WorldWideScience

Sample records for atmospheric parameters chemical

  1. Determining stellar atmospheric parameters and chemical abundances of FGK stars with iSpec

    CERN Document Server

    Blanco-Cuaresma, S; Heiter, U; Jofré, P

    2014-01-01

    Context. An increasing number of high-resolution stellar spectra is available today thanks to many past and ongoing extensive spectroscopic surveys. Consequently, the scientific community needs automatic procedures to derive atmospheric parameters and individual element abundances. Aims. Based on the widely known SPECTRUM code by R. O. Gray, we developed an integrated spectroscopic software framework suitable for the determination of atmospheric parameters (i.e., effective temperature, surface gravity, metallicity) and individual chemical abundances. The code, named iSpec and freely distributed, is written mainly in Python and can be used on different platforms. Methods. iSpec can derive atmospheric parameters by using the synthetic spectral fitting technique and the equivalent width method. We validated the performance of both approaches by developing two different pipelines and analyzing the Gaia FGK benchmark stars spectral library. The analysis was complemented with several tests designed to assess other ...

  2. Atmospheric pollution history at Linfen (China) uncovered by magnetic and chemical parameters of sediments from a water reservoir.

    Science.gov (United States)

    Ma, Mingming; Hu, Shouyun; Cao, Liwan; Appel, Erwin; Wang, Longsheng

    2015-09-01

    We studied magnetic and chemical parameters of sediments from sediments of a water reservoir at Linfen (China) in order to quantitatively reconstruct the atmospheric pollution history in this region. The results show that the main magnetic phases are magnetite and maghemite originating from the surrounding catchment and from anthropogenic activities, and there is a significant positive relationship between magnetic concentration parameters and heavy metals concentrations, indicating that magnetic proxies can be used to monitor the anthropogenic pollution. In order to uncover the atmospheric pollution history, we combined the known events of environmental improvement with variations of magnetic susceptibility (χ) and heavy metals along the cores to obtain a detailed chronological framework. In addition, air comprehensive pollution index (ACPI) was reconstructed from regression equation among magnetic and chemical parameters as well as atmospheric monitoring data. Based on these results, the atmospheric pollution history was successfully reconstructed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Chemical Composition and Atmosphere Parameters of the Double-Mode Cepheid U Tra

    Science.gov (United States)

    Usenko, I. A.; Knyazev, A. Yu.; Berdnikov, L. N.; Kravtsov, V. V.

    Four high-resolution spectra of the doble-mode Cepheid U TrA have been obtained during its pulsational period. For the first time, we obtained accurate atmosphere parameters and the chemical abundance of a number of elements, in particular ofsodium, magnesium, and aluminium. We estimated the mean Teff = 6085±29 K, log g = 2.00±0.15, and Vt = 3.90±0.25 kms -1 . A deficit of carbon ([C=H] = -0.35±0.23 dex), overabundance of both sodium ([Na=H] = +0.15±0.25 dex) and aluminium ([Al=H]= +0.30±0.32 dex) are typical for Cepheids passing through the first dredge-up phase. The abundance of iron ([Fe=H] = +0.01±0.15 dex) is very close to the solar one. Moreover, we find that α-elements, those of Fe-group, as well as "light"- and "heavy"-, s- and rprocess elements, all of them have abundances close to solar values, too, excepting maybe several elements with slight enhance or deficit.

  4. Capillary electrophoresis-atmospheric pressure chemical ionization-mass spectrometry using an orthogonal interface: set-up and system parameters.

    Science.gov (United States)

    Hommerson, Paul; Khan, Amjad M; de Jong, Gerhardus J; Somsen, Govert W

    2009-07-01

    The feasibility of atmospheric pressure chemical ionization (APCI) as an alternative ionization technique for capillary electrophoresis-mass spectrometry (CE-MS) was investigated using a grounded sheath-flow CE-MS sprayer and an orthogonal APCI source. Infusion experiments indicated that highest analyte signals were achieved when the sprayer tip was in close vicinity of the vaporizer entrance. The APCI-MS set-up enabled detection of basic, neutral, and acidic compounds, whereas apolar and ionic compounds could not be detected. In the positive ion mode, analytes could be detected in the entire transfer voltage range (0-5 kV), whereas highest signal intensities were observed when the corona discharge current was between 1000 and 2000 nA. In the negative ion mode, the transfer voltage typically was 500 V and the optimum corona discharge current was 6000 nA. Analyte signals were raised with increasing nebulizing gas pressure, but the pressure was limited to 25 psi to avoid siphoning and current drops. Signal intensities appeared to be optimal and constant over a wide range of sheath liquid flow rate (5-25 microL/min) and vaporizer temperature (200-350 degrees C). APCI-MS signals were unaffected by the composition of the background electrolyte (BGE), even when it contained sodium phosphate and sodium dodecyl sulfate (SDS). Consequently, BGE composition, sheath-liquid flow rate, and vaporizer temperature can be optimized with respect to the CE separation without affecting the APCI-MS response. The analysis of a mixture of basic compounds and a steroid using volatile and nonvolatile BGEs further demonstrates the feasibility of CE-APCI-MS. Detection limits (S/N = 3) were 1.6-10 microM injected concentrations.

  5. High-Resolution Spectroscopy of Extremely Metal-Poor Stars from SDSS/SEGUE: I. Atmospheric Parameters and Chemical Compositions

    CERN Document Server

    Aoki, Wako; Lee, Young Sun; Honda, Satoshi; Ito, Hiroko; Takada-Hidai, Masahide; Frebel, Anna; Suda, Takuma; Fujimoto, Masatuki Y; Carollo, Daniela; Sivarani, Thirupathi

    2012-01-01

    Chemical compositions are determined based on high-resolution spectroscopy for 137 candidate extremely metal-poor (EMP) stars selected from the Sloan Digital Sky Survey (SDSS) and its first stellar extension, the Sloan Extension for Galactic Understanding and Exploration (SEGUE). High-resolution spectra with moderate signal-to-noise (S/N) ratios were obtained with the High Dispersion Spectrograph of the Subaru Telescope. Most of the sample (approximately 80%) are main-sequence turn-off stars, including dwarfs and subgiants. Four cool main-sequence stars, the most metal-deficient such stars known, are included in the remaining sample. Good agreement is found between effective temperatures estimated by the SEGUE stellar parameter pipeline, based on the SDSS/SEGUE medium-resolution spectra, and those estimated from the broadband $(V-K)_0$ and $(g-r)_0$ colors. Our abundance measurements reveal that 70 stars in our sample have [Fe/H] $ +0.7$) among the 25 giants in our sample is as high as 36%, while only a lowe...

  6. The RAVE-on catalog of stellar atmospheric parameters and chemical abundances for chemo-dynamic studies in the Gaia era

    CERN Document Server

    Casey, Andrew R; Hogg, David W; Ness, Melissa; Walter-Rix, Hans; Kordopatis, Georges; Kunder, Andrea; Steinmetz, Matthias; Koposov, Sergey; Enke, Harry; Sanders, Jason; Gilmore, Gerry; Zwitter, Tomaž; Freeman, Kenneth C; Casagrande, Luca; Matijevič, Gal; Seabroke, George; Bienaymé, Olivier; Bland-Hawthorn, Joss; Gibson, Brad K; Grebel, Eva K; Helmi, Amina; Munari, Ulisse; Navarro, Julio F; Reid, Warren; Siebert, Arnaud; Wyse, Rosemary

    2016-01-01

    The orbits, atmospheric parameters, chemical abundances, and ages of individual stars in the Milky Way provide the most comprehensive illustration of galaxy formation available. The Tycho-Gaia Astrometric Solution (TGAS) will deliver astrometric parameters for the largest ever sample of Milky Way stars, though its full potential cannot be realized without the addition of complementary spectroscopy. Among existing spectroscopic surveys, the RAdial Velocity Experiment (RAVE) has the largest overlap with TGAS ($\\gtrsim$200,000 stars). We present a data-driven re-analysis of 520,781 RAVE spectra using The Cannon. For red giants, we build our model using high-fidelity APOGEE stellar parameters and abundances for stars that overlap with RAVE. For main-sequence and sub-giant stars, our model uses stellar parameters from the K2/EPIC. We derive and validate effective temperature $T_{\\rm eff}$, surface gravity $\\log{g}$, and chemical abundances of up to seven elements (O, Mg, Al, Si, Ca, Fe, Ni). We report a total of 1...

  7. Chemical modeling of exoplanet atmospheres

    CERN Document Server

    Venot, Olivia

    2014-01-01

    The past twenty years have revealed the diversity of planets that exist in the Universe. It turned out that most of exoplanets are different from the planets of our Solar System and thus, everything about them needs to be explored. Thanks to current observational technologies, we are able to determine some information about the atmospheric composition, the thermal structure and the dynamics of these exoplanets, but many questions remain still unanswered. To improve our knowledge about exoplanetary systems, more accurate observations are needed and that is why the Exoplanet Characterisation Observatory (EChO) is an essential space mission. Thanks to its large spectral coverage and high spectral resolution, EChO will provide exoplanetary spectra with an unprecedented accuracy, allowing to improve our understanding of exoplanets. In this work, we review what has been done to date concerning the chemical modeling of exoplanet atmospheres and what are the main characteristics of warm exoplanet atmospheres, which a...

  8. Effect of modified atmosphere and vacuum packaging on selected chemical parameters of rainbow trout (Oncorhynchus mykiss and carp (Cyprinus carpio cuts freshness

    Directory of Open Access Journals (Sweden)

    Babić Jelena A.

    2014-01-01

    vacuum was established during the whole period of investigation (p < 0,001, while in carp cuts samples packaged in vacuum the increase in pH value (p < 0,05 was established up to 7th day of testing. Based on the obtained results it can be concluded that gas mixture consisting of 60% CO2 and 40% N2 was the most suitable for packaging of fresh trout and carp cuts in terms of selected chemical parameters, such as TVB-N and pH. [Projekat Ministarstva nauke Republike Srbije, br. TR 31011 i br. TR 31075

  9. Microbiology and atmospheric processes: chemical interactions of primary biological aerosols

    Directory of Open Access Journals (Sweden)

    L. Deguillaume

    2008-07-01

    Full Text Available This paper discusses the influence of primary biological aerosols (PBA on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that PBA represent a significant fraction of air particulate matter and hence affect the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms, namely fungal spores and bacteria, can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of PBA in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere.

  10. Microbiology and atmospheric processes: chemical interactions of Primary Biological Aerosols

    Science.gov (United States)

    Deguillaume, L.; Leriche, M.; Amato, P.; Ariya, P. A.; Delort, A.-M.; Pöschl, U.; Chaumerliac, N.; Bauer, H.; Flossmann, A. I.; Morris, C. E.

    2008-02-01

    This paper discusses the influence of bioaerosols on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that biological matter represents a significant fraction of air particulate matter and hence affects the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of primary biological particles in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere.

  11. Microbiological, physico-chemical and management parameters ...

    African Journals Online (AJOL)

    Microbiological, physico-chemical and management parameters impinging on the efficiency ... Management issues impacting on quality of water supply were determined by use of questionnaires and focus group discussions. ... Article Metrics.

  12. ASSESSMENT OF PHYSICO-CHEMICAL PARAMETERS OF ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    The present work was conducted to assess the physico-chemical parameters of Tsada Agam River ... Mekelle is the capital city of Tigray regional state, Ethiopia and it is experiencing poor quality ... But, to the best of our knowledge no research was conducted on ..... Clean Water Initiative: Volunteer Stream Monitoring.

  13. ASPCAP: The Apogee Stellar Parameter and Chemical Abundances Pipeline

    CERN Document Server

    Pérez, Ana E García; Holtzman, Jon A; Shetrone, Matthew; Mészáros, Szabolcs; Bizyaev, Dmitry; Carrera, Ricardo; Cunha, Katia; García-Hernández, D A; Johnson, Jennifer A; Majewski, Steven R; Nidever, David L; Schiavon, Ricardo P; Shane, Neville; Smith, Verne V; Sobeck, Jennifer; Troup, Nicholas; Zamora, Olga; Bovy, Jo; Eisenstein, Daniel J; Feuillet, Diane; Frinchaboy, Peter M; Hayden, Michael R; Hearty, Fred R; Nguyen, Duy C; O'Connell, Robert W; Pinsonneault, Marc H; Weinberg, David H; Wilson, John C; Zasowski, Gail

    2015-01-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has built the largest moderately high-resolution (R=22, 500) spectroscopic map of the stars across the Milky Way, and including dust-obscured areas. The APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) is the software developed for the automated analysis of these spectra. ASPCAP determines atmospheric parameters and chemical abundances from observed spectra by comparing observed spectra to libraries of theoretical spectra, using chi-2 minimization in a multidimensional parameter space. The package consists of a fortran90 code that does the actual minimization, and a wrapper IDL code for book-keeping and data handling. This paper explains in detail the ASPCAP components and functionality, and presents results from a number of tests designed to check its performance. ASPCAP provides stellar effective temperatures, surface gravities, and metallicities precise to 2%, 0.1 dex, and 0.05 dex, respectively, for most APOGEE stars, wh...

  14. Fundamental Parameters and Chemical Composition of Arcturus

    CERN Document Server

    Ramirez, I

    2011-01-01

    We derive a self-consistent set of atmospheric parameters and abundances of 17 elements for the red giant star Arcturus: Teff = 4286+/-30 K, logg = 1.66+/-0.05, and [Fe/H] = -0.52+/-0.04. The effective temperature was determined using model atmosphere fits to the observed spectral energy distribution from the blue to the mid-infrared (0.44 to 10 um). The surface gravity was calculated using the trigonometric parallax of the star and stellar evolution models. A differential abundance analysis relative to the solar spectrum allowed us to derive iron abundances from equivalent width measurements of 37 FeI and 9 FeII lines, unblended in the spectra of both Arcturus and the Sun; the [Fe/H] value adopted is derived from FeI lines. We also determine the mass, radius, and age of Arcturus: M = 1.08+/-0.06 Msun, R = 25.4+/-0.2 Rsun, and t = 7.1(+1.5/-1.2) Gyr. Finally, abundances of the following elements are measured from an equivalent width analysis of atomic features: C, O, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, ...

  15. Robust integrated navigation for Mars atmospheric entry with parameter uncertainties

    Science.gov (United States)

    Yang, H. F.; Fu, H. M.; Wang, Z. H.; Xiao, Q.; Zhang, Y. B.

    2017-07-01

    Mars atmospheric entry is a key phase to actualize Mars pinpoint landing. In this phase, parameters including atmospheric density, ballistic coefficient, and lift-to-drag ratio are uncertain because of environmental complexity. Ignoring these uncertainties may probably cause negative effects on the navigation accuracy. Based on the desensitized unscented Kalman filter (DUKF), which obtains the state estimation by minimizing a cost function involving the trace of posterior covariance matrix and the weighted norm of the posterior state estimation error sensitivities, this paper further introduces parameter uncertainties into the radio beacons/inertial measurement unit integrated navigation scheme and establishes a robust integrated navigation for Mars atmospheric entry with parameter uncertainties. Numerical simulation results show that the robust navigation algorithm based on the DUKF effectively reduces the influence of parameter uncertainties and illustrates a better performance than traditional methods.

  16. ASPCAP: The APOGEE Stellar Parameter and Chemical Abundances Pipeline

    Science.gov (United States)

    García Pérez, Ana E.; Allende Prieto, Carlos; Holtzman, Jon A.; Shetrone, Matthew; Mészáros, Szabolcs; Bizyaev, Dmitry; Carrera, Ricardo; Cunha, Katia; García-Hernández, D. A.; Johnson, Jennifer A.; Majewski, Steven R.; Nidever, David L.; Schiavon, Ricardo P.; Shane, Neville; Smith, Verne V.; Sobeck, Jennifer; Troup, Nicholas; Zamora, Olga; Weinberg, David H.; Bovy, Jo; Eisenstein, Daniel J.; Feuillet, Diane; Frinchaboy, Peter M.; Hayden, Michael R.; Hearty, Fred R.; Nguyen, Duy C.; O'Connell, Robert W.; Pinsonneault, Marc H.; Wilson, John C.; Zasowski, Gail

    2016-06-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has built the largest moderately high-resolution (R ≈ 22,500) spectroscopic map of the stars across the Milky Way, and including dust-obscured areas. The APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) is the software developed for the automated analysis of these spectra. ASPCAP determines atmospheric parameters and chemical abundances from observed spectra by comparing observed spectra to libraries of theoretical spectra, using χ2 minimization in a multidimensional parameter space. The package consists of a fortran90 code that does the actual minimization and a wrapper IDL code for book-keeping and data handling. This paper explains in detail the ASPCAP components and functionality, and presents results from a number of tests designed to check its performance. ASPCAP provides stellar effective temperatures, surface gravities, and metallicities precise to 2%, 0.1 dex, and 0.05 dex, respectively, for most APOGEE stars, which are predominantly giants. It also provides abundances for up to 15 chemical elements with various levels of precision, typically under 0.1 dex. The final data release (DR12) of the Sloan Digital Sky Survey III contains an APOGEE database of more than 150,000 stars. ASPCAP development continues in the SDSS-IV APOGEE-2 survey.

  17. The applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research

    Science.gov (United States)

    Fegley, Bruce, Jr.

    1990-01-01

    A review of the applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research during the past four decades is presented with an emphasis on chemical equilibrium models and thermochemical kinetics. Several current problems in planetary atmospheres research such as the origin of the atmospheres of the terrestrial planets, atmosphere-surface interactions on Venus and Mars, deep mixing in the atmospheres of the gas giant planets, and the origin of the atmospheres of outer planet satellites all require laboratory data on the kinetics of thermochemical reactions for their solution.

  18. The applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research

    Science.gov (United States)

    Fegley, Bruce, Jr.

    1990-05-01

    A review of the applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research during the past four decades is presented with an emphasis on chemical equilibrium models and thermochemical kinetics. Several current problems in planetary atmospheres research such as the origin of the atmospheres of the terrestrial planets, atmosphere-surface interactions on Venus and Mars, deep mixing in the atmospheres of the gas giant planets, and the origin of the atmospheres of outer planet satellites all require laboratory data on the kinetics of thermochemical reactions for their solution.

  19. Inversion of physical parameters in solar atmospheric seismology

    CERN Document Server

    Arregui, Inigo

    2012-01-01

    Magnetohydrodynamic (MHD) wave activity is ubiquitous in the solar atmosphere. MHD seismology aims to determine difficult to measure physical parameters in solar atmospheric magnetic and plasma structures by a combination of observed and theoretical properties of MHD waves and oscillations. This technique, similar to seismology or helio-seismology, demands the solution of two problems. The direct problem involves the computation of wave properties of given theoretical models. The inverse problem implies the calculation of unknown physical parameters, by means of a comparison of observed and theoretical wave properties. Solar atmospheric seismology has been successfully applied to different structures such as coronal loops, prominence fine structures, spicules, or jets. However, it is still in its infancy. Far more is there to come. We present an overview of recent results, with particular emphasis in the inversion procedure.

  20. Retrieval and processing of atmospheric parameters from satellite data

    Digital Repository Service at National Institute of Oceanography (India)

    Sathe, P.V.; Muraleedharan, P.M.

    Remote sensing of each of passive microwave channels enables one to estimate the atmospheric parameters over oceans on a repetitive basis throughout the year. Such a data base forms a useful tool in the study of complex weather phenomena. With India...

  1. Expressing oceanic turbulence parameters by atmospheric turbulence structure constant.

    Science.gov (United States)

    Baykal, Yahya

    2016-02-20

    The parameters composing oceanic turbulence are the wavelength, link length, rate of dissipation of kinetic energy per unit mass of fluid, rate of dissipation of mean-squared temperature, Kolmogorov microscale, and the ratio of temperature to salinity contributions to the refractive index spectrum. The required physical entities such as the average intensity and the scintillation index in the oceanic medium are formulated by using the power spectrum of oceanic turbulence, which is described by oceanic turbulence parameters. On the other hand, there exists a rich archive of formulations and results for the above-mentioned physical entities in atmospheric turbulence, where the parameters describing the turbulence are the wavelength, the link length, and the structure constant. In this paper, by equating the spherical wave scintillation index solutions in the oceanic and atmospheric turbulences, we have expressed the oceanic turbulence parameters by an equivalent structure constant used in turbulent atmosphere. Such equivalent structure constant will help ease reaching solutions of similar entities in an oceanic turbulent medium by employing the corresponding existing solutions, which are valid in an atmospheric turbulent medium.

  2. Accurate Atmospheric Parameters at Moderate Resolution Using Spectral Indices: Preliminary Application to the MARVELS Survey

    CERN Document Server

    Ghezzi, Luan; Lorenzo-Oliveira, Diego; de Mello, Gustavo F Porto; Santiago, Basílio X; De Lee, Nathan; Lee, Brian L; da Costa, Luiz N; Maia, Marcio A G; Ogando, Ricardo L C; Wisniewski, John P; Hernández, Jonay I González; Stassun, Keivan G; Fleming, Scott W; Schneider, Donald P; Mahadevan, Suvrath; Cargile, Phillip; Ge, Jian; Pepper, Joshua; Wang, Ji

    2014-01-01

    Studies of Galactic chemical and dynamical evolution in the solar neighborhood depend on the availability of precise atmospheric parameters (Teff, [Fe/H] and log g) for solar-type stars. Many large-scale spectroscopic surveys operate at low to moderate spectral resolution for efficiency in observing large samples, which makes the stellar characterization difficult due to the high degree of blending of spectral features. While most surveys use spectral synthesis, in this work we employ an alternative method based on spectral indices to determine the atmospheric parameters of a sample of nearby FGK dwarfs and subgiants observed by the MARVELS survey at moderate resolving power (R~12,000). We have developed three codes to automatically normalize the observed spectra, measure the equivalent widths of the indices and, through the comparison of those with values calculated with pre-determined calibrations, derive the atmospheric parameters of the stars. The calibrations were built using a sample of 309 stars with p...

  3. On Detecting Biospheres from Chemical Thermodynamic Disequilibrium in Planetary Atmospheres.

    Science.gov (United States)

    Krissansen-Totton, Joshua; Bergsman, David S; Catling, David C

    2016-01-01

    Atmospheric chemical disequilibrium has been proposed as a method for detecting extraterrestrial biospheres from exoplanet observations. Chemical disequilibrium is potentially a generalized biosignature since it makes no assumptions about particular biogenic gases or metabolisms. Here, we present the first rigorous calculations of the thermodynamic chemical disequilibrium in Solar System atmospheres, in which we quantify the available Gibbs energy: the Gibbs free energy of an observed atmosphere minus that of atmospheric gases reacted to equilibrium. The purely gas phase disequilibrium in Earth's atmosphere is mostly attributable to O2 and CH4. The available Gibbs energy is not unusual compared to other Solar System atmospheres and smaller than that of Mars. However, Earth's fluid envelope contains an ocean, allowing gases to react with water and requiring a multiphase calculation with aqueous species. The disequilibrium in Earth's atmosphere-ocean system (in joules per mole of atmosphere) ranges from ∼20 to 2 × 10(6) times larger than the disequilibria of other atmospheres in the Solar System, where Mars is second to Earth. Only on Earth is the chemical disequilibrium energy comparable to the thermal energy per mole of atmosphere (excluding comparison to Titan with lakes, where quantification is precluded because the mean lake composition is unknown). Earth's disequilibrium is biogenic, mainly caused by the coexistence of N2, O2, and liquid water instead of more stable nitrate. In comparison, the O2-CH4 disequilibrium is minor, although kinetics requires a large CH4 flux into the atmosphere. We identify abiotic processes that cause disequilibrium in the other atmospheres. Our metric requires minimal assumptions and could potentially be calculated from observations of exoplanet atmospheres. However, further work is needed to establish whether thermodynamic disequilibrium is a practical exoplanet biosignature, requiring an assessment of false positives, noisy

  4. The reach of INO for atmospheric neutrino oscillation parameters

    Science.gov (United States)

    Thakore, Tarak; Ghosh, Anushree; Choubey, Sandhya; Dighe, Amol

    2013-05-01

    The India-based Neutrino Observatory (INO) will host a 50 kt magnetized iron calorimeter (ICAL@INO) for the study of atmospheric neutrinos. Using the detector resolutions and efficiencies obtained by the INO collaboration from a full-detector GEANT4-based simulation, we determine the reach of this experiment for the measurement of the atmospheric neutrino mixing parameters ( {sin^2 {θ_{23 }}and| {\\varDelta m_{32}^2} |} ) . We also explore the sensitivity of this experiment to the octant of θ 23, and its deviation from maximal mixing.

  5. The Reach of INO for Atmospheric Neutrino Oscillation Parameters

    CERN Document Server

    Thakore, Tarak; Choubey, Sandhya; Dighe, Amol

    2013-01-01

    The India-based Neutrino Observatory (INO) will host a 50 kt magnetized iron calorimeter (ICAL@INO) for the study of atmospheric neutrinos. Using the detector resolutions and efficiencies obtained by the INO collaboration from a full-detector GEANT4-based simulation, we determine the reach of this experiment for the measurement of the atmospheric neutrino mixing parameters ($\\sin^2 \\theta_{23}$ and $|\\Delta m_{32}^2 |$). We also explore the sensitivity of this experiment to the deviation of $\\theta_{23}$ from maximal mixing, and its octant.

  6. Applied parameter estimation for chemical engineers

    CERN Document Server

    Englezos, Peter

    2000-01-01

    Formulation of the parameter estimation problem; computation of parameters in linear models-linear regression; Gauss-Newton method for algebraic models; other nonlinear regression methods for algebraic models; Gauss-Newton method for ordinary differential equation (ODE) models; shortcut estimation methods for ODE models; practical guidelines for algorithm implementation; constrained parameter estimation; Gauss-Newton method for partial differential equation (PDE) models; statistical inferences; design of experiments; recursive parameter estimation; parameter estimation in nonlinear thermodynam

  7. The kinetics of chemical processes affecting acidity in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Pienaar, J.J.; Helas, G. [Potchefstroom University of Christian Higher Education, Potchefstroom (South Africa). Atmospheric Chemistry Research Group

    1996-03-01

    The dominant chemical reactions affecting atmospheric pollution chemistry and in particular, those leading to the formation of acid rain are outlined. The factors controlling the oxidation rate of atmospheric pollutants as well as the rate laws describing these processes are discussed in the light of our latest results and the current literature.

  8. Earth's Atmospheric Electricity Parameter Response During Venus Transit

    Directory of Open Access Journals (Sweden)

    Syam Sundar De

    2015-01-01

    Full Text Available Venus transited across the Sun on 06 June 2012, introducing significant contribution to the tidal characteristics of the solar atmosphere. _ atmosphere was perturbed due to an anomalous Coronal Mass Ejection (CME and γ-radiationγ-radiation influenced by the solar tide due to Venus transit, thereby the Earth-ionosphere waveguide characteristics were changed. In this anomalous situation we measured some atmospheric electricity parameters such as Schumann resonance (SR amplitude, very low frequency (VLF sferics, subionospheric transmitted signals and the point discharge current (PDC along with the vertical electrical potential gradient (PG at the ground surface on the day of transit. The results showed some remarkable variations during the transit as well as pre- and post-transit periods. The observed anomalies in the recorded data were interpreted in terms of the anomalous solar tidal effects initiated due to Venus transit.

  9. Constraining neutrino oscillation parameters with current solar and atmospheric data

    CERN Document Server

    Maltoni, M; Tortola, M A; Valle, José W F

    2003-01-01

    We analyse the impact of recent solar and atmospheric data in the determination of the neutrino oscillation parameters, taking into account that both the solar nu_e and the atmospheric nu_mu may convert to a mixture of active and sterile neutrinos. In addition to the recent SNO neutral current (NC), spectral and day/night data we add the latest 1496-day solar and 1489-day atmospheric Super-K neutrino data samples. By investigating in detail the impact of the recent SNO NC, spectral and day/night data, we confirm the clear preference of the LMA solution of the solar neutrino problem and obtain that the LOW, VAC, SMA solutions are disfavoured with a Delta_chi^2 = 9, 9, 23, respectively. Furthermore, we find that the global solar data constrains the admixture of a sterile neutrino to be less than 45% at 99% CL. A pure sterile solution is ruled out with respect to the active one at 99.996% CL. By performing an improved fit of the atmospheric data, we also update the corresponding regions of oscillation parameters...

  10. Parameters of atmospheric plasmas produced by electrosurgical devices

    Science.gov (United States)

    Keidar, Michael; Shashurin, Alexey; Canady, Jerome

    2013-10-01

    Electrosurgical systems are extensively utilized in general surgery, surgical oncology, plastic and reconstructive surgery etc. In this work we study plasma parameters created by electrosurgical system SS-200E/Argon 2 of US Medical Innovations. The maximal length of the discharge plasma column at which the discharge can be sustained was determined as function of discharge power and argon flow rate. Electrical parameters including discharge current and voltage were measured. Recently proposed Rayleigh microwave scattering method for temporally resolved density measurements of small-size atmospheric plasmas was utilized. Simultaneously, evolution of plasma column was observed using intensified charge-coupled device (ICCD) camera.

  11. Estimating stellar atmospheric parameters based on Lasso features

    Science.gov (United States)

    Liu, Chuan-Xing; Zhang, Pei-Ai; Lu, Yu

    2014-04-01

    With the rapid development of large scale sky surveys like the Sloan Digital Sky Survey (SDSS), GAIA and LAMOST (Guoshoujing telescope), stellar spectra can be obtained on an ever-increasing scale. Therefore, it is necessary to estimate stellar atmospheric parameters such as Teff, log g and [Fe/H] automatically to achieve the scientific goals and make full use of the potential value of these observations. Feature selection plays a key role in the automatic measurement of atmospheric parameters. We propose to use the least absolute shrinkage selection operator (Lasso) algorithm to select features from stellar spectra. Feature selection can reduce redundancy in spectra, alleviate the influence of noise, improve calculation speed and enhance the robustness of the estimation system. Based on the extracted features, stellar atmospheric parameters are estimated by the support vector regression model. Three typical schemes are evaluated on spectral data from both the ELODIE library and SDSS. Experimental results show the potential performance to a certain degree. In addition, results show that our method is stable when applied to different spectra.

  12. ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS

    Energy Technology Data Exchange (ETDEWEB)

    Kaspi, Yohai [Department of Earth and Planetary Sciences, Weizmann Institute of Science, 234 Herzl st., 76100, Rehovot (Israel); Showman, Adam P., E-mail: yohai.kaspi@weizmann.ac.il [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, 1629 University Blvd., Tucson, AZ 85721 (United States)

    2015-05-01

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate.

  13. Atmospheric dynamics of terrestrial exoplanets over a wide range of orbital and atmospheric parameters

    CERN Document Server

    Kaspi, Yohai

    2014-01-01

    The recent discoveries of terrestrial exoplanets and super Earths extending over a broad range of orbital and physical parameters suggests that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone---including transitions to Snowball-like states and runaway-greenhouse feedbacks---depend on the equator-to-pole temperature differences, pattern of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model (GCM) including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, planetary mass,...

  14. Evaluation of the Atmospheric Chemical Entropy Production of Mars

    Directory of Open Access Journals (Sweden)

    Alfonso Delgado-Bonal

    2015-07-01

    Full Text Available Thermodynamic disequilibrium is a necessary situation in a system in which complex emergent structures are created and maintained. It is known that most of the chemical disequilibrium, a particular type of thermodynamic disequilibrium, in Earth’s atmosphere is a consequence of life. We have developed a thermochemical model for the Martian atmosphere to analyze the disequilibrium by chemical reactions calculating the entropy production. It follows from the comparison with the Earth atmosphere that the magnitude of the entropy produced by the recombination reaction forming O3 (O + O2 + CO2 ⥦ O3 + CO2 in the atmosphere of the Earth is larger than the entropy produced by the dominant set of chemical reactions considered for Mars, as a consequence of the low density and the poor variety of species of the Martian atmosphere. If disequilibrium is needed to create and maintain self-organizing structures in a system, we conclude that the current Martian atmosphere is unable to support large physico-chemical structures, such as those created on Earth.

  15. Atmospheric parameters of 82 red giants in the Kepler field

    DEFF Research Database (Denmark)

    Overaa Thygesen, Anders; Frandsen, Søren; Bruntt, Hans;

    2012-01-01

    Context. Accurate fundamental parameters of stars are essential for the asteroseismic analysis of data from the NASA Kepler mission. Aims. We aim at determining accurate atmospheric parameters and the abundance pattern for a sample of 82 red giants that are targets for the Kepler mission. Methods...... elements were measured using equivalent widths of the spectral lines. Results. We identify discrepancies in log g and [Fe/H], compared to the parameters based on photometric indices in the Kepler Input Catalogue (larger than 2.0 dex for log g and [Fe/H] for individual stars). The Teff found from...... spectroscopy and photometry shows good agreement within the uncertainties. We find good agreement between the spectroscopic log g and the log g derived from asteroseismology. Also, we see indications of a potential metallicity effect on the stellar oscillations. Conclusions. We have determined the fundamental...

  16. High Vertically Resolved Atmospheric and Surface/Cloud Parameters Retrieved with Infrared Atmospheric Sounding Interferometer (IASI)

    Science.gov (United States)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, WIlliam L.; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.

    2008-01-01

    The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the IASI on the MetOp satellite. IASI possesses an ultra-spectral resolution of 0.25/cm and a spectral coverage from 645 to 2760/cm. Ultra-spectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. This physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the cloud-free and/or clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals are achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with relatively high accuracy (i.e., error system, such as the NPOESS Airborne Sounder Testbed - Interferometer (NAST-I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The capabilities of satellite ultra-spectral sounder such as the IASI are investigated indicating a high vertical structure of atmosphere is retrieved.

  17. The 26th AFOSR chemical and atmospheric sciences program review FY81

    Science.gov (United States)

    Thorpe, W. G.; Myers, L. E.; Stallings, S. A.

    1982-03-01

    A review is presented of research efforts sponsored by the Directorate of Chemical and Atmospheric Sciences which have completed their period of support. Illustrated accounts resulting from the basic research programs in the Atmospheric and Chemical Sciences are highlighted. The Atmospheric Sciences is concerned with meteorology and upper atmospheric structure and dynamics. The meteorology focuses on mesoscale meteorology, cloud physics, and atmospheric dynamics. The Chemical Sciences deal with Chemical Techniques, Chemical Structures, Surface Chemistry, Chemical Dynamics, and Synthesis and properties of Materials.

  18. Physiological parameters controlling plant-atmosphere ammonia exchange

    Science.gov (United States)

    Schjoerring, Jan K.; Husted, Søren; Mattsson, Marie

    Recent advances in characterizing the influence of different physiological and environmental parameters on NH 3 exchange between plants and the atmosphere are presented. A central parameter in controlling the rate and direction of NH 3 fluxes is the NH 3 compensation point. It may vary from below 1 to over 20 nmol NH 3 mol -1 air. High compensation points seem to be a result of high tissue N status, rapid absorption of NH +4 from the root medium and/or low activity of glutamine synthetase, a key enzyme in NH +4 assimilation. These conditions cause the NH +4 concentration in leaf apoplast and leaf cells to increase. The NH 3 compensation point also depends on plant developmental stage with peaks in NH 3 emission related to leaf senescence and N remobilization. The leaf temperature has a profound influence on the NH 3 compensation point: an increase in temperature from 15 to 30°C may cause a plant to switch from being a strong sink for atmospheric NH 3 to being a significant NH 3 source. Stomatal conductance for NH 3 relative to that of water vapour increases with tissue N status and with leaf senescence. At a given leaf temperature, the NH 3 compensation point can be successfully predicted on basis of the pH and NH +4 concentration in the apoplast of the mesophyll cells.

  19. The atmospheric chemical vapour deposition of coatings on glass

    CERN Document Server

    Sanderson, K D

    1996-01-01

    The deposition of thin films of indium oxide, tin doped indium oxide (ITO) and titanium nitride for solar control applications have been investigated by Atmospheric Chemical Vapour Deposition (APCVD). Experimental details of the deposition system and the techniques used to characterise the films are presented. Results from investigations into the deposition parameters, the film microstructure and film material properties are discussed. A range of precursors were investigated for the deposition of indium oxide. The effect of pro-mixing the vaporised precursor with an oxidant source and the deposition temperature has been studied. Polycrystalline In sub 2 O sub 3 films with a resistivity of 1.1 - 3x10 sup - sup 3 OMEGA cm were obtained with ln(thd) sub 3 , oxygen and nitrogen. The growth of ITO films from ln(thd) sub 3 , oxygen and a range of tin dopants is also presented. The effect of the dopant precursor, the doping concentration, deposition temperature and the effect of additives on film growth and microstr...

  20. Model atmospheres of irradiated exoplanets: The influence of stellar parameters, metallicity, and the C/O ratio

    CERN Document Server

    Mollière, Paul; Dullemond, Cornelis Petrus; Henning, Thomas; Mordasini, Christoph

    2015-01-01

    Many parameters constraining the spectral appearance of exoplanets are still poorly understood. We therefore study the properties of irradiated exoplanet atmospheres over a wide parameter range including metallicity, C/O ratio and host spectral type. We calculate a grid of 1-d radiative-convective atmospheres and emission spectra. We perform the calculations with our new Pressure-Temperature Iterator and Spectral Emission Calculator for Planetary Atmospheres (PETIT) code, assuming chemical equilibrium. The atmospheric structures and spectra are made available online. We find that atmospheres of planets with C/O ratios $\\sim$ 1 and $T_{\\rm eff}$ $\\gtrsim$ 1500 K can exhibit inversions due to heating by the alkalis because the main coolants CH$_4$, H$_2$O and HCN are depleted. Therefore, temperature inversions possibly occur without the presence of additional absorbers like TiO and VO. At low temperatures we find that the pressure level of the photosphere strongly influences whether the atmospheric opacity is d...

  1. Inversion for atmosphere duct parameters using real radar sea clutter

    Science.gov (United States)

    Sheng, Zheng; Fang, Han-Xian

    2012-02-01

    This paper addresses the problem of estimating the lower atmospheric refractivity (M profile) under nonstandard propagation conditions frequently encountered in low altitude maritime radar applications. The vertical structure of the refractive environment is modeled using five parameters and the horizontal structure is modeled using five parameters. The refractivity model is implemented with and without a priori constraint on the duct strength as might be derived from soundings or numerical weather-prediction models. An electromagnetic propagation model maps the refractivity structure into a replica field. Replica fields are compared with the observed clutter using a squared-error objective function. A global search for the 10 environmental parameters is performed using genetic algorithms. The inversion algorithm is implemented on the basis of S-band radar sea-clutter data from Wallops Island, Virginia (SPANDAR). Reference data are from range-dependent refractivity profiles obtained with a helicopter. The inversion is assessed (i) by comparing the propagation predicted from the radar-inferred refractivity profiles with that from the helicopter profiles, (ii) by comparing the refractivity parameters from the helicopter soundings with those estimated. This technique could provide near-real-time estimation of ducting effects.

  2. Inversion for atmosphere duct parameters using real radar sea clutter

    Institute of Scientific and Technical Information of China (English)

    Sheng Zheng; Fang Han-Xian

    2012-01-01

    This paper addresses the problem of estimating the lower atmospheric refractivity (M profile) under nonstandard propagation conditions frequently encountered in low altitude maritime radar applications.The vertical structure of the refractive environment is modeled using five parameters and the horizontal structure is modeled using five parameters.The refractivity model is implemented with and without a priori constraint on the duct strength as might be derived from soundings or numerical weather-prediction models.An electromagnetic propagation model maps the refractivity structure into a replica field.Replica fields are compared with the observed clutter using a squared-error objective function.A global search for the 10 environmental parameters is performed using genetic algorithms.The inversion algorithm is implemented on the basis of S-band radar sea-clutter data from Wallops Island,Virginia (SPANDAR).Reference data are from range-dependent refractivity profiles obtained with a helicopter. The inversion is assessed (i) by comparing the propagation predicted from the radar-inferred refractivity profiles with that from the helicopter profiles,(ii) by comparing the refractivity parameters from the helicopter soundings with those estimated.This technique could provide near-real-time estimation of ducting effects.

  3. Wet precipitation scavenging of soluble atmospheric trace gases due to chemical absorption in inhomogeneous atmosphere

    Science.gov (United States)

    Elperin, Tov; Fominykh, Andrew; Krasovitov, Boris

    2017-02-01

    We analyze the effects of irreversible chemical reactions of the first and higher orders and aqueous-phase dissociation reactions on the rate of trace gas scavenging by rain in the atmosphere with non-uniform concentration and temperature. We employ an one-dimensional model of precipitation scavenging of chemically active soluble gaseous pollutants that is valid for small gradients of temperature and concentration in the atmosphere. It is demonstrated that transient altitudinal distribution of concentration under the influence of rain is determined by the partial hyperbolic differential equation of the first order. Scavenging coefficients are calculated for wet removal of chlorine, nitrogen dioxide and sulfur dioxide for the exponential and linear initial altitudinal distributions of trace gases concentration in the atmosphere and linear and uniform altitudinal temperature distributions. Theoretical predictions of the dependence of the magnitude of the scavenging coefficient on rain intensity for sulfur dioxide are in a good agreement with the available atmospheric measurements.

  4. Accurate atmospheric parameters at moderate resolution using spectral indices: Preliminary application to the marvels survey

    Energy Technology Data Exchange (ETDEWEB)

    Ghezzi, Luan; Da Costa, Luiz N.; Maia, Marcio A. G.; Ogando, Ricardo L. C. [Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400 (Brazil); Dutra-Ferreira, Letícia; Lorenzo-Oliveira, Diego; Porto de Mello, Gustavo F.; Santiago, Basílio X. [Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400 (Brazil); De Lee, Nathan [Department of Physics and Geology, Northern Kentucky University, Highland Heights, KY 41099 (United States); Lee, Brian L.; Ge, Jian [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055 (United States); Wisniewski, John P. [H. L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks St Norman, OK 73019 (United States); González Hernández, Jonay I. [Instituto de Astrofísica de Canarias (IAC), E-38205 La Laguna, Tenerife (Spain); Stassun, Keivan G.; Cargile, Phillip; Pepper, Joshua [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Fleming, Scott W. [Space Telescope Science Institute - STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Schneider, Donald P.; Mahadevan, Suvrath [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Wang, Ji, E-mail: luan@linea.gov.br [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); and others

    2014-12-01

    Studies of Galactic chemical, and dynamical evolution in the solar neighborhood depend on the availability of precise atmospheric parameters (effective temperature T {sub eff}, metallicity [Fe/H], and surface gravity log g) for solar-type stars. Many large-scale spectroscopic surveys operate at low to moderate spectral resolution for efficiency in observing large samples, which makes the stellar characterization difficult due to the high degree of blending of spectral features. Therefore, most surveys employ spectral synthesis, which is a powerful technique, but relies heavily on the completeness and accuracy of atomic line databases and can yield possibly correlated atmospheric parameters. In this work, we use an alternative method based on spectral indices to determine the atmospheric parameters of a sample of nearby FGK dwarfs and subgiants observed by the MARVELS survey at moderate resolving power (R ∼ 12,000). To avoid a time-consuming manual analysis, we have developed three codes to automatically normalize the observed spectra, measure the equivalent widths of the indices, and, through a comparison of those with values calculated with predetermined calibrations, estimate the atmospheric parameters of the stars. The calibrations were derived using a sample of 309 stars with precise stellar parameters obtained from the analysis of high-resolution FEROS spectra, permitting the low-resolution equivalent widths to be directly related to the stellar parameters. A validation test of the method was conducted with a sample of 30 MARVELS targets that also have reliable atmospheric parameters derived from the high-resolution spectra and spectroscopic analysis based on the excitation and ionization equilibria method. Our approach was able to recover the parameters within 80 K for T {sub eff}, 0.05 dex for [Fe/H], and 0.15 dex for log g, values that are lower than or equal to the typical external uncertainties found between different high-resolution analyses. An

  5. Accurate Atmospheric Parameters at Moderate Resolution Using Spectral Indices: Preliminary Application to the MARVELS Survey

    Science.gov (United States)

    Ghezzi, Luan; Dutra-Ferreira, Letícia; Lorenzo-Oliveira, Diego; Porto de Mello, Gustavo F.; Santiago, Basílio X.; De Lee, Nathan; Lee, Brian L.; da Costa, Luiz N.; Maia, Marcio A. G.; Ogando, Ricardo L. C.; Wisniewski, John P.; González Hernández, Jonay I.; Stassun, Keivan G.; Fleming, Scott W.; Schneider, Donald P.; Mahadevan, Suvrath; Cargile, Phillip; Ge, Jian; Pepper, Joshua; Wang, Ji; Paegert, Martin

    2014-12-01

    Studies of Galactic chemical, and dynamical evolution in the solar neighborhood depend on the availability of precise atmospheric parameters (effective temperature T eff, metallicity [Fe/H], and surface gravity log g) for solar-type stars. Many large-scale spectroscopic surveys operate at low to moderate spectral resolution for efficiency in observing large samples, which makes the stellar characterization difficult due to the high degree of blending of spectral features. Therefore, most surveys employ spectral synthesis, which is a powerful technique, but relies heavily on the completeness and accuracy of atomic line databases and can yield possibly correlated atmospheric parameters. In this work, we use an alternative method based on spectral indices to determine the atmospheric parameters of a sample of nearby FGK dwarfs and subgiants observed by the MARVELS survey at moderate resolving power (R ~ 12,000). To avoid a time-consuming manual analysis, we have developed three codes to automatically normalize the observed spectra, measure the equivalent widths of the indices, and, through a comparison of those with values calculated with predetermined calibrations, estimate the atmospheric parameters of the stars. The calibrations were derived using a sample of 309 stars with precise stellar parameters obtained from the analysis of high-resolution FEROS spectra, permitting the low-resolution equivalent widths to be directly related to the stellar parameters. A validation test of the method was conducted with a sample of 30 MARVELS targets that also have reliable atmospheric parameters derived from the high-resolution spectra and spectroscopic analysis based on the excitation and ionization equilibria method. Our approach was able to recover the parameters within 80 K for T eff, 0.05 dex for [Fe/H], and 0.15 dex for log g, values that are lower than or equal to the typical external uncertainties found between different high-resolution analyses. An additional test was

  6. Atmospheric stellar parameters from cross-correlation functions

    Science.gov (United States)

    Malavolta, L.; Lovis, C.; Pepe, F.; Sneden, C.; Udry, S.

    2017-08-01

    The increasing number of spectra gathered by spectroscopic sky surveys and transiting exoplanet follow-up has pushed the community to develop automated tools for atmospheric stellar parameters determination. Here we present a novel approach that allows the measurement of temperature (Teff), metallicity ([Fe/H]) and gravity (log g) within a few seconds and in a completely automated fashion. Rather than performing comparisons with spectral libraries, our technique is based on the determination of several cross-correlation functions (CCFs) obtained by including spectral features with different sensitivity to the photospheric parameters. We use literature stellar parameters of high signal-to-noise (SNR), high-resolution HARPS spectra of FGK main-sequence stars to calibrate Teff, [Fe/H] and log g as a function of CCF parameters. Our technique is validated using low-SNR spectra obtained with the same instrument. For FGK stars we achieve a precision of σ _{{T_eff}} = 50 K, σlog g = 0.09 dex and σ _{{{[Fe/H]}}} =0.035 dex at SNR = 50, while the precision for observation with SNR ≳ 100 and the overall accuracy are constrained by the literature values used to calibrate the CCFs. Our approach can easily be extended to other instruments with similar spectral range and resolution or to other spectral range and stars other than FGK dwarfs if a large sample of reference stars is available for the calibration. Additionally, we provide the mathematical formulation to convert synthetic equivalent widths to CCF parameters as an alternative to direct calibration. We have made our tool publicly available.

  7. Optical parameters of the nonisothermal Uranus's and Neptune's atmospheres

    CERN Document Server

    Kostogryz, N M

    2006-01-01

    A method of the calculation of optical parameters of the nonisothermal giant planet atmospheres was developed using detailed intensity data of Raman scattering. We have used the model of Morozhenko (A.V. Morozhenko, 1997) as a baseline. In such a way, using observational data of Uranus and Neptune (E.Karkoschka, 1994), the spectral values of ratio of optical depth components: aerosol and gas components \\tau a/ \\tau R, absorbing and scattering components \\tau a/ \\tau R, and also single scattering albedo of aerosol component corrected for Raman scattering \\omega were obtained (where \\tau a, \\tau R are aerosol and gas components, and \\tau ? is absorbing components of effective optical depths of the formation of diffusely reflected irradiation). The averaged value of ratio \\tau a/ \\tau R is 0.96 but it slowly decreases in the spectral range of 350-450nm for Uranus and \\tau a/ \\tau R is 1.35 for Neptune.

  8. Retrieving cloudy atmosphere parameters from RPG-HATPRO radiometer data

    Science.gov (United States)

    Kostsov, V. S.

    2015-03-01

    An algorithm for simultaneously determining both tropospheric temperature and humidity profiles and cloud liquid water content from ground-based measurements of microwave radiation is presented. A special feature of this algorithm is that it combines different types of measurements and different a priori information on the sought parameters. The features of its use in processing RPG-HATPRO radiometer data obtained in the course of atmospheric remote sensing experiments carried out by specialists from the Faculty of Physics of St. Petersburg State University are discussed. The results of a comparison of both temperature and humidity profiles obtained using a ground-based microwave remote sensing method with those obtained from radiosonde data are analyzed. It is shown that this combined algorithm is comparable (in accuracy) to the classical method of statistical regularization in determining temperature profiles; however, this algorithm demonstrates better accuracy (when compared to the method of statistical regularization) in determining humidity profiles.

  9. Remote sensing of atmospheric duct parameters using simulated annealing

    Institute of Scientific and Technical Information of China (English)

    Zhao Xiao-Feng; Huang Si-Xun; Xiang Jie; Shi Wei-Lai

    2011-01-01

    Simulated annealing is one of the robust optimization schemes. Simulated annealing mimics the annealing process of the slow cooling of a heated metal to reach a stable minimum energy state. In this paper,we adopt simulated annealing to study the problem of the remote sensing of atmospheric duct parameters for two different geometries of propagation measurement. One is from a single emitter to an array of radio receivers (vertical measurements),and the other is from the radar clutter returns (horizontal measurements). Basic principles of simulated annealing and its applications to refractivity estimation are introduced. The performance of this method is validated using numerical experiments and field measurements collected at the East China Sea. The retrieved results demonstrate the feasibility of simulated annealing for near real-time atmospheric refractivity estimation. For comparison,the retrievals of the genetic algorithm are also presented. The comparisons indicate that the convergence speed of simulated annealing is faster than that of the genetic algorithm,while the anti-noise ability of the genetic algorithm is better than that of simulated annealing.

  10. Stellar atmospheres, atmospheric extension and fundamental parameters: weighing stars using the stellar mass index

    CERN Document Server

    Neilson, Hilding R; Norris, Ryan; Kloppenborg, Brian; Lester, John B

    2016-01-01

    One of the great challenges in understanding stars is measuring their masses. The best methods for measuring stellar masses include binary interaction, asteroseismology and stellar evolution models, but these methods are not ideal for red giant and supergiant stars. In this work, we propose a novel method for inferring stellar masses of evolved red giant and supergiant stars using interferometric and spectrophotometric observations combined with spherical model stellar atmospheres to measure what we call the stellar mass index, defined as the ratio between the stellar radius and mass. The method is based on the correlation between different measurements of angular diameter, used as a proxy for atmospheric extension, and fundamental stellar parameters. For a given star, spectrophotometry measures the Rosseland angular diameter while interferometric observations generally probe a larger limb-darkened angular diameter. The ratio of these two angular diameters is proportional to the relative extension of the stel...

  11. Colloid adhesive parameters for chemical heterogeneous porous media

    Science.gov (United States)

    A simple modeling approach was developed to calculate colloid adhesive parameters for chemically heterogeneous porous media. The area of the zone of electrostatic influence between a colloid and solid-water interface (Az) was discretized into a number of equally sized grid cells to capture chemical...

  12. Clouds in Super-Earth Atmospheres: Chemical Equilibrium Calculations

    CERN Document Server

    Mbarek, Rostom

    2016-01-01

    Recent studies have unequivocally proven the existence of clouds in super-Earth atmospheres (Kreidberg et al. 2014). Here we provide a theoretical context for the formation of super-Earth clouds by determining which condensates are likely to form under the assumption of chemical equilibrium. We study super-Earth atmospheres of diverse bulk composition, which are assumed to form by outgassing from a solid core of chondritic material, following Schaefer & Fegley (2010). The super-Earth atmospheres that we study arise from planetary cores made up of individual types of chondritic meteorites. They range from highly reducing to oxidizing and have carbon to oxygen (C:O) ratios that are both subsolar and super-solar, thereby spanning a range of atmospheric composition that is appropriate for low-mass exoplanets. Given the atomic makeup of these atmospheres, we minimize the global Gibbs free energy of formation for over 550 gases and condensates to obtain the molecular composition of the atmospheres over a temper...

  13. Clouds in Super-Earth Atmospheres: Chemical Equilibrium Calculations

    Science.gov (United States)

    Mbarek, Rostom; Kempton, Eliza M.-R.

    2016-08-01

    Recent studies have unequivocally proven the existence of clouds in super-Earth atmospheres. Here we provide a theoretical context for the formation of super-Earth clouds by determining which condensates are likely to form under the assumption of chemical equilibrium. We study super-Earth atmospheres of diverse bulk composition, which are assumed to form by outgassing from a solid core of chondritic material, following Schaefer & Fegley. The super-Earth atmospheres that we study arise from planetary cores made up of individual types of chondritic meteorites. They range from highly reducing to oxidizing and have carbon to oxygen (C:O) ratios that are both sub-solar and super-solar, thereby spanning a range of atmospheric composition that is appropriate for low-mass exoplanets. Given the atomic makeup of these atmospheres, we minimize the global Gibbs free energy of formation for over 550 gases and condensates to obtain the molecular composition of the atmospheres over a temperature range of 350-3000 K. Clouds should form along the temperature-pressure boundaries where the condensed species appear in our calculation. We find that the composition of condensate clouds depends strongly on both the H:O and C:O ratios. For the super-Earth archetype GJ 1214b, KCl and ZnS are the primary cloud-forming condensates at solar composition, in agreement with previous work. However, for oxidizing atmospheres, K2SO4 and ZnO condensates are favored instead, and for carbon-rich atmospheres with super-solar C:O ratios, graphite clouds appear. For even hotter planets, clouds form from a wide variety of rock-forming and metallic species.

  14. Mass-based hygroscopicity parameter interaction model and measurement of atmospheric aerosol water uptake

    Directory of Open Access Journals (Sweden)

    E. Mikhailov

    2013-01-01

    Full Text Available In this study we derive and apply a mass-based hygroscopicity parameter interaction model for efficient description of concentration-dependent water uptake by atmospheric aerosol particles with complex chemical composition. The model approach builds on the single hygroscopicity parameter model of Petters and Kreidenweis (2007. We introduce an observable mass-based hygroscopicity parameter κm which can be deconvoluted into a dilute hygroscopicity parameterm0 and additional self- and cross-interaction parameters describing non-ideal solution behavior and concentration dependencies of single- and multi-component systems.

    For reference aerosol samples of sodium chloride and ammonium sulfate, the κm-interaction model (KIM captures the experimentally observed concentration and humidity dependence of the hygroscopicity parameter and is in good agreement with an accurate reference model based on the Pitzer ion-interaction approach (Aerosol Inorganic Model, AIM. Experimental results for pure organic particles (malonic acid, levoglucosan and for mixed organic-inorganic particles (malonic acid – ammonium sulfate are also well reproduced by KIM, taking into account apparent or equilibrium solubilities for stepwise or gradual deliquescence and efflorescence transitions.

    The mixed organic-inorganic particles as well as atmospheric aerosol samples exhibit three distinctly different regimes of hygroscopicity: (I a quasi-eutonic deliquescence & efflorescence regime at low-humidity where substances are just partly dissolved and exist also in a non-dissolved phase, (II a gradual deliquescence & efflorescence regime at intermediate humidity where different solutes undergo gradual dissolution or solidification in the aqueous phase; and (III a dilute regime at high humidity where the solutes are fully dissolved approaching their dilute hygroscopicity.

    For atmospheric aerosol samples

  15. Titan. [physical and chemical processes in satellite atmosphere

    Science.gov (United States)

    Hunten, D. M.; Tomasko, M. G.; Flasar, F. M.; Samuelson, R. E.; Strobel, D. F.; Stevenson, D. J.

    1984-01-01

    It is pointed out that Titan, which is the second largest satellite in the solar system, is considerably larger than Mercury. It is made unique by its dense atmosphere, which consists mainly of nitrogen, although a substantial component of methane is present. The basic properties of Titan are summarized in a table. Many of the data were obtained during the close pass of Voyager 1 in November 1980. The atmospheric temperature decreases from its surface value of 94 K at a pressure of 1500 mbar to a minimum of 71 K at a height of 42 km and a pressure of 128 mbar. Details of atmospheric composition and thermal structure are discussed, taking into account chemical identifications and abundances, the vertical temperature structure, the horizontal temperature and opacity structure, and the radiative equilibrium. The upper atmosphere composition and temperature is considered along with the properties of aerosols, and meteorology and atmospheric dynamics. Titan's interior has an average density of 1.88 g per cu cm. Attention is given to Titan's surface and interior, and its formation.

  16. Decomposition of Chemical Chain Molecules with Atmospheric Pressure Plasma

    Science.gov (United States)

    Tansli, Murat; Tasal, Erol

    2016-10-01

    Chemical chain molecules' decomposition is an interesting subject area for the atmospheric pressure plasma applications. The effects of the atmospheric pressure argon plasma on 4-((2-methoxyphenyl)Diazenyl)Benzene-1,3,-Diol molecule at room temperature are investigated. This molecule is one of the industrial dye molecules used widely. When considering the ecological life, this molecule will be very harmful and danger. We suggest a different, easy and useful decomposing method for such molecules. Atmospheric pressure plasma jet was principally treated for this decomposing of the molecule. Fourier transform infrared spectrometry (FT-IR) was used to characterization of the molecule after the plasma application to molecule in liquid phase with ethanol and methanol solvents. The atmospheric-pressure plasma jet of argon (Ar) as non-equilibrium has been formed by ac-power generator with frequency - 24 kHz and voltage - 12 kV. Characterizations for solutions prepared with ethanol and methanol solvents of molecule have been examined after applying (duration: 3 minutes) the atmospheric pressure plasma jet. The molecule was broken at 6C-7N =8N-9C stretching peak after the plasma treatment. The new plasma photo-products for ethanol and methanol solutions were produced as 6C-7N-8N =9C (strong, varying) and 12C =17O (strong, wide) stretching peaks.

  17. Binary Contamination in the SEGUE sample: Effects on SSPP Determinations of Stellar Atmospheric Parameters

    CERN Document Server

    Schlesinger, Katharine J; Lee, Young Sun; Masseron, Thomas; Yanny, Brian; Rockosi, Constance M; Gaudi, B Scott; Beers, Timothy C

    2010-01-01

    Using numerical modeling and a grid of synthetic spectra, we examine the effects that unresolved binaries have on the determination of various stellar atmospheric parameters for SEGUE targets measured using the SEGUE Stellar Parameter Pipeline (SSPP). To model undetected binaries that may be in the SEGUE sample, we use a variety of mass distributions for the primary and secondary stars in conjunction with empirically determined relationships for orbital parameters to determine the fraction of G-K dwarf stars, as defined by SDSS color cuts, that will be blended with a secondary companion. We focus on the G-K dwarf sample in SEGUE as it records the history of chemical enrichment in our galaxy. To determine the effect of the secondary on the spectroscopic parameters, we synthesize a grid of model spectra from 3275 to 7850 K (~0.1 to 1.0 \\msun) and [Fe/H]=-0.5 to -2.5 from MARCS model atmospheres using TurboSpectrum. We analyze both "infinite" signal-to-noise ratio (S/N) models and degraded versions, at median S/...

  18. FBX aqueous chemical dosimeter for measurement of dosimetric parameters

    Energy Technology Data Exchange (ETDEWEB)

    Moussous, O., E-mail: o.moussous@crna.d [Centre de Recherche Nucleaire d' Alger (CRNA), 02 Boulevard Frantz Fanon B.P. 399, 16000 Alger (Algeria); Medjadj, T. [Centre de Recherche Nucleaire d' Alger (CRNA), 02 Boulevard Frantz Fanon B.P. 399, 16000 Alger (Algeria); Benguerba, M. [Faculte de Physique, Universite des Sciences et de la Technologie Houari-Boumediene USTHB, Alger (Algeria)

    2011-02-15

    We investigated the ferrous sulphate-benzoic acid-xylenol orange (FBX) aqueous chemical dosimeter for measurement of dosimetric parameters such as the output factor, backscatter factor and lateral beam profiles for different square fields sizes for {sup 60}Co {gamma}-rays. A water phantom was employed to measure these parameters. An ionization chamber (IC) was used for calibration and comparison. A comparison of the resulting measurements with an ionization chamber's measured parameters showed good agreement. We thus believe that the tissue equivalent FBX dosimetry system can measure the dosimetric parameters for {sup 60}Co with reasonable accuracy.

  19. Chemical Fractionation in the Silicate Vapor Atmosphere of the Earth

    CERN Document Server

    Pahlevan, Kaveh; Eiler, John; 10.1016/j.epsl.2010.10.03

    2010-01-01

    Despite its importance to questions of lunar origin, the chemical composition of the Moon is not precisely known. In recent years, however, the isotopic composition of lunar samples has been determined to high precision and found to be indistinguishable from the terrestrial mantle despite widespread isotopic heterogeneity in the Solar System. In the context of the giant-impact hypothesis, this level of isotopic homogeneity can evolve if the proto-lunar disk and post-impact Earth undergo turbulent mixing into a single uniform reservoir while the system is extensively molten and partially vaporized. In the absence of liquid-vapor separation, such a model leads to the lunar inheritance of the chemical composition of the terrestrial magma ocean. Hence, the turbulent mixing model raises the question of how chemical differences arose between the silicate Earth and Moon. Here we explore the consequences of liquid-vapor separation in one of the settings relevant to the lunar composition: the silicate vapor atmosphere...

  20. Monte Carlo Ray Tracing Based Sensitivity Analysis of the Atmospheric and the Ocean Parameters on Top of the Atmosphere Radiance

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2013-01-01

    Full Text Available Monte Carlo Ray Tracing: MCRT based sensitivity analysis of the geophysical parameters (the atmosphere and the ocean on Top of the Atmosphere: TOA radiance in visible to near infrared wavelength regions is conducted. As the results, it is confirmed that the influence due to the atmosphere is greater than that of the ocean. Scattering and absorption due to aerosol particles and molecules in the atmosphere is major contribution followed by water vapor and ozone while scattering due to suspended solid is dominant contribution for the ocean parameters.

  1. Unified Ion-chemical Model for the Middle Atmosphere

    Science.gov (United States)

    Kamsali, Nagaraja; Kamsali, Nagaraja; Datta, Jayati; Prasad, Bsn

    The importance of ion-chemical model studies in our understanding of middle atmospheric regions needs no special emphasis. Present day knowledge of middle atmosphere (0-100 km) has come from two distinct experimental developments: first, in situ measurements of ion composition by balloons and sounding rockets and second, laboratory investigations on ionchemical reactions of importance at these heights, determination of reaction rate coefficients and their temperature dependence. Model studies act as an interface between these, to generate theoretical estimates of ion composition and their derivatives (e.g. electrical conductivity) by using as input the laboratory data on reaction rate coefficients and the data on neutral species density, ionization flux, temperature etc. Free electrons exist only in the mesosphere. Positive molecular ions dominate the upper mesospheric heights and heavy positive and negative cluster ions appearing at the lower mesospheric heights continue to dominate in strato and troposphere. The equilibrium density of electrons and ionic species is governed by: a) ionization of the atmospheric constituents producing electron-positive ion pair b)gas-phase ion-chemical reactions that convert the electrons and primary positive ions into heavy cluster ions of both polarity c)heterogeneous ion-chemical reactions for producing aerosol ions and d) loss mechanisms for small ions and aerosol ions through recombination of oppositely charged species. Physical entities that control the ion production and loss processes are not the same and vary vastly both in nature and magnitude in the middle atmosphere X-rays, Lymann-alpha and precipitating electrons are the dominant ionizing agents at the mesospheric heights. Cosmic ray ionization that is not so significant in the mesosphere is the sole ionizing agent at stratosphere and troposphere. At the ground level and up to a few tens of meters above the earth's surface, natural radioactivity induced ionization is

  2. Estimating atmospheric parameters and reducing noise for multispectral imaging

    Science.gov (United States)

    Conger, James Lynn

    2014-02-25

    A method and system for estimating atmospheric radiance and transmittance. An atmospheric estimation system is divided into a first phase and a second phase. The first phase inputs an observed multispectral image and an initial estimate of the atmospheric radiance and transmittance for each spectral band and calculates the atmospheric radiance and transmittance for each spectral band, which can be used to generate a "corrected" multispectral image that is an estimate of the surface multispectral image. The second phase inputs the observed multispectral image and the surface multispectral image that was generated by the first phase and removes noise from the surface multispectral image by smoothing out change in average deviations of temperatures.

  3. Chemical gas analyzers for proximate analysis of mine atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Pochenkova, T.K.; Klassovskaya, N.A.; Zlenko, A.G.; Gus' kova, A.N. (Vsesoyuznyi Nauchno-Issledovatel' skii Institut Gornogo Dela, Donetsk (Ukraine))

    1992-09-01

    Describes a series of chemical gas analyzers developed by the VNIIGD institute for proximate analysis of mine atmosphere in coal mines. The new GKh-4, GKh-5, GKh-6, GKh CO-5 use detector tubes for carbon monoxide and dioxide, nitrogen oxides, sulfur dioxide, oxygen and hydrogen sulfide. These devices allow miners to determine gas concentrations in the mine atmosphere in less than 4 minutes with an accuracy of +/-25%. The series is now complemented by the GKh-M CH[sub 2]O-0.004 gas analyzer for measuring formaldehyde content in mine air during mine rescue operations conducted with the use of carbamide-formaldehyde resins. Key technical data on the gas analyzers are given.

  4. Observations of atmospheric chemical deposition to high Arctic snow

    Science.gov (United States)

    Macdonald, Katrina M.; Sharma, Sangeeta; Toom, Desiree; Chivulescu, Alina; Hanna, Sarah; Bertram, Allan K.; Platt, Andrew; Elsasser, Mike; Huang, Lin; Tarasick, David; Chellman, Nathan; McConnell, Joseph R.; Bozem, Heiko; Kunkel, Daniel; Duan Lei, Ying; Evans, Greg J.; Abbatt, Jonathan P. D.

    2017-05-01

    Rapidly rising temperatures and loss of snow and ice cover have demonstrated the unique vulnerability of the high Arctic to climate change. There are major uncertainties in modelling the chemical depositional and scavenging processes of Arctic snow. To that end, fresh snow samples collected on average every 4 days at Alert, Nunavut, from September 2014 to June 2015 were analyzed for black carbon, major ions, and metals, and their concentrations and fluxes were reported. Comparison with simultaneous measurements of atmospheric aerosol mass loadings yields effective deposition velocities that encompass all processes by which the atmospheric species are transferred to the snow. It is inferred from these values that dry deposition is the dominant removal mechanism for several compounds over the winter while wet deposition increased in importance in the fall and spring, possibly due to enhanced scavenging by mixed-phase clouds. Black carbon aerosol was the least efficiently deposited species to the snow.

  5. Chemically reacting fluid flow in exoplanet and brown dwarf atmospheres

    Science.gov (United States)

    Bordwell, Baylee; Brown, Benjamin P.; Oishi, Jeffrey S.

    2016-11-01

    In the past few decades, spectral observations of planets and brown dwarfs have demonstrated significant deviations from predictions in certain chemical abundances. Starting with Jupiter, these deviations were successfully explained to be the effect of fast dynamics on comparatively slow chemical reactions. These dynamical effects are treated using mixing length theory in what is known as the "quench" approximation. In these objects, however, both radiative and convective zones are present, and it is not clear that this approximation applies. To resolve this issue, we solve the fully compressible equations of fluid dynamics in a matched polytropic atmosphere using the state-of-the-art pseudospectral simulation framework Dedalus. Through the inclusion of passive tracers, we explore the transport properties of convective and radiative zones, and verify the classical eddy diffusion parameterization. With the addition of active tracers, we examine the interactions between dynamical and chemical processes using abstract chemical reactions. By locating the quench point (the point at which the dynamical and chemical timescales are the same) in different dynamical regimes, we test the quench approximation, and generate prescriptions for the exoplanet and brown dwarf communities.

  6. Numerical simulation of chemical processes in atmospheric plasmas

    Institute of Scientific and Technical Information of China (English)

    Ouyang Jian-Ming; Guo Wei; Wang Long; Shao Fu-Qiu

    2004-01-01

    A model is built to study chemical processes in atmospheric plasmas at low altitude (high pressure) and at high altitude (low pressure). The plasma lifetime and the temporal evolution of the main charged species are presented.The electron number density does not strictly obey the exponential damping law in a long period. The heavy charged species are dominant at low altitude in comparison with the light species at high altitude. Some species of small amount in natural air play an important role in the processes.

  7. The chemical composition of red giants in 47 Tucanae I: Fundamental parameters and chemical abundance patterns

    CERN Document Server

    Thygesen, A O; Andrievsky, S; Korotin, S; Yong, D; Zaggia, S; Ludwig, H -G; Collet, R; Asplund, M; D'Antona, F; Meléndez, J; D'Ercole, A

    2014-01-01

    Context: The study of chemical abundance patterns in globular clusters is of key importance to constrain the different candidates for intra-cluster pollution of light elements. Aims: We aim at deriving accurate abundances for a large range of elements in the globular cluster 47 Tucanae (NGC 104) to add new constraints to the pollution scenarios for this particular cluster, expanding the range of previously derived element abundances. Methods: Using tailored 1D LTE atmospheric models together with a combination of equivalent width measurements, LTE, and NLTE synthesis we derive stellar parameters and element abundances from high-resolution, high signal-to-noise spectra of 13 red giant stars near the tip of the RGB. Results: We derive abundances of a total 27 elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ru, Ba, La, Ce, Pr, Nd, Eu, Dy). Departures from LTE were taken into account for Na, Al and Ba. We find a mean [Fe/H] = $-0.78\\pm0.07$ and $[\\alpha/{\\rm Fe}]=0.34\\pm0.03$ in...

  8. ZASPE: A Code to Measure Stellar Atmospheric Parameters and their Covariance from Spectra

    CERN Document Server

    Brahm, Rafael; Hartman, Joel; Bakos, Gaspar

    2016-01-01

    We describe the Zonal Atmospheric Stellar Parameters Estimator (ZASPE), a new algorithm, and its associated code, for determining precise stellar atmospheric parameters and their uncertainties from high resolution echelle spectra of FGK-type stars. ZASPE estimates stellar atmospheric parameters by comparing the observed spectrum against a grid of synthetic spectra only in the most sensitive spectral zones to changes in the atmospheric parameters. Realistic uncertainties in the parameters are computed from the data itself, by taking into account the systematic mismatches between the observed spectrum and the best-fit synthetic one. The covariances between the parameters are also estimated in the process. ZASPE can in principle use any pre-calculated grid of synthetic spectra. We tested the performance of two existing libraries (Coehelo et al. 2005, Husser et al. 2013) and we concluded that neither is suitable for computing precise atmospheric parameters. We describe a process to synthesise a new library of syn...

  9. Preliminary Assessment of Mercury Atmosphere-Surface Exchange Parameterizations for Incorporation into Chemical Transport Models

    Science.gov (United States)

    Khan, T.; Agnan, Y.; Obrist, D.; Selin, N. E.; Urban, N. R.; Wu, S.; Perlinger, J. A.

    2015-12-01

    Inadequate representation of process-based mechanisms of exchange behavior of elemental mercury (Hg0) and decoupled treatment of deposition and emission are two major limitations of parameterizations of atmosphere-surface exchange flux commonly incorporated into chemical transport models (CTMs). Of nineteen CTMs for Hg0 exchange we reviewed (ten global, nine regional), eight global and seven regional models have decoupled treatment of Hg0 deposition and emission, two global models include no parameterization to account for emission, and the remaining two regional models include coupled deposition and emission parameterizations (i.e., net atmosphere-surface exchange). The performance of atmosphere-surface exchange parameterizations in CTMs depends on parameterization uncertainty (in terms of both accuracy and precision) and feasibility of implementation. We provide a comparison of the performance of three available parameterizations of net atmosphere-surface exchange. To evaluate parameterization accuracy, we compare predicted exchange fluxes to field measurements conducted over a variety of surfaces compiled in a recently developed global database of terrestrial Hg0 surface-atmosphere exchange flux measurements. To assess precision, we estimate the sensitivity of predicted fluxes to the imprecision in parameter input values, and compare this sensitivity to that derived from analysis of the global Hg0 flux database. Feasibility of implementation is evaluated according to the availability of input parameters, computational requirements, and the adequacy of uncertainty representation. Based on this assessment, we provide suggestions for improved treatment of Hg0 net exchange processes in CTMs.

  10. Laboratory analogues simulating Titan's atmospheric aerosols: Compared chemical compositions of grains and thin films

    Science.gov (United States)

    Carrasco, Nathalie; Jomard, François; Vigneron, Jackie; Etcheberry, Arnaud; Cernogora, Guy

    2016-09-01

    Two sorts of solid organic samples can be produced in laboratory experiments simulating Titan's atmospheric reactivity: grains in the volume and thin films on the reactor walls. We expect that grains are more representative of Titan's atmospheric aerosols, but films are used to provide optical indices for radiative models of Titan's atmosphere. The aim of the present study is to address if these two sorts of analogues are chemically equivalent or not, when produced in the same N2-CH4 plasma discharge. The chemical compositions of both these materials are measured by using elemental analysis, XPS analysis and Secondary Ion Mass Spectrometry. The main parameter probed is the CH4/N2 ratio to explore various possible chemical regimes. We find that films are homogeneous but significantly less rich in nitrogen and hydrogen than grains produced in the same experimental conditions. This surprising difference in their chemical compositions could be explained by the efficient etching occurring on the films, which stay in the discharge during the whole plasma duration, whereas the grains are ejected after a few minutes. The higher nitrogen content in the grains possibly involves a higher optical absorption than the one measured on the films, with a possible impact on Titan's radiative models.

  11. Measuring the basic parameters of neutron stars using model atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Suleimanov, V.F. [Universitaet Tuebingen, Institut fuer Astronomie und Astrophysik, Kepler Center for Astro and Particle Physics, Tuebingen (Germany); Kazan Federal University, Kazan (Russian Federation); Poutanen, J. [University of Turku, Tuorla Observatory, Department of Physics and Astronomy, Piikkioe (Finland); KTH Royal Institute of Technology and Stockholm University, Nordita, Stockholm (Sweden); Klochkov, D.; Werner, K. [Universitaet Tuebingen, Institut fuer Astronomie und Astrophysik, Kepler Center for Astro and Particle Physics, Tuebingen (Germany)

    2016-02-15

    Model spectra of neutron star atmospheres are nowadays widely used to fit the observed thermal X-ray spectra of neutron stars. This fitting is the key element in the method of the neutron star radius determination. Here, we present the basic assumptions used for the neutron star atmosphere modeling as well as the main qualitative features of the stellar atmospheres leading to the deviations of the emergent model spectrum from blackbody. We describe the properties of two of our model atmosphere grids: i) pure carbon atmospheres for relatively cool neutron stars (1-4MK) and ii) hot atmospheres with Compton scattering taken into account. The results obtained by applying these grids to model the X-ray spectra of the central compact object in supernova remnant HESS 1731-347, and two X-ray bursting neutron stars in low-mass X-ray binaries, 4U 1724-307 and 4U 1608-52, are presented. Possible systematic uncertainties associated with the obtained neutron star radii are discussed. (orig.)

  12. Measuring the basic parameters of neutron stars using model atmospheres

    CERN Document Server

    Suleimanov, V F; Klochkov, D; Werner, K

    2015-01-01

    Model spectra of neutron star atmospheres are nowadays widely used to fit the observed thermal X-ray spectra of neutron stars. This fitting is the key element in the method of the neutronstar radius determination. Here, we present the basic assumptions used for the neutron star atmosphere modeling as well as the main qualitative features of the stellar atmospheres leading to the deviations of the emergent model spectrum from blackbody. We describe the properties of two of our model atmosphere grids: (i) pure carbon atmospheres for relatively cool neutron stars (1--4 MK) and (ii) hot atmospheres with Compton scattering taken into account. The results obtained by applying these grids to model the X-ray spectra of the central compact object in supernova remnant HESS 1731-347, and two X-ray bursting neutron stars in low-mass X-ray binaries, 4U 1724-307 and 4U 1608-52, are presented. Possible systematic uncertainties associated with the obtained neutron star radii are discussed.

  13. Chemical composition of atmospheric aerosols resolved via positive matrix factorization

    Science.gov (United States)

    Äijälä, Mikko; Junninen, Heikki; Heikkinen, Liine; Petäjä, Tuukka; Kulmala, Markku; Worsnop, Douglas; Ehn, Mikael

    2017-04-01

    Atmospheric particulate matter is a complex mixture of various chemical species such as organic compounds, sulfates, nitrates, ammonia, chlorides, black carbon and sea salt. As aerosol chemical composition strongly influences aerosol climate effects (via cloud condensation nucleus activation, hygroscopic properties, aerosol optics, volatility and condensation) as well as health effects (toxicity, carcinogenicity, particle morphology), detailed understanding of atmospheric fine particle composition is widely beneficial for understanding these interactions. Unfortunately the comprehensive, detailed measurement of aerosol chemistry remains difficult due to the wide range of compounds present in the atmosphere as well as for the miniscule mass of the particles themselves compared to their carrier gas. Aerosol mass spectrometer (AMS; Canagaratna et al., 2007) is an instrument often used for characterization of non-refractive aerosol types: the near-universal vaporization and ionisation technique allows for measurement of most atmospheric-relevant compounds (with the notable exception of refractory matter such as sea salt, black carbon, metals and crustal matter). The downside of the hard ionisation applied is extensive fragmentation of sample molecules. However, the apparent loss of information in fragmentation can be partly offset by applying advanced statistical methods to extract information from the fragmentation patterns. In aerosol mass spectrometry statistical analysis methods, such as positive matrix factorization (PMF; Paatero, 1999) are usually applied for aerosol organic component only, to keep the number of factors to be resolved manageable, to retain the inorganic components for solution validation via correlation analysis, and to avoid inorganic species dominating the factor model. However, this practice smears out the interactions between organic and inorganic chemical components, and hinders the understanding of the connections between primary and

  14. Quantifying drivers of chemical disequilibrium in the Earth's atmosphere

    Directory of Open Access Journals (Sweden)

    E. Simoncini

    2012-11-01

    Full Text Available It has long been observed that Earth's atmosphere is uniquely far from its thermochemical equilibrium state in terms of its chemical composition. Studying this state of disequilibrium is important both for understanding the role that life plays in the Earth system, and for its potential role in the detection of life on exoplanets. Here we present a methodology for assessing the strength of the biogeochemical cycling processes that drive disequilibrium in planetary systems. We apply it to the simultaneous presence of CH4 and O2 in Earth's atmosphere, which has long been suggested as a sign of life that could be detected from far away. Using a simplified model, we identify that the most important property to quantify is not the distance from equilibrium, but the power required to drive it. A weak driving force can maintain a high degree of disequilibrium if the residence times of the compounds involved are long; but if the disequilibrium is high and the kinetics fast, we can conclude that the disequilibrium must be driven by a substantial source of energy. Applying this to Earth's atmosphere, we show that the biotically-generated portion of the power required to maintain the methane-oxygen disequilibrium is around 0.67 TW, although the uncertainty in this figure is about 50% due to uncertainty in the global CH4 production. Compared to the chemical energy generated by the biota by photosynthesis, 0.67 TW represents only a very small fraction and, perhaps surprisingly, is of a comparable magnitude to abiotically-driven geochemical processes at the Earth's surface. We discuss the implications of this new approach, both in terms of enhancing our understanding of the Earth system, and in terms of its impact on the possible detection of distant photosynthetic biospheres.

  15. QSPR between Physical- Chemical Properties and Molecule Parameters of Alkanes

    Institute of Scientific and Technical Information of China (English)

    XU Qing-qing; LI Liang-chao; HU Li-ya

    2005-01-01

    A set of molecule parameters, namely, N, N′, p, q,n, were used to express the structures of alkanes. A correlative model was established between certain physical-chemical properties and molecular parameters of alkanes by regression method. Eightphysical-chemical properties, such as evaporation heat (△vH20m ),density(D20 ), capacity(C20 ), surface tension(σ20 ), boiling point ( Tb ), critical temperature ( Tc ), critical pressure (Pc) and critical volume(Vc), of fifty-six C3-C16 alkanes were calculated directly from the model in this paper. The calculated values are in good accordance with the literature ones reported for alkanes, and the correlation coefficients (R) equal or exceed 0.99. The research results indicate that the principle of the method is simple and clear, the method is practical, the correlativity is excellent, and the predicted data are credible.

  16. Investigation of chemical properties and transport phenomena associated with pollutants in the atmospheric boundary layer

    Science.gov (United States)

    Holmes, Heather A.

    Under the Clean Air Act, the U.S. Environmental Protection Agency is required to determine which air pollutants are harmful to human health, then regulate, monitor and establish criteria levels for these pollutants. To accomplish this and for scientific advancement, integration of knowledge from several disciplines is required including: engineering, atmospheric science, chemistry and public health. Recently, a shift has been made to establish interdisciplinary research groups to better understand the atmospheric processes that govern the transport of pollutants and chemical reactions of species in the atmospheric boundary layer (ABL). The primary reason for interdisciplinary collaboration is the need for atmospheric processes to be treated as a coupled system, and to design experiments that measure meteorological, chemical and physical variables simultaneously so forecasting models can be improved (i.e., meteorological and chemical process models). This dissertation focuses on integrating research disciplines to provide a more complete framework to study pollutants in the ABL. For example, chemical characterization of particulate matter (PM) and the physical processes governing PM distribution and mixing are combined to provide more comprehensive data for source apportionment. Data from three field experiments were utilized to study turbulence, meteorological and chemical parameters in the ABL. Two air quality field studies were conducted on the U.S./Mexico border. The first was located in Yuma, AZ to investigate the spatial and temporal variability of PM in an urban environment and relate chemical properties of ambient aerosols to physical findings. The second border air quality study was conducted in Nogales, Sonora, Mexico to investigate the relationship between indoor and outdoor air quality in order to better correlate cooking fuel types and home activities to elevated indoor PM concentrations. The final study was executed in southern Idaho and focused on

  17. Super-atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Chen, Lee Chuin; Rahman, Md Matiur; Hiraoka, Kenzo

    2013-03-01

    Super-atmospheric pressure chemical ionization (APCI) mass spectrometry was performed using a commercial mass spectrometer by pressurizing the ion source with compressed air up to 7 atm. Similar to typical APCI source, reactant ions in the experiment were generated with corona discharge using a needle electrode. Although a higher needle potential was necessary to initiate the corona discharge, discharge current and detected ion signal were stable at all tested pressures. A Roots booster pump with variable pumping speed was installed between the evacuation port of the mass spectrometer and the original rough pumps to maintain a same pressure in the first pumping stage of the mass spectrometer regardless of ion source pressure. Measurement of gaseous methamphetamine and research department explosive showed an increase in ion intensity with the ion source pressure until an optimum pressure at around 4-5 atm. Beyond 5 atm, the ion intensity decreased with further increase of pressure, likely due to greater ion losses inside the ion transport capillary. For benzene, it was found that besides molecular ion and protonated species, ion due to [M + 2H](+) which was not so common in APCI, was also observed with high ion abundance under super-atmospheric pressure condition.

  18. Ultra-metal-poor Stars: Spectroscopic Determination of Stellar Atmospheric Parameters Using Iron Non-LTE Line Abundances

    Science.gov (United States)

    Ezzeddine, Rana; Frebel, Anna; Plez, Bertrand

    2017-10-01

    We present new ultra-metal-poor stars parameters with [Fe/H] up-to-date iron model atom with a new recipe for non-elastic hydrogen collision rates. We study the departures from LTE in their atmospheric parameters and show that they can grow up to ∼1.00 dex in [Fe/H], ∼150 K in {T}{eff} and ∼0.5 dex in log g toward the lowest metallicities. Accurate NLTE atmospheric stellar parameters, in particular [Fe/H] being significantly higher, are the first step to eventually providing full NLTE abundance patterns that can be compared with Population III supernova nucleosynthesis yields to derive properties of the first stars. Overall, this maximizes the potential of these likely second-generation stars to investigate the early universe and how the chemical elements were formed.

  19. Impact of Martian atmosphere parameter uncertainties on entry vehicles aerodynamic for hypersonic rarefied conditions

    Science.gov (United States)

    Fei, Huang; Xu-hong, Jin; Jun-ming, Lv; Xiao-li, Cheng

    2016-11-01

    An attempt has been made to analyze impact of Martian atmosphere parameter uncertainties on entry vehicle aerodynamics for hypersonic rarefied conditions with a DSMC code. The code has been validated by comparing Viking vehicle flight data with present computational results. Then, by simulating flows around the Mars Science Laboratory, the impact of errors of free stream parameter uncertainties on aerodynamics is investigated. The validation results show that the present numerical approach can show good agreement with the Viking flight data. The physical and chemical properties of CO2 has strong impact on aerodynamics of Mars entry vehicles, so it is necessary to make proper corrections to the data obtained with air model in hypersonic rarefied conditions, which is consistent with the conclusions drawn in continuum regime. Uncertainties of free stream density and velocity weakly influence aerodynamics and pitching moment. However, aerodynamics appears to be little influenced by free stream temperature, the maximum error of what is below 0.5%. Center of pressure position is not sensitive to free stream parameters.

  20. Empirical calibration of the near-IR Ca II triplet - II. The stellar atmospheric parameters

    CERN Document Server

    Cenarro, A J; Cardiel, N; Pedraz, S; Peletier, R F; Vazdekis, A

    2001-01-01

    We present an homogeneous set of stellar atmospheric parameters (Teff, log g, [Fe/H]) for a sample of about 700 field and cluster stars which constitute a new stellar library in the near-infrared developed for stellar population synthesis in this spectral region (8350-9020 Angstrom). Having compiled the available atmospheric data in the literature for field stars, we have found systematic deviations between the atmospheric parameters from different bibliographic references. The Soubiran, Katz & Cayrel (1998) sample of stars with very well determined fundamental parameters has been taken as our standard reference system, and other papers have been calibrated and bootstrapped against it. The obtained transformations are provided in this paper. Once most of the datasets were on the same system, final parameters were derived by performing error weighted means. Atmospheric parameters for cluster stars have also been revised and updated according to recent metallicity scales and colour-temperature relations.

  1. Atmospheric pressure loading parameters from very long baseline interferometry observations

    Science.gov (United States)

    Macmillan, D. S.; Gipson, John M.

    1994-01-01

    Atmospheric mass loading produces a primarily vertical displacement of the Earth's crust. This displacement is correlated with surface pressure and is large enough to be detected by very long baseline interferometry (VLBI) measurements. Using the measured surface pressure at VLBI stations, we have estimated the atmospheric loading term for each station location directly from VLBI data acquired from 1979 to 1992. Our estimates of the vertical sensitivity to change in pressure range from 0 to -0.6 mm/mbar depending on the station. These estimates agree with inverted barometer model calculations (Manabe et al., 1991; vanDam and Herring, 1994) of the vertical displacement sensitivity computed by convolving actual pressure distributions with loading Green's functions. The pressure sensitivity tends to be smaller for stations near the coast, which is consistent with the inverted barometer hypothesis. Applying this estimated pressure loading correction in standard VLBI geodetic analysis improves the repeatability of estimated lengths of 25 out of 37 baselines that were measured at least 50 times. In a root-sum-square (rss) sense, the improvement generally increases with baseline length at a rate of about 0.3 to 0.6 ppb depending on whether the baseline stations are close to the coast. For the 5998-km baseline from Westford, Massachusetts, to Wettzell, Germany, the rss improvement is about 3.6 mm out of 11.0 mm. The average rss reduction of the vertical scatter for inland stations ranges from 2.7 to 5.4 mm.

  2. How much can we trust high-resolution spectroscopic stellar atmospheric parameters?

    CERN Document Server

    Blanco-Cuaresma, S; Heiter, U; Jofré, P; Masseron, T; Casamiquela, L; Tabernero, H M; Bhat, S S; Casey, A R; Meléndez, J; Ramírez, I

    2016-01-01

    The determination of atmospheric parameters depends on the use of radiative transfer codes (among other elements such as model atmospheres) to compute synthetic spectra and/or derive abundances from equivalent widths. However, it is common to mix results from different surveys/studies where different setups were used to derive the parameters. These inhomogeneities can lead us to inaccurate conclusions. In this work, we studied one aspect of the problem: When deriving atmospheric parameters from high-resolution stellar spectra, what differences originate from the use of different radiative transfer codes?

  3. How Much Can We Trust High-Resolution Spectroscopic Stellar Atmospheric Parameters?

    Science.gov (United States)

    Blanco-Cuaresma, Sergi; Nordlander, Thomas; Heiter, Ulrike; Jofré, Paula; Masseron, Thomas; Casamiquela, Laia; Tabernero, Hugo M.; Bhat, Shruthi S.; Casey, Andrew R.; Meléndez, Jorge; Ramírez, Ivan

    2016-09-01

    The determination of atmospheric parameters depends on the use of radiative transfer codes (among other elements such as model atmospheres) to compute synthetic spectra and/or derive abundances from equivalent widths. However, it is common to mix results from different surveys/studies where different setups were used to derive the parameters. These inhomogeneities can lead us to inaccurate conclusions. In this work, we studied one aspect of the problem: When deriving atmospheric parameters from high-resolution stellar spectra, what differences originate from the use of different radiative transfer codes?

  4. Parameter Optimization of Nitriding Process Using Chemical Kinetics

    Science.gov (United States)

    Özdemir, İ. Bedii; Akar, Firat; Lippmann, Nils

    2016-09-01

    Using the dynamics of chemical kinetics, an investigation to search for an optimum condition for a gas nitriding process is performed over the solution space spanned by the initial temperature and gas composition of the furnace. For a two-component furnace atmosphere, the results are presented in temporal variations of gas concentrations and the nitrogen coverage on the surface. It seems that the exploitation of the nitriding kinetics can provide important feedback for setting the model-based control algorithms. The present work shows that when the nitrogen gas concentration is not allowed to exceed 6 pct, the Nad coverage can attain maximum values as high as 0.97. The time evolution of the Nad coverage also reveals that, as long as the temperature is above the value where nitrogen poisoning of the surface due to the low-temperature adsorption of excess nitrogen occurs, the initial ammonia content in the furnace atmosphere is much more important in the nitriding process than is the initial temperature.

  5. A self consistent chemically stratified atmosphere model for the roAp star 10 Aquilae

    CERN Document Server

    Nesvacil, Nicole; Ryabchikova, Tanya A; Kochukhov, Oleg; Akberov, Artur; Weiss, Werner W

    2012-01-01

    Context: Chemically peculiar A type (Ap) stars are a subgroup of the CP2 stars which exhibit anomalous overabundances of numerous elements, e.g. Fe, Cr, Sr and rare earth elements. The pulsating subgroup of the Ap stars, the roAp stars, present ideal laboratories to observe and model pulsational signatures as well as the interplay of the pulsations with strong magnetic fields and vertical abundance gradients. Aims: Based on high resolution spectroscopic observations and observed stellar energy distributions we construct a self consistent model atmosphere, that accounts for modulations of the temperature-pressure structure caused by vertical abundance gradients, for the roAp star 10 Aquilae (HD 176232). We demonstrate that such an analysis can be used to determine precisely the fundamental atmospheric parameters required for pulsation modelling. Methods: Average abundances were derived for 56 species. For Mg, Si, Ca, Cr, Fe, Co, Sr, Pr, and Nd vertical stratification profiles were empirically derived using the...

  6. Atmospheric parameters and abundances of sdB stars

    CERN Document Server

    Heber, U

    2004-01-01

    We summarize recent results of quantitative spectral analyses using NLTE and metal line-blanketed LTE model atmospheres. Temperatures and gravities derived for hundreds of sdB stars are now available and allow us to investigate systematic uncertainties of teff, log g scales and to test the theory of stellar evolution and pulsations. Surface abundance patterns of about two dozen sdB stars are surprisingly homogenous. In particular the iron abundance is almost solar for most sdBs. We highlight one iron deficient and three super metal-rich sdBs, a challenge to diffusion theory. SdB stars are slowly rotating stars unless they are in close binary systems which is hard to understand if the sdB stars were formed in merger events. The only exception is the pulsator PG 1605+072 rotating at v sin i = 39km/s. Signatures of stellar winds from sdB stars have possibly been found.

  7. Chemical reactions between Venus' surface and atmosphere - An update. (Invited)

    Science.gov (United States)

    Treiman, A. H.

    2013-12-01

    The surface of Venus, at ~740K, is hot enough to allow relatively rapid chemical reactions between it and the atmosphere, i.e. weathering. Venus chemical weathering has been explored in detail [1], to the limits of available data. New data from Venus Express (VEx) and new ideas from exoplanets have sparked a modest renewal of interest in Venus weathering. Venus' surface cannot be observed in visible light, but there are several NIR ';windows' through its atmosphere that allow surface imaging. The VIRTIS spectrometer on VEx viewed the surface through one window [2]; emissivity variations among lava flows on Imdr and Themis Regios have been explained as varying degrees of weathering, and thus age [3]. The VMC camera on VEx also provides images through a NIR window, which suggest variable degrees of weathering on some basaltic plains [4]. Indirect evidence for weathering may come from varying SO2 abundance at Venus' cloud tops; repeated rapid increases and gradual declines may represent volcanic eruptions followed by weathering to form sulfate minerals [5]. Continued geochemical modeling relevant to Venus weathering is motivated by expolanet studies [6]. Models have been extended to hypothetical exo-Venuses of different temperatures and surface compositions [7]. The idea that Venus' atmosphere composition can be buffered by reaction with its surface was explored in detail, and the derived constraint extended to other types of planets [8]. Several laboratories are investigating Venus weathering, motivated in part by the hope that they can provide real constraints on timescales of Venus volcanism [3]. Aveline et al. [9] are extending early studies [10] by reacting rocks and minerals with concentrated SO2 (to accelerate reaction rates to allow detectability of products). Kohler et al. [11] are investigating the stability of metals and chalcogenides as possible causes of the low-emissivity surfaces at high elevations. Berger and Aigouy [12] studied rock alteration on a

  8. Complementary nature of surface and atmospheric parameters associated with Haiti earthquake of 12 January 2010

    Directory of Open Access Journals (Sweden)

    Ramesh P. Singh

    2010-06-01

    Full Text Available The present paper describes surface (surface air temperature and atmospheric parameters (relative humidity, surface latent heat flux over the epicenter (18°27´25´´ N 72°31´59´´ W of Haiti earthquake of 12 January 2010. Our analysis shows pronounced changes in surface and atmospheric parameters few days prior to the main earthquake event. Changes in relative humidity are found from the surface up to an altitude of 500 hPa clearly show atmospheric perturbations associated with the earthquake event. The purpose of this paper is to show complementary nature of the changes observed in surface, atmospheric and meteorological parameters. The total ozone concentration is found to be lowest on the day of earthquake and afterwards found to be increased within a week of earthquake. The present results show existence of coupling between lithosphere-atmosphere associated with the deadly Haiti earthquake.

  9. ZASPE: A Code to Measure Stellar Atmospheric Parameters and their Covariance from Spectra

    Science.gov (United States)

    Brahm, Rafael; Jordán, Andrés; Hartman, Joel; Bakos, Gaspar

    2017-01-01

    We describe the Zonal Atmospheric Stellar Parameters Estimator (ZASPE), a new algorithm, and its associated code, for determining precise stellar atmospheric parameters and their uncertainties from high resolution echelle spectra of FGK-type stars. ZASPE estimates stellar atmospheric parameters by comparing the observed spectrum against a grid of synthetic spectra only in the most sensitive spectral zones to changes in the atmospheric parameters. Realistic uncertainties in the parameters are computed from the data itself, by taking into account the systematic mismatches between the observed spectrum and the best-fit synthetic one. The covariances between the parameters are also estimated in the process. ZASPE can in principle use any pre-calculated grid of synthetic spectra but unbiased grids are required to obtain accurate parameters. We tested the performance of two existing libraries (Coelho et al. 2005; Husser et al. 2013) and we concluded that neither is suitable for computing precise atmospheric parameters. We describe a process to synthesise a new library of synthetic spectra that was found to generate consistent results when compared with parameters obtained with different methods (interferometry, asteroseismology, equivalent widths).

  10. Medium-resolution Isaac Newton Telescope library of empirical spectra - II. The stellar atmospheric parameters

    NARCIS (Netherlands)

    Cenarro, A. J.; Peletier, R. F.; Sanchez-Blazquez, P.; Selam, S. O.; Toloba, E.; Cardiel, N.; Falcon-Barroso, J.; Gorgas, J.; Jimenez-Vicente, J.; Vazdekis, A.

    2007-01-01

    We present a homogeneous set of stellar atmospheric parameters (T-eff, log g, [Fe/H]) for MILES, a new spectral stellar library covering the range lambda lambda 3525-7500 angstrom at 2.3 angstrom (FWHM) spectral resolution. The library consists of 985 stars spanning a large range in atmospheric para

  11. Plasma polymers deposited in atmospheric pressure dielectric barrier discharges: Influence of process parameters on film properties

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Katja, E-mail: k.fricke@inp-greifswald.de [Leibniz Institute for Plasma Science and Technology e.V. (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Girard-Lauriault, Pierre-Luc [Plasma Processing Laboratory, Department of Chemical Engineering, McGill University, 3610 rue University, Montreal, QC H3A 0C5 (Canada); Weltmann, Klaus-Dieter [Leibniz Institute for Plasma Science and Technology e.V. (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Wertheimer, Michael R. [Department of Engineering Physics, École Polytechnique de Montréal, Box 6079, Station Centre-Ville, Montreal, QC H3C 3A7 (Canada)

    2016-03-31

    We present results on the deposition of plasma polymer (PP) films in a dielectric barrier discharge system fed with mixtures of argon or nitrogen carrier gas plus different hydrocarbon precursors, where the latter possess different carbon-to-hydrogen ratios: CH{sub 4} < C{sub 2}H{sub 6} < C{sub 2}H{sub 4} = C{sub 3}H{sub 6} < C{sub 2}H{sub 2}. The influence of precursor gas mixture and flow rate, excitation frequency, and absorbed power on PP film compositions and properties has been investigated. The discharge was characterized by electrical measurements, while the chemical compositions and structures of coatings were analysed by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, total combustion, and elastic recoil detection analyses, the latter two for determining carbon-to-hydrogen ratios. Scanning electron microscopy was used to study the coatings' morphology, and profilometry for evaluating deposition rates. - Highlights: • Atmospheric pressure DBD is used to deposit organic hydrocarbon films. • High deposition rates can be achieved by varying the power and/or gas mixture ratio. • Process parameters affect the films' surface chemical composition and morphology. • Deposited films are not soluble in aqueous environment. • No delamination of coatings produced from argon plasma.

  12. Retrieval of Atmospheric and Oceanic Parameters and the Relevant Numerical Calculation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    It is well known that retrieval of parameters is usually ill-posed and highly nonlinear, so parameter retrieval problems are very difficult. There are still many important theoretical issues under research,although great success has been achieved in data assimilation in meteorology and oceanography. This paper reviews the recent research on parameter retrieval, especially that of the authors. First, some concepts and issues of parameter retrieval are introduced and the state-of-the-art parameter retrieval technology in meteorology and oceanography is reviewed briefly, and then atmospheric and oceanic parameters are retrieved using the variational data assimilation method combined with the regularization techniques in four examples: retrieval of the vertical eddy diffusion coefficient; of the turbulivity of the atmospheric boundary layer; of wind from Doppler radar data, and of the physical process parameters. Model parameter retrieval with global and local observations is also introduced.

  13. Hydrocarbon analysis using desorption atmospheric pressure chemical ionization

    KAUST Repository

    Jjunju, Fred Paul Mark

    2013-07-01

    Characterization of the various petroleum constituents (hydronaphthalenes, thiophenes, alkyl substituted benzenes, pyridines, fluorenes, and polycyclic aromatic hydrocarbons) was achieved under ambient conditions without sample preparation by desorption atmospheric pressure chemical ionization (DAPCI). Conditions were chosen for the DAPCI experiments to control whether ionization was by proton or electron transfer. The protonated molecule [M+H]+ and the hydride abstracted [MH]+ form were observed when using an inert gas, typically nitrogen, to direct a lightly ionized plasma generated by corona discharge onto the sample surface in air. The abundant water cluster ions generated in this experiment react with condensed-phase functionalized hydrocarbon model compounds and their mixtures at or near the sample surface. On the other hand, when naphthalene was doped into the DAPCI gas stream, its radical cation served as a charge exchange reagent, yielding molecular radical cations (M+) of the hydrocarbons. This mode of sample ionization provided mass spectra with better signal/noise ratios and without unwanted side-products. It also extended the applicability of DAPCI to petroleum constituents which could not be analyzed through proton transfer (e.g., higher molecular PAHs such as chrysene). The thermochemistry governing the individual ionization processes is discussed and a desorption/ionization mechanism is inferred. © 2012 Elsevier B.V.

  14. Microchip atmospheric pressure chemical ionization source for mass spectrometry.

    Science.gov (United States)

    Ostman, Pekka; Marttila, Seppo J; Kotiaho, Tapio; Franssila, Sami; Kostiainen, Risto

    2004-11-15

    A novel microchip heated nebulizer for atmospheric pressure chemical ionization mass spectrometry is presented. Anisotropic wet etching is used to fabricate the flow channels, inlet, and nozzle on a silicon wafer. An integrated heater of aluminum is sputtered on a glass wafer. The two wafers are jointed by anodic bonding, creating a two-dimensional version of an APCI source with a sample channel in the middle and gas channels symmetrically on both sides. The ionization is initiated with an external corona-discharge needle positioned 2 mm in front of the microchip heated nebulizer. The microchip APCI source provides flow rates down to 50 nL/min, stable long-term analysis with chip lifetime of weeks, good quantitative repeatability (RSD 0.995) with linear dynamic rage of at least 4 orders of magnitude, and cost-efficient manufacturing. The limit of detection (LOD) for acridine measured with microchip APCI at flow rate of 6.2 muL/min was 5 nM, corresponding to a mass flow of 0.52 fmol/s. The LOD with commercial macro-APCI at a flow rate of 1 mL/min for acridine was the same, 5 nM, corresponding to a significantly worse mass flow sensitivity (83 fmol/s) than measured with microchip APCI. The advantages of microchip APCI makes it a very attractive new microfluidic detector.

  15. New atmospheric parameters and spectral interpolator for the MILES cool stars

    CERN Document Server

    Sharma, Kaushal; Singh, Harinder P

    2015-01-01

    Context: The full spectrum fitting of stellar spectra against a library of empirical spectra is a well-established approach to measure the atmospheric parameters of FGK stars with a high internal consistency. Extending it towards cooler stars still remains a challenge. Aims: We address this question by improving the interpolator of the MILES (Medium-resolution INT Library of Empirical Spectra) library in the low effective temperature regime (Tefff < 4800 K), and we refine the determination of the parameters of the cool MILES stars. Methods: We use the ULySS package to determine the atmospheric parameters (Teff, logg and [Fe/H]), and measure the biases of the results with respect to our updated compilation of parameters calibrated against theoretical spectra. After correcting some systematic effects, we compute a new interpolator that we finally use to redetermine the atmospheric parameters homogeneously and assess the biases. Results: Based on an updated literature compilation, we determine Teff in a more ...

  16. Simultaneous physical retrieval of surface emissivity spectrum and atmospheric parameters from infrared atmospheric sounder interferometer spectral radiances.

    Science.gov (United States)

    Masiello, Guido; Serio, Carmine

    2013-04-10

    The problem of simultaneous physical retrieval of surface emissivity, skin temperature, and temperature, water-vapor, and ozone atmospheric profiles from high-spectral-resolution observations in the infrared is formulated according to an inverse problem with multiple regularization parameters. A methodology has been set up, which seeks an effective solution to the inverse problem in a generalized L-curve criterion framework. The a priori information for the surface emissivity is obtained on the basis of laboratory data alone, and that for the atmospheric parameters by climatology or weather forecasts. To ensure that we deal with a problem of fewer unknowns than observations, the dimensionality of the emissivity is reduced through expansion in Fourier series. The main objective of this study is to demonstrate the simultaneous retrieval of emissivity, skin temperature, and atmospheric parameters with a two-dimensional L-curve criterion. The procedure has been demonstrated with spectra observed from the infrared atmospheric sounder interferometer, flying onboard the European Meteorological Operational satellite. To check the quality and reliability of the methodology, we have used spectra recorded over regions characterized by known or stable emissivity. These include sea surface, for which effective emissivity models are known, and arid lands (Sahara and Namib Deserts) that are known to exhibit the characteristic spectral signature of quartz-rich sand.

  17. Atmospheric-dispersion parameter evaluation in the Po Valley

    Energy Technology Data Exchange (ETDEWEB)

    Bonino, G. (Turin Univ. (Italy). Ist. di Fisica; Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica); Anfossi, D. (Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica); Bacci, P.; Brusasca, G.; Longhetto, A. (Ente Nazionale per l' Energia Elettrica, Milan (Italy))

    Comparison of turbulent-diffusion parameters sigmasub(y) and sigmasub(z), evaluated through different experimental tests carried out in the Po Valley in the range (10/sup 2/:10/sup 4/) m downwind the source, under natural and unstable conditions, is presented and discussed. Two kinds of methods of tracer dispersion were adopted. The first one dealt with no-lift balloon diffusion in the range (10/sup 2/:10/sup 3/) m, while the second one was relative to SF/sub 6/ dispersion in the range (10/sup 3/:10/sup 4/) m. In the present paper the two sets of data are joined and a single series of best-fit curves covering the whole measured range (10/sup 2/:10/sup 4/) m is derived. The results show different behaviours for sigmasub(y) and sigmasub(z); in fact, it is possible to extrapolate sigmasub(y) trends from one set of data (SF/sub 6/) to the other one (no-lift balloons) without changing the analytical expression and the values of their coefficients. For sigmasub(z), instead, some new considerations are needed. In fact, for the unstable categories here considered (B/C and C) it is necessary to change the analytical form of the sigmasub(z) trend. This is due to the effect of convection resulting in an increase of dsigmasub(z)/d x. Finally, the exponent of the sampling time tau, in the sigmasub(y) vs. tau relationship, was found equal to 0.2, in the range (16:128) min.

  18. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

    Science.gov (United States)

    Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ.

  19. Chemical Composition of Atmospheric Aerosols in Iowa City

    Science.gov (United States)

    Jayarathne, T. S.; Stone, E.

    2013-12-01

    In this study, the seasonal and spatial variability of chemical components in atmospheric PM2.5 were investigated in Iowa City, Iowa for the first time. Daily PM samples were collected from 25 August to 10 November 2011 at two sites in Iowa City (West and East) that were separated by approximately four miles. During this time, daily average PM2.5 mass concentrations ranged from 3 - 26 μg m-3, within attainment of EPA National Ambient Air Quality Standard of 35 μg m-3. The average PM2.5 concentration was 11.2×4.9 μg m-3 (arithmetic mean × one standard deviation for n = 72). Carbonaceous aerosol (elemental carbon and organic matter) was the dominant component of PM2.5, contributing 40% of PM2.5 mass. Another 30% was due to water soluble inorganic ions (SO42-, NO3-, Cl-, Na+, NH4+, K+, Mg2+, Ca2+) with major contributions from SO42- (13%), NO3- (6%), NH4+ (6%) and Ca2+ (3%). Among the inorganic ions, SO42- exhibited the highest individual ion concentration at both sites with an average concentration of 1.5×1.2 μg m-3 at West Site and 1.5×1.3 μg m-3 at East Site. The average NO3- concentrations for this period were 0.5×0.4 μg m-3 and 0.7×0.5 μg m-3 at West and East Sites, respectively. Comparison of aerosol composition data from the two sites indicated that concentrations of SO42-, NO3-, NH4+ and organic carbon were not statistically different at the 95% confidence interval, indicating that these species were primarily influenced by regional atmospheric processes. Meanwhile, Ca2+ and elemental carbon concentrations were statistically different across the two study sites, indicating the influence of local PM sources. Unlike other ions, Ca2+ concentrations were significantly elevated at both sites in October, during the agricultural harvest, showing that re-suspended soil dust is a temporally-variable source of fine particles that peaks during the agricultural harvest season. Several episodes of elevated PM2.5 occurred in late August to early October, with

  20. Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model

    Science.gov (United States)

    Kinnison, D. E.; Brasseur, G. P.; Walters, S.; Garcia, R. R.; Marsh, D. R.; Sassi, F.; Harvey, V. L.; Randall, C. E.; Emmons, L.; Lamarque, J. F.; Hess, P.; Orlando, J. J.; Tie, X. X.; Randel, W.; Pan, L. L.; Gettelman, A.; Granier, C.; Diehl, T.; Niemeier, U.; Simmons, A. J.

    2007-10-01

    The Model for Ozone and Related Chemical Tracers, version 3 (MOZART-3), which represents the chemical and physical processes from the troposphere through the lower mesosphere, was used to evaluate the representation of long-lived tracers and ozone using three different meteorological fields. The meteorological fields are based on (1) the Whole Atmosphere Community Climate Model, version 1b (WACCM1b), (2) the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis, and (3) a new reanalysis for year 2000 from ECMWF called EXP471. Model-derived tracers (methane, water vapor, and total inorganic nitrogen) and ozone are compared to data climatologies from satellites. Model mean age of air was also derived and compared to in situ CO2 and SF6 data. A detailed analysis of the chemical fields simulated by MOZART-3 shows that even though the general features characterizing the three dynamical sets are rather similar, slight differences in winds and temperature can produce substantial differences in the calculated distributions of chemical tracers. The MOZART-3 simulations that use meteorological fields from WACCM1b and ECMWF EXP471 represented best the distribution of long-lived tracers and mean age of air in the stratosphere. There was a significant improvement using the ECMWF EXP471 reanalysis data product over the ECMWF operational data product. The effect of the quasi-biennial oscillation circulation on long-lived tracers and ozone is examined.

  1. Prediction of data stream parameters in atmospheric turbulent wireless communication links

    Science.gov (United States)

    Tiker, A.; Yarkoni, N.; Blaunstein, N.; Zilberman, A.; Kopeika, N.

    2007-01-01

    A unified approach for calculation of information data stream parameters in the atmospheric optical communication channel is presented based on irradiance fluctuations of optical wave propagation through turbulence and on a generalized Ricean K-parameter distribution. The effects of turbulence are described via the well-known Kolmogorov scheme of turbulent structure relaxation in terms of stochastic scintillation theory described by the gamma-gamma distribution along with measurements of the values of the refractive index structure parameter, Cn 2. The relation between the Ricean parameter K and the signal scintillation parameter σI 2 is considered to develop a unified description of the corresponding probability density function (pdf) of signal fading within an atmospheric wireless communication link. Through the corresponding pdf and parameter K, signal data stream parameters such as the signal-to-noise ratio (SNR), bit error rate (BER), and capacity of the optical atmospheric channel (C) are estimated. Such an approach permits the reliable prediction of the effects of fading caused by different levels of turbulence and agrees with experimental data observed at different atmospheric levels, at the heights of both 100-200 m and above 1-2 km. It is shown that at heights of 100-200 m, effects of fading, caused by turbulence, occur much more frequently than those at the heights of 1-2 km. Data stream parameters such as channel capacity, SNR, and spectral efficiency become stronger at higher altitudes, while at the same time the BER becomes relatively negligible.

  2. Chloramine demand estimation using surrogate chemical and microbiological parameters.

    Science.gov (United States)

    Moradi, Sina; Liu, Sanly; Chow, Christopher W K; van Leeuwen, John; Cook, David; Drikas, Mary; Amal, Rose

    2017-07-01

    A model is developed to enable estimation of chloramine demand in full scale drinking water supplies based on chemical and microbiological factors that affect chloramine decay rate via nonlinear regression analysis method. The model is based on organic character (specific ultraviolet absorbance (SUVA)) of the water samples and a laboratory measure of the microbiological (Fm) decay of chloramine. The applicability of the model for estimation of chloramine residual (and hence chloramine demand) was tested on several waters from different water treatment plants in Australia through statistical test analysis between the experimental and predicted data. Results showed that the model was able to simulate and estimate chloramine demand at various times in real drinking water systems. To elucidate the loss of chloramine over the wide variation of water quality used in this study, the model incorporates both the fast and slow chloramine decay pathways. The significance of estimated fast and slow decay rate constants as the kinetic parameters of the model for three water sources in Australia was discussed. It was found that with the same water source, the kinetic parameters remain the same. This modelling approach has the potential to be used by water treatment operators as a decision support tool in order to manage chloramine disinfection. Copyright © 2017. Published by Elsevier B.V.

  3. VULCAN: an Open-Source, Validated Chemical Kinetics Python Code for Exoplanetary Atmospheres

    OpenAIRE

    2016-01-01

    We present an open-source and validated chemical kinetics code for studying hot exoplanetary atmospheres, which we name VULCAN. It is constructed for gaseous chemistry from 500 to 2500 K using a reduced C- H-O chemical network with about 300 reactions. It uses eddy diffusion to mimic atmospheric dynamics and excludes photochemistry. We have provided a full description of the rate coefficients and thermodynamic data used. We validate VULCAN by reproducing chemical equilibrium and by comparing ...

  4. Modeling Nonlinear Adsorption with a Single Chemical Parameter: Predicting Chemical Median Langmuir Binding Constants.

    Science.gov (United States)

    Davis, Craig Warren; Di Toro, Dominic M

    2015-07-07

    Procedures for accurately predicting linear partition coefficients onto various sorbents (e.g., organic carbon, soils, clay) are reliable and well established. However, similar procedures for the prediction of sorption parameters of nonlinear isotherm models are not. The purpose of this paper is to present a procedure for predicting nonlinear isotherm parameters, specifically the median Langmuir binding constants, K̃L, obtained utilizing the single-chemical parameter log-normal Langmuir isotherm developed in the accompanying work. A reduced poly parameter linear free energy relationship (pp-LFER) is able to predict median Langmuir binding constants for graphite, charcoal, and Darco granular activated carbon (GAC) adsorption data. For the larger F400 GAC data set, a single pp-LFER model was insufficient, as a plateau is observed for the median Langmuir binding constants of larger molecular volume sorbates. This volumetric cutoff occurs in proximity to the median pore diameter for F400 GAC. A log-linear relationship exists between the aqueous solubility of these large compounds and their median Langmuir binding constants. Using this relationship for the chemicals above the volumetric cutoff and the pp-LFER below the cutoff, the median Langmuir binding constants can be predicted with a root-mean square error for graphite (n = 13), charcoal (n = 11), Darco GAC (n = 14), and F400 GAC (n = 44) of 0.129, 0.307, 0.407, and 0.424, respectively.

  5. State and Parameter Estimation for a Coupled Ocean--Atmosphere Model

    Science.gov (United States)

    Ghil, M.; Kondrashov, D.; Sun, C.

    2006-12-01

    The El-Nino/Southern-Oscillation (ENSO) dominates interannual climate variability and plays, therefore, a key role in seasonal-to-interannual prediction. Much is known by now about the main physical mechanisms that give rise to and modulate ENSO, but the values of several parameters that enter these mechanisms are an important unknown. We apply Extended Kalman Filtering (EKF) for both model state and parameter estimation in an intermediate, nonlinear, coupled ocean--atmosphere model of ENSO. The coupled model consists of an upper-ocean, reduced-gravity model of the Tropical Pacific and a steady-state atmospheric response to the sea surface temperature (SST). The model errors are assumed to be mainly in the atmospheric wind stress, and assimilated data are equatorial Pacific SSTs. Model behavior is very sensitive to two key parameters: (i) μ, the ocean-atmosphere coupling coefficient between SST and wind stress anomalies; and (ii) δs, the surface-layer coefficient. Previous work has shown that δs determines the period of the model's self-sustained oscillation, while μ measures the degree of nonlinearity. Depending on the values of these parameters, the spatio-temporal pattern of model solutions is either that of a delayed oscillator or of a westward propagating mode. Estimation of these parameters is tested first on synthetic data and allows us to recover the delayed-oscillator mode starting from model parameter values that correspond to the westward-propagating case. Assimilation of SST data from the NCEP-NCAR Reanalysis-2 shows that the parameters can vary on fairly short time scales and switch between values that approximate the two distinct modes of ENSO behavior. Rapid adjustments of these parameters occur, in particular, during strong ENSO events. Ways to apply EKF parameter estimation efficiently to state-of-the-art coupled ocean--atmosphere GCMs will be discussed.

  6. Modelling Chemical Patterns of Atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) in the Iberian Peninsula

    Science.gov (United States)

    Ratola, Nuno; Jiménez-Guerrero, Pedro

    2013-04-01

    Semi-volatile organic compounds (SVOCs) such as PBDEs, PCBs, organochlorine pesticides (OCPs) or PAHs, are widespread and generated in a multitude of anthropogenic (and natural for PAHs) processes and although they are found in the environment at low concentrations, possess an extraordinary carcinogenic capacity (Baussant et al., 2001) and high ecotoxicity due to their persistence in different matrices (air, soil, water, living organisms). In particular, PAHs are originated by combustion processes or release from fossil fuels and can be transported in the atmosphere over long distances in gaseous or particulate matter (Baek et al., 1991). The establishment of strategies for sampling and chemical transport modelling of SVOCs in the atmosphere aiming the definition and validation of the spatial, temporal and chemical transport patterns of contaminants can be achieved by an integrated system of third-generation models that represent the current state of knowledge in air quality modelling and experimental data collected in field campaigns. This has implications in the fields of meteorology, atmospheric chemistry and even climate change. In this case, an extensive database already obtained on levels of atmospheric PAHs from biomonitoring schemes in the Iberian Peninsula fuelled the establishment of the first models of behaviour for PAHs. The modelling system WRF+CHIMERE was implemented with high spatial and temporal resolution to the Iberian Peninsula in this first task (9 km for the Iberian Peninsula, 3 km to Portugal, 1 hour), using PAHs atmospheric levels collected over a year-long sampling scheme comprising 4 campaigns (one per season) in over 30 sites. Daily information on meteorological parameters such as air temperature, humidity, rainfall or wind speed and direction was collected from the weather stations closest to the sampling sites. Diagnosis and forecasts of these meteorological variables using MM5 or WRF were used to feed a chemistry transport model

  7. Chemical composition of atmospheric aerosols between Moscow and Vladivostok

    Directory of Open Access Journals (Sweden)

    S. Kuokka

    2007-05-01

    Full Text Available The TROICA-9 expedition (Trans-Siberian Observations Into the Chemistry of the Atmosphere was carried out at the Trans-Siberian railway between Moscow and Vladivostok in October 2005. Measurements of aerosol physical and chemical properties were made from an observatory carriage connected to a passenger train. Black carbon (BC concentrations in fine particles (PM2.5, aerodynamic diameter <2.5 μm were measured with an aethalometer using a five-minute time resolution. Concentrations of inorganic ions and some organic compounds (Cl, NO3, SO42−, Na+, NH4+, K+, Ca2+, Mg2+, oxalate and methane sulphonate were measured continuously by using an on-line system with a 15-min time resolution. In addition, particle volume size distributions were determined for particles in the diameter range 3–850 nm using a 10-min. time resolution. The continuous measurements were completed with 24-h. PM2.5 filter samples which were stored in a refrigerator and later analyzed in chemical laboratory. The analyses included mass concentrations of PM2.5, ions, monosaccharide anhydrides (levoglucosan, galactosan and mannosan and trace elements (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, V and Zn. The mass concentrations of PM2.5 varied in the range of 4.3–34.8 μg m−3 with an average of 21.6 μg m−3. Fine particle mass consisted mainly of BC (average 27.6%, SO42− (13.0%, NH4+ (4.1%, and NO3 (1.4%. One of the major constituents was obviously also organic carbon which was not determined. The contribution of BC was high compared with other studies made in Europe and Asia. High concentrations of ions, BC and particle volume were observed between Moscow and roughly 4000 km east of it, as well as close to

  8. Analysis of physical and chemical parameters of bottled drinking water.

    Science.gov (United States)

    Mahajan, Rakesh Kumar; Walia, T P S; Lark, B S; Sumanjit

    2006-04-01

    Seventeen different brands of bottled drinking water, collected from different retail shops in Amritsar, were analyzed for different physical and chemical parameters to ascertain their compliability with the prescribed/recommended limits of the World Heath Organization (WHO) and the United States Environmental Protection Agency (USEPA). It was found that the majority of the brands tested were over-treated. Lower values of hardness, total dissolved solids (TDS) and conductance than the prescribed limits of WHO showed that water was deficient in essential minerals. Minerals like magnesium, potassium, calcium and fluoride were present in some cases in such a low concentration that water seemed to be as good as distilled water. Samples showing fluoride lesser than 0.5 mg/l warranted additional sources of fluoride for the people consuming only bottled water for drinking purposes. Zero values for chlorine demand as shown by all the bottled water samples showed that water samples were safe from micro-organisms. In case of heavy metals, only lead had been found to be greater than the limit of 0.015 mg/l as prescribed by WHO and USEPA, in seven out of 17 samples. Lead even at such a low concentration can pose a great health hazard.

  9. A novel method for measuring the concentration of chloroform based on kinetic parameters at atmosphere

    Science.gov (United States)

    Wang, Yuguo; Han, Haiyan; Chang, Tao; Liu, Xiuhong; Zhu, Qiaofen; Liu, Feng; Yan, Yongliang; Shen, Chengyin; Chu, Yannan

    2016-06-01

    A novel method is proposed to detect chloroform concentrations based on the kinetic parameters using ion mobility spectrometer with a negative corona discharge ion source operating at atmospheric pressure. Unlike conventional sample introduction mode, in this technique, CHCl3 enters into the drift tube from the end of drift region carried by the drift gas. There are two tails before Cl- and (CHCl3)·Cl- ion peaks, which fit to the ions formed in the drift region. Utilizing the kinetic parameters, concentration for CHCl3 can be calculated. This method not only offers a new way to get concentrations of CHCl3 under atmospheric pressure.

  10. Chemical Microsensor Instrument for UAV Airborne Atmospheric Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) proposes to develop a miniaturized Airborne Chemical Microsensor Instrument (ACMI) suitable for real-time, airborne measurements of...

  11. Ablation and Chemical Alteration of Cosmic Dust Particles during Entry into the Earth’s Atmosphere

    Science.gov (United States)

    Rudraswami, N. G.; Shyam Prasad, M.; Dey, S.; Plane, J. M. C.; Feng, W.; Carrillo-Sánchez, J. D.; Fernandes, D.

    2016-12-01

    Most dust-sized cosmic particles undergo ablation and chemical alteration during atmospheric entry, which alters their original properties. A comprehensive understanding of this process is essential in order to decipher their pre-entry characteristics. The purpose of the study is to illustrate the process of vaporization of different elements for various entry parameters. The numerical results for particles of various sizes and various zenith angles are treated in order to understand the changes in chemical composition that the particles undergo as they enter the atmosphere. Particles with large sizes (> few hundred μm) and high entry velocities (>16 km s-1) experience less time at peak temperatures compared to those that have lower velocities. Model calculations suggest that particles can survive with an entry velocity of 11 km s-1 and zenith angles (ZA) of 30°-90°, which accounts for ˜66% of the region where particles retain their identities. Our results suggest that the changes in chemical composition of MgO, SiO2, and FeO are not significant for an entry velocity of 11 km s-1 and sizes <300 μm, but the changes in these compositions become significant beyond this size, where FeO is lost to a major extent. However, at 16 km s-1 the changes in MgO, SiO2, and FeO are very intense, which is also reflected in Mg/Si, Fe/Si, Ca/Si, and Al/Si ratios, even for particles with a size of 100 μm. Beyond 400 μm particle sizes at 16 km s-1, most of the major elements are vaporized, leaving the refractory elements, Al and Ca, suspended in the troposphere.

  12. Oxidation of the Martian surface - Constraints due to chemical processes in the atmosphere

    Science.gov (United States)

    Mcelroy, M. B.; Kong, T. Y.

    1976-01-01

    Dissociation of water in the Martian atmosphere may supply oxygen to the surface and may result in the formation of minerals such as goethite, as proposed by Huguenin. The supply rate is limited by chemical processes in the atmosphere which regulate the abundance of O2. The net surface sink for atmospheric oxygen can be as large as 33 million atoms per sq cm per sec which compares to the escape rate of 60 million atoms per sq cm per sec.

  13. PHYSICO CHEMICAL PARAMETERS OF NASPUR LAKE ADILABAD DISTRICT (A.P.

    Directory of Open Access Journals (Sweden)

    P.Sivalingam

    2013-08-01

    Full Text Available Present paper deals with the physic-chemical parameters of Naspur lake, Manchiryal mandal, Aailabad district. The work was carried out during the period of Sep-2011 to Aug 2012.This lake was established for Irrigation, Drinking water and Fish culture purpose last two decades back. It was in the out of 7 km distance from Manchiryal town. Singareni coal mine employs are living in the Manchiryal town, day by day expanding of city population last two decades .In rainy season it’s receiving city sewage .industrial wastes, coalmine dust run off to the lake. This type of water injuries to the health of human other aquatic fauna. So there is an urgent requirement for its extent of pollution which will help us in further management of conservation. During the study period examine the physic-chemical parameters such as: atmosphere temperature, water temperature, pH, electrical conductivity, alkalinity, total hardness, TDS, Ca.Mg, chlorides, sulphates and phosphate, following stranded methods (APHA 1998. Now this lake is becoming eutrophic nature.

  14. Spectroscopic survey of γ Doradus stars - I. Comprehensive atmospheric parameters and abundance analysis of γ Doradus stars

    Science.gov (United States)

    Kahraman Aliçavuş, F.; Niemczura, E.; De Cat, P.; Soydugan, E.; Kołaczkowski, Z.; Ostrowski, J.; Telting, J. H.; Uytterhoeven, K.; Poretti, E.; Rainer, M.; Suárez, J. C.; Mantegazza, L.; Kilmartin, P.; Pollard, K. R.

    2016-05-01

    We present a spectroscopic survey of known and candidate γ Doradus stars. The high-resolution, high signal-to-noise spectra of 52 objects were collected by five different spectrographs. The spectral classification, atmospheric parameters (Teff, log g, ξ), vsin i and chemical composition of the stars were derived. The stellar spectral and luminosity classes were found between G0-A7 and IV-V, respectively. The initial values for Teff and log g were determined from the photometric indices and spectral energy distribution. Those parameters were improved by the analysis of hydrogen lines. The final values of Teff, log g and ξ were derived from the iron lines analysis. The Teff values were found between 6000 K and 7900 K, while log g values range from 3.8 to 4.5 dex. Chemical abundances and vsin i values were derived by the spectrum synthesis method. The vsin i values were found between 5 and 240 km s-1. The chemical abundance pattern of γ Doradus stars were compared with the pattern of non-pulsating stars. It turned out that there is no significant difference in abundance patterns between these two groups. Additionally, the relations between the atmospheric parameters and the pulsation quantities were checked. A strong correlation between the vsin i and the pulsation periods of γ Doradus variables was obtained. The accurate positions of the analysed stars in the Hertzsprung-Russell diagram have been shown. Most of our objects are located inside or close to the blue edge of the theoretical instability strip of γ Doradus.

  15. Effects of Atmospheric Conditions and the Land/Atmospheric Interface on Transport of Chemical Vapors from Subsurface Sources

    Science.gov (United States)

    Rice, A. K.; Smits, K. M.; Cihan, A.; Howington, S. E.; Illangasekare, T. H.

    2013-12-01

    Understanding the movement of chemical vapors and gas through variably saturated soil subjected to atmospheric thermal and mass flux boundary conditions at the land/atmospheric interface is important to many applications, including landmine detection, methane leakage during natural gas production from shale and CO2 leakage from deep geologic storage. New, advanced technologies exist to sense chemical signatures and gas leakage at the land/atmosphere interface, but interpretation of sensor signals remains a challenge. Chemical vapors are subject to numerous interactions while migrating through the soil environment, masking source conditions. The process governing movement of gases through porous media is often assumed to be Fickian diffusion through the air phase with minimal quantification of other processes, such as convective gas flow and temporal or spatial variation in soil moisture. Vapor migration is affected by atmospheric conditions (e.g. humidity, temperature, wind velocity), soil thermal and hydraulic properties and contaminant properties, all of which are physically and thermodynamically coupled. The complex coupling of two drastically different flow regimes in the subsurface and atmosphere is commonly ignored in modeling efforts, or simplifying assumptions are made to treat the systems as de-coupled. Experimental data under controlled laboratory settings are lacking to refine the theory for proper coupling and complex treatment of vapor migration through porous media in conversation with atmospheric flow and climate variations. Improving fundamental understanding and accurate quantification of these processes is not feasible in field settings due to lack of controlled initial and boundary conditions and inability to fully characterize the subsurface at all relevant scales. The goal of this work is to understand the influence of changes in atmospheric conditions to transport of vapors through variably saturated soil. We have developed a tank apparatus

  16. A mobile polar atmospheric parameter measurement system:II. First atmospheric turbulence observation at Antarctic Taishan Station

    Institute of Scientific and Technical Information of China (English)

    TIAN Qiguo; JIANG Peng; WU Xiaoqing; JIN Xinmiao; LU Shan; JI Tuo; CHAI Bo; ZHANG Shaohua; ZHOU Hongyan

    2015-01-01

    This is the second paper of a series devoted to atmospheric optical turbulence Cn2 observation using a mobile polar atmospheric parameter measurement system. We present the initial results of Cn2 measurement at Antarctic Taishan Station using micro-thermal sensors and a three-dimensional sonic anemometer at height ~2.0 m above the snow surface. The site testing experiments were carried out during the 30th Chinese National Antarctic Research Expedition (CHINARE). We collected about 1 000 h of data between 30 December 2013 and 10 February 2014. The Cn2 curve exhibits clear daily structures, with two peaks around midnight and midday and two troughs around 7:30 and 17:00 local time (UTC+5). The mean Cn2 is 2.7×10−15 m−2/3 and the 25th and 75th percentiles of the Cn2 cumulative distribution are 9.6×10−16 m−2/3 and 6.2×10−15 m−2/3, respectively. Meteorological parameters such as temperature, relative humidity, wind speed, and air pressure are also presented.

  17. Quantum Chemical Calculations Resolved Identification of Methylnitrocatechols in Atmospheric Aerosols.

    Science.gov (United States)

    Frka, Sanja; Šala, Martin; Kroflič, Ana; Huš, Matej; Čusak, Alen; Grgić, Irena

    2016-06-01

    Methylnitrocatechols (MNCs) are secondary organic aerosol (SOA) tracers and major contributors to atmospheric brown carbon; however, their formation and aging processes in atmospheric waters are unknown. To investigate the importance of aqueous-phase electrophilic substitution of 3-methylcatechol with nitronium ion (NO2(+)), we performed quantum calculations of their favorable pathways. The calculations predicted the formation of 3-methyl-5-nitrocatechol (3M5NC), 3-methyl-4-nitrocatechol (3M4NC), and a negligible amount of 3-methyl-6-nitrocatechol (3M6NC). MNCs in atmospheric PM2 samples were further inspected by LC/(-)ESI-MS/MS using commercial as well as de novo synthesized authentic standards. We detected 3M5NC and, for the first time, 3M4NC. In contrast to previous reports, 3M6NC was not observed. Agreement between calculated and observed 3M5NC/3M4NC ratios cannot unambiguously confirm the electrophilic mechanism as the exclusive formation pathway of MNCs in aerosol water. However, the examined nitration by NO2(+) is supported by (1) the absence of 3M6NC in the ambient aerosols analyzed and (2) the constant 3M5NC/3M4NC ratio in field aerosol samples, which indicates their common formation pathway. The magnitude of error one could make by incorrectly identifying 3M4NC as 3M6NC in ambient aerosols was also assessed, suggesting the importance of evaluating the literature regarding MNCs with special care.

  18. Characterization of typical chemical background interferences in atmospheric pressure ionization liquid chromatography-mass spectrometry

    NARCIS (Netherlands)

    Guo, Xinghua; Bruins, Andries P.; Covey, Thomas R.

    2006-01-01

    The structures and origins of typical chemical background noise ions in positive atmospheric pressure ionization liquid chromatography/mass spectrometry (API LC/MS) are investigated and summarized in this study. This was done by classifying chemical background ions using precursor and product ion sc

  19. Atmospheric Parameters of 169 F, G, K and M-type Stars in the Kepler Field

    CERN Document Server

    Molenda-Zakowicz, J; Frasca, A; Uytterhoeven, K; Briquet, M; Van Winckel, H; Drobek, D; Niemczura, E; Lampens, P; Lykke, J; Bloemen, S; Gameiro, J F; Jean, C; Volpi, D; Gorlova, N; Mortier, A; Tsantaki, M; Raskin, G

    2013-01-01

    The asteroseismic and planetary studies, like all research related to stars, need precise and accurate stellar atmospheric parameters as input. We aim at deriving the effective temperature (Teff), the surface gravity (log g), the metallicity ([Fe/H]), the projected rotational velocity (v sin i) and the MK type for 169 F, G, K, and M-type Kepler targets which were observed spectroscopically from the ground with five different instruments. We use two different spectroscopic methods to analyse 189 high-resolution, high-signal-to-noise spectra acquired for the 169 stars. For 67 stars, the spectroscopic atmospheric parameters are derived for the ?first time. KIC 9693187 and 11179629 are discovered to be double-lined spectroscopic binary systems. The results obtained for those stars for which independent determinations of the atmospheric parameters are available in the literature are used for a comparative analysis. As a result, we show that for solar-type stars the accuracy of present determinations of atmospheric...

  20. Spectroscopic Survey of {\\gamma} Doradus Stars I. Comprehensive atmospheric parameters and abundance analysis of {\\gamma} Doradus stars

    CERN Document Server

    Kahraman-Alicavus, F; De Cat, P; Soydugan, E; Kolaczkowski, Z; Ostrowski, J; Telting, J H; Uytterhoeven, K; Poretti, E; Rainer, M; Suarez, J C; Mantegazza, L; Kilmartin, P; Pollard, K R

    2016-01-01

    We present a spectroscopic survey of {\\gamma} Doradus stars. The high-resolution, high signal-to-noise spectra of fifty-two objects were collected by five different spectrographs. The spectral classification, atmospheric parameters ($T_{\\rm eff}$ , $\\log g$, {\\xi}), vsini and chemical composition of the stars were derived. The spectral and luminosity classes of the stars were found between A7 - G0 and IV - V, respectively. The initial values for $T_{\\rm eff}$ and $\\log g$ were determined from photometric indices and spectral energy distribution. Those parameters were improved by the analysis of hydrogen lines. The final values of $T_{\\rm eff}$, $\\log g$ and {\\xi} were derived from the iron lines analysis. For the whole sample, $T_{\\rm eff}$ values were found between 6000 K and 7900 K, while logg values range from 3.8 to 4.5 dex. Chemical abundances and v sin i values were derived by the spectrum synthesis method. The $v \\sin i$ values were found between 5 and 240 km s$^{-1}$. The chemical abundance pattern of...

  1. an assessment of the physico-chemical parameters of kontagora ...

    African Journals Online (AJOL)

    DR. AMINU

    The torrential rains of the reservoir environment, the characteristic trade winds of ... herbicides, insecticide and other chemical factors might have contributed to the fluctuations of some of the ..... in lake is related to inputs from agricultural lands.

  2. Determination of physico-chemical parameters and heavy metals in ...

    African Journals Online (AJOL)

    EJIRO

    Water samples from selected hand-dug wells and Ona River in Itaogbolu area of Akure, Ondo State, ... arise from a multitude of physical, chemical and biological interactions (Deuzane ... human activities, resulting in pollution which is mani-.

  3. Atmospheric aerosol optical parameters, deep convective clouds and hail occurence - a correlation study

    Science.gov (United States)

    Talianu, Camelia; Andrei, Simona; Toanca, Florica; Stefan, Sabina

    2016-04-01

    Among the severe weather phenomena, whose frequency has increased during the past two decades, hail represents a major threat not only for agriculture but also for other economical fields. Generally, hail are produced in deep convective clouds, developed in an unstable environment. Recent studies have emphasized that besides the state of the atmosphere, the atmospheric composition is also very important. The presence of fine aerosols in atmosphere could have a high impact on nucleation processes, initiating the occurrence of cloud droplets, ice crystals and possibly the occurrence of graupel and/or hail. The presence of aerosols in the atmosphere, correlated with specific atmospheric conditions, could be predictors of the occurrence of hail events. The atmospheric investigation using multiwavelength Lidar systems can offer relevant information regarding the presence of aerosols, identified using their optical properties, and can distinguish between spherical and non-spherical shape, and liquid and solid phase of these aerosols. The aim of this study is to analyse the correlations between the presence and the properties of aerosols in atmosphere, and the production of hail events in a convective environment, using extensive and intensive optical parameters computed from lidar and ceilometer aerosols measurements. From these correlations, we try to evaluate if these aerosols can be taken into consideration as predictors for hail formation. The study has been carried out in Magurele - Romania (44.35N, 26.03E, 93m ASL) using two collocated remote sensing systems: a Raman Lidar (RALI) placed at the Romanian Atmospheric 3D Observatory and a ceilometer CL31 placed at the nearby Faculty of Physics, University of Bucharest. To evaluate the atmospheric conditions, radio sounding and satellite images were used. The period analysed was May 1st - July 15th, 2015, as the May - July period is climatologically favorable for deep convection events. Two hail events have been

  4. Calibrations of Atmospheric Parameters Obtained from the First Year of SDSS-III APOGEE Observations

    CERN Document Server

    Mészáros, Sz; Pérez, A E García; Prieto, C Allende; Schiavon, R P; Basu, S; Bizyaev, D; Chaplin, W J; Chojnowski, S D; Cunha, K; Elsworth, Y; Epstein, C; Frinchaboy, P M; García, R A; Hearty, F R; Hekker, S; Johnson, J A; Kallinger, T; Koesterke, L; Majewski, S R; Martell, S L; Nidever, D; Pinsonneault, M H; O'Connell, J; Shetrone, M; Smith, V V; Wilson, J C; Zasowski, G

    2013-01-01

    The SDSS-III Apache Point Observatory Galactic Evolution Experiment (APOGEE) is a three year survey that is collecting 100,000 high-resolution spectra in the near-IR across multiple Galactic populations. To derive stellar parameters and chemical compositions from this massive data set, the APOGEE Stellar Parameters and Chemical Abundances Pipeline (ASPCAP) has been developed. Here, we describe empirical calibrations of stellar parameters presented in the first SDSS-III APOGEE data release (DR10). These calibrations were enabled by observations of 559 stars in 20 globular and open clusters. The cluster observations were supplemented by observations of stars in NASA's Kepler field that have well determined surface gravities from asteroseismic analysis. We discuss the accuracy and precision of the derived stellar parameters, considering especially effective temperature, surface gravity, and metallicity; we also briefly discuss the derived results for the abundances of the alpha-elements, carbon, and nitrogen. Ov...

  5. Design Parameters for Evaluating Light Settings and Light Atmosphere in Hospital Wards

    DEFF Research Database (Denmark)

    Stidsen, Lone; Kirkegaard, Poul Henning; Fisker, Anna Marie

    2010-01-01

    When constructing and designing Danish hospitals for the future, patients, staff and guests are in focus. It is found important to have a starting point in healing architecture and create an environment with knowledge of users sensory and functionally needs and looks at how hospital wards can...... support patients’ experience or maybe even have a positive influence on the recovery process. Thus at a general level, it is a crucial task to investigate how aspects such as the design of the environment, arts, lights, sounds can support and improve the patients’ recovery rate and the satisfaction...... of staff and guests in the future hospital. This paper is based on Böhmes G. concept of atmosphere dealing with the effect of light in experiencing atmosphere, and the importance having a holistic approach when designing a pleasurable light atmosphere. It shows important design parameters for pleasurable...

  6. Testing iSpec for the determination of atmospheric parameters and abundances of δ Cephei and RR Lyrae

    Science.gov (United States)

    Blanco-Cuaresma, S.; Anderson, R. I.; Eyer, L.; Mowlavi, N.

    2017-03-01

    Classical Cepheids and RR Lyrae stars are radially pulsating stars where the spectral type varies according to pulsation phase. Several studies used synthesis and the equivalent width method to determine the variations of effective temperature, surface gravity and metallicity for classical Cepheids and RR Lyrae stars (Luck and Andrievsky 2004; Kovtyukh et al. 2005; Andrievsky et al 2005; Luck et al 2008; Takeda et al. 2013; Fossati et al. 2014). We evaluated the applicability of iSpec (Blanco-Cuaresma et al. 2014 - http://www.blancocuaresma.com/s/), which has been extensively used with non-pulsating FGK stars, and derived atmospheric parameters as a function of phase for δ Cephei and RR Lyrae (the two prototypes stars for each class). The results showed that when we apply a non-adapted traditional spectroscopic method to pulsating stars, derived gravities do not seem to follow a physically logical evolution. Nevertheless, metallicity is globally stable and effective temperature variations globally agree with expectations from the radius variations indicated by the radial velocity variability. Max/min values and average results agree with the literature. In terms of broadening parameters, macroturbulent and projected rotation velocities are very difficult to disentangle even if their profiles are not exactly the same. Individual chemical abundances as function of phase are stable as it was expected (the chemical composition of the star should not vary). We plan to use this information to identify absorption lines that are reliable and stable (less affected by blending) during the whole pulsating cycle. This new line selection may help to improve the determination of atmospheric parameters and it could allow us to be more confident in the study of other less known Cepheids and RR Lyrae stars.

  7. Correlation of fungi and endotoxin with PM2.5 and meteorological parameters in atmosphere of Sao Paulo, Brazil

    Science.gov (United States)

    Degobbi, Cristiane; Lopes, Fernanda D. T. Q. S.; Carvalho-Oliveira, Regiani; Muñoz, Julian Esteban; Saldiva, Paulo H. N.

    2011-04-01

    Particulate matter, especially PM2.5, is associated with increased morbidity and mortality from respiratory diseases. Studies that focus on the chemical composition of the material are frequent in the literature, but those that characterize the biological fraction are rare. The objectives of this study were to characterize samples collected in Sao Paulo, Brazil on the quantity of fungi and endotoxins associated with PM2.5, correlating with the mass of particulate matter, chemical composition and meteorological parameters. We did that by Principal Component Analysis (PCA) and multiple linear regressions. The results have shown that fungi and endotoxins represent significant portion of PM2.5, reaching average concentrations of 772.23 spores μg -1 of PM2.5 (SD: 400.37) and 5.52 EU mg -1 of PM2.5 (SD: 4.51 EU mg -1), respectively. Hyaline basidiospores, Cladosporium and total spore counts were correlated to factor Ba/Ca/Fe/Zn/K/Si of PM2.5 ( p Endotoxin was positively correlated with the atmospheric temperature ( p < 0.05). This study has shown that bioaerosol is present in considerable amounts in PM2.5 in the atmosphere of Sao Paulo, Brazil. Some fungi were correlated with soil particle resuspension and mass of particulate matter. Therefore, the relative contribution of bioaerosol in PM2.5 should be considered in future studies aimed at evaluating the clinical impact of exposure to air pollution.

  8. Improved determination of the atmospheric parameters of the pulsating sdB star Feige 48

    Directory of Open Access Journals (Sweden)

    Chayer P.

    2013-03-01

    Full Text Available Given the importance of Feige 48 as an sdB pulsator, we sought to obtain the best possible estimates of its spectroscopic parameters with a grid of NLTE metal-blanketed model atmospheres constructed especially for that star. This small grid of 150 models includes 8 metallic elements whose abundances have been determined previously and reported in the literature. Our fitting procedure found the following parameters for Feige 48: Teff = 29 504 K, log g = 5.41 and log N(He/N(H = −2.90. These results are in very good agreement with previous spectroscopic estimates (which generally ignore either NLTE effects or metal blanketing, thus indicating that metal line-blanketing in NLTE – modeled for the first time here – is not a dominant factor in the atmosphere of Feige 48.

  9. Wigner distribution function and kurtosis parameter of vortex beams propagating through turbulent atmosphere

    Science.gov (United States)

    Suo, Qiangbo; Han, Yiping; Cui, Zhiwei

    2017-09-01

    Based on the extended Huygens-Fresnel integral, the analytical expressions for the Wigner distribution function (WDF) and kurtosis parameter of partially coherent flat-topped vortex (PCFTV) beams propagating through atmospheric turbulence and free space are derived. The WDF and kurtosis parameter of PCFTV beams through turbulent atmosphere are discussed with numerical examples. The numerical results show that the beam quality depends on the structure constants, the inner scale turbulence, the outer scale turbulence, the spatial correlation length, the wave length and the beam order. PCFTV beams are less affected by turbulence than partially flat-topped coherent (PCFT) beams under the same conditions, and will be useful in free-space optical communications.

  10. Transport of Chemical Vapors from Subsurface Sources to Atmosphere as Affected by Shallow Subsurface and Atmospheric Conditions

    Science.gov (United States)

    Rice, A. K.; Smits, K. M.; Hosken, K.; Schulte, P.; Illangasekare, T. H.

    2012-12-01

    Understanding the movement and modeling of chemical vapor through unsaturated soil in the shallow subsurface when subjected to natural atmospheric thermal and mass flux boundary conditions at the land surface is of importance to applications such as landmine detection and vapor intrusion into subsurface structures. New, advanced technologies exist to sense chemical signatures at the land/atmosphere interface, but interpretation of these sensor signals to make assessment of source conditions remains a challenge. Chemical signatures are subject to numerous interactions while migrating through the unsaturated soil environment, attenuating signal strength and masking contaminant source conditions. The dominant process governing movement of gases through porous media is often assumed to be Fickian diffusion through the air phase with minimal or no quantification of other processes contributing to vapor migration, such as thermal diffusion, convective gas flow due to the displacement of air, expansion/contraction of air due to temperature changes, temporal and spatial variations of soil moisture and fluctuations in atmospheric pressure. Soil water evaporation and interfacial mass transfer add to the complexity of the system. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmosphere interface and use the resulting dataset to test existing theories on subsurface gas flow and iterate between numerical modeling efforts and experimental data. Ultimately, we aim to update conceptual models of shallow subsurface vapor transport to include conditionally significant transport processes and inform placement of mobile sensors and/or networks. We have developed a two-dimensional tank apparatus equipped with a network of sensors and a flow-through head space for simulation of the atmospheric interface. A detailed matrix of realistic atmospheric boundary conditions was applied in a series of

  11. 26TH AFOSR Chemical & Atmospheric Sciences Program Review FY81.

    Science.gov (United States)

    1982-03-01

    Bernstein, and A. Yoshihara, Chem. Phys. Let?., 82, 138 (1981). "On the Phase Transition in Benzil," A. Yoshihara, W. 0. Wilber , E. R. Bernstein, and J. C...Korea) 7. JUNIOR RESEARCH PERSONIEL: r. Ken Kosnik 8. PUBLICATIONS: S,4olecular BeaUm Sampling," A. J. Colussi and Sidney W. Benson, Int. J. Chem...of C2H4DCl. A Chemical Clock to Explore Highly Excited Molecules," P. J. Papagiannakopoulos, Ken Kosnik, and Sidney W. Benson, Int. J. Chem. Kin. (1982

  12. Characterization of Aerosols and Atmospheric Parameters From Space-Borne and Surface-Based Remote Sensing

    Science.gov (United States)

    2016-06-07

    Characterization Of Aerosols And Atmospheric Parameters From Space-Borne And Surface-Based Remote Sensing Si-Chee Tsay Yoram J. Kaufman 301-614-6188...term goal for this project is threefold: (i) to develop remote sensing procedures for determinng aerosol loading and optical properties over land and...can lead to the best results. OBJECTIVES In preparation for the era of hyperspectral sensors in remote sensing , we need to establish a climatology of

  13. Life Prediction of Atmospheric Plasma-Sprayed Thermal Barrier Coatings Using Temperature-Dependent Model Parameters

    Science.gov (United States)

    Zhang, B.; Chen, Kuiying; Baddour, N.; Patnaik, P. C.

    2017-06-01

    The failure analysis and life prediction of atmospheric plasma-sprayed thermal barrier coatings (APS-TBCs) were carried out for a thermal cyclic process. A residual stress model for the top coat of APS-TBC was proposed and then applied to life prediction. This residual stress model shows an inversion characteristic versus thickness of thermally grown oxide. The capability of the life model was demonstrated using temperature-dependent model parameters. Using existing life data, a comparison of fitting approaches of life model parameters was performed. A larger discrepancy was found for the life predicted using linearized fitting parameters versus temperature compared to those using non-linear fitting parameters. A method for integrating the residual stress was proposed by using the critical time of stress inversion. The role of the residual stresses distributed at each individual coating layer was explored and their interplay on the coating's delamination was analyzed.

  14. Search for Differences in Oscillation Parameters for Atmospheric Neutrinos and Antineutrinos at Super-Kamiokande

    CERN Document Server

    Abe, K; Iida, T; Ikeda, M; Iyogi, K; Kameda, J; Koshio, Y; Kozuma, Y; Miura, M; Moriyama, S; Nakahata, M; Nakayama, S; Obayashi, Y; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Takenaga, Y; Takeuchi, Y; Ueno, K; Ueshima, K; Watanabe, H; Yamada, S; Yokozawa, T; Ishihara, C; Kaji, H; Lee, K P; Kajita, T; Kaneyuki, K; McLachlan, T; Okumura, K; Shimizu, Y; Tanimoto, N; Martens, K; Vagins, M R; Labarga, L; Magro, L M; Dufour, F; Kearns, E; Litos, M; Raaf, J L; Stone, J L; Sulak, L R; Goldhaber, M; Bays, K; Kropp, W R; Mine, S; Regis, C; Smy, M B; Sobel, H W; Ganezer, K S; Hill, J; Keig, W E; Jang, J S; Kim, J Y; Lim, I T; Albert, J B; Scholberg, K; Walter, C W; Wendell, R; Wongjirad, T M; Tasaka, S; Learned, J G; Matsuno, S; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Nishikawa, K; Nishino, H; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Suzuki, A T; Minamino, A; Nakaya, T; Fukuda, Y; Itow, Y; Mitsuka, G; Tanaka, T; Jung, C K; Taylor, I; Yanagisawa, C; Ishino, H; Kibayashi, A; Mino, S; Mori, T; Sakuda, M; Toyota, H; Kuno, Y; Kim, S B; Yang, B S; Ishizuka, T; Okazawa, H; Choi, Y; Nishijima, K; Koshiba, M; Yokoyama, M; Totsuka, Y; Chen, S; Heng, Y; Yang, Z; Zhang, H; Kielczewska, D; Mijakowski, P; Connolly, K; Dziomba, M; Wilkes, R J

    2011-01-01

    We present a search for differences in the oscillations of antineutrinos and neutrinos in the Super-Kamiokande -I, -II, and -III atmospheric neutrino sample. Under a two-flavor disappearance model with separate mixing parameters between neutrinos and antineutrinos, we find no evidence for a difference in oscillation parameters. Best fit antineutrino mixing is found to be at (dm2bar, sin2 2 thetabar) = (2.0x10^-3 eV^2, 1.0) and is consistent with the overall Super-K measurement.

  15. Thin-layer chromatography and mass spectrometry coupled using proximal probe thermal desorption with electrospray or atmospheric pressure chemical ionization.

    Science.gov (United States)

    Ovchinnikova, Olga S; Van Berkel, Gary J

    2010-06-30

    An atmospheric pressure proximal probe thermal desorption sampling method coupled with secondary ionization by electrospray or atmospheric pressure chemical ionization was demonstrated for the mass spectrometric analysis of a diverse set of compounds (dyestuffs, pharmaceuticals, explosives and pesticides) separated on various high-performance thin-layer chromatography plates. Line scans along or through development lanes on the plates were carried out by moving the plate relative to a stationary heated probe positioned close to or just touching the stationary phase surface. Vapors of the compounds thermally desorbed from the surface were drawn into the ionization region of a combined electrospray ionization/atmospheric pressure chemical ionization source where they merged with reagent ions and/or charged droplets from a corona discharge or an electrospray emitter and were ionized. The ionized components were then drawn through the atmospheric pressure sampling orifice into the vacuum region of a triple quadrupole mass spectrometer and detected using full scan, single ion monitoring, or selected reaction monitoring mode. Studies of variable parameters and performance metrics including the proximal probe temperature, gas flow rate into the ionization region, surface scan speed, read-out resolution, detection limits, and surface type are discussed.

  16. New Method to Acquire Chemomechanical Parameters of Diverse Chemical Reactions

    Science.gov (United States)

    2011-01-30

    a model for reversible and pseudoreversible isothermal photoactuation based on the Carnot -type formalism and used it to estimate the maximum single...reactions offers unique attributes, e.g., potentially fast actuation cycles , high chemical and mechanical stability, flexible device design and

  17. Estimating stellar atmospheric parameters based on LASSO and support-vector regression

    CERN Document Server

    Lu, Yu

    2015-01-01

    A scheme for estimating atmospheric parameters T$_{eff}$, log$~g$, and [Fe/H] is proposed on the basis of Least Absolute Shrinkage and Selection Operator (LASSO) algorithm and Haar wavelet. The proposed scheme consists of three processes. A spectrum is decomposed using the Haar wavelet transform and low-frequency components at the fourth level are considered as candidate features. Then, spectral features from the candidate features are detected using the LASSO algorithm to estimate the atmospheric parameters. Finally, atmospheric parameters are estimated from the extracted spectral features using the support-vector regression (SVR) method. The proposed scheme was evaluated using three sets of stellar spectra respectively from Sloan Digital Sky Survey (SDSS), Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST), and Kurucz's model, respectively. The mean absolute errors are as follows: for 40~000 SDSS spectra, 0.0062 dex for log~T$_{eff}$ (85.83 K for T$_{eff}$), 0.2035 dex for log$~g$ and 0.1512...

  18. Estimating stellar atmospheric parameters based on LASSO and support-vector regression

    Science.gov (United States)

    Lu, Yu; Li, Xiangru

    2015-09-01

    A scheme for estimating atmospheric parameters Teff, log g and [Fe/H] is proposed on the basis of the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm and Haar wavelet. The proposed scheme consists of three processes. A spectrum is decomposed using the Haar wavelet transform and low-frequency components at the fourth level are considered as candidate features. Then, spectral features from the candidate features are detected using the LASSO algorithm to estimate the atmospheric parameters. Finally, atmospheric parameters are estimated from the extracted spectral features using the support-vector regression (SVR) method. The proposed scheme was evaluated using three sets of stellar spectra from the Sloan Digital Sky Survey (SDSS), Large Sky Area Multi-object Fibre Spectroscopic Telescope (LAMOST) and Kurucz's model, respectively. The mean absolute errors are as follows: for the 40 000 SDSS spectra, 0.0062 dex for log Teff (85.83 K for Teff), 0.2035 dex for log g and 0.1512 dex for [Fe/H]; for the 23 963 LAMOST spectra, 0.0074 dex for log Teff (95.37 K for Teff), 0.1528 dex for log g and 0.1146 dex for [Fe/H]; for the 10 469 synthetic spectra, 0.0010 dex for log Teff (14.42K for Teff), 0.0123 dex for log g and 0.0125 dex for [Fe/H].

  19. Inferring the unobserved chemical state of the atmosphere: idealized data assimilation experiments

    Science.gov (United States)

    Knote, C. J.; Barré, J.; Eckl, M.; Hornbrook, R. S.; Wiedinmyer, C.; Emmons, L. K.; Orlando, J. J.; Tyndall, G. S.; Arellano, A. F.

    2015-12-01

    Chemical data assimilation in numerical models of the atmosphere is a venture into uncharted territory, into a world populated by a vast zoo of chemical compounds with strongly non-linear interactions. Commonly assimilated observations exist for only a selected few of those key gas phase compounds (CO, O3, NO2), and assimilating those in models assuming linearity begs the question of: To what extent we can infer the remainder to create a new state of the atmosphere that is chemically sound and optimal? In our work we present the first systematic investigation of sensitivities that exist between chemical compounds under varying ambient conditions in order to inform scientists on the potential pitfalls when assimilating single/few chemical compounds into complex 3D chemistry transport models. In order to do this, we developed a box-modeling tool (BOXMOX) based on the Kinetic PreProcessor (KPP, http://people.cs.vt.edu/~asandu/Software/Kpp/) in which we can conduct simulations with a suite of 'mechanisms', sets of differential equations describing atmospheric photochemistry. The box modeling approach allows us to sample a large variety of atmospheric conditions (urban, rural, biogenically dominated, biomass burning plumes) to capture the range of chemical conditions that typically exist in the atmosphere. Included in our suite are 'lumped' mechanisms typically used in regional and global chemistry transport models (MOZART, RACM, RADM2, SAPRC99, CB05, CBMZ) as well as the Master Chemical Mechanism (MCM, U. Leeds). We will use an Observing System Simulation Experiment approach with the MCM prediction as 'nature' or 'true' state, assimilating idealized synthetic observations (from MCM) into the different ‚lumped' mechanisms under various environments. Two approaches to estimate the sensitivity of the chemical system will be compared: 1) adjoint: using Jacobians computed by KPP and 2) ensemble: by perturbing emissions, temperature, photolysis rates, entrainment, etc., in

  20. Chemical Characterization and Kinetic parameter determination under Rancimat test conditions of four monovarietal virgin olive oils grown in Morocco

    Directory of Open Access Journals (Sweden)

    Gharby Said

    2016-07-01

    Full Text Available The aim of the present investigation is to compare the chemical characterization of four monovarietal virgin olive oils obtained from fruits of olive trees grown in Morocco (Picholine, Picual, Arebiquine, Koroneiki with kinetic parameters of oxidation based on Rancimat measurements and finally to assess the oxidative stabilities. The examined oils from different varieties showed a chemical composition within the regulatory limits. Rancimat measurements of induction times were carried out under isothermal conditions in an air atmosphere at temperatures from 373 to 423 K with intervals of 10 K. Using the Arrhenius-type correlation between the inverse induction times and the absolute temperature of the measurements, Ea, Z, and k values for oil oxidation under Rancimat conditions were calculated. The primary kinetic parameters derived from this method were qualitatively consistent and help to evaluate the oxidative stabilities of oils at increased temperatures.

  1. THE EVOLUTION OF SOME CHEMICAL PARAMETERS DURING CUCUMBERS PICKLING

    OpenAIRE

    2013-01-01

    The evolution of some chemical indices (salt content, pH and ascorbic acid content) during cucumbers pickling was the purpose of this paper. The experience materials used in this work were: cucumbers cornichon, iodized and non-iodized salt and tap water. The samples containing cucumbers in iodized and in non-iodized brine were left to ferment, and at 3-4 days were made determinations of above mentioned indices. During pickling process, non-iodized salt has accumulated in cucumber ...

  2. Laboratory experiments for estimating chemical osmotic parameters of mudstones

    Science.gov (United States)

    Miyoshi, S.; Tokunaga, T.; Mogi, K.; Ito, K.; Takeda, M.

    2010-12-01

    Recent studies have quantitatively shown that mudstone can act as semi-permeable membrane and can generate abnormally high pore pressure in sedimentary basins. Reflection coefficient is one of the important properties that affect the chemical osmotic behavior of mudstones. However, not many quantitative studies on the reflection coefficient of mudstones have been done. We have developed a laboratory apparatus to observe chemical osmotic behavior, and a numerical simulation technique to estimate the reflection coefficient and other relating properties of mudstones. A core sample of siliceous mudstone obtained from the drilled core at Horonobe, Japan, was set into the apparatus and was saturated by 0.1mol/L sodium chloride solution. Then, the up-side reservoir was replaced with 0.05mol/L sodium chloride solution, and temporal changes of both pressure and concentration of the solution in both up-side and bottom-side reservoirs were measured. Using the data obtained from the experiment, we estimated the reflection coefficient, effective diffusion coefficient, hydraulic conductivity, and specific storage of the sample by fitting the numerical simulation results with the observed ones. A preliminary numerical simulation of groundwater flow and solute migration was conducted in the area where the core sample was obtained, using the reflection coefficient and other properties obtained from this study. The result suggested that the abnormal pore pressure observed in the region can be explained by the chemical osmosis.

  3. Numerical simulation of chemical processes in helium plasmas in atmosphere environment

    Institute of Scientific and Technical Information of China (English)

    欧阳建明; 郭伟; 王龙; 邵福球

    2005-01-01

    A model is built to study chemical processes in plasmas generated in helium with trace amounts of air at atmospheric pressure or low pressures. The plasma lifetimes and the temporal evolutions of the main charged species are presented. The plasma lifetimes are longer than that in air plasma at atmospheric pressure, but this is not true at low pressures. The electron number density does not strictly obey the exponential damping law in a longer period.

  4. Forecasting surface-layer atmospheric parameters at the Large Binocular Telescope site

    Science.gov (United States)

    Turchi, Alessio; Masciadri, Elena; Fini, Luca

    2017-04-01

    In this paper, we quantify the performance of an automated weather forecast system implemented on the Large Binocular Telescope (LBT) site at Mt Graham (Arizona) in forecasting the main atmospheric parameters close to the ground. The system employs a mesoscale non-hydrostatic numerical model (Meso-Nh). To validate the model, we compare the forecasts of wind speed, wind direction, temperature and relative humidity close to the ground with the respective values measured by instrumentation installed on the telescope dome. The study is performed over a large sample of nights uniformly distributed over 2 yr. The quantitative analysis is done using classical statistical operators [bias, root-mean-square error (RMSE) and σ] and contingency tables, which allows us to extract complementary key information, such as the percentage of correct detections (PC) and the probability of obtaining a correct detection within a defined interval of values (POD). The results of our study indicate that the model performance in forecasting the atmospheric parameters we have just cited are very good, in some cases excellent: RMSE for temperature is below 1°C, for relative humidity it is 14 per cent and for the wind speed it is around 2.5 m s-1. The relative error of the RMSE for wind direction varies from 9 to 17 per cent depending on the wind speed conditions. This work is performed in the context of the ALTA (Advanced LBT Turbulence and Atmosphere) Center project, whose final goal is to provide forecasts of all the atmospheric parameters and the optical turbulence to support LBT observations, adaptive optics facilities and interferometric facilities.

  5. Further signatures of long-term changes in atmospheric electrical parameters observed in Europe

    Directory of Open Access Journals (Sweden)

    F. Märcz

    2005-09-01

    Full Text Available Long-term decreases found recently in both the atmospheric electrical potential gradient (PG and the air-Earth current density (Jz, using observation series from the UK and Hungary, have motivated studies of other European data. Two surface data series somewhat longer than a decade were available: PG data obtained at Serra do Pilar (Portugal, and PG, Jz and positive air conductivity measurements at Athens (Greece. Selecting data to minimise local effects, the 1960–1971 Serra do Pilar PG values decrease at dawn and in the evening. Dawn data obtained at Athens (1967–1977 indicate a reduction in Jz, while the simultaneous PG values there increase (coincident air conductivity values decrease for the periods investigated. The Athens PG increase is attributed to local aerosol influences, typical of urban environments. Despite the urban influence, the Athens Jz shows similarities with soundings of the ionospheric potential. The decline in Jz at Athens occurs simultaneously with a decrease reported previously in Jz at Kew (UK, indicating that, at least, a regional decrease in the global atmospheric electrical circuit occurred during part of the twentieth century. Similar surface changes occur in European atmospheric electrical parameters, with a decrease of about 0.5% to 0.7% per year between 1920 and 1970 (possibly extending back to 1898, an annual decrease of between 2.7 and 3.4%, between 1959 and 1971 and a continued decrease of about ~1% per year between 1967 and 1984, possibly still continuing.

    Keywords. Meteorology and atmospheric dynamics (Atmospheric electricity – Geomagnetism and paleomagnetism (Time variations, secular and long term – Atmospheric composition and structure (Aerosols and particles

  6. The influence of vegetation fires on the chemical composition of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Helas, H.; Pienaar, J.J. [Max Planck Institute of Chemistry, Mainz (Germany). Biogeochemistry Dept.

    1996-03-01

    The authors discuss the influence of vegetation fires on the chemical composition of the atmosphere and compare the contribution of these fires to atmospheric pollution with other natural and anthropogenic sources. In the case of South Africa, the comparison shows that for CO{sub 2}, NO{sub x} and SO{sub 2}, industrial coal use is the largest contributor whereas for CO and CH{sub 4}, vegetation fires contribute the most. As a source of atmospheric NO{sub x} motor vehicles are more important than emissions from veld fires.

  7. Forecast of surface layer meteorological parameters at Cerro Paranal with a mesoscale atmospherical model

    CERN Document Server

    Lascaux, Franck; Fini, Luca

    2015-01-01

    This article aims at proving the feasibility of the forecast of all the most relevant classical atmospherical parameters for astronomical applications (wind speed and direction, temperature) above the ESO ground-base site of Cerro Paranal with a mesoscale atmospherical model called Meso-Nh. In a precedent paper we have preliminarily treated the model performances obtained in reconstructing some key atmospherical parameters in the surface layer 0-30~m studying the bias and the RMSE on a statistical sample of 20 nights. Results were very encouraging and it appeared therefore mandatory to confirm such a good result on a much richer statistical sample. In this paper, the study was extended to a total sample of 129 nights between 2007 and 2011 distributed in different parts of the solar year. This large sample made our analysis more robust and definitive in terms of the model performances and permitted us to confirm the excellent performances of the model. Besides, we present an independent analysis of the model p...

  8. VLTI/AMBER observations of cold giant stars: atmospheric structures and fundamental parameters

    CERN Document Server

    Arroyo-Torres, B; Marcaide, J M; Wittkowski, M; Guirado, J C; Hauschildt, P H; Quirrenbach, A; Fabregat, J

    2014-01-01

    The main goal of this research is to determine the angular size and the atmospheric structures of cool giant stars and to compare them with hydrostatic stellar model atmospheres, to estimate the fundamental parameters, and to obtain a better understanding of the circumstellar environment. We conducted spectro-interferometric observations of epsilon Oct, beta Peg, NU Pav, and psi Peg in the near-infrared K band (2.13-2.47 microm), and gamma Hya (1.9-2.47 microm) with the VLTI/AMBER instrument at medium spectral resolution. To obtain the fundamental parameters, we compared our data with hydrostatic atmosphere models (PHOENIX). We estimated the Rosseland angular diameters of epsilon Oct, beta Peg, NU Pav, psi Peg, and gamma Hya. Together with distances and bolometric fluxes, we estimated radii, effective temperatures, and luminosities of our targets. In the beta Peg visibility, we observed a molecular layer of CO with a size similar to that modeled with PHOENIX. However, there is an additional slope in absorptio...

  9. Neutrino Oscillations in the Atmospheric Parameter Region: From the Early Experiments to the Present

    Directory of Open Access Journals (Sweden)

    G. Giacomelli

    2013-01-01

    Full Text Available The aim of this paper is to provide a historical perspective on the main experimental steps which led to the current picture of neutrino oscillations in the “atmospheric parameter region.” In the 1980s a deficit of atmospheric muon neutrinos was observed with the first generation of underground experiments. In the following decade new experiments provided fundamental results which led to the discovery claims in 1998. At the beginning of the new century neutrino beams of medium and high energy became available and several long baseline experiments were performed and added new information to the atmospheric neutrino puzzle. The interpretation of the results of atmospheric and long baseline neutrino experiments was in terms of dominant νμ→ντ oscillations. Short recollections are made of the SNO solar neutrino measurements, of the results with neutrino telescopes, and of reactor neutrinos to measure sin2θ13. Over the years the phenomenological picture improved in completeness and increased in complexity. A short perspective concludes the paper.

  10. Surface desorption atmospheric pressure chemical ionization mass spectrometry for direct ambient sample analysis without toxic chemical contamination.

    Science.gov (United States)

    Chen, Huanwen; Zheng, Jian; Zhang, Xie; Luo, Mingbiao; Wang, Zhichang; Qiao, Xiaolin

    2007-08-01

    Ambient mass spectrometry, pioneered with desorption electrospray ionization (DESI) technique, is of increasing interest in recent years. In this study, a corona discharge ionization source is adapted for direct surface desorption chemical ionization of compounds on various surfaces at atmospheric pressure. Ambient air, with about 60% relative humidity, is used as a reagent to generate primary ions such as H(3)O(+), which is then directed to impact the sample surface for desorption and ionization. Under experimental conditions, protonated or deprotonated molecules of analytes present on various samples are observed using positive or negative corona discharge. Fast detection of trace amounts of analytes present in pharmaceutical preparations, viz foods, skins and clothes has been demonstrated without any sample pretreatment. Taking the advantage of the gasless setup, powder samples such as amino acids and mixtures of pharmaceutical preparations are rapidly analyzed. Impurities such as sudan dyes in tomato sauce are detected semiquantitatively. Molecular markers (e.g. putrescine) for meat spoilage are successfully identified from an artificially spoiled fish sample. Chemical warfare agent stimulants, explosives and herbicides are directly detected from the skin samples and clothing exposed to these compounds. This provides a detection limit of sub-pg (S/N > or = 3) range in MS2. Metabolites and consumed chemicals such as glucose are detected successfully from human skins. Conclusively, surface desorption atmospheric pressure chemical ionization (DAPCI) mass spectrometry, without toxic chemical contamination, detects various compounds in complex matrices, showing promising applications for analyses of human related samples.

  11. Simulation of low-temperature, atmospheric-pressure plasma enhanced chemical vapor deposition reactors

    OpenAIRE

    Lorant, Christophe; Descamps, Pierre; De Wilde, Juray; 1st BeLux workshop on “Coating, Materials, surfaces and Interfaces

    2014-01-01

    The simulation of low-temperature, atmospheric-pressure plasma enhanced chemical vapor deposition reactors is challenging due to the coupling of the fluid dynamics, the chemical reactions and the electric field and the stiffness of the resulting mathematical system. The model equations and the rigorous model reduction to reduce the stiffness are addressed in this paper. Considering pure nitrogen plasma, simulations with two configurations are discussed.

  12. Precursor ion scan profiles of acylcarnitines by atmospheric pressure thermal desorption chemical ionization tandem mass spectrometry.

    Science.gov (United States)

    Paglia, Giuseppe; D'Apolito, Oceania; Corso, Gaetano

    2008-12-01

    The fatty acyl esters of L-carnitine (acylcarnitines) are useful biomarkers for the diagnosis of some inborn errors of metabolism analyzed by liquid chromatography/tandem mass spectrometry. In this study the acylcarnitines were analyzed by atmospheric pressure thermal desorption chemical ionization using a commercial tandem mass spectrometer (APTDCI-MS/MS). The method is based on the precursor ion scan mode determination of underivatized acylcarnitines desorbed from samples by a hot desolvation gas flow and ionized by a corona pin discharge. During desorption/ionization step the temperature induces the degradation of acylcarnitines; nevertheless, the common fragment to all acylcarnitines [MH-59](+) is useful for analyzing their profile. APTDCI parameters, including angle of collection and incidence, gas flows and temperatures, were optimized for acylcarnitines. The experiments were performed drying 2 microL of an equimolar mixture of acylcarnitine standards on a glass slide. The specificity was evaluated by comparing product ion spectra and the precursor ion spectra of 85 m/z of acylcarnitines obtained by the APTDCI method and by electrospray ionization flow injection analysis (ESI-FIA). The method was also employed to analyze acylcarnitines extracted from a pathological dried blood spot and a control. The method enables analysis of biological samples and recognition of some acylcarnitines that are diagnostic markers of inherited metabolic diseases. The intrinsic high-throughput analysis of the ambient desorption ionization methods offers a new opportunity either for its potential application in clinical chemistry and for the expanded screening of some inborn errors of metabolism.

  13. Chain Assemblies from Nanoparticles Synthesized by Atmospheric Pressure Plasma Enhanced Chemical Vapor Deposition: The Computational View.

    Science.gov (United States)

    Mishin, Maxim V; Zamotin, Kirill Y; Protopopova, Vera S; Alexandrov, Sergey E

    2015-12-01

    This article refers to the computational study of nanoparticle self-organization on the solid-state substrate surface with consideration of the experimental results, when nanoparticles were synthesised during atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD). The experimental study of silicon dioxide nanoparticle synthesis by AP-PECVD demonstrated that all deposit volume consists of tangled chains of nanoparticles. In certain cases, micron-sized fractals are formed from tangled chains due to deposit rearrangement. This work is focused on the study of tangled chain formation only. In order to reveal their formation mechanism, a physico-mathematical model was developed. The suggested model was based on the motion equation solution for charged and neutral nanoparticles in the potential fields with the use of the empirical interaction potentials. In addition, the computational simulation was carried out based on the suggested model. As a result, the influence of such experimental parameters as deposition duration, particle charge, gas flow velocity, and angle of gas flow was found. It was demonstrated that electrical charges carried by nanoparticles from the discharge area are not responsible for the formation of tangled chains from nanoparticles, whereas nanoparticle kinetic energy plays a crucial role in deposit morphology and density. The computational results were consistent with experimental results.

  14. The role of atmospheric greenhouse gases, orbital parameters, and southern ocean gateways: an idealized model study

    CERN Document Server

    Hertwig, Eileen; Fraedrich, Klaus

    2016-01-01

    A set of idealized experiments are performed to analyze the competing effects of declining atmospheric CO2 concentrations, the opening of an ocean gateway, and varying orbital parameters. These forcing mechanisms, which influence the global mean climate state, may have played a role for triggering climate transitions of the past (for example during the Eocene-Oligocene climate transition and the build-up of the Antarctic Ice Sheet). Sensitivity simulations with a coupled atmosphere-ocean general circulation model are conducted to test these three forcings and their roles for the global climate. The simulations are carried out under idealized conditions to focus on the essentials. The combination of all three forcings triggers a climate transition which resembles the onset of the Antarctic glaciation. In particular, the temperatures in the southern high latitudes decrease and snow accumulates constantly. Moreover, the relative importance of each possible forcing is explored. All three of the mechanisms (atmosp...

  15. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    Science.gov (United States)

    Tarasenko, V. F.

    2011-05-01

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ˜5 × 1010 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU m , where U m is the maximum gap voltage, is relatively small.

  16. A Uniform Set of DAV Atmospheric Parameters to Enable Differential Seismology

    Science.gov (United States)

    Fuchs, Joshua T.; Dunlap, Bart H.; Clemens, J. Christopher; Meza, Jesus; Dennihy, Erik

    2017-01-01

    We have observed over 130 hydrogen-atmosphere pulsating white dwarfs (DAVs) using the Goodman Spectrograph on the SOAR Telescope. This includes all known DAVs south of +10° declination as well as those observed by the K2 mission. Because it employs a single instrument, our sample allows us to carefully explore systematics in the determination of atmospheric parameters, Teff and log(g). While some systematics show changes of up to 300 K in Teff and 0.06 in log(g), the relative position of each star in the Teff-log(g) plane is more secure. These relative positions, combined with differences in pulsation spectra, will allow us to investigate relative differences in the structure and composition of over 130 DAVs through differential seismology.

  17. A new chemical scheme to study carbon-rich exoplanet atmospheres

    CERN Document Server

    Venot, Olivia; Agúndez, Marcelino; Decin, Leen; Bounaceur, Roda

    2015-01-01

    Atmospheres with a high C/O ratio are expected to contain an important quantity of hydrocarbons, including heavy molecules (with more than 2 carbon atoms). To study correctly these C-rich atmospheres, a chemical scheme adapted to this composition is necessary. We have implemented a chemical scheme that can describe the kinetics of species with up to 6 carbon atoms. This chemical scheme has been developed with specialists of combustion and validated through experiments on a wide range of T and P. This chemical network is available on the online database KIDA. We have created a grid of 12 models to explore different thermal profiles and C/O ratios. For each of them, we have compared the chemical composition determined with a C0-C2 chemical scheme (species with up to 2 carbon atoms) and with the C0-C6 scheme. We found no difference in the results obtained with the two schemes when photolyses are not included in the model, whatever the temperature of the atmosphere. In contrast, when there is photochemistry, diff...

  18. Response of the global climate to changes in atmospheric chemical composition due to fossil fuel burning

    Science.gov (United States)

    Hameed, S.; Cess, R. D.; Hogan, J. S.

    1980-01-01

    Recent modeling of atmospheric chemical processes (Logan et al, 1978; Hameed et al, 1979) suggests that tropospheric ozone and methane might significantly increase in the future as the result of increasing anthropogenic emissions of CO, NO(x), and CH4 due to fossil fuel burning. Since O3 and CH4 are both greenhouse gases, increases in their concentrations could augment global warming due to larger future amounts of atmospheric CO2. To test the possible climatic impact of changes in tropospheric chemical composition, a zonal energy-balance climate model has been combined with a vertically averaged tropospheric chemical model. The latter model includes all relevant chemical reactions which affect species derived from H2O, O2, CH4, and NO(x). The climate model correspondingly incorporates changes in the infrared heating of the surface-troposphere system resulting from chemically induced changes in tropospheric ozone and methane. This coupled climate-chemical model indicates that global climate is sensitive to changes in emissions of CO, NO(x) and CH4, and that future increases in these emissions could augment global warming due to increasing atmospheric CO2.

  19. Response of the global climate to changes in atmospheric chemical composition due to fossil fuel burning

    Science.gov (United States)

    Hameed, S.; Cess, R. D.; Hogan, J. S.

    1980-01-01

    Recent modeling of atmospheric chemical processes (Logan et al, 1978; Hameed et al, 1979) suggests that tropospheric ozone and methane might significantly increase in the future as the result of increasing anthropogenic emissions of CO, NO(x), and CH4 due to fossil fuel burning. Since O3 and CH4 are both greenhouse gases, increases in their concentrations could augment global warming due to larger future amounts of atmospheric CO2. To test the possible climatic impact of changes in tropospheric chemical composition, a zonal energy-balance climate model has been combined with a vertically averaged tropospheric chemical model. The latter model includes all relevant chemical reactions which affect species derived from H2O, O2, CH4, and NO(x). The climate model correspondingly incorporates changes in the infrared heating of the surface-troposphere system resulting from chemically induced changes in tropospheric ozone and methane. This coupled climate-chemical model indicates that global climate is sensitive to changes in emissions of CO, NO(x) and CH4, and that future increases in these emissions could augment global warming due to increasing atmospheric CO2.

  20. Deep SDSS optical spectroscopy of distant halo stars I. Atmospheric parameters and stellar metallicity distribution

    CERN Document Server

    Prieto, C Allende; Schlesinger, K J; Lee, Y S; Morrison, H L; Schneider, D P; Beers, T C; Bizyaev, D; Ebelke, G; Malanushenko, E; Malanushenko, V; Oravetz, D; Pan, K; Simmons, A; Simmerer, J; Sobeck, J; Robin, A C

    2014-01-01

    We analyze a sample of tens of thousands of spectra of halo turnoff stars, obtained with the optical spectrographs of the Sloan Digital Sky Survey (SDSS), to characterize the stellar halo population "in situ" out to a distance of a few tens of kpc from the Sun. In this paper we describe the derivation of atmospheric parameters. We also derive the overall stellar metallicity distribution based on F-type stars observed as flux calibrators for the Baryonic Oscillations Spectroscopic Survey (BOSS). Our analysis is based on an automated method that determines the set of parameters of a model atmosphere that reproduces each observed spectrum best. We used an optimization algorithm and evaluate model fluxes by means of interpolation in a precomputed grid. In our analysis, we account for the spectrograph's varying resolution as a function of fiber and wavelength. Our results for early SDSS (pre-BOSS upgrade) data compare well with those from the SEGUE Stellar Parameter Pipeline (SSPP), except for stars with logg (cgs...

  1. Effect of atmospheric parameters on fine particulate concentration in suburban Shanghai

    Institute of Scientific and Technical Information of China (English)

    Jian Yao; Wei Liu; Wangkun Chen; Guanghua Wang; Youshi Zeng; Yu Huang; Jun Lin

    2013-01-01

    A study was conducted on the effect of atmospheric parameters,including temperature,wind speed,and relative humidity,on fine particulate mass concentrations measured inJiading District of Shanghai,China,during the period from January 2009 to January 2010.A sensitivity analysis was applied to investigate the interaction between atmospheric parameters and particulate mass concentration.The experiment revealed that the concentration of particulates increased with particle size from 0.1 to 1.0μm,and decreased with the increase of particle size from 1.0 to 2.5 μm.The effects of atmospheric parameters on fine mass concentrations were significantly particle size-dependent.The PM1.0-2.5 may come from the size increase of smaller particulates after moisture absorption.And the variation of concentrations of PM0.1-1.0was mainly attributed to the accumulation of PM0.1.The ventilation index and dilution index were calculated on the basis of data collected in December 2009.A correlation analysis indicated that there was a significant relation between these two indexes and the particulate concentration by examining the three particle size ranges,0.0-0.1,0.1-1.0,and 1.0-2.5 μm.The Spearman correlation coefficients that related the ventilation index to the concentration for the three particle size ranges were-0.45,-0.56 and-0.47,respectively,while the coefficients that related the dilution index to the concentration were-0.36,-0.42and-0.45,respectively.

  2. Real-Time Flavor Release from French Fries Using Atmospheric Pressure Chemical Ionization-Mass Spectrometry

    NARCIS (Netherlands)

    Loon, W.A.M.; Linssen, J.P.H.; Boelrijk, A.E.M.; Burgering, M.J.M.; Voragen, A.G.J.

    2005-01-01

    Flavor release from French fries was measured with atmospheric pressure chemical ionization-mass spectrometry (APCI-MS) using both assessors (in vivo) and a mouth model system (in vitro). Several volatiles measured with APCI were identified with MS-MS. The effect of frying time, salt addition, and a

  3. Microwave-ultrasound combined reactor suitable for atmospheric sample preparation procedure of biological and chemical products

    NARCIS (Netherlands)

    Lagha, A.; Chemat, S.; Bartels, P.V.; Chemat, F.

    1999-01-01

    A compact apparatus in which a specific position can be irradiated by microwaves (MW) and ultrasound (US) simultaneously has been developed. The MW-US reactor has been designed for atmospheric pressure digestion and dissolution of biological and chemical products. The reactor can treat a range of th

  4. Different atmospheric parameters influence on spectral UV radiation (measurements and modelling)

    Energy Technology Data Exchange (ETDEWEB)

    Chubarova, N.Y. [Moscow State Univ. (Russian Federation). Meteorological Observatory; Krotkov, N.A. [Maryland Univ., MD (United States). JCESS/Meteorology Dept.; Geogdzhaev, I.V.; Bushnev, S.V.; Kondranin, T.V. [SUMGF/MIPT, Dolgoprudny (Russian Federation); Khattatov, V.U. [Central Aerological Observatory, Dolgoprudny (Russian Federation)

    1995-12-31

    The ultraviolet (UV) radiation plays a vital role in the biophysical processes despite its small portion in the total solar flux. UV radiation is subject to large variations at the Earth surface depending greatly on solar elevation, ozone and cloud amount, aerosols and surface albedo. The analysis of atmospheric parameters influence is based on the spectral archive data of three spectral instruments: NSF spectroradiometer (Barrow network) (NSF Polar Programs UV Spectroradiometer Network 1991-1992,1992), spectrophotometer (SUVS-M) of Central Aerological Observatory CAO, spectroradiometer of Meteorological Observatory of the Moscow State University (MO MSU) and model simulations based on delta-Eddington approximation

  5. Atmospheric and Fundamental Parameters of Stars in Hubble's Next Generation Spectral Library

    Science.gov (United States)

    Heap, Sally

    2010-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R approximately 1000 spectra of 374 stars of assorted temperature, gravity, and metallicity. We are presently working to determine the atmospheric and fundamental parameters of the stars from the NGSL spectra themselves via full-spectrum fitting of model spectra to the observed (extinction-corrected) spectrum over the full wavelength range, 0.2-1.0 micron. We use two grids of model spectra for this purpose: the very low-resolution spectral grid from Castelli-Kurucz (2004), and the grid from MARCS (2008). Both the observed spectrum and the MARCS spectra are first degraded in resolution to match the very low resolution of the Castelli-Kurucz models, so that our fitting technique is the same for both model grids. We will present our preliminary results with a comparison with those from the Sloan/Segue Stellar Parameter Pipeline, ELODIE, and MILES, etc.

  6. A New Ensemble of Perturbed-Input-Parameter Simulations by the Community Atmosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    Covey, C; Brandon, S; Bremer, P T; Domyancis, D; Garaizar, X; Johannesson, G; Klein, R; Klein, S A; Lucas, D D; Tannahill, J; Zhang, Y

    2011-10-27

    Uncertainty quantification (UQ) is a fundamental challenge in the numerical simulation of Earth's weather and climate, and other complex systems. It entails much more than attaching defensible error bars to predictions: in particular it includes assessing low-probability but high-consequence events. To achieve these goals with models containing a large number of uncertain input parameters, structural uncertainties, etc., raw computational power is needed. An automated, self-adapting search of the possible model configurations is also useful. Our UQ initiative at the Lawrence Livermore National Laboratory has produced the most extensive set to date of simulations from the US Community Atmosphere Model. We are examining output from about 3,000 twelve-year climate simulations generated with a specialized UQ software framework, and assessing the model's accuracy as a function of 21 to 28 uncertain input parameter values. Most of the input parameters we vary are related to the boundary layer, clouds, and other sub-grid scale processes. Our simulations prescribe surface boundary conditions (sea surface temperatures and sea ice amounts) to match recent observations. Fully searching this 21+ dimensional space is impossible, but sensitivity and ranking algorithms can identify input parameters having relatively little effect on a variety of output fields, either individually or in nonlinear combination. Bayesian statistical constraints, employing a variety of climate observations as metrics, also seem promising. Observational constraints will be important in the next step of our project, which will compute sea surface temperatures and sea ice interactively, and will study climate change due to increasing atmospheric carbon dioxide.

  7. Effects of atmospheric parameters on radon measurements using alpha-track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, C.; Zhuo, W., E-mail: whzhuo@fudan.edu.cn; Fan, D.; Yi, Y.; Chen, B. [Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032 (China)

    2014-02-15

    The calibration factors of alpha-track radon detectors (ATDs) are essential for accurate determination of indoor radon concentrations. In this paper, the effects of atmospheric parameters on the calibration factors were theoretically studied and partially testified. Based on the atmospheric thermodynamics theory and detection characteristics of the allyl diglycol carbonate (CR-39), the calibration factors for 5 types of ATDs were calculated through Monte Carlo simulations under different atmospheric conditions. Simulation results showed that the calibration factor increased by up to 31% for the ATDs with a decrease of air pressure by 35.5 kPa (equivalent to an altitude increase of 3500 m), and it also increased by up to 12% with a temperature increase from 5 °C to 35 °C, but it was hardly affected by the relative humidity unless the water-vapor condensation occurs inside the detectors. Furthermore, it was also found that the effects on calibration factors also depended on the dimensions of ATDs. It indicated that variations of the calibration factor with air pressure and temperature should be considered for an accurate radon measurement with a large dimensional ATD, and water-vapor condensation inside the detector should be avoided in field measurements.

  8. The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data – HOAPS-3

    Directory of Open Access Journals (Sweden)

    A. Andersson

    2010-05-01

    Full Text Available The availability of microwave instruments on satellite platforms allows the retrieval of essential water cycle components at high quality for improved understanding and evaluation of water processes in climate modelling. HOAPS-3, the latest version of the satellite climatology "Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data" provides fields of turbulent heat fluxes, evaporation, precipitation, freshwater flux and related atmospheric variables over the global ice-free ocean. This paper describes the content, methodology and retrievals of the HOAPS climatology. A sophisticated processing chain, including all available Special Sensor Microwave Imager (SSM/I instruments aboard the satellites of the Defense Meteorological Satellites Program (DMSP and careful inter-sensor calibration, ensures a homogeneous time-series with dense data sampling and hence detailed information of the underlying weather situations. The completely reprocessed data set with a continuous time series from 1987 to 2005 contains neural network based algorithms for precipitation and wind speed and Advanced Very High Resolution Radiometer (AVHRR based SST fields. Additionally, a new 85 GHz synthesis procedure for the defective SSM/I channels on DMSP F08 from 1989 on has been implemented. Freely available monthly and pentad means, twice daily composites and scan-based data make HOAPS-3 a versatile data set for studying ocean-atmosphere interaction on different temporal and spatial scales. HOAPS-3 data products are available via http://www.hoaps.org.

  9. The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data – HOAPS-3

    Directory of Open Access Journals (Sweden)

    A. Andersson

    2010-09-01

    Full Text Available The availability of microwave instruments on satellite platforms allows the retrieval of essential water cycle components at high quality for improved understanding and evaluation of water processes in climate modelling. HOAPS-3, the latest version of the satellite climatology "Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data" provides fields of turbulent heat fluxes, evaporation, precipitation, freshwater flux and related atmospheric variables over the global ice-free ocean. This paper describes the content, methodology and retrievals of the HOAPS climatology. A sophisticated processing chain, including all available Special Sensor Microwave Imager (SSM/I instruments aboard the satellites of the Defense Meteorological Satellites Program (DMSP and careful inter-sensor calibration, ensures a homogeneous time-series with dense data sampling and hence detailed information of the underlying weather situations. The completely reprocessed data set with a continuous time series from 1987 to 2005 contains neural network based algorithms for precipitation and wind speed and Advanced Very High Resolution Radiometer (AVHRR based SST fields. Additionally, a new 85 GHz synthesis procedure for the defective SSM/I channels on DMSP F08 from 1988 on has been implemented. Freely available monthly and pentad means, twice daily composites and scan-based data make HOAPS-3 a versatile data set for studying ocean-atmosphere interaction on different temporal and spatial scales. HOAPS-3 data products are available via http://www.hoaps.org.

  10. The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data - HOAPS-3

    Science.gov (United States)

    Andersson, A.; Fennig, K.; Klepp, C.; Bakan, S.; Graßl, H.; Schulz, J.

    2010-09-01

    The availability of microwave instruments on satellite platforms allows the retrieval of essential water cycle components at high quality for improved understanding and evaluation of water processes in climate modelling. HOAPS-3, the latest version of the satellite climatology "Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data" provides fields of turbulent heat fluxes, evaporation, precipitation, freshwater flux and related atmospheric variables over the global ice-free ocean. This paper describes the content, methodology and retrievals of the HOAPS climatology. A sophisticated processing chain, including all available Special Sensor Microwave Imager (SSM/I) instruments aboard the satellites of the Defense Meteorological Satellites Program (DMSP) and careful inter-sensor calibration, ensures a homogeneous time-series with dense data sampling and hence detailed information of the underlying weather situations. The completely reprocessed data set with a continuous time series from 1987 to 2005 contains neural network based algorithms for precipitation and wind speed and Advanced Very High Resolution Radiometer (AVHRR) based SST fields. Additionally, a new 85 GHz synthesis procedure for the defective SSM/I channels on DMSP F08 from 1988 on has been implemented. Freely available monthly and pentad means, twice daily composites and scan-based data make HOAPS-3 a versatile data set for studying ocean-atmosphere interaction on different temporal and spatial scales. HOAPS-3 data products are available via http://www.hoaps.org.

  11. Parameter Study of Plasma-Induced Atmospheric Sputtering and Heating at Mars

    Science.gov (United States)

    Williamson, Hayley N.; Johnson, Robert E.; Leblanc, Francois

    2014-11-01

    Atoms and molecules in Mars’ upper atmosphere are lost predominately through sputtering, caused by the impact of ions into the exosphere, dissociative recombination, and thermal escape. While all three processes are thought to occur on Mars, a detailed understanding must ascertain the relative importance of each process, due to time variations in pick-up and solar wind ions. In this project, using case studies of an oxygen atmosphere modeled with Direct Simulation Monte Carlo techniques, we have endeavored to categorize when the momentum transfer or thermal escape is more likely to occur. To do this, we vary the incident plasma flux and energy based on models of the interaction of the solar wind with the Martian atmosphere. We first repeat the heating and sputtering rates due to a flux of pick-up O+ examined previously (Johnson et al. 2000; Michael and Johnson 2005; Johnson et al 2013). We have used multiple examples of particle fluxes for various solar wind conditions, from steady solar wind conditions (Luhmann et al. 1992; Chaufray et al. 2007) to more extreme cases (Fang et al. 2013; Wang et al. 2014), which are thought to increase escape by several orders of magnitude. The goal is to explore the escape parameter space in preparation for the expected data from MAVEN on hot atoms and molecules in the Martian exosphere.

  12. CALIBRATIONS OF ATMOSPHERIC PARAMETERS OBTAINED FROM THE FIRST YEAR OF SDSS-III APOGEE OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mészáros, Sz.; Allende Prieto, C. [Instituto de Astrofísica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain); Holtzman, J. [New Mexico State University, Las Cruces, NM 88003 (United States); García Pérez, A. E.; Chojnowski, S. D.; Hearty, F. R.; Majewski, S. R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Schiavon, R. P. [Astrophysics Research Institute, Liverpool John Moores University, Egerton Wharf, Birkenhead, Wirral CH41 1LD (United Kingdom); Basu, S. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Bizyaev, D. [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); Chaplin, W. J.; Elsworth, Y. [University of Birmingham, School of Physics and Astronomy, Edgbaston, Birmingham B15 2TT (United Kingdom); Cunha, K. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Epstein, C.; Johnson, J. A. [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Frinchaboy, P. M. [Texas Christian University, Fort Worth, TX 76129 (United States); García, R. A. [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Hekker, S. [Astronomical Institute ' ' Anton Pannekoek' ' , University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Kallinger, T. [Institute for Astronomy, University of Vienna, Türkenschanzstrasse 17, A-1180 Vienna (Austria); Koesterke, L. [Texas Advanced Computing Center, University of Texas, Austin, TX 78759 (United States); and others

    2013-11-01

    The Sloan Digital Sky Survey III (SDSS-III) Apache Point Observatory Galactic Evolution Experiment (APOGEE) is a three-year survey that is collecting 10{sup 5} high-resolution spectra in the near-IR across multiple Galactic populations. To derive stellar parameters and chemical compositions from this massive data set, the APOGEE Stellar Parameters and Chemical Abundances Pipeline (ASPCAP) has been developed. Here, we describe empirical calibrations of stellar parameters presented in the first SDSS-III APOGEE data release (DR10). These calibrations were enabled by observations of 559 stars in 20 globular and open clusters. The cluster observations were supplemented by observations of stars in NASA's Kepler field that have well determined surface gravities from asteroseismic analysis. We discuss the accuracy and precision of the derived stellar parameters, considering especially effective temperature, surface gravity, and metallicity; we also briefly discuss the derived results for the abundances of the α-elements, carbon, and nitrogen. Overall, we find that ASPCAP achieves reasonably accurate results for temperature and metallicity, but suffers from systematic errors in surface gravity. We derive calibration relations that bring the raw ASPCAP results into better agreement with independently determined stellar parameters. The internal scatter of ASPCAP parameters within clusters suggests that metallicities are measured with a precision better than 0.1 dex, effective temperatures better than 150 K, and surface gravities better than 0.2 dex. The understanding provided by the clusters and Kepler giants on the current accuracy and precision will be invaluable for future improvements of the pipeline.

  13. PREDICTION OF CHEMICAL REACTIVITY PARAMETERS AND PHYSICAL PROPERTIES OF ORGANIC COMPOUNDS FROM MOLECULAR STRUCTURE USING SPARC

    Science.gov (United States)

    The computer program SPARC (SPARC Performs Automated Reasoning in Chemistry) has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC uses computational algorithms...

  14. PREDICTION OF CHEMICAL REACTIVITY PARAMETERS AND PHYSICAL PROPERTIES OF ORGANIC COMPOUNDS FROM MOLECULAR STRUCTURE USING SPARC

    Science.gov (United States)

    The computer program SPARC (SPARC Performs Automated Reasoning in Chemistry) has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC uses computational algorithms...

  15. GAUFRE: a tool for an automated determination of atmospheric parameters from spectroscopy

    CERN Document Server

    Valentini, Marica; Miglio, Andrea; Fossati, Luca; Munari, Ulisse

    2013-01-01

    We present an automated tool for measuring atmospheric parameters (T_eff, log(g), [Fe/H]) for F-G-K dwarf and giant stars. The tool, called GAUFRE, is written in C++ and composed of several routines: GAUFRE-RV measures radial velocity from spectra via cross-correlation against a synthetic template, GAUFRE-EW measures atmospheric parameters through the classic line-by-line technique and GAUFRE-CHI2 performs a chi^2 fitting to a library of synthetic spectra. A set of F-G-K stars extensively studied in the literature were used as a benchmark for the program: their high signal-to-noise and high resolution spectra were analysed by using GAUFRE and results were compared with those present in literature. The tool is also implemented in order to perform the spectral analysis after fixing the surface gravity (log(g)) to the accurate value provided by asteroseismology. A set of CoRoT stars, belonging to LRc01 and LRa01 fields was used for first testing the performances and the behaviour of the program when using the se...

  16. GAUFRE: A tool for an automated determination of atmospheric parameters from spectroscopy

    Directory of Open Access Journals (Sweden)

    Fossati L.

    2013-03-01

    Full Text Available We present an automated tool for measuring atmospheric parameters (Teff, log g, [Fe/H] for F-G-K dwarf and giant stars. The tool, called GAUFRE, is composed of several routines written in C++: GAUFRE-RV measures radial velocity from spectra via cross-correlation against a synthetic template, GAUFRE-EW measures atmospheric parameters through the classic line-by-line technique and GAUFRE-CHI2 performs a ��2 fitting to a library of synthetic spectra. A set of F-G-K stars extensively studied in the literature were used as a benchmark for the program: their high signal-to-noise and high resolution spectra were analyzed by using GAUFRE and results were compared with those present in literature. The tool is also implemented in order to perform the spectral analysis after fixing the surface gravity (log g to the accurate value provided by asteroseismology. A set of CoRoT stars, belonging to LRc01 and LRa01 fields was used for first testing the performances and the behavior of the program when using the seismic log g.

  17. Influence of modified atmosphere packaging on meat quality parameters of turkey breast muscles.

    Science.gov (United States)

    Blacha, Ines; Krischek, Carsten; Klein, Günter

    2014-01-01

    Poultry meat is often stored in modified atmosphere packaging (MAP) or vacuum packaging to improve consumer acceptance and shelf life. The aim of this study was to determine how different packaging conditions influence meat quality. Therefore, in three independent experiments, turkey breast muscle cutlets were packaged either in vacuum or in different modified atmosphere mixtures (80% O2, 20% CO2 [MAP 1]; 80% N2, 20% CO2 [MAP 2]; and 20% O2, 20% CO2, 60% N2 [MAP 3]) and stored for 12 days at 3°C. Color, pH, electrical conductivity, total viable counts, and Pseudomonas species were determined on days 1, 4, 8, and 12 of storage. On the same days, samples were collected for analysis of thiobarbituric acid-reactive substance and total volatile basic nitrogen concentrations. Sensory parameters and liquid loss were determined on days 4, 8, and 12. Vacuum-packaged meat had the highest liquid loss and lowest sensory results. MAP 1-packaged meat showed the highest sensory, redness, and thiobarbituric acid-reactive substance values. MAP 2-packaged meat had lower sensory values. MAP 3-packaged meat had lower redness and sensory values, especially at the end of storage. The study showed an impact of the packaging condition on different quality parameters, with a small advantage for storage of turkey cutlets in high-oxygen packages.

  18. Accuracy of atmospheric parameters of FGK dwarfs determined by spectrum fitting

    CERN Document Server

    Ryabchikova, T; Pakhomov, Yu; Tsymbal, V; Titarenko, A; Sitnova, T; Alexeeva, S; Fossati, L; Mashonkina, L

    2015-01-01

    We performed extensive tests of the accuracy of atmospheric parameter determination for FGK stars based on the spectrum fitting procedure Spectroscopy Made Easy (SME). Our stellar sample consists of 13 objects, including the Sun, in the temperature range 5000--6600~K and metallicity range -1.4 -- +0.4. The analysed stars have the advantage of having parameters derived by interferometry. For each star we use spectra obtained with different spectrographs and different signal-to-noise ratios (S/N). For the fitting we adopted three different sets of constraints and test how the derived parameters depend upon the spectral regions (masks) used in SME. We developed and implemented in SME a new method for estimating uncertainties in the resulting parameters based on fitting residuals, partial derivatives, and data uncertainties. For stars in the 5700--6600 K range the best agreement with the effective temperatures derived by interferometry is achieved when spectrum fitting includes the H$\\alpha$ and H$\\beta$ lines, w...

  19. Detailed Chemical Characterization of Unresolved Complex Mixtures (UCM) inAtmospheric Organics: Insights into Emission Sources, Atmospheric Processing andSecondary Organic Aerosol Formation

    Science.gov (United States)

    Recent studies suggest that semivolatile organic compounds (SVOCs) are important precursors to secondary organic aerosol (SOA) in urban atmospheres. However, knowledge of the chemical composition of SVOCs is limited by current analytical techniques, which are typically unable to...

  20. Advanced Modeling Techniques to Study Anthropogenic Influences on Atmospheric Chemical Budgets

    Science.gov (United States)

    Mathur, Rohit

    1997-01-01

    This research work is a collaborative effort between research groups at MCNC and the University of North Carolina at Chapel Hill. The overall objective of this research is to improve the level of understanding of the processes that determine the budgets of chemically and radiatively active compounds in the atmosphere through development and application of advanced methods for calculating the chemical change in atmospheric models. The research performed during the second year of this project focused on four major aspects: (1) The continued development and refinement of multiscale modeling techniques to address the issue of the disparate scales of the physico-chemical processes that govern the fate of atmospheric pollutants; (2) Development and application of analysis methods utilizing process and mass balance techniques to increase the interpretive powers of atmospheric models and to aid in complementary analysis of model predictions and observations; (3) Development of meteorological and emission inputs for initial application of the chemistry/transport model over the north Atlantic region; and, (4) The continued development and implementation of a totally new adaptive chemistry representation that changes the details of what is represented as the underlying conditions change.

  1. Environmental parameters of the Tennessee River in Alabama. 2: Physical, chemical, and biological parameters. [biological and chemical effects of thermal pollution from nuclear power plants on water quality

    Science.gov (United States)

    Rosing, L. M.

    1976-01-01

    Physical, chemical and biological water quality data from five sites in the Tennessee River, two in Guntersville Reservoir and three in Wheeler Reservoir were correlated with climatological data for three annual cycles. Two of the annual cycles are for the years prior to the Browns Ferry Nuclear Power Plant operations and one is for the first 14 months of Plant operations. A comparison of the results of the annual cycles indicates that two distinct physical conditions in the reservoirs occur, one during the warm months when the reservoirs are at capacity and one during the colder winter months when the reservoirs have been drawn-down for water storage during the rainy months and for weed control. The wide variations of physical and chemical parameters to which the biological organisms are subjected on an annual basis control the biological organisms and their population levels. A comparison of the parameters of the site below the Power plant indicates that the heated effluent from the plant operating with two of the three reactors has not had any effect on the organisms at this site. Recommendations given include the development of prediction mathematical models (statistical analysis) for the physical and chemical parameters under specific climatological conditions which affect biological organisms. Tabulated data of chemical analysis of water and organism populations studied is given.

  2. Surface chemical changes of atmospheric pressure plasma treated rabbit fibres important for felting process

    Energy Technology Data Exchange (ETDEWEB)

    Štěpánová, Vlasta, E-mail: vstepanova@mail.muni.cz [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Slavíček, Pavel; Stupavská, Monika; Jurmanová, Jana [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Černák, Mirko [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F2, 842 48 Bratislava (Slovakia)

    2015-11-15

    Graphical abstract: - Highlights: • Rabbit fibres plasma treatment is an effective method for fibres modification. • Atmospheric pressure plasma treatment is able to affect fibres properties. • Surface changes on fibres after plasma treatment were analysed via SEM, ATR-FTIR, XPS. • Significant increase of fibres wettability after plasma treatment was observed. • Plasma treatment at atmospheric pressure can replace the chemical treatment of fibres. - Abstract: We introduce the atmospheric pressure plasma treatment as a suitable procedure for in-line industrial application of rabbit fibres pre-treatment. Changes of rabbit fibre properties due to the plasma treatment were studied in order to develop new technology of plasma-based treatment before felting. Diffuse Coplanar Surface Barrier Discharge (DCSBD) in ambient air at atmospheric pressure was used for plasma treatment. Scanning electron microscopy was used for determination of the fibres morphology before and after plasma treatment. X-ray photoelectron spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy were used for evaluation of reactive groups. The concentration of carbon decreased and conversely the concentration of nitrogen and oxygen increased after plasma treatment. Aging effect of plasma treated fibres was also investigated. Using Washburn method the significant increase of fibres wettability was observed after plasma treatment. New approach of pre-treatment of fibres before felting using plasma was developed. Plasma treatment of fibres at atmospheric pressure can replace the chemical method which consists of application of strong acids on fibres.

  3. Tests of the higher order turbulence model for atmospheric circulations (HOTMAC) at Deseret Chemical Depot

    Energy Technology Data Exchange (ETDEWEB)

    Costigan, K.R.

    1998-11-01

    Deseret Chemical Depot is one of the US Army`s storage facilities for its stockpile of chemical weapon agents. Congress has directed the Department of Defense to eliminate the aging stockpiles, which have existed since the end of World War II, and the US Army is destroying these lethal chemical munitions. Although the danger is slight, accurate predictions of the wind field in the valley are necessary for dispersion calculations in the event of an accident involving toxic chemicals at the depot. There are several small communities in Rush and Tooele valleys, including the town of Tooele, and Salt Lake City is located 65 km to the Northeast of Deseret Chemical Depot South area, at 1,300 m MSL and beyond the Oquirrh Mountains. The purpose of this report is to carry out three-dimensional numerical simulations of the atmospheric circulations in the region around Deseret Chemical Depot with the Higher Order Turbulence Model for Atmospheric Circulations (HOTMAC) and to evaluate the performance of the model. The code had been modified to assimilate local meteorological observations through the use of Newtonian nudging. The nudging scheme takes advantage of the extensive network of local observations in the valley.

  4. Introductory lecture: atmospheric organic aerosols: insights from the combination of measurements and chemical transport models.

    Science.gov (United States)

    Pandis, Spyros N; Donahue, Neil M; Murphy, Benjamin N; Riipinen, Ilona; Fountoukis, Christos; Karnezi, Eleni; Patoulias, David; Skyllakou, Ksakousti

    2013-01-01

    The formation, atmospheric evolution, properties, and removal of organic particulate matter remain some of the least understood aspects of atmospheric chemistry despite the importance of organic aerosol (OA) for both human health and climate change. Here, we summarize our recent efforts to deal with the chemical complexity of the tens of thousands of organic compounds in the atmosphere using the volatility-oxygen content framework (often called the 2D-Volatility Basis Set, 2D-VBS). Our current ability to measure the ambient OA concentration as a function of its volatility and oxygen to carbon (O:C) ratio is evaluated. The combination of a thermodenuder, isothermal dilution and Aerosol Mass Spectrometry (AMS) together with a mathematical aerosol dynamics model is a promising approach. The development of computational modules based on the 2D-VBS that can be used in chemical transport models (CTMs) is described. Approaches of different complexity are tested against ambient observations, showing the challenge of simulating the complex chemical evolution of atmospheric OA. The results of the simplest approach describing the net change due to functionalization and fragmentation are quite encouraging, reproducing both the observed OA levels and O : C in a variety of conditions. The same CTM coupled with source-apportionment algorithms can be used to gain insights into the travel distances and age of atmospheric OA. We estimate that the average age of OA near the ground in continental locations is 1-2 days and most of it was emitted (either as precursor vapors or particles) hundreds of kilometers away. Condensation of organic vapors on fresh particles is critical for the growth of these new particles to larger sizes and eventually to cloud condensation nuclei (CCN) sizes. The semivolatile organics currently simulated by CTMs are too volatile to condense on these tiny particles with high curvature. We show that chemical aging reactions converting these semivolatile

  5. Retrievals of atmospheric parameters from radiances obtained by the Juno Microwave Radiometer

    Science.gov (United States)

    Li, C.; Ingersoll, A. P.; Janssen, M. A.

    2016-12-01

    The Juno microwave radiometer (MWR) makes a north-south scan of Jupiter on every perijove pass of the spacecraft (Fig. 1). The planet is observed in six channels, at wavelengths ranging from 1.3 cm to 50 cm, the peaks of whose weighting functions range from 0.6 bars to 30 bars, respectively. Within 25 degrees of the equator each latitude band 1 degree wide is observed at 5-10 different emission angles. Intermediate processing involves conversion of electrical signals into radiances, subtraction of the side lobe contributions, and deconvolution to achieve maximum spatial resolution. After that, one wants to convert the radiances into physical parameters of the atmosphere, all as functions of latitude. The two main goals of the MWR are (1) to determine the global water and ammonia abundances and (2) to document the latitude variations of water, ammonia, and temperature in the subcloud regions, in effect, to observe the deep Jovian weather. Prior probability is based on the Galileo probe results at 6 degrees north latitude, VLA maps at wavelengths shorter than 7 cm, and moist adiabats calculated from assumed deep abundances of water and ammonia. A complication is that ammonia dominates the microwave opacity, and water is detectable mainly through its effect on the temperature profile and the slope of the moist adiabat. MCMC analysis of synthetic data suggests that the radiances and limb-darkening parameters contain at most 4 pieces of information about the atmosphere at each latitude. Choosing the right parameters is the heart of the effort, and we will report on testing the choices using synthetic and real data. If we have preliminary results concerning objectives (1) and (2) above, we will share them.

  6. Chemical interactions between the present-day Martian atmosphere and surface minerals

    Science.gov (United States)

    Prinn, Ronald; Fegley, Bruce

    1987-01-01

    Thermochemical and photochemical reactions between surface minerals and present-day atmospheric constituents are predicted to produce microscopic effects on the surfaces of mineral grains. Relevant reactions hypothesized in the literature include conversions of silicates and volcanic glasses to clay minerals, conversion of ferrous to ferric compounds, and formation of carbonates, nitrates, and sulfates. These types of surface-atmosphere interactions are important for addressing issues such as chemical weathering of minerals, biological potential of the surface environment, and atmospheric stability in both present and past Martian epochs. It is emphasized that the product of these reactions will be observable and interpretable on the microscopic surface layers of Martian surface rocks using modern techniques with obvious implications for sample return from Mars. Macroscopic products of chemical weathering reactions in past Martian epochs are also expected in Martian surface material. These products are expected not only as a result of reactions similar to those proceeding today but also due to aqueous reactions in past epochs in which liquid water was putatively present. It may prove very difficult or impossible however to determine definitively from the relic macroscopic product alone either the exact weathering process which led to its formation or the identity of its weathered parent mineral. The enormous advantages of studying Martian chemical weathering by investigating the microscopic products of present-day chemical reactions on sample surfaces are very apparent.

  7. Parameter estimation in chemical engineering ; a case study for resin production

    NARCIS (Netherlands)

    Stortelder, W.J.H.

    1996-01-01

    In this report we present a study on parameter estimation in the field of resin production. The mathematical model of the chemical process contains a set of 12 differential algebraic equations (DAEs) and 16 unknown parameters; 8 series of measurements are available, performed under different initial

  8. Prediction of chemical, physical and sensory data from process parameters for frozen cod using multivariate analysis

    DEFF Research Database (Denmark)

    Bechmann, Iben Ellegaard; Jensen, H.S.; Bøknæs, Niels

    1998-01-01

    Physical, chemical and sensory quality parameters were determined for 115 cod (Gadus morhua) samples stored under varying frozen storage conditions. Five different process parameters (period of frozen storage, frozen storage. temperature, place of catch, season for catching and state of rigor) were...... varied systematically at two levels. The data obtained were evaluated using the multivariate methods, principal component analysis (PCA) and partial least squares (PLS) regression. The PCA models were used to identify which process parameters were actually most important for the quality of the frozen cod....... PLS models that were able to predict the physical, chemical and sensory quality parameters from the process parameters of the frozen raw material were generated. The prediction abilities of the PLS models were good enough to give reasonable results even when the process parameters were characterised...

  9. Composition of early planetary atmospheres - II. Coupled Dust and chemical evolution in protoplanetary discs

    Science.gov (United States)

    Cridland, A. J.; Pudritz, Ralph E.; Birnstiel, Tilman; Cleeves, L. Ilsedore; Bergin, Edwin A.

    2017-08-01

    We present the next step in a series of papers devoted to connecting the composition of the atmospheres of forming planets with the chemistry of their natal evolving protoplanetary discs. The model presented here computes the coupled chemical and dust evolution of the disc and the formation of three planets per disc model. Our three canonical planet traps produce a Jupiter near 1 AU, a Hot Jupiter and a Super-Earth. We study the dependence of the final orbital radius, mass, and atmospheric chemistry of planets forming in disc models with initial disc masses that vary by 0.02 M⊙ above and below our fiducial model (M_{disc,0} = 0.1 M_{⊙}). We compute C/O and C/N for the atmospheres formed in our three models and find that C/Oplanet ˜ C/O_{disc}, which does not vary strongly between different planets formed in our model. The nitrogen content of atmospheres can vary in planets that grow in different disc models. These differences are related to the formation history of the planet, the time and location that the planet accretes its atmosphere, and are encoded in the bulk abundance of NH3. These results suggest that future observations of atmospheric NH3 and an estimation of the planetary C/O and C/N can inform the formation history of particular planetary systems.

  10. SDSS/SEGUE spectral feature analysis for stellar atmospheric parameter estimation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiangru; Lu, Yu; Yang, Tan; Wang, Yongjun [School of Mathematical Sciences, South China Normal University, Guangzhou 510631 (China); Wu, Q. M. Jonathan [Department of Electrical and Computer Engineering, University of Windsor, Windsor, Ontario N9B 3P4 (Canada); Luo, Ali; Zhao, Yongheng; Zuo, Fang, E-mail: xiangru.li@gmail.com [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2014-08-01

    Large-scale and deep sky survey missions are rapidly collecting a large amount of stellar spectra, which necessitate the estimation of atmospheric parameters directly from spectra and make it feasible to statistically investigate latent principles in a large data set. We present a technique for estimating parameters T{sub eff}, log g, and [Fe/H] from stellar spectra. With this technique, we first extract features from stellar spectra using the LASSO algorithm; then, the parameters are estimated from the extracted features using the support vector regression. On a subsample of 20,000 stellar spectra from the Sloan Digital Sky Survey (SDSS) with reference parameters provided by the SDSS/SEGUE Spectroscopic Parameter Pipeline, estimation consistency are 0.007458 dex for log T{sub eff} (101.609921 K for T{sub eff}), 0.189557 dex for log g, and 0.182060 for [Fe/H], where the consistency is evaluated by mean absolute error. Prominent characteristics of the proposed scheme are sparseness, locality, and physical interpretability. In this work, each spectrum consists of 3821 fluxes, and 10, 19, and 14 typical wavelength positions are detected, respectively, for estimating T{sub eff}, log g, and [Fe/H]. It is shown that the positions are related to typical lines of stellar spectra. This characteristic is important in investigating physical indications from analysis results. Then, stellar spectra can be described by the individual fluxes on the detected positions (PD) or local integration of fluxes near them (LI). The aforementioned consistency is the result based on features described by LI. If features are described by PD, consistency is 0.009092 dex for log T{sub eff} (124.545075 K for T{sub eff}), 0.198928 dex for log g, and 0.206814 dex for [Fe/H].

  11. SDSS/SEGUE Spectral Feature Analysis for Stellar Atmospheric Parameter Estimation

    Science.gov (United States)

    Li, Xiangru; Wu, Q. M. Jonathan; Luo, Ali; Zhao, Yongheng; Lu, Yu; Zuo, Fang; Yang, Tan; Wang, Yongjun

    2014-08-01

    Large-scale and deep sky survey missions are rapidly collecting a large amount of stellar spectra, which necessitate the estimation of atmospheric parameters directly from spectra and make it feasible to statistically investigate latent principles in a large data set. We present a technique for estimating parameters T eff, log g, and [Fe/H] from stellar spectra. With this technique, we first extract features from stellar spectra using the LASSO algorithm; then, the parameters are estimated from the extracted features using the support vector regression. On a subsample of 20,000 stellar spectra from the Sloan Digital Sky Survey (SDSS) with reference parameters provided by the SDSS/SEGUE Spectroscopic Parameter Pipeline, estimation consistency are 0.007458 dex for log T eff (101.609921 K for T eff), 0.189557 dex for log g, and 0.182060 for [Fe/H], where the consistency is evaluated by mean absolute error. Prominent characteristics of the proposed scheme are sparseness, locality, and physical interpretability. In this work, each spectrum consists of 3821 fluxes, and 10, 19, and 14 typical wavelength positions are detected, respectively, for estimating T eff, log g, and [Fe/H]. It is shown that the positions are related to typical lines of stellar spectra. This characteristic is important in investigating physical indications from analysis results. Then, stellar spectra can be described by the individual fluxes on the detected positions (PD) or local integration of fluxes near them (LI). The aforementioned consistency is the result based on features described by LI. If features are described by PD, consistency is 0.009092 dex for log T eff (124.545075 K for T eff), 0.198928 dex for log g, and 0.206814 dex for [Fe/H].

  12. Atmospheric dust accumulation on native and non-native species: effects on gas exchange parameters.

    Science.gov (United States)

    González, Juan A; Prado, Fernando E; Piacentini, Ruben D

    2014-05-01

    Plants are continuously exposed to atmospheric particulate matter (dust), and their leaves are the main receptors of deposited dust. The objective of this study was to assess the effects of dust deposition on leaf gas exchange parameters of 17 native and non-native tree and shrub species growing in Gran San Miguel de Tucumán in northwestern Argentina. Maximum assimilation rate (), stomatal conductance (), transpiration rate (), internal CO concentration (), and instantaneous water-use efficiency (WUE) were measured in cleaned leaves (CL) and dusted leaves (DL) of different species on November 2010, July 2011, and September 2011. In almost all studied species, gas exchange parameters were significantly affected by dust deposition. Values for , , and of DL were significantly reduced in 11, 12, and 14 species compared with CL. Morphological leaf traits seem to be related to reduction. Indeed, L. and (Mart. ex DC.) Standl. species with pubescent leaves and thick ribs showed the highest reduction percentages. Contrarily, and WUE were increased in DL but were less responsive to dust deposition than other parameters. Increases of and WUE were significant in 5 and 11 species, respectively. Correlation analyses between /, /, and / pairs showed significant positive linear correlations in CL and DL of many studied species, including small and tall plants. These results suggest that leaf stomatal factors and shade-induced effect by accumulated dust are primarily responsible for the observed reductions in photosynthesis rate of DL.

  13. Flight Flutter Modal Parameters Identification with Atmospheric Turbulence Excitation Based on Wavelet Transformation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In view of the feature of flight flutter test data with atmospheric turbulence excitation, a method which combines wavelet transformation with random decrement technique for identifying flight flutter modal parameters is presented. This approach firstly uses random decrement technique to gain free decays corresponding to the acceleration response of the structure to some non-zero initial conditions. Then the continuous Morlet wavelet transformation of the free decays is performed; and the Parseval formula and residue theorem are used to simplify the transformation. The maximal wavelet transformation coefficients in different scales are searched out by means of band-filtering characteristic of Morlet wavelet, and then the modal parameters are identified according to the relationships with maximal modulus and angle of the wavelet transform. In addition, the condition of modal uncoupling is discussed according to variation trend of flight flutter modal parameters in the flight flutter state. The analysis results of simulation and flight flutter test data show that this approach is not only simple, effective and feasible, but also having good noise immunity.

  14. Atmospheric emissions and long-range transport of persistent organic chemicals

    Directory of Open Access Journals (Sweden)

    Scheringer M.

    2010-12-01

    Full Text Available Persistent organic chemicals include several groups of halogenated compounds, such as polychlorinated biphenyls (PCBs, polybrominated diphenylethers (PBDEs, and polyfluorinated carboxylic acids (PFCAs. These chemicals remain for long times (years to decades in the environment and cycle between different media (air, water, sediment, soil, vegetation, etc.. The environmental distribution of this type of chemicals can conveniently be analyzed by multimedia models. Multimedia models consist of a set of coupled mass balance equations for the environmental media considered; they can be set up at various scales from local to global. Two applications of multimedia models to airborne chemicals are discussed in detail: the day-night cycle of PCBs measured in air near the surface, and the atmospheric long-range transport of volatile precursors of PFCAs, formation of PFCAs by oxidation of these precursors, and subsequent deposition of PFCAs to the surface in remote regions such as the Arctic.

  15. Forecasts of the atmospherical parameters close to the ground at the LBT site in the context of the ALTA project

    CERN Document Server

    Turchi, Alessio; Fini, Luca

    2016-01-01

    In this paper we study the abilities of an atmospherical mesoscale model in forecasting the classical atmospherical parameters relevant for astronomical applications at the surface layer (wind speed, wind direction, temperature, relative humidity) on the Large Binocular Telescope (LBT) site - Mount Graham, Arizona. The study is carried out in the framework of the ALTA project aiming at implementing an automated system for the forecasts of atmospherical parameters (Meso-Nh code) and the optical turbulence (Astro-Meso-Nh code) for the service-mode operation of the LBT. The final goal of such an operational tool is to provide predictions with high time frequency of atmospheric and optical parameters for an optimized planning of the telescope operation (dome thermalization, wind-dependent dome orientation, observation planning based on predicted seeing, adaptive optics optimization, etc...). Numerical simulations are carried out with the Meso-Nh and Astro-Meso-Nh codes, which were proven to give excellent results...

  16. Comparison of Atmospheric Parameters Derived from In-Situ and Hyper-/Multispectral Remote Sensing Data of Beautiful Bavarian Lakes

    Science.gov (United States)

    Riedel, S.; Gege, P.; Schneider, M.; Pfug, B.; Oppelt, N.

    2016-08-01

    Atmospheric correction is a critical step and can be a limiting factor in the extraction of aquatic ecosystem parameters from remote sensing data of coastal and lake waters. Atmospheric correction models commonly in use for open ocean water and land surfaces can lead to large errors when applied to hyperspectral images taken from satellite or aircraft. The main problems arise from uncertainties in aerosol parameters and neglecting the adjacency effect, which originates from multiple scattering of upwelling radiance from the surrounding land. To better understand the challenges for developing an atmospheric correction model suitable for lakes, we compare atmospheric parameters derived from Sentinel- 2A and airborne hyperspectral data (HySpex) of two Bavarian lakes (Klostersee, Lake Starnberg) with in-situ measurements performed with RAMSES and Ibsen spectrometer systems and a Microtops sun photometer.

  17. GESAMP Working Group 38, The Atmospheric Input of Chemicals to the Ocean

    Science.gov (United States)

    Duce, Robert; Liss, Peter

    2014-05-01

    There is growing recognition of the impact of the atmospheric input of both natural and anthropogenic substances on ocean chemistry, biology, and biogeochemistry as well as climate. These inputs are closely related to a number of important global change issues. For example, the increasing input of anthropogenic nitrogen species from the atmosphere to much of the ocean may cause a low level fertilization that could result in an increase in marine 'new' productivity of up to ~3% and thus impact carbon drawdown from the atmosphere. Similarly, much of the oceanic iron, which is a limiting nutrient in significant areas of the ocean, originates from the atmospheric input of minerals as a result of the long-range transport of mineral dust from continental regions. The increased supply of soluble phosphorus from atmospheric anthropogenic sources (through large-scale use of fertilizers) may also have a significant impact on surface-ocean biogeochemistry, but estimates of any effects are highly uncertain. There have been few assessments of the atmospheric inputs of sulfur and nitrogen oxides to the ocean and their impact on the rates of ocean acidification. These inputs may be particularly critical in heavily trafficked shipping lanes and in ocean regions proximate to highly industrialized land areas. Other atmospheric substances may also have an impact on the ocean, in particular lead, cadmium, and POPs. To address these and related issues the United Nations Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP) initiated Working Group 38, The Atmospheric Input of Chemicals to the Ocean, in 2008. This Working Group has had four meetings. To date four peer reviewed papers have been produced from this effort, with a least eight others in the process of being written or published. This paper will discuss some of the results of the Working Group's deliberations and its plans for possible future work.

  18. Stratospheric Sampling and In Situ Atmospheric Chemical Element Analysis During Meteor Showers: A Resource Study

    Science.gov (United States)

    Noever, David A.

    2000-01-01

    Resources studies for asteroidal mining evaluation have depended historically on remote sensing analysis for chemical elements. During the November 1998 Leonids meteor shower, a stratospheric balloon and various low-density capture media were used to sample fragments from Comet Tempel-Tuttle debris during a peak Earth crossing. The analysis not only demonstrates how potential sampling strategies may improve the projections for metals or rare elements in astromining, but also benchmarks materials during low temperature (-60 F), high dessication environments as seen during atmospheric exposure. The results indicate high aluminum, magnesium and iron content for various sampled particles recovered, but generalization to the sporadic meteors expected from asteroidal sources will require future improvements in larger sampling volumes before a broad-use strategy for chemical analysis can be described. A repeat of the experimental procedure is planned for the November 1999 Leonids' shower, and various improvements for atmospheric sampling will be discussed.

  19. Chemical and physical conversion in cold atmosphere and the effect of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kulmala, M.; Aalto, P.; Korhonen, P.; Laaksonen, A.; Vesala, T. [Helsinki Univ. (Finland). Dept. of Physics

    1996-12-31

    The project is focusing on the formation and growth mechanisms of atmospheric aerosol and cloud droplets. Both aerosol particles and cloud droplets affect strongly on the atmospheric radiation fluxes by scattering and absorption. The droplet formation results from physical and chemical processes occurring simultaneously. The studies concerning the tropospheric cloud droplet formation, laboratory experiments with a cloud chamber and stratospheric cloud formation are summarized. The recent studies summarized in this presentation indicate that both aerosol particles and cloud droplets have a significant role in climatic change and ozone depletion problems. The anthropogenic emissions of gaseous and particulate pollutants change the properties of atmospheric aerosols and cloud droplets. The research in this field will be continued and more quantitative understanding based both experimental and theoretical studies is required

  20. Aqueous organic chemistry in the atmosphere: sources and chemical processing of organic aerosols.

    Science.gov (United States)

    McNeill, V Faye

    2015-02-03

    Over the past decade, it has become clear that aqueous chemical processes occurring in cloud droplets and wet atmospheric particles are an important source of organic atmospheric particulate matter. Reactions of water-soluble volatile (or semivolatile) organic gases (VOCs or SVOCs) in these aqueous media lead to the formation of highly oxidized organic particulate matter (secondary organic aerosol; SOA) and key tracer species, such as organosulfates. These processes are often driven by a combination of anthropogenic and biogenic emissions, and therefore their accurate representation in models is important for effective air quality management. Despite considerable progress, mechanistic understanding of some key aqueous processes is still lacking, and these pathways are incompletely represented in 3D atmospheric chemistry and air quality models. In this article, the concepts, historical context, and current state of the science of aqueous pathways of SOA formation are discussed.

  1. Middle atmosphere heating by exothermic chemical reactions involving odd-hydrogen species

    Science.gov (United States)

    Mlynczak, Martin G.; Solomon, Susan

    1991-01-01

    The rate of heating which occurs in the middle atmosphere due to four exothermic reactions involving members of the odd-hydrogen family is calculated. The following reactions are considered: O + OH yields O2 + H; H + O2 + M yields HO2 + M; H + O3 yields OH + O2; and O + HO2 yields OH + O2. It is shown that the heating rates due to these reactions rival the oxygen-related heating rates conventionally considered in middle-atmosphere models. The conversion of chemical potential energy into molecular translational energy (heat) by these odd-hydrogen reactions is shown to be a significant energy source in the middle atmosphere that has not been previously considered.

  2. Analytical Modelling of High Concentrator Photovoltaic Modules Based on Atmospheric Parameters

    Directory of Open Access Journals (Sweden)

    Eduardo F. Fernández

    2015-01-01

    Full Text Available The goal of this paper is to introduce a model to predict the maximum power of a high concentrator photovoltaic module. The model is based on simple mathematical expressions and atmospheric parameters. The maximum power of a HCPV module is estimated as a function of direct normal irradiance, cell temperature, and two spectral corrections based on air mass and aerosol optical depth. In order to check the quality of the model, a HCPV module was measured during one year at a wide range of operating conditions. The new proposed model shows an adequate match between actual and estimated data with a root mean square error (RMSE of 2.67%, a mean absolute error (MAE of 4.23 W, a mean bias error (MBE of around 0%, and a determination coefficient (R2 of 0.99.

  3. Hot Subdwarf Stars Observed in LAMOST DR1 - Atmospheric parameters from single-lined spectra

    CERN Document Server

    Luo, Yangping; Liu, Chao; Deng, Licai; Han, Zhanwen

    2016-01-01

    We present a catalog of 166 spectroscopically identified hot subdwarf stars from LAMOST DR1, 44 of which show the characteristics of cool companions in their optical spectra. Atmospheric parameters of 122 non-composite spectra subdwarf stars were measured by fitting the profiles of hydrogen (H) and helium (He) lines with synthetic spectra from non-LTE model atmospheres. Most of the sdB stars scatter near the Extreme Horizontal Branch in the $T_{\\rm eff}-\\log{g}$ diagram and two well defined groups can be outlined. A clustering of He-enriched sdO stars appears near $T_{\\rm eff}=45\\,000$ K and $\\log(g) = 5.8$. The sdB population separates into several nearly parallel sequences in the $T_{\\rm eff}-{\\rm He}$ abundance diagram with clumps corresponding to those in the $T_{\\rm eff}-\\log{g}$ diagram. Over $38\\,000$ K (sdO) stars show abundance extremes, they are either He-rich or He-deficient and we observe only a few stars in the $ -1 < \\log(y) < 0$ abundance range. With increasing temperature these extremes ...

  4. Correlations between the behavior of recreational horses, the physiological parameters and summer atmospheric conditions.

    Science.gov (United States)

    Janczarek, Iwona; Wilk, Izabela; Zalewska, Edyta; Bocian, Krzysztof

    2015-07-01

    The aim of this paper was to select atmospheric factors and their values, which may disrupt the correct behavior and physiological condition of recreational horses. The studies were carried out from 1 July until 1 September on 16 Anglo-Arabian geldings. Each day, from 09.00 to 10.00 hours, the horses worked under saddle. The riders and the authors gave a qualitative behavioral assessment for each horse. Mood and willingness to work were evaluated. The quantitative assessment was called 'incorrect behavior of the horse while riding' (IBHR). The percentage time of duration and the number of occurrences of the features while riding were calculated. Heart rate, body temperature and respiratory rate were taken at 08.00 hours (resting measurement) and at 10.05 hours (post-exercise measurement). Air temperature, relative air humidity, wind speed and atmospheric pressure were measured at 08.00 and 10.00 hours. The results showed that adverse changes in the behavior of recreational horses can occur if the horse is ridden when the air temperature is above 26°C and when wind speeds exceed 5.5 m/s. Such conditions may cause a reduction in the mood and willingness to work in horses. Physiological parameters like heart rate and body temperature seem to be more sensitive indicators of the horse body reaction to the weather than behavioral reactions.

  5. TiOxNy coatings grown by atmospheric pressure metal organic chemical vapor deposition

    OpenAIRE

    Maury, Francis; Duminica, Florin-Daniel

    2010-01-01

    International audience; Titanium oxynitride coatings were deposited on various substrates by an original atmospheric pressure metal organic chemical vapor deposition (MOCVD) process using titanium tetra-iso-propoxide as titanium and oxygen precursors and hydrazine as a nitrogen source. The films composition was monitored by controlling the N2H4 mole fraction in the initial reactive gas phase. The variation of the N content in the films results in significant changes in morphological, structur...

  6. Variability of the Structure Parameters of Temperature and Humidity Observed in the Atmospheric Surface Layer Under Unstable Conditions

    NARCIS (Netherlands)

    Braam, M.; Moene, A.F.; Beyrich, F.

    2014-01-01

    The structure parameters of temperature and humidity are important in scintillometry as they determine the structure parameter of the refractive index of air, the primary atmospheric variable obtained with scintillometers. In this study, we investigate the variability of the logarithm of the Monin-O

  7. Chemical interactions between the present-day Martian atmosphere and surface minerals: Implications for sample return

    Science.gov (United States)

    Prinn, Ronald; Fegley, Bruce

    1988-01-01

    Thermochemical and photochemical reactions between surface minerals and present-day atmospheric constituents are predicted to produce microscopic effects on the surface of mineral grains. Relevant reactions hypothesized in the literature include conversions of silicates and volcanic glasses to clay minerals, conversion of ferrous to ferric compounds, and formation of carbonates, nitrates, and sulfates. These types of surface-atmosphere weathering of minerals, biological potential of the surface environment, and atmospheric stability in both present and past Martian epochs. It is emphasized that the product of these reactions will be observable and interpretable on the microscopic surface layers of Martian surface rocks using modern techniques with obvious implications for sample return from Mars. Macroscopic products of chemical weathering reactions in past Martian epochs are also expected in Martian surface materials. These products are expected not only as a result of reactions similar to those proceeding today but also due to aqueous reactions in past epochs in which liquid water was putatively present. It may prove very difficult or impossible, however, to determine definitively from the relic macroscopic product alone either the exact weathering process which led to its formation of the identity of its weathering parent mineral. The enormous advantages of studying the Martian chemical weathering by investigating the microscopic products of present-day chemical reactions on sample surfaces are very apparent.

  8. Chemical mass balance estimation of arsenic in atmospheric dust fall out in an urban residential area, Raipur, Central India

    Directory of Open Access Journals (Sweden)

    G. Balakrishna

    2010-11-01

    Full Text Available The components and quantities of atmospheric dust fallout have been reported to be the pollution indicator of large urban areas. The multiplicity and complexity of sources of atmospheric dusts in urban regions has put forward the need of source apportionment of these sources indicating their contribution to specific environmental receptor. The study presented here is focused on investigation of source contribution estimates of Arsenic in urban dust fallout in an urban-industrial area, Raipur, India. Source-receptor based representative sampling plan using longitudinal study design has been adopted. Six sampling sites have been identified on the basis of land use for development plan of anthropogenic activities and factors related to the transportation and dispersion pattern of atmospheric dusts. Source apportionment has been done using Chemical Mass Balance (CMB 8. Good fit parameters and relative source contribution has been analyzed and documented. Dominance of coal fired industries sources on arsenic levels measured at selected ambient residential receptors compared to line sources has been observed. Road-traffic has shown highest contribution of dust at indoor houses and out door-street automobile exhaust has shows highest contribution for arsenic. The results of CMB output and regression data of source-receptor dust matrices have shown comparable pattern.

  9. Optimizing Photosynthetic and Respiratory Parameters Based on the Seasonal Variation Pattern in Regional Net Ecosystem Productivity Obtained from Atmospheric Inversion

    Science.gov (United States)

    Chen, Z.; Chen, J.; Zheng, X.; Jiang, F.; Zhang, S.; Ju, W.; Yuan, W.; Mo, G.

    2014-12-01

    In this study, we explore the feasibility of optimizing ecosystem photosynthetic and respiratory parameters from the seasonal variation pattern of the net carbon flux. An optimization scheme is proposed to estimate two key parameters (Vcmax and Q10) by exploiting the seasonal variation in the net ecosystem carbon flux retrieved by an atmospheric inversion system. This scheme is implemented to estimate Vcmax and Q10 of the Boreal Ecosystem Productivity Simulator (BEPS) to improve its NEP simulation in the Boreal North America (BNA) region. Simultaneously, in-situ NEE observations at six eddy covariance sites are used to evaluate the NEE simulations. The results show that the performance of the optimized BEPS is superior to that of the BEPS with the default parameter values. These results have the implication on using atmospheric CO2 data for optimizing ecosystem parameters through atmospheric inversion or data assimilation techniques.

  10. Effect of tissue and atmosphere's parameters on human eye temperature distribution.

    Science.gov (United States)

    Firoozan, Mohammad Sadegh; Porkhial, Soheil; Nejad, Ali Salmani

    2015-01-01

    A three dimensional finite element method analysis was employed to investigate the effect of tissue and atmosphere parameters namely, ambient temperature, ambient convection coefficient, local blood temperature, and blood convection coefficient upon temperature distribution of human eyes. As a matter of simplification, only eye ball and skull bone are considered as the system of eye modeling. Decreasing the local blood temperature and keeping it cool is one of the most important ways to control bleeding during surgeries. By lower temperature of body organs such as the eye, the need for oxygenated blood is reduced, allowing for an extension in time for surgery. With this in mind, this study is done to see which one of parameters, such as ambient temperature, ambient convection coefficient, local blood temperature, and blood convection coefficient, has an effective role in decreasing the temperature of the eye. To this end, 3 different paths were employed to find out about the temperature distribution through the eye. The analysis of the three paths demonstrates the interaction of ambient and blood temperature in modeling temperature changes in specific locations of the eye. These data will be important in applications such as eye surgery, relaxation, and sleep therapy.

  11. Atmospheric particulate matter levels, chemical composition and optical absorbing properties in Camagüey, Cuba.

    Science.gov (United States)

    Barja, Boris; Mogo, Sandra; Cachorro, Victoria E; Antuña, Juan Carlos; Estevan, Rene; Rodrigues, Ana; de Frutos, Ángel

    2013-02-01

    Atmospheric aerosol particles were collected at Camagüey, Cuba, during the period from February 2008 to April 2009 in order to know the particulate matter levels (PM) together with a general chemical and absorption characterization. The aerosols collection was carried out with a low volume particulate impactor twice a week. Gravimetric analysis of the particulate matter fractions PM10 and PM1 was carried out. An analysis of the eight major inorganic species (Na (+), K(+), Ca(2+), Mg(2+), NH4 (+), Cl(-), NO3(-) and SO4 (2-)) using ionic chromatography was conducted. The results were analyzed in two periods, the high aerosol concentration period (May to August) and the period with low aerosol concentration (the other months). During the high concentration period the average PM10 and PM1 levels were 35.11 μg m (-3) (std = 15.45 μg m(-3)) and 16.86 μg m(-3) (std = 6.14 μg m (-3)). During the low concentration period the average PM10 and PM1 levels were 23.13 μg m (-3) (std = 5.00 μg m(-3)) and 13.00 μg m(-3) (std = 4.02 μg m (-3)). For both periods, Cl(-), Na(+) and NO3 (-) are the predominant species in the coarse fraction (PM1-10), and SO 4(2-)and NH4(+) are the predominant species in the fine fraction (PM1). The spectral aerosol absorption coefficient, σ a, was measured for the wavelength range 400-700 nm with 10 nm steps. The σ a values were obtained with a filter transmission method for the fine fraction and were evaluated for 54 days covering a wide range of atmospheric conditions including a Saharan dust intrusion. σ a ranges from 8.5 M m(-1) to 34.5 M m(-1) at a wavelength of 550 nm, with a mean value of 18.7 M m (-1). The absorption Ångström parameter, αa, calculated for the pair of wavelengths (450/700 nm) presents a mean value of 0.33 (std = 0.19), which is a very low value comparing with those that can be found in the bibliography. Although the sampling period is short, these data represent the first evaluation of PM values with their

  12. Surface and Atmospheric Parameter Retrieval From AVIRIS Data: The Importance of Non-Linear Effects

    Science.gov (United States)

    Green Robert O.; Moreno, Jose F.

    1996-01-01

    AVIRIS data represent a new and important approach for the retrieval of atmospheric and surface parameters from optical remote sensing data. Not only as a test for future space systems, but also as an operational airborne remote sensing system, the development of algorithms to retrieve information from AVIRIS data is an important step to these new approaches and capabilities. Many things have been learned since AVIRIS became operational, and the successive technical improvements in the hardware and the more sophisticated calibration techniques employed have increased the quality of the data to the point of almost meeting optimum user requirements. However, the potential capabilities of imaging spectrometry over the standard multispectral techniques have still not been fully demonstrated. Reasons for this are the technical difficulties in handling the data, the critical aspect of calibration for advanced retrieval methods, and the lack of proper models with which to invert the measured AVIRIS radiances in all the spectral channels. To achieve the potential of imaging spectrometry, these issues must be addressed. In this paper, an algorithm to retrieve information about both atmospheric and surface parameters from AVIRIS data, by using model inversion techniques, is described. Emphasis is put on the derivation of the model itself as well as proper inversion techniques, robust to noise in the data and an inadequate ability of the model to describe natural variability in the data. The problem of non-linear effects is addressed, as it has been demonstrated to be a major source of error in the numerical values retrieved by more simple, linear-based approaches. Non-linear effects are especially critical for the retrieval of surface parameters where both scattering and absorption effects are coupled, as well as in the cases of significant multiple-scattering contributions. However, sophisticated modeling approaches can handle such non-linear effects, which are especially

  13. Atmospheric pressure chemical ionization of fluorinated phenols in atmospheric pressure chemical ionization mass spectrometry, tandem mass spectrometry, and ion mobility spectrometry

    Science.gov (United States)

    Eiceman, G. A.; Bergloff, J. F.; Rodriguez, J. E.; Munro, W.; Karpas, Z.

    1999-01-01

    Atmospheric pressure chemical ionization (APCI)-mass spectrometry (MS) for fluorinated phenols (C6H5-xFxOH Where x = 0-5) in nitrogen with Cl- as the reagent ion yielded product ions of M Cl- through ion associations or (M-H)- through proton abstractions. Proton abstraction was controllable by potentials on the orifice and first lens, suggesting that some proton abstraction occurs through collision induced dissociation (CID) in the interface region. This was proven using CID of adduct ions (M Cl-) with Q2 studies where adduct ions were dissociated to Cl- or proton abstracted to (M-H)-. The extent of proton abstraction depended upon ion energy and structure in order of calculated acidities: pentafluorophenol > tetrafluorophenol > trifluorophenol > difluorophenol. Little or no proton abstraction occurred for fluorophenol, phenol, or benzyl alcohol analogs. Ion mobility spectrometry was used to determine if proton abstraction reactions passed through an adduct intermediate with thermalized ions and mobility spectra for all chemicals were obtained from 25 to 200 degrees C. Proton abstraction from M Cl- was not observed at any temperature for phenol, monofluorophenol, or difluorophenol. Mobility spectra for trifluorophenol revealed the kinetic transformations to (M-H)- either from M Cl- or from M2 Cl- directly. Proton abstraction was the predominant reaction for tetra- and penta-fluorophenols. Consequently, the evidence suggests that proton abstraction occurs from an adduct ion where the reaction barrier is reduced with increasing acidity of the O-H bond in C6H5-xFxOH.

  14. Analysis and Physico-Chemical Parameters of Sarvar Devla Sugar Mill Studies of Effluents

    Directory of Open Access Journals (Sweden)

    R. K. Pathak

    2012-12-01

    Full Text Available The physico-chemical characteristics contents in the effluents discharged from Neoly sugar mill have been explored. The physico-chemical parameters such as colour, odour, temperature, pH, electrical conductivity, COD, BOD, alkalinity, total hardness,Ca+2, Mg+2, chloride, of the effluent collected from the various sites between the exit point at the mill and discharge point In, have been determined.

  15. A Discussion of Oxygen Recovery Definitions and Key Performance Parameters for Closed-Loop Atmosphere Revitalization Life Support Technology Development

    Science.gov (United States)

    Abney, Morgan B.; Perry, Jay L.

    2016-01-01

    Over the last 55 years, NASA has evolved life support for crewed space exploration vehicles from simple resupply during Project Mercury to the complex and highly integrated system of systems aboard the International Space Station. As NASA targets exploration destinations farther from low Earth orbit and mission durations of 500 to 1000 days, life support systems must evolve to meet new requirements. In addition to having more robust, reliable, and maintainable hardware, limiting resupply becomes critical for managing mission logistics and cost. Supplying a crew with the basics of food, water, and oxygen become more challenging as the destination ventures further from Earth. Aboard ISS the Atmosphere Revitalization Subsystem (ARS) supplies the crew's oxygen demand by electrolyzing water. This approach makes water a primary logistics commodity that must be managed carefully. Chemical reduction of metabolic carbon dioxide (CO2) provides a method of recycling oxygen thereby reducing the net ARS water demand and therefore minimizing logistics needs. Multiple methods have been proposed to achieve this recovery and have been reported in the literature. However, depending on the architecture and the technology approach, "oxygen recovery" can be defined in various ways. This discontinuity makes it difficult to compare technologies directly. In an effort to clarify community discussions of Oxygen Recovery, we propose specific definitions and describe the methodology used to arrive at those definitions. Additionally, we discuss key performance parameters for Oxygen Recovery technology development including challenges with comparisons to state-of-the-art.

  16. Multi-technique comparison of atmospheric parameters at the DORIS co-location sites during CONT14

    Science.gov (United States)

    Heinkelmann, Robert; Willis, Pascal; Deng, Zhiguo; Dick, Galina; Nilsson, Tobias; Soja, Benedikt; Zus, Florian; Wickert, Jens; Schuh, Harald

    2016-12-01

    The atmospheric parameters, zenith delays and gradients, obtained by the DORIS, GPS, VLBI, and numerical weather models, ECMWF and NCEP, are compared at five DORIS co-located sites during the 15 days of the CONT14 campaign from 2014-05-06 until 2014-05-20. Further examined are two different solutions of GPS, VLBI and NCEP: for GPS, a network solution comparable to the TIGA reprocessing analysis strategy and a precise point positioning solution, for VLBI, a least squares and a Kalman filtered and smoothed solution, and for NCEP two spatial resolutions, 0.5° and 1.0°, are tested. The different positions of the antenna reference points at co-location sites affect the atmospheric parameters and have to be considered prior to the comparison. We assess and discuss these differences, tropospheric ties, by comparing ray-traced atmospheric parameters obtained at the positions of the various antenna reference points. While ray-traced ZHD and ZWD at the co-located antennas significantly differ, the ray-traced gradients show only very small differences. Weather events can introduce larger disagreement between atmospheric parameters obtained at co-location sites. The various weather model solutions in general agree very well in providing tropospheric ties. The atmospheric parameters are compared using statistical methods, such as the mean difference and standard deviations with repect to a weighted mean value. While GPS and VLBI atmospheric parameters agree very well in general, the DORIS observations are in several cases not dense enough to achieve a comparable level of agreement. The estimated zenith delays from DORIS, however, are competitive with the other space geodetic techniques. If the DORIS observation geometry is insufficient for the estimation of an atmospheric gradient, less than three satellites observed during the definition interval, the DORIS atmospheric parameters degrade and show small quasi-periodic variations that correlate with the number of observations

  17. Optical properties and chemical behavior of Laser-dye Coumarin-500 and the influence of atmospheric corona discharges.

    Science.gov (United States)

    Keskin, S Sinan; Aslan, Necdet; Bayrakçeken, Fuat

    2009-03-01

    Structure elucidation of Coumarin-500 Laser-dye in cyclohexane at room temperature has been studied by UV-Vis, Raman, and FTIR spectroscopic techniques. Optical properties and chemical behavior under the influence of atmospheric positive electric pulsed corona discharges were also examined. The effects of UV-Vis irradiation changed some optical parameters, such as decrease in optical density on the absorption spectrum and formation of photoproducts, due to the chromaticity removal. No significant optical changes were observed in the light absorption upon UV-irradiation but large changes in absorption spectrum were observed after positive electric corona discharge treatments, FTIR and Raman spectra in non-polar solvent are recorded and interpreted.

  18. VULCAN: An Open-source, Validated Chemical Kinetics Python Code for Exoplanetary Atmospheres

    Science.gov (United States)

    Tsai, Shang-Min; Lyons, James R.; Grosheintz, Luc; Rimmer, Paul B.; Kitzmann, Daniel; Heng, Kevin

    2017-02-01

    We present an open-source and validated chemical kinetics code for studying hot exoplanetary atmospheres, which we name VULCAN. It is constructed for gaseous chemistry from 500 to 2500 K, using a reduced C–H–O chemical network with about 300 reactions. It uses eddy diffusion to mimic atmospheric dynamics and excludes photochemistry. We have provided a full description of the rate coefficients and thermodynamic data used. We validate VULCAN by reproducing chemical equilibrium and by comparing its output versus the disequilibrium-chemistry calculations of Moses et al. and Rimmer & Helling. It reproduces the models of HD 189733b and HD 209458b by Moses et al., which employ a network with nearly 1600 reactions. We also use VULCAN to examine the theoretical trends produced when the temperature–pressure profile and carbon-to-oxygen ratio are varied. Assisted by a sensitivity test designed to identify the key reactions responsible for producing a specific molecule, we revisit the quenching approximation and find that it is accurate for methane but breaks down for acetylene, because the disequilibrium abundance of acetylene is not directly determined by transport-induced quenching, but is rather indirectly controlled by the disequilibrium abundance of methane. Therefore we suggest that the quenching approximation should be used with caution and must always be checked against a chemical kinetics calculation. A one-dimensional model atmosphere with 100 layers, computed using VULCAN, typically takes several minutes to complete. VULCAN is part of the Exoclimes Simulation Platform (ESP; exoclime.net) and publicly available at https://github.com/exoclime/VULCAN.

  19. S3 and S4 abundances and improved chemical kinetic model for the lower atmosphere of Venus

    Science.gov (United States)

    Krasnopolsky, Vladimir A.

    2013-07-01

    Mixing ratios of S3 and S4 are obtained from reanalysis of the spectra of true absorption in the visible range retrieved by Maiorov et al. (Maiorov, B.S. et al. [2005]. Solar Syst. Res. 39, 267-282) from the Venera 11 observations. These mixing ratios are fS3 = 11 ± 3 ppt at 3-10 km and 18 ± 3 ppt at 10-19 km, fS4 = 4 ± 4 ppt at 3-10 km and 6 ± 2 ppt at 10-19 km, and show a steep decrease in both S3 and S4 above 19 km. Photolysis rates of S3 and S4 at various altitudes are calculated using the Venera 11 spectra and constant photolysis yields as free parameters. The chemical kinetic model for the Venus lower atmosphere (Krasnopolsky, V.A. [2007]. Icarus 191, 25-37) has been improved by inclusion of the S4 cycle from Yung et al. (Yung, Y.L. et al. [2009]. J. Geophys. Res. 114, E00B34), reduction of the H2SO4 and CO fluxes at the upper boundary of 47 km by a factor of 4 in accord with the recent photochemical models for the middle atmosphere, by using a closed lower boundary for OCS instead of a free parameter for this species at the surface, and some minor updates. Our model with the S4 cycle but without the SO3 + 2 OCS reaction suggested by Krasnopolsky and Pollack (Krasnopolsky, V.A., Pollack, J.B. [1994]. Icarus 109, 58-78) disagrees with the observations of OCS, CO, S3, and S4. However, inclusion of the S4 cycle improves the model fit to all observational constraints. The best-fit activation energy of 7800 K for thermolysis of S4 supports the S4 enthalpy from Mills (Mills, K.C. [1974]. Thermodynamic Data for Inorganic Sulfides, Selenides and Tellurides. Butterworths, London). Chemistry of the Venus lower atmosphere is initiated by disequilibrium products H2SO4 and CO from the middle atmosphere, photolysis of S3 and S4, and thermochemistry in the lowest scale height. The chemistry is mostly driven by sulfur that is formed in a slow reaction SO + SO, produces OCS, and results in dramatic changes in abundances of OCS, CO, and free sulfur allotropes. The SX + OCS

  20. Impact of difference in absorption line parameters in spectroscopic databases on CO2 and CH4 atmospheric content retrievals

    Science.gov (United States)

    Chesnokova, T. Yu.; Chentsov, A. V.; Rokotyan, N. V.; Zakharov, V. I.

    2016-09-01

    The impact of uncertainties in CH4 and CO2 absorption line parameters in modern spectroscopic databases on the atmospheric transmission simulation in the near-infrared region is investigated. The atmospheric contents of CH4 and CO2 are retrieved from the absorption solar spectra measured by a ground-based Fourier transform spectrometer. Different spectroscopic databases are used in the forward radiative transfer model and a comparison of the retrieved results is made.

  1. Preliminary study on atmospheric-pressure plasma-based chemical dry figuring and finishing of reaction-sintered silicon carbide

    Science.gov (United States)

    Shen, Xinmin; Deng, Hui; Zhang, Xiaonan; Peng, Kang; Yamamura, Kazuya

    2016-10-01

    Reaction-sintered silicon carbide (RS-SiC) is a research focus in the field of optical manufacturing. Atmospheric-pressure plasma-based chemical dry figuring and finishing, which consist of plasma chemical vaporization machining (PCVM) and plasma-assisted polishing (PAP), were applied to improve material removal rate (MRR) in rapid figuring and ameliorate surface quality in fine finishing. Through observing the processed RS-SiC sample in PCVM by scanning white-light interferometer (SWLI), the calculated peak-MRR and volume-MRR were 0.533 μm/min and 2.78×10-3 mm3/min, respectively. The comparisons of surface roughness and morphology of the RS-SiC samples before and after PCVM were obtained by the scanning electron microscope and atomic force microscope. It could be found that the processed RS-SiC surface was deteriorated with surface roughness rms 382.116 nm. The evaluations of surface quality of the processed RS-SiC sample in PAP corresponding to different collocations of autorotation speed and revolution speed were obtained by SWLI measurement. The optimal surface roughness rms of the processed RS-SiC sample in PAP was 2.186 nm. There were no subsurface damages, scratches, or residual stresses on the processed sample in PAP. The results indicate that parameters in PAP should be strictly selected, and the optimal parameters can simultaneously obtain high MRR and smooth surface.

  2. Chemical and toxicological evolution of carbon nanotubes during atmospherically relevant aging processes.

    Science.gov (United States)

    Liu, Yongchun; Liggio, John; Li, Shao-Meng; Breznan, Dalibor; Vincent, Renaud; Thomson, Errol M; Kumarathasan, Premkumari; Das, Dharani; Abbatt, Jonathan; Antiñolo, María; Russell, Lynn

    2015-03-03

    The toxicity of carbon nanotubes (CNTs) has received significant attention due to their usage in a wide range of commercial applications. While numerous studies exist on their impacts in water and soil ecosystems, there is a lack of information on the exposure to CNTs from the atmosphere. The transformation of CNTs in the atmosphere, resulting in their functionalization, may significantly alter their toxicity. In the current study, the chemical modification of single wall carbon nanotubes (SWCNTs) via ozone and OH radical oxidation is investigated through studies that simulate a range of expected tropospheric particulate matter (PM) lifetimes, in order to link their chemical evolution to toxicological changes. The results indicate that the oxidation favors carboxylic acid functionalization, but significantly less than other studies performed under nonatmospheric conditions. Despite evidence of functionalization, neither O3 nor OH radical oxidation resulted in a change in redox activity (potentially giving rise to oxidative stress) or in cytotoxic end points. Conversely, both the redox activity and cytotoxicity of SWCNTs significantly decreased when exposed to ambient urban air, likely due to the adsorption of organic carbon vapors. These results suggest that the effect of gas-particle partitioning of organics in the atmosphere on the toxicity of SWCNTs should be investigated further.

  3. Quantum chemical study on the stability of honeybee queen pheromone against atmospheric factors.

    Science.gov (United States)

    Shi, Rongwei; Liu, Fanglin

    2016-06-01

    The managed honeybee, Apis mellifera, has been experienced a puzzling event, termed as colony collapse disorder (CCD), in which worker bees abruptly disappear from their hives. Potential factors include parasites, pesticides, malnutrition, and environmental stresses. However, so far, no definitive relationship has been established between specific causal factors and CCD events. Here we theoretically test whether atmospheric environment could disturb the chemical communication between the queen and their workers in a colony. A quantum chemistry method has been used to investigate for the stability of the component of A. mellifera queen mandibular pheromone (QMP), (E)-9-keto-2-decenoic acid (9-ODA), against atmospheric water and free radicals. The results show that 9-ODA is less likely to react with water due to the high barrier heights (~36.5 kcal · mol(-1)) and very low reaction rates. However, it can easily react with triplet oxygen and hydroxyl radicals because of low or negative energy barriers. Thus, the atmospheric free radicals may disturb the chemical communication between the queen and their daughters in a colony. Our pilot study provides new insight for the cause of CCD, which has been reported throughout the world.

  4. Physico-Chemical and Biological Parameters of the Three Rural Ponds of Sasaram of Bihar

    Directory of Open Access Journals (Sweden)

    Jyoti Choudhary

    2014-06-01

    Full Text Available Physico chemical and biological parameters of the three rural pond of Sasaram,Bihar has been studied to see the present condition for its better utilization. The study revealed that parameters are within permissible limit for fish culture and the stocking should be done as per the productivity of the water. As per the BOD estimation the ponds falls under moderately polluted category.

  5. Potential of gas chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry for screening and quantification of hexabromocyclododecane.

    Science.gov (United States)

    Sales, Carlos; Portolés, Tania; Sancho, Juan Vicente; Abad, Esteban; Ábalos, Manuela; Sauló, Jordi; Fiedler, Heidelore; Gómara, Belén; Beltrán, Joaquim

    2016-01-01

    A fast method for the screening and quantification of hexabromocyclododecane (sum of all isomers) by gas chromatography using a triple quadrupole mass spectrometer with atmospheric pressure chemical ionization (GC-APCI-QqQ) is proposed. This novel procedure makes use of the soft atmospheric pressure chemical ionization source, which results in less fragmentation of the analyte than by conventional electron impact (EI) and chemical ionization (CI) sources, favoring the formation of the [M - Br](+) ion and, thus, enhancing sensitivity and selectivity. Detection was based on the consecutive loses of HBr from the [M - Br](+) ion to form the specific [M - H5Br6](+) and [M - H4Br5](+) ions, which were selected as quantitation (Q) and qualification (q) transitions, respectively. Parameters affecting ionization and MS/MS detection were studied. Method performance was also evaluated; calibration curves were found linear from 1 pg/μL to 100 pg/μL for the total HBCD concentration; instrumental detection limit was estimated to be 0.10 pg/μL; repeatability and reproducibility, expressed as relative standard deviation, were better than 7% in both cases. The application to different real samples [polyurethane foam disks (PUFs), food, and marine samples] pointed out a rapid way to identify and allow quantification of this compound together with a number of polybrominated diphenyl ethers (BDE congeners 28, 47, 66, 85, 99, 100, 153, 154, 183, 184, 191, 196, 197, and 209) and two other novel brominated flame retardants [i.e., decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE)] because of their presence in the same fraction when performing the usual sample treatment.

  6. Molecule-based approach for computing chemical-reaction rates in upper atmosphere hypersonic flows.

    Energy Technology Data Exchange (ETDEWEB)

    Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert

    2009-08-01

    This report summarizes the work completed during FY2009 for the LDRD project 09-1332 'Molecule-Based Approach for Computing Chemical-Reaction Rates in Upper-Atmosphere Hypersonic Flows'. The goal of this project was to apply a recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary nonequilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological non-equilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, the difference between the two models can exceed 10 orders of magnitude. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates. Extensions of the model to reactions typically found in combustion flows and ionizing reactions are also found to be in very good agreement with available measurements, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates.

  7. VULCAN: an Open-Source, Validated Chemical Kinetics Python Code for Exoplanetary Atmospheres

    CERN Document Server

    Tsai, Shang-Min; Grosheintz, Luc; Rimmer, Paul B; Kitzmann, Daniel; Heng, Kevin

    2016-01-01

    We present an open-source and validated chemical kinetics code for studying hot exoplanetary atmospheres, which we name VULCAN. It is constructed for gaseous chemistry from 500 to 2500 K using a reduced C- H-O chemical network with about 300 reactions. It uses eddy diffusion to mimic atmospheric dynamics and excludes photochemistry. We have provided a full description of the rate coefficients and thermodynamic data used. We validate VULCAN by reproducing chemical equilibrium and by comparing its output versus the disequilibrium-chemistry calculations of Moses et al. and Rimmer & Helling. It reproduces the models of HD 189733b and HD 209458b by Moses et al., which employ a network with nearly 1600 reactions. Further validation of VULCAN is made by examining the theoretical trends produced when the temperature-pressure profile and carbon-to-oxygen ratio are varied. Assisted by a sensitivity test designed to identify the key reactions responsible for producing a specific molecule, we revisit the quenching ap...

  8. Chemical Atmosphere-Snow-Sea Ice Interactions: defining future research in the field, lab and modeling

    Science.gov (United States)

    Frey, Markus

    2015-04-01

    The air-snow-sea ice system plays an important role in the global cycling of nitrogen, halogens, trace metals or carbon, including greenhouse gases (e.g. CO2 air-sea flux), and therefore influences also climate. Its impact on atmospheric composition is illustrated for example by dramatic ozone and mercury depletion events which occur within or close to the sea ice zone (SIZ) mostly during polar spring and are catalysed by halogens released from SIZ ice, snow or aerosol. Recent field campaigns in the high Arctic (e.g. BROMEX, OASIS) and Antarctic (Weddell sea cruises) highlight the importance of snow on sea ice as a chemical reservoir and reactor, even during polar night. However, many processes, participating chemical species and their interactions are still poorly understood and/or lack any representation in current models. Furthermore, recent lab studies provide a lot of detail on the chemical environment and processes but need to be integrated much better to improve our understanding of a rapidly changing natural environment. During a 3-day workshop held in Cambridge/UK in October 2013 more than 60 scientists from 15 countries who work on the physics, chemistry or biology of the atmosphere-snow-sea ice system discussed research status and challenges, which need to be addressed in the near future. In this presentation I will give a summary of the main research questions identified during this workshop as well as ways forward to answer them through a community-based interdisciplinary approach.

  9. Real-time chemical characterization of atmospheric particulate matter in China: A review

    Science.gov (United States)

    Li, Yong Jie; Sun, Yele; Zhang, Qi; Li, Xue; Li, Mei; Zhou, Zhen; Chan, Chak K.

    2017-06-01

    Atmospheric particulate matter (PM) pollution has become a major health threat accompanying the rapid economic development in China. For decades, filter-based offline chemical analyses have been the most widely adopted means to investigate PM and have provided much information for understanding this type of pollution in China. However, offline analyses have low time resolutions and the chemical information thus obtained fail to reflect the dynamic nature of the sources and the rapid processes leading to the severe PM pollution in China. In recent years, advances in real-time PM chemical characterization have created a new paradigm for PM studies in China. In this review, we summarize those advances, focusing on the most widely used mass spectrometric and ion chromatographic techniques. We describe the findings from those studies in terms of spatiotemporal variabilities, degree of neutralization and oxygenation, source apportionment, secondary formation, as well as collocated measurements of the chemical and physical (hygroscopic and optical) properties of PM. We also highlight the new insights gained from those findings and suggest future directions for further advancing our understanding of PM pollution in China via real-time chemical characterization.

  10. An adaptive reduction algorithm for efficient chemical calculations in global atmospheric chemistry models

    Science.gov (United States)

    Santillana, Mauricio; Le Sager, Philippe; Jacob, Daniel J.; Brenner, Michael P.

    2010-11-01

    We present a computationally efficient adaptive method for calculating the time evolution of the concentrations of chemical species in global 3-D models of atmospheric chemistry. Our strategy consists of partitioning the computational domain into fast and slow regions for each chemical species at every time step. In each grid box, we group the fast species and solve for their concentration in a coupled fashion. Concentrations of the slow species are calculated using a simple semi-implicit formula. Separation of species between fast and slow is done on the fly based on their local production and loss rates. This allows for example to exclude short-lived volatile organic compounds (VOCs) and their oxidation products from chemical calculations in the remote troposphere where their concentrations are negligible, letting the simulation determine the exclusion domain and allowing species to drop out individually from the coupled chemical calculation as their production/loss rates decline. We applied our method to a 1-year simulation of global tropospheric ozone-NO x-VOC-aerosol chemistry using the GEOS-Chem model. Results show a 50% improvement in computational performance for the chemical solver, with no significant added error.

  11. Implicit coupling of turbulent diffusion with chemical reaction mechanisms for prognostic atmospheric dispersion models

    Energy Technology Data Exchange (ETDEWEB)

    Berlowitz, D.R.

    1996-11-01

    In the last few decades the negative impact by humans on the thin atmospheric layer enveloping the earth, the basis for life on this planet, has increased steadily. In order to halt, or at least slow down this development, the knowledge and study of these anthropogenic influence has to be increased and possible remedies have to be suggested. An important tool for these studies are computer models. With their help the atmospheric system can be approximated and the various processes, which have led to the current situation can be quantified. They also serve as an instrument to assess short or medium term strategies to reduce this human impact. However, to assure efficiency as well as accuracy, a careful analysis of the numerous processes involved in the dispersion of pollutants in the atmosphere is called for. This should help to concentrate on the essentials and also prevent excessive usage of sometimes scarce computing resources. The basis of the presented work is the EUMAC Zooming Model (ETM), and particularly the component calculating the dispersion of pollutants in the atmosphere, the model MARS. The model has two main parts: an explicit solver, where the advection and the horizontal diffusion of pollutants are calculated, and an implicit solution mechanism, allowing the joint computation of the change of concentration due to chemical reactions, coupled with the respective influence of the vertical diffusion of the species. The aim of this thesis is to determine particularly the influence of the horizontal components of the turbulent diffusion on the existing implicit solver of the model. Suggestions for a more comprehensive inclusion of the full three dimensional diffusion operator in the implicit solver are made. This is achieved by an appropriate operator splitting. A selection of numerical approaches to tighten the coupling of the diffusion processes with the calculation of the applied chemical reaction mechanisms are examined. (author) figs., tabs., refs.

  12. Information parameters for realization of adaptive charge of secondary chemical sources of a current

    Directory of Open Access Journals (Sweden)

    Zhitnik N. E.

    2008-10-01

    Full Text Available A chrono-potentiometric method of control of the state of chemical sources of current (CSC is offered. The method allows from chrono-potentiogram (CPG, representing CSC reaction on the charge current impulse, to get practically all informative parameters, necessary for practical realization of adaptive charge.

  13. Energy and centrality dependence of chemical freeze-out parameters from models

    CERN Document Server

    Kumar, Lokesh

    2013-01-01

    One of the main goals of heavy-ion collision experiments is to study the structure of the QCD phase diagram. The QCD phase diagram is typically plotted as temperature ($T$) vs. baryon chemical potential ($\\mu_{B}$). The statistical thermal model THERMUS compared to experimental data provides chemical freeze-out parameters such as temperature, baryon chemical potential and strangeness saturation factor ($\\gamma_{s}$). However, the values of these parameters depend on models and their underlying assumptions, such as the nature of the ensemble used, particle ratios vs. particle yields, and the treatment of feed-down contributions to particle yields. In these proceedings, we report on a systematic study of chemical freeze-out parameters using THERMUS, as a function of collision centrality and collision energies ($\\sqrt{s_{NN}} =7.7-200$ GeV). These studies are performed with the string melting version of A Multi-Phase Transport (AMPT) model. A comparison is presented of freeze-out parameters between grand-canonic...

  14. Physico-chemical quality parameters of herbal products from Agave sisalana.

    Science.gov (United States)

    Apolinário, Alexsandra Conceição; do Nascimento, Morgana Lopes; de Luna Vieira, Juliana Patrícia; Melo, Camila de Oliveira; Santos, Felipe Fernandes; de Lima Damasceno, Bolívar Ponciano Goulart; Converti, Attilio; Pessoa, Adalberto; da Silva, José Alexsandro

    2014-01-01

    Agave sisalana components have great potential in different pharmaceutical applications, but the quality of herbal raw materials is essential to reach the desired product specifications. In this work, we investigated the physico-chemical quality parameters of bole and wastes from decortication of A. sisalana leaves. The statistically significant variations among products suggest different pharmaceutical applications for each of them.

  15. SWEET-Cat: A catalogue of parameters for Stars With ExoplanETs I. New atmospheric parameters and masses for 48 stars with planets

    CERN Document Server

    Santos, N C; Mortier, A; Neves, V; Adibekyan, V; Tsantaki, M; Mena, E Delgado; Bonfils, X; Israelian, G; Mayor, M; Udry, S

    2013-01-01

    Due to the importance that the star-planet relation has to our understanding of the planet formation process, the precise determination of stellar parameters for the ever increasing number of discovered extra-solar planets is of great relevance. Furthermore, precise stellar parameters are needed to fully characterize the planet properties. It is thus important to continue the efforts to determine, in the most uniform way possible, the parameters for stars with planets as new discoveries are announced. In this paper we present new precise atmospheric parameters for a sample of 48 stars with planets. We then take the opportunity to present a new catalogue of stellar parameters for FGK and M stars with planets detected by radial velocity, transit, and astrometry programs. Stellar atmospheric parameters and masses for the 48 stars were derived assuming LTE and using high resolution and high signal-to-noise spectra. The methodology used is based on the measurement of equivalent widths for a list of iron lines and ...

  16. Time variant layer control in atmospheric pressure chemical vapor deposition based growth of graphene

    KAUST Repository

    Qaisi, Ramy M.

    2013-04-01

    Graphene is a semi-metallic, transparent, atomic crystal structure material which is promising for its high mobility, strength and transparency - potentially applicable for radio frequency (RF) circuitry and energy harvesting and storage applications. Uniform (same number of layers), continuous (not torn or discontinuous), large area (100 mm to 200 mm wafer scale), low-cost, reliable growth are the first hand challenges for its commercialization prospect. We show a time variant uniform (layer control) growth of bi- to multi-layer graphene using atmospheric chemical vapor deposition system. We use Raman spectroscopy for physical characterization supported by electrical property analysis. © 2013 IEEE.

  17. A new method for the inversion of atmospheric parameters of A/Am stars

    Science.gov (United States)

    Gebran, M.; Farah, W.; Paletou, F.; Monier, R.; Watson, V.

    2016-05-01

    Context. We present an automated procedure that simultaneously derives the effective temperature Teff, surface gravity log g, metallicity [Fe/H], and equatorial projected rotational velocity vsini for "normal" A and Am stars. The procedure is based on the principal component analysis (PCA) inversion method, which we published in a recent paper . Aims: A sample of 322 high-resolution spectra of F0-B9 stars, retrieved from the Polarbase, SOPHIE, and ELODIE databases, were used to test this technique with real data. We selected the spectral region from 4400-5000 Å as it contains many metallic lines and the Balmer Hβ line. Methods: Using three data sets at resolving powers of R = 42 000, 65 000 and 76 000, about ~6.6 × 106 synthetic spectra were calculated to build a large learning database. The online power iteration algorithm was applied to these learning data sets to estimate the principal components (PC). The projection of spectra onto the few PCs offered an efficient comparison metric in a low-dimensional space. The spectra of the well-known A0- and A1-type stars, Vega and Sirius A, were used as control spectra in the three databases. Spectra of other well-known A-type stars were also employed to characterize the accuracy of the inversion technique. Results: We inverted all of the observational spectra and derived the atmospheric parameters. After removal of a few outliers, the PCA-inversion method appeared to be very efficient in determining Teff, [Fe/H], and vsini for A/Am stars. The derived parameters agree very well with previous determinations. Using a statistical approach, deviations of around 150 K, 0.35 dex, 0.15 dex, and 2 km s-1 were found for Teff, log g, [Fe/H], and vsini with respect to literature values for A-type stars. Conclusions: The PCA inversion proves to be a very fast, practical, and reliable tool for estimating stellar parameters of FGK and A stars and for deriving effective temperatures of M stars. Based on data retrieved from the

  18. Soft Sensor for Inputs and Parameters Using Nonlinear Singular State Observer in Chemical Processes

    Institute of Scientific and Technical Information of China (English)

    许锋; 汪晔晔; 罗雄麟

    2013-01-01

    Chemical processes are usually nonlinear singular systems. In this study, a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes, which are augmented as state variables. Based on the observability of the singular system, this paper presents a simplified observability criterion under certain conditions for unknown inputs and uncertain model parameters. When the observability is satisfied, the unknown inputs and the uncertain model parameters are estimated online by the soft sensor using augmented nonlinear singular state observer. The riser reactor of fluid catalytic cracking unit is used as an example for analysis and simulation. With the catalyst circulation rate as the only unknown input without model error, one temperature sensor at the riser reactor outlet will ensure the correct estimation for the catalyst cir-culation rate. However, when uncertain model parameters also exist, additional temperature sensors must be used to ensure correct estimation for unknown inputs and uncertain model parameters of chemical processes.

  19. S-parameter at Non-Zero Temperature and Chemical Potential

    CERN Document Server

    Søndergaard, Ulrik Ishøj; Sannino, Francesco

    2011-01-01

    We compute the finite-temperature and matter density corrections to the S-parameter at the one loop level. At non-zero temperature T and matter density Lorentz symmetry breaks and therefore we suggest a suitable generalization of the S-parameter. By computing the plasma correction, we discover a reduction of the S-parameter in the physically relevant region of small external momenta for any non-zero chemical potential and T. In particular, the S-parameter vanishes at small m/T, where m is the mass of the fermions, due to the finite extent of the temporal direction. Our results are directly applicable to the determination of the S-parameter via first principle lattice simulations performed with anti-periodic boundary conditions in the temporal direction.

  20. Atmospheric pressure chemical vapor deposition (APCVD) grown bi-layer graphene transistor characteristics at high temperature

    KAUST Repository

    Qaisi, Ramy M.

    2014-05-15

    We report the characteristics of atmospheric chemical vapor deposition grown bilayer graphene transistors fabricated on ultra-scaled (10 nm) high-κ dielectric aluminum oxide (Al2O3) at elevated temperatures. We observed that the drive current increased by >400% as temperature increased from room temperature to 250 °C. Low gate leakage was maintained for prolonged exposure at 100 °C but increased significantly at temperatures >200 °C. These results provide important insights for considering chemical vapor deposition graphene on aluminum oxide for high temperature applications where low power and high frequency operation are required. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A sensitive gas chromatography detector based on atmospheric pressure chemical ionization by a dielectric barrier discharge.

    Science.gov (United States)

    Kirk, Ansgar T; Last, Torben; Zimmermann, Stefan

    2017-02-03

    In this work, we present a novel concept for a gas chromatography detector utilizing an atmospheric pressure chemical ionization which is initialized by a dielectric barrier discharge. In general, such a detector can be simple and low-cost, while achieving extremely good limits of detection. However, it is non-selective apart from the use of chemical dopants. Here, a demonstrator manufactured entirely from fused silica capillaries and printed circuit boards is shown. It has a size of 75×60×25mm(3) and utilizes only 2W of power in total. Unlike other known discharge detectors, which require high-purity helium, this detector can theoretically be operated using any gas able to form stable ion species. Here, purified air is used. With this setup, limits of detection in the low parts-per-billion range have been obtained for acetone.

  2. Chemical modification of amino acids by atmospheric-pressure cold plasma in aqueous solution

    Science.gov (United States)

    Takai, Eisuke; Kitamura, Tsuyoshi; Kuwabara, Junpei; Ikawa, Satoshi; Yoshizawa, Shunsuke; Shiraki, Kentaro; Kawasaki, Hideya; Arakawa, Ryuichi; Kitano, Katsuhisa

    2014-07-01

    Plasma medicine is an attractive new research area, but the principles of plasma modification of biomolecules in aqueous solution remain elusive. In this study, we investigated the chemical effects of atmospheric-pressure cold plasma on 20 naturally occurring amino acids in aqueous solution. High-resolution mass spectrometry revealed that chemical modifications of 14 amino acids were observed after plasma treatment: (i) hydroxylation and nitration of aromatic rings in tyrosine, phenylalanine and tryptophan; (ii) sulfonation and disulfide linkage formation of thiol groups in cysteine; (iii) sulfoxidation of methionine and (iv) amidation and ring-opening of five-membered rings in histidine and proline. A competitive reaction experiment using 20 amino acids demonstrated that sulfur-containing and aromatic amino acids were preferentially decreased by the plasma treatment. These data provide fundamental information for elucidating the mechanism of protein inactivation for biomedical plasma applications.

  3. Chemically induced transition phenomena in polyurethanes as seen from generalized mode Grueneisen parameters

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, U; Philipp, M; Bactavatchalou, R; Sanctuary, R; Baller, J; Zielinski, B; Krueger, J K [Laboratoire de Physique des Materiaux, Universite du Luxembourg, 162A, Avenue de la Faiencerie, L-1115 (Luxembourg); Possart, W; Alnot, P [Laboratoire Europeen de Recherche, Universitaire Saarland-Lorraine (Luxembourg)], E-mail: ulrich.mueller@uni.lu

    2008-05-21

    Many phenomenological properties of reactive polymers like polyurethanes increase or decrease continuously in the course of the curing process before saturating at the end of the chemical reaction. This holds true for instance for the mass density, the refractive index, the chemical turnover and the hypersonic properties. The reason for this monotone behaviour is that the chemical reaction behaves like a continuous succession of irreversible phase transitions. These transitions are superposed by the sol-gel transition and possibly by the chemically induced glass transition, with the drawback that the latter two highlighted transitions are often hidden by the underlying curing process. In this work we propose generalized mode Grueneisen parameters as an alternative probe for elucidating the polymerization process itself and the closely related transition phenomena. As a model system we use polyurethane composed of a diisocyanate and varying ratios of difunctional and trifunctional alcohols.

  4. Composition and effects of inhalable size fractions of atmospheric aerosols in the polluted atmosphere: part I. PAHs, PCBs and OCPs and the matrix chemical composition.

    Science.gov (United States)

    Landlová, Linda; Cupr, Pavel; Franců, Juraj; Klánová, Jana; Lammel, Gerhard

    2014-05-01

    Atmospheric particulate matter (PM) abundance, mass size distribution (MSD) and chemical composition are parameters relevant for human health effects. The MSD and phase state of semivolatile organic pollutants were determined at various polluted sites in addition to the PM composition and MSD. The distribution pattern of pollutants varied from side to side in correspondence to main particle sources and PM composition. Levels of particle-associated polycyclic aromatic hydrocarbons (PAHs) were 1-30 ng m(-3) (corresponding to 15-35 % of the total, i.e., gas and particulate phase concentrations), of polychlorinated biphenyls (PCBs) were 2-11 pg m(-3) (4-26 % of the total) and of DDT compounds were 2-12 pg m(-3) (4-23 % of the total). The PM associated amounts of other organochlorine pesticides were too low for quantification. The organics were preferentially found associated with particles matrix composition, amount of contaminants and toxicological effects occur. Legislative regulation based on gravimetric determination of PM mass can clearly be insufficient for assessment.

  5. Correlation of Physical-Chemical Parameters to Total Coliform Value in Jawi River, Pontianak, West Kalimantan

    Directory of Open Access Journals (Sweden)

    Rahmawati Ibrahim

    2017-08-01

    Full Text Available Coliform bacteria can be used as an indicator of the presence of pathogenic bacteria, such as E.coli bacteria that cause diarrhea. The aimed of this study is to determine the relationship between physical-chemical parameters namely temperature, pH, DO and BOD to the density of coliform bacteria in Jawi River, Pontianak. The sampling was conducted at one point each in the upstream, midstream and downstream area of the Jawi River during two tidal conditions of the Kapuas River in September 2016 at 09:40 (at low tide and at 15:40 (at high tide. The correlation of physical-chemical parameter to coliform value was tested Pearson Product Moment. The results showed that coliform bacterial density increased from upstream to downstream with 150-1500 MPN/100 ml at high tide and 930-11000 MPN/100 ml at low tide. The results showed that the coliform bacterial density value had a positive relation with pH and BOD parameters and negative relation with temperature and DO parameters. So, it can be concluded that there is a correlation between physical parameters, such as temperature and chemical parameters such as pH, DO and BOD to microbiological parameters especially Coliform bacterial density. The benefit of this study is to give information about water quality of Jawi River and its correlation with density of Coliform bacterial, so that people are expected to pay more attention to the use of clean water to avoid the disease caused by coliform.

  6. Rapid differentiation of tea products by surface desorption atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Chen, Huanwen; Liang, Huazheng; Ding, Jianhua; Lai, Jinhu; Huan, Yanfu; Qiao, Xiaolin

    2007-12-12

    Protonated water molecules generated by an ambient corona discharge were directed to impact tea leaves for desorption/ionization at atmospheric pressure. Thus, a novel method based on surface desorption chemical ionization mass spectrometry (DAPCI-MS) has been developed for rapid analysis of tea products without any sample pretreatment. Under the optimized experimental conditions, DAPCI MS spectra of various tea samples are recorded rapidly, and the resulting mass spectra are chemical fingerprints that characterize the tea samples. On the basis of the mass spectral fingerprints, 40 tea samples including green tea, oolong tea, and jasmine tea were successfully differentiated by principal component analysis (PCA) of the mass spectral raw data. The PCA results were also validated with cluster analysis and supervised PCA analysis. The alteration of signal intensity caused by rough surfaces of tea leaves did not cause failure in the separation of the tea products. The experimental findings show that DAPCI-MS creates ions of both volatile and nonvolatile compounds in tea products at atmospheric pressure, providing a practical and convenient tool for high-throughput differentiation of tea products.

  7. Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuping; Li, Chengchen [Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Chen, Mingming, E-mail: andychain@live.cn [Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Yu, Xiao; Chang, Yunwei [Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Chen, Anqi [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics & Information Technology, Sun Yat-Sen University, Guangzhou Higher Education Mega Center (University Town), Guangzhou, 510006 (China); Zhu, Hai, E-mail: zhuhai5@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics & Information Technology, Sun Yat-Sen University, Guangzhou Higher Education Mega Center (University Town), Guangzhou, 510006 (China); Tang, Zikang, E-mail: zktang@umac.mo [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics & Information Technology, Sun Yat-Sen University, Guangzhou Higher Education Mega Center (University Town), Guangzhou, 510006 (China); The Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau (China)

    2016-12-09

    In this work, we report the growth of high-quality aligned ZnO nanowires via a facile atmospheric pressure chemical vapor deposition (CVD) method. The CVD reactor chamber used was more complicated than a conventional one due to the quartz boats loaded with sources (ZnO/C) and substrates being inserted into a semi-open quartz tube, and then placed inside the CVD reactor. The semi-open quartz tube played a very important role in growing the ZnO nanowires, and demonstrated that the transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber. Aligned ZnO nanowires were successfully obtained, though they were only found at substrates located upstream. The very high crystalline quality of the obtained ZnO nanowires was demonstrated by high-resolution transmission electron microscopy and room temperature photoluminescence investigations. Such ZnO nanowires with high crystalline quality may provide opportunities for the fabrication of ZnO-based nano-devices in future. - Highlights: • High-quality aligned ZnO nanowires were obtained via modified chemical vapor deposition under atmospheric pressure. • The semi-open quartz tube plays very important roles in growing ZnO nanowires. • The transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber.

  8. Measurements of atmospheric electrical parameters and ELF electromagnetic emissions during a meteorological balloon flight.

    Science.gov (United States)

    Benda, Robert; Dujany, Matthieu; Berthomieu, Roland; Boissier, Mathilde; Bruneel, Pierre; Fischer, Lucie; Focillon, William; Gullo, Robin; Hubert, Valentin; Lafforgue, Gaétan; Loe-Mie, Marichka; Messager, Adrien; Roy, Felix; Auvray, Gérard; Bertrand, Fabrice; Coulomb, Romain; Deprez, Gregoire; Berthelier, Jean-Jacques

    2016-04-01

    Measurements of electric field and atmospheric conductivity were performed onboard a small payload flown under a meteorological balloon during a fair weather period. This experiment is part of a project to study thunderstorms and TLE organized in the frame of the engineering cursus at Ecole Polytechnique. The payload is equipped with 4 electrodes to measure the 3 components of the DC and AC electric fields up to 3.2 kHz. Dedicated sequences of operation, when one electrode is operated in the relaxation mode, have been used to determine the positive and negative electrical conductivities. Altitude profiles of the DC vertical electric field and conductivities in agreement with expected fair weather parameters were obtained from ~ 3.5 to ~ 13 km before the failure of a battery. At an altitude of ~ 9 km slight disturbances in the electric field suggest the traversal of thin clouds with disturbed electrical characteristics. Schumann resonances were observed up to the fifth harmonics at levels that are typical of a quiet period over Europe with most thunderstorms located over remote longitudinal sectors. EM waves due the power lines at 50Hz are detected during the whole measuring period and their altitude and horizontal variations will be presented as a function of the position of the balloon over the ground power network. A surprising and interesting observation was made of a Russian transmitter at 82 Hz located in Murmansk region and used for sub-marine communications. We shall present an initial analysis of the amplitude and polarization of the corresponding signal.

  9. Estimation of The Physico-Chemical Parameters in Marine Environment (Yumurtalik Bight- Iskenderun Bay

    Directory of Open Access Journals (Sweden)

    Gökhan Tamer Kayaalp

    2016-02-01

    Full Text Available The study was carried out to estimate the temperature, light intensity, salinity, Dissolved O2 (DO, pH values and the biotic parameter chlorophyll- a in the water column related with the depth. Because, the physico-chemical parameters affect greatly both primary and secondary producers in marine life. For this purpose the physico-chemical properties were determined day and night for 40 meter depth during the eight days. The means were compared by using the analysis of variance method and Duncan’s Multiple Comparison Test. Also physico-chemical parameters were estimated by using the analysis of regression and correlation. The effect of temperature and salinity were found significant according to the result of the analysis of variance during the day. Also the similar results were found for the night. While the effect of the depth on the chloropyll-a a was significant in the night, the effect of the depth on the DO was not significant in the day and night. The correlations among the depth and the parameters were defined. It was found the negative correlation between the depth and the temperature and light intensity. Determination coefficient of the model for salinity was also found different for day time. The correlation values among the depth and the temperature, salinity and pH were found different for the night.

  10. Research on physical and chemical parameters of coolant in Light-Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Isabela C.; Mesquita, Amir Z., E-mail: icr@cdtn.br, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEM-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The coolant radiochemical monitoring of light-water reactors, both power reactor as research reactors is one most important tasks of the system safe operation. The last years have increased the interest in the coolant chemical studying to optimize the process, to minimize the corrosion, to ensure the primary system materials integrity, and to reduce the workers exposure radiation. This paper has the objective to present the development project in Nuclear Technology Development Center (CDTN), which aims to simulate the primary water physical-chemical parameters of light-water-reactors (LWR). Among these parameters may be cited: the temperature, the pressure, the pH, the electric conductivity, and the boron concentration. It is also being studied the adverse effects that these parameters can result in the reactor integrity. The project also aims the mounting of a system to control and monitoring of temperature, electric conductivity, and pH of water in the Installation of Test in Accident Conditions (ITCA), located in the Thermal-Hydraulic Laboratory at CDTN. This facility was widely used in the years 80/90 for commissioning of several components that were installed in Angra 2 containment. In the test, the coolant must reproduce the physical and chemical conditions of the primary. It is therefore fundamental knowledge of the main control parameters of the primary cooling water from PWR reactors. Therefore, this work is contributing, with the knowledge and the reproduction with larger faithfulness of the reactors coolant in the experimental circuits. (author)

  11. Feasibility Study of Venus Surfuce Cooling Using Chemical Reactions with the Atmosphere

    Science.gov (United States)

    Evans, Christopher

    2013-01-01

    A literature search and theoretical analysis were conducted to investigate the feasibility of cooling a craft on Venus through chemical reformation of materials from the atmosphere. The core concept was to take carbon dioxide (CO2) from the Venus atmosphere and chemically reform it into simpler compounds such as carbon, oxygen, and carbon monoxide. This process is endothermic, taking energy from the surroundings to produce a cooling effect. A literature search was performed to document possible routes for achieving the desired reactions. Analyses indicated that on Venus, this concept could theoretically be used to produce cooling, but would not perform as well as a conventional heat pump. For environments other than Venus, the low theoretical performance limits general applicability of this concept, however this approach to cooling may be useful in niche applications. Analysis indicated that environments with particular atmospheric compositions and temperatures could allow a similar cooling system to operate with very good performance. This approach to cooling may also be useful where the products of reaction are also desirable, or for missions where design simplicity is valued. Conceptual designs for Venus cooling systems were developed using a modified concept, in which an expendable reactant supply would be used to promote more energetically favorable reactions with the ambient CO2, providing cooling for a more limited duration. This approach does not have the same performance issues, but the use of expendable supplies increases the mass requirements and limits the operating lifetime. This paper summarizes the findings of the literature search and corresponding analyses of the various cooling options

  12. Feasibility Study of Venus Surface Cooling Using Chemical Reactions with the Atmosphere

    Science.gov (United States)

    Evans, Christopher

    2013-01-01

    A literature search and theoretical analysis were conducted to investigate the feasibility of cooling a craft on Venus through chemical reformation of materials from the atmosphere. The core concept was to take carbon dioxide (CO2) from the Venus atmosphere and chemically reform it into simpler compounds such as carbon, oxygen, and carbon monoxide. This process is endothermic, taking energy from the surroundings to produce a cooling effect. A literature search was performed to document possible routes for achieving the desired reactions. Analyses indicated that on Venus, this concept could theoretically be used to produce cooling, but would not perform as well as a conventional heat pump. For environments other than Venus, the low theoretical performance limits general applicability of this concept, however this approach to cooling may be useful in niche applications. Analysis indicated that environments with particular atmospheric compositions and temperatures could allow a similar cooling system to operate with very good performance. This approach to cooling may also be useful where the products of reaction are also desirable, or for missions where design simplicity is valued. Conceptual designs for Venus cooling systems were developed using a modified concept, in which an expendable reactant supply would be used to promote more energetically favorable reactions with the ambient CO2, providing cooling for a more limited duration. This approach does not have the same performance issues, but the use of expendable supplies increases the mass requirements and limits the operating lifetime. This paper summarizes the findings of the literature search and corresponding analyses of the various cooling options.

  13. CHEMICAL AND BIOLOGICAL AIR POLLUTANTS, AS PARAMETERS OF COMPLEX AIR QUALITY INDICES

    Directory of Open Access Journals (Sweden)

    TEKLA EÖTVÖS

    2007-12-01

    Full Text Available Human health is essentially influenced by air quality. Atmospheric air in residential areas contains many pollutants. The monitoring and the plain publishing of the measured values are important both for the authorities and the public. Air quality is often characterized by constructing air quality indices, and these indices are used to inform the public. The construction of an advanced air quality index is usually done by averaging the measured data usually in time and space; hereby important aspects of the data can be lost. All known indices contain only chemical pollutants, while certain biological pollutants can enhance the effects of the chemical pollutants and vice versa. In this paper we discuss the importance of integrating biological pollutants into air quality indices. In order to increase efficacy of these indices to the civil society we aim to introduce geographic information system (GIS methods into publishing air quality information.

  14. High time resolution observation and statistical analysis of atmospheric light extinction properties and the chemical speciation of fine particulates

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In recent years,the visibility deterioration caused by regional fine particulate pollution becomes one of the crucial air pollution problems in the urban areas of our country.The rapid variation of visibility and fine particulates make it difficult to estimate the relationship between them precisely and accurately unless high time resolution observation data can be accessed.This study aims to fill this gap in the field of atmospheric science by establishing a formula using multiple linear regressions.Excellent fitting goodness (R2=0.913,n=3167) was obtained using 10 min average of high-resolution real-time light scattering coefficients,light absorption coefficients,main chemical speciation concentration in PM1 and some meteorological parameters from 17 Jan to 16 Feb,2009.It shows that the average light extinction coefficient during the observation in the winter of Shenzhen was measured to be 290 ± 183 Mm?1,consisting of 72% of light scattering and 21% of absorption.In terms of the percentage contribution of PM1 chemical species to the total light extinction,the organic matter was estimated to be most with an average of 45%,followed by ammonium sulfate with an average of 24%.The contributions of black carbon and ammonium nitrate were 17% and 12%,respectively.Besides,the diurnal variation of light extinction was investigated as well in this study.

  15. MR imaging of renal cortical tumours: qualitative and quantitative chemical shift imaging parameters.

    Science.gov (United States)

    Karlo, Christoph A; Donati, Olivio F; Burger, Irene A; Zheng, Junting; Moskowitz, Chaya S; Hricak, Hedvig; Akin, Oguz

    2013-06-01

    To assess qualitative and quantitative chemical shift MRI parameters of renal cortical tumours. A total of 251 consecutive patients underwent 1.5-T MRI before nephrectomy. Two readers (R1, R2) independently evaluated all tumours visually for a decrease in signal intensity (SI) on opposed- compared with in-phase chemical shift images. In addition, SI was measured on in- and opposed-phase images (SI(IP), SI(OP)) and the chemical shift index was calculated as a measure of percentage SI change. Histopathology served as the standard of reference. A visual decrease in SI was identified significantly more often in clear cell renal cell carcinoma (RCCs) (R1, 73 %; R2, 64 %) and angiomyolipomas (both, 80 %) than in oncocytomas (29 %, 12 %), papillary (29 %, 17 %) and chromophobe RCCs (13 %, 9 %; all, P chemical shift index was significantly greater in clear cell RCC and angiomyolipoma than in the other histological subtypes (both, P analysis (concordance correlation coefficient, 0.80). A decrease in SI on opposed-phase chemical shift images is not an identifying feature of clear cell RCCs or angiomyolipomas, but can also be observed in oncocytomas, papillary and chromophobe RCCs. After excluding angiomyolipomas, a decrease in SI of more than 25 % was diagnostic for clear cell RCCs. • Chemical shift MRI offers new information about fat within renal tumours. • Opposed-phase signal decrease can be observed in all renal cortical tumours. • A greater than 25 % decrease in signal appears to be diagnostic for clear cell RCCs.

  16. Application of the Approximate Bayesian Computation methods in the stochastic estimation of atmospheric contamination parameters for mobile sources

    Science.gov (United States)

    Kopka, Piotr; Wawrzynczak, Anna; Borysiewicz, Mieczyslaw

    2016-11-01

    In this paper the Bayesian methodology, known as Approximate Bayesian Computation (ABC), is applied to the problem of the atmospheric contamination source identification. The algorithm input data are on-line arriving concentrations of the released substance registered by the distributed sensors network. This paper presents the Sequential ABC algorithm in detail and tests its efficiency in estimation of probabilistic distributions of atmospheric release parameters of a mobile contamination source. The developed algorithms are tested using the data from Over-Land Atmospheric Diffusion (OLAD) field tracer experiment. The paper demonstrates estimation of seven parameters characterizing the contamination source, i.e.: contamination source starting position (x,y), the direction of the motion of the source (d), its velocity (v), release rate (q), start time of release (ts) and its duration (td). The online-arriving new concentrations dynamically update the probability distributions of search parameters. The atmospheric dispersion Second-order Closure Integrated PUFF (SCIPUFF) Model is used as the forward model to predict the concentrations at the sensors locations.

  17. Relation of Certain Quantum Chemical Parameters to Lubrication Behavior of Solid Oxides

    Directory of Open Access Journals (Sweden)

    Yuansheng Jin

    2005-08-01

    Full Text Available Abstract: It is well-documented that certain oxides (such as Re2O7, B2O3, MoO3, V2O5, etc. can provide friction coefficients of 0.1-0.3 to sliding surfaces at elevated temperatures and thus they are often referred to as lubricious oxides in the tribology literature. In a recently proposed crystal chemical model, Erdemir was able to establish a close correlation between the reported friction coefficients of such oxides and their ionic potentials [1]. In the present paper, we expand on this original concept and explore the relevance of two other quantum chemical parameters, electronegativity and chemical hardness, to the lubricity of solid oxides. These parameters have already been used by scientists to explain the nature of tribochemical interactions between various oil additives and sliding surfaces. It is conceivable that electronegativity and chemical hardness may also be strongly related to the extent of adhesive interactions and shear rheology of solid oxides and hence to their lubricity. The new results have confirmed that electronegativity, like ionic potential, is indeed a valid quantum chemistry parameter that can be used in predicting the lubrication behavior of solid oxides. Generally, the higher the electronegativity of the solid oxides is, the lower the friction coefficients will be. However, chemical hardness did not yield a similar trend. In light of these new findings, we propose some guidelines for the formulation of novel oxide or alloy systems that can lead to the formation of lubricious oxides at elevated temperatures. The findings of this study may pave the way for designer-based tribosystems in general and smart tribochemical systems in particular in future tribological applications such as dry machining.

  18. A Chemical Kinetics Network for Lightning and Life in Planetary Atmospheres

    Science.gov (United States)

    Rimmer, P. B.; Helling, Ch

    2016-05-01

    There are many open questions about prebiotic chemistry in both planetary and exoplanetary environments. The increasing number of known exoplanets and other ultra-cool, substellar objects has propelled the desire to detect life and prebiotic chemistry outside the solar system. We present an ion-neutral chemical network constructed from scratch, Stand2015, that treats hydrogen, nitrogen, carbon, and oxygen chemistry accurately within a temperature range between 100 and 30,000 K. Formation pathways for glycine and other organic molecules are included. The network is complete up to H6C2N2O3. Stand2015 is successfully tested against atmospheric chemistry models for HD 209458b, Jupiter, and the present-day Earth using a simple one-dimensional photochemistry/diffusion code. Our results for the early Earth agree with those of Kasting for CO2, H2, CO, and O2, but do not agree for water and atomic oxygen. We use the network to simulate an experiment where varied chemical initial conditions are irradiated by UV light. The result from our simulation is that more glycine is produced when more ammonia and methane is present. Very little glycine is produced in the absence of any molecular nitrogen and oxygen. This suggests that the production of glycine is inhibited if a gas is too strongly reducing. Possible applications and limitations of the chemical kinetics network are also discussed.

  19. Forecasts of the atmospherical parameters close to the ground at the LBT site in the context of the ALTA project

    Science.gov (United States)

    Turchi, Alessio; Masciadri, Elena; Fini, Luca

    2016-07-01

    In this paper we study the abilities of an atmospherical mesoscale model in forecasting the classical atmospherical parameters relevant for astronomical applications at the surface layer (wind speed, wind direction, temperature, relative humidity) on the Large Binocular Telescope (LBT) site - Mount Graham, Arizona. The study is carried out in the framework of the ALTA project aiming at implementing an automated system for the forecasts of atmospherical parameters (Meso-Nh code) and the optical turbulence (Astro-Meso-Nh code) for the service-mode operation of the LBT. The final goal of such an operational tool is to provide predictions with high time frequency of atmospheric and optical parameters for an optimized planning of the telescope operation (dome thermalization, wind-dependent dome orientation, observation planning based on predicted seeing, adaptive optics optimization, etc...). Numerical simulations are carried out with the Meso-Nh and Astro-Meso-Nh codes, which were proven to give excellent results in previous studies focused on the two ESO sites of Cerro Paranal and Cerro Armazones (MOSE Project). In this paper we will focus our attention on the comparison of atmospherical parameters forescasted by the model close to the ground with measurements taken by the observatory instrumentations and stored in the LBT telemetry in order to validate the numerical predictions. As previously done for Cerro Paranal (Lascaux et al., 2015), we will also present an analysis of the model performances based on the method of the contingency tables, that allows us to provide complementary key information with the respect to the bias and RMSE (systematic and statistical errors), such as the percentage of correct detection and the probability to obtain a correct detection inside a defined interval of values.

  20. X-shooter spectroscopy of young stellar objects in Lupus. Atmospheric parameters, membership, and activity diagnostics

    Science.gov (United States)

    Frasca, A.; Biazzo, K.; Alcalá, J. M.; Manara, C. F.; Stelzer, B.; Covino, E.; Antoniucci, S.

    2017-06-01

    Aims: A homogeneous determination of basic stellar parameters of young stellar object (YSO) candidates is needed to confirm their pre-main sequence evolutionary stage and membership to star forming regions (SFRs), and to get reliable values of the quantities related to chromospheric activity and accretion. Methods: We used the code ROTFIT and synthetic BT-Settl spectra for the determination of the atmospheric parameters (Teff and log g), veiling (r), radial (RV), and projected rotational velocity (vsini) from X-shooter spectra of 102 YSO candidates (95 of infrared Class II and seven Class III) in the Lupus SFR. The spectral subtraction of inactive templates, rotationally broadened to match the vsini of the targets, enabled us to measure the line fluxes for several diagnostics of both chromospheric activity and accretion, such as Hα, Hβ, Ca ii, and Na i lines. Results: We have shown that 13 candidates can be rejected as Lupus members based on their discrepant RV with respect to Lupus and/or the very low log g values. At least 11 of them are background giants, two of which turned out to be lithium-rich giants. Regarding the members, we found that all Class III sources have Hα fluxes that are compatible with a pure chromospheric activity, while objects with disks lie mostly above the boundary between chromospheres and accretion. Young stellar objects with transitional disks display both high and low Hα fluxes. We found that the line fluxes per unit surface are tightly correlated with the accretion luminosity (Lacc) derived from the Balmer continuum excess. This rules out that the relationships between Lacc and line luminosities found in previous works are simply due to calibration effects. We also found that the Ca ii-IRT flux ratio, FCaII8542/FCaII8498, is always small, indicating an optically thick emission source. The latter can be identified with the accretion shock near the stellar photosphere. The Balmer decrement reaches instead, for several accretors, high

  1. Ocean-atmosphere interactions in the emergence of complexity in simple chemical systems.

    Science.gov (United States)

    Griffith, Elizabeth C; Tuck, Adrian F; Vaida, Veronica

    2012-12-18

    elimination of water. The fluctuating exposure of the large, recycling aerosol populations to radiation, pressure, temperature, and humidity over geological time allows complexity to emerge from simple molecular precursors. We propose an approach that connects chemical statistical thermodynamics and the macroscopic world of the planetary ocean and atmosphere.

  2. Main species and chemical pathways in cold atmospheric-pressure Ar + H2O plasmas

    Science.gov (United States)

    Liu, Dingxin; Sun, Bowen; Iza, Felipe; Xu, Dehui; Wang, Xiaohua; Rong, Mingzhe; Kong, Michael G.

    2017-04-01

    Cold atmospheric-pressure plasmas in Ar + H2O gas mixtures are a promising alternative to He + H2O plasmas as both can produce reactive oxygen species of relevance for many applications and argon is cheaper than helium. Although He + H2O plasmas have been the subject of multiple experimental and computational studies, Ar + H2O plasmas have received less attention. In this work we investigate the composition and chemical pathways in Ar + H2O plasmas by means of a global model that incorporates 57 species and 1228 chemical reactions. Water vapor concentrations from 1 ppm to saturation (32 000 ppm) are considered in the study and abrupt transitions in power dissipation channels, species densities and chemical pathways are found when the water concentration increases from 100 to 1000 ppm. In this region the plasma transitions from an electropositive discharge in which most power is coupled to electrons into an electronegative one in which most power is coupled to ions. While increasing electronegativity is also observed in He + H2O plasmas, in Ar + H2O plasmas the transition is more abrupt because Penning processes do not contribute to gas ionization and the changes in the electron energy distribution function and mean electron energy caused by the increasing water concentration result in electron-neutral excitation and ionization rates changing by many orders of magnitude in a relatively small range of water concentrations. Insights into the main chemical species and pathways governing the production and loss of electrons, O, OH, OH(A) and H2O2 are provided as part of the study.

  3. Size-dependent hygroscopicity parameter (κ) and chemical composition of secondary organic cloud condensation nuclei

    Science.gov (United States)

    Zhao, D. F.; Buchholz, A.; Kortner, B.; Schlag, P.; Rubach, F.; Kiendler-Scharr, A.; Tillmann, R.; Wahner, A.; Flores, J. M.; Rudich, Y.; Watne, À. K.; Hallquist, M.; Wildt, J.; Mentel, Th. F.

    2015-12-01

    Secondary organic aerosol components (SOA) contribute significantly to the activation of cloud condensation nuclei (CCN) in the atmosphere. The CCN activity of internally mixed submicron SOA particles is often parameterized assuming a size-independent single-hygroscopicity parameter κ. In the experiments done in a large atmospheric reactor (SAPHIR, Simulation of Atmospheric PHotochemistry In a large Reaction chamber, Jülich), we consistently observed size-dependent κ and particle composition for SOA from different precursors in the size range of 50 nm-200 nm. Smaller particles had higher κ and a higher degree of oxidation, although all particles were formed from the same reaction mixture. Since decreasing volatility and increasing hygroscopicity often covary with the degree of oxidation, the size dependence of composition and hence of CCN activity can be understood by enrichment of higher oxygenated, low-volatility hygroscopic compounds in smaller particles. Neglecting the size dependence of κ can lead to significant bias in the prediction of the activated fraction of particles during cloud formation.

  4. Land-total and Ocean-total Precipitation and Evaporation from a Community Atmosphere Model version 5 Perturbed Parameter Ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Covey, Curt [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lucas, Donald D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Trenberth, Kevin E. [National Center for Atmospheric Research, Boulder, CO (United States)

    2016-03-02

    This document presents the large scale water budget statistics of a perturbed input-parameter ensemble of atmospheric model runs. The model is Version 5.1.02 of the Community Atmosphere Model (CAM). These runs are the “C-Ensemble” described by Qian et al., “Parametric Sensitivity Analysis of Precipitation at Global and Local Scales in the Community Atmosphere Model CAM5” (Journal of Advances in Modeling the Earth System, 2015). As noted by Qian et al., the simulations are “AMIP type” with temperature and sea ice boundary conditions chosen to match surface observations for the five year period 2000-2004. There are 1100 ensemble members in addition to one run with default inputparameter values.

  5. Gas Chromatography/Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometry for Fingerprinting the Macondo Oil Spill.

    Science.gov (United States)

    Lobodin, Vladislav V; Maksimova, Ekaterina V; Rodgers, Ryan P

    2016-07-05

    We report the first application of a new mass spectrometry technique (gas chromatography combined to atmospheric pressure chemical ionization tandem mass spectrometry, GC/APCI-MS/MS) for fingerprinting a crude oil and environmental samples from the largest accidental marine oil spill in history (the Macondo oil spill, the Gulf of Mexico, 2010). The fingerprinting of the oil spill is based on a trace analysis of petroleum biomarkers (steranes, diasteranes, and pentacyclic triterpanes) naturally occurring in crude oil. GC/APCI enables soft ionization of petroleum compounds that form abundant molecular ions without (or little) fragmentation. The ability to operate the instrument simultaneously in several tandem mass spectrometry (MS/MS) modes (e.g., full scan, product ion scan, reaction monitoring) significantly improves structural information content and sensitivity of analysis. For fingerprinting the oil spill, we constructed diagrams and conducted correlation studies that measure the similarity between environmental samples and enable us to differentiate the Macondo oil spill from other sources.

  6. Translation Effects in Fluorine Doped Tin Oxide Thin Film Properties by Atmospheric Pressure Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Mohammad Afzaal

    2016-10-01

    Full Text Available In this work, the impact of translation rates in fluorine doped tin oxide (FTO thin films using atmospheric pressure chemical vapour deposition (APCVD were studied. We demonstrated that by adjusting the translation speeds of the susceptor, the growth rates of the FTO films varied and hence many of the film properties were modified. X-ray powder diffraction showed an increased preferred orientation along the (200 plane at higher translation rates, although with no actual change in the particle sizes. A reduction in dopant level resulted in decreased particle sizes and a much greater degree of (200 preferred orientation. For low dopant concentration levels, atomic force microscope (AFM studies showed a reduction in roughness (and lower optical haze with increased translation rate and decreased growth rates. Electrical measurements concluded that the resistivity, carrier concentration, and mobility of films were dependent on the level of fluorine dopant, the translation rate and hence the growth rates of the deposited films.

  7. Parameterisation of the chemical effects of sprites in the middle atmosphere

    DEFF Research Database (Denmark)

    Enell, C.F.; Arnone, E.; Adachi, T.

    2008-01-01

    ion-neutral chemical model has been extended for this purpose and applied together with estimated rates of ionisation, excitation and dissociation based on spectroscopic ratios from ISUAL on FORMOSAT-2. This approach is used to estimate the NOx and ozone changes for two type cases. The NOx......Transient luminous events, such as red sprites, occur in the middle atmosphere in the electric field above thunderstorms. We here address the question whether these processes may be a significant source of odd nitrogen and affect ozone or other important trace species. A well-established coupled...... enhancements are at most one order of magnitude in the streamers, which means a production of at most 10 mol per event, or ( given a global rate of occurrence of three events per minute) some 150-1500 kg per day. The present study therefore indicates that sprites are insignificant as a global source of NOx...

  8. Chemical and Physical Effects of the Carrier Gas on the Atmospheric Pressure PECVD of Fluorinated Precursors

    CERN Document Server

    Hubert, Julie; Mertens, Jérémy; Viville, Pascal; Dufour, Thierry; Barroo, Cédric; de Bocarmé, Thierry Visart; Lazzaroni, Roberto; Reniers, François

    2016-01-01

    The atmospheric pressure PECVD deposition and texturization of hydrophobic coatings using liquid fluorinated C6F12 and C6F14 precursors are investigated. The effect of the carrier gas (argon and helium) is discussed in terms of the behavior of the gas phase and of the characteristics of the deposited film. Mass spectrom-etry measurements indicate that the fragmentation is higher with argon while helium reacts very easily with oxygen impurities leading to the formation of CxFyOz compounds. These observations are consistent with the chemical composition of the films determined by XPS and the variation in the deposition rate. Moreover, the streamers present in the argon discharge affect the morphology of the surface by increasing the roughness, which leads to the increase in the hydrophobicity of the coatings.

  9. Atmospheric pressure chemical ionisation liquid chromatography/mass spectrometry of bacteriochlorophylls from Chlorobiaceae: characteristic fragmentations.

    Science.gov (United States)

    Airs, Ruth L; Keely, Brendan J

    2002-01-01

    Atmospheric pressure chemical ionisation liquid chromatography/mass spectrometry/mass spectrometry (APCI-LC/MS/MS) has been applied to the study of bacteriochlorophylls c, d, and e of phototrophic prokaryotes. Cultures of Chlorobiaceae containing bacteriochlorophyll c, d or e were examined using a high-resolution high-performance liquid chromatography (HPLC) method and APCI-LC/MS/MS employing post-column addition of formic acid. The results reveal complex distributions of bacteriochlorophyll homologues, with some closely eluting species giving isobaric protonated molecules. On-line LC/MS/MS studies reveal characteristic fragment ions for bacteriochlorophylls c, d, and e. Fragmentations involving loss of the extended alkyl substituents that are unique to bacteriochlorophylls c, d and e and their derivatives have been rationalised by studying the phaeophorbides and the results applied to the direct study of the bacteriochlorophylls.

  10. Fast Differential Analysis of Propolis Using Surface Desorption Atmospheric Pressure Chemical Ionization Mass Spectrometry

    Science.gov (United States)

    Huang, Xue-yong; Guo, Xia-li; Luo, Huo-lin; Fang, Xiao-wei; Zhu, Teng-gao; Zhang, Xing-lei; Chen, Huan-wen; Luo, Li-ping

    2015-01-01

    Mass spectral fingerprints of 24 raw propolis samples, including 23 from China and one from the United States, were directly obtained using surface desorption atmospheric pressure chemical ionization mass spectrometry (SDAPCI-MS) without sample pretreatment. Under the optimized experimental conditions, the most abundant signals were detected in the mass ranges of 70 to 500 m/z and 200 to 350 m/z, respectively. Principal component analyses (PCA) for the two mass ranges showed similarities in that the colors had a significant correlation with the first two PCs; in contrast there was no correlation with the climatic zones from which the samples originated. Analytes such as chrysin, pinocembrin, and quercetin were detected and identified using multiple stage mass spectrometry within 3 min. Therefore, SDAPCI-MS can be used for rapid and reliable high-throughput analysis of propolis. PMID:26339245

  11. Thermodynamic analysis of chemical stability of ceramic materials in hydrogen-containing atmospheres at high temperatures

    Science.gov (United States)

    Misra, Ajay K.

    1990-01-01

    The chemical stability of several ceramic materials in hydrogen-containing environments was analyzed with thermodynamic considerations in mind. Equilibrium calculations were made as a function of temperature, moisture content, and total system pressure. The following ceramic materials were considered in this study: SiC, Si3N4, SiO2, Al2O3, mullite, ZrO2, Y2O3, CaO, MgO, BeO, TiB2, TiC, HfC, and ZrC. On the basis of purely thermodynamic arguments, upper temperature limits are suggested for each material for long-term use in H2-containing atmospheres.

  12. Finding the effective parameter perturbations in atmospheric models: the LORENZ63 model as case study

    NARCIS (Netherlands)

    Moolenaar, H.E.; Selten, F.M.

    2004-01-01

    Climate models contain numerous parameters for which the numeric values are uncertain. In the context of climate simulation and prediction, a relevant question is what range of climate outcomes is possible given the range of parameter uncertainties. Which parameter perturbation changes the climate i

  13. Atmospheric dispersion of radon around uranium mill tailings of the former Pridneprovsky Chemical Plant in Ukraine.

    Science.gov (United States)

    Kovalets, Ivan V; Asker, Christian; Khalchenkov, Alexander V; Persson, Christer; Lavrova, Tatyana V

    2017-06-01

    Simulations of atmospheric dispersion of radon around the uranium mill tailings of the former Pridneprovsky Chemical Plant (PChP) in Ukraine were carried out with the aid of two atmospheric dispersion models: the Airviro Grid Model and the CALMET/CALPUFF model chain. The available measurement data of radon emission rates taken in the territories and the close vicinity of tailings were used in simulations. The results of simulations were compared to the yearly averaged measurements of concentration data. Both models were able to reasonably reproduce average radon concentration at the Sukhachivske site using averaged measured emission rates as input together with the measured meteorological data. At the same time, both models significantly underestimated concentrations as compared to measurements collected at the PChP industrial site. According to the results of both dispersion models, it was shown that only addition of significant radon emission rate from the whole territory of PChP in addition to emission rates from the tailings could explain the observed concentration measurements. With the aid of the uncertainty analysis, the radon emission rate from the whole territory of PChP was estimated to be between 1.5 and 3.5 Bq·m(-2)s(-1). Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Some current problems in atmospheric ozone chemistry; role of chemical kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Cox, R.A.

    1987-03-01

    A review is given on selected aspects of the reaction mechanisms of current interest in the chemistry of atmospheric ozone. Atmospheric ozone is produced and removed by a complex series of elementary gas-phase photochemical reactions involving O/sub x/, HO/sub x/, NO/sub x/, CIO/sub x/ and hydrocarbon species. At the present time there is a good knowledge of the basic processes involved in ozone chemistry in the stratosphere and the troposphere and the kinetics of most of the key reactions are well defined. There are a number of difficulties in the theoretical descriptions of observed ozone behaviour which may be due to uncertainties in the chemistry. Examples are the failure to predict present day ozone in the photochemically controlled region above 35 Km altitude and the large reductions in the ozone column in the Antartic Spring which has been observed in recent years. In the troposphere there is growing evidence that ozone and other trace gases have changed appreciably from pre-industrial concentrations, due to chemical reactions involving man-made pollutants. Quantitative investigation of the mechanisms by which these changes may occur requires a sound laboratory kinetics data base.

  15. Minimally-Invasive Gene Transfection by Chemical and Physical Interaction of Atmospheric Pressure Plasma Flow

    Science.gov (United States)

    Kaneko, Toshiro

    2014-10-01

    Non-equilibrium atmospheric pressure plasma irradiated to the living-cell is investigated for medical applications such as gene transfection, which is expected to play an important role in molecular biology, gene therapy, and creation of induced pluripotent stem (iPS) cells. However, the conventional gene transfection using the plasma has some problems that the cell viability is low and the genes cannot be transferred into some specific lipid cells, which is attributed to the unknown mechanism of the gene transfection using the plasma. Therefore, the time-controlled atmospheric pressure plasma flow is generated and irradiated to the living-cell suspended solution for clarifying the transfection mechanism toward developing highly-efficient and minimally- invasive gene transfection system. In this experiment, fluorescent dye YOYO-1 is used as the simulated gene and LIVE/DEAD Stain is simultaneously used for cell viability assay. By the fluorescence image, the transfection efficiency is calculated as the ratio of the number of transferred and surviving cells to total cell count. It is clarified that the transfection efficiency is significantly increased by the short-time (cell viability (>90%). This result indicates that the physical effects such as the electric field caused by the charged particles arriving at the surface of the cell membrane, and chemical effects associated with plasma-activated products in solution act synergistically to enhance the cell-membrane transport with low-damage. This work was supported by JSPS KAKENHI Grant Number 24108004.

  16. Atmospheric Pressure Spray Chemical Vapor Deposited CuInS2 Thin Films for Photovoltaic Applications

    Science.gov (United States)

    Harris, J. D.; Raffaelle, R. P.; Banger, K. K.; Smith, M. A.; Scheiman, D. A.; Hepp, A. F.

    2002-01-01

    Solar cells have been prepared using atmospheric pressure spray chemical vapor deposited CuInS2 absorbers. The CuInS2 films were deposited at 390 C using the single source precursor (PPh3)2CuIn(SEt)4 in an argon atmosphere. The absorber ranges in thickness from 0.75 - 1.0 micrometers, and exhibits a crystallographic gradient, with the leading edge having a (220) preferred orientation and the trailing edge having a (112) orientation. Schottky diodes prepared by thermal evaporation of aluminum contacts on to the CuInS2 yielded diodes for films that were annealed at 600 C. Solar cells were prepared using annealed films and had the (top down) composition of Al/ZnO/CdS/CuInS2/Mo/Glass. The Jsc, Voc, FF and (eta) were 6.46 mA per square centimeter, 307 mV, 24% and 0.35%, respectively for the best small area cells under simulated AM0 illumination.

  17. The Hot Horizontal-Branch Stars in NGC288 - Effects of Diffusion and Stratification on Their Atmospheric Parameters*

    Science.gov (United States)

    Moehler, S.; Dreizler, S.; LeBlanc, F.; Khalack, V.; Michaud, G.; Richer, J.; Sweigart, Allen V.; Grundahl, F.

    2014-01-01

    Context. NGC288 is a globular cluster with a well developed blue horizontal branch covering the so-called u-jump which indicates the onset of diffusion. It is therefore well suited to study the effects of diffusion in blue horizontal branch (HB) stars. Aims. We compare observed abundances to predictions from stellar evolution models calculated with diffusion and from stratified atmospheric models. We verify the effect of using stratified model spectra to derive atmospheric parameters. In addition we investigate the nature of the overluminous blue HB stars around the u-jump. Methods. We define a new photometric index sz from uvby measurements that is gravity sensitive between 8 000K and 12 000 K. Using medium-resolution spectra and Stroemgren photometry we determine atmospheric parameters (Teff, logg) and abundances for the blue HB stars. We use both homogeneous and stratified model spectra for our spectroscopic analyses. Results. The atmospheric parameters and masses of the hot HB stars in NGC288 show a behaviour seen also in other clusters for temperatures between 9 000K and 14 000 K. Outside this temperature range, however, they follow rather the results found for such stars in (omega)Cen. The abundances derived from our observations are for most elements (except He and P) within the abundance range expected from evolutionary models that include the effects of atomic diffusion and assume a surface mixed mass of 10(exp -7) M. The abundances predicted by stratified model atmospheres are generally significantly more extreme than observed, except for Mg. The use of stratified model spectra to determine effective temperatures, surface gravities and masses moves the hotter stars to a closer agreement with canonical evolutionary predictions. Conclusions. Our results show definite promise towards solving the long-standing issue of surface gravity and mass discrepancies for hot HB stars, but there is still much work needed to arrive at a self-consistent solution.

  18. Analysis of a Kalman filter based method for on-line estimation of atmospheric dispersion parameters using radiation monitoring data

    DEFF Research Database (Denmark)

    Drews, Martin; Lauritzen, Bent; Madsen, Henrik

    2005-01-01

    A Kalman filter method is discussed for on-line estimation of radioactive release and atmospheric dispersion from a time series of off-site radiation monitoring data. The method is based on a state space approach, where a stochastic system equation describes the dynamics of the plume model...... parameters, and the observables are linked to the state variables through a static measurement equation. The method is analysed for three simple state space models using experimental data obtained at a nuclear research reactor. Compared to direct measurements of the atmospheric dispersion, the Kalman filter...... estimates are found to agree well with the measured parameters, provided that the radiation measurements are spread out in the cross-wind direction. For less optimal detector placement it proves difficult to distinguish variations in the source term and plume height; yet the Kalman filter yields consistent...

  19. Quantifying the loss of information in source attribution problems using the adjoint method in global models of atmospheric chemical transport

    OpenAIRE

    2013-01-01

    It is of crucial importance to be able to identify the location of atmospheric pollution sources in our planet. Global models of atmospheric transport in combination with diverse Earth observing systems are a natural choice to achieve this goal. It is shown that the ability to successfully reconstruct the location and magnitude of an instantaneous source in global chemical transport models (CTMs) decreases rapidly as a function of the time interval between the pollution release and the observ...

  20. Analysis of a Kalman filter based method for on-line estimation of atmospheric dispersion parameters using radiation monitoring data

    DEFF Research Database (Denmark)

    Drews, Martin; Lauritzen, Bent; Madsen, Henrik

    2005-01-01

    parameters, and the observables are linked to the state variables through a static measurement equation. The method is analysed for three simple state space models using experimental data obtained at a nuclear research reactor. Compared to direct measurements of the atmospheric dispersion, the Kalman filter...... estimates are found to agree well with the measured parameters, provided that the radiation measurements are spread out in the cross-wind direction. For less optimal detector placement it proves difficult to distinguish variations in the source term and plume height; yet the Kalman filter yields consistent...... scheme are outlined, to account for realistic accident scenarios....

  1. Chemical Composition of Atmospheric Aerosols Above a Pristine South East Asian Rainforest

    Science.gov (United States)

    Robinson, N. H.; Allan, J. D.; Williams, P. I.; Coe, H.; Hamilton, J.; Chen, Q.; Martin, S.; Trembath, J.

    2009-04-01

    The tropics emit a huge amount of volatile organic compounds (VOCs) into the Earth's atmosphere. The processes by which these gases are oxidised to form secondary organic aerosol (SOA) are currently not well understood or quantified. Intensive field measurements were carried out as part of the Oxidant and Particle Photochemical Processes (OP3) and the Aerosol Coupling in the Earth System (ACES) projects around pristine rainforest in Malaysian Borneo. This is the first campaign of its type in a South East Asian rainforest. We present detailed organic aerosol composition measurements made using an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) at Bukit Atur, a Global Atmosphere Watch site located in the Danum Valley Conservation Area. This is a state-of-the-art field deployable instrument that can provide real time composition, mass loading and aerodynamic particle sizing information. In addition, the mass spectral resolution is sufficient to perform an analysis of the elemental composition of the organic species present. Other tools such as positive matrix factorisation (PMF) have been used to help assess the relative source contributions to the organic aerosol. A suite of supporting aerosol and gas phase measurements were made, including size resolved number concentration measurements with Differential Mobility Particle Sizer (DMPS), as well as absorption measurements made with a Multi-Angle Absorption Photometer (MAAP). The ground site data are compared with Aerodyne Compact Time of Flight Aerosol Mass Spectrometer (C-ToF-AMS) measurements made on the UK Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft. Airborne measurements were made above pristine rainforest surrounding the Danum Valley site, as well as nearby oil palm agricultural sites and palm oil rendering plants. Airborne hygroscopicity was measured using a Droplet Measurement Technology Cloud Condensation Nuclei counter (DMT CCN counter) in

  2. The Relationship Between the Solidification Parameters and Chemical Composition of Nickel Superalloy IN-713C

    Directory of Open Access Journals (Sweden)

    Binczyk F.

    2014-12-01

    Full Text Available The paper presents the results of studies on the development of correlation of solidification parameters and chemical composition of nickel superalloy IN-713C, which is used i.a. on aircraft engine turbine blades. Previous test results indicate significant differences in solidification parameters of the alloy, especially the temperatures Tliq and Tsol for each batch of ingots supplied by the manufacturer. Knowledge of such a relationship has important practical significance, because of the ability to asses and correct the temperatures of casting and heat treatment of casts on the basis of chemical composition. Using the statistical analysis it was found that the temperature of the solidification beginning Tliq is mostly influenced by the addition of carbon (similar to iron alloys. The additions of Al and Nb have smaller but still significant impact. Other alloying components do not have significant effect on Tliq. The temperature Teut is mostly affected by Ni, Ti and Nb. The temperature Tsol is not in any direct correlation with the chemical composition, which is consistent with previous research. The temperature Tsol depends primarily on the presence of non-metallic inclusions present in feed materials and introduced during the melting and casting processes.

  3. How much information do extinction and backscattering measurements contain about the chemical composition of atmospheric aerosol?

    Science.gov (United States)

    Kahnert, Michael; Andersson, Emma

    2017-03-01

    We theoretically and numerically investigate the problem of assimilating multiwavelength lidar observations of extinction and backscattering coefficients of aerosols into a chemical transport model. More specifically, we consider the inverse problem of determining the chemical composition of aerosols from these observations. The main questions are how much information the observations contain to determine the particles' chemical composition, and how one can optimize a chemical data assimilation system to make maximum use of the available information. We first quantify the information content of the measurements by computing the singular values of the scaled observation operator. From the singular values we can compute the number of signal degrees of freedom, Ns, and the reduction in Shannon entropy, H. As expected, the information content as expressed by either Ns or H grows as one increases the number of observational parameters and/or wavelengths. However, the information content is strongly sensitive to the observation error. The larger the observation error variance, the lower the growth rate of Ns or H with increasing number of observations. The right singular vectors of the scaled observation operator can be employed to transform the model variables into a new basis in which the components of the state vector can be partitioned into signal-related and noise-related components. We incorporate these results in a chemical data assimilation algorithm by introducing weak constraints that restrict the assimilation algorithm to acting on the signal-related model variables only. This ensures that the information contained in the measurements is fully exploited, but not overused. Numerical tests show that the constrained data assimilation algorithm provides a solution to the inverse problem that is considerably less noisy than the corresponding unconstrained algorithm. This suggests that the restriction of the algorithm to the signal-related model variables suppresses

  4. Laser Microdissection and Atmospheric Pressure Chemical Ionization Mass Spectrometry Coupled for Multimodal Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Matthias [ORNL; Ovchinnikova, Olga S [ORNL; Kertesz, Vilmos [ORNL; Van Berkel, Gary J [ORNL

    2013-01-01

    This paper describes the coupling of ambient laser ablation surface sampling, accomplished using a laser capture microdissection system, with atmospheric pressure chemical ionization mass spectrometry for high spatial resolution multimodal imaging. A commercial laser capture microdissection system was placed in close proximity to a modified ion source of a mass spectrometer designed to allow for sampling of laser ablated material via a transfer tube directly into the ionization region. Rhodamine 6G dye of red sharpie ink in a laser etched pattern as well as cholesterol and phosphatidylcholine in a cerebellum mouse brain thin tissue section were identified and imaged from full scan mass spectra. A minimal spot diameter of 8 m was achieved using the 10X microscope cutting objective with a lateral oversampling pixel resolution of about 3.7 m. Distinguishing between features approximately 13 m apart in a cerebellum mouse brain thin tissue section was demonstrated in a multimodal fashion including co-registered optical and mass spectral chemical images.

  5. Sinapine detection in radish taproot using surface desorption atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Huang, Dejuan; Luo, Liping; Jiang, Cuicui; Han, Jing; Wang, Jiang; Zhang, Tingting; Jiang, Jie; Zhou, Zhiquan; Chen, Huanwen

    2011-03-23

    Plant research and natural product detection are of sustainable interests. Benefited by direct detection with no sample preparation, sinapine, a bioactive chemical usually found in various seeds of Brassica plants, has been unambiguously detected in radish taproot (Raphanus sativus) tissue using a liquid-assisted surface desorption atmospheric pressure chemical ionization mass spectrometry (DAPCI-MS). A methanol aqueous solution (1:1) was nebulized by a nitrogen sheath gas toward the corona discharge, resulting in charged ambient small droplets, which affected the radish tissue for desorption/ionization of analytes on the tissue surface. Thus, sinapine was directly detected and identified by tandem DAPCI-MS experiments without sample pretreatment. The typical relative standard deviation (RSD) of this method for sinapine detection was 5-8% for six measurements (S/N=3). The dynamic response range was 10(-12)-10(-7) g/cm2 for sinapine on the radish skin surface. The discovery of sinapine in radish taproot was validated by using HPLC-UV methods. The data demonstrated that DAPCI assisted by solvent enhanced the overall efficiency of the desorption/ionization process, enabling sensitive detection of bioactive compounds in plant tissue.

  6. A Chemical Kinetics Network for Lightning and Life in Planetary Atmospheres

    CERN Document Server

    Rimmer, Paul B

    2015-01-01

    There are many open questions about prebiotic chemistry in both planetary and exoplanetary environments. The increasing number of known exoplanets and other ultra-cool, substellar objects has propelled the desire to detect life and prebiotic chemistry outside the solar system. We present an ion-neutral chemical network constructed from scratch, Stand2015, that treats hydrogen, nitrogen, carbon and oxygen chemistry accurately within a temperature range between 100 K and 30000 K. Formation pathways for glycine and other organic molecules are included. The network is complete up to H6C2N2O3. Stand2015 is successfully tested against atmospheric chemistry models for HD209458b, Jupiter and the present-day Earth using a simple 1D photochemistry/diffusion code. Our results for the early Earth agree with those of Kasting (1993) for CO2, H2, CO and O2, but do not agree for water and atomic oxygen. We use the network to simulate an experiment where varied chemical initial conditions are irradiated by UV light. The resul...

  7. Gas chromatography-microchip atmospheric pressure chemical ionization-mass spectrometry.

    Science.gov (United States)

    Ostman, Pekka; Luosujärvi, Laura; Haapala, Markus; Grigoras, Kestas; Ketola, Raimo A; Kotiaho, Tapio; Franssila, Sami; Kostiainen, Risto

    2006-05-01

    An atmospheric pressure chemical ionization (APCI) microchip is presented for combining a gas chromatograph (GC) to a mass spectrometer (MS). The chip includes capillary insertion channel, stopper, vaporizer channel, nozzle and nebulizer gas inlet fabricated on the silicon wafer, and a platinum heater sputtered on a glass wafer. These two wafers are joined by anodic bonding creating a two-dimensional version of an APCI microchip. The sample from GC is directed via heated transfer line capillary to the vaporizer channel of the APCI chip. The etched nozzle forms narrow sample plume, which is ionized by an external corona discharge needle, and the ions are analyzed by a mass spectrometer. The GC-microchip APCI-MS combination provides an efficient method for qualitative and quantitative analysis. The spectra produced by microchip APCI show intensive protonated molecule and some fragmentation products as in classical chemical ionization for structure elucidation. In quantitative analysis the GC-microchip APCI-MS showed good linearity (r(2) = 0.9989) and repeatability (relative standard deviation 4.4%). The limits of detection with signal-to-noise ratio of three were between 0.5 and 2 micromol/L with MS mode using selected ion monitoring and 0.05 micromol/L with MS/MS using multiple reaction monitoring.

  8. Extractive Atmospheric Pressure Photoionization (EAPPI) Mass Spectrometry: Rapid Analysis of Chemicals in Complex Matrices

    Science.gov (United States)

    Liu, Chengyuan; Yang, Jiuzhong; Wang, Jian; Hu, Yonghua; Zhao, Wan; Zhou, Zhongyue; Qi, Fei; Pan, Yang

    2016-10-01

    Extractive atmospheric pressure photoionization (EAPPI) mass spectrometry was designed for rapid qualitative and quantitative analysis of chemicals in complex matrices. In this method, an ultrasonic nebulization system was applied to sample extraction, nebulization, and vaporization. Mixed with a gaseous dopant, vaporized analytes were ionized through ambient photon-induced ion-molecule reactions, and were mass-analyzed by a high resolution time-of-flight mass spectrometer (TOF-MS). After careful optimization and testing with pure sample solution, EAPPI was successfully applied to the fast screening of capsules, soil, natural products, and viscous compounds. Analysis was completed within a few seconds without the need for preseparation. Moreover, the quantification capability of EAPPI for matrices was evaluated by analyzing six polycyclic aromatic hydrocarbons (PAHs) in soil. The correlation coefficients ( R 2 ) for standard curves of all six PAHs were above 0.99, and the detection limits were in the range of 0.16-0.34 ng/mg. In addition, EAPPI could also be used to monitor organic chemical reactions in real time.

  9. Chemical isolation in the Asian monsoon anticyclone observed in Atmospheric Chemistry Experiment (ACE-FTS data

    Directory of Open Access Journals (Sweden)

    M. Park

    2008-02-01

    Full Text Available Evidence of chemical isolation in the Asian monsoon anticyclone is presented using chemical constituents obtained from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer instrument during summer (June–August of 2004–2006. Carbon monoxide (CO shows a broad maximum over the monsoon anticyclone region in the upper troposphere and lower stratosphere (UTLS; these enhanced CO values are associated with air pollution transported upward by convection, and confined by the strong anticyclonic circulation. Profiles inside the anticyclone show enhancement of tropospheric tracers CO, HCN, C2H6, and C2H2 between ~12 to 20 km, with maxima near 13–15 km. Strong correlations are observed among constituents, consistent with sources from near-surface pollution and biomass burning. Stratospheric tracers (O3, HNO3 and HCl exhibit decreased values inside the anticyclone between ~12–20 km. These observations are further evidence of transport of lower tropospheric air into the UTLS region, and isolation of air within the anticyclone. The relative enhancements of tropospheric species inside the anticyclone are closely related to the photochemical lifetime of the species, with strongest enhancement for shorter lived species. Vertical profiles of the ratio of C2H2/CO (used to measure the relative age of air suggest relatively rapid transport of fresh emissions up to the tropopause level inside the anticyclone.

  10. Chemical Isolation in the Asian monsoon anticyclone observed in Atmospheric Chemistry Experiment (ACE-FTS data

    Directory of Open Access Journals (Sweden)

    M. Park

    2007-09-01

    Full Text Available Evidence of chemical isolation in the Asian monsoon anticyclone is presented using chemical constituents obtained from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer instrument during summer (June–August of 2004–2006. Carbon monoxide (CO shows a broad maximum over the monsoon anticyclone region in the upper troposphere and lower stratosphere (UTLS; these enhanced CO values are associated with air pollution transported upward by convection, and confined by the strong anticyclonic circulation. Profiles inside the anticyclone show enhancement of tropospheric tracers CO, HCN, C2H6, and C2H2 between ~12 to 20 km, with maxima near 13–15 km. Strong correlations are observed among constituents, consistent with sources from near-surface pollution and biomass burning. Stratospheric tracers (O3, HNO3 and HCl exhibit decreased values inside the anticyclone between ~12–20 km. These observations are further evidence of transport of lower tropospheric air into the UTLS region, and isolation of air within the anticyclone. The relative enhancements of tropospheric species inside the anticyclone are closely related to the photochemical lifetime of the species, with strongest enhancement for shorter lived species. Vertical profiles of the ratio of C2H2/CO (used to measure the relative age of air suggest relatively rapid transport of fresh emissions up to tropopause level inside the anticyclone.

  11. SETUP, a program of representative laboratory simulations of Titan's atmosphere dedicated to better understand and quantify its chemical evolution pathways

    Science.gov (United States)

    Gazeau, M.; Bahrini, C.; Benilan, Y.; Jolly, A.; Landsheere, X.; Lebert, B.

    2013-12-01

    Atmospheres are enormously complex systems. Therefore, experimental simulations are a welcome tool in the researcher's toolbox since they provide an alternative source to compare with direct measurements and theoretical models. This is important for Titan, since direct measurements are limited and theoretical models often lack important parameters. The advantage of experimental simulations is that they reduce the problem to only the chemical reactions in a certain region by neglecting atmospheric dynamics. The experimental simulations of Titan's atmosphere performed in the frame of the SETUP (French acronym for Experimental and Theoretical Simulations Useful for Planetology) program are the most representative ever achieved towards Titan's condition in term of energy deposition: the coupled N2/CH4 chemistry is initiated in a flow reactor using microwave plasma discharge as well as Ly-alpha photons delivered by a continuous H2/He lamp. The vacuum pumping and measurement system limit the experiment to pressures above 1x10-3 mbar, which corresponds well to the lower thermosphere and below. The experiment is run at ambient temperature which does not correspond directly with any region, however the upper stratosphere and above is the closest match. According to pressure and temperature, SETUP best represents from the upper stratosphere up to the lower thermosphere. The ability to perform in-situ and absolute analysis is another improvement of SETUP over its predecessors: the chemical composition is probed in-situ using cavity ring-down spectroscopy (CRDS, an absolute and highly sensitive laser spectroscopic technique based upon absorption spectroscopy) allowing us to study the evolution of the resulting gas sample. We have chosen to use a difference-frequency generation technique that combines the advantages of decent sensitivity over widely tunable wavelength range in the mid-infrared region. Indeed, numerous molecular species exhibit their fundamental vibrational

  12. Studies on the physico-chemical parameters in water of Keibul Lamjao National Park, Manipur, India.

    Science.gov (United States)

    Sharma, Aribam Satish Chandra; Gupta, Susmita; Singh, N Rajmuhon

    2013-11-01

    A study on the physico- chemical parameters of Keibul Lamjao National Park (KLNP) on seasonal basis was carried out for parameters like temperature, pH, transparency, turbidity, dissolved oxygen, chloride, hardness, calcium and magnesium at six selected Stations. The temperature ranged from 10.4 to 28 degrees C showing subtropical nature. pH was consistent both spatially and temporally except at one Station where it was alkaline having value ranging from 6.9 to 7.26. There was a trend in dissolved oxygen to be more during cold season. Electrical conductivity ranged between 105.56 to 201 microS cm(-1). It was high during the dry season and low during rainy season. Transparency and turbidity values indicated that in most Stations water was clear and the two parameters were found to be negatively correlated (r = -0.381). Based on the hardness (41 to 78 mg l(-1)), water was soft. Significant negative correlation (r = -0.532) was found between rainfall and hardness. Calcium and magnesium ions were found to be below the prescribed value of WHO. These two parameters were found to be positively correlated with hardness. ANOVA showed a significant variation in the parameters recorded during winter and monsoon season.

  13. Characterization of the chemical composition of a block copolymer by liquid chromatography/mass spectrometry using atmospheric pressure chemical ionization and electrospray ionization

    NARCIS (Netherlands)

    Leeuwen, van Suze M.; Tan, BoonHua; Grijpma, Dirk W.; Feijen, J.; Karst, Uwe

    2007-01-01

    Liquid chromatography/mass spectrometry (LC/MS) with electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) in the positive and negative ion modes was used for the characterization of a block copolymer consisting of methoxy poly(ethylene oxide) (mPEO), an -caprolactone (CL

  14. Characterization of the chemical composition of a block copolymer by liquid chromatography/mass spectrometry using atmospheric pressure chemical ionization and electrospray ionization

    NARCIS (Netherlands)

    van Leeuwen, Suze M.; Tan, BoonHua; Grijpma, Dirk W.; Fejen, Jan; Karst, Uwe

    2007-01-01

    Liquid chromatography/mass spectrometry (LC/MS) with electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) in the positive and negative ion modes was used for the characterization of a block copolymer consisting of methoxy poly(ethylene oxide) (mPEO), an epsilon-caprolact

  15. The Changing Global Atmospheric Electric Circuit as a Way of Causing Space Weather Effects on Middle Atmosphere Electrodynamic and Thermodynamic Parameters

    Science.gov (United States)

    Makarova, L.; Shirochkov, A.

    So far the solar wind energy contribution to energetic balance of the middle atmosphere was ignored in any climatic research. However the solar wind is a permanent source of electromagnetic energy constantly supplied to the near-Earth space and its role is evaluated properly in magnetospheric and ionospheric (to lesser extent) studies. We made extensive studies of the direct solar wind influence on the thermodynamic features of the middle atmosphere by analyzing data of the rocket and balloon sounding. Data of many stations covering latitudinal belt 80o N-55o N and 90o S-65o S- were used. It was found that the stratospheric temperature closely correlated with the solar wind energy expressed as the subsolar distance between the Earth and magnetopause. The best coupling between these two parameters (r>0,8) was obtained for altitudes 22-26 km with decreasing (but meaningful) coupling up and dawn from these heights. Similar dependence between this space parameter and ozone density in its stratospheric maximum was obtained also. As a very important factor a strong (r=0,78) coupling between magnetopause position and magnitude of atmospheric electric field measured by high-altitude balloons above South P leo Station must be mentioned. All these findings allowed us to propose concept of the global electric circuit as a physical mechanism for explanation of a direct coupling between the solar wind and the middle atmosphere. We suggest a new, modified version of the circuit where an external Electro-motive Force generator driven by the solar wind energy is located at dayside magnetopause. The passive elements of this circuit are the ionospheric Elayer (external element of previous version of the- circuit), stratospheric conducting layer of heavy ions (h=20-25 km) and conducting layer of the Earth surface. In this configuration a previous scheme of the global electric circuit is a part of the proposed version of it. The changes of stratospheric temperature could be explained

  16. Optimization of enzyme parameters for fermentative production of biorenewable fuels and chemicals

    Directory of Open Access Journals (Sweden)

    Ping Liu

    2012-10-01

    Full Text Available Microbial biocatalysts such as Escherichia coli and Saccharomyces cerevisiae have been extensively subjected to Metabolic Engineering for the fermentative production of biorenewable fuels and chemicals. This often entails the introduction of new enzymes, deletion of unwanted enzymes and efforts to fine-tune enzyme abundance in order to attain the desired strain performance. Enzyme performance can be quantitatively described in terms of the Michaelis-Menten type parameters Km, turnover number kcat and Ki, which roughly describe the affinity of an enzyme for its substrate, the speed of a reaction and the enzyme sensitivity to inhibition by regulatory molecules. Here we describe examples of where knowledge of these parameters have been used to select, evolve or engineer enzymes for the desired performance and enabled increased production of biorenewable fuels and chemicals. Examples include production of ethanol, isobutanol, 1-butanol and tyrosine and furfural tolerance. The Michaelis-Menten parameters can also be used to judge the cofactor dependence of enzymes and quantify their preference for NADH or NADPH. Similarly, enzymes can be selected, evolved or engineered for the preferred cofactor preference. Examples of exporter engineering and selection are also discussed in the context of production of malate, valine and limonene.

  17. OPTIMIZATION OF ENZYME PARAMETERS FOR FERMENTATIVE PRODUCTION OF BIORENEWABLE FUELS AND CHEMICALS

    Directory of Open Access Journals (Sweden)

    Laura R. Jarboe

    2012-10-01

    Full Text Available Microbial biocatalysts such as Escherichia coli and Saccharomyces cerevisiae have been extensively subjected to Metabolic Engineering for the fermentative production of biorenewable fuels and chemicals. This often entails the introduction of new enzymes, deletion of unwanted enzymes and efforts to fine-tune enzyme abundance in order to attain the desired strain performance. Enzyme performance can be quantitatively described in terms of the Michaelis-Menten type parameters Km, turnover number kcat and Ki, which roughly describe the affinity of an enzyme for its substrate, the speed of a reaction and the enzyme sensitivity to inhibition by regulatory molecules. Here we describe examples of where knowledge of these parameters have been used to select, evolve or engineer enzymes for the desired performance and enabled increased production of biorenewable fuels and chemicals. Examples include production of ethanol, isobutanol, 1-butanol and tyrosine and furfural tolerance. The Michaelis-Menten parameters can also be used to judge the cofactor dependence of enzymes and quantify their preference for NADH or NADPH. Similarly, enzymes can be selected, evolved or engineered for the preferred cofactor preference. Examples of exporter engineering and selection are also discussed in the context of production of malate, valine and limonene.

  18. Recent laboratory and field observations of the chemical composition of atmospheric nanoparticles

    Science.gov (United States)

    Smith, J. N.; Winkler, P.; Hildebrandt Ruiz, L.; Lawler, M. J.; Ortega, J.; Fry, J.; Barsanti, K. C.; McMurry, P. H.; Johnston, M. V.

    2012-12-01

    This presentation will focus on understanding the species and mechanisms that are responsible for the formation and growth of atmospheric nanoparticles. We report 10 - 40 nm diameter nanoparticle chemical composition measurements performed in two coastal sites (Mace Head, Ireland, and Lewes, Delaware USA) and two forested sites (Hyytiälä, Finland, and Manitou Forest, Colorado USA) with the recently-developed High Resolution Time-of-Flight Thermal Desorption Chemical Ionization Mass Spectrometer (HTOF-TDCIMS). These field measurements are supplemented by laboratory experiments of particle formation and growth performed at NCAR using a flow tube apparatus and a Teflon bag reaction chamber, and by thermodynamic modeling. Together, our field and laboratory observations point to crucial roles played in nanoparticle growth by two compounds: organic acids and organonitrates. The first, organic acids, are major contributors to the organic fraction in sub-20 nm diameter biogenic nanoparticles but appear to be less abundant in the organic fraction of larger particles, the latter of which are dominated by multifunctional carbonyl- and alcohol-containing compounds. The observed changes in chemical composition of the organic fraction as a function of particle size are supported by thermodynamic modeling results. The second, organonitrates, are commonly found in ambient nanoparticles as small as 10 nm in diameter. However unlike organic acids, organonitrates become increasingly more important in nanoparticle growth as particle size increases. Laboratory experiments suggest that organonitrates formed from the nitrate radical oxidation of biogenic organic compounds, a subset of total organonitrates, exhibit particularly low volatility and can thus partition into the smallest nanoparticles. This is confirmed by HTOF-TDCIMS measurements of 10 - 20 nm diameter particles, which show that particulate phase organonitrates peak in the morning, shortly following the period where

  19. Chemical and Microbiological Parameters of Paddy Soil Quality as Affected by Different Nutrient and Water Regimes

    Institute of Scientific and Technical Information of China (English)

    YANG Chang-Ming; YANG Lin-Zhang; YAN Ting-Mei

    2005-01-01

    A field experiment was conducted from 1999 to 2002 to compare and evaluate the effects of nutrient and water regimes on paddy soil quality by investigating soil chemical and microbiological parameters. Four nutrient regimes, a control, chemical fertilizers only (CF), chemical fertilizers with swine manure (SM), and chemical fertilizers with wheat straw (WS), and two soil moisture regimes, continuous waterlogging (CWL) and alternate wetting and drying (AWD),were investigated. With SM and WS total organic carbon and total nitrogen in the paddy soil were significantly higher (P <0.05) than those with CF. A similar effect for organic amendments was observed in the soil light fraction organic C (LFOC), water-soluble carbohydrates (WSC), and water-soluble organic C (WSOC). CWL, in particular when swine manure was incorporated into the paddy soil, markedly decreased soil redox potential (Eh) and increased total active reducing substances (ARS). Meanwhile, as compared to CF, SM and WS significantly (P < 0.05) increased soil microbial biomass C (MBC) and mineralizable carbon, with differences in AWD being higher than CWL. In addition, SM and WS treatments significantly (P < 0.05) improved rice above-ground biomass and grain yield, with AWD being greater than CWL. Thus, for ecologically sustainable agricultural management of paddy soils, long-term waterlogging should be avoided when organic manure was incorporated into paddy soil.

  20. Studies on Physico Chemical Parameters of 5 water bodies of Ranchi (Jharkhand

    Directory of Open Access Journals (Sweden)

    Mouli Chakroborty

    2017-05-01

    Full Text Available Aquatic ecosystems are particularly vulnerable to environmental change and many are, at present, severely degraded. The availability of good quality water is an indispensable feature for preventing disease and improving quality of life. The physico-chemical properties will also help in the identification of sources of pollution, for conducting further investigations on the ecobiological impacts and also for initiating necessary steps for remedial actions in case of polluted water bodies. Therefore, the nature and health of any aquatic community are an expression of quality of the water. The present study has been undertaken to evaluate physico-chemical parameters (pH, alkalinity, dissolved oxygen, free carbon dioxide, sulphate content, chloride content and phosphate content in 5 water bodies in and around Ranchi – Patratu Dam, Kanke dam, Dhruwa dam, Ranchi Lake, Line-tank Lake.

  1. Carbon Dioxide Extraction from the Atmosphere Through Engineered Chemical Sinkage: Enabling Energy and Environmental Security

    Science.gov (United States)

    Dubey, M. K.; Ziock, H.; Rueff, G.; Smith, W. S.; Colman, J.; Elliott, S.; Lackner, K.; Johnston, N. A.

    2002-05-01

    We present the case for carbon dioxide (CO2) extraction from air using engineered chemical sinks as a means of sustaining fossil energy use by avoiding climate change. Existing carbon sequestration strategies such as CO2 injection into geologic formations or the deep ocean and mineral carbonation, require a pure stream of concentrated CO2 to be viable. Furthermore, current emphasis on reducing the global CO2 emissions is on large centralized power plants. However, more than half of all emissions are from the transportation sector and small, distributed sources such as home heating, etc. Most solutions for dealing with these sources explicitly or implicitly entail completely overhauling the existing infrastructure. To solve these problems, Los Alamos National Laboratory has conceived a novel approach for directly extracting CO2 from the atmosphere. Direct extraction converts the dilute CO2 (370 parts per million) in the atmosphere into a pure CO2 stream ready for permanent sequestration. It provides the following advantages: (1) Preserves our existing energy use and fuel distribution systems, which represent a large investment, (2) Indirectly captures CO2 from the myriad of small, distributed, and mobile sources that otherwise are not accessible to sequestration, (3) Allows atmospheric CO2 levels to be restored to their pre-industrial age value, (4) Provides free transport of CO2 to suitable sequestration sites by using natural atmospheric circulation, and (5) Is relatively compact and therefore inexpensive when compared to renewable concepts. Our concept harnesses atmospheric circulation to transport CO2 to sites where the CO2 is extracted by binding it to an adsorbent. The bound CO2 is then recovered as pure gas by heating together with the solid adsorbent that is recycled. As a proof of concept, we show that an aqueous Ca(OH)2 solution efficiently converts CO2 to a CaCO3 solid that can be heated to obtain pure CO2 and recover the CaO. Even with recycling costs

  2. An assessment of the physico-chemical parameters of Oran sebkha basin

    Science.gov (United States)

    Nabila, Boualla; Ahmed, Benziane; Kacem, Moussa

    2014-12-01

    Growing populations and increasing industrialization cause increase in living standard, which result in decrease in the quality of water and may put stresses on natural waters by impairing both the quality of the water and the hydrological budget. This research aims at determining the origin of the chemical elements of groundwater from the Oran sebkha basin. It applies the inverse geochemical modeling to derive the sources of variation in the hydrochemistry by Belkhiri et al. (doi:10.1016/j.geoderma.2010.08.016, 2010). Fifty-five water samples were selected from different point in Oran sebkha basin for sampling purpose in July 2011. Physico-chemical parameters such as pH and electric conductivity were measured in situ. Moreover, chloride, sulfate, alkalinity, calcium, magnesium, sodium and potassium were measured in the laboratory. Inverse geochemical models of the statistical groups were developed using PHREEQC to elucidate the chemical reactions controlling water chemistry. The inverse geochemical modeling demonstrated that relatively few phases are required to derive water chemistry in the area. In a broad sense, the reactions responsible for the hydrochemical evolution in the area fall into three categories: (1) dissolution of evaporite minerals; (2) precipitation of carbonate minerals; and (3) weathering reactions of silicate minerals by Belkhiri et al. (doi:10.1016/j.geoderma.2010.08.016, 2010). The high values of the physico-chemical parameters of water obtained in the present study sites indicate a variation in the physico-chemical parameters demonstrated that relatively few phases are required to derive water chemistry in the area. Range of values was found as pH (5.1-7.6), conductivity (720-15,820 μS cm-1), chloride (994-7,810 mg l-1), sulfate (6.1-112.4 mg l-1), alkalinity (421-19,962 mg l-1), calcium (80-680 mg l-1), magnesium (212.4-4,525 mg l-1), sodium (124.2-4,687.4 mg l-1) and potassium (0.9-42.5 mg l-1).

  3. A finite difference method for estimating second order parameter sensitivities of discrete stochastic chemical reaction networks.

    Science.gov (United States)

    Wolf, Elizabeth Skubak; Anderson, David F

    2012-12-14

    We present an efficient finite difference method for the approximation of second derivatives, with respect to system parameters, of expectations for a class of discrete stochastic chemical reaction networks. The method uses a coupling of the perturbed processes that yields a much lower variance than existing methods, thereby drastically lowering the computational complexity required to solve a given problem. Further, the method is simple to implement and will also prove useful in any setting in which continuous time Markov chains are used to model dynamics, such as population processes. We expect the new method to be useful in the context of optimization algorithms that require knowledge of the Hessian.

  4. Chemical Bond Parameters in Sr3MRhO6 (M=Rare earth)

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Chemical bond parameters, that is, bond covalency, bond valence, macroscopic linear susceptibility, and oxidation states of elements in Sr3MRhO6 (M=Sm, Eu, Tb, Dy, Ho, Er, Yb) have been calculated. The results indicate that the bond covalency of M-O decreases sharply with the decrease of ionic radius of M3+ from Sm to Yb, while no obvious trend has been found for Rh-O and Sr-O bonds. The global instability index indicates that the crystal structures of Sr3MrhO6 (M = Sm, Eu, Tb, Dy, Ho) have strained bonds.

  5. A Study on Physico-Chemical Parameters of Koilsagar Project, Mahabubnagar District, Telangana.

    Directory of Open Access Journals (Sweden)

    S. Suresh

    2015-03-01

    Full Text Available A physiological background makes it quite evident that water is an important ecological factor in the life of organisms. In the present study water samples were collected from Koilsagar project, Mahabubnagar district in every month during June, 2013 to May, 2014. The Physico-Chemical parameters were studied included Temperature, pH, Total Dissolved Solids (TDS, Turbidity, Hardness, Alkalinity, Phosphate, Chloride, Nitrate, Calcium and Magnesium. The results indicate that the Koilsagar project water is nonpolluted and it can be used for Domestic, irrigation and pisciculture.

  6. Sensitivity of transatlantic dust transport to chemical aging and related atmospheric processes

    KAUST Repository

    Abdelkader, Mohamed

    2017-03-20

    We present a sensitivity study on transatlantic dust transport, a process which has many implications for the atmosphere, the ocean and the climate. We investigate the impact of key processes that control the dust outflow, i.e., the emission flux, convection schemes and the chemical aging of mineral dust, by using the EMAC model following Abdelkader et al. (2015). To characterize the dust outflow over the Atlantic Ocean, we distinguish two geographic zones: (i) dust interactions within the Intertropical Convergence Zone (ITCZ), or the dust–ITCZ interaction zone (DIZ), and (ii) the adjacent dust transport over the Atlantic Ocean (DTA) zone. In the latter zone, the dust loading shows a steep and linear gradient westward over the Atlantic Ocean since particle sedimentation is the dominant removal process, whereas in the DIZ zone aerosol–cloud interactions, wet deposition and scavenging processes determine the extent of the dust outflow. Generally, the EMAC simulated dust compares well with CALIPSO observations; however, our reference model configuration tends to overestimate the dust extinction at a lower elevation and underestimates it at a higher elevation. The aerosol optical depth (AOD) over the Caribbean responds to the dust emission flux only when the emitted dust mass is significantly increased over the source region in Africa by a factor of 10. These findings point to the dominant role of dust removal (especially wet deposition) in transatlantic dust transport. Experiments with different convection schemes have indeed revealed that the transatlantic dust transport is more sensitive to the convection scheme than to the dust emission flux parameterization. To study the impact of dust chemical aging, we focus on a major dust outflow in July 2009. We use the calcium cation as a proxy for the overall chemical reactive dust fraction and consider the uptake of major inorganic acids (i.e., H2SO4, HNO3 and HCl) and their anions, i.e., sulfate (SO42−), bisulfate

  7. Ionization pattern obtained in electrospray ionization or atmospheric pressure chemical ionization interfaces for authorized antidepressants in Romania

    Science.gov (United States)

    Grecu, Iulia; Ionicǎ, Mihai; Vlǎdescu, Marian; Truţǎ, Elena; Sultan, Carmen; Viscol, Oana; Horhotǎ, Luminiţa; Radu, Simona

    2016-12-01

    Antidepressants were found in 1950. In the 1990s there was a new generation of antidepressants. They act on the level of certain neurotransmitters extrasinpatic by its growth. After their mode of action antidepressants may be: SSRIs (Selective Serotonin Reuptake Inhibitors); (Serotonin-Norepinephrine Reuptake Inhibitors); SARIs (Serotonin Antagonist Reuptake Inhibitors); NRIs (Norepinephrine Reuptake Inhibitors); NDRIs (Norepinephrine-Dopamine Reuptake Inhibitors) NDRAs (Norepinephrine-Dopamine Releasing Agents); TCAs (Tricyclic Antidepressants); TeCAs (Tetracyclic Antidepressants); MAOIs (Monoamine Oxidase Inhibitors); agonist receptor 5-HT1A (5- hydroxytryptamine); antagonist receptor 5-HT2; SSREs (Selective Serotonin Reuptake Enhancers) and Sigma agonist receptor. To determine the presence of antidepressants in biological products, it has been used a system HPLC-MS (High Performance Liquid Chromatography - Mass Spectrometry) Varian 12001. The system is equipped with APCI (Atmospheric Pressure Chemical Ionization) or ESI (ElectroSpray Ionization) interface. To find antidepressants in unknown samples is necessary to recognize them after mass spectrum. Because the mass spectrum it is dependent on obtaining private parameters work of HPLC-MS system, and control interfaces, the mass spectra library was filled with the mass spectra of all approved antidepressants in Romania. The paper shows the mass spectra obtained in the HPLCMS system.

  8. Coupling heat and chemical tracer experiments for estimating heat transfer parameters in shallow alluvial aquifers.

    Science.gov (United States)

    Wildemeersch, S; Jamin, P; Orban, P; Hermans, T; Klepikova, M; Nguyen, F; Brouyère, S; Dassargues, A

    2014-11-15

    Geothermal energy systems, closed or open, are increasingly considered for heating and/or cooling buildings. The efficiency of such systems depends on the thermal properties of the subsurface. Therefore, feasibility and impact studies performed prior to their installation should include a field characterization of thermal properties and a heat transfer model using parameter values measured in situ. However, there is a lack of in situ experiments and methodology for performing such a field characterization, especially for open systems. This study presents an in situ experiment designed for estimating heat transfer parameters in shallow alluvial aquifers with focus on the specific heat capacity. This experiment consists in simultaneously injecting hot water and a chemical tracer into the aquifer and monitoring the evolution of groundwater temperature and concentration in the recovery well (and possibly in other piezometers located down gradient). Temperature and concentrations are then used for estimating the specific heat capacity. The first method for estimating this parameter is based on a modeling in series of the chemical tracer and temperature breakthrough curves at the recovery well. The second method is based on an energy balance. The values of specific heat capacity estimated for both methods (2.30 and 2.54MJ/m(3)/K) for the experimental site in the alluvial aquifer of the Meuse River (Belgium) are almost identical and consistent with values found in the literature. Temperature breakthrough curves in other piezometers are not required for estimating the specific heat capacity. However, they highlight that heat transfer in the alluvial aquifer of the Meuse River is complex and contrasted with different dominant process depending on the depth leading to significant vertical heat exchange between upper and lower part of the aquifer. Furthermore, these temperature breakthrough curves could be included in the calibration of a complex heat transfer model for

  9. Inversion Schemes to Retrieve Atmospheric and Oceanic Parameters from SeaWiFS Data

    Science.gov (United States)

    Deschamps, P.-Y.; Frouin, R.

    1997-01-01

    The investigation focuses on two key issues in satellite ocean color remote sensing, namely the presence of whitecaps on the sea surface and the validity of the aerosol models selected for the atmospheric correction of SeaWiFS data. Experiments were designed and conducted at the Scripps Institution of Oceanography to measure the optical properties of whitecaps and to study the aerosol optical properties in a typical mid-latitude coastal environment. CIMEL Electronique sunphotometers, now integrated in the AERONET network, were also deployed permanently in Bermuda and in Lanai, calibration/validation sites for SeaWiFS and MODIS. Original results were obtained on the spectral reflectance of whitecaps and on the choice of aerosol models for atmospheric correction schemes and the type of measurements that should be made to verify those schemes. Bio-optical algorithms to remotely sense primary productivity from space were also evaluated, as well as current algorithms to estimate PAR at the earth's surface.

  10. A Measurement of Atmospheric Neutrino Oscillation Parameters by Super-Kamiokande I

    CERN Document Server

    Ashie, Y; Ishihara, K; Itow, Y; Kameda, J; Koshio, Y; Minamino, A; Mitsuda, C; Miura, M; Moriyama, S; Nakahata, M; Namba, T; Nambu, R; Obayashi, Y; Shiozawa, M; Suzuki, Y; Takeuchi, Y; Taki, K; Yamada, S; Ishitsuka, M; Kajita, T; Kaneyuki, K; Nakayama, S; Okada, A; Okumura, K; Saji, C; Takenaga, Y; Clark, S T; Desai, S; Kearns, E; Likhoded, S; Stone, J L; Sulak, L R; Wang, W; Goldhaber, M; Casper, D; Cravens, J P; Gajewski, W; Kropp, W R; Liu, D W; Mine, S; Smy, M B; Sobel, H W; Sterner, C W; Vagins, M R; Ganezer, K S; Hill, J; Keig, W E; Jang, J S; Kim, J Y; Lim, I T; Scholberg, K; Walter, C W; Ellsworth, R W; Tasaka, S; Guillian, G; Kibayashi, A; Learned, J G; Matsuno, S; Takemori, D; Messier, M D; Hayato, Y; Ichikawa, A K; Ishida, T; Ishii, T; Iwashita, T; Kobayashi, T; Maruyama, T; Nakamura, K; Nitta, K; Oyama, Y; Sakuda, M; Totsuka, Y; Suzuki, A T; Hasegawa, M; Hayashi, K; Kato, I; Maesaka, H; Morita, T; Nakaya, T; Nishikawa, K; Sasaki, T; Ueda, S; Yamamoto, S; Haines, T J; Dazeley, S; Hatakeyama, S; Svoboda, R; Blaufuss, E; Goodman, J A; Sullivan, G W; Turcan, D; Habig, A; Fukuda, Y; Jung, C K; Kato, T; Kobayashi, K; Malek, M; Mauger, C; McGrew, C; Sarrat, A; Sharkey, E; Yanagisawa, C; Toshito, T; Miyano, K; Tamura, N; Ishii, J; Kuno, Y; Yoshida, M; Kim, S B; Yoo, J; Okazawa, H; Ishizuka, T; Choi, Y; Seo, H K; Gando, Y; Hasegawa, T; Inoue, K; Shirai, J; Suzuki, A; Koshiba, M; Nakajima, Y; Nishijima, K; Harada, T; Ishino, H; Watanabe, Y; Kielczewska, D; Zalipska, J; Berns, H G; Gran, R; Shiraishi, K K; Stachyra, A; Washburn, K; Wilkes, R J

    2005-01-01

    We present a combined analysis of fully-contained, partially-contained and upward-going muon atmospheric neutrino data from a 1489 day exposure of the Super--Kamiokande detector. The data samples span roughly five decades in neutrino energy, from 100 MeV to 10 TeV. A detailed Monte Carlo comparison is described and presented. The data is fit to the Monte Carlo expectation, and is found to be consistent with neutrino oscillations of $\

  11. Molecular Line Parameters & VAMDC: An Atmospheric/Laboratory Physicist Point of View

    Science.gov (United States)

    Janssen, Christof

    2017-09-01

    "Molecular line parameters are used to interpret observational spectra and are an integral part in the data evaluation chain. Given from the perspective of a laboratory physicist, this talk provides an overview on molecular line parameters, how they are obtained and how they are made available to the user. Taking NH3 and O3 as two example molecules, the problem of measuring and modelling line parameters using current technologies from the UV to the mid-infrared are described and associated uncertainties are discussed. We also cover availability and access of molecular line data through the database infrastructure VAMDC (http://portal.vamdc.org/)."

  12. A comparative study on orographic and latitudinal features of global atmospheric electrical parameters over different places at three Asian countries

    Science.gov (United States)

    Kumar, A.; Singh, D.

    2014-03-01

    Some global atmospheric electrical parameters like atmospheric conductivity, air-earth current density, electric field, atmospheric potential, etc. have been estimated over different places of India, China and Korea of Asian continent. These calculations have been made by assuming fair weather conditions and taking into account the small scale (0.5° grid in latitude and longitude) orographic and latitudinal effects. Mean values of conductivity and air-earth current density over various places of India, China and Korea have been found to be 5.97 × 10-14, 5.46 × 10-14, 2.82 × 10-14 S m-1 and 6.58 × 10-12, 6.04 × 10-12, 3.16 × 10-12 A m-2, respectively whereas average electric field and atmospheric potential over these places are 110.9, 110.81, 112.08 V m-1 and 269.52, 272.90, 286.64 kV, respectively. It has been found from the results that latitudinal variation is very much smaller than orographic variation over these three countries of Asian region.

  13. On the detectability of trace chemical species in the martian atmosphere using gas correlation filter radiometry

    Science.gov (United States)

    Sinclair, J. A.; Irwin, P. G. J.; Calcutt, S. B.; Wilson, E. L.

    2015-11-01

    The martian atmosphere is host to many trace gases including water (H2O) and its isotopologues, methane (CH4) and potentially sulphur dioxide (SO2), nitrous oxide (N2O) and further organic compounds, which would serve as indirect tracers of geological, chemical and biological processes on Mars. With exception of the recent detection of CH4 by Curiosity, previous detections of these species have been unsuccessful or considered tentative due to the low concentrations of these species in the atmosphere (∼10-9 partial pressures), limited spectral resolving power and/or signal-to-noise and the challenge of discriminating between telluric and martian features when observing from the Earth. In this study, we present radiative transfer simulations of an alternative method for detection of trace gas species - the gas correlation radiometry method. Two potential observing scenarios were explored where a gas correlation filter radiometer (GCFR) instrument: (1) performs nadir and/or limb sounding of the martian atmosphere in the thermal infrared (200-2000 cm-1 from an orbiting spacecraft or (2) performs solar occultation measurements in the near-infrared (2000-5000 cm-1) from a lander on the martian surface. In both scenarios, simulations of a narrowband filter radiometer (without gas correlation) were also generated to serve as a comparison. From a spacecraft, we find that a gas correlation filter radiometer, in comparison to a filter radiometer (FR), offers a greater discrimination between temperature and dust, a greater discrimination between H2O and HDO, and would allow detection of N2O and CH3OH at concentrations of ∼10 ppbv and ∼2 ppbv, respectively, which are lower than previously-derived upper limits. However, the lowest retrievable concentration of SO2 (approximately 2 ppbv) is comparable with previous upper limits and CH4 is only detectable at concentrations of approximately 10 ppbv, which is an order of magnitude higher than the concentration recently measured

  14. Physico-chemical Parameters and Their Variations in Relation to Fish Production in Zhob River Balochistan

    Directory of Open Access Journals (Sweden)

    Ghulam Dastagir

    2014-12-01

    Full Text Available The study of physico-chemical parameters of Zhob River was carried from January- December 2011 and correlated with fish production. The samples of fish were procured from, Zhob River Balochistan with the help of local fishermen. Total 557 (342 Schizothorax progestus, 105 Caratus auratus, 60 Tor tor and 50 Glypothorax sp. were procured from January to December. Noticeable difference in the values of temperature, pH, transparency and DO were not observed throughout the year and as per standards for aquatic biota. The length- weight relationship values indicated positive allometric and regression co-efficients (b are 2.67, 2.50, 2.17 and 2.65 termed as satisfactory growth in C. auratus, S. progestus, Tor tor and Glypothorax sp., respectively. The values of condition factor (Kn = 1.0, 1.01, 0.97 and 1.31 in case of C. auratus, S. progestus, Tor tor and Glypothorax sp.respectively from Zhob River, Balochistan. Condition factor values show fluctuations in all size groups in different fish species. It is concluded that the physico-chemical parameters of Zhob river Balochistan were found to be within the suitable ranges of fish culture.

  15. Determination of kava lactones in food supplements by liquid chromatography-atmospheric pressure chemical ionisation tandem mass spectrometry

    NARCIS (Netherlands)

    Bobeldijk, I.; Boonzaaijer, G.; Spies-Faber, E.J.; Vaes, W.H.J.

    2005-01-01

    Reversed-phase liquid chromatography and detection with atmospheric pressure chemical ionisation tandem mass spectrometry was used for the determination of kava extracts in herbal mixtures. One percent of kava extract can be detected, corresponding to approximately 0.05-0.2 mg/g of the individual ka

  16. Accurate quantitation of pentaerythritol tetranitrate and its degradation products using liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry

    NARCIS (Netherlands)

    Brust, H.; Asten, A. van; Koeberg, M.; Dalmolen, J.; Heijden, A.E.D.M. van der; Schoenmakers, P.

    2014-01-01

    After an explosion of pentaerythritol tetranitrate (PETN), its degradation products pentaerythritol trinitrate (PETriN), dinitrate (PEDiN) and mononitrate (PEMN) were detected using liquid chromatography-atmospheric-pressure chemical-ionization-mass spectrometry (LC-APCI-MS). Discrimination between

  17. Stokes parameters of phase-locked partially coherent flat-topped array laser beams propagating through turbulent atmosphere

    Science.gov (United States)

    Golmohammady, Sh; Ghafary, B.

    2016-06-01

    In this study, generalized Stokes parameters of a phase-locked partially coherent flat-topped array beam based on the extended Huygens-Fresnel principle and the unified theory of coherence and polarization have been reported. Analytical formulas for 2  ×  2 cross-spectral density matrix elements, and consequently Stokes parameters of a phase-locked partially coherent flat-topped array beam propagating through the turbulent atmosphere have been formulated. Effects of many physical attributes such as wavelength, turbulence strength, flatness order and other source parameters on the Stokes parameters, and therefore spectral degree of polarization upon propagation have been studied thoroughly. The behaviour of the spectral degree of coherence of a delineated beam for different source conditions has been investigated. It can be shown that four generalized Stokes parameters increase by raising the flatness order at the same propagation distance. Increasing the number of beams leads to a decrease in the Stokes parameters to zero slowly. The results are of utmost importance for optical communications.

  18. A pseudo 2D chemical model of hot Jupiter atmospheres: application to HD 209458b and HD 189733b

    CERN Document Server

    Agundez, Marcelino; Venot, Olivia; Hersant, Franck; Selsis, Franck

    2014-01-01

    We have developed a pseudo two-dimensional model of a planetary atmosphere, which takes into account thermochemical kinetics, photochemistry, vertical mixing, and horizontal transport, the latter being modeled as a uniform zonal wind. We have applied the model to the atmospheres of the hot Jupiters HD 209458b and HD 189733b. The adopted eddy diffusion coefficients are calculated by following the behaviour of passive tracers in three-dimensional general circulation models, which results in eddy values significantly below previous estimates. We find that the distribution of molecules with altitude and longitude in the atmospheres of these two hot Jupiters is complex because of the interplay of the various physical and chemical processes at work. Much of the distribution of molecules is driven by the strong zonal wind and the limited extent of vertical transport, resulting in an important homogenisation of the chemical composition with longitude. In general, molecular abundances are quenched horizontally to valu...

  19. Chemical effect on the K shell absorption parameters of some selected cerium compounds

    Science.gov (United States)

    Akman, F.; Kaçal, M. R.; Durak, R.

    2016-08-01

    In this study, the photoelectric cross section values of Ce, CeCl3.7H2O, Ce2(SO4)3, Ce(OH)4 and Ce2O3 samples were measured in the energy range from 31.82 keV up to 51.70 keV by adopting in narrow beam geometry. Using these photoelectric cross sections, the K shell photoelectric cross sections at the K-edge, the K shell absorption jump ratios and jump factors, the Davisson-Kirchner ratios and K shell oscillator strength values were estimated experimentally. The measured parameters were compared with the theoretical calculated values. It is observed that the K shell photoelectric cross section at the K-edge and K shell oscillator strength values of an element are affected by the chemical environment of material while the K shell absorption jump ratio, K shell absorption jump factor and Davisson-Kirchner ratio are not affected by the chemical environment of material for the present samples. To the best of our knowledge, the chemical effects on the Davisson-Kirchner ratio and K shell oscillator strength have not been discussed for any element by now.

  20. The determination of the kinetic parameters of electrochemical reaction in chemical power sources: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yanhui; Wu, Jun; Li, Decheng; Zheng, Junwei [The Institute of Chemical Power Sources, Soochow (Suzhou) University, Suzhou 215006 (China); Chen, Ying [Max-Planck-Institut fuer Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Duesseldorf (Germany); Ju, Hua [School of Urban Rail Transportation, Soochow (Suzhou) University, Ganjiang East Road 178, Suzhou 215021 (China)

    2010-06-15

    The derivation and proposal of major electrochemical techniques used to determine and calculate the electrochemical kinetic parameters is basically based on the electrochemical reaction taking place at liquid/solid or liquid/liquid interface in which all the reactants and products are soluble in liquid aqueous solution or liquid mercury electrode, or are volatile gas. Such electrochemical reaction system is classical and traditional (ERS1). Recently, the electrochemical behavior of some materials used as the active electrode materials in chemical power sources has attracted much attention. In chemical power source systems, either reactant or product, or both are insoluble. This kind of electrochemical reaction system (ERS2) is slightly different from ERS1. The application of these electrochemical techniques/equations to chemical power sources' system requires carefulness. The misuse of these electrochemical techniques can be easily found in the literatures and some of them even lead to a wrong conclusion. In this review, almost all the electrochemical techniques to measure the exchange current and diffusion coefficient were compiled for reference to the readers, including pulse step, electrochemical impedance, alternating cyclic voltammetry, etc. The necessary requirements/conditions to apply these techniques have been briefly discussed and some simple examples were also discussed for a better understanding. (author)

  1. Comparison of Parameter Estimation Methods in Stochastic Chemical Kinetic Models: Examples in Systems Biology.

    Science.gov (United States)

    Gupta, Ankur; Rawlings, James B

    2014-04-01

    Stochastic chemical kinetics has become a staple for mechanistically modeling various phenomena in systems biology. These models, even more so than their deterministic counterparts, pose a challenging problem in the estimation of kinetic parameters from experimental data. As a result of the inherent randomness involved in stochastic chemical kinetic models, the estimation methods tend to be statistical in nature. Three classes of estimation methods are implemented and compared in this paper. The first is the exact method, which uses the continuous-time Markov chain representation of stochastic chemical kinetics and is tractable only for a very restricted class of problems. The next class of methods is based on Markov chain Monte Carlo (MCMC) techniques. The third method, termed conditional density importance sampling (CDIS), is a new method introduced in this paper. The use of these methods is demonstrated on two examples taken from systems biology, one of which is a new model of single-cell viral infection. The applicability, strengths and weaknesses of the three classes of estimation methods are discussed. Using simulated data for the two examples, some guidelines are provided on experimental design to obtain more information from a limited number of measurements.

  2. Stellar parameters and chemical abundances of 223 evolved stars with and without planets

    CERN Document Server

    Jofré, E; Saffe, C; Saker, L; de la Villarmois, E Artur; Chavero, C; Gómez, M; Mauas, P

    2014-01-01

    We present fundamental stellar parameters and chemical abundances for a sample of 86 evolved stars with planets and for a control sample of 137 stars without planets. The analysis was based on both high S/N and resolution echelle spectra. The goals of this work are i) to investigate chemical differences between stars with and without planets; ii) to explore potential differences between the properties of the planets around giants and subgiants; and iii) to search for possible correlations between these properties and the chemical abundances of their host stars. In agreement with previous studies, we find that subgiants with planets are, on average, more metal-rich than subgiants without planets by ~ 0.16 dex. The [Fe/H] distribution of giants with planets is centered at slightly subsolar metallicities and there is no metallicity enhancement relative to the [Fe/H] distribution of giants without planets. Furthermore, contrary to recent results, we do not find any clear difference between the metallicity distrib...

  3. Validation of chemical analyses of atmospheric deposition in forested European sites

    Directory of Open Access Journals (Sweden)

    Erwin ULRICH

    2005-08-01

    Full Text Available Within the activities of the Integrated Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests and of the EU Regulation 2152/2003, a Working Group on Quality Assurance/Quality Control of analyses has been created to assist the participating laboratories in the analysis of atmospheric deposition, soil and soil solution, and leaves/needles. As part of the activity of the WG, this study is a statistical analysis in the field of water analysis of chemical concentrations and relationships between ions, and between conductivity and ions for different types of samples (bulk or wet-only samples, throughfall, stemflow considered in forest studies. About 5000 analyses from seven laboratories were used to establish relationships representative of different European geographic and climatic situations, from northern Finland to southern Italy. Statistically significant differences between the relationships obtained from different types of solutions, interacting with different types of vegetation (throughfall and stemflow samples, broad-leaved trees and conifers and with varying influence of marine salt were tested. The ultimate aim is to establish general relationships between ions, and between conductivity and ions, with relative confidence limits, which can be used as a comparison with those established in single laboratories. The use of such techniques is strongly encouraged in the ICPF laboratories to validate single chemical analyses, to be performed when it is still possible to replicate the analysis, and as a general overview of the whole set of analyses, to obtain an indication of the laboratory performance on a long-term basis.

  4. Examinations of certain chemical characteristics of fermented dry sausage quality parameters

    Directory of Open Access Journals (Sweden)

    Vukašinović Marija V.

    2012-01-01

    Full Text Available On the grounds of data available from literature, we observed a high degree of variations in the values of numerous physical-chemical quality parameters of fermented sausages, so that we set as the objective of our investigations to carry out comprehensive examinations of selected chemical quality parameters (total protein content, relative protein content of connective tissue, and humidity in ten different products that belong to the group of fermented dry sausages. The other objective was to compare the values obtained in our investigations with the reference values envisaged under the Regulations on quality and other requirements for meat products (SCG Official Gazette, No. 33/2004 and to determine the percent of products that are found incompatible and the reasons for that. We used two standard reference chemical methods – the determination of nitrogen and moisture contents (SRPS ISO 937:1992 and SRPS ISO 1442:1998, as well as a modification of method M050 for the determination of hydroxyproline content. We can conclude on the grounds of the results of our investigations that out of the representative number of examined samples (n = 156, originating from 10 different products from the group of fermented dry sausages, 51 samples (32.7% did not meet the requirements prescribed under the Regulations on quality and other requirements for meat products. Among the rejected samples, the reason for the incompatibility of 40 samples (25.6% was a a higher level of RPCCT, and 18 samples (11.5% had a higher moisture content than permitted. None of the total number of examined samples had a content of total proteins lower than the one prescribed under Regulations.

  5. Improving Wind Predictions in the Marine Atmospheric Boundary Layer through Parameter Estimation in a Single-Column Model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jared A.; Hacker, Joshua P.; Delle Monache, Luca; Kosović, Branko; Clifton, Andrew; Vandenberghe, Francois; Rodrigo, Javier Sanz

    2016-12-14

    A current barrier to greater deployment of offshore wind turbines is the poor quality of numerical weather prediction model wind and turbulence forecasts over open ocean. The bulk of development for atmospheric boundary layer (ABL) parameterization schemes has focused on land, partly due to a scarcity of observations over ocean. The 100-m FINO1 tower in the North Sea is one of the few sources worldwide of atmospheric profile observations from the sea surface to turbine hub height. These observations are crucial to developing a better understanding and modeling of physical processes in the marine ABL. In this study, we use the WRF single column model (SCM), coupled with an ensemble Kalman filter from the Data Assimilation Research Testbed (DART), to create 100-member ensembles at the FINO1 location. The goal of this study is to determine the extent to which model parameter estimation can improve offshore wind forecasts.

  6. Study of atmospheric parameters measurements using MM-wave radar in synergy with LITE-2

    Science.gov (United States)

    Andrawis, Madeleine Y.

    1994-12-01

    The Lidar In-Space Technology Experiment, (LITE), has been developed, designed, and built by NASA Langley Research Center, to be flown on the space shuttle 'Discovery' on September 9, 1994. Lidar, which stands for light detecting and ranging, is a radar system that uses short pulses of laser light instead of radio waves in the case of the common radar. This space-based lidar offers atmospheric measurements of stratospheric and tropospheric aerosols, the planetary boundary layer, cloud top heights, and atmospheric temperature and density in the 10-40 km altitude range. A study is being done on the use, advantages, and limitations of a millimeterwave radar to be utilized in synergy with the Lidar system, for the LITE-2 experiment to be flown on a future space shuttle mission. The lower atmospheric attenuation, compared to infrared and optical frequencies, permits the millimeter-wave signals to penetrate through the clouds and measure multi-layered clouds, cloud thickness, and cloud-base height. These measurements would provide a useful input to radiation computations used in the operational numerical weather prediction models, and for forecasting. High power levels, optimum modulation, data processing, and high antenna gain are used to increase the operating range, while space environment, radar tradeoffs, and power availability are considered. Preliminary, numerical calculations are made, using the specifications of an experimental system constructed at Georgia Tech. The noncoherent 94 GHz millimeter-wave radar system has a pulsed output with peak value of 1 kW. The backscatter cross section of the particles to be measured, that are present in the volume covered by the beam footprint, is also studied.

  7. A new correlation between solar energy radiation and some atmospheric parameters

    CERN Document Server

    Dumas, Antonio; Bonnici, Maurizio; Madonia, Mauro; Trancossi, Michele

    2014-01-01

    The energy balance for an atmospheric layer near the soil is evaluated. By integrating it over the whole day period a linear relationship between the global daily solar radiation incident on a horizontal surface and the product of the sunshine hours at clear sky with the maximum temperature variation in the day is achieved. The results show a comparable accuracy with some well recognized solar energy models such as the \\ang-Prescott one, at least for Mediterranean climatic area. Validation of the result has been performed using old dataset which are almost contemporary and relative to the same sites with the ones used for comparison.

  8. Parameter dependence in the atmospheric decoherence of modal entangled photon pairs

    CSIR Research Space (South Africa)

    Ibrahim, AH

    2014-11-01

    Full Text Available to several kilometers. C. Data extraction After the two photons propagated through the turbu- lent media, they are analyzed in detectors, which perform a state tomography to determine the density matrix of the bi-photon quantum state. In the simulations...〉}, (20) where ℓ = 1, 3, 5 or 7. When a photon carrying OAM propagates in a turbu- lent atmosphere, the refractive index fluctuations cause the OAM state of the photon to become scattered into neighboring OAM modes. That is, the initial OAM state...

  9. Estimating stellar atmospheric parameters, absolute magnitudes and elemental abundances from the LAMOST spectra with Kernel-based Principal Component Analysis

    CERN Document Server

    Xiang, Maosheng; Shi, Jianrong; Yuan, Haibo; Huang, Yang; Luo, Ali; Zhang, Huawei; Zhao, Yongheng; Zhang, Jiannan; Ren, Juanjuan; Chen, Bingqiu; Wang, Chun; Li, Ji; Huo, Zhiying; Zhang, Wei; Wang, Jianling; Zhang, Yong; Hou, Yonghui; Wang, Yuefei

    2016-01-01

    Accurate determination of stellar atmospheric parameters and elemental abundances is crucial for Galactic archeology via large-scale spectroscopic surveys. In this paper, we estimate stellar atmospheric parameters -- effective temperature T_{\\rm eff}, surface gravity log g and metallicity [Fe/H], absolute magnitudes M_V and M_{Ks}, {\\alpha}-element to metal (and iron) abundance ratio [{\\alpha}/M] (and [{\\alpha}/Fe]), as well as carbon and nitrogen abundances [C/H] and [N/H] from the LAMOST spectra with amultivariate regressionmethod based on kernel-based principal component analysis, using stars in common with other surveys (Hipparcos, Kepler, APOGEE) as training data sets. Both internal and external examinations indicate that given a spectral signal-to-noise ratio (SNR) better than 50, our method is capable of delivering stellar parameters with a precision of ~100K for Teff, ~0.1 dex for log g, 0.3 -- 0.4mag for M_V and M_{Ks}, 0.1 dex for [Fe/H], [C/H] and [N/H], and better than 0.05 dex for [{\\alpha}/M] ([...

  10. Long-Term Observations of Atmospheric CO2, O3 and BrO over the Transitioning Arctic Ocean Pack-ice: The O-Buoy Chemical Network

    Science.gov (United States)

    Matrai, P.

    2016-02-01

    Autonomous, sea ice-tethered O-Buoys have been deployed (2009-2016) across the Arctic sea ice for long-term atmospheric measurements (http://www.o-buoy.org). O-Buoys (15) provide in-situ concentrations of three sentinel atmospheric chemicals, ozone, CO2 and BrO, as well as meteorological parameters and imagery, over the frozen ocean. O-Buoys were designed to transmit daily data over a period of 2 years while deployed in sea ice, as part of automated ice-drifting stations that include snow/ice measurement systems (e.g. Ice Mass Balance buoys) and oceanographic measurements (e.g. Ice Tethered Profilers). Seasonal changes in Arctic atmospheric chemistry are influenced by changes in the characteristics and presence of the sea ice vs. open water as well as air mass trajectories, especially during the winter-spring and summer-fall transitions when sea ice is melting and freezing, respectively. The O-Buoy Chemical Network provides the unique opportunity to observe these transition periods in real-time with high temporal resolution, and to compare them with those collected on land-based monitoring stations located. Due to the logistical challenges of measurements over the Arctic Ocean region, most long term, in-situ observations of atmospheric chemistry have been made at coastal or island sites around the periphery of the Arctic Ocean, leaving large spatial and temporal gaps that O-Buoys overcome. Advances in floatation, communications, power management, and sensor hardware have been made to overcome the challenges of diminished Arctic sea ice. O-Buoy data provide insights into enhanced seasonal, interannual and spatial variability in atmospheric composition, atmospheric boundary layer control on the amount of halogen activation, enhancement of the atmospheric CO2 signal over the more variable and porous pack ice, and to develop an integrated picture of the coupled ocean/ice/atmosphere system. As part of the Arctic Observing Network, we provide data to the community (www.aoncadis.org).

  11. Chemical characteristics and source of size-fractionated atmospheric particle in haze episode in Beijing

    Science.gov (United States)

    Tan, Jihua; Duan, Jingchun; Zhen, Naijia; He, Kebin; Hao, Jiming

    2016-01-01

    The abundance, behavior, and source of chemical species in size-fractionated atmospheric particle were studied with a 13-stage low pressure impactor (ELPI) during high polluted winter episode in Beijing. Thirty three elements (Al, Ca, Fe, K, Mg, Na, Si, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Sr, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, Hg, Tl, and Pb) and eight water soluble ions (Cl-, NO3-, SO42 -, NH4+, Na+, K+, Ca2 +, and Mg2 +) were determined by ICP/MS and IC, respectively. The size distribution of TC (OC + EC) was reconstructed. Averagely, 51.5 ± 5.3% and 74.1 ± 3.7% of the total aerosol mass was distributed in the sub-micron (PM1) and fine particle (PM2.5), respectively. A significant shift to larger fractions during heavy pollution episode was observed for aerosol mass, NH4+, SO42 -, NO3-, K, Fe, Cu, Zn, Cd, and Pb. The mass size distributions of NH4+, SO42 -, NO3-, and K were dominated by accumulation mode. Size distributions of elements were classified into four main types: (I) elements were enriched within the accumulation mode (water soluble ions. Dust, vehicle, aged coal combustion, and sea salt were identified, and the size resolved source apportionments were discussed. Aged coal combustion was the important source of fine particles and dust contributed most to coarse particle.

  12. Inactivation of virus in solution by cold atmospheric pressure plasma: identification of chemical inactivation pathways

    Science.gov (United States)

    Aboubakr, Hamada A.; Gangal, Urvashi; Youssef, Mohammed M.; Goyal, Sagar M.; Bruggeman, Peter J.

    2016-05-01

    Cold atmospheric pressure plasma (CAP) inactivates bacteria and virus through in situ production of reactive oxygen and nitrogen species (RONS). While the bactericidal and virucidal efficiency of plasmas is well established, there is limited knowledge about the chemistry leading to the pathogen inactivation. This article describes a chemical analysis of the CAP reactive chemistry involved in the inactivation of feline calicivirus. We used a remote radio frequency CAP produced in varying gas mixtures leading to different plasma-induced chemistries. A study of the effects of selected scavengers complemented with positive control measurements of relevant RONS reveal two distinctive pathways based on singlet oxygen and peroxynitrous acid. The first mechanism is favored in the presence of oxygen and the second in the presence of air when a significant pH reduction is induced in the solution by the plasma. Additionally, smaller effects of the H2O2, O3 and \\text{NO}2- produced were also found. Identification of singlet oxygen-mediated 2-imidazolone/2-oxo-His (His  +14 Da)—an oxidative modification of His 262 comprising the capsid protein of feline calicivirus links the plasma induced singlet oxygen chemistry to viral inactivation.

  13. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hemawan, Kadek W.; Gou, Huiyang; Hemley, Russell J. [Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Rd., NW, Washington, DC 20015 (United States)

    2015-11-02

    Polycrystalline diamond has been synthesized on silicon substrates at atmospheric pressure, using a microwave capillary plasma chemical vapor deposition technique. The CH{sub 4}/Ar plasma was generated inside of quartz capillary tubes using 2.45 GHz microwave excitation without adding H{sub 2} into the deposition gas chemistry. Electronically excited species of CN, C{sub 2}, Ar, N{sub 2}, CH, H{sub β}, and H{sub α} were observed in the emission spectra. Raman measurements of deposited material indicate the formation of well-crystallized diamond, as evidenced by the sharp T{sub 2g} phonon at 1333 cm{sup −1} peak relative to the Raman features of graphitic carbon. Field emission scanning electron microscopy images reveal that, depending on the growth conditions, the carbon microstructures of grown films exhibit “coral” and “cauliflower-like” morphologies or well-facetted diamond crystals with grain sizes ranging from 100 nm to 10 μm.

  14. Atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry for complex thiophenic mixture analysis

    KAUST Repository

    Hourani, Nadim

    2013-10-01

    Rationale Polycyclic aromatic sulfur heterocycles (PASHs) are detrimental species for refining processes in petroleum industry. Current mass spectrometric Methods that determine their composition are often preceded by derivatization and dopant addition approaches. Different ionization Methods have different impact on the molecular assignment of complex PASHs. The analysis of such species under atmospheric pressure chemical ionization (APCI) is still considered limited due to uncontrolled ion generation with low- and high-mass PASHs. Methods The ionization behavior of a model mixture of five selected PASH standards was investigated using an APCI source with nitrogen as the reagent gas. A complex thiophenic fraction was separated from a vacuum gas oil (VGO) and injected using the same method. The samples were analyzed using Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). RESULTS PASH model analytes were successfully ionized and mainly [M + H]+ ions were produced. The same ionization pattern was observed for the real thiophenic sample. It was found that S1 class species were the major sulfur-containing species found in the VGO sample. These species indicated the presence of alkylated benzothiophenic (BT), dibenzothiophenic (DBT) and benzonaphthothiophenic (BNT) series that were detected by APCI-FTICR MS. CONCLUSIONS This study provides an established APCI-FTICR MS method for the analysis of complex PASHs. PASHs were detected without using any derivatization and without fragmentation. The method can be used for the analysis of S-containing crude oil samples. © 2013 John Wiley & Sons, Ltd.

  15. Flame Atmospheric Pressure Chemical Ionization Coupled with Negative Electrospray Ionization Mass Spectrometry for Ion Molecule Reactions

    Science.gov (United States)

    Cheng, Sy-Chyi; Bhat, Suhail Muzaffar; Shiea, Jentaie

    2017-07-01

    Flame atmospheric pressure chemical ionization (FAPCI) combined with negative electrospray ionization (ESI) mass spectrometry was developed to detect the ion/molecule reactions (IMRs) products between nitric acid (HNO3) and negatively charged amino acid, angiotensin I (AI) and angiotensin II (AII), and insulin ions. Nitrate and HNO3-nitrate ions were detected in the oxyacetylene flame, suggesting that a large quantity of nitric acid (HNO3) was produced in the flame. The HNO3 and negatively charged analyte ions produced by a negative ESI source were delivered into each arm of a Y-shaped stainless steel tube where they merged and reacted. The products were subsequently characterized with an ion trap mass analyzer attached to the exit of the Y-tube. HNO3 showed the strongest affinity to histidine and formed (Mhistidine-H+HNO3)- complex ions, whereas some amino acids did not react with HNO3 at all. Reactions between HNO3 and histidine residues in AI and AII resulted in the formation of dominant [MAI-H+(HNO3)]- and [MAII-H+(HNO3)]- ions. Results from analyses of AAs and insulin indicated that HNO3 could not only react with basic amino acid residues, but also with disulfide bonds to form [M-3H+(HNO3)n]3- complex ions. This approach is useful for obtaining information about the number of basic amino acid residues and disulfide bonds in peptides and proteins.

  16. Atmospheric pressure chemical ionization of explosives using alternating current corona discharge ion source.

    Science.gov (United States)

    Usmanov, D T; Chen, L C; Yu, Z; Yamabe, S; Sakaki, S; Hiraoka, K

    2015-04-01

    The high-sensitive detection of explosives is of great importance for social security and safety. In this work, the ion source for atmospheric pressure chemical ionization/mass spectrometry using alternating current corona discharge was newly designed for the analysis of explosives. An electromolded fine capillary with 115 µm inner diameter and 12 mm long was used for the inlet of the mass spectrometer. The flow rate of air through this capillary was 41 ml/min. Stable corona discharge could be maintained with the position of the discharge needle tip as close as 1 mm to the inlet capillary without causing the arc discharge. Explosives dissolved in 0.5 µl methanol were injected to the ion source. The limits of detection for five explosives with 50 pg or lower were achieved. In the ion/molecule reactions of trinitrotoluene (TNT), the discharge products of NOx (-) (x = 2,3), O3 and HNO3 originating from plasma-excited air were suggested to contribute to the formation of [TNT - H](-) (m/z 226), [TNT - NO](-) (m/z 197) and [TNT - NO + HNO3 ](-) (m/z 260), respectively. Formation processes of these ions were traced by density functional theory calculations. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Rational strategy for the atmospheric icing prevention based on chemically functionalized carbon soot coatings

    Science.gov (United States)

    Esmeryan, Karekin D.; Bressler, Ashton H.; Castano, Carlos E.; Fergusson, Christian P.; Mohammadi, Reza

    2016-12-01

    Although the superhydrophobic surfaces are preferable for passive anti-icing systems, as they provide water shedding before initiation of ice nucleation, their practical usage is still under debate. This is so, as the superhydrophobic materials are not necessarily icephobic and most of the synthesis techniques are characterized with low fabrication scalability. Here, we describe a rational strategy for the atmospheric icing prevention, based on chemically functionalized carbon soot, suitable for large-scale fabrication of superhydrophobic coatings that exhibit and retain icephobicity in harsh operational conditions. This is achieved through a secondary treatment with ethanol and aqueous fluorocarbon solution, which improves the coating's mechanical strength without altering its water repellency. Subsequent experimental analyses on the impact dynamics of icy water droplets on soot coated aluminum and steel sheets show that these surfaces remain icephobic in condensate environments and substrate temperatures down to -35 °C. Furthermore, the soot's icephobicity and non-wettability are retained in multiple icing/de-icing cycles and upon compressed air scavenging, spinning and water jetting with impact velocity of ∼25 m/s. Finally, on frosted soot surfaces, the droplets freeze in a spherical shape and are entirely detached by adding small amount of thermal energy, indicating lower ice adhesion compared to the uncoated metal substrates.

  18. Investigating the Chemical Pathways to PAH- and PANH-Based Aerosols in Titan's Atmospheric chemistry

    Science.gov (United States)

    Sciamma-O'Brien, Ella Marion; Contreras, Cesar; Ricketts, Claire Louise; Salama, Farid

    2011-01-01

    A complex organic chemistry between Titan's two main constituents, N2 and CH4, leads to the production of more complex molecules and subsequently to solid organic aerosols. These aerosols are at the origin of the haze layers giving Titan its characteristic orange color. In situ measurements by the Ion Neutral Mass Spectrometer (INMS) and Cassini Plasma Spectrometer (CAPS) instruments onboard Cassini have revealed the presence of large amounts of neutral, positively and negatively charged heavy molecules in the ionosphere of Titan. In particular, benzene (C6H6) and toluene (C6H5CH3), which are critical precursors of polycyclic aromatic hydrocarbon (PAH) compounds, have been detected, suggesting that PAHs might play a role in the production of Titan s aerosols. Moreover, results from numerical models as well as laboratory simulations of Titan s atmospheric chemistry are also suggesting chemical pathways that link the simple precursor molecules resulting from the first steps of the N2-CH4 chemistry (C2H2, C2H4, HCN ...) to benzene, and to PAHs and nitrogen-containing PAHs (or PANHs) as precursors to the production of solid aerosols.

  19. Decontamination of Chemical/Biological Warfare (CBW) Agents Using an Atmospheric Pressure Plasma Jet (APPJ)

    Science.gov (United States)

    Herrmann, Hans W.

    1998-11-01

    The atmospheric pressure plasma jet (APPJ) is a non-thermal, high pressure, uniform glow discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g. He/O_2/H_2O) which flows between an outer, grounded, cylindrical electrode and an inner, coaxial electrode powered at 13.56 MHz RF. While passing through the plasma, the feedgas becomes excited, dissociated or ionized by electron impact. Once the gas exits the discharge volume, ions and electrons are rapidly lost by recombination, but the fast-flowing effluent still contains metastables (e.g. O2*, He*) and radicals (e.g. O, OH). These reactive species have been shown to be effective neutralizers of surrogates for anthrax spores, mustard blister agent and VX nerve gas. Unlike conventional, wet decontamination methods, the plasma effluent does not cause corrosion of most surfaces and does not damage wiring, electronics, nor most plastics. This makes it highly suitable for decontamination of high value sensitive equipment such as is found in vehicle interiors (i.e. tanks, planes...) for which there is currently no good decontamination technique. Furthermore, the reactive species rapidly degrade into harmless products leaving no lingering residue or harmful byproducts. Physics of the APPJ will be discussed and results of surface decontamination experiments using simulant and actual CBW agents will be presented.

  20. CHEMICAL WEATHERING PROCESSES AND ATMOSPHERIC CO2 CONSUMPTION OF HUANGHE RIVER AND CHANGJIANG RIVER BASINS

    Institute of Scientific and Technical Information of China (English)

    LI Jing-ying; ZHANG Jing

    2005-01-01

    Rock weathering plays an important role in studying the long-term carbon cycles and global climaticchange. According to the statistics analysis, the Huanghe (Yellow) River water chemistry was mainly controlled byevaporite and carbonate weathering, which were responsible for over 90% of total dissolved ions. As compared withthe Huanghe River basin, dissolved load of the Changjiang (Yangtze) River was mainly originated from the carbonate dissolution.The chemical weathering rates were estimated to be 39.29t/(km2·a)and 61.58t/(km2·a)by deduting the HCO3- derived from atmosphere in the Huanghe River and Changjiang River watersheds, respectively. The CO2 con-sumption rates by rock weathering were calculated to be 120.84 × 103mol/km2 and 452.46 × 103mol/km2 annually in thetwo basins, respectively. The total CO2 consumption of the two basins amounted to 918.51 × 109mol/a, accounting for3.83% of the world gross. In contrast to other world watersheds, the stronger evaporite reaction and infirm silicateweathering can explain such feature that CO2 consumption rates were lower than a global average, suggesting that thesequential weathering may be go on in the two Chinese drainage basins.

  1. The chemical abundances in the Galactic Centre from the atmospheres of Red Supergiants

    CERN Document Server

    Davies, Ben; Kudritzki, Rolf-Peter; Figer, Don F; Rich, R Michael; Najarro, Francisco

    2008-01-01

    The Galactic Centre (GC) has experienced a high degree of recent star-forming activity, as evidenced by the large number of massive stars currently residing there. The relative abundances of chemical elements in the GC may provide insights into the origins of this activity. Here, we present high-resolution $H$-band spectra of two Red Supergiants in the GC (IRS~7 and VR~5-7), and in combination with spectral synthesis we derive abundances for Fe and C, as well as other $\\alpha$-elements Ca, Si, Mg Ti and O. We find that the C-depletion in VR~5-7 is consistent with the predictions of evolutionary models of RSGs, while the heavy depletion of C and O in IRS~7's atmosphere is indicative of deep mixing, possibly due to fast initial rotation and/or enhanced mass-loss. Our results indicate that the {\\it current} surface Fe/H content of each star is slightly above Solar. However, comparisons to evolutionary models indicate that the {\\it initial} Fe/H ratio was likely closer to Solar, and has been driven higher by H-de...

  2. Modification of tapioca starch by non-chemical route using jet atmospheric argon plasma.

    Science.gov (United States)

    Wongsagonsup, Rungtiwa; Deeyai, Panakamol; Chaiwat, Weerawut; Horrungsiwat, Sawanee; Leejariensuk, Kesini; Suphantharika, Manop; Fuongfuchat, Asira; Dangtip, Somsak

    2014-02-15

    Non-chemical modification of tapioca starch was investigated using jet atmospheric argon plasma treatment. Two forms of starch slurry, i.e. granular starch (G) and cooked starch (C), were jet-treated by argon plasma generated by supplying input power of 50 W (denoted as G50 and C50 samples) and 100 W (denoted as G100 and C100 samples) for 5 min. Physical, rheological, and structural characteristics of the modified starch were investigated. The G50 and C100 samples had lower paste clarity but higher thermal stability and performed stronger gels (G50 only) compared to their control counterparts. On the other hand, the analyzed properties of the G100 and C50 samples showed the opposite trend. FTIR and (1)H NMR results revealed that the relative areas of COC and OH peaks were changed after the treatment. Cross-linking reaction seemed to predominantly take place for the G50 and C100 samples, whereas depolymerization predominated for the G100 and C50 samples.

  3. Observations on phytoplankton pigments, zooplankton and physico-chemical parameters in surface waters from southern Indian Ocean and Antarctic region

    Digital Repository Service at National Institute of Oceanography (India)

    JiyalalRam, M.; Goswami, S.C.

    Observations on distribution of chlorophyll a, phaeopigments, zooplankton and physico-chemical parameters in the Southern Ocean were carried out during 9th Indian Antarctic-Expedition (1989-1990). The results indicated high phytoplankton biomass...

  4. On-line coating of glass with tin oxide by atmospheric pressure chemical vapor deposition.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Sopko, J.F. (PPF Industries, Pittsburgh, PA); Houf, William G.; Chae, Yong Kee; McDaniel, Anthony H.; Li, M. (PPF Industries, Pittsburgh, PA); McCamy, J.W. (PPF Industries, Pittsburgh, PA)

    2006-11-01

    Atmospheric pressure chemical vapor deposition (APCVD) of tin oxide is a very important manufacturing technique used in the production of low-emissivity glass. It is also the primary method used to provide wear-resistant coatings on glass containers. The complexity of these systems, which involve chemical reactions in both the gas phase and on the deposition surface, as well as complex fluid dynamics, makes process optimization and design of new coating reactors a very difficult task. In 2001 the U.S. Dept. of Energy Industrial Technologies Program Glass Industry of the Future Team funded a project to address the need for more accurate data concerning the tin oxide APCVD process. This report presents a case study of on-line APCVD using organometallic precursors, which are the primary reactants used in industrial coating processes. Research staff at Sandia National Laboratories in Livermore, CA, and the PPG Industries Glass Technology Center in Pittsburgh, PA collaborated to produce this work. In this report, we describe a detailed investigation of the factors controlling the growth of tin oxide films. The report begins with a discussion of the basic elements of the deposition chemistry, including gas-phase thermochemistry of tin species and mechanisms of chemical reactions involved in the decomposition of tin precursors. These results provide the basis for experimental investigations in which tin oxide growth rates were measured as a function of all major process variables. The experiments focused on growth from monobutyltintrichloride (MBTC) since this is one of the two primary precursors used industrially. There are almost no reliable growth-rate data available for this precursor. Robust models describing the growth rate as a function of these variables are derived from modeling of these data. Finally, the results are used to conduct computational fluid dynamic simulations of both pilot- and full-scale coating reactors. As a result, general conclusions are

  5. Chemical reactivity parameters (HSAB) applied to magma evolution and ore formation

    Science.gov (United States)

    Vigneresse, Jean-Louis

    2012-11-01

    Magmas are commonly described through the usual content of 10 major oxides. This requires a complex dimensional plot. Concepts of hard-soft acid-base (HSAB) interactions allow estimating chemical reactivity of elements, such as electronegativity, i.e. the chemical potential changed of sign, hardness and electrophilicity. For complex system, those values result from equalization methods, i.e. the equalization of the respective chemical potentials, or from ab-initio computations through density functional theory (DFT). They help to characterize silicate magmas by a single value describing their reactivity. Principles of minimum electrophilicity (mEP), maximum hardness (MHP) and minimum polarizability (mPP) indicate trends towards regions of higher stability. Those parameters are plotted within a fitness landscape diagram, highlighting toward which principle reactions trend. Major oxides, main minerals and magmas determine the respective fields in which evolve natural rocks. Three poles are identified, represented by silica and alkalis, whereas oxidation forms the third trend. Mantle-derived rocks show a large variation in electrophilicity compared to hardness. They present all characters of a closed chemical system, being simply described by the free Gibbs energy. Conversely, rocks contaminated within the continental crust show a large variation in hardness between a silica pole and an alkaline, defining two separate trends. The trends show the character of an open chemical system, requiring a Grand Potential description (i.e. taking into account the difference in chemical potential). The terms open and closed systems refer to thermodynamical description, implying contamination for the crust and recycling for the mantle. The specific role of alkalis contrasts with other cations, pointing to their behavior in modifying silicate polymer structures. A second application deals with the reactivity of the melt and its fluid phase. It leads to a better understanding on the

  6. Effects of riverbed extraction on physico-chemical parameters of Tinau River, Nepal

    Directory of Open Access Journals (Sweden)

    K.R. Dahal

    2012-09-01

    Full Text Available This study was carried out during June 2010 to March 2011 in the Tinau River, Nepal. The level of pollution was determined based on the protocol of US EPA (Habitat Assessment Protocol. Riverbed extraction was occurring in very large scale in this river since 2002. Five sampling stations were selected to carry out the study. Some specific physico-chemical parameters like Electrical Conductivity (EC, Lead (Pb, pH, Iron (Fe, Phosphorous (P, Ammonia (NH4+, Nitrate (NO3-, Arsenic (As, Total Dissolved Solids (TDS were analyzed. Three major parameters (Pb, As and TDS were closely related to the riverbed extraction and exceeded the limit set by WHO for drinking water. Similar relationship was also seen for EC; however its concentrations did not exceed the limit of WHO. The river water was slightly alkaline based on the pH value (ranging from 7.5 to 9.Other parameters did not seem to be related to the riverbed extraction. However, the nitrate and phosphorous concentrations were also high during the present investigation. Lack of similar studies prevented us to compare the result; however these findings provide the baseline data for future work.

  7. Correlation Study on Sweetness of Amino Acid with Different Configurations and Quantum Chemical Parameters

    Institute of Scientific and Technical Information of China (English)

    LI Jun-Ling; GU Jun; QIU Guang-Min

    2006-01-01

    Quantum chemical parameters of 10 amino acids with D- and L-configurations were firstly calculated with semi-empirical AM1 method. Furthermore, the relationship between mole- cular structures of D-, L-amino acids and their sweetness were observed. The results show that upon different configurations of amino acids, the sweetness is relative with their formation heat, dipole moment, energy gap of frontier orbital and other parameters. The formation heats of the same amino acids possessing D- and L-configurations are different except glycine. The algebraic value of D- amino acid is generally larger than that of corresponding L-configuration with only one except of tyrosine. The dipole moment of D-amino acid is generally larger than that of corresponding L-amino acid except tyrosine and lysine. The lowest unoccupied orbital energy (ELUMO) of D-amino acid is higher than that of corresponding L-configuration except phenylalanine. △E of D-amino acid is larger than that of L-amino acid except histidine, phenylalanine and lysine. The larger gap will have advantage for its matching with frontier orbital energy of human protein acceptor, which strengthens the interaction between D-amino acid and sweet taste acceptor. Besides, the changing rules of these parameters are generally identical.

  8. A long period grating-based chemical sensor insensitive to the influence of interfering parameters.

    Science.gov (United States)

    James, Stephen W; Korposh, Serhiy; Lee, Seung-Woo; Tatam, Ralph P

    2014-04-07

    An optical fibre chemical sensor that is insensitive to interfering parameters including temperature and surrounding refractive index is described. The sensor is based upon a Mach-Zehnder interferometer formed by a pair of identical cascaded long period gratings (LPGs), with the entire device coated with a mesoporous coating of silica nanoparticles. A functional material is infused only into the coating over the section of optical fibre separating the LPGs. The transmission spectrum of the device consists of a channeled spectrum arising from interference of the core and cladding modes within the envelope of the LPG resonance band. Parameters such as temperature, strain and surrounding refractive perturb the entire device, causing the phase of the channeled spectrum and the central wavelength of the envelope shift at the same rate. Exposure of the device to the analyte of interest perturbs only the optical characteristics of the section of fibre into which the functional material was infused, thus influencing only the phase of the channeled spectrum. Measurement of the phase of the channeled spectrum relative to the central wavelength of the envelope allows the monitoring of the concentration of the analyte with no interference from other parameters.

  9. A Study of Physical-Chemical Effects on the Atmosphere of the Southern Hemisphere During Forbush Decrease Periods

    Science.gov (United States)

    Portugal, W.; Pacini, A. A.; Echer, E.; Echer, M. P. D. S.

    2015-12-01

    We present here a study about some possible physical-chemical changes on the Southern hemisphere atmosphere, in Brazil, due to galactic cosmic rays (GCR) flux decreases (Forbush Decreases). Galactic Cosmic Rays are energetic particles that come from interstellar medium and arrive on the Earth isotropically and continuously. These particles interact with atmosphere constituents and induce the ionization of the neutral atmosphere. It is known that the presence of ions on the troposphere can change the vapor condensation patterns, since some ions can behave like cloud condensation nuclei. So, there is a work hypothesis, that the GCR flux decrease can cause some change on the physical-chemical of the atmosphere. We have investigated this possible effect, using three periods of Forbush Decrease effects (Nov/01, Oct/03 e Jul/12) with different magnitudes, on three different latitudinal range of Brazilian sector, Porto Alegre (30.08o S , YY O); Brasília (15.75o S , YY O) and Belém (1.46o S , YY O). The atmospheric effects are assessed by analysis of the temperature, pressure, humidity and aerossol data profiles, since the surface up to stratosphere. We have also studied, for comparison, high latitude atmosphere by atmospheric data from Jokioinen - Filand (60.8o N , 23.5o E) for the same three FDs. Then, our aim with this study is to investigate possible GCR decreases effects in the lower atmosphere at high, medium and low latitudes. The results obtained in this study will be compared with previous published works.

  10. 大气化学机理的发展及应用%Development and Application of Atmospheric Chemical Mechanisms

    Institute of Scientific and Technical Information of China (English)

    石玉珍; 徐永福; 贾龙

    2012-01-01

    Atmospheric chemical mechanism is one of the most important components to study photochemical processes and develop air quality models. The development and application of several atmospheric chemical mechanisms were summarized. The simplified chemical mechanisms include Carbon Bond Mechanism (CBM), Statewide Air Pollution Research Center mechanism (SAPRC), Regional Acid Deposition Mechanism (RADM), and Regional Atmospheric Chemical Mechanism (RACM) which have been widely used in the past decades and the explicit chemical mechanisms contain Master Chemical Mechanism (MCM) and Common Representative Intermediates (CRI) which were developed rapidly in the past few years. The history, species, and lump styles of these mechanisms were compared. Meanwhile, the research of the evaluation to chemical mechanism by using chamber experiment data and the application of these chemical mechanisms in model development also summarized. Besides, the further demand to the development and improvement of chemical mechanisms was put forward.%大气化学机理是研究大气化学过程的重要手段和方法之一,也是发展空气质量模式必不可少的重要组成部分.作者综述了几种应用广泛的简化机理——碳键机理(Carbon Bond Mechanism,CBM)、加州大气污染研究中心机理(Statewide Air Pollution Research Center mechanism,SAPRC)、区域酸沉降机理(Regional Acid Deposition Mechanism,RADM)、区域大气化学机理(Regional Atmospheric Chemical Mechanism,RACM)以及详细化学机理——主要大气化学机理(Master Chemical Mechanism,MCM)和共同代表性中间体机理(Common Representative Intermediates,CRI)的发展及应用.对上述大气化学机理的产生、发展、包含的物种类型、集总方式等方面进行了对比分析,总结了采用烟雾箱数据评价大气化学机理的研究成果以及大气化学机理在模式发展方面的应用,并对大气化学机理的进一步发展与完善提出了需求.

  11. Hygroscopicity Behavior, Activation Properties and Chemical Composition of Atmospheric Aerosol at a Background Site in the Megacity Region of Peking

    Science.gov (United States)

    Henning, Silvia; Nowak, Andreas; Mildenberger, Katrin; Göbel, Tina; Nekat, Bettina; van Pinxteren, Dominik; Herrmann, Hartmut; Zhao, Chunsheng; Wiedensohler, Alfred; Stratmann, Frank

    2010-05-01

    particles were externally mixed. On average the growth factor in the hydrophobic mode was about 1.1 (200nm @ 98.5%). 12% of the particles were of hydrophobic nature for 200 nm and 15% over all sizes. LACIS-mobile focused on the hygroscopic mode, as this mode is mainly responsible for the optical properties of the atmosphere at high RHs. During the whole campaign very high growth factors (GFmedian = 3.56, 200 nm @ 99.2%) were observed, close to those of ammonium sulfate, with only slight dependence on the air mass. The analysis of the DIGITEL samples showed that the main components of PM1 are inorganic ions like the secondary formed ammonium nitrate und ammonium sulphate, as well as carbonaceous material. The organic carbon fraction is mostly dominated by water soluble organic carbon (80% in average) and was more analyzed in more detail for dicarboxylic acids, fatty acids, sugars and sugar related compounds. High concentrations of tracers like the anhydrosugar levoglucosan suggest biomass burning emissions as a dominant source of organic particles in the area. Closure between hygroscopic growth, CCN activation and chemical composition is aimed for with two different approaches: a) one single-parameter Köhler model applying the hygroscopicity parameter kappa following [Petters and Kreidenweis, 2007] and b) a standard Köhler model using as input parameter 4 major chemical components as analyzed from the DIGITEL samples. First tests for 200 nm particles showed very good agreement for the kappa-approach between measured and predicted critical activation. In the second approach the mass of 4 major components, namely ammonium sulfate, ammonium nitrate, sodium chloride and soluble organic mater were used as input parameter of a standard Köhler model including an insoluble core. Here the hygroscopic growth factor was underestimated, but the activation point was predicted well. Petters, M. D., and S. M. Kreidenweis (2007), A single parameter representation of hygroscopic growth

  12. Chemical composition of aerosol in the atmospheric surface layer of the East Antarctica coastal zone

    Directory of Open Access Journals (Sweden)

    L. P. Golobokova

    2016-01-01

    Full Text Available Chemical composition of aerosol in the ground layer of the coastal zone in East Antarctica is analyzed in the article. The aerosol samples were taken in 2006–2015 during seasonal works of the Russian Antarctic Expeditions (RAE, namely, these were 52nd–53rd, 55th, and 58th–60th expeditions. Samples were taken in the 200‑km band of the sea-shore zone along routes of the research vessels (REV «Akademik Fedorov» and «Akademik Treshnikov» as well as on territories of the Russian stations Molodezhnaya and Mirny. Although the results obtained did show the wide range of the aerosol concentrations and a certain variability of their chemical composition, some common features of the variability were revealed. Thus, during the period from 2006 to 2014 a decrease of average values of the sums were noted. Spatially, a tendency of decreasing of the ion concentrations was found in the direction from the station Novolazarevskaya to the Molodezhnaya one, but the concentrations increased from the Molodezhnaya to the station Mirny. The sum of ions of the aerosol in the above mentioned coastal zone was, on the average, equal to 2.44 μg/m3, and it was larger than that on the territory of the Antarctic stations Molodezhnaya (0,29 μg/m3 and Mirny (0,50 ág / m3. The main part to the sum of the aerosol ions on the Antarctic stations was contributed by Na+, Ca2+, Cl−, SO4 2−. The main ions in aerosol composition in the coastal zone are ions Na+ and Cl−. The dominant contribution of the sea salt and SO4 2− can be traced in not only the composition of atmospheric aerosols, but also in the chemical composition of the fresh snow in the coastal areas of East Antarctica: at the Indian station Maitri, on the Larsemann Hills, and in a boring located in 55.3 km from the station Progress (K = 1.4÷6.1. It was noted that values of the coefficient of enrichment K of these ions decreases as someone moves from a shore to inland. Estimation of

  13. Automatic determination of stellar atmospheric parameters and construction of stellar spectral templates of the Guoshoujing Telescope (LAMOST)

    Institute of Scientific and Technical Information of China (English)

    Yue Wu; Peng Wei; Wei-Xiang Dong; Hao-Tong Zhang; Jian-Jun Chen; A-Li Luo; Hai-Ning Li; Jian-Rong Shi; Philippe Prugniel; Yan-Chun Liang; Yong-Heng Zhao; Jian-Nan Zhang; Zhong-Rui Bai

    2011-01-01

    A number of spectroscopic surveys have been carried out or are planned to study the origin of the Milky Way.Their exploitation requires reliable automated methods and softwares to measure the fundamental parameters of the stars.Adopting the ULySS package,we have tested the effect of different resolutions and signal-to-noise ratios (SNR) on the measurement of the stellar atmospheric parameters (effec tive temperature Teff,surface gravity log9,and metallicity [Fe/H]).We show thatULySS is reliable for determining these parameters with medium-resolution spectra (R ~2000).Then,we applied the method to measure the parameters of 771 stars selected in the commissioning database of the Guoshoujing Telescope (LAMOST).The results were compared with the SDSS/SEGUE Stellar Parameter Pipeline (SSPP),and we derived precisions of 167 K,0.34dex,and 0.16dex for Teff,log9 and [Fe/H] respectively.Furthermore,120 of these stars are selected to construct the primary stellar spectral template library (Version 1.0) of LAMOST,and will be deployed as basic ingredients for the LAMOST automated parametrization pipeline.

  14. Initial multi-parameter detection of atmospheric metal layers by Beijing Na-K lidar

    Science.gov (United States)

    Jiao, Jing; Yang, Guotao; Wang, Jihong; Cheng, Xuewu; Du, Lifang; Wang, Zelong; Gong, Wei

    2017-02-01

    Beijing Na-K lidar has been started running in 2010. This lidar has two laser beams: one dye laser emits a 589-nm laser beam for Na layer detection; the other dye laser emits a 770-nm laser beam for K layer detection. Under similar conditions, the echo signal of K layer is only about 2 orders of magnitude smaller than that of Na layer. This lidar has a sufficient Signal Noise Ratio (SNR). The structure and details of potassium layer can be effectively distinguished from a single original echo. Several examples of co-observation of density of Na and K layer showed some different results with previous studies. This lidar not only can supplement the lack of Na and K layer observation at this latitude region, but also provide evidence for the atmospheric sciences and space environment monitoring.

  15. Retrieval of atmospheric optical parameters from ground-based sun-photometer measurements for Zanjan, Iran

    Science.gov (United States)

    Bayat, A.; Masoumi, A.; Khalesifard, H. R.

    2011-05-01

    We are reporting the results of ground-based spectroradiometric measurements on aerosols and water vapor in the atmosphere of Zanjan for the period of October 2006 to September 2008 using a CIMEL CE318-2 sun-photometer. Zanjan is a city in Northwest Iran, located at 36.70° N, 48.51° E, and at an altitude of 1800 m a.m.s.l. (above mean sea level). The spectral aerosol optical depth, Ångström exponent, and columnar water vapor have been calculated using the data recorded by the sun-photometer through the direct measurements on the sun radiance (sun-mode). The average values of aerosol optical depth at 440 nm, columnar water vapor, and the Ångström exponent, α, during the mentioned period are measured as, 0.28 ± 0.14, 0.57 ± 0.37 cm and 0.73 ± 0.30, respectively. The maximum (minimum) value of the aerosol optical depth was recorded in May 2007 (November 2007), and that of columnar water vapor, in July 2007 (January 2008). Using the least-squares method, the Ångström exponent was calculated in the spectral interval 440-870 nm along with α1 and α2, the coefficients of a second order polynomial fit to the plotted logarithm of aerosol optical depth versus the logarithm of wavelength. The coefficient α2 shows that most of the aerosols in the Zanjan area have dimensions larger than 1 micron. The calculated values for α2 - α1 indicate that 80 % of the aerosols are in the coarse-mode (>1 μm) and 20 % of them are in the fine-mode (<1 μm). Comparison of α2 - α1 for the atmosphere over Zanjan with other regions indicates dust particles are the most dominant aerosols in the region.

  16. Evolution of chemical-physical parameters and rheological characteristics of Sarda and Maltese goat dry hams

    Directory of Open Access Journals (Sweden)

    Rina Mazzette

    2012-10-01

    Full Text Available In Sardinia, goat farming is a very important resource. Sarda and Maltese breed are reared mainly for milk production and for suckling kids meat, while meat from adult goats is undervalued. The use of adult goat meat to obtain ripened ham will contribute to safeguard the Sardinian goat supply chain. The aim of the present study was to characterize Sarda and Maltese goat dry ham in order to evaluate the quality of autochthonous goat breed meat. Chemical-physical characteristics were determined dur-ing the production stages, while the rheological and colour parameters and the composition of the goat ham were determined at the end of ripening. The pH evolution during processing were similar to other cured meat products, e.g. sheep hams, even though the values were high, especially in the products from Sarda breed. The aw value regularly decreased during processing. Colour parameters (L*, a*, b* in the hams from Maltese goat breed were significantly (P<0.05 higher than in those from Sarda. The Sarda goat ham showed a significantly lower percentage of moisture (42% vs 52%, an higher protein content (44.35% vs 34.19%, while no differences were pointed out in the total fat content. Among the ham rheological properties, hardness parameters showed higher levels (13850.22±7589.92 vs 11073.99±6481.31, respectively in Sarda and Maltese hams in comparison to similar products from pork and sheep, while adhesiveness value was lower. The results show that the quality parameters of goat ripened hams are affected mainly by the charac-teristics of the goat meat, in relation on the breed and the breeding system, and, less, by the traditional technology.

  17. [Development of a chemical ionization time-of-flight mass spectrometer for continuous measurements of atmospheric hydroxyl radical].

    Science.gov (United States)

    Dou, Jian; Hua, Lei; Hou, Ke-Yong; Jiang, Lei; Xie, Yuan-Yuan; Zhao, Wu-Duo; Chen, Ping; Wang, Wei-Guo; Di, Tian; Li, Hai-Yang

    2014-05-01

    A home-made chemical ionization time-of-flight mass spectrometer (TOFMS) has been developed for continuous measurements of atmospheric hydroxyl radical. Based on the atmospheric pressure chemical ionization technique, an ionization source with orthogonal dual tube structure was adopted in the instrument, which minimized the interference between the reagent gas ionization and the titration reaction. A 63Ni radioactive source was fixed inside one of the orthogonal tubes to generate reactant ion of NO(-)(3) from HNO3 vapor. Hydroxyl radical was first titrated by excess SO2 to form equivalent concentrations of H2SO4 in the other orthogonal tube, and then reacted with NO(-)(3) ions in the chemical ionization chamber, leading to HSO(-)(4) formation. The concentration of atmospheric hydroxyl radical can be directly calculated by measuring the intensities of the HSOj product ions and the NO(-)(3) reactant ions. The analytical capability of the instrument was demonstrated by measuring hydroxyl radical in laboratory air, and the concentration of the hydroxyl radical in the investigated air was calculated to be 1.6 x 106 molecules*cm ', based on 5 seconds integration. The results have shown that the instrument is competent for in situ continuous measurements of atmospheric trace radical.

  18. Parameter Optimization for Enhancement of Ethanol Yield by Atmospheric Pressure DBD-Treated Saccharomyces cerevisiae

    Science.gov (United States)

    Dong, Xiaoyu; Yuan, Yulian; Tang, Qian; Dou, Shaohua; Di, Lanbo; Zhang, Xiuling

    2014-01-01

    In this study, Saccharomyces cerevisiae (S. cerevisiae) was exposed to dielectric barrier discharge plasma (DBD) to improve its ethanol production capacity during fermentation. Response surface methodology (RSM) was used to optimize the discharge-associated parameters of DBD for the purpose of maximizing the ethanol yield achieved by DBD-treated S. cerevisiae. According to single factor experiments, a mathematical model was established using Box-Behnken central composite experiment design, with plasma exposure time, power supply voltage, and exposed-sample volume as impact factors and ethanol yield as the response. This was followed by response surface analysis. Optimal experimental parameters for plasma discharge-induced enhancement in ethanol yield were plasma exposure time of 1 min, power voltage of 26 V, and an exposed sample volume of 9 mL. Under these conditions, the resulting yield of ethanol was 0.48 g/g, representing an increase of 33% over control.

  19. The Arctic seasonal snow pack as a transfer mechanism and a reactor for lower atmosphere chemical compounds (Invited)

    Science.gov (United States)

    Douglas, T. A.

    2013-12-01

    The Polar Regions are snow covered for two thirds of the year (or longer) and in many locations there are few melt events during the winter. As a consequence, the late winter snow pack presents a spatial and temporal archive of the previous winter's precipitation, snow-atmosphere exchange, and within snow pack physical and chemical processes. However, to use the snow pack as a 'sensor' we have to understand the physical and chemical exchange processes between atmospheric compounds and snow and ice surfaces. Of equal importance is knowledge of the reactions that occur in and on snow and ice particle surfaces. Recent research has provided insights on the pathways individual compounds take from the lower atmosphere to snow and on the physical and chemical processes occurring within the snow pack at a variety of scales. Snow on or near sea ice has markedly higher major ion concentrations than snow on the terrestrial snow pack, most notably for chloride and bromide. This difference in chemical composition can be dramatic even in coastal regions where the land is only hundreds of meters away. As a consequence, we have to treat chemical cycling processes in/on snow on sea ice and snow on land differently. Since these halogens, particularly bromine, play critical roles in the spring time photochemical reactions that oxidize ozone and mercury their presence and fate on the sea ice snow pack is of particular interest. A future Arctic is expected to have a thinner, more dynamic sea ice cover that will arrive later and melt earlier. The areal extent of young ice production will likely increase markedly. This would lead to a different snow depositional and chemical regime on sea ice with potential ramifications for chemical exchange with the lower atmosphere. The roles of clear sky precipitation ('diamond dust') and surface hoar deposition in providing a unique lower atmospheric 'reactor' and potential source of water equivalence have been largely overlooked. This despite the

  20. Sensitivity of a Lidar Inversion Algorithm to Parameters Relating Atmospheric Backscatter and Extinction.

    Science.gov (United States)

    1984-04-01

    AD-A141 565 SENSITVIT 0F A LDAR INVERSION ALGORITHM 0OI PARAMETERS RELATINO ATMOSPH..U) NAVAL OCEAN SYSTEMS CENER SANDIEGO CA HNGHUGHESEl AL APR 84...H. Stephens J. A. Ferguson April 1984 Final Report Prepared for Naval Air Systems Command (NAVAIR 330) Approved for public release; distribution...CLASS. (of AlmA. espot) Unclassified is. 0 C&ŕIPICATION/ DOWNGRADING If. DISTRIBUTlION STATEMENT (of this RepelS) Approved for public release

  1. Bath Parameter Dependence of Chemically-Deposited Copper Selenide Thin Film

    Science.gov (United States)

    Al-Mamun; Islam, A. B. M. O.

    In this article, a low cost chemical bath deposition (CBD) technique has been used for the preparation of Cu2-xSe thin films on to glass substrate. Different thin films (0.2-0.6 μm) were prepared by adjusting the bath parameter like concentration of ammonia, deposition time, temperature of the solution, and the ratios of the mixing composition between copper and selenium in the reaction bath. From these studies, it reveals that at low concentration of ammonia or TEA, the terminal thicknesses of the films are less, which gradually increases with the increase of concentrations and then drop down at still higher concentrations. It has been found that complexing the Cu2+ ions with TEA first, and then addition of ammonia yields better results than the reverse process. The film thickness increases with the decrease of value x of Cu2-xSe.

  2. Parameter-free determination of actual temperature at chemical freeze-out in nuclear interactions

    Science.gov (United States)

    Panagiotou, A. D.; Mavromanolakis, G.; Tzoulis, J.

    1995-07-01

    We propose a method to determine the actual temperature at chemical freeze-out in relativistic nucleus-nucleus collisions, using the experimental μq/T and μs/T values, obtained from strange particle ratios. We employ the Hadron Gas formalism, assuming only local thermal equilibration, to relate the quarkchemical potential and temperature. This relation constrains the allowed values of μq/T, μs/T and T, enabling the determination of the actual temperature. Comparison of the inverse slope parameter of the mT-distributions with the actual temperature determines the transverse flow velocity of the fireball matter. Knowledge of these quantities is essential in determining the EoS of nuclear matter and in evaluating interactions with regard to a possible phase transition to QGP.

  3. Estimating stellar atmospheric parameters, absolute magnitudes and elemental abundances from the LAMOST spectra with Kernel-based principal component analysis

    Science.gov (United States)

    Xiang, M.-S.; Liu, X.-W.; Shi, J.-R.; Yuan, H.-B.; Huang, Y.; Luo, A.-L.; Zhang, H.-W.; Zhao, Y.-H.; Zhang, J.-N.; Ren, J.-J.; Chen, B.-Q.; Wang, C.; Li, J.; Huo, Z.-Y.; Zhang, W.; Wang, J.-L.; Zhang, Y.; Hou, Y.-H.; Wang, Y.-F.

    2017-01-01

    Accurate determination of stellar atmospheric parameters and elemental abundances is crucial for Galactic archaeology via large-scale spectroscopic surveys. In this paper, we estimate stellar atmospheric parameters - effective temperature Teff, surface gravity log g and metallicity [Fe/H], absolute magnitudes MV and MKs, α-element to metal (and iron) abundance ratio [α/M] (and [α/Fe]), as well as carbon and nitrogen abundances [C/H] and [N/H] from the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) spectra with a multivariate regression method based on kernel-based principal component analysis, using stars in common with other surveys (Hipparcos, Kepler, Apache Point Observatory Galactic Evolution Experiment) as training data sets. Both internal and external examinations indicate that given a spectral signal-to-noise ratio (SNR) better than 50, our method is capable of delivering stellar parameters with a precision of ˜100 K for Teff, ˜0.1 dex for log g, 0.3-0.4 mag for MV and MKs, 0.1 dex for [Fe/H], [C/H] and [N/H], and better than 0.05 dex for [α/M] ([α/Fe]). The results are satisfactory even for a spectral SNR of 20. The work presents first determinations of [C/H] and [N/H] abundances from a vast data set of LAMOST, and, to our knowledge, the first reported implementation of absolute magnitude estimation directly based on a vast data set of observed spectra. The derived stellar parameters for millions of stars from the LAMOST surveys will be publicly available in the form of value-added catalogues.

  4. Estimating stellar atmospheric parameters, absolute magnitudes and elemental abundances from the LAMOST spectra with Kernel-based Principal Component Analysis

    Science.gov (United States)

    Xiang, M.-S.; Liu, X.-W.; Shi, J.-R.; Yuan, H.-B.; Huang, Y.; Luo, A.-L.; Zhang, H.-W.; Zhao, Y.-H.; Zhang, J.-N.; Ren, J.-J.; Chen, B.-Q.; Wang, C.; Li, J.; Huo, Z.-Y.; Zhang, W.; Wang, J.-L.; Zhang, Y.; Hou, Y.-H.; Wang, Y.-F.

    2016-10-01

    Accurate determination of stellar atmospheric parameters and elemental abundances is crucial for Galactic archeology via large-scale spectroscopic surveys. In this paper, we estimate stellar atmospheric parameters - effective temperature Teff, surface gravity log g and metallicity [Fe/H], absolute magnitudes MV and MKs, α-element to metal (and iron) abundance ratio [α/M] (and [α/Fe]), as well as carbon and nitrogen abundances [C/H] and [N/H] from the LAMOST spectra with a multivariate regression method based on kernel-based principal component analysis, using stars in common with other surveys (Hipparcos, Kepler, APOGEE) as training data sets. Both internal and external examinations indicate that given a spectral signal-to-noise ratio (SNR) better than 50, our method is capable of delivering stellar parameters with a precision of ˜100 K for Teff, ˜0.1 dex for log g, 0.3 - 0.4 mag for MV and MKs, 0.1 dex for [Fe/H], [C/H] and [N/H], and better than 0.05 dex for [α/M] ([α/Fe]). The results are satisfactory even for a spectral SNR of 20. The work presents first determinations of [C/H] and [N/H] abundances from a vast data set of LAMOST, and, to our knowledge, the first reported implementation of absolute magnitude estimation directly based on the observed spectra. The derived stellar parameters for millions of stars from the LAMOST surveys will be publicly available in the form of value-added catalogues.

  5. Limb darkening and exoplanets: testing stellar model atmospheres and indentifying biases in transit parameters

    CERN Document Server

    Espinoza, Néstor

    2015-01-01

    Limb-darkening is fundamental in determining transit lightcurve shapes, and is typically modeled by a variety of laws that parametrize the intensity profile of the star that is being transited. Confronted with a transit lightcurve, some authors fix the parameters of these laws, the so-called limb-darkening coefficients (LDCs), while others prefer to let them float in the lightcurve fitting procedure. Which of these is the best strategy, however, is still unclear, as well as how and by how much each of these can bias the retrieved transit parameters. In this work we attempt to clarify those points by first re-calculating these LDCs, comparing them to measured values from Kepler transit lightcurves using an algorithm that takes into account uncertainties in both the geometry of the transit and the parameters of the stellar host. We show there are significant departures from predicted model values, suggesting that our understanding of limb-darkening still needs to improve. Then, we show through simulations that ...

  6. Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data

    CERN Document Server

    Aartsen, M G; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bos, F; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H -P; Brown, A M; Brunner, J; Buzinsky, N; Casey, J; Casier, M; Cheung, E; Chirkin, D; Christov, A; Christy, B; Clark, K; Classen, L; Clevermann, F; Coenders, S; Cowen, D F; Silva, A H Cruz; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; De Ridder, S; Desiati, P; de Vries, K D; de With, M; DeYoung, T; Díaz-Vélez, J C; Dunkman, M; Eagan, R; Eberhardt, B; Eichmann, B; Eisch, J; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Felde, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Frantzen, K; Fuchs, T; Gaisser, T K; Gaior, R; Gallagher, J; Gerhardt, L; Gier, D; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grant, D; Gretskov, P; Groh, J C; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Hebecker, D; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hellwig, D; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huang, F; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jero, K; Jlelati, O; Jurkovic, M; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kauer, M; Keivani, A; Kelley, J L; Kheirandish, A; Kiryluk, J; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Koob, A; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Kriesten, A; Krings, K; Kroll, G; Kroll, M; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larsen, D T; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Lünemann, J; Madsen, J; Maggi, G; Maruyama, R; Mase, K; Matis, H S; Maunu, R; McNally, F; Meagher, K; Medici, M; Meli, A; Meures, T; Miarecki, S; Middell, E; Middlemas, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Paul, L; Penek, Ö; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Pütz, J; Quinnan, M; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Rees, I; Reimann, R; Relich, M; Resconi, E; Rhode, W; Richman, M; Riedel, B; Robertson, S; Rodrigues, J P; Rongen, M; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Sander, H -G; Sandroos, J; Santander, M; Sarkar, S; Schatto, K; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Shanidze, R; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stanisha, N A; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Strotjohann, N L; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Terliuk, A; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Tosi, D; Tselengidou, M; Unger, E; Usner, M; Vallecorsa, S; van Eijndhoven, N; Vandenbroucke, J; van Santen, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallraff, M; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whelan, B J; Whitehorn, N; Wichary, C; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zoll, M

    2014-01-01

    We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10\\,GeV and 100\\,GeV, where a strong disappearance signal is expected. The detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscillation parameters from the data, with the best fit given by $\\Delta m^2_{32}=2.72^{+0.19}_{-0.20}\\times 10^{-3}\\,\\mathrm{eV}^2$ and $\\sin^2\\theta_{23} = 0.53^{+0.09}_{-0.12}$ (normal mass hierarchy assumed). The results are compatible and comparable in precision to those of dedicated oscillation experiments.

  7. Physico-chemical parameters and Ichthyofauna diversity of Arasalar estuary in southeast coast of India

    Science.gov (United States)

    Raju, C.; Sridharan, G.; Mariappan, P.; Chelladurai, G.

    2017-03-01

    The physico-chemical changes may have the tendency to accumulate in the various organs of estuarine organisms, especially fish which may in turn enter into the human metabolism through consumption causing serious hazards. Hence, the present study was carried out to dete rmine the physico-chemical characteristics of water and Ichthyofauna in Arasalar estuary in southeast coast of India for the period of 1 year during September 2012-August 2013. The environmental parameters such as, temperature, pH, salinity, DO, silicate, nitrate and phosphate were observed from Department of Zoology, Rajah Serfoji Goverment College, Thanjavur, Tamil Nadu, India. During the period of study, air temperature varied from 28.8 to 35 °C. The surface water temperature also varied from 25 to 31.5 °C. The monthly mean values of hydrogen ion concentration of water varied from 7.1 to 8.2. The salinity of water varied from 5.5 ‰ to 34. Dissolved oxygen in Arasalar estuary was varied from 3.5 to 7.2 mg/l. The total phosphorus varied from 0.29 to 2.15 µg/1. The nitrate varied from 0.47 to 3.75 µg/l. The silicate content varied from 28.25 to 98.74 µg/l. Totally 866 fishes were collected belonging to 4 orders and 5 families. Mystus gulio was found to be the dominant species (25.40 %) in the study area.

  8. Physico-chemical parameters and Ichthyofauna diversity of Arasalar estuary in southeast coast of India

    Science.gov (United States)

    Raju, C.; Sridharan, G.; Mariappan, P.; Chelladurai, G.

    2015-01-01

    The physico-chemical changes may have the tendency to accumulate in the various organs of estuarine organisms, especially fish which may in turn enter into the human metabolism through consumption causing serious hazards. Hence, the present study was carried out to dete rmine the physico-chemical characteristics of water and Ichthyofauna in Arasalar estuary in southeast coast of India for the period of 1 year during September 2012-August 2013. The environmental parameters such as, temperature, pH, salinity, DO, silicate, nitrate and phosphate were observed from Department of Zoology, Rajah Serfoji Goverment College, Thanjavur, Tamil Nadu, India. During the period of study, air temperature varied from 28.8 to 35 °C. The surface water temperature also varied from 25 to 31.5 °C. The monthly mean values of hydrogen ion concentration of water varied from 7.1 to 8.2. The salinity of water varied from 5.5 ‰ to 34. Dissolved oxygen in Arasalar estuary was varied from 3.5 to 7.2 mg/l. The total phosphorus varied from 0.29 to 2.15 µg/1. The nitrate varied from 0.47 to 3.75 µg/l. The silicate content varied from 28.25 to 98.74 µg/l. Totally 866 fishes were collected belonging to 4 orders and 5 families. Mystus gulio was found to be the dominant species (25.40 %) in the study area.

  9. Orbital parameters, chemical composition, and magnetic field of the Ap binary HD 98088

    CERN Document Server

    Folsom, C P; Wade, G A; Kochukhov, O; Alecian, E; Shulyak, D

    2013-01-01

    HD 98088 is a synchronised, double-lined spectroscopic binary system with a magnetic Ap primary component and an Am secondary component. We study this rare system using high-resolution MuSiCoS spectropolarimetric data, to gain insight into the effect of binarity on the origin of stellar magnetism and the formation of chemical peculiarities in A-type stars. Using a new collection of 29 high-resolution Stokes VQU spectra we re-derive the orbital and stellar physical parameters and conduct the first disentangling of spectroscopic observations of the system to conduct spectral analysis of the individual stellar components. From this analysis we determine the projected rotational velocities of the stars and conduct a detailed chemical abundance analysis of each component using both the SYNTH3 and ZEEMAN spectrum synthesis codes. The surface abundances of the primary component are typical of a cool Ap star, while those of the secondary component are typical of an Am star. We present the first magnetic analysis of b...

  10. Relationships between organohalogen contaminants and blood plasma clinical–chemical parameters in chicks of three raptor species from Northern Norway

    DEFF Research Database (Denmark)

    Sonne, Christian; Bustnes, Jan Ove; Herzke, Dorte

    2010-01-01

    Organohalogen contaminants (OHCs) may affect various physiological parameters in birds including blood chemistry. We therefore examined blood plasma clinical-chemical parameters and OHCs in golden eagle, white-tailed eagle and goshawk chicks from Northern Norway. Correlation analyses on pooled da...

  11. Effects of vacuum and modified atmosphere on textural parameters and structural proteins of cultured meagre (Argyrosomus regius) fillets.

    Science.gov (United States)

    Sáez, María I; Martínez, Tomás F; Cárdenas, Salvador; Suárez, María D

    2015-09-01

    The influence of two preservation strategies (vacuum package and modified atmosphere package) on the post-mortem changes of textural parameters, pH, water holding capacity, sarcoplasmic and myofibrillar proteins, and collagen content of meagre (Argyrosomus regius) fillets was studied. Fillets were stored in a cold room in aerobic (control, C), vacuum (V) and modified atmosphere (MA) package. Samples were withdrawn at six sampling points throughout 15-day storage, and post-mortem changes were assessed. The textural parameters were significantly enhanced in V and MA compared to C. Both V and MA treatments reduced the intensity of a group of myofibrillar protein fractions (140-195 kDa) and increased insoluble collagen compared to C. Consequently, the post-mortem flesh softening in C was attributed to increased proteolysis in both intracellular and extracellular structural proteins. The preservation of the textural and biochemical characteristics of meagre fillets subjected to V and MA treatments makes these two treatments highly recommendable for the commercialization of meagre fillets. © The Author(s) 2014.

  12. The Social Network of Tracer Variations and O(100) Uncertain Photochemical Parameters in the Community Atmosphere Model

    Science.gov (United States)

    Lucas, D. D.; Labute, M.; Chowdhary, K.; Debusschere, B.; Cameron-Smith, P. J.

    2014-12-01

    Simulating the atmospheric cycles of ozone, methane, and other radiatively important trace gases in global climate models is computationally demanding and requires the use of 100's of photochemical parameters with uncertain values. Quantitative analysis of the effects of these uncertainties on tracer distributions, radiative forcing, and other model responses is hindered by the "curse of dimensionality." We describe efforts to overcome this curse using ensemble simulations and advanced statistical methods. Uncertainties from 95 photochemical parameters in the trop-MOZART scheme were sampled using a Monte Carlo method and propagated through 10,000 simulations of the single column version of the Community Atmosphere Model (CAM). The variance of the ensemble was represented as a network with nodes and edges, and the topology and connections in the network were analyzed using lasso regression, Bayesian compressive sensing, and centrality measures from the field of social network theory. Despite the limited sample size for this high dimensional problem, our methods determined the key sources of variation and co-variation in the ensemble and identified important clusters in the network topology. Our results can be used to better understand the flow of photochemical uncertainty in simulations using CAM and other climate models. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by the DOE Office of Science through the Scientific Discovery Through Advanced Computing (SciDAC).

  13. Ammonia in positively charged pre-nucleation clusters: a quantum-chemical study and atmospheric implications

    Directory of Open Access Journals (Sweden)

    A. B. Nadykto

    2009-06-01

    Full Text Available The quantum-chemical treatment of pre-nucleation clusters consisting of atmospheric nucleation precursors is critically important for the understanding of the molecular nature of atmospheric nucleation. In the present study, the influence of ammonia on the thermochemical stability of positively charged pre-nucleation clusters has been studied using the Density Functional Theory (DFT. The formation of binary (NH4+(H2On and ternary (NH4+(H2SO4(H2On ionic clusters and the conversion of (H3O+(H2On−1 into (NH4+(H2On and (H3O+ (H2SO4(H2On−1 into (NH4+(H2SO4(H2On have been investigated. The thermochemical analysis carried out in the present study shows both (H3O+(H2On−1→(NH4+ (H2On and (H2SO4(H3O+(H2On−1→(NH4+(H2SO4 (H2On transformations to be favorable thermodynamically and gives us a clear indication of the important role of ammonia in the conversion of positively charged clusters containing hydronium (H3O+ into those containing protonated ammonia. Under typical continental boundary layer condition, a large fraction of small positive ions may contain ammonia, but most of neutral and negative hydrated sulfuric acid monomers do not contain ammonia. In term of absolute concentrations, around 1000 cm−3 out of 107 cm−3 of sulfuric acid momoners contain ammonia. (NH4

  14. Interferometric vs Spectral IASI Radiances: Effective Data-Reduction Approaches for the Satellite Sounding of Atmospheric Thermodynamical Parameters

    Directory of Open Access Journals (Sweden)

    Giuseppe Grieco

    2010-09-01

    Full Text Available Abstract: Two data-reduction approaches for the Infrared Atmospheric Sounder Interferometer satellite instrument are discussed and compared. The approaches are intended for the purpose of devising and implementing fast near real time retrievals of atmospheric thermodynamical parameters. One approach is based on the usual selection of sparse channels or portions of the spectrum. This approach may preserve the spectral resolution, but at the expense of the spectral coverage. The second approach considers a suitable truncation of the interferogram (the Fourier transform of the spectrum at points below the nominal maximum optical path difference. This second approach is consistent with the Shannon-Whittaker sampling theorem, preserves the full spectral coverage, but at the expense of the spectral resolution. While the first data-reduction acts within the spectraldomain, the second can be performed within the interferogram domain and without any specific need to go back to the spectral domain for the purpose of retrieval. To assess the impact of these two different data-reduction strategies on retrieval of atmospheric parameters, we have used a statistical retrieval algorithm for skin temperature, temperature, water vapour and ozone profiles. The use of this retrieval algorithm is mostly intended for illustrative purposes and the user could choose a different inverse strategy. In fact, the interferogram-based data-reduction strategy is generic and independent of any inverse algorithm. It will be also shown that this strategy yields subset of interferometric radiances, which are less sensitive to potential interfering effects such as those possibly introduced by the day-night cycle (e.g., the solar component, and spectroscopic effect induced by sun energy and unknown trace gases variability.

  15. Using of standard marine radar for determination of a water surface and an atmosphere near-surface layer parameters

    Science.gov (United States)

    Bogatov, Nikolay A.; Bakhanov, Victor V.; Ermoshkin, Aleksei V.; Kazakov, Vasily I.; Kemarskaya, Olga N.; Titov, Victor I.; Troitskaya, Yulia I.

    2014-10-01

    At present time radar methods of the seas and oceans diagnostics are actively developing. Using of the radar stations based on satellites and planes allows to receive information on a sea surface and a atmosphere near-surface layer with coverage of big water surface areas independently of day time. The developed methods of satellite radio images processing can be applied to marine radar stations. In Institute of Applied Physics RAS works on sea surface diagnostics systems development on the basis of standard marine radar are actively conducted. Despite smaller coverage of the territory in comparison with satellite data, marine radar have possibility to record spatially temporary radar images and to receive information on a surrounding situation quickly. This work deals with results of the researches which were conducted within the international expedition in the Atlantic Ocean in the autumn of 2012 on a route Rotterdam (Netherlands) - Ushuaya (Argentina) - Antarctica — Ushuaya. During this expedition a complex measurements of a sea surface, a atmosphere near-surface layer parameters and subsurface currents in the wide range of hydroweather conditions, including the storm were carried out. The system developed in IAP RAS on the basis of a marine radar ICOM MR-1200RII and the ADC (Analog Digital Converter) block for data recording on the personal computer was used. Display of a non-uniform near-surface current on sea surface radar images in storm conditions is shown. By means of the high-speed anemometer and meteorological station the measurements of the atmosphere parameters were carried out. Comparison of the anemometer data with calculated from radar images is carried out. Dependence of radar cross section from wind speed in the wide range of wind speeds, including storm conditions is investigated. Possibility of marine radar using for surface waves intensity and ice situation estimates also as icebergs detection is shown.

  16. Capillary liquid chromatography-microchip atmospheric pressure chemical ionization-mass spectrometry.

    Science.gov (United States)

    Ostman, Pekka; Jäntti, Sirkku; Grigoras, Kestas; Saarela, Ville; Ketola, Raimo A; Franssila, Sami; Kotiaho, Tapio; Kostiainen, Risto

    2006-07-01

    A miniaturized nebulizer chip for capillary liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (capillary LC-microchip APCI-MS) is presented. The APCI chip consists of two wafers, a silicon wafer and a Pyrex glass wafer. The silicon wafer has a DRIE etched through-wafer nebulizer gas inlet, an edge capillary insertion channel, a stopper, a vaporizer channel and a nozzle. The platinum heater electrode and pads for electrical connection were patterned on to the Pyrex glass wafer. The two wafers were joined by anodic bonding, creating a microchip version of an APCI-source. The sample inlet capillary from an LC column is directly connected to the vaporizer channel of the APCI chip. The etched nozzle in the microchip forms a narrow sample plume, which is ionized by an external corona needle, and the formed ions are analyzed by a mass spectrometer. The nebulizer chip enables for the first time the use of low flow rate separation techniques with APCI-MS. The performance of capillary LC-microchip APCI-MS was tested with selected neurosteroids. The capillary LC-microchip APCI-MS provides quantitative repeatability and good linearity. The limits of detection (LOD) with a signal-to-noise ratio (S/N) of 3 in MS/MS mode for the selected neurosteroids were 20-1000 fmol (10-500 nmol l(-1)). LODs (S/N = 3) with commercial macro APCI with the same compounds using the same MS were about 10 times higher. Fast heat transfer allows the use of the optimized temperature for each compound during an LC run. The microchip APCI-source provides a convenient and easy method to combine capillary LC to any API-MS equipped with an APCI source. The advantages and potentials of the microchip APCI also make it a very attractive interface in microfluidic APCI-MS.

  17. Chemical characterization of atmospheric particles and source apportionment in the vicinity of a steelmaking industry

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, S.M., E-mail: smarta@ctn.ist.utl.pt [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 139.7 km, 2695-066 Bobadela LRS (Portugal); Lage, J. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 139.7 km, 2695-066 Bobadela LRS (Portugal); Fernández, B. [Global R& D, ArcelorMittal, Avilés (Spain); Garcia, S. [Instituto de Soldadura e Qualidade, Av. Prof. Dr. Cavaco Silva, 33, 2740-120 Porto Salvo (Portugal); Reis, M.A.; Chaves, P.C. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 139.7 km, 2695-066 Bobadela LRS (Portugal)

    2015-07-15

    The objective of this work was to provide a chemical characterization of atmospheric particles collected in the vicinity of a steelmaking industry and to identify the sources that affect PM{sub 10} levels. A total of 94 PM samples were collected in two sampling campaigns that occurred in February and June/July of 2011. PM{sub 2.5} and PM{sub 2.5–10} were analyzed for a total of 22 elements by Instrumental Neutron Activation Analysis and Particle Induced X-ray Emission. The concentrations of water soluble ions in PM{sub 10} were measured by Ion Chromatography and Indophenol-Blue Spectrophotometry. Positive Matrix Factorization receptor model was used to identify sources of particulate matter and to determine their mass contribution to PM{sub 10}. Seven main groups of sources were identified: marine aerosol identified by Na and Cl (22%), steelmaking and sinter plant represented by As, Cr, Cu, Fe, Ni, Mn, Pb, Sb and Zn (11%), sinter plant stack identified by NH{sub 4}{sup +}, K and Pb (12%), an unidentified Br source (1.8%), secondary aerosol from coke making and blast furnace (19%), fugitive emissions from the handling of raw material, sinter plant and vehicles dust resuspension identified by Al, Ca, La, Si, Ti and V (14%) and sinter plant and blast furnace associated essentially with Fe and Mn (21%). - Highlights: • Emissions from steelworks are very complex. • The larger steelworks contribution to PM{sub 10} was from blast furnace and sinter plant. • Sinter plant stack emissions contributed for 12% of the PM{sub 10} mass. • Secondary aerosol from coke making and blast furnace contributed for 19% of the PM{sub 10}. • Fugitive dust emissions highly contribute to PM{sub 10} mass.

  18. A selection of hot subluminous stars in the GALEX survey II. Subdwarf atmospheric parameters

    CERN Document Server

    Németh, Péter; Vennes, Stéphane

    2012-01-01

    We present an update of our low-resolution spectroscopic follow-up and model atmosphere analysis of hot subdwarf stars from the Galaxy Evolution Explorer (GALEX) survey. Targets were selected on the basis of colour indices calculated from the GALEX GR6 N_UV, Guide Star Catalogue (GSC2.3.2) V and the Two Micron All Sky Survey (2MASS) J and H photometry. High signal-to-noise ratio spectra were obtained at the European Southern Observatory (ESO) and the Kitt Peak National Observatory (KPNO) over the course of three years. Detailed H, He and CNO abundance analysis helped us improve our T_eff, log g and He abundance determination and to constrain CNO abundances. We processed 191 observations of 180 targets and found 124 sdB and 42 sdO stars in this sample while some blue horizontal branch stars were also found in this programme. With quantitative binary decomposition of 29 composite spectra we investigated the incidence of A, F and G type companions. The incidence of late G and K type companions and their effects ...

  19. Determining the Effects of Environment and Atmospheric Parameters on PV Field Performance

    Energy Technology Data Exchange (ETDEWEB)

    Micheli, Leonardo; Muller, Matthew; Kurtz, Sarah

    2016-11-21

    The performance losses due to soiling occurring on any photovoltaic (PV) device are caused by a complex mechanism that involves numerous factors and their interactions. For this reason, the present work analyzes the outputs of reference PV cells installed in various locations, with the aim of contributing to the identification of the most important factors influencing the accumulation of dust on a PV surface. Parameters such as the air-quality indexes, the recurrence and the amount of rainfall and the climate zone are investigated and related to the soiling losses of the PV device.

  20. Analytical estimation of particle shape formation parameters in a plasma-chemical reactor

    Directory of Open Access Journals (Sweden)

    Zhukov Ilya A.

    2017-01-01

    Full Text Available Analytical estimation of particle shape formation parameters in a plasma-chemical reactor implementing the process of thermochemical decomposition of liquid droplet agents (precursors in the flow of a high-temperature gaseous heat-transfer medium was obtained. The basic factor which determines the process is the increase of concentration of a dissolved salt precursor component at the surface of a liquid particle due to solvent evaporation. According to the physical concept of the method of integral balance the diffusion process of concentration change is divided into two stages: the first stage is when the size of gradient layer does not reach the center of a spherical droplet and the second stage when the concentration at the center of a liquid droplet begins to change. The solutions for concentration fields were found for each stage using the method of integral balance taking into account the formation of salt precipitate when the concentration at the surface of the droplet reaches certain equilibrium value. The results of estimation of the influence of various reactor operation parameters and characteristics of initial solution (precursor on the morphology of particles formed – mass fraction and localization of salt precipitate for various levels of evaporation.

  1. Reaction parameter study for the chemical synthesis of adsorbent silica gel

    Directory of Open Access Journals (Sweden)

    María Carolina Sáenz

    2010-07-01

    Full Text Available This article presents an appropriate set of reaction parameters (reaction temperature, sulphuric acid and sodium silicate reagent concentration for obtaining adsorbent silica gel (ASG using Colombian-produced raw materials. The core of ASG synthesis lies in sulphuric acid’s neutralisation reaction with sodium silicate. Their effect on final ASG moisture adsorption capacity was measured after changing such synthesis’ above–mentioned reaction parameters. Within the range of conditions studied, it was found that the highest adsorption capacity occurred by combining both low sodium silicate concentration with high temperatures or high sulphuric acid concentration and temperature. Synthesised ASG was also compared to a commercial product (Gel de sílice granulare con indicatore. Montedison group. Batch number 1684G100. Code number 453301 using adsorption capacity plots, BET areas, X–ray di-ffraction, mass and infrared spectrometry and mechanical strength measurements. Synthesised ASG presented larger specific surface areas but weaker mechanical strength than the commercial one. Likewise, all evaluated samples exhibited a low degree of molecular arrangement and conventional ASG chemical structure.

  2. Sensitivity of precipitation to parameter values in the community atmosphere model version 5

    Energy Technology Data Exchange (ETDEWEB)

    Johannesson, Gardar; Lucas, Donald; Qian, Yun; Swiler, Laura Painton; Wildey, Timothy Michael

    2014-03-01

    One objective of the Climate Science for a Sustainable Energy Future (CSSEF) program is to develop the capability to thoroughly test and understand the uncertainties in the overall climate model and its components as they are being developed. The focus on uncertainties involves sensitivity analysis: the capability to determine which input parameters have a major influence on the output responses of interest. This report presents some initial sensitivity analysis results performed by Lawrence Livermore National Laboratory (LNNL), Sandia National Laboratories (SNL), and Pacific Northwest National Laboratory (PNNL). In the 2011-2012 timeframe, these laboratories worked in collaboration to perform sensitivity analyses of a set of CAM5, 2° runs, where the response metrics of interest were precipitation metrics. The three labs performed their sensitivity analysis (SA) studies separately and then compared results. Overall, the results were quite consistent with each other although the methods used were different. This exercise provided a robustness check of the global sensitivity analysis metrics and identified some strongly influential parameters.

  3. Using an Atmospheric Pressure Chemical Vapor Deposition Process for the Development of V2O5 as an Electrochromic Material

    Directory of Open Access Journals (Sweden)

    Dimitra Vernardou

    2017-02-01

    Full Text Available Vanadium pentoxide coatings were grown by atmospheric pressure chemical vapor deposition varying the gas precursor ratio (vanadium (IV chloride:water and the substrate temperature. All samples were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, cyclic voltammetry, and transmittance measurements. The water flow rate was found to affect the crystallinity and the morphological characteristics of vanadium pentoxide. Dense stacks of long grains of crystalline oxide are formed at the highest amount of water utilized for a substrate temperature of 450 °C. Accordingly, it was indicated that for higher temperatures and a constant gas precursor ratio of 1:7, the surface morphology becomes flattened, and columnar grains of uniform size and shape are indicated, keeping the high crystalline quality of the material. Hence, it was possible to define a frame of operating parameters wherein single-phase vanadium pentoxide may be reliably expected, including a gas precursor ratio of 1:7 with a substrate temperature of >450 °C. The as-grown vanadium pentoxide at 550 °C for a gas precursor ratio of 1:7 presented the best electrochemical performance, including a diffusion coefficient of 9.19 × 10−11 cm2·s−1, a charge density of 3.1 mC·cm−2, and a coloration efficiency of 336 cm2·C−1. One may then say that this route can be important for the growth of large-scale electrodes with good performance for electrochromic devices.

  4. Effect of meteorological parameters on Poaceae pollen in the atmosphere of Tetouan (NW Morocco)

    Science.gov (United States)

    Aboulaich, Nadia; Achmakh, Lamiaa; Bouziane, Hassan; Trigo, M. Mar; Recio, Marta; Kadiri, Mohamed; Cabezudo, Baltasar; Riadi, Hassane; Kazzaz, Mohamed

    2013-03-01

    Poaceae pollen is one of the most prevalent aeroallergens causing allergenic reactions. The aim of this study was to characterise the grass pollen season in Tetouan during the years 2008-2010, to analyse the effect of some meteorological parameters on the incidence of the airborne Poaceae pollen, and to establish forecasting variables for daily pollen concentrations. Aerobiological sampling was undertaken over three seasons using the volumetric method. The pollen season started in April and showed the highest pollen index in May and June, when the maximum temperature ranged from 23 to 27 °C, respectively. The annual pollen score recorded varied from year to year between 2,588 and 5,404. The main pollen season lasted 114-173 days, with peak days occurring mainly in May; the highest concentration reached 308 pollen grains/m3. Air temperature was the most important meteorological parameter and correlated positively to daily pollen concentration increase. An increase in relative humidity and precipitation was usually related to a decrease in airborne pollen content. External validation of the models performed using data from 2011 showed that Poaceae pollen concentration can be highly predicted (64.2-78.6 %) from the maximum temperature, its mean concentration for the same day in other years, and its concentration recorded on the previous day. Sensitive patients suffering allergy to Poaceae pollen are at moderate to highest risk of manifesting allergic symptoms to grass pollen over 33-42 days. The results obtained provide new information on the quantitative contribution of the Poaceae pollen to the airborne pollen of Tetouan and on its temporal distribution. Airborne pollen can be surveyed and forecast in order to warn the atopic population.

  5. Untangling the Chemical Evolution of Titan's Atmosphere and Surface -- From Homogeneous to Heterogeneous Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Ralf I.; Maksyutenko, Pavlo; Ennis, Courtney; Zhang, Fangtong; Gu, Xibin; Krishtal, Sergey P.; Mebel, Alexander M.; Kostko, Oleg; Ahmed, Musahid

    2010-03-16

    The arrival of the Cassini-Huygens probe at Saturn's moon Titan - the only Solar System body besides Earth and Venus with a solid surface and a thick atmosphere with a pressure of 1.4 atm at surface level - in 2004 opened up a new chapter in the history of Solar System exploration. The mission revealed Titan as a world with striking Earth-like landscapes involving hydrocarbon lakes and seas as well as sand dunes and lava-like features interspersed with craters and icy mountains of hitherto unknown chemical composition. The discovery of a dynamic atmosphere and active weather system illustrates further the similarities between Titan and Earth. The aerosol-based haze layers, which give Titan its orange-brownish color, are not only Titan's most prominent optically visible features, but also play a crucial role in determining Titan's thermal structure and chemistry. These smog-like haze layers are thought to be very similar to those that were present in Earth's atmosphere before life developed more than 3.8 billion years ago, absorbing the destructive ultraviolet radiation from the Sun, thus acting as 'prebiotic ozone' to preserve astrobiologically important molecules on Titan. Compared to Earth, Titan's low surface temperature of 94 K and the absence of liquid water preclude the evolution of biological chemistry as we know it. Exactly because of these low temperatures, Titan provides us with a unique prebiotic 'atmospheric laboratory' yielding vital clues - at the frozen stage - on the likely chemical composition of the atmosphere of the primitive Earth. However, the underlying chemical processes, which initiate the haze formation from simple molecules, have been not understood well to date.

  6. The puzzling chemical composition of GJ 436B'S atmosphere: Influence of tidal heating on the chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Agúndez, Marcelino; Selsis, Franck [Univ. Bordeaux, LAB, UMR 5804, F-33270 Floirac (France); Venot, Olivia [Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Iro, Nicolas, E-mail: Marcelino.Agundez@obs.u-bordeaux1.fr [Theoretical Meteorology group, Klimacampus, University of Hamburg, Grindelberg 5, D-20144 Hamburg (Germany)

    2014-02-01

    The dissipation of the tidal energy deposited on eccentric planets may induce a heating of the planet that affects its atmospheric thermal structure. Here we study the influence of tidal heating on the atmospheric composition of the eccentric (e = 0.16) 'hot Neptune' GJ 436b, for which inconclusive chemical abundances are retrieved from multiwavelength photometric observations carried out during primary transit and secondary eclipse. We build up a one-dimensional model of GJ 436b's atmosphere in the vertical direction and compute the pressure-temperature and molecular abundances profiles for various plausible internal temperatures of the planet (up to 560 K) and metallicities (from solar to 100 times solar), using a radiative-convective model and a chemical model which includes thermochemical kinetics, vertical mixing, and photochemistry. We find that the CO/CH{sub 4} abundance ratio increases with metallicity and tidal heating, and ranges from 1/20 to 1000 within the ranges of metallicity and internal temperature explored. Water vapor locks most of the oxygen and reaches a very high abundance, whatever the metallicity and internal temperature of the planet. The CO{sub 2}/H{sub 2}O abundance ratio increases dramatically with metallicity, and takes values between 10{sup –5}-10{sup –4} with solar elemental abundances and ∼0.1 for a metallicity 100 times solar. None of the atmospheric models based on solid physical and chemical grounds provide a fully satisfactory agreement with available observational data, although the comparison of calculated spectra and observations seems to point to models with a high metallicity and efficient tidal heating, in which high CO/CH{sub 4} abundance ratios and warm temperatures in the dayside atmosphere are favored.

  7. Direct probe atmospheric pressure photoionization/atmospheric pressure chemical ionization high-resolution mass spectrometry for fast screening of flame retardants and plasticizers in products and waste.

    Science.gov (United States)

    Ballesteros-Gómez, A; Brandsma, S H; de Boer, J; Leonards, P E G

    2014-04-01

    In this study, we develop fast screening methods for flame retardants and plasticizers in products and waste based on direct probe (DP) atmospheric pressure photoionization (APPI) and atmospheric pressure chemical ionization (APCI) coupled to a high-resolution (HR) time-of-flight mass spectrometer. DP-APPI is reported for the first time in this study, and DP-APCI that has been scarcely exploited is optimized for comparison. DP-APPI was more selective than DP-APCI and also more sensitive for the most hydrophobic compounds. No sample treatment was necessary, and only a minimal amount of sample (few milligrams) was used for analysis that was performed within a few minutes. Both methods were applied to the analysis of plastic products, electronic waste, and car interiors. Polybrominated diphenylethers, new brominated flame retardants, and organophosphorus flame retardants were present in most of the samples. The combination of DP with HR mass spectra and data processing based on mass accuracy and isotopic patterns allowed the unambiguous identification of chemicals at low levels of about 0.025 % (w/w). Under untargeted screening, resorcinol bis(biphenylphosphate) and bisphenol A bis(bisphenylphosphate) were identified in many of the consumer products of which literature data are still very limited.

  8. Determination of atmospheric parameters to estimate global radiation in areas of complex topography: Generation of global irradiation map

    Energy Technology Data Exchange (ETDEWEB)

    Batlles, F.J.; Bosch, J.L. [Dpto. Fisica Aplicada, Universidad de Almeria, 04120 Almeria (Spain); Tovar-Pescador, J. [Dpto. Fisica, Universidad de Jaen, 23071 Jaen (Spain); Martinez-Durban, M. [Dpto. Ingenieria Lenguajes y Computacion, Universidad de Almeria, 04120 Almeria (Spain); Ortega, R. [Dpto. Edafologia y Quimica Agricola, Universidad de Almeria, 04120 Almeria (Spain); Miralles, I. [Dpto. Edafologia y Quimica Agricola, Universidad de Granada, 28071 Granada (Spain)

    2008-02-15

    Incoming shortwave solar radiation is an important parameter in environmental applications. A detailed spatial and temporal analysis of global solar radiation on the earth surface is needed in many applications, ranging from solar energy uses to the study of agricultural, forest and biological processes. At local scales, the topography is the most important factor in the distribution of solar radiation on the surface. The variability of the elevation, the surface orientation and the obstructions due to elevations are a source of great local differences in insolation and, consequently, in other variables as ground temperature. For this reason, several models based on GIS techniques have been recently developed, integrating topography to obtain the solar radiation on the surface. In this work, global radiation is analyzed with the Solar Analyst, a model implemented on ArcView, that computes the topographic parameters: altitude, latitude, slope and orientation (azimuth) and shadow effects. Solar Analyst uses as input parameters the diffuse fraction and the transmittance. These parameters are not usually available in radiometric networks in mountainous areas. In this work, a method to obtain both parameters from global radiation is proposed. Global radiation data obtained in two networks of radiometric stations is used: one located in Sierra Magina Natural Park (Spain) with 11 stations and another one located on the surroundings of Sierra Nevada Natural Park (Spain) with 14 stations. Daily solar irradiation is calculated from a digital terrain model (DTM), the daily diffuse fraction, K, and daily atmospheric transmittivity, {tau}. Results provided by the model have been compared with measured values. An overestimation for high elevations is observed, whereas low altitudes present underestimation. The best performance was also reported during summer months, and the worst results were obtained during winter. Finally, a yearly global solar irradiation map has been

  9. Determination of polycyclic aromatic hydrocarbons in fractions in asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization.

    Science.gov (United States)

    Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias

    2015-07-01

    An analytical method using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization for the determination of polycyclic aromatic hydrocarbons in asphalt fractions has been developed. The 14 compounds determined, characterized by having two or more condensed aromatic rings, are expected to be present in asphalt and are considered carcinogenic and mutagenic. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all of the compounds. The limits of detection ranged from 0.5 to 346.5 μg/L and the limits of quantification ranged from 1.7 to 1550 μg/L. The method was validated against a diesel particulate extract standard reference material (NIST SRM 1975), and the obtained concentrations agreed with the certified values. The method was applied to asphalt samples after its fractionation according to ASTM D4124 and the method of Green. The concentrations of the seven polycyclic aromatic hydrocarbons quantified in the sample ranged from 0.86 mg/kg for benzo[ghi]perylene to 98.32 mg/kg for fluorene.

  10. Optimization and application of atmospheric pressure chemical and photoionization hydrogen-deuterium exchange mass spectrometry for speciation of oxygen-containing compounds.

    Science.gov (United States)

    Acter, Thamina; Kim, Donghwi; Ahmed, Arif; Jin, Jang Mi; Yim, Un Hyuk; Shim, Won Joon; Kim, Young Hwan; Kim, Sunghwan

    2016-05-01

    This paper presents a detailed investigation of the feasibility of optimized positive and negative atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) and atmospheric pressure photoionization (APPI) MS coupled to hydrogen-deuterium exchange (HDX) for structural assignment of diverse oxygen-containing compounds. The important parameters for optimization of HDX MS were characterized. The optimized techniques employed in the positive and negative modes showed satisfactory HDX product ions for the model compounds when dichloromethane and toluene were employed as a co-solvent in APCI- and APPI-HDX, respectively. The evaluation of the mass spectra obtained from 38 oxygen-containing compounds demonstrated that the extent of the HDX of the ions was structure-dependent. The combination of information provided by different ionization techniques could be used for better speciation of oxygen-containing compounds. For example, (+) APPI-HDX is sensitive to compounds with alcohol, ketone, or aldehyde substituents, while (-) APPI-HDX is sensitive to compounds with carboxylic functional groups. In addition, the compounds with alcohol can be distinguished from other compounds by the presence of exchanged peaks. The combined information was applied to study chemical compositions of degraded oils. The HDX pattern, double bond equivalent (DBE) distribution, and previously reported oxidation products were combined to predict structures of the compounds produced from oxidation of oil. Overall, this study shows that APCI- and APPI-HDX MS are useful experimental techniques that can be applied for the structural analysis of oxygen-containing compounds.

  11. Field-effect-based multifunctional hybrid sensor module for the determination of both (bio-)chemical and physical parameters

    Science.gov (United States)

    Schoening, Michael J.; Poghossian, Arshak; Schultze, J. Walter; Lueth, Hans

    2002-02-01

    Sensor systems for multi-parameter detection in fluidics usually combine different sensors, which are designed to detect either a physical or (bio-)chemical parameter. Therefore, such systems include a more complicated fabrication technology and measuring set-up. In this work, an ISFET (ion-sensitive field-effect transistor), which is well known as a (bio-)chemical sensor, is utilized as transducer for the detection of both (bio-)chemical and physical parameters. A multifunctional hybrid module for the determination of two (bio-)chemical parameters (pH, penicillin concentration) and three physical parameters (temperature, flow velocity and flow direction) using only two sensor structures, an ion generator and a reference electrode, is realized and its performance has been investigated. Here, a multifunctionality of the sensor system is achieved by means of different sensor arrangements and/or different operation modes. A Ta2O5-gate ISFET was used as transducer for all sensors. A novel time-of-flight type ISFET-based flow-velocity (flow rate) and flow-direction sensor using in-situ electrochemical generation of chemical tracers is presented. Due to the fast response of the ISFET (usually in the millisecond range), an ISFET-based flow sensor is suitable for the measurement of the flow velocity in a wide range. With regard to practical applications, pH measurements with this ISFET were performed in rain droplets.

  12. The Fourier analysis applied to the relationship between (7)Be activity in the Serbian atmosphere and meteorological parameters.

    Science.gov (United States)

    Rajačić, M M; Todorović, D J; Krneta Nikolić, J D; Janković, M M; Djurdjević, V S

    2016-09-01

    Air sample monitoring in Serbia, Belgrade started in the 1960s, while (7)Be activity in air and total (dry and wet) deposition has been monitored for the last 22 years by the Environment and Radiation Protection Department of the Institute for Nuclear Sciences, Vinca. Using this data collection, the changes of the (7)Be activity in the air and the total (wet and dry) deposition samples, as well as their correlation with meteorological parameters (temperature, pressure, cloudiness, sunshine duration, precipitation and humidity) that affect (7)Be concentration in the atmosphere, were mathematically described using the Fourier analysis. Fourier analysis confirmed the expected; the frequency with the largest intensity in the harmonic spectra of the (7)Be activity corresponds to a period of 1 year, the same as the largest intensity frequency in Fourier series of meteorological parameters. To analyze the quality of the results produced by the Fourier analysis, we compared the measured values of the parameters with the values calculated according to the Fourier series. Absolute deviations between measured and predicted mean monthly values are in range from 0.02 mBq/m(3) to 0.7 mBq/m(3) for (7)Be activity in air, and 0.01 Bq/m(2) and 0.6 Bq/m(2) for (7)Be activity in deposition samples. Relatively good agreement of measured and predicted results offers the possibility of prediction of the (7)Be activity.

  13. Health Impacts Estimation of Mineralogical and Chemical Characterization of Suspended Atmospheric Particles over the East Desert

    Directory of Open Access Journals (Sweden)

    U. A. Rahoma

    2010-01-01

    Full Text Available Problem statement: The small size fraction of aerosols, measured as PM10 and PM2.5, rather than the larger particles, is considered to be responsible for most of the health effects. Such particles have a relatively long residence time in the atmosphere and can therefore travel over long distances. Hence, a large portion of ambient concentrations of PM10 and in particular of particles with an aerodynamic diameter less than 2.5 µm (PM2.5, can be attributed to long range trans boundary air pollution or to other remote sources. The estimates of exposure and of health effects are based on a number of uncertain assumptions and data sets, as described in previous article. Approach: In industrialized Middle East countries, the daily deposition of PM10 particles in the lungs is roughly 250 µg day-1, which represents a small dose in terms of traditional toxicology studies. Studies of PM10 have considered this total material but have not asked how much its chemical or physical characteristics contribute to its total toxicity. Results: This article focuses on the description of the present knowledge on PM10 concentration fields and predominant sources contributing to PM10 from long range transport of pollution. PM10 is a complex mixture of many known and unknown components; therefore, a short introduction on the composition of PM10 is given. The studies denote to the African dust from mean PM10 levels background levels are still 5-10 mg m3 higher in the Eastern Basin (EMB when compared with those in the Western (WMB, mainly due to the higher anthropogenic and sea spray loads. Conclusion: As regards for the seasonal trends, these are largely driven by the occurrence of African dust events, resulting in a spring-early summer maximum over the EMB and a clear summer maximum in the WMB, although in this later region the recirculation of aged air masses play an important role. Furthermore, a marked seasonal trend is still evident when subtracting the African

  14. Chemical characteristics and source apportionment of atmospheric particles during heating period in Harbin, China

    Institute of Scientific and Technical Information of China (English)

    Likun Huang; Guangzhi Wang

    2014-01-01

    Atmospheric particles (total suspended particles (TSPs); particulate matter (PM) with particle size below 10 μm,PM10; particulate matter with particle size below 2.5 μm,PM2.5)were collected and analyzed during heating and non-heating periods in Harbin.The sources of PM10 and PM2.5 were identified by the chemical mass balance (CMB) receptor model.Results indicated that PM2.5/TSP was the most prevalent and PM2.5 was the main component of PM10,while the presence of PM10-100 was relatively weak.SC42-and NO3-concentrations were more significant than other ions during the heating period.As compared with the non-heating period,Mn,Ni,Pb,S,Si,Ti,Zn,As,Ba,Cd,Cr,Fe and K were relatively higher during the heating period.In particular,Mn,Ni,S,Si,Ti,Zn and As in PM2.5 were obviously higher during the heating period.Organic carbon (OC) in the heating period was 2-5 times higher than in the non-heating period.Elemental carbon (EC) did not change much.OC/EC ratios were 8-11 during the heating period,which was much higher than in other Chinese cities (OC/EC:4-6).Results from the CMB indicated that 11 pollution sources were identified,of which traffic,coal combustion,secondary sulfate,secondary nitrate,and secondary organic carbon made the greatest contnbution.Before the heating period,dust and petrochemical industry made a larger contribution.In the heating period,coal combustion and secondary sulfate were higher.After the heating period,dust and petrochemical industry were highen Some hazardous components in PM2.5 were higher than in PM10,because PM2.5 has a higher ability to absorb toxic substances.Thus PM2.5 pollution is more significant regarding human health effects in the heating period.

  15. The chemical composition and fluxes of atmospheric wet deposition at four sites in South Africa

    Science.gov (United States)

    Conradie, E. H.; Van Zyl, P. G.; Pienaar, J. J.; Beukes, J. P.; Galy-Lacaux, C.; Venter, A. D.; Mkhatshwa, G. V.

    2016-12-01

    South Africa is the economic hub of southern Africa and is regarded as an important source region of atmospheric pollutants. A nitrogen dioxide (NO2) hotspot is clearly visible from space over the South African Mpumalanga Highveld, while South Africa is also regarded as the 9th largest anthropogenic sulphur (S) emitting country. Notwithstanding the importance of South Africa with regard to nitrogen (N) and S emissions, very limited data has been published on the chemical composition of wet deposition for this region. This paper presents the concentrations of sodium (Na+), ammonium (NH4+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), nitrate (NO3-), chloride (Cl-), sulphate (SO42-) and water-soluble organic acids (OA) in the wet deposition samples collected between 2009 and 2014 at four South African IDAF (IGAC DEBITS Africa) sites, which are regarded as regional representatives of the north-eastern interior. Also, wet deposition fluxes of the ten ions are calculated and presented in this paper. The results show that the total ionic concentrations and fluxes of wet deposition were much higher at the two sites closer to anthropogenic emissions, while the pH of wet deposition at these two sites were lower compared to that of the two sites that were less impacted by anthropogenic emissions. . The major sources of the ten ions included marine, terrigenous (crust), fossil fuel combustion, agriculture and biomass burning. Significant contributions from fossil fuel combustion were determined for the two sites in close proximity to anthropogenic source regions. The results of back trajectory analysis, however, did indicate that the two remote sites are also affected by air masses passing over the source region through anti-cyclonic recirculation. The largest contributions at the two sites distant from the anthropogenic source regions were marine sources, while the impact of biomass burning was also more significant at the remote sites. Comparison to previous wet

  16. Relationships between physico-chemical and microbiological parameters in the monimolimnion of a forest meromictic lake

    Directory of Open Access Journals (Sweden)

    Dorota Górniak

    2014-05-01

    Full Text Available The small meromictic Lake Zapadłe in North-Eastern Poland was the subject of our research in the vegetation period between April and November. Our study were to aim a better recognition of meromixis phenomenon and find connections between hydrochemical and microbiological parameters. Here, the monimolimnion layer was below 10 m depth with the chemocline between 13-14 m. Highly significant Spearman’s ranks correlations of P<0.05 were found between conductivity and biochemical oxygen demand (0.91, ammonium nitrogen (0.96, phosphate (0.91, iron (0.77 and manganese (0.82. Favourable conditions for bacterioplankton growth and function here included; the absence of water circulation, the presence of anaerobic conditions and hydrogen sulphide, a constant water temperature and highly significant correlations between total bacterial counts (TBC, bacterial biomass (BB and biochemical oxygen demand (BOD, conductivity, total organic carbon (TOC and dissolved organic carbon (DOC. The pool of bacteria-forming biomass increased significantly in the lower part of the monimolimnion. A highly significant correlation (P<0.05 existed between bacterial biomass (BB and their anaerobic metabolic products: ammonium (r=0.75, hydrogen sulphide (r=0.45 and phosphate (r=0.68 anaerobic metabolic products. This correlation indicated the significant proportion of anaerobic sulfate-reducing bacteria. The impact of physico-chemical parameters on bacterioplankton biomass during the June-November growth season was clearly illustrated in the correspondence canonical analysis (CCA. This recorded its greatest mass at 15 to 17 metres above the lake bed. Although no clear seasonal variations were noted in bacterioplankton composition described by Denaturing Gradient Gel Electrophoresis (DGGE. The monimolimnion lake layer contained 46 Operational Taxonomic Units (OTUs. Subsequent comparison of the upper and lower minimolimnion layers showed 37 of these OTUs were common, while 5 were

  17. Effects of Technological Parameters and Fishing Ground on Quality Attributes of Thawed, Chilled Cod Fillets Stored in Modified Atmosphere Packaging

    DEFF Research Database (Denmark)

    Bøknæs, Niels; Østerberg, Carsten; Sørensen, Rie

    2001-01-01

    Effects were studied of various technological parameters and fishing ground on quality attributes of thawed, chilled cod fillets stored in modified atmosphere packaging Frozen fillets of Baltic Sea and Barents Sea cod, representing two commercial fishing grounds, were used as raw material...... frozen storage is more appropriate for manufacturing of thawed chilled MAP cod fillets. During chill storage of thawed MAP Barents Sea fillets previously kept at -30degreesC for 15 weeks, significant growth of Photobacterium phosphoreum and production of trimethylamine were observed. Oil the contrary, P....... phosphoreum growth and trimethylamine production in thawed and chill-stored MAP Baltic Sea cod fillets were strongly inhibited after as little as 4 weeks of frozen storage at -30degreesC. Contents of trimethylamine oxide and NaCl were substantially higher in fillets of Barents Sea cod compared to fillets...

  18. Evaluation of data compression techniques for the inference of stellar atmospheric parameters from high-resolution spectra

    Science.gov (United States)

    González-Marcos, A.; Sarro, L. M.; Ordieres-Meré, J.; Bello-García, A.

    2017-03-01

    The determination of stellar atmospheric parameters from spectra suffers the so-called curse-of-dimensionality problem, which is related to the higher number of input variables (flux values) compared to the number of spectra available to fit a regression model (this collection of examples is known as the training set). This work evaluates the utility of several techniques for alleviating this problem in regression tasks where the objective is to estimate the effective temperature (Teff), the surface gravity (log g), the metallicity ([M/H]) and/or the alpha-to-iron ratio ([α/Fe]). The goal of the techniques analysed here is to achieve data compression by representing the spectra with a number of variables much lower than the initially available set of fluxes. The experiments were performed with high-resolution spectra of stars in the 4000-8000 K range for different signal-to-noise ratio (SNR) regimes. We conclude that independent component analysis (ICA) performs better than the rest of techniques evaluated for all SNR regimes. We also assess the necessity to adapt the SNR of the spectra used to fit a regression model (training set) to the SNR of the spectra for which the atmospheric parameters are needed (evaluation set). Within the conditions of our experiments, we conclude that at most only two such regression models are needed (in the case of regression models for effective temperatures, those corresponding to SNR = 50 and 10) to cover the entire SNR range. Finally, we also compare the prediction accuracy of effective temperature regression models for increasing values of the training grid density and the same compression techniques.

  19. Byproducts of orange extraction: influence of different treatments in fiber composition and physical and chemical parameters

    Directory of Open Access Journals (Sweden)

    Juliana Maria de Mello Andrade

    2014-09-01

    Full Text Available In this work we evaluated the variability in fiber content and physical and chemical parameters of byproducts from orange juice extraction. Five different treatments and two drying methods were evaluated. The results indicate that drying by lyophilization was better than that drying in an oven. The pH ranged from approximately 3.47 to 3.96. The variation in moisture values was 9.22% ± 0.02 to 18.48 ± 0.52%. The total dietary fiber content in the resulting flours ranged from 42.44% to 62.74%. The soluble and insoluble dietary fiber contents differed among the samples, ranging from 5.04% to 19.95% for the first fiber type, and 23.96% to 57.70% for the second. In conclusion, three treatments, associated with freeze-drying, showed promising results in the development of fiber-rich product. However, some modifications are needed, as well as further analysis, to guarantee the benefits of these products for human health. This study contributes to the possible application of industrial byproducts.

  20. Chemical guide parameters for Spanish lemon (Citrus limon (L.) Burm.) juices.

    Science.gov (United States)

    Lorente, José; Vegara, Salud; Martí, Nuria; Ibarz, Albert; Coll, Luís; Hernández, Julio; Valero, Manuel; Saura, Domingo

    2014-11-01

    To contribute for setting reference guideline for commercial juice extracted from the Spanish lemon varieties, chemical composition of 92 direct and 92 reconstituted samples were investigated. In direct lemon juice, titratable acidity was 52.4 g/L, being the citric acid the main component. Glucose, fructose and sucrose concentrations were 7.9, 7.3 and 4.5 g/L, respectively. Predominant mineral was potassium (1264.2mg/L), followed by phosphorous (306 mg/L), calcium (112 mg/L) and magnesium (92.6 mg/L). Hesperidin ranged from 257 to 484.8 mg/L, while water soluble pectins varied between 164.8 and 550 mg/L. Similar values were obtained in reconstituted lemon juice. There are different parameters that did not reach or exceeded the limits proposed by the European Association of the Industry of Juices and Nectars. These levels should be taken into account to modify the present reference guideline and that Spanish lemon juices are not discarded for to have lower or bigger values.

  1. Experimental and theoretical studies on physico-chemical parameters affecting the solubility of phosphogypsum

    Energy Technology Data Exchange (ETDEWEB)

    Papanicolaou, Fanos; Antoniou, Stella [Chemistry Department, University of Cyprus, P.O. Box 20537, 1678 Nicosia (Cyprus); Pashalidis, Ioannis [Chemistry Department, University of Cyprus, P.O. Box 20537, 1678 Nicosia (Cyprus)], E-mail: pspasch@ucy.ac.cy

    2009-10-15

    Phosphogypsum is a waste by-product of the phosphate fertilizer industry, which is usually disposed in the environment because of its restricted use in industrial applications. Physico-chemical conditions existing in stack fluids and leachates are of major importance and determine solubility and redox stability of phosphogypsum, as well as radionuclide release from stacks to terrestrial environments. The aim of this study is to assess the effect of key parameters (e.g. ionic strength, temperature, pH) on the solubility of phosphogypsum. Phosphogypsum sampling and in-situ measurements were carried out at a coastal stack in Cyprus, solubility experiments were performed in simulated laboratory systems and thermodynamic calculations by means of MINTEQA2, an equilibrium speciation model. Generally, increasing ionic strength and temperature leads to increased phosphogypsum solubility, with the former being much more effective. The increased solubility of phosphogypsum in saline solutions is attributed solely to ionic strength effects on the activity of ionic species in solution and no solid phase transformations could be observed. The effect of pH on phosphogypsum solubility seems to be insignificant at least in a pH range between 4 and 8. Regarding uranium levels, there is a strong correlation between salinity and uranium concentration and linear correlation between phosphogypsum solubility and uranium levels in stack solutions, indicating the incorporation of uranium into the gypsum lattice and the formation of a solid solution.

  2. Experimental and theoretical studies on physico-chemical parameters affecting the solubility of phosphogypsum.

    Science.gov (United States)

    Papanicolaou, Fanos; Antoniou, Stella; Pashalidis, Ioannis

    2009-10-01

    Phosphogypsum is a waste by-product of the phosphate fertilizer industry, which is usually disposed in the environment because of its restricted use in industrial applications. Physico-chemical conditions existing in stack fluids and leachates are of major importance and determine solubility and redox stability of phosphogypsum, as well as radionuclide release from stacks to terrestrial environments. The aim of this study is to assess the effect of key parameters (e.g. ionic strength, temperature, pH) on the solubility of phosphogypsum. Phosphogypsum sampling and in-situ measurements were carried out at a coastal stack in Cyprus, solubility experiments were performed in simulated laboratory systems and thermodynamic calculations by means of MINTEQA2, an equilibrium speciation model. Generally, increasing ionic strength and temperature leads to increased phosphogypsum solubility, with the former being much more effective. The increased solubility of phosphogypsum in saline solutions is attributed solely to ionic strength effects on the activity of ionic species in solution and no solid phase transformations could be observed. The effect of pH on phosphogypsum solubility seems to be insignificant at least in a pH range between 4 and 8. Regarding uranium levels, there is a strong correlation between salinity and uranium concentration and linear correlation between phosphogypsum solubility and uranium levels in stack solutions, indicating the incorporation of uranium into the gypsum lattice and the formation of a solid solution.

  3. Pinning down neutrino oscillation parameters in the 2-3 sector with a magnetised atmospheric neutrino detector: a new study

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Lakshmi S. [The Institute of Mathematical Sciences, Chennai (India); Physical Research Laboratory, Ahmedabad (India); Homi Bhabha National Institute, Mumbai (India); Indumathi, D. [The Institute of Mathematical Sciences, Chennai (India); Homi Bhabha National Institute, Mumbai (India)

    2017-01-15

    We determine the sensitivity to neutrino oscillation parameters from a study of atmospheric neutrinos in a magnetised detector such as the ICAL at the proposed India-based Neutrino Observatory. In such a detector, which can separately count ν{sub μ} and anti ν{sub μ}-induced events, the relatively smaller (about 5%) uncertainties on the neutrino-antineutrino flux ratios translate to a constraint in the χ{sup 2} analysis that results in a significant improvement in the precision with which neutrino oscillation parameters such as sin{sup 2}θ{sub 23} can be determined. Such an effect is unique to all magnetisable detectors and constitutes a great advantage in determining neutrino oscillation parameters using such detectors. Such a study has been performed for the first time here. Along with an increase in the kinematic range compared to earlier analyses, this results in sensitivities to oscillation parameters in the 2-3 sector that are comparable to or better than those from accelerator experiments where the fluxes are significantly higher. For example, the 1σ precisions on sin{sup 2}θ{sub 23} and vertical stroke Δm{sup 2}{sub 32(31)} vertical stroke achievable for 500 kton year exposure of ICAL are ∝9 and ∝2.5%, respectively, for both normal and inverted hierarchies. The mass hierarchy sensitivity achievable with this combination when the true hierarchy is normal (inverted) for the same exposure is Δχ{sup 2} ∼ 8.5 (Δχ{sup 2} ∼ 9.5). (orig.)

  4. Partial melting in one-plate planets: Implications for thermo-chemical and atmospheric evolution

    Science.gov (United States)

    Plesa, A.-C.; Breuer, D.

    2014-08-01

    In the present work, we investigate the influence of partial melting on mantle dynamics, crustal formation, and volcanic outgassing of a one-plate planet using a 2D mantle convection code. When melt is extracted to form crust, the mantle material left behind is more buoyant than its parent material and depleted in radioactive heat sources. The extracted heat-producing elements are then enriched in the crust, which also has an insulating effect due to its lower thermal conductivity compared to the mantle. In addition, partial melting can influence the mantle rheology through the dehydration (water depletion) of the mantle material by volcanic outgassing. As a consequence, the viscosity of water-depleted regions increases more than two orders of magnitude compared to water-saturated rocks resulting in slower cooling rates. The most important parameter influencing the thermo-chemical evolution is the assumed density difference between the primitive and the depleted mantle material (i.e., between peridotite and harzburgite). With small or negligible values of compositional buoyancy, crustal formation including crustal delamination is very efficient, also resulting in efficient processing and degassing of the mantle. The convecting mantle below the stagnant lid depletes continuously with time. In contrast, with increasing compositional buoyancy, crustal formation and mantle degassing are strongly suppressed although partial melting is substantially prolonged in the thermal evolution. The crust shows strong lateral variations in thickness, and crustal delamination is reduced and occurs only locally. Furthermore, two to four different mantle reservoirs can form depending on the initial temperature distribution. Two of these reservoirs can be sustained during the entire evolution - a scenario possibly valid for Mars as it may explain the isotope characteristic of the Martian meteorites.

  5. Optimization of chemical and instrumental parameters in hydride generation laser-induced breakdown spectrometry for the determination of arsenic, antimony, lead and germanium in aqueous samples.

    Science.gov (United States)

    Yeşiller, Semira Unal; Yalçın, Serife

    2013-04-03

    A laser induced breakdown spectrometry hyphenated with on-line continuous flow hydride generation sample introduction system, HG-LIBS, has been used for the determination of arsenic, antimony, lead and germanium in aqueous environments. Optimum chemical and instrumental parameters governing chemical hydride generation, laser plasma formation and detection were investigated for each element under argon and nitrogen atmosphere. Arsenic, antimony and germanium have presented strong enhancement in signal strength under argon atmosphere while lead has shown no sensitivity to ambient gas type. Detection limits of 1.1 mg L(-1), 1.0 mg L(-1), 1.3 mg L(-1) and 0.2 mg L(-1) were obtained for As, Sb, Pb and Ge, respectively. Up to 77 times enhancement in detection limit of Pb were obtained, compared to the result obtained from the direct analysis of liquids by LIBS. Applicability of the technique to real water samples was tested through spiking experiments and recoveries higher than 80% were obtained. Results demonstrate that, HG-LIBS approach is suitable for quantitative analysis of toxic elements and sufficiently fast for real time continuous monitoring in aqueous environments.

  6. Estimation of the physico-chemical parameters of materials based on rare earth elements with the application of computational model

    Science.gov (United States)

    Mamaev, K.; Obkhodsky, A.; Popov, A.

    2016-01-01

    Computational model, technique and the basic principles of operation program complex for quantum-chemical calculations of material's physico-chemical parameters with rare earth elements are discussed. The calculating system is scalable and includes CPU and GPU computational resources. Control and operation of computational jobs and also Globus Toolkit 5 software provides the possibility to join computer users in a unified system of data processing with peer-to-peer architecture. CUDA software is used to integrate graphic processors into calculation system.

  7. Mass production of chemicals from biomass-derived oil by directly atmospheric distillation coupled with co-pyrolysis

    Science.gov (United States)

    Zhang, Xue-Song; Yang, Guang-Xi; Jiang, Hong; Liu, Wu-Jun; Ding, Hong-Sheng

    2013-01-01

    Production of renewable commodity chemicals from bio-oil derived from fast pyrolysis of biomass has received considerable interests, but hindered by the presence of innumerable components in bio-oil. In present work, we proposed and experimentally demonstrated an innovative approach combining atmospheric distillation of bio-oil with co-pyrolysis for mass production of renewable chemicals from biomass, in which no waste was produced. It was estimated that 51.86 wt.% of distillate just containing dozens of separable organic components could be recovered using this approach. Ten protogenetic and three epigenetic compounds in distillate were qualitatively identified by gas chromatography/mass spectrometry and quantified by gas chromatography. Among them, the recovery efficiencies of acetic acid, propanoic acid, and furfural were all higher than 80 wt.%. Formation pathways of the distillate components in this process were explored. This work opens up a fascinating prospect for mass production of chemical feedstock from waste biomass. PMID:23350028

  8. GPU-accelerated atmospheric chemical kinetics in the ECHAM/MESSy (EMAC Earth system model (version 2.52

    Directory of Open Access Journals (Sweden)

    M. Alvanos

    2017-10-01

    Full Text Available This paper presents an application of GPU accelerators in Earth system modeling. We focus on atmospheric chemical kinetics, one of the most computationally intensive tasks in climate–chemistry model simulations. We developed a software package that automatically generates CUDA kernels to numerically integrate atmospheric chemical kinetics in the global climate model ECHAM/MESSy Atmospheric Chemistry (EMAC, used to study climate change and air quality scenarios. A source-to-source compiler outputs a CUDA-compatible kernel by parsing the FORTRAN code generated by the Kinetic PreProcessor (KPP general analysis tool. All Rosenbrock methods that are available in the KPP numerical library are supported.Performance evaluation, using Fermi and Pascal CUDA-enabled GPU accelerators, shows achieved speed-ups of 4. 5 ×  and 20. 4 × , respectively, of the kernel execution time. A node-to-node real-world production performance comparison shows a 1. 75 ×  speed-up over the non-accelerated application using the KPP three-stage Rosenbrock solver. We provide a detailed description of the code optimizations used to improve the performance including memory optimizations, control code simplification, and reduction of idle time. The accuracy and correctness of the accelerated implementation are evaluated by comparing to the CPU-only code of the application. The median relative difference is found to be less than 0.000000001 % when comparing the output of the accelerated kernel the CPU-only code.The approach followed, including the computational workload division, and the developed GPU solver code can potentially be used as the basis for hardware acceleration of numerous geoscientific models that rely on KPP for atmospheric chemical kinetics applications.

  9. Physico Chemical Characteristics of High Performance Polymer Modified by Low and Atmospheric Pressure Plasma1

    OpenAIRE

    N Bhatnagar; Jha, S.; Bhowmik, S.; Gupta, G.; Moon, J.B.; Kim, C.G.

    2012-01-01

    In this work, the effect of low pressure plasma and atmospheric-pressure plasma treatment on surface properties and adhesion characteristics of high performance polymer, Polyether Ether Ketone (PEEK) are investigated in terms of Fourier Transform Infrared Spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Atomic Force Microscopy (AFM). The experimental results show that the PEEK surface treated by atmospheric pressure plasma lead to an increase in the polar component of the surf...

  10. Physico-chemical characteristics of high performance polymer modified by low and atmospheric pressure plasma

    OpenAIRE

    Nitu, Bhatnagar; Sangeeta, Jha; Shantanu, Bhowmik; Govind, Gupta; Moon, J.; Kim, C

    2012-01-01

    In this work, the effect of low pressure plasma and atmospheric-pressure plasma treatment on surface properties and adhesion characteristics of high performance polymer, Polyether Ether Ketone (PEEK) are investigated in terms of Fourier Transform Infrared Spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Atomic Force Microscopy (AFM). The experimental results show that the PEEK surface treated by atmospheric pressure plasma lead to an increase in the polar component of the surf...

  11. Determination of metformin in mouse, rat, dog and human plasma samples by laser diode thermal desorption/atmospheric pressure chemical ionization tandem mass spectrometry.

    Science.gov (United States)

    Swales, John G; Gallagher, Richard; Peter, Raimund M

    2010-11-02

    A simple, rapid and robust high-throughput assay for the quantitative analysis of metformin in plasma from different species using laser diode thermal desorption interfaced with atmospheric chemical pressure ionization tandem mass spectrometry (LDTD-APCI-MSMS) was developed for use in a pharmaceutical discovery environment. In order to minimize sample preparation a generic protein precipitation method was used to extract metformin from the plasma. Laser diode thermal desorption is a relatively new sample introduction method, the optimization of the instrumental parameters are presented. The method was successfully applied to spiked mouse, rat, dog and human plasma samples and was subsequently used to determine the oral pharmacokinetics of metformin after dosing to male rats in order to support drug discovery projects. The deviations for intra-assay accuracy and precision across the four species were less than 30% at all calibration and quality control levels.

  12. Changes in Atmospheric and Meteorological Parameters along Vertical Profile Associated with Biomass Burning in the Western Parts of India

    Science.gov (United States)

    Chauhan, Akshansha

    Biomass burning occurs after the crop is harvested in the months of April-May and October-November in the western parts of India. The satellite data shows higher aerosol loading especially during October-November when temperature is lower. The plume is seen over the whole Indo-Gangetic plains and also over Pakistan especially due to easterly winds, although the westerly wind components are common, the smoke plume is transported on the eastern parts of the Indo-Gangetic plains. Depending upon the meteorological conditions, sometime intense haze are seen over the Indo-Gangetic plains and the visibility becomes very low. Detailed analysis of multi sensor satellite data for the period 2008-2012 will be presented showing changes in the atmospheric and meteorological parameters at different pressure levels. The smoke plume originated from the source region affects small area, on the other hand when the distance from the source region increases, the changes are observed larger area at higher altitudes. The AERONET data at Lahore in Pakistan and Kanpur in the east of Indo-Gangetic plains show characteristics of aerosol optical properties and contrast changes in meteorological parameters. We will also present a simple relation between the intense fog, haze and smog during winter season (December and January) associated with the biomass burning in the month of October and November every year in the western parts of India.

  13. Porous Ionic Polymers as a Robust and Efficient Platform for Capture and Chemical Fixation of Atmospheric CO2.

    Science.gov (United States)

    Sun, Qi; Jin, Yingyin; Aguila, Briana; Meng, Xiangju; Ma, Shengqian; Xiao, Feng-Shou

    2017-03-22

    Direct use of atmospheric CO2 as a C1 source to synthesize high-value chemicals through environmentally benign processes is of great interest, yet challenging. Porous heterogeneous catalysts that are capable of simultaneously capturing and converting CO2 are promising candidates for such applications. Herein, a family of organic ionic polymers with nanoporous structure, large surface area, strong affinity for CO2 , and very high density of catalytic active sites (halide ions) was synthesized through the free-radical polymerization of vinylfunctionalized quaternary phosphonium salts. The resultant porous ionic polymers (PIPs) exhibit excellent activities in the cycloaddition of epoxides with atmospheric CO2 , outperforming the corresponding soluble phosphonium salt analogues and ranking among the highest of known metal-free catalytic systems. The high CO2 uptake capacity of the PIPs facilitates the enrichment of CO2 molecules around the catalytic centers, thereby benefiting its conversion. We have demonstrated for the first time that atmospheric CO2 can be directly converted to cyclic carbonates at room temperature using a heterogeneous catalytic system under metal-solvent free conditions. Moreover, the catalysts proved to be robust and fully recyclable, demonstrating promising potential for practical utilization for the chemical fixation of CO2 . Our work thereby paves a way to the advance of PIPs as a new type of platform for capture and conversion of CO2 .

  14. LC-MS analysis of estradiol in human serum and endometrial tissue: Comparison of electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization.

    Science.gov (United States)

    Keski-Rahkonen, Pekka; Huhtinen, Kaisa; Desai, Reena; Harwood, D Tim; Handelsman, David J; Poutanen, Matti; Auriola, Seppo

    2013-09-01

    Accurate measurement of estradiol (E2) is important in clinical diagnostics and research. High sensitivity methods are critical for specimens with E2 concentrations at low picomolar levels, such as serum of men, postmenopausal women and children. Achieving the required assay performance with LC-MS is challenging due to the non-polar structure and low proton affinity of E2. Previous studies suggest that ionization has a major role for the performance of E2 measurement, but comparisons of different ionization techniques for the analysis of clinical samples are not available. In this study, female serum and endometrium tissue samples were used to compare electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) in both polarities. APPI was found to have the most potential for E2 analysis, with a quantification limit of 1 fmol on-column. APCI and ESI could be employed in negative polarity, although being slightly less sensitive than APPI. In the presence of biological background, ESI was found to be highly susceptible to ion suppression, while APCI and APPI were largely unaffected by the sample matrix. Irrespective of the ionization technique, background interferences were observed when using the multiple reaction monitoring transitions commonly employed for E2 (m/z 271 > 159; m/z 255 > 145). These unidentified interferences were most severe in serum samples, varied in intensity between ionization techniques and required efficient chromatographic separation in order to achieve specificity for E2.

  15. Composition and Cosmogonic Parameters of the Chemically Distinct Comet C/2007 N3 (Lulin)

    Science.gov (United States)

    Gibb, Erika L.; Villanueva, G. L.; Bonev, B. P.; DiSanti, M. A.; Mumma, M. J.; Radeva, Y. L.

    2012-10-01

    Comets are remnants from the early solar system that retain the volatiles (ices) from the cold outer proto-planetary disk (beyond 5 AU) where they formed. Comet nuclei were among the first objects to accrete in the early solar nebula and many of them were subsequently incorporated into the growing giant planets. Gravitational scattering redistributed the remaining comet population by either sending them to the inner solar system, where they may have enriched the early biosphere, or scattering them into their present-day dynamical reservoirs. Since this early time, comets have been orbiting the Sun relatively untouched by processing mechanisms, until their orbits are perturbed towards the inner solar system. As such, they are believed to be among the most primitive objects in the solar system and may be representative of the material from which the solar system formed. Of particular interest is their icy volatile composition since other solar system objects have either lost or have had significant modifications to their volatile compositions since their formation. Many of the volatiles observed in comets are also important prebiotic species. For example, H2CO is a chemical precursor to sugars and HCN and NH3 are precursors of amino acids. Studying comets is therefore a vital link to understanding the origin and evolution of our planetary system and life on Earth. We obtained high-resolution, near-infrared spectroscopic observations of Comet C/2007 N3 (Lulin) on 30 January - 1 February 2009 with NIRSPEC on Keck II. Lulin is an Oort Cloud comet with a very large aphelion distance, suggesting that it may have been dynamically new. We report production rates of H2O, C2H6, HCN, C2H2, CH4, NH3, H2CO, CH3OH, and CO. We also report two cosmogonic parameters: D/H ratio in H2O and CH4, and isomeric spin temperatures. The implications for comet formations scenarios are discussed.

  16. The Polyphenols Stability, Enzyme Activity and Physico-Chemical Parameters During Producing Wild Elderberry Concentrated Juice

    Directory of Open Access Journals (Sweden)

    Ante Galić

    2009-12-01

    Full Text Available The influence of processing wild elderberry into concentrated juice on polyphenols (total phenols, flavonoids, non-flavonoids, anthocyanins, flavan-3-ols, hydrolysed tannins stability, activity of polyphenol oxidase (PPO and peroxidase (POD, and changes of physico-chemical parameters (total and soluble dry matter, total acidity, pH, sugars were investigated. The amounts of total phenols, flavonoids, non-flavonoids, falvan-3-ols and hydrolysed tannins were analyzed using Folin-Ciocalteu colorimetric method, while the total anthocyanins were determined by bisulphite bleaching method. Total phenols ranged from 25.87 mg/g DM to 38.87 mg/g DM. Total anthocyanins were the most abundant polyphenols in all investigated samples (raw elderberries, elderberries after blanching, elderberry juice after disintegration and pressing, concentrated elderberry juice and their concentration ranged from 13.12 mg/g DM to 25.67 mg/g DM. Other polyphenols determined in high concentration were hydrolysed tannins, followed by fl avan-3-ols, flavonoids and nonfavonoids. After blanching, the concentration of all polyphenols did not decrease significantly. After disintegration of elderberries the concentration of all polyphenols increased, probably due to inactivation of PPO and POD and better isolation of polyphenols from homogenized puree. During processing of elderberry juice into concentrated juice most polyphenols were stable. Total acidity and pH value were not changed during processing, whereas the amounts of total and reducing sugar increased after pressing and additionally after concentration. The obtained results suggest that raw elderberries as well as elderberry concentrated juice are high potential source of polyphenols especially anthocyanins.

  17. Porosity Parameters Of Cement Stone Containing Chemical Admixtures Of Different Purpose

    Directory of Open Access Journals (Sweden)

    Lukas Venčkauskas

    2013-12-01

    Full Text Available The conducted research has established a complex influenceand the impact of separate chemical admixtures of differentpurpose on the parameters of the porosity of hardened cementpaste such as open and closed porosity, the average size of poresand the rates of pore inequality. According to the parametersof the porosity of hardened cement paste, on the basis of A. E.Sheikin’s methodology, the number of freezing-thawing cycleswas predicted. This research used plasticizing, viscosity modifyingand antifoaming admixtures. It has been found that, when theamount of plasticizing admixture in cement paste (W/C–0.45 isconstant and makes 1.1% of the cement mass, and the amountof viscosity modifying and antifoaming the admixture increasesfrom 0.1 to 0.6% and from 0.05 to 0.3% respectively, the openporosity of hardened cement paste varies between 30.21% and31.06%, while closed porosity varies between 5.39% and 6.22%.When the amount of the plasticizing admixture in cement paste(W/C–0.45 exceeds 1.1% of the cement mass, the open porosityof hardened cement paste increases by 1.4 times and closedporosity decreases by 2.5 times. While adding 0.1% of the viscositymodifying admixture to cement paste, the open porosityof hardened cement paste is increased by 1.5 times and closedporosity decreases by 2.4 times. The amount of 0.05% of thecement mass of the antifoaming admixture results in the increasedopen porosity of hardened cement paste by 1.5 times and reducedclosed porosity by 3.5 times.

  18. Effects of the electrical parameters and gas flow rate on the generation of reactive species in liquids exposed to atmospheric pressure plasma jets

    Science.gov (United States)

    Baek, Eun Jeong; Joh, Hea Min; Kim, Sun Ja; Chung, T. H.

    2016-07-01

    In this work, an atmospheric pressure plasma jet was fabricated and studied for plasma-liquid interactions. The plasma jet consists of a quartz-covered pin electrode and outer quartz tube with a tapered nozzle. Using the current-voltage (I-V) and optical emission characteristics of the plasma jet, the plasma density and the speed of the plume were investigated. The optical emission spectra clearly indicated the excited NO, O, OH, N2, and N2+ in the plasma plumes. Then the plasma jets were applied to the deionized water. We investigated the effects of the operating parameters such as applied voltage, pulse frequency, and gas flow rate on the generation of reactive species in the gas and liquid phases. The densities of reactive species including OH radicals were obtained at the plasma-liquid surface and inside the plasma-treated liquids using ultraviolet absorption spectroscopy and chemical probe method. The nitrite concentration was detected by Griess assay. The data are very suggestive that there is a strong correlation among the production of reactive oxygen and nitrogen species (RONS) in the plasmas and liquids.

  19. Modeling the reactivities of hydroxyl radical and ozone towards atmospheric organic chemicals using quantitative structure-reactivity relationship approaches.

    Science.gov (United States)

    Gupta, Shikha; Basant, Nikita; Mohan, Dinesh; Singh, Kunwar P

    2016-07-01

    The persistence and the removal of organic chemicals from the atmosphere are largely determined by their reactions with the OH radical and O3. Experimental determinations of the kinetic rate constants of OH and O3 with a large number of chemicals are tedious and resource intensive and development of computational approaches has widely been advocated. Recently, ensemble machine learning (EML) methods have emerged as unbiased tools to establish relationship between independent and dependent variables having a nonlinear dependence. In this study, EML-based, temperature-dependent quantitative structure-reactivity relationship (QSRR) models have been developed for predicting the kinetic rate constants for OH (kOH) and O3 (kO3) reactions with diverse chemicals. Structural diversity of chemicals was evaluated using a Tanimoto similarity index. The generalization and prediction abilities of the constructed models were established through rigorous internal and external validation performed employing statistical checks. In test data, the EML QSRR models yielded correlation (R (2)) of ≥0.91 between the measured and the predicted reactivities. The applicability domains of the constructed models were determined using methods based on descriptors range, Euclidean distance, leverage, and standardization approaches. The prediction accuracies for the higher reactivity compounds were relatively better than those of the low reactivity compounds. Proposed EML QSRR models performed well and outperformed the previous reports. The proposed QSRR models can make predictions of rate constants at different temperatures. The proposed models can be useful tools in predicting the reactivities of chemicals towards OH radical and O3 in the atmosphere.

  20. Observation of different ceramide species from crude cellular extracts by normal-phase high-performance liquid chromatography coupled to atmospheric pressure chemical ionization mass spectrometry

    NARCIS (Netherlands)

    Pettus, BJ; Bielawska, A; Kroesen, BJ; Moeller, PDR; Szulc, ZM; Hannun, YA; Busman, M

    2003-01-01

    Normal-phase high-performance liquid chromatography (NP-HPLC) coupled to atmospheric pressure chemical ionization mass spectrometry (APCI-MS) allows qualitative analysis of endogenous ceramide and dihydroceramide species from crude lipid extracts utilizing chromatographic methods readily adaptable

  1. Quantifying the loss of information in source attribution problems using the adjoint method in global models of atmospheric chemical transport

    CERN Document Server

    Santillana, Mauricio

    2013-01-01

    It is of crucial importance to be able to identify the location of atmospheric pollution sources in our planet. Global models of atmospheric transport in combination with diverse Earth observing systems are a natural choice to achieve this goal. It is shown that the ability to successfully reconstruct the location and magnitude of an instantaneous source in global chemical transport models (CTMs) decreases rapidly as a function of the time interval between the pollution release and the observation time. A simple way to quantitatively characterize this phenomenon is proposed based on the effective -undesired- numerical diffusion present in current Eulerian CTMs and verified using idealized numerical experiments. The approach presented consists of using the adjoint-based optimization method in a state-of-the-art CTM, GEOS-Chem, to reconstruct the location and magnitude of a realistic pollution plume for multiple time scales. The findings obtained from these numerical experiments suggest a time scale of 2 days a...

  2. [Chemical Characteristics and Sources of Atmospheric Carbonyls During the 2014 Beijing APEC].

    Science.gov (United States)

    He, Xiao-lang; Tan, Ji-hua; Guo, Song-jun; Ma, Yong-liang; He, Ke-bin

    2016-03-15

    Pollution characteristic and variation trend of atmospheric carbonyls were investigated in November during the 2014 Beijing APEC. Formaldehyde, acetaldehyde and acetone were the dominant carbonyls, accounting for 82.66% of total carbonyls, and especially, formaldehyde accounted for 40.12% of total carbonyls. Atmospheric concentrations of total carbonyls decreased by around 64.10% after the clean air policy was carried out during the Beijing APEC, and the variation trend of carbonyls showed a similar pattern to those of other pollutants like PM₂.₅ during the APEC. Strong correlations (R² of 0.67-0.98) were observed among formaldehyde, acetaldehyde, acetone and total carbonyls during and after the APEC, indicating that they had similar sources; however, poor correlations (R² of -0.11-0.42 and 0.16-0.94, respectively) were observed before the APEC, implying different emission sources for ambient carbonyls. The calculated ratios of C1/C2, C2/C3 and OC/EC indicated that both vehicles and coal emissions were responsible for atmospheric carbonyls before the APEC, and emissions from coal burning were the major contributor to atmospheric carbonyls during and after the APEC, especially after the APEC.

  3. ISOTOPIC (14C) AND CHEMICAL COMPOSITION OF ATMOSPHERIC VOLATILE ORGANIC COMPOUND FRACTIONS - PRECURSORS TO OZONE FORMATION

    Science.gov (United States)

    Atmospheric volatile organic compounds (VOCs) are an important factor in the production of ozone near ground level [3]. Many hydrocarbons originate from auto exhaust. However, a number of VOCs, e.g., isoprene, are known to be natural in origin. To develop reliable models for un...

  4. Physico Chemical Characteristics of High Performance Polymer Modified by Low and Atmospheric Pressure Plasma1

    NARCIS (Netherlands)

    Bhatnagar, N.; Jha, S.; Bhowmik, S.; Gupta, G.; Moon, J.B.; Kim, C.G.

    2012-01-01

    In this work, the effect of low pressure plasma and atmospheric-pressure plasma treatment on surface properties and adhesion characteristics of high performance polymer, Polyether Ether Ketone (PEEK) are investigated in terms of Fourier Transform Infrared Spectroscopy (FTIR), X-ray photoelectron

  5. Two Simulated-Smog Atmospheres with Different Chemical Compositions Produce Contrasting Mutagenicity in Salmonella.

    Science.gov (United States)

    Ozone (O3), particulate matter (PM), and nitrogen dioxide (NO2) are criteria pollutants used to evaluate air quality. Using a 14.3-m3 Teflon-lined smog chamber with 120 UV bulbs to simulate solar radiation, we generated 2 simulated-smog atmospheres (SSA-1 & SSA-2) with differ...

  6. Two Simulated-Smog Atmospheres with Different Chemical Compositions Produce Contrasting Mutagenicity in Salmonella**

    Science.gov (United States)

    Ozone (O3), particulate matter (PM), and nitrogen dioxide (NO2) are criteria pollutants used to evaluate air quality. Using EPA’s Mobile Reaction Chamber (MRC), we generated 2 simulated-smog atmospheres (SSA-1 & SSA-2) with different concentrations of these criteria pol...

  7. Sensitivity of biomarkers to changes in chemical emissions in the Earth’s Proterozoic atmosphere

    Science.gov (United States)

    Grenfell, J. L.; Gebauer, S.; von Paris, P.; Godolt, M.; Hedelt, P.; Patzer, A. B. C.; Stracke, B.; Rauer, H.

    2011-01-01

    The search for life beyond the Solar System is a major activity in exoplanet science. However, even if an Earth-like planet were to be found, it is unlikely to be at a similar stage of evolution as the modern Earth. It is therefore of interest to investigate the sensitivity of biomarker signals for life as we know it for an Earth-like planet but at earlier stages of evolution. Here, we assess biomarkers, i.e. species almost exclusively associated with life, in present-day and in 10% present atmospheric level oxygen atmospheres corresponding to the Earth's Proterozoic period. We investigate the impact of proposed enhanced microbial emissions of the biomarker nitrous oxide, which photolyses to form nitrogen oxides which can destroy the biomarker ozone. A major result of our work is regardless of the microbial activity producing nitrous oxide in the early anoxic ocean, a certain minimum ozone column can be expected to persist in Proterozoic-type atmospheres due to a stabilising feedback loop between ozone, nitrous oxide and the ultraviolet radiation field. Atmospheric nitrous oxide columns were enhanced by a factor of 51 for the Proterozoic "Canfield ocean" scenario with 100 times increased nitrous oxide surface emissions. In such a scenario nitrous oxide displays prominent spectral features, so may be more important as a biomarker than previously considered in such cases. The run with "Canfield ocean" nitrous oxide emissions enhanced by a factor of 100 also featured additional surface warming of 3.5 K. Our results suggest that the Proterozoic ozone layer mostly survives the changes in composition which implies that it is indeed a good atmospheric biomarker.

  8. Identification and determination of glycosides in tobacco leaves by liquid chromatography with atmospheric pressure chemical ionization tandem mass spectrometry.

    Science.gov (United States)

    Pang, Tao; Yuan, Zhongyi; Dai, Yongsheng; Wang, Chang; Yang, Jun; Peng, Liming; Xu, Guowang

    2007-02-01

    HPLC-atmospheric pressure chemical ionization MS (HPLC-APCI-MS) was used to screen and identify glycosides in tobacco leaf. MS/MS and MS3 and photodiode array (PDA) detection were also used in the characterization. A total of 12 glycosides were found and four of them were identified based on their abundant [M + H]+ ions, UV spectra, and MS/MS analysis and they are scopolin, rutin, quercetin-3-glycoside, and kaempferol-3-rutinoside. Analytical characteristics of the method were investigated. The contents of these glycosides were obtained and compared based on the relative peak area to the internal standard in seven kinds of tobacco leaf.

  9. Estimating the NH3:H2SO4 ratio of nucleating clusters in atmospheric conditions using quantum chemical methods

    OpenAIRE

    Kurtén, T.; Torpo, L.; Sundberg, M. R.; Kerminen, V.-M.; H. Vehkamäki; Kulmala, M.

    2007-01-01

    We study the ammonia addition reactions of H2SO4·NH3 molecular clusters containing up to four ammonia and two sulfuric acid molecules using the ab initio method RI-MP2 (Resolution of Identity 2nd order Møller-Plesset perturbation theory). Together with results from previous studies, we use the computed values to estimate an upper limit for the ammonia content of small atmospheric clusters, without having to explicitly include water molecules in the quantum chemical si...

  10. Accumulation boundaries: codimension-two accumulation of accumulations in phase diagrams of semiconductor lasers, electric circuits, atmospheric and chemical oscillators.

    Science.gov (United States)

    Bonatto, Cristian; Gallas, Jason Alfredo Carlson

    2008-02-28

    We report high-resolution phase diagrams for several familiar dynamical systems described by sets of ordinary differential equations: semiconductor lasers; electric circuits; Lorenz-84 low-order atmospheric circulation model; and Rössler and chemical oscillators. All these systems contain chaotic phases with highly complicated and interesting accumulation boundaries, curves where networks of stable islands of regular oscillations with ever-increasing periodicities accumulate systematically. The experimental exploration of such codimension-two boundaries characterized by the presence of infinite accumulation of accumulations is feasible with existing technology for some of these systems.

  11. Boron carbide: Consistency of components, lattice parameters, fine structure and chemical composition makes the complex structure reasonable

    Science.gov (United States)

    Werheit, Helmut

    2016-10-01

    The complex, highly distorted structure of boron carbide is composed of B12 and B11C icosahedra and CBC, CBB and B□B linear elements, whose concentration depends on the chemical composition each. These concentrations are shown to be consistent with lattice parameters, fine structure data and chemical composition. The respective impacts on lattice parameters are estimated and discussed. Considering the contributions of the different structural components to the energy of the overall structure makes the structure and its variation within the homogeneity range reasonable; in particular that of B4.3C representing the carbon-rich limit of the homogeneity range. Replacing in B4.3C virtually the B□B components by CBC yields the hypothetical moderately distorted B4.0C (structure formula (B11C)CBC). The reduction of lattice parameters related is compatible with recently reported uncommonly prepared single crystals, whose compositions deviate from B4.3C.

  12. A Microwave Radiometric Method to Obtain the Average Path Profile of Atmospheric Temperature and Humidity Structure Parameters and Its Application to Optical Propagation System Assessment

    Science.gov (United States)

    Manning, Robert M.; Vyhnalek, Brian E.

    2015-01-01

    The values of the key atmospheric propagation parameters Ct2, Cq2, and Ctq are highly dependent upon the vertical height within the atmosphere thus making it necessary to specify profiles of these values along the atmospheric propagation path. The remote sensing method suggested and described in this work makes use of a rapidly integrating microwave profiling radiometer to capture profiles of temperature and humidity through the atmosphere. The integration times of currently available profiling radiometers are such that they are approaching the temporal intervals over which one can possibly make meaningful assessments of these key atmospheric parameters. Since these parameters are fundamental to all propagation conditions, they can be used to obtain Cn2 profiles for any frequency, including those for an optical propagation path. In this case the important performance parameters of the prevailing isoplanatic angle and Greenwood frequency can be obtained. The integration times are such that Kolmogorov turbulence theory and the Taylor frozen-flow hypothesis must be transcended. Appropriate modifications to these classical approaches are derived from first principles and an expression for the structure functions are obtained. The theory is then applied to an experimental scenario and shows very good results.

  13. A parameter study of the effect of the diurnal cycle on the atmospheric dynamics of slowly-rotating planets using a simple GCM

    Science.gov (United States)

    Tabataba-Vakili, Fachreddin; Read, Peter L.

    2016-10-01

    The large set of discovered exoplanets provides a multitude of possible planetary characteristics that need to be understood. To analyse and compare the dominant contributions to their atmospheric circulation in the most general way, it is beneficial to study the properties of different circulation regimes with reference to non-dimensional parameter spaces. Our work is concerned with the nonlinear responses to the diurnal heating cycle and their impact on the broader circulation in order to understand the emergence and maintenance of equatorial super-rotation in atmospheres of bodies similar to Venus and Titan.We use a hierarchy of simple GCMs with increasing temporal resolution in thermal forcing (i.e. annually averaged, seasonal cycle, diurnal cycle) using a simple 2-band, semi-gray radiation scheme for a terrestrial-style planetary atmosphere. In our parameter space we vary key parameters such as the thermal Rossby number (planetary rotation rate), the Greenhouse parameter (the ratio between short- and long-wave optical thickness), the thermal inertia of the surface, and atmospheric equilibrium time-scale. The resulting circulations show an increased equatorial super-rotating wind due to the diurnal cycle when the atmosphere is heated at the top. We investigate and quantify the accelerating effect of the thermal tides.

  14. Catalogue of methods of calculation, interpolation, smoothing, and reduction for the physical, chemical, and biological parameters of deep hydrology (CATMETH) (NODC Accession 7700442)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The document presents the methods, formulas and citations used by the BNDO to process physical, chemical, and biological data for deep hydrology including...

  15. A kinetic-theory approach for computing chemical-reaction rates in upper-atmosphere hypersonic flows.

    Science.gov (United States)

    Gallis, Michael A; Bond, Ryan B; Torczynski, John R

    2009-09-28

    Recently proposed molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties (i.e., no macroscopic reaction-rate information) are investigated for chemical reactions occurring in upper-atmosphere hypersonic flows. The new models are in good agreement with the measured Arrhenius rates for near-equilibrium conditions and with both measured rates and other theoretical models for far-from-equilibrium conditions. Additionally, the new models are applied to representative combustion and ionization reactions and are in good agreement with available measurements and theoretical models. Thus, molecular-level chemistry modeling provides an accurate method for predicting equilibrium and nonequilibrium chemical-reaction rates in gases.

  16. Carbon neutron star atmospheres

    CERN Document Server

    Suleimanov, V F; Pavlov, G G; Werner, K

    2013-01-01

    The accuracy of measuring the basic parameters of neutron stars is limited in particular by uncertainties in chemical composition of their atmospheres. For example, atmospheres of thermally - emitting neutron stars in supernova remnants might have exotic chemical compositions, and for one of them, the neutron star in CasA, a pure carbon atmosphere has recently been suggested by Ho & Heinke (2009). To test such a composition for other similar sources, a publicly available detailed grid of carbon model atmosphere spectra is needed. We have computed such a grid using the standard LTE approximation and assuming that the magnetic field does not exceed 10^8 G. The opacities and pressure ionization effects are calculated using the Opacity Project approach. We describe the properties of our models and investigate the impact of the adopted assumptions and approximations on the emergent spectra.

  17. Spectroscopic line parameters of 12CH4 for atmospheric composition retrievals in the 4300-4500 cm-1 region

    Science.gov (United States)

    Hashemi, R.; Predoi-Cross, A.; Nikitin, A. V.; Tyuterev, Vl. G.; Sung, K.; Smith, M. A. H.; Malathy Devi, V.

    2017-01-01

    Due to the importance of methane as a trace atmospheric gas and a greenhouse gas, we have carried out a precise line-shape study to obtain the CH4-CH4 and CH4-air half-width coefficients, CH4-CH4 and CH4-air shift coefficients and off-diagonal relaxation matrix element coefficients for methane transitions in the spectral range known as the "methane Octad". In addition, the associated temperature dependences of these coefficients have been measured in the 4300-4500 cm-1 region of the Octad. The high signal to noise ratio spectra of pure methane and of dilute mixtures of methane in dry air with high resolution have been recorded at temperatures from 148 K to room temperature using the Bruker IFS 125 HR Fourier transform spectrometer (FTS) at the Jet Propulsion Laboratory, Pasadena, California. The analysis of spectra was done using a multispectrum non-linear least-squares curve fitting technique. Theoretical calculations have been performed and the results are compared with the previously published line positions, intensities and with the line parameters available in the GEISA and HITRAN2012 databases.

  18. Effects of the Chernobyl and Fukushima nuclear accidents on atmospheric electricity parameters recorded at Polish observation stations

    Science.gov (United States)

    Kubicki, Marek; Baranski, Piotr; Odzimek, Anna; Michnowski, Stanislaw; Myslek-Laurikainen, Bogna

    2013-04-01

    We analyse the atmospheric electricity parameters, measured at Polish geophysical stations in Swider, Poland, and Hornsund, Spitsbergen, in connection with the radioactive incident in Fukushima, Japan, beginning on 11 March 2011, following the 9.0 earthquake and tsunami. We compare our results with the situation during and after the Chernobyl disaster on April 26, 1986, when the radioactive fallout detected at Swider increased in the last week of April 1986, from 4.111 to 238.7 Bq/m2 and up to 967.0 Bq/m2 in the second week of May 1986 - what was more than 235 times greater than the values measured prior to that accident. Besides the electric field especially the electric conductivity is very sensitive to the radioactive contamination of the air. Thus we postulate that these two measurements should be run at geophysical stations over the world and used as a relatively simple and low-cost tool for continuous monitoring of possible hazard caused by nuclear power plant accidents.

  19. CONTROL OF LASER RADIATION PARAMETERS: Enhancement of the efficiency and control of emission parameters of an unstable-resonator chemical oxygen—iodine laser

    Science.gov (United States)

    Boreisho, A. S.; Lobachev, V. V.; Savin, A. V.; Strakhov, S. Yu; Trilis, A. V.

    2007-07-01

    The outlook is considered for the development of a high-power supersonic flowing chemical oxygen—iodine laser operating as an amplifier and controlled by radiation from a master oscillator by using an unstable resonator with a hole-coupled mirror. The influence of the seed radiation intensity, the coupling-hole diameter, the active-medium length, and the magnification factor on the parameters of laser radiation is analysed. It is shown that the use of such resonators is most advisable in medium-power oxygen—iodine lasers for which classical unstable resonators are inefficient because of their low magnification factors. The use of unstable resonators with a hole-coupled mirror and injection provides the control of radiation parameters and a considerable increase in the output power and brightness of laser radiation.

  20. Sensitivity of Biomarkers to Changes in Chemical Emissions in the Earth's Proterozoic Atmosphere

    CERN Document Server

    Grenfell, John Lee; von Paris, Philip; Godolt, Mareike; Hedelt, Pascal; Patzer, Beate; Stracke, Barbara; Rauer, Heike

    2010-01-01

    The search for life beyond the Solar System is a major activity in exoplanet science. However, even if an Earth-like planet were to be found, it is unlikely to be at a similar stage of evolution as the modern Earth. It is therefore of interest to investigate the sensitivity of biomarker signals for life as we know it for an Earth-like planet but at earlier stages of evolution. Here, we assess biomarkers i.e. species almost exclusively associated with life, in present-day and in 10% present atmospheric level oxygen atmospheres corresponding to the Earth's Proterozoic period. We investigate the impact of proposed enhanced microbial emissions of the biomarker nitrous oxide, which photolyses to form nitrogen oxides which can destroy the biomarker ozone. A major result of our work is regardless of the microbial activity producing nitrous oxide in the early anoxic ocean, a certain minimum ozone column can be expected to persist in Proterozoic-type atmospheres due to a stabilising feedback loop between ozone, nitrou...

  1. A corona discharge atmospheric pressure chemical ionization source with selective NO(+) formation and its application for monoaromatic VOC detection.

    Science.gov (United States)

    Sabo, Martin; Matejčík, Štefan

    2013-11-21

    We have developed a new type of corona discharge (CD) for atmospheric pressure chemical ionization (APCI) for application in ion mobility spectrometry (IMS) as well as in mass spectrometry (MS). While the other CD-APCI sources are able to generate H3O(+)·(H2O)n as the major reactant ions in N2 or in zero air, the present CD-APCI source has the ability to generate up to 84% NO(+)·(H2O)n reactant ions in zero air. The change of the working gas from zero air to N2 allows us to change the major reactant ions from NO(+)·(H2O)n to H3O(+)·(H2O)n. In this paper we present the description of the new CD-APCI and discuss the processes associated with the NO(+) formation. The selective formation of NO(+)·(H2O)n reactant ions offers chemical ionization based on these ions which can be of great advantage for some classes of chemicals. We demonstrate here a significant increase in the sensitivity of the IMS-MS instrument for monoaromatic volatile organic compound (VOC) detection upon NO(+)·(H2O)n chemical ionization.

  2. Benzylammonium Thermometer Ions: Internal Energies of Ions Formed by Low Temperature Plasma and Atmospheric Pressure Chemical Ionization.

    Science.gov (United States)

    Stephens, Edward R; Dumlao, Morphy; Xiao, Dan; Zhang, Daming; Donald, William A

    2015-12-01

    The extent of internal energy deposition upon ion formation by low temperature plasma and atmospheric pressure chemical ionization was investigated using novel benzylammonium thermometer ions. C-N heterolytic bond dissociation enthalpies of nine 4-substituted benzylammoniums were calculated using CAM-B3LYP/6-311++G(d,p), which was significantly more accurate than B3LYP/6-311++G(d,p), MP2/6-311++G(d,p), and CBS-QB3 for calculating the enthalpies of 20 heterolytic dissociation reactions that were used to benchmark theory. All 4-substituted benzylammonium thermometer ions fragmented by a single pathway with comparable dissociation entropies, except 4-nitrobenzylammonium. Overall, the extent of energy deposition into ions formed by low temperature plasma was significantly lower than those formed by atmospheric pressure chemical ionization under these conditions. Because benzylamines are volatile, this new suite of thermometer ions should be useful for investigating the extent of internal energy deposition during ion formation for a wide range of ionization methods, including plasma, spray and laser desorption-based techniques. Graphical Abstract ᅟ.

  3. Exploring Atmospheric Aqueous Chemistry (and Secondary Organic Aerosol Formation) through OH Radical Oxidation Experiments, Droplet Evaporation and Chemical Modeling

    Science.gov (United States)

    Turpin, B. J.; Kirkland, J. R.; Lim, Y. B.; Ortiz-Montalvo, D. L.; Sullivan, A.; Häkkinen, S.; Schwier, A. N.; Tan, Y.; McNeill, V. F.; Collett, J. L.; Skog, K.; Keutsch, F. N.; Sareen, N.; Carlton, A. G.; Decesari, S.; Facchini, C.

    2013-12-01

    Gas phase photochemistry fragments and oxidizes organic emissions, making water-soluble organics ubiquitous in the atmosphere. My group and others have found that several water-soluble compounds react further in the aqueous phase forming low volatility products under atmospherically-relevant conditions (i.e., in clouds, fogs and wet aerosols). Thus, secondary organic aerosol can form as a result of gas followed by aqueous chemistry (aqSOA). We have used aqueous OH radical oxidation experiments coupled with product analysis and chemical modeling to validate and refine the aqueous chemistry of glyoxal, methylglyoxal, glycolaldehyde, and acetic acid. The resulting chemical model has provided insights into the differences between oxidation chemistry in clouds and in wet aerosols. Further, we conducted droplet evaporation experiments to characterize the volatility of the products. Most recently, we have conducted aqueous OH radical oxidation experiments with ambient mixtures of water-soluble gases to identify additional atmospherically-important precursors and products. Specifically, we scrubbed water-soluble gases from the ambient air in the Po Valley, Italy using four mist chambers in parallel, operating at 25-30 L min-1. Aqueous OH radical oxidation experiments and control experiments were conducted with these mixtures (total organic carbon ≈ 100 μM-C). OH radicals (3.5E-2 μM [OH] s-1) were generated by photolyzing H2O2. Precursors and products were characterized using electrospray ionization mass spectrometry (ESI-MS), ion chromatography (IC), IC-ESI-MS, and ultra high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Chemical modeling suggests that organic acids (e.g., oxalate, pyruvate, glycolate) are major products of OH radical oxidation at cloud-relevant concentrations, whereas organic radical - radical reactions result in the formation of oligomers in wet aerosols. Products of cloud chemistry and droplet evaporation have

  4. Estimating the NH3:H2SO4ratio of nucleating clusters in atmospheric conditions using quantum chemical methods

    Directory of Open Access Journals (Sweden)

    M. Kulmala

    2007-02-01

    Full Text Available We study the ammonia addition reactions of H2SO4·NH3 molecular clusters containing up to four ammonia and two sulfuric acid molecules using the ab initio method RI-MP2 (Resolution of Identity 2nd order Møller-Plesset perturbation theory. Together with results from previous studies, we use the computed values to estimate an upper limit for the ammonia content of small atmospheric clusters, without having to explicitly include water molecules in the quantum chemical simulations. Our results indicate that the NH3:H2SO4 mole ratio of small molecular clusters in typical atmospheric conditions is probably around 1:2. High ammonia concentrations or low temperatures may lead to the formation of ammonium bisulfate (1:1 clusters, but our results rule out the formation of ammonium sulfate clusters (2:1 anywhere in the atmosphere. A sensitivity analysis indicates that the qualitative conclusions of this study are not affected even by relatively large errors in the calculation of electronic energies or vibrational frequencies.

  5. Estimating the NH3:H2SO4 ratio of nucleating clusters in atmospheric conditions using quantum chemical methods

    Science.gov (United States)

    Kurtén, T.; Torpo, L.; Sundberg, M. R.; Kerminen, V.-M.; Vehkamäki, H.; Kulmala, M.

    2007-05-01

    We study the ammonia addition reactions of H2SO4·NH3 molecular clusters containing up to four ammonia and two sulfuric acid molecules using the ab initio method RI-MP2 (Resolution of Identity 2nd order Møller-Plesset perturbation theory). Together with results from previous studies, we use the computed values to estimate an upper limit for the ammonia content of small atmospheric clusters, without having to explicitly include water molecules in the quantum chemical simulations. Our results indicate that the NH3:H2SO4 mole ratio of small molecular clusters in typical atmospheric conditions is probably around 1:2. High ammonia concentrations or low temperatures may lead to the formation of ammonium bisulfate (1:1) clusters, but our results rule out the formation of ammonium sulfate clusters (2:1) anywhere in the atmosphere. A sensitivity analysis indicates that the qualitative conclusions of this study are not affected even by relatively large errors in the calculation of electronic energies or vibrational frequencies.

  6. Estimating the NH3:H2SO4 ratio of nucleating clusters in atmospheric conditions using quantum chemical methods

    Directory of Open Access Journals (Sweden)

    M. Kulmala

    2007-05-01

    Full Text Available We study the ammonia addition reactions of H2SO4·NH3 molecular clusters containing up to four ammonia and two sulfuric acid molecules using the ab initio method RI-MP2 (Resolution of Identity 2nd order Møller-Plesset perturbation theory. Together with results from previous studies, we use the computed values to estimate an upper limit for the ammonia content of small atmospheric clusters, without having to explicitly include water molecules in the quantum chemical simulations. Our results indicate that the NH3:H2SO4 mole ratio of small molecular clusters in typical atmospheric conditions is probably around 1:2. High ammonia concentrations or low temperatures may lead to the formation of ammonium bisulfate (1:1 clusters, but our results rule out the formation of ammonium sulfate clusters (2:1 anywhere in the atmosphere. A sensitivity analysis indicates that the qualitative conclusions of this study are not affected even by relatively large errors in the calculation of electronic energies or vibrational frequencies.

  7. The OH-initiated atmospheric chemical reactions of polyfluorinated dibenzofurans and polychlorinated dibenzofurans: A comparative theoretical study.

    Science.gov (United States)

    Zeng, Xiaolan; Chen, Jing; Qu, Ruijuan; Pan, Xiaoxue; Wang, Zunyao

    2017-02-01

    The atmospheric chemical reactions of some polyfluorinated dibenzofurans (PFDFs) and polychlorinated dibenzofurans (PCDFs), initiated by OH radical, were investigated by performing theoretical calculations using density functional theory (DFT) and B3LYP/6-311++G(2df,p) method. The obtained results indicate that OH addition reactions of PFDFs and PCDFs occurring at C1∼4 and CA sites are thermodynamic spontaneous changes and the branching ratio of the PF(C)DF-OH adducts is decided primarily by kinetic factor. The OH addition reactions of PFDFs taking place at fluorinated C1∼4 positions are kinetically comparable with those occurring at nonfluorinated C1∼4 positions, while OH addition reactions of PCDFs occurring at chlorinated C1∼4 sites are negligible. The total rate constants of the addition reactions of PFDFs or PCDFs become smaller with consecutive fluorination or chlorination, and substituting at C1 position has more adverse effects than substitution at other sites. The succedent O2 addition reactions of PF(C)DF-OH adducts are thermodynamic nonspontaneous processes under the atmospheric conditions, and have high Gibbs free energies of activation (ΔrG(≠)). The substituted dibenzofuranols are the primary oxidation products for PCDFs under the atmospheric conditions. However, other oxidative products may also be available for PFDFs besides substituted dibenzofuranols.

  8. Chemically reactive species in liquids generated by atmospheric-pressure plasmas and their roles in plasma medicine

    Energy Technology Data Exchange (ETDEWEB)

    Hamaguchi, Satoshi [Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-07-11

    Plasmas whose gas temperatures are close to room temperature may be generated in ambient air or a gas at atmospheric pressure with the use of low-frequency high voltage or low-power radio-frequency (RF) or microwave power applied to electrodes. Such plasmas can serve as a powerful source of free radicals and/or chemically reactive species that arise from atoms and molecules of the ambient gas. Recently use of such plasmas for medical purposes has attracted much attention as they can be implemented in possible medical devices that can cause blood coagulation, heal wounds, facilitate angiogenesis, sterilize surgical devices as well as living tissues without harming healthy cells, and selectively inactivate cancer cells. Especially of interest among reactive species generated by atmospheric-pressure plasmas (APP) are reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are generated in liquid phase. Since most living tissues and cells are immersed in liquids (such as blood or culture media), reactive species generated by APPs in the gas phase are transported to the liquid phase and possibly converted to different types of reactive species therein before causing some influence on the tissues or cells. In this study, the rate equations are solved to evaluate concentrations of various reactive species in pure water that are originated by plasma reactions in atmosphere and possible effects of such species (including ROS/RNS) on living tissues and cells are discussed.

  9. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies: Evaluation Number 18

    Science.gov (United States)

    Burkholder, J. B.; Sander, S. P.; Abbatt, J. P. D.; Barker, J. R.; Huie, R. E.; Kolb, C. E.; Kurylo, M. J.; Orkin, V. L.; Wilmouth, D. M.; Wine, P. H.

    2015-01-01

    This is the eighteenth in a series of evaluated sets of rate constants, photochemical cross sections, heterogeneous parameters, and thermochemical parameters compiled by the NASA Panel for Data Evaluation. The data are used primarily to model stratospheric and upper tropospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena. The evaluation is available in electronic form from the following Internet URL: http://jpldataeval.jpl.nasa.gov/

  10. Relation between chemical composition of Grateloupia doryphora (Montagne) Howe, Gymnogongrus griffithsiae (Turner) Martius, and abiotic parameters

    OpenAIRE

    Perfeto, Paulo Nelo Medeiros

    1998-01-01

    In Grateloupia doryphora and Gymnogongrus griffithsiae the seasonal variation of their chemical compounds was studied, establishing a relation with the physical and chemical properties of seawater. High values of proteins in the studied species were detected during the winter, 28.88% in G. doryphora and 26.68% in G. griffithsiae, corresponding to the maximum period of ammonium concentration in the marine environment. The variation in carbohydrates content showed an inverse relation with the p...

  11. Determination of oxygen and nitrogen derivatives of polycyclic aromatic hydrocarbons in fractions of asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization.

    Science.gov (United States)

    Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias

    2015-12-01

    Liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization was used for the determination of polycyclic aromatic hydrocarbon derivatives, the oxygenated polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons, formed in asphalt fractions. Two different methods have been developed for the determination of five oxygenated and seven nitrated polycyclic aromatic hydrocarbons that are characterized by having two or more condensed aromatic rings and present mutagenic and carcinogenic properties. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all compounds. The detection limits of the methods ranged from 0.1 to 57.3 μg/L for nitrated and from 0.1 to 6.6 μg/L for oxygenated derivatives. The limits of quantification were in the range of 4.6-191 μg/L for nitrated and 0.3-8.9 μg/L for oxygenated derivatives. The methods were validated against a diesel particulate extract standard reference material (National Institute of Standards and Technology SRM 1975), and the obtained concentrations (two nitrated derivatives) agreed with the certified values. The methods were applied in the analysis of asphalt samples after their fractionation into asphaltenes and maltenes, according to American Society for Testing and Material D4124, where the maltenic fraction was further separated into its basic, acidic, and neutral parts following the method of Green. Only two nitrated derivatives were found in the asphalt sample, quinoline and 2-nitrofluorene, with concentrations of 9.26 and 2146 mg/kg, respectively, whereas no oxygenated derivatives were detected.

  12. Properties of alumina films by atmospheric pressure metal-organic chemical vapour deposition

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Corbach, van H.D.; Fransen, T.; Gellings, P.J.

    1994-01-01

    Thin alumina films were deposited at low temperatures (290–420°C) on stainless steel, type AISI 304. The deposition process was carried out in nitrogen by metal-organic chemical vapour deposition using aluminum tri-sec-butoxide. The film properties including the protection of the underlying substrat

  13. Microbiology and atmospheric processes: biological, physical and chemical characterization of aerosol particles

    Science.gov (United States)

    Georgakopoulos, D. G.; Després, V.; Fröhlich-Nowoisky, J.; Psenner, R.; Ariya, P. A.; Pósfai, M.; Ahern, H. E.; Moffett, B. F.; Hill, T. C. J.

    2009-04-01

    The interest in bioaerosols has traditionally been linked to health hazards for humans, animals and plants. However, several components of bioaerosols exhibit physical properties of great significance for cloud processes, such as ice nucleation and cloud condensation. To gain a better understanding of their influence on climate, it is therefore important to determine the composition, concentration, seasonal fluctuation, regional diversity and evolution of bioaerosols. In this paper, we will review briefly the existing techniques for detection, quantification, physical and chemical analysis of biological particles, attempting to bridge physical, chemical and biological methods for analysis of biological particles and integrate them with aerosol sampling techniques. We will also explore some emerging spectroscopy techniques for bulk and single-particle analysis that have potential for in-situ physical and chemical analysis. Lastly, we will outline open questions and further desired capabilities (e.g., in-situ, sensitive, both broad and selective, on-line, time-resolved, rapid, versatile, cost-effective techniques) required prior to comprehensive understanding of chemical and physical characterization of bioaerosols.

  14. Microbiology and atmospheric processes: biological, physical and chemical characterization of aerosol particles

    Directory of Open Access Journals (Sweden)

    D. G. Georgakopoulos

    2008-04-01

    Full Text Available The interest in bioaerosols has traditionally been linked to health hazards for humans, animals and plants. However, several components of bioaerosols exhibit physical properties of great significance for cloud processes, such as ice nucleation and cloud condensation. To gain a better understanding of their influence on climate, it is therefore important to determine the composition, concentration, seasonal fluctuation, regional diversity and evolution of bioaerosols. In this paper, we will review briefly the existing techniques for detection, quantification, physical and chemical analysis of biological particles, attempting to bridge physical, chemical and biological methods for analysis of biological particles and integrate them with aerosol sampling techniques. We will also explore some emerging spectroscopy techniques for bulk and single-particle analysis that have potential for in-situ physical and chemical analysis. Lastly, we will outline open questions and further desired capabilities (e.g., in-situ, sensitive, both broad and selective, on-line, time-resolved, rapid, versatile, cost-effective techniques required prior to comprehensive understanding of chemical and physical characterization of bioaerosols.

  15. Microbiology and atmospheric processes: biological, physical and chemical characterization of aerosol particles

    Directory of Open Access Journals (Sweden)

    D. G. Georgakopoulos

    2009-04-01

    Full Text Available The interest in bioaerosols has traditionally been linked to health hazards for humans, animals and plants. However, several components of bioaerosols exhibit physical properties of great significance for cloud processes, such as ice nucleation and cloud condensation. To gain a better understanding of their influence on climate, it is therefore important to determine the composition, concentration, seasonal fluctuation, regional diversity and evolution of bioaerosols. In this paper, we will review briefly the existing techniques for detection, quantification, physical and chemical analysis of biological particles, attempting to bridge physical, chemical and biological methods for analysis of biological particles and integrate them with aerosol sampling techniques. We will also explore some emerging spectroscopy techniques for bulk and single-particle analysis that have potential for in-situ physical and chemical analysis. Lastly, we will outline open questions and further desired capabilities (e.g., in-situ, sensitive, both broad and selective, on-line, time-resolved, rapid, versatile, cost-effective techniques required prior to comprehensive understanding of chemical and physical characterization of bioaerosols.

  16. Risk Assessment System for New Chemical Substances: Implementation of atmospheric transport of organic compounds

    NARCIS (Netherlands)

    Toet C; de Leeuw FAAM

    1992-01-01

    Within the framework of the development of a risk assessment system for new chemical substances, estimation methods concerning exposure of man and environment through air have been investigated. The pathways through which exposure through air takes place in this risk assessment system are exposure

  17. AFOSR (Air Force Office of Scientific Research) Chemical & Atmospheric Sciences Program Review (28th).

    Science.gov (United States)

    1983-06-01

    Potential of Corona John A. Bicknell Discharges From Aircraft Flying Institute of Science & Technology In Precipitation P.O. Box 88 AFOSR-83-0083...transformation-toughened zirconia , as well as whisker-, particle- and fiber-reinforced glass and polycrystalline ceramic matrices, * and chemically

  18. [Attempt at quantitative estimation of genetic effects of chemical pollution of atmospheric air in urban populations].

    Science.gov (United States)

    Antypenko, Ie M; Kohut, N M; Oleksiienko, P L

    1992-01-01

    Epidemiological investigation of spontaneous abortions and congenital anomalies in three towns of Ukraine has shown that mutation rate in Mariupol, the most contaminated town, as compared with relatively clean town is essentially higher. Genetical consequences due to environmental chemical pollution in Mariupol proved to be equivalent to the chronic influence of ionizing radiation for 30 years in the dose of 230 REM.

  19. S-parameter at Non-Zero Temperature and Chemical Potential

    DEFF Research Database (Denmark)

    Søndergaard, Ulrik Ishøj; Sannino, Francesco; Pica, Claudio

    2011-01-01

    We compute the finite-temperature and matter density corrections to the S-parameter at the one loop level. At non-zero temperature T and matter density Lorentz symmetry breaks and therefore we suggest a suitable generalization of the S-parameter. By computing the plasma correction, we discover...

  20. S-parameter at Non-Zero Temperature and Chemical Potential

    DEFF Research Database (Denmark)

    Søndergaard, Ulrik Ishøj; Sannino, Francesco; Pica, Claudio

    2011-01-01

    We compute the finite-temperature and matter density corrections to the S-parameter at the one loop level. At non-zero temperature T and matter density Lorentz symmetry breaks and therefore we suggest a suitable generalization of the S-parameter. By computing the plasma correction, we discover a ...

  1. Atmospheric transport of persistent semi-volatile organic chemicals to the Arctic and cold condensation in the mid-troposphere – Part 1: 2-D modeling in mean atmosphere

    Directory of Open Access Journals (Sweden)

    J. Ma

    2010-08-01

    Full Text Available In the first part of this study for revisiting the cold condensation effect on global distribution of semi-volatile organic chemicals (SVOCs, the atmospheric transport of SVOCs to the Arctic in the mid-troposphere in a mean meridional atmospheric circulation over the Northern Hemisphere was simulated by a two-dimensional (2-D atmospheric transport model. Results show that under the mean meridional atmospheric circulation the long-range atmospheric transport of SVOCs from warm latitudes to the Arctic occurs primarily in the mid-troposphere. Although major sources are in low and mid-latitude soils, the modeled air concentration of SVOCs in the mid-troposphere is of the same order as or higher than that near the surface, demonstrating that the mid-troposphere is an important pathway and reservoir of SVOCs. The cold condensation of the chemicals is also likely to take place in the mid-troposphere over a source region of SVOCs in warm low latitudes through interacting with clouds. We demonstrate that the temperature dependent vapour pressure and atmospheric degradation rate of SVOCs exhibit similarities between lower atmosphere over the Arctic and the mid-troposphere over a tropical region. Frequent occurrence of atmospheric ascending motion and convection over warm latitudes carry the chemicals to a higher altitude where some of these chemicals may partition onto solid or aqueous phase through interaction with atmospheric aerosols, cloud water droplets and ice particles, and become more persistent at lower temperatures. Stronger winds in the mid-troposphere then convey solid and aqueous phase chemicals to the Arctic where they sink by large-scale descending motion and wet deposition. Using calculated water droplet-air partitioning coefficient of several persistent organic semi-volatile chemicals under a mean air temperature profile from the equator to the North Pole we propose that clouds are likely important sorbing media for SVOCs and pathway of

  2. Identification of goat milk powder by manufacturer using multiple chemical parameters.

    Science.gov (United States)

    McLeod, Rebecca J; Prosser, Colin G; Wakefield, Joshua W

    2016-02-01

    Concentrations of multiple elements and ratios of stable isotopes of carbon and nitrogen were measured and combined to create a chemical fingerprint of production batches of goat whole milk powder (WMP) produced by different manufacturers. Our objectives were to determine whether or not differences exist in the chemical fingerprint among samples of goat WMP produced at different sites, and assess temporal changes in the chemical fingerprint in product manufactured at one site. In total, 58 samples of goat WMP were analyzed by inductively coupled plasma-mass spectrometry as well as isotope ratio mass spectrometry and a suite of 13 elements (Li, Na, Mg, K, Ca, Mn, Cu, Zn, Rb, Sr, Mo, Cs, and Ba), δ(13)C, and δ(15)N selected to create the chemical fingerprint. Differences in the chemical fingerprint of samples between sites and over time were assessed using principal components analysis and canonical analysis of principal coordinates. Differences in the chemical fingerprints of samples between production sites provided a classification success rate (leave-one-out classification) of 98.1%, providing a basis for using the approach to test the authenticity of product manufactured at a site. Within one site, the chemical fingerprint of samples produced at the beginning of the production season differed from those produced in the middle and late season, driven predominantly by lower concentrations of Na, Mg, K, Mn, and Rb, and higher concentrations of Ba and Cu. This observed temporal variability highlights the importance of obtaining samples from throughout the season to ensure a representative chemical fingerprint is obtained for goat WMP from a single manufacturing site. The reconstitution and spray drying of samples from one manufacturer by the other manufacturer enabled the relative influence of the manufacturing process on the chemical fingerprint to be examined. It was found that such reprocessing altered the chemical fingerprint, although the degree of alteration

  3. Health Impacts Estimation of Mineralogical and Chemical Characterization of Suspended Atmospheric Particles over the East Desert

    OpenAIRE

    U. A. Rahoma; Elsayed Emara

    2010-01-01

    Problem statement: The small size fraction of aerosols, measured as PM10 and PM2.5, rather than the larger particles, is considered to be responsible for most of the health effects. Such particles have a relatively long residence time in the atmosphere and can therefore travel over long distances. Hence, a large portion of ambient concentrations of PM10 and in particular of particles with an aerodynamic diameter less than 2.5 µm (PM2.5), can be attributed to long range trans boundary air poll...

  4. Forest condition and chemical characteristics of atmospheric depositions: research and monitoring network in Lombardy

    Directory of Open Access Journals (Sweden)

    Flaminio DI GIROLAMO

    2002-09-01

    Full Text Available Since 1987, the Regional Forestry Board of Lombardy and the Water Research Institute of the National Research Council have been carrying out surveys of forest conditions and the response of the ecosystem to environmental factors. The study approach is based on a large number of permanent plots for extensive monitoring (Level 1. At this level, crown condition is assessed annually, and soil condition and the nutritional status of forests surveyed. Some of the permanent plots were selected for intensive monitoring (Level 2, focussing mainly on the impact of atmospheric pollution on forest ecosystems. Level 2 monitoring also includes increment analyses, ground vegetation assessment, atmospheric deposition, soil solution analyses and climatic observations. This paper summarises the main results of a pluriannual research, which provides a general picture of the state of forest health in the region and focuses on more detailed investigations, described as case studies. Modified wet and dry samplers which use a water surface to collect dry deposition were used in a pluriannual field campaign at five sites in alpine and prealpine areas, to measure the total atmospheric depositions and to evaluate the nitrogen and sulphate exceedances of critical loads. Throughfall and bulk precipitation chemistry were studied for five years (June 1994-May 1999 at two high elevation forest sites (Val Gerola and Val Masino which were known to differ in terms of tree health, as assessed by live crown condition. Results indicated a higher contribution from the dry deposition of N-NO3 -, N-NH4 + and H+ and considerable canopy leaching of Ca2+, K+ and weak organic acids at Val Gerola, where the symptoms of damage were more evident. In the area of Val Masino (SO, included since 1997 in the national CONECOFOR network, investigations focused on the effectiveness of the biological compartment in modifying fluxes of atmospheric elements, and on the role of nitrogen both as an

  5. Experimental Studies of Microwave Reflection and Attenuation by Plasmas Produced by Burning Chemicals in Atmosphere

    Institute of Scientific and Technical Information of China (English)

    YUAN Zhongcai; SHI Jiaming; WANG Jiachun

    2007-01-01

    A series of chemicals are designed and prepared.With the method of thermodynamics,the average electron densities of the plasmas generated by burning chemicals are calculated.The reflection and attenuation of the microwaves,in a frequency band of 2 GHz to 15 GHz,by the plasma are measured.The results of measurements indicate that the plasma can absorb the energies of the microwaves in a broad band and reflect them faintly.Moreover,theoretical discussion reveals that the electron-neutral collision is the major factor that results in the absorption in the wide band.By using Appleton equations,average collision frequencies and electron densities are calculated from the attenuations of microwaves.

  6. Metal fractionation of atmospheric aerosols via sequential chemical extraction: a review

    Energy Technology Data Exchange (ETDEWEB)

    Smichowski, Patricia; Gomez, Dario [Unidad de Actividad Quimica, Comision Nacional de Energia Atomica, San Martin (Argentina); Polla, Griselda [Unidad de Actividad Fisica, Comision Nacional de Energia Atomica, San Martin (Argentina)

    2005-01-01

    This review surveys schemes used to sequentially chemically fractionate metals and metalloids present in airborne particulate matter. It focuses mainly on sequential chemical fractionation schemes published over the last 15 years. These schemes have been classified into five main categories: (1) based on Tessier's procedure, (2) based on Chester's procedure, (3) based on Zatka's procedure, (4) based on BCR procedure, and (5) other procedures. The operational characteristics as well as the state of the art in metal fractionation of airborne particulate matter, fly ashes and workroom aerosols, in terms of applications, optimizations and innovations, are also described. Many references to other works in this area are provided. (orig.)

  7. Irregular response of nanofluid flow subject to chemical reaction and shape parameter in the presence of variable stream conditions

    Directory of Open Access Journals (Sweden)

    R. Kandasamy

    2016-09-01

    Full Text Available The problem of boundary layer of nanofluid flow which results from the stretching of a flat surface has been investigated numerically. The model includes the effects of Brownian motion, magnetic effect, non-linear velocity, variable thickness, thermophoresis, chemical reaction, porous medium, shape, thickness and heat source. The Partial differential equations are converted to ordinary deferential equations to solve analytically using shooting technique. The velocity, temperature and concentration profiles are discussed in detail for all parameters.

  8. Chemical characterization of atmospheric dust from a weekly time series in the north Red Sea between 2006 and 2010

    Science.gov (United States)

    Torfstein, Adi; Teutsch, Nadya; Tirosh, Ofir; Shaked, Yeala; Rivlin, Tanya; Zipori, Assaf; Stein, Mordechai; Lazar, Boaz; Erel, Yigal

    2017-08-01

    Atmospheric dust loads and chemical compositions serve as a key link between global climate patterns and marine biogeochemical cycles. The primary source of atmospheric dust in the world today is the Sahara-Arabian desert belt. Although this source was also active during the Quaternary, the interpretation of paleo-dust records and their effects on marine ecosystems is complicated by the scarcely reported atmospheric load patterns of bioavailable phases (i.e., water and acid leachable phases) and present-day contamination of anthropogenic components. This study reports a multi-annual time series of atmospheric dust loads (2006-2016) and their chemical compositions (2006-2010) collected in the north Gulf of Aqaba (north Red Sea) at a weekly to bi-weekly resolution. Major and trace element abundances in each sample are reported for three fractions: water-soluble salts, carbonates and oxides (weak acid leach), and Al-silicates. Dust loads vary seasonally from low values in late summer (∼20-30 μg m-3) to higher values in the fall, and highest values in late winter and early spring (∼150-250 μg m-3). Major and trace element abundances allow to distinguish between the sources and chemical compositions that dominate high and low dust loads in each season. The water leachable fraction (L0) is relatively enriched in Na, Ca, K and Mg, the acid-leachable fraction (L1) is enriched in Ca as well as Na, Al, Mg, Zn, Cd and Pb, and the silicate residue (L2) in Al and Fe. High dust loads occurring mainly during winter and spring months are characterized by low Mg/Ca (L1, L2), low K/Al and Na/Al (L1) and high Ca/Al (L1), high Mg/Al (L2) and relatively un-weathered (L2) contents. High dust load intervals during winter months are characterized by low passing air masses originating from the Sahara, while the ambient winter dust (low dust load) is associated with proximal source regions from the East Sahara and Arabian Peninsula. During late winter and spring months, high dust

  9. Effect of Operating Parameters and Chemical Additives on Crystal Habit and Specific Cake Resistance of Zinc Hydroxide Precipitates

    Energy Technology Data Exchange (ETDEWEB)

    Alwin, Jennifer Louise [New Mexico State Univ., Las Cruces, NM (United States)

    1999-08-01

    The effect of process parameters and chemical additives on the specific cake resistance of zinc hydroxide precipitates was investigated. The ability of a slurry to be filtered is dependent upon the particle habit of the solid and the particle habit is influenced by certain process variables. The process variables studied include neutralization temperature, agitation type, and alkalinity source used for neutralization. Several commercially available chemical additives advertised to aid in solid/liquid separation were also examined in conjunction with hydroxide precipitation. A statistical analysis revealed that the neutralization temperature and the source of alkalinity were statistically significant in influencing the specific cake resistance of zinc hydroxide precipitates in this study. The type of agitation did not significantly effect the specific cake resistance of zinc hydroxide precipitates. The use of chemical additives in conjunction with hydroxide precipitation had a favorable effect on the filterability. The morphology of the hydroxide precipitates was analyzed using scanning electron microscopy.

  10. Water Quality Assessment Using Physico-Chemical Parameters and Heavy Metals of Gobind Sagar Lake, Himachal Pradesh (India

    Directory of Open Access Journals (Sweden)

    Vandana Sharma

    2015-12-01

    Full Text Available Today the environment has become harmful for the health of living organisms due to excessive pollution and contamination of natural resources. The present investigation has been carried out with the objective to assess the water quality of the Gobind Sagar Lake, Bilaspur, Himachal Pradesh (India using physico-chemical parameters with heavy metals of the lake. For this study, three sampling sites were identified and samples from different sites were collected in summer season and important parameters [Water Temperature , pH, Total Hardness, Dissolved Carbon Dioxide (CO2, Dissolved Oxygen (DO, Chemical Oxygen Demand (COD, Biological Oxygen Demand (BOD, Chloride, Total Alkalinity, Total Dissolved Solid (TDS] with heavy metals [ Lead (P, Copper (Co, Iron (Fe, Cadmium (Cd, Nickel (Ni and Manganese (Mn, Chromium (Cr were analyzed. The results revealed that the different conditions of Gobind Sagar Lake in different sampling stations showed fluctuations in some physico-chemical parameters and also in heavy metals. These result depicted that water of lake was polluted in the form of nutrient enrichment which is due to agricultural activities and its runoff in and around catchment area of the lake. There are other many ways that things can end up in the lake as the free style way of disposal of industrial and domestic effluents etc. Results of studies on heavy metals in pollution are well documented revealing the toxic effects of these metals on aquatic organisms.

  11. Quantitative real-time monitoring of chemical reactions by autosampling flow injection analysis coupled with atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Zhu, Zhenqian; Bartmess, John E; McNally, Mary Ellen; Hoffman, Ron M; Cook, Kelsey D; Song, Liguo

    2012-09-04

    Although qualitative and/or semiquantitative real-time monitoring of chemical reactions have been reported with a few mass spectrometric approaches, to our knowledge, no quantitative mass spectrometric approach has been reported so far to have a calibration valid up to molar concentrations as required by process control. This is mostly due to the absence of a practical solution that could well address the sample overloading issue. In this study, a novel autosampling flow injection analysis coupled with an atmospheric pressure chemical ionization mass spectrometry (FIA/APCI-MS) system, consisting of a 1 μL automatic internal sample injector, a postinjection splitter with 1:10 splitting ratio, and a detached APCI source connected to the mass spectrometer using a 4.5 in. long, 0.042 in. inner diameter (ID) stainless-steel capillary, was thus introduced. Using this system together with an optional FIA solvent modifier, e.g., 0.05% (v/v) isopropylamine, a linear quantitative calibration up to molar concentration has been achieved with 3.4-7.2% relative standard deviations (RSDs) for 4 replicates. As a result, quantitative real-time monitoring of a model reaction was successfully performed at the 1.63 M level. It is expected that this novel autosampling FIA/APCI-MS system can be used in quantitative real-time monitoring of a wide range of reactions under diverse reaction conditions.

  12. Three-dimensional modelling of horizontal chemical vapor deposition. I - MOCVD at atmospheric pressure

    Science.gov (United States)

    Ouazzani, Jalil; Rosenberger, Franz

    1990-01-01

    A systematic numerical study of the MOCVD of GaAs from trimethylgallium and arsine in hydrogen or nitrogen carrier gas at atmospheric pressure is reported. Three-dimensional effects are explored for CVD reactors with large and small cross-sectional aspect ratios, and the effects on growth rate uniformity of tilting the susceptor are investigated for various input flow rates. It is found that, for light carrier gases, thermal diffusion must be included in the model. Buoyancy-driven three-dimensional flow effects can greatly influence the growth rate distribution through the reactor. The importance of the proper design of the lateral thermal boundary conditions for obtaining layers of uniform thickness is emphasized.

  13. Averaging kernel prediction from atmospheric and surface state parameters based on multiple regression for nadir-viewing satellite measurements of carbon monoxide and ozone

    Directory of Open Access Journals (Sweden)

    H. M. Worden

    2013-07-01

    Full Text Available A current obstacle to the observation system simulation experiments (OSSEs used to quantify the potential performance of future atmospheric composition remote sensing systems is a computationally efficient method to define the scene-dependent vertical sensitivity of measurements as expressed by the retrieval averaging kernels (AKs. We present a method for the efficient prediction of AKs for multispectral retrievals of carbon monoxide (CO and ozone (O3 based on actual retrievals from MOPITT (Measurements Of Pollution In The Troposphere on the Earth Observing System (EOS-Terra satellite and TES (Tropospheric Emission Spectrometer and OMI (Ozone Monitoring Instrument on EOS-Aura, respectively. This employs a multiple regression approach for deriving scene-dependent AKs using predictors based on state parameters such as the thermal contrast between the surface and lower atmospheric layers, trace gas volume mixing ratios (VMRs, solar zenith angle, water vapor amount, etc. We first compute the singular value decomposition (SVD for individual cloud-free AKs and retain the first three ranked singular vectors in order to fit the most significant orthogonal components of the AK in the subsequent multiple regression on a training set of retrieval cases. The resulting fit coefficients are applied to the predictors from a different test set of test retrievals cased to reconstruct predicted AKs, which can then be evaluated against the true retrieval AKs from the test set. By comparing the VMR profile adjustment resulting from the use of the predicted vs. true AKs, we quantify the CO and O3 VMR profile errors associated with the use of the predicted AKs compared to the true AKs that might be obtained from a computationally expensive full retrieval calculation as part of an OSSE. Similarly, we estimate the errors in CO and O3 VMRs from using a single regional average AK to represent all retrievals, which has been a common approximation in chemical OSSEs

  14. Laboratory studies of reactions of atmospheric gases with components of mineral dust aerosol and research in chemical education

    Science.gov (United States)

    Schuttlefield, Jennifer Dianne

    Mineral dust aerosol surfaces provide a medium in the atmosphere for heterogeneous chemistry to occur, which can alter the chemical balance of the Earth's atmosphere. It is becoming increasingly clear that the heterogeneous chemistry of these aerosols is a function of relative humidity (RH), as water on the surface of these particles can enhance or inhibit reactivity depending on the reaction. In this thesis, the uptake of water on clays and oxides was investigated, as well as phase transitions for atmospherically relevant salts. Reactions of carbon dioxide and nitric acid on oxide particles in the presence and absence of water were also examined. Following the reaction of HNO 3 on an alumina surface, photoirradiation experiments were preformed to determine the effect of irradiation on the adsorbed nitrate. The results presented in this thesis provide insight into the heterogeneous reactivity of mineral dust aerosol in the presence and absence of co-adsorbed water, as well as a fundamental understanding of water uptake on soluble and insoluble aerosols. A new method, using a quartz crystal microbalance, was developed to attempt to obtain a better fundamental understanding of different mineral dust components. In addition to the laboratory research, research in chemical education is also presented in this thesis. Two different types of work being done in the area of chemical education are shown. First a new experiment was implemented into an undergraduate physical chemistry course. The technique, ATR-FTIR spectroscopy, was chosen for its ability to expose students to a technique that is commonly used in laboratory research as well as the ease for which high quality results can be obtained. Students used ATR-FTIR spectroscopy to monitor sulfate, SO 42-, adsorption on TiO2 thin films. Second, the role of cognitive load and problem difficulty was accessed with data acquired while students completed an introductory-level chemistry word problem using a web-based tool

  15. Influences of fireworks on chemical characteristics of atmospheric fine and coarse particles during Taiwan's Lantern Festival

    Science.gov (United States)

    Tsai, Hsieh-Hung; Chien, Li-Hsing; Yuan, Chung-Shin; Lin, Yuan-Chung; Jen, Yi-Hsiu; Ie, Iau-Ren

    2012-12-01

    In recent years, the celebration activities of various folk-custom festivals have been getting more and more attention from the citizens in Taiwan. Festivities throughout the whole island are traditionally accompanied by loud and brightly colored firework displays. Among these activities, the firework displays during Taiwan's Lantern Festival in Kaohsiung harbor is one of the largest festivals in Taiwan each year. Therefore, it is of importance to investigate the influence of fireworks displays on the ambient air quality during the Taiwan's Lantern Festival. Field measurements of atmospheric particulate matter (PM) were conducted on February 9th-11th, 2009 during Taiwan's Lantern Festival in Kaohsiung City. Moreover, three kinds of fireworks powders obtained from the same manufacturing factory producing Kaohsiung Lantern Festival fireworks were burned in a self-designed combustion chamber to determine the physicochemical properties of the fireworks' particles and to establish the source profile of firework burning. Several metallic elements of PM during the firework display periods were notably higher than those during the non-firework periods. The concentrations of Mg, K, Pb, and Sr in PM2.5 during the firework periods were 10 times higher than those during the non-firework periods. Additionally, the Cl-/Na+ ratio was approximately 3 during the firework display periods as Cl- came from the chlorine content of the firework powder. Moreover, the OC/EC ratio increased up to 2.8. Results obtained from PCA and CMB receptor modeling showed that major sources of atmospheric particles during the firework display periods in Kaohsiung harbor were fireworks, vehicular exhausts, soil dusts and marine sprays. Particularly, on February 10th, the firework displays contributed approximately 25.2% and 16.6% of PM10 at two downwind sampling sites, respectively.

  16. Effects of organic versus conventional management on chemical and biological parameters in agricultural soils

    NARCIS (Netherlands)

    Diepeningen, van A.D.; Vos, de O.J.; Korthals, G.W.; Bruggen, van A.H.C.

    2006-01-01

    A comparative study of organic and conventional arable farming systems was conducted in The Netherlands to determine the effect of management practices on chemical and biological soil properties and soil health. Soils from thirteen accredited organic farms and conventionally managed neighboring farm

  17. Soil parameters are key factors to predict metal bioavailability to snails based on chemical extractant data

    Energy Technology Data Exchange (ETDEWEB)

    Pauget, B.; Gimbert, F., E-mail: frederic.gimbert@univ-fcomte.fr; Scheifler, R.; Coeurdassier, M.; Vaufleury, A. de

    2012-08-01

    Although soil characteristics modulate metal mobility and bioavailability to organisms, they are often ignored in the risk assessment of metal transfer. This paper aims to determine the ability of chemical methods to assess and predict cadmium (Cd), lead (Pb) and zinc (Zn) environmental bioavailability to the land snail Cantareus aspersus. Snails were exposed in the laboratory for 28 days to 17 soils from around a former smelter. The soils were selected for their range of pH, organic matter, clay content, and Cd, Pb and Zn concentrations. The influence of soil properties on environmental availability (estimated using HF-HClO{sub 4}, EDTA, CaCl{sub 2}, NH{sub 4}NO{sub 3}, NaNO{sub 3}, free ion activity and total dissolved metal concentration in soil solution) and on environmental bioavailability (modelled using accumulation kinetics) was identified. Among the seven chemical methods, only the EDTA and the total soil concentration can be used to assess Cd and Pb environmental bioavailability to snails (r Superscript-Two {sub adj} = 0.67 and 0.77, respectively). For Zn, none of the chemical methods were suitable. Taking into account the influence of the soil characteristics (pH and CEC) allows a better prediction of Cd and Pb environmental bioavailability (r Superscript-Two {sub adj} = 0.82 and 0.83, respectively). Even though alone none of the chemical methods tested could assess Zn environmental bioavailability to snails, the addition of pH, iron and aluminium oxides allowed the variation of assimilation fluxes to be predicted. A conceptual and practical method to use soil characteristics for risk assessment is proposed based on these results. We conclude that as yet there is no universal chemical method to predict metal environmental bioavailability to snails, and that the soil factors having the greatest impact depend on the metal considered. - Highlights: Black-Right-Pointing-Pointer New approach to identify chemical methods able to predict metal bioavailability

  18. Chemical properties and morphology of Marine Aerosol in the Mediterranean atmosphere: a mesocosm study

    Science.gov (United States)

    D'Anna, Barbara; Sellegri, Karine; Charrière, Bruno; Sempéré, Richard; Mas, Sébastien; Marchand, Nicolas; George, Christian; Même, Aurèlie; R'mili, Badr; Delmont, Anne; Schwier, Allison; Rose, Clémence; Colomb, Aurèlie; Pey, Jorge; Langley Dewitt, Helen

    2014-05-01

    The Mediterranean Sea is a special marine environment characterized by low biological activity and high anthropogenic pressure. It is often difficult to discriminate the contribution of Primary Sea Salt Aerosol formed at the sea surface from background level of the aerosol. An alternative tool to study the sea-air exchanges in a controlled environment is provided by the mesocosms, which represent an important link between field studies and laboratory experiments. The sea-air transfer of particles and gases was investigated in relation to water chemical composition and biological activity during a mesocosm experiment within the SAM project (Sources of marine Aerosol in the Mediterranean) at the Oceanographic and Marine Station STARESO in Western Corsica (May 2013). Three 2 m mesocosms were filled with screened (treatments: one was left unchanged as control and two were enriched by addition of nitrates and phosphates respecting Redfield ratio (N:P = 16). The evolution of the three systems was followed for 20 days. The set of sensors in each mesocosm was allowed to monitor, at high frequency (every 10 min), the water temperature, conductivity, pH, incident light, fluorescence of chlorophyll a and dissolved oxygen concentration. The mesocosm seawaters were daily sampled for chemical (colored dissolved organic matter, particulate matter and related polar compounds, transparent polysaccharides and nutrients concentration) and biological (chlorophyll a, virus, phytoplankton and zooplankton) analyses. Both dissolved and gaseous VOCs were also analyzed. In addition, few liters of seawater from each mesocosm were daily and immediately collected and transferred to a bubble-bursting apparatus to simulate nascent sea spray aerosol. On-line chemical analysis of the sub-micrometer fraction was performed by a TOF-AMS (Aerodyne). Off-line analysis included TEM-EDX for morphology and size distribution studies and a hybrid quadrupole-orbitrap mass spectrometer (Thermo Fischer) for

  19. Influence of Chemical Parameters on Artemia sp. (Crustacea: Anostraca Population in Al Wathba Lake in the Abu Dhabi Emirate, UAE

    Directory of Open Access Journals (Sweden)

    Anitha Saji

    2016-04-01

    Full Text Available Long term monitoring programme on Brine shrimp (Artemia sp. is being carried out by the Environment Agency, Abu Dhabi, United Arab Emirates (EAD with the prime purpose of understanding the population dynamics, ecology and habitat requirements of Artemia at Al Wathba Lake, situated within Al Wathba Wetland Reserve, which is an artificial wetland near Abu Dhabi City. The present study, being a component of this programme, intends to understand the influence of chemical parameters such as dissolved oxygen, nitrate, nitrite, phosphate, ammonia and total organic carbon on Artemia biomass and cyst production at different sites of the Al Wathba Lake. The study was carried out by sampling lake water quarterly for a period of 5 years from 2010 to 2014. The Artemia population was found to have direct impact of the above mentioned parameters on its abundance. The abundance was highest during the year 2010. Further, temperature, dissolved oxygen, nitrate and cadmium were found to be the most crucial parameters for production of Artemia. The study further aimed to determine the significant relationship between physico-chemical parameters and Artemia sp. population dynamics and cyst production.

  20. Rapid synthesis of tantalum oxide dielectric films by microwave microwave-assisted atmospheric chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ndiege, Nicholas [School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801 (United States)], E-mail: ndiege@uiuc.edu; Subramanian, Vaidyanathan [School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801 (United States)], E-mail: ravisv@unr.edu; Shannon, Mark A. [Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green street, Urbana, IL 61801 (United States)], E-mail: mshannon@uiuc.edu; Masel, Richard I. [School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801 (United States)], E-mail: r-masel@uiuc.edu

    2008-10-01

    Microwave-assisted chemical vapor deposition has been used to generate high quality, high-k dielectric films on silicon at high deposition rates with film thicknesses varying from 50 nm to 110 {mu}m using inexpensive equipment. Characterization of the post deposition products was performed by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Auger electron spectroscopy and Raman spectroscopy. Film growth was determined to occur via rapid formation and accumulation of tantalum oxide clusters from tantalum (v) ethoxide (Ta(OC{sub 2}H{sub 5}){sub 5}) vapor on the deposition surface.

  1. Impact of mechanical mowing and chemical treatment on phytosociological, pedochemical and biological parameters in roadside soils and vegetation.

    Science.gov (United States)

    Pellegrini, Elisa; Falcone, Lino; Loppi, Stefano; Lorenzini, Giacomo; Nali, Cristina

    2016-03-01

    Many chemical and non-chemical strategies have been applied to control weeds in agricultural and industrial areas. Knowledge regarding the effects of these methods on roadside vegetation is still poor. A 2-year field experiment was performed along a road located near Livorno (Tuscany, central Italy). Eight plots/strips were identified, of which four were subjected to periodical mechanical mowing and the remaining four were treated with a chemical herbicide based on glyphosate (the producer's recommended rates were used for the selective control of broad-leaved weeds). Our results clearly showed that roadside soil and vegetation are a significant reservoir of anthropogenic activities which have a strong negative effect on several phytosociological, pedochemical and biological parameters. Compared with conventional mechanical mowing, chemical treatment induced (i) a significant increase in organic matter in the upper plot layers (+18%), and (ii) a marked reduction in weed height throughout the entire period of the experiment. Irrespectively of the kind of treatment, no significance differences were detected in terms of (i) biological quality of soil (the abundance and diversity of arthropod communities did not change), and (ii) plant elemental content (bulk concentrations of analysed trace elements had a good fit within ranges of occurrence in the "reference plant"). The glyphosate partially controlled broad-leaved weeds and this moderate efficacy is dependent upon the season/time of application. In conclusion, the rational and sustainable use of chemical herbicides may be a useful tool for the management of roadside vegetation.

  2. Global chemical reactivity parameters for several chiral beta-blockers from the Density Functional Theory viewpoint.

    Science.gov (United States)

    Talmaciu, Mona Maria; Bodoki, Ede; Oprean, Radu

    2016-01-01

    Beta-adrenergic antagonists have been established as first line treatment in the medical management of hypertension, acute coronary syndrome and other cardiovascular diseases, as well as for the prevention of initial episodes of gastrointestinal bleeding in patients with cirrhosis and esophageal varices, glaucoma, and have recently become the main form of treatment of infantile hemangiomas. The aim of the present study is to calculate for 14 beta-blockers several quantum chemical descriptors in order to interpret various molecular properties such as electronic structure, conformation, reactivity, in the interest of determining how such descriptors could have an impact on our understanding of the experimental observations and describing various aspects of chemical binding of beta-blockers in terms of these descriptors. The 2D chemical structures of the beta-blockers (14 molecules with one stereogenic center) were cleaned in 3D, their geometry was preoptimized using the software MOPAC2012, by PM6 method, and then further refined using standard settings in MOE; HOMO and LUMO descriptors were calculated using semi-empirical molecular orbital methods AM1, MNDO and PM3, for the lowest energy conformers and the quantum chemical descriptors (HLG, electronegativity, chemical potential, hardness and softness, electrophilicity) were then calculated. According to HOMO-LUMO gap and the chemical hardness the most stable compounds are alprenolol, bisoprolol and esmolol. The softness values calculated for the study molecules revolve around 0.100. Propranolol, sotalol and timolol have among the highest electrophilicity index of the studied beta-blocker molecules. Results obtained from calculations showed that acebutolol, atenolol, timolol and sotalol have the highest values for the electronegativity index. The future aim is to determine whether it is possible to find a valid correlation between these descriptors and the physicochemical behavior of the molecules from this class. The

  3. Assessment of Physico-Chemical Parameters of Soil of Muthannan Kulam Wetland, Coimbatore, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    K Manimegalai

    2014-09-01

    Full Text Available Soil serves as a more reliable index for productivity than water qualities. The productivity of any pond depends largely on the quality of bottom soil that is “store house of nutrients.” The present paper deals with the study of physicochem