WorldWideScience

Sample records for atmospheric precipitable water

  1. Atmospheric precipitable water in Jos, Nigeria | Utah | Nigerian ...

    African Journals Online (AJOL)

    ... the atmosphere of Jos in the month of August has a value of 4.44±0.47cm, while the minimum of 1.54±0.47cm was found in the month of February. The regression models have been presented and discussed. Keywords: Precipitable water vapour, dew-point temperature, relative humidity. Nigerian Journal of Physics Vol.

  2. Tritium in atmospheric precipitations and water systems of Belarus

    International Nuclear Information System (INIS)

    Bondar', Yu.I.; Zabrodskij, V.N.; Voronik, A.I.; Vazhinskij, A.G.

    2001-01-01

    Experimental and literature data concerning analysis of tritium in atmospheric precipitation and natural waters of Belarus including the lakes near the Ignalina NPP are compared and analyzed. It is concluded that the maximum of the curve 'amount of the samples - their activity' is shifted to the higher activity in the period 1994-2000 in comparison with 1980-1989. This increasing of the concentration of tritium in water can not be explained definitely by the Chernobyl accident. Consumption of drinking water with maximum registered tritium concentration in natural waters (10 Bq/l) will produce accumulation of dose equal 1,3·10 -3 of public permissible dose limit (authors)

  3. Measurement of atmospheric precipitable water using a solar radiometer. [water vapor absorption effects

    Science.gov (United States)

    Pitts, D. E.; Dillinger, A. E.; Mcallum, W. E.

    1974-01-01

    A technique is described and tested that allows the determination of atmospheric precipitable water from two measurements of solar intensity: one in a water-vapor absorption band and another in a nearby spectral region unaffected by water vapor.

  4. CalWater 2 - Precipitation, Aerosols, and Pacific Atmospheric Rivers Experiment

    Science.gov (United States)

    Spackman, Ryan; Ralph, Marty; Prather, Kim; Cayan, Dan; DeMott, Paul; Dettinger, Mike; Fairall, Chris; Leung, Ruby; Rosenfeld, Daniel; Rutledge, Steven; Waliser, Duane; White, Allen

    2014-05-01

    Emerging research has identified two phenomena that play key roles in the variability of the water supply and the incidence of extreme precipitation events along the West Coast of the United States. These phenomena include the role of (1) atmospheric rivers (ARs) in delivering much of the precipitation associated with major storms along the U.S. West Coast, and (2) aerosols—from local sources as well as those transported from remote continents—and their modulating effects on western U.S. precipitation. A better understanding of these processes is needed to reduce uncertainties in weather predictions and climate projections of extreme precipitation and its effects, including the provision of beneficial water supply. This presentation summarizes science gaps associated with (1) the evolution and structure of ARs including cloud and precipitation processes and air-sea interaction, and (2) aerosol interaction with ARs and the impact on precipitation, including locally-generated aerosol effects on orographic precipitation along the U.S. West Coast. Observations are proposed for multiple winter seasons as part of a 5-year broad interagency vision referred to as CalWater 2 to address these science gaps (http://esrl.noaa.gov/psd/calwater). In the near term, a science investigation is being planned including a targeted set of aircraft and ship-based measurements and associated evaluation of data in near-shore regions of California and in the eastern Pacific for an intensive observing period between January 2015 and March 2015. DOE's Atmospheric Radiation Measurement (ARM) program and NOAA are coordinating on deployment of airborne and ship-borne facilities for this period in a DOE-sponsored study called ACAPEX (ARM Cloud Aerosol and Precipitation Experiment) to complement CalWater 2. The motivation for this major study is based on findings that have emerged in the last few years from airborne and ground-based studies including CalWater and NOAA's HydroMeterology Testbed

  5. Precipitable water vapor and 212 GHz atmospheric optical depth correlation at El Leoncito site

    Science.gov (United States)

    Cassiano, Marta M.; Cornejo Espinoza, Deysi; Raulin, Jean-Pierre; Giménez de Castro, Carlos G.

    2018-03-01

    Time series of precipitable water vapor (PWV) and 212 GHz atmospheric optical depth were obtained in CASLEO (Complejo Astronómico El Leoncito), at El Leoncito site, Argentinean Andes, for the period of 2011-2013. The 212 GHz atmospheric optical depth data were derived from measurements by the Solar Submillimeter Telescope (SST) and the PWV data were obtained by the AERONET CASLEO station. The correlation between PWV and 212 GHz optical depth was analyzed for the whole period, when both parameters were simultaneously available. A very significant correlation was observed. Similar correlation was found when data were analyzed year by year. The results indicate that the correlation of PWV versus 212 GHz optical depth could be used as an indirect estimation method for PWV, when direct measurements are not available.

  6. ECMWF Extreme Forecast Index for water vapor transport: A forecast tool for atmospheric rivers and extreme precipitation

    Science.gov (United States)

    Lavers, David A.; Pappenberger, Florian; Richardson, David S.; Zsoter, Ervin

    2016-11-01

    In winter, heavy precipitation and floods along the west coasts of midlatitude continents are largely caused by intense water vapor transport (integrated vapor transport (IVT)) within the atmospheric river of extratropical cyclones. This study builds on previous findings that showed that forecasts of IVT have higher predictability than precipitation, by applying and evaluating the European Centre for Medium-Range Weather Forecasts Extreme Forecast Index (EFI) for IVT in ensemble forecasts during three winters across Europe. We show that the IVT EFI is more able (than the precipitation EFI) to capture extreme precipitation in forecast week 2 during forecasts initialized in a positive North Atlantic Oscillation (NAO) phase; conversely, the precipitation EFI is better during the negative NAO phase and at shorter leads. An IVT EFI example for storm Desmond in December 2015 highlights its potential to identify upcoming hydrometeorological extremes, which may prove useful to the user and forecasting communities.

  7. Atmospheric water harvester

    African Journals Online (AJOL)

    2017-09-10

    Sep 10, 2017 ... ... involve condensation and precipitation. So, in order to examine the potential water in the atmosphere, atmospheric water harvester model was developed since it is one of the sustainable alternative water resources [6]. Normally, the atmosphere contains water in the form of water vapor, moisture and so ...

  8. A CloudSat Perspective of the Atmospheric Water Cycle and Precipitation: Recent Progress and Grand Challenges

    Science.gov (United States)

    Stephens, Graeme L.; Im, Eastwood; Vane, Deborah

    2012-01-01

    Summary Global - mean precipitation - is controlled by Earth's energy balance and is a quantifiable consequence of the water vapor feedback. Predictability rests on the degree to which the water vapor feedback is predictable. Regional scale - to a significant extent, changes are shaped by atmospheric circulation changes but we do not know the extent to which regional scale changes are predictable. The impacts of changes to atmospheric circulation on regional scale water cycle changes can be dramatic. Process - scale - significant biases to the CHARACTER of precipitation (frequency and intensity) is related to how the precipitation process is parameterized in models. Aerosol - We still do not know the extent to which the water cycle is influenced by aerosol but anecdotal evidence is building. The character of precipitation is affected by the way aerosol influence clouds and thus affects the forcing of the climate system through the albedo effect. Observations - we still have a way to go and need to approach the problem in a more integrated way (tie clouds, aerosol and precipitation together and then link to soil moisture, etc). Globally our capabilities seriously lag behind the science and model development.

  9. The role of atmospheric precipitation in introducing contaminants to the surface waters of the Fuglebekken catchment, Spitsbergen

    Directory of Open Access Journals (Sweden)

    Katarzyna Kozak

    2015-11-01

    Full Text Available Although the Svalbard Archipelago is located at a high latitude, far from potential contaminant sources, it is not free from anthropogenic impact. Towards the Fuglebekken catchment, in the southern part of Spitsbergen, north of Hornsund fjord, contaminants can be transported from mainland pollution sources. In the precipitation and surface water collected in the catchment, the following elements were detected and quantified: Ag, Al, As, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Cs, Mo, Ni, Pb, Sb, Se, Sr, Tl, U, V and Zn. Additionally, pH, electrical conductivity and total organic carbon (TOC were determined in those samples. The acidic reaction of precipitation waters was identified as an important factor intensifying the metal migration in this Arctic tundra environment. The air mass trajectory, surprisingly, explained the variability of only a small fraction of trace elements in precipitation water. The air mass origin area was correlated only with the concentrations of As, V and Cr. Wind directions were helpful in explaining the variability of Mn, U and Ba concentrations (east–north-easterly wind and the contents of B, As, Rb, Se, Sr and Li in precipitation (south-westerly wind, which may indicate the local geological source of those. Atmospheric deposition was found to play a key role in the transport of contaminants into the Fuglebekken catchment; however, the surface water composition was modified by its pH and TOC content.

  10. Synoptic climatological analysis on precipitation characteristics and atmospheric water cycle process around the Japan Islands in the midsummer

    Science.gov (United States)

    Tsuchida, Tomoyasu; Matsumoto, Kengo; Otani, Kazuo; Kato, Kuranoshin

    2017-04-01

    characteristics of convective precipitation rather than stratiform precipitation. Next, composite atmospheric fields including the large-scale moisture balance for the domain were analyzed, 30.0 N - 37.5 N 127.5 E - 142.5 E. In Type A, water vapor is transported mainly eastward around the Japan Islands. In Type B, the huge water vapor flux passed over the Japan Islands area northward with not so large convergence. It is also noted that ratio of the moisture flux convergence to the influx even in many Type C when the total precipitation was rather large was not as great as in the western Japan in the mature Baiu stage. In summary, it is interesting that there are many midsummer rainfall events around the Japan Islands which are characterized by the consumption efficiency of moisture is not so good, such as the ratio of the moisture convergence to the moisture influx was blow 20 %. In addition, even without accompanying typhoons and fronts, the cases with high rainfall intensity in a wide area can sometimes appear, although the intense rainfall shows the significant time-spatial localities.

  11. Aerosol optical properties and precipitable water vapor column in the atmosphere of Norway.

    Science.gov (United States)

    Muyimbwa, Dennis; Frette, Øyvind; Stamnes, Jakob J; Ssenyonga, Taddeo; Chen, Yi-Chun; Hamre, Børge

    2015-02-20

    Between February 2012 and April 2014, we measured and analyzed direct solar radiances at a ground-based station in Bergen, Norway. We discovered that the spectral aerosol optical thickness (AOT) and precipitable water vapor column (PWVC) retrieved from these measurements have a seasonal variation with highest values in summer and lowest values in winter. The highest value of the monthly median AOT at 440 nm of about 0.16 was measured in July and the lowest of about 0.04 was measured in December. The highest value of the monthly median PWVC of about 2.0 cm was measured in July and the lowest of about 0.4 cm was measured in December. We derived Ångström exponents that were used to deduce aerosol particle size distributions. We found that coarse-mode aerosol particles dominated most of the time during the measurement period, but fine-mode aerosol particles dominated during the winter seasons. The derived Ångström exponent values suggested that aerosols containing sea salt could have been dominating at this station during the measurement period.

  12. Data Assimilation of AIRS Water Vapor Profiles: Impact on Precipitation Forecasts for Atmospheric River Cases Affecting the Western of the United States

    Science.gov (United States)

    Blankenship, Clay; Zavodsky, Bradley; Jedlovec, Gary; Wick, Gary; Neiman, Paul

    2013-01-01

    Atmospheric rivers are transient, narrow regions in the atmosphere responsible for the transport of large amounts of water vapor. These phenomena can have a large impact on precipitation. In particular, they can be responsible for intense rain events on the western coast of North America during the winter season. This paper focuses on attempts to improve forecasts of heavy precipitation events in the Western US due to atmospheric rivers. Profiles of water vapor derived from from Atmospheric Infrared Sounder (AIRS) observations are combined with GFS forecasts by a three-dimensional variational data assimilation in the Gridpoint Statistical Interpolation (GSI). Weather Research and Forecasting (WRF) forecasts initialized from the combined field are compared to forecasts initialized from the GFS forecast only for 3 test cases in the winter of 2011. Results will be presented showing the impact of the AIRS profile data on water vapor and temperature fields, and on the resultant precipitation forecasts.

  13. Detecting 1mm/Year Signals in Altimetric Global Sea Level: Effect of Atmospheric Water Vapor and Precipitation

    Science.gov (United States)

    Zlotnicki, Victor

    1999-01-01

    Several research efforts exist to use Topography Experiment (TOPEX)/ Projet d'Observatorie de Surveillance et d'Etudes Integrees de la Dynamique des Oceans (Poseidon) (T/P) to detect changes in global sea level possibly associated with climate change. This requires much better than 1 mm/yr accuracy, something that none of the instruments in T/P [or the European Remote Sensing (ERS-2) satellite, or the U.S. Navy's Geosat Follow-On (GFO) satellite] were designed for. This work focuses on the ability of the T/P microwave radiometer (TMR) to retrieve the path delay due to atmospheric water vapor along the altimeter's path with accuracy in the time changes below 1 mm/yr on global average. In collaboration with Stephen Keihm of JPL and Christopher Ruf of Pennsylvania State University, we compared TMR path delay (PD) estimates with atmospheric precipitable water (PW) from the Special Sensor Microwave Imager (SSMI) aboard the Defense Meteorological Satellite Program (DMSP) series of satellites for 1992-1998 to selected radiosondes, and we also looked at the brightness temperatures measured by TMR in the lowest 1% of the histogram. The conclusion is that TMR had a slow instrumental drift, associated with the 18-GHz channel, which causes an approximate underestimation of water vapor at a rate equivalent to 1.2 mm/yr in path delay between 1992 and 1996; this effect stopped and no drift is detected in 1997. The same study concluded that there is no detectable scale error (one which is proportional to measured vapor) in TMR. In related work, carried out with graduate student Damien Cailliau, we investigated the relative abilities of TMR, SSMI and the UP dual-frequency radar altimeter to detect rain, relative to a climatology of shipborne observations. Rain is a crucial but poorly measured variable in studies of the climate system, and a dedicated mission, Tropical Rainfall Measuring Mission (TRMM), was recently launched to measure it. However, the climatologies built over the

  14. Distant and Regional Atmospheric Circulation Influences Governing Integrated Water Vapor Transport and the Occurrence of Extreme Precipitation Events

    Science.gov (United States)

    Bosart, L. F.; Papin, P. P.; Bentley, A. M.

    2017-12-01

    This presentation will show how the evolution of the large-scale and regional-scale atmospheric circulation contributes to the occurrence of extreme precipitation events (EPEs). An EPE requires that tropospheric moisture flux convergence (MFC) and the associated removal of hydrometeors be balanced by moisture replenishment via integrated (water) vapor transport (IVT) to continuously replenish condensed moisture. Moisture source regions may be distant or regional. Distant moisture sources may require the interaction of lower- and upper-level jet streams with a pre-existing mobile atmospheric disturbance to produce sufficient lift to condense moisture. Pre-existing regional moisture sources may require frontal lifting the presence of MFC to condense moisture. In cases of long-range IVT, such as moisture from a western North Pacific typhoon being drawn poleward along an atmospheric river (AR) toward the west coast of North America, moisture may be transported 1000s of kilometers along a low-level jet before a combination of dynamic and orographic lift results in an EPE. Alternatively, in the case of a typical summer warm and humid air mass over the continental United States, unused moisture may exist for several days in this air mass before sufficient MFC associated with a thermally direct mesoscale frontal circulation can concentrate and condense the moisture. In this case, there may be no long-range IVT via ARs. Instead, the atmospheric circulations may evolve to produce sustained MFC associated with mesoscale frontal circulations, especially in the presence of complex terrain, to produce an EPE. During this presentation, examples of EPEs associated with long-range IVT and distant MFC versus EPEs associated with regional MFC and mesoscale frontal circulations will be illustrated.

  15. NESDIS Blended Total Precipitable Water (TPW) Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The blended Total Precipitable Water (TPW) product is derived from multiple sensors/satellites. The Percentage of TPW normal (PCT), or TPW anomaly, shows the...

  16. Research of chemical structure of atmospheric precipitation

    International Nuclear Information System (INIS)

    Korenyak, D.

    2001-01-01

    The structure of atmospheric precipitation changes in its passing through the air medium. Thus, the atmospheric precipitation is one of the ecological factors, acting regularly. The research of chemical structure of atmospheric precipitation is closely connected with the problems of turnover of elements, with sanitary - ecological conditions of regions, with the matters of agricultural equipment and of salt balance of the soils. In paper the author for the first time represents the data on chemical structure of precipitation in the town. The data of chemical analysis of 18 samples are given. Obtained results permitted, to a certain extent, to determine the mechanisms of formation of atmospheric precipitation in the region investigated and its genesis. (authors)

  17. Sampling of atmospheric precipitation and deposits for analysis of atmospheric pollution.

    Science.gov (United States)

    Skarzyńska, K; Polkowska, Z; Namieśnik, J

    2006-01-01

    This paper reviews techniques and equipment for collecting precipitation samples from the atmosphere (fog and cloud water) and from atmospheric deposits (dew, hoarfrost, and rime) that are suitable for the evaluation of atmospheric pollution. It discusses the storage and preparation of samples for analysis and also presents bibliographic information on the concentration ranges of inorganic and organic compounds in the precipitation and atmospheric deposit samples.

  18. Sampling of Atmospheric Precipitation and Deposits for Analysis of Atmospheric Pollution

    OpenAIRE

    Skarżyńska, K.; Polkowska, Ż; Namieśnik, J.

    2006-01-01

    This paper reviews techniques and equipment for collecting precipitation samples from the atmosphere (fog and cloud water) and from atmospheric deposits (dew, hoarfrost, and rime) that are suitable for the evaluation of atmospheric pollution. It discusses the storage and preparation of samples for analysis and also presents bibliographic information on the concentration ranges of inorganic and organic compounds in the precipitation and atmospheric deposit samples.

  19. Multi-scale analysis of the impact of increased spatial resolution of soil moisture and atmospheric water vapour on convective precipitation

    Science.gov (United States)

    Khodayar, S.; Schaedler, G.; Kalthoff, N.

    2010-09-01

    The distribution of water vapour in the planetary boundary layer (PBL) and its development over time is one of the most important factors affecting precipitation processes. Despite the dense radiosonde network deployed during the Convective and Orographically-induced Precipitation Study (COPS), the high spatial variability of the water vapour field was not well resolved with respect to the detection of the initiation of convection. The first part of this investigation focuses on the impact of an increased resolution of the thermodynamics and dynamics of the PBL on the detection of the initiation of convection. The high spatial resolution was obtained using the synergy effect of data from the networks of radiosondes, automatic weather stations, synoptic stations, and especially Global Positioning Systems (GPSs). A method is introduced to combine GPS and radiosonde data to obtain a higher resolution representation of atmospheric water vapour. The gained spatial resolution successfully improved the representations of the areas where deep convection likelihood was high. Location and timing of the initiation of convection were critically influenced by the structure of the humidity field in the boundary-layer. The availability of moisture for precipitation is controlled by a number of processes including land surface processes, the latter are strongly influenced by spatially variable fields of soil moisture (SM) and land use. Therefore, an improved representation of both fields in regional model systems can be expected to produce better agreement between modelled and measured surface energy fluxes, boundary layer structure and precipitation. SM is currently one of the least assessed quantities with almost no data from operational monitoring networks available. However, during COPS an innovative measurement approach using a very high number of different SM sensors was introduced. The network consisted of newly developed low-cost SM sensors installed at 43 stations. Each

  20. Comparative field study on precipitation, throughfall, stemflow, fog water, and atmospheric aerosol and gases at urban and rural sites in Japan.

    Science.gov (United States)

    Aikawa, Masahide; Hiraki, Takatoshi; Tamaki, Motonori

    2006-07-31

    Precipitation collected by a wet-only sampler (WP), precipitation collected by a filtering-type bulk sampler (BP), throughfall (TF), stemflow (SF), fog water (FW), and atmospheric aerosol and gases were collected at two sites with different site classifications: an urban site (Mt. Rokko) and a rural site (Mt. Awaga) to investigate canopy-atmosphere interactions and to study the chemistry of precipitation in forested areas located in different atmospheric conditions. Compared to those at the rural site, the monthly volume-weighted pH values at the urban site were not significantly (p>0.05) different for WP, higher (p 0.05) different for TF, lower (p<0.01) for SF, and lower (p<0.01) for FW. The order of mean pH values at the urban site was FWatmospheric aerosol and gases.

  1. Mars water-ice clouds and precipitation.

    Science.gov (United States)

    Whiteway, J A; Komguem, L; Dickinson, C; Cook, C; Illnicki, M; Seabrook, J; Popovici, V; Duck, T J; Davy, R; Taylor, P A; Pathak, J; Fisher, D; Carswell, A I; Daly, M; Hipkin, V; Zent, A P; Hecht, M H; Wood, S E; Tamppari, L K; Renno, N; Moores, J E; Lemmon, M T; Daerden, F; Smith, P H

    2009-07-03

    The light detection and ranging instrument on the Phoenix mission observed water-ice clouds in the atmosphere of Mars that were similar to cirrus clouds on Earth. Fall streaks in the cloud structure traced the precipitation of ice crystals toward the ground. Measurements of atmospheric dust indicated that the planetary boundary layer (PBL) on Mars was well mixed, up to heights of around 4 kilometers, by the summer daytime turbulence and convection. The water-ice clouds were detected at the top of the PBL and near the ground each night in late summer after the air temperature started decreasing. The interpretation is that water vapor mixed upward by daytime turbulence and convection forms ice crystal clouds at night that precipitate back toward the surface.

  2. Variability of air temperature and atmospheric precipitation in the Arctic

    National Research Council Canada - National Science Library

    Przybylak, Rajmund

    2002-01-01

    ... and Annual Means of and Spatial Relations of Air Temperature in the Arctic The Role of Atmospheric Circulation in the Shaping of Air Temperature in the Arctic 48 137 144 6. Variability of Atmospheric Precipitation 169 6.1 6.2 Mean Seasonal and Annual P Totals Atmospheric Circulation and Precipitation 170 218 7. Scenarios of Thermal-Precipitation Cond...

  3. Microwave Observations of Precipitation and the Atmosphere

    Science.gov (United States)

    Staelin, David H.; Rosenkranz, Philip W.

    2004-01-01

    This research effort had three elements devoted to improving satellite-derived passive microwave retrievals of precipitation rate: morphological rain-rate retrievals, warm rain retrievals, and extension of a study of geostationary satellite options. The morphological precipitation-rate retrieval method uses for the first time the morphological character of the observed storm microwave spectra. The basic concept involves: 1) retrieval of point rainfall rates using current algorithms, 2) using spatial feature vectors of the observations over segmented multi-pixel storms to estimate the integrated rainfall rate for that storm (cu m/s), and 3) normalization of the point rain-rate retrievals to ensure consistency with the storm-wide retrieval. This work is ongoing, but two key steps have been completed: development of a segmentation algorithm for defining spatial regions corresponding to single storms for purposes of estimation, and reduction of some of the data from NAST-M that will be used to support this research going forward. The warm rain retrieval method involved extension of Aquai/AIRS/AMSU/HSB algorithmic work on cloud water retrievals. The central concept involves the fact that passive microwave cloud water retrievals over approx. 0.4 mm are very likely associated with precipitation. Since glaciated precipitation is generally detected quite successfully using scattering signatures evident in the surface-blind 54- and 183-GHz bands, this new method complements the first by permitting precipitation retrievals of non-glaciated events. The method is most successful over ocean, but has detected non-glaciated convective cells over land, perhaps in their early formative stages. This work will require additional exploration and validation prior to publication. Passive microwave instrument configurations for use in geostationary orbit were studied. They employ parabolic reflectors between 2 and 4 meters in diameter, and frequencies up to approx.430 GHz; this

  4. Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW) data set measures atmospheric water vapor using ground-based...

  5. Anthropogenic atmospheric precipitation and quality of environment in Ivano-Frankivsk oblast

    OpenAIRE

    Ганжа, Дмитро Дмитрович; Ганжа, Дмитро Дмитрович

    2016-01-01

    It is studied anthropogenic atmospheric precipitation by the content of soluble salts, macroelements and dust in snow water. Total air pollution index was calculated by the measured parameters of precipitation. It was established statistical connections between total pollution index, on the one hand, and the population growth, mortality from tumors and vascular lesions at diseases of the circulatory system, on the other hand

  6. The Issue of transporting pollutants with atmospheric precipitation

    Science.gov (United States)

    Madibekov, A.; Kogutenko, L.

    2018-01-01

    A research of the pollution of atmospheric precipitation was conducted. The database of the chemical composition of atmospheric precipitation made by National Monitoring Network of the Republic of Kazakhstan for the period from 2000s to 2011 was generalized and analyzed. The research area covers the big territory of Ile-Balkhash river basin in the South-East Kazakhstan. The research shows that pollutants can be transported over long distances with atmospheric precipitation. Based on the results of the air masses tracking we identified that the main sources of emissions is located in the city of Balkhash.

  7. Quantifying Energetic Electron Precipitation And Its Effect on Atmospheric Chemistry

    Science.gov (United States)

    Huang, C. L.; Spence, H. E.; Smith, S. S.; Duderstadt, K. A.; Boyd, A. J.; Geoffrey, R.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Turner, D. L.; Crew, A. B.; Klumpar, D. M.; Shumko, M.; Johnson, A.; Sample, J. G.

    2017-12-01

    In this study we quantify the total radiation belt electron loss through precipitation into the atmosphere, and simulate the electrons' contribution to changing the atmospheric composition. We use total radiation belt electron content (TRBEC) calculated from Van Allen Probes ECT/MagEIS data to estimate the precipitation during electron loss events. The new TRBEC index is a high-level quantity for monitoring the entire radiation belt and has the benefit of removing both internal transport and the adiabatic effect. To assess the electron precipitation rate, we select TRBEC loss events that show no outward transport in the phase space density data in order to exclude drift magnetopause loss. Then we use FIREBIRD data to estimate and constrain the precipitation loss when it samples near the loss cone. Finally, we estimate the impact of electron precipitation on the composition of the upper and middle atmosphere using global climate simulations.

  8. Hydrochemical and isotopic investigation of atmospheric precipitation in Beijing, China

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yuanzheng, E-mail: diszyz@163.com [College of Water Sciences, Beijing Normal University, Beijing 100875 (China); Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education of China, Beijing 100875 (China); Wang, Jinsheng, E-mail: wangjs@bnu.edu.cn [College of Water Sciences, Beijing Normal University, Beijing 100875 (China); Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education of China, Beijing 100875 (China); Zhang, Yang [College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049 (China); Teng, Yanguo; Zuo, Rui; Huan, Huan [College of Water Sciences, Beijing Normal University, Beijing 100875 (China); Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education of China, Beijing 100875 (China)

    2013-07-01

    vapor and the physical and chemical processes occurred along the migration paths of water vapor from sources to the aimed precipitation area. Temporal change of {sup 3}H was only influenced by the nuclear testing in the early 1960s worldwide and the natural yield of {sup 3}H in the upper atmosphere intrinsically. {sup 3}H had nearly approached to the natural levels, which would bring difficulty if not invalidation to groundwater dating using {sup 3}H technique. - Highlights: • Precipitation in Beijing was analyzed for hydrochemical and isotopic composition. • The changes of hydrochemical and isotopic composition from 1979 to 2009 were analyzed. • The origins of major ions of precipitation were identified. • The LMWL was obtained based on the data of 1979, 1980, 2007, 2008, and 2009. • Temporal change of {sup 3}H in precipitation and its influencing factors were revealed.

  9. Precipitation in Madeira island and atmospheric rivers in the winter seasons

    Science.gov (United States)

    Couto, Flavio T.; Salgado, Rui; João Costa, Maria; Prior, Victor

    2016-04-01

    This study aims to analyse the distribution of the daily accumulated precipitation in the Madeira's highlands over a 10-year period, as well as the main characteristics associated with atmospheric rivers (ARs) affecting the island during 10 winter seasons, and their impact in the rainfall amounts recorded near the mountain crest in the south-eastern part of the island. The period between September 2002 and November 2012 is considered for the analysis. The ARs have been identified from the total precipitable water vapour field extracted from the Atmospheric Infrared Sounder (AIRS). The AIRS observations were downloaded for a domain covering large part of the North Atlantic Ocean. The precipitable water vapour field from the European Centre for Medium-range Weather Forecasts (ECMWF) analysis was also used aiming to support the AIRS data when there was no satellite information over the island. The daily accumulated precipitation at surface showed generally drier summers, while the highest accumulated precipitation are recorded mainly during the winter, although some significant events may occur also in autumn and spring seasons. The patterns of the precipitable water vapour field when ARs reach the island were investigated, and even if great part of the atmospheric rivers reaches the island in a dissipation stage, some rivers are heavy enough to reach the Madeira Island. In this situation, the water vapour transport could be observed in two main configurations and transporting significant water vapour amounts toward the Madeira from the tropical region. This study lead to conclude that the atmospheric rivers, when associated to high values of precipitable water vapour over the island can provide favourable conditions to the development of precipitation, sometimes associated with high amounts. However, it was also found that many cases of high to extreme accumulated precipitation at the surface were not associated to this kind of moisture transport.

  10. Pharmaceuticals and other anthropogenic chemicals in atmospheric particulates and precipitation.

    Science.gov (United States)

    Ferrey, Mark L; Coreen Hamilton, M; Backe, Will J; Anderson, Kurt E

    2018-01-15

    Air and precipitation samples were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) and gas chromatography mass spectrometry (GC-MS) for pharmaceuticals, personal care products, and other commercial chemicals within the St. Paul/Minneapolis metropolitan area of Minnesota, U.S. Of the 126 chemicals analyzed, 17 were detected at least once. Bisphenol A, N,N-diethyl-meta-toluamide (DEET), and cocaine were the most frequently detected; their maximum concentrations in snow were 3.80, 9.49, and 0.171ng/L and in air were 0.137, 0.370, and 0.033ng/m 3 , respectively. DEET and cocaine were present in samples of rain up to 14.5 and 0.806ng/L, respectively. Four antibiotics - ofloxacin, ciprofloxacin, enrofloxacin, and sulfamethoxazole - were detected at concentrations up to 10.3ng/L in precipitation, while ofloxacin was the sole antibiotic detected in air at 0.013ng/m 3 . The X-ray contrast agent iopamidol and the non-steroidal anti-inflammatory drug naproxen were detected in snow up to 228ng/L and 3.74ng/L, respectively, while caffeine was detected only in air at 0.069 and 0.111ng/m 3 . Benzothiazole was present in rain up to 70ng/L, while derivatives of benzotriazole - 4-methylbenzotriazole, 5-methylbenzotriazole, and 5-chlorobenzotriazole - were detected at concentrations up to 1.5ng/L in rain and 3.4ng/L in snow. Nonylphenol and nonylphenol monoethoxylate were detected once in air at 0.165 and 0.032ng/m 3 , respectively. Although the sources of these chemicals to atmosphere are not known, fugacity analysis suggests that wastewater may be a source of nonylphenol, nonylphenol monoethoxylate, DEET, and caffeine to atmosphere. The land-spreading of biosolids is known to generate PM10 that could also account for the presence of these contaminants in air. Micro-pollutant detections in air and precipitation are similar to the profile of contaminants reported previously for surface water. This proof of concept study suggests that atmospheric transport of

  11. The role of atmospheric circulation in the Mediterranean precipitation response to climate change.

    Science.gov (United States)

    Zappa, Giuseppe; Hoskins, Brian; Shepherd, Ted

    2017-04-01

    The Mediterranean region has been identified as a climate change hot-spot, due to a projected reduction in precipitation which could have large socio—economic impacts by affecting fresh water availability for agricultural and societal needs. However, the mechanisms that control such precipitation change are not well understood and there is large uncertainty in the amplitude of the projected precipitation change. We here show that more than 80% of the variance in the wintertime precipitation change in the CMIP5 models projections is linked to uncertainty in the atmospheric circulation response to climate change. This is demonstrated by introducing a simple index of atmospheric circulation based on the intensity of the westerly flow in North Africa. It is shown that the relationship between precipitation and circulation under climate change is consistent to what is found in the year to year variability. However, many CMIP5 climate models have biases in their ability of capturing the observed relationship between circulation and precipitation. This suggests that climate models may tend to underestimate the realised precipitation change for any given change in the atmospheric circulation.

  12. Radiation protection at the RA Reactor in 1984, Part -2, Annex 2a: Radioactivity control of the RA reactor environment - atmospheric precipitations, dust, water, soil, plants, fruit.

    International Nuclear Information System (INIS)

    Ajdacic, N.; Martic, M.; Jovanovic, J.

    1984-01-01

    Control of radioactivity in the biosphere in the vicinity of the RA reactor is part of the radioactivity control done regularly for the whole territory of the Vinca institute. During 1984 control was conducted according to the plan. According to the measured data no significant changes have been found in the surroundings of the RA reactor. All the analysed samples have followed the activity values of the precipitations

  13. CALCULATION: PRECIPITATION CHARACTERISITICS FOR STORM WATER MANAGEMENT

    International Nuclear Information System (INIS)

    D. Ambos

    2000-01-01

    This Calculation is intended to satisfy engineering requirements for maximum 60-minute precipitation amounts for 50 and 100-year return periods at and near Yucca Mountain. This data requirement is documented in the ''Interface Control Document for Support Operations to Surface Facilities Operations Functional and Organizational Interfaces'' (CRWMS M and O 1998a). These developed data will supplement the information on 0.1 hour to 6-hour (in 0.1-hour increments) probable maximum precipitation (PMP) presented in the report, ''Precipitation Design Criteria for Storm Water Management'' (CRWMS M and O 1998b). The Reference Information Base (RIB) item, Precipitation ''Characteristics for Storm Water Management'' (M09902RIB00045 .OOO), was developed based on CRWMS M and O (1998b) and will be supplemented (via revision) with the information developed in this Calculation. The ''Development Plan for the Calculation: Precipitation Characteristics for Storm Water Management'' (CRWMS M and O 2000) was prepared in accordance with AP-2.l3Q, ''Technical Product Development Planning''. This calculation was developed in accordance with AP-3.12Q, Rev. O/ICN 2

  14. Atmospheric Processing and Variability of Biological Ice Nucleating Particles in Precipitation at Opme, France

    Directory of Open Access Journals (Sweden)

    Glwadys Pouzet

    2017-11-01

    Full Text Available Atmospheric ice nucleating particles (INPs contribute to initiate precipitation. In particular, biological INPs act at warmer temperatures than other types of particles (>−10 °C therefore potentially defining precipitation distribution. Here, in order to identify potential environmental drivers in the distribution and fate of biological INPs in the atmosphere, we conducted a mid-term study of the freezing characteristics of precipitation. A total of 121 samples were collected during a period of >1.5 years at the rural site of Opme (680 m a.s.l. (above sea level, France. INP concentration ranged over two orders of magnitude at a given temperature depending on the sample; there were <1 INPs mL−1 at ≥−5 °C, ~0.1 to 10 mL−1 between −5 °C and −8 °C, and ~1 to 100 mL−1 at colder temperatures. The data support the existence of an intimate natural link between biological INPs and hydrological cycles. In addition, acidification was strongly correlated with a decrease of the freezing characteristics of the samples, suggesting that human activities impact the role of INPs as triggers of precipitation. Water isotope ratio measurements and statistical comparison with aerosol and cloud water data confirmed some extent of INP partitioning in the atmosphere, with the INPs active at the warmest temperatures tending to be more efficiently precipitated.

  15. Precipitation scavenging of tritiated water vapour (HTO)

    International Nuclear Information System (INIS)

    Ogram, G.L.

    1985-10-01

    Precipitation scavenging (or washout) is an important mechanism for the removal of HTO from the atmosphere. Methods of parameterizing the depletion of a plume of HTO released to the atmosphere are examined. Simple approaches, commonly used for atmospheric transport modelling purposes, such as the use of a constant washout coefficient or washout ratio, or the use of parameters based on equilibrium assumptions, are often not justified. It is shown that these parameters depend strongly on ambient temperature and plume dimensions, as well as rainfall rate. An approximate expression for washout ratio, as a function of these variables, is developed, and it is shown that near equilibrium washout conditions are only expected to hold at long plume travel distances. A possible method of treating scavenging by snow is also suggested

  16. Cloud Microphysics and Aerosols as Drivers of Variability in Orographic Precipitation Under Atmospheric River Conditions

    Science.gov (United States)

    Voss, K. K.; Martin, A.; Prather, K. A.

    2017-12-01

    In this study, semi-idealized simulations of flow over a hill using a mesoscale numerical weather prediction model were used in order to study the sensitivity of simulated orographic precipitation under atmospheric river (AR) conditions to cloud microphysics and to aerosol concentration. Semi-idealized atmospheric soundings were constructed using sounding observations from AR events off of the California coast near the Sierra Nevada mountain range allowing them to be constrained by observed moisture-flux precipitation relationships. These ensembles were run using three microphysics schemes with varying complexity. An additional ensemble was run with ice nucleating aerosol concentrations representative of in-situ ice nucleating particle measurements taken during the 2015 CalWater field campaign. AR orographic precipitation simulations were shown to be heavily dependent on the microphysics scheme used. Each scheme resulted in different cloud structure and 24-hr accumulated precipitation amount. These results highlight the need for continued development of modeled microphysics and inclusion of aerosol parameterization in order to improve prediction of precipitation from atmospheric river events.

  17. Distribution of tritium in water vapour and precipitation around Wolsung nuclear power plant.

    Science.gov (United States)

    Chae, Jung-Seok; Lee, Sang-Kuk; Kim, Yongjae; Lee, Jung-Min; Cho, Heung-Joon; Cho, Yong-Woo; Yun, Ju-Yong

    2011-07-01

    The distribution of tritium in water vapour and precipitation with discharge of tritiated water vapour and meteorological factors was studied around the Wolsung nuclear power plant (NPP) site during the period 2004-2008. The tritium concentrations in atmospheric water vapour and precipitation had a temporal variation with relatively high values in the early summer. Spatial distribution of tritium concentrations was affected by various factors such as distance from the NPP site, wind direction, tritium discharge into the atmosphere and atmospheric dispersion factor. The annual mean concentrations of atmospheric HTO and precipitation were correlated with the amount of gaseous tritium released from the Wolsung NPP. The tritium concentrations in precipitation decrease exponentially with an increase of the distance from the Wolsung NPP site.

  18. Bacteria in atmospheric waters: Detection, characteristics and implications

    Science.gov (United States)

    Hu, Wei; Niu, Hongya; Murata, Kotaro; Wu, Zhijun; Hu, Min; Kojima, Tomoko; Zhang, Daizhou

    2018-04-01

    In this review paper, we synthesize the current knowledges about bacteria in atmospheric waters, e.g., cloud, fog, rain, and snow, most of which were obtained very recently. First, we briefly describe the importance of bacteria in atmospheric waters, i.e., the essentiality of studying bacteria in atmospheric waters in understanding aerosol-cloud-precipitation-climate interactions in the Earth system. Next, approaches to collect atmospheric water samples for the detection of bacteria and methods to identify the bacteria are summarized and compared. Then the available data on the abundance, viability and community composition of bacteria in atmospheric waters are summarized. The average bacterial concentration in cloud water was usually on the order 104-105 cells mL-1, while that in precipitation on the order 103-104 cells mL-1. Most of the bacteria were viable or metabolically active. Their community composition was highly diverse and differed at various sites. Factors potentially influencing the bacteria, e.g., air pollution levels and sources, meteorological conditions, seasonal effect, and physicochemical properties of atmospheric waters, are described. After that, the implications of bacteria present in atmospheric waters, including their effect on nucleation in clouds, atmospheric chemistry, ecosystems and public health, are briefly discussed. Finally, based on the current knowledges on bacteria in atmospheric waters, which in fact remains largely unknown, we give perspectives that should be paid attention to in future studies.

  19. Evolution of the isotope composition of C and O in the DIC in a water film during precipitation of calcite to the surface of a stalagmite in the presence of isotope exchange with the CO2 of the cave atmosphere and evaporation of the water

    Science.gov (United States)

    Dreybrodt, Wolfgang; Romanov, Douchko

    2016-04-01

    In a thin water layer, super saturated with respect to calcite with pH of about 8, where the aqueous CO2 is in equilibrium with the pCO2 of the cave atmosphere, the following processes determine the temporal evolution of the isotope composition of carbon and oxygen in the dissolved inorganic carbon ( DIC). a) Precipitation of calcite driven by super saturation, whereby deposition rates Between the heavy and light isotopes are slightly different. b) Evaporation of water reducing the depth of the water layer and changing the isotope composition of oxygen in the water by Rayleigh-distillation. c) Isotope exchange between the CO2 in the cave atmosphere and the DIC for both carbon and oxygen. d) Isotope exchange between the oxygen in the water molecules and that in the DIC. All these processes can be described by a differential equation, which can be solved numerically. For small times a simple solution can be given. Δ_DIC(T_drip) = [ ( (⪉mbda + ɛ) C_eq/C0 - ɛ ) T_drip/τ + (δ^atm_eq - δ0 ) T_drip/τ^atm + (δ^water_eq-δ_0-ɛ_wT_drip/T_ev) T_drip/τ^water] Δ_DIC(T_drip) is the change of the δ13C and δ18O (given here as small numbers and not in the ‰ notation) after the drip time T_drip. ⪉mbda, ɛ are kinetic parameters of precipitation on the order of 10-2 and τ is the time scale of precipitation, typically about 1000 s. (δ^atm_eq - δ_0) and (δ^water_eq - δ_0) are the differences between the corresponding initial δ-value and that when DIC is in isotope equilibrium with the atmosphere or in the case of oxygen with the water. τ^atm and τ^water, both on the order of 10,000 s, are the time scales of the exchange reactions to approach isotope equilibrium. For carbon the last term (exchange with water) must be deleted. C_eq is the concentration of DIC in chemical equilibrium with the CO2 in the cave atmosphere and C0 is the initial concentration, when the water drips to the stalagmite. T_ev is the time needed to fully evaporate the water layer and

  20. Effects of energetic particle precipitation on the atmospheric electric circuit

    International Nuclear Information System (INIS)

    Reagan, J.B.; Meyerott, R.E.; Evans, J.E.; Imhof, W.L.; Joiner, R.G.

    1983-01-01

    The solar particle event (SPE) of August 1972 is one of the largest that has occurred in the last 20 years. Since it is so well documented, it can serve as a good example of a major perturbation to the atmospheric electric system. In this paper, ion production rates and conductivities from the ground to 80 km at the peak intensity of the event on August 4 and for 30, 35, and 40 km for the 6-day duration of the event are presented. At the peak of the event, the proton and electron precipitation currents, the ohmic current, and the vertical electric field are calculated inside the polar cap. The particle precipitation currents at this time greatly exceed the normal air earth current at altitudes above 30 km and produce reversals in the vertical electric field at 28 km and above. Calculations are presented of the vertical electric field at altitudes near 30 km where balloon measurements were made. Good agreement between the calculated and the measured vertical electric field verifies our ability to calculate disturbed conductivities at these altitudes from satellite measurements of proton spectra incident on the atmosphere. Despite the fact that at the peak of the event the vertical electric field near 30 km was shorted out by the solar particles and that the current carried by the solar particles exceeded the fair weather air-earth current density in the stratosphere by large factors, it is concluded that the largest effect of an SPE of this magnitude on the atmospheric electric circuit is due to the Forbush decrease in the galactic cosmic ray flux rather than to the large increase in solar proton flux

  1. Analysis of the Effects of ENSO and Atmospheric Rivers on Precipitation in Los Angeles County

    Science.gov (United States)

    Santacruz, A.; Lamb, K.

    2017-12-01

    The Winter 2016-2017 season in California was marked by substantial amounts of precipitation; this resulted in critically-low reservoirs filling up and the removal of most of California from drought status. The year prior was characterized by one of the strongest El Nino-Southern Oscillation (ENSO) events, though it did not produce nearly enough precipitation as the 2016-2017 season. The major contributors to the increased rainfall during the 2016-2017 season were climactic phenomenon known as atmospheric rivers (ARs), which transport water vapor through the atmosphere in narrow bands, and are known to produce extreme rain events. Determining the exact timing, landfall areas, and total precipitation amounts of ARs is currently of great interest; a recent study showed that extreme weather events are likely to increase in California in the coming years, which motivates research into how phenomenon such as ENSO and ARs play a role. Using long-term daily rain gauge data provided by the Los Angeles County Department of Public Works, we compute the precipitation volume and storm count for various locations in Los Angeles County and identify anomalies. These data will then be compared with the occurrence and intensity of AR and ENSO events by using NOAA's NOI and ESRL AR data. The results can be used to provide a better grasp of extreme climactic patterns and their effects on the amount of precipitation in the region.

  2. Terrestrial atmosphere, water and astrobiology

    Directory of Open Access Journals (Sweden)

    Coradini M.

    2010-12-01

    Full Text Available Primitive life, defined as a chemical system capable to transfer its molecular information via self-replication and also capable to evolve, originated about 4 billion years ago from the processing of organic molecules by liquid water. Terrestrial atmosphere played a key role in the process by allowing the permanent presence of liquid water and by participating in the production of carbon-based molecules. Water molecules exhibit specific properties mainly due to a dense network of hydrogen bonds. The carbon-based molecules were either home made in the atmosphere and/or in submarine hydrothermal systems or delivered by meteorites and micrometeorites. The search for possible places beyond the earth where the trilogy atmosphere/water/life could exist is the main objective of astrobiology. Within the Solar System, exploration missions are dedicated to Mars, Europa, Titan and the icy bodies. The discovery of several hundreds of extrasolar planets opens the quest to the whole Milky Way.

  3. How Well the Early 2017 California Atmospheric River Precipitation Events Were Captured by Satellite Products and Ground-based Radars?

    Science.gov (United States)

    Wen, Y. B.; Behrangi, A.; Chen, H.; Lambrigtsen, B.

    2017-12-01

    In January and February of 2017, California experienced multiple heavy storms that caused serious destruction of facilities and economic loss, although it also helped to reduce water storage deficit due to prolonged drought in previous years. These extreme precipitation events were mainly associated with Atmospheric Rivers (ARs) and brought about 174 km3 of water to California according to ground observations. This paper evaluates the performance of six commonly used satellite-based precipitation products (IMERG, 3B42RT, PERSIANN, CCS, CMORPH, and GSMaP), as well as ground-based radar products (Radar-only and Radar-lgc) in capturing the ARs precipitation rate and distribution. It is found that precipitation maps from all products present heavy precipitation in January and February, with more consistent observations over ocean than land. Though large uncertainties exist in quantitative precipitation estimation (QPE) over land, the ensemble mean of different remote sensing precipitation products over California is consistent with gauge measurements. Among the six satellite-based products, IMERG correlates the best with gauge observations both in the detection and quantification of precipitation, but it is not the best product in terms of root mean square error (RMSE) or bias. Compared to satellite products, ground weather radar shows better precipitation detectability and estimation skill. However, neither radar nor satellite QPE products have good performances in quantifying the peak precipitation intensity during the extreme events, suggesting that further advancement in quantification of extremely intense precipitation associated with AR in the Western United States is needed.

  4. MODIS/Aqua Near Real Time (NRT) Total Precipitable Water Vapor 5-Min L2 Swath 1km and 5km

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS level-2 atmospheric precipitable water product consists of total atmospheric column water vapor amounts (and ancillary parameters) over clear land areas of...

  5. Atmospheric washout of radioactive aerosol for different types of precipitation events

    International Nuclear Information System (INIS)

    Bernauer, Felix

    2015-01-01

    values of A and B, for a range of precipitation rates from 0.1 mmh -1 to 4.0 mmh -1 . For water equivalent precipitation rates of less than 1.5 mmh -1 , snow turned out to show larger scavenging coefficients than rain. More specifically, the scavenging coefficients for snow and rain can differ by up to a factor 8 for precipitation rates of less than 0.5 mmh -1 . This can be one reason for the discrepancies observed in Fukushima between predicted and observed wet deposition. Therefore, it is recommended that different parameterizations of the scavenging coefficient for different types of precipitation events, as reported in this thesis for the first time, should be implemented into decision support systems and atmospheric transport models. This will allow a more reliable estimate of the exposure of the public to ionizing radiation, in the case of accidental atmospheric release of radionuclides.

  6. Atmospheric washout of radioactive aerosol for different types of precipitation events

    Energy Technology Data Exchange (ETDEWEB)

    Bernauer, Felix

    2015-12-15

    parametrized by different values of A and B, for a range of precipitation rates from 0.1 mmh{sup -1} to 4.0 mmh{sup -1}. For water equivalent precipitation rates of less than 1.5 mmh{sup -1}, snow turned out to show larger scavenging coefficients than rain. More specifically, the scavenging coefficients for snow and rain can differ by up to a factor 8 for precipitation rates of less than 0.5 mmh{sup -1}. This can be one reason for the discrepancies observed in Fukushima between predicted and observed wet deposition. Therefore, it is recommended that different parameterizations of the scavenging coefficient for different types of precipitation events, as reported in this thesis for the first time, should be implemented into decision support systems and atmospheric transport models. This will allow a more reliable estimate of the exposure of the public to ionizing radiation, in the case of accidental atmospheric release of radionuclides.

  7. Impact of atmospheric blocking events on the decrease of precipitation in the Selenga River basin

    Science.gov (United States)

    Antokhina, O.; Antokhin, P.; Devyatova, E.; Vladimir, M.

    2017-12-01

    The periods of prolonged deficiency of hydropower potential (HP) of Angara cascade hydroelectric plant related to low-inflow in Baikal and Angara basins threaten to energy sector of Siberia. Since 1901 was recorded five such periods. Last period began in 1996 and continues today. This period attracts the special attention, because it is the longest and coincided with the observed climate change. In our previous works we found that the reason of observed decrease of HP is low water content of Selenga River (main river in Baikal Basin). We also found that the variations of Selenga water-content almost totally depend of summer atmospheric precipitation. Most dramatic decrease of summer precipitation observed in July. In turn, precipitation in July depends on location and intensity of atmospheric frontal zone which separates mid-latitude circulation and East Asia monsoon system. Recently occur reduction this frontal zone and decrease of East Asia summer monsoon intensity. We need in the understanding of the reasons leading to these changes. In the presented work we investigate the influence of atmospheric blocking over Asia on the East Asian summer monsoon circulation in the period its maximum (July). Based on the analysis of large number of blocking events we identified the main mechanisms of blocking influence on the monsoon and studied the properties of cyclones formed by the interaction of air masses from mid latitude and tropics. It turned out that the atmospheric blockings play a fundamental role in the formation of the East Asia monsoon moisture transport and in the precipitation anomalies redistribution. In the absence of blockings over Asia East Asian monsoon moisture does not extend to the north, and in the presence of blockings their spatial configuration and localization completely determines the precipitation anomalies configuration in the northern part of East Asia. We also found that the weakening monsoon circulation in East Asia is associated with

  8. [Hydrogen and Oxygen Isotopic Compositions of Precipitation and Its Water Vapor Sources in Eastern Qaidam Basin].

    Science.gov (United States)

    Zhu, Jian-jia; Chen, Hui; Gong, Guo-li

    2015-08-01

    Stable hydrogen and oxygen isotopes can be used as a tracer to analyze water vapor sources of atmospheric precipitation. We choose Golmud and Delingha as our study areas, Golmud locates in the south of Qaidam basin, and Delingha locates in the northeast. Based on the analysis of monthly change of hydrogen and oxygen isotopic compositions of precipitation during June to September of 2010, and the relationship between deltaD and delta18O in precipitation, we investigated the water vapor sources of precipitation in eastern Qaidam basin. The results show that: (1) meteoric water line between June to September in Golmud is: deltaD = 7.840 delta18O - 4.566 (R2 = 0.918, P isotopes. However, the delta18O content of precipitation becomes lower from late July to early September, especially for the late September. The 8180 content of precipitation in Delingha is higher in June to August than that in late September. (3) the water vapor sources of precipitation in Golmud and Delingha are different, Golmud area is the northern border of Qinghai-Tibet Plateau where the southwest monsoon can reach, and the southwest monsoon brings water vapors of precipitation, but the water vapors of precipitation in Delingha are mainly from local evaporation.

  9. Study on Cloud Water Resources and Precipitation Efficiency Characteristic over China

    Science.gov (United States)

    Zhou, Y., Sr.; Cai, M., Jr.

    2017-12-01

    The original concept and quantitative assessment method of cloud water resource and its related physical parameters are proposed based on the atmospheric water circulation and precipitation enhancement. A diagnosis method of the three-dimensional (3-D) cloud and cloud water field are proposed , based on cloud observation and atmospheric reanalysis data. Furthermore, using analysis data and precipitation products, Chinese cloud water resources in 2008-2010 are assessed preliminarily. The results show that: 1. Atmospheric water cycle and water balance plays an important part of the climate system. Water substance includes water vapor and hydrometeors, and the water cycle is the process of phase transition of water substances. Water vapor changes its phase into solid or liquid hydrometeors by lifting and condensation, and after that, the hydrometeors grow lager through cloud physical processes and then precipitate to ground, which is the mainly resource of available fresh water .Therefore, it's far from enough to only focus on the amount of water vapor, more attention should be transfered to the hydrometeors (cloud water resources) which is formed by the process of phase transition including lifting and condensation. The core task of rainfall enhancement is to develop the cloud water resources and raise the precipitation efficiency by proper technological measures. 2. Comparing with the water vapor, the hydrometeor content is much smaller. Besides, the horizontal delivery amount also shows two orders of magnitude lower than water vapor. But the update cycle is faster and the precipitation efficiency is higher. The amount of cloud water resources in the atmosphere is determined by the instantaneous quantity, the advection transport, condensation and precipitation from the water balance.The cloud water resources vary a lot in different regions. In southeast China, hydrometeor has the fastest renewal cycle and the highest precipitation efficiency. The total amount of

  10. A statistical study on synergetic effects of atmospheric rivers and cut-off lows upon precipitation

    Science.gov (United States)

    Tsuji, H.; Takayabu, Y. N.

    2017-12-01

    Effects of atmospheric rivers (ARs) on precipitation in the western North Pacific (WNP) region has been less studied compared with that in the eastern Pacific. Recently, Hirota et al. (2016, MWR) analyzed the extreme rainfall event which caused a disastrous flood in Hiroshima, Japan, on 19 August 2014. They showed that a coincidence of very moist troposphere associated with AR and instability and dynamical ascent associated with a cut-off low (COL) played a significant role for the rainfall event. As in this case, AR in the WNP region seems to enhance rainfall with additional instability or ascending motion brought by another system. However, it is not clear how far large-scale conditions such as AR and COL can determine locations of severe rainfall. In this study, we statistically investigate the differences in precipitation between cases in which AR exists near a COL (AR category) and those in which AR does not exist near a COL (non-AR category). Precipitation data are obtained from hourly Global Satellite Mapping of Precipitation (GSMaP) data (0.1 degree grid). We define AR and COL with six-hourly JRA55 (1.25 degree grid) precipitable water (PW) and 350 K isentropic potential vorticity, respectively. The analyses are conducted in the WNP region (100E-160W, 0-60N), from March 2000 to February 2013. Composite results show that precipitation amount around the front side of COL's moving direction (north) in the AR category (139 cases) is larger than that in the non-AR category (63 cases). In particular, the difference of precipitation around the front-left side (north-west) is statistically significant. The relationship among the locations of COL, positive PW anomaly region corresponding to AR, and the region where the difference of precipitation is statistically significant is similar with that among the locations of COL, AR, and extreme precipitation area in the event of Hiroshima. It is indicated that a precipitation enhancement can occur associated with a

  11. Signals of ENSO related precipitation changes and atmospheric CO2 levels in Florida wetland vegetation

    Science.gov (United States)

    Wagner, F.

    2003-04-01

    Trees are equipped with a plastic phenotype, capable of sustained adjustment of leaf stomata to changes in atmospheric [CO2] concentration. With high temporal resolution and accuracy, stomatal frequency data demonstrate that Holocene climate evolution has been influenced by century-scale [CO2] fluctuations. Apart from adapting to changes in [CO2], leaf-epidermal properties are known to be sensitive to environmental factors such as water availability. In long-lived hygrophilous plants, epidermal tissue expansion is likely to be significantly influenced by changes in water availability. Synchronous analysis of the leaf-morphology in [CO2] sensitive trees and water-stress sensitive fern species from leaf assemblages preserved in peat deposits in Florida (USA), reveals distinct temporal changes in epidermal properties over the past 100 years. Stomatal frequency changes in the deciduous trees reflects the human induced [CO2] increase. Epidermal-cell density changes in fern leaves, could well be interpreted in terms of El Niño / La Niña related precipitation trends. By quantifying the leaf morphological adaptation to known environmental conditions during historical times, a new palaeobotanical proxy for past precipitation changes is introduced. Hence, in El Niño sensitive regions, analysis of buried leaf assemblages offers the unique possibility of a direct recognition of time-equivalent leaf-based signals of palaeo-atmospheric [CO2] and El Niño variability.

  12. Atmospheric water budget over the western Himalayas in a regional ...

    Indian Academy of Sciences (India)

    hydrological components, rates and fresh water run-off are shown by Omstedt et al. (1997) and. Elguindi et al. (2009). Role of precipitation – soil moisture feedback with land–atmospheric coupling. Keywords. Moisture feedback; western Himalayas; regional climate. J. Earth Syst. Sci. 121, No. 4, August 2012, pp. 963–973.

  13. GPM Satellite Radar Measurements of Precipitation and Freezing Level in Atmospheric Rivers: Comparison With Ground-Based Radars and Reanalyses

    Science.gov (United States)

    Cannon, Forest; Ralph, F. Martin; Wilson, Anna M.; Lettenmaier, Dennis P.

    2017-12-01

    Atmospheric rivers (ARs) account for more than 90% of the total meridional water vapor flux in midlatitudes, and 25-50% of the annual precipitation in the coastal western United States. In this study, reflectivity profiles from the Global Precipitation Measurement Dual-Frequency Precipitation Radar (GPM-DPR) are used to evaluate precipitation and temperature characteristics of ARs over the western coast of North America and the eastern North Pacific Ocean. Evaluation of GPM-DPR bright-band height using a network of ground-based vertically pointing radars along the West Coast demonstrated exceptional agreement, and comparison with freezing level height from reanalyses over the eastern North Pacific Ocean also consistently agreed, indicating that GPM-DPR can be used to independently validate freezing level in models. However, precipitation comparison with gridded observations across the western United States indicated deficiencies in GPM-DPR's ability to reproduce the spatial distribution of winter precipitation, likely related to sampling frequency. Over the geographically homogeneous oceanic portion of the domain, sampling frequency was not problematic, and significant differences in the frequency and intensity of precipitation between GPM-DPR and reanalyses highlighted biases in both satellite-observed and modeled AR precipitation. Reanalyses precipitation rates below the minimum sensitivity of GPM-DPR accounted for a 20% increase in total precipitation, and 25% of radar-derived precipitation rates were greater than the 99th percentile precipitation rate in reanalyses. Due to differences in the proportions of precipitation in convective, stratiform bright-band, and non-bright-band conditions, AR conditions contributed nearly 10% more to total precipitation in GPM-DPR than reanalyses.

  14. Atmospheric tides and periodic variations in the precipitation field

    International Nuclear Information System (INIS)

    Cevolani, G.; Bacci, P.; Bonelli, P.; Isnardi, C.

    1986-01-01

    The analysis of daily precipitations data at many weather stations in Alpes and Po Valley gives evidence of a ''tidal'' influence from luni-solar gravitational fields. The tidal influence does not appear to be strictly constant with time, as the possible results of a modulation effect of luni-solar cycles having similar periods. Time variations of daily precipitation data as a function of some particular cycles show that gravitational tides effect heavy rainfalls more than mean precipitation values

  15. Downscaling atmospheric patterns to multi-site precipitation amounts in southern Scandinavia

    DEFF Research Database (Denmark)

    Gelati, Emiliano; Christensen, O.B.; Rasmussen, P.F.

    2010-01-01

    depend on current atmospheric information. The gridded atmospheric fields are summarized through the singular value decomposition (SVD) technique. SVD is applied to geopotential height and relative humidity at several pressure levels, to identify their principal spatial patterns co......A non-homogeneous hidden Markov model (NHMM) is applied for downscaling atmospheric synoptic patterns to winter multi-site daily precipitation amounts. The implemented NHMM assumes precipitation to be conditional on a hidden weather state that follows a Markov chain, whose transition probabilities...

  16. GPS Estimates of Integrated Precipitable Water Aid Weather Forecasters

    Science.gov (United States)

    Moore, Angelyn W.; Gutman, Seth I.; Holub, Kirk; Bock, Yehuda; Danielson, David; Laber, Jayme; Small, Ivory

    2013-01-01

    Global Positioning System (GPS) meteorology provides enhanced density, low-latency (30-min resolution), integrated precipitable water (IPW) estimates to NOAA NWS (National Oceanic and Atmospheric Adminis tration Nat ional Weather Service) Weather Forecast Offices (WFOs) to provide improved model and satellite data verification capability and more accurate forecasts of extreme weather such as flooding. An early activity of this project was to increase the number of stations contributing to the NOAA Earth System Research Laboratory (ESRL) GPS meteorology observing network in Southern California by about 27 stations. Following this, the Los Angeles/Oxnard and San Diego WFOs began using the enhanced GPS-based IPW measurements provided by ESRL in the 2012 and 2013 monsoon seasons. Forecasters found GPS IPW to be an effective tool in evaluating model performance, and in monitoring monsoon development between weather model runs for improved flood forecasting. GPS stations are multi-purpose, and routine processing for position solutions also yields estimates of tropospheric zenith delays, which can be converted into mm-accuracy PWV (precipitable water vapor) using in situ pressure and temperature measurements, the basis for GPS meteorology. NOAA ESRL has implemented this concept with a nationwide distribution of more than 300 "GPSMet" stations providing IPW estimates at sub-hourly resolution currently used in operational weather models in the U.S.

  17. Concentration of tritium in precipitation and river water

    International Nuclear Information System (INIS)

    Chatani, Kunio

    1983-01-01

    The concentration of tritium in precipitation and river water has been measured sice 1973 in Aichi, Japan. The tritium in water samples was enriched by electrolysis, and measured by liquid scintillation counting. The concentration of tritium in precipitation decreased from 27 TU in 1973 to 17 TU in 1979, and showed seasonal variation. During this period, there was a rise of concentration because of Chinese nuclear detonation. The concentration of tritium in river water gradually decreased from 44 TU in 1973 to 24 TU in 1979, and the seasonal variation was not observed. Based on the observed values, the relation among precipitation, river water and ground water was analyzed. (J.P.N.)

  18. Volatile organic compounds (halogenated aliphatic and mono aromatic) in the Paris urban area: atmosphere, rainfall, waste water and surface water; Les composes organiques volatils (aliphatiques halogenes et monoaromatiques) dans l'environnement de l'agglomaration parisienne: atmosphere, precipitations, eaux usees et eaux de surface

    Energy Technology Data Exchange (ETDEWEB)

    Duclos, Y.

    1998-01-28

    A study of the Volatile Organic Compounds (VOC) in the various environments of the Paris Urban area: atmosphere, rainfall, an experimental catchment in the centre of Paris, a waste-water treatment plant at Acheres, the Der reservoir and the river Seine. The VOC balance was estimated in these various systems and the contamination and dispersion trends evaluated. (author)

  19. Daily precipitation extreme events for the Iberian Peninsula and its association with Atmospheric Rivers

    Science.gov (United States)

    Ramos, Alexandre M.; Trigo, Ricardo M.; Liberato, Margarida LR

    2014-05-01

    Extreme precipitation events in the Iberian Peninsula during the extended winter months have major socio-economic impacts such as floods, landslides, extensive property damage and life losses. These events are usually associated with low pressure systems with Atlantic origin, although some extreme events in summer/autumn months can be linked to Mediterranean low pressure systems. Quite often these events are evaluated on a casuistic base and making use of data from relatively few stations. An objective method for ranking daily precipitation events is presented here based on the extensive use of the most comprehensive database of daily gridded precipitation available for the Iberian Peninsula (IB02) and spanning from 1950 to 2008, with a resolution of 0.2° (approximately 16 x 22 km at latitude 40°N), for a total of 1673 pixels. This database is based on a dense network of rain gauges, combining two national data sets, 'Spain02' for peninsular Spain and Balearic islands, and 'PT02' for mainland Portugal, with a total of more than two thousand stations over Spain and four hundred stations over Portugal, all quality-controlled and homogenized. Through this objective method for ranking daily precipitation events the magnitude of an event is obtained after considering the area affected as well as its intensity in every grid point and taking into account the daily precipitation normalised departure from climatology. Different precipitation rankings are presented considering the entire Iberian Peninsula, Portugal and also the six largest river basins in the Iberian Peninsula. Atmospheric Rivers (AR) are the water vapour (WV) core section of the broader warm conveyor belt occurring over the oceans along the warm sector of extra-tropical cyclones. They are usually W-E oriented steered by pre-frontal low level jets along the trailing cold front and subsequently feed the precipitation in the extra-tropical cyclones. They are relatively narrow regions of concentrated WV

  20. Heterogeneous Sensitivity of Tropical Precipitation Extremes during Growth and Mature Phases of Atmospheric Warming

    Science.gov (United States)

    Parhi, P.; Giannini, A.; Lall, U.; Gentine, P.

    2016-12-01

    Assessing and managing risks posed by climate variability and change is challenging in the tropics, from both a socio-economic and a scientific perspective. Most of the vulnerable countries with a limited climate adaptation capability are in the tropics. However, climate projections, particularly of extreme precipitation, are highly uncertain there. The CMIP5 (Coupled Model Inter- comparison Project - Phase 5) inter-model range of extreme precipitation sensitivity to the global temperature under climate change is much larger in the tropics as compared to the extra-tropics. It ranges from nearly 0% to greater than 30% across models (O'Gorman 2012). The uncertainty is also large in historical gauge or satellite based observational records. These large uncertainties in the sensitivity of tropical precipitation extremes highlight the need to better understand how tropical precipitation extremes respond to warming. We hypothesize that one of the factors explaining the large uncertainty is due to differing sensitivities during different phases of warming. We consider the `growth' and `mature' phases of warming under climate variability case- typically associated with an El Niño event. In the remote tropics (away from tropical Pacific Ocean), the response of the precipitation extremes during the two phases can be through different pathways: i) a direct and fast changing radiative forcing in an atmospheric column, acting top-down due to the tropospheric warming, and/or ii) an indirect effect via changes in surface temperatures, acting bottom-up through surface water and energy fluxes. We also speculate that the insights gained here might be useful in interpreting the large sensitivity under climate change scenarios, since the physical mechanisms during the two warming phases under climate variability case, have some correspondence with an increasing and stabilized green house gas emission scenarios.

  1. Coupling microscale vegetation-soil water and macroscale vegetation-precipitation feedbacks in semiarid ecosystems

    NARCIS (Netherlands)

    Dekker, S.C.; Rietkerk, M.; Bierkens, M.F.P.

    2007-01-01

    At macroscale, land¿atmosphere exchange of energy and water in semiarid zones such as the Sahel constitutes a strong positive feedback between vegetation density and precipitation. At microscale, however, additional positive feedbacks between hydrology and vegetation such as increase of infiltration

  2. The Signature of Southern Hemisphere Atmospheric Circulation Patterns in Antarctic Precipitation

    Science.gov (United States)

    Marshall, Gareth J.; Thompson, David W. J.; van den Broeke, Michiel R.

    2017-11-01

    We provide the first comprehensive analysis of the relationships between large-scale patterns of Southern Hemisphere climate variability and the detailed structure of Antarctic precipitation. We examine linkages between the high spatial resolution precipitation from a regional atmospheric model and four patterns of large-scale Southern Hemisphere climate variability: the southern baroclinic annular mode, the southern annular mode, and the two Pacific-South American teleconnection patterns. Variations in all four patterns influence the spatial configuration of precipitation over Antarctica, consistent with their signatures in high-latitude meridional moisture fluxes. They impact not only the mean but also the incidence of extreme precipitation events. Current coupled-climate models are able to reproduce all four patterns of atmospheric variability but struggle to correctly replicate their regional impacts on Antarctic climate. Thus, linking these patterns directly to Antarctic precipitation variability may allow a better estimate of future changes in precipitation than using model output alone.

  3. The STARTWAVE atmospheric water database

    Directory of Open Access Journals (Sweden)

    J. Morland

    2006-01-01

    Full Text Available The STARTWAVE (STudies in Atmospheric Radiative Transfer and Water Vapour Effects project aims to investigate the role which water vapour plays in the climate system, and in particular its interaction with radiation. Within this framework, an ongoing water vapour database project was set up which comprises integrated water vapour (IWV measurements made over the last ten years by ground-based microwave radiometers, Global Positioning System (GPS receivers and sun photometers located throughout Switzerland at altitudes between 330 and 3584 m. At Bern (46.95° N, 7.44° E tropospheric and stratospheric water vapour profiles are obtained on a regular basis and integrated liquid water, which is important for cloud characterisation, is also measured. Additional stratospheric water vapour profiles are obtained by an airborne microwave radiometer which observes large parts of the northern hemisphere during yearly flight campaigns. The database allows us to validate the various water vapour measurement techniques. Comparisons between IWV measured by the Payerne radiosonde with that measured at Bern by two microwave radiometers, GPS and sun photometer showed instrument biases within ±0.5 mm. The bias in GPS relative to sun photometer over the 2001 to 2004 period was –0.8 mm at Payerne (46.81° N, 6.94° E, 490 m, which lies in the Swiss plains north of the Alps, and +0.6 mm at Davos (46.81° N, 9.84° E, 1598 m, which is located within the Alps in the eastern part of Switzerland. At Locarno (46.18° N, 8.78° E, 366 m, which is located on the south side of the Alps, the bias is +1.9 mm. The sun photometer at Locarno was found to have a bias of –2.2 mm (13% of the mean annual IWV relative to the data from the closest radiosonde station at Milano. This result led to a yearly rotation of the sun photometer instruments between low and high altitude stations to improve the calibrations. In order to demonstrate the capabilites of the database for studying

  4. Peak precipitation intensity in relation to atmospheric conditions and large-scale forcing at midlatitudes

    NARCIS (Netherlands)

    Loriaux, J.M.; Lenderink, Geert; Siebesma, A.P.

    2016-01-01

    Research on relations between atmospheric conditions and extreme precipitation is important to understand and model present-day climate extremes and assess how precipitation extremes might evolve in a future climate. Here we present a statistical analysis of the relation between large-scale

  5. THE QUANTITATIVE COMPONENT’S DIAGNOSIS OF THE ATMOSPHERIC PRECIPITATION CONDITION IN BAIA MARE URBAN AREA

    Directory of Open Access Journals (Sweden)

    S. ZAHARIA

    2012-12-01

    Full Text Available The atmospheric precipitation, an essential meteorological element for defining the climatic potential of a region, presents through its general and local particularities a defining influence for the evolution of the other climatic parameters, conditioning the structure of the overall geographic landscape. Their quantitative parameters sets up the regional natural setting and differentiation of water resources, soil, vegetation and fauna, in the same time influencing the majority of human activities’ aspects, through the generated impact over the agriculture, transportation, construction, for tourism etc. Especially, through the evolution of the related climatic parameters (production type, quantity, duration, frequency, intensity and their spatial and temporal fluctuations, the pluviometric extremes set out the maxim manifestation of the energy gap of the hydroclimatic hazards/risks which induce unfavourable or even damaging conditions for the human activities’ progress. Hence, the production of atmospheric precipitation surpluses conditions the triggering, or reactivation of some intense erosion processes, landslides, and last but not least, floods. Just as dangerous are the adverse amounts of precipitation or their absence on longer periods, determining the appearance of droughts, aridity phenomena, which if associated with the sharp anthropic pressure over the environment, favours the expansion of desertification, with the whole process of the arising negative effects. In this context, this paper aims to perform the diagnosis of atmospheric precipitation condition in Baia Mare urban area, through its quantitative component, in multiannual condition (1971-2007, underlining through the results of the analyzed climatic data and their interpretation, the main characteristics that define it. The data bank from Baia Mare station from the National Meteorological Administration network, representative for the chosen study area, was used. Baia

  6. Electrostatic Precipitation of Dust in the Martian Atmosphere: Implications for the Utilization of Resources During Future Manned Exploration Missions

    Science.gov (United States)

    Calle, Carlos I.; Clements, Judson S.; Thompson, Samuel M.; Cox, Nathan D.; Hogue, Michael D.; Johansen, Michael R.; Williams, Blakeley S.

    2011-01-01

    Future human missions to Mars will require the utilization of local resources for oxygen, fuel. and water. The In Situ Resource Utilization (ISRU) project is an active research endeavor at NASA to develop technologies that can enable cost effective ways to live off the land. The extraction of oxygen from the Martian atmosphere. composed primarily of carbon dioxide, is one of the most important goals of the Mars ISRU project. The main obstacle is the relatively large amount of dust present in the Martian atmosphere. This dust must be efficiently removed from atmospheric gas intakes for ISRU processing chambers. A common technique to achieve this removal on earth is by electrostatic precipitation, where large electrostatic fields are established in a localized region to precipitate and collect previously charged dust particles. This technique is difficult to adapt to the Martian environment, with an atmospheric pressure of about one-hundredth of the terrestrial atmosphere. At these low pressures. the corona discharges required to implant an electrostatic charge to the particles to be collected is extremely difficult to sustain and the corona easily becomes biopolar. which is unsuitable for particle charging. In this paper, we report on our successful efforts to establish a stable corona under Martian simulated conditions. We also present results on dust collecting efficiencies with an electrostatic precipitator prototype that could be effectively used on a future mission to the red planet

  7. Response in atmospheric circulation and sources of Greenland precipitation to glacial boundary conditions

    DEFF Research Database (Denmark)

    Langen, Peter Lang; Vinther, Bo Møllesøe

    2009-01-01

    The response in northern hemisphere atmospheric circulation and the resulting changes in moisture sources for Greenland precipitation to glacial boundary conditions are studied in NCAR's CCM3 atmospheric general circulation model fitted with a moisture tracking functionality. We employ both...... seasonality, condensation temperatures and source temperatures are assessed. Udgivelsesdato: June 2009...

  8. CCN and IN Effects on Cloud Properties and Precipitation - Case Studies from CalWater 2011

    Science.gov (United States)

    Fan, J.; Leung, L.; Comstock, J. M.; Tomlinson, J. M.

    2011-12-01

    Aerosols in the atmosphere can serve as cloud condensation nuclei (CCN) and ice nuclei (IN) to modify cloud microphysical processes, which could potentially change the location, intensity, and type of precipitation. Dust aerosols are often observed over California in the Sierra Nevada Mountains in winter/spring, associated with long-range transport from Asia. Although anthropogenic pollution has been postulated to contribute to reduction of precipitation in the Sierra Nevada Mountains, the effects of dust aerosols on the winter clouds and precipitation has not been examined in detail particularly with model simulations. We incorporate recent progress in ice nucleation parameterizations to link dust with ice crystal formation in a spectral-bin cloud microphysical model coupled with WRF, to exclusively look into how dust can possibly affect cloud properties and precipitation type and intensity. Simulations are carried out for two cases under different environmental conditions with atmospheric river (AR) and Sierra barrier jet (SBJ) from the CalWater 2011 field campaign. It is shown that increasing IN concentrations or adding a dust layer at 4-6 km as IN enhances surface rain and snow due to enhanced production of ice and snow in clouds. However, increasing CCN suppresses surface rain and snow, and significantly redistributes surface precipitation upwind and downwind of the mountains, with important implication to improving our understanding of the impacts of aerosols on orographic precipitation and water supply in the region.

  9. Future changes in precipitation intensity over the Arctic projected by a global atmospheric model with a 60-km grid size

    Science.gov (United States)

    Kusunoki, Shoji; Mizuta, Ryo; Hosaka, Masahiro

    2015-09-01

    Future changes in precipitation intensity over the Arctic were calculated based on three-member ensemble simulations using a global atmospheric model with a high horizontal resolution (60-km grid) for the period 1872-2099 (228 years). During 1872-2005, the model was forced with observed historical sea surface temperature (SST) data, while during 2006-2099, boundary SST data were estimated using the multi-model ensemble (MME) of the Coupled Model Intercomparison Project, Phase 3 (CMIP3) model, assuming the A1B emission scenario. The annual mean precipitation (PAVE), the simple daily precipitation intensity index (SDII), and the maximum 5-day precipitation total (R5d) averaged over the Arctic increased monotonically towards the end of the 21st century. Over the Arctic, the conversion rate from water vapor to precipitation per one degree temperature increase is larger for PAVE than for R5d, which is opposite to the tropics and mid-latitudes. The increases in PAVE, SDII, and R5d can be partly attributed to an increase in water vapor associated with increasing temperatures, and to an increase in the horizontal transport of water vapor from low to high latitudes associated with transient eddies.

  10. Tritium concentration analysis in atmospheric precipitation in Serbia.

    Science.gov (United States)

    Janković, Marija M; Janković, Bojan Ž; Todorović, Dragana J; Ignjatović, Ljubiša M

    2012-01-01

    Tritium activity concentration were monitored in monthly precipitation at five locations in Serbia (Meteorological Station of Belgrade at Zeleno Brdo, Vinča Institute of Nuclear Sciences, Smederevska Palanka, Kraljevo and Niš) over 2005, using electrolytic enrichment and liquid scintillation counting. The obtained concentrations ranged from 3.36 to 127.02 TU. The activity values obtained in samples collected at Zeleno Brdo were lower or close to the minimum detectable activity (MDA), which has a value of 3.36 TU. Significantly higher tritium levels were obtained in samples collected in Vinča Institute of Nuclear Sciences compared with samples from the other investigated locations. Amount of precipitation were also recorded. A good linear correlation (r = 0.75) for Zeleno Brdo and VINS between their tritium activity was obtained. It was found that the value of the symmetrical index n (which indicates the magnitude of tritium content changes with time (months) through its second derivative) is the highest for Vinča Institute of Nuclear Sciences compared to other locations, which is in accordance with the fact that the highest concentrations of tritium were obtained in the samples from the cited place.

  11. Temperature-dependent daily variability of precipitable water in special sensor microwave/imager observations

    Science.gov (United States)

    Gutowski, William J.; Lindemulder, Elizabeth A.; Jovaag, Kari

    1995-01-01

    We use retrievals of atmospheric precipitable water from satellite microwave observations and analyses of near-surface temperature to examine the relationship between these two fields on daily and longer time scales. The retrieval technique producing the data used here is most effective over the open ocean, so the analysis focuses on the southern hemisphere's extratropics, which have an extensive ocean surface. For both the total and the eddy precipitable water fields, there is a close correspondence between local variations in the precipitable water and near-surface temperature. The correspondence appears particularly strong for synoptic and planetary scale transient eddies. More specifically, the results support a typical modeling assumption that transient eddy moisture fields are proportional to transient eddy temperature fields under the assumption f constant relative humidity.

  12. Atmospheric forcing in the occurrence of precipitation extremes in Iberia: comparison between the eastern and western sectors

    Science.gov (United States)

    Santos, J. A.; Mendes, A. R.

    2009-09-01

    The occurrence of severe precipitation deficits in the Iberian Peninsula has major socio-economic and environmental impacts. Several previous studies emphasized the leading role of the large-scale atmospheric flow in the occurrence of long periods with significant precipitation lacks. However, due to the high complexity of the Iberian orography, the sensitivity of the local rain-generating mechanisms to large-scale anomalies is remarkably different from region to region. A principal component analysis of the annual precipitation amounts recorded at a network of meteorological stations over the entire peninsula for the period 1961-1998 corroborates this heterogeneity. With particular significance is the contrast between the western and eastern sectors of the peninsula. In fact, taking into account earlier studies, precipitation in western Iberia is strongly related to large-scale atmospheric patterns over the North Atlantic. On the contrary, precipitation over eastern Iberia is much less associated with these large-scale forcing patterns, but much more linked to local/regional mechanisms. In order to test these hypotheses, eight meteorological stations, four in the western half (Porto, Bragança, Lisboa and Beja) and four in the eastern half (Barcelona, Valencia, Tortosa and Zaragoza) of Iberia are selected taking into account, firstly, the geographical location, and secondly the quality and homogeneity of the respective time series. A set of extremely wet/dry seasons was subsequently chosen for each weather station separately, taking into account the 90th percentile of the respective empirical distributions. The analysis of the different atmospheric fields (precipitation rates, convective precipitation, precipitable water, specific humidity, relative humidity, surface temperature, sea surface pressure, geopotential heights, wind components and vorticity at different isobaric levels) is undertaken by using data from the National Centers for Environmental Prediction

  13. INTRODUCTION: Anticipated changes in the global atmospheric water cycle

    Science.gov (United States)

    Allan, Richard P.; Liepert, Beate G.

    2010-06-01

    The atmospheric branch of the water cycle, although containing just a tiny fraction of the Earth's total water reserves, presents a crucial interface between the physical climate (such as large-scale rainfall patterns) and the ecosystems upon which human societies ultimately depend. Because of the central importance of water in the Earth system, the question of how the water cycle is changing, and how it may alter in future as a result of anthropogenic changes, present one of the greatest challenges of this century. The recent Intergovernmental Panel on Climate Change report on Climate Change and Water (Bates et al 2008) highlighted the increasingly strong evidence of change in the global water cycle and associated environmental consequences. It is of critical importance to climate prediction and adaptation strategies that key processes in the atmospheric water cycle are precisely understood and determined, from evaporation at the surface of the ocean, transport by the atmosphere, condensation as cloud and eventual precipitation, and run-off through rivers following interaction with the land surface, sub-surface, ice, snow and vegetation. The purpose of this special focus issue of Environmental Research Letters on anticipated changes in the global atmospheric water cycle is to consolidate the recent substantial advances in understanding past, present and future changes in the global water cycle through evidence built upon theoretical understanding, backed up by observations and borne out by climate model simulations. Thermodynamic rises in water vapour provide a central constraint, as discussed in a guest editorial by Bengtsson (2010). Theoretical implications of the Clausius-Clapeyron equation are presented by O'Gorman and Muller (2010) and with reference to a simple model (Sherwood 2010) while observed humidity changes confirm these anticipated responses at the land and ocean surface (Willett et al 2008). Rises in low-level moisture are thought to fuel an

  14. On the relationship between atmospheric rivers (ARs) and heavy precipitation over Japan

    Science.gov (United States)

    Yatagai, A. I.; Takayabu, Y. N.

    2016-12-01

    Atmospheric Rivers (ARs) are known as the water-vapor rich part of the broader warm conveyor belt. Recently, several AR detection algorithms are proposed, and structures and that of statistical features are studied globally. Since Japan is a humid country located in the north of the warm pool, ARs, middle tropospheric fast moisture transport, might be an important moisture source for heavy precipitation events in Japan. The purpose of this study is to develop an algorithm of detection of ARs over Japan, and to investigate the possible relationship between them and Japanese heavy precipitation events. Since high spatial correlations were obtained between ERA-Interim reanalysis PW and that of SSM/I (microwave images), we used daily PW (0.75 degree grid) for detection of the ARs. Using 36 years (1979-2014) ERA-Interim, we defined daily smoothed PW climatology. Then, we detected AR area with daily anomaly of PW exceeding 10 mm. However, we exclude round-shaped (caused by Typhoon etc) area and the case of moisture transport not exceeding 30N/30S. The daily AR events over Japan (123-146E, 24-46N) are; 1013 cases for winter (DJF), 1722 for spring (MAM), 2229 for summer (JJA) and 1870 for autumn (SON) during the 36 years. They successfully include Hiroshima disaster event (19 August 2014, Hirota et al., 2015) and Amami heavy precipitation event (20 October 2010). The summer with large AR appearance (1998 and 2010) had negative SOI (La Nina), and lowest appearance year (1992) was the year of El Nino (positively significant SOI). Totally, more ARs come over Japan area in La Nina years, however, the seasonal statistics between SOI and the number of AR is not straightforward, indicating that it is difficult to explain ARs over Japan with only tropical inter-annual variability. We use APHRO-JP (Kamiguchi et al., 2010) daily gridded (0.05 degree) precipitation (1979-2011) over Japanese land areas for comparison. Among the 32 years (1979-2011), we had 82 cases of heavy

  15. Retrieving moisture profiles from precipitable water measurements using a variational data assimilation approach

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.R.; Zou, X.; Kuo, Y.H. [National Center for Atmospheric Research, Boulder, CO (United States)

    1996-04-01

    Atmospheric moisture distribution is directly related to the formation of clouds and precipitation and affects the atmospheric radiation and climate. Currently, several remote sensing systems can measure precipitable water (PW) with fairly high accuracy. As part of the development of an Integrated Data Assimilation and Sounding System in support of the Atmospheric Radiation Measurement Program, retrieving the 3-D water vapor fields from PW measurements is an important problem. A new four dimensional variational (4DVAR) data assimilation system based on the Penn State/National Center for Atmospheric Research (NCAR) mesoscale model (MM5) has been developed by Zou et al. (1995) with the adjoint technique. In this study, we used this 4DVAR system to retrieve the moisture profiles. Because we do not have a set of real observed PW measurements now, the special soundings collected during the Severe Environmental Storm and Mesoscale Experiment (SESAME) in 1979 were used to simulate a set of PW measurements, which were then assimilated into the 4DVAR system. The accuracy of the derived water vapor fields was assessed by direct comparison with the detailed specific humidity soundings. The impact of PW assimilation on precipitation forecast was examined by conducting a series of model forecast experiments started from the different initial conditions with or without data assimilation.

  16. Application of MAGIC to Lake Redó (Central Pyrenees: an assessment of the effects of possible climate driven changes in atmospheric precipitation, base cation deposition, and weathering rates on lake water chemistry

    Directory of Open Access Journals (Sweden)

    Marc VENTURA

    2004-02-01

    Full Text Available The process-oriented catchment-scale model MAGIC was used to simulate water chemistry at Lake Redó, a high mountain lake in the Central Pyrenees, Spain. Data on lakewater and atmospheric deposition chemistry for the period 1984-1998 were used to calibrate the model, which was then used to reconstruct past and to provide forecasts for three hypothetical future scenarios of deposition. Forecast scenarios considered several combinations of changes in S and N deposition due to abatement strategies, and in base cation deposition due to climate-induced changes in air-mass trajectories from northern Africa. Scenario 1 assumed constant deposition of base cations at the present level plus the expected decrease in S and N deposition resulting from reduced emissions; scenario 2 (best case assumed an increase in base cation deposition plus the same decrease in S and N deposition as in scenario 1; scenario 3 (worst case assumed a decrease in base cation deposition plus no decrease in S and N deposition. The hindcast indicated that during the past 140-year period changes in lake water chemistry have been significant for a remote mountain catchment, although no substantial acidification has occurred. In this regard Lake Redó can be described as a "non-sensitive lake" maintaining a reference condition. The forecasts indicated changes that do not affect this status, but the trends, even if slight, were different between scenarios. A slight decline in the surface water ANC is predicted by Scenario 3. The N budget indicates an unusually low retention in the catchment, which may result in enhanced sensitivity to further increased N deposition. Some of the discrepancy between modelled and measured Ca2+ in lake water during 1984-98 could be explained by changes in rainfall amounts and by increased weathering rates due to increases in air temperature.

  17. Investigating the Impact of Microphysical Processes on Storm-Total Precipitation During Atmospheric River Events in Northern California

    Science.gov (United States)

    Wilson, A. M.; Ralph, F. M.

    2016-12-01

    Atmospheric Rivers (ARs) are often associated with heavy rain and flooding, but also provide a significant amount of the annual precipitation input to watersheds on the U.S. West Coast. Understanding the physical processes occurring during these events are key to improving existing forecasts at temporal scales useful for water resource management and planning, as well as for hazard mitigation. This study focuses on elucidating the impact of microphysical processes on storm total precipitation at two Atmospheric River Observatory sites, one at the coast (Bodega Bay, CA - BBY) and the other in the nearby coastal mountains (Cazadero, CA - CZC) that are well-sited and equipped (wind profiler and GPS receiver at BBY; S-band precipitation profiler at CZC) to observe the interaction of ARs with the terrain and the resulting orographic uplift of incoming water vapor. We investigate the vertical structure of precipitation with reflectivity profiles analyzed using the algorithm described in White et al. 2003 to diagnose convective, hybrid, bright band, or non-bright band rain types at CZC. This is done using classifications at the half-hourly scale for 104 atmospheric river events during the cool seasons (November - March) within the period 2004-2016. Events with high (> 1250 cm m/s) storm total upslope water vapor flux at BBY or high (> 160 mm) storm total precipitation at CZC that deviate widely from the linear relationship found using nearly 100 AR events in Ralph et al. 2013 frequently include >20% of storm total precipitation associated with convective vertical profiles and >30% of storm total precipitation associated with profiles classified as hybrid. Hybrid rain, combining a bright band with lower altitude vertical profile behavior corresponding with non-bright band rain (increases in reflectivity and velocity towards the surface), suggests evidence of the seeder-feeder mechanism. Surface microphysical properties are analyzed using impact disdrometer observations at

  18. Protamine precipitation of two reovirus particle types from polluted waters.

    OpenAIRE

    Adams, D J; Ridinger, D N; Spendlove, R S; Barnett, B B

    1982-01-01

    Two forms of virus particle are released from reovirus-infected cell cultures, infectious reovirus and potentially infectious reovirus (PIV). PIV particle forms have a complete outer coat and are not infectious until the outer coat is altered or removed. The PIV concentration in polluted waters, however, has not been determined. Protamine sulfate precipitation, using 0.25% fetal bovine serum and 0.005% protamine sulfate for the first precipitation of the sample and 0.0025% for the second, was...

  19. The role of the subtropical North Atlantic water cycle in recent US extreme precipitation events

    Science.gov (United States)

    Li, Laifang; Schmitt, Raymond W.; Ummenhofer, Caroline C.

    2018-02-01

    The role of the oceanic water cycle in the record-breaking 2015 warm-season precipitation in the US is analyzed. The extreme precipitation started in the Southern US in the spring and propagated northward to the Midwest and the Great Lakes in the summer of 2015. This seasonal evolution of precipitation anomalies represents a typical mode of variability of US warm-season precipitation. Analysis of the atmospheric moisture flux suggests that such a rainfall mode is associated with moisture export from the subtropical North Atlantic. In the spring, excessive precipitation in the Southern US is attributable to increased moisture flux from the northwestern portion of the subtropical North Atlantic. The North Atlantic moisture flux interacts with local soil moisture which enables the US Midwest to draw more moisture from the Gulf of Mexico in the summer. Further analysis shows that the relationship between the rainfall mode and the North Atlantic water cycle has become more significant in recent decades, indicating an increased likelihood of extremes like the 2015 case. Indeed, two record-high warm-season precipitation events, the 1993 and 2008 cases, both occurred in the more recent decades of the 66 year analysis period. The export of water from the North Atlantic leaves a marked surface salinity signature. The salinity signature appeared in the spring preceding all three extreme precipitation events analyzed in this study, i.e. a saltier-than-normal subtropical North Atlantic in spring followed by extreme Midwest precipitation in summer. Compared to the various sea surface temperature anomaly patterns among the 1993, 2008, and 2015 cases, the spatial distribution of salinity anomalies was much more consistent during these extreme flood years. Thus, our study suggests that preseason salinity patterns can be used for improved seasonal prediction of extreme precipitation in the Midwest.

  20. Tagging Water Sources in Atmospheric Models

    Science.gov (United States)

    Bosilovich, M.

    2003-01-01

    Tagging of water sources in atmospheric models allows for quantitative diagnostics of how water is transported from its source region to its sink region. In this presentation, we review how this methodology is applied to global atmospheric models. We will present several applications of the methodology. In one example, the regional sources of water for the North American Monsoon system are evaluated by tagging the surface evaporation. In another example, the tagged water is used to quantify the global water cycling rate and residence time. We will also discuss the need for more research and the importance of these diagnostics in water cycle studies.

  1. Surface air pollution with oxidized tritium during its momentary fallout with atmospheric precipitations

    International Nuclear Information System (INIS)

    Vorontsov, A.I.; Koloskov, I.A.; Nekozyrev, A.F.; Pastukhov, B.V.

    1976-01-01

    Regularities of the behaviour of tritium fallen out to the surface of the Earth as a result of peaceful thermonuclear explosions and the operation of atomic power plants were studied. With this purpose in view determined was the velocity of the decnatural ontamination of the soil-vegetation cover contaminated with tritium oxide due to evapouration, in connection with the density of the area contamination and the tritium content in the near-ground layer of iar. The study was carried out by modelling a single fallout of tritium oxide with atmospheric precipita--tions in different seasons of the year. Fallouts were simulated by applying tritiated water to experimental plots located in the forest-and-steppe zone. It has been found out that the intensive evapouration of tritium occurs during the first day after the contamination. The content of oxidized tritium in the near-ground layer of air is determined by the density of the contamination of the upper layer of soil, depends on the size of the contaminated territory and meteorological conditions. A model of the moving out of oxidized tritium into the atmosphere is obtained after it has fallen out to the ground; this model quantitatively describes the process of its evapouration into the near-ground layer of air

  2. Changes in precipitation extremes projected by a 20-km mesh global atmospheric model

    Directory of Open Access Journals (Sweden)

    Akio Kitoh

    2016-03-01

    Full Text Available High-resolution modeling is necessary to project weather and climate extremes and their future changes under global warming. A global high-resolution atmospheric general circulation model with grid size about 20 km is able to reproduce climate fields as well as regional-scale phenomena such as monsoonal rainfall, tropical and extratropical cyclones, and heavy precipitation. This 20-km mesh model is applied to project future changes in weather and climate extremes at the end of the 21st century with four different spatial patterns in sea surface temperature (SST changes: one with the mean SST changes by the 28 models of the Coupled Model Intercomparison Project Phase 5 (CMIP5 under the Representative Concentration Pathways (RCP-8.5 scenario, and the other three obtained from a cluster analysis, in which tropical SST anomalies derived from the 28 CMIP5 models were grouped. Here we focus on future changes in regional precipitation and its extremes. Various precipitation indices averaged over the Twenty-two regional land domains are calculated. Heavy precipitation indices (maximum 5-day precipitation total and maximum 1-day precipitation total increase in all regional domains, even where mean precipitation decrease (Southern Africa, South Europe/Mediterranean, Central America. South Asia is the domain of the largest extreme precipitation increase. In some domains, different SST patterns result in large precipitation changes, possibly related to changes in large-scale circulations in the tropical Pacific.

  3. FLUORIDE REDUCTION FROM WATER BY PRECIPITATION WITH ...

    African Journals Online (AJOL)

    2013-12-31

    Dec 31, 2013 ... standards, which indicated that the consumption of high fluoride water for long periods causes health complications ... has been done with different salts of calcium and determination of optimal conditions of ... temperature T were measured, after that different amount of the same salt was added to each cup .

  4. The dependence of wintertime Mediterranean precipitation on the atmospheric circulation response to climate change

    Science.gov (United States)

    Zappa, Giuseppe; Hoskins, Brian; Shepherd, Ted

    2016-04-01

    Climate models indicate a future wintertime precipitation reduction in the Mediterranean region which may have large socio-economic impacts. However, there is large uncertainty in the amplitude of the projected precipitation reduction and this limits the possibility to inform effective adaptation planning. We analyse CMIP5 climate model output to quantify the role of atmospheric circulation in the precipitation change and the time of emergence of the Mediterranean precipitation response. It is found that a simple circulation index, i.e. the 850 hPa zonal wind (U850) in North Africa, well describes the year to year fluctuations in the area-averaged Mediterranean precipitation, with positive (i.e. westerly) U850 anomalies in North Africa being associated with positive precipitation anomalies. Under climate change, U850 in North Africa and the Mediterranean precipitation are both projected to decrease consistently with the relationship found in the inter-annual variability. This enables us to estimate that about 85% of the CMIP5 mean precipitation response and 80% of the variance in the inter-model spread are related to changes in the atmospheric circulation. In contrast, there is no significant correlation between the mean precipitation response and the global-mean surface warming across the models. We also find that the precipitation response to climate change might already emerge from internal variability by 2025 relative to 1960-1990 according to the climate models with a large circulation response. This implies that it might soon be possible to test model projections using observations. Finally, some of the mechanisms which are important for the Mediterranean circulation response in the CMIP5 models are discussed.

  5. Predicting Atmospheric Ionization and Excitation by Precipitating SEP and Solar Wind Protons Measured By MAVEN

    Science.gov (United States)

    Jolitz, Rebecca; Dong, Chuanfei; Lee, Christina; Lillis, Rob; Brain, David; Curry, Shannon; Halekas, Jasper; Bougher, Stephen W.; Jakosky, Bruce

    2017-10-01

    Precipitating energetic particles ionize and excite planetary atmospheres, increasing electron content and producing aurora. At Mars, the solar wind and solar energetic particles (SEPs) can precipitate directly into the atmosphere because solar wind protons can charge exchange to become neutral and pass the magnetosheath, and SEPs are sufficiently energetic to cross the magnetosheath unchanged. We will compare ionization and Lyman alpha emission rates for solar wind and SEP protons during nominal solar activity and a CME shock front impact event on May 16 2016. We will use the Atmospheric Scattering of Protons and Energetic Neutrals (ASPEN) model to compare excitation and ionization rates by SEPs and solar wind protons currently measured by the SWIA (Solar Wind Ion Analyzer) and SEP instruments aboard the MAVEN spacecraft. Results will help quantify how SEP and solar wind protons influence atmospheric energy deposition during solar minimum.

  6. Evaluating 20th Century precipitation characteristics between multi-scale atmospheric models with different land-atmosphere coupling

    Science.gov (United States)

    Phillips, M.; Denning, A. S.; Randall, D. A.; Branson, M.

    2016-12-01

    Multi-scale models of the atmosphere provide an opportunity to investigate processes that are unresolved by traditional Global Climate Models while at the same time remaining viable in terms of computational resources for climate-length time scales. The MMF represents a shift away from large horizontal grid spacing in traditional GCMs that leads to overabundant light precipitation and lack of heavy events, toward a model where precipitation intensity is allowed to vary over a much wider range of values. Resolving atmospheric motions on the scale of 4 km makes it possible to recover features of precipitation, such as intense downpours, that were previously only obtained by computationally expensive regional simulations. These heavy precipitation events may have little impact on large-scale moisture and energy budgets, but are outstanding in terms of interaction with the land surface and potential impact on human life. Three versions of the Community Earth System Model were used in this study; the standard CESM, the multi-scale `Super-Parameterized' CESM where large-scale parameterizations have been replaced with a 2D cloud-permitting model, and a multi-instance land version of the SP-CESM where each column of the 2D CRM is allowed to interact with an individual land unit. These simulations were carried out using prescribed Sea Surface Temperatures for the period from 1979-2006 with daily precipitation saved for all 28 years. Comparisons of the statistical properties of precipitation between model architectures and against observations from rain gauges were made, with specific focus on detection and evaluation of extreme precipitation events.

  7. Atmospheric Water-Cycle Regimes and Cloud Regimes

    Science.gov (United States)

    Wong, S.; Fetzer, E. J.; L'Ecuyer, T. S.

    2013-12-01

    The relationship between the atmospheric water vapor budget and cloud properties is investigated by collocated reanalysis fields from Modern Era Retrospective-analysis for Research and Applications (MERRA) and the observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument. Intensities of surface water exchange (precipitation minus evaporation) are analyzed in the space of 'dynamical regimes', which are defined by combination of large-scale water vapor advection and convergence calculated from the MERRA. The atmospheric water vapor sinks associated with mid-latitude storm systems and precipitation in the west coast of United States are mainly driven by the large-scale dynamical advection, while those associated with tropical deep convection and summertime monsoons are mainly driven by water vapor convergence. Subtropical subsidence area over the eastern ocean basins is dominated by strong water vapor divergence. These dynamical regimes are then connected to the collocated MODIS cloud top pressure and cloud optical thickness. Probability density distributions of these MODIS cloud properties associated with each dynamical regime will be presented.

  8. Ocean-Atmosphere Coupled Model Simulations of Precipitation in the Central Andes

    Science.gov (United States)

    Nicholls, Stephen D.; Mohr, Karen I.

    2015-01-01

    The meridional extent and complex orography of the South American continent contributes to a wide diversity of climate regimes ranging from hyper-arid deserts to tropical rainforests to sub-polar highland regions. In addition, South American meteorology and climate are also made further complicated by ENSO, a powerful coupled ocean-atmosphere phenomenon. Modelling studies in this region have typically resorted to either atmospheric mesoscale or atmosphere-ocean coupled global climate models. The latter offers full physics and high spatial resolution, but it is computationally inefficient typically lack an interactive ocean, whereas the former offers high computational efficiency and ocean-atmosphere coupling, but it lacks adequate spatial and temporal resolution to adequate resolve the complex orography and explicitly simulate precipitation. Explicit simulation of precipitation is vital in the Central Andes where rainfall rates are light (0.5-5 mm hr-1), there is strong seasonality, and most precipitation is associated with weak mesoscale-organized convection. Recent increases in both computational power and model development have led to the advent of coupled ocean-atmosphere mesoscale models for both weather and climate study applications. These modelling systems, while computationally expensive, include two-way ocean-atmosphere coupling, high resolution, and explicit simulation of precipitation. In this study, we use the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST), a fully-coupled mesoscale atmosphere-ocean modeling system. Previous work has shown COAWST to reasonably simulate the entire 2003-2004 wet season (Dec-Feb) as validated against both satellite and model analysis data when ECMWF interim analysis data were used for boundary conditions on a 27-9-km grid configuration (Outer grid extent: 60.4S to 17.7N and 118.6W to 17.4W).

  9. Precipitable water: Its linear retrieval using leaps and bounds procedure and its global distribution from SEASAT SMMR data

    Science.gov (United States)

    Pandey, P. C.

    1982-01-01

    Eight subsets using two to five frequencies of the SEASAT scanning multichannel microwave radiometer are examined to determine their potential in the retrieval of atmospheric water vapor content. Analysis indicates that the information concerning the 18 and 21 GHz channels are optimum for water vapor retrieval. A comparison with radiosonde observations gave an rms accuracy of approximately 0.40 g sq cm. The rms accuracy of precipitable water using different subsets was within 10 percent. Global maps of precipitable water over oceans using two and five channel retrieval (average of two and five channel retrieval) are given. Study of these maps reveals the possibility of global moisture distribution associated with oceanic currents and large scale general circulation in the atmosphere. A stable feature of the large scale circulation is noticed. The precipitable water is maximum over the Bay of Bengal and in the North Pacific over the Kuroshio current and shows a general latitudinal pattern.

  10. All-sky homogeneity of precipitable water vapour over Paranal

    Science.gov (United States)

    Querel, Richard R.; Kerber, Florian

    2014-08-01

    A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer, manufactured by Radiometer Physics GmbH (RPG), is used to monitor sky conditions over ESO's Paranal observatory in support of VLT science operations. The unit measures several channels across the strong water vapour emission line at 183 GHz, necessary for resolving the low levels of precipitable water vapour (PWV) that are prevalent on Paranal (median ~2.4 mm). The instrument consists of a humidity profiler (183-191 GHz), a temperature profiler (51-58 GHz), and an infrared camera (~10 μm) for cloud detection. We present, for the first time, a statistical analysis of the homogeneity of all-sky PWV using 21 months of periodic (every 6 hours) all-sky scans from the radiometer. These data provide unique insight into the spatial and temporal variation of atmospheric conditions relevant for astronomical observations, particularly in the infrared. We find the PWV over Paranal to be remarkably homogeneous across the sky down to 27.5° elevation with a median variation of 0.32 mm (peak to valley) or 0.07 mm (rms). The homogeneity is a function of the absolute PWV but the relative variation is fairly constant at 10-15% (peak to valley) and 3% (rms). Such variations will not be a significant issue for analysis of astronomical data. Users at ESO can specify PWV - measured at zenith - as an ambient constraint in service mode to enable, for instance, very demanding observations in the infrared that can only be conducted during periods of very good atmospheric transmission and hence low PWV. We conclude that in general it will not be necessary to add another observing constraint for PWV homogeneity to ensure integrity of observations. For demanding observations requiring very low PWV, where the relative variation is higher, the optimum support could be provided by observing with the LHATPRO in the same line-of-sight simultaneously. Such a mode of operations has already been tested but will have to be

  11. Concentrations of tritium in atmospheric moisture and precipitation of Mt. Hakkoda

    International Nuclear Information System (INIS)

    Kimura, Hideki; Kon, Takezumi; Sasaki, Mamoru

    2000-01-01

    A large-scale spent nuclear fuel reprocessing plant in Japan is now under construction in Rokkasho Village, Aomori Prefecture. The 3 H will be one of the major radionuclides released from the plant. To grasp the behavior of 3 H in the environment in Aomori Prefecture, we surveyed 3 H concentrations in the atmospheric moisture and the precipitation samples at Mt. Hakkoda. Additional atmospheric moisture samples were collected at Rokkasho Village and Aomori City. The relatively high 3 H concentration in the atmospheric moisture and the precipitation samples at Mt. Hakkoda were observed from spring to summer. The 3 H concentrations in the precipitation were similar to those in the atmospheric moisture. The temporal variation patterns of 3 H concentrations in the atmospheric moisture were similar in relatively wide region that covers from Mt. Hakkoda to Aomori City and Rokkasho Village. The 3 H concentration in atmospheric moisture at the top of Mt. Hakkoda positively correlated with the ozone concentration. It suggested that 3 H originated from the stratosphere, and showed that ozone might be used as an indictor of background 3 H. (author)

  12. Land-total and Ocean-total Precipitation and Evaporation from a Community Atmosphere Model version 5 Perturbed Parameter Ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Covey, Curt [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lucas, Donald D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Trenberth, Kevin E. [National Center for Atmospheric Research, Boulder, CO (United States)

    2016-03-02

    This document presents the large scale water budget statistics of a perturbed input-parameter ensemble of atmospheric model runs. The model is Version 5.1.02 of the Community Atmosphere Model (CAM). These runs are the “C-Ensemble” described by Qian et al., “Parametric Sensitivity Analysis of Precipitation at Global and Local Scales in the Community Atmosphere Model CAM5” (Journal of Advances in Modeling the Earth System, 2015). As noted by Qian et al., the simulations are “AMIP type” with temperature and sea ice boundary conditions chosen to match surface observations for the five year period 2000-2004. There are 1100 ensemble members in addition to one run with default inputparameter values.

  13. DMSP SSMT/2 - Atmospheric Water Vapor Profiler

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SSM/T-2 sensor is a five channel, total power microwave radiometer with three channels situated symmetrically about the 183.31 GHz water vapor resonance line and...

  14. Tundra water budget and implications of precipitation underestimation

    Science.gov (United States)

    Liljedahl, Anna K.; Hinzman, Larry D.; Kane, Douglas L.; Oechel, Walter C.; Tweedie, Craig E.; Zona, Donatella

    2017-08-01

    Difficulties in obtaining accurate precipitation measurements have limited meaningful hydrologic assessment for over a century due to performance challenges of conventional snowfall and rainfall gauges in windy environments. Here, we compare snowfall observations and bias adjusted snowfall to end-of-winter snow accumulation measurements on the ground for 16 years (1999-2014) and assess the implication of precipitation underestimation on the water balance for a low-gradient tundra wetland near Utqiagvik (formerly Barrow), Alaska (2007-2009). In agreement with other studies, and not accounting for sublimation, conventional snowfall gauges captured 23-56% of end-of-winter snow accumulation. Once snowfall and rainfall are bias adjusted, long-term annual precipitation estimates more than double (from 123 to 274 mm), highlighting the risk of studies using conventional or unadjusted precipitation that dramatically under-represent water balance components. Applying conventional precipitation information to the water balance analysis produced consistent storage deficits (79 to 152 mm) that were all larger than the largest actual deficit (75 mm), which was observed in the unusually low rainfall summer of 2007. Year-to-year variability in adjusted rainfall (±33 mm) was larger than evapotranspiration (±13 mm). Measured interannual variability in partitioning of snow into runoff (29% in 2008 to 68% in 2009) in years with similar end-of-winter snow accumulation (180 and 164 mm, respectively) highlights the importance of the previous summer's rainfall (25 and 60 mm, respectively) on spring runoff production. Incorrect representation of precipitation can therefore have major implications for Arctic water budget descriptions that in turn can alter estimates of carbon and energy fluxes.

  15. Process Control for Precipitation Prevention in Space Water Recovery Systems

    Science.gov (United States)

    Sargusingh, Miriam; Callahan, Michael R.; Muirhead, Dean

    2015-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, rotary distillation systems have been actively pursued by NASA as one of the technologies for water recovery from wastewater primarily comprised of human urine. A specific area of interest is the prevention of the formation of solids that could clog fluid lines and damage rotating equipment. To mitigate the formation of solids, operational constraints are in place that limits such that the concentration of key precipitating ions in the wastewater brine are below the theoretical threshold. This control in effected by limiting the amount of water recovered such that the risk of reaching the precipitation threshold is within acceptable limits. The water recovery limit is based on an empirically derived worst case wastewater composition. During the batch process, water recovery is estimated by monitoring the throughput of the system. NASA Johnson Space Center is working on means of enhancing the process controls to increase water recovery. Options include more precise prediction of the precipitation threshold. To this end, JSC is developing a means of more accurately measuring the constituent of the brine and/or wastewater. Another means would be to more accurately monitor the throughput of the system. In spring of 2015, testing will be performed to test strategies for optimizing water recovery without increasing the risk of solids formation in the brine.

  16. Floride reduction from water by precipitation with Calcium Chloride ...

    African Journals Online (AJOL)

    ... reduction yield of fluoride, a study has been done on the influencing parameters (concentration, pH, temperature) to choose the best conditions. The remove of fluoride is favorable at low concentration of Ca(OH)2, at room temperature and normal acidity. Keywords: fluorine, defluoridation, drinkable water, precipitation ...

  17. Impact of Atmospheric Infrared Sounder (AIRS) Thermodynamic Profiles on Regional Precipitation Forecasting

    Science.gov (United States)

    Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.

    2010-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles in clear and cloudy regions with accuracy which approaches that of radiosondes. The purpose of this paper is to describe an approach to assimilate AIRS thermodynamic profile data into a regional configuration of the Advanced Research WRF (ARW) model using WRF-Var. Quality indicators are used to select only the highest quality temperature and moisture profiles for assimilation in clear and partly cloudy regions, and uncontaminated portions of retrievals above clouds in overcast regions. Separate error characteristics for land and water profiles are also used in the assimilation process. Assimilation results indicate that AIRS profiles produce an analysis closer to in situ observations than the background field. Forecasts from a 37-day case study period in the winter of 2007 show that AIRS profile data can lead to improvements in 6-h cumulative precipitation forecasts resulting from improved thermodynamic fields. Additionally, in a convective heavy rainfall event from February 2007, assimilation of AIRS profiles produces a more unstable boundary layer resulting in enhanced updrafts in the model. These updrafts produce a squall line and precipitation totals that more closely reflect ground-based observations than a no AIRS control forecast. The location of available high-quality AIRS profiles ahead of approaching storm systems is found to be of paramount importance to the amount of impact the observations will have on the resulting forecasts.

  18. Estimation of precipitable water over the Amazon Basin using GOES imagery

    Science.gov (United States)

    Callahan, John Andrew

    The Amazon Rainforest is the largest continuous rainforest on Earth. It holds a rich abundance of life containing approximately one-half of all existing plant and animal species and 20% of the world's fresh water. Climatologically, the Amazon Rainforest is a massive storehouse of carbon dioxide and water vapor and hosts hydrologic and energy cycles that influence regional and global patterns. However, this region has gone through vast land cover changes during the past several decades. Lack of conventional, in situ data sources prohibits detailed measurements to assess the climatological impact these changes may cause. This thesis applies a satellite-based, thermal infrared remote sensing algorithm to determine precipitable water in the Amazon Basin to test its applicability in the region and to measure the diurnal changes in water vapor. Imagery from the GOES geostationary satellite and estimated atmospheric conditions and radiance values derived from the NCEP/NCAR Reanalysis project were used as inputs to the Physical Split Window (PSW) technique. Retrievals of precipitable water were made every 3 hours throughout each day from 12Z to 24Z for the months of June and October, 1988 and 1995. These months correspond to when the atmosphere is not dominated by clouds during the rainy (wet) season or smoke and haze during the burning (dry) season. Monthly, daily, and diurnal aggregates of precipitable water Fields were analyzed spatially through seven zones located uniformly throughout the region. Monthly average precipitable water values were found to be 20mm to 25mm in the southeast and 45mm to 50mm in the northwest zones. Central and northwest zones showed little variation throughout the day with most areas peaking between 15Z and 21Z, representing early to late afternoon local time. Comparisons were made to nearby, coincident radiosonde observations with r ranging from 0.7 to 0.9 and MAE from 6mm to 12 mm.

  19. Characteristics of energetic electron precipitation into the earth's polar atmosphere and geomagnetic conditions

    Science.gov (United States)

    Makhmutov, V. S.; Bazilevskaya, G. A.; Krainev, M. B.

    A number of energetic electron precipitation events (EPEs) were observed in the Earth's polar atmosphere (Murmansk region, geographical coordinates 68.57 N, 33.03 E and Mirny, Antarctica, 66.34 S, 92.55 E) during the long-term cosmic ray balloon experiment from 1957 up to now. During geomagnetic storms significant X-ray fluxes caused by precipitating electrons at the top of the atmosphere sometimes penetrated to the atmospheric depth of 60 gcm-2. We show that (1) there is a quasi-11-year cycle in EPE occurrence shifted with respect to solar activity cycle, and (2) the yearly rate of EPE occurrence has an ascending trend during the period 1965-1999. The EPE characteristics evaluated from the balloon experiment are compared with the available data on geomagnetic activity and the possible relations between the features of EPE events and geomagnetic conditions are discussed.

  20. Calculation of Precipitable Water for Stratospheric Observatory for Infrared Astronomy Aircraft (SOFIA): Airplane in the Night Sky

    Science.gov (United States)

    Wen, Pey Chun; Busby, Christopher M.

    2011-01-01

    Stratospheric Observatory for Infrared Astronomy, or SOFIA, is the new generation airborne observatory station based at NASA s Dryden Aircraft Operations Facility, Palmdale, CA, to study the universe. Since the observatory detects infrared energy, water vapor is a concern in the atmosphere due to its known capacity to absorb infrared energy emitted by astronomical objects. Although SOFIA is hoping to fly above 99% of water vapor in the atmosphere it is still possible to affect astronomical observation. Water vapor is one of the toughest parameter to measure in the atmosphere, several atmosphere modeling are used to calculate water vapor loading. The water vapor loading, or Precipitable water, is being calculated by Matlab along the planned flight path. Over time, these results will help SOFIA to plan flights to regions of lower water vapor loading and hopefully improve the imagery collection of these astronomical features.

  1. Next-Generation Satellite Precipitation Products for Understanding Global and Regional Water Variability

    Science.gov (United States)

    Hou, Arthur Y.

    2011-01-01

    A major challenge in understanding the space-time variability of continental water fluxes is the lack of accurate precipitation estimates over complex terrains. While satellite precipitation observations can be used to complement ground-based data to obtain improved estimates, space-based and ground-based estimates come with their own sets of uncertainties, which must be understood and characterized. Quantitative estimation of uncertainties in these products also provides a necessary foundation for merging satellite and ground-based precipitation measurements within a rigorous statistical framework. Global Precipitation Measurement (GPM) is an international satellite mission that will provide next-generation global precipitation data products for research and applications. It consists of a constellation of microwave sensors provided by NASA, JAXA, CNES, ISRO, EUMETSAT, DOD, NOAA, NPP, and JPSS. At the heart of the mission is the GPM Core Observatory provided by NASA and JAXA to be launched in 2013. The GPM Core, which will carry the first space-borne dual-frequency radar and a state-of-the-art multi-frequency radiometer, is designed to set new reference standards for precipitation measurements from space, which can then be used to unify and refine precipitation retrievals from all constellation sensors. The next-generation constellation-based satellite precipitation estimates will be characterized by intercalibrated radiometric measurements and physical-based retrievals using a common observation-derived hydrometeor database. For pre-launch algorithm development and post-launch product evaluation, NASA supports an extensive ground validation (GV) program in cooperation with domestic and international partners to improve (1) physics of remote-sensing algorithms through a series of focused field campaigns, (2) characterization of uncertainties in satellite and ground-based precipitation products over selected GV testbeds, and (3) modeling of atmospheric processes and

  2. Simulation of Water Sources and Precipitation Recycling for the MacKenzie, Mississippi and Amazon River Basins

    Science.gov (United States)

    Bosilovich, Michael G.; Chern, Jiun-Dar

    2005-01-01

    An atmospheric general circulation model simulation for 1948-1997 of the water budgets for the MacKenzie, Mississippi and Amazon River basins is presented. In addition to the water budget, we include passive tracers to identify the geographic sources of water for the basins, and the analysis focuses on the mechanisms contributing to precipitation recycling in each basin. While each basin s precipitation recycling has a strong dependency on evaporation during the mean annual cycle, the interannual variability of the recycling shows important relationships with the atmospheric circulation. The MacKenzie River basin has only a weak interannual dependency on evaporation, where the variations in zonal moisture transport from the Pacific Ocean can affect the basin water cycle. On the other hand, the Mississippi River basin has strong interannual dependencies on evaporation. While the precipitation recycling weakens with increased low level jet intensity, the evaporation variations exert stronger influence in providing water vapor for convective precipitation at the convective cloud base. High precipitation recycling is also found to be partly connected to warm SSTs in the tropical Pacific Ocean. The Amazon River basin evaporation exhibits small interannual variations, so that the interannual variations of precipitation recycling are related to atmospheric moisture transport from the tropical south Atlantic Ocean. Increasing SSTs over the 50-year period are causing increased easterly transport across the basin. As moisture transport increases, the Amazon precipitation recycling decreases (without real time varying vegetation changes). In addition, precipitation recycling from a bulk diagnostic method is compared to the passive tracer method used in the analysis. While the mean values are different, the interannual variations are comparable between each method. The methods also exhibit similar relationships to the terms of the basin scale water budgets.

  3. Precipitation and stream water stable isotope data from the Marys River, Oregon in water year 2015.

    Data.gov (United States)

    U.S. Environmental Protection Agency — Water stable isotope data collected from a range of streams throughout the Marys River basin in water year 2015, and precipitation data collected within the basin at...

  4. Precipitation and circulation response to warming shaped by radiative changes of clouds and water vapor

    Science.gov (United States)

    Voigt, Aiko; Shaw, Tiffany

    2015-04-01

    The atmospheric circulation controls how global warming will be expressed regionally, in particular by locally altering the hydrological cycle through changes in moisture transport. While climate models robustly project an increase of global-mean precipitation at a rate of 1-3% per degree warming, there is much less consensus on how the global-mean increase will be distributed regionally, and confidence in long-term projections of regional precipitation changes remains much lower than for temperature. Here, two CMIP5 aquaplanet models, MPI-ESM and IPSL-CM5A, and their response to a uniform 4K increase of sea-surface temperatures are compared to study how radiative changes of clouds and water vapor influence the regional response of precipitation and the circulation to global warming, and to investigate to which extent uncertainty in clouds and water vapor lead to uncertainty in the precipitation and circulation response. Using the cloud and water-vapor locking method it is shown that cloud-radiative changes dominate the response of deep-tropical precipitation and the strength of the Hadley circulation, and lead to disagreement between the two models. In MPI-ESM changes in tropical ice clouds cause a narrowing of the inter-tropical convergence zone (ITCZ) and a strengthening of the Hadley circulation, whereas they lead to a widening of the ITCZ and a weakening of the Hadley circulation in IPSL-CM5A. Radiative changes of clouds and water vapor also impact the subtropics and extratropics. Cloud changes are found to amplify the poleward expansion of the tropical belt and the poleward shift of the extratropical jet, consistent with the fact that they stabilize the tropical atmosphere. In contrast, water vapor changes destabilize the tropical atmosphere and contract the tropical belt and jet towards the equator. Both models show the opposing impacts of cloud and water vapor changes on the jet shift, but the degree of compensation between cloud and water-vapor changes is

  5. Precipitable water comparisons over Ghana using PPP Techniques ...

    African Journals Online (AJOL)

    Atmospheric Water vapor is an important greenhouse gas and contributes greatly in maintaining the Earth's energy balance. This critical meteorological parameter is not being sensed by any of the 22 synoptic weather stations in Ghana. This study presents a highly precise tool for water vapor sensing based on the concept ...

  6. Atmospheric synoptic conditions of snow precipitation in East Antarctica using ice core and reanalysis data

    Science.gov (United States)

    Scarchilli, Claudio; Ciardini, Virginia; Bonazza, Mattia; Frezzotti, Massimo; Stenni, Barbara

    2014-05-01

    In the framework of the International Partnerships in Ice Core Sciences (IPCS) initiatives the GV7 site (70°41' S - 158°51' E) in East Antarctica was chosen as the new drilling site for the Italian contribution to the understanding of the climatic variability in the last 2000 years (IPICS 2k Array). Water stable isotopes and snow accumulation (SMB) values from a shallow firn core, obtained at GV7 during the 2001-2002 International Trans-Antarctic Scientific Expedition (ITASE) traverse, are analyzed and compared with different meteorological model output in order to characterize the atmospheric synoptic conditions driving precipitation events at the site. On annual basis, ECMWF +24h forecasted snowfalls (SF) seem to well reproduce GV7 SMB values trend for the period from 1980 to 2005. Calculated air mass back-trajectories show that Eastern Indian - Western Pacific oceans represent the main moisture path toward the site during autumn - winter season. Analysis of the ECMWF 500 hPa Geopotential height field (GP500) anomalies shows that atmospheric blocking events developing between 130° E and 150° W at high latitudes drive the GV7 SMB by blocking zonal flow and conveying warm and moist deep air masses from ocean into the continental interior. On inter-annual basis, The SF variability over GV7 region follows the temporal oscillation of the third CEOF mode (CEOF3 10% of the total explained variance) of a combined complex empirical orthogonal function (CEOF) performed over GP500 and SF field. The CEOF3 highlights an oscillating feature, with wavenumber 2, in GP500 field over the Western Pacific-Eastern Indian Oceans and propagating westward. The pattern is deeply correlated with the Indian Dipole Oscillation and ENSO and their associated quasi-stationary Rossby waves propagating from the lower toward the higher latitudes.

  7. Determination of trifluoroacetic acid in 1996--1997 precipitation and surface waters in California and Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Wujcik, C.E.; Cahill, T.M.; Seiber, J.N. [Univ. of Nevada, Reno, NV (United States)

    1999-05-15

    The atmospheric degradation of three chlorofluorocarbon (CFC) replacement compounds, namely HFC-134a, HCFC-123, and HCFC-124, results in the formation of trifluoroacetic acid (TFA). Concentrations of TFA were determined in precipitation and surface water samples collected in California and Nevada during 1996--1997. Terminal lake systems were found to have concentrations 4--13 times higher than their calculated yearly inputs, providing evidence for accumulation. The results support dry deposition as the primary contributor of TFA to surface waters in arid and semiarid environments. Precipitation samples obtained from three different locations contained 20.7--1530 ng/L with significantly higher concentrations in fogwater over rainwater. Elevated levels of TFA were observed for rainwater collected in Nevada over those collected in California, indicating continual uptake and concentration as clouds move from a semiarid to arid climate. Thus several mechanisms exist, including evaporative concentration, vapor-liquid phase partitioning, lowered washout volumes of atmospheric deposition water, and dry deposition, which may lead to elevated concentrations of TFA in atmospheric and surface waters above levels expected from usual rainfall washout.

  8. Seasonal-to-Interannual Precipitation Variability and Predictability in a Coupled Land-Atmosphere System

    Science.gov (United States)

    Koster, Randal D.; Suarez, M. J.; Heiser, M.

    1998-01-01

    In an earlier GCM study, we showed that interactive land surface processes generally contribute more to continental precipitation variance than do variable sea surface temperatures (SSTs). A new study extends this result through an analysis of 16-member ensembles of multi-decade GCM simulations. We can now show that in many regions, although land processes determine the amplitude of the interannual precipitation anomalies, variable SSTs nevertheless control their timing. The GCM data can be processed into indices that describe geographical variations in (1) the potential for seasonal-to-interannual prediction, and (2) the extent to which the predictability relies on the proper representation of land-atmosphere feedback.

  9. Precipitation of salt in saline water drop on superhydrophobic surface

    Science.gov (United States)

    Shin, Bongsu; Moon, Myoung-Woon; Kim, Ho-Young

    2012-11-01

    In the membrane distillation process, water vapor of heated, pressurized saline water is transported across the membrane to be collected as pure water. While the water-repellency of the membrane surface has been considered an important parameter affecting the distillation efficiency, the resistance of the membrane to the contamination due to salt has gathered little scientific interest thus far. Here we experimentally investigate the precipitation of salt in sessile saline water drops, to find drastic differences in salt crystallization behavior depending on the water-repellency of solid surface. On a moderately hydrophobic surface with a static contact angle with water being about 150 degrees, salt crystals are aligned and stacked along the initial contact line, forming an interesting structure resembling an igloo. On a superhydrophobic surface with about 164 degrees of static contact angle with water, salt crystallizes only at the center of the drop-solid contact area, forming a pebble-shaped structure. We explain this difference by comparing the evaporation modes (constant contact radius versus constant contact angle) of the sessile drops on those surfaces. We also visualize the liquid flow within drops undergoing evaporation and precipitation at the same time using PIV.

  10. Thirteen years of integrated precipitable water derived by GPS at Mario Zucchelli Station, Antarctica

    Directory of Open Access Journals (Sweden)

    Pierguido Sarti

    2013-06-01

    Full Text Available Since 1998, the Italian Antarctic Programme has been funding space geodetic activities based on the use of episodic and permanent global positioning system (GPS observations. As well as their exploitation in geodynamics, these data can be used to sense the atmosphere and to retrieve and monitor its water vapor content and variations. The surface pressure p and temperature Ts at the GPS tracking sites are necessary to compute the zenith hydrostatic delay (ZHD, and consequently, the precipitable water. At sites where no surface information is recorded, the p and Ts values can be retrieved from, e.g., global numerical weather prediction models. Alternatively, the site-specific ZHD values can be computed by interpolation of the ZHD values provided in a grid model (2.5° × 2.0°. We have processed the data series of the permanent GPS site TNB1 (Mario Zucchelli Station, Antarctica from 1998 to 2010, with the purpose of comparing the use of grid ZHD values as an alternative to the use of real surface records. With these approaches, we estimate almost 7 × 104 hourly values of precipitable water over 13 years, and we find discrepancies that vary between 1.8 (±0.2 mm in summer and 3.3 (±0.5 mm in winter. In addition, the discrepancies of the two solutions show a clear seasonal dependency. Radiosounding measurements were used to derive an independent series of precipitable water. These agree better with the GPS precipitable water derived from real surface data. However, the GPS precipitable water time series is dry biased, as it is ca. 77% of the total moisture measured by the radiosoundings. Both the GPS and radiosounding observations are processed through the most up-to-date strategies, to reduce known systematic errors.

  11. Comparison Between Water Level and Precipitation in Rio Negro Basin

    Science.gov (United States)

    Figliuolo, G. C.; Santos Da Silva, J.; Calmant, S.; Seyler, F.; Correia, F.; Oliveira, R. J.

    2013-12-01

    The Amazon Basin holds a lot of difficulties for providing data that enable regional researching works, because of its large extension and for having areas, whose access is very difficult. Remote sensing data presents an excellent way for monitoring the Amazon Basin and collecting data for researches. This current study aims matching radar altimetry data from the JASON-2, with the rainfall data from the TRMM satellite in order to analyze the relation between the water level and the precipitation in two different points along the Rio Negro Basin. After data analysis, it was possible noting a difference on the responding process for both regions. Whilst at the NEGRO_089_03 station (located in the city of São Gabriel da Cachoeira) the graphic of precipitation and water level were very similar, in NEGRO_063 station (located in the city of Manaus) the graphic showed a two month discrepancy due to the difference of the river's bottom size in both regions, at NEGRO_089_03's area for having a smaller river and the water level rises faster, whereas in NEGRO_063 the water level takes about two months to respond to precipitation.

  12. Q Conversion Factor Models for Estimating Precipitable Water Vapor for Turkey

    Science.gov (United States)

    Deniz, Ilke; Mekik, Cetin; Gurbuz, Gokhan

    2015-04-01

    precipitable water vapor is the conversion factor Q which is shown in Emardson and Derks' studies and also Jade and Vijayan's. Developing a regional model using either Tm-Ts equation or the conversion factor Q will provide a basis for GNSS Meteorology in Turkey which depends on the analysis of the radiosonde profile data. For this purpose, the radiosonde profiles from Istanbul, Ankara, Diyarbaki r, Samsun, Erzurum, Izmir, Isparta and Adana stations are analyzed with the radiosonde analysis algorithm in the context of the 'The Estimation of Atmospheric Water Vapour with GPS' Project which is funded by the Scientific and Technological Research Council of Turkey (TUBITAK). The Project is also in the COST Action ES1206: Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate (GNSS4SWEC). In this study, regional models using the conversion factor Q are used for the determination of precipitable water vapor, and applied to the GNSS derived wet tropospheric zenith delays. Henceforth, the estimated precipitable water vapor and the precipitable water vapor obtained from the radiosonde station are compared. The average of the differences between RS and models for Istanbul and Ankara stations are obtained as 2.0±1.6 mm, 1.6±1.6 mm, respectively.

  13. Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes

    International Nuclear Information System (INIS)

    Lenderink, Geert; Van Meijgaard, Erik

    2010-01-01

    Relations between hourly precipitation extremes and atmospheric temperature and moisture derived for the present-day climate are studied with the aim of understanding the behavior (and the uncertainty in predictions) of hourly precipitation extremes in a changing climate. A dependency of hourly precipitation extremes on the daily mean 2 m temperature of approximately two times the Clausius-Clapeyron (CC) relation is found for temperatures above 10 deg. C. This is a robust relation obtained in four observational records across western Europe. A dependency following the CC relation can be explained by the observed increase in atmospheric (absolute) humidity with temperature, whereas the enhanced dependency (compared to the CC relation) appears to be caused by dynamical feedbacks owing to excess latent heat release in extreme showers. Integrations with the KNMI regional climate model RACMO2 at 25 km grid spacing show that changes in hourly precipitation extremes may indeed considerably exceed the prediction from the CC relation. The results suggests that increases of + 70% or even more are possible by the end of this century. However, a different regional model (CLM operated at ETHZ) predicts much smaller increases; this is probably caused by a too strong sensitivity of this model to a decrease in relative humidity.

  14. Unusual Atmospheric Processes: Implications for the Unusual Isotope Effect in Precipitation

    Science.gov (United States)

    Hurst, S.; Krishnamurthy, R. V.

    2016-12-01

    Several samples associated in particular with thunderstorms collected from Kalamazoo, Michigan reveal oxygen and hydrogen isotope ratios that are not compatible with known thermodynamic fractionation or the so-called Raleigh Distillation Effect. Data gathered from April 2014 to February 2016 can be separated into two categories: (1) samples with expected isotopic values based on previous work, (2) samples with unusually high δ18O and δ2H values. Values as high as 42‰ and 25‰ for δ2H and δ18O respectively are obtained. Recent studies suggest that precipitation produced by deep convection can produce moderately enriched oxygen isotopic values, although no hydrogen values for those precipitations are available. Moreover, no values have been recorded that are as high as some of those presented here. The unusual isotope values cannot be attributed to air mass contributions. It is argued that changes in atmospheric chemistry, most likely induced by lightning associated with thunderstorms are responsible. This is likely since temperatures associated with lightning can reach 40000°K. Several studies have indicated that lightning can significantly impact atmospheric chemistry producing, among other species, ozone and NOx. Atmospheric ozone has enriched isotopic values and likely contributes to enriched Oxygen-18 seen in precipitation. An explanation for enrichment in hydrogen is somewhat elusive, but a likely candidate is ion molecular reactions produced by extremely high temperatures in the corona of lightning.

  15. Carbonaceous particles in the atmosphere and precipitation of the Nam Co region, central Tibet.

    Science.gov (United States)

    Ming, Jing; Xiao, Cunde; Sun, Junying; Kang, Shichang; Bonasoni, Paolo

    2010-01-01

    A continuous air and precipitation sampling for carbonaceous particles was conducted in a field observatory beside Nam Co, Central Tibetan Plateau during July of 2006 through January of 2007. Organic carbon (OC) was the dominant composition of the carbonaceous particles both in the atmosphere (1660 ng/m3) and precipitation (476 ng/g) in this area, while the average elemental carbon (BC) concentrations in the atmosphere and precipitation were only 82 ng/m3 and 8 ng/g, respectively. Very high OC/BC ratio suggested local secondary organic carbon could be a dominant contribution to OC over the Nam Co region, while BC could be mainly originated from Southern Asia, as indicated by trajectory analysis and aerosol optical depth. Comparison between the BC concentrations measured in Lhasa, those at "Nepal Climate Observatory at Pyramid (NCO-P)" site on the southern slope of the Himalayas, and Nam Co suggested BC in the Nam Co region reflected a background with weak anthropogenic disturbances and the emissions from Lhasa might have little impact on the atmospheric environment here, while the pollutants from the Indo-Gangetic Basin of Southern Asia could be transported to the Nam Co region by both the summer monsoon and the westerly.

  16. Water vapor absorption spectra of the upper atmosphere /45-185 per cm/

    Science.gov (United States)

    Augason, G. C.; Mord, A. J.; Witteborn, F. C.; Erickson, E. F.; Swift, C. D.; Caroff, L. J.; Kunz, L. W.

    1975-01-01

    The far IR nighttime absorption spectrum of the earth's atmosphere above 14 km is determined from observations of the bright moon. The spectra were obtained using a Michelson interferometer attached to a 30-cm telescope aboard a high-altitude jet aircraft. Comparison with a single-layer model atmosphere implies a vertical column of 3.4 plus or minus 0.4 microns of precipitable water on 30 August 1971 and 2.4 plus or minus 0.3 microns of precipitable water on 6 January 1972.-

  17. Global Floods and Water Availability Driven by Atmospheric Rivers

    Science.gov (United States)

    Paltan, Homero; Waliser, Duane; Lim, Wee Ho; Guan, Bin; Yamazaki, Dai; Pant, Raghav; Dadson, Simon

    2017-10-01

    While emerging regional evidence shows that atmospheric rivers (ARs) can exert strong impacts on local water availability and flooding, their role in shaping global hydrological extremes has not yet been investigated. Here we quantify the relative contribution of ARs variability to both flood hazard and water availability. We find that globally, precipitation from ARs contributes 22% of total global runoff, with a number of regions reaching 50% or more. In areas where their influence is strongest, ARs may increase the occurrence of floods by 80%, while absence of ARs may increase the occurrence of hydrological droughts events by up to 90%. We also find that 300 million people are exposed to additional floods and droughts due the occurrence of ARs. ARs provide a source of hydroclimatic variability whose beneficial or damaging effects depend on the capacity of water resources managers to predict and adapt to them.

  18. Changes in precipitation intensity over East Asia during the 20th and 21st centuries simulated by a global atmospheric model with a 60 km grid size

    Science.gov (United States)

    Kusunoki, Shoji; Mizuta, Ryo

    2013-10-01

    We conducted three-member ensemble simulations using a global atmospheric model with a high horizontal resolution of a 60 km grid size for the period 1872-2099 (228 years). Between 1872 and 2005, the model was forced with observed historical sea surface temperatures (SST), while between 2006 and 2099, the boundary SST data were estimated using the multimodel ensemble of the Coupled Model Intercomparison Project Phase 3 models and assuming A1B emission scenario. Annual mean precipitation (PAVE), the Simple Daily Precipitation Intensity Index (SDII), and the maximum 5 day precipitation total (R5d) averaged over East Asia increase almost monotonically through the 21st century. The statistically significant area of precipitation intensity increase is larger for 2080-2099 than for 2046-2065. In particular, intense rainfall will increase over northern and southern China during 2080-2099. The conversion rate from water vapor to precipitation per 1°C rise in surface air temperature for SDII and R5D is much larger than that for PAVE during the 21st century. This suggests that extreme rainfall events will occur more frequently than moderate rainfall events even if the amount of temperature rise is same. Future changes in the horizontal transport of water vapor also lead to more intense precipitation over East Asia. In particular, the increase in clockwise water vapor transport due to intensification of the subtropical high contributes to increased intense precipitation over southern China.

  19. Decontamination of radioactive waste water by chemical precipitation and centrifugation

    International Nuclear Information System (INIS)

    Oehlmann, K.H.

    1987-01-01

    At the end of 1984, BWB Engineering GmbH, Lorrach/West Germany, was assigned the task of planning and supplying a complete plant for the treatment of radioactive contaminated waste water by chemical precipitation, subsequent centrifugation and solidification. The plant has to be incorporated in a nuclear power plant, operating with two pressurized water reactors (PWR), design Westinghouse. The report deals with the previous decontamination methods and the development of new techniques to improve the results, as well as fulfilling the various safety requirements in the realization of this complex project. The plant is scheduled to be commissioned in May 1987. The operating results will be published at a later date

  20. RSS MONTHLY 1-DEG MICROWAVE TOTAL PRECIPITABLE WATER NETCDF V7

    Data.gov (United States)

    National Aeronautics and Space Administration — The RSS Monthly 1-deg Microwave Total Precipitable Water netCDF dataset provides 1 degree gridded data for the monthly means of total precipitable water, a 20 year...

  1. Applying the Water Vapor Radiometer to Verify the Precipitable Water Vapor Measured by GPS

    Directory of Open Access Journals (Sweden)

    Ta-Kang Yeh

    2014-01-01

    Full Text Available Taiwan is located at the land-sea interface in a subtropical region. Because the climate is warm and moist year round, there is a large and highly variable amount of water vapor in the atmosphere. In this study, we calculated the Zenith Wet Delay (ZWD of the troposphere using the ground-based Global Positioning System (GPS. The ZWD measured by two Water Vapor Radiometers (WVRs was then used to verify the ZWD that had been calculated using GPS. We also analyzed the correlation between the ZWD and the precipitation data of these two types of station. Moreover, we used the observational data from 14 GPS and rainfall stations to evaluate three cases. The offset between the GPS-ZWD and the WVR-ZWD ranged from 1.31 to 2.57 cm. The correlation coefficient ranged from 0.89 to 0.93. The results calculated from GPS and those measured using the WVR were very similar. Moreover, when there was no rain, light rain, moderate rain, or heavy rain, the flatland station ZWD was 0.31, 0.36, 0.38, or 0.40 m, respectively. The mountain station ZWD exhibited the same trend. Therefore, these results have demonstrated that the potential and strength of precipitation in a region can be estimated according to its ZWD values. Now that the precision of GPS-ZWD has been confirmed, this method can eventually be expanded to the more than 400 GPS stations in Taiwan and its surrounding islands. The near real-time ZWD data with improved spatial and temporal resolution can be provided to the city and countryside weather-forecasting system that is currently under development. Such an exchange would fundamentally improve the resources used to generate weather forecasts.

  2. Predictability of horizontal water vapor transport relative to precipitation: Enhancing situational awareness for forecasting western U.S. extreme precipitation and flooding

    Science.gov (United States)

    Lavers, David A.; Waliser, Duane E.; Ralph, F. Martin; Dettinger, Michael

    2016-01-01

    The western United States is vulnerable to socioeconomic disruption due to extreme winter precipitation and floods. Traditionally, forecasts of precipitation and river discharge provide the basis for preparations. Herein we show that earlier event awareness may be possible through use of horizontal water vapor transport (integrated vapor transport (IVT)) forecasts. Applying the potential predictability concept to the National Centers for Environmental Prediction global ensemble reforecasts, across 31 winters, IVT is found to be more predictable than precipitation. IVT ensemble forecasts with the smallest spreads (least forecast uncertainty) are associated with initiation states with anomalously high geopotential heights south of Alaska, a setup conducive for anticyclonic conditions and weak IVT into the western United States. IVT ensemble forecasts with the greatest spreads (most forecast uncertainty) have initiation states with anomalously low geopotential heights south of Alaska and correspond to atmospheric rivers. The greater IVT predictability could provide warnings of impending storminess with additional lead times for hydrometeorological applications.

  3. Extreme precipitation events in the Iberian Peninsula and its association with Atmospheric Rivers

    Science.gov (United States)

    Ramos, Alexandre M.; Liberato, Margarida L. R.; Trigo, Ricardo M.

    2015-04-01

    Extreme precipitation events in the Iberian Peninsula during the winter half of the year have major socio-economic impacts associated with floods, landslides, extensive property damage and life losses. In recent years, a number of works have shed new light on the role played by Atmospheric Rivers (ARs) in the occurrence of extreme precipitation events in both Europe and USA. ARs are relatively narrow regions of concentrated WV responsible for horizontal transport in the lower atmosphere corresponding to the core section of the broader warm conveyor belt occurring over the oceans along the warm sector of extra-tropical cyclones. Over the North Atlantic ARs are usually W-E oriented steered by pre-frontal low level jets along the trailing cold front and subsequently feed the precipitation in the extra-tropical cyclones. It was shown that more than 90% of the meridional WV transport in the mid-latitudes occurs in the AR, although they cover less than 10% of the area of the globe. The large amount of WV that is transported can lead to heavy precipitation and floods. An automated ARs detection algorithm is used for the North Atlantic Ocean Basin allowing the identification and a comprehensive characterization of the major AR events that affected the Iberian Peninsula over the 1948-2012 period. The extreme precipitation days in the Iberian Peninsula were assessed recently by us (Ramos et al., 2014) and their association (or not) with the occurrence of AR is analyzed in detail here. The extreme precipitation days are ranked by their magnitude and are obtained after considering 1) the area affected and 2) the precipitation intensity. Different rankings are presented for the entire Iberian Peninsula, Portugal and also for the six largest Iberian river basins (Minho, Duero, Tagus, Guadiana, Guadalquivir and Ebro) covering the 1950-2008 period (Ramos et al., 2014). Results show that the association between ARs and extreme precipitation days in the western domains (Portugal

  4. Recent changes in the oxidized to reduced nitrogen ratio in atmospheric precipitation

    Science.gov (United States)

    Kurzyca, Iwona; Frankowski, Marcin

    2017-10-01

    In this study, the characteristics of precipitation in terms of various nitrogen forms (NO3-, NO2-, NH4+, Norganic, Ntotal) is presented. The samples were collected in the areas of different anthropogenic pressure (urban area vs. ecologically protected woodland area, ∼30 km distant from each other; Wielkopolska region, Poland). Based on the Nox and Nred emission profiles (Nox/Nred ratio), temporal and spatial comparison was carried out. For both sites, during a decade of observation, more than 60% of samples had higher contribution of N-NH4+ than N-NO3-, the amount of N-NO2- was negligible, and organic nitrogen amounted to 30% of total nitrogen content which varied up to 16 mg/l. The precipitation events w ith high concentration of nitrogen species were investigated in terms of possible local and remote sources of nitrogen (synoptic meteorology), to indicate the areas which can act as potential sources of N-compounds. Based on the chemometric analysis, it was found that Nred implies Nox and vice versa, due to interactions between them in the atmosphere. Taking into account the analysis of precipitation occurring simultaneously in both locations (about 50% of all rainfall episodes), it was observed that such factor as anthropogenic pressure differentiates but does not determine the chemical composition of precipitation in the investigated areas (urban vs. woodland area; distance of ∼30 km). Thermodynamics of the atmosphere had a significant impact on concentrations of N-NO3- and N-NH4+ in precipitation, as well as the circulation of air masses and remote N sources responsible for transboundary inflow of pollutants.

  5. Future changes in precipitation over East Asia projected by the global atmospheric model MRI-AGCM3.2

    Science.gov (United States)

    Kusunoki, Shoji

    2017-02-01

    We conducted global warming projections using global atmospheric models with high-horizontal resolution of 20-km (MRI-AGCM3.2S, the 20-km model) and 60-km (MRI-AGCM3.2H, the 60-km model) grid sizes. For the present-day climate of 21 years from 1983 to 2003, models were forced with observed historical sea surface temperatures (SST). For the future climate of 21 years from 2079 to 2099, models were forced with future SST distributions projected by the models of the Fifth phase of Couple Model Intercomparison Project (CMIP5). Ensemble simulations for four different SST distributions and three different cumulus convection schemes were conducted to evaluate the uncertainty of projection. The simulations consistently project the increase of precipitation over eastern China for almost all months. In June, precipitation decreases over Japan and increases over the ocean to the south of Japan. The geographical distribution of precipitation change tends to depend relatively on the cumulus convection scheme and horizontal resolution of models rather than on SST distributions. The time evolution of pentad mean precipitation over Japan indicates the delay in the onset of Japanese rainy season in June. This delay can be attributed to the decrease of water vapor transport toward Japan associated with the southward shift of the subtropical high. Change in the subtropical high can be interpreted as the southward shift of the local Hadley circulation. The intensity of precipitation increases over most part of East Asia, while the possibility of drought will increase over Japan, the East China Sea and the area to the south of Japan.

  6. Nonlinearity in ENSO-Precipitation-Terrestrial Water Storage Relationships

    Science.gov (United States)

    Chandanpurkar, H. A.; Fasullo, J.; Nerem, R. S.

    2017-12-01

    Recent studies examining the relationships between ENSO, precipitation, and terrestrial water storage (TWS) have often assumed linearity. Here we show this assumption, in instances, to be simplistic, mainly due to the threshold behavior of TWS, identified in seasonal mean time series from both remote sensing observations and coupled earth system model simulations. We explore the causes and the spatio-temporal structure of the deviations from linearity between ENSO-TWS teleconnections, as well as Precipitation-TWS relationships. Results suggest disproportionate variance in TWS in winter monsoon regions. By applying cluster analysis techniques, we then provide distinct regimes of teleconnections based on basin hydrology and variability in ENSO events in terms of their timing, frequency, duration, and intensity, and present the typical recovery times associated with each regime. Implications for global mean sea level are discussed.

  7. Getting water right: A case study in water yield modelling based on precipitation data.

    Science.gov (United States)

    Pessacg, Natalia; Flaherty, Silvia; Brandizi, Laura; Solman, Silvina; Pascual, Miguel

    2015-12-15

    Water yield is a key ecosystem service in river basins and especially in dry regions around the World. In this study we carry out a modelling analysis of water yields in the Chubut River basin, located in one of the driest districts of Patagonia, Argentina. We focus on the uncertainty around precipitation data, a driver of paramount importance for water yield. The objectives of this study are to: i) explore the spatial and numeric differences among six widely used global precipitation datasets for this region, ii) test them against data from independent ground stations, and iii) explore the effects of precipitation data uncertainty on simulations of water yield. The simulations were performed using the ecosystem services model InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) with each of the six different precipitation datasets as input. Our results show marked differences among datasets for the Chubut watershed region, both in the magnitude of precipitations and their spatial arrangement. Five of the precipitation databases overestimate the precipitation over the basin by 50% or more, particularly over the more humid western range. Meanwhile, the remaining dataset (Tropical Rainfall Measuring Mission - TRMM), based on satellite measurements, adjusts well to the observed rainfall in different stations throughout the watershed and provides a better representation of the precipitation gradient characteristic of the rain shadow of the Andes. The observed differences among datasets in the representation of the rainfall gradient translate into large differences in water yield simulations. Errors in precipitation of +30% (-30%) amplify to water yield errors ranging from 50 to 150% (-45 to -60%) in some sub-basins. These results highlight the importance of assessing uncertainties in main input data when quantifying and mapping ecosystem services with biophysical models and cautions about the undisputed use of global environmental datasets. Copyright

  8. Atmospheric and precipitation chemistry over the North Atlantic Ocean: Shipboard results, April-May 1984

    Science.gov (United States)

    Church, T. M.; Tramontano, J. M.; Whelpdale, D. M.; Andreae, M. O.; Galloway, J. N.; Keene, W. C.; Knap, A. H.; Tokos, J.

    1991-10-01

    During a North Atlantic cruise from Dakar, Senegal, to Woods Hole, Massachusetts (April 14-May 11, 1984), crossing the area of 14°-48°N; 17°-70°W, we collected atmospheric aerosols (C, N, S species), gases (SO4, HNO3, dimethyl sulfide (DMS), synthetic organic chemicals), and precipitation (major inorganic/organic ions, trace metals). Air masses that had not contacted land for over 5 days had a composition close to that from the remote marine atmosphere. Oxidation of biogenic DMS to SO4= aerosol accounted for most nss-SO4= in these air masses. Air masses that had transected densely populated North America (in the westerlies) or the Mediterranean/North Africa ( in the easterlies) within 2-5 days of being sampled over the North Atlantic were enriched in acid precursor compounds and synthetic hydrocarbons relative to air that had spent longer over the North Atlantic. Strong acids and trace metals were also elevated in precipitation. Air masses that had transected regions of strong emissions within the preceding 2 days had concentrations of atmospheric pollutants approaching those typically found in continental air masses. More frequent storm tracks between the Icelandic low and the Bermuda high favored transport of North American emissions northeasterly, toward Europe. Trajectory analyses suggested that air masses sampled off the northwest African coast had passed over the Mediterranean. Composition of the aerosol and precipitation of these air masses was also indicative of continental emissions, including biomass and petroleum burning. Transport and deposition of continental emissions to the North Atlantic were significantly influencing surface atmospheric and oceanic chemistry of this region.

  9. Soil water dynamics during precipitation in genetic horizons of Retisol

    Science.gov (United States)

    Zaleski, Tomasz; Klimek, Mariusz; Kajdas, Bartłomiej

    2017-04-01

    Retisols derived from silty deposits dominate in the soil cover of the Carpathian Foothills. The hydrophysical properties of these are determined by the grain-size distribution of the parent material and the soil's "primary" properties shaped in the deposition process. The other contributing factors are the soil-forming processes, such as lessivage (leaching of clay particles), and the morphogenetic processes that presently shape the relief. These factors are responsible for the "secondary" differentiation of hydrophysical properties across the soil profile. Both the primary and secondary hydrophysical properties of soils (the rates of water retention, filtration and infiltration, and the moisture distribution over the soil profile) determine their ability to take in rainfall, the amount of rainwater taken in, and the ways of its redistribution. The aims of the study, carried out during 2015, were to investigate the dynamics of soil moisture in genetic horizons of Retisol derived from silty deposits and to recognize how fast and how deep water from precipitation gets into soil horizons. Data of soil moisture were measured using 5TM moisture and temperature sensor and collected by logger Em50 (Decagon Devices USA). Data were captured every 10 minutes from 6 sensors at depths: - 10 cm, 20 cm, 40 cm, 60 cm and 80 cm. Precipitation data come from meteorological station situated 50 m away from the soil profile. Two zones differing in the type of water regime were distinguished in Retisol: an upper zone comprising humic and eluvial horizons, and a lower zone consisting of illuvial and parent material horizons. The upper zone shows smaller retention of water available for plants, and relatively wide fluctuations in moisture content, compared to the lower zone. The lower zone has stable moisture content during the vegetation season, with values around the water field capacity. Large changes in soil moisture were observed while rainfall. These changes depend on the volume

  10. Synoptic patterns of atmospheric circulation associated with intense precipitation events over the Brazilian Amazon

    Science.gov (United States)

    Santos, Eliane Barbosa; Lucio, Paulo Sérgio; Santos e Silva, Cláudio Moisés

    2017-04-01

    The objective of this study is to characterize the atmospheric patterns associated with the occurrence of intense precipitation events (IPE) in different sub-regions of the Brazilian Amazon. Intense rainfall cases over six sub-regions were selected from a precipitation data set for the period from 1983 to 2012. The composition technique was used to characterize the prevailing atmospheric patterns for the occurrence of IPE. In the south of the Amazon, the composition fields showed a favorable configuration for the formation of the South Atlantic Convergence Zone (SACZ). Along the coast, the intense precipitation events must be associated with mesoscale systems, such as squall lines. In the northwest, they are apparently associated with the Intertropical Convergence Zone (ITCZ) and/or local convection. The results reveal the complexity of the synoptic environment associated with the formation and development of weather systems that produce heavy rainfall in the Amazon Basin. Several factors can interfere as conditions in large-scale, local conditions and thermodynamic factors.

  11. Atmospheric Moisture Budget and Spatial Resolution Dependence of Precipitation Extremes in Aquaplanet Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qing; Leung, Lai-Yung R.; Rauscher, Sara; Ringler, Todd; Taylor, Mark

    2014-05-01

    This study investigates the resolution dependency of precipitation extremes in an aqua-planet framework. Strong resolution dependency of precipitation extremes is seen over both tropics and extra-tropics, and the magnitude of this dependency also varies with dynamical cores. Moisture budget analyses based on aqua-planet simulations with the Community Atmosphere Model (CAM) using the Model for Prediction Across Scales (MPAS) and High Order Method Modeling Environment (HOMME) dynamical cores but the same physics parameterizations suggest that during precipitation extremes moisture supply for surface precipitation is mainly derived from advective moisture convergence. The resolution dependency of precipitation extremes mainly originates from advective moisture transport in the vertical direction. At most vertical levels over the tropics and in the lower atmosphere over the subtropics, the vertical eddy transport of mean moisture field dominates the contribution to precipitation extremes and its resolution dependency. Over the subtropics, the source of moisture, its associated energy, and the resolution dependency during extremes are dominated by eddy transport of eddies moisture at the mid- and upper-troposphere. With both MPAS and HOMME dynamical cores, the resolution dependency of the vertical advective moisture convergence is mainly explained by dynamical changes (related to vertical velocity or omega), although the vertical gradients of moisture act like averaging kernels to determine the sensitivity of the overall resolution dependency to the changes in omega at different vertical levels. The natural reduction of variability with coarser resolution, represented by areal data averaging (aggregation) effect, largely explains the resolution dependency in omega. The thermodynamic changes, which likely result from non-linear feedback in response to the large dynamical changes, are small compared to the overall changes in dynamics (omega). However, after excluding the

  12. Characterisation of extreme winter precipitation in Mediterranean coastal sites and associated anomalous atmospheric circulation patterns

    Science.gov (United States)

    Toreti, A.; Xoplaki, E.; Maraun, D.; Kuglitsch, F. G.; Wanner, H.; Luterbacher, J.

    2010-05-01

    We present an analysis of daily extreme precipitation events for the extended winter season (October-March) at 20 Mediterranean coastal sites covering the period 1950-2006. The heavy tailed behaviour of precipitation extremes and estimated return levels, including associated uncertainties, are derived applying a procedure based on the Generalized Pareto Distribution, in combination with recently developed methods. Precipitation extremes have an important contribution to make seasonal totals (approximately 60% for all series). Three stations (one in the western Mediterranean and the others in the eastern basin) have a 5-year return level above 100 mm, while the lowest value (estimated for two Italian series) is equal to 58 mm. As for the 50-year return level, an Italian station (Genoa) has the highest value of 264 mm, while the other values range from 82 to 200 mm. Furthermore, six series (from stations located in France, Italy, Greece, and Cyprus) show a significant negative tendency in the probability of observing an extreme event. The relationship between extreme precipitation events and the large scale atmospheric circulation at the upper, mid and low troposphere is investigated by using NCEP/NCAR reanalysis data. A 2-step classification procedure identifies three significant anomaly patterns both for the western-central and eastern part of the Mediterranean basin. In the western Mediterranean, the anomalous southwesterly surface to mid-tropospheric flow is connected with enhanced moisture transport from the Atlantic. During ≥5-year return level events, the subtropical jet stream axis is aligned with the African coastline and interacts with the eddy-driven jet stream. This is connected with enhanced large scale ascending motions, instability and leads to the development of severe precipitation events. For the eastern Mediterranean extreme precipitation events, the identified anomaly patterns suggest warm air advection connected with anomalous ascent motions

  13. Characterisation of extreme winter precipitation in Mediterranean coastal sites and associated anomalous atmospheric circulation patterns

    Directory of Open Access Journals (Sweden)

    A. Toreti

    2010-05-01

    Full Text Available We present an analysis of daily extreme precipitation events for the extended winter season (October–March at 20 Mediterranean coastal sites covering the period 1950–2006. The heavy tailed behaviour of precipitation extremes and estimated return levels, including associated uncertainties, are derived applying a procedure based on the Generalized Pareto Distribution, in combination with recently developed methods. Precipitation extremes have an important contribution to make seasonal totals (approximately 60% for all series. Three stations (one in the western Mediterranean and the others in the eastern basin have a 5-year return level above 100 mm, while the lowest value (estimated for two Italian series is equal to 58 mm. As for the 50-year return level, an Italian station (Genoa has the highest value of 264 mm, while the other values range from 82 to 200 mm. Furthermore, six series (from stations located in France, Italy, Greece, and Cyprus show a significant negative tendency in the probability of observing an extreme event. The relationship between extreme precipitation events and the large scale atmospheric circulation at the upper, mid and low troposphere is investigated by using NCEP/NCAR reanalysis data. A 2-step classification procedure identifies three significant anomaly patterns both for the western-central and eastern part of the Mediterranean basin. In the western Mediterranean, the anomalous southwesterly surface to mid-tropospheric flow is connected with enhanced moisture transport from the Atlantic. During ≥5-year return level events, the subtropical jet stream axis is aligned with the African coastline and interacts with the eddy-driven jet stream. This is connected with enhanced large scale ascending motions, instability and leads to the development of severe precipitation events. For the eastern Mediterranean extreme precipitation events, the identified anomaly patterns suggest warm air advection connected with anomalous

  14. Effect of Atmospheric Ions on Interfacial Water

    Directory of Open Access Journals (Sweden)

    Chien-Chang Kurt Kung

    2014-11-01

    Full Text Available The effect of atmospheric positivity on the electrical properties of interfacial water was explored. Interfacial, or exclusion zone (EZ water was created in the standard way, next to a sheet of Nafion placed horizontally at the bottom of a water-filled chamber. Positive atmospheric ions were created from a high voltage source placed above the chamber. Electrical potential distribution in the interfacial water was measured using microelectrodes. We found that beyond a threshold, the positive ions diminished the magnitude of the negative electrical potential in the interfacial water, sometimes even turning it to positive. Additionally, positive ions produced by an air conditioner were observed to generate similar effects; i.e., the electrical potential shifted in the positive direction but returned to negative when the air conditioner stopped blowing. Sometimes, the effect of the positive ions from the air conditioner was strong enough to destroy the structure of interfacial water by turning the potential decidedly positive. Thus, positive air ions can compromise interfacial water negativity and may explain the known negative impact of positive ions on health.

  15. EFFECTS OF FOG PRECIPITATION ON WATER RESOURCES AND DRINKING WATER TREATMENT IN THE JIZERA MOUNTAINS, THE CZECH REPUBLIC

    Directory of Open Access Journals (Sweden)

    Josef Křeček

    2015-07-01

    Full Text Available Water yield from catchments with a high evidence of fog or low clouds could be increased by the canopy fog drip. However, in areas with the acid atmospheric deposition, this process can lead to the decline of water quality. The aim of this study is to analyze fog related processes in headwater catchments of the Jizera Mountains (the Czech Republic with special attention to water quality and the drinking water treatment. In two years (2011-2012, the fog drip was observed by twelve passive fog collectors at transect of the Jizerka experimental catchment. Methods of space interpolation and extrapolation (ArcGis 10.2 were applied to approximate the areal atmospheric deposition of fog water, sulphur and nitrogen, in catchments of the drinking water reservoirs Josefův Důl and Souš. The mean annual fog drip from vegetation canopy was found between 88 and 106 mm (i.e. 7 to 9 percent of precipitation, and 11 to 13 percent of water yield, estimated by standard rain gauge monitoring. But, the mean annual load of sulphur and nitrogen by the fog drip was 1,975 and 1,080, kilograms per square kilometre, respectively (i.e. 55 and 48 percent of total deposition of sulphur and nitrogen, registered in the bulk. The acidification of surface waters leads to rising operational costs in the water treatment plants (liming, reduce of heavy metals, more frequent control of sand filters etc.. In a catchment scale, the additional precipitation, caused by the canopy fog drip, could be controlled by the effective watershed management (support of forests stands near the native composition with presence of deciduous trees: beech, mountain ash, or birch.

  16. Validation on MERSI/FY-3A precipitable water vapor product

    Science.gov (United States)

    Gong, Shaoqi; Fiifi Hagan, Daniel; Lu, Jing; Wang, Guojie

    2018-01-01

    The precipitable water vapor is one of the most active gases in the atmosphere which strongly affects the climate. China's second-generation polar orbit meteorological satellite FY-3A equipped with a Medium Resolution Spectral Imager (MERSI) is able to detect atmospheric water vapor. In this paper, water vapor data from AERONET, radiosonde and MODIS were used to validate the accuracy of the MERSI water vapor product in the different seasons and climatic regions of East Asia. The results show that the values of MERSI water vapor product are relatively lower than that of the other instruments and its accuracy is generally lower. The mean bias (MB) was -0.8 to -12.7 mm, the root mean square error (RMSE) was 2.2-17.0 mm, and the mean absolute percentage error (MAPE) varied from 31.8% to 44.1%. On the spatial variation, the accuracy of MERSI water vapor product in a descending order was from North China, West China, Japan -Korea, East China, to South China, while the seasonal variation of accuracy was the best for winter, followed by spring, then in autumn and the lowest in summer. It was found that the errors of MERSI water vapor product was mainly due to the low accuracy of radiation calibration of the MERSI absorption channel, along with the inaccurate look-up table of apparent reflectance and water vapor within the water vapor retrieved algorithm. In addition, the surface reflectance, the mixed pixels of image cloud, the humidity and temperature of atmospheric vertical profile and the haze were also found to have affected the accuracy of MERSI water vapor product.

  17. A climatological analysis of high-precipitation events in Dronning Maud Land, Antarctica, and associated large-scale atmospheric conditions

    NARCIS (Netherlands)

    Welker, Christoph; Martius, Olivia; Froidevaux, Paul; Reijmer, Carleen H.; Fischer, Hubertus

    2014-01-01

    The link between high precipitation in Dronning Maud Land (DML), Antarctica, and the large-scale atmospheric circulation is investigated using ERA-Interim data for 1979-2009. High-precipitation events are analyzed at Halvfarryggen situated in the coastal region of DML and at Kohnen Station located

  18. The Land’s Susceptibility, Due to Atmospheric Precipitations, Within the Catchment Area of Câlnău

    Directory of Open Access Journals (Sweden)

    (Oprea Constantin Dana Maria

    2014-05-01

    Full Text Available The climatic factors, generally, and the precipitation amounts recorded, especially, constitute some of the factors which condition the development and intensity of actual geomorphologic processes. One of the most employed climatic parameters for determining the land’s susceptibility to atmospheric precipitations, with real and concrete applications into the dynamic geomorphology, is the Angot factor.

  19. Proactive modeling of water quality impacts of extreme precipitation events in a drinking water reservoir.

    Science.gov (United States)

    Jeznach, Lillian C; Hagemann, Mark; Park, Mi-Hyun; Tobiason, John E

    2017-10-01

    Extreme precipitation events are of concern to managers of drinking water sources because these occurrences can affect both water supply quantity and quality. However, little is known about how these low probability events impact organic matter and nutrient loads to surface water sources and how these loads may impact raw water quality. This study describes a method for evaluating the sensitivity of a water body of interest from watershed input simulations under extreme precipitation events. An example application of the method is illustrated using the Wachusett Reservoir, an oligo-mesotrophic surface water reservoir in central Massachusetts and a major drinking water supply to metropolitan Boston. Extreme precipitation event simulations during the spring and summer resulted in total organic carbon, UV-254 (a surrogate measurement for reactive organic matter), and total algae concentrations at the drinking water intake that exceeded recorded maximums. Nutrient concentrations after storm events were less likely to exceed recorded historical maximums. For this particular reservoir, increasing inter-reservoir transfers of water with lower organic matter content after a large precipitation event has been shown in practice and in model simulations to decrease organic matter levels at the drinking water intake, therefore decreasing treatment associated oxidant demand, energy for UV disinfection, and the potential for formation of disinfection byproducts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A Precipitation Climatology using Satellite Remote Sensing and Water Cycle Constraints

    Science.gov (United States)

    Hilburn, K.; Wentz, F.

    2009-04-01

    Passive microwave satellite data records have finally reached critical lengths that provide unparalleled climate monitoring capability. In particular, if we are to monitor and understand regional climate changes, the use of satellite data are necessary for much of the planet where in situ observations are infrequent or absent. Using passive microwave data we provide a precipitation climatology and integrate our activities with the NASA Precipitation Measurement Mission (PMM) and the NASA Energy and Water Cycle Study (NEWS). We obtain geophysical retrievals over the ocean using our Unified Microwave Ocean Retrieval Algorithm (UMORA), which simultaneously retrieves sea surface temperature, surface wind speed, columnar water vapor, columnar cloud liquid water, and surface rain rate from a variety of passive microwave radiometers including SSMI (F08, F10, F11, F13, F14, F15), SSMIS (F16, F17), TMI on TRMM, AMSR (Aqua and Midori-II), and WindSat. In addition to the retrieval algorithm, the other critical component to obtaining a quality precipitation climatology is an accurate radiometer intercalibration at the brightness temperature level. We have spent a great deal of effort intercalibrating the SSM/I series of radiometers. In the most recent version, the SSM/I have been intercalibrated to a precision of 0.1 K and the other sensors have been adjusted to match the SSM/I time series. We are using passive microwave observations to make climatologies of areal precipitation over ocean basins. Our results indicate surprisingly consistent evaporation ratios (ratio of evaporation to precipitation) over large ocean basins. The ratios are around 1.2, meaning that over sufficiently large areas of ocean, evaporation is about 20% larger than precipitation - with the excess finding its way onto land via atmospheric rivers. These results are very different than previous satellite-based estimates, which show great variability from basin to basin. Our results may be due to a number of

  1. Atmospheric pollution in the mediterranean area: geochemical studies of aerosols and rain waters

    International Nuclear Information System (INIS)

    Caboi, R.; Chester, R.

    1998-01-01

    It is now recognised that the atmosphere is a major pathway for the transport of material to the oceans. The material in the atmosphere is present as gaseous and particulate (aerosol) phases. Aerosols may be removed from the atmosphere by a combination of 'dry' (i.e. not involving an atmospheric aqueous phase) and 'wet' (precipitation scavenging) processes. Thus, aerosols are intimately related to rain waters, and interactions between the two are discusses below in relation to the input of material to the Mediterranean Sea

  2. Resilience vs. decline: Precipitation and atmospheric change drive contrasting responses in invertebrate communities

    Science.gov (United States)

    Facey, Sarah L.

    Invertebrates form the foundation of terrestrial ecosystems, far outnumbering their vertebrate counterparts in terms of abundance, biomass and diversity. As such, arthropod communities play vitally important roles in ecosystem processes ranging from pollination to soil fertility. Given the importance of invertebrates in ecosystems, predicting their responses - and those of the communities they form - to global change is one of the great challenges facing contemporary ecology. Our climate is changing as a result of the anthropogenic release of greenhouse gases, including carbon dioxide (CO2), produced from burning fossil fuels and land use change. The concentration of CO2 in the atmosphere now exceeds the range the Earth has seen in the last 800,000 years. Through the effect of such gases on radiative forcing, sustained greenhouse gas emissions will continue to drive increases in global average temperatures. Additionally, precipitation patterns are likely to change across the world, with increases in the occurrence of extreme weather events, such as droughts, as well as alterations in the magnitude and frequency of rainfall events. Climate change is already causing measurable changes in the Earth's biotic environment. Past work has been heavily focused on the responses of plants to various climate change parameters, with most studies including invertebrates limited to highly controlled studies of pair-wise interactions between one arthropod species and its host plant. Relatively little work to date, however, has looked at the potential impacts of climatic and atmospheric change for invertebrate communities as a whole. The overarching goal of this project was to help remedy this research gap, specifically by investigating the effects of precipitation and atmospheric change on invertebrate communities in grassland and woodland habitat, respectively. Chapters 2 and 4 synthesised recent work on climate change-driven alterations in precipitation and atmospheric change

  3. Atmospheric Rivers and Their Role in Extreme Precipitation in the Midwest U.S.

    Science.gov (United States)

    2013-03-01

    located in the warm sector of extratropical cyclones (warm conveyor belt ) and can be characterized by strong winds (low level jet) and large water... System Reanalysis (CFSR) data sets for identification of ARs and analysis. The study documents several key ingredients that contribute to differentiating...precipitation in the Midwest is also included for comparison. The analyses used the Climate Forecast System Reanalysis (CFSR) data sets for

  4. Impact of land-atmosphere uxes on the spring precipitation regime of the Iberian Peninsula

    OpenAIRE

    Ríos Entenza, Alexandre

    2014-01-01

    In this thesis, we investigate the physical processes underlying the spring maximum of precipitation observed throughout the interior of the Iberian Peninsula, with a specific incidence in the inland regions to the east and northeast. This upturn in the rainfall totals occurs mostly in May, having a critical impact on human activities, and in particular on agriculture over these interior areas, most of them suffering from water scarcity. The present thesis adds valuable informa...

  5. Mathematical modeling of the formation of sedimentary acid precipitation in the atmosphere in view of the evaporation of moisture from their surface

    Directory of Open Access Journals (Sweden)

    Gvozdyakov Dmitry

    2017-01-01

    Full Text Available The article presents the results of numeric simulation of the formation of sedimentary acid precipitation in the atmosphere taking into account the evaporation of moisture from their surfaces. It is established that the joint condensation of vapors of sulfuric anhydride and water vapor, given the flow of solar energy and the evaporation process significantly slows the growth of drops. The possibility of achieving the underlying surface by the formed sediments is analyzed.

  6. Experimental and Numerical Studies of Atmosphere Water Interactions

    KAUST Repository

    Bou-Zeid, Elie

    2011-07-04

    Understanding and quantifying the interaction of the atmosphere with underlying water surfaces is of great importance for a wide range of scientific fields such as water resources management, climate studies of ocean-atmosphere exchange, and regional weat

  7. The influence of the synoptic regime on stable water isotopes in precipitation at Dome C, East Antarctica

    Directory of Open Access Journals (Sweden)

    E. Schlosser

    2017-10-01

    Full Text Available The correct derivation of paleotemperatures from ice cores requires exact knowledge of all processes involved before and after the deposition of snow and the subsequent formation of ice. At the Antarctic deep ice core drilling site Dome C, a unique data set of daily precipitation amount, type, and stable water isotope ratios is available that enables us to study in detail atmospheric processes that influence the stable water isotope ratio of precipitation. Meteorological data from both automatic weather station and a mesoscale atmospheric model were used to investigate how different atmospheric flow patterns determine the precipitation parameters. A classification of synoptic situations that cause precipitation at Dome C was established and, together with back-trajectory calculations, was utilized to estimate moisture source areas. With the resulting source area conditions (wind speed, sea surface temperature, and relative humidity as input, the precipitation stable isotopic composition was modeled using the so-called Mixed Cloud Isotope Model (MCIM. The model generally underestimates the depletion of 18O in precipitation, which was not improved by using condensation temperature rather than inversion temperature. Contrary to the assumption widely used in ice core studies, a more northern moisture source does not necessarily mean stronger isotopic fractionation. This is due to the fact that snowfall events at Dome C are often associated with warm air advection due to amplification of planetary waves, which considerably increases the site temperature and thus reduces the temperature difference between source area and deposition site. In addition, no correlation was found between relative humidity at the moisture source and the deuterium excess in precipitation. The significant difference in the isotopic signal of hoarfrost and diamond dust was shown to disappear after removal of seasonality. This study confirms the results of an earlier study

  8. The influence of the synoptic regime on stable water isotopes in precipitation at Dome C, East Antarctica

    Science.gov (United States)

    Schlosser, Elisabeth; Dittmann, Anna; Stenni, Barbara; Powers, Jordan G.; Manning, Kevin W.; Masson-Delmotte, Valérie; Valt, Mauro; Cagnati, Anselmo; Grigioni, Paolo; Scarchilli, Claudio

    2017-10-01

    The correct derivation of paleotemperatures from ice cores requires exact knowledge of all processes involved before and after the deposition of snow and the subsequent formation of ice. At the Antarctic deep ice core drilling site Dome C, a unique data set of daily precipitation amount, type, and stable water isotope ratios is available that enables us to study in detail atmospheric processes that influence the stable water isotope ratio of precipitation. Meteorological data from both automatic weather station and a mesoscale atmospheric model were used to investigate how different atmospheric flow patterns determine the precipitation parameters. A classification of synoptic situations that cause precipitation at Dome C was established and, together with back-trajectory calculations, was utilized to estimate moisture source areas. With the resulting source area conditions (wind speed, sea surface temperature, and relative humidity) as input, the precipitation stable isotopic composition was modeled using the so-called Mixed Cloud Isotope Model (MCIM). The model generally underestimates the depletion of 18O in precipitation, which was not improved by using condensation temperature rather than inversion temperature. Contrary to the assumption widely used in ice core studies, a more northern moisture source does not necessarily mean stronger isotopic fractionation. This is due to the fact that snowfall events at Dome C are often associated with warm air advection due to amplification of planetary waves, which considerably increases the site temperature and thus reduces the temperature difference between source area and deposition site. In addition, no correlation was found between relative humidity at the moisture source and the deuterium excess in precipitation. The significant difference in the isotopic signal of hoarfrost and diamond dust was shown to disappear after removal of seasonality. This study confirms the results of an earlier study carried out at Dome

  9. Assessment of the relation between atmospheric precipitation and rainwater runoff for various urban surfaces

    Directory of Open Access Journals (Sweden)

    Romaniak Alicja

    2017-03-01

    Full Text Available The relation between the diurnal sum of atmospheric precipitation and the diurnal volume of rainwater runoff from four experimental hardened surfaces was the subject of a pilot study conducted within the area of the Departmental Agro- and Hydrometeorology Observatory in Wrocław. The selection and the structure of the experimental surfaces were preceded with an inventory-taking of the coverage of hardened surfaces within a Wrocław housing estate with high-rise multifamily buildings. That estate was the second location, next to the area of the Observatory, at which the study presented here was conducted. The surfaces included in the experiment were roof surfaces P1 and P2 covered with heat-sealable roll roofing, surface APB made of gravel-filled openwork concrete plates, and tarmac surface AS. The pilot study was conducted during the period from April to November, 2014. During that period, depending on the type of experimental surface, from 81 to 87 days with atmospheric precipitation were analysed. The mean values of the rainwater runoff coefficients for the eightmonth period were 0.77, 0.77, 0.33 and 0.67 for surfaces P1, P2, APB and AS, respectively. The range of variability of mean values of the coefficients of rainwater runoff from the experimental surfaces in a month is presented by the following relation: APB > P1 > AS > P2. The study did not reveal any direct effect of the number of rainfall days in a month on the value of the coefficient of determination describing the correlation between the diurnal sums of precipitation and the diurnal volumes of rainwater runoff.

  10. Uncertainties in Projecting Future Changes in Atmospheric Rivers and Their Impacts on Heavy Precipitation over Europe

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yang; Lu, Jian; Leung, L. Ruby

    2016-09-01

    This study investigates the North Atlantic atmospheric rivers (ARs) making landfall over western Europe in the present and future climate from the multi-model ensemble of the Coupled Model Intercomparison Project Phase 5 (CMIP5). Overall, CMIP5 captures the seasonal and spatial variations of historical landfalling AR days, with the large inter-model variability strongly correlated with the inter-model spread of historical jet position. Under RCP 8.5, AR frequency is projected to increase a few times by the end of this century. While thermodynamics plays a dominate role in the future increase of ARs, wind changes associated with the midlatitude jet shifts also significantly contribute to AR changes, resulting in dipole change patterns in all seasons. In the North Atlantic, the model projected jet shifts are strongly correlated with the simulated historical jet position. As models exhibit predominantly equatorward biases in the historical jet position, the large poleward jet shifts reduce AR days south of the historical mean jet position through the dynamical connections between the jet positions and AR days. Using the observed historical jet position as an emergent constraint, dynamical effects further increase AR days in the future above the large increases due to thermodynamical effects. In the future, both total and extreme precipitation induced by AR contribute more to the seasonal mean and extreme precipitation compared to present primarily because of the increase in AR frequency. While AR precipitation intensity generally increases more relative to the increase in integrated vapor transport, AR extreme precipitation intensity increases much less.

  11. Winter precipitation characteristics in western US related to atmospheric river landfalls: observations and model evaluations

    Science.gov (United States)

    Kim, J.; Guan, B.; Waliser, D. E.; Ferraro, R. D.; Case, J. L.; Iguchi, T.; Kemp, E.; Putman, W.; Wang, W.; Wu, D.; Tian, B.

    2018-01-01

    Winter precipitation (PR) characteristics in western United States (WUS) related to atmospheric river (AR) landfalls are examined using the observation-based PRISM data. The observed AR-related precipitation characteristics are in turn used to evaluate model precipitation data from the NASA MERRA2 reanalysis and from seven dynamical downscaling simulations driven by the MERRA2. Multiple metrics including mean bias, Taylor diagram, and two skill scores are used to measure model performance for three climatological sub-regions in WUS, Pacific Northwest (PNW), Pacific Southwest (PSW) and Great Basin (GB). All model data well represent the winter-mean PR with spatial pattern correlations of 0.8 or higher with PRISM for the three sub-regions. Higher spatial resolutions and/or the use of spectral nudging generally yield higher skill scores in simulating the geographical distribution of PR for the entire winter. The PRISM data shows that the AR-related fraction of winter PR and associated daily PR PDFs in each region vary strongly for landfall locations; AR landfalls in the northern WUS coast (NC) affect mostly PNW while those in the southern WUS coast (SC) affect both PSW and GB. NC (SC) landfalls increase the frequency of heavy PR in PNW (PSW and GB) but reduce it in PSW (PNW). All model data reasonably represent these observed variations in the AR-related winter PR fractions and the daily PR PDFs according to AR landfall locations. However, unlike for the entire winter period, no systematic effects of resolution and/or spectral nudging are identified in these AR-related PR characteristics. Dynamical downscaling in this study generally yield positive added values to the MERRA2 PR in the AR-related PR fraction for most sub-regions and landfall locations, most noticeably for PSW by NU-WRF. The downscaling also generate positive added value in p95 for PNW, but negative values for PSW and GB due to overestimation of heavy precipitation events.

  12. CHAPTER 6. Biomimetic Materials for Efficient Atmospheric Water Collection

    KAUST Repository

    Zhang, Lianbin

    2016-02-23

    Water scarcity is a severe problem in semi-arid desert regions, land-scarce countries and in countries with high levels of economic activity. In these regions, the collection of atmospheric water - for example, fog - is recognized as an important method of providing water. In nature, through millions of year evolution, some animals and plants in many of the arid regions have developed unique and highly efficient systems with delicate microstructures and composition for the purpose of fog collection to survive the harsh conditions. With the unique ability of fog collection, these creatures could readily cope with insufficient access to fresh water or lack of precipitation. These natural examples have inspired the design and fabrication of artificial fog collection materials and devices. In this chapter, we will first introduce some natural examples for their unique fog collection capability, and then give some examples of the bioinspired materials and devices that are fabricated artificially to mimic these natural creatures for the purpose of fog collection. We believe that the biomimetic strategy is one of the most promising routes for the design and fabrication of functional materials and devices for the solution of the global water crisis.

  13. In situ experimental study of the washout potential of the atmospheric aerosol by precipitations

    International Nuclear Information System (INIS)

    Depuydt, Guillaume

    2013-01-01

    In case of release of pollutant or radionuclides into the atmosphere, estimate of below-cloud scavenging of aerosol particles by precipitation (or washout) is an essential data to evaluate contamination of the biosphere. Many studies have already shown an interest to this wet deposition process, but most of them are theoretical or have been conducted in laboratories conditions. This study in situ conditions aims to improve knowledge of below-cloud scavenging of aerosol particles by precipitation. For several months, three sites with separate environments in terms of climate and ambient dust have been instrumented to have such a varied palette of precipitation/dust conditions as possible. A laser disdrometer and a granulometer (electrical and/or optical counter) measure respectively precipitations characteristics and particles concentrations with a high temporal resolution (one minute). The use of this original instrumental coupling has allowed determining washout potentials for the nano-metric size range of particles aerosol to the super-micron size range and for different types of precipitation (snowfalls and rainfalls with specifics hyetograms). Initially, below-cloud scavenging coefficients Λ (parameter describing kinetic of this process) were calculated considering the global effect of a precipitation. This 'macroscopic' approach is limited by the influence of 'concurrent' processes, as advection or local emissions of aerosol particles close to the measurements sites. To minimise effect of these processes on our results, a second methodology based on the high temporal resolution of the instrumentation used was defined. With this 'intra-event' approach, washout coefficients are calculated on short time scales, allowing study of impact of the variability of aerosol size and precipitations characteristics on these coefficients. Results obtained with the two approaches highlighted the need of considering particles diameter and characteristics of precipitation to

  14. Modeling of Revitalization of Atmospheric Water

    Science.gov (United States)

    Coker, Robert; Knox, Jim

    2014-01-01

    The Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project was initiated in September of 2011 as part of the Advanced Exploration Systems (AES) program. Under the ARREM project, testing of sub-scale and full-scale systems has been combined with multiphysics computer simulations for evaluation and optimization of subsystem approaches. In particular, this paper describes the testing and modeling of the water desiccant subsystem of the carbon dioxide removal assembly (CDRA). The goal is a full system predictive model of CDRA to guide system optimization and development.

  15. Atmospheric instability analysis and its relationship to precipitation patterns over the western Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    I. Iturrioz

    2007-04-01

    Full Text Available Thermodynamic and dynamic atmospheric stability indices will be analysed in order to classify the rainfall types occurred in western Iberia and provide information about the associated meteorological phenomena and preferred regional instability sources. In this work, instability sources over the western Iberian Peninsula will be characterised by means of radiosonde station data and reanalysis data sets from the European Centre for Medium-Range Weather Forecasts (ECMWF, for the period 1971–2002. Dynamic stability indices such as the Q vector divergence (dQ or the potential vorticity anomaly in the 330 K isentropic surface (PV have been calculated with the aim of establishing different atmospheric stability scenarios. Furthermore, thermodynamic atmospheric stability contribution has been also evaluated with Total Totals index (TT and moisture availability was inferred from circulation weather types (CWTs. The first results of this work assess the combined dynamic-thermodynamic preferred conditions, synoptic situations and humidity sources, leading to precipitation events over the western Iberian Peninsula and prove the essential role of CWT patterns on the rainfall genesis.

  16. Review Article: Atmospheric conditions inducing extreme precipitation over the eastern and western Mediterranean

    Science.gov (United States)

    Dayan, U.; Nissen, K.; Ulbrich, U.

    2015-11-01

    This review discusses published studies of heavy rainfall events over the Mediterranean Basin, combining them in a more general picture of the dynamic and thermodynamic factors and processes that produce heavy rain storms. It distinguishes the western and eastern Mediterranean in order to point out specific regional peculiarities. The crucial moisture for developing intensive convection over these regions can be originated not only from the adjacent Mediterranean Sea but also from distant upwind sources. Transport from remote sources is usually in the mid-tropospheric layers and associated with specific features and patterns of the larger-scale circulations. The synoptic systems (tropical and extratropical) that account for most of the major extreme precipitation events and the coupling of circulation and extreme rainfall patterns are presented. Heavy rainfall over the Mediterranean Basin is caused at times in concert by several atmospheric processes working at different atmospheric scales, such as local convection, upper synoptic-scale-level troughs, and mesoscale convective systems. Under tropical air-mass intrusions, convection generated by static instability seems to play a more important role than synoptic-scale vertical motions. Locally, the occurrence of torrential rains and their intensity is dependent on factors such as temperature profiles and implied instability, atmospheric moisture, and lower-level convergence.

  17. Future changes in precipitation and water resources for Kanto Region in Japan after application of pseudo global warming method and dynamical downscaling

    Directory of Open Access Journals (Sweden)

    Kenji Taniguchi

    2016-12-01

    New hydrological insights: In future climate conditions, results on the change in annual precipitation are scattered, with significant variations in mean annual precipitation and the standard deviation in very limited areas. In contrast, minimum annual precipitation is found to decrease and years with low rainfall to be more frequent. During the drier summer season, the minimum accumulated rainfall is expected to become smaller across a wide region in the future. In addition, frequency distributions of future daily precipitation show a decrease of weak precipitation and an increase of heavy precipitation. Such variations are unfavorable for water recharge and indicate that water resources management will become increasingly difficult in the future because of global warming. The lower rainfall conditions are due to the lower relative humidity, more frequent stable stratifications and sub-synoptic atmospheric conditions leading to higher-pressure anomalies around Japan.

  18. Land-atmosphere feedbacks in EURO-CORDEX: analysis and impact on the precipitation recycling in a changing climate

    Science.gov (United States)

    Cardoso, Rita M.; Soares, Pedro M. M.; Rios, Alexandre; Trigo, Ricardo M.

    2017-04-01

    Land-atmosphere interactions are known to play a key role on climate and are expected to be critical to understand its evolution as a consequence of climate change. These land-air feedbacks are of utmost importance in those regions and periods when the intensity of evapotranspiration is high and, at the same time, controlled by soil moisture availability. In the Mediterranean Basin, the amount of rainfall coming from evapotranspiration over land represents a relevant fraction of the total precipitation in the year. Furthermore, many of these areas are affected by water limitations and are expected to be more sensitive to the impact of climate change along the upcoming decades. The latent and sensible heat fluxes in the Euro-CORDEX simulations (0.11 and 0.44) are the starting point for an assessment of the expected changes in the surface evapotranspiration and evaporative fraction (EF) in a changing climate. The changes in the heat fluxes and EF between 2071-2100 and 1971-2000 exhibit a large spread. The majority of the models forecast an increase in EF in Scandinavia and a decrease in the Mediterranean and Iberia. The WRF model, is also used to explore 3D land-atmosphere coupling over the different regions within the European CORDEX domain, at 0.44 horizontal resolution and for a high resolution domain (9km) over the Iberian Peninsula (IP). We start our analysis by computing the recycling ratio, for the hindcast (1989-2009), through the method of Eltahir and Bras, as a first approach to quantify the intensity of land-atmosphere feedbacks and their impact on the rainfall regime. This method, much more accurate than analytical Integral Moisture Budget recycling models, allows us to explore the spatial distribution of recycling over Europe and therefore focus our analysis on the most sensitive regions. The highest recycling ratio occurs in central and eastern Europe in late spring and summer; where the percentage of precipitation from evapotranspiration is higher than

  19. Atmospheric circulation leading to record breaking precipitation and floods in southern Iberia in December 1876

    Science.gov (United States)

    Trigo, R. M.; Varino, F.; Vaquero, J.; Valente, M. A.

    2012-04-01

    The first week of December 1876 was marked by extreme weather conditions that affected the south-western sector of the Iberian Peninsula (IP), leading to an all-time record flow in both large international rivers running from Spain to Portugal, Tagus and Guadiana. As a direct consequence, several towns in centre and south IP suffered serious flood damage. These catastrophic floods were amplified by the occurrence of anomalously wet October and November months, as shown by recently digitised time series for both IP countries. These events resulted from the continuous pouring of precipitation registered between 29 November and 7 December, due to the consecutive Atlantic low-pressure systems and their associated frontal systems that reached the Iberian Peninsula. Using several different data sources, such as historical newspapers of that time, meteorological data recently digitised from several stations in Portugal and Spain and the recently available 20th Century Reanalysis (Compo et al., 2011), we were able (135 years afterwards), to study in detail the damage and the atmospheric circulation conditions associated with this event. The synoptic conditions were represented by 6 hourly fields of complementary variables, namely; 1) precipitation rate and mean sea level pressure (SLP); 2) precipitation rate and CAPE; 3) wind speed intensity and divergence at 250 hPa, 4) wind speed intensity and divergence also at 850 hPa; 5) air temperature at 850 hPa and geopotential height at 500 hPa; 6) wind speed barbs and specific moisture content at 850 hPa. Movies with all these variables were obtained for the 10-day sequence that spans between 29 November and 7 December. For two recently digitised stations in Portugal (Lisbon and Évora), the values of precipitation registered during those weeks were so remarkable that when we computed daily accumulated precipitation successively from 1 to 10 days, the episode of 1876 always stood as the maximum precipitation event, with the

  20. Geostationary Satellite Observation of Precipitable Water Vapor Using an Empirical Orthogonal Function (EOF based Reconstruction Technique over Eastern China

    Directory of Open Access Journals (Sweden)

    Man Sing Wong

    2015-05-01

    Full Text Available Water vapor, as one of the most important greenhouse gases, is crucial for both climate and atmospheric studies. Considering the high spatial and temporal variations of water vapor, a timely and accurate retrieval of precipitable water vapor (PWV is urgently needed, but has long been constrained by data availability. Our study derived the vertically integrated precipitable water vapor over eastern China using Multi-functional Transport Satellite (MTSAT data, which is in geostationary orbit with high temporal resolution. The missing pixels caused by cloud contamination were reconstructed using an Empirical Orthogonal Function (EOF decomposition method over both spatial and temporal dimensions. GPS meteorology data were used to validate the retrieval and the reconstructed results. The diurnal variation of PWV over eastern China was analyzed using harmonic analysis, which indicates that the reconstructed PWV data can depict the diurnal cycle of PWV caused by evapotranspiration and local thermal circulation.

  1. The impact of mineral fertilization and atmospheric precipitation on yield of field crops on family farms

    Directory of Open Access Journals (Sweden)

    Munćan Mihajlo

    2016-01-01

    Full Text Available The field crop production, as the most important branch of plant production of the Republic of Serbia, in the period 2002-2011, was carried out on an average of over 2.7 million hectares, 82.7% of which took place on the individual farms/family holdings. Hence, the subject of research in this paper covers yields of major field crops realized on family farms in the region of Vojvodina in the period 1972-2011. The main objective of the research is to study the interdependence of utilization of mineral fertilizers and atmospheric precipitation during the vegetation period and realized yields of major field crops on family farms in the observed period. The regression analysis was applied in order to verify dependencies and determine the form of dependence of achieved yields from examined variables. The results showed that the main limiting factors for obtaining high and stable yields of field crops is inadequate use of fertilizers and the lack of precipitation during the vegetation period.

  2. The winter trends in air temperature and atmospheric precipitation in the Moldova Region (Romania

    Directory of Open Access Journals (Sweden)

    Machidon Ovidiu-Miron

    2017-06-01

    Full Text Available The study is a comparative analysis of the characteristics of air temperature and atmospheric precipitations in winter seasons from the WMO reference periods (1961 - 1990, 1981 – 2010 compared with last 7 years (2010 – 2016. There is a continuous increase of air temperature in winter, from −2,0°C between 1961-1990, to −1,1°C between 2010-2016, so a heating of 0,9°C. In the last 7 years (2010-2016 the average number of frosty nights (nights with minimum temperature of ≤ −10°C was reduced by 18% compared to the period 1961-1990 and by 3% compared to the period 1981-2010. In the same period (2010 – 2016, the rainfall were higher in winter, respectively by 17% than during 1961-1990 and by 22% than during 1981-2010. There is an increase of torrential character of precipitation, more pronounced in the southern region of Moldova.

  3. Precipitation isotopes link regional climate patterns to water supply in a tropical mountain forest, eastern Puerto Rico

    Science.gov (United States)

    Scholl, Martha A.; Murphy, Sheila F.

    2014-01-01

    Like many mountainous areas in the tropics, watersheds in the Luquillo Mountains of eastern Puerto Rico have abundant rainfall and stream discharge and provide much of the water supply for the densely populated metropolitan areas nearby. Projected changes in regional temperature and atmospheric dynamics as a result of global warming suggest that water availability will be affected by changes in rainfall patterns. It is essential to understand the relative importance of different weather systems to water supply to determine how changes in rainfall patterns, interacting with geology and vegetation, will affect the water balance. To help determine the links between climate and water availability, stable isotope signatures of precipitation from different weather systems were established to identify those that are most important in maintaining streamflow and groundwater recharge. Precipitation stable isotope values in the Luquillo Mountains had a large range, from fog/cloud water with δ2H, δ18O values as high as +12 ‰, −0.73 ‰ to tropical storm rain with values as low as −127 ‰, −16.8 ‰. Temporal isotope values exhibit a reverse seasonality from those observed in higher latitude continental watersheds, with higher isotopic values in the winter and lower values in the summer. Despite the higher volume of convective and low-pressure system rainfall, stable isotope analyses indicated that under the current rainfall regime, frequent trade -wind orographic showers contribute much of the groundwater recharge and stream base flow. Analysis of rain events using 20 years of 15 -minute resolution data at a mountain station (643 m) showed an increasing trend in rainfall amount, in agreement with increased precipitable water in the atmosphere, but differing from climate model projections of drying in the region. The mean intensity of rain events also showed an increasing trend. The determination of recharge sources from stable isotope tracers indicates that water

  4. Atmospheric balance of the humidity and estimate of the precipitation recycled in Colombia according to the re-analysis NCEP/NCAR

    International Nuclear Information System (INIS)

    Cuartas, Adriana; Poveda, German

    2002-01-01

    The magnitudes of the entrance humidity flows and exit are considered and the amount of precipitable water at different levels from the atmospheric column on Colombia. The water balance is quantified in the Colombian atmosphere; the regions and the atmospheric levels of entrance and exit of humidity are identified. The hypothesis that in the long term the net atmospheric humidity influence must be equal to the average of long term of the net run-off is verified. In addition, the percentage of recycled precipitation is considered on the Colombian territory. The variability during the two phases of the ENSO is analyzed. The calculations are made with the information of the climatic project Reanalysis developed by the National Center for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR), with the collaboration of the National Oceanic and Atmospheric Administration (NOAA)/National Environmental Satellite of the U.S.A. For this work it was counted on monthly information of 41 years between 1958-1998. The hydrological information was obtained from the project Balances Hidrologicos de Colombia, 1999, made by the Posgrado de Recursos Hidraulicos, de la Universidad Nacional, with the support of COLCIENCIAS and the Unidad de Planeacion Minero Energetica-UPME. The results showed the average value of the net influence of humidity to the atmosphere of Colombia is of 5716 mm/year, with a great variability in both phases of the ENSO. The greater humidity advection towards Colombia occurs in the low levels of pressure (between 1000 and 850 hPa), and originating of all the directions, mainly of trade winds of the east and trade winds of the west. Also one was that the greater humidity transport towards Colombia occurs in trimesters DJF and MAM, with average values 505,1 and 606,6 mm/year, respectively. It was observed that the hypothesis that in the long term, the net atmospheric flux, is equal to the net terrestrial run-off, reasonably is adapted for

  5. Stable isotope characterization of pan-derived and directly sampled atmospheric water vapour

    International Nuclear Information System (INIS)

    Maric, R.; St. Amour, N.A.; Gibson, J.J.; Edwards, T.W.D.

    2002-01-01

    Isotopic characterization of atmospheric water vapour, δ A , and its temporal variability are important prerequisites for quantifying water balance of surface reservoirs and partitioning of evaporation and transpiration fluxes using isotope techniques. Here we present results from a detailed comparison of several methods for determining δ A in field situations, (i) by back-calculation from isotopic and micrometeorological monitoring of a steady-state terminal reservoir (standard Class-A evaporation pan) using boundary-layer mass transfer models [1], (ii) through direct (cryogenic) sampling of ambient atmospheric moisture, and (iii) using the precipitation-equilibrium approximation (i.e., δ A =δ P - ε*)

  6. WRF-model data assimilation studies of landfalling atmospheric rivers and orographic precipitation over Northern California

    Science.gov (United States)

    Eiserloh, Arthur J., Jr.

    In this study, data assimilation methods of 3-D variational analysis (3DVAR), observation nudging, and analysis (grid) nudging were evaluated in the Weather Research and Forecasting (WRF) model for a high-impact, multi-episode landfalling atmospheric river (AR) event for Northern California from 28 November to 3 December, 2012. Eight experiments were designed to explore various combinations of the data assimilation methods and different initial conditions. The short-to-medium range quantitative precipitation forecast (QPF) performances were tested for each experiment. Surface observations from the National Oceanic and Atmospheric Administration's (NOAA) Hydrometeorology Network (HMT), National Weather Service (NWS) radiosondes, and GPS Radio Occultation (RO) vertical profiles from the Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC) satellites were used for assimilation. Model results 2.5 days into the forecast showed slower timing of the 2nd AR episode by a few hours and an underestimation in AR strength. For the entire event forecasts, the non-grid-nudging experiments showed the lowest mean absolute error (MAE) for rainfall accumulations, especially those with 3DVAR. Higher-resolution initial conditions showed more realistic coastal QPFs. Also, a 3-h nudging time interval and time window for observation nudging and 3DVAR, respectively, may be too large for this type of event, and it did not show skill until 60-66 h into the forecast.

  7. Effects of atmospheric deposition of energy-related pollutants on water quality: a review and assessment

    International Nuclear Information System (INIS)

    Davis, M.J.

    1981-05-01

    The effects on surface-water quality of atmospheric pollutants that are generated during energy production are reviewed and evaluated. Atmospheric inputs from such sources to the aquatic environment may include trace elements, organic compounds, radionuclides, and acids. Combustion is the largest energy-related source of trace-element emissions to the atmosphere. This report reviews the nature of these emissions from coal-fired power plants and discusses their terrestrial and aquatic effects following deposition. Several simple models for lakes and streams are developed and are applied to assess the potential for adverse effects on surface-water quality of trace-element emissions from coal combustion. The probability of acute impacts on the aquatic environment appears to be low; however, more subtle, chronic effects are possible. The character of acid precipitation is reviewed, with emphasis on aquatic effects, and the nature of existing or potential effects on water quality, aquatic biota, and water supply is considered. The response of the aquatic environment to acid precipitation depends on the type of soils and bedrock in a watershed and the chemical characteristics of the water bodies in question. Methods for identifying regions sensitive to acid inputs are reviewed. The observed impact of acid precipitation ranges from no effects to elimination of fish populations. Coal-fired power plants and various stages of the nuclear fuel cycle release radionuclides to the atmosphere. Radioactive releases to the atmosphere from these sources and the possible aquatic effects of such releases are examined. For the nuclear fuel cycle, the major releases are from reactors and reprocessing. Although aquatic effects of atmospheric releases have not been fully quantified, there seems little reason for concern for man or aquatic biota

  8. Effects of atmospheric deposition of energy-related pollutants on water quality: a review and assessment

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.J.

    1981-05-01

    The effects on surface-water quality of atmospheric pollutants that are generated during energy production are reviewed and evaluated. Atmospheric inputs from such sources to the aquatic environment may include trace elements, organic compounds, radionuclides, and acids. Combustion is the largest energy-related source of trace-element emissions to the atmosphere. This report reviews the nature of these emissions from coal-fired power plants and discusses their terrestrial and aquatic effects following deposition. Several simple models for lakes and streams are developed and are applied to assess the potential for adverse effects on surface-water quality of trace-element emissions from coal combustion. The probability of acute impacts on the aquatic environment appears to be low; however, more subtle, chronic effects are possible. The character of acid precipitation is reviewed, with emphasis on aquatic effects, and the nature of existing or potential effects on water quality, aquatic biota, and water supply is considered. The response of the aquatic environment to acid precipitation depends on the type of soils and bedrock in a watershed and the chemical characteristics of the water bodies in question. Methods for identifying regions sensitive to acid inputs are reviewed. The observed impact of acid precipitation ranges from no effects to elimination of fish populations. Coal-fired power plants and various stages of the nuclear fuel cycle release radionuclides to the atmosphere. Radioactive releases to the atmosphere from these sources and the possible aquatic effects of such releases are examined. For the nuclear fuel cycle, the major releases are from reactors and reprocessing. Although aquatic effects of atmospheric releases have not been fully quantified, there seems little reason for concern for man or aquatic biota.

  9. Maximizing recovery of water-soluble proteins through acetone precipitation.

    Science.gov (United States)

    Crowell, Andrew M J; Wall, Mark J; Doucette, Alan A

    2013-09-24

    Solvent precipitation is commonly used to purify protein samples, as seen with the removal of sodium dodecyl sulfate through acetone precipitation. However, in its current practice, protein loss is believed to be an inevitable consequence of acetone precipitation. We herein provide an in depth characterization of protein recovery through acetone precipitation. In 80% acetone, the precipitation efficiency for six of 10 protein standards was poor (ca. ≤15%). Poor recovery was also observed for proteome extracts, including bacterial and mammalian cells. As shown in this work, increasing the ionic strength of the solution dramatically improves the precipitation efficiency of individual proteins, and proteome mixtures (ca. 80-100% yield). This is obtained by including 1-30 mM NaCl, together with acetone (50-80%) which maximizes protein precipitation efficiency. The amount of salt required to restore the recovery correlates with the amount of protein in the sample, as well as the intrinsic protein charge, and the dielectric strength of the solution. This synergistic approach to protein precipitation in acetone with salt is consistent with a model of ion pairing in organic solvent, and establishes an improved method to recover proteins and proteome mixtures in high yield. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Precipitation and runoff water quality from an urban parking lot and implications for tree growth

    Science.gov (United States)

    C. H. Pham; H. G. Halverson; G. M. Heisler

    1978-01-01

    The water quality of precipitation and runoff from a large parking lot in New Brunswick, New Jersey was studied during the early growing season, from March to June 1976. Precipitation and runoff from 10 storms were analyzed. The runoff was higher in all constituents considered except for P, Pb, and Cu. Compared with published values for natural waters, sewage effluent...

  11. Atmospheric water on Mars, energy estimates for extraction

    Science.gov (United States)

    Meyer, Tom

    1991-01-01

    The Mars atmosphere is considered as a resource for water to support a human expedition. Information obtained from the Viking mission is used to estimate the near-surface water vapor level. The variability over the diurnal cycle is examined and periods of greatest water abundance are identified. Various methods for extracting atmospheric water are discussed including energy costs and the means for optimizing water extraction techniques.

  12. Influence of land-atmosphere feedbacks on temperature and precipitation extremes in the GLACE-CMIP5 ensemble

    NARCIS (Netherlands)

    Lorenz, R.; Argueso, D.; Donat, M.G.; Pitman, A.J.; van den Hurk, B.J.J.M.; Berg, A; Lawrence, D.M.; Chéruy, F.; Ducharne, A.; Hagemann, S.; Meier, A.; Milly, P.C.D.; Seneviratne, S.I.

    2016-01-01

    We examine how soil moisture variability and trends affect the simulation of temperature and precipitation extremes in six global climate models using the experimental protocol of the Global Land-Atmosphere Coupling Experiment of the Coupled Model Intercomparison Project, Phase 5 (GLACE-CMIP5). This

  13. Influence of long-range transboundary transport on atmospheric water vapor mercury collected at the largest city of Tibet

    International Nuclear Information System (INIS)

    Huang, Jie; Kang, Shichang; Tian, Lide; Guo, Junming; Zhang, Qianggong; Cong, Zhiyuan; Sillanpää, Mika

    2016-01-01

    Monsoon circulation is an important process that affects long-range transboundary transport of anthropogenic contaminants such as mercury (Hg). During the Indian monsoon season of 2013, a total of 92 and 26 atmospheric water vapor samples were collected at Lhasa, the largest city of the Tibet, for Hg and major ions analysis, respectively. The relatively low pH/high electronic conductivity values, together with the fact that NH 4 + in atmospheric water vapor was even higher than that determined in precipitation of Lhasa, indicated the effects of anthropogenic perturbations through long-range transboundary atmospheric transport. Concentrations of Hg in atmospheric water vapor ranged from 2.5 to 73.7 ng L −1 , with an average of 12.5 ng L −1 . The elevated Hg and major ions concentrations, and electronic conductivity values were generally associated with weak acidic samples, and Hg mainly loaded with anthropogenic ions such as NH 4 + . The results of principal component analysis and trajectory analysis suggested that anthropogenic emissions from the Indian subcontinent may have largely contributed to the determined Hg in atmospheric water vapor. Furthermore, our study reconfirmed that below-cloud scavenging contribution was significant for precipitation Hg in Lhasa, and evaluated that on average 74.1% of the Hg in precipitation could be accounted for by below-cloud scavenging. - Highlights: • The low pH/high electronic conductivity was found in atmospheric water vapor. • Anthropogenic NH 4 + was higher than that determined in precipitation of Lhasa. • Elevated Hg and major ions levels were usually associated with weak acidic samples. • Hg in atmospheric water vapor was largely influenced by transboundary transport. • Below-cloud scavenging accounted for most Hg in precipitation.

  14. Influence of long-range transboundary transport on atmospheric water vapor mercury collected at the largest city of Tibet

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jie [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101 (China); Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, Mikkeli FI 50130 (Finland); Kang, Shichang, E-mail: shichang.kang@lzb.ac.cn [State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101 (China); Tian, Lide [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101 (China); Guo, Junming [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Qianggong; Cong, Zhiyuan [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101 (China); Sillanpää, Mika [Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, Mikkeli FI 50130 (Finland); and others

    2016-10-01

    Monsoon circulation is an important process that affects long-range transboundary transport of anthropogenic contaminants such as mercury (Hg). During the Indian monsoon season of 2013, a total of 92 and 26 atmospheric water vapor samples were collected at Lhasa, the largest city of the Tibet, for Hg and major ions analysis, respectively. The relatively low pH/high electronic conductivity values, together with the fact that NH{sub 4}{sup +} in atmospheric water vapor was even higher than that determined in precipitation of Lhasa, indicated the effects of anthropogenic perturbations through long-range transboundary atmospheric transport. Concentrations of Hg in atmospheric water vapor ranged from 2.5 to 73.7 ng L{sup −1}, with an average of 12.5 ng L{sup −1}. The elevated Hg and major ions concentrations, and electronic conductivity values were generally associated with weak acidic samples, and Hg mainly loaded with anthropogenic ions such as NH{sub 4}{sup +}. The results of principal component analysis and trajectory analysis suggested that anthropogenic emissions from the Indian subcontinent may have largely contributed to the determined Hg in atmospheric water vapor. Furthermore, our study reconfirmed that below-cloud scavenging contribution was significant for precipitation Hg in Lhasa, and evaluated that on average 74.1% of the Hg in precipitation could be accounted for by below-cloud scavenging. - Highlights: • The low pH/high electronic conductivity was found in atmospheric water vapor. • Anthropogenic NH{sub 4}{sup +} was higher than that determined in precipitation of Lhasa. • Elevated Hg and major ions levels were usually associated with weak acidic samples. • Hg in atmospheric water vapor was largely influenced by transboundary transport. • Below-cloud scavenging accounted for most Hg in precipitation.

  15. Acid Rain Examination and Chemical Composition of Atmospheric Precipitation in Tehran, Iran

    Directory of Open Access Journals (Sweden)

    Mohsen Saeedi

    2012-01-01

    Full Text Available Air pollution is one of the most important environmental problems in metropolitan cities like Tehran. Rain and snow, as natural events, may dissolve and absorb contaminants of the air and direct them onto the land or surface waters which become polluted. In the present study, precipitation samples were collected from an urbanized area of Tehran. They were analyzed for NO3-, PO43-, SO42-, pH, turbidity, Electrical Conductivity (EC, Cu, Fe, Zn, Pb, Ni, Cr, and Al. We demonstrate that snow samples were often more polluted and had lower pH than those from the rain, possibly as an effect of adsorption capability of snow flakes. Volume weighted average concentrations were calculated and compared with some other studies. Results revealed that Tehran's precipitations are much more polluted than those reported from other metropolitan cities. Cluster analysis revealed that studied parameters such as metals and acidity originated from the same sources, such as fuel combustion in residential and transportation sectors of Tehran.

  16. Determining Atmospheric Pressure Using a Water Barometer

    Science.gov (United States)

    Lohrengel, C. Frederick, II; Larson, Paul R.

    2012-01-01

    The atmosphere is an envelope of compressible gases that surrounds Earth. Because of its compressibility and nonuniform heating by the Sun, it is in constant motion. The atmosphere exerts pressure on Earth's surface, but that pressure is in constant flux. This experiment allows students to directly measure atmospheric pressure by measuring the…

  17. The Role of Atmospheric Aerosol Concentration on Deep Convective Precipitation: Cloud-Resolving Model Simulations

    Science.gov (United States)

    Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne

    2010-01-01

    Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds NRC [2001]." The aerosol effect on Clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path and the "semi-direct" effect on cloud coverage. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect, is even more complex, especially for mixed-phase convective clouds. In this paper, a cloud-resolving model (CRM) with detailed spectral-bin microphysics was used to examine the effect of aerosols on three different deep convective cloud systems that developed in different geographic locations: South Florida, Oklahoma and the Central Pacific, In all three cases, rain reaches the ground earlier for the low CCN (clean) case. Rain suppression is also evident in all three cases with high CCN (dirty) case. However, this suppression only occurs during the first hour of the simulations. During the mature stages of the simulations, the effects of increasing aerosol concentration range from rain suppression in the Oklahoma case, to almost no effect in the Florida case, to rain enhancement in the Pacific case. These results show the complexity of aerosol interactions with convection. The model results suggest that evaporative cooling is a key process in determining whether high CCN reduces or enhances precipitation. Stronger evaporative cooling can produce a stronger cold pool and thus stronger low-level convergence through interactions

  18. Chemistry and isotopic composition of precipitation and surface waters in Khumbu valley (Nepal Himalaya): N dynamics of high elevation basins

    International Nuclear Information System (INIS)

    Balestrini, Raffaella; Polesello, Stefano; Sacchi, Elisa

    2014-01-01

    We monitored the chemical and isotopic compositions of wet depositions, at the Pyramid International Laboratory (5050 m a.s.l.), and surrounding surface waters, in the Khumbu basin, to understand precipitation chemistry and to obtain insights regarding ecosystem responses to atmospheric inputs. The major cations in the precipitation were NH 4 + and Ca 2+ , whereas the main anion was HCO 3 − , which constituted approximately 69% of the anions, followed by NO 3 − , SO 4 2− and Cl − . Data analysis suggested that Na + , Cl − and K + were derived from the long-range transport of marine aerosols. Ca 2+ , Mg 2+ and HCO 3 − were related to rock and soil dust contributions and the NO 3 − and SO 4 2− concentrations were derived from anthropogenic sources. Furthermore, NH 4 + was derived from gaseous NH 3 scavenging. The isotopic composition of weekly precipitation ranged from − 1.9 to − 23.2‰ in δ 18 O, and from − 0.8 to − 174‰ in δ 2 H, with depleted values characterizing the central part of the monsoon period. The chemical composition of the stream water was dominated by calcite and/or gypsum dissolution. However, the isotopic composition of the stream water did not fully reflect the composition of the monsoon precipitation, which suggested that other water sources contributed to the stream flow. Precipitation contents for all ions were the lowest ones among those measured in high elevation sites around the world. During the monsoon periods the depositions were not substantially influenced by anthropogenic inputs, while in pre- and post-monsoon seasons the Himalayas could not represent an effective barrier for airborne pollution. In the late monsoon phase, the increase of ionic contents in precipitation could also be due to a change in the moisture source. The calculated atmospheric N load (0.30 kg ha −1 y −1 ) was considerably lower than the levels that were measured in other high-altitude environments. Nevertheless, the NO 3

  19. Satellite Observations of the Seasonal Evolution of Total Precipitable Water Vapour over the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    J. L. Palau

    2017-01-01

    Full Text Available This study shows satellite observations and new findings on the time and spatial distribution of the Total Precipitable Water (TPW column over the Mediterranean Sea throughout the year. Annual evolution and seasonality of the TPW column are shown and compared to the estimated net evaporation over the Mediterranean Sea. Daily spatiotemporal means are in good agreement with previous short-term field campaigns and also corroborate hypothesis and conclusions reached from previous mesoscale modelling studies: (a from a meteorological point of view, Mediterranean Basin should be considered as two different subbasins (the Western and the Eastern Mediterranean; (b accumulation processes may affect the radiative balance at regional scale and the summer precipitation regimes. Furthermore, these satellite observations constitute strong empirical evidences that, (a from late May to early October, contrary to what happens in the Eastern Mediterranean Basin (EMB, there is a net accumulation of TPW on the Western Mediterranean Basin (WMB that favours the instability of the atmosphere, (b there is a seasonal anticorrelation between the seasonal variability of the TPW column over the two Mediterranean subbasins, (c solar radiation can not be the only driver for the annual variability of the TPW column over the Mediterranean Sea, and (d both previous features are seasonally dependent and, therefore, their effects on the TPW column are attenuated by annual variability.

  20. An Analytical Formula for Potential Water Vapor in an Atmosphere of Constant Lapse Rate

    Directory of Open Access Journals (Sweden)

    Ali Varmaghani

    2012-01-01

    Full Text Available Accurate calculation of precipitable water vapor (PWV in the atmosphere has always been a matter of importance for meteorologists. Potential water vapor (POWV or maximum precipitable water vapor can be an appropriate base for estimation of probable maximum precipitation (PMP in an area, leading to probable maximum flood (PMF and flash flood management systems. PWV and POWV have miscellaneously been estimated by means of either discrete solutions such as tables, diagrams or empirical methods; however, there is no analytical formula for POWV even in a particular atmospherical condition. In this article, fundamental governing equations required for analytical calculation of POWV are first introduced. Then, it will be shown that this POWV calculation relies on a Riemann integral solution over a range of altitude whose integrand is merely a function of altitude. The solution of the integral gives rise to a series function which is bypassed by approximation of saturation vapor pressure in the range of -55 to 55 degrees Celsius, and an analytical formula for POWV in an atmosphere of constant lapse rate is proposed. In order to evaluate the accuracy of the suggested equation, exact calculations of saturated adiabatic lapse rate (SALR at different surface temperatures were performed. The formula was compared with both the diagrams from the US Weather Bureau and SALR. The results demonstrated unquestionable capability of analytical solutions and also equivalent functions.

  1. Retrieving Precipitable Water Vapor Data Using GPS Zenith Delays and Global Reanalysis Data in China

    Directory of Open Access Journals (Sweden)

    Peng Jiang

    2016-05-01

    Full Text Available GPS has become a very effective tool to remotely sense precipitable water vapor (PWV information, which is important for weather forecasting and nowcasting. The number of geodetic GNSS stations set up in China has substantially increased over the last few decades. However, GPS PWV derivation requires surface pressure to calculate the precise zenith hydrostatic delay and weighted mean temperature to map the zenith wet delay to precipitable water vapor. GPS stations without collocated meteorological sensors can retrieve water vapor using standard atmosphere parameters, which lead to a decrease in accuracy. In this paper, a method of interpolating NWP reanalysis data to site locations for generating corresponding meteorological elements is explored over China. The NCEP FNL dataset provided by the NCEP (National Centers for Environmental Prediction and over 600 observed stations from different sources was selected to assess the quality of the results. A one-year experiment was performed in our study. The types of stations selected include meteorological sites, GPS stations, radio sounding stations, and a sun photometer station. Compared with real surface measurements, the accuracy of the interpolated surface pressure and air temperature both meet the requirements of GPS PWV derivation in most areas; however, the interpolated surface air temperature exhibits lower precision than the interpolated surface pressure. At more than 96% of selected stations, PWV differences caused by the differences between the interpolation results and real measurements were less than 1.0 mm. Our study also indicates that relief amplitude exerts great influence on the accuracy of the interpolation approach. Unsatisfactory interpolation results always occurred in areas of strong relief. GPS PWV data generated from interpolated meteorological parameters are consistent with other PWV products (radio soundings, the NWP reanalysis dataset, and sun photometer PWV data. The

  2. Mapping Precipitation Patterns from the Stable Isotopic Composition of Surface Waters: Olympic Peninsula, Washington State

    Science.gov (United States)

    Anders, A. M.; Brandon, M. T.

    2008-12-01

    Available data indicate that large and persistent precipitation gradients are tied to topography at scales down to a few kilometers, but precipitation patterns in the majority of mountain ranges are poorly constrained at scales less than tens of kilometers. A lack of knowledge of precipitation patterns hampers efforts to understand the processes of orographic precipitation and identify the relationships between geomorphic evolution and climate. A new method for mapping precipitation using the stable isotopic composition of surface waters is tested in the Olympic Mountains of Washington State. Measured δD and δ18O of 97 samples of surface water are linearly related and nearly inseparable from the global meteoric water line. A linear orographic precipitation model extended to include in effects of isotopic fractionation via Rayleigh distillation predicts precipitation patterns and isotopic composition of surface water. Seven parameters relating to the climate and isotopic composition of source water are used. A constrained random search identifies the best-fitting parameter set. Confidence intervals for parameter values are defined and precipitation patterns are determined. Average errors for the best-fitting model are 4.8 permil in δD. The difference between the best fitting model and other models within the 95% confidence interval was less than 20%. An independent high-resolution precipitation climatology documents precipitation gradients similar in shape and magnitude to the model derived from surface water isotopic composition. This technique could be extended to other mountain ranges, providing an economical and fast assessment of precipitation patterns requiring minimal field work.

  3. Variability of seasonal and annual precipitation in Slovenia and its correlation with large-scale atmospheric circulation

    Directory of Open Access Journals (Sweden)

    Milošević Dragan D.

    2016-01-01

    Full Text Available This paper examines temporal and spatial variability and trends of annual and seasonal precipitation in Slovenia and their relationship with three atmospheric circulation patterns represented by their indices: North Atlantic Oscillation index (NAOi, Mediterranean Oscillation index (MOi andWestern Mediterranean Oscillation index (WeMOi. Data from 45 precipitation stations were used for the period 1963–2012.Mean annual precipitation varies from 736 mm in eastern Slovenia to 2,518 mm in northwestern Slovenia. A significant annual precipitation decrease (from −3% to −6% per decade is observed in western Slovenia. Significant negative trends are observed in southwestern Slovenia in summer (from −4% to −10% per decade and near the Adriatic coast in spring (from −6% to −10% per decade. Non-significant negative and positive trends are observed in winter and autumn, respectively. Results indicate significant correlations between winter precipitation and MOi (from −0.3 to −0.7, NAOi (from −0.3 to −0.6 andWeMOi (from 0.3 to 0.6. Significant We-MOi influence is observed in spring and autumn, while NAOi and MOi influence has not been detected. Annual precipitation and WeMOi are significantly correlated in central and eastern Slovenia, while significant NAOi and MOi influence is observed in western Slovenia (with the larger area covered by MOi influence.

  4. Cloud water and precipitation chemistry in a tropical montane forest, Monteverde, Costa Rica

    Science.gov (United States)

    Clark, Kenneth L.; Nadkarni, Nalini M.; Schaefer, Douglas; Gholz, Henry L.

    Cloud water, mist and precipitation samples were collected at two sites in a tropical montane forest (TMF), Monteverde, Costa Rica. Cloud water, mist and wind-driven ( u⩾2 m s -1) precipitation samples were collected with passive cloud water-type collectors, and precipitation at low windspeeds ( u<2 m -2) was sampled with a bulk precipitation-type collector. Concentrations of H +, NO -3, and NH +4 in cloud water were 132±150, 103±82, and 149±200 μmol ℓ -1 (mean±1 S.D., n=15), respectively. Concentrations of NO -3, NH +4, Ca 2+ and K + in cloud water samples collected at the middle and end of the dry season, which corresponded to biomass burning activities in the region, were significantly greater when compared to those collected early in the dry season. The mean concentration of H + in cloud water at Monteverde was lower, but concentrations of NO -3 and NH +4 were within the range of those collected at a number of montane sites in North America (62-195 μmol NO -3 ℓ -1 and 74-184 μmol NH +4 ℓ -1). Ion concentrations in mist were 2-24 times greater than those in both categories of precipitation. Ion concentrations in both categories of precipitation were generally within the range of those reported in bulk precipitation from other tropical premontane and TMF sites.

  5. Chemistry and isotopic composition of precipitation and surface waters in Khumbu valley (Nepal Himalaya): N dynamics of high elevation basins.

    Science.gov (United States)

    Balestrini, Raffaella; Polesello, Stefano; Sacchi, Elisa

    2014-07-01

    We monitored the chemical and isotopic compositions of wet depositions, at the Pyramid International Laboratory (5050 ma.s.l.), and surrounding surface waters, in the Khumbu basin, to understand precipitation chemistry and to obtain insights regarding ecosystem responses to atmospheric inputs. The major cations in the precipitation were NH4(+) and Ca(2+), whereas the main anion was HCO3(-), which constituted approximately 69% of the anions, followed by NO3(-), SO4(2-) and Cl(-). Data analysis suggested that Na(+), Cl(-) and K(+) were derived from the long-range transport of marine aerosols. Ca(2+), Mg(2+) and HCO3(-) were related to rock and soil dust contributions and the NO3(-) and SO4(2-) concentrations were derived from anthropogenic sources. Furthermore, NH4(+) was derived from gaseous NH3 scavenging. The isotopic composition of weekly precipitation ranged from -1.9 to -23.2‰ in δ(18)O, and from -0.8 to -174‰ in δ(2)H, with depleted values characterizing the central part of the monsoon period. The chemical composition of the stream water was dominated by calcite and/or gypsum dissolution. However, the isotopic composition of the stream water did not fully reflect the composition of the monsoon precipitation, which suggested that other water sources contributed to the stream flow. Precipitation contents for all ions were the lowest ones among those measured in high elevation sites around the world. During the monsoon periods the depositions were not substantially influenced by anthropogenic inputs, while in pre- and post-monsoon seasons the Himalayas could not represent an effective barrier for airborne pollution. In the late monsoon phase, the increase of ionic contents in precipitation could also be due to a change in the moisture source. The calculated atmospheric N load (0.30 kg ha(-1) y(-1)) was considerably lower than the levels that were measured in other high-altitude environments. Nevertheless, the NO3(-) concentrations in the surface waters

  6. The tritium content of precipitation and surface water in Austria in 1984

    International Nuclear Information System (INIS)

    Rank, D.; Rajner, V.; Lust, G.

    1985-01-01

    This report includes weighted monthly 3 H-means from 23 precipitation sampling stations, 3 H-concentrations of daily precipitation samples from the station Wien-Arsenal, and 3 H-concentrations of monthly samples from 17 surface water sampling stations. (Author)

  7. Carbonate precipitation in artificial soils as a sink for atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Renforth, P.; Manning, D.A.C.; Lopez-Capel, E.

    2009-01-01

    Turnover of C in soils is the dominant flux in the global C cycle and is responsible for transporting 20 times the quantity of anthropogenic emissions each year. This paper investigates the potential for soils to be modified with Ca-rich materials (e.g. demolition waste or basic slag) to capture some of the transferred C as geologically stable CaCO 3 . To test this principal, artificial soil known to contain Ca-rich minerals (Ca silicates and portlandite) was analysed from two sites across NE England, UK. The results demonstrate an average C content of 30 ± 15.3 Kg C m -2 stored as CaCO 3 , which is three times the expected organic C content and that it has accumulated at a rate of 25 ± 12.8 t C ha -1 a -1 since 1996. Isotopic analysis of the carbonates gave values between -6.4 per mille and -27.5 per mille for δ 13 C and -3.92 per mille and -20.89 per mille for δ 18 O, respectively (against V-PDB), which suggests that a combination of carbonate formation mechanisms are operating including the hydroxylation of gaseous CO 2 in solution, and the sequestration of degraded organic C with minor remobilisation/precipitation of lithogenic carbonates. This study implies that construction/development sites may be designed with a C capture function to sequester atmospheric C into the soil matrix with a maximum global potential of 290 Mt C a -1 .

  8. Atmospheric water budget over the western Himalayas in a regional ...

    Indian Academy of Sciences (India)

    with box is chosen discussion in the study. where, P is the precipitation, E is the evapora- tion, W is the precipitable water content, Q is vertically integrated ..... J J, Fiorino M and Potter G L 2002 NCEP-DOE. AMIP-II reanalysis (R-2); Bull. Am. Meteor. Soc. 83. 1631–1643. Kantha L H and Clayson C A 2000 Numerical models ...

  9. Tracking an atmospheric river in a warmer climate: from water vapor to economic impacts

    Science.gov (United States)

    Dominguez, Francina; Dall'erba, Sandy; Huang, Shuyi; Avelino, Andre; Mehran, Ali; Hu, Huancui; Schmidt, Arthur; Schick, Lawrence; Lettenmaier, Dennis

    2018-03-01

    Atmospheric rivers (ARs) account for more than 75 % of heavy precipitation events and nearly all of the extreme flooding events along the Olympic Mountains and western Cascade Mountains of western Washington state. In a warmer climate, ARs in this region are projected to become more frequent and intense, primarily due to increases in atmospheric water vapor. However, it is unclear how the changes in water vapor transport will affect regional flooding and associated economic impacts. In this work we present an integrated modeling system to quantify the atmospheric-hydrologic-hydraulic and economic impacts of the December 2007 AR event that impacted the Chehalis River basin in western Washington. We use the modeling system to project impacts under a hypothetical scenario in which the same December 2007 event occurs in a warmer climate. This method allows us to incorporate different types of uncertainty, including (a) alternative future radiative forcings, (b) different responses of the climate system to future radiative forcings and (c) different responses of the surface hydrologic system. In the warming scenario, AR integrated vapor transport increases; however, these changes do not translate into generalized increases in precipitation throughout the basin. The changes in precipitation translate into spatially heterogeneous changes in sub-basin runoff and increased streamflow along the entire Chehalis main stem. Economic losses due to stock damages increase moderately, but losses in terms of business interruption are significant. Our integrated modeling tool provides communities in the Chehalis region with a range of possible future physical and economic impacts associated with AR flooding.

  10. A Survey of Precipitation-Induced Atmospheric Cold Pools over Oceans and Their Interactions with the Larger-Scale Environment

    Science.gov (United States)

    Zuidema, Paquita; Torri, Giuseppe; Muller, Caroline; Chandra, Arunchandra

    2017-11-01

    Pools of air cooled by partial rain evaporation span up to several hundreds of kilometers in nature and typically last less than 1 day, ultimately losing their identity to the large-scale flow. These fundamentally differ in character from the radiatively-driven dry pools defining convective aggregation. Advancement in remote sensing and in computer capabilities has promoted exploration of how precipitation-induced cold pool processes modify the convective spectrum and life cycle. This contribution surveys current understanding of such cold pools over the tropical and subtropical oceans. In shallow convection with low rain rates, the cold pools moisten, preserving the near-surface equivalent potential temperature or increasing it if the surface moisture fluxes cannot ventilate beyond the new surface layer; both conditions indicate downdraft origin air from within the boundary layer. When rain rates exceed ˜ 2 mm h^{-1}, convective-scale downdrafts can bring down drier air of lower equivalent potential temperature from above the boundary layer. The resulting density currents facilitate the lifting of locally thermodynamically favorable air and can impose an arc-shaped mesoscale cloud organization. This organization allows clouds capable of reaching 4-5 km within otherwise dry environments. These are more commonly observed in the northern hemisphere trade wind regime, where the flow to the intertropical convergence zone is unimpeded by the equator. Their near-surface air properties share much with those shown from cold pools sampled in the equatorial Indian Ocean. Cold pools are most effective at influencing the mesoscale organization when the atmosphere is moist in the lower free troposphere and dry above, suggesting an optimal range of water vapor paths. Outstanding questions on the relationship between cold pools, their accompanying moisture distribution and cloud cover are detailed further. Near-surface water vapor rings are documented in one model inside but

  11. Model design for predicting extreme precipitation event impacts on water quality in a water supply reservoir

    Science.gov (United States)

    Hagemann, M.; Jeznach, L. C.; Park, M. H.; Tobiason, J. E.

    2016-12-01

    Extreme precipitation events such as tropical storms and hurricanes are by their nature rare, yet have disproportionate and adverse effects on surface water quality. In the context of drinking water reservoirs, common concerns of such events include increased erosion and sediment transport and influx of natural organic matter and nutrients. As part of an effort to model the effects of an extreme precipitation event on water quality at the reservoir intake of a major municipal water system, this study sought to estimate extreme-event watershed responses including streamflow and exports of nutrients and organic matter for use as inputs to a 2-D hydrodynamic and water quality reservoir model. Since extreme-event watershed exports are highly uncertain, we characterized and propagated predictive uncertainty using a quasi-Monte Carlo approach to generate reservoir model inputs. Three storm precipitation depths—corresponding to recurrence intervals of 5, 50, and 100 years—were converted to streamflow in each of 9 tributaries by volumetrically scaling 2 storm hydrographs from the historical record. Rating-curve models for concentratoin, calibrated using 10 years of data for each of 5 constituents, were then used to estimate the parameters of a multivariate lognormal probability model of constituent concentrations, conditional on each scenario's storm date and streamflow. A quasi-random Halton sequence (n = 100) was drawn from the conditional distribution for each event scenario, and used to generate input files to a calibrated CE-QUAL-W2 reservoir model. The resulting simulated concentrations at the reservoir's drinking water intake constitute a low-discrepancy sample from the estimated uncertainty space of extreme-event source water-quality. Limiting factors to the suitability of this approach include poorly constrained relationships between hydrology and constituent concentrations, a high-dimensional space from which to generate inputs, and relatively long run

  12. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle

    Science.gov (United States)

    Galewsky, Joseph; Steen-Larsen, Hans Christian; Field, Robert D.; Worden, John; Risi, Camille; Schneider, Matthias

    2016-12-01

    The measurement and simulation of water vapor isotopic composition has matured rapidly over the last decade, with long-term data sets and comprehensive modeling capabilities now available. Theories for water vapor isotopic composition have been developed by extending the theories that have been used for the isotopic composition of precipitation to include a more nuanced understanding of evaporation, large-scale mixing, deep convection, and kinetic fractionation. The technologies for in situ and remote sensing measurements of water vapor isotopic composition have developed especially rapidly over the last decade, with discrete water vapor sampling methods, based on mass spectroscopy, giving way to laser spectroscopic methods and satellite- and ground-based infrared absorption techniques. The simulation of water vapor isotopic composition has evolved from General Circulation Model (GCM) methods for simulating precipitation isotopic composition to sophisticated isotope-enabled microphysics schemes using higher-order moments for water and ice size distributions. The incorporation of isotopes into GCMs has enabled more detailed diagnostics of the water cycle and has led to improvements in its simulation. The combination of improved measurement and modeling of water vapor isotopic composition opens the door to new advances in our understanding of the atmospheric water cycle, in processes ranging from the marine boundary layer, through deep convection and tropospheric mixing, and into the water cycle of the stratosphere. Finally, studies of the processes governing modern water vapor isotopic composition provide an improved framework for the interpretation of paleoclimate proxy records of the hydrological cycle.

  13. Importance of Dry-Season Precipitation to the Water Resources of Monteverde, Costa Rica

    Science.gov (United States)

    Guswa, A. J.; Rhodes, A. L.

    2005-12-01

    Monteverde, Costa Rica harbors montane forests that exemplify the delicate balances among climate, hydrology, habitat, and development. Most of the annual precipitation to this region arrives during the wet season, but the importance of orographic precipitation during the dry and transitional seasons should not be underestimated. Changes in regional land-cover and global climate may lead to reduced precipitation and cloud cover and a subsequent decline in endemic species, and a boom in ecotourism has put stress on water resources. A recent attempt to withdraw water from a local stream led to a standoff between conservationists and business developers, and there is a clear need for hydrologic data and understanding in support of policy. Through signals observed in the stable isotopic composition of precipitation and streamflow, we seek to understand how precipitation from the drier seasons propagates through the hydrologic cycle. In precipitation, δ18O and δ2H are heaviest during the dry and transitional seasons and light during the rainy season, consistent with the condensation mechanisms and degree of rainout typical of these periods. The signal in d-excess indicates a contribution of recycled water to precipitation in Monteverde from late in the rainy season through the dry season. Attenuated versions of these seasonal signals propagate through to the stream samples and provide a means of determining the importance of dry-season precipitation to water resources for the region. Results from six catchments on the leeward slope indicate that the Brillante Gap in the continental divide exerts strong control on the input of orographic precipitation to the region. Disparities in the temporal signals of precipitation and streamflow isotopes indicate non-linear behavior in the hydrologic processes that move water through these catchments.

  14. Comparison of precipitation chemistry measurements obtained by the Canadian Air and Precipitation Monitoring Network and National Atmospheric Deposition Program for the period 1995-2004

    Science.gov (United States)

    Wetherbee, Gregory A.; Shaw, Michael J.; Latysh, Natalie E.; Lehmann, Christopher M.B.; Rothert, Jane E.

    2010-01-01

    Precipitation chemistry and depth measurements obtained by the Canadian Air and Precipitation Monitoring Network (CAPMoN) and the US National Atmospheric Deposition Program/National Trends Network (NADP/NTN) were compared for the 10-year period 1995–2004. Colocated sets of CAPMoN and NADP instrumentation, consisting of precipitation collectors and rain gages, were operated simultaneously per standard protocols for each network at Sutton, Ontario and Frelighsburg, Ontario, Canada and at State College, PA, USA. CAPMoN samples were collected daily, and NADP samples were collected weekly, and samples were analyzed exclusively by each network’s laboratory for pH, H + , Ca2+  , Mg2+  , Na + , K + , NH+4 , Cl − , NO−3 , and SO2−4 . Weekly and annual precipitation-weighted mean concentrations for each network were compared. This study is a follow-up to an earlier internetwork comparison for the period 1986–1993, published by Alain Sirois, Robert Vet, and Dennis Lamb in 2000. Median weekly internetwork differences for 1995–2004 data were the same to slightly lower than for data for the previous study period (1986–1993) for all analytes except NO−3 , SO2−4 , and sample depth. A 1994 NADP sampling protocol change and a 1998 change in the types of filters used to process NADP samples reversed the previously identified negative bias in NADP data for hydrogen-ion and sodium concentrations. Statistically significant biases (α = 0.10) for sodium and hydrogen-ion concentrations observed in the 1986–1993 data were not significant for 1995–2004. Weekly CAPMoN measurements generally are higher than weekly NADP measurements due to differences in sample filtration and field instrumentation, not sample evaporation, contamination, or analytical laboratory differences.

  15. Synoptic Disturbances Found in Precipitable Water Fields North of Equatorial Africa

    National Research Council Canada - National Science Library

    Patla, Jason

    1999-01-01

    The origin and structure of tropical synoptic scale precipitable water (PW) anomalies estimated from TOVS satellite observations are analyzed as they propagate eastward across northern Africa during MAM 1988...

  16. An analytical model for dispersion of material in the atmospheric planetary boundary layer in presence of precipitation

    International Nuclear Information System (INIS)

    Mayhoub, A.B.; Etman, S.M.

    1985-05-01

    An analytical model for the dispersion of particulates and finely divided material released into the atmosphere near the ground is presented. The possible precipitation when the particles are dense enough and large enough to have deposition velocity, is taken into consideration. The model is derived analytically in the mixing layer or Ekman boundary layer where the mixing process is a direct consequence of turbulent and convective motions generated in the boundary layer. (author)

  17. How increased extreme precipitation under future climate change affects plant water stress and water availability.

    Science.gov (United States)

    Eekhout, Joris P. C.; Hunink, Johannes E.; de Vente, Joris

    2017-04-01

    For many areas worldwide, increased rainfall intensity and frequency of extreme weather events are projected for the coming century. This will have effect on water security and soil erosion in large parts of the world. Here we present a detailed catchment-scale study, arguing that global and regional studies may be insufficiently accurate to describe actual impacts on the redistribution of water and the consequences for soil erosion. We applied a hydrological model, including infiltration excess surface runoff, coupled with an erosion model. The model was applied to 1 reference and 4 future climate scenarios (2 periods and 2 Representative Concentration Pathways), consisting of an ensemble of 9 Regional Climate Models. The climatic input for the future scenarios was bias-corrected using quantile mapping. Our results show a significant increase of plant water stress, reservoir inflow, soil erosion and reservoir sedimentation in all 4 future scenarios. Hence, a redistribution of water is expected, where agriculture may shift from rainfed to irrigated crops as a result of decreasing soil moisture and increased reservoir inflow. At the same time, reservoir sedimentation increases and threatens long-term sustainability of water storage and water security. Our results emphasize the role infiltration excess surface runoff and bias-correction methods play in the quantification of the impact of increased intense precipitation on water availability and soil erosion at the catchment scale.

  18. Influence of land-atmosphere feedbacks on temperature and precipitation extremes in the GLACE-CMIP5 ensemble

    Science.gov (United States)

    Lorenz, Ruth; Argueso, Daniel; Donat, Markus G.; Pitman, Andrew J.; van den Hurk, Bart; Berg, Alexis; Lawrence, David M.; Cheruy, Frederique; Ducharne, Agnes; Hagemann, Stefan; Meier, Arndt; Milly, Paul C.D.; Seneviratne, Sonia I

    2016-01-01

    We examine how soil moisture variability and trends affect the simulation of temperature and precipitation extremes in six global climate models using the experimental protocol of the Global Land-Atmosphere Coupling Experiment of the Coupled Model Intercomparison Project, Phase 5 (GLACE-CMIP5). This protocol enables separate examinations of the influences of soil moisture variability and trends on the intensity, frequency, and duration of climate extremes by the end of the 21st century under a business-as-usual (Representative Concentration Pathway 8.5) emission scenario. Removing soil moisture variability significantly reduces temperature extremes over most continental surfaces, while wet precipitation extremes are enhanced in the tropics. Projected drying trends in soil moisture lead to increases in intensity, frequency, and duration of temperature extremes by the end of the 21st century. Wet precipitation extremes are decreased in the tropics with soil moisture trends in the simulations, while dry extremes are enhanced in some regions, in particular the Mediterranean and Australia. However, the ensemble results mask considerable differences in the soil moisture trends simulated by the six climate models. We find that the large differences between the models in soil moisture trends, which are related to an unknown combination of differences in atmospheric forcing (precipitation, net radiation), flux partitioning at the land surface, and how soil moisture is parameterized, imply considerable uncertainty in future changes in climate extremes.

  19. Influence of land-atmosphere feedbacks on temperature and precipitation extremes in the GLACE-CMIP5 ensemble

    Science.gov (United States)

    Lorenz, Ruth; Argüeso, Daniel; Donat, Markus G.; Pitman, Andrew J.; van den Hurk, Bart; Berg, Alexis; Lawrence, David M.; Chéruy, Frédérique; Ducharne, Agnès.; Hagemann, Stefan; Meier, Arndt; Milly, P. C. D.; Seneviratne, Sonia I.

    2016-01-01

    We examine how soil moisture variability and trends affect the simulation of temperature and precipitation extremes in six global climate models using the experimental protocol of the Global Land-Atmosphere Coupling Experiment of the Coupled Model Intercomparison Project, Phase 5 (GLACE-CMIP5). This protocol enables separate examinations of the influences of soil moisture variability and trends on the intensity, frequency, and duration of climate extremes by the end of the 21st century under a business-as-usual (Representative Concentration Pathway 8.5) emission scenario. Removing soil moisture variability significantly reduces temperature extremes over most continental surfaces, while wet precipitation extremes are enhanced in the tropics. Projected drying trends in soil moisture lead to increases in intensity, frequency, and duration of temperature extremes by the end of the 21st century. Wet precipitation extremes are decreased in the tropics with soil moisture trends in the simulations, while dry extremes are enhanced in some regions, in particular the Mediterranean and Australia. However, the ensemble results mask considerable differences in the soil moisture trends simulated by the six climate models. We find that the large differences between the models in soil moisture trends, which are related to an unknown combination of differences in atmospheric forcing (precipitation, net radiation), flux partitioning at the land surface, and how soil moisture is parameterized, imply considerable uncertainty in future changes in climate extremes.

  20. Interannual variability of a precipitation gradient along the semi-arid catchment areas for the metropolitan region of Lima- Peru in relation to atmospheric circulation at the mesoscale

    Science.gov (United States)

    Otto, Marco; Seidel, Jochen; Trachte, Katja

    2013-04-01

    following questions. How is the interannual variability of the observed precipitation gradient related to atmospheric circulation east (Amazon basin) and west (south-east Pacific) of the study region? If those relations are quantifiable, are there any forecast potentials for the characteristics of the precipitation gradient during the raining season? The results of the study provide valuable information needed to understand the generation of rainfall in the frame of a case study for the largest metropolitan area that is located at the arid Pacific coast of Peru. This information may also be useful for local managers in order to optimise water resource management and land use strategies.

  1. Modeling of present and Eemian stable water isotopes in precipitation

    DEFF Research Database (Denmark)

    Sjolte, Jesper

    interglacial. Present day boundary conditions were used except for the insolation and the SST patterns. The modeled summer temperatures for the Northern Hemisphere were found to match proxy data well, with the large summer insolation anomalies causing warmer summers than for present day. The peak summer......The subject of this thesis is the modeling of the isotopic temperature proxies d18O, dD and deuterium excess in precipitation. Two modeling studies were carried out, one using the regional climate model, and one using a global climate model. In the regional study the model was run for the period...... 1959 to 2001 using meteorological data and a domain including Greenland and the surrounding North Atlantic. The model was found to reproduce the observed seasonal variability of temperature and precipitation well. In comparison with ice core data from Greenland and observations from coastal stations...

  2. A Monte Carlo model of crustal field influences on solar energetic particle precipitation into the Martian atmosphere

    Science.gov (United States)

    Jolitz, R. D.; Dong, C. F.; Lee, C. O.; Lillis, R. J.; Brain, D. A.; Curry, S. M.; Bougher, S.; Parkinson, C. D.; Jakosky, B. M.

    2017-05-01

    Solar energetic particles (SEPs) can precipitate directly into the atmospheres of weakly magnetized planets, causing increased ionization, heating, and altered neutral chemistry. However, strong localized crustal magnetism at Mars can deflect energetic charged particles and reduce precipitation. In order to quantify these effects, we have developed a model of proton transport and energy deposition in spatially varying magnetic fields, called Atmospheric Scattering of Protons and Energetic Neutrals. We benchmark the model's particle tracing algorithm, collisional physics, and heating rates, comparing against previously published work in the latter two cases. We find that energetic nonrelativistic protons precipitating in proximity to a crustal field anomaly will primarily deposit energy at either their stopping altitude or magnetic reflection altitude. We compared atmospheric ionization in the presence and absence of crustal magnetic fields at 50°S and 182°E during the peak flux of the 29 October 2003 "Halloween storm" SEP event. The presence of crustal magnetic fields reduced total ionization by 30% but caused ionization to occur over a wider geographic area.

  3. Isotope hydrology of precipitation, surface and ground waters in the Okanagan Valley, British Columbia, Canada

    Science.gov (United States)

    Wassenaar, L. I.; Athanasopoulos, P.; Hendry, M. J.

    2011-12-01

    SummaryRapid population growth in the intermontane, semi-arid, Okanagan Valley of Western Canada has led to water shortages with increasing debate over competing water interests. Nevertheless, the relationships between the various water resources of the Okanagan remain poorly defined. Stable isotopes of hydrogen ( δ2H) and oxygen ( δ18O) were used to assess rainfall importance and the sources and flux of water to and from rivers and lakes in watersheds, and to evaluate the origin of ground water resources. Precipitation isotopes resulted in a meteoric water line of δ2H = 6.6 ( δ18O) - 22.7 for the Okanagan Valley. Isotopic seasonality in precipitation was evident, with summer precipitation clearly affected by local recycling of water vapor. The 2H and 18O of surface waters were more positive than mean annual precipitation, indicative of basin-scale evaporation of surface waters; however, Okanagan Lake and its downstream river and lake system were isotopically synchronous, indicating that they behaved as a single well-mixed hydrologic unit. Isotopic mass-balance modeling revealed ˜35% of inflow to the Lake Okanagan watershed was lost to evaporation, validating a meteorological water balance model for the region. Highland bedrock was recharged with snow-melt and early spring rains, with the isotopic composition dependent on elevation. Ground waters in the Valley bottom aquifers west of Osoyoos were recharged by irrigation water obtained from the Okanagan River system, with no evidence of recharge connections from the highland bedrock.

  4. The removal of sulphate from mine water by precipitation as ettringite and the utilisation of the precipitate as a sorbent for arsenate removal.

    Science.gov (United States)

    Tolonen, Emma-Tuulia; Hu, Tao; Rämö, Jaakko; Lassi, Ulla

    2016-10-01

    The aim of this research was to investigate sulphate removal from mine water by precipitation as ettringite (Ca6Al2(SO4)3(OH)12·26H2O) and the utilisation of the precipitate as a sorbent for arsenate removal. The mine water sulphate concentration was reduced by 85-90% from the initial 1400 mg/L during ettringite precipitation depending on the treatment method. The precipitation conditions were also simulated with MINEQL + software, and the computational results were compared with the experimental results. The precipitated solids were characterised with X-ray diffraction and a scanning electron microscope. The precipitated solids were tested as sorbents for arsenate removal from the model solution. The arsenic(V) model solution concentration reduced 86-96% from the initial 1.5 mg/L with a 1 g/L sorbent dosage. The effect of initial arsenate concentration on the sorption of arsenate on the precipitate was studied and Langmuir, Freundlich, and Langmuir-Freundlich sorption isotherm models were fitted to the experimental data. The maximum arsenate sorption capacity (qm = 11.2 ± 4.7 mg/g) of the precipitate was obtained from the Langmuir-Freundlich isotherm. The results indicate that the precipitate produced during sulphate removal from mine water by precipitation as ettringite could be further used as a sorbent for arsenate removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Occurrence and Detection of Supercooled Water in the Atmosphere

    Science.gov (United States)

    1990-06-27

    Characteristics of Lidar Scattering from Snow and Ice Crystals in the Atmosphere," J. Appl. Meteor., Vol. 16, No. 1, pp. 70-80, January 1977. Pandey, P. C., E. G...Experiments Investigating the Effects of Cumulus Seeding on Mesoscale Circulations and Precipitation," Fourth Conference on Weather Modi - fication of...Aircraft Icing Durin Low-Level Flights, Rand note N-1311-AF, November 1979. Robinson, G. D., "Some Observations from Aircraft of Surface Albedo and

  6. Regional Precipitation Forecast with Atmospheric InfraRed Sounder (AIRS) Profile Assimilation

    Science.gov (United States)

    Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.

    2010-01-01

    Advanced technology in hyperspectral sensors such as the Atmospheric InfraRed Sounder (AIRS; Aumann et al. 2003) on NASA's polar orbiting Aqua satellite retrieve higher vertical resolution thermodynamic profiles than their predecessors due to increased spectral resolution. Although these capabilities do not replace the robust vertical resolution provided by radiosondes, they can serve as a complement to radiosondes in both space and time. These retrieved soundings can have a significant impact on weather forecasts if properly assimilated into prediction models. Several recent studies have evaluated the performance of specific operational weather forecast models when AIRS data are included in the assimilation process. LeMarshall et al. (2006) concluded that AIRS radiances significantly improved 500 hPa anomaly correlations in medium-range forecasts of the Global Forecast System (GFS) model. McCarty et al. (2009) demonstrated similar forecast improvement in 0-48 hour forecasts in an offline version of the operational North American Mesoscale (NAM) model when AIRS radiances were assimilated at the regional scale. Reale et al. (2008) showed improvements to Northern Hemisphere 500 hPa height anomaly correlations in NASA's Goddard Earth Observing System Model, Version 5 (GEOS-5) global system with the inclusion of partly cloudy AIRS temperature profiles. Singh et al. (2008) assimilated AIRS temperature and moisture profiles into a regional modeling system for a study of a heavy rainfall event during the summer monsoon season in Mumbai, India. This paper describes an approach to assimilate AIRS temperature and moisture profiles into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimensional variational (3DVAR) assimilation system (WRF-Var; Barker et al. 2004). Section 2 describes the AIRS instrument and how the quality indicators are used to intelligently select the highest-quality data for assimilation

  7. Modeling of present and Eemian stable water isotopes in precipitation

    DEFF Research Database (Denmark)

    Sjolte, Jesper

    The subject of this thesis is the modeling of the isotopic temperature proxies d18O, dD and deuterium excess in precipitation. Two modeling studies were carried out, one using the regional climate model, and one using a global climate model. In the regional study the model was run for the period...... the modeled isotopes do not agree with ice core data. The discrepancy between the model output and the ice core data is attributed to the boundary conditions, where changes in ice sheets and vegetation have not been accounted for....

  8. Atmospheric water budget over the western Himalayas in a regional ...

    Indian Academy of Sciences (India)

    Atmospheric water budget over the western Himalayas in a regional climate model. A P Dimri. Volume 121 Issue 4 August ... Keywords. Moisture feedback; western Himalayas; regional climate. ... New Delhi, India. Present address: Hydrospheric Atmospheric Research Center (HyARC), Nagoya University, Nagoya, Japan.

  9. The residence time of water in the atmosphere revisited

    NARCIS (Netherlands)

    Van Der Ent, Ruud J.; Tuinenburg, Obbe A.

    2017-01-01

    This paper revisits the knowledge on the residence time of water in the atmosphere. Based on state-of-the-art data of the hydrological cycle we derive a global average residence time of 8.9 ± 0.4 days (uncertainty given as 1 standard deviation). We use two different atmospheric moisture tracking

  10. The Role of Atmospheric Aerosol Concentration on Deep Convective Precipitation: Cloud-resolving Model Simulations

    Science.gov (United States)

    Tao, W.-K.; Li, X.; Khain, A.; Mastsui, T.; Lang, S.; Simpson, J.

    2007-01-01

    Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 20011. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds NRC [2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path and the "semi-direct" effect on cloud coverage. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect, is even more complex, especially for mixed-phase convective clouds. ln this paper, a cloud-resolving model (CRM) with detailed spectral-bin microphysics was used to examine the effect of aerosols on three different deep convective cloud systems that developed in different geographic locations: South Florida, Oklahoma and the Central Pacific. In all three cases, rain reaches the ground earlier for the low CCN (clean) case. Rain suppression is also evident in all three cases with high CCN (dirty) case. However, this suppression only occurs during the first hour of the simulations. During the mature stages of the simulations, the effects of increasing aerosol concentration range from rain suppression in the Oklahoma case, to almost no effect in the Florida case, to rain enhancement in the Pacific case. These results show the complexity of aerosol interactions with convection.

  11. Mercury and trace elements in cloud water and precipitation collected on Mt. Mansfield, Vermont.

    Science.gov (United States)

    Malcolm, Elizabeth G; Keeler, Gerald J; Lawson, Sean T; Sherbatskoy, Timothy D

    2003-08-01

    The lack of high quality measurements of Hg and trace elements in cloud and fog water led to the design of a new collector for clean sequential sampling of cloud and fog water. Cloud water was collected during nine non-precipitating cloud events on Mt. Mansfield, VT in the northeastern USA between August 1 and October 31, 1998. Sequential samples were collected during six of these events. Mercury cloud water concentrations ranged from 7.5 to 71.8 ng l(-1), with a mean of 24.8 ng l(-1). Liquid water content explained about 60% of the variability in Hg cloud concentrations. Highest Hg cloud water concentrations were found to be associated with transport from the Mid-Atlantic and Ohio River Valley, and lowest concentrations with transport from the north of Mt. Mansfield out of Canada. Twenty-nine event precipitation samples were collected during the ten-week cloud sampling period near the base of Mt. Mansfield as part of a long-term deposition study. The Hg concentrations of cloud water were similar to, but higher on average (median of 12.5 ng l(-1)) than Hg precipitation concentrations (median of 10.5 ng l(-1)). Cloud and precipitation samples were analyzed for fifteen trace elements including Mg, Cu, Zn, As, Cd and Pb by ICP-MS. Mean concentrations were higher in cloud water than precipitation for elements with predominately anthropogenic, but not crustal origin in samples from the same source region. One possible explanation is greater in-cloud scavenging of crustal elements in precipitating than non-precipitating clouds, and greater below-cloud scavenging of crustal than anthropogenic aerosols.

  12. Importance of orographic precipitation to the water resources of Monteverde, Costa Rica

    Science.gov (United States)

    Guswa, Andrew J.; Rhodes, Amy L.; Newell, Silvia E.

    2007-10-01

    Monteverde, Costa Rica harbors montane forests that exemplify the delicate balances among climate, hydrology, habitat, and development. Most of the annual precipitation to this region arrives during the wet season, but the importance of orographic precipitation during the dry and transitional seasons should not be underestimated. Development associated with ecotourism has put significant stress on water resources, and recent work has shown evidence that changes in regional land-cover and global climate may lead to reduced precipitation and cloud cover and a subsequent decline in endemic species. Precipitation samples collected from 2003 to 2005 reveal a seasonal signal in stable isotope composition, as measured by δ 18O and δ 2H, that is heaviest during the dry and transitional seasons. Attenuated versions of this signal propagate through to stream samples and provide a means of determining the importance of precipitation delivered by the trade winds during the dry and transitional seasons to water resources for the region. Results from six catchments on the leeward slope indicate that topography exerts a strong control on the importance of orographic precipitation to stream baseflow. The contributions are greatest in those catchments that are close to the Brillante Gap in the Continental Divide. Differences in the temporal variation of precipitation and streamflow isotope compositions provide insight to the hydrologic pathways that move water to the streams.

  13. Major mechanisms of atmospheric moisture transport and their role in extreme precipitation events

    Digital Repository Service at National Institute of Oceanography (India)

    Gimeno, L.; Dominguez, F.; Nieto, R.; Trigo, R.; Drumond, A.; Reason, C.J.C.; Taschetto, A.S.; Ramos, A.M.; RameshKumar, M.R.; Marengo, J.

    associated flooding or drought. We then conclude with a graphical summary of the impacts of precipitation extremes, highlighting the usefulness of this information to hydrologists and policymakers, and describe some future research challenges including...

  14. Investigation of the precipitation of Na2SO4 in supercritical water

    DEFF Research Database (Denmark)

    Voisin, T.; Erriguible, A.; Philippot, G.

    2017-01-01

    solubility in sub-and supercritical water is determined on a wide temperature range using a continuous set-up. Crystallite sizes formed after precipitation are measured with in situ synchrotron wide angle X-ray scattering (WAXS). Combining these experimental results, a numerical modeling of the precipitation......SuperCritical Water Oxidation process (SCWO) is a promising technology for treating toxic and/or complex chemical wastes with very good efficiency. Above its critical point (374 degrees C, 22.1 MPa), water exhibits particular properties and organic compounds can be easily dissolved and degraded...... with the addition of oxidizing agents. But these interesting properties imply a main drawback regarding inorganic compounds. Highly soluble at ambient temperature in water, these inorganics (such as salts) are no longer soluble in supercritical water and precipitate into solids, creating plugs in SCWO processes...

  15. Impact of precipitation spatial resolution on the hydrological response of an integrated distributed water resources model

    DEFF Research Database (Denmark)

    Fu, Suhua; Sonnenborg, Torben; Jensen, Karsten Høgh

    2011-01-01

    Precipitation is a key input variable to hydrological models, and the spatial variability of the input is expected to impact the hydrological response predicted by a distributed model. In this study, the effect of spatial resolution of precipitation on runoff , recharge and groundwater head...... was analyzed in the Alergaarde catchment in Denmark. Six different precipitation spatial resolutions were used as inputs to a physically based, distributed hydrological model, the MIKE SHE model. The results showed that the resolution of precipitation input had no apparent effect on annual water balance...... of the total catchment and runoff discharge hydrograph at watershed outlet. On the other hand, groundwater recharge and groundwater head were both aff ected. The impact of the spatial resolution of precipitation input is reduced with increasing catchment size. The effect on stream discharge is relatively low...

  16. Diagnosing Atmospheric Influences on the Interannual 18O/16O Variations in Western U.S. Precipitation

    Directory of Open Access Journals (Sweden)

    Kei Yoshimura

    2013-07-01

    Full Text Available Many climate proxies in geological archives are dependent on the isotopic content of precipitation (δ18Op, which over sub-annual timescales has been linked to temperature, condensation height, atmospheric circulation, and post-condensation exchanges in the western U.S. However, many proxies do not resolve temporal changes finer than interannual-scales. This study explores causes of the interannual variations in δ18Op within the western U.S. Simulations with the Isotope-incorporated Global Spectral Model (IsoGSM revealed an amplifying influence of post-condensation exchanges (i.e., raindrop evaporation and vapor equilibration on interannual δ18Op variations throughout the western U.S. Mid-latitude and subtropical vapor tagging simulations showed that the influence of moisture advection on δ18Op was relatively strong in the Pacific Northwest, but weak over the rest of the western U.S. The vapor tags correlated well with interannual variations in the 18O/16O composition of vapor, an indication that isotopes in vapor trace atmospheric circulation. However, vertical-tagging simulations revealed a strong influence of condensation height on δ18Op in California. In the interior of the western U.S., a strong temperature effect was found only after annual mean temperatures were weighted by monthly precipitation totals. These multiple influences on δ18Op complicate interpretations of western U.S. climate proxies that are derived from isotopes in precipitation.

  17. Maintaining Atmospheric Mass and Water Balance Within Reanalysis

    Science.gov (United States)

    Takacs, Lawrence L.; Suarez, Max; Todling, Ricardo

    2015-01-01

    This report describes the modifications implemented into the Goddard Earth Observing System Version-5 (GEOS-5) Atmospheric Data Assimilation System (ADAS) to maintain global conservation of dry atmospheric mass as well as to preserve the model balance of globally integrated precipitation and surface evaporation during reanalysis. Section 1 begins with a review of these global quantities from four current reanalysis efforts. Section 2 introduces the modifications necessary to preserve these constraints within the atmospheric general circulation model (AGCM), the Gridpoint Statistical Interpolation (GSI) analysis procedure, and the Incremental Analysis Update (IAU) algorithm. Section 3 presents experiments quantifying the impact of the new procedure. Section 4 shows preliminary results from its use within the GMAO MERRA-2 Reanalysis project. Section 5 concludes with a summary.

  18. Interaction of Convective Organization and Monsoon Precipitation, Atmosphere, Surface and Sea (INCOMPASS)

    Science.gov (United States)

    Turner, A. G.; Bhat, G. S.; Evans, J. G.; Madan, R.; Marsham, J. H.; Martin, G.; Mitra, A. K.; Mrudula, G.; Parker, D. J.; Pattnaik, S.; Rajagopal, E. N.; Taylor, C.; Tripathi, S. N.

    2016-12-01

    INCOMPASS will build on a field and aircraft measurement campaign from the 2016 monsoon onset to better understand and predict monsoon rainfall. The monsoon supplies the majority of water in South Asia, however modelling and forecasting the monsoon from days to the season ahead is limited by large model errors that develop quickly. Likely problems lie in physical parametrizations such as convection, the boundary layer and land surface. At the same time, lack of detailed observations prevents more thorough understanding of monsoon circulation and its interaction with the land surface; a process governed by boundary layer and convective cloud dynamics. From May to July 2016, INCOMPASS used a modified BAe-146 jet aircraft operated by the UK Facility for Airborne Atmospheric Measurements (FAAM), for the first project of this scale in India. The India and UK team flew around 100 hours of science sorties from bases in northern and southern India. Flights from Lucknow in the northern plains took measurements to the west and southeast to allow sampling of the complete contrast from dry desert air to the humid environment over the north Bay of Bengal. These routes were repeated in the pre-monsoon and monsoon phases, measuring contrasting surface and boundary layer structures. In addition, flights from the southern base in Bengaluru measured contrasts from the Arabian Sea, across the intense rains of the Western Ghats mountains, over the rain shadow in southeast India and over the southern Bay of Bengal. Flight planning was performed with the aid of forecasts from a new UK Met Office 4km limited area model. INCOMPASS also installed a network of surface flux towers, as well as operating a cloud-base ceilometer and performing intensive radiosonde launches from a supersite in Kanpur. This presentation will outline preliminary results from the field campaign including new observations of the surface, boundary layer structure and atmospheric profiles together with detailed

  19. The Impact of Urbanization on the Precipitation Component of the Water Cycle: A New Perspective

    Science.gov (United States)

    Shephard, J. Marshal

    2002-01-01

    It is estimated that by the year 2025, 60% of the world s population will live in cities (UNFP, 1999). As cities continue to grow, urban sprawl (e.g., the expansion of urban surfaces outward into rural surroundings) creates unique problems related to land use, transportation, agriculture, housing, pollution, and development. Urban expansion also has measurable impacts on environmental processes. Urban areas modify boundary layer processes through the creation of an urban heat island (UHI). The literature indicates that the signature of the urban heat island effect may be resolvable in rainfall patterns over and downwind of metropolitan areas. However, a recent U.S. Weather Research Program panel concluded that more observational and modeling research is needed in this area (Dabberdt et al. 2000). NASA and other agencies initiated programs such as the Atlanta Land-use Analysis: Temperature and Air Quality Project (ATLANTA) (Quattrochi et al. 1998) which aimed to identify and understand how urban heat islands impact the environment. However, a comprehensive assessment of the role of urban-induced rainfall in the global water and energy cycle (GWEC) and cycling of freshwater was not a primary focus of these efforts. NASA's Earth Science Enterprise (ESE) seeks to develop a scientific understanding of the Earth system and its response to natural or human-induced changes to enable improved prediction capability for climate, weather, and natural hazards (NASA, 2000). Within this mission, the ESE has three basic thrusts: science research to increase Earth system knowledge; an applications program to transfer science knowledge to practical use in society; and a technology program to enable new, better, and cheaper capabilities for observing the earth. Within this framework, a research program is underway to further address the co-relationship between land cover use and change (e.g. urban development) and its impact on key components of the GWEC (e.g., precipitation). This

  20. Long-Term cosmic ray experiment in the atmosphere: Energetic electron precipitation events during the 20-23 solar activity cycles.

    Science.gov (United States)

    Makhmutov, V. S.; Bazilevskaya, G. A.; Krainev, M. B.; Storini, M.

    2001-08-01

    More than 400 energetic electron precipitation events (EPEs) were observed in the Earth's Northern polar atmosphere (Murmansk region, 68°57'N, 33°03'E) during a long-term cosmic ray balloon experiment (from 1957 up to now). It is shown that the significant X-ray fluxes, caused by precipitating electrons at the top of the atmosphere, sometimes penetrated down to the atmospheric depth of ~60 g· cm-2 (about 20 km). It means that primary energy of precipitating electrons was more than ~ 6 10 MeV. Here we summarize only the characteristics of the energetic electron precipitation events recorded during solar activity cycles 20 to 23. We dis cuss results from the analyses of the interplanetary and geomagnetic conditions related to these events in the atmosphere.

  1. Modeling Caspian Sea water level oscillations under different scenarios of increasing atmospheric carbon dioxide concentrations

    Directory of Open Access Journals (Sweden)

    Roshan GholamReza

    2012-12-01

    Full Text Available Abstract The rapid rise of Caspian Sea water level (about 2.25 meters since 1978 has caused much concern to all five surrounding countries, primarily because flooding has destroyed or damaged buildings and other engineering structures, roads, beaches and farm lands in the coastal zone. Given that climate, and more specifically climate change, is a primary factor influencing oscillations in Caspian Sea water levels, the effect of different climate change scenarios on future Caspian Sea levels was simulated. Variations in environmental parameters such as temperature, precipitation, evaporation, atmospheric carbon dioxide and water level oscillations of the Caspian sea and surrounding regions, are considered for both past (1951-2006 and future (2025-2100 time frames. The output of the UKHADGEM general circulation model and five alternative scenarios including A1CAI, BIASF, BIMES WRE450 and WRE750 were extracted using the MAGICC SCENGEN Model software (version 5.3. The results suggest that the mean temperature of the Caspian Sea region (Bandar-E-Anzali monitoring site has increased by ca. 0.17°C per decade under the impacts of atmospheric carbon dioxide changes (r=0.21. The Caspian Sea water level has increased by ca. +36cm per decade (r=0.82 between the years 1951-2006. Mean results from all modeled scenarios indicate that the temperature will increase by ca. 3.64°C and precipitation will decrease by ca. 10% (182 mm over the Caspian Sea, whilst in the Volga river basin, temperatures are projected to increase by ca. 4.78°C and precipitation increase by ca. 12% (58 mm by the year 2100. Finally, statistical modeling of the Caspian Sea water levels project future water level increases of between 86 cm and 163 cm by the years 2075 and 2100, respectively.

  2. Modeling Caspian Sea water level oscillations under different scenarios of increasing atmospheric carbon dioxide concentrations.

    Science.gov (United States)

    Roshan, Gholamreza; Moghbel, Masumeh; Grab, Stefan

    2012-12-12

    The rapid rise of Caspian Sea water level (about 2.25 meters since 1978) has caused much concern to all five surrounding countries, primarily because flooding has destroyed or damaged buildings and other engineering structures, roads, beaches and farm lands in the coastal zone. Given that climate, and more specifically climate change, is a primary factor influencing oscillations in Caspian Sea water levels, the effect of different climate change scenarios on future Caspian Sea levels was simulated. Variations in environmental parameters such as temperature, precipitation, evaporation, atmospheric carbon dioxide and water level oscillations of the Caspian sea and surrounding regions, are considered for both past (1951-2006) and future (2025-2100) time frames. The output of the UKHADGEM general circulation model and five alternative scenarios including A1CAI, BIASF, BIMES WRE450 and WRE750 were extracted using the MAGICC SCENGEN Model software (version 5.3). The results suggest that the mean temperature of the Caspian Sea region (Bandar-E-Anzali monitoring site) has increased by ca. 0.17°C per decade under the impacts of atmospheric carbon dioxide changes (r=0.21). The Caspian Sea water level has increased by ca. +36cm per decade (r=0.82) between the years 1951-2006. Mean results from all modeled scenarios indicate that the temperature will increase by ca. 3.64°C and precipitation will decrease by ca. 10% (182 mm) over the Caspian Sea, whilst in the Volga river basin, temperatures are projected to increase by ca. 4.78°C and precipitation increase by ca. 12% (58 mm) by the year 2100. Finally, statistical modeling of the Caspian Sea water levels project future water level increases of between 86 cm and 163 cm by the years 2075 and 2100, respectively.

  3. DEVELOPMENT OF THE CONTACT PRECIPITATION METHOD FOR APPROPRIATE DEFLUORIDATION OF WATER

    DEFF Research Database (Denmark)

    Dahi, Elian

    1997-01-01

    This paper describes the development of defluoridation of water by contact precipitation, where fluoride water is mixed with calcium and phosphate and brought in contact with bone char which is already saturated with fluoride. The process is studied in jar test, in manually stirred buckets...

  4. SMEX02 Atmospheric Aerosol Optical Properties Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of observations of atmospheric parameters including spectral aerosol optical depths, precipitable water, sky radiance distributions and...

  5. Seasonal transfer of oxygen isotopes from precipitation and soil to the tree ring: source water versus needle water enrichment.

    Science.gov (United States)

    Treydte, Kerstin; Boda, Sonja; Graf Pannatier, Elisabeth; Fonti, Patrick; Frank, David; Ullrich, Bastian; Saurer, Matthias; Siegwolf, Rolf; Battipaglia, Giovanna; Werner, Willy; Gessler, Arthur

    2014-05-01

    For accurate interpretation of oxygen isotopes in tree rings (δ(18) O), it is necessary to disentangle the mechanisms underlying the variations in the tree's internal water cycle and to understand the transfer of source versus leaf water δ(18) O to phloem sugars and stem wood. We studied the seasonal transfer of oxygen isotopes from precipitation and soil water through the xylem, needles and phloem to the tree rings of Larix decidua at two alpine sites in the Lötschental (Switzerland). Weekly resolved δ(18) O records of precipitation, soil water, xylem and needle water, phloem organic matter and tree rings were developed. Week-to-week variations in needle-water (18) O enrichment were strongly controlled by weather conditions during the growing season. These short-term variations were, however, not significantly fingerprinted in tree-ring δ(18) O. Instead, seasonal trends in tree-ring δ(18) O predominantly mirrored trends in the source water, including recent precipitation and soil water pools. Modelling results support these findings: seasonal tree-ring δ(18) O variations are captured best when the week-to-week variations of the leaf water signal are suppressed. Our results suggest that climate signals in tree-ring δ(18) O variations should be strongest at temperate sites with humid conditions and precipitation maxima during the growing season. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  6. P.88 Regional Precipitation Forecast with Atmospheric Infrared Sounder (AIRS) Profiles

    Science.gov (United States)

    Chou, Shih-Hung; Zavodsky, Bradley; Jedlovec, Gary

    2010-01-01

    Prudent assimulation of AIRS thermodynamic profiles and quality indicators can improve initial conditions for regional weather models. In general, AIRS-enhanced analysis more closely resembles radiosondes than the CNTL; forecasts with AIRS profiles are generally closer to NAM analyses than CNTL for sensible weather parameters (not shown here). Assimilation of AIRS leads to an overall QPF improvement in 6-h accumulated precipitation forecases. Including AIRS profiles in assimilation process enhances the low-level instability and produces stronger updrafts and a better precipitation forecast than the CNTL run.

  7. Trends in persistent seasonal-scale atmospheric circulation patterns responsible for precipitation and temperature extremes in California

    Science.gov (United States)

    Swain, D. L.; Horton, D. E.; Singh, D.; Diffenbaugh, N. S.

    2015-12-01

    Long-lived anomalous atmospheric circulation patterns are often associated with surface weather extremes. This is particularly true from a hydroclimatic perspective in regions that have well-defined "wet seasons," where atmospheric anomalies that persist on a seasonal scale can lead to drought or (conversely) increase the risk of flood. Recent evidence suggests that both natural variability and global warming may be responsible for spatially and temporally heterogeneous changes in Northern Hemisphere atmospheric conditions over the past several decades. In this investigation, we assess observed trends in cool-season (Oct-May) circulation patterns over the northeastern Pacific Ocean which have historically been associated with precipitation and temperature extremes in California. We find that the occurrence of certain extreme seasonal-scale atmospheric configurations has changed substantially over the 1948-2015 period, and also that there has been a trend towards amplification of the cool-season mean state in this region. Notably, patterns similar to the persistent anticyclone associated with the extremely warm and dry conditions experienced during the ongoing 2012-2015 California drought occur more frequently in the second half of the observed record. This finding highlights the importance of examining changes in extreme and/or persistent atmospheric circulation configurations, which may exhibit different responses to natural and anthropogenic forcings than the mean state.

  8. Untangling the Impacts of Climate Variability on Atmospheric Rivers and Western U.S. Precipitation Using PERSIANN-CONNECT

    Science.gov (United States)

    Sellars, S. L.; Gao, X.; Hsu, K. L.; Sorooshian, S.; McCabe-Glynn, S.

    2014-12-01

    Atmospheric Rivers (ARs), the large plumes of moisture transported from the tropics, impact many aspects of society in the Western U.S. When ARs make landfall, they are often associated with torrential rains, swollen rivers, flash flooding, and mudslides. We demonstrate that by viewing precipitation events associated with ARs as "objects", calculating their physical characteristics (mean intensity (mm/hr), speed (km/hr), etc.), assigning environmental characteristics (e.g. phase of the El Nino Southern Oscillation) for each system, and then performing empirical analyses, we can reveal interactions between different climate phenomena. To perform this analysis, we use a unique object oriented data set based on the gridded, satellite precipitation data from the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) algorithm known as PERSIANN-CONNECT, for the period 3/2000 to 12/2010. The data is segmented into 4D objects (longitude, latitude, time and intensity). Each of the segmented precipitation systems is described by over 72 characteristics. A search of the PERSIANN-CONNECT database for all Western U.S. large-scale precipitation systems returns 626 systems. Out of the 626 large-scale precipitation systems, 200 occurred at the same time as documented Western U.S. land falling ARs (a list of ARs provided by Dr. Martin Ralph). Here we report the physical and environmental characteristics for these 200 storms including a comparison to the 426 non-AR storms. We also report results of an analysis of the δ18O measurements collected from Giant Forest, Sequoia National Park in the Southwestern Sierra Nevada Mountains (McCabe-Glynn et al., in prep.) for the 200 AR precipitation systems. For an overall assessment of the impacts of climate variability on all 626 precipitation systems, we focus on ENSO, and show that during El Nino/La Nina, as compared with Neutral phases of ENSO, the systems are larger (9505, 9097, vs. 6075km

  9. The water cycle in the general circulation model of the martian atmosphere

    Science.gov (United States)

    Shaposhnikov, D. S.; Rodin, A. V.; Medvedev, A. S.

    2016-03-01

    Within the numerical general-circulation model of the Martian atmosphere MAOAM (Martian Atmosphere: Observation and Modeling), we have developed the water cycle block, which is an essential component of modern general circulation models of the Martian atmosphere. The MAOAM model has a spectral dynamic core and successfully predicts the temperature regime on Mars through the use of physical parameterizations typical of both terrestrial and Martian models. We have achieved stable computation for three Martian years, while maintaining a conservative advection scheme taking into account the water-ice phase transitions, water exchange between the atmosphere and surface, and corrections for the vertical velocities of ice particles due to sedimentation. The studies show a strong dependence of the amount of water that is actively involved in the water cycle on the initial data, model temperatures, and the mechanism of water exchange between the atmosphere and the surface. The general pattern and seasonal asymmetry of the water cycle depends on the size of ice particles, the albedo, and the thermal inertia of the planet's surface. One of the modeling tasks, which results from a comparison of the model data with those of the TES experiment on board Mars Global Surveyor, is the increase in the total mass of water vapor in the model in the aphelion season and decrease in the mass of water ice clouds at the poles. The surface evaporation scheme, which takes into account the turbulent rise of water vapor, on the one hand, leads to the most complete evaporation of ice from the surface in the summer season in the northern hemisphere and, on the other hand, supersaturates the atmosphere with ice due to the vigorous evaporation, which leads to worse consistency between the amount of the precipitated atmospheric ice and the experimental data. The full evaporation of ice from the surface increases the model sensitivity to the size of the polar cap; therefore, the increase in the

  10. Responses of Cloud Type Distributions to the Large-Scale Dynamical Circulation: Water Budget-Related Dynamical Phase Space and Dynamical Regimes

    Science.gov (United States)

    Wong, Sun; Del Genio, Anthony; Wang, Tao; Kahn, Brian; Fetzer, Eric J.; L'Ecuyer, Tristan S.

    2015-01-01

    Goals: Water budget-related dynamical phase space; Connect large-scale dynamical conditions to atmospheric water budget (including precipitation); Connect atmospheric water budget to cloud type distributions.

  11. Atmospheric water budget over the South Asian summer monsoon region

    Science.gov (United States)

    Unnikrishnan, C. K.; Rajeevan, M.

    2018-04-01

    High resolution hybrid atmospheric water budget over the South Asian monsoon region is examined. The regional characteristics, variability, regional controlling factors and the interrelations of the atmospheric water budget components are investigated. The surface evapotranspiration was created using the High Resolution Land Data Assimilation System (HRLDAS) with the satellite-observed rainfall and vegetation fraction. HRLDAS evapotranspiration shows significant similarity with in situ observations and MODIS satellite-observed evapotranspiration. Result highlights the fundamental importance of evapotranspiration over northwest and southeast India on atmospheric water balance. The investigation shows that the surface net radiation controls the annual evapotranspiration over those regions, where the surface evapotranspiration is lower than 550 mm. The rainfall and evapotranspiration show a linear relation over the low-rainfall regions (budget shows annual, seasonal, and intra-seasonal variations. Evapotranspiration does not show a high intra-seasonal variability as compared to other water budget components. The coupling among the water budget anomalies is investigated. The results show that regional inter-annual evapotranspiration anomalies are not exactly in phase with rainfall anomalies; it is strongly influenced by the surface conditions and other atmospheric forcing (like surface net radiation). The lead and lag correlation of water budget components show that the water budget anomalies are interrelated in the monsoon season even up to 4 months lead. These results show the important regional interrelation of water budget anomalies on south Asian monsoon.

  12. Water vapor absorption in the atmospheric window at 239 GHz

    Science.gov (United States)

    Bauer, A.; Godon, M.; Carlier, J.; Ma, Q.

    1995-01-01

    Absolute absorption rates of pure water vapor and mixtures of water vapor and nitrogen have been measured in the atmospheric window at 239 GHz. The dependence on pressure as well as temperature has been obtained. The experimental data are compared with several theoretical or empirical models, and satisfactory agreement is obtained with the models involving a continuum; in the case of pure water vapor, the continuum contribution based upon recent theoretical developments gives good results. The temperature dependence is stronger than that proposed in a commonly used atmospheric transmission model.

  13. Extreme precipitation response to climate perturbations in an atmospheric mesoscale model

    NARCIS (Netherlands)

    Attema, J.J.; Loriaux, J.M.; Lenderink, G.

    2014-01-01

    Observations of extreme (sub) hourly precipitation at midlatitudes show a large dependency on the dew point temperature often close to 14% per degree—2 times the dependency of the specific humidity on dew point temperature which is given by the Clausius–Clapeyron (CC) relation. By simulating a

  14. A Holistic Analysis of the Effects of Discrete Precipitation Events and Temporal Atmospheric Energy Inputs on the Spatio-Temporal Patterns of Temperature in a Streambed

    Science.gov (United States)

    Brookfield, A. E.; Sudicky, E. A.; Park, Y.

    2009-05-01

    In recent years, there has been an increase in field-based research directed towards characterizing surface water/groundwater interactions using temperature as a tracer. In spite of this effort, relatively little computational work has been performed to provide insight and guidance towards these field-based studies using simulations where the pertinent hydrological, meteorological and surface/variably-saturated subsurface processes are simultaneously taken into account. This paper explores the use of temperature to identify the spatio-temporal patterns of groundwater contributions to streams under transient conditions as driven by discrete precipitation events and as affected by changing atmospheric thermal inputs. To quantify the factors affecting temperature patterns occurring in a stream bed, the HydroGeoSphere numerical model was recently enhanced to include the transport of thermal energy in both the surface and subsurface flow regimes, with full accounting of atmospheric thermal inputs. HydroGeoSphere is a fully-integrated surface/variably-saturated subsurface flow and transport model that is designed to simulate water flow, evapotranspiration/evaporation processes, and advective-dispersive heat and solute transport over the 2D land surface and in the 3D subsurface. A high-resolution 3D numerical simulation of a highly-characterized stream segment in Ontario, Canada was shown to mimic the spatio-temporal thermal patterns observed in the streambed, the surface water and the groundwater. Discrete rainfall events and diurnal fluctuations of atmospheric thermal inputs were found to affect the temperatures throughout the surface and the subsurface, in addition to the thermal energy exchange fluxes between the two regimes. The groundwater exfiltration and infiltration patterns along the stream bed are shown to play a primary role in the regulation of the temperatures in the hyporheic zone and in the surface water which has important implications regarding the

  15. Determination of low-level tritium concentrations in surface water and precipitation in the Czech Republic

    International Nuclear Information System (INIS)

    Maresova, Diana; Hanslik, Eduard; Sedlarova, Barbora; Juranova, Eva; Charles University, Prague

    2017-01-01

    Past tests of nuclear weapons in the atmosphere, nuclear energy facilities and tritium of natural origin are main sources of tritium in the environment. Thanks to its presence in environment and its favourable properties, tritium is used as a radiotracer. Since stopping of atmospheric nuclear tests, tritium in precipitation has been decreasing towards natural levels below 1 Bq l -1 and precise analyses of low level tritium activities are necessary. This paper focuses on tritium development at sites not influenced by any technogenic release of tritium in Elbe River basin (Bohemia) in the Czech Republic using liquid scintillation measurement with electrolytic enrichment. (author)

  16. LBA-ECO CD-02 Oxygen Isotopes of Plant Tissue Water and Atmospheric Water Vapor

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports the oxygen isotope signatures of water extracted from plant tissue (xylem from the stems and leaf tissue) and of atmospheric water vapor from...

  17. LBA-ECO CD-02 Oxygen Isotopes of Plant Tissue Water and Atmospheric Water Vapor

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports the oxygen isotope signatures of water extracted from plant tissue (xylem from the stems and leaf tissue) and of atmospheric water...

  18. Chemistry and isotopic composition of precipitation and surface waters in Khumbu valley (Nepal Himalaya): N dynamics of high elevation basins

    Energy Technology Data Exchange (ETDEWEB)

    Balestrini, Raffaella, E-mail: balestrini@irsa.cnr.it [Water Research Institute, National Research Council (IRSA-CNR), Via del Mulino 19, Brugherio, MB (Italy); Polesello, Stefano [Water Research Institute, National Research Council (IRSA-CNR), Via del Mulino 19, Brugherio, MB (Italy); Sacchi, Elisa [Department of Earth and Environmental Sciences, University of Pavia and IGG-CNR, Via Ferrata 1, 27100 Pavia (Italy)

    2014-07-01

    We monitored the chemical and isotopic compositions of wet depositions, at the Pyramid International Laboratory (5050 m a.s.l.), and surrounding surface waters, in the Khumbu basin, to understand precipitation chemistry and to obtain insights regarding ecosystem responses to atmospheric inputs. The major cations in the precipitation were NH{sub 4}{sup +} and Ca{sup 2+}, whereas the main anion was HCO{sub 3}{sup −}, which constituted approximately 69% of the anions, followed by NO{sub 3}{sup −}, SO{sub 4}{sup 2−} and Cl{sup −}. Data analysis suggested that Na{sup +}, Cl{sup −} and K{sup +} were derived from the long-range transport of marine aerosols. Ca{sup 2+}, Mg{sup 2+} and HCO{sub 3}{sup −} were related to rock and soil dust contributions and the NO{sub 3}{sup −} and SO{sub 4}{sup 2−} concentrations were derived from anthropogenic sources. Furthermore, NH{sub 4}{sup +} was derived from gaseous NH{sub 3} scavenging. The isotopic composition of weekly precipitation ranged from − 1.9 to − 23.2‰ in δ{sup 18}O, and from − 0.8 to − 174‰ in δ{sup 2}H, with depleted values characterizing the central part of the monsoon period. The chemical composition of the stream water was dominated by calcite and/or gypsum dissolution. However, the isotopic composition of the stream water did not fully reflect the composition of the monsoon precipitation, which suggested that other water sources contributed to the stream flow. Precipitation contents for all ions were the lowest ones among those measured in high elevation sites around the world. During the monsoon periods the depositions were not substantially influenced by anthropogenic inputs, while in pre- and post-monsoon seasons the Himalayas could not represent an effective barrier for airborne pollution. In the late monsoon phase, the increase of ionic contents in precipitation could also be due to a change in the moisture source. The calculated atmospheric N load (0.30 kg ha{sup −1} y{sup −1

  19. Influence of orbital forcing and solar activity on water isotopes in precipitation during the mid- and late Holocene

    Directory of Open Access Journals (Sweden)

    S. Dietrich

    2013-01-01

    Full Text Available In this study we investigate the impact of mid- and late Holocene orbital forcing and solar activity on variations of the oxygen isotopic composition in precipitation. The investigation is motivated by a recently published speleothem δ18O record from the well-monitored Bunker Cave in Germany. The record reveals some high variability on multi-centennial to millennial scales that does not linearly correspond to orbital forcing. Our model study is based on a set of novel climate simulations performed with the atmosphere general circulation model ECHAM5-wiso enhanced by explicit water isotope diagnostics. From the performed model experiments, we derive the following major results: (1 the response of both orbital and solar forcing lead to changes in surface temperatures and δ18O in precipitation with similar magnitudes during the mid- and late Holocene. (2 Past δ18O anomalies correspond to changing temperatures in the orbital driven simulations. This does not hold true if an additional solar forcing is added. (3 Two orbital driven mid-Holocene experiments, simulating the mean climate state approximately 5000 and 6000 yr ago, yield very similar results. However, if an identical additional solar activity-induced forcing is added, the simulated changes of surface temperatures as well as δ18O between both periods differ. We conclude from our simulation results that non-linear effects and feedbacks of the orbital and solar activity forcing substantially alter the δ18O in precipitation pattern and its relation to temperature change.

  20. Semiannual Variation in the Number of Energetic Electron Precipitation Events Recorded in the Polar Atmosphere

    Science.gov (United States)

    Stozhkov, Y. Ivanovich; Makhmutov, V. S.; Bazilevskaya, G. A.; Krainev, M. B.; Svirkhevskaya, A. K.; Svirzhevsky, N. S.; Mailin, S. Y.

    2003-07-01

    The analysis of the monthly numbers of Electron Precipitation Events (EPEs) recorded at Olenya station (Murmansk region) during 1970-1987, shows the semiannual variation with two maxima centered on April and September. We analyse the interplanetary plasma and geomagnetic indices data sets associated with the EPEs recorded. The possible relationship of this variation and RusselMcPherron, Equino ctial and Axial effects is discussed.

  1. Evaluation of precipitates used in strainer head loss testing: Part III. Long-term aluminum hydroxide precipitation tests in borated water

    International Nuclear Information System (INIS)

    Bahn, Chi Bum; Kasza, Ken E.; Shack, William J.; Natesan, Ken; Klein, Paul

    2011-01-01

    Research highlights: → Aluminum hydroxide precipitation boundary is similar to that for amorphous phase. → Various precipitation tests are combined into one map in temperature-'pH + p[Al] T '. → Flocculation tendency of precipitates depend on pH and total Al concentration. → DLVO theory explains qualitatively the dependency of flocculation tendency on pH. - Abstract: Long-term aluminum (Al) hydroxide precipitation tests were conducted in slightly alkaline solutions containing 2500 ppm boron. The solution temperature was cycled to obtain a temperature history more representative of emergency core cooling system temperatures after a loss-of-coolant accident. The observed Al precipitation boundary was close to predicted results for amorphous precipitates, which are higher than the solubility expected for crystalline forms. Bench-scale and loop head loss test results under various conditions were successfully combined into single map in a temperature - 'pH + p[Al] T ' domain, which yielded two bounding lines for Al hydroxide solubility in borated alkaline water that depend on whether or not loop head loss tests with Al alloy coupons are included. Precipitates were observed to form either as fine, cloudy suspensions, which showed very little tendency to settle, or as flocculated precipitates. The flocculation tendency of the precipitates can be qualitatively explained by a colloid stability theory or a phase diagram for protein solutions.

  2. Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations

    Science.gov (United States)

    Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne

    2007-12-01

    A two-dimensional cloud-resolving model with detailed spectral bin microphysics is used to examine the effect of aerosols on three different deep convective cloud systems that developed in different geographic locations: south Florida, Oklahoma, and the central Pacific. A pair of model simulations, one with an idealized low cloud condensation nuclei (CCN) (clean) and one with an idealized high CCN (dirty environment), is conducted for each case. In all three cases, rain reaches the ground earlier for the low-CCN case. Rain suppression is also evident in all three cases with high CCN. However, this suppression only occurs during the early stages of the simulations. During the mature stages of the simulations the effects of increasing aerosol concentration range from rain suppression in the Oklahoma case to almost no effect in the Florida case to rain enhancement in the Pacific case. The model results suggest that evaporative cooling in the lower troposphere is a key process in determining whether high CCN reduces or enhances precipitation. Stronger evaporative cooling can produce a stronger cold pool and thus stronger low-level convergence through interactions with the low-level wind shear. Consequently, precipitation processes can be more vigorous. For example, the evaporative cooling is more than two times stronger in the lower troposphere with high CCN for the Pacific case. Sensitivity tests also suggest that ice processes are crucial for suppressing precipitation in the Oklahoma case with high CCN. A comparison and review of other modeling studies are also presented.

  3. A Consistent Treatment of Microwave Emissivity and Radar Backscatter for Retrieval of Precipitation over Water Surfaces

    Science.gov (United States)

    Munchak, S. Joseph; Meneghini, Robert; Grecu, Mircea; Olson, William S.

    2016-01-01

    The Global Precipitation Measurement satellite's Microwave Imager (GMI) and Dual-frequency Precipitation Radar (DPR) are designed to provide the most accurate instantaneous precipitation estimates currently available from space. The GPM Combined Algorithm (CORRA) plays a key role in this process by retrieving precipitation profiles that are consistent with GMI and DPR measurements; therefore, it is desirable that the forward models in CORRA use the same geophysical input parameters. This study explores the feasibility of using internally consistent emissivity and surface backscatter cross-sectional (sigma(sub 0)) models for water surfaces in CORRA. An empirical model for DPR Ku and Ka sigma(sub 0) as a function of 10m wind speed and incidence angle is derived from GMI-only wind retrievals under clear-sky conditions. This allows for the sigma(sub 0) measurements, which are also influenced by path-integrated attenuation (PIA) from precipitation, to be used as input to CORRA and for wind speed to be retrieved as output. Comparisons to buoy data give a wind rmse of 3.7 m/s for Ku+GMI and 3.2 m/s for Ku+Ka+GMI retrievals under precipitation (compared to 1.3 m/s for clear-sky GMI-only), and there is a reduction in bias from GANAL background data (-10%) to the Ku+GMI (-3%) and Ku+Ka+GMI (-5%) retrievals. Ku+GMI retrievals of precipitation increase slightly in light (less than 1 mm/h) and decrease in moderate to heavy precipitation (greater than 1 mm/h). The Ku+Ka+GMI retrievals, being additionally constrained by the Ka reflectivity, increase only slightly in moderate and heavy precipitation at low wind speeds (less than 5 m/s) relative to retrievals using the surface reference estimate of PIA as input.

  4. Current-use pesticides in inland lake waters, precipitation, and air from Ontario, Canada.

    Science.gov (United States)

    Kurt-Karakus, Perihan Binnur; Teixeira, Camilla; Small, Jeff; Muir, Derek; Bidleman, Terry F

    2011-07-01

    Concentrations of current-use pesticides (CUPs) in water, zooplankton, precipitation, and air samples as well as stereoisomer fractions (SF; herbicidally active/total stereoisomers) of metolachlor were determined in water samples collected from 10 remote inland lakes in Ontario, Canada, between 2003 and 2005. The most frequently detected chemicals in lake water, precipitation, and air were α-endosulfan, atrazine, metolachlor, chlorpyrifos, chlorothalonil, and trifluralin, and α-endosulfan and chlorpyrifos were the chemicals detected frequently in zooplankton. Air concentrations of these CUPs were within the range of previously reported values for background sites in the Great Lakes basin. High detection frequency of CUPs in lake water and precipitation was attributed to high usage amounts, but some CUPs such as ametryn and disulfoton that were not used in Ontario were also detected. Mean bioaccumulation factors (wet wt) in zooplankton for endosulfan ranged from 160 to 590 and from 20 to 60 for chlorpyrifos. The overall median SF of metolachlor in precipitation samples (0.846) was similar to that of the commercial S-metolachlor (0.882). However, the median SF of metolachlor in water from all sampled inland lakes (0.806) was significantly lower compared with Ontario rivers (0.873) but higher compared with previous measurements in the Great Lakes (0.710). Lakes with smaller watershed areas showed higher SFs, supporting the hypothesis of stereoselective processing of deposited metolachlor within the watersheds, followed by transport to the lakes. Copyright © 2011 SETAC.

  5. Effects of Precipitation on Ocean Mixed-Layer Temperature and Salinity as Simulated in a 2-D Coupled Ocean-Cloud Resolving Atmosphere Model

    Science.gov (United States)

    Li, Xiaofan; Sui, C.-H.; Lau, K-M.; Adamec, D.

    1999-01-01

    A two-dimensional coupled ocean-cloud resolving atmosphere model is used to investigate possible roles of convective scale ocean disturbances induced by atmospheric precipitation on ocean mixed-layer heat and salt budgets. The model couples a cloud resolving model with an embedded mixed layer-ocean circulation model. Five experiment are performed under imposed large-scale atmospheric forcing in terms of vertical velocity derived from the TOGA COARE observations during a selected seven-day period. The dominant variability of mixed-layer temperature and salinity are simulated by the coupled model with imposed large-scale forcing. The mixed-layer temperatures in the coupled experiments with 1-D and 2-D ocean models show similar variations when salinity effects are not included. When salinity effects are included, however, differences in the domain-mean mixed-layer salinity and temperature between coupled experiments with 1-D and 2-D ocean models could be as large as 0.3 PSU and 0.4 C respectively. Without fresh water effects, the nocturnal heat loss over ocean surface causes deep mixed layers and weak cooling rates so that the nocturnal mixed-layer temperatures tend to be horizontally-uniform. The fresh water flux, however, causes shallow mixed layers over convective areas while the nocturnal heat loss causes deep mixed layer over convection-free areas so that the mixed-layer temperatures have large horizontal fluctuations. Furthermore, fresh water flux exhibits larger spatial fluctuations than surface heat flux because heavy rainfall occurs over convective areas embedded in broad non-convective or clear areas, whereas diurnal signals over whole model areas yield high spatial correlation of surface heat flux. As a result, mixed-layer salinities contribute more to the density differences than do mixed-layer temperatures.

  6. Shipboard and ground measurements of atmospheric particulate mercury and total mercury in precipitation over the Yellow Sea region.

    Science.gov (United States)

    Nguyen, Duc Luong; Kim, Jin Young; Shim, Shang-Gyoo; Ghim, Young Sung; Zhang, Xiao-Shan

    2016-12-01

    The first ever shipboard measurements for atmospheric particulate mercury (Hg(p)) over the Yellow Sea and ground measurements for atmospheric Hg(p) and total mercury (THg) in precipitation at the remote sites (Deokjeok and Chengshantou) and the urban sites (Seoul and Ningbo) surrounding the Yellow Sea were carried out during 2007-2008. The Hg(p) regional background concentration of 56.3 ± 55.6 pg m -3 over the Yellow Sea region is much higher than the typical background concentrations of Hg(p) in terrestrial environments (mercury emission sources from East Asia. The episodes of highly elevated Hg(p) concentrations at the Korean remote site were influenced through long-range transport from source regions in the Liaoning Province - one of China's most mercury-polluted regions and in the western region of North Korea. Interestingly, wet scavenging of atmospheric Hg(p) is the predominant mechanism regulating concentration of THg in precipitation at the Chinese sites; whereas, wet scavenging of gaseous oxidized mercury (GOM) might play the more important role than that of Hg(p) at the Korean sites. The highest annual wet and dry deposition fluxes of Hg were found at the Ningbo site. The comparison between wet and dry deposition fluxes suggested that dry deposition might play the more important role than wet deposition in Chinese urban areas (source regions); whereas, wet deposition is more important in Korean areas (downwind regions). Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Water vapour source impacts on oxygen isotope variability in tropical precipitation during Heinrich events

    Directory of Open Access Journals (Sweden)

    S. C. Lewis

    2010-06-01

    Full Text Available Water isotope records such as speleothems provide extensive evidence of past tropical hydrological changes. During Heinrich events, isotopic changes in monsoon regions have been interpreted as implying a widespread drying through the Northern Hemisphere tropics and an anti-phased precipitation response in the south. Here, we examine the sources of this variability using a water isotope-enabled general circulation model, Goddard Institute for Space Studies ModelE. We incorporate a new suite of vapour source distribution tracers to help constrain the impact of precipitation source region changes on the isotopic composition of precipitation and to identify nonlocal amount effects. We simulate a collapse of the North Atlantic meridional overturning circulation with a large freshwater input to the region as an idealised analogue to iceberg discharge during Heinrich events. An increase in monsoon intensity, defined by vertical wind shear, is modelled over the South American domain, with small decreases simulated over Asia. Simulated isotopic anomalies agree well with proxy climate records, with lighter isotopic values simulated over South America and enriched values across East Asia. For this particular abrupt climate event, we identify which climatic change is most likely linked to water isotope change – changes in local precipitation amount, monsoon intensity, water vapour source distributions or precipitation seasonality. We categorise individual sites according to the climate variability that water isotope changes are most closely associated with, and find that the dominant isotopic controls are not consistent across the tropics – simple local explanations, in particular, fall short of explaining water isotope variability at all sites. Instead, the best interpretations appear to be site specific and often regional in scale.

  8. Hydrologic response of catchments to precipitation: Quantification of mechanical carriers and origins of water

    Science.gov (United States)

    Park, Y.-J.; Sudicky, E.A.; Brookfield, A.E.; Jones, J.P.

    2011-01-01

    Precipitation-induced overland and groundwater flow and mixing processes are quantified to analyze the temporal (event and pre-event water) and spatial (groundwater discharge and overland runoff) origins of water entering a stream. Using a distributed-parameter control volume finite-element simulator that can simultaneously solve the fully coupled partial differential equations describing 2-D Manning and 3-D Darcian flow and advective-dispersive transport, mechanical flow (driven by hydraulic potential) and tracer-based hydrograph separation (driven by dispersive mixing as well as mechanical flow) are simulated in response to precipitation events in two cross sections oriented parallel and perpendicular to a stream. The results indicate that as precipitation becomes more intense, the subsurface mechanical flow contributions tend to become less significant relative to the total pre-event stream discharge. Hydrodynamic mixing can play an important role in enhancing pre-event tracer signals in the stream. This implies that temporally tagged chemical signals introduced into surface-subsurface flow systems from precipitation may not be strong enough to detect the changes in the subsurface flow system. It is concluded that diffusive/dispersive mixing, capillary fringe groundwater ridging, and macropore flow can influence the temporal sources of water in the stream, but any sole mechanism may not fully explain the strong pre-event water discharge. Further investigations of the influence of heterogeneity, residence time, geomorphology, and root zone processes are required to confirm the conclusions of this study. Copyright 2011 by the American Geophysical Union.

  9. Hydrologic response of catchments to precipitation: Quantification of mechanical carriers and origins of water

    Science.gov (United States)

    Park, Y.-J.; Sudicky, E. A.; Brookfield, A. E.; Jones, J. P.

    2011-12-01

    Precipitation-induced overland and groundwater flow and mixing processes are quantified to analyze the temporal (event and pre-event water) and spatial (groundwater discharge and overland runoff) origins of water entering a stream. Using a distributed-parameter control volume finite-element simulator that can simultaneously solve the fully coupled partial differential equations describing 2-D Manning and 3-D Darcian flow and advective-dispersive transport, mechanical flow (driven by hydraulic potential) and tracer-based hydrograph separation (driven by dispersive mixing as well as mechanical flow) are simulated in response to precipitation events in two cross sections oriented parallel and perpendicular to a stream. The results indicate that as precipitation becomes more intense, the subsurface mechanical flow contributions tend to become less significant relative to the total pre-event stream discharge. Hydrodynamic mixing can play an important role in enhancing pre-event tracer signals in the stream. This implies that temporally tagged chemical signals introduced into surface-subsurface flow systems from precipitation may not be strong enough to detect the changes in the subsurface flow system. It is concluded that diffusive/dispersive mixing, capillary fringe groundwater ridging, and macropore flow can influence the temporal sources of water in the stream, but any sole mechanism may not fully explain the strong pre-event water discharge. Further investigations of the influence of heterogeneity, residence time, geomorphology, and root zone processes are required to confirm the conclusions of this study.

  10. Short-range precipitation forecasts using assimilation of simulated satellite water vapor profiles and column cloud liquid water amounts

    Science.gov (United States)

    Wu, Xiaohua; Diak, George R.; Hayden, Cristopher M.; Young, John A.

    1995-01-01

    These observing system simulation experiments investigate the assimilation of satellite-observed water vapor and cloud liquid water data in the initialization of a limited-area primitive equations model with the goal of improving short-range precipitation forecasts. The assimilation procedure presented includes two aspects: specification of an initial cloud liquid water vertical distribution and diabatic initialization. The satellite data is simulated for the next generation of polar-orbiting satellite instruments, the Advanced Microwave Sounding Unit (AMSU) and the High-Resolution Infrared Sounder (HIRS), which are scheduled to be launched on the NOAA-K satellite in the mid-1990s. Based on cloud-top height and total column cloud liquid water amounts simulated for satellite data a diagnostic method is used to specify an initial cloud water vertical distribution and to modify the initial moisture distribution in cloudy areas. Using a diabatic initialization procedure, the associated latent heating profiles are directly assimilated into the numerical model. The initial heating is estimated by time averaging the latent heat release from convective and large-scale condensation during the early forecast stage after insertion of satellite-observed temperature, water vapor, and cloud water formation. The assimilation of satellite-observed moisture and cloud water, together withy three-mode diabatic initialization, significantly alleviates the model precipitation spinup problem, especially in the first 3 h of the forecast. Experimental forecasts indicate that the impact of satellite-observed temperature and water vapor profiles and cloud water alone in the initialization procedure shortens the spinup time for precipitation rates by 1-2 h and for regeneration of the areal coverage by 3 h. The diabatic initialization further reduces the precipitation spinup time (compared to adiabatic initialization) by 1 h.

  11. Scale decomposition of atmospheric water budget over West Africa during the monsoon 2006 from NCEP/GFS analyses

    Energy Technology Data Exchange (ETDEWEB)

    Bielli, Soline [Universite du Quebec a Montreal rate at OURANOS, Canadian Network for Regional Climate Modelling and Diagnostics, Montreal, QC (Canada); Laboratoire de Meteorologie Dynamique, Paris Cedex 05 (France); Roca, Remy [Laboratoire de Meteorologie Dynamique, Paris Cedex 05 (France)

    2010-07-15

    NCEP/GFS analysis is used to investigate the scale dependence and the interplay between the terms of the atmospheric water budget over West Africa using a dedicated decomposition methodology. The focus is on a 2-month period within the active monsoon period of 2006. Results show that the dominant scales of seasonal mean precipitation and moisture flux divergence over West Africa during the monsoon period are large scales (greater than 1,400 km) except over topography, where mean values of small scales (smaller than 900 km) are strong. Correlations between moisture flux divergences in monsoon and African Easterly Jet layers and precipitation indicate that precipitation is strongly correlated to moisture flux divergence via both large-scale and small-scale processes, but the correlation signal is quite different depending on the region and vertical layer considered. The analysis of the scales associated with the rainfall and the local evaporation over 3 different regions shows that positive correlation exists over the ocean between precipitation and evaporation especially at large scale. Over the continent south of the Sahel, the correlation is negative and driven by large scale. Over the northern part of Sahel, positive correlation is found, only at small scales during the active monsoon period. Lag correlation reveals that the maximum evaporation over the Sahel occurs 1-3 days after the maximum precipitation with maximum contribution from small-scale processes during the first day. This study shows that NCEP/GFS reproduces well the known atmospheric water budget features. It also reveals a new scale dependence of the relative role of each term of the atmospheric water budget. This indicates that such scale decomposition approach is helpful to clarify the functioning of the water cycle embedded in the monsoon system. (orig.)

  12. Role of surface and subsurface lateral water flows on summer precipitation in a complex terrain region: A WRF-Hydro case-study for Southern Germany

    Science.gov (United States)

    Rummler, Thomas; Arnault, Joel; Gochis, David; Kunstmann, Harald

    2017-04-01

    Recent developments in hydrometeorological modeling aim towards more sophisticated treatment of terrestrial hydrologic processes. The standard version of the Weather Research and Forecasting (WRF) model describes terrestrial water transport as a purely vertical process. The hydrologically enhanced version of WRF, namely WRF-Hydro, does account for lateral terrestrial water flows, which allows for a more comprehensive process description of the interdependencies between water- and energy fluxes at the land-atmosphere interface. In this study, WRF and WRF-Hydro are applied to the Bavarian Alpine region in southern Germany, a complex terrain landscape in a relatively humid, mid-latitude climate. Simulation results are validated with gridded and station observation of precipitation, temperature and river discharge. Differences between WRF and WRF-Hydro results are investigated with a joint atmospheric-terrestrial water budget analysis. Changes in the partitioning in (near-) surface runoff and percolation are prominent. However, values for evapotranspiration ET feature only marginal variations, suggesting that soil moisture content is not a limiting factor of ET in this specific region. Simulated precipitation fields during isolated summertime events still show appreciable differences, while differences in large-scale, multi-day rainy periods are less substantial. These differences are mainly related to differences in the moisture in- and outflow terms of the atmospheric water budget induced by the surface and sub-surface lateral redistribution of soil moisture in WRF-Hydro.

  13. Atmospheric radio refractivity and water vapour density at Oshodi ...

    African Journals Online (AJOL)

    Some statistical analyses have been carried out on radiosonde data on atmospheric humidity taken during the period 1990-1993 at two meteorological stations, Oshodi (6° 32'N, 3° 21E) and Kano (12° 5N, 8° 52E) in Nigeria. Monthly means and standard deviations of columnar radio refractivity N and columnar water vapour ...

  14. Annual Book of ASTM Standards, Part 23: Water; Atmospheric Analysis.

    Science.gov (United States)

    American Society for Testing and Materials, Philadelphia, PA.

    Standards for water and atmospheric analysis are compiled in this segment, Part 23, of the American Society for Testing and Materials (ASTM) annual book of standards. It contains all current formally approved ASTM standard and tentative test methods, definitions, recommended practices, proposed methods, classifications, and specifications. One…

  15. A condensed water method for measuring the atmospheric radon

    International Nuclear Information System (INIS)

    Wu Xinmin; Zhang Liping; Pan Xiaoqing

    1998-01-01

    The author summarizes the present situation of atmospheric Radon measurement, and introduces the working principle, working method and advantage and disadvantage of condensed water method in detail. The structure and function of the instrument used for this method, and the measuring result are discussed. The direction of further work is pointed out from now on

  16. Assessment of sources and pathways of atmospheric contaminants in precipitation over central Bohemia

    Czech Academy of Sciences Publication Activity Database

    Vach, Marek; Fišák, Jaroslav; Skřivan, Petr

    2004-01-01

    Roč. 68, 11S (2004), A461-A461 ISSN 0046-564X. [Annual V. M. Goldschmidt Conference /14./. 05.06.2004-11.06.2004, Copenhagen] R&D Projects: GA ČR(CZ) GA205/04/0060 Institutional research plan: CEZ:AV0Z3013912; CEZ:AV0Z3042911 Keywords : atmosphere * deposition * chemistry Subject RIV: DD - Geochemistry

  17. Dependence of precipitation of trace elements on pH in standard water

    Science.gov (United States)

    Verma, Shivcharan; Mohanty, Biraja P.; Singh, K. P.; Behera, B. R.; Kumar, Ashok

    2018-04-01

    The present work aimed to study the dependence of precipitation of trace elements on the pH of solution. A standard solution was prepared by using ultrapure deionized water (18.2 MΩ/cm) as the solvent and 11 water-soluble salts having different elements as solutes. Five samples of different pH values (2 acidic, 2 basic, and 1 neutral) were prepared from this standard solution. Sodium-diethyldithiocarbamate was used as the chelating agent to precipitate the metal ions present in these samples of different pH values. The targets were prepared by collecting these precipitates on mixed cellulose esters filter of 0.4 μm pore size by vacuum filtration. Elemental analysis of these targets was performed by particle-induced X-ray emission (PIXE) using 2.7 MeV protons from the single Dee variable energy cyclotron at Panjab University, Chandigarh, India. PIXE data were analyzed using GUPIXWIN software. For most of the elements, except Hg with oxidation state +2, such as Co, Ni, Zn, Ba, and Cd, a general trend of enhancement in precipitation was observed with the increase in pH. However, for other elements such as V, As, Mo, Ag, and Bi, which have oxidation state other than +2, no definite pattern was observed. Precipitation of Ba and As using this method was negligible at all five pH values. From these results, it can be concluded that the precipitation and recovery of elements depend strongly on the pH of the water sample.

  18. Validation of Satellite Precipitation Products Using Local Rain Gauges to Support Water Assessment in Cochabamba, Bolivia

    Science.gov (United States)

    Saavedra, O.

    2017-12-01

    The metropolitan region of Cochabamba has been struggling for a consistent water supply master plan for years. The limited precipitation intensities and growing water demand have led to severe water conflicts since 2000 when the fight for water had international visibility. A new dam has just placed into operation, located at the mountain range north of the city, which is the hope to fulfill partially water demand in the region. Looking for feasible water sources and projects are essential to fulfill demand. However, the limited monitoring network composed by conventional rain gauges are not enough to come up with the proper aerial precipitation patterns. This study explores the capabilities of GSMaP-GPM satellite products combined with local rain gauge network to obtain an enhanced product with spatial and temporal resolution. A simple methodology based on penalty factors is proposed to adjust GSMaP-GPM intensities on grid-by-grid basis. The distance of an evaluated grid to the surrounding rain gauges was taken into account. The final correcting factors were obtained by iteration, at this particular case of study four iterations were enough to reduce the relative error. A distributed hydrological model was forced with the enhanced precipitation product to simulate the inflow to the new operating dam. Once the model parameters were calibrated and validated, forecast simulations were run. For the short term, the precipitation trend was projected using exponential equation. As for the long term projection, precipitation and temperature from the hadGEM2 and MIROC global circulation model outputs were used where the last one was found in closer agreement of predictions in the past. Overall, we found out that the amount of 1000 l/s for water supply to the region should be possible to fulfill till 2030. Beyond this year, the intake of two neighboring basins should be constructed to increase the stored volume. This is study was found particularly useful to forecast river

  19. Atmospheric and precipitation sounding with polarimetric radio-occultations aboard PAZ LEO

    Science.gov (United States)

    Padulles, Ramon; Cardellach, Estel; Tomás, Sergio; Oliveras, Santi; Rius, Antonio; de la Torre, Manuel; Turk, Joseph; Ao, Chi; Kursinski, Robert; Shreiner, Bill; Ector, Dave; Cucurull, Lidia; Wickert, Jens

    2015-04-01

    The Radio Occultation and Heavy Precipitation experiment aboard the PAZ Low Earth Orbiter (ROHP-PAZ) is a mission of opportunity: The Spanish Ministry of Science and Innovation (MICINN) approved in 2009 a proposal to include a polarimetric Global Navigation Satellite System (GNSS) Radio-Occultation (RO) payload on board of the Spanish Earth Observation satellite PAZ. This will be a new technique that has never been tested before, that aims to improve the knowledge of the precipitation through simultaneous thermodynamic and vertical rain profiles. The concept is similar to that used in some polarimetric weather radars: to measure the differential phase shift between the two polarimetric antennas, although here we will use the forward scattering geometry instead of the backscattering.The depolarization effect increases as the propagation line aligns with the plane of the drops' flattening (nominally perpendicular to the local gravity, i.e., parallel to the local horizon). The RO signals cross the lower troposphere tangentially, i.e., along the local horizon, which should maximize the depolarization effect. The satellite launch is scheduled for March 2015, and it will be followed by a 6-month commissioning phase period and has an expected life of 7 years, with a goal of 10 years. A sensitivity analysis have been performed, showing that we should be able to detect the 90% of all the events with along-ray averaged rain rate higher than 5 mm/h. Also, a ground field campaign has been conducted prior to the launch of the satellite. Results from the campaign also show a good correlation between phase shifts increases and heavy rain events. We will present here the status of the mission, which will have been launched few weeks before the EGU, together with some preliminary data analysis from both the actual satellite data and the prior-to-launch work.

  20. Does the uncertainty in the representation of terrestrial water flows affect precipitation predictability? A WRF-Hydro ensemble analysis for Central Europe

    Science.gov (United States)

    Arnault, Joel; Rummler, Thomas; Baur, Florian; Lerch, Sebastian; Wagner, Sven; Fersch, Benjamin; Zhang, Zhenyu; Kerandi, Noah; Keil, Christian; Kunstmann, Harald

    2017-04-01

    Precipitation predictability can be assessed by the spread within an ensemble of atmospheric simulations being perturbed in the initial, lateral boundary conditions and/or modeled processes within a range of uncertainty. Surface-related processes are more likely to change precipitation when synoptic forcing is weak. This study investigates the effect of uncertainty in the representation of terrestrial water flows on precipitation predictability. The tools used for this investigation are the Weather Research and Forecasting (WRF) model and its hydrologically-enhanced version WRF-Hydro, applied over Central Europe during April-October 2008. The WRF grid is that of COSMO-DE, with a resolution of 2.8 km. In WRF-Hydro, the WRF grid is coupled with a sub-grid at 280 m resolution to resolve lateral terrestrial water flows. Vertical flow uncertainty is considered by modifying the parameter controlling the partitioning between surface runoff and infiltration in WRF, and horizontal flow uncertainty is considered by comparing WRF with WRF-Hydro. Precipitation predictability is deduced from the spread of an ensemble based on three turbulence parameterizations. Model results are validated with E-OBS precipitation and surface temperature, ESA-CCI soil moisture, FLUXNET-MTE surface evaporation and GRDC discharge. It is found that the uncertainty in the representation of terrestrial water flows is more likely to significantly affect precipitation predictability when surface flux spatial variability is high. In comparison to the WRF ensemble, WRF-Hydro slightly improves the adjusted continuous ranked probability score of daily precipitation. The reproduction of observed daily discharge with Nash-Sutcliffe model efficiency coefficients up to 0.91 demonstrates the potential of WRF-Hydro for flood forecasting.

  1. Estimating the reproduction quality of precipitation over the north atlantic and influence of the hydrostatic approximation in the WRF-ARW atmospheric model

    Science.gov (United States)

    Gavrikov, A. V.

    2017-03-01

    The Weather Research and Forecast numerical model (WRF) with the dynamic Advanced Research WRF (ARW) solver was used to simulate the winter (January 2016) and summer (July 2015) atmospheric state over the North Atlantic with a high (15 km) spatial resolution. The quality of precipitation modeling was validated by remote sensing Global Precipitation Measurements (GPM) data and atmospheric ERA-Interim reanalysis. Nonhydrostatic and hydrostatic equations for the vertical velocity were additionally used to investigate their influence on the accuracy of the precipitation modeling results. It was shown that the model in this configuration satisfactorily reproduces the precipitation field. No evidence of hydrostatic approximation was revealed (over a simulation domain with a resolution of 15 km, simplified topography, and parameterizations of convection and microphysical processes).

  2. Improvement of humidity resistance of water soluble core by precipitation method

    Directory of Open Access Journals (Sweden)

    Zhang Long

    2011-05-01

    Full Text Available Water soluble core has been widely used in manufacturing complex metal components with hollow configurations or internal channels; however, the soluble core can absorb water easily from the air at room temperature. To improve the humidity resistance of the water soluble core and optimize the process parameters applied in manufacturing of the water soluble core, a precipitation method and a two-level-three-full factorial central composite design were used, respectively. The properties of the cores treated by the precipitation method were compared with that without any treatment. Through a systematical study by means of both an environmental scanning electron microscope (ESEM and an energy dispersive X-ray (EDX analyzer, the results indicate that the hygroscopicity can be reduced by 20% and the obtained optimal process conditions for three critical control factors affecting the hygroscopicity are 0.2 g·mL-1 calcium chloride concentration, 4% water concentration and 0 min ignition time. The porous surface coated by calcium chloride and the high humidity resistance products generated in the precipitation reaction between calcium chloride and potassium carbonate may contribute to the lower hygroscopicity.

  3. Numerical Estimation of the Formation Process of Anthropogenic Precipitation in the Atmosphere

    Directory of Open Access Journals (Sweden)

    Gvozdyakov Dmitriy V.

    2017-01-01

    Full Text Available The processes of condensation of sulfur trioxide SO3 and water vapor H2O. Sulfuric anhydride is formed in flues of thermal power plants (TPP by partial oxidation of SO2 (up to 5 % of the total SO2 from the combustion of high-sulfur fuels, and belongs to a class of mild-hazard products. Sulfuric anhydride in the interaction with water vapor, which refers to greenhouse gases, under certain conditions, it forms sulfuric acid.

  4. Atmospheric correction over coastal waters using multilayer neural networks

    Science.gov (United States)

    Fan, Y.; Li, W.; Charles, G.; Jamet, C.; Zibordi, G.; Schroeder, T.; Stamnes, K. H.

    2017-12-01

    Standard atmospheric correction (AC) algorithms work well in open ocean areas where the water inherent optical properties (IOPs) are correlated with pigmented particles. However, the IOPs of turbid coastal waters may independently vary with pigmented particles, suspended inorganic particles, and colored dissolved organic matter (CDOM). In turbid coastal waters standard AC algorithms often exhibit large inaccuracies that may lead to negative water-leaving radiances (Lw) or remote sensing reflectance (Rrs). We introduce a new atmospheric correction algorithm for coastal waters based on a multilayer neural network (MLNN) machine learning method. We use a coupled atmosphere-ocean radiative transfer model to simulate the Rayleigh-corrected radiance (Lrc) at the top of the atmosphere (TOA) and the Rrs just above the surface simultaneously, and train a MLNN to derive the aerosol optical depth (AOD) and Rrs directly from the TOA Lrc. The SeaDAS NIR algorithm, the SeaDAS NIR/SWIR algorithm, and the MODIS version of the Case 2 regional water - CoastColour (C2RCC) algorithm are included in the comparison with AERONET-OC measurements. The results show that the MLNN algorithm significantly improves retrieval of normalized Lw in blue bands (412 nm and 443 nm) and yields minor improvements in green and red bands. These results indicate that the MLNN algorithm is suitable for application in turbid coastal waters. Application of the MLNN algorithm to MODIS Aqua images in several coastal areas also shows that it is robust and resilient to contamination due to sunglint or adjacency effects of land and cloud edges. The MLNN algorithm is very fast once the neural network has been properly trained and is therefore suitable for operational use. A significant advantage of the MLNN algorithm is that it does not need SWIR bands, which implies significant cost reduction for dedicated OC missions. A recent effort has been made to extend the MLNN AC algorithm to extreme atmospheric conditions

  5. Tropical convective onset statistics and establishing causality in the water vapor-precipitation relation

    Science.gov (United States)

    Neelin, J. D.; Kuo, Y. H.; Schiro, K. A.; Langenbrunner, B.; Mechoso, C. R.; Sahany, S.; Bernstein, D. N.

    2015-12-01

    Previous work by various authors has pointed to the role of humidity in the lower free troposphere in affecting the onset of deep convection in the tropics. Empirical relations between column water vapor and the onset of precipitation have been inferred to be related to this. Evidence includes deep-convective conditional instability calculations for entraining plumes, in which the lower free-tropospheric environment affects the onset of deep convection due to the impact on buoyancy of turbulent entrainment of dry versus moist air. Tropical Western Pacific in situ observations, and tropical ocean basin satellite retrievals in comparison to climate model diagnostics each indicate that substantial entrainment is required to explain the observed relationship. In situ observations from the GoAmazon field campaign confirm that the basic relationship holds over tropical land much as it does over tropical ocean (although with greater additional sensitivity to boundary layer variations and to freezing processes). The relationship between deep convection and water vapor is, however, a two-way street, with convection moistening the free troposphere. One might thus argue that there has not yet been a smoking gun in terms of establishing the causality of the precipitation-water vapor relationship. Parameter perturbation experiments in the coupled Community Earth System Model show that when the deep convective scheme has low values of entrainment, the set of statistics associated with the transition to deep convection are radically altered, and the observed pickup of precipitation with column water vapor is no longer seen. In addition to cementing the dominant direction of causality in the fast timescale precipitation-column water vapor relationship, the results point to impacts of this mechanism on the climatology. Because at low entrainment the convection can fire before the lower troposphere is moistened, the climatology of water vapor remains lower than observed. These

  6. Enhancing our Understanding of the Arctic Atmospheric Hydrological Cycle using Observations from an International Arctic Water Vapor Isotope Network

    Science.gov (United States)

    Masson-Delmotte, V.; Steen-Larsen, H. C.; Werner, M.

    2014-12-01

    Due to the role of water vapor and clouds in positive feedback mechanisms, water vapor is a key player in the future of Arctic climate. Ecosystems and human societies are vulnerable to climate change through even minor changes in precipitation patterns, including the occurrence of extreme events. It is therefore essential to monitor, understand and model correctly the mechanisms of transport of moisture, at the regional scale. Water isotopes - the relative abundance of heavy and light water in the atmosphere - hold the key to understanding the physical processes influencing future Arctic climate. Water isotope observations in the atmosphere are a modern analog to the Rosetta Stone for understanding the processes involved in evaporation, moisture transport, cloud formation and to track moisture origin. Indeed, technological progress now allows continuous, in situ or remote sensing monitoring of water isotopic composition. In parallel, a growing number of atmospheric circulation models are equipped with the explicit modeling of water stable isotopes, allowing evaluation at the process scale. We present here data obtained through national or bi-national initiatives from stations onboard an icebreaker and land based stations in Greenland, Iceland, Svalbard, and Siberia - together forming an emerging international Arctic water vapor isotope network. Using water tagging and back trajectories we show water vapor of Arctic origin to have a high d-excess fingerprint. This show the potential of using water vapor isotopes as tracer for changes in the Arctic hydrological cycle. Using the network of monitoring stations we quantify using the isotopes advection of air masses and the key processes affecting the water vapor en-route between stations. We have successfully used the obtained atmospheric water vapor isotope observations to benchmark isotope-enabled general circulation models. This comparison allows us to address key processes of the atmospheric hydrological cycle for

  7. Advances in Understanding Global Water Cycle with Advent of Global Precipitation Measurement (GPM) Mission

    Science.gov (United States)

    Smith, Eric A.; Starr, David (Technical Monitor)

    2002-01-01

    Within this decade the internationally organized Global Precipitation Measurement (GPM) Mission will take an important step in creating a global precipitation observing system from space. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams beginning with very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and then on to blends of the former datastreams with additional lower-caliber PMW-based and IR-based rain retrievals. Within the context of the now emerging global water & energy cycle (GWEC) programs of a number of research agencies throughout the world, GPM serves as a centerpiece space mission for improving our understanding of the global water cycle from a global measurement perspective. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in climate, e.g., climate warming. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination. This paper presents an overview of the GPM Mission and how its observations can be used within the framework of the oceanic and continental water budget equations to determine whether a given perturbation in precipitation is indicative of an actual rate change in the global water cycle, consistent with required responses in water storage and/or water flux transport processes, or whether it is the natural variability of a fixed rate cycle.

  8. Advances in Global Water Cycle Science Made Possible by Global Precipitation Mission (GPM)

    Science.gov (United States)

    Smith, Eric A.; Starr, David OC. (Technical Monitor)

    2001-01-01

    Within this decade the internationally sponsored Global Precipitation Mission (GPM) will take an important step in creating a global precipitation observing system from space. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams from very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and on to blends of the former datastreams with other less-high caliber PMW-based and IR-based rain retrievals. Within the context of NASA's role in global water cycle science and its own Global Water & Energy Cycle (GWEC) program, GPM is the centerpiece mission for improving our understanding of the global water cycle from a space-based measurement perspective. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in global temperature. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination, This paper presents an overview of the Global Precipitation Mission and how its datasets can be used in a set of quantitative tests within the framework of the oceanic and continental water budget equations to determine comprehensively whether substantive rate changes do accompany perturbations in global temperatures and how such rate changes manifest themselves in both water storage and water flux transport processes.

  9. Isotopic equilibrium between precipitation and water vapor: evidence from continental rains in central Kenya

    Science.gov (United States)

    Soderberg, K.; Gerlein, C.; Kemeny, P. C.; Caylor, K. K.

    2013-12-01

    An accurate understanding of the relationships between the isotopic composition of liquid water and that of water vapor in the environment can help describe hydrologic processes across many scales. One such relationship is the isotopic equilibrium between falling raindrops and the surrounding vapor. The degree of equilibration is used to model the isotopic composition of precipitation in isotope-enable general circulation models and land-atmosphere exchange models. Although this equilibrium has been a topic of isotope hydrology research for more than four decades, few studies have included vapor measurements to validate modeling efforts. Recent advances in laser technology have allowed for in situ vapor measurements at high temporal resolution (e.g., >1 Hz). Here we present concomitant rain and vapor measurements for a series of 17 rain events during the 'Continental' rainy season (June through August) at Mpala Research Center in central Kenya. Rain samples (n=218) were collected at intervals of 2 to 35 minutes (median of 3 minutes) depending on the rain rate (0.4 to 10.5 mm/hr). The volume-weighted mean rain values for δ18O, δ2H and D-excess (δ2H - 8* δ18O) were 0.1 ‰, 10.7 ‰, and 10.1 ‰. These values are more enriched than the annual weighted means reported for the area (-2.2 ‰, -7.6 ‰, and 11.0 ‰, respectively). Vapor was measured continuously at ~2Hz (DLT-100, Los Gatos Research), with an inverted funnel intake 4m above the ground surface. The mean vapor isotopic composition during the rain events was -10.0 +/- 1.2 ‰ (1 σ) for δ18O and -73.9 +/- 7.0 ‰ for δ2H. The difference between the rain sample isotopic composition and that of liquid in isotopic equilibrium with the corresponding vapor at the ambient temperature was 0.8 +/- 2.2 ‰ for δ18O and 6.2 +/- 7.0 ‰ for δ2H. This disequilibrium was found to correlate with the natural log of rain rate (R2 of 0.26 for δ18O and 0.46 for δ2H), with lower rain rates having larger

  10. Tracking an atmospheric river in a warmer climate: from water vapor to economic impacts

    Directory of Open Access Journals (Sweden)

    F. Dominguez

    2018-03-01

    Full Text Available Atmospheric rivers (ARs account for more than 75 % of heavy precipitation events and nearly all of the extreme flooding events along the Olympic Mountains and western Cascade Mountains of western Washington state. In a warmer climate, ARs in this region are projected to become more frequent and intense, primarily due to increases in atmospheric water vapor. However, it is unclear how the changes in water vapor transport will affect regional flooding and associated economic impacts. In this work we present an integrated modeling system to quantify the atmospheric–hydrologic–hydraulic and economic impacts of the December 2007 AR event that impacted the Chehalis River basin in western Washington. We use the modeling system to project impacts under a hypothetical scenario in which the same December 2007 event occurs in a warmer climate. This method allows us to incorporate different types of uncertainty, including (a alternative future radiative forcings, (b different responses of the climate system to future radiative forcings and (c different responses of the surface hydrologic system. In the warming scenario, AR integrated vapor transport increases; however, these changes do not translate into generalized increases in precipitation throughout the basin. The changes in precipitation translate into spatially heterogeneous changes in sub-basin runoff and increased streamflow along the entire Chehalis main stem. Economic losses due to stock damages increase moderately, but losses in terms of business interruption are significant. Our integrated modeling tool provides communities in the Chehalis region with a range of possible future physical and economic impacts associated with AR flooding.

  11. Atmospheric Water Harvesting: Role of Surface Wettability and Edge Effect

    KAUST Repository

    Jin, Yong

    2017-06-23

    Atmospheric water is emerging as an important potable water source. The present work experimentally and theoretically investigates water condensation and collection on flat surfaces with contrasting contact angles and contact angle hysteresis (CAH) to elucidate their roles on water mass collection efficiency. The experimental results indicate that a hydrophilic surface promotes nucleation and individual droplets growth, and a surface with a low CAH tends to let a smaller droplet to slide down, but the overall water mass collection efficiency is independent of both surface contact angle and CAH. The experimental results agree well with our theoretical calculations. During water condensation, a balance has to be struck between single droplet growth and droplet density on a surface so as to maintain a constant water droplet surface coverage ratio, which renders the role of both surface wettability and hysteresis insignificant to the ultimate water mass collection. Moreover, water droplets on the edges of a surface grow much faster than those on the non-edge areas and thus dominate the contribution to the water mass collection by the entire surface, directly pointing out the very important role of edge effect on water condensation and collection.

  12. Satellite Retrieval of Atmospheric Water Budget over Gulf of Mexico- Caribbean Basin: Seasonal Variability

    Science.gov (United States)

    Smith, Eric A.; Santos, Pablo; Einaudi, Franco (Technical Monitor)

    2001-01-01

    This study presents results from a multi-satellite/multi-sensor retrieval system designed to obtain the atmospheric water budget over the open ocean. A combination of hourly-sampled monthly datasets derived from the GOES-8 5 Imager and the DMSP 7-channel passive microwave radiometer (SSM/I) have been acquired for the Gulf of Mexico-Caribbean Sea basin. Whereas the methodology is being tested over this basin, the retrieval system is designed for portability to any open-ocean region. Algorithm modules using the different datasets to retrieve individual geophysical parameters needed in the water budget equation are designed in a manner that takes advantage of the high temporal resolution of the GOES-8 measurements, as well as the physical relationships inherent to the SSM/I passive microwave signals in conjunction with water vapor, cloud liquid water, and rainfall. The methodology consists of retrieving the precipitation, surface evaporation, and vapor-cloud water storage terms in the atmospheric water balance equation from satellite techniques, with the water vapor advection term being obtained as the residue needed for balance. Thus, we have sought to develop a purely satellite-based method for obtaining the full set of terms in the atmospheric water budget equation without requiring in situ sounding information on the wind profile. The algorithm is partly validated by first cross-checking all the algorithm components through multiple-algorithm retrieval intercomparisons. More fundamental validation is obtained by directly comparing water vapor transports into the targeted basin diagnosed from the satellite algorithm to those obtained observationally from a network of land-based upper air stations that nearly uniformly surround the basin. Total columnar atmospheric water budget results will be presented for an extended annual cycle consisting of the months of October-97, January-98, April-98, July-98, October-98, and January-1999. These results are used to emphasize

  13. Sensitivity of precipitation to parameter values in the community atmosphere model version 5

    Energy Technology Data Exchange (ETDEWEB)

    Johannesson, Gardar; Lucas, Donald; Qian, Yun; Swiler, Laura Painton; Wildey, Timothy Michael

    2014-03-01

    One objective of the Climate Science for a Sustainable Energy Future (CSSEF) program is to develop the capability to thoroughly test and understand the uncertainties in the overall climate model and its components as they are being developed. The focus on uncertainties involves sensitivity analysis: the capability to determine which input parameters have a major influence on the output responses of interest. This report presents some initial sensitivity analysis results performed by Lawrence Livermore National Laboratory (LNNL), Sandia National Laboratories (SNL), and Pacific Northwest National Laboratory (PNNL). In the 2011-2012 timeframe, these laboratories worked in collaboration to perform sensitivity analyses of a set of CAM5, 2° runs, where the response metrics of interest were precipitation metrics. The three labs performed their sensitivity analysis (SA) studies separately and then compared results. Overall, the results were quite consistent with each other although the methods used were different. This exercise provided a robustness check of the global sensitivity analysis metrics and identified some strongly influential parameters.

  14. The water vapour radiometer of Paranal: homogeneity of precipitable water vapour from two years of operations

    Science.gov (United States)

    Kerber, Florian; Querel, Richard R.; Neureiter, Bianca

    2015-04-01

    A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer, manufactured by Radiometer Physics GmbH (RPG), is used to monitor sky conditions over ESO's Paranal observatory in support of VLT science operations. The unit measures several channels across the strong water vapour emission line at 183 GHz, necessary for resolving the low levels of precipitable water vapour (PWV) that are prevalent on Paranal (median ∼2.4 mm). The instrument consists of a humidity profiler (183-191 GHz), a temperature profiler (51-58 GHz), and an infrared camera (∼10 μm) for cloud detection. We present a statistical analysis of the homogeneity of all-sky PWV using 24 months of PWV observations. The question we tried to address was whether PWV is homogeneous enough across the sky such that service mode observations with the VLT can routinely be conducted with a user-provided constraint for PWV measured at zenith. We find the PWV over Paranal to be remarkably homogeneous across the sky down to 27.5° elevation with a median variation of 0.07 mm (rms). The homogeneity is a function of the absolute PWV but the relative variation is fairly constant at 2 to 3% (rms). Such variations will not be a significant issue for analysis of astronomical data. Users at ESO can specify PWV - measured at zenith - as an ambient constraint in service mode to enable, for instance, very demanding observations in the infrared. We conclude that in general it will not be necessary to add another observing constraint for PWV homogeneity to ensure integrity of observations. For demanding observations requiring very low PWV, where the relative variation is higher, the optimum support could be provided by observing with the LHATPRO in the same line-of-sight simultaneously. Such a mode of operations has already been tested but will have to be justified in terms of scientific gain before implementation can be considered. We plan to extend our analysis of PWV variations covering a larger parameters space

  15. Atmospheric water vapor absorption at 1.3 microm.

    Science.gov (United States)

    Bragg, S L; Kelley, J D

    1987-02-01

    Absolute absorption cross sections for water vapor and water vapor/air mixtures were measured in a frequency range encompassing that of the chemically pumped atomic iodine laser. Measurements were made with a temperature-controlled multipass absorption cell and a high-resolution Fourier transform spectrometer. The measurements covered a broad range of water vapor and air pressures. Several techniques of data analysis were used, and the absorption cross section of 2 kPa of water vapor in an atmosphere of air was determined to be 1.1 +/- 0.2 x 10(-24) cm(2) . In this paper, an expression is derived which allows estimation of the absorption cross section for any pressure of water vapor and air.

  16. Anticipated Improvements in Precipitation Physics and Understanding of Water Cycle from GPM Mission

    Science.gov (United States)

    Smith, Eric A.

    2003-01-01

    The GPM mission is currently planned for start in the late-2007 to early-2008 time frame. Its main scientific goal is to help answer pressing scientific problems arising within the context of global and regional water cycles. These problems cut across a hierarchy of scales and include climate-water cycle interactions, techniques for improving weather and climate predictions, and better methods for combining observed precipitation with hydrometeorological prediction models for applications to hazardous flood-producing storms, seasonal flood/draught conditions, and fresh water resource assessments. The GPM mission will expand the scope of precipitation measurement through the use of a constellation of some 9 satellites, one of which will be an advanced TRMM-like core satellite carrying a dual-frequency Ku-Ka band precipitation radar and an advanced, multifrequency passive microwave radiometer with vertical-horizontal polarization discrimination. The other constellation members will include new dedicated satellites and co-existing operational/research satellites carrying similar (but not identical) passive microwave radiometers. The goal of the constellation is to achieve approximately 3-hour sampling at any spot on the globe -- continuously. The constellation s orbit architecture will consist of a mix of sun-synchronous and non-sun-synchronous satellites with the core satellite providing measurements of cloud-precipitation microphysical processes plus calibration-quality rainrate retrievals to be used with the other retrieval information to ensure bias-free constellation coverage. GPM is organized internationally, involving existing, pending, projected, and under-study partnerships which will link NASA and NOAA in the US, NASDA in Japan, ESA in Europe, ISRO in India, CNES in France, and possibly AS1 in Italy, KARI in South Korea, CSA in Canada, and AEB in Brazil. Additionally, the program is actively pursuing agreements with other international collaborators and

  17. Atmospheric mass and the record of liquid water on Mars

    Science.gov (United States)

    Halevy, I.; Head, J. W., III

    2017-12-01

    Widespread evidence for the action of liquid water on early Mars is generally accepted to require the presence of atmospheric greenhouse agents other than CO2. Much of this activity clusters in the late Noachian and early Hesperian (3.9-3.6 Ga), and appears to coincide with a long maximum in extrusive and explosive volcanic activity. Among other suggestions, a role for S-bearing volcanic gases has been proposed, but these and any other non-CO2 greenhouse gases or atmospheric components require a background CO2 atmosphere of several hundred mbar. Global climate models suggest that even if the surface reservoir of CO2 were much larger than today, this reservoir would be mostly trapped as CO2 ice, and only a few to tens of mbar would be in the atmosphere. Thus, at the long-term steady state, sustained warmth is difficult to achieve in the face of a fainter Sun. We suggest that episodic volcanism released the CO2 trapped as ice at the planet's surface in two ways. First, the emission of S-bearing greenhouse gases (mostly SO2) would lead to warming of a few Kelvins. Second, the deposition of volcanic ash on water and CO2 ice surfaces would push the local energy budget to favor sublimation, and would also decrease the planetary albedo and lead to additional warming. Inflation of the CO2 atmosphere has been shown in global climate models to shift the distribution of snowfall to high elevations, as opposed to a latitude-dependent distribution at low atmospheric pressure. We suggest that seasonal melting of this snow carved the valley networks and filled basin lakes. The duration of warm periods was limited by the timescale for atmospheric collapse by condensation, which is 102-103 years. Repeated inflation episodes over the duration of active volcanism led to an integrated duration of aqueous activity of 106-107 years, enough to carve the valley networks. The S-bearing gases emitted by eruptions formed sulfate minerals, initially uniformly dispersed, then remobilized and

  18. [Effects of ground cover and water-retaining agent on winter wheat growth and precipitation utilization].

    Science.gov (United States)

    Wu, Ji-Cheng; Guan, Xiu-Juan; Yang, Yong-Hui

    2011-01-01

    An investigation was made at a hilly upland in western Henan Province to understand the effects of water-retaining agent (0, 45, and 60 kg x hm(-2)), straw mulching (3000 and 6000 kg x hm(-2)), and plastic mulching (thickness straw- or plastic mulching was combined with the use of water-retaining agent. Comparing with the control, all the measures increased the soil moisture content at different growth stages by 0.1%-6.5%. Plastic film mulching had the best water-retention effect before jointing stage, whereas water-retaining agent showed its best effect after jointing stage. Soil moisture content was the lowest at flowering and grain-filling stages. Land cover increased the grain yield by 2.6%-20.1%. The yield increment was the greatest (14.2%-20.1%) by the combined use of straw mulching and water-retaining agent, followed by plastic mulching combined with water-retaining agent (11.9% on average). Land cover also improved the precipitation use efficiency (0.4-3.2 kg x mm(-1) x hm(-2)) in a similar trend as the grain yield. This study showed that land cover and water-retaining agent improved soil moisture and nutrition conditions and precipitation utilization, which in turn, promoted the tillering of winter wheat, and increased the grain number per ear and the 1000-grain mass.

  19. Raise of efficiency of flocculation-precipitation treatment of exuding water from reclaimed land by irradiation

    International Nuclear Information System (INIS)

    Sawai, Teruko; Yamazaki, Masao; Sawai, Takeshi

    1984-01-01

    When rain falls on the coastal reclaimed land filled with home garbage in Tokyo, a large quantity of water containing much organic contaminant flows out. It is difficult to treat this water exuding from reclaimed land by conventional method. Because the water with low BOD which is difficult to treat by biological process flows out for long period after the stabilization of reclaimed land. When the water is treated by flocculation and precipitation, the substances with high molecular weight are easily removed, but the rate of removal of fulvic acid with low molecular weight, which accounts for more than 60% of the composition of the water, is very poor. Therefore, it was examined to change the fulvic acid to high molecular weight by irradiation, and to improve the efficiency of the flocculation-precipitation treatment of exuding water. Exuding water was sampled in Tokyo Bay No.15 reclaimed land, and it was separated into humic acid and fulvic acid. The Co-60 gamma ray of 5 kCi was irradiated to the samples. The experimental method and the results are reported. The change of fulvic acid to high molecular weight by irradiation was most efficient at pH 2.2. More than 90% of organic contaminants was able to be removed. (Kako, I.)

  20. Comments on the water cycle of the atmosphere and its measurement

    International Nuclear Information System (INIS)

    Benton, G.S.

    1967-01-01

    There are two major water cycles of the atmosphere: the meridional cycle, which results in a latitudinal exchange of water, and the hydrological cycle, which carries water from the oceans over the continents. In the present paper a model is used for the estimation of atmospheric water balance from direct measurements of atmospheric vapour flux and limitation of this model are discussed

  1. Decomposition of tetrafluoromethane by water plasma generated under atmospheric pressure

    International Nuclear Information System (INIS)

    Narengerile,; Saito, Hironori; Watanabe, Takayuki

    2009-01-01

    Tetrafluoromethane (CF 4 ) decomposition by water plasma generated under atmospheric pressure was investigated by means of thermodynamic analyses and experiments. Thermodynamic equilibrium calculations were performed between 300 and 6000 K at atmospheric pressure. Experimental results indicated that CF 4 was completely decomposed by water plasma, and recovery of fluorine can be achieved more than 99%. Influence of factors such as arc current and additive flow rate of O 2 on CF 4 decomposition was determined. Furthermore, the decomposition mechanism of CF 4 was investigated from chemical kinetics consideration. CF x(x:1-4) was thermally decomposed above 4000 K, oxidized in the temperature range of 4000-2400 K, and removed by H radical at temperatures below 2400 K.

  2. Decomposition of tetrafluoromethane by water plasma generated under atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Narengerile,; Saito, Hironori [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, 226-8502 (Japan); Watanabe, Takayuki, E-mail: watanabe@chemenv.titech.ac.j [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, 226-8502 (Japan)

    2009-12-01

    Tetrafluoromethane (CF{sub 4}) decomposition by water plasma generated under atmospheric pressure was investigated by means of thermodynamic analyses and experiments. Thermodynamic equilibrium calculations were performed between 300 and 6000 K at atmospheric pressure. Experimental results indicated that CF{sub 4} was completely decomposed by water plasma, and recovery of fluorine can be achieved more than 99%. Influence of factors such as arc current and additive flow rate of O{sub 2} on CF{sub 4} decomposition was determined. Furthermore, the decomposition mechanism of CF{sub 4} was investigated from chemical kinetics consideration. CF{sub x(x:1-4)} was thermally decomposed above 4000 K, oxidized in the temperature range of 4000-2400 K, and removed by H radical at temperatures below 2400 K.

  3. Removal of Particulate Matter in a Tubular Wet Electrostatic Precipitator Using a Water Collection Electrode

    Directory of Open Access Journals (Sweden)

    Jong-Ho Kim

    2012-01-01

    Full Text Available As one of the effective control devices of air pollutants, the wet electrostatic precipitator (ESP is an effective technique to eliminate acid mist and fine particles that are re-entrained in a collection electrode. However, its collection efficiency can deteriorate, as its operation is subject to water-induced corrosion of the collection electrode. To overcome this drawback, we modified the wet ESP system with the installation of a PVC dust precipitator wherein water is supplied as a replacement of the collection electrode. With this modification, we were able to construct a compact wet ESP with a small specific collection area (SCA, 0.83 m2/(m3/min that can acquire a high collection efficiency of fine particles (99.7%.

  4. Isotope fingerprinting of precipitation associated with western ...

    Indian Academy of Sciences (India)

    Ghulam Jeelani

    2017-11-22

    Nov 22, 2017 ... The isotopic signa- ture of precipitation provides valuable information about vapour source and atmospheric circulation pattern. In the modern environment, the isotopic composition of precipitation provides a conser- vative tracer for the origin, phase transitions, and transport paths of water (Dansgaard 1964 ...

  5. SMEX03 Atmospheric Aerosol Optical Properties Data: Oklahoma

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of observations of atmospheric parameters including spectral aerosol optical depths, precipitable water, sky radiance distributions and...

  6. Tropical intercontinental optical measurement network of aerosol, precipitable water and total column ozone

    Science.gov (United States)

    Holben, B. N.; Tanre, D.; Reagan, J. A.; Eck, T. F.; Setzer, A.; Kaufman, Y. A.; Vermote, E.; Vassiliou, G. D.; Lavenu, F.

    1992-01-01

    A new generation of automatic sunphotometers is used to systematically monitor clear sky total column aerosol concentration and optical properties, precipitable water and total column ozone diurnally and annually in West Africa and South America. The instruments are designed to measure direct beam sun, solar aureole and sky radiances in nine narrow spectral bands from the UV to the near infrared on an hourly basis. The instrumentation and the algorithms required to reduce the data for subsequent analysis are described.

  7. Accuracy of orbits for GPS atmospheric water vapour estimation

    Science.gov (United States)

    Dodson, A. H.; Baker, H. C.

    A major error source in GPS measurements for precise height applications is the wet path delay due to tropospheric water vapour. It has recently been demonstrated that the tropospheric Zenith Wet Delay (ZWD) can be estimated using the GPS data itself and converted to equivalent Integrated Water Vapour (IWV) content with little additional uncertainty (where 1 kg/m 2 IWV is equal to 1 mm Integrated Precipitable Water Vapour, and equates approximately to 6.5 mm ZWD). One of the major factors in achieving accurate estimates on a near real time basis (less than a few hours) is the availability of reliable, accurate orbits. Tests have therefore been performed investigating the accuracy of GPS water vapour estimates using a number of current, freely available, rapid and predicted orbits in comparison to the IGS precise ephemeris. Initial results indicate that rapid orbit water vapour estimates compare to better than 1 kg/m 2, and predicted orbit water vapour estimates at 1-6 kg/m 2 level, with significant improvement in estimates when they are differenced.

  8. Water soluble organic carbon in aerosols (PM1, PM2.5, PM10) and various precipitation forms (rain, snow, mixed) over the southern Baltic Sea station.

    Science.gov (United States)

    Witkowska, Agnieszka; Lewandowska, Anita U

    2016-12-15

    In the urbanized coastal zone of the Southern Baltic, complex measurements of water soluble organic carbon (WSOC) were conducted between 2012 and 2015, involving atmospheric precipitation in its various forms (rain, snow, mixed) and PM1, PM2.5 and PM10 aerosols. WSOC constituted about 60% of the organic carbon mass in aerosols of various sizes. The average concentration of WSOC was equal to 2.6μg∙m -3 in PM1, 3.6μg∙m -3 in PM2.5 and 4.4μg∙m -3 in PM10. The lowest concentration of WSOC was noted in summer as a result of effective removal of this compound with rainfall. The highest WSOC concentrations in PM2.5 and PM10 aerosols were measured in spring, which should be associated with developing vegetation on land and in the sea. On the other hand, the highest WSOC concentrations in PM1 occurred in winter at low air temperatures and greatest atmospheric stability, when there were increased carbon emissions from fuel combustion in the communal-utility sector and from transportation. WSOC concentrations in precipitation were determined by its form. Mixed precipitation turned out to be the richest in soluble organic carbon (5.1mg·dm -3 ), while snow contained the least WSOC (1.7mg·dm -3 ). Snow and rain cleaned carbon compounds from the atmosphere more effectively when precipitation lasted longer than 24h, while in the case of mixed precipitation WSOC was removed most effectively within the first 24h. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. NLTE water lines in Betelgeuse-like atmospheres

    Science.gov (United States)

    Lambert, J.; Josselin, E.; Ryde, N.; Faure, A.

    2013-05-01

    The interpretation of water lines in red supergiant stellar atmospheres has been much debated over the past decade. The introduction of the so-called MOLspheres to account for near-infrared "extra" absorption has been controversial. We propose that non-LTE effects should be taken into account before considering any extra-photospheric contribution. After a brief introduction on the radiative transfer treatment and the inadequacy of classical treatments in the case of large-scale systems such as molecules, we present a new code, based on preconditioned Krylov subspace methods. Preliminary results suggest that NLTE effects lead to deeper water bands, as well as extra cooling.

  10. Magnetic Field Effects on CaCO3 Precipitation Process in Hard Water

    Directory of Open Access Journals (Sweden)

    Nelson Saksono

    2010-10-01

    Full Text Available Magnetic treatment is applied as physical water treatment for scale prevention especially CaCO3, from hard water in piping equipment by reducing its hardness.Na2CO3 and CaCl2 solution sample was used in to investigate the magnetic fields influence on the formation of particle of CaCO3. By changing the strength of magnetic fields, exposure time and concentration of samples solution, this study presents quantitative results of total scale deposit, total precipitated CaCO3 and morphology of the deposit. This research was run by comparing magnetically and non-magnetically treated  samples. The results showed an increase of deposits formation rate and total number of precipitated CaCO3 of magnetically treated samples. The increase of concentration solution sample will also raised the deposit under magnetic  field. Microscope images showed a greater number but smaller size of CaCO3 deposits form in magnetically treated samples, and aggregation during the processes. X-ray diffraction (XRD analysis showed that magnetically samples were dominated by calcite. But, there was a significant decrease of calcite’s peak intensities from magnetized  samples that indicated the decrease of the amount of calcite and an increase of total amorphous of deposits. This result  showed that magnetization of hard water leaded to the decreasing of ion Ca2+ due to the increasing of total CaCO3 precipitation process.

  11. Water inventories on Earth and Mars: Clues to atmosphere formation

    Science.gov (United States)

    Carr, M. H.

    1992-01-01

    Water is distributed differently on Earth and on Mars and the differences may have implications for the accretion of the two planets and the formation of their atmospheres. The Earth's mantle appears to contain at least several times the water content of the Martian mantle even accounting for differences in plate tectonics. One explanation is that the Earth's surface melted during accretion, as a result of development of a steam atmosphere, thereby allowing impact-devolitalized water at the surface to dissolve into the Earth's interior. In contrast, because of Mars' smaller size and greater distance from the Sun, the Martian surface may not have melted, so that the devolatilized water could not dissolve into the surface. A second possibility is suggested by the siderophile elements in the Earth's mantle, which indicates the Earth acquired a volatile-rich veneer after the core formed. Mars may have acquired a late volatile-rich veneer, but it did not get folded into the interior as with the Earth, but instead remained as a water rich veneer. This perception of Mars with a wet surface but dry interior is consistent with our knowledge of Mars' geologic history.

  12. Precipitation Measurements from Space: The Global Precipitation Measurement Mission

    Science.gov (United States)

    Hou, Arthur Y.

    2007-01-01

    Water is fundamental to the life on Earth and its phase transition between the gaseous, liquid, and solid states dominates the behavior of the weather/climate/ecological system. Precipitation, which converts atmospheric water vapor into rain and snow, is central to the global water cycle. It regulates the global energy balance through interactions with clouds and water vapor (the primary greenhouse gas), and also shapes global winds and dynamic transport through latent heat release. Surface precipitation affects soil moisture, ocean salinity, and land hydrology, thus linking fast atmospheric processes to the slower components of the climate system. Precipitation is also the primary source of freshwater in the world, which is facing an emerging freshwater crisis in many regions. Accurate and timely knowledge of global precipitation is essential for understanding the behavior of the global water cycle, improving freshwater management, and advancing predictive capabilities of high-impact weather events such as hurricanes, floods, droughts, and landslides. With limited rainfall networks on land and the impracticality of making extensive rainfall measurements over oceans, a comprehensive description of the space and time variability of global precipitation can only be achieved from the vantage point of space. This presentation will examine current capabilities in space-borne rainfall measurements, highlight scientific and practical benefits derived from these observations to date, and provide an overview of the multi-national Global Precipitation Measurement (GPM) Mission scheduled to bc launched in the early next decade.

  13. Potential impacts of human water management on the European heat wave 2003 using fully integrated bedrock-to-atmosphere simulations

    Science.gov (United States)

    Keune, Jessica; Sulis, Mauro; Kollet, Stefan; Wada, Yoshihide

    2017-04-01

    Recent studies indicate that anthropogenic impacts on the terrestrial water cycle lead to a redistribution of water resources in space and time, can trigger land-atmosphere feedbacks, such as the soil moisture-precipitation feedback, and potentially enhance convection and precipitation. Yet, these studies do not consider the full hydrologic cycle from the bedrock to the atmosphere or apply simplified hydrologic models, neglecting the connection of irrigation to water withdrawal and groundwater depletion. Thus, there is a need to incorporate water resource management in 3D hydrologic models coupled to earth system models. This study addresses the impact of water resource management, i.e. irrigation and groundwater abstraction, on land-atmosphere feedbacks through the terrestrial hydrologic cycle in a physics-based soil-vegetation-atmosphere system simulating 3D groundwater dynamics at the continental scale. The integrated Terrestrial Systems Modeling Platform, TerrSysMP, consisting of the three-dimensional subsurface and overland flow model ParFlow, the Community Land Model CLM3.5 and the numerical weather prediction model COSMO of the German Weather Service, is set up over the European CORDEX domain in 0.11° resolution. The model closes the terrestrial water and energy cycles from aquifers into the atmosphere. Anthropogenic impacts are considered by applying actual daily estimates of irrigation and groundwater abstraction from Wada et al. (2012, 2016), as a source at the land surface and explicit removal of groundwater from aquifer storage, respectively. Simulations of the fully coupled system are performed over the 2003 European heat wave and compared to a reference simulation, which does not consider human interactions in the terrestrial water cycle. We study the space and time characteristics and evolution of temperature extremes, and soil moisture and precipitation anomalies influenced by human water management during the heat wave. A first set of simulations

  14. Thermal shallow water models of geostrophic turbulence in Jovian atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Warneford, Emma S., E-mail: emma.warneford@maths.ox.ac.uk; Dellar, Paul J., E-mail: dellar@maths.ox.ac.uk [OCIAM, Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Oxford OX2 6GG (United Kingdom)

    2014-01-15

    Conventional shallow water theory successfully reproduces many key features of the Jovian atmosphere: a mixture of coherent vortices and stable, large-scale, zonal jets whose amplitude decreases with distance from the equator. However, both freely decaying and forced-dissipative simulations of the shallow water equations in Jovian parameter regimes invariably yield retrograde equatorial jets, while Jupiter itself has a strong prograde equatorial jet. Simulations by Scott and Polvani [“Equatorial superrotation in shallow atmospheres,” Geophys. Res. Lett. 35, L24202 (2008)] have produced prograde equatorial jets through the addition of a model for radiative relaxation in the shallow water height equation. However, their model does not conserve mass or momentum in the active layer, and produces mid-latitude jets much weaker than the equatorial jet. We present the thermal shallow water equations as an alternative model for Jovian atmospheres. These equations permit horizontal variations in the thermodynamic properties of the fluid within the active layer. We incorporate a radiative relaxation term in the separate temperature equation, leaving the mass and momentum conservation equations untouched. Simulations of this model in the Jovian regime yield a strong prograde equatorial jet, and larger amplitude mid-latitude jets than the Scott and Polvani model. For both models, the slope of the non-zonal energy spectra is consistent with the classic Kolmogorov scaling, and the slope of the zonal energy spectra is consistent with the much steeper spectrum observed for Jupiter. We also perform simulations of the thermal shallow water equations for Neptunian parameter values, with a radiative relaxation time scale calculated for the same 25 mbar pressure level we used for Jupiter. These Neptunian simulations reproduce the broad, retrograde equatorial jet and prograde mid-latitude jets seen in observations. The much longer radiative time scale for the colder planet Neptune

  15. Thermal shallow water models of geostrophic turbulence in Jovian atmospheres

    International Nuclear Information System (INIS)

    Warneford, Emma S.; Dellar, Paul J.

    2014-01-01

    Conventional shallow water theory successfully reproduces many key features of the Jovian atmosphere: a mixture of coherent vortices and stable, large-scale, zonal jets whose amplitude decreases with distance from the equator. However, both freely decaying and forced-dissipative simulations of the shallow water equations in Jovian parameter regimes invariably yield retrograde equatorial jets, while Jupiter itself has a strong prograde equatorial jet. Simulations by Scott and Polvani [“Equatorial superrotation in shallow atmospheres,” Geophys. Res. Lett. 35, L24202 (2008)] have produced prograde equatorial jets through the addition of a model for radiative relaxation in the shallow water height equation. However, their model does not conserve mass or momentum in the active layer, and produces mid-latitude jets much weaker than the equatorial jet. We present the thermal shallow water equations as an alternative model for Jovian atmospheres. These equations permit horizontal variations in the thermodynamic properties of the fluid within the active layer. We incorporate a radiative relaxation term in the separate temperature equation, leaving the mass and momentum conservation equations untouched. Simulations of this model in the Jovian regime yield a strong prograde equatorial jet, and larger amplitude mid-latitude jets than the Scott and Polvani model. For both models, the slope of the non-zonal energy spectra is consistent with the classic Kolmogorov scaling, and the slope of the zonal energy spectra is consistent with the much steeper spectrum observed for Jupiter. We also perform simulations of the thermal shallow water equations for Neptunian parameter values, with a radiative relaxation time scale calculated for the same 25 mbar pressure level we used for Jupiter. These Neptunian simulations reproduce the broad, retrograde equatorial jet and prograde mid-latitude jets seen in observations. The much longer radiative time scale for the colder planet Neptune

  16. Precipitation of Hemicelluloses from DMSO/Water Mixtures Using Carbon Dioxide as an Antisolvent

    Directory of Open Access Journals (Sweden)

    Emmerich Haimer

    2008-01-01

    Full Text Available Supercritical antisolvent precipitation is a relatively recent technology which can be used for controlled preparation of polymer particles from solutions. This is done by the addition of an antisolvent to a polymer solution causing supersaturation of the polymer, especially under supercritical conditions. The particle size of the precipitates can be adjusted mainly by the rate of supersaturation. Spherical xylan or mannan particles having a narrow particle size distribution were precipitated from hemicellulose solutions in dimethyl-sulfoxide (DMSO or DMSO/water mixtures by carbon dioxide as an antisolvent. By depending on the type of hemicellulose, the DMSO/H2O ratio, and the precipitation conditions such as pressure and temperature, the resulting particle size can be adjusted within a wide range from less than 0.1 to more than 5 m. Nano- and microstructured native xylans and mannans as obtained can be used in many applications such as encapsulation of active compounds, slow release agents, or chromatographic separation materials.

  17. Instrumental neutron activation analysis of dry atmospheric fall-out and rain-water

    International Nuclear Information System (INIS)

    Schutyser, P.; Maenhaut, W.; Dams, R.

    1978-01-01

    An automated precipitation sampler and an instrumental neutron activation analysis (i.n.a.a.) method for the determination of some major and trace elements in dry atmospheric fall-out and rain-water are presented. The sampler features a rain detector which makes separate collections of dry atmospheric fall-out and rain-water possible. The sampler is equipped with u.v. lamps in order to avoid algal growth during extended collection periods. After collection, the samples are separated into water-soluble and insoluble fractions. The soluble fraction is preconcentrated before analysis by freeze-drying. The i.n.a.a. method involves the measurement of both short- and long-lived radioactivities so that a total of 35 elements can be determined. The possibility of losses during freeze-drying and the accuracy of the i.n.a.a. method were investigated for 7 elements by analysis of a soluble fraction with an independent method, viz. inductively coupled plasma atomic emission spectrometry. (Auth.)

  18. Conversion of tritiated hydrogen to water in the atmosphere

    International Nuclear Information System (INIS)

    Burger, L.L.

    1976-09-01

    The report summarizes present information on the atmospheric reactions of tritium. The global distribution of hydrogen and of water is first considered. Data on tritium distribution are then compared and, finally, known reactions which may convert tritiated hydrogen-containing molecules are discussed. Approximately 99 percent of the world's inventory of tritium exists as HTO. Although most of it is in the ocean, a significant portion still resides in the stratosphere. However, in the troposphere, which is the primary concern of this review, most of the tritium is in the form of HT, a smaller amount as HTO, and a much smaller but still significant amount as CH 3 T. Further, the tritium-to-hydrogen ratio in the troposphere is higher in hydrogen and in methane than it is in water vapor. The formation of HTO by exchange of HT or T 2 with water or by direct oxidation with oxygen, in the absence of catalysts, is extremely slow at concentrations in the atmosphere that might exist a few minutes after a tritium release. Photochemical oxidation may be the predominant conversion mechanism and over larger periods of time may combine with bacterial action to serve as the principal pathways of conversion of HT (or T 2 ) and CH 3 T to HTO or other more reactive forms of tritium. The net conversion rate following a tritium release to the atmosphere would be expected to be less than 1 percent in 24 hr. The significance of the relatively high tritium content in atmospheric methane needs evaluation. Monitoring of CH 3 T has been largely neglected in the past. Considerable uncertainty exists in some of the data on which these conclusions are based and recommendations are made for further work

  19. Precipitation Trends and Water Consumption Related to Population in the Southwestern United States: A Reassessment

    Science.gov (United States)

    Diaz, Henry F.; Anderson, Craig A.

    1995-03-01

    Water consumption figures for the southwest United States are compared for the last four decades. Past trends in consumption are evaluated in the context of precipitation variability in the region and with regard to Colorado River streamflow changes. The study represents a follow-up look at a previous assessment of water consumption, regional precipitation, and demographic trends in Arizona, California, Colorado, Nevada, New Mexico, and Utah, which account for much of the annual depletions of Colorado River water. The previous study was completed during a wet spell in the West, and trends in all major categories of water consumption were consistently upward. This study indicates that a decline or reversal has taken place in water use in many of the western states. The greater water efficiency (reduced per capita water use) is particularly noteworthy in California, which alone accounts for the lion's share of water depletions from the Colorado River Basin. The years since the mid-1980's have been predominantly dry in much of the West. At the same time, population in the six-state region has ncreased at about the same pace it had grown during prior decades. A shift from irrigation-related uses to civil consumption is evident in the 1980's. Taking into consideration a situation where multiyear dry spells are a normal part of the climate of the region, it appears that irrigation depletions may have peaked in the West. In the future, allocations for civil supply, recreation, and other in-stream uses as well as for hydropower generation may heighten the competition for available water supplies, put pressure on existing pricing policies, and force users toward greater conservation efforts and improved efficiencies.

  20. High cloud variations with surface temperature from 2002 to 2015: Contributions to atmospheric radiative cooling rate and precipitation changes

    Science.gov (United States)

    Liu, Run; Liou, Kuo-Nan; Su, Hui; Gu, Yu; Zhao, Bin; Jiang, Jonathan H.; Liu, Shaw Chen

    2017-05-01

    The global mean precipitation is largely constrained by atmospheric radiative cooling rates (Qr), which are sensitive to changes in high cloud fraction. We investigate variations of high cloud fraction with surface temperature (Ts) from July 2002 to June 2015 and compute their radiative effects on Qr using the Fu-Liou-Gu plane-parallel radiation model. We find that the tropical mean (30°S-30°N) high cloud fraction decreases with increasing Ts at a rate of about -1.0 ± 0.34% K-1 from 2002 to 2015, which leads to an enhanced atmospheric cooling around 0.86 W m-2 K-1. On the other hand, the northern midlatitudes (30°N-60°N) high cloud fraction increases with surface warming at a rate of 1.85 ± 0.65% K-1 and the near-global mean (60°S-60°N) high cloud fraction shows a statistically insignificant decreasing trend with increasing Ts over the analysis period. Dividing high clouds into cirrus, cirrostratus, and deep convective clouds, we find that cirrus cloud fraction increases with surface warming at a rate of 0.32 ± 0.11% K-1 (0.01 ± 0.17% K-1) for the near-global mean (tropical mean), while cirrostratus and deep convective clouds decrease with surface warming at a rate of -0.02 ± 0.18% K-1 and -0.33 ± 0.18% K-1 for the near-global mean and -0.64 ± 0.23% K-1 and -0.37 ± 0.13% K-1 for the tropical mean, respectively. High cloud fraction response to feedback to Ts accounts for approximately 1.9 ± 0.7% and 16.0 ± 6.1% of the increase in precipitation per unit surface warming over the period of 2002-2015 for the near-global mean and the tropical mean, respectively.

  1. Selective extraction of vanadium from the APV-precipitated waste water

    Science.gov (United States)

    Li, Cui; Li, Hong-Yi; Tu, Chun-Bin; Zhang, Tao; Fang, Hai-Xing; Xie, Bing

    In the process of precipitating ammonium polyvanadate (APV) to produce vanadium pentoxide in Pan-steel in China, rest waste water usually contains about 24 333mg/L V(V), 2 100g/L Cr(VI),20 500mg/L Si(IV) and 20 100g/L Na2SO4. In order to recover valuable and also toxic metal ions contained in the waste water, effective extraction method of using anion exchange resin was realized to extract Vanadium selectively, leading to effective separation between vanadium and chromium. To ensure vanadium was absorbed by the resin, V(V) and Cr(VI) were reduced to V(IV) and Cr(III) by NaHSO3, respectively, and then V(IV) was oxidized by H2O2 to V(V) anions. Effects of temperature, solution pH, concentration of ions and absorbing time on vanadium absorption rate were investigated. Chromium was precipitated from rest solution while vanadium was eluted from resin by NaOH solution and then precipitated. Results showed that vanadium recovery of 73% could be obtained in optimized condition. The resin could be regenerated by 3% hydrochloric acid, which indicated the recyclability of the resin and thus low cost of this established method.

  2. Strengthening of the hydrological cycle in future scenarios: atmospheric energy and water balance perspective

    Directory of Open Access Journals (Sweden)

    A. Alessandri

    2012-11-01

    Full Text Available Future climate scenarios experiencing global warming are expected to strengthen the hydrological cycle during the 21st century (21C. We analyze the strengthening of the global-scale increase in precipitation from the perspective of changes in whole atmospheric water and energy balances. By combining energy and water equations for the whole atmosphere, we obtain constraints for the changes in surface fluxes and partitioning at the surface between sensible and latent components. We investigate the differences in the strengthening of the hydrological cycle in two centennial simulations performed with an Earth system model forced with specified atmospheric concentration pathways. Alongside the Special Report on Emissions Scenario (SRES A1B, which is a medium-high non-mitigation scenario, we consider a new aggressive-mitigation scenario (E1 with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2 K.

    Our results show that the mitigation scenario effectively constrains the global warming with a stabilization below 2 K with respect to the 1950–2000 historical period. On the other hand, the E1 precipitation does not follow the temperature field toward a stabilization path but continues to increase over the mitigation period. Quite unexpectedly, the mitigation scenario is shown to strengthen the hydrological cycle even more than SRES A1B till around 2070. We show that this is mostly a consequence of the larger increase in the negative radiative imbalance of atmosphere in E1 compared to A1B. This appears to be primarily related to decreased sulfate aerosol concentration in E1, which considerably reduces atmospheric absorption of solar radiation compared to A1B.

    The last decades of the 21C show a marked increase in global precipitation in A1B compared to E1, despite the fact that the two scenarios display almost the same overall increase of radiative imbalance with respect to the 20th century. Our

  3. The Potential of Water Vapor & Precipitation Estimation with a Differential-frequency Radar

    Science.gov (United States)

    Meneghini, Robert; Liao, Liang; Tian, Lin

    2006-01-01

    In the presence of rain, the radar return powers from a three-frequency radar, with center frequency at 22.235 GHz and upper and lower frequencies chosen with equal water vapor absorption coefficients, can be used to estimate water vapor density and parameters of the precipitation. A linear combination of differential measurements between the center and lower frequencies on one hand and the upper and lower frequencies on the other provide an estimate of differential water vapor absorption. Conversely, the difference in radar reflectivity factors (in dB) between the upper and lower frequencies is independent of water vapor absorption and can be used to estimate the median mass diameter of the hydrometeors. For a down-looking radar, path-integrated estimates of water vapor absorption may be possible under rain-free as well as raining conditions by using the surface returns at the three frequencies. Cross-talk or interference between the precipitation and water vapor estimates depends on the frequency separation of the channels as well as on the phase state and the median mass diameter of the hydrometeors. Simulations of the retrieval of water vapor absorption show that the largest source of variability arises from the variance in the measured radar return powers while the largest biases occur in the mixed-phase region. Use of high pulse repetition frequencies and signal whitening methods may be needed to obtain the large number of independent samples required. Measurements over a fractional bandwidth, defined as the ratio of the difference between the upper and lower frequencies to the center frequency, up to about 0.2 should be passible in a differential frequency mode, where a single transceiver and antenna are used. Difficulties in frequency allocation may require alternative choices of frequency where the water vapor absorptions at the low and high frequencies are unequal. We consider the degradation in the retrieval accuracy when the frequencies are not optimum.

  4. Thermal and gas dynamic investigations at Lastarria volcano, Northern Chile. The influence of precipitation and atmospheric pressure on the fumarole temperature and the gas velocity

    Science.gov (United States)

    Zimmer, Martin; Walter, Thomas R.; Kujawa, Christian; Gaete, Ayleen; Franco-Marin, Luis

    2017-10-01

    Fumaroles are hydrothermal manifestations commonly associated with active volcanoes. The dynamics of fumaroles are affected by interactions with internal and external factors, however, hazardous access and corrosive gases have so far limited successful case studies. In this study we report and discuss the results of continuous thermal monitoring carried out on three high temperature (> 250 °C) fumaroles at the Lastarria volcano Chile, together with simultaneously measured meteorological parameters from December 2013 to March 2016. In addition, the dynamic pressure and the CO2 concentration were recorded in a fourth vent. The investigated sites are located in the largest and most dominant fumarole field which developed in a fracture system on the north-west flank of the volcanic edifice. We detect external factors controlling the fumarole temperature and the dynamic gas pressure, for a better understanding of changes in these parameters and, consequently, to improve the evaluation of volcanic and hydrothermal activity. Selected fumaroles showed a continuous decrease in temperature, or remained unbiased from this trend showing that the influence of external effects on outlet temperature is strongly site dependent. But generally, significant decreases in all vent temperatures can be observed in response to intensive precipitation. Diurnal variations occur only in the coolest fourth fumarole, where gas temperature, gas pressure and CO2 concentration are inversely correlated with atmospheric pressure. Small barometric pressure reductions account for an increase in mass flow subsequently resulting in a higher temperature and CO2 concentration. The temperatures and thermodynamic properties of the fumarolic gas and infiltrated precipitation water were used to calculate the amount of discharging gas from the investigated field with about 67 × 106 m3 per day which is equivalent to 3545 tons.

  5. Effects of nitrate and water on the oxygen isotopic analysis of barium sulfate precipitated from water samples.

    Science.gov (United States)

    Hannon, Janet E; Böhlke, John Karl; Mroczkowski, Stanley J

    2008-12-01

    BaSO(4) precipitated from mixed salt solutions by common techniques for SO(4) (2-) isotopic analysis may contain quantities of H(2)O and NO(3) (-) that introduce errors in O isotope measurements. Experiments with synthetic solutions indicate that delta(18)O values of CO produced by decomposition of precipitated BaSO(4) in a carbon reactor may be either too low or too high, depending on the relative concentrations of SO(4) (2-) and NO(3) (-) and the delta(18)O values of the H(2)O, NO(3) (-), and SO(4) (2-). Typical delta(18)O errors are of the order of 0.5 to 1 per thousand in many sample types, and can be larger in samples containing atmospheric NO(3) (-), which can cause similar errors in delta(17)O and Delta(17)O. These errors can be reduced by (1) ion chromatographic separation of SO(4) (2-) from NO(3) (-), (2) increasing the salinity of the solutions before precipitating BaSO(4) to minimize incorporation of H(2)O, (3) heating BaSO(4) under vacuum to remove H(2)O, (4) preparing isotopic reference materials as aqueous samples to mimic the conditions of the samples, and (5) adjusting measured delta(18)O values based on amounts and isotopic compositions of coexisting H(2)O and NO(3) (-). These procedures are demonstrated for SO(4) (2-) isotopic reference materials, synthetic solutions with isotopically known reagents, atmospheric deposition from Shenandoah National Park, Virginia, USA, and sulfate salt deposits from the Atacama Desert, Chile, and Mojave Desert, California, USA. These results have implications for the calibration and use of O isotope data in studies of SO(4) (2-) sources and reaction mechanisms. Copyright 2008 John Wiley & Sons, Ltd.

  6. Effects of nitrate and water on the oxygen isotopic analysis of barium sulfate precipitated from water samples

    Science.gov (United States)

    Hannon, Janet E.; Böhlke, John Karl; Mroczkowski, Stanley J.

    2008-01-01

    BaSO4 precipitated from mixed salt solutions by common techniques for SO isotopic analysis may contain quantities of H2O and NO that introduce errors in O isotope measurements. Experiments with synthetic solutions indicate that δ18O values of CO produced by decomposition of precipitated BaSO4 in a carbon reactor may be either too low or too high, depending on the relative concentrations of SO and NO and the δ18O values of the H2O, NO, and SO. Typical δ18O errors are of the order of 0.5 to 1‰ in many sample types, and can be larger in samples containing atmospheric NO, which can cause similar errors in δ17O and Δ17O. These errors can be reduced by (1) ion chromatographic separation of SO from NO, (2) increasing the salinity of the solutions before precipitating BaSO4 to minimize incorporation of H2O, (3) heating BaSO4under vacuum to remove H2O, (4) preparing isotopic reference materials as aqueous samples to mimic the conditions of the samples, and (5) adjusting measured δ18O values based on amounts and isotopic compositions of coexisting H2O and NO. These procedures are demonstrated for SO isotopic reference materials, synthetic solutions with isotopically known reagents, atmospheric deposition from Shenandoah National Park, Virginia, USA, and sulfate salt deposits from the Atacama Desert, Chile, and Mojave Desert, California, USA. These results have implications for the calibration and use of O isotope data in studies of SO sources and reaction mechanisms.

  7. Orographic cyclogenesis in a saturated atmosphere and intense precipitation: baroclinic modal solutions under the joint action of localized mountains and humidity

    Directory of Open Access Journals (Sweden)

    A. Speranza

    1997-06-01

    Full Text Available In this paper we analyse the nature of orographic cyclogenesis in a saturated atmosphere by means of a simplified model based on the analysis of linear modal solutions.The space structure of fastest growing modal solutions suggests that three different scales of axtratropical atmospheric motion may simultaneously be activated in a single, growing, unstable mode: the orographic modulation of growing baroclinic modes extending, as we know from the classical modal theory of orographic cyclogenesis, from the scale typical of the primary, extra-tropical cyclone to the scale of the secondary, orographic cyclone, is also characterized by the (smaller scale associated with strong ascending motion in a saturated atmosphere. Since ascending motion can be associated with intense precipitation, this result is important in view of its potential consequences both on the ability to achieve a good forecast of intense precipitation events in the Mediterranean and on the refinement of the theory of orographic cyclogenesis.

  8. Evidence of Stranski-Krastanov growth at the initial stage of atmospheric water condensation.

    Science.gov (United States)

    Song, Jie; Li, Qiang; Wang, Xiaofeng; Li, Jingyuan; Zhang, Shuai; Kjems, Jørgen; Besenbacher, Flemming; Dong, Mingdong

    2014-09-08

    The precipitation products (rain, snow and so on) of atmospheric water vapour are widely prevalent, and yet the map of its initial stage at a surface is still unclear. Here we investigate the condensation of water vapour occurring in both the hydrophobic-hydrophilic interface (graphene/mica) and the hydrophilic-hydrophilic interface (MoS2/mica) by in situ thermally controlled atomic force microscopy. By monitoring the dynamic dewetting/rewetting transitions process, the ice-like water adlayers, at the hydrophobic-hydrophilic interface and not at the hydrophilic-hydrophilic interface, stacked on top of each other up to three ice-Ih layers (each of height 3.7 ± 0.2 Å), and the transition from layers to droplets was directly visualized experimentally. Compared with molecular dynamics simulation, the Stranski-Krastanov growth model is better suited to describe the whole water condensation process at the hydrophobic-hydrophilic interface. The initial stage of the hydrometeor is rationalized, which potentially can be utilized for understanding the boundary condition for water transport and the aqueous interfacial chemistry.

  9. Seasonal Water Transport in the Atmosphere of Mars: Applications of a Mars General Circulation Model Using Mars Global Surveyor Data

    Science.gov (United States)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1999-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. We present below a summary of progress made during the duration of this JRI. The focus of this JRI has been to investigate seasonal water vapor transport in the atmosphere of Mars and its effects on the planet's present climate. To this end, the primary task has been to adapt a new dynamical processor for the adiabatic tendencies of the atmospheric circulation into the NASA Ames Mars general circulation model (MGCM). Using identical boundary and initial conditions, several comparative tests between the new and old MGCMs have been performed and the nature of the simulated circulations have been diagnosed. With confidence that the updated version of the Ames MGCM produces quite similar mean and eddy circulation statistics, the new climate model is well poised as a tool to pursue fundamental questions related to the spatial and seasonal variations of atmospheric water vapor on Mars, and to explore exchanges of water with non-atmospheric reservoirs and transport within its atmosphere. In particular, the role of surface sources and sinks can be explored, the range of water-vapor saturation altitudes can be investigated, and plausible precipitation mechanisms can be studied, for a range of atmospheric dust loadings. Such future investigations can contribute to a comprehensive study of surface inventories, exchange mechanisms, and the relative importance of atmospheric transport Mars' water cycle. A listing of presentations made and manuscripts submitted during the course of this project is provided.

  10. IR-BASED SATELLITE PRODUCTS FOR THE MONITORING OF ATMOSPHERIC WATER VAPOR OVER THE BLACK SEA

    Directory of Open Access Journals (Sweden)

    VELEA LILIANA

    2016-03-01

    Full Text Available The amount of precipitable water (TPW in the atmospheric column is one of the important information used weather forecasting. Some of the studies involving the use of TPW relate to issues like lightning warning system in airports, tornadic events, data assimilation in numerical weather prediction models for short-range forecast, TPW associated with intense rain episodes. Most of the available studies on TPW focus on properties and products at global scale, with the drawback that regional characteristics – due to local processes acting as modulating factors - may be lost. For the Black Sea area, studies on the climatological features of atmospheric moisture are available from sparse or not readily available observational databases or from global reanalysis. These studies show that, although a basin of relatively small dimensions, the Black Sea presents features that may significantly impact on the atmospheric circulation and its general characteristics. Satellite observations provide new opportunities for extending the knowledge on this area and for monitoring atmospheric properties at various scales. In particular, observations in infrared (IR spectrum are suitable for studies on small-scale basins, due to the finer spatial sampling and reliable information in the coastal areas. As a first step toward the characterization of atmospheric moisture over the Black Sea from satellite-based information, we investigate three datasets of IR-based products which contain information on the total amount of moisture and on its vertical distribution, available in the area of interest. The aim is to provide a comparison of these data with regard to main climatological features of moisture in this area and to highlight particular strengths and limits of each of them, which may be helpful in the choice of the most suitable dataset for a certain application.

  11. The Dehydration of Water Worlds via Atmospheric Losses

    Science.gov (United States)

    Dong, Chuanfei; Huang, Zhenguang; Lingam, Manasvi; Tóth, Gábor; Gombosi, Tamas; Bhattacharjee, Amitava

    2017-09-01

    We present a three-species multi-fluid magnetohydrodynamic model (H+, H2O+, and e -), endowed with the requisite atmospheric chemistry, that is capable of accurately quantifying the magnitude of water ion losses from exoplanets. We apply this model to a water world with Earth-like parameters orbiting a Sun-like star for three cases: (I) current normal solar wind conditions, (II) ancient normal solar wind conditions, and (III) one extreme “Carrington-type” space weather event. We demonstrate that the ion escape rate for (II), with a value of 6.0 × 1026 s-1, is about an order of magnitude higher than the corresponding value of 6.7 × 1025 s-1 for (I). Studies of ion losses induced by space weather events, where the ion escape rates can reach ˜1028 s-1, are crucial for understanding how an active, early solar-type star (e.g., with frequent coronal mass ejections) could have accelerated the depletion of the exoplanet’s atmosphere. We briefly explore the ramifications arising from the loss of water ions, especially for planets orbiting M-dwarfs where such effects are likely to be significant.

  12. The Dehydration of Water Worlds via Atmospheric Losses

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chuanfei; Bhattacharjee, Amitava [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Huang, Zhenguang; Tóth, Gábor; Gombosi, Tamas [Center for Space Environment Modeling, University of Michigan, Ann Arbor, MI 48109 (United States); Lingam, Manasvi, E-mail: dcfy@princeton.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2017-09-20

    We present a three-species multi-fluid magnetohydrodynamic model (H{sup +}, H{sub 2}O{sup +}, and e {sup −}), endowed with the requisite atmospheric chemistry, that is capable of accurately quantifying the magnitude of water ion losses from exoplanets. We apply this model to a water world with Earth-like parameters orbiting a Sun-like star for three cases: (i) current normal solar wind conditions, (ii) ancient normal solar wind conditions, and (iii) one extreme “Carrington-type” space weather event. We demonstrate that the ion escape rate for (ii), with a value of 6.0 × 10{sup 26} s{sup −1}, is about an order of magnitude higher than the corresponding value of 6.7 × 10{sup 25} s{sup −1} for (i). Studies of ion losses induced by space weather events, where the ion escape rates can reach ∼10{sup 28} s{sup −1}, are crucial for understanding how an active, early solar-type star (e.g., with frequent coronal mass ejections) could have accelerated the depletion of the exoplanet’s atmosphere. We briefly explore the ramifications arising from the loss of water ions, especially for planets orbiting M-dwarfs where such effects are likely to be significant.

  13. Measurements of Lagrangian atmospheric dispersion statistics over open water

    International Nuclear Information System (INIS)

    Sheih, C.M.; Frenzen, P.; Hart, R.L.

    1980-01-01

    Atmospheric dispersion statistics in the Lagrangian frame have been evaluated over open water by using a double-theodolite system to track neutrally buoyant balloons released a few kilometers offshore during onshore winds. Analysis of the trajectories recorded in various atmospheric stabilities finds Lagrangian integral time scales corresponding to Pasquill stability categories C, D and E equal, respectively, to 9.0, 7.3 and 8.1 s for lateral dispersion and 2.3, 5.3 and 6.6 s for vertical dispersion. Normalized standard deviations of component velocity fluctuations (i.e., sigma/sub upsilon//u/sub asterisk/ and sigma/sub ω//u/sub asterisk/) for stability categories C, D and E are found to be 3.7, 1.8 and 2.4 for lateral motion and 2.2, 1.3 and 1.2 for vertical motion. Equivalent dispersion coefficients (sigma/sub y/ and sigma/sub z/) appropriate to flow over water are observed to undergo relatively less variation with stability than do those measured in flow over land. When compared to estimates derived from the Pasquill-Gifford curves for estimating dispersion over flat grassland, the dispersion coefficients over water are, in effect, shifted about two categories toward the stable side for the vertical component and between one and two categories toward the stable side for the lateral component

  14. MODIS/Terra Total Precipitable Water Vapor 5-Min L2 Swath 1km and 5km V006

    Data.gov (United States)

    National Aeronautics and Space Administration — This Level 2 data collection contains derived precipitable column water vapor amounts, during daytime using a near-infrared over clear land areas and above clouds...

  15. A lab in the field: high-frequency analysis of water quality and stable isotopes in stream water and precipitation

    Science.gov (United States)

    von Freyberg, Jana; Studer, Bjørn; Kirchner, James W.

    2017-03-01

    High-frequency measurements of solutes and isotopes (18O and 2H) in rainfall and streamflow can shed important light on catchment flow pathways and travel times, but the workload and sample storage artifacts involved in collecting, transporting, and analyzing thousands of bottled samples severely constrain catchment studies in which conventional sampling methods are employed. However, recent developments towards more compact and robust analyzers have now made it possible to measure chemistry and water isotopes in the field at sub-hourly frequencies over extended periods. Here, we present laboratory and field tests of a membrane-vaporization continuous water sampler coupled to a cavity ring-down spectrometer for real-time measurements of δ18O and δ2H combined with a dual-channel ion chromatograph (IC) for the synchronous analysis of major cations and anions. The precision of the isotope analyzer was typically better than 0.03 ‰ for δ18O and 0.17 ‰ for δ2H in 10 min average readings taken at intervals of 30 min. Carryover effects were less than 1.2 % between isotopically contrasting water samples for 30 min sampling intervals, and instrument drift could be corrected through periodic analysis of secondary reference standards. The precision of the ion chromatograph was typically ˜ 0.1-1 ppm or better, with relative standard deviations of ˜ 1 % or better for most major ions in stream water, which is sufficient to detect subtle biogeochemical signals in catchment runoff. We installed the coupled isotope analyzer/IC system in an uninsulated hut next to a stream of a small catchment and analyzed stream water and precipitation samples every 30 min over 28 days. These high-frequency measurements facilitated a detailed comparison of event-water fractions via endmember mixing analysis with both chemical and isotope tracers. For two events with relatively dry antecedent moisture conditions, the event-water fractions were isotope tracers but were significantly

  16. Water balance and magnesium control in electrolytic zinc plants using the E.Z. selective zinc precipitation process

    Science.gov (United States)

    Matthew, I. G.; Newman, O. M. G.; Palmer, D. J.

    1980-03-01

    There is an increasing tendency for modern electrolytic zinc plants to experience water balance and magnesium control problems because of the simultaneous need to maximize zinc recovery and produce environmentally acceptable leach residues and precipitates. The Selective Zinc Precipitation process developed by the Electrolytic Zinc Company of Australasia involves the precipitation of basic zinc sulfate using limestone. Water balance and magnesium control may be achieved by either discarding the process filtrate, or by using it to wash precipitates in a closed circuit operation. The process filter cake is used as a neutralizing agent in the zinc plant. The process can be operated over a wide range of temperatures and calcined zinc concentrate may be preferred to limestone as a zinc precipitant to minimize the discard of sulfate. This paper is particularly concerned with a quantitative assessment of various modes of integrating the process into modern electrolytic zinc plants.

  17. Variations in extreme precipitation on the Loess Plateau using a high-resolution dataset and their linkages with atmospheric circulation indices

    Science.gov (United States)

    Zhao, Guangju; Zhai, Jianqing; Tian, Peng; Zhang, Limei; Mu, Xingmin; An, Zhengfeng; Han, Mengwei

    2017-08-01

    Assessing regional patterns and trends in extreme precipitation is crucial for facilitating flood control and drought adaptation because extreme climate events have more damaging impacts on society and ecosystems than simple shifts in the mean values. In this study, we employed daily precipitation data from 231 climate stations spanning 1961 to 2014 to explore the changes in precipitation extremes on the Loess Plateau, China. Nine of the 12 extreme precipitation indices suggested decreasing trends, and only the annual total wet-day precipitation (PRCPTOT) and R10 declined significantly: - 0.69 mm/a and - 0.023 days/a at the 95% confidence level. The spatial patterns in all of the extreme precipitation indices indicated mixed trends on the Loess Plateau, with decreasing trends in the precipitation extremes at the majority of the stations examined in the Fen-Wei River valley and high-plain plateau. Most of extreme precipitation indices suggested apparent regional differences, whereas R25 and R20 had spatially similar patterns on the Loess Plateau, with many stations revealing no trends. In addition, we found a potential decreasing trend in rainfall amounts and rainy days and increasing trends in rainfall intensities and storm frequencies in some regions due to increasing precipitation events in recent years. The relationships between extreme rainfall events and atmospheric circulation indices suggest that the weakening trend in the East Asia summer monsoon has limited the northward extension of the rainfall belt to northern China, thereby leading to a decrease in rainfall on the Loess Plateau.

  18. Bacterial carbonate precipitation improves water absorption of interlocking compressed earth block (ICEB)

    Science.gov (United States)

    Zamer, M. M.; Irwan, J. M.; Othman, N.; Faisal, S. K.; Anneza, L. H.; Alshalif, A. F.; Teddy, T.

    2017-11-01

    Interlocking compressed earth blocks (ICEB) are soil based blocks that allows for mortarless construction. The addition of many alternative materials into interlocking block in order to improve the durability has been reported. However there are currently lack of report and evidence on the application of biocalcification or microbiologically induced calcite precipitation (MICP) in improving the engineering properties of ICEB. This paper evaluate the effect of UB in improving the water absorption properties of ICEB. This paper also provide the results on SEM analysis of addition of 1%, 3% and 5% UB in ICEB. The bacteria were added as partial replacement of limestone water in ICEB. The results showed the reduction of 14.72% with 5% UB on initial water absorption followed by the results for water absorption by 24-hour soaking which also indicates reduction of 14.68% with 5% UB on 28th days of testing compared to control specimen. It was expected that the reduction of water absorption was due to the plugging of pores by the bacterial calcite which prevent ingression of water in ICEB samples. Therefore this study hopes that the positive results from the UB as improving in water absorption of ICEB will lead to improve others ICEB properties and others construction materials.

  19. Characterization and interaction of precipitation, river water and groundwater in the Vietnamese Mekong Delta - A case study in the Plain of Reeds

    Science.gov (United States)

    Duy Nguyen, Le; Heidbüchel, Ingo; Merz, Bruno; Apel, Heiko

    2016-04-01

    An understanding of the interactions between surface water and groundwater systems in the Vietnamese Mekong Delta (VMD) is important not only for water resources planning and management, but also for the livelihood of the majority of the population in the delta. Precipitation and ground water, but also river water is used as drinking water in the communes of the Delta. Particularly the ground water is increasingly exploited, but the important processes like river - aquifer interaction and ground water recharge rates are largely unknown. This study thus aims at the characterization of processes between the different water resources. For this the different water sources were sampled over longer time periods and analysed for isotopic composition (2H, 18O). Additionally surface and ground water levels were recorded, as well as the temperature profile at and under the river bed in order to identify the river-ground water interaction. First results indicate that the isotopic composition and the local meteoric water line of the precipitation is very similar to the GNIP data for Bangkok, indicating similar isotopic sequestration and origin of the rainfall in the region (near ocean areas of SE-Asia). The isotopic composition of precipitation and river water exhibits a strong seasonal signal indicating the monsoonal influence. During the monsoon season both precipitation and river water is depleted in stable isotopes, while the dry season shows an enriched composition. This also indicates the different composition of the river water over the seasons. During the rainy season the portion of rain water, i.e. surface runoff stemming from the Mekong basin but also direct rainfall contribution in the Mekong Delta is considerably larger, as expected. The enriched composition during the dry season indicates a larger ground water, i.e. base flow portion, but also a generally higher evaporation due to the lower atmospheric moisture. The isotopic composition of the ground water differs

  20. Retrieval of precipitable water using near infrared channels of Global Imager/Advanced Earth Observing Satellite-II (GLI/ADEOS-II)

    International Nuclear Information System (INIS)

    Kuji, M.; Uchiyama, A.

    2002-01-01

    Retrieval of precipitable water (vertically integrated water vapor amount) is proposed using near infrared channels og Global Imager onboard Advanced Earth Observing Satellite-II (GLI/ADEOS-II). The principle of retrieval algorithm is based upon that adopted with Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Earth Observing System (EOS) satellite series. Simulations were carried out with GLI Signal Simulator (GSS) to calculate the radiance ratio between water vapor absorbing bands and non-absorbing bands. As a result, it is found that for the case of high spectral reflectance background (a bright target) such as the land surface, the calibration curves are sensitive to the precipitable water variation. For the case of low albedo background (a dark target) such as the ocean surface, on the contrary, the calibration curve is not very sensitive to its variation under conditions of the large water vapor amount. It turns out that aerosol loading has little influence on the retrieval over a bright target for the aerosol optical thickness less than about 1.0 at 500nm. It is also anticipated that simultaneous retrieval of the water vapor amount using GLI data along with other channels will lead to improved accuracy of the determination of surface geophysical properties, such as vegetation, ocean color, and snow and ice, through the better atmospheric correction

  1. Effectiveness of Arsenic Co-Precipitation with Fe-Al Hydroxides for Treatment of Contaminated Water

    Directory of Open Access Journals (Sweden)

    Jaime Wilson Vargas de Mello

    2018-03-01

    Full Text Available ABSTRACT Wastewater treatment is a challenging problem faced by the mining industry, especially when mine effluents include acid mine drainage with elevated arsenic levels. Iron (hydroxides are known to be effective in removal of As from wastewater, and although the resulting compounds are relatively unstable, the presence of structural Al enhances their stability, particularly under reducing conditions. The purpose of this study was to assess the effectiveness of Al-Fe (hydroxide co-precipitates for the removal of As from wastewater and to assess the chemical stability of the products. Different Al-Fe (hydroxides were synthesized at room temperature from ferrous and aluminum salts using three different Fe:Al molar ratios (1:0.0, 1:0.3, and 1:0.7 and aged for 90 days (sulfate experiments or 120 days (chloride experiments in the presence of arsenic. At the end of the aging periods, the precipitated sludges were dried and characterized in order to evaluate their stability and therefore potential As mobility. All treatments were effective in reducing As levels in the water to below 10 µg L-1, but the presence of Al impaired the effectiveness of the treatment. Aluminum decreased the chemical stability of the precipitated sludge and hence its ability to retain As under natural environmental conditions.

  2. Effects of elevated atmospheric CO{sub 2} concentrations and water stress on field-grown maize

    Energy Technology Data Exchange (ETDEWEB)

    Surano, K.A.; Kercher, J.R. [eds.

    1993-10-01

    Global atmospheric carbon dioxide (CO{sub 2}) concentrations are continuing to increase and will probably double during the next century. The effects of such an increase are of global concern. Carbon dioxide-induced climate changes may result in reduced precipitation in major agricultural areas. The potential therefore exists for severe CO{sub 2}-induced water-stress effects on agriculture. This set of studies determined the effects of long-term elevated atmospheric CO{sub 2} concentrations and severe water stress on biomass production, evapotranspiration, water-use efficiency (WUE), water potential, photosynthesis, stomatal conductance, morphology and phenology of maize grown under field conditions. Plants were grown at one of four daytime mean CO{sub 2} concentrations (348, 431, 506 or 656 {mu}LL{sup {minus}1}) in open-top field exposure chambers and at one of two levels of available water (well-watered or 50% of well-watered). This report is organized into 4 chapters followed by appendices. Separate abstracts were prepared for each of the four chapters: (1) biomass production and water-use efficiency, (2) gas exchange and water potential, (3) morphology and phenology, and (4) and elemental analyses. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  3. Precipitation projections under GCMs perspective and Turkish Water Foundation (TWF) statistical downscaling model procedures

    Science.gov (United States)

    Dabanlı, İsmail; Şen, Zekai

    2018-04-01

    The statistical climate downscaling model by the Turkish Water Foundation (TWF) is further developed and applied to a set of monthly precipitation records. The model is structured by two phases as spatial (regional) and temporal downscaling of global circulation model (GCM) scenarios. The TWF model takes into consideration the regional dependence function (RDF) for spatial structure and Markov whitening process (MWP) for temporal characteristics of the records to set projections. The impact of climate change on monthly precipitations is studied by downscaling Intergovernmental Panel on Climate Change-Special Report on Emission Scenarios (IPCC-SRES) A2 and B2 emission scenarios from Max Plank Institute (EH40PYC) and Hadley Center (HadCM3). The main purposes are to explain the TWF statistical climate downscaling model procedures and to expose the validation tests, which are rewarded in same specifications as "very good" for all stations except one (Suhut) station in the Akarcay basin that is in the west central part of Turkey. Eventhough, the validation score is just a bit lower at the Suhut station, the results are "satisfactory." It is, therefore, possible to say that the TWF model has reasonably acceptable skill for highly accurate estimation regarding standard deviation ratio (SDR), Nash-Sutcliffe efficiency (NSE), and percent bias (PBIAS) criteria. Based on the validated model, precipitation predictions are generated from 2011 to 2100 by using 30-year reference observation period (1981-2010). Precipitation arithmetic average and standard deviation have less than 5% error for EH40PYC and HadCM3 SRES (A2 and B2) scenarios.

  4. Adsorption of glyoxal molecules on atmospheric water ice nanoparticles

    Science.gov (United States)

    Schrems, O.; Ignatov, S. K.; Gadzhiev, O. B.

    2012-12-01

    Ice nanoparticles play an important role in physics and chemistry of the Earth atmosphere. Knowledge about the uptake and incorporation of atmospheric trace gases in ice particles as well as their interactions with water molecules is very important for the understanding of processes at the air/ice interface. The interaction of the atmospheric trace gases with atmospheric nanoparticles is also an important issue for the development of modern physicochemical models. Usually, the interactions between trace gases and small particles considered theoretically apply small-size model complexes or the surface models representing only fragments of the ideal surface. In this study we used modern quantum chemical methods to study the interaction of glyoxal molecules (HCOCHO) with the full-size particles of crystalline water ice of nanoscale size. Glyoxal, the simplest a-dicarbonyl, is an atmospheric relevant carbonyl compound and is formed as product in the photooxidation of simple volatile organic compounds in air in the presence of NOx. The ice particles consisting of 48, 72, and 216 water molecules with a distorted structure of hexagonal water ice Ih were studied using the new SCC-DFTBA method combining well the advantages of the DFT theory and semiempirical methods of quantum chemistry. Typical sizes of the ice particles were in the range 1.5-2.6 nm. The glyoxal molecules were coordinated on different sites of the nanoparticles corresponding to different ice Ih crystal planes: (0001), (10-10), (11-20). The structure of coordination complexes, their vibrational frequencies, the corresponding adsorption energies and thermodynamic parameters (the enthalpy and the Gibbs free energy of adsorption) were evaluated using the full optimization followed by the frequency calculations. Additionally, the different modes of incorporation of the glyoxal molecules into the ice particles were considered and the corresponding structural and energetic parameters were evaluated. The

  5. The synergistic effect of manure supply and extreme precipitation on surface water quality

    Science.gov (United States)

    Motew, Melissa; Booth, Eric G.; Carpenter, Stephen R.; Chen, Xi; Kucharik, Christopher J.

    2018-04-01

    Over-enrichment of phosphorus (P) in agroecosystems contributes to eutrophication of surface waters. In the Midwest US and elsewhere, climate change is increasing the frequency of high-intensity precipitation events, which can serve as a primary conduit of P transport within watersheds. Despite uncertainty in their estimates, process-based watershed models are important tools that help characterize watershed hydrology and biogeochemistry and scale up important mechanisms affecting water quality. Using one such model developed for an agricultural watershed in Wisconsin, we conducted a 2 × 2 factorial experiment to test the effects of (high/low) terrestrial P supply (PSUP) and (high/low) precipitation intensity (PREC) on surface water quality. Sixty-year simulations were conducted for each of the four runs, with annual results obtained for watershed average P yield and concentration at the field scale (220 × 220 m grid cells), P load and concentration at the stream scale, and summertime total P concentration (TP) in Lake Mendota. ANOVA results were generated for the 2 × 2 factorial design, with PSUP and PREC treated as categorical variables. The results showed a significant, positive interaction (p ecological consequences because dissolved P is highly bioavailable. Overall, the results suggest that high levels of terrestrial P supplied as manure can exacerbate water quality problems in the future as the frequency of high-intensity rainfall events increases with a changing climate. Conversely, lowering terrestrial manure P supply may help improve the resilience of surface water quality to extreme events.

  6. Heavy metals in precipitation waters under conditions of varied anthropopressure in typical of European low mountain regions

    Directory of Open Access Journals (Sweden)

    Rabajczyk A.

    2013-04-01

    Full Text Available The environment is a dynamic system, subject to change resulting from a variety of physicochemical factors, such as temperature, pressure, pH, redox potential and human activity. The quantity and variety of these determinants cause the inflow of substances into individual environmental elements to vary in both time and space, as well as in terms of substance types and quantities. The energy and matter flow in the environment determines its integrity, which means that the processes occurring in one element of the environment affect the others. A certain measure of the energy and matter flow is the migration of chemical substances in various forms from one place to another. In a particular geographical space, under natural conditions, a specific level of balance between individual processes appears; in areas subject to anthropopressure, the correlations are different. In small areas, varying deposition volumes and chemism of precipitation waters which reach the substratum directly can both be observed. The study area is similar in terms of geological origins as well as morphological, structural and physico-chemical properties, and is typical of European low mountain regions. A qualitative and quantitative study of wet atmospheric precipitation was conducted between February 2009 and May 2011 in the Bobrza river catchment in the Holy Cross (Świętokrzyskie Mountains (Poland, at three sampling sites of varying land development and distance from sources of various acidic-alkaline emissions. Field and laboratory work was conducted over 29 months, from February 2009 to May 2011. Atmospheric precipitation measurements were carried out in a continuous manner by means of a Hellman rain gauge (200cm2. The collecting surface was placed at ground level (0m AGL. The application of a collecting funnel and an adequately prepared polyethylene collecting can in the rain gauge enabled the measurement of precipitation volume and water sampling for chemical

  7. Indirect radiative forcing of aerosols via water vapor above non-precipitating maritime cumulus clouds

    OpenAIRE

    M. A. Pfeffer; J. E. Kristjansson; F. Stordal; T. Berntsen; J. Fast

    2011-01-01

    Aerosol-cloud-water vapor interactions in clean maritime air have been described for different aerosol sources using the WRF-Chem atmospheric model. The simulations were made over the Lesser Antilles in the region of the RICO measurement campaign where the clouds are low, patchy, typical trade-wind cumuli. In this very clean air, sea salt and DMS are found to have greater effects than anthropogenic pollution on the cloud droplets' effective radii and longwave and shortwave outgoing top of atm...

  8. Understanding the Global Water and Energy Cycle Through Assimilation of Precipitation-Related Observations: Lessons from TRMM and Prospects for GPM

    Science.gov (United States)

    Hou, Arthur; Zhang, Sara; daSilva, Arlindo; Li, Frank; Atlas, Robert (Technical Monitor)

    2002-01-01

    Understanding the Earth's climate and how it responds to climate perturbations relies on what we know about how atmospheric moisture, clouds, latent heating, and the large-scale circulation vary with changing climatic conditions. The physical process that links these key climate elements is precipitation. Improving the fidelity of precipitation-related fields in global analyses is essential for gaining a better understanding of the global water and energy cycle. In recent years, research and operational use of precipitation observations derived from microwave sensors such as the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager and Special Sensor Microwave/Imager (SSM/I) have shown the tremendous potential of using these data to improve global modeling, data assimilation, and numerical weather prediction. We will give an overview of the benefits of assimilating TRMM and SSM/I rain rates and discuss developmental strategies for using space-based rainfall and rainfall-related observations to improve forecast models and climate datasets in preparation for the proposed multi-national Global Precipitation Mission (GPM).

  9. Source of humidity in the terrestrial water cycle over the forested monsoon arid of Sahel; changes in the water recycle and atmospheric instability

    Science.gov (United States)

    Yosef, G.; Avissar, R.; Walko, R. L.; Yakir, D.

    2017-12-01

    Land-cover change from low-level shrubs to forest over semi-arid monsoon regions such as the Sahel, can significantly influence the surface energy budget and, in turn, the local atmospheric circulation. These regions, influenced at the summer by the monsoon rain following the migration of the tropical convergence zones (ITCZ). And low-level easterly jet that acts as a barrier to the penetration of the precipitation into the semi arid areas. In this study we follow-up first the results of large-scale afforestation numerical experiment in the Sahel that changes the local and regional atmospheric circulation and, consequently, increasing of precipitation. We aim for explicitly investigation of the change in the sources and pathways of humidity in the terrestrial water cycle over the Sahel as result afforestation. The GCM OLAM was used to performing simulations of afforestation scenarios in the Sahel. The area (Sahel 2.6 E6 km2) was afforested with a mature pine forest, using the extensive data form the long-term semi-arid Yatir forest in Israel as a reference forest for surface parameterization. The regional effect of the afforestation was analyzed using the following parameters; the index of water recycling (WR), which refers to the contribution of local ET fluxes to precipitation; the Moist Static Energy (MSE), is the sum of the potential, inertial and latent energy; and the vertical motion. The result shows increases of the WR in the south of the afforested area and north of the footprint, mainly as consequences of increasing in the vertical integrated moist flux convergence (MFC). Explaining this mechanism in terms of MSE shows that although the forest area become cooler and stabilizes the atmospheric column, its shift and weaken the African Easterly Jet enable the penetration of additional humidity to increase the MFC. On the other hand positive MSE observed over the northern footprint area mainly as a results of increasing the leant energy (e.g. humidity). Over

  10. Attribution of the United States “warming hole”: Aerosol indirect effect and precipitable water vapor

    Science.gov (United States)

    Yu, Shaocai; Alapaty, Kiran; Mathur, Rohit; Pleim, Jonathan; Zhang, Yuanhang; Nolte, Chris; Eder, Brian; Foley, Kristen; Nagashima, Tatsuya

    2014-01-01

    Aerosols can influence the climate indirectly by acting as cloud condensation nuclei and/or ice nuclei, thereby modifying cloud optical properties. In contrast to the widespread global warming, the central and south central United States display a noteworthy overall cooling trend during the 20th century, with an especially striking cooling trend in summertime daily maximum temperature (Tmax) (termed the U.S. “warming hole”). Here we used observations of temperature, shortwave cloud forcing (SWCF), longwave cloud forcing (LWCF), aerosol optical depth and precipitable water vapor as well as global coupled climate models to explore the attribution of the “warming hole”. We find that the observed cooling trend in summer Tmax can be attributed mainly to SWCF due to aerosols with offset from the greenhouse effect of precipitable water vapor. A global coupled climate model reveals that the observed “warming hole” can be produced only when the aerosol fields are simulated with a reasonable degree of accuracy as this is necessary for accurate simulation of SWCF over the region. These results provide compelling evidence of the role of the aerosol indirect effect in cooling regional climate on the Earth. Our results reaffirm that LWCF can warm both winter Tmax and Tmin. PMID:25373416

  11. Attribution of the United States "warming hole": aerosol indirect effect and precipitable water vapor.

    Science.gov (United States)

    Yu, Shaocai; Alapaty, Kiran; Mathur, Rohit; Pleim, Jonathan; Zhang, Yuanhang; Nolte, Chris; Eder, Brian; Foley, Kristen; Nagashima, Tatsuya

    2014-11-06

    Aerosols can influence the climate indirectly by acting as cloud condensation nuclei and/or ice nuclei, thereby modifying cloud optical properties. In contrast to the widespread global warming, the central and south central United States display a noteworthy overall cooling trend during the 20(th) century, with an especially striking cooling trend in summertime daily maximum temperature (Tmax) (termed the U.S. "warming hole"). Here we used observations of temperature, shortwave cloud forcing (SWCF), longwave cloud forcing (LWCF), aerosol optical depth and precipitable water vapor as well as global coupled climate models to explore the attribution of the "warming hole". We find that the observed cooling trend in summer Tmax can be attributed mainly to SWCF due to aerosols with offset from the greenhouse effect of precipitable water vapor. A global coupled climate model reveals that the observed "warming hole" can be produced only when the aerosol fields are simulated with a reasonable degree of accuracy as this is necessary for accurate simulation of SWCF over the region. These results provide compelling evidence of the role of the aerosol indirect effect in cooling regional climate on the Earth. Our results reaffirm that LWCF can warm both winter Tmax and Tmin.

  12. A land surface scheme for atmospheric and hydrologic models: SEWAB (Surface Energy and Water Balance)

    Energy Technology Data Exchange (ETDEWEB)

    Mengelkamp, H.T.; Warrach, K.; Raschke, E. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    1997-12-31

    A soil-vegetation-atmosphere-transfer scheme is presented here which solves the coupled system of the Surface Energy and Water Balance (SEWAB) equations considering partly vegetated surfaces. It is based on the one-layer concept for vegetation. In the soil the diffusion equations for heat and moisture are solved on a multi-layer grid. SEWAB has been developed to serve as a land-surface scheme for atmospheric circulation models. Being forced with atmospheric data from either simulations or measurements it calculates surface and subsurface runoff that can serve as input to hydrologic models. The model has been validated with field data from the FIFE experiment and has participated in the PILPS project for intercomparison of land-surface parameterization schemes. From these experiments we feel that SEWAB reasonably well partitions the radiation and precipitation into sensible and latent heat fluxes as well as into runoff and soil moisture Storage. (orig.) [Deutsch] Ein Landoberflaechenschema wird vorgestellt, das den Transport von Waerme und Wasser zwischen dem Erdboden, der Vegetation und der Atmosphaere unter Beruecksichtigung von teilweise bewachsenem Boden beschreibt. Im Erdboden werden die Diffusionsgleichungen fuer Waerme und Feuchte auf einem Gitter mit mehreren Schichten geloest. Das Schema SEWAB (Surface Energy and Water Balance) beschreibt die Landoberflaechenprozesse in atmosphaerischen Modellen und berechnet den Oberflaechenabfluss und den Basisabfluss, die als Eingabedaten fuer hydrologische Modelle genutzt werden koennen. Das Modell wurde mit Daten des FIFE-Experiments kalibriert und hat an Vergleichsexperimenten fuer Landoberflaechen-Schemata im Rahmen des PILPS-Projektes teilgenommen. Dabei hat sich gezeigt, dass die Aufteilung der einfallenden Strahlung und des Niederschlages in den sensiblen und latenten Waermefluss und auch in Abfluss und Speicherung der Bodenfeuchte in SEWAB den beobachteten Daten recht gut entspricht. (orig.)

  13. Application of the Precipitation Runoff Modeling System to evaluate water budgets after forest fuel management

    Science.gov (United States)

    Anderson, A. M.; Micheletty, P. D.; Kinoshita, A. M.; Hogue, T. S.

    2014-12-01

    The Sagehen Experimental Forest is being used as a prototype for forest fuel management to mitigate severe wildfires and improve ecosystem function and habitat. Sagehen is located at the headwaters of Sagehen Creek and contributes to the Truckee River, which is the main water supply for Reno, Nevada. Sagehen is a snow-dominated basin that receives an average annual rainfall of 892 mm and streamflow of 392 mm. A standardized precipitation index (SPI) indicates eight wet years and three dry years occurred since 1978. The Precipitation Runoff Modeling System (PRMS) is utilized to run scenarios of fuel treatments and to analyze corresponding water budget changes in Sagehen. PRMS is calibrated to observed streamflow using the systematic multi-objective, step-wise calibration software Let Us Calibrate (LUCA). The basin is divided into 128 hydrologic response units (HRUs) based on similar hydrologic and physical characteristics. Fuel management will include multiple thinning and burning treatments based on topography and ecosystem characteristics and coincides with approximately 41 percent of the defined HRUs. Three treatment scenarios were run for relevant HRUs for water years 1981-2000. Scenarios reflect a 25, 50, and 75 percent vegetation reduction by altering sensitive parameters such as summer and winter cover density, summer and winter rain-interception storage capacity, and snow-interception storage capacity. Preliminary analysis shows changes in the water budget exemplified by simulated streamflow compared to baseline simulations. Ongoing work includes investigating PRMS outputs such as evapotranspiration, snow, and recharge to fully understand the scope of proposed fuel management in Sagehen. Individual assessment of impacted HRUs will also provide insight on specific treatment types and ultimately provide insight for future regional treatments in the Sierra Nevada.

  14. Enhancements to the Precipitation-Runoff Modeling System for simulating in-stream water temperature

    Science.gov (United States)

    Markstrom, S. L.; Hay, L.

    2010-12-01

    A stream temperature module has been developed for the U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) for simulating maximum- and mean-daily stream temperature. This module provides additional simulation capabilities by coupling PRMS with the U.S. Geological Survey Stream Network Temperature (SNTEMP) model. PRMS is a modular, deterministic, distributed-parameter, physical-process watershed model that simulates watershed response to various combinations of climate and land use. Normal and extreme rainfall and snowmelt can be simulated to evaluate changes in water-balance relations, streamflow regimes, soil-water relations, and ground-water recharge. SNTEMP was developed to help aquatic biologists and engineers predict the effects of flow regime changes on water temperatures. This coupling of PRMS with SNTEMP will allow scientists and watershed managers to evaluate the effects of historical climate and projected climate change, landscape evolution, and resource management scenarios on watershed hydrology and in-stream water temperature. The prototype of this coupled model was developed for the U.S. Geological Survey Southeast Regional Assessment Project (SERAP) and tested in the Apalachicola-Chattahoochee-Flint River Basin in the southeastern United States. Preliminary results from the prototype are presented.

  15. Spatio-temporal changes in atmospheric precipitation over south-western Poland between the periods 1891-1930 and 1981-2010

    Science.gov (United States)

    Szymanowski, Mariusz; Wieczorek, Małgorzata; Namyślak, Marika; Kryza, Maciej; Migała, Krzysztof

    2018-02-01

    In this paper, we quantify the changes in precipitation distribution in south-western Poland between the periods 1891-1930 and 1981-2010. The average monthly precipitation totals available for 368 and 245 stations, respectively, are spatially interpolated and processed to calculate maps of differences and pluvial continentality indices for both periods. The maps are analysed against changes in atmospheric circulation and take into account the potential role of the mountain barrier of the Sudetes. The main findings are (1) winter totals generally increased in conjunction with a higher frequency of zonal circulation; it is more pronounced in the upper parts of the Sudetes due to orographic effects; (2) a decreased frequency of zonal circulation together with an increased frequency of southern flows has likely led to the reduction of precipitation in spring and autumn. These changes have led to a significant modification of the region's pluvial regime, mostly by decreasing continentality features (especially in the Sudetes and the western lowlands). In addition, the strong sheltering influence of the mountain barrier is observed, driving the preservation or even the enhancement of the continental pluvial characteristics in the north-eastern to eastern foregrounds of the Sudetes. This leads to the conclusion that in areas where long-term observed trends or future projections of precipitation are ambiguous, there may occur significant modifications in regional characteristics, especially as a result of changes in atmospheric circulation modified by local orography.

  16. Considerations regarding the evolutions of atmospheric precipitations in the spring seasons in Iași area – Case Study: The meteorological event dated on 14 April 2016

    Directory of Open Access Journals (Sweden)

    Machidon Ovidiu-Miron

    2017-06-01

    Full Text Available The study is a comparative analysis of the characteristics of atmospheric precipitations in spring seasons from the WMO reference periods (1961 - 1990, 1981 – 2010 compared with last 7 years (2010 – 2016. In 14 april 2016 a meteorological event was produced in the Iași area who have produced material damage, flooded streets and obstruction of traffic. In the spring seasons of the last 7 years (2010-2016 the atmospheric precipitation amounts were with 8% higher than during 1981 – 2010 and were apropiate on mean value of the 1961 – 1990. In the period of 1961 – 2016 were a continuous increase of the mean number of days with precipitation > 30 mm per day and the half of total number of days with more than 40 mm per day were recorded in the last 16 years. We consider that an increase of torrential character of precipitation in the spring season in Iași area.

  17. Upgrading the water Cherenkov tanks for atmospheric shower identification

    Science.gov (United States)

    Billoir, Pierre

    2017-12-01

    The nature and the sources of the cosmic rays of ultra-high energy are not yet elucidated. The cutoff of the spectrum around 50 EeV is now clearly established, but its interpretation is still ambiguous: it could be due to the so-called GZK effect on a flux dominated by protons, or by an upper bound on the acceleration in the sources, or a combined scenario. To answer these questions the identification of the nature of the primaries is crucial. Present ground based detectors, especially water Cherenkov tanks, provide some indicators, in complement to the depth of maximum directly measured by fluorescence telescopes; but these indicators rely on models of the hadronic interactions at ultra-high energy, which cannot be observed in present colliders. One key feature to set more constraints on the development of atmospheric showers is a separate measurement of their electromagnetic and muonic components. Water Cherenkov tanks are sensitive to both, but cannot disentangle them in a clean and model-independent way. We present different options that have been studied to upgrade water Cherenkov tanks, either by modifying their internal structure, or by adding above of below the tank another type of detector, with a different relative sensitivity to muons and photons/electrons.

  18. The Massachusetts Water Isotope Mapping Project: An Integrated Precipitation, Surface Water, and Ground Water IsoScape for Improved Understanding of Hydrologic Processes

    Science.gov (United States)

    Boutt, D. F.; Cole, A.

    2016-12-01

    The development of CRDS has revolutionized our ability to collect large spatially and temporally distributed datasets of water isotopes allowing un-paralleled insight into the hydrologic functioning of catchments through the lens of isotopic tracing of the water molecule. We present the results of an ongoing study of high spatial and temporal dataset across the state of Massachusetts, Northeast United States. Our current database consists of 1500 precipitation measurements across 15 stations, 2500 surface water measurements across 150 sites, and 2000 groundwater from 200 wells screened in overburden and bedrock wells. Isotopic composition of the region varies significantly as a function of topography and season. Because of the coastal orientation of the region, there is a large variability in the mean 18O-H2O composition of precipitation due to locally dominant precipitation sources. Deuterium excess of precipitation in the range of 10 - 14 ‰ are typical. Five years of surface water samples across the region show a strong seasonal trend ranging from -10 to -3 ‰ δ18O-H2O. Surface waters depict seasonal evaporative enrichment in the heavy isotopes and demonstrate a similar magnitude of deuterium excess compared to the precipitation. During the winters of 2014 and 2015 typical seasonal trends are interrupted by distinctly depleted stream waters of the order of -12 to -11 ‰ δ18O-H2O. These excursions are consistent with a source of water vapor to the region from more northerly (colder) regions. Mean stream water δ18O- H2O isotopic compositions show a strong relationship to upgradient drainage area. Groundwater compositions range from -12 to -5 ‰ δ18O-H2O across all the sites. A correlation between groundwater well elevation and δ18O-H2O is observed with higher elevation sites depleted in heavy isotopes with variations of 2-3 ‰ δ18O-H2O at any given elevation. Groundwater isotopic composition is distinct between overburden aquifer types (till, glacial

  19. Improving snow water equivalent simulations in an alpine basin using blended gage precipitation and snow pillow measurements

    Science.gov (United States)

    Sohrabi, M.; Safeeq, M.; Conklin, M. H.

    2017-12-01

    Snowpack is a critical freshwater reservoir that sustains ecosystem, natural habitat, hydropower, agriculture, and urban water supply in many areas around the world. Accurate estimation of basin scale snow water equivalent (SWE), through both measurement and modeling, has been significantly recognized to improve regional water resource management. Recent advances in remote data acquisition techniques have improved snow measurements but our ability to model snowpack evolution is largely hampered by poor knowledge of inherently variable high-elevation precipitation patterns. For a variety of reasons, majority of the precipitation gages are located in low and mid-elevation range and function as drivers for basin scale hydrologic modeling. Here, we blend observed gage precipitation from low and mid-elevation with point observations of SWE from high-elevation snow pillow into a physically based snow evolution model (SnowModel) to better represent the basin-scale precipitation field and improve snow simulations. To do this, we constructed two scenarios that differed in only precipitation. In WTH scenario, we forced the SnowModel using spatially distributed gage precipitation data. In WTH+SP scenario, the model was forced with spatially distributed precipitation data derived from gage precipitation along with observed precipitation from snow pillows. Since snow pillows do not directly measure precipitation, we uses positive change in SWE as a proxy for precipitation. The SnowModel was implemented at daily time step and 100 m resolution for the Kings River Basin, USA over 2000-2014. Our results show an improvement in snow simulation under WTH+SP as compared to WTH scenario, which can be attributed to better representation in high-elevation precipitation patterns under WTH+SP. The average Nash Sutcliffe efficiency over all snow pillow and course sites was substantially higher for WTH+SP (0.77) than for WTH scenario (0.47). The maximum difference in observed and simulated

  20. Global analyses of water vapor, cloud and precipitation derived from a diagnostic assimilation of SSM/I geophysical retrievals

    Science.gov (United States)

    Robertson, Franklin R.; Cohen, Charles

    1990-01-01

    An analytical approach is described for diagnostically assimilating moisture data from Special Sensor Microwave Imager (SSM/I) into a global analysis of water vapor, cloud content, and precipitation. In this method, 3D fields of wind and temperature values taken from ECMWF gridded analysis are used to drive moisture conservation equations with parameterized microphysical treatment of vapor, liquid, and ice; the evolving field of water vapor is periodically updated or constrained by SSM/I retrievals of precipitable water. Initial results indicate that this diagnostic model can produce realistic large-scale fields of cloud and precipitation. The resulting water vapor analyses agree well with SSM/I and have an additional advantage of being synoptic.

  1. Comparison and evaluation of satellite- and reanalysis-based precipitation products for water resources management in the Brahmaputra River basin

    Science.gov (United States)

    Saleh Khan, Abu; Sohel Masud, Md.; Abdulla Hel Kafi, Md.; Sultana, Tashrifa; Lopez Lopez, Patricia

    2017-04-01

    The Brahmaputra River, with a transboundary basin area of approx. 554,500 km2, has its origin on the northern slope of the Himalayas in China, from where it flows through India, Bhutan and finally Bangladesh. Brahmaputra basin's climatology is heavily conditioned by precipitation during the monsoon months, concentrating about the 85 % of the rainfall in this period and originating severe and frequent floods that impact specially the Bangladeshi population in the delta region. Recent campaigns to increase the quality and to share ground-based hydro-meteorological data, in particular precipitation, within the basin have provided limited results. Global rainfall data from satellite and reanalysis may improve the temporal and spatial availability of in-situ observations for advanced water resources management. This study aims to evaluate the applicability of several global precipitation products from satellite and reanalysis in comparison with in-situ data to quantify their added value for hydrological modeling at a basin and sub-basin scale for the Brahmaputra River. Precipitation products from CMORPH, TRMM-3B42, GsMAP, WFDEI, MSWEP and various combinations with ground-based data were evaluated at basin and sub-basin level at a daily and monthly temporal resolution. The Brahmaputra was delineated into 54 sub-basins for a more detailed evaluation of the precipitation products. The data were analysed and inter-compared for the time period from 2002 to 2010. Precipitation performance assessment was conducted including several indicators, such as probability of detection (POD), false alarm ratio (FAR), Pearson's correlation coefficient (r), bias and root mean square error (RMSE). Preliminary results indicate high correlation and low bias and RMSE values between WFDEI, TRMM-3B42 and CMORPH precipitation and in-situ observations at a monthly time scale. Lower correlations and higher bias and RMSE values were found between GsMAP and MSWEP and ground-observed precipitation

  2. Drought analysis and water resource availability using standardised precipitation evapotranspiration index

    Science.gov (United States)

    Hui-Mean, Foo; Yusop, Zulkifli; Yusof, Fadhilah

    2018-03-01

    Trend analysis for potential evapotranspiration (PET) and climatic water balance (CWB) is critical in identifying the wetness or dryness episodes with respect to the water surplus or deficit. The PET is computed based on the monthly average temperature for the entire Peninsular Malaysia using Thornthwaite parameterization. The trends and slope's magnitude for the PET and CWB were then investigated using Mann-Kendall, Spearman's rho tests and Thiel-Sen estimator. The 1-, 3-, 6- and 12-month standardised precipitation evapotranspiration index (SPEI) is applied to determine the drought episodes and the average recurrence interval are calculated based on the SPEI. The results indicate that most of the stations show an upward trend in annual and monthly PET while majority of the regions show an upward trend in annual CWB except for the Pahang state. The increasing trends detected in the CWB describe water is in excess especially during the northeast monsoons while the decreasing trends imply water insufficiency. The excess water is observed mostly in January especially in the west coast, east coast and southwest regions that suggest more water is available for crop requirement. The average recurrence interval for drought episodes is almost the same for the smaller severity with various time scale of SPEI and high probability of drought occurrence is observed for some regions. The findings are useful for policymakers and practitioners to improve water resources planning and management, in particular to minimise drought effects in the future. Future research shall address the influence of topography on drought behaviour using more meteorological stations and to include east Malaysia in the analysis.

  3. Morphology and Kinetics of Growth of CaCO3 Precipitates Formed in Saline Water at 30°C

    Science.gov (United States)

    Sui, Xin; Wang, Baohui; Wu, Haiming

    2018-02-01

    The crystallization kinetics and morphology of CaCO3 crystals precipitated from the high salinity oilfield water were studied. The crystallization kinetics measurements show that nucleation and nuclei growth obey the first order reaction kinetics. The induction period of precipitation is extended in the high salinity solutions. Morphological studies show that impurity ions remain mostly in the solution phase instead of filling the CaCO3 crystal lattice. The morphology of CaCO3 precipitates can be changed from a smooth surface (calcite) to rough spheres (vaterite), and spindle rod bundles, or spherical, ellipsoid, flowers, plates and other shapes (aragonite).

  4. Data of groundwater from boreholes, river water and precipitation for the Horonobe Underground Research Laboratory project. 2011-2010

    International Nuclear Information System (INIS)

    Amano, Yuki; Yamamoto, Yoichi; Nanjyo, Isao; Murakami, Hiroaki; Yokota, Hideharu; Yamazaki, Masanori; Iwatsuki, Teruki; Kunimaru, Takanori; Oyama, Takahiro

    2012-02-01

    In the Horonobe Underground Research Laboratory (URL) Project, groundwater from boreholes, river water and precipitation have been analyzed for the environmental monitoring since the fiscal year 2001. This report shows the data set of water chemistry since the fiscal year 2001 to the fiscal year 2010. (author)

  5. Numerical simulation of heavy precipitation events using mesoscale weather forecast models. Validation with radar data and diagnosis of the atmospheric moisture budget; Numerische Simulation von Starkniederschlagsereignissen mit mesoskaligen Wettervorhersagemodellen. Ueberpruefung mit Radar-Daten und Diagnose der atmosphaerischen Wasserbilanz

    Energy Technology Data Exchange (ETDEWEB)

    Keil, C.

    2000-07-01

    Convective precipitation systems contribute substantially to the summertime rainfall maximum in the northern Alpine region. The capability of mesoscale weather forecast models in capturing such heavy precipitation events is investigated. The complementary application of so far hardly used areal radar data and conventional rain gauge observations enables a case-study-type evaluation of summertime precipitation episodes. Different rainfall episodes are simulated with the former operational model (DM, meshsize 14 km) of Deutscher Wetterdienst (DWD). The influence of the horizontal resolution and the parameterization of moist convection is subsequently studied with a higher resolution atmospheric model (MC2, meshsize 2 km). Diagnostic studies on the atmospheric water budget regarding the rainfall episode, which instigated the Oder-flood in summer 1997, allow an examination of the origin of the moisture and the genesis of the copious precipitation. (orig.) [German] Konvektive Niederschlagssysterne tragen im Nordalpenraum wesentlich zum sommerlichen Niederschlagsmaximum bei. Die Faehigkeit mesoskaliger Wettervorhersagemodelle, solche Starkniederschlagsereignisse zu erfassen, wird in dieser Arbeit untersucht. Durch den komplementaeren Gebrauch von, bisher kaum genutzten, flaechendeckenden Radardaten und konventionellen Niederschlagsmessungen des Bodenmessnetzes werden Modellergebnisse sommerlicher Niederschlagssysteme fallstudienhaft detailliert ueberprueft. Fuer verschiedene Starkniederschlagsereignisse werden dazu Modellsimulationen mit dem in den 90er Jahren operationellen Modell (DM, Maschenweite 14 km) des Deutschen Wetterdienstes (DWD) durchgefuehrt. Zur Untersuchung des Einflusses der horizontalen Maschenweite und der Niederschlagsparametrisierung werden ferner numerische Simulationen mit einem hoeher aufloesdenden Atmosphaerenmodell (MC2, Maschenweite 2 km) behandelt. Anhand diagnostischer Untersuchungen der atmosphaerischen Wasserbilanz laesst sich ausserdem die

  6. Seasonal change in precipitation, snowpack, snowmelt, soil water and streamwater chemistry, northern Michigan

    Science.gov (United States)

    Stottlemyer, R.; Toczydlowski, D.

    1999-01-01

    We have studied weekly precipitation, snowpack, snowmelt, soil water and streamwater chemistry throughout winter for over a decade in a small (176 ha) northern Michigan watershed with high snowfall and vegetated by 60 to 80 year-old northern hardwoods. In this paper, we examine physical, chemical, and biological processes responsible for observed seasonal change in streamwater chemistry based upon intensive study during winter 1996-1997. The objective was to define the contributions made to winter and spring streamwater chemical concentration and flux by processes as snowmelt, over-winter forest floor and surface soil mineralization, immobilization, and exchange, and subsurface flowpath. The forest floor and soil were unfrozen beneath the snowpack which permitted most snowmelt to enter. Over-winter soil mineralization and other biological processes maintain shallow subsurface ion and dissolved organic carbon (DOC) reservoirs. Small, but steady, snowmelt throughout winter removed readily mobilized soil NO3- which resulted in high over-winter streamwater concentrations but little flux. Winter soil water levels and flowpaths were generally deep which increased soil water and streamwater base cation (C(B)), HCO3-, and Si concentrations. Spring snowmelt increased soil water levels and removal of ions and DOC from the biologically active forest floor and shallow soils. The snowpack solute content was a minor component in determining streamwater ion concentration or flux during and following peak snowmelt. Exchangeable ions, weakly adsorbed anions, and DOC in the forest floor and surface soils dominated the chemical concentration and flux in soil water and streamwater. Following peak snowmelt, soil microbial immobilization and rapidly increased plant uptake of limiting nutrients removed nearly all available nitrogen from soil water and streamwater. During the growing season high evapotranspiration increased subsurface flowpath depth which in turn removed weathering

  7. A facile homogeneous precipitation synthesis of NiO nanosheets and their applications in water treatment

    International Nuclear Information System (INIS)

    Zhao, Junfeng; Tan, Yang; Su, Kang; Zhao, Junjie; Yang, Chen; Sang, Lingling; Lu, Hongbin; Chen, JianHua

    2015-01-01

    Highlights: • NiO nanosheets were synthesized via a facile homogeneous precipitation method. • The NiO nanosheets have a large surface area. • This preparation method was low-cost, simple equipments, easy preparation, short reaction time and better repeatability. • The product also showed a favourable ability to remove Cr(VI) and Congo red (CR) in water treatment. - Abstract: NiO nanosheets were successfully synthesized by a facile homogeneous precipitation method with the assistance of ethanol amine. The sample was characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption–desorption techniques. The results demonstrated that the as-prepared product was cubic NiO nanosheets with a large surface area of 170.1 m 2 g −1 . Further, the as-prepared product was used to investigate its potential application for wastewater treatment. The maximum adsorption capacity for Cr(VI) and Congo red (CR) on NiO nanosheets has been determined using the Langmuir equation and found to reach up to 48.98 and 167.73 mg g −1 , respectively. It could be concluded that NiO nanosheets with special surface features had the potential as adsorbents for wastewater treatment

  8. Spring soil moisture-precipitation feedback in the Southern Great Plains: How is it related to large-scale atmospheric conditions?

    KAUST Repository

    Su, Hua

    2014-02-22

    The Southern Great Plains (SGP) has been shown as a region of significant soil moisture-precipitation (S-P) coupling. However, how strong evapotranspiration (ET) can affect regional precipitation remains largely unclear, impeding a full grasp of the S-P feedback in that area. The current study seeks to unravel, in a spring month (April), the potential role played by large-scale atmospheric conditions in shaping S (ET)-P feedback. Our regional climate modeling experiments demonstrate that the presence of anomalous low (high) pressure and cyclonic (anticyclonic) flows at the upper/middle troposphere over the relevant areas is associated with strongest (minimum) positive S-P feedback in the SGP. Their impacts are interpreted in terms of large-scale atmospheric dynamical disturbance, including the intensity and location of synoptic eddies. Further analyses of the vertical velocity fields corroborate these interpretations. In addition, the relationship between lower tropospheric moisture conditions (including winds) and feedback composites is evaluated. Key Points The S-P feedback strength in SGP in April varies inter-annually The atmospheric dynamic features affect significantly the feedback strength composite moisture conditions are related to atmospheric circulation structure ©2014. American Geophysical Union. All Rights Reserved.

  9. New calibration technique for water-vapor Raman lidar combined with the GNSS precipitable water vapor and the Meso-Scale Model

    Science.gov (United States)

    Kakihara, H.; Yabuki, M.; Kitafuji, F.; Tsuda, T.; Tsukamoto, M.; Hasegawa, T.; Hashiguchi, H.; Yamamoto, M.

    2017-12-01

    Atmospheric water vapor plays an important role in atmospheric chemistry and meteorology, with implications for climate change and severe weather. The Raman lidar technique is useful for observing water-vapor with high spatiotemporal resolutions. However, the calibration factor must be determined before observations. Because the calibration factor is generally evaluated by comparing Raman-signal results with those of independent measurement techniques (e.g., radiosonde), it is difficult to apply this technique to lidar sites where radiosonde observation cannot be carried out. In this study, we propose a new calibration technique for water-vapor Raman lidar using global navigation satellite system (GNSS)-derived precipitable water vapor (PWV) and Japan Meteorological Agency meso-scale model (MSM). The analysis was accomplished by fitting the GNSS-PWV to integrated water-vapor profiles combined with the MSM and the results of the lidar observations. The maximum height of the lidar signal applicable to this method was determined within 2.0 km by considering the signal noise mainly caused by low clouds. The MSM data was employed at higher regions that cannot apply the lidar data. This method can be applied to lidar signals lower than a limited height range due to weather conditions and lidar specifications. For example, Raman lidar using a laser operating in the ultraviolet C (UV-C) region has the advantage of daytime observation since there is no solar background radiation in the system. The observation range is, however, limited at altitudes lower than 1-3 km because of strong ozone absorption at the UV-C region. The new calibration technique will allow the utilization of various types of Raman lidar systems and provide many opportunities for calibration. We demonstrated the potential of this method by using the UV-C Raman lidar and GNSS observation data at the Shigaraki MU radar observatory (34°51'N, 136°06'E; 385m a.s.l.) of the Research Institute for Sustainable

  10. Joint atmospheric-terrestrial water balances for East Africa: a WRF-Hydro case study for the upper Tana River basin

    Science.gov (United States)

    Kerandi, Noah; Arnault, Joel; Laux, Patrick; Wagner, Sven; Kitheka, Johnson; Kunstmann, Harald

    2018-02-01

    For an improved understanding of the hydrometeorological conditions of the Tana River basin of Kenya, East Africa, its joint atmospheric-terrestrial water balances are investigated. This is achieved through the application of the Weather Research and Forecasting (WRF) and the fully coupled WRF-Hydro modeling system over the Mathioya-Sagana subcatchment (3279 km2) and its surroundings in the upper Tana River basin for 4 years (2011-2014). The model setup consists of an outer domain at 25 km (East Africa) and an inner one at 5-km (Mathioya-Sagana subcatchment) horizontal resolution. The WRF-Hydro inner domain is enhanced with hydrological routing at 500-m horizontal resolution. The results from the fully coupled modeling system are compared to those of the WRF-only model. The coupled WRF-Hydro slightly reduces precipitation, evapotranspiration, and the soil water storage but increases runoff. The total precipitation from March to May and October to December for WRF-only (974 mm/year) and coupled WRF-Hydro (940 mm/year) is closer to that derived from the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) data (989 mm/year) than from the TRMM (795 mm/year) precipitation product. The coupled WRF-Hydro-accumulated discharge (323 mm/year) is close to that observed (333 mm/year). However, the coupled WRF-Hydro underestimates the observed peak flows registering low but acceptable NSE (0.02) and RSR (0.99) at daily time step. The precipitation recycling and efficiency measures between WRF-only and coupled WRF-Hydro are very close and small. This suggests that most of precipitation in the region comes from moisture advection from the outside of the analysis domain, indicating a minor impact of potential land-precipitation feedback mechanisms in this case. The coupled WRF-Hydro nonetheless serves as a tool in quantifying the atmospheric-terrestrial water balance in this region.

  11. The relative contribution of the precipitation and evapotranspiration on total terrestrial water storage change

    Science.gov (United States)

    Zhang, Y.

    2017-12-01

    Changes of global terrestrial water storage (TWS) retrieved from the Gravity Recovery and Climate Experiment (GRACE) satellite mission has been extensively evaluated by previous studies. However, attributions of global TWS changes are still poorly understood. In this study, the responses TWS to two most important surface water fluxes, precipitation (P) and evapotranspiration (ET), were comprehensively examined based on 3 global P datasets and 3 global ET datasets. In addition, the relative contribution of P and ET to TWS changes were quantified using the hierarchical partitioning analysis. Results show that, over the period of Apr. 2002 to July. 2016, more than 40.5% global continent experienced significant TWS decrease, while significant TWS increases were observed over 36% of global continent. A general positive effect of P on TWS was observed over almost all land, but a contrasting response of TWS to ET were identified between arid or cold areas and humid areas with positive and negative TWS-ET relationship, respectively. Global as a whole, precipitation from GPCC and ET simulated by the Noah model forcing by Global land Data Assimilation System (GLDAS) has the highest performance in explaining global TWS change. HP analysis suggests that the independent contribution of ET to TWS change is apparently higher than that of P. Furthermore, with the decrease of climate humidity, the contribution of P is decreasing, while the contribution of ET is increasing. Spatially speaking, ET has higher impacts on TWS than P in arid areas, while the opposite function was identified for very humid and cold areas. Knowledge from this study is crucial for the understanding of the response of global TWS change to climate change.

  12. Microscopic Mechanisms of Dissolution-Precipitation at the Water-Manganese Mineral Interfaces

    Science.gov (United States)

    Jun, Y.; Martin, S. T.

    2006-12-01

    The fate and transport of metal contaminants in water are often affected by the manganese redox cycling and the accompanying dissolution and precipitation reactions. Direct microscopic observations of such dynamic reactions, however, are sparse. In this work, microscopic mechanisms of simultaneous dissolution and precipitation of manganese minerals is studied by atomic force microscope (AFM) at circumneutral pH. The effects of the substrate surface morphology, the substrate atomic structure, and the aqueous concentration of Mn2+ on the formation of Mn oxide islands are investigated. Under oxic conditions, Mn2+(aq) dissolved from MnCO3 surface is reacted with O2(aq) at circumneutral pH to form Mn oxide islands on the (10-14) surface of MnCO3. The Mn oxide islands grow heteroepitaxially. On terraces, rhombohedral islands form with 90° rotation relative to crystallographic axis of the underlying substrate, and with z-directional self-limitation. Comparison studies done with MgCO3 and CaCO3 show that the former also promotes heteroepitaxial growth whereas the latter does not. This difference is explained by the relative bond length mismatch between the structures of the carbonate substrates and the atomic structures of Mn oxide islands. A free energy model is also employed to explain why the heights of the Mn oxide islands self limit. Our results provide an improved understanding for the development of predictive models both of exchange across the sediment-water interfaces and the fate and transport of contaminants in aqueous environments.

  13. Monitoring the variability of precipitable water vapor over the Klang Valley, Malaysia during flash flood

    International Nuclear Information System (INIS)

    Suparta, W; Rahman, R; Singh, M S J

    2014-01-01

    Klang Valley is a focal area of Malaysian economic and business activities where the local weather condition is very important to maintain its reputation. Heavy rainfalls for more than an hour were reported up to 40 mm in September 2013 and 35 mm in October 2013. Both events are monitored as the first and second cases of flash flood, respectively. Based on these cases, we investigate the water vapor, rainfall, surface meteorological data (surface pressure, relative humidity, and temperature) and river water level. The precipitable water vapor (PWV) derived from Global Positioning System (GPS) is used to indicate the impact of flash flood on the rainfall. We found that PWV was dropped 4 mm in 2 hours before rainfall reached to 40 mm and dropped 3 mm in 3 hours before 35 mm of rainfall in respective cases. Variation of PWV was higher in September case compared to October case of about 2 mm. We suggest the rainfall phenomena can disturb the GPS propagation and therefore, the impact of PWV before, during and after the flash flood event at three selected GPS stations in Klang Valley is investigated for possible mitigation in the future

  14. Monitoring the variability of precipitable water vapor over the Klang Valley, Malaysia during flash flood

    Science.gov (United States)

    Suparta, W.; Rahman, R.; Singh, M. S. J.

    2014-06-01

    Klang Valley is a focal area of Malaysian economic and business activities where the local weather condition is very important to maintain its reputation. Heavy rainfalls for more than an hour were reported up to 40 mm in September 2013 and 35 mm in October 2013. Both events are monitored as the first and second cases of flash flood, respectively. Based on these cases, we investigate the water vapor, rainfall, surface meteorological data (surface pressure, relative humidity, and temperature) and river water level. The precipitable water vapor (PWV) derived from Global Positioning System (GPS) is used to indicate the impact of flash flood on the rainfall. We found that PWV was dropped 4 mm in 2 hours before rainfall reached to 40 mm and dropped 3 mm in 3 hours before 35 mm of rainfall in respective cases. Variation of PWV was higher in September case compared to October case of about 2 mm. We suggest the rainfall phenomena can disturb the GPS propagation and therefore, the impact of PWV before, during and after the flash flood event at three selected GPS stations in Klang Valley is investigated for possible mitigation in the future.

  15. Radiosonde-based trends in precipitable water over the Northern Hemisphere: An update

    Science.gov (United States)

    Durre, Imke; Williams, Claude N.; Yin, Xungang; Vose, Russell S.

    2009-03-01

    In an effort to update previous analyses of long-term changes in column-integrated water vapor, we have analyzed trends in surface-to-500-hPa precipitable water (PW) calculated from radiosonde measurements of dew point depression, temperature, and pressure at approximately 300 stations in the Northern Hemisphere for the period 1973-2006. Inhomogeneities were addressed by applying a homogenization algorithm that adjusts for both documented and undocumented change points. The trends of the adjusted PW time series are predominantly upward, with a statistically significant trend of 0.45 mm decade-1 for the Northern Hemisphere land areas included in the analysis. Particularly significant increases are found in all seasons over the islands of the western tropical Pacific, and trends are also positive and statistically significant for the year as a whole and in at least one season in Japan and the United States. These results indicate that the widespread increases in tropospheric water vapor, which earlier studies had reported and shown to be physically consistent with concurrent increases in temperature and changes in moisture transport, have continued in recent years.

  16. The atmospheric component of the Mediterranean Sea water budget in a WRF multi-physics ensemble and observations

    Science.gov (United States)

    Di Luca, Alejandro; Flaounas, Emmanouil; Drobinski, Philippe; Brossier, Cindy Lebeaupin

    2014-11-01

    The use of high resolution atmosphere-ocean coupled regional climate models to study possible future climate changes in the Mediterranean Sea requires an accurate simulation of the atmospheric component of the water budget (i.e., evaporation, precipitation and runoff). A specific configuration of the version 3.1 of the weather research and forecasting (WRF) regional climate model was shown to systematically overestimate the Mediterranean Sea water budget mainly due to an excess of evaporation (~1,450 mm yr-1) compared with observed estimations (~1,150 mm yr-1). In this article, a 70-member multi-physics ensemble is used to try to understand the relative importance of various sub-grid scale processes in the Mediterranean Sea water budget and to evaluate its representation by comparing simulated results with observed-based estimates. The physics ensemble was constructed by performing 70 1-year long simulations using version 3.3 of the WRF model by combining six cumulus, four surface/planetary boundary layer and three radiation schemes. Results show that evaporation variability across the multi-physics ensemble (˜10 % of the mean evaporation) is dominated by the choice of the surface layer scheme that explains more than ˜70 % of the total variance and that the overestimation of evaporation in WRF simulations is generally related with an overestimation of surface exchange coefficients due to too large values of the surface roughness parameter and/or the simulation of too unstable surface conditions. Although the influence of radiation schemes on evaporation variability is small (˜13 % of the total variance), radiation schemes strongly influence exchange coefficients and vertical humidity gradients near the surface due to modifications of temperature lapse rates. The precipitation variability across the physics ensemble (˜35 % of the mean precipitation) is dominated by the choice of both cumulus (˜55 % of the total variance) and planetary boundary layer (˜32 % of

  17. Modeling caspian sea water level oscilLations Under Diffrent Scenarioes of Increasing Atmospheric Carbon Dioxide Concentrations

    Directory of Open Access Journals (Sweden)

    GholamReza Roshan

    2012-12-01

    Full Text Available The rapid rise of Caspian Sea water level (about 2.25 meters since 1978 has caused much concern to all five surrounding countries, primarily because flooding has destroyed or damaged buildings and other engineering structures, roads, beaches and farm lands in thecoastal zone. Given that climate, and more specifically climate change, is a primary factor influencing oscillations in Caspian Sea water levels, the effect of different climate change scenarios on future Caspian Sea levels was stimulated. Variations in environmentalparameters such as temperature, precipitation, evaporation, tmospheric carbon dioxide and water level oscillations of the Caspian sea and surrounding regions, are considered for bothpast (1951-2006 and future (2025-2100 time frames. The output of the UKHADGEM general circulation model and five alternative scenarios including A1CAI, BIASF, BIMES WRE450 and WRE750 were extracted using the MAGICC SCENGEN Model software(version 5.3. The results suggest that the mean temperature of the Caspian Sea region (Bandar-E-Anzali monitoring site has increased by ca. 0.17ºC per decade under the impacts of atmospheric carbon dioxide changes (r=0.21. The Caspian Sea water level has increasedby ca. +36 mm per decade (r=0.82 between the years 1951-2006. Mean results from all modeled scenarios indicate that the temperature will increase by ca. 3.64ºC and precipitation will decrease by ca. 10% (182 mm over the Caspian Sea, whilst in the Volga river basin,temperatures are projected to increase by ca. 4.78ºC and precipitation increase by ca. 12% (58 mm by the year 2100. Finally, statistical modeling of the Caspian Sea water levels projectfuture water level increases of between 86 cm and 163 cm by the years 2075 and 2100, respectively.

  18. Atmospheric Corrections for Altimetry Studies over Inland Water

    Directory of Open Access Journals (Sweden)

    M. Joana Fernandes

    2014-05-01

    Full Text Available Originally designed for applications over the ocean, satellite altimetry has been proven to be a useful tool for hydrologic studies. Altimeter products, mainly conceived for oceanographic studies, often fail to provide atmospheric corrections suitable for inland water studies. The focus of this paper is the analysis of the main issues related with the atmospheric corrections that need to be applied to the altimeter range to get precise water level heights. Using the corrections provided on the Radar Altimeter Database System, the main errors present in the dry and wet tropospheric corrections and in the ionospheric correction of the various satellites are reported. It has been shown that the model-based tropospheric corrections are not modeled properly and in a consistent way in the various altimetric products. While over the ocean, the dry tropospheric correction (DTC is one of the most precise range corrections, in some of the present altimeter products, it is the correction with the largest errors over continental water regions, causing large biases of several decimeters, and along-track interpolation errors up to several centimeters, both with small temporal variations. The wet tropospheric correction (WTC from the on-board microwave radiometers is hampered by the contamination on the radiometer measurements of the surrounding lands, making it usable only in the central parts of large lakes. In addition, the WTC from atmospheric models may also have large errors when it is provided at sea level instead of surface height. These errors cannot be corrected by the user, since no accurate expression exists for the height variation of the WTC. Alternative and accurate corrections can be computed from in situ data, e.g., DTC from surface pressure at barometric stations and WTC from Global Navigation Satellite System permanent stations. The latter approach is particularly favorable for small lakes and reservoirs, where GNSS-derived WTC at a single

  19. The Impact of Precipitation Deficit and Urbanization on Variations in Water Storage in the Beijing-Tianjin-Hebei Urban Agglomeration

    Directory of Open Access Journals (Sweden)

    Zheng Chen

    2017-12-01

    Full Text Available Depletion of water resources has threatened water security in the Beijing-Tianjin-Hebei urban agglomeration, China. However, the relative importance of precipitation and urbanization to water storage change has not been sufficiently studied. In this study, both terrestrial water storage (TWS and groundwater storage (GWS change in Jing-Jin-Ji from 1979 to the 2010s were investigated, based on the global land data assimilation system (GLDAS and the EartH2Observe (E2O outputs, and we used a night light index as an index of urbanization. The results showed that TWS anomaly varied in three stages: significant increase from 1981 to 1996, rapid decrease from 1996 to 2002 and increase from 2002 to the 2010s. Simultaneously, GWS has decreased with about 41.5 cm (500% of GWS in 1979. Both urbanization and precipitation change influenced urban water resource variability. Urbanization was a relatively important factor to the depletion of TWS (explains 83% and GWS (explains 94% since the 1980s and the precipitation deficit explains 72% and 64% of TWS and GWS variabilities. It indicates that urbanization coupled with precipitation deficit has been a more important factor that impacted depletion of both TWS and GWS than climate change only, in the Jing-Jin-Ji region. Moreover, we suggested that the cumulative effect should be considered when discussing the relationship between influence factors and water storage change.

  20. NASA-modified precipitation products to improve USEPA nonpoint source water quality modeling for the Chesapeake Bay.

    Science.gov (United States)

    Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi

    2010-01-01

    The USEPA has estimated that over 20,000 water bodies within the United States do not meet water quality standards. One of the regulations in the Clean Water Act of 1972 requires states to monitor the total maximum daily load, or the amount of pollution that can be carried by a water body before it is determined to be "polluted," for any watershed in the United States (Copeland, 2005). In response to this mandate, the USEPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a decision support tool for assessing pollution and to guide the decision-making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program-Fortran (HSPF), computes continuous streamflow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events, especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA-modified/NOAA precipitation data. Using these data within HSPF, streamflow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better streamflow statistics and, potentially, in improved water quality assessment.

  1. Whole-plant water flux in understory red maple exposed to altered precipitation regimes.

    Science.gov (United States)

    Wullschleger, Stan D.; Hanson, Paul J.; Tschaplinski, Tim J.

    1998-02-01

    Sap flow gauges were used to estimate whole-plant water flux for five stem-diameter classes of red maple (Acer rubrum L.) growing in the understory of an upland oak forest and exposed to one of three large-scale (0.64 ha) manipulations of soil water content. This Throughfall Displacement Experiment (TDE) used subcanopy troughs to intercept roughly 30% of the throughfall on a "dry" plot and a series of pipes to move this collected precipitation across an "ambient" plot and onto a "wet" plot. Saplings with a stem diameter larger than 10 cm lost water at rates 50-fold greater than saplings with a stem diameter of 1 to 2 cm (326 versus 6.4 mol H(2)O tree(-1) day(-1)). These size-class differences were driven largely by differences in leaf area and cross-sectional sapwood area, because rates of water flux expressed per unit leaf area (6.90 mol H(2)O m(-2) day(-1)) or sapwood area (288 mol H(2)O dm(-2) day(-1)) were similar among saplings of the five size classes. Daily and hourly rates of transpiration expressed per unit leaf area varied throughout much of the season, as did soil matrix potentials, and treatment differences due to the TDE were observed during two of the seven sampling periods. On July 6, midday rates of transpiration averaged 1.88 mol H(2)O m(-2) h(-1) for saplings in the "wet" plot, 1.22 mol H(2)O m(-2) h(-1) for saplings in the "ambient" plot, and 0.76 mol H(2)O m(-2) h(-1) for saplings in the "dry" plot. During the early afternoon of August 28, transpiration rates were sevenfold lower for saplings in the "dry" plot compared to saplings in the "wet" plot and 2.5-fold lower compared to saplings in the "ambient" plot. Treatment differences in crown conductance followed a pattern similar to that of transpiration, with values that averaged 60% lower for saplings in the "dry" plot compared to saplings in the "wet" plot and 35% lower compared to saplings in the "ambient" plot. Stomatal and boundary layer conductances were roughly equal in magnitude

  2. Reconstructions of spring/summer precipitation for the Eastern Mediterranean from tree-ring widths and its connection to large-scale atmospheric circulation

    Energy Technology Data Exchange (ETDEWEB)

    Touchan, Ramzi; Funkhouser, Gary; Hughes, Malcolm K. [The University of Arizona, Laboratory of Tree-Ring Research, Tucson, AZ (United States); Xoplaki, Elena; Luterbacher, Juerg [University of Bern, Institute of Geography and NCCR Climate, Bern (Switzerland); Erkan, Nesat [Southwest Anatolia Forest Research Institute (SAFRI), Antalya (Turkey); Akkemik, Uenal [University of Istanbul, Faculty of Forestry, Department of Forest Botany, Bahcekoey-Istanbul (Turkey); Stephan, Jean [Ministry of Agriculture, Forestry Department, Beirut (Lebanon)

    2005-07-01

    This study represents the first large-scale systematic dendroclimatic sampling focused on developing chronologies from different species in the eastern Mediterranean region. Six reconstructions were developed from chronologies ranging in length from 115 years to 600 years. The first reconstruction (1885-2000) was derived from principal components (PCs) of 36 combined chronologies. The remaining five, 1800-2000, 1700-2000, 1600-2000, 1500-2000 and 1400-2000 were developed from PCs of 32, 18, 14, 9, and 7 chronologies, respectively. Calibration and verification statistics for the period 1931-2000 show good levels of skill for all reconstructions. The longest period of consecutive dry years, defined as those with less than 90% of the mean of the observed May-August precipitation, was 5 years (1591-1595) and occurred only once during the last 600 years. The longest reconstructed wet period was 5 years (1601-1605 and 1751-1755). No long term trends were found in May-August precipitation during the last few centuries. Regression maps are used to identify the influence of large-scale atmospheric circulation on regional precipitation. In general, tree-ring indices are influenced by May-August precipitation, which is driven by anomalous below (above) normal pressure at all atmospheric levels and by convection (subsidence) and small pressure gradients at sea level. These atmospheric conditions also control the anomaly surface air temperature distribution which indicates below (above) normal values in the southern regions and warmer (cooler) conditions north of around 40 N. A compositing technique is used to extract information on large-scale climate signals from extreme wet and dry summers for the second half of the twentieth century and an independent reconstruction over the last 237 years. Similar main modes of atmospheric patterns and surface air temperature distribution related to extreme dry and wet summers were identified both for the most recent 50 years and the last

  3. The Precipitation Behavior of Poorly Water-Soluble Drugs with an Emphasis on the Digestion of Lipid Based Formulations

    DEFF Research Database (Denmark)

    Khan, Jamal; Rades, Thomas; Boyd, Ben

    2016-01-01

    the events that lead to drug precipitation during the dispersion and digestion of lipid based formulations, common methods used to inhibit precipitation, as well as conventional and newly emerging characterization techniques for studying the solid state form of the precipitated drug. Moreover, selected case......An increasing number of newly discovered drugs are poorly water-soluble and the use of natural and synthetic lipids to improve the oral bioavailability of these drugs by utilizing the digestion pathway in-vivo has proved an effective formulation strategy. The mechanisms responsible for lipid...... digestion and drug solubilisation during gastrointestinal transit have been explored in detail, but the implications of drug precipitation beyond the potential adverse effect on bioavailability have received attention only in recent years. Specifically, these implications are that different solid forms...

  4. An operational weather radar-based Quantitative Precipitation Estimation and its application in catchment water resources modeling

    DEFF Research Database (Denmark)

    He, Xin; Vejen, Flemming; Stisen, Simon

    2011-01-01

    The Danish Meteorological Institute operates a radar network consisting of five C-band Doppler radars. Quantitative precipitation estimation (QPE) using radar data is performed on a daily basis. Radar QPE is considered to have the potential to signifi cantly improve the spatial representation...... of precipitation compared with rain-gauge-based methods, thus providing the basis for better water resources assessments. The radar QPE algorithm called ARNE is a distance-dependent areal estimation method that merges radar data with ground surface observations. The method was applied to the Skjern River catchment...... in western Denmark where alternative precipitation estimates were also used as input to an integrated hydrologic model. The hydrologic responses from the model were analyzed by comparing radar- and ground-based precipitation input scenarios. Results showed that radar QPE products are able to generate...

  5. Changing Precipitation Patterns or Waning Glaciers? Identifying Water Supply Vulnerabilities to Climate Change in the Bolivian Andes

    Science.gov (United States)

    Guido, Z. S.; McIntosh, J. C.; Papuga, S. A.

    2010-12-01

    The Bolivian Andes have become an iconic example for the impacts of climate change. Glaciers are rapidly melting and some have already completely disappeared. More than 75 percent of the water consumed by 2 million people living on the flanks of the Bolivian Andes comes from mountains and it is often cited that the dwindling ice threatens the water supply of the expanding and destitute population living in the twin cities of La Paz and El Alto. However, the wet and the warm seasons and the cold and dry seasons coincide, causing high precipitation and ice melt—and therefore high streamflows—to occur only in the austral summer (October-March); during the austral winter, cold conditions limit glacier melt. This suggests that reductions in the water supply could be influenced more by changing precipitation amounts than continued glacial mass-wasting. We hypothesize that precipitation is the principal component of groundwater recharge for the aquifers at the base of the central Cordillera Real. Oxygen and hydrogen isotopes from rivers partially fed by glaciers, groundwater, and glacial melt water can help determine the relative contribution of precipitation and glacial melt to important water supplies. During the dry season in August 2010, we sampled 23 sites that follow the flow path of water in the Condiriri watershed, beginning in the glacial headwaters and ending several kilometers upriver from Lake Titicaca. We collected five samples at the toe of the Pequeño Alpamayo glacier and four samples from three tributary rivers that drain glaciated headwaters, which include meltwater from the Pequeño Alpamayo glacier. W also collected 14 water samples from shallow and deep wells in rural communities within 40 kilometers of the glaciers. If the isotopic values of groundwater are similar to rain values, as we suspect, precipitation is likely the largest contributor to groundwater resources in the region and will suggest that changing precipitation patterns present the

  6. The INCOMPASS project field and modelling campaign: Interaction of Convective Organization and Monsoon Precipitation, Atmosphere, Surface and Sea

    Science.gov (United States)

    Turner, Andrew; Bhat, Ganapati; Evans, Jonathan; Madan, Ranju; Marsham, John; Martin, Gill; Mitra, Ashis; Mrudula, Gm; Parker, Douglas; Pattnaik, Sandeep; Rajagopal, En; Taylor, Christopher; Tripathi, Sachchida

    2017-04-01

    The INCOMPASS project uses data from a field and aircraft measurement campaign during the 2016 monsoon onset to better understand and predict monsoon rainfall. The monsoon supplies the majority of water in South Asia, however modelling and forecasting the monsoon from days to the season ahead is limited by large model errors that develop quickly. Likely problems lie in physical parametrizations such as convection, the boundary layer and land surface. At the same time, lack of detailed observations prevents more thorough understanding of monsoon circulation and its interaction with the land surface; a process governed by boundary layer and convective cloud dynamics. From May to July 2016, INCOMPASS used a modified BAe-146 jet aircraft operated by the UK Facility for Airborne Atmospheric Measurements (FAAM), for the first project of this scale in India. The India and UK team flew around 100 hours of science sorties from bases in northern and southern India. Flights from Lucknow in the northern plains took measurements to the west and southeast to allow sampling of the complete contrast from dry desert air to the humid environment over the north Bay of Bengal. These routes were repeated in the pre-monsoon and monsoon phases, measuring contrasting surface and boundary layer structures. In addition, flights from the southern base in Bengaluru measured contrasts from the Arabian Sea, across the intense rains of the Western Ghats mountains, over the rain shadow in southeast India and over the southern Bay of Bengal. Flight planning was performed with the aid of forecasts from a new UK Met Office 4km limited area model. INCOMPASS also installed a network of surface flux towers, as well as operating a cloud-base ceilometer and performing intensive radiosonde launches from a supersite in Kanpur. Here we will outline preliminary results from the field campaign including new observations of the surface, boundary layer structure and atmospheric profiles from aircraft data. We

  7. Tm:germanate Fiber Laser for Planetary Water Vapor Atmospheric Profiling

    Science.gov (United States)

    Barnes, Norman P.; De Young, Russell

    2009-01-01

    The atmospheric profiling of water vapor is necessary for finding life on Mars and weather on Earth. The design and performance of a water vapor lidar based on a Tm:germanate fiber laser is presented.

  8. Methodology to assess water presence on speleothems during periods of low precipitation, with implications for recharge sources - Kartchner Caverns, Arizona

    Science.gov (United States)

    Blasch, Kyle W.

    2011-01-01

    Beginning in January 2005, recharge processes and the presence of water on speleothems were monitored in Kartchner Caverns during a 44-month period when annual rainfall rates were 6 to 18 percent below the long-term mean. Electrical-resistance sensors designed to detect the presence of water were used to identify ephemeral streamflow in the channels overlying the cave as well as the movement of water within the cave system. Direct infiltration of precipitation through overhead rocks provided consistent inflow to the cave, but precipitation rates and subsequent infiltration rates were reduced during the comparatively dry years. Ephemeral stream-channel recharge through autogenic and allogenic processes, the predominant recharge mechanism during wetter periods, was limited to two low-volume events. From visual observations, it appeared that recharge from channel infiltration was equal to or less than recharge from overhead infiltration. Electrical-resistance sensors were able to detect thin films of water on speleothems, including stalactites, ribbons, and stalagmites. These films of water were directly attributed to overhead infiltration of precipitation. Periods of low precipitation resulted in decreased speleothem wetness.

  9. The Use of Water Vapor for Detecting Environments that Lead to Convectively Produced Heavy Precipitation and Flash Floods

    Science.gov (United States)

    Scofield, Rod; Vicente, Gilberto; Hodges, Mike

    2000-01-01

    This Tech Report summarizes years of study and experiences on using GOES Water vapor (6.7 micron and precipitable water) and Special Sensor Microwave Imager (SSM/1) from the Defense Meteorological Satellite Program (DMSP) derived Precipitable Water (PNAI) for detecting environments favorable for convectively produced flash floods. An emphasis is on the moisture. upper air flow, and equivalent potential temperature (Theta(sub e)) patterns that lead to devastating flood events. The 15 minute 6.7 micron water vapor imagery is essential for tracking middle to upper tropospheric disturbances that produce upward vertical motion and initiate flash flood producing systems. Water vapor imagery at 6.7 micron is also used to detect surges of upper level moisture (called tropical water vapor plumes) that have been associated with extremely heavy rainfall. Since the water vapor readily depicts lifting mechanisms and upper level moisture, water vapor imagery is often an excellent source of data for recognizing patterns of heavy precipitation and flash floods. In order to analyze the depth of the moisture, the PW aspects of the troposphere must be measured. The collocation (or nearby location) of high values ofP\\V and instability are antecedent conditions prior to the flash flood or heavy rainfall events. Knowledge of PW magnitudes have been used as thresholds for impending flash flood events, PW trends are essential in flash flood prediction. Conceptual models and water vapor products are used to study some of the characteristics of convective systems that occurred over the United States of America (USA) during the summer of 1997 and the 1997-1998 El Nino. P\\V plumes were associated with most of the \\vest coast heavy precipitation events examined during the winter season of 1997 - 1998, In another study, conducted during the summer season of 1997. results showed that the collocation of water vapor (6.7 micron) and P\\N' plumes possessed higher correlations with predicted

  10. Determining the precipitable water vapor thresholds under different rainfall strengths in Taiwan

    Science.gov (United States)

    Yeh, Ta-Kang; Shih, Hsuan-Chang; Wang, Chuan-Sheng; Choy, Suelynn; Chen, Chieh-Hung; Hong, Jing-Shan

    2018-02-01

    Precipitable Water Vapor (PWV) plays an important role for weather forecasting. It is helpful in evaluating the changes of the weather system via observing the distribution of water vapor. The ability of calculating PWV from Global Positioning System (GPS) signals is useful to understand the special weather phenomenon. In this study, 95 ground-based GPS and rainfall stations in Taiwan were utilized from 2006 to 2012 to analyze the relationship between PWV and rainfall. The PWV data were classified into four classes (no, light, moderate and heavy rainfall), and the vertical gradients of the PWV were obtained and the variations of the PWV were analyzed. The results indicated that as the GPS elevation increased every 100 m, the PWV values decreased by 9.5 mm, 11.0 mm, 12.2 mm and 12.3 mm during the no, light, moderate and heavy rainfall conditions, respectively. After applying correction using the vertical gradients mentioned above, the average PWV thresholds were 41.8 mm, 52.9 mm, 62.5 mm and 64.4 mm under the no, light, moderate and heavy rainfall conditions, respectively. This study offers another type of empirical threshold to assist the rainfall prediction and can be used to distinguish the rainfall features between different areas in Taiwan.

  11. Direct and indirect electron precipitation effect on nitric oxide in the polar middle atmosphere, using a full-range energy spectrum

    Science.gov (United States)

    Smith-Johnsen, Christine; Nesse Tyssøy, Hilde; Hendrickx, Koen; Orsolini, Yvan; Kishore Kumar, Grandhi; Ødegaard, Linn-Kristine Glesnes; Sandanger, Marit Irene; Stordal, Frode; Megner, Linda

    2017-08-01

    In April 2010, a coronal mass ejection and a corotating interaction region on the Sun resulted in an energetic electron precipitation event in the Earth's atmosphere. We investigate direct and indirect nitric oxide (NO) response to the electron precipitation. By combining electron fluxes from the Total Energy Detector and the Medium Energy Proton and Electron Detector on the National Oceanic and Atmospheric Administration's Polar-orbiting Operational Environmental Satellites, we obtain a continuous energy spectrum covering 1-750 keV. This corresponds to electrons depositing their energy at atmospheric altitudes 60-120 km. Based on the electron energy deposition, taking into account loss due to photolysis, the accumulated NO number density is estimated. When compared to NO measured at these altitudes by the Solar Occultation for Ice Experiment instrument on board the Aeronomy of Ice in the Mesosphere satellite, the NO direct effect was detected down to 55 km. The main variability at these altitudes is, however, dominated by the indirect effect, which is downward transported NO. We estimate the source of this descending NO to be in the upper mesosphere at ˜75-90 km.

  12. Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods

    International Nuclear Information System (INIS)

    Kakran, Mitali; Sahoo, Nanda Gopal; Tan, I-Lin; Li Lin

    2012-01-01

    The objective of this study was to enhance the solubility and dissolution rate of a poorly water-soluble antioxidant, curcumin, by fabricating its nanoparticles with two methods: antisolvent precipitation with a syringe pump (APSP) and evaporative precipitation of nanosuspension (EPN). For APSP, process parameters like flow rate, stirring speed, solvent to antisolvent (SAS) ratio, and drug concentration were investigated to obtain the smallest particle size. For EPN, factors like drug concentration and the SAS ratio were examined. The effects of these process parameters on the supersaturation, nucleation, and growth rate were studied and optimized to obtain the smallest particle size of curcumin by both the methods. The average particle size of the original drug was about 10–12 μm and it was decreased to a mean diameter of 330 nm for the APSP method and to 150 nm for the EPN method. Overall, decreasing the drug concentration or increasing the flow rate, stirring rate, and antisolvent amount resulted in smaller particle sizes. Differential scanning calorimetry studies suggested lower crystallinity of curcumin particles fabricated. The solubility and dissolution rates of the prepared curcumin particles were significantly higher than those the original curcumin. The antioxidant activity, studied by the DPPH free radical-scavenging assay, was greater for the curcumin nanoparticles than the original curcumin. This study demonstrated that both the methods can successfully prepare curcumin into submicro to nanoparticles. However, drug particles prepared by EPN were smaller than those by APSP and hence, showed the slightly better solubility, dissolution rate, and antioxidant activity than the latter.

  13. Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods

    Energy Technology Data Exchange (ETDEWEB)

    Kakran, Mitali; Sahoo, Nanda Gopal; Tan, I-Lin; Li Lin, E-mail: mlli@ntu.edu.sg [Nanyang Technological University, School of Mechanical and Aerospace Engineering (Singapore)

    2012-03-15

    The objective of this study was to enhance the solubility and dissolution rate of a poorly water-soluble antioxidant, curcumin, by fabricating its nanoparticles with two methods: antisolvent precipitation with a syringe pump (APSP) and evaporative precipitation of nanosuspension (EPN). For APSP, process parameters like flow rate, stirring speed, solvent to antisolvent (SAS) ratio, and drug concentration were investigated to obtain the smallest particle size. For EPN, factors like drug concentration and the SAS ratio were examined. The effects of these process parameters on the supersaturation, nucleation, and growth rate were studied and optimized to obtain the smallest particle size of curcumin by both the methods. The average particle size of the original drug was about 10-12 {mu}m and it was decreased to a mean diameter of 330 nm for the APSP method and to 150 nm for the EPN method. Overall, decreasing the drug concentration or increasing the flow rate, stirring rate, and antisolvent amount resulted in smaller particle sizes. Differential scanning calorimetry studies suggested lower crystallinity of curcumin particles fabricated. The solubility and dissolution rates of the prepared curcumin particles were significantly higher than those the original curcumin. The antioxidant activity, studied by the DPPH free radical-scavenging assay, was greater for the curcumin nanoparticles than the original curcumin. This study demonstrated that both the methods can successfully prepare curcumin into submicro to nanoparticles. However, drug particles prepared by EPN were smaller than those by APSP and hence, showed the slightly better solubility, dissolution rate, and antioxidant activity than the latter.

  14. Nitrogen distribution and cycling through water flows in a subtropical bamboo forest under high level of atmospheric deposition.

    Science.gov (United States)

    Tu, Li-hua; Hu, Ting-xing; Zhang, Jian; Huang, Li-hua; Xiao, Yin-long; Chen, Gang; Hu, Hong-ling; Liu, Li; Zheng, Jiang-kun; Xu, Zhen-Feng; Chen, Liang-hua

    2013-01-01

    The hydrological cycle is an important way of transportation and reallocation of reactive nitrogen (N) in forest ecosystems. However, under a high level of atmospheric N deposition, the N distribution and cycling through water flows in forest ecosystems especially in bamboo ecosystems are not well understood. In order to investigate N fluxes through water flows in a Pleioblastus amarus bamboo forest, event rainfall/snowfall (precipitation, PP), throughfall (TF), stemflow (SF), surface runoff (SR), forest floor leachate (FFL), soil water at the depth of 40 cm (SW1) and 100 cm (SW2) were collected and measured through the whole year of 2009. Nitrogen distribution in different pools in this ecosystem was also measured. Mean N pools in vegetation and soil (0-1 m) were 351.7 and 7752.8 kg ha(-1). Open field nitrogen deposition at the study site was 113.8 kg N ha(-1) yr(-1), which was one of the highest in the world. N-NH4(+), N-NO3(-) and dissolved organic N (DON) accounted for 54%, 22% and 24% of total wet N deposition. Net canopy accumulated of N occurred with N-NO3(-) and DON but not N-NH4(+). The flux of total dissolved N (TDN) to the forest floor was greater than that in open field precipitation by 17.7 kg N ha(-1) yr(-1), due to capture of dry and cloudwater deposition net of canopy uptake. There were significant negative exponential relationships between monthly water flow depths and monthly mean TDN concentrations in PP, TF, SR, FFL and SW1. The open field nitrogen deposition through precipitation is very high over the world, which is the main way of reactive N input in this bamboo ecosystem. The water exchange and N consume mainly occurred in the litter floor layer and topsoil layer, where most of fine roots of bamboo distributed.

  15. Nitrogen distribution and cycling through water flows in a subtropical bamboo forest under high level of atmospheric deposition.

    Directory of Open Access Journals (Sweden)

    Li-hua Tu

    Full Text Available BACKGROUND: The hydrological cycle is an important way of transportation and reallocation of reactive nitrogen (N in forest ecosystems. However, under a high level of atmospheric N deposition, the N distribution and cycling through water flows in forest ecosystems especially in bamboo ecosystems are not well understood. METHODOLOGY/PRINCIPAL FINDINGS: In order to investigate N fluxes through water flows in a Pleioblastus amarus bamboo forest, event rainfall/snowfall (precipitation, PP, throughfall (TF, stemflow (SF, surface runoff (SR, forest floor leachate (FFL, soil water at the depth of 40 cm (SW1 and 100 cm (SW2 were collected and measured through the whole year of 2009. Nitrogen distribution in different pools in this ecosystem was also measured. Mean N pools in vegetation and soil (0-1 m were 351.7 and 7752.8 kg ha(-1. Open field nitrogen deposition at the study site was 113.8 kg N ha(-1 yr(-1, which was one of the highest in the world. N-NH4(+, N-NO3(- and dissolved organic N (DON accounted for 54%, 22% and 24% of total wet N deposition. Net canopy accumulated of N occurred with N-NO3(- and DON but not N-NH4(+. The flux of total dissolved N (TDN to the forest floor was greater than that in open field precipitation by 17.7 kg N ha(-1 yr(-1, due to capture of dry and cloudwater deposition net of canopy uptake. There were significant negative exponential relationships between monthly water flow depths and monthly mean TDN concentrations in PP, TF, SR, FFL and SW1. CONCLUSIONS/SIGNIFICANCE: The open field nitrogen deposition through precipitation is very high over the world, which is the main way of reactive N input in this bamboo ecosystem. The water exchange and N consume mainly occurred in the litter floor layer and topsoil layer, where most of fine roots of bamboo distributed.

  16. Atmospheric water distribution in cyclones as seen with Scanning Multichannel Microwave Radiometers (SMMR)

    Science.gov (United States)

    Katsaros, K. B.; Mcmurdie, L. A.

    1983-01-01

    Passive microwave measurements are used to study the distribution of atmospheric water in midlatitude cyclones. The integrated water vapor, integrated liquid water, and rainfall rate are deduced from the brightness temperatures at microwave frequencies measured by the Scanning Multichannel Microwave Radiometer (SMRR) flown on both the Seasat and Nimbus 7 satellites. The practical application of locating fronts by the cyclone moisture pattern over oceans is shown, and the relationship between the quantity of coastal rainfall and atmospheric water content is explored.

  17. Comparison of global observations and trends of total precipitable water derived from microwave radiometers and COSMIC radio occultation from 2006 to 2013

    Science.gov (United States)

    Ho, Shu-Peng; Peng, Liang; Mears, Carl; Anthes, Richard A.

    2018-01-01

    We compare atmospheric total precipitable water (TPW) derived from the SSM/I (Special Sensor Microwave Imager) and SSMIS (Special Sensor Microwave Imager/Sounder) radiometers and WindSat to collocated TPW estimates derived from COSMIC (Constellation System for Meteorology, Ionosphere, and Climate) radio occultation (RO) under clear and cloudy conditions over the oceans from June 2006 to December 2013. Results show that the mean microwave (MW) radiometer - COSMIC TPW differences range from 0.06 to 0.18 mm for clear skies, from 0.79 to 0.96 mm for cloudy skies, from 0.46 to 0.49 mm for cloudy but non-precipitating conditions, and from 1.64 to 1.88 mm for precipitating conditions. Because RO measurements are not significantly affected by clouds and precipitation, the biases mainly result from MW retrieval uncertainties under cloudy and precipitating conditions. All COSMIC and MW radiometers detect a positive TPW trend over these 8 years. The trend using all COSMIC observations collocated with MW pixels for this data set is 1.79 mm decade-1, with a 95 % confidence interval of (0.96, 2.63), which is in close agreement with the trend estimated by the collocated MW observations (1.78 mm decade-1 with a 95 % confidence interval of 0.94, 2.62). The sample of MW and RO pairs used in this study is highly biased toward middle latitudes (40-60° N and 40-65° S), and thus these trends are not representative of global average trends. However, they are representative of the latitudes of extratropical storm tracks and the trend values are approximately 4 to 6 times the global average trends, which are approximately 0.3 mm decade-1. In addition, the close agreement of these two trends from independent observations, which represent an increase in TPW in our data set of about 6.9 %, are a strong indication of the positive water vapor-temperature feedback on a warming planet in regions where precipitation from extratropical storms is already large.

  18. Quantifying the impact of El Niño-driven variations in temperature and precipitation on regional atmospheric CO2 growth rate variations

    Science.gov (United States)

    Keppel-Aleks, G.; Butterfield, Z.; Doney, S. C.; Dlugokencky, E. J.; Miller, J.; Morton, D. C.

    2017-12-01

    Quantifying the climatic drivers of variations in atmospheric CO2 observations over a range of timescales is necessary to develop a mechanistic understanding of the global carbon cycle that will enable prediction of future changes. Here, we combine NOAA cooperative global air sampling network CO2 observations, remote sensing data, and a flux perturbation model to quantify the feedbacks between interannual variability in physical climate and the atmospheric CO2 growth rate. In particular, we focus on the differences between the 1997/1998 El Niño and the 2015/2016 El Niño during which atmospheric CO2 increased at an unprecedented rate. The flux perturbation model was trained on data from 1997 to 2012, and then used to predict regional atmospheric CO2 growth rate anomalies for the period from 2013 through 2016. Given gridded temperature anomalies from the Hadley Center's Climate Research Unit (CRU), precipitation anomalies from the Global Precipitation Climatology Project (GPCP), and fire emissions from the Global Fire Emissions Database (GFEDv4s), the model was able to the reproduce regional growth rate variations observed at marine boundary layer stations in the NOAA network, including the rapid CO2 growth rate in 2015/2016. The flux perturbation model output suggests that the carbon cycle responses differed for1997 and 2015 El Niño periods, with tropical precipitation anomalies causing a much larger net flux of CO2 to the atmosphere during the latter period, while direct fire emissions dominated the former. The flux perturbation model also suggests that high temperature stress in the Northern Hemisphere extratropics contributed almost one-third of the CO2 growth rate enhancement during the 2015 El Niño. We use satellite-based metrics for atmospheric column CO2, vegetation, and moisture to corroborate the regional El Niño impacts from the flux perturbation model. Finally, we discuss how these observational results and independent data on ocean air-sea flux

  19. Impact of a prescribed groundwater table on the global water cycle in the IPSL land-atmosphere coupled model

    Science.gov (United States)

    Wang, Fuxing; Ducharne, Agnès; Cheruy, Frédérique; Lo, Min-Hui

    2017-04-01

    The main objective of the present work is to study the impacts of the water table depth on the global water cycle and the physical mechanisms responsible for it through analysis of land-atmosphere coupled numerical simulations. The analysis is performed with the LMDZ (standard physics) and ORCHIDEE models, which are the atmosphere-land components of the IPSL (Institut Pierre Simon Laplace) Climate Model. Results of sensitivity experiments with groundwater table (WT) prescribed at 1m (WTD1) and 2m (WTD2) are compared to the results of a reference simulation with free drainage from an unsaturated 2m soil (REF). The precipitation and evaporation are significantly impacted by WT with the largest difference found between REF and WTD1. Saturating the bottom half of the soil in WTD1 induces an increase of soil moisture. Evapotranspiration increases over water-limited regimes due to increased soil moisture, while it decreases over energy-limited regimes owing to the decrease of downwelling radiation and the increase of cloud cover. Consequently, the land-atmosphere coupling strength is weakened in WTD1 over the water-limited regimes. The tropical (25°S-25°N) and extratropical areas (25°N-60°N and 25°S-60°S) are significantly impacted by the WT with an increase of precipitation. This can be explained by more vigorous updrafts due to the uneven distributed change of evaporation, which transports more water vapor upward causing a positive precipitation change in the ascending branch. Transition zones like the Mediterranean area and central North America are also impacted, with strengthened convection resulting from increased evaporation (recycling). Over the West African Monsoon region, the rainfall belt moves northward. The more intense convection and the change of large scale dynamics (increased meridional temperature gradient) are responsible of this change. Despite the model dependence, these results with the ISPL climate model are consistent with the ample body of

  20. Measurements of gaseous mercury exchanges at the sediment-water, water-atmosphere and sediment-atmosphere interfaces of a tidal environment (Arcachon Bay, France).

    Science.gov (United States)

    Bouchet, Sylvain; Tessier, Emmanuel; Monperrus, Mathilde; Bridou, Romain; Clavier, Jacques; Thouzeau, Gerard; Amouroux, David

    2011-05-01

    The elemental mercury evasion from non-impacted natural areas is of significant importance in the global Hg cycle due to their large spatial coverage. Intertidal areas represent a dynamic environment promoting the transformations of Hg species and their subsequent redistribution. A major challenge remains in providing reliable data on Hg species variability and fluxes under typical transient tidal conditions found in such environment. Field experiments were thus carried out to allow the assessment and comparison of the magnitude of the gaseous Hg fluxes at the three interfaces, sediment-water, sediment-atmosphere and water-atmosphere of a mesotidal temperate lagoon (Arcachon Bay, Aquitaine, France) over three distinct seasonal conditions. The fluxes between the sediment-water and the sediment-atmosphere interfaces were directly evaluated with field flux chambers, respectively static or dynamic. Water-atmosphere fluxes were evaluated from ambient concentrations using a gas exchange model. The fluxes at the sediment-water interface ranged from -5.0 to 5.1 ng m(-2) h(-1) and appeared mainly controlled by diffusion. The occurrence of macrophytic covers (i.e.Zostera noltii sp.) enhanced the fluxes under light radiations. The first direct measurements of sediment-atmosphere fluxes are reported here. The exchanges were more intense and variable than the two other interfaces, ranging between -78 and 40 ng m(-2) h(-1) and were mostly driven by the overlying atmospheric Hg concentrations and superficial sediment temperature. The exchanges between the water column and the atmosphere, computed as a function of wind speed and gaseous mercury saturation ranged from 0.4 to 14.5 ng m(-2) h(-1). The flux intensities recorded over the intertidal sediments periodically exposed to the atmosphere were roughly 2 to 3 times higher than the fluxes of the other interfaces. The evasion of elemental mercury from emerged intertidal sediments is probably a significant pathway for Hg evasion in

  1. Where Does the Irrigation Water Go? An Estimate of the Contribution of Irrigation to Precipitation Using MERRA

    Science.gov (United States)

    Wei, Jiangfeng; Dirmeyer, Paul A.; Wisser, Dominik; Bosilovich, Michael G.; Mocko, David M.

    2013-01-01

    Irrigation is an important human activity that may impact local and regional climate, but current climate model simulations and data assimilation systems generally do not explicitly include it. The European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) shows more irrigation signal in surface evapotranspiration (ET) than the Modern-Era Retrospective Analysis for Research and Applications (MERRA) because ERA-Interim adjusts soil moisture according to the observed surface temperature and humidity while MERRA has no explicit consideration of irrigation at the surface. But, when compared with the results from a hydrological model with detailed considerations of agriculture, the ET from both reanalyses show large deficiencies in capturing the impact of irrigation. Here, a back-trajectory method is used to estimate the contribution of irrigation to precipitation over local and surrounding regions, using MERRA with observation-based corrections and added irrigation-caused ET increase from the hydrological model. Results show substantial contributions of irrigation to precipitation over heavily irrigated regions in Asia, but the precipitation increase is much less than the ET increase over most areas, indicating that irrigation could lead to water deficits over these regions. For the same increase in ET, precipitation increases are larger over wetter areas where convection is more easily triggered, but the percentage increase in precipitation is similar for different areas. There are substantial regional differences in the patterns of irrigation impact, but, for all the studied regions, the highest percentage contribution to precipitation is over local land.

  2. Regulation of radionuclides discharges to the atmosphere and emissions to the water from Ukraine NPPs

    International Nuclear Information System (INIS)

    Vit'ko, V.I.; Goncharova, L.I.; Kartashev, V.V.

    2002-01-01

    The possible order of radionuclides discharges to the atmosphere and emissions to the water from Ukraine NPPs regulation is given allowance for laws and norms of Ukraine and ICRP and IAEA guidelines. For definition of a dose relevant to marginal discharges to the atmosphere and emissions to the water of separate radionuclides are counted dose coefficients (Sv/Bg). Considered three critical age groups: the babies (up to 1 year), children (till 10 years) and adult. The age group being critical for discharges to the atmosphere and emissions to the water are determined. The radionuclides producing the greatest contribution to a dose are determined. Guidelines on calculation of marginal radionuclides discharges to the atmosphere and emissions to the water of Ukraine NPPs are given. Matching of doses from actual radionuclides discharges to the atmosphere and emissions to the water of Ukraine NPPs with quotas, assigned in RSNU-97 is carried out

  3. MODIS/Aqua Total Precipitable Water Vapor 5-Min L2 Swath 1km and 5km V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Aqua Total Precipitable Water Vapor 5-Min L2 Swath 1km and 5km (MYD05_L2). MODIS was launched aboard the Terra satellite on December 18, 1999 (10:30 am equator...

  4. RELATIONS BETWEEN GRACE-DERIVED WATER STORAGE CHANGE WITH PRECIPITATION AND TEMPERATURE OVER KAIDU RIVER BASIN, CHINA

    Directory of Open Access Journals (Sweden)

    J. Huang

    2016-06-01

    Full Text Available Water is essential for human survival and well-being, and important to virtually all sectors of the economy. In the aridzone of China’s west, water resource is the controlling factor on the distribution of human settlements. Water cycle variation is sensitive to temperature and precipitation, which are influenced by human activity and climate change. Satellite observations of Earth’s time-variable gravity field from the Gravity Recovery and Climate Experiment (GRACE mission, which enable direct measurement of changes of total terrestrial water storage, could be useful to aid this modelling. In this pilot study, TWS change from 2002 to 2013 obtained from GRACE satellite mission over the Kaidu River Basin in Xinjiang, China is presented. Precipitation and temperature data from in-situ station and National Satellite Meteorological Centre of China (NSMC are analysed to examine whether there is a statistically significant correlation between them.

  5. The impact of precipitation evaporation on the atmospheric aerosol distribution in EC-Earth v3.2.0

    Science.gov (United States)

    de Bruine, Marco; Krol, Maarten; van Noije, Twan; Le Sager, Philippe; Röckmann, Thomas

    2018-04-01

    The representation of aerosol-cloud interaction in global climate models (GCMs) remains a large source of uncertainty in climate projections. Due to its complexity, precipitation evaporation is either ignored or taken into account in a simplified manner in GCMs. This research explores various ways to treat aerosol resuspension and determines the possible impact of precipitation evaporation and subsequent aerosol resuspension on global aerosol burdens and distribution. The representation of aerosol wet deposition by large-scale precipitation in the EC-Earth model has been improved by utilising additional precipitation-related 3-D fields from the dynamical core, the Integrated Forecasting System (IFS) general circulation model, in the chemistry and aerosol module Tracer Model, version 5 (TM5). A simple approach of scaling aerosol release with evaporated precipitation fraction leads to an increase in the global aerosol burden (+7.8 to +15 % for different aerosol species). However, when taking into account the different sizes and evaporation rate of raindrops following Gong et al. (2006), the release of aerosols is strongly reduced, and the total aerosol burden decreases by -3.0 to -8.5 %. Moreover, inclusion of cloud processing based on observations by Mitra et al. (1992) transforms scavenged small aerosol to coarse particles, which enhances removal by sedimentation and hence leads to a -10 to -11 % lower aerosol burden. Finally, when these two effects are combined, the global aerosol burden decreases by -11 to -19 %. Compared to the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations, aerosol optical depth (AOD) is generally underestimated in most parts of the world in all configurations of the TM5 model and although the representation is now physically more realistic, global AOD shows no large improvements in spatial patterns. Similarly, the agreement of the vertical profile with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP

  6. Impact of climate change on precipitation distribution and water availability in the Nile using CMIP5 GCM ensemble.

    Science.gov (United States)

    Mekonnen, Z. T.; Gebremichael, M.

    2017-12-01

    ABSTRACT In a basin like the Nile where millions of people depend on rainfed agriculture and surface water resources for their livelihoods, changes in precipitation will have tremendous social and economic consequences. General circulation models (GCMs) have been associated with high uncertainty in their projection of future precipitation for the Nile basin. Some studies tried to compare performance of different GCMs by doing a Multi-Model comparison for the region. Many indicated that there is no single model that gives the "best estimate" of precipitation for a very complex and large basin like the Nile. In this study, we used a combination of satellite and long term rain gauge precipitation measurements (TRMM and CenTrends) to evaluate the performance of 10 GCMs from the 5th Coupled Model Intercomparison Project (CMIP5) at different spatial and seasonal scales and produce a weighted ensemble projection. Our results confirm that there is no single model that gives best estimate over the region, hence the approach of creating an ensemble depending on how the model performed in specific areas and seasons resulted in an improved estimate of precipitation compared with observed values. Following the same approach, we created an ensemble of future precipitation projections for four different time periods (2000-2024, 2025-2049 and 2050-2100). The analysis showed that all the major sub-basins of the Nile will get will get more precipitation with time, even though the distribution with in the sub basin might be different. Overall the analysis showed a 15 % increase (125 mm/year) by the end of the century averaged over the area up to the Aswan dam. KEY WORDS: Climate Change, CMIP5, Nile, East Africa, CenTrends, Precipitation, Weighted Ensembles

  7. Precipitable water vapor characterization in the coastal regions of China based on ground-based GPS

    Science.gov (United States)

    Wang, Zhaoyang; Zhou, Xinghua; Liu, Yanxiong; Zhou, Dongxu; Zhang, Huayi; Sun, Weikang

    2017-12-01

    Water vapor plays an important role in climate change; thus, studying the spatial distribution and temporal variation of precipitable water vapor (PWV) in the coastal regions of China would help researchers to understand the climate characteristics of those regions. In this paper, 6-year 1-h interval PWV were derived from 27 Global Positioning System stations observations of Chinese coastal GPS observation network, surface meteorological data and European Center for Medium-Range Weather Forecasts (ERA-Interim) reanalysis products. The present study provides the use of these data to investigate the spatial-temporal variability of water vapor throughout the coastal regions of China. Latitude is the main factor affecting the spatial distribution of GPS-derived PWV; that is, PWV decreased by about 1.5 mm for each 1° increase of latitude. For regions at the same latitude, a region that is relatively close to the ocean will have a higher content of PWV. The PWV in the southeastern and southwestern coastal regions of China is significantly higher in summer; this may be influenced by the southeastern and southwestern water vapor inflow corridors. The PWV obviously varies monthly, reaching a minimum in January; however, the timing of the maximum varied but usually appeared in June, July or August and was affected by the monsoons. The PWV varies largely between summer and winter with a larger gradient of change in PWV with latitude in winter than in summer. The positive correlation coefficient between PWV and the surface temperature varied in different seasons; this is related to the changes of temperature and the horizontal motion of water vapor. Use of the Fast Fourier Transform method showed that the PWV time series data have multi-scale characteristics. The amplitude and phase of the PWV time series in annual, semiannual, four month and seasonal cycles were extracted through harmonic wave analysis. The amplitude of four month and seasonal cycles did not pass

  8. Seasonal variation of radon daughters concentrations in the atmosphere and in precipitation at the Japanese coast of the Sea of Japan

    International Nuclear Information System (INIS)

    Nishikawa, T.; Okabe, S.; Aoki, M.

    1988-01-01

    The atmospheric radon daughters concentration at Fukui in the Japanese coastal region of the Sea of Japan shows a seasonal variation whose high values appear in summer and low values in winter. On the other hand, the radon daughters concentration in precipitation at Fukui and that in the maritime atmosphere over the Sea of Japan are high in winter and low in summer. It is concluded from these phenomena that the greater part of the continental radon and its daughters are transported by seasonal winds from Siberia and China to Japan across the Sea of Japan in winter. However, when the air masses approach the shore, the cumulonimbus grows and the heavy snowfall scavenges out the radon daughters from the air masses in large quantities at the Japanese coastal region of the Sea of Japan. (author)

  9. Land–Atmosphere Exchange of Water and Heat in the Arid Mountainous Grasslands of Central Asia during the Growing Season

    Directory of Open Access Journals (Sweden)

    Xiaotao Huang

    2017-09-01

    Full Text Available Arid grassland ecosystems are widely distributed across Central Asia. However, there is a lack of research and observations of the land–atmosphere exchange of water and heat in the arid grasslands in this region, particularly over complex surfaces. In this study, systematic observations were conducted from 2013 to 2015 using an HL20 Bowen ratio and TDR300 and WatchDog1400 systems to determine the characteristics of these processes during the growing season (April–October of the arid mountainous grasslands of this region. (1 The latent heat flux (Le was lower than the sensible heat flux (He overall, and a small transient decrease in Le was observed before its daytime maximum; daily comparative variations in both fluxes were closely related to vegetation growth. (2 Evapotranspiration (ET showed substantial variation across different years, seasons and months, and monthly variations in ET were closely related to vegetation growth. Water condensation (Q was low and relatively stable. Relatively high levels of soil water were measured in spring followed by a decreasing trend. The land–atmosphere exchange of water and heat during the growing season in this region was closely associated with phenology, available precipitation and terrain. This study provides data support for the scientific management of arid mountainous grasslands.

  10. Comparing Stable Water Isotope Variation in Atmospheric Moisture Observed over Coastal Water and Forests

    Science.gov (United States)

    Lai, C. T.; Rambo, J. P.; Welp, L. R.; Bible, K.; Hollinger, D. Y.

    2014-12-01

    Stable oxygen (δ18O) and hydrogen (δD) isotopologues of atmospheric moisture are strongly influenced by large-scale synoptic weather cycles, surface evapotranspiration and boundary layer mixing. Atmospheric water isotope variation has been shown to empirically relate to relative humidity (Rh) of near surface moisture, and to a less degree, air temperature. Continuous δ18O and δD measurements are becoming more available, providing new opportunities to investigate processes that control isotope variability. This study shows the comparison of δ18O and δD measured at a continental location and over coastal waters for 3 seasons (spring to fall, 2014). The surface moisture isotope measurements were made using two LGR spectroscopy water vapor isotope analyzers (Los Gatos Research Inc.), one operated in an old-growth coniferous forest at Wind River field station, WA (45.8205°N, 121.9519°W), and another sampling marine air over seawater at the Scripps Pier in San Diego, CA (32.8654°N, 117.2536°W), USA. Isotope variations were measured at 1Hz and data were reported as hourly averages with an overall accuracy of ±0.1‰ for δ18O, ±0.5‰ for δ2H. Day-to-day variations in δ18O and δD are shown strongly influenced by synoptic weather events at both locations. Boundary layer mixing between surface moisture and the dry air entrained from the free troposphere exerts a midday maximum and a consistent diel pattern in deuterium excess (dx). At the forest site, surface moisture also interacts with leaf water through transpiration during the day and re-equilibration at night. The latter occurs by retro-diffusion of atmospheric H2O molecules into leaf intercellular space, which becomes intensified as Rh increaes after nightfall, and continues until sunrise, to counter-balance the evaporative isotopic enrichment in leaf water on a daily basis. These vegetation effects lead to negative dx values consistently observed at nighttime in this continental location that were not

  11. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise

    Science.gov (United States)

    Trevor F. Keenan; David Y. Hollinger; Gil Boher; Danilo Dragoni; J. William Munger; Hans Peter. Schmid

    2013-01-01

    Terrestrial plants remove CO2 from the atmosphere through photosynthesis, a process that is accompanied by the loss of water vapour from leaves. The ratio of water loss to carbon gain, or water-use efficiency, is a key characteristic of ecosystem function that is central to the global cycles of water, energy and carbon. Here we analyse direct,...

  12. Exploring the influence of precipitation extremes and human water use on total water storage (TWS) changes in the Ganges-Brahmaputra-Meghna River Basin

    OpenAIRE

    Khandu, E.; Forootan, Ehsan; Schumacher, Maike; Awange, Joseph L.; Müller Schmied, Hannes

    2016-01-01

    Climate extremes such as droughts and intense rainfall events are expected to strongly influence global/regional water resources in addition to the growing demands for freshwater. This study examines the impacts of precipitation extremes and human water usage on total water storage (TWS) over the Ganges-Brahmaputra-Meghna (GBM) River Basin in South Asia. Monthly TWS changes derived from the Gravity Recovery And Climate Experiment (GRACE) (2002–2014) and soil moisture from three reanalyses (19...

  13. Long Series of GNSS Integrated Precipitable Water as a Climate Change Indicator

    Directory of Open Access Journals (Sweden)

    Kruczyk Michał

    2015-12-01

    Full Text Available This paper investigates information potential contained in tropospheric delay product for selected International GNSS Service (IGS stations in climatologic research. Long time series of daily averaged Integrated Precipitable Water (IPW can serve as climate indicator. The seasonal model of IPW change has been adjusted to the multi-year series (by the least square method. Author applied two modes: sinusoidal and composite (two or more oscillations. Even simple sinusoidal seasonal model (of daily IPW values series clearly represents diversity of world climates. Residuals in periods from 10 up to 17 years are searched for some long-term IPW trend – self-evident climate change indicator. Results are ambiguous: for some stations or periods IPW trends are quite clear, the following years (or the other station not visible. Method of fitting linear trend to IPW series does not influence considerably the value of linear trend. The results are mostly influenced by series length, completeness and data (e.g. meteorological quality. The longer and more homogenous IPW series, the better chance to estimate the magnitude of climatologic IPW changes.

  14. Atmospheric water budget over the western Himalayas in a regional ...

    Indian Academy of Sciences (India)

    During winter months (December, January, February – DJF), the western Himalayas (WH) receive precipitation from eastward moving extratropical cyclones, called western disturbances (WDs) in Indian parlance. Winter precipitation–moisture convergence–evaporation (P–C–E) cycle is analyzed for a period of 22 years ...

  15. Investigations into the Behaviour of Precipitation Water in Soils by Means of 131I

    International Nuclear Information System (INIS)

    Benecke, P.

    1967-01-01

    In a drained silty soil the groundwater was filled to surface level by using artificial precipitation. After this a K 131 I-solution was added at a defined spot between two drains. By the help of a scintillometer the spread of the radioisotope was recorded at varying times. The results were plotted as isorates (lines connecting points of equal activity at the same time in the soil profile). The activity maximum remained at the spot of initial activation during the investigation period (two weeks). Within a few minutes after application, however, small activities of 131 I were found one metre away from the point of application, in both a vertical as well as a lateral direction towards the nearest drain. The movement was mainly directly downwards and closely followed a half-logarithmic time: distance relationship. From this, the minima of the observed water-flow velocity were calculated. The influence of the physical soil properties on the spreading was represented by a proportionality constant. An interpretation of this constant is difficult because of the complexity of factors involved. In addition to these quantitative results interesting qualitative conclusions can also be drawn from studying the pattern of the isorate lines: (1) The streamlines towards drainage penetrated the subsoil to a depth of more than 2m, (2) A former drain ditch showed a higher permeability than the undisturbed soil. This meant that mechanical cultivation remains effective even after decades in silty soils, (3) Vertical water flow was hindered at the borders of layers of different texture, even where there was a higher permeability in the underlying layer. (author)

  16. Estimation of precipitable water vapour from GPS measurements in Argentina: Validation and qualitative analysis of results

    Science.gov (United States)

    Fernández, L. I.; Salio, P.; Natali, M. P.; Meza, A. M.

    2010-10-01

    This paper presents PWV estimates from GPS data computed at four continuously operated GPS stations in Argentina established at Buenos Aires, Córdoba, Rosario and Salta over a 1 year period (2006-2007). The objective is to analyze the behaviour of the GPS PWV estimation using mean tropospheric temperature ( Tm) values from the Bevis model, Sapucci model and obtained by a numerical integration of variables provided by the operational analysis of the National Centre of Environmental Prediction (NCEP). The results are validated using PWV values from nearest radio soundings. Moreover, a comparison between PWV values determined from microwave sensors deployed on the NOAA-18 satellite and PWV from GPS observations is also presented. From the analysis we can see that the computation of GPS PWV using the Tm from the Bevis model, originally deduced for the northern hemisphere, shows similar behaviour to the respective computation using a Sapucci model inside 0.5 mm. The differences between the Tm values computed from the Sapucci model and the numerical integration of NCEP variables are of the order of 15 K, although it does not represent a significant error in PWV. Nevertheless, differences in bias are imperceptible during the dry period and they are as big as 3 mm during the moist or high precipitation period. This behaviour could not represent an improvement when comparing radio soundings with respect to the GPS PWV values using different estimations of Tm. Thus, we conclude that the usage of Tm estimated from the Bevis model is the best choice for regional studies, considering the simplicity and dissemination of the method, unless some more studies taking into account the geographical and climatological characteristic of the region are performed. As expected, GPS PWV values show very good agreement with radio sounding determinations, small differences can be observed especially during extreme precipitation periods. In general the NOAA PWV values denote an over

  17. Precipitation collector bias and its effects on temporal trends and spatial variability in National Atmospheric Deposition Program/National Trends Network data

    Science.gov (United States)

    Wetherbee, Gregory A.

    2017-01-01

    Precipitation samples have been collected by the National Atmospheric Deposition Program's (NADP) National Trends Network (NTN) using the Aerochem Metrics Model 301 (ACM) collector since 1978. Approximately one-third of the NTN ACM collectors have been replaced with N-CON Systems, Inc. Model ADS 00-120 (NCON) collectors. Concurrent data were collected over 6 years at 12 NTN sites using colocated ACM and NCON collectors in various precipitation regimes. Linear regression models of the colocated data were used to adjust for relative bias between the collectors. Replacement of ACM collectors with NCON collectors resulted in shifts in 10-year seasonal precipitation-weighted mean concentration (PWMC) trend slopes for: cations (−0.001 to −0.007 mgL−1yr−1), anions (−0.009 to −0.028 mgL−1yr−1), and hydrogen ion (+0.689 meqL-1yr−1). Larger shifts in NO3− and SO4−2 seasonal PWMC trend slopes were observed in the Midwest and Northeast US, where concentrations are generally higher than in other regions. Geospatial analysis of interpolated concentration rasters indicated regions of accentuated variability introduced by incorporation of NCON collectors into the NTN.

  18. Exploring temporal and spatial variability of precipitation of Weizhou Island, South China Sea

    Directory of Open Access Journals (Sweden)

    Shulin Deng

    2017-02-01

    New hydrological insights: (1 Rainfall amounts had a non-homogeneous temporal distribution during periods of 1961–1990, 1981–2010 and 1961–2010 on Weizhou Island. (2 Large scale atmospheric circulation may be the major atmospheric driving force of precipitation changes. (3 Precipitation has a cyclical nature on Weizhou Island. (4 Precipitation pattern on Weizhou Island is also affected by oceanic climate. The results provide a scientific basis for water resource management on Weizhou Island.

  19. The Diurnal Cycle of Clouds and Precipitation at the ARM SGP Site: An Atmospheric State-Based Analysis and Error Decomposition of a Multiscale Modeling Framework Simulation

    Science.gov (United States)

    Zhao, Wei; Marchand, Roger; Fu, Qiang

    2017-12-01

    Long-term reflectivity data collected by a millimeter cloud radar at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site are used to examine the diurnal cycle of clouds and precipitation and are compared with the diurnal cycle simulated by a Multiscale Modeling Framework (MMF) climate model. The study uses a set of atmospheric states that were created specifically for the SGP and for the purpose of investigating under what synoptic conditions models compare well with observations on a statistical basis (rather than using case studies or seasonal or longer time scale averaging). Differences in the annual mean diurnal cycle between observations and the MMF are decomposed into differences due to the relative frequency of states, the daily mean vertical profile of hydrometeor occurrence, and the (normalized) diurnal variation of hydrometeors in each state. Here the hydrometeors are classified as cloud or precipitation based solely on the reflectivity observed by a millimeter radar or generated by a radar simulator. The results show that the MMF does not capture the diurnal variation of low clouds well in any of the states but does a reasonable job capturing the diurnal variations of high clouds and precipitation in some states. In particular, the diurnal variations in states that occur during summer are reasonably captured by the MMF, while the diurnal variations in states that occur during the transition seasons (spring and fall) are not well captured. Overall, the errors in the annual composite are due primarily to errors in the daily mean of hydrometeor occurrence (rather than diurnal variations), but errors in the state frequency (that is, the distribution of weather states in the model) also play a significant role.

  20. Water vapor retrieval from near-IR measurements of polarized scanning atmospheric corrector

    Science.gov (United States)

    Qie, Lili; Ning, Yuanming; Zhang, Yang; Chen, Xingfeng; Ma, Yan; Li, Zhengqiang; Cui, Wenyu

    2018-02-01

    Water vapor and aerosol are two key atmospheric factors effecting the remote sensing image quality. As water vapor is responsible for most of the solar radiation absorption occurring in the cloudless atmosphere, accurate measurement of water content is important to not only atmospheric correction of remote sensing images, but also many other applications such as the study of energy balance and global climate change, land surface temperature retrieval in thermal remote sensing. A multi-spectral, single-angular, polarized radiometer called Polarized Scanning Atmospheric Corrector (PSAC) were developed in China, which are designed to mount on the same satellite platform with the principle payload and provide essential parameters for principle payload image atmospheric correction. PSAC detect water vapor content via measuring atmosphere reflectance at water vapor absorbing channels (i.e. 0.91 μm) and nearby atmospheric window channel (i.e. 0.865μm). A near-IR channel ratio method was implemented to retrieve column water vapor (CWV) amount from PSAC measurements. Field experiments were performed at Yantai, in Shandong province of China, PSAC aircraft observations were acquired. The comparison between PSAC retrievals and ground-based Sun-sky radiometer measurements of CWV during the experimental flights illustrates that this method retrieves CWV with relative deviations ranging from 4% 13%. This method retrieve CWV more accurate over land than over ocean, as the water reflectance is low.

  1. NASA-Modified Precipitation Products to Improve EPA Nonpoint Source Water Quality Modeling for the Chesapeake Bay

    Science.gov (United States)

    Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi

    2010-01-01

    The Environmental Protection Agency (EPA) has estimated that over 20,000 water bodies within the United States do not meet water quality standards. Ninety percent of the impairments are typically caused by nonpoint sources. One of the regulations in the Clean Water Act of 1972 requires States to monitor the Total Maximum Daily Load (TMDL), or the amount of pollution that can be carried by a water body before it is determined to be "polluted", for any watershed in the U.S.. In response to this mandate, the EPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a Decision Support Tool (DST) for assessing pollution and to guide the decision making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program -- Fortran (HSPF), computes daily stream flow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA modified/NOAA precipitation data. Using these data within HSPF, stream flow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better stream flow statistics and, ultimately, in improved water quality assessment.

  2. Validation of Atmospheric Water Vapor Derived from Ship-Borne GPS Measurements in the Chinese Bohai Sea

    Directory of Open Access Journals (Sweden)

    Shi-Jie Fan

    2016-04-01

    Full Text Available Atmospheric water vapor (AWV was investigated for the first time in the Chinese Bohai Sea using a Global Positioning System (GPS receiver aboard a lightweight (300-ton ship. An experiment was conducted to retrieve the AWV using the state-of-the-art GPS precise point positioning (PPP technique. The effects of atmospheric weighted mean temperature model and zenith wet delay constraint on GPS AWV estimates were discussed in the PPP estimation system. The GPS-derived precipitable water vapor (PWV and slant-path water vapor (SWV were assessed by comparing with those derived from the Fifth Generation NCAR/Penn State Mesoscale Model (MM5. The results showed the PWV and SWV differences between those derived from both GPS and MM5 are 1.5 mm root mean square (RMS with a bias of 0.2 and 3.9 mm RMS with a bias of -0.7 mm respectively. These good agreements indicate that the GPS-derived AWV in dynamic environments has a comparable accuracy with that of the MM5 model. This suggests that high accuracy and high spatio-temporal resolution humidity fields can be obtained using GPS in the Chinese Bohai Sea, which offers significant potential for meteorological applications and climate studies in this region.

  3. Decomposition of atmospheric water content into cluster contributions based on theoretical association equilibrium constants

    International Nuclear Information System (INIS)

    Slanina, Z.

    1987-01-01

    Water vapor is treated as an equilibrium mixture of water clusters (H 2 O)/sub i/ using quantum-chemical evaluation of the equilibrium constants of water associations. The model is adapted to the conditions of atmospheric humidity, and a decomposition algorithm is suggested using the temperature and mass concentration of water as input information and used for a demonstration of evaluation of the water oligomer populations in the Earth's atmosphere. An upper limit of the populations is set up based on the water content in saturated aqueous vapor. It is proved that the cluster population in the saturated water vapor, as well as in the Earth's atmosphere for a typical temperature/humidity profile, increases with increasing temperatures

  4. Precipitable water vapour forecasting: a tool for optimizing IR observations at Roque de los Muchachos Observatory.

    Science.gov (United States)

    Pérez-Jordán, G.; Castro-Almazán, J. A.; Muñoz-Tuñón, C.

    2018-04-01

    We validate the Weather Research and Forecasting (WRF) model for precipitable water vapour (PWV) forecasting as a fully operational tool for optimizing astronomical infrared (IR) observations at Roque de los Muchachos Observatory (ORM). For the model validation we used GNSS-based (Global Navigation Satellite System) data from the PWV monitor located at the ORM. We have run WRF every 24 h for near two months, with a horizon of 48 hours (hourly forecasts), from 2016 January 11 to 2016 March 4. These runs represent 1296 hourly forecast points. The validation is carried out using different approaches: performance as a function of the forecast range, time horizon accuracy, performance as a function of the PWV value, and performance of the operational WRF time series with 24- and 48-hour horizons. Excellent agreement was found between the model forecasts and observations, with R =0.951 and R =0.904 for the 24- and 48-h forecast time series respectively. The 48-h forecast was further improved by correcting a time lag of 2 h found in the predictions. The final errors, taking into account all the uncertainties involved, are 1.75 mm for the 24-h forecasts and 1.99 mm for 48 h. We found linear trends in both the correlation and RMSE of the residuals (measurements - forecasts) as a function of the forecast range within the horizons analysed (up to 48 h). In summary, the WRF performance is excellent and accurate, thus allowing it to be implemented as an operational tool at the ORM.

  5. Characteristic features of winter precipitation and its variability over ...

    Indian Academy of Sciences (India)

    Keywords. Northwest India; winter precipitation; western disturbances; rabi crops; precipitation variability; precipitation epochs. ... The precipitation is mainly associated with the sequence of synoptic systems known as 'western disturbances'. The precipitation has ... National Atmospheric Research Laboratory, Tirupati, India.

  6. Calcium carbonate precipitation in the Cueva di Watapana on Bonaire, Netherlands Antilles

    NARCIS (Netherlands)

    Meer Mohr, van der C.G.

    1978-01-01

    Calcium carbonate precipitates as low Mg-calcite and aragonite in slightly brackish water in a cave in the Pleistocene Middle Terrace of southern Bonaire. The calcium carbonate precipitates at the atmosphere-water interface forming floating calcite scales (calcite ice). Aragonite crystals frequently

  7. Gas-Liquid Precipitation of water dissolved heavy metal ions using hydrogen sulfide gas

    NARCIS (Netherlands)

    Al Tarazi, M.Y.M.

    2004-01-01

    Precipitation of solids promoted by gas-liquid reactions is applied in many industrial processes such as the production of ammonium phosphate, ammonium sulphate, barium carbonate, calcium carbonate, calcium fluoride, ypsum (calcium sulphate), goethite, sodium bicarbonate, strontium carbonate and

  8. Decomposition of water-insoluble organic waste by water plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Choi, S; Watanabe, T

    2012-01-01

    The water plasma was generated in atmospheric pressure with the emulsion state of 1-decanol which is a source of soil and ground water pollution. In order to investigate effects of operating conditions on the decomposition of 1-decanol, generated gas and liquid from the water plasma treatment were analysed in different arc current and 1-decanol concentration. The 1-decanol was completely decomposed generating hydrogen, carbon monoxide, carbon dioxide, methane, treated liquid and solid carbon in all experimental conditions. The feeding rate of 1- decanol emulsion was increased with increasing the arc current in virtue of enhanced input power. The generation rate of gas and the ratio of carbon dioxide to carbon monoxide were increased in the high arc current, while the generation rate of solid carbon was decreased due to enhanced oxygen radicals in the high input power. Generation rates of gas and solid carbon were increased at the same time with increasing the concentration of 1-decanol, because carbon radicals were increased without enhancement of oxygen radicals in a constant power level. In addition, the ratio of carbon dioxide to carbon monoxide was increased along with the concentration of 1-decanol due to enhanced carbon radicals in the water plasma flame.

  9. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes

    Science.gov (United States)

    Kimberly A. Novick; Darren L. Ficklin; Paul C. Stoy; Christopher A. Williams; Gil Bohrer; Andrew C. Oishi; Shirley A. Papuga; Peter D. Blanken; Asko Noormets; Benjamin N. Sulman; Russell L. Scott; Lixin Wang; Richard P. Phillips

    2016-01-01

    Soil moisture supply and atmospheric demand for water independently limit-and profoundly affect-vegetation productivity and water use during periods of hydrologic stress1-4. Disentangling the impact of these two drivers on ecosystem carbon and water cycling is difficult because they are often correlated, and experimental tools for manipulating...

  10. The Martian atmospheric water cycle as viewed from a terrestrial perspective

    Science.gov (United States)

    Zurek, Richard W.

    1988-01-01

    It is noted that the conditions of temperature and pressure that characterize the atmosphere of Mars are similar to those found in the Earth's stratosphere. Of particular significance is the fact that liquid water is unstable in both environments. Thus, it is expected that terrestrial studies of the dynamical behavior of stratospheric water should benefit the understanding of water transport on Mars as well.

  11. Recharging infiltration of precipitation water through the light soil, in the absence of surface runoff

    Directory of Open Access Journals (Sweden)

    Czyżyk Franciszek

    2017-03-01

    Full Text Available The article presents the value of recharging infiltration of precipitation through the light soil and its distribution over time, based on five-year of lysimetric research. The effect of organic and mineral fertilization on the infiltration was studied. In lysimeters does not occur the phenomenon of surface runoff, and thus, by analogy, the results of the research can be applied to agriculturally used lowland areas with sandy soils. The results showed that the infiltration is very changeable in time. On its value, in addition to precipitation, the greatest influence has evapotranspiration. The largest infiltration occurs in March after the spring thaws (IE = 70-81% monthly precipitation and the smallest in August (IE = 1.2-15.0% precipitation, depending on the type of fertilizer used and the level of fertilization. The soil fertilization, especially by using organic fertilizer (compost, is a factor, which has significantly influence on reduction of the recharging infiltration. The soil fertilization with compost reduced the infiltration of 7.4-9.0%, and with mineral fertilization of 5.4-7.0% of annual precipitation totals, compared with the infiltration through the soil not fertilized. The average annual index of infiltration was 21.8-25.3% of annual precipitation totals in variant of soil fertilized and 30.7% in case of the soil not fertilized.

  12. Effect of tropospheric models on derived precipitable water vapor over Southeast Asia

    Science.gov (United States)

    Rahimi, Zhoobin; Mohd Shafri, Helmi Zulhaidi; Othman, Faridah; Norman, Masayu

    2017-05-01

    An interesting subject in the field of GPS technology is estimating variation of precipitable water vapor (PWV). This estimation can be used as a data source to assess and monitor rapid changes in meteorological conditions. So far, numerous GPS stations are distributed across the world and the number of GPS networks is increasing. Despite these developments, a challenging aspect of estimating PWV through GPS networks is the need of tropospheric parameters such as temperature, pressure, and relative humidity (Liu et al., 2015). To estimate the tropospheric parameters, global pressure temperature (GPT) model developed by Boehm et al. (2007) is widely used in geodetic analysis for GPS observations. To improve the accuracy, Lagler et al. (2013) introduced GPT2 model by adding annual and semi-annual variation effects to GPT model. Furthermore, Boehm et al. (2015) proposed the GPT2 wet (GPT2w) model which uses water vapor pressure to improve the calculations. The global accuracy of GPT2 and GPT2w models has been evaluated by previous researches (Fund et al., 2011; Munekane and Boehm, 2010); however, investigations to assess the accuracy of global tropospheric models in tropical regions such as Southeast Asia is not sufficient. This study tests and examines the accuracy of GPT2w as one of the most recent versions of tropospheric models (Boehm et al., 2015). We developed a new regional model called Malaysian Pressure Temperature (MPT) model, and compared this model with GPT2w model. The compared results at one international GNSS service (IGS) station located in the south of Peninsula Malaysia shows that MPT model has a better performance than GPT2w model to produce PWV during monsoon season. According to the results, MPT has improved the accuracy of estimated pressure and temperature by 30% and 10%, respectively, in comparison with GPT2w model. These results indicate that MPT model can be a good alternative tool in the absence of meteorological sensors at GPS stations in

  13. Water cycle dynamic increases resilience of vegetation under higher atmospheric carbon dioxide concentration

    Science.gov (United States)

    Lemordant, L. A.; Gentine, P.; Stéfanon, M.; Drobinski, P. J.; Fatichi, S.

    2015-12-01

    Plant stomata couple the energy, water and carbon cycles. Photosynthesis requires stomata to open to take up carbon dioxide. In the process water vapor is released as transpiration. As atmospheric CO2 concentration rises, for the same amount of CO2 uptake, less water vapor is transpired, translating into higher water use efficiency. Reduced water vapor losses will increase soil water storage if the leaf area coverage remains similar. This will in turn alter the surface energy partitioning: more heat will be dissipated as sensible heat flux, resulting in possibly higher surface temperatures. In contrast with this common hypothesis, our study shows that the water saved during the growing season by increased WUE can be mobilized by the vegetation and help reduce the maximum temperature of mid-latitude heat waves. The large scale meteorological conditions of 2003 are the basis of four regional model simulations coupling an atmospheric model to a surface model. We performed two simulations with respectively 2003 (CTL) and 2100 (FUT) atmospheric CO2 applied to both the atmospheric and surface models. A third (RAD) and a fourth (FER) simulations are run with 2100 CO2 concentration applied to respectively the atmospheric model only and the surface model only. RAD investigates the impact of the radiative forcing, and FER the response to vegetation CO2 fertilization. Our results show that the water saved through higher water use efficiency during the growing season enabled by higher atmospheric carbon dioxide concentrations helps the vegetation to cope during severe heat and dryness conditions in the summer of mid-latitude climate. These results demonstrate that consideration of the vegetation carbon cycle is essential to model the seasonal water cycle dynamic and land-atmosphere interactions, and enhance the accuracy of the model outputs especially for extreme events. They also have important implications for the future of agriculture, water resources management, ecosystems

  14. Global Coupled Model Studies of The Jovian Upper Atmosphere In Response To Electron Precipitation and Ionospheric Convection Within The Auroral Region.

    Science.gov (United States)

    Millward, G. H.; Miller, S.; Aylward, A. D.

    The Jovian Ionospheric Model (JIM) is a global three-dimensional model of Jupiter's coupled ionosphere and thermosphere, developed at University College London. Re- cently, the model has been used to investigate the atmospheric response to electron precipitation within the high-latitude auroral region. A series of simulations have been performed in which the model atmosphere is subjected to monochromatic precipitat- ing electrons of varying number flux and initial energy and, in addition, to various degrees of ionospheric convection. The auroral ionospheric conductivity which re- sults is shown to be strongly non-linear with respect to the incoming electron energy, with a maximum observed for incident particles of initial energy 60 KeV. Electrons with higher energies penetrate the thermospheric region completely, whilst electrons of lower energy (say 10 keV) produce ionisation at higher levels in the atmosphere which are less less condusive to the creation of ionospheric conductivity. Studies of the thermospheric winds with the auroral region show that zonal winds (around the auroral oval) can attain values of around 70% of the driving zonal ion velocity. Also the results show that these large neutral winds are limited in vertical extent to the region of large ionospheric conductivity, tailing off markedly at altitudes above this. The latest results from this work will be presented, and the implications for Jovian magnetospheric-ionospheric coupling will be discussed.

  15. The Development and Calculation of an Energy-saving Plant for Obtaining Water from Atmospheric Air

    Science.gov (United States)

    Uglanov, D. A.; Zheleznyak, K. E.; Chertykovsev, P. A.

    2018-01-01

    The article shows the calculation of characteristics of energy-efficient water generator from atmospheric air. This installation or the atmospheric water generator is the unique mechanism which produces safe drinking water by extraction it from air. The existing atmospheric generators allow to receive safe drinking water by means of process of condensation at air humidity at least equal to 35% and are capable to give to 25 liters of water in per day, and work from electricity. Authors offer to use instead of the condenser in the scheme of installation for increase volume of produced water by generator in per day, the following refrigerating machines: the vapor compression refrigerating machines (VCRM), the thermoelectric refrigerating machines (TRM) and the Stirling-cycle refrigerating machines (SRM). The paper describes calculation methods for each of refrigerating systems. Calculation of technical-and-economic indexes for the atmospheric water generator was carried out and the optimum system with the maximum volume of received water in per day was picked up. The atmospheric water generator which is considered in article will work from autonomous solar power station.

  16. Seasonal Variation of Atmospheric Composition of Water-Soluble ...

    African Journals Online (AJOL)

    `123456789jkl''''#

    dust dispersion and biomass burning made a significant contribution to the atmospheric particulate pollution in. Morogoro. Keywords: Ion chromatography; Aerosol Characterization; coarse, fine and PM10 fractions; Meteorology. Introduction here is an increasing awareness of the influence of ambient particulate matter (PM) ...

  17. Exploring the influence of precipitation extremes and human water use on total water storage (TWS) changes in the Ganges-Brahmaputra-Meghna River Basin

    Science.gov (United States)

    Khandu; Forootan, Ehsan; Schumacher, Maike; Awange, Joseph L.; Müller Schmied, Hannes

    2016-03-01

    Climate extremes such as droughts and intense rainfall events are expected to strongly influence global/regional water resources in addition to the growing demands for freshwater. This study examines the impacts of precipitation extremes and human water usage on total water storage (TWS) over the Ganges-Brahmaputra-Meghna (GBM) River Basin in South Asia. Monthly TWS changes derived from the Gravity Recovery And Climate Experiment (GRACE) (2002-2014) and soil moisture from three reanalyses (1979-2014) are used to estimate new extreme indices. These indices are applied in conjunction with standardized precipitation indices (SPI) to explore the impacts of precipitation extremes on TWS in the region. The results indicate that although long-term precipitation do not indicate any significant trends over the two subbasins (Ganges and Brahmaputra-Meghna), there is significant decline in rainfall (9.0 ± 4.0 mm/decade) over the Brahmaputra-Meghna River Basin from 1998 to 2014. Both river basins exhibit a rapid decline of TWS from 2002 to 2014 (Ganges: 12.2 ± 3.4 km3/yr and Brahmaputra-Meghna: 9.1 ± 2.7 km3/yr). While the Ganges River Basin has been regaining TWS (5.4 ± 2.2 km3/yr) from 2010 onward, the Brahmaputra-Meghna River Basin exhibits a further decline (13.0 ± 3.2 km3/yr) in TWS from 2011 onward. The impact of human water consumption on TWS appears to be considerably higher in Ganges compared to Brahmaputra-Meghna, where it is mainly concentrated over Bangladesh. The interannual water storage dynamics are found to be strongly associated with meteorological forcing data such as precipitation. In particular, extreme drought conditions, such as those of 2006 and 2009, had profound negative impacts on the TWS, where groundwater resources are already being unsustainably exploited.

  18. Evidence of water vapor in excess of saturation in the atmosphere of Mars.

    Science.gov (United States)

    Maltagliati, L; Montmessin, F; Fedorova, A; Korablev, O; Forget, F; Bertaux, J-L

    2011-09-30

    The vertical distribution of water vapor is key to the study of Mars' hydrological cycle. To date, it has been explored mainly through global climate models because of a lack of direct measurements. However, these models assume the absence of supersaturation in the atmosphere of Mars. Here, we report observations made using the SPICAM (Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars) instrument onboard Mars Express that provide evidence of the frequent presence of water vapor in excess of saturation, by an amount far surpassing that encountered in Earth's atmosphere. This result contradicts the widespread assumption that atmospheric water on Mars cannot exist in a supersaturated state, directly affecting our long-term representation of water transport, accumulation, escape, and chemistry on a global scale.

  19. VO1/VO2 MARS ATMOSPHERIC WATER DETECTOR 4 V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of the raster-averaged radiant intensities and associated data parameters produced from data acquired by the Mars Atmospheric Water Detectors...

  20. Scanning Multichannel Microwave Radiometer (SMMR) Monthly Mean Atmospheric Liquid Water (ALW) By Prabhakara

    Data.gov (United States)

    National Aeronautics and Space Administration — SMMR_ALW_PRABHAKARA data are Special Multichannel Microwave Radiometer (SMMR) Monthly Mean Atmospheric Liquid Water (ALW) data by Prabhakara.The Prabhakara Scanning...

  1. Turbidity of the atmospheric and water at the major ports of India

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Desa, E.; Rodrigues, A.; Ramdasan, K.

    variations. Atmospheric turbidity at Kandla was found to be increasing at 2.7% per year (geometric mean) while at other ports where increases were noticed included Mangalore, Mormugao and Visakhapatnam. (approx. 2%). Water turbidity at Cochin was found...

  2. The Interaction of Spacecraft Cabin Atmospheric Quality and Water Processing System Performance

    Science.gov (United States)

    Perry, Jay L.; Croomes, Scott D. (Technical Monitor)

    2002-01-01

    Although designed to remove organic contaminants from a variety of waste water streams, the planned U.S.- and present Russian-provided water processing systems onboard the International Space Station (ISS) have capacity limits for some of the more common volatile cleaning solvents used for housekeeping purposes. Using large quantities of volatile cleaning solvents during the ground processing and in-flight operational phases of a crewed spacecraft such as the ISS can lead to significant challenges to the water processing systems. To understand the challenges facing the management of water processing capacity, the relationship between cabin atmospheric quality and humidity condensate loading is presented. This relationship is developed as a tool to determine the cabin atmospheric loading that may compromise water processing system performance. A comparison of cabin atmospheric loading with volatile cleaning solvents from ISS, Mir, and Shuttle are presented to predict acceptable limits to maintain optimal water processing system performance.

  3. A continuous and highly effective static mixing process for antisolvent precipitation of nanoparticles of poorly water-soluble drugs.

    Science.gov (United States)

    Dong, Yuancai; Ng, Wai Kiong; Hu, Jun; Shen, Shoucang; Tan, Reginald B H

    2010-02-15

    Rapid and homogeneous mixing of the solvent and antisolvent is critical to achieve submicron drug particles by antisolvent precipitation technique. This work aims to develop a continuous and highly effective static mixing process for antisolvent precipitation of nanoparticles of poorly water-soluble drugs with spironolactone as a model drug. Continuous antisolvent production of drug nanoparticles was carried out with a SMV DN25 static mixer comprising 6-18 mixing elements. The total flow rate ranged from 1.0 to 3.0 L/min while the flow rate ratio of solvent to antisolvent was maintained at 1:9. It is found that only 6 mixing elements were sufficient to precipitate the particles in the submicron range. Increasing the number of elements would further reduce the precipitated particle size. Increasing flow rate from 1.0 to 3.0 L/min did not further reduce the particle size, while higher drug concentrations led to particle size increase. XRD and SEM results demonstrated that the freshly precipitated drug nanoparticles are in the amorphous state, which would, in presence of the mixture of solvent and antisolvent, change to crystalline form in short time. The lyophilized spironolactone nanoparticles with lactose as lyoprotectant possessed good redispersibility and showed 6.6 and 3.3 times faster dissolution rate than that of lyophilized raw drug formulation in 5 and 10 min, respectively. The developed static mixing process exhibits high potential for continuous and large-scale antisolvent precipitation of submicron drug particles. Copyright 2009 Elsevier B.V. All rights reserved.

  4. Performance Assessment of GPS-Sensed Precipitable Water Vapor using IGS Ultra-Rapid Orbits: A Preliminary Study in Thailand

    OpenAIRE

    Yoon-Soo Choi; Somkiat Anonglekha; Chalermchon Satirapod; Hung-Kyu Lee

    2011-01-01

    Precipitable Water Vapor (PWV) is a significant variable used for climate change studies. Currently PWV can be derived from the Global Positioning System (GPS) observation in addition to the specific instruments such as Radiosondes (RS), Microwave Radiometers (MWR) and Meteorological Satellites. To accurately derive PWV from GPS data, long periods of observation time in conjunction with final orbit data have to be applied in the data processing steps. This final orbit data can be acquired fro...

  5. Application of the Forhyd model to simulate net precipitation and intercepted water evaporation in forest canopies in Colombian amazonia

    International Nuclear Information System (INIS)

    Tellez Guio, Patricia; Boschell Villamarin, Francisco; Tobon Marin, Conrado

    2005-01-01

    Hydrologic simulation is a technique, which allows us to understand the relationships among hydrological, biological and ecological variables in an ecosystem. In this research, the FORHYD model is used to simulate the net precipitation and the water intercepted by the canopies of a mature forest, a 30-year old secondary forest, an 18-year old secondary forest, a 5-year old secondary forest, and a shifting cultivation plot, all located in Colombia's amazonia. The model calculates the water budget of the canopy by using the precipitation rates, canopy drainage and evaporation of the water intercepted by the canopy. This paper is the second one in a series of papers reporting the results of the research on the simulation of the hydrological fluxes in three different land use types of Colombian amazonia. The research was carried out in middle Caqueta of Colombian amazonia (northwest amazon basin). The FORHYD model was calibrated and validated by using field observations of the climate, net precipitation (PT), thoughtful (TH) and stem flow (ST), which were monitored during a period of 15 months from March 2001 to June 2002. These observations were used as both input variables and diagnostic variables to probe the model's precision to simulate field observations. Results showed that FORHYD simulates with a good precision the net precipitation and the evaporation of the water intercepted by the canopy. However, the model's precision depends on a good parameterization, which in turn depends on a good database of field observations. The model is a good tool for simulating the hydrological cycle and can be used to simulate critical scenarios of climate variability

  6. Precipitation-runoff processes in the Feather River basin, northeastern California, and streamflow predictability, water years 1971-97

    Science.gov (United States)

    Koczot, Kathryn M.; Jeton, Anne E.; McGurk, Bruce; Dettinger, Michael D.

    2005-01-01

    Precipitation-runoff processes in the Feather River Basin of northern California determine short- and long-term streamflow variations that are of considerable local, State, and Federal concern. The river is an important source of water and power for the region. The basin forms the headwaters of the California State Water Project. Lake Oroville, at the outlet of the basin, plays an important role in flood management, water quality, and the health of fisheries as far downstream as the Sacramento-San Joaquin Delta. Existing models of the river simulate streamflow in hourly, daily, weekly, and seasonal time steps, but cannot adequately describe responses to climate and land-use variations in the basin. New spatially detailed precipitation-runoff models of the basin have been developed to simulate responses to climate and land-use variations at a higher spatial resolution than was available previously. This report characterizes daily rainfall, snowpack evolution, runoff, water and energy balances, and streamflow variations from, and within, the basin above Lake Oroville. The new model's ability to predict streamflow is assessed. The Feather River Basin sits astride geologic, topographic, and climatic divides that establish a hydrologic character that is relatively unusual among the basins of the Sierra Nevada. It straddles a north-south geologic transition in the Sierra Nevada between the granitic bedrock that underlies and forms most of the central and southern Sierra Nevada and volcanic bedrock that underlies the northernmost parts of the range (and basin). Because volcanic bedrock generally is more permeable than granitic, the northern, volcanic parts of the basin contribute larger fractions of ground-water flow to streams than do the southern, granitic parts of the basin. The Sierra Nevada topographic divide forms a high altitude ridgeline running northwest to southeast through the middle of the basin. The topography east of this ridgeline is more like the rain

  7. Precipitation and Carbon-Water Coupling Jointly Control the Interannual Variability of Global Land Gross Primary Production

    Science.gov (United States)

    Zhang, Yao; Xiao, Xiangming; Guanter, Luis; Zhou, Sha; Ciais, Philippe; Joiner, Joanna; Sitch, Stephen; Wu, Xiaocui; Nabel, Julian; Dong, Jinwei; hide

    2016-01-01

    Carbon uptake by terrestrial ecosystems is increasing along with the rising of atmospheric CO2 concentration. Embedded in this trend, recent studies suggested that the interannual variability (IAV) of global carbon fluxes may be dominated by semi-arid ecosystems, but the underlying mechanisms of this high variability in these specific regions are not well known. Here we derive an ensemble of gross primary production (GPP) estimates using the average of three data-driven models and eleven process-based models. These models are weighted by their spatial representativeness of the satellite-based solar-induced chlorophyll fluorescence (SIF). We then use this weighted GPP ensemble to investigate the GPP variability for different aridity regimes. We show that semi-arid regions contribute to 57% of the detrended IAV of global GPP. Moreover, in regions with higher GPP variability, GPP fluctuations are mostly controlled by precipitation and strongly coupled with evapotranspiration (ET). This higher GPP IAV in semi-arid regions is co-limited by supply (precipitation)-induced ET variability and GPP-ET coupling strength. Our results demonstrate the importance of semi-arid regions to the global terrestrial carbon cycle and posit that there will be larger GPP and ET variations in the future with changes in precipitation patterns and dryland expansion.

  8. Feasibility studies for water harvesting from fog and atmospheric moisture in Hormozgan coastal zone (south of Iran)

    Science.gov (United States)

    Esfandiarnejad, A.; Ahangar, R.; Kamalian, U. R.; Sangchouli, T.

    2010-07-01

    The level of precipitation in the coastal towns & islands of the Hormozgan province is very low, but the relative humidity so high that wets the soil at below dew point temperatures and could therefore be utilized for relieving the water shortage, to some extents by employing water harvesting systems from fog & air moisture. The inhabitants of Qeshm Island have made efforts from the ancient times to collect air moisture along rainwater gathering. The reminders of these efforts are 366 small wells drilled in stone, which are now a tourist attraction. This method is also applied today in a less elaborate manner. This research has been carried out to study the feasibility of water harvesting from fog and air moisture in the coastal towns and islands of the Hormozgan province of Iran on the northern shores of the Persian Gulf. To examine the potential water in the atmosphere, the data from Bandar Abbass synoptic station with a statistical period of 1961-2005 was reviewed and the humidity values of over 70% and wind speed less than 5m/s were analyzed. The average water content of each cubic meter of air in Bandar Abbas in its most dry condition is 16.2g which amounts to 19.5g in its most humid state. The maximum water yield by applying this method could be harvested from 22 June until 22 September. The recorded data show that highest rate of moisture in each cubic meter of air occurred in 1961 while the highest extractable water potential was in 1995. Mentioning these facts, somehow indicate the importance of parameters effecting water harvesting such as wind speed and direction and the amount of moisture in the air. More details have been presented in the paper. Field observations and archeological artifacts approve the results obtained by the conducted estimations showing the feasibility of water harvesting from fog & air moisture in this region and its rates in the different seasons.

  9. A hydrogeochemical study of rain water to characterize the source of atmospheric pollutants at Jodhpur - desert city of India (abstract)

    International Nuclear Information System (INIS)

    Shrivastava, K.L.; Ojha, S.K.

    1999-01-01

    A study was undertaken has been conducted to determined the physical parameters and chemical species in the first precipitants of the season at desert city of Jodhpur to understand firstly, the degree of pollutants in the atmosphere and secondly to identity the minerals/pollutants of the atmosphere to characterize its possible source of origin. The precipitate samples for cations and other physical and chemical parameters by standard analytical methods. The results obtained on turbidity, conductivity, total dissolved solids and the ratio of total dissolved solids and conductivity, show a moderate degree of pollutants at all the four sites, A, B, C and D but slightly higher at C and D sites. The concentration of various water-soluble chemical species present in the precipitates, specially a balance between acidic and basic constituents decides its pH value. Hydrogen ions are mainly responsible for acidification of rain waters and are derived chiefly from oxidation of SO/sub 2/ and NO/sub 2/ to from H/sub 2/SO/sub 4/ and HNO/sub 3/ respectively. Hence a correlation study carried out between H/sup */and SO/sub 4//sup --/, NO/sub 3/ and Cl. Result shows no strong correlation between H/sup +/ and Cl/up -/. A group of strongly corrected elements Cl, Na/sup +/,K/sup +/ and Mg/sup ++/ were observed representing a similar source of their origin. The atmospheric desert dust components chiefly consist of quartz, mica flakes, clays like illite, kaolinite etc., and especially clays, may neutralize the acidity of precipitates via H/sup +/ exchange. Some minerals like Halite, Gypsum, Dolomite, Calcite may get slightly dissolved in the rainwater to replace H/sup +/ ions and so, impart alkalinity. Thus, it is logical to believe that the cations may have been derived originally from some of the geological source. Some rations like Cl/Na, Mg/Na, Ca/Na are known to have been used in characterization of the source. As expected in the atmosphere of desert city, like Jodhpur, the solid

  10. Vertical distribution of water in the atmosphere of Venus - A simple thermochemical explanation

    Science.gov (United States)

    Lewis, John S.; Grinspoon, David H.

    1990-01-01

    Several lines of evidence concerning the vertical abundance profile of water in the atmosphere of Venus lead to strikingly unusual distributions (the water vapor abundance decreases sharply in the immediate vicinity of the surface) or to serious conflicts in the profiles (different IR bands suggest water abundances that are discrepant by a factor of 2.5 to 10). These data sets can be reconciled if (1) water molecules associate with carbon dioxide and sulfur trioxide to make gaseous carbonic acid and sulfuric acid in the lower atmosphere, and (2) the discrepant 0.94-micrometer water measurements are due to gaseous sulfuric acid, requiring it to be a somewhat stronger absorber than water vapor in this wavelength region. A mean total water abundance of 50 + or - 20 parts/million and a near-surface free water vapor abundance of 10 + or - 4 parts/million are derived.

  11. Characteristics, atmospheric drivers and occurrence patterns of freezing precipitation and ice pellets over the Prairie Provinces and Arctic Territories of Canada: 1964-2005

    Science.gov (United States)

    Kochtubajda, Bohdan; Mooney, Curtis; Stewart, Ronald

    2017-07-01

    Freezing precipitation and ice pellet events on the Canadian Prairies and Arctic territories of Canada often lead to major disruptions to air and ground transportation, damage power grids and prevent arctic caribou and other animals from accessing the plants and lichen they depend on for survival. In a warming climate, these hazards and associated impacts will continue to happen, although their spatial and temporal characteristics may vary. In order to address these issues, the occurrence of freezing rain, freezing drizzle, and ice pellets from 1964 to 2005 is examined using hourly weather observations at 27 manned 24 h weather stations across the different climatic regions of the Prairie Provinces and Arctic Territories of Canada. Because of the enormous size of the area and its diverse climatic regions, many temporal and spatial differences in freezing precipitation and ice pellet characteristics occur. The 12 most widespread freezing rain events over the study area are associated with only two atmospheric patterns with one linked to strong warm advection between low and high pressure centres and the other pattern associated with chinooks occurring east of the Rocky Mountains. Given the annual patterns of freezing rain occurrence found in this study, it is proposed that a maximum of five regimes exist and three occur within the Prairies and Arctic.

  12. Coupled atmosphere ocean climate model simulations in the Mediterranean region: effect of a high-resolution marine model on cyclones and precipitation

    Directory of Open Access Journals (Sweden)

    A. Sanna

    2013-06-01

    Full Text Available In this study we investigate the importance of an eddy-permitting Mediterranean Sea circulation model on the simulation of atmospheric cyclones and precipitation in a climate model. This is done by analyzing results of two fully coupled GCM (general circulation models simulations, differing only for the presence/absence of an interactive marine module, at very high-resolution (~ 1/16°, for the simulation of the 3-D circulation of the Mediterranean Sea. Cyclones are tracked by applying an objective Lagrangian algorithm to the MSLP (mean sea level pressure field. On annual basis, we find a statistically significant difference in vast cyclogenesis regions (northern Adriatic, Sirte Gulf, Aegean Sea and southern Turkey and in lifetime, giving evidence of the effect of both land–sea contrast and surface heat flux intensity and spatial distribution on cyclone characteristics. Moreover, annual mean convective precipitation changes significantly in the two model climatologies as a consequence of differences in both air–sea interaction strength and frequency of cyclogenesis in the two analyzed simulations.

  13. Trends in the chemistry of atmospheric deposition and surface waters in the Lake Maggiore catchment

    Directory of Open Access Journals (Sweden)

    M. Rogora

    2001-01-01

    Full Text Available The Lake Maggiore catchment is the area of Italy most affected by acid deposition. Trend analysis was performed on long-term (15-30 years series of chemical analyses of atmospheric deposition, four small rivers draining forested catchments and four high mountain lakes. An improvement in the quality of atmospheric deposition was detected, due to decreasing sulphate concentration and increasing pH. Similar trends were also found in high mountain lakes and in small rivers. Atmospheric deposition, however, is still providing a large and steady flux of nitrogen compounds (nitrate and ammonium which is causing increasing nitrogen saturation in forest ecosystems and increasing nitrate levels in rivers. Besides atmospheric deposition, an important factor controlling water acidification and recovery is the weathering of rocks and soils which may be influenced by climate warming. A further factor is the episodic deposition of Saharan calcareous dust which contributes significantly to base cation deposition. Keywords: trend, atmospheric deposition, nitrogen, stream water chemistry.

  14. Report of International Workshop on tracing isotopic composition of past and present precipitation - opportunities for climate and water studies

    International Nuclear Information System (INIS)

    1995-01-01

    The Workshop on Tracing Isotopic Composition of Past and Present Precipitation - Opportunities for Climate and Water Studies, was jointly organized by the World Meteorological Organization (WMO), the International Atomic Energy Agency (IAEA), Past Global Changes (PAGES) - a core project of the International Geosphere - Biosphere Programme (IGBP), and the International Association of Hydrological Sciences (IAHS). The Global Network ''Isotopes in Precipitation'' (GNIP) was initiated by IAEA in 1958 and became operational in 1961. The main objective was to collect systematic data on isotopic content of precipitation on a global scale and to establish temporal and spatial variations of environmental isotopes in precipitation. The network is now expected to serve additional purposes, namely as a benchmark for the interpretation of paleo-records, as a validation tool for Global Circulation Models, and for establishing large-scale regional (and continental-scale) waster balances. Furthermore, the structure of GNIP should be strengthened. This includes the build-up of: stations located close to major natural climatic archives (e.g. Greenland, mountain areas); stations which represent climatically sensitive areas (indicated by GCM's and biome models). Isotope monitoring of river outflow from major continental basins should be initiated. This could be realized in co-operation with the UNEP/WHO Global Environmental Monitoring System-Water (GEMS-Water). The deuterium excess parameter (δ) is of particular importance in climate modelling and in the understanding of hydro-meteorological pathways. The use of the deuterium excess imposes strict requirements on the accuracy of deuterium and oxygen-18 analysis. A GNIP-based worldwide documentation of quality control regarding sampling, shipping and measurements is needed. The IAEA/WMO database and other isotope data sets should be included in the World Data Center A for palaeo-climatology. Refs, figs, tabs

  15. Sensitivity of boreal-summer circulation and precipitation to atmospheric aerosols in selected regions – Part 1: Africa and India

    Directory of Open Access Journals (Sweden)

    Y. C. Sud

    2009-10-01

    Full Text Available Version-4 of the Goddard Earth Observing System (GEOS-4 General Circulation Model (GCM was employed to assess the influence of potential changes in aerosols on the regional circulation, ambient temperatures, and precipitation in four selected regions: India and Africa (current paper, as well as North and South America (companion paper. Ensemble-simulations were carried out with the GCM to assess the aerosol direct and indirect effects, hereafter ADE and AIE. Each simulation was started from the NCEP-analyzed initial conditions for 1 May and was integrated through May-June-July-August of each year: 1982–1987 to provide an ensemble set of six simulations. In the first set, called experiment (#1, climatological aerosols were prescribed. The next two experiments (#2 and #3 had two sets of simulations each: one with 2X and other with 1/2X the climatological aerosols over each of the four selected regions. In experiment #2, the anomaly regions were advectively restricted (AR, i.e., the large-scale prognostic fields outside the aerosol anomaly regions were prescribed while in experiment #3, the anomaly regions were advectively Interactive (AI as is the case in a normal GCM integrations, but with the same aerosols anomalies as in experiment #2. Intercomparisons of circulation, diabatic heating, and precipitation difference fields showed large disparities among the AR and AI simulations, which raised serious questions about the proverbial AR assumption, commonly invoked in regional climate simulation studies. Consequently AI simulation mode was chosen for the subsequent studies. Two more experiments (#4 and #5 were performed in the AI mode in which ADE and AIE were activated one at a time. The results showed that ADE and AIE work in concert to make the joint influences larger than sum of each acting alone. Moreover, the ADE and AIE influences were vastly different for the Indian and Africa regions, which suggest an imperative need to include them

  16. Hourly Precipitation Data (HPD) Publication

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly Precipitation Data (HPD) Publication is archived and available from the National Climatic Data Center (NCDC). This publication contains hourly precipitation...

  17. Relationship between the inorganic chemical composition of water, precipitation and evaporation in the basin of Rio Grande, Chone, Ecuador

    Directory of Open Access Journals (Sweden)

    David Carrera

    2015-03-01

    Full Text Available (Received: 2015/01/19 - Accepted: 2015/03/25In the Rio Grande basin, the Chone Multi-Purpose dam (PMCH is built with an investment of approximately $66 million, to irrigate over 7000ha. The marked differences in precipitation could impair the quality of water; therefore the aim of this study was to establish the relationship between the ions and their location in the graph: relationship of ions and mechanisms of chemical processes, water behavior and trend setting. The study was a non-experimental, cross-sectional and descriptive research. 111 samples were collected in the group of channels that form the Rio Grande basin, in 2013 and 2014 during times of drought and rain. The parameters were measured in the sample anions and cations. The processes that control the chemistry of surface water in the studied area during the rainy season have a predisposition to mineralization in equilibrium with rocks. However, in the time of drought, water movement was observed towards the area where evaporation with respect to precipitation predominates, increasing the inorganic chemistry of the waters that, in time, could be extended.

  18. Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere.

    Science.gov (United States)

    Gorski, Galen; Strong, Courtenay; Good, Stephen P; Bares, Ryan; Ehleringer, James R; Bowen, Gabriel J

    2015-03-17

    Anthropogenic modification of the water cycle involves a diversity of processes, many of which have been studied intensively using models and observations. Effective tools for measuring the contribution and fate of combustion-derived water vapor in the atmosphere are lacking, however, and this flux has received relatively little attention. We provide theoretical estimates and a first set of measurements demonstrating that water of combustion is characterized by a distinctive combination of H and O isotope ratios. We show that during periods of relatively low humidity and/or atmospheric stagnation, this isotopic signature can be used to quantify the concentration of water of combustion in the atmospheric boundary layer over Salt Lake City. Combustion-derived vapor concentrations vary between periods of atmospheric stratification and mixing, both on multiday and diurnal timescales, and respond over periods of hours to variations in surface emissions. Our estimates suggest that up to 13% of the boundary layer vapor during the period of study was derived from combustion sources, and both the temporal pattern and magnitude of this contribution were closely reproduced by an independent atmospheric model forced with a fossil fuel emissions data product. Our findings suggest potential for water vapor isotope ratio measurements to be used in conjunction with other tracers to refine the apportionment of urban emissions, and imply that water vapor emissions associated with combustion may be a significant component of the water budget of the urban boundary layer, with potential implications for urban climate, ecohydrology, and photochemistry.

  19. Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere

    Science.gov (United States)

    Gorski, Galen; Strong, Courtenay; Good, Stephen P.; Bares, Ryan; Ehleringer, James R.; Bowen, Gabriel J.

    2015-01-01

    Anthropogenic modification of the water cycle involves a diversity of processes, many of which have been studied intensively using models and observations. Effective tools for measuring the contribution and fate of combustion-derived water vapor in the atmosphere are lacking, however, and this flux has received relatively little attention. We provide theoretical estimates and a first set of measurements demonstrating that water of combustion is characterized by a distinctive combination of H and O isotope ratios. We show that during periods of relatively low humidity and/or atmospheric stagnation, this isotopic signature can be used to quantify the concentration of water of combustion in the atmospheric boundary layer over Salt Lake City. Combustion-derived vapor concentrations vary between periods of atmospheric stratification and mixing, both on multiday and diurnal timescales, and respond over periods of hours to variations in surface emissions. Our estimates suggest that up to 13% of the boundary layer vapor during the period of study was derived from combustion sources, and both the temporal pattern and magnitude of this contribution were closely reproduced by an independent atmospheric model forced with a fossil fuel emissions data product. Our findings suggest potential for water vapor isotope ratio measurements to be used in conjunction with other tracers to refine the apportionment of urban emissions, and imply that water vapor emissions associated with combustion may be a significant component of the water budget of the urban boundary layer, with potential implications for urban climate, ecohydrology, and photochemistry. PMID:25733906

  20. ARM Cloud Aerosol Precipitation Experiment (ACAPEX) Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Leung, L. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Prather, K. [Scripps Institution of Oceanography, La Jolla, CA (United States); Ralph, R. [National Oceanic and Atmospheric Administration, Washington, DC (United States); Rosenfeld, D. [The Hebrew University of Jerusalem (Israel); Spackman, R. [Science and Technology Corporation (STC), Hampton, VA (United States); DeMott, P. [Colorado State Univ., Fort Collins, CO (United States); Fairall, C. [National Oceanic and Atmospheric Administration, Washington, DC (United States); Fan, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hagos, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hughes, M. [National Oceanic and Atmospheric Administration, Washington, DC (United States); Long, C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rutledge, S. [Colorado State Univ., Fort Collins, CO (United States); Waliser, D. [National Aeronautics and Space Administration (NASA), Washington, DC (United States); Wang, H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-01

    The western U.S. receives precipitation predominantly during the cold season when storms approach from the Pacific Ocean. The snowpack that accumulates during winter storms provides about 70-90% of water supply for the region. Understanding and modeling the fundamental processes that govern the large precipitation variability and extremes in the western U.S. is a critical test for the ability of climate models to predict the regional water cycle, including floods and droughts. Two elements of significant importance in predicting precipitation variability in the western U.S. are atmospheric rivers and aerosols. Atmospheric rivers (ARs) are narrow bands of enhanced water vapor associated with the warm sector of extratropical cyclones over the Pacific and Atlantic oceans. Because of the large lower-tropospheric water vapor content, strong atmospheric winds and neutral moist static stability, some ARs can produce heavy precipitation by orographic enhancement during landfall on the U.S. West Coast. While ARs are responsible for a large fraction of heavy precipitation in that region during winter, much of the rest of the orographic precipitation occurs in post-frontal clouds, which are typically quite shallow, with tops just high enough to pass the mountain barrier. Such clouds are inherently quite susceptible to aerosol effects on both warm rain and ice precipitation-forming processes.

  1. Dominant Large-Scale Atmospheric Circulation Systems for the Extreme Precipitation over the Western Sichuan Basin in Summer 2013

    Directory of Open Access Journals (Sweden)

    Yamin Hu

    2015-01-01

    Full Text Available The western Sichuan Basin (WSB is a rainstorm center influenced by complicated factors such as topography and circulation. Based on multivariable empirical orthogonal function technique for extreme precipitation processes (EPP in WSB in 2013, this study reveals the dominant circulation patterns. Results indicate that the leading modes are characterized by “Saddle” and “Sandwich” structures, respectively. In one mode, a TC from the South China Sea (SCS converts into the inverted trough and steers warm moist airflow northward into the WSB. At the same time, WPSH extends westward over the Yangtze River and conveys a southeasterly warm humid flow. In the other case, WPSH is pushed westward by TC in the Western Pacific and then merges with an anomalous anticyclone over SCS. The anomalous anticyclone and WPSH form a conjunction belt and convey the warm moist southwesterly airflow to meet with the cold flow over the WSB. The configurations of WPSH and TC in the tropic and the blocking and trough in the midhigh latitudes play important roles during the EPPs over the WSB. The persistence of EPPs depends on the long-lived large-scale circulation configuration steady over the suitable positions.

  2. Unraveling Pathways of Guaiacol Nitration in Atmospheric Waters: Nitrite, A Source of Reactive Nitronium Ion in the Atmosphere.

    Science.gov (United States)

    Kroflič, Ana; Grilc, Miha; Grgić, Irena

    2015-08-04

    The tropospheric aqueous-phase aging of guaiacol (2-methoxyphenol, GUA), a lignocellulosic biomass burning pollutant, is addressed in this work. Pathways of GUA nitration in aqueous solution under atmospherically relevant conditions are proposed and critically discussed. The influence of NaNO2 and H2O2, hydroxyl radical scavenger, and sunlight was assessed by an experimental-modeling approach. In the presence of the urban pollutant, nitrite, GUA is preferentially nitrated to yield 4- and 6-nitroguaiacol. After a short lag-time, 4,6-dinitroguaiacol is also formed. Its production accelerates after guaiacol is completely consumed, which is nicely described by the model function accounting for NO2(•) and NO2(+) as nitrating agents. Although the estimated second-order kinetic rate constants of methoxyphenol nitration with NO2(•) are substantially higher than the corresponding rate constants of nitration with NO2(+), nitration rates are competitive under nighttime and liquid atmospheric aerosol-like conditions. In contrast to concentrations of radicals, which are governed by the interplay between diffusion-controlled reactions and are therefore mostly constant, concentrations of electrophiles are very much dependent on the ratio of NO2(-) to activated aromatics in solution. These results contribute substantially to the understanding of methoxyphenol aging in the atmospheric waters and underscore the importance of including electrophilic aromatic substitution reactions in atmospheric models.

  3. Evaluating Monitoring Strategies to Detect Precipitation-Induced Microbial Contamination Events in Karstic Springs Used for Drinking Water

    Directory of Open Access Journals (Sweden)

    Michael D. Besmer

    2017-11-01

    Full Text Available Monitoring of microbial drinking water quality is a key component for ensuring safety and understanding risk, but conventional monitoring strategies are typically based on low sampling frequencies (e.g., quarterly or monthly. This is of concern because many drinking water sources, such as karstic springs are often subject to changes in bacterial concentrations on much shorter time scales (e.g., hours to days, for example after precipitation events. Microbial contamination events are crucial from a risk assessment perspective and should therefore be targeted by monitoring strategies to establish both the frequency of their occurrence and the magnitude of bacterial peak concentrations. In this study we used monitoring data from two specific karstic springs. We assessed the performance of conventional monitoring based on historical records and tested a number of alternative strategies based on a high-resolution data set of bacterial concentrations in spring water collected with online flow cytometry (FCM. We quantified the effect of increasing sampling frequency and found that for the specific case studied, at least bi-weekly sampling would be needed to detect precipitation events with a probability of >90%. We then proposed an optimized monitoring strategy with three targeted samples per event, triggered by precipitation measurements. This approach is more effective and efficient than simply increasing overall sampling frequency. It would enable the water utility to (1 analyze any relevant event and (2 limit median underestimation of peak concentrations to approximately 10%. We conclude with a generalized perspective on sampling optimization and argue that the assessment of short-term dynamics causing microbial peak loads initially requires increased sampling/analysis efforts, but can be optimized subsequently to account for limited resources. This offers water utilities and public health authorities systematic ways to evaluate and optimize their

  4. Atmospheric precipitations in Gran Paradiso public lands; Le precipitazioni meteorologiche sul versante piemontese del Parco Nazionale del Gran Paradiso

    Energy Technology Data Exchange (ETDEWEB)

    Defilippi, Albino; Piancone, Gianfranco; Pesando, Maria Clotilde; Tibaldi, Gian Paolo [A.R.P.A. Piemonte, Ivrea (Italy). Dipt. sub provinciale di Ivrea; Simonini, Annamaria [Liceo Scientifico - Scuola Sperimentale A. Gramsci, Ivrea (Italy)

    1997-10-01

    This paper describe the results of analytical controls performed on the meteoric waters collected in Piemontese High Orco valley (Serru` lake at 2270 meters of altitude) and in Piantonetto valley (Piantelessio lake at 1900 meters of altitude) in period July 1994-July 1995. The situation that is highlitghted is that of relatively clean environment. Waters collected at Piantelessio show traces of pollution typical of low land, while those withdraws at Serru` are characterized by parameters that likely depend from aerial currents of not local provenance.

  5. Recovery and purification of limonin from pummelo [Citrus grandis] peel using water extraction, ammonium sulfate precipitation and resin adsorption.

    Science.gov (United States)

    Yang, Yuan Fan; Zhang, Liang Zheng; Du, Xi Ping; Zhang, Su Fang; Li, Li Jun; Jiang, Ze Dong; Wu, Li Ming; Ni, Hui; Chen, Feng

    2017-08-15

    Limonin is a bioactive compound that is traditionally extracted from citrus seeds using organic solvents or alkaline/metal ion solutions. In the present study, pummelo [Citrus grandis] peel was investigated for limonin preparation using a novel process consisting of water extraction, ammonium sulfate precipitation and resin adsorption. The pummelo peel was determined to have 4.7mg/g limonin, which could be extracted by water and further recovered by ammonium sulfate precipitation with a yield of 2.4mg/g, which was similar to that of traditional process using ethanol extraction and vacuumed evaporation. The precipitated limonin was purified by resin adsorption and crystallization with a purity of 96.4%. In addition, the limonin was identified via the analyses of retention time, infrared spectrum and nuclear magnetic resonance. This study indicates a novel and eco-friendly process for recovering limonin, providing a new candidate for limonin preparation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Temporal trends of bulk precipitation and stream water chemistry (1977-1997) in a small forested area, Krusne hory, northern Bohemia, Czech Republic

    Science.gov (United States)

    Peters, N.E.; Cerny, J.; Havel, M.; Krejci, R.

    1999-01-01

    The Krusne hory (Erzgebirge or Ore Mountains) has been heavily affected by high atmospheric pollutant deposition caused by fossil fuel combustion in an adjacent Tertiary coal basin. Long-term routine sampling of bulk precipitation (1977-1996) and stream water (1977-1998) in a forested area on the south-eastern slope of the mountains were used to evaluate trends and patterns in solute concentration and flux with respect to controlling processes. From 1977 to 1996, the annual volume-weighted Ca2+ and SO42- concentrations decreased in bulk precipitation. However, after 1989, when a pronounced and continuous decrease occurred in coal production, annual volume-weighted concentrations decreased for most solutes, except H+. The concentration decreases were marked, with 1996 levels at or below 50% of those in 1989. The lack of a trend in H+ is attributed to similar decreases in both acid anions and neutralizing base cations. Stream water concentrations of most solutes, i.e. H+, Ca2+, Mg2+, SO42- and NO3-, were highest at the onset of sampling in 1977, decreased markedly from 1977 to 1983 and decreased more gradually from 1983 to 1998. The spruce forest die-back and removal reduced dry deposition of these solutes by reducing the filtering action, which was provided by the forest canopy. A notable decrease in stream water Ca2+ concentrations occurred after 1995 and may be due to the depletion of Ca2+, which was provided by catchment liming in 1986, 1988 and 1989. Solute flux trends in bulk atmospheric deposition and stream water generally were not significant and the lack of trend is attributed to the large interannual variability in precipitation quantity and runoff, respectively. All solutes except Na+ varied seasonally. The average seasonal concentrations varied between the solutes, but for most solutes were highest in winter and spring and lowest in summer, correlating with the seasonal trend and runoff. For Ca2+, Mg2+ and SO42-, the concentration minimum occurs in

  7. Convective and Stratiform Components of the Precipitation-Water Vapor Relationship

    Science.gov (United States)

    Ahmed, F.; Schumacher, C.

    2015-12-01

    The empirical relationship between tropical oceanic precipitation in a grid and the moisture content in the column atop the grid is well established. There exists a critical value of column moisture below which the mean precipitation is negligible, and above which it rises rapidly or "picks-up". We re-examine this relationship with a closer look at its convective and stratiform aspects, using data from the DYNAMO field campaign, Tropical Rainfall Measuring Mission (TRMM) and Modern-Era Retrospective Analysis for Research and Application (MERRA). On daily and hourly time scales, and across all tropical ocean basins, we find that the pick-up is pronounced for stratiform rainfall, while convective rainfall, in contrast only displays a weak pick-up above column moisture. The non-linearity of the precipitation-column moisture curves and the differences between convective and stratiform curves relax at the monthly timescale. We conclude that the environmental moisture content is a stronger constraint on stratiform than convective rain. We also speculate that mesoscale dynamics are responsible for producing the strong non-linearity of the stratiform precipitation curve. These findings suggest that to accurate capture sub-grid scale convection in Global Climate Models (GCMs), we must make strides towards parameterizing mesoscale convective systems (MCSs).

  8. Oxygen stable isotopes variation in water precipitation in Poland – anthropological applications

    Directory of Open Access Journals (Sweden)

    Lisowska-Gaczorek Aleksandra

    2017-03-01

    Full Text Available The main objective of oxygen isotope analysis is to determine the probable place of origin of an individual or the reconstruction of migration paths. The research are methodologically based on referencing oxygen isotope ratios of apatite phosphates (δ18Op to the range of environmental background δ18O, most frequently determined on the basis of precipitation.

  9. Comparison of molecular imprinted particles prepared using precipitation polymerization in water and chloroform for fluorescent detection of nitroaromatics

    International Nuclear Information System (INIS)

    Stringer, R. Cody; Gangopadhyay, Shubhra; Grant, Sheila A.

    2011-01-01

    Highlights: → Imprinted polymers prepared using precipitation polymerization. → Comparison of chloroform and water as polymerization solvent. → Imprinted polymer doped with quantum dots for fluorescent sensor. → Fluorescent imprinted polymer used to detect nitroaromatic explosives. → Chloroform is ideal solvent for molecular imprinting of nitroaromatics. - Abstract: A comparative study was conducted to study the effects that two different polymerization solvents would have on the properties of imprinted polymer microparticles prepared using precipitation polymerization. Microparticles prepared in chloroform, which previous results indicated was the optimal solvent for molecular imprinting of nitroaromatic explosive compounds, were compared to water, which was hypothesized to decrease water swelling of the polymer and allow enhanced rebinding of aqueous template. The microparticles were characterized and were integrated into a fluorescence sensing mechanism for detection of nitroaromatic explosive compounds. The performance of the sensing mechanisms was compared to illustrate which polymerization solvent produced optimal imprinted polymer microparticles for detection of nitroaromatic molecules. Results indicated that the structures of microparticles synthesized in chloroform versus water varied greatly. Sensor performance studies showed that the microparticles prepared in chloroform had greater imprinting efficiency and higher template rebinding than those prepared in water. For detection of 2,4,6-trinitrotoluene, the chloroform-based fluorescent microparticles achieved a lower limit of detection of 0.1 μM, as compared to 100 μM for the water-based fluorescent microparticles. Detection limits for 2,4-dinitrotoluene, as well as time response studies, also demonstrated that the chloroform-based particles are more effective for detection of nitroaromatic compounds than water-based particles. These results illustrate that the enhanced chemical properties of

  10. Using Atmospheric δ13C of CO2 observations to link the water and carbon cycles with climate

    Science.gov (United States)

    Alden, C. B.; Miller, J. B.; White, J. W.; Yadav, V.; Michalak, A. M.; Andrews, A. E.; Huang, L.

    2013-12-01

    background CO2 and δ13C values are from NOAA/ESRL marine boundary layer and aircraft data. Quasi-daily atmospheric observations are from NOAA/ESRL Global Monitoring Division tall towers and weekly observations are from the Environment Canada observation network. Synthetic data experiments show that, given a prior δ13C of assimilated biomass with zero spatial or temporal variability, the inversion is able to recover broad patterns of C3 and C4 vegetation distributions and seasonality. We investigate correlations between week- to seasonal-scale anomalies in discrimination and climate drivers: temperature, precipitation, potential evapotranspiration, vapor pressure and vapor pressure deficit, Palmer drought severity index, standardized precipitation-evaporation index, ground water from the Grace satellite observations, and USDA crop coverage data.

  11. State of the Science for Sub-Seasonal to Seasonal Precipitation Forecasting in Support of Water Resource Managers

    Science.gov (United States)

    DeWitt, D. G.

    2017-12-01

    Water resource managers are one of the communities that would strongly benefit from highly-skilled sub-seasonal to seasonal precipitation forecasts. Unfortunately, the current state of the art prediction tools frequently fail to provide a level of skill sufficient to meet the stakeholders needs, especially on the monthly and seasonal timescale. On the other hand, the skill of precipitation forecasts on the week-2 timescale are relatively high and arguably useful in many decision-making contexts. This talk will present a comparison of forecast skill for the week-2 through the first season timescale and describe current efforts within NOAA and elsewhere to try to improve forecast skill beyond week-2, including research gaps that need to be addressed in order to make progress.

  12. Photocatalytic hydrogen production by water/methanol decomposition using Au/TiO{sub 2} prepared by deposition–precipitation with urea

    Energy Technology Data Exchange (ETDEWEB)