improve the CO2 reaction efficiencies and rates. Experimental studies using the Versatile Atmospheric dielectric barrier Discharge Expe

  15. Atmospheric pressure plasma for surface modification

    CERN Document Server

    Wolf, Rory A

    2012-01-01

    This Book's focus and intent is to impart an understanding of the practical application of atmospheric plasma for the advancement of a wide range of current and emerging technologies. The primary key feature of this book is the introduction of over thirteen years of practical experimental evidence of successful surface modifications by atmospheric plasma methods. It offers a handbook-based approach for leveraging and optimizing atmospheric plasma technologies which are currently in commercial use. It also offers a complete treatment of both basic plasma physics and industrial plasma process

  16. Interferometric investigation of hf discharges at reduced pressure

    International Nuclear Information System (INIS)

    Optical methods were used in the diagnostics of a torch discharge burning in Kr, Ar, Ne. Determined were the neutral particle temperature from the Doppler spectral line broadening, the excitation temperature from the relative intensities of spectral lines, and the electron concentration from the broadening of the Hsub(β) spectral line (from hydrogen impurity). In studying the spectra of the torch discharge burning in Ar, the possibility was found of determining the electron concentration from the bremsstrahlung continuous spectrum. Bremsstrahlung was investigated for a glow discharge and a hf discharge. The measured values of electron concentration and temperature are given for helium, neon and argon. (J.P.)

  17. Characterization of an atmospheric pressure air plasma source for polymer surface modification

    Science.gov (United States)

    Yang, Shujun; Tang, Jiansheng

    2013-10-01

    An atmospheric pressure air plasma source was generated through dielectric barrier discharge (DBD). It was used to modify polyethyleneterephthalate (PET) surfaces with very high throughput. An equivalent circuit model was used to calculate the peak average electron density. The emission spectrum from the plasma was taken and the main peaks in the spectrum were identified. The ozone density in the down plasma region was estimated by Absorption Spectroscopy. NSF and ARC-ODU

  18. Pulsed, atmospheric pressure plasma source for emission spectrometry

    Science.gov (United States)

    Duan, Yixiang; Jin, Zhe; Su, Yongxuan

    2004-05-11

    A low-power, plasma source-based, portable molecular light emission generator/detector employing an atmospheric pressure pulsed-plasma for molecular fragmentation and excitation is described. The average power required for the operation of the plasma is between 0.02 W and 5 W. The features of the optical emission spectra obtained with the pulsed plasma source are significantly different from those obtained with direct current (dc) discharge higher power; for example, strong CH emission at 431.2 nm which is only weakly observed with dc plasma sources was observed, and the intense CN emission observed at 383-388 nm using dc plasma sources was weak in most cases. Strong CN emission was only observed using the present apparatus when compounds containing nitrogen, such as aniline were employed as samples. The present apparatus detects dimethylsulfoxide at 200 ppb using helium as the plasma gas by observing the emission band of the CH radical. When coupled with a gas chromatograph for separating components present in a sample to be analyzed, the present invention provides an apparatus for detecting the arrival of a particular component in the sample at the end of the chromatographic column and the identity thereof.

  19. Hydrocarbon analysis using desorption atmospheric pressure chemical ionization

    KAUST Repository

    Jjunju, Fred P M

    2013-07-01

    Characterization of the various petroleum constituents (hydronaphthalenes, thiophenes, alkyl substituted benzenes, pyridines, fluorenes, and polycyclic aromatic hydrocarbons) was achieved under ambient conditions without sample preparation by desorption atmospheric pressure chemical ionization (DAPCI). Conditions were chosen for the DAPCI experiments to control whether ionization was by proton or electron transfer. The protonated molecule [M+H]+ and the hydride abstracted [MH]+ form were observed when using an inert gas, typically nitrogen, to direct a lightly ionized plasma generated by corona discharge onto the sample surface in air. The abundant water cluster ions generated in this experiment react with condensed-phase functionalized hydrocarbon model compounds and their mixtures at or near the sample surface. On the other hand, when naphthalene was doped into the DAPCI gas stream, its radical cation served as a charge exchange reagent, yielding molecular radical cations (M+) of the hydrocarbons. This mode of sample ionization provided mass spectra with better signal/noise ratios and without unwanted side-products. It also extended the applicability of DAPCI to petroleum constituents which could not be analyzed through proton transfer (e.g., higher molecular PAHs such as chrysene). The thermochemistry governing the individual ionization processes is discussed and a desorption/ionization mechanism is inferred. © 2012 Elsevier B.V.

  20. On the mechanism of atmospheric pressure plasma plume

    Science.gov (United States)

    Chen, Longwei; Zhao, Peng; Shu, Xingsheng; Shen, Jie; Meng, Yuedong

    2010-08-01

    For the purpose of unveiling the parameters influencing the length of atmospheric pressure plasma plume, an over 165 cm long argon plasma plume is generated in the quartz tube attached to the nozzle of the device. Dependence of plasma length on discharge parameters such as applied voltage, frequency of power supply, and argon gas flow rate was investigated. Experimental results indicated that (a) the applied voltage plays crucial roles on plasma plume length, that is, the plasma plume length exponentially increases with the applied voltage, (b) the plasma plume length increases with frequency, more obviously when the applied voltage is higher, (c) the plasma plume length increases with argon gas flow rate, reaches its maximum at critical value of the gas flow rate, and then decreases again. An evaluation of the physical phenomena involved in streamer propagation, particularly of the energy balance, was investigated. The numerical results were qualitatively consistent with previous experimental results by successfully indicating the high velocity of "plasma bullet" and providing physical mechanism of energy balance determining streamer length.

  1. Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hao; ZHU Fengsen; TU Xin; BO Zheng; CEN Kefa; LI Xiaodong

    2016-01-01

    In this work,a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions.The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals,high speed photography,and optical emission spectroscopic diagnostics.Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g.,10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone,in this RGA system,a lower gas flow rate (e.g.,2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions.Two different motion patterns can be clearly observed in the N2 and air RGA plasmas.The time-resolved arc voltage signals show that three different arc dynamic modes,the arc restrike mode,takeover mode,and combined modes,can be clearly identified in the RGA plasmas.The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate.

  2. Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas

    Science.gov (United States)

    Zhang, Hao; Zhu, Fengsen; Tu, Xin; Bo, Zheng; Cen, Kefa; Li, Xiaodong

    2016-05-01

    In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals, high speed photography, and optical emission spectroscopic diagnostics. Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g., 10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone, in this RGA system, a lower gas flow rate (e.g., 2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions. Two different motion patterns can be clearly observed in the N2 and air RGA plasmas. The time-resolved arc voltage signals show that three different arc dynamic modes, the arc restrike mode, takeover mode, and combined modes, can be clearly identified in the RGA plasmas. The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate. supported by National Natural Science Foundation of China (No. 51576174), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120101110099) and the Fundamental Research Funds for the Central Universities (No. 2015FZA4011)

  3. Thomson scattering on high pressure Hg discharge lamps

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven (Netherlands); Vries, N de [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven (Netherlands); Kieft, E R [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven (Netherlands); Mullen, J J A M van der [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven (Netherlands); Haverlag, M [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven (Netherlands); Central Development Lighting, Philips Lighting, PO Box 80020, 5600 JM, Eindhoven (Netherlands)

    2005-06-21

    Thomson scattering (TS) experiments have been performed on high-pressure Hg discharge lamps. These lamps were filled with different amounts of Hg (15, 30, 50 and 70 mg) and were operating at different powers (150, 200 and 240 W) with a square-wave ballast. As in the previous studies (Zhu X et al 2004 J. Phys. D: Appl. Phys. 37 736-43) a triple grating spectrograph was used to suppress the false stray light and Rayleigh scattered photons. This set-up had to be modified for this special application. The collective TS spectra have been fitted using both a calibration using Raman scattering and a form fitting procedure. It was found that the electron temperature fluctuates around a certain value that seems rather constant in the central region. The value of electron temperature (T{sub e}) varies between 5500 and 7600 K in the central region (r {<=} 0.3 R). The spatial-averaged T{sub e} value increases with the lamp power. The electron density was found to be of the order of 10{sup 21} m{sup -3} which is high at the centre and decreases as r increases. The n{sub e} value also increases with the lamp power. Moreover the results of TS are compared with those from x-ray absorption measurement. The comparison shows that the plasmas in such lamps are not in local thermal equilibrium in the sense that T{sub e} {ne} T-dot{sub g}-gas temperature and locally the rate of ionization is much larger than that of three body recombination.

  4. Patterning of graphene for flexible electronics with remote atmospheric-pressure plasma using dielectric barrier

    Science.gov (United States)

    Kim, Duk Jae; Park, Jeongwon; Geon Han, Jeon

    2016-08-01

    We show results of the patterning of graphene layers on poly(ethylene terephthalate) (PET) films through remote atmospheric-pressure dielectric barrier discharge plasma. The size of plasma discharge electrodes was adjusted for large-area and role-to-role-type substrates. Optical emission spectroscopy (OES) was used to analyze the characteristics of charge species in atmospheric-pressure plasma. The OES emission intensity of the O2* peaks (248.8 and 259.3 nm) shows the highest value at the ratio of \\text{N}2:\\text{clean dry air (CDA)} = 100:1 due to the highest plasma discharge. The PET surface roughness and hydrophilic behavior were controlled with CDA flow rate during the process. Although the atmospheric-pressure plasma treatment of the PET film led to an increase in the FT-IR intensity of C–O bonding at 1240 cm‑1, the peak intensity at 1710 cm‑1 (C=O bonding) decreased. The patterning of graphene layers was confirmed by scanning electron microscopy and Raman spectroscopy.

  5. Corona discharge experiments in admixtures of N{sub 2} and CH{sub 4}: a laboratory simulation of Titan's atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, G; Skalny, J D; Klas, M; Zahoran, M [Department of Experimental Physics, Comenius University, Mlynska dolina F-2, 842 48 Bratislava (Slovakia); Mason, N J [Department of Physics and Astronomy, The Open University, Walton Hall, MK7 6AA, Milton Keynes (United Kingdom); Vladoiu, R; Manole, M [Ovidius University Constanta, B - dul Mamaia 124, 900527 Constanta (Romania)], E-mail: horeszka@gmail.com

    2009-08-15

    A positive corona discharge fed by a N{sub 2} : CH{sub 4} mixture (98 : 2) at atmospheric pressure and ambient temperature has been studied as a laboratory mimic of the chemical processes occurring in the atmosphere of Titan, Saturn's largest moon. In situ measurements of UV and IR transmission spectra within the discharge have shown that the main chemical product is C{sub 2}H{sub 2}, produced by dissociation of CH{sub 4}, with small but significant traces of ethane and HCN, all species that have been detected in Titan's atmosphere. A small amount (0.2%) of CH{sub 4} was decomposed after 12 min of treatment requiring an average energy of 2.7 kWh g{sup -1}. After 14 min the discharge was terminated due to the formation of a solid yellow deposit on the central wire electrode. Such a deposit is similar to that observed in other discharges and is believed to be an analogue of the aerosol and dust observed in Titan's atmosphere and is composed of chemical species commonly known as 'tholins'. We have also explored the electrical properties of the discharge. The admixture of methane into nitrogen caused an increase in the onset voltage of the discharge and consequently led to a reduction in the measured discharge current.

  6. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

    Science.gov (United States)

    Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ.

  7. Non-Thermal Sanitation By Atmospheric Pressure Plasma Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC's Non-Thermal Sanitation by Atmospheric Pressure Plasma technology sanitizes fresh fruits and vegetables without the use of consumable chemicals and without...

  8. Non-Thermal Sanitation By Atmospheric Pressure Plasma Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a non-thermal technology based on atmospheric-pressure (AP) cold plasma to sanitize foods, food packaging materials, and other hardware...

  9. Ionisation and discharge in cloud-forming atmospheres of brown dwarfs and extrasolar planets

    CERN Document Server

    Helling, Ch; Rodriguez-Barrera, I M; Wood, Kenneth; Robertson, G B; Stark, C R

    2016-01-01

    Brown dwarfs and giant gas extrasolar planets have cold atmospheres with a rich chemical compositions from which mineral cloud particles form. Their properties, like particle sizes and material composition, vary with height, and the mineral cloud particles are charged due to triboelectric processes in such dynamic atmospheres. The dynamics of the atmospheric gas is driven by the irradiating host star and/or by the rotation of the objects that changes during its lifetime. Thermal gas ionisation in these ultra-cool but dense atmospheres allows electrostatic interactions and magnetic coupling of a substantial atmosphere volume. Combined with a strong magnetic field $\\gg B_{\\rm Earth}$, a chromosphere and aurorae might form as suggested by radio and X-ray observations of brown dwarfs. Non-equilibrium processes like cosmic ray ionisation and discharge processes in clouds will increase the local pool of free electrons in the gas. Cosmic rays and lighting discharges also alter the composition of the local atmospheri...

  10. Reactivity of water vapor in an atmospheric argon flowing post-discharge plasma torch

    CERN Document Server

    Collette, S; Reniers, F

    2016-01-01

    The reactivity of water vapor introduced in the flowing post-discharge of an RF atmospheric plasma torch is investigated through electrical characterization, optical emission spectroscopy and mass spectrometry measurements. Due to the technical features of the plasma torch, the post-discharge can be considered as divided into two regions: an inner region (inside the plasma torch device) where the water vapor is injected and an outer region which directly interacts with the ambient air. The main reactions induced by the injection of water vapor are identified as well as those indicative of the influence of the ambient air. Plausible pathways allowing the production of H, OH, O radicals and H2O2 are discussed as well as reactions potentially responsible for inhomogeneities and for a low DC current measured in the flowing post-discharge. Keywords: atmospheric post-discharge, H2O plasma reactivity, RF plasma torch

  11. Ultrasound enhanced 50 Hz plasma treatment of glass-fiber-reinforced polyester at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Norrman, Kion; Singh, Shailendra Vikram;

    2013-01-01

    Glass-fiber-reinforced polyester (GFRP) plates are treated using a 50Hz dielectric barrier discharge at a peak-to-peak voltage of 30 kV in helium at atmospheric pressure with and without ultrasonic irradiation to study adhesion improvement. The ultrasonic waves at the fundamental frequency...... of around 30 kHz with the sound pressure level of approximately 155 dB were introduced vertically to the GFRP surface through a cylindrical waveguide. The polar component of the surface energy was almost unchanged after the plasma treatment without ultrasonic irradiation, but drastically increased...

  12. 50-Hz plasma treatment of glass fibre reinforced polyester at atmospheric pressure enhanced by ultrasonic irradiation

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Norrman, Kion; Singh, Shailendra Vikram;

    2011-01-01

    Glass fibre reinforced polyester (GFRP) plates are treated using a 50-Hz dielectric barrier discharge at peak-to-peak voltage of 30 kV in helium at atmospheric pressure with and without ultrasonic irradiation to study adhesion improvement. The ultrasonic waves at the fundamental frequency of around...... 30 kHz with the sound pressure level of approximately 155 dB were introduced vertically to the GFRP surface through a cylindrical waveguide. The polar component of the surface energy was almost unchanged after the plasma treatment without ultrasonic irradiation, but drastically increased...

  13. Black pepper powder microbiological quality improvement using DBD systems in atmospheric pressure

    Science.gov (United States)

    Grabowski, Maciej; Hołub, Marcin; Balcerak, Michał; Kalisiak, Stanisław; Dąbrowski, Waldemar

    2015-07-01

    Preliminary results are given regarding black pepper powder decontamination using dielectric barrier discharge (DBD) plasma in atmospheric pressure. Three different DBD reactor constructions were investigated, both packaged and unpackaged material was treated. Due to potential, industrial applications, in addition to microbiological results, water activity, loss of mass and the properties of packaging material, regarding barrier properties were investigated. Argon based treatment of packed pepper with DBD reactor configuration is proposed and satisfactory results are presented for treatment time of 5 min or less. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  14. A Spectacular Experiment Exhibiting Atmospheric Pressure

    Science.gov (United States)

    Le Noxaïc, Armand

    2014-01-01

    The experiment described here is fairly easy to reproduce and dramatically shows the magnitude of ambient air pressure. Two circular plates of aluminum are applied one against the other. How do you make their separation very difficult? With only the help of an elastic band! You don't have to use a vacuum pump for this experiment.

  15. Fast gas heating in nitrogenoxygen discharge plasma: II. Energy exchange in the afterglow of a volume nanosecond discharge at moderate pressures

    OpenAIRE

    Mintoussov, E I; Pendleton, S J; Gerbault, F; Popov, N. A.; Starikovskaia, S M

    2011-01-01

    Abstract gas heating in nitrogen?oxygen discharge plasma. II. Energy exchange in the afterglow of a volume nanosecond discharge at moderate pressures. Abstract. The process of fast gas heating in air in the near afterglow of a pulsed nanosecond spatially uniform discharge has been investigated experimentally and numerically at moderate (3?9 mbar) pressures and high (200?400 Td) reduced electric fields. The temporal behavior of discharge current, deposited energy, electric field and tempera...

  16. Vapor phase growth of functional pentacene films at atmospheric pressure

    NARCIS (Netherlands)

    Rolin, C.; Vasseur, K.; Niesen, B.; Willegems, M.; Müller, R.; Steudel, S.; Genoe, J.; Heremans, P.

    2012-01-01

    Compared to traditional vacuum evaporation techniques for small organic molecules, organic vapor phase deposition (OVPD) possesses a extra processing parameter: the pressure of process gas Pch. Here, the influence of large Pch variations (from 0.1 mbar to atmospheric pressure) on pentacene thin film

  17. Observation of hard radiations in a laboratory atmospheric high-voltage discharge

    CERN Document Server

    Agafonov, A V; Chubenko, A P; Oginov, A V; Rodionov, A A; Rusetskiy, A S; Ryabov, V A; Shepetov, A L; Shpakov, K V

    2016-01-01

    The new results concerning neutron emission detection from a laboratory high-voltage discharge in the air are presented. Data were obtained with a combination of plastic scintillation detectors and $^3$He filled counters of thermal neutrons. Strong dependence of the hard x-ray and neutron radiation appearance on the field strength near electrodes, which is determined by their form, was found. We have revealed a more sophisticated temporal structure of the neutron bursts observed during of electric discharge. This may indicate different mechanisms for generating penetrating radiation at the time formation and development of the atmospheric discharge.

  18. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion;

    2012-01-01

    Efficiency of atmospheric pressure plasma treatment can be highly enhanced by simultaneous high power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above ∼140 dB can reduce the thickness of a boundary gas layer between the plasma...... arc at atmospheric pressure to study adhesion improvement. The effect of ultrasonic irradiation with the frequency diapason between 20 and 40 kHz at the SPL of ∼150 dB was investigated. After the plasma treatment without ultrasonic irradiation, the wettability was significantly improved...

  19. Initiation of extended arc discharge in ICF reactor dense atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Kislev, H.

    1986-01-01

    Reduced density plasma channels are essential for LIB transport from external diodes to an ICF pellet centered in the 2-4 MPa superheated steamfilled cavity of the Heavy Water ICF Reactor. Forming such channels by ohmic heating requires the initiation of straight arc discharges along each beamline. The goal of this thesis is to evaluate the threshold beamline preionization and applied electric field for arc initiation. The capability of several preionizers to produce a straight preionized trail is evaluated through a ten-group Boltzmann equation solver. Electron densities around 10/sup 17/ m/sup -3/ could be maintained in the trail by monojoule output external preionizers. Trail preionization through the co-application of UV and CO/sub 2/ lasers appears to be the most promising technique. UV laser preionization of NO(a/sup 4/..pi..) formed in the fireball shows also good prospective. The large divergence of soft x-ray sources reduces their attractivity. The E/N dependent electron transport properties are used to construct the first streamer model capable of evaluating the steady state streamer wave shape. The streamers-induced highly ionized filament transition into a multi-kA carrying plasma channel is simulated by a modified radiation-MHD one-dimensional code.

  20. Potential Variation of Discharge Pulses in Air at Low Pressures

    Directory of Open Access Journals (Sweden)

    S. G. Pimpale

    1972-10-01

    Full Text Available A decrease and/or increase of the discharge current ratio (5i/50i, the ratio of the discharge current for 5 volts discriminator bias to that for 50 volts discriminator bias, under irradiation is studied in air filled ozonizers excited by a.c. potentials kV of 50 cycles. sec./sup 1/ frequency. Results are in accord with Joshi's theory which consider that external light emits photo-electrons from an adsorption like electrode layer formed with ions and molecules of the gas on the glass wall of the discharge tube. These photo-electrons are captured by excited atoms to form also moving negative ions and bearing about the decrease in 5i/sub L/sup 50i/sup L/ as a space charge effect. The positive effect,+ delta (5i/50i, is also explained by the electronic work function at the boundary layer.

  1. Ionisation in atmospheres of brown dwarfs and extrasolar planets VI: Properties of large-scale discharge events

    CERN Document Server

    Bailey, R L; Hodos, G; Bilger, C; Stark, C R

    2013-01-01

    Mineral clouds in substellar atmospheres play a special role as a catalyst for a variety of charge processes. If clouds are charged, the surrounding environment becomes electrically activated, and ensembles of charged grains are electrically discharging (e.g. by lightning), which significantly infuences the local chemistry creating conditions similar to those thought responsible for life in early planetary atmospheres. We note that such lightning discharges contribute also to the ionisation state of the atmosphere. We apply scaling laws for electrical discharge processes from laboratory measurements and numerical experiments to Drift-Phoenix model atmosphere results to model the discharge's propagation downwards (as lightning) and upwards (as sprites) through the atmospheric clouds. We evaluate the spatial extent and energetics of lightning discharges. The atmospheric volume affected (e.g. by increase of temperature or electron number) is larger in a brown dwarf atmosphere ($10^8 -~10^{10}$m$^3$) than in a gi...

  2. Temperature field simulation of gob influenced by atmospheric pressure

    Institute of Scientific and Technical Information of China (English)

    王刚; 罗海珠; 梁运涛; 王继仁

    2015-01-01

    The current temperature field model of mine gob does not take the boundary conditions of the atmospheric pressure into account, while the actual atmospheric pressure is influenced by weather, so as to produce differences between ventilation negative pressure of the working face and the negative pressure of gas drainage in gob, thus interfering the calculated results of gob temperature field. According to the characteristics of the actual air flow and temperature change in gob, a two-dimensional temperature field model of the gob was built, and the relational model between the air pressure of intake and outlet of the gob and the atmospheric pressure was established, which was introduced into the boundary conditions of temperature field to conduct calculation. By means of analysis on the simulation example, and comparison with the traditional model, the results indicate that atmospheric pressure change had notable impact on the distribution of gob temperature field. The laboratory test system of gob temperature field was constructed, and the relative error between simulated and measured value was no greater than 9.6%, which verified the effectiveness of the proposed model. This work offers theoretical basis for accurate calculation of temperature and prediction of ignition source in mine gob, and has important implications on preventing spontaneous combustion of coal.

  3. Ultrasound enhanced plasma treatment of glass-fibre-reinforced polyester in atmospheric pressure air for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion;

    2011-01-01

    A glass-fibre-reinforced polyester (GFRP) plate was treated with dielectric barrier discharge (DBD) at atmospheric pressure in air for adhesion improvement. The effects of ultrasonic irradiation using a high-power gas-jet generator during the treatment were investigated. The optical emission...

  4. Atmospheric air diffuse array-needles dielectric barrier discharge excited by positive, negative, and bipolar nanosecond pulses in large electrode gap

    Science.gov (United States)

    Zhang, Li; Yang, De-zheng; Wang, Wen-chun; Liu, Zhi-jie; Wang, Sen; Jiang, Peng-chao; Zhang, Shuai

    2014-09-01

    In this paper, positive, negative, and bipolar nanosecond pulses are employed to generate stable and diffuse discharge plasma using array needles-plate electrode configuration at atmospheric pressure. A comparison study of discharge images, electrical characteristics, optical emission spectra, and plasma vibrational temperature and rotational temperatures in three pulsed polarity discharges is carried on under different discharge conditions. It is found that bipolar pulse is beneficial to the excitation of diffuse dielectric barrier discharge, which can generate a room temperature plasma with more homogeneous and higher discharge intensity compared with unipolar discharges. Under the condition of 6 mm electrode gap distance, 26 kV pulse peak voltage, and 150 Hz pulse repetition rate, the emission intensity of N2 (C3Πu → B3Πg) of the bipolar pulsed discharge is 4 times higher than the unipolar discharge (both positive and negative), while the plasma gas temperature is kept at 300 K, which is about 10-20 K lower than the unipolar discharge plasma.

  5. Saturated vapor pressure above the amalgam of alkali metals in discharge lamps

    Science.gov (United States)

    Gavrish, S. V.

    2011-12-01

    A theoretical and numerical analysis of the evaporation process of two-component compounds in vapors of alkali metals in discharge lamps is presented. Based on the developed mathematical model of calculation of saturated vapor pressure of the metal above the amalgam, dependences of mass fractions of the components in the discharge volume on design parameters and thermophysical characteristics of the lamp are obtained.

  6. Atmospheric pressure plasma treatment of flat aluminum surface

    International Nuclear Information System (INIS)

    Highlights: • DCSBD plasma is applicable for activation and cleaning of flat aluminum surfaces. • Decrease in the value of the contact angle after 1 s plasma treatment was 93%. • EDX measurements confirmed removal of oil contamination by 50% decreasing of carbon. • XPS analyze shown decrease of carbon content and increase of aluminum hydroxide and oxyhydroxide. - Abstract: The atmospheric pressure ambient air and oxygen plasma treatment of flat aluminum sheets using the so-called Diffuse Coplanar Surface Barrier Discharge (DCSBD) were investigated. The main objective of this study is to show the possibility of using DCSBD plasma source to activate and clean aluminum surface. Surface free energy measurements, X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy (SEM/EDX) and Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) were used for the characterization of the aluminum surface chemistry and changes induced by plasma treatment. Short plasma exposure times (several seconds) led to a significant increase in the surface free energy due to changes of its polar components. Various ageing effects, depending on the storage conditions were observed and discussed. Effects of air and oxygen plasmas on the removal of varying degrees of artificial hydrocarbon contamination of aluminum surfaces were investigated by the means of EDX, ATR-FTIR and XPS methods. A significant decrease in the carbon surface content after the plasma treatment indicates a strong plasma cleaning effect, which together with high energy efficiency of the DCSBD plasma source points to potential benefits of DCSBD application in processing of the flat aluminum surfaces

  7. Non-linear macro evolution of a dc driven micro atmospheric glow discharge

    CERN Document Server

    Xu, Shaofeng

    2015-01-01

    We studied the macro evolution of the micro atmospheric glow discharge generated between a micro argon jet into ambient air and static water. The micro discharge behaves similarly to a complex ecosystem. Non-linear behaviors are found for the micro discharge when the water acts as a cathode, different from the discharge when water behaves as an anode. Groups of snapshots of the micro discharge formed at different discharge currents are captured by an intensified charge-coupled device with controlled exposure time, and each group consisted of 256 images taken in succession. Edge detection methods are used to identify the water surface and then the total brightness is defined by adding up the signal counts over the area of the micro discharge. Motions of the water surface at different discharge currents show that the water surface lowers increasingly rapidly when the water acts as a cathode. In contrast, the water surface lowers at a constant speed when the water behaves as an anode. The light curves are simila...

  8. Study of optimal discharge pressure of compressor in CO_2 refrigerating trans-critical cycle

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, a carbon dioxide trans-critical refrigerating system which is different from a conventional subcritical refrigerating cycle was studied. The trans-critical carbon dioxide refrigerating systems are based on the Gustav Lorntzen cycle. Emphasis was focused on how to determine the optimal discharge pressure of compressor in CO2 trans-critical cycle. The factors related with the optimal discharge pressure were analyzed. A formula was developed based on cycle simulation, which could be used to pred...

  9. Controlling hydrophilicity of polymer film by altering gas flow rate in atmospheric-pressure homogeneous plasma

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Controlling hydrophilicity of polymer film by varying gas flow rate is proposed in atmospheric-pressure homogeneous plasma treatment. • Without employing additional reactive gas, requiring more plasma power and longer treatment time, hydrophilicity of polyimide films was improved after the low-gas-flow plasma treatment. • The gas flow rate affects the hydrophilic properties of polymer surface by changing the discharge atmosphere in the particular geometry of the reactor developed. • Low-gas-flow induced wettability control suggests effective and economical plasma treatment. - Abstract: This paper reports on controlling the hydrophilicity of polyimide films using atmospheric-pressure homogeneous plasmas by changing only the gas flow rate. The gas flow changed the discharge atmosphere by mixing the feed gas with ambient air because of the particular geometry of the reactor developed for the study, and a low gas flow rate was found to be favorable because it generated abundant nitrogen or oxygen species that served as sources of hydrophilic functional groups over the polymer surface. After low-gas-flow plasma treatment, the polymer surface exhibited hydrophilic characteristics with increased surface roughness and enhanced chemical properties owing to the surface addition of functional groups. Without adding any reactive gases or requiring high plasma power and longer treatment time, the developed reactor with low-gas-flow operation offered effective and economical wettability control of polyimide films

  10. Diagnostics of plasma-biological surface interactions in low pressure and atmospheric pressure plasmas

    Science.gov (United States)

    Ishikawa, Kenji; Hori, Masaru

    2014-08-01

    Mechanisms of plasma-surface interaction are required to understand in order to control the reactions precisely. Recent progress in atmospheric pressure plasma provides to apply as a tool of sterilization of contaminated foodstuffs. To use the plasma with safety and optimization, the real time in situ detection of free radicals - in particular dangling bonds by using the electron-spin-resonance (ESR) technique has been developed because the free radical plays important roles for dominantly biological reactions. First, the kinetic analysis of free radicals on biological specimens such as fungal spores of Penicillium digitatum interacted with atomic oxygen generated plasma electric discharge. We have obtained information that the in situ real time ESR signal from the spores was observed and assignable to semiquinone radical with a g-value of around 2.004 and a line width of approximately 5G. The decay of the signal was correlated with a link to the inactivation of the fungal spore. Second, we have studied to detect chemical modification of edible meat after the irradiation. Using matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF-MS) and ESR, signals give qualification results for chemical changes on edible liver meat. The in situ real-time measurements have proven to be a useful method to elucidate plasma-induced surface reactions on biological specimens.

  11. Inactivation of Spoilage Bacteria in Package by Dielectric Barrier Discharge Atmospheric Cold Plasma - Treatment Time Effects

    Science.gov (United States)

    The objective was to investigate the effect of treatment time of dielectric barrier discharge atmospheric cold plasma (DBD-ACP) on inactivation of spoilage bacteria, Pseudomonas fluorescens and Macrococcus caseolyticus. P. fluorescens and M. caseolyticus were isolated from spoiled chicken carcasses ...

  12. Surface corona-bar discharges for production of pre-ionizing UV light for pulsed high-pressure plasmas

    International Nuclear Information System (INIS)

    Multi-atmospheric pressure, pulsed electric discharge excited lasers require pre-ionization to produce spatially uniform glows. Many such systems use corona bars to produce ultraviolet (UV) and vacuum ultraviolet (VUV) light as photo-ionization sources for this purpose. Corona bars are transient surface discharges, typically in a cylindrical geometry, that sustain high electron temperatures and so are efficient UV and VUV sources. In this paper, results from a numerical study of surface corona-bar discharges in a multi-atmosphere pressure Ne/Xe gas mixture are discussed. The discharge consists of a high-voltage electrode placed on the surface of a corona bar which is a dielectric tube surrounding a cylindrical metal electrode. After the initial breakdown an ionization front propagates along the circumference of the corona bar and produces a thin plasma sheet near the dielectric surface. The propagation speed of the ionization front ranges from 2 x 107 to 3.5 x 108 cm s-1, depending on the applied voltage and dielectric constant of the corona-bar insulator. As the discharge propagates around the circumference, the surface of the corona-bar is charged. The combined effects of surface curvature and charge deposition result in a non-monotonic variation of the electric field and electron temperature as the ionization front traverses the circumference. The UV fluxes collected on a surrounding circular surface correlate with the motion of the ionization front but with a time delay due to the relatively long lifetime of the precursor to the emitting species Ne2*.

  13. Seed disinfection effect of atmospheric pressure plasma and low pressure plasma on Rhizoctonia solani.

    Science.gov (United States)

    Nishioka, Terumi; Takai, Yuichiro; Kawaradani, Mitsuo; Okada, Kiyotsugu; Tanimoto, Hideo; Misawa, Tatsuya; Kusakari, Shinichi

    2014-01-01

    Gas plasma generated and applied under two different systems, atmospheric pressure plasma and low pressure plasma, was used to investigate the inactivation efficacy on the seedborne pathogenic fungus, Rhizoctonia solani, which had been artificially introduced to brassicaceous seeds. Treatment with atmospheric plasma for 10 min markedly reduced the R. solani survival rate from 100% to 3% but delayed seed germination. The low pressure plasma treatment reduced the fungal survival rate from 83% to 1.7% after 10 min and the inactivation effect was dependent on the treatment time. The seed germination rate after treatment with the low pressure plasma was not significantly different from that of untreated seeds. The air temperature around the seeds in the low pressure system was lower than that of the atmospheric system. These results suggested that gas plasma treatment under low pressure could be effective in disinfecting the seeds without damaging them.

  14. Experimental Determination of Spatial and Temporal Discharge Parameters for an Ambient Pressure Dielectric Barrier Discharge in Helium

    Science.gov (United States)

    Bures, Brian; Bourham, Mohamed

    2004-11-01

    Ambient pressure Dielectric Barrier Discharges (DBD's) are studied for a number of applications. Barrier discharges composed primarily of inert gases are potentially useful for the production of intense excimer light, sterilization of thermally sensitive materials and control of insects for quarantine. The neutral bremsstrahlung technique is used to determine spatial variations of electron density and electron temperature in a parallel plate, helium (99.9% by vol) dielectric barrier discharge operated at an average power density between 50 and 75 mW/cm^3. The applied frequency is varied between 2 kHz and 6 kHz. The time average electron density suggests a more intense discharge near the surface of the electrodes than the bulk of the discharge for all frequencies and power densities. When moving parallel to the electrodes, the electron temperature remains constant, while the electron density is constant within 20% of the average value. A monochromator tuned to a nitrogen ion line (391.4 nm) and a helium line (706.5 nm) has a more intense emission when the electrode is negatively biased.

  15. Small size plasma tools for material processing at atmospheric pressure

    Science.gov (United States)

    Ionita, E. R.; Ionita, M. D.; Stancu, E. C.; Teodorescu, M.; Dinescu, G.

    2009-03-01

    A small size radiofrequency plasma jet source able to produce cold plasma jets at atmospheric pressure is presented. The surface modification of polyethylene terephtalate, polyethylene and polytetrafluorethylene foils is performed by using a scanning procedure. The contact angle measurements reveal that the treatment leads to hydrophilicity increase. The roughening of surface, specific to each material is noticed. A significant improvement of adhesion is obtained as result of atmospheric plasma treatments.

  16. Optical properties of the atmospheric pressure helium plasma jet generated by alternative current (a.c.) power supply

    Science.gov (United States)

    Ilik, Erkan; Akan, Tamer

    2016-05-01

    In this work, an atmospheric pressure plasma jet (APPJ) was produced to generate cold flowing post-discharge plasma of pure helium gas. The main aim of this study was to generate cold flowing APPJ of pure helium gas and to determine how their optical emission spectrum change influences varying different flow rates. Lengths of early, middle, and late post-discharge plasma (jet) regions and their fluctuations were determined, respectively. Then, ignition condition dependence of the post-discharge plasma for flow rate was specified at a constant voltage. Spectroscopic studies of an atmospheric pressure plasma jet of helium were presented via analyzing OH, N2, N2+, oxygen, and helium intensities for various flow rates.

  17. Generation of Atmospheric Pressure Plasma by Repetitive Nanosecond Pulses in Air Using Water Electrodes%Generation of Atmospheric Pressure Plasma by Repetitive Nanosecond Pulses in Air Using Water Electrodes

    Institute of Scientific and Technical Information of China (English)

    邵涛; 于洋; 章程; 姜慧; 严萍; 周远翔

    2011-01-01

    Dielectric barrier discharge (DBD) excitated by pulsed power is a promising method for producing nonthermal plasma at atmospheric pressure. Discharge characteristic in a DBD with salt water as electrodes by a home-made unipolar nanosecond-pulse power source is presented in this paper. The generator is capable of providing repetitive pulses with the voltage up to 30 kV and duration of 70 ns at a 300 Ω resistive load. Applied voltage and discharge current are measured under various experimental conditions. The DBD created between two liquid electrodes shows that the discharge is homogeneous and diffuse in the whole discharge regime, Spectra diagnosis is conducted by an optical emission spectroscopy. The air plasma has strong emission from nitrogen species below 400 nm, notably the nitrogen second positive system.

  18. Atmospheric-pressure air microplasma jets in aqueous media for the inactivation of Pseudomonas fluorescens cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xianhui; Yang, Si-ze [Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); Liu, Dongping [Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Song, Ying [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China); Sun, Yue [School of Physics, Changchun University of Science and Technology, Changchun 130022 (China)

    2013-05-15

    The hollow fiber-based cold air microplasma jet array running at atmospheric pressure has been designed to inactivate Pseudomonas fluorescens (P. fluorescens) cells in vitro in aqueous media. The influences of electrode configurations, air flow rate, and applied voltage on the discharge characteristics of the single microplasma jet operating in aqueous media are presented, and the bactericidal efficiency of the hollow fibers-based and large-volume microplasma jet array is reported. Optical emission spectroscopy is utilized to identify excited species during the antibacterial testing of plasma in solutions. These well-aligned and rather stable air microplasma jets containing a variety of short-lived species, such as OH and O radicals and charged particles, are in direct contact with aqueous media and are very effective in killing P. fluorescens cells in aqueous media. This design shows its potential application for atmospheric pressure air plasma inactivation of bacteria cells in aqueous media.

  19. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    International Nuclear Information System (INIS)

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ∼5 × 1010 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eUm, where Um is the maximum gap voltage, is relatively small.

  20. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    Science.gov (United States)

    Tarasenko, V. F.

    2011-05-01

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ˜5 × 1010 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU m , where U m is the maximum gap voltage, is relatively small.

  1. Apoptotic effects on cultured cells of atmospheric-pressure plasma produced using various gases

    Science.gov (United States)

    Tominami, Kanako; Kanetaka, Hiroyasu; Kudo, Tada-aki; Sasaki, Shota; Kaneko, Toshiro

    2016-01-01

    This study investigated the effects of low-temperature atmospheric-pressure plasma on various cells such as rat fibroblastic Rat-1 cell line, rat neuroblastoma-like PC12 cell line, and rat macrophage-like NR8383 cell line. The plasma was irradiated directly to a culture medium containing plated cells for 0-20 s. The applied voltage, excitation frequency, and argon or helium gas flow were, respectively, 3-6 kV, 10 kHz, and 3 L/min. Cell viability and apoptotic activity were evaluated using annexin-V/propidium iodide staining. Results showed that the low-temperature atmospheric-pressure plasma irradiation promoted cell death in a discharge-voltage-dependent and irradiation-time-dependent manner. Furthermore, different effects are produced depending on the cell type. Moreover, entirely different mechanisms might be responsible for the induction of apoptosis in cells by helium and argon plasma.

  2. Atmospheric-pressure air microplasma jets in aqueous media for the inactivation of Pseudomonas fluorescens cells

    Science.gov (United States)

    Zhang, Xianhui; Liu, Dongping; Song, Ying; Sun, Yue; Yang, Si-ze

    2013-05-01

    The hollow fiber-based cold air microplasma jet array running at atmospheric pressure has been designed to inactivate Pseudomonas fluorescens (P. fluorescens) cells in vitro in aqueous media. The influences of electrode configurations, air flow rate, and applied voltage on the discharge characteristics of the single microplasma jet operating in aqueous media are presented, and the bactericidal efficiency of the hollow fibers-based and large-volume microplasma jet array is reported. Optical emission spectroscopy is utilized to identify excited species during the antibacterial testing of plasma in solutions. These well-aligned and rather stable air microplasma jets containing a variety of short-lived species, such as OH and O radicals and charged particles, are in direct contact with aqueous media and are very effective in killing P. fluorescens cells in aqueous media. This design shows its potential application for atmospheric pressure air plasma inactivation of bacteria cells in aqueous media.

  3. Development of a new atmospheric pressure cold plasma jet generator and application in sterilization

    Institute of Scientific and Technical Information of China (English)

    Cheng Cheng; Liu Peng; Xu Lei; Zhang Li-Ye; Zhan Ru-Juan; Zhang Wen-Rui

    2006-01-01

    This paper reports that a new plasma generator at atmospheric pressure, which is composed of two homocentric cylindrical all-metal tubes, successfully generates a cold plasma jet. The inside tube electrode is connected to ground,the outside tube electrode is connected to a high-voltage power supply, and a dielectric layer is covered on the outside tube electrode. When the reactor is operated by low-frequency (6 kHz-20 kHz) AC supply in atmospheric pressure and argon is steadily fed as a discharge gas through inside tube electrode, a cold plasma jet is blown out into air and the plasma gas temperature is only 25-30 ℃. The electric character of the discharge is studied by using digital real-time oscilloscope (TDS 200-Series), and the discharge is capacitive. Preliminary results are presented on the decontamination of E.colis bacteria and Bacillus subtilis bacteria by this plasma jet, and an optical emission analysis of the plasma jet is presented in this paper. The ozone concentration generated by the plasma jet is 1.0 × 1016cm-3 which is acquired by using the ultraviolet absorption spectroscopy.

  4. Basic data for atmospheric pressure non-thermal plasma investigations in environmental and biomedical applications

    Science.gov (United States)

    Yousfi, M.; Bekstein, A.; Merbahi, N.; Eichwald, O.; Ducasse, O.; Benhenni, M.; Gardou, J. P.

    2010-06-01

    The aim of this paper is to discuss some aspects of the optimization of the active species generated by corona or DBD discharges at atmospheric pressure which are very useful in the field of plasma environmental and biomedical applications. For such an optimization, this paper targets, in particular, the use of discharge modeling tools and the problem of accuracy of the required basic data. First of all, an overview on the different experimental diagnostics used for the characterization of these non-thermal plasmas is given followed by a short description of the different models (streamer dynamics, gas dynamics and chemical kinetics coupled with models of basic data calculation) required for complementing such experimental investigations. Then, emphasis is placed on the basic data of charged particles (electrons and ions) needed for streamer dynamics modeling and particularly on the necessity to use accurate and validated basic data in order to have a quantitative (not only qualitative) description of the phenomena and processes occurring in such discharges. An overview is given on the calculations and the fitting methods of collision cross sections and swarm coefficients of the data of charged particles and their validation using, in particular, pulsed Townsend measurements for experimental comparisons. Swarm coefficients are calculated from a multi-term solution of the Boltzmann equation or from Monte Carlo simulation. Some illustrative results are given in the case of the simulations of a dc positive point-to-plane corona discharge in air at atmospheric pressure. The effect of consideration of some basic data, particularly those of polyatomic ions, is shown on the discharge development and the radical production.

  5. High explosives vapor detection by atmospheric sampling glow discharge ionization/tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    McLuckey, S.A.; Goeringer, D.E.; Asano, K.G. [Oak Ridge National Lab., TN (United States). Chemical and Analytical Sciences Div.

    1996-02-01

    The combination of atmospheric sampling glow discharge ionization with tandem mass spectrometry for the detection of traces of high explosives is described. Particular emphasis is placed on use of the quadrupole ion trap as the type of tandem mass spectrometer. Atmospheric sampling glow discharge provides a simple, rugged, and efficient means for anion formation while the quadrupole ion trap provides for efficient tandem mass spectrometry. Mass selective ion accumulation and non-specific ion activation methods can be used to overcome deleterious effects arising from ion/ion interactions. Such interactions constitute the major potential technical barrier to the use of the ion trap for real-time monitoring of targeted compounds in uncontrolled and highly variable matrices. Tailored waveforms can be used to effect both mass selective ion accumulation and ion activation. Concatenated tailored waveforms allow for both functions in a single experiment thereby providing the capability for monitoring several targeted species simultaneously. The combination of atmospheric sampling glow discharge ionization with a state-of-the-art analytical quadrupole ion trap is a highly sensitive and specific detector for traces of high explosives. The combination is also small and inexpensive relative to virtually any other form of tandem mass spectrometry. The science and technology underlying the glow discharge/ion trap combination is sufficiently mature to form the basis for an engineering effort to make the detector portable. 85 refs.

  6. On the permanent hip-stabilizing effect of atmospheric pressure.

    Science.gov (United States)

    Prietzel, Torsten; Hammer, Niels; Schleifenbaum, Stefan; Kaßebaum, Eric; Farag, Mohamed; von Salis-Soglio, Georg

    2014-08-22

    Hip joint dislocations related to total hip arthroplasty (THA) are a common complication especially in the early postoperative course. The surgical approach, the alignment of the prosthetic components, the range of motion and the muscle tone are known factors influencing the risk of dislocation. A further factor that is discussed until today is atmospheric pressure which is not taken into account in the present THA concepts. The aim of this study was to investigate the impact of atmospheric pressure on hip joint stability. Five joint models (Ø 28-44 mm), consisting of THA components were hermetically sealed with a rubber capsule, filled with a defined amount of fluid and exposed to varying ambient pressure. Displacement and pressure sensors were used to record the extent of dislocation related to intraarticular and ambient pressure. In 200 experiments spontaneous dislocations of the different sized joint models were reliably observed once the ambient pressure was lower than 6.0 kPa. Increasing the ambient pressure above 6.0 kPa immediately and persistently reduced the joint models until the ambient pressure was lowered again. Displacement always exceeded half the diameter of the joint model and was independent of gravity effects. This experimental study gives strong evidence that the hip joint is permanently stabilized by atmospheric pressure, confirming the theories of Weber and Weber (1836). On basis of these findings the use of larger prosthetic heads, capsular repair and the deployment of an intracapsular Redon drain are proposed to substantially decrease the risk of dislocation after THA.

  7. Atmospheric pressure He-air plasma jet: Breakdown process and propagation phenomenon

    Directory of Open Access Journals (Sweden)

    Asma Begum

    2013-06-01

    Full Text Available In this paper He-discharge (plasma jet/bullet in atmospheric pressure air and its progression phenomenon has been studied experimentally using ICCD camera, optical emission spectroscopy (OES and calibrated dielectric probe measurements. The repetitive nanosecond pulse has applied to a plasma pencil to generate discharge in the helium gas channel. The discharge propagation speed was measured from the ICCD images. The axial electric field distribution in the plasma jet is inferred from the optical emission spectroscopic data and from the probe measurement. The correlation between the jet velocities, jet length with the pulse duration is established. It shows that the plasma jet is not isolated from the input voltage along its propagation path. The discharge propagation speed, the electron density and the local and average electric field distribution along the plasma jet axis predicted from the experimental results are in good agreement with the data predicted by numerical simulation of the streamer propagation presented in different literatures. The ionization phenomenon of the discharge predicts the key ionization parameters, such as speed, peak electric field in the front, and electron density. The maximum local electric field measured by OES is 95 kV/cm at 1.3 cm of the jet axis, and average EF measured by probe is 24 kV/cm at the same place of the jet. The average and local electron density estimated are in the order of 1011 cm-3 and it reaches to the maximum of 1012 cm-3.

  8. Atmospheric pressure and suicide attempts in Helsinki, Finland

    Science.gov (United States)

    Hiltunen, Laura; Ruuhela, Reija; Ostamo, Aini; Lönnqvist, Jouko; Suominen, Kirsi; Partonen, Timo

    2012-11-01

    The influence of weather on mood and mental health is commonly debated. Furthermore, studies concerning weather and suicidal behavior have given inconsistent results. Our aim was to see if daily weather changes associate with the number of suicide attempts in Finland. All suicide attempts treated in the hospitals in Helsinki, Finland, during two separate periods, 8 years apart, were included. Altogether, 3,945 suicide attempts were compared with daily weather parameters and analyzed with a Poisson regression. We found that daily atmospheric pressure correlated statistically significantly with the number of suicide attempts, and for men the correlation was negative. Taking into account the seasonal normal value during the period 1971-2000, daily temperature, global solar radiation and precipitation did not associate with the number of suicide attempts on a statistically significant level in our study. We concluded that daily atmospheric pressure may have an impact on suicidal behavior, especially on suicide attempts of men by violent methods ( P suicide attempts. Men seem to be more vulnerable to attempt suicide under low atmospheric pressure and women under high atmospheric pressure. We show only statistical correlations, which leaves the exact mechanisms of interaction between weather and suicidal behavior open. However, suicidal behavior should be assessed from the point of view of weather in addition to psychiatric and social aspects.

  9. Negative ion-atmospheric pressure photoionization-mass spectrometry

    NARCIS (Netherlands)

    Kauppila, T.J.; Kotiaho, T.; Kostiainen, R; Bruins, A.P.

    2004-01-01

    The ionization mechanism in the novel atmospheric pressure photoionization mass spectrometry (APPI-MS) in negative ion mode was studied thoroughly by the analysis of seven compounds in 17 solvent systems. The compounds possessed either gas-phase acidity or positive electron affinity, whereas the sol

  10. Einstein's Tea Leaves and Pressure Systems in the Atmosphere

    Science.gov (United States)

    Tandon, Amit; Marshall, John

    2010-01-01

    Tea leaves gather in the center of the cup when the tea is stirred. In 1926 Einstein explained the phenomenon in terms of a secondary, rim-to-center circulation caused by the fluid rubbing against the bottom of the cup. This explanation can be connected to air movement in atmospheric pressure systems to explore, for example, why low-pressure…

  11. Atmospheric pressure and suicide attempts in Helsinki, Finland.

    Science.gov (United States)

    Hiltunen, Laura; Ruuhela, Reija; Ostamo, Aini; Lönnqvist, Jouko; Suominen, Kirsi; Partonen, Timo

    2012-11-01

    The influence of weather on mood and mental health is commonly debated. Furthermore, studies concerning weather and suicidal behavior have given inconsistent results. Our aim was to see if daily weather changes associate with the number of suicide attempts in Finland. All suicide attempts treated in the hospitals in Helsinki, Finland, during two separate periods, 8 years apart, were included. Altogether, 3,945 suicide attempts were compared with daily weather parameters and analyzed with a Poisson regression. We found that daily atmospheric pressure correlated statistically significantly with the number of suicide attempts, and for men the correlation was negative. Taking into account the seasonal normal value during the period 1971-2000, daily temperature, global solar radiation and precipitation did not associate with the number of suicide attempts on a statistically significant level in our study. We concluded that daily atmospheric pressure may have an impact on suicidal behavior, especially on suicide attempts of men by violent methods (P atmospheric pressure and women under high atmospheric pressure. We show only statistical correlations, which leaves the exact mechanisms of interaction between weather and suicidal behavior open. However, suicidal behavior should be assessed from the point of view of weather in addition to psychiatric and social aspects.

  12. Characterization of Dust-Plasma Interactions In Non-Thermal Plasmas Under Low Pressure and the Atmospheric Pressure

    Science.gov (United States)

    Bilik, Narula

    difficulties in maintaining an APGD is ensuring its uniformity over large discharge volume. By examining past atmospheric pressure plasma reactor designs and looking into the details of the atmospheric pressure gas breakdown mechanism, three design features are proposed to ensure the APGD uniformity. These include the use of a dielectric barrier and the RF driving frequency, as well as a pre-ionization technique achieved by having a non-uniform gap spacing in a capacitively-coupled concentric cylinder reactor. The resulting APGD reactor operates stably in the abnormal glow regime using either helium or argon as the carrier gas. Diethylzinc (DEZ) and oxygen precursors are injected into the APGD to form zinc oxide nanocrystals. The physical and optical properties of these nanocrystals are characterized, and the system parameters that impact the nanoparticle size and deposition rate are identified.

  13. Piezoelectric transformers for low-voltage generation of gas discharges and ionic winds in atmospheric air

    International Nuclear Information System (INIS)

    To generate a gas discharge (plasma) in atmospheric air requires an electric field that exceeds the breakdown threshold of ∼30 kV/cm. Because of safety, size, or cost constraints, the large applied voltages required to generate such fields are often prohibitive for portable applications. In this work, piezoelectric transformers are used to amplify a low input applied voltage (<30 V) to generate breakdown in air without the need for conventional high-voltage electrical equipment. Piezoelectric transformers (PTs) use their inherent electromechanical resonance to produce a voltage amplification, such that the surface of the piezoelectric exhibits a large surface voltage that can generate corona-like discharges on its corners or on adjacent electrodes. In the proper configuration, these discharges can be used to generate a bulk air flow called an ionic wind. In this work, PT-driven discharges are characterized by measuring the discharge current and the velocity of the induced ionic wind with ionic winds generated using input voltages as low as 7 V. The characteristics of the discharge change as the input voltage increases; this modifies the resonance of the system and subsequent required operating parameters

  14. Piezoelectric transformers for low-voltage generation of gas discharges and ionic winds in atmospheric air

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michael J. [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indianapolis 46556 (United States); Go, David B., E-mail: dgo@nd.edu [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indianapolis 46556 (United States); Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indianapolis 46556 (United States)

    2015-12-28

    To generate a gas discharge (plasma) in atmospheric air requires an electric field that exceeds the breakdown threshold of ∼30 kV/cm. Because of safety, size, or cost constraints, the large applied voltages required to generate such fields are often prohibitive for portable applications. In this work, piezoelectric transformers are used to amplify a low input applied voltage (<30 V) to generate breakdown in air without the need for conventional high-voltage electrical equipment. Piezoelectric transformers (PTs) use their inherent electromechanical resonance to produce a voltage amplification, such that the surface of the piezoelectric exhibits a large surface voltage that can generate corona-like discharges on its corners or on adjacent electrodes. In the proper configuration, these discharges can be used to generate a bulk air flow called an ionic wind. In this work, PT-driven discharges are characterized by measuring the discharge current and the velocity of the induced ionic wind with ionic winds generated using input voltages as low as 7 V. The characteristics of the discharge change as the input voltage increases; this modifies the resonance of the system and subsequent required operating parameters.

  15. Ir/thz Double Resonance Signatures at Atmospheric Pressure

    Science.gov (United States)

    Phillips, Dane J.; Tanner, Elizabeth A.; Everitt, Henry O.; Medvedev, Ivan R.; Neese, Christopher F.; Holt, Jennifer; De Lucia, Frank C.

    2010-06-01

    IR/THz double resonance (DR) spectroscopy, historically used to investigate molecular collision dynamics and THz molecular lasers at low pressures (remote sensing at atmospheric pressure. Molecular specificity is obtained through the rare coincidence(s) between molecule-specific ro-vibrational energy levels and CO2 laser lines. The resulting molecule-specific, DR-induced, THz spectroscopic signatures strongly depend on the type of ro-vibrational transition involved (P, Q, or R), the type of vibrational level excited (stretching or bending), and the molecular mass. To illustrate these sensitivities, calculated DR spectra of prototypical molecules such as methyl fluoride, methyl chloride, and methyl cyanide will be discussed. Although atmospheric pressure broadening obfuscates pure rotational spectra, we show how it can enhance the DR signature in two ways: by relaxing the pump coincidence requirement and by adding the DR signatures of multiple nearby transitions. We will present estimates of this enhancement, including cases where the coincidences that produce the strongest DR signatures at atmospheric pressure do not exist at low pressures.

  16. Quality characteristics of the radish grown under reduced atmospheric pressure

    Science.gov (United States)

    Levine, Lanfang H.; Bisbee, Patricia A.; Richards, Jeffrey T.; Birmele, Michele N.; Prior, Ronald L.; Perchonok, Michele; Dixon, Mike; Yorio, Neil C.; Stutte, Gary W.; Wheeler, Raymond M.

    This study addresses whether reduced atmospheric pressure (hypobaria) affects the quality traits of radish grown under such environments. Radish (Raphanus sativus L. cv. Cherry Bomb Hybrid II) plants were grown hydroponically in specially designed hypobaric plant growth chambers at three atmospheric pressures; 33, 66, and 96 kPa (control). Oxygen and carbon dioxide partial pressures were maintained constant at 21 and 0.12 kPa, respectively. Plants were harvested at 21 days after planting, with aerial shoots and swollen hypocotyls (edible portion of the radish referred to as the “root” hereafter) separated immediately upon removal from the chambers. Samples were subsequently evaluated for their sensory characteristics (color, taste, overall appearance, and texture), taste-determining factors (glucosinolate and soluble carbohydrate content and myrosinase activity), proximate nutrients (protein, dietary fiber, and carbohydrate) and potential health benefit attributes (antioxidant capacity). In roots of control plants, concentrations of glucosinolate, total soluble sugar, and nitrate, as well as myrosinase activity and total antioxidant capacity (measured as ORACFL), were 2.9, 20, 5.1, 9.4, and 1.9 times greater than the amount in leaves, respectively. There was no significant difference in total antioxidant capacity, sensory characteristics, carbohydrate composition, or proximate nutrient content among the three pressure treatments. However, glucosinolate content in the root and nitrate concentration in the leaf declined as the atmospheric pressure decreased, suggesting perturbation to some nitrogen-related metabolism.

  17. Ionisation and discharge in cloud-forming atmospheres of brown dwarfs and extrasolar planets

    Science.gov (United States)

    Helling, Ch; Rimmer, P. B.; Rodriguez-Barrera, I. M.; Wood, Kenneth; Robertson, G. B.; Stark, C. R.

    2016-07-01

    Brown dwarfs and giant gas extrasolar planets have cold atmospheres with rich chemical compositions from which mineral cloud particles form. Their properties, like particle sizes and material composition, vary with height, and the mineral cloud particles are charged due to triboelectric processes in such dynamic atmospheres. The dynamics of the atmospheric gas is driven by the irradiating host star and/or by the rotation of the objects that changes during its lifetime. Thermal gas ionisation in these ultra-cool but dense atmospheres allows electrostatic interactions and magnetic coupling of a substantial atmosphere volume. Combined with a strong magnetic field \\gg {{B}\\text{Earth}} , a chromosphere and aurorae might form as suggested by radio and x-ray observations of brown dwarfs. Non-equilibrium processes like cosmic ray ionisation and discharge processes in clouds will increase the local pool of free electrons in the gas. Cosmic rays and lighting discharges also alter the composition of the local atmospheric gas such that tracer molecules might be identified. Cosmic rays affect the atmosphere through air showers in a certain volume which was modelled with a 3D Monte Carlo radiative transfer code to be able to visualise their spacial extent. Given a certain degree of thermal ionisation of the atmospheric gas, we suggest that electron attachment to charge mineral cloud particles is too inefficient to cause an electrostatic disruption of the cloud particles. Cloud particles will therefore not be destroyed by Coulomb explosion for the local temperature in the collisional dominated brown dwarf and giant gas planet atmospheres. However, the cloud particles are destroyed electrostatically in regions with strong gas ionisation. The potential size of such cloud holes would, however, be too small and might occur too far inside the cloud to mimic the effect of, e.g. magnetic field induced star spots.

  18. Bacterial inactivation using atmospheric pressure single pin electrode microplasma jet with a ground ring

    Science.gov (United States)

    Kim, Sun Ja; Chung, T. H.; Bae, S. H.; Leem, S. H.

    2009-04-01

    Bacterial inactivation experiment was performed using atmospheric pressure microplasma jets driven by radio-frequency wave of 13.56 MHz and by low frequency wave of several kilohertz. With addition of a ground ring electrode, the discharge current, the optical emission intensities from reactive radicals, and the sterilization efficiency were enhanced significantly. When oxygen gas was added to helium at the flow rate of 5 SCCM, the sterilization efficiency was enhanced. From the survival curve of Escherichia coli, the primary role in the inactivation was played by reactive species with minor aid from heat, UV photons, charged particles, and electric fields.

  19. Plasma Disinfection and the Deterioration of Surgical Tools at Atmospheric Pressure Plasma

    Science.gov (United States)

    Zaaba, Siti Khadijah; Akitsu, Tetsuya; Ohkawa, Hiroshi; Katayama-Hirayama, Keiko; Tsuji, Masao; Shimizu, Naohiro; Imanishi, Yuichirou

    The purpose of this paper is to present and compare disinfection effect of plasma by means of Atmospheric Pressure Glow plasma and streamer discharge. Geobacillus stearothermophilus was used as biological indicator for disinfection process. The effect of blades after irradiated in plasma was also studied by SEM analysis. It was found that the disinfection process was effective when the cylindrical configuration was applied. Carbon steel blade was also found to be deteriorated after immersed in plasma irradiation. Results indicate that disinfection can be achieved and at the same time deteriorations of the tools were observed.

  20. Bacterial inactivation using atmospheric pressure single pin electrode microplasma jet with a ground ring

    International Nuclear Information System (INIS)

    Bacterial inactivation experiment was performed using atmospheric pressure microplasma jets driven by radio-frequency wave of 13.56 MHz and by low frequency wave of several kilohertz. With addition of a ground ring electrode, the discharge current, the optical emission intensities from reactive radicals, and the sterilization efficiency were enhanced significantly. When oxygen gas was added to helium at the flow rate of 5 SCCM, the sterilization efficiency was enhanced. From the survival curve of Escherichia coli, the primary role in the inactivation was played by reactive species with minor aid from heat, UV photons, charged particles, and electric fields

  1. Modelling of OH production in cold atmospheric-pressure He–H2O plasma jets

    International Nuclear Information System (INIS)

    Results of the modelling of OH production in the plasma bullet mode of cold atmospheric-pressure He–H2O plasma jets are presented. It is shown that the dominant source of OH molecules is related to the Penning and charge transfer reactions of H2O molecules with excited and charged helium species produced by guided streamers (plasma bullets), in contrast to the case of He–H2O glow discharges where OH production is mainly due to the dissociation of H2O molecules by electron impact. (paper)

  2. Titanium Alloy Surface Modification by a Spatio-Temporal Atmospheric Pressure DBD Afterglow

    Institute of Scientific and Technical Information of China (English)

    E.PANOUSIS; F.CLEMENT; J.F.LOISEAU; N.SPYROU; B.HELD1; J.LARRIEU; F.GUERTON

    2007-01-01

    The experimental work reported here is devoted to the study of the modifications inflicted on the surface of titanium alloy specimens by an atmospheric pressure dielectric barrier discharge(DBD) reactor in both spatial and temporal afterglow conditions.A commercially available (AcXys Technologies) modified reactor system was used for the surface treatment of the TiA6V4 titanium alloy that is widely used in the aeronautical industry.Wettability surface characterisation and XPS analyses are performed to give a macroscopic and microscopic insight to the surface modifications.Best operating conditions,at constant input energy,were obtained for a duty cycle equal to 10%.

  3. Mitigation of pressure fluctuations in the discharge cone of hydraulic turbines using flow-feedback

    Science.gov (United States)

    Tanasa, C.; Susan-Resiga, R.; Bosioc, A.; Muntean, S.

    2010-08-01

    Our previous experimental and numerical investigations of decelerated swirling flows in conical diffusers have demonstrated that water jet injection along the symmetry axis mitigates the pressure fluctuations associated with the precessing vortex rope. However, for swirling flows similar to Francis turbines operated at partial discharge, the jet becomes effective when the jet discharge is larger than 10% from the turbine discharge, leading to large volumetric losses when the jet is supplied from upstream the runner. As a result, we introduce in this paper a new approach for supplying the jet by using a fraction of the discharge collected downstream the conical diffuser. We present the technical implementation of this flow-feedback approach, and we investigated experimentally its capability in mitigating the pressure fluctuations generated by the precessing vortex rope. The main advantage of this flow-feedback approach is that is does not require additional energy to supply the jet and it does not decrease the turbine efficiency.

  4. Plasma treatment of carbon fibres and glass-fibre-reinforced polyesters at atmospheric pressure for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Løgstrup Andersen, Tom; Toftegaard, Helmuth Langmaack;

    2014-01-01

    Atmospheric pressure plasma treatment is useful for adhesion improvement, because cleaning, roughening and addition of polar functional groups can be expected at the surfaces. Its possible applications in the wind energy industry include plasma treatment of fibres and fibre-reinforced polymer...... composites before assembling them to build wind turbine blades. In the present work, unsized carbon fibres are continuously treated using a dielectric barrier discharge plasma in helium at atmospheric pressure, and carbon fibre reinforced epoxy composite plates are manufactured for the mechanical test...

  5. A Micromachined Pressure Sensor with Integrated Resonator Operating at Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Sen Ren

    2013-12-01

    Full Text Available A novel resonant pressure sensor with an improved micromechanical double-ended tuning fork resonator packaged in dry air at atmospheric pressure is presented. The resonator is electrostatically driven and capacitively detected, and the sensor is designed to realize a low cost resonant pressure sensor with medium accuracy. Various damping mechanisms in a resonator that is vibrating at atmospheric pressure are analyzed in detail, and a formula is developed to predict the overall quality factor. A trade-off has been reached between the quality factor, stress sensitivity and drive capability of the resonator. Furthermore, differential sense elements and the method of electromechanical amplitude modulation are used for capacitive detection to obtain a large signal-to-noise ratio. The prototype sensor chip is successfully fabricated using a micromachining process based on a commercially available silicon-on-insulator wafer and is hermetically encapsulated in a custom 16-pin Kovar package. Preliminary measurements show that the fundamental frequency of the resonant pressure sensor is approximately 34.55 kHz with a pressure sensitivity of 20.77 Hz/kPa. Over the full scale pressure range of 100–400 kPa and the whole temperature range of −20–60 °C, high quality factors from 1,146 to 1,772 are obtained. The characterization of the prototype sensor reveals the feasibility of a resonant pressure sensor packaged at atmospheric pressure.

  6. Removal of priority pollutants from water by means of dielectric barrier discharge atmospheric plasma.

    Science.gov (United States)

    Hijosa-Valsero, María; Molina, Ricardo; Schikora, Hendrik; Müller, Michael; Bayona, Josep M

    2013-11-15

    Two different nonthermal plasma reactors at atmospheric pressure were assessed for the removal of organic micropollutants (atrazine, chlorfenvinfos, 2,4-dibromophenol, and lindane) from aqueous solutions (1-5 mg L(-1)) at laboratory scale. Both devices were dielectric barrier discharge (DBD) reactors; one was a conventional batch reactor (R1) and the other a coaxial thin-falling-water-film reactor (R2). A first-order degradation kinetics was proposed for both experiments. The kinetic constants (k) were slightly faster in R1 (0.534 min(-1) for atrazine; 0.567 min(-1) for chlorfenvinfos; 0.802 min(-1) for 2,4-dibromophenol; 0.389 min(-1) for lindane) than in R2 (0.104 min(-1) for atrazine; 0.523 min(-1) for chlorfenvinfos; 0.273 min(-1) for 2,4-dibromophenol; 0.294 min(-1) for lindane). However, energy efficiencies were about one order of magnitude higher in R2 (89 mg kW(-1) h(-1) for atrazine; 447 mg kW(-1) h(-1) for c hlorfenvinfos; 47 mg kW(-1) h(-1) for 2,4-dibromophenol; 50 mg kW(-1) h(-1) for lindane) than in R1. Degradation by -products of all four compounds were identified in R1. As expected, when the plasma treatment (R1) was applied to industrial wastewater spiked with atrazine or lindane, micropollutant removal was also achieved, although at a lower rate than with aqueous solutions (k = 0.117 min(-1) for atrazine; k = 0.061 min(-1) for lindane). PMID:24121639

  7. A Microwave Air Plasma Source under Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    LIU Liang; ZHANG Gui-Xin; FENG Jian; WANG Xin-Xin; LUO Cheng-Mu

    2008-01-01

    @@ We develop a new cavity with a mode similar to TE13 to produce microwave plasma,named APMPS Ⅱ,which is able to produce a mass of air plasma with diameter of around 6cm,equipped with about 3kW input power under one atmosphere.The plasma seems to be homogeneous without significant filamentous discharge as observed by common camera device.We present the theory of this cavity,show the distribution of electric field of several planes inside the cavity and give some experimental results.

  8. Atmospheric pressure loading parameters from very long baseline interferometry observations

    Science.gov (United States)

    Macmillan, D. S.; Gipson, John M.

    1994-01-01

    Atmospheric mass loading produces a primarily vertical displacement of the Earth's crust. This displacement is correlated with surface pressure and is large enough to be detected by very long baseline interferometry (VLBI) measurements. Using the measured surface pressure at VLBI stations, we have estimated the atmospheric loading term for each station location directly from VLBI data acquired from 1979 to 1992. Our estimates of the vertical sensitivity to change in pressure range from 0 to -0.6 mm/mbar depending on the station. These estimates agree with inverted barometer model calculations (Manabe et al., 1991; vanDam and Herring, 1994) of the vertical displacement sensitivity computed by convolving actual pressure distributions with loading Green's functions. The pressure sensitivity tends to be smaller for stations near the coast, which is consistent with the inverted barometer hypothesis. Applying this estimated pressure loading correction in standard VLBI geodetic analysis improves the repeatability of estimated lengths of 25 out of 37 baselines that were measured at least 50 times. In a root-sum-square (rss) sense, the improvement generally increases with baseline length at a rate of about 0.3 to 0.6 ppb depending on whether the baseline stations are close to the coast. For the 5998-km baseline from Westford, Massachusetts, to Wettzell, Germany, the rss improvement is about 3.6 mm out of 11.0 mm. The average rss reduction of the vertical scatter for inland stations ranges from 2.7 to 5.4 mm.

  9. High energy cosmic ray particles and the most powerful discharges in thunderstorm atmosphere

    International Nuclear Information System (INIS)

    The runaway breakdown-extensive atmospheric shower discharge (RB-EAS) excited in thunderstorm atmosphere by high energy cosmic ray particles (εp>1017-1019 eV) generate very powerful radio pulse. The RB-EAS theory is compared with observations of radio pulses. An agreement between the theory and experiment is established. The existence of nowaday satellite and ground based systems which obtain regularly a large amount of observational radio data could allow to use them in combination with other methods for effective study of high energy cosmic ray particles

  10. High energy cosmic ray particles and the most powerful new type discharges in thunderstorm atmosphere

    CERN Document Server

    Gurevich, A V

    2004-01-01

    The runaway breakdown -- extensive atmospheric shower discharge (RB - EAS) excited in thunderstorm atmosphere by high energy cosmic ray particles ($\\epsilon_p>10^{17} - 10^{19}$ eV) generate very powerful radio pulse. The RB - EAS theory is compared with observations of radio pulses. An agreement between the theory and experiment is established. The existence of nowaday satellite and ground based systems which obtain regularly a large amount of observational radio data could allow to use them in combination with other methods for effective study of high energy cosmic ray particles

  11. Analysis of atmospheric aerosols by atomic emission spectrometry with electrical discharge sampling

    International Nuclear Information System (INIS)

    A procedure is developed for the determination of the concentration of heavy metals (Pb, Mn, Cu, Ni, Zn, and Cd) in atmospheric air by atomic emission spectrometry with gas-discharge sampling onto the end of a standard carbon electrode. A design of a two-section sampler is proposed; the sampler provides the rapid determination of deposition factors for the deposition of heavy metals contained in aerosol particles onto the end of a carbon electrode. Examples of determining metal concentrations in a model sample of air and in atmospheric air and determination limits of metals deposited onto the end of a carbon electrode are given

  12. Apparatus and method for atmospheric pressure reactive atom plasma processing for shaping of damage free surfaces

    Science.gov (United States)

    Carr; Jeffrey W.

    2009-03-31

    Fabrication apparatus and methods are disclosed for shaping and finishing difficult materials with no subsurface damage. The apparatus and methods use an atmospheric pressure mixed gas plasma discharge as a sub-aperture polisher of, for example, fused silica and single crystal silicon, silicon carbide and other materials. In one example, workpiece material is removed at the atomic level through reaction with fluorine atoms. In this example, these reactive species are produced by a noble gas plasma from trace constituent fluorocarbons or other fluorine containing gases added to the host argon matrix. The products of the reaction are gas phase compounds that flow from the surface of the workpiece, exposing fresh material to the etchant without condensation and redeposition on the newly created surface. The discharge provides a stable and predictable distribution of reactive species permitting the generation of a predetermined surface by translating the plasma across the workpiece along a calculated path.

  13. The use of surface corona discharges to excite high-pressure gas-lasers

    Directory of Open Access Journals (Sweden)

    D. J. Brink

    1982-03-01

    Full Text Available A stabilization technique for the production of homogeneous gas discharge at high pressures has been developed. The technique is based on photo-pre-ionization from a corona-type surface-discharge. It was possible to develop a number of laser systems based on this stabilization principle, which exceeded the performance of conventional systems in many respects. This paper provides a summary of the most important properties and principles of the surface discharges. Four laser systems utilizing this stabilization method are also discussed.

  14. Experimental investigation of a low pressure capacitively-coupled discharge

    OpenAIRE

    Kechkar, Samir

    2015-01-01

    In this thesis, a low-pressure, capacitively-coupled plasma (CCP) was investigated using the well established techniques of actinometry, two-photon laser-induced fluorescence (TALIF), appearance potential mass spectrometry (APMS), Langmuir and hairpin probes. The behaviour of atomic oxygen density in mixtures of O2/SF6 was investigated using TALIF and a Langmuir probe. A significant five-fold increase of [O] was observed when O2 plasma was diluted with SF6 (5 - 10%). This was attributed to a ...

  15. Dielectric barrier discharge-based plasma actuator operation in artificial atmospheres for validation of modeling and simulation

    Science.gov (United States)

    Mangina, R. S.; Enloe, C. L.; Font, G. I.

    2015-11-01

    We present an experimental case study of time-resolved force production by an aerodynamic plasma actuator immersed in various mixtures of electropositive (N2) and electronegative gases (O2 and SF6) at atmospheric pressure using a fixed AC high-voltage input of 16 kV peak amplitude at 200 Hz frequency. We have observed distinct changes in the discharge structures during both negative- and positive-going voltage half-cycles, with corresponding variations in the actuator's force production: a ratio of 4:1 in the impulse produced by the negative-going half-cycle of the discharge among the various gas mixtures we explored, 2:1 in the impulse produced by the positive-going half-cycle, and cases in which the negative-going half-cycle dominates force production (by a ratio of 1.5:1), where the half-cycles produce identical force levels, and where the positive-going half cycle dominates (by a ratio of 1:5). We also present time-resolved experimental evidence for the first time that shows electrons do play a significant role in the momentum coupling to surrounding neutrals during the negative going voltage half-cycle of the N2 discharge. We show that there is sufficient macroscopic variation in the plasma that the predictions of numerical models at the microscopic level can be validated even though the plasma itself cannot be measured directly on those spatial and temporal scales.

  16. Study of optimal discharge pressure of compressor in CO2 refrigerating trans-critical cycle

    Institute of Scientific and Technical Information of China (English)

    Fu Liehu; Wang Ruixiang; Li Qingdong; Wu Yezheng

    2008-01-01

    In this paper, a carbon dioxide trans-critical refrigerating system which is different from a conventional subcritical refrigerating cycle was studied. The trans-critical carbon dioxide refrigerating systems are based on the Gustav Lorntzen cycle. Emphasis was focused on how to determine the optimal discharge pressure of compressor in CO2 trans-critical cycle. The factors related with the optimal discharge pressure were analyzed. A formula was developed based on cycle simulation, which could be used to predict the optimal discharge pressure of a basic CO2 trans-critical cycle. After further studies on CO2 trans-critical cycles with a regenerator or expander, two more formulas were also developed. These formulas could provide an access to improve the COP of CO2 trans-critical cycle.

  17. Numerical Study on Characteristics of Argon Radio-Frequency Glow Discharge with Varying gas Pressure

    Institute of Scientific and Technical Information of China (English)

    YU Qian; DENG Yong-Feng; LIU Yue; HAN Xian-Wei

    2008-01-01

    A one-dimensional fluid simulation on argon rf glow discharge with varying linearly gas pressure from 1 Torr to 100 Torr is performed. The model based on mass conservation equations for electron and ion under diffusion and mobility approximation, and the electron energy conservation equation is solved numerically by finite volume method. The numerical results show that a uniform plasma with high density can be obtained from rf glow discharge with varying gas pressure, and the density of plasma becomes higher as the gas pressure varies from 1 Torr to 100 Torr. It is also shown that in the range of the gas pressure from 1 Torr to 100 Torr with the slower rate of varying gas pressure, higher density of plasma can be obtained.

  18. Super-atmospheric pressure ionization mass spectrometry and its application to ultrafast online protein digestion analysis.

    Science.gov (United States)

    Chen, L C; Ninomiya, S; Hiraoka, K

    2016-06-01

    Pressure is a key parameter for an ionization source. In this Special Feature article, Lee Chuin Chen and colleagues review super-atmospheric pressure ionization MS with electrospray, corona-discharge-based chemical ionization, and field desorption. They routinely run their mass spectrometer with ion source pressures ranging from several to several tens of atmospheres. A number of strategies have been used to preserve the high vacuum of the instrument while working with a high-pressure (HP) ion source. A recent prototype uses a booster pump with variable pumping speed added to the first pumping stage of the mass spectrometer to regulate a constant vacuum pressure. Further, a new HP-ESI source allowing rapid (a few seconds) online protein digestion MS is also reported. Dr. Lee Chuin Chen is Associate Professor in the Department of Interdisciplinary Research at the University of Yamanashi (Yamanashi, Japan). His main research interest is the development of novel mass spectrometric methods for in-situ medical diagnosis. PMID:27270871

  19. Atmospheric sampling glow discharge ionizataion and triple quadrupole tandem mass spectrometry for explosives vapor detection

    Energy Technology Data Exchange (ETDEWEB)

    McLuckey, S.A.; Goeringer, D.E.; Asano, K.G.; Hart, K.J.; Glish, G.L.; Grant, B.C.; Chambers, D.M.

    1993-08-01

    The detection and identification of trace vapors of hidden high explosives is an excellent example of a targeted analysis problem. It is desirable to push to ever lower levels the quantity or concentration of explosives material that provides an analytical signal, while at the same time discriminating against all other uninteresting material. The detection system must therefore combine high sensitivity with high specificity. This report describes the philosophy behind the use of atmospheric sampling glow discharge ionization, which is a sensitive, rugged, and convenient means for forming anions from explosives molecules, with tandem mass spectrometry, which provides unparalleled specificity in the identification of explosives-related ions. Forms of tandem mass spectrometry are compared and contrasted to provide a summary of the characteristics to be expected from an explosives detector employing mass spectrometry/mass spectrometry. The instrument developed for the FAA, an atmospheric sampling glow discharge/triple quadrupole mass spectrometer, is described in detail with particular emphasis on the ion source/spectrometer interface and on the capabilities of the spectrometer. Performance characteristics of the system are also described as they pertain to explosives of interest including a description of an automated procedure for the detection and identification of specific explosives. A comparison of various tandem mass spectrometers mated with atmospheric sampling glow discharge is then described and preliminary studies with a vapor preconcentration system provided by the FAA will be described.

  20. Study on the transition from filamentary discharge to diffuse discharge by using a dielectric barrier surface discharge device

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Discharge characteristics have been investigated in different gases under different pressures using a dielectric barrier surface discharge device. Electrical measurements and optical emission spectroscopy are used to study the discharge,and the results obtained show that the discharges in atmospheric pressure helium and in low-pressure air are diffuse,while that in high-pressure air is filamentary. With decreasing pressure, the discharge in air can transit from filamentary to diffuse one. The results also indicate that corona discharge around the stripe electrode is important for the diffuse discharge. The spectral intensity of N2+ (391.4 nm) relative to N2 (337.1 nm) is measured during the transition from diffuse to filamentary discharge. It is shown that relative spectral intensity increases during the discharge transition. This phenomenon implies that the averaged electron energy in diffuse discharge is higher than that in the filamentary discharge.