WorldWideScience

Sample records for atmospheric neutrino anomaly

  1. Establishing atmospheric neutrino oscillations with Super-Kamiokande

    International Nuclear Information System (INIS)

    Kajita, T.; Kearns, E.; Shiozawa, M.

    2016-01-01

    In this article we review the discovery of atmospheric neutrino oscillation by the Super-Kamiokande experiment. This review outlines the sequence of observations and their associated publications that solved the atmospheric neutrino anomaly and established the existence of neutrino oscillations with nearly maximal mixing of muon neutrinos and tau neutrinos. We also discuss subsequent and ongoing studies that use atmospheric neutrinos to continue to reveal the nature of the neutrino.

  2. Neutrino scattering and the reactor antineutrino anomaly

    Science.gov (United States)

    Garcés, Estela; Cañas, Blanca; Miranda, Omar; Parada, Alexander

    2017-12-01

    Low energy threshold reactor experiments have the potential to give insight into the light sterile neutrino signal provided by the reactor antineutrino anomaly and the gallium anomaly. In this work we analyze short baseline reactor experiments that detect by elastic neutrino electron scattering in the context of a light sterile neutrino signal. We also analyze the sensitivity of experimental proposals of coherent elastic neutrino nucleus scattering (CENNS) detectors in order to exclude or confirm the sterile neutrino signal with reactor antineutrinos.

  3. Atmospheric neutrino fluxes

    International Nuclear Information System (INIS)

    Perkins, D.H.

    1984-01-01

    The atmospheric neutrino fluxes, which are responsible for the main background in proton decay experiments, have been calculated by two independent methods. There are discrepancies between the two sets of results regarding latitude effects and up-down asymmetries, especially for neutrino energies Esub(ν) < 1 GeV. (author)

  4. Pathlength distributions of atmospheric neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Gaisser, T.K.; Stanev, Todor

    1999-01-01

    We discuss the distribution of the production heights of atmospheric neutrinos as a function of zenith angle and neutrino energy. The distributions can be used as the input for evaluation of neutrino propagation under various hypotheses for neutrino flavor oscillations. Their use may alter substantially the estimates of the oscillation parameters for almost horizontal atmospheric neutrinos.

  5. Results from atmospheric neutrinos

    Indian Academy of Sciences (India)

    Africa and South India first detected the natural neutrinos and observed .... lucky coincidences, such as the angular diameter of the moon and sun being ... (where there is some peaking due to longer flight paths for pions in the atmosphere).

  6. Phenomenology of atmospheric neutrinos

    Directory of Open Access Journals (Sweden)

    Fedynitch Anatoli

    2016-01-01

    Full Text Available The detection of astrophysical neutrinos, certainly a break-through result, introduced new experimental challenges and fundamental questions about acceleration mechanisms of cosmic rays. On one hand IceCube succeeded in finding an unambiguous proof for the existence of a diffuse astrophysical neutrino flux, on the other hand the precise determination of its spectral index and normalization requires a better knowledge about the atmospheric background at hundreds of TeV and PeV energies. Atmospheric neutrinos in this energy range originate mostly from decays of heavy-flavor mesons, which production in the phase space relevant for prompt leptons is uncertain. Current accelerator-based experiments are limited by detector acceptance and not so much by the collision energy. This paper recaps phenomenological aspects of atmospheric leptons and calculation methods, linking recent progress in flux predictions with particle physics at colliders, in particular the Large Hadron Collider.

  7. Determination of the Atmospheric Neutrino Fluxes from Atmospheric Neutrino Data

    NARCIS (Netherlands)

    Gonzalez-Garcia, M. C.; Maltoni, M.; Rojo, J.

    2006-01-01

    The precise knowledge of the atmospheric neutrino fluxes is a key ingredient in the interpretation of the results from any atmospheric neutrino experiment. In the standard atmospheric neutrino data analysis, these fluxes are theoretical inputs obtained from sophisticated numerical calculations based

  8. Atmospheric neutrino challenges

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)

    2005-08-15

    We briefly review the improvements in the predictions of atmospheric neutrino fluxes since the NOW2000 workshop. In spite of the great progress of the calculational technique the predictions are still not exact because of the uncertainties in the two major sets of input - cosmic ray flux and hadronic interactions on light nuclei.

  9. Atmospheric neutrino fluxes

    International Nuclear Information System (INIS)

    Honda, M.; Kasahara, K.; Hidaka, K.; Midorikawa, S.

    1990-02-01

    A detailed Monte Carlo simulation of neutrino fluxes of atmospheric origin is made taking into account the muon polarization effect on neutrinos from muon decay. We calculate the fluxes with energies above 3 MeV for future experiments. There still remains a significant discrepancy between the calculated (ν e +antiν e )/(ν μ +antiν μ ) ratio and that observed by the Kamiokande group. However, the ratio evaluated at the Frejus site shows a good agreement with the data. (author)

  10. Determination of the atmospheric neutrino fluxes from atmospheric neutrino data

    International Nuclear Information System (INIS)

    Gonzalez-Garcia, C.; Maltoni, M.; Rojo, J.

    2006-06-01

    The precise knowledge of the atmospheric neutrino fluxes is a key ingredient in the interpretation of the results from any atmospheric neutrino experiment. In the standard data analysis, these fluxes are theoretical inputs obtained from sophisticated numerical calculations based on the convolution of the primary cosmic ray spectrum with the expected yield of neutrinos per incident cosmic ray. In this work we present an alternative approach to the determination of the atmospheric neutrino fluxes based on the direct extraction from the experimental data on neutrino event rates. The extraction is achieved by means of a combination of artificial neural networks as interpolants and Monte Carlo methods for faithful error estimation. (author)

  11. Determination of the atmospheric neutrino fluxes from atmospheric neutrino data

    International Nuclear Information System (INIS)

    Gonzalez-Garcia, Concepcion; Maltoni, Michele; Rojo, Joan

    2006-01-01

    The precise knowledge of the atmospheric neutrino fluxes is a key ingredient in the interpretation of the results from any atmospheric neutrino experiment. In the standard data analysis, these fluxes are theoretical inputs obtained from sophisticated numerical calculations based on the convolution of the primary cosmic ray spectrum with the expected yield of neutrinos per incident cosmic ray. In this work we present an alternative approach to the determination of the atmospheric neutrino fluxes based on the direct extraction from the experimental data on neutrino event rates. The extraction is achieved by means of a combination of artificial neural networks as interpolants and Monte Carlo methods for faithful error estimation

  12. Supersymmetric interpretations of the neutrino anomalies

    CERN Document Server

    Valle, José W F

    2002-01-01

    Solar and atmospheric neutrino data strongly indicate the need for physics beyond the standard model. The neutrino oscillation interpretation of the atmospheric data is rather unambiguous, with more options still open for the solar data. After a brief summary of the latest global fits of neutrino data, I discuss theoretical neutrino mass models. This is done first from a top-bottom approach inspired by unification ideas involving a see-saw mechanism or high dimension operators. Then I consider bottom-up approaches, with especial emphasis on the idea that the origin of neutrino mass and mixing is intrinsically supersymmetric. Models involve effective bilinear breaking of R-parity. This allows for the possibility of probing the neutrino mixing also in the context of high-energy collider experiments such as the LHC. (41 refs).

  13. Neutrino anomaly and -nucleus interactions

    Indian Academy of Sciences (India)

    experiments [3]. These experimental results on electron and muon type neutrinos are not ... and experimentally. This is one of the major activities .... experiments. While this approach is expected to give reliable results at higher energies,.

  14. Neutrino mass spectrum with υμ → υs oscillations of atmospheric neutrinos

    International Nuclear Information System (INIS)

    Liu, Q.Y.; Smirnov, A.Yu.

    1998-02-01

    We consider the ''standard'' spectrum of the active neutrinos (characterized by strong mass hierarchy and small mixing) with additional sterile, υ s . The sterile neutrino mixes strongly with the muon neutrino, so that υ μ ↔ υ s oscillations solve the atmospheric neutrino problem. We show that the parametric enhancement of the υ μ ↔ υ s oscillations occurs for the high energy atmospheric neutrinos which cross the core of the Earth. This can be relevant for the anomaly observed by the MACRO experiment. Solar neutrinos are converted both to υ μ and υ s . The heaviest neutrino (approx. υ τ ) may compose the hot dark matter of the Universe. Phenomenology of this scenario is elaborated and crucial experimental signatures are identified. We also discuss properties of the underlying neutrino mass matrix. (author)

  15. Gauge Anomalies and Neutrino Seesaw Models

    CERN Document Server

    Neves Cebola, Luis Manuel

    Despite the success of the Standard Model concerning theoretical predictions, there are several experimental results that cannot be explained and there are reasons to believe that there exists new physics beyond it. Neutrino oscillations, and hence their masses, are examples of this. Experimentally it is known that neutrinos masses are quite small, when compared to all Standard Model particle masses. Among the theoretical possibilities to explain these tiny masses, the seesaw mechanism is a simple and well-motivated framework. In its minimal version, heavy particles are introduced that decouple from the theory in the early universe. To build consistent theories, classical symmetries need to be preserved at quantum level, so that there are no anomalies. The cancellation of these anomalies leads to constraints in the parameters of the theory. One attractive solution is to realize the anomaly cancellation through the modication of the gauge symmetry. In this thesis we present a short review of some features of t...

  16. Future of Atmospheric Neutrino Measurements

    International Nuclear Information System (INIS)

    Choubey, Sandhya

    2013-01-01

    Discovery of large θ 13 has opened up the possibility of determining the neutrino mass hierarchy and θ 23 octant through earth matter effects. The atmospheric neutrinos pick up large earth matter effects both in the ν e and ν μ channels, which if observed could lead to the determination of the mass hierarchy and θ 23 octant using this class of experiments in the near future. In this talk I review the status and prospects of future atmospheric neutrino measurements in determining the mass hierarchy and octant of θ 23

  17. Atmospheric neutrinos in Soudan 2.

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, M. C.; Soudan 2 Collaboration

    1999-03-30

    Soudan 2 has measured the atmospheric neutrino flavor ratio with 4.2 fiducial kiloton-years of exposure. It measures a flavor ratio of 0.66 {+-} 0.11(stat), inconsistent with the expected ratio but consistent with the hypothesis of neutrino oscillations and the Super-Kamiokande data. In a sample of events with good angular resolution, fits to the L/E distribution suggest that {Delta}m{sup 2} > 10{sup {minus}3} eV{sup 2}.

  18. Atmospheric Neutrinos in the MINOS Far Detector

    Energy Technology Data Exchange (ETDEWEB)

    Howcroft, Caius Leo Frederick [Univ. of Cambridge (United Kingdom)

    2004-12-01

    The phenomenon of flavour oscillations of neutrinos created in the atmosphere was first reported by the Super-Kamiokande collaboration in 1998 and since then has been confirmed by Soudan 2 and MACRO. The MINOS Far Detector is the first magnetized neutrino detector able to study atmospheric neutrino oscillations. Although it was designed to detect neutrinos from the NuMI beam, it provides a unique opportunity to measure the oscillation parameters for neutrinos and anti-neutrinos independently. The MINOS Far Detector was completed in August 2003 and since then has collected 2.52 kton-years of atmospheric data. Atmospheric neutrino interactions contained within the volume of the detector are separated from the dominant background from cosmic ray muons. Thirty seven events are selected with an estimated background contamination of less than 10%. Using the detector's magnetic field, 17 neutrino events and 6 anti-neutrino events are identified, 14 events have ambiguous charge. The neutrino oscillation parameters for vμ and $\\bar{v}$μ are studied using a maximum likelihood analysis. The measurement does not place constraining limits on the neutrino oscillation parameters due to the limited statistics of the data set analysed. However, this thesis represents the first observation of charge separated atmospheric neutrino interactions. It also details the techniques developed to perform atmospheric neutrino analyses in the MINOS Far Detector.

  19. Present status and future prospects of the atmospheric neutrino experiments

    International Nuclear Information System (INIS)

    Kajita, Takaaki

    2003-01-01

    During the last several years, the understanding of the neutrino masses and mixings has been improved significantly. In this paper, we discuss neutrino oscillation studies in atmospheric neutrino experiments. Prospects of future atmospheric neutrino experiments are also discussed

  20. Charge ratio of muons from atmospheric neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Gaisser, T.K.; Stanev, Todor

    2003-05-22

    We calculate the intensities and angular distributions of positive and negative muons produced by atmospheric neutrinos. We comment on some sources of uncertainty in the charge ratio. We also draw attention to a potentially interesting signature of neutrino oscillations in the muon charge ratio, and we discuss the prospects for its observation (which are not quite within the reach of currently planned magnetized detectors)

  1. Possible Tau Appearance Experiment with Atmospheric Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor

    1999-12-27

    We suggest an experimental measurement that could detect the appearance of tau neutrinos due to {nu}{sub {mu}}{yields}{nu}{sub {tau}} oscillations of atmospheric neutrinos by measuring the energy spectra of neutrino induced showers. {tau} neutrinos deposit a large fraction of their energy in showers generated by {nu}{sub {tau}} charge current interactions and the subsequent {tau} -lepton decay. The appearance of {nu}{sub {tau}} will enhance the spectrum of neutrino induced showers in energy ranges corresponding to the neutrino oscillation parameters. A shower rate lower than the ''no oscillation'' prediction is an indication for {nu}{sub {mu}}{yields}{nu}{sub s} oscillations. (c) 1999 The American Physical Society.

  2. Neutrino mass hierarchy determination via atmospheric neutrinos with future detectors

    International Nuclear Information System (INIS)

    Gandhi, Raj; Ghoshal, Pomita; Goswami, Srubabati; Mehta, Poonam; Sankar, S Uma; Shalgar, Shashank

    2008-01-01

    The issue of determining the neutrino mass hierarchy is one of the outstanding questions in neutrino physics. We consider the potential of hierarchy determination using atmospheric neutrinos as the source in three different proposed future detectors: A large Iron Calorimeter detector, a megaton Water Cerenkov detector and a large-mass Liquid Argon detector. If the mixing angle θ 13 is about 10 deg. (close to CHOOZ upper bound), the hierarchy sensitivity is essentially determined by resonant matter effects. To maximize the potential of these effects in atmospheric neutrinos, charge discrimination capability in the detector is desirable. Hence, detectors with this capability have an advantage in hierarchy determination. We compare and contrast the performance of the above three detectors in this respect. We perform a realistic analysis of the above future detectors for atmospheric neutrinos and show that it is possible to achieve a significant hierarchy sensitivity if the detector characteristics are favourable. Note: The abstract has been modified from its original form to incorporate suggestions received during the conference. The poster is being submitted in its original form.

  3. Can the neutrino speed anomaly be defended?

    CERN Document Server

    Knobloch, Jurgen

    2011-01-01

    The OPERA collaboration reported [1] a measurement of the neutrino velocity exceeding the speed of light by 0.025%. For the 730 km distance from CERN in Geneva to the OPERA experiment an early arrival of the neutrinos of 60.7 ns is measured with an accuracy of \\pm6.9 ns (stat.) and \\pm7.4 ns (sys.). A basic assumption in the analysis is that the proton time structure represents exactly the time structure of the neutrino flux. In this manuscript, we challenge this assumption. We identify two main origins of systematic effects: a group delay due to low pass filters acting on the particular shape of the proton time distribution and a movement of the proton beam at the target during the leading and trailing slopes of the spill.

  4. The FLUKA atmospheric neutrino flux calculation

    CERN Document Server

    Battistoni, G.; Montaruli, T.; Sala, P.R.

    2003-01-01

    The 3-dimensional (3-D) calculation of the atmospheric neutrino flux by means of the FLUKA Monte Carlo model is here described in all details, starting from the latest data on primary cosmic ray spectra. The importance of a 3-D calculation and of its consequences have been already debated in a previous paper. Here instead the focus is on the absolute flux. We stress the relevant aspects of the hadronic interaction model of FLUKA in the atmospheric neutrino flux calculation. This model is constructed and maintained so to provide a high degree of accuracy in the description of particle production. The accuracy achieved in the comparison with data from accelerators and cross checked with data on particle production in atmosphere certifies the reliability of shower calculation in atmosphere. The results presented here can be already used for analysis by current experiments on atmospheric neutrinos. However they represent an intermediate step towards a final release, since this calculation does not yet include the...

  5. New light Higgs boson and short-baseline neutrino anomalies

    Science.gov (United States)

    Asaadi, J.; Church, E.; Guenette, R.; Jones, B. J. P.; Szelc, A. M.

    2018-04-01

    The low-energy excesses observed by the MiniBooNE experiment have, to date, defied a convincing explanation under the standard model even with accommodation for nonzero neutrino mass. In this paper we explore a new oscillation mechanism to explain these anomalies, invoking a light neutrinophilic Higgs boson, conceived to induce a low Dirac neutrino mass in accord with experimental limits. Beam neutrinos forward scattering off of a locally overdense relic neutrino background give rise to a novel matter effect with an energy-specific resonance. An enhanced oscillation around this resonance peak produces flavor transitions which are highly consistent with the MiniBooNE neutrino- and antineutrino-mode data sets. The model provides substantially improved χ2 values beyond either the no-oscillation hypothesis or the more commonly explored 3 +1 sterile neutrino hypothesis. This mechanism would introduce distinctive signatures at each baseline in the upcoming short-baseline neutrino program at Fermilab, presenting opportunities for further exploration.

  6. Atmospheric neutrino oscillations for earth tomography

    International Nuclear Information System (INIS)

    Winter, Walter

    2016-01-01

    Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can measure the lower mantle density of the earth with a precision at the level of a few percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.

  7. Direct cosmic ray muons and atmospheric neutrinos

    International Nuclear Information System (INIS)

    Ryazhskaya, O.G.; Volkova, L.V.; Zatsepin, G.T.

    2005-01-01

    A possible contribution of very short living particles (particles with life-time much shorter than that of charmed particles), for example, resonances, into cosmic ray muon and atmospheric neutrino fluxes (direct muons and neutrinos) is estimated. This contribution could become of the same order of magnitude as that from pions and kaons (conventional) already at energies of hundreds TeV and tens TeV for muons and muon neutrinos coming to the sea level in the vertical direction correspondingly. Of course, the estimation has quite a qualitative character and even it is quite arbitrary but it is necessary to keep this contribution in mind when studying EAS, cosmic ray muon component or trying to interpret data of experiments on cosmic neutrino searching at high energies

  8. The reactor antineutrino anomaly and low energy threshold neutrino experiments

    Science.gov (United States)

    Cañas, B. C.; Garcés, E. A.; Miranda, O. G.; Parada, A.

    2018-01-01

    Short distance reactor antineutrino experiments measure an antineutrino spectrum a few percent lower than expected from theoretical predictions. In this work we study the potential of low energy threshold reactor experiments in the context of a light sterile neutrino signal. We discuss the perspectives of the recently detected coherent elastic neutrino-nucleus scattering in future reactor antineutrino experiments. We find that the expectations to improve the current constraints on the mixing with sterile neutrinos are promising. We also analyze the measurements of antineutrino scattering off electrons from short distance reactor experiments. In this case, the statistics is not competitive with inverse beta decay experiments, although future experiments might play a role when compare it with the Gallium anomaly.

  9. Experimental study of the atmospheric neutrino flux

    International Nuclear Information System (INIS)

    Hirata, K.S.; Kajita, T.; Koshiba, M.

    1988-01-01

    We have observed 277 fully contained events in the KAMIOKANDE detector. The number of electron-like single prong events is in good agreement with the predictions of a Monte Carlo calculation based on atmospheric neutrino interactions in the detector. On the other hand, the number of muon-like single prong events is 59 ± 7 %(statistical error) of the predicted number of the Monte Carlo calculation. We are unable to explain the data as the result of systematic detector effects or uncertainties in the atmospheric neutrino fluxes. (author)

  10. Atmospheric neutrino oscillations, θ13 and neutrino mass hierarchy

    International Nuclear Information System (INIS)

    Bernabeu, J.; Palomares-Ruiz, Sergio; Petcov, S.T.

    2003-01-01

    We derive predictions for the Nadir angle (θ n ) dependence of the ratio N μ /N e of the rates of the μ-like and e-like multi-GeV events measured in water-Cerenkov detectors in the case of 3-neutrino oscillations of the atmospheric ν e (ν-bar e ) and ν μ (ν-bar μ ), driven by one neutrino mass squared difference, vertical bar Δm 2 31 vertical bar ∼(2.5-3.0)x10 -3 eV 2 >> Δm 2 21 . This ratio is particularly sensitive to the Earth matter effects in the atmospheric neutrino oscillations, and thus to the values of sin 2 θ 13 and sin 2 θ 23 , θ 13 and θ 23 being the neutrino mixing angle limited by CHOOZ and Palo Verde experiments and that responsible for the dominant atmospheric ν μ →ν τ (ν-bar μ →ν-bar τ ) oscillations. It is also sensitive to the type of neutrino mass spectrum which can be with normal (Δm 2 31 >0) or with inverted (Δm 2 31 2 θ 13 > or approx. 0.01, sin 2 θ 23 > or approx. 0.5 and at cosθ n > or approx. 0.4, the Earth matter effects modify substantially the θ n -dependence of the ratio N μ /N e and in a way which cannot be reproduced with sin 2 θ 13 =0 and a different value of sin 2 θ 23 . For normal hierarchy the effects can be as large as ∼25% for cosθ n ∼(0.5-0.8), can reach ∼35% in the Earth core bin cosθ n ∼(0.84-1.0), and might be observable. They are typically by ∼10% smaller in the inverted hierarchy case. An observation of the Earth matter effects in the Nadir angle distribution of the ratio N μ /N e would clearly indicate that sin 2 θ 13 > or approx. 0.01 and sin 2 θ 23 > or approx. 0.50

  11. Study of the atmospheric neutrino oscillations in the Frejus experiment

    International Nuclear Information System (INIS)

    Perdereau, O.

    1989-05-01

    The behavior of atmospheric neutrinos is investigated. It is a zero mass, zero charge and weak interacting particle. The aim of the investigation is to search for non standard phenomena, such as neutrino oscillations. The neutrino theoretical properties are discussed and the physical parameters experimental limits are recalled. The analysis of the approximately 200 events from atmospheric neutrinos observed in Frejus detector is carried out. The results and simulation of neutrino interactions are presented. The data analysis induces to the exclusion of neutrino oscillation hypothesis from some models. Three cases of oscillations involving two neutrino flavors are analyzed. The effect of a third flavor is also taken into account. The present data and those from IMB and Kamiokande experiments are compared. Topics involving investigations on the superposition of a signal and the atmospheric neutrinos are included [fr

  12. Study of atmospheric neutrino interactions with the Frejus detector

    International Nuclear Information System (INIS)

    Longuemare, C.

    1988-06-01

    A detailed analysis of the 165 neutrino events collected in the Frejus detector during three years of running is presented. This sample, which corresponds to a 1.3 kt.year sensitivity, is compared to the predictions of a neutrino Monte Carlo simulation program based on a calculated atmospheric neutrino flux. The agreement is satisfactory at the present statistical level

  13. The AQUA-RICH atmospheric neutrino experiment

    CERN Document Server

    Antonioli, P; Bellagamba, L; Chesi, Enrico Guido; Cindolo, F; De Pasquale, S; Ekelöf, T J C; Garbini, M; Giusti, P; Grossheim, A; Pesci, A; Learned, J G; Margotti, A; Pinfold, James L; Sartorelli, G; Séguinot, Jacques; Tarantino, A; Weilhammer, Peter; Ypsilantis, Thomas; Zichichi, A; Zuber, K

    1999-01-01

    We describe a 125 m diameter spherical detector containing 1 Mt of water, capable of high rate observation of atmospheric neutrino events (30000/y). The ring imaging Cherenkov (RICH) technique is used to measure velocity, momentum and direction of particles produced by neutrinos interacting in water. The detector will be sited outdoors (under a 50 m water shield) in a natural (further excavated) pit, probably in Sicily. Spherical reflecting mirrors focus Cherenkov light produced by secondaries from interacting neutrinos. Photons are detected by 5310 hybrid photodiodes (HPDs) of 1 m diameter each with 396 pads of 45*45 mm/sup 2/ on the photocathode surface, demagnified to 9*9 mm/sup 2/ on the silicon sensor. For most tracks the ring width will be dominated by multiple scattering which should allow momentum to be determined. Hadrons of momentum p

  14. Study of atmospheric neutrino interactions and search for nucleon decay in Soudan 2

    Energy Technology Data Exchange (ETDEWEB)

    Leeson, William R. [Tufts Univ., Medford, MA (United States)

    1995-12-14

    Contained event samples, including 30 single-track muon-like events, 35 single-shower electron-like events, and 34 multiprong events, have been obtained from a 1.0 kiloton-year exposure of the Soudan 2 detector. A sample of 15 multiprong events which are partially contained has also been isolated. Properties of these events are used to examine the verity of the atmospheric neutrino flavor ratio anomaly as reported by the Kamiokande and IMB-3 water Cherenkov experiments. The compatibility of the Soudan data with each of two `new physics` explanations for the anomaly, namely proton decay and neutrino oscillations, is investigated. We examine background processes which have not been explicitly treated by the water Cherenkov detectors. Chapters discuss underground non-accelerator particle physics, the atmospheric neutrino anomaly and its interpretation, the Soudan 2 detector and event selection, reconstruction of neutrino events, rock event contamination in Soudan `quasi-elastic` samples, contained multiprong events in Soudan 2, neutrino flavor composition of the multiprong sample, partially contained events in Soudan 2, nucleon decay in Soudan 2, and a summary and discussion.

  15. Study of atmospheric neutrino interactions and search for nucleon decay in Soudan 2

    International Nuclear Information System (INIS)

    Leeson, W.R.

    1995-01-01

    Contained event samples, including 30 single-track muon-like events, 35 single-shower electron-like events, and 34 multiprong events, have been obtained from a 1.0 kiloton-year exposure of the Soudan 2 detector. A sample of 15 multiprong events which are partially contained has also been isolated. Properties of these events are used to examine the verity of the atmospheric neutrino flavor ratio anomaly as reported by the Kamiokande and IMB-3 water Cherenkov experiments. The compatibility of the Soudan data with each of two 'new physics' explanations for the anomaly, namely proton decay and neutrino oscillations, is investigated. We examine background processes which have not been explicitly treated by the water Cherenkov detectors. Chapters discuss underground non-accelerator particle physics, the atmospheric neutrino anomaly and its interpretation, the Soudan 2 detector and event selection, reconstruction of neutrino events, rock event contamination in Soudan 'quasi-elastic' samples, contained multiprong events in Soudan 2, neutrino flavor composition of the multiprong sample, partially contained events in Soudan 2, nucleon decay in Soudan 2, and a summary and discussion. 12 refs., 124 figs., 28 tabs., 7 appendices

  16. Report of the Solar and Atmospheric Neutrino Working Group

    International Nuclear Information System (INIS)

    Back, H.; Bahcall, J.N.; Bernabeu, J.; Boulay, M.G.; Bowles, T.; Calaprice, F.; Champagne, A.; Freedman, S.; Gai, M.; Galbiati, C.; Gallagher, H.; Gonzalez-Garcia, C.; Hahn, R.L.; Heeger, K.M.; Hime, A.; Jung, C.K.; Klein, J.R.; Koike, M.; Lanou, R.; Learned, J.G.; Lesko, K.T.; Losecco, J.; Maltoni, M.; Mann, A.; McKinsey, D.; Palomares-Ruiz, S.; Pena-Garay, C.; Petcov, S.T.; Piepke, A.; Pitt, M.; Raghavan, R.; Robertson, R.G.H.; Scholberg, K.; Sobel, H.W.; Takeuchi, T.; Vogelaar, R.; Wolfenstein, L.

    2004-01-01

    The highest priority of the Solar and Atmospheric Neutrino Experiment Working Group is the development of a real-time, precision experiment that measures the pp solar neutrino flux. A measurement of the pp solar neutrino flux, in comparison with the existing precision measurements of the high energy 8 B neutrino flux, will demonstrate the transition between vacuum and matter-dominated oscillations, thereby quantitatively testing a fundamental prediction of the standard scenario of neutrino flavor transformation. The initial solar neutrino beam is pure ν e , which also permits sensitive tests for sterile neutrinos. The pp experiment will also permit a significantly improved determination of θ 12 and, together with other solar neutrino measurements, either a measurement of θ 13 or a constraint a factor of two lower than existing bounds. In combination with the essential pre-requisite experiments that will measure the 7 Be solar neutrino flux with a precision of 5%, a measurement of the pp solar neutrino flux will constitute a sensitive test for non-standard energy generation mechanisms within the Sun. The Standard Solar Model predicts that the pp and 7 Be neutrinos together constitute more than 98% of the solar neutrino flux. The comparison of the solar luminosity measured via neutrinos to that measured via photons will test for any unknown energy generation mechanisms within the nearest star. A precise measurement of the pp neutrino flux (predicted to be 92% of the total flux) will also test stringently the theory of stellar evolution since the Standard Solar Model predicts the pp flux with a theoretical uncertainty of 1%. We also find that an atmospheric neutrino experiment capable of resolving the mass hierarchy is a high priority. Atmospheric neutrino experiments may be the only alternative to very long baseline accelerator experiments as a way of resolving this fundamental question. Such an experiment could be a very large scale water Cerenkov detector, or a

  17. Measurement of atmospheric neutrino composition with the IMB-3 detector

    International Nuclear Information System (INIS)

    Casper, D.; Becker-Szendy, R.; Bratton, C.B.; Cady, D.R.; Claus, R.; Dye, S.T.; Gajewski, W.; Goldhaber, M.; Haines, T.J.; Halverson, P.G.; Jones, T.W.; Kielczewska, D.; Kropp, W.R.; Learned, J.G.; LoSecco, J.M.; McGrew, C.; Matsuno, S.; Matthews, J.; Mudan, M.S.; Price, L.; Reines, F.; Schultz, J.; Sinclair, D.; Sobel, H.W.; Stone, J.L.; Sulak, L.R.; Svoboda, R.; Thornton, G.; van der Velde, J.C.; The University of Michigan, Ann Arbor, Michigan 48109 Brookhaven National; Laboratory, Upton, New York 11973; Boston University, Boston, Massachusetts 02215; The University of Hawaii, Honolulu, Hawaii 96822 University College, London, WC1E F6BT, United Kingdom; Warsaw University, Warsaw, Poland; Cleveland State University, Cleveland, Ohio 44115; The University of Notre Dame, Notre Dame, Indiana 46556; Lousiana State University, Baton Rouge, Lousisiana 70803; The University of Maryland, College Park, Maryland 20742)

    1991-01-01

    The atmospheric neutrino flux is measured using a 3.4-kt yr exposure of the IMB-3 detector. Single-ring events are classified as showering or nonshowering using the geometry of the Cerenkov pattern. A simulation of neutrino interactions and three models of atmospheric neutrino production are used to predict the composition of the sample. Showering-nonshowering character is strongly correlated with the flavor of the neutrino parent. In the lepton momentum range p<1500 MeV/c, we find that nonshowering events comprise [41±3±2syst]% of the total. The fraction expected is [51±5(syst)]%

  18. Tau appearance in atmospheric neutrino interactions

    International Nuclear Information System (INIS)

    Hall, Lawrence J.; Murayama, Hitoshi

    1998-01-01

    If the correct interpretation of the Super-Kamiokande atmospheric neutrino data is ν μ → ν τ oscillation, the contained data sample should already have more than 10 τ appearance events. We study the challenging task of detecting the τ, focusing on the decay chain τ ± → ρ ± → π ± π 0 in events with quasi-elastic τ production. The background level, which is currently quite uncertain because of a lack of relevant neutral current data, can be measured by the near detector in the K2K experiment. Our estimates of the background suggest that it may be possible to detect τ appearance in Super-Kamiokande with 5-10 years of running

  19. (g-2)μ anomaly and neutrino oscillations within the left-right model

    International Nuclear Information System (INIS)

    Boyarkin, O.M.; Bakanova, T.I.

    2003-12-01

    The Higgs sector structure of the left right model is investigated. The coupling constants of the physical Higgs bosons are expressed in terms of the oscillation parameters of the heavy neutrinos. The electroweak corrections to the value of the anomalous magnetic moment of the muon coming from the Higgs bosons axe found. It is shown that in the LRM the motion of the light neutrino flux in matter is described within the hybrid three-neutrino scheme, namely, the neutrino oscillations and the non standard neutrino interactions, caused by the Higgs sector. These non standard contributions may considerably change the matter potential compared with the SM prediction. Therefore, the analysis of the (g-2)μ, anomaly and the oscillations of the light neutrinos in matter could be used to constrain the parameters of the heavy neutrinos. (author)

  20. Measurement of Atmospheric Neutrino Oscillations with Very Large Volume Neutrino Telescopes

    Directory of Open Access Journals (Sweden)

    J. P. Yáñez

    2015-01-01

    Full Text Available Neutrino oscillations have been probed during the last few decades using multiple neutrino sources and experimental set-ups. In the recent years, very large volume neutrino telescopes have started contributing to the field. First ANTARES and then IceCube have relied on large and sparsely instrumented volumes to observe atmospheric neutrinos for combinations of baselines and energies inaccessible to other experiments. Using this advantage, the latest result from IceCube starts approaching the precision of other established technologies and is paving the way for future detectors, such as ORCA and PINGU. These new projects seek to provide better measurements of neutrino oscillation parameters and eventually determine the neutrino mass ordering. The results from running experiments and the potential from proposed projects are discussed in this review, emphasizing the experimental challenges involved in the measurements.

  1. Neutrinos

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    The Standard Model predicts that the neutrinos are massless and do not mix. Generic extensions of the Standard Model predict that neutrinos are massive (but, very likely, much lighter than the charged fermions). Therefore, the search for neutrino masses and mixing tests the Standard Model and probes new phasics. Measurements of various features of the fluxes of atmospheric, solar and, more recently, reactor neutrinos have provided evidence for neutrino oscillations and therefore for neutrino masses and mixing. These results have significant theoretical implications: new physics exists, and its scale can be estimated. There are interesting lessons for grand unified theories and for models of extra dimensions. The measured neutrino flavor parameters pose a challenge to flavor models.

  2. Corrections to the Predicitions for Atmospheric Neutrino Observations

    OpenAIRE

    Poirier, J.

    2000-01-01

    The theoretical Monte Carlo calculations of the production of neutrinos via cosmic rays incident upon the earth's atmosphere are examined. The calculations are sensitive to the assumed ratio of pi+ / pi- production cross sections; this ratio appears to be underestimated in the theory relative to the experimentally measured ratio. Since the neutrino detection cross section is three times larger than that for the antineutrino, the theoretical predicted detection ratio (nu_mu / nu_e) is correspo...

  3. Atmospheric neutrinos and the νe/νμ ratio

    International Nuclear Information System (INIS)

    Portella, H.M.; Maldonado, R.H.C.; Gomes, A.

    1994-01-01

    This work calculates analytically the atmospheric neutrino flux by solving the one-dimensional equations which describe the hadrons and leptons diffusion in the atmosphere, and compares the results with those obtained by using simulation calculations performed by Gaisser and coworkers, and analytically obtained by Bugaev and Naumov

  4. Measurement of neutrino oscillations in atmospheric neutrinos with the IceCube DeepCore detector

    Energy Technology Data Exchange (ETDEWEB)

    Yanez Garza, Juan Pablo

    2014-06-02

    The study of neutrino oscillations is an active field of research. During the last couple of decades many experiments have measured the effects of oscillations, pushing the field from the discovery stage towards an era of precision and deeper understanding of the phenomenon. The IceCube Neutrino Observatory, with its low energy subarray, DeepCore, has the possibility of contributing to this field. IceCube is a 1 km{sup 3} ice Cherenkov neutrino telescope buried deep in the Antarctic glacier. DeepCore, a region of denser instrumentation in the lower center of IceCube, permits the detection of neutrinos with energies as low as 10 GeV. Every year, thousands of atmospheric neutrinos around these energies leave a strong signature in DeepCore. Due to their energy and the distance they travel before being detected, these neutrinos can be used to measure the phenomenon of oscillations. This work starts with a study of the potential of IceCube DeepCore to measure neutrino oscillations in different channels, from which the disappearance of ν{sub μ} is chosen to move forward. It continues by describing a novel method for identifying Cherenkov photons that traveled without being scattered until detected direct photons. These photons are used to reconstruct the incoming zenith angle of muon neutrinos. The total energy of the interacting neutrino is also estimated. In data taken in 343 days during 2011-2012, 1487 neutrino candidates with an energy between 7 GeV and 100 GeV are found inside the DeepCore volume. Compared to the expectation from the atmospheric neutrino flux without oscillations, this corresponds to a deficit of about 500 muon neutrino events. The oscillation parameters that describe the data best are sin{sup 2}(2θ{sub 23})=1(>0.94 at 68 % C.L.) and vertical stroke Δm{sup 2}{sub 32} vertical stroke =2.4{sub -0.4}{sup +0.6}.10{sup -3} eV{sup 2}, which are in agreement with the results reported by other experiments. The simulation follows the data closely

  5. Observation of oscillations of atmospheric neutrinos with the IceCube Neutrino Observatory

    International Nuclear Information System (INIS)

    Euler, Sebastian

    2014-01-01

    Neutrino oscillations have become one of the most important research topics in particle physics since their discovery 15 years ago. In the past, the study of neutrino oscillations has been largely the domain of dedicated experiments, but in the last year also the large-volume neutrino telescopes ANTARES and IceCube reported their results on the oscillations of atmospheric muon neutrinos and thus joined the community of experiments studying neutrino oscillations. The precision of their results is not yet competitive, but their sheer size and the consequently enormous statistics give rise to the expectation of a competitive measurement in the future. This thesis describes an analysis that was done on IceCube data taken with the nearly complete detector in the years 2010/2011. IceCube is the world's largest neutrino detector, located at the geographic South Pole, where it uses the Antarctic ice sheet as its detection medium. It detects neutrinos interacting within or close to the instrumented volume by observing the Cherenkov light which is emitted by secondary particles produced in these interactions. An array of optical sensors deployed within a cubic kilometer of ice detects the Cherenkov light and makes it possible to reconstruct the energy and direction of the initial neutrino. Unfortunately, IceCube detects not only neutrinos: the desired neutrino signal is buried in a huge background of atmospheric muons, produced in air showers induced by cosmic rays. This background has to be rejected first. The analysis presented here employs an event selection that is based on the idea of using the outer layers of IceCube as an active veto against the background of atmospheric muons and achieves the necessary background rejection of more than 6 orders of magnitude while keeping a high-statistics sample of several thousands of muon neutrinos. In contrast to the earlier IceCube analysis, which used only the zenith angle, it then performs a 2-dimensional likelihood fit on

  6. Measurement of atmospheric neutrino oscillations and matter effects with PINGU

    Energy Technology Data Exchange (ETDEWEB)

    Coenders, Stefan; Euler, Sebastian; Krings, Kai; Vehring, Markus; Wallraff, Marius; Wiebusch, Christopher [RWTH Aachen Univ. (Germany). III. Physikalisches Inst.; Collaboration: IceCube-Collaboration

    2013-07-01

    With IceCube's low-energy extension DeepCore the first significant effects of atmospheric neutrino oscillations have been observed. The planned ''Precision Icecube Next Generation Upgrade'' (PINGU) inside DeepCore will lower the energy threshold to a few GeV, where matter effects of neutrino oscillations have to be taken into account. The Mikheyev-Smirnov-Wolfenstein (MSW) effect modifies the mixing between flavor and mass eigenstates of the neutrinos, resulting in stronger oscillations. Furthermore, neutrinos when passing through the Earth core experience parametric enhancement due to multiple discontinuities in the electron density. In this talk the effects of matter oscillations and the capabilities to measure these effects with PINGU are investigated.

  7. Search for atmospheric muon-neutrinos and extraterrestric neutrino point sources in the 1997 AMANDA-B10 data

    International Nuclear Information System (INIS)

    Biron von Curland, A.

    2002-07-01

    The young field of high energy neutrino astronomy can be motivated by the search for the origin of the charged cosmic rays. Large astrophysical objects like AGNs or supernova remnants are candidates to accelerate hadrons which then can interact to eventually produce high energy neutrinos. Neutrino-induced muons can be detected via their emission of Cherenkov light in large neutrino telescopes like AMANDA. More than 10 9 atmospheric muon events and approximately 5000 atmospheric neutrino events were registered by AMANDA-B10 in 1997. Out of these, 223 atmospheric neutrino candidate events have been extracted. This data set contains approximately 15 background events. It allows to confirm the expected sensitivity of the detector towards neutrino events. A second set containing 369 (approximately 270 atmospheric neutrino events and 100 atmospheric muon events) was used to search for extraterrestrial neutrino point sources. Neither a binned search, nor a cluster search, nor a search for preselected sources gave indications for the existence of a strong neutrino point source. Based on this result, flux limits were derived. Assuming E ν -2 spectra, typical flux limits for selected sources of the order of Φ μ limit ∝ 10 -14 cm -2 s -1 for muons and Φ ν limit ∝ 10 -7 cm -2 s -1 for neutrinos have been obtained. (orig.)

  8. A new calculation of atmospheric neutrino flux: the FLUKA approach

    International Nuclear Information System (INIS)

    Battistoni, G.; Bloise, C.; Cavalli, D.; Ferrari, A.; Montaruli, T.; Rancati, T.; Resconi, S.; Ronga, F.; Sala, P.R.

    1999-01-01

    Preliminary results from a full 3-D calculation of atmospheric neutrino fluxes using the FLUKA interaction model are presented and compared to previous existing calculations. This effort is motivated mainly by the 3-D capability and the satisfactory degree of accuracy of the hadron-nucleus models embedded in the FLUKA code. Here we show examples of benchmarking tests of the model with cosmic ray experiment results. A comparison of our calculation of the atmospheric neutrino flux with that of the Bartol group, for E ν > 1 GeV, is presented

  9. Ratio of νe/νμ in atmospheric neutrinos

    International Nuclear Information System (INIS)

    Barr, S.; Gaisser, T.K.; Tilav, S.

    1988-01-01

    When the effect of muon polarization is included, the calculated ratio ν e /ν μ for atmospheric neutrinos with energies above ≅ 200 MeV is increased by 10-20% compared to the result when polarization is neglected. We give an analytic derivation of this ratio for the artificial case of a power law differential spectrum of parent pions propagating in an atmosphere in which all pions and muons decay. This is sufficient to estimate the effect on the calculated ratio of electron-like to muon-like events induced by neutrino interactions in large underground detectors. (orig.)

  10. Possible Origin Of The Neutrino Speed Anomaly Reported By OPERA

    CERN Document Server

    Dado, Shlomo

    2011-01-01

    Recently the OPERA collaboration reported a measurement of a superluminal speed of muon neutrinos travelling through the Earth's crust between their production site at CERN and their detection site under Gran Sasso, ~730 km away. The measurement was based on the assumption that the pulse shape of the neutrinos from the decay of parent mesons produced in proton-target collisions is the same as that of the incident protons. Here we argue that the effective column density of the target along the beam direction decreases with time during the 10.5 microseconds duration of the proton pulse. This is because of the thermal expansion and expulsion of target material along the beam by the energy-momentum deposition during the 10.5 microseconds pulse. The progresive reduction in the effective column density during the pulse decreases the neutrino production rate per incident proton. It could have advanced the mean production time of the detected neutrinos relative to that calculated from the proton pulse-shape, by an am...

  11. Extraction of the atmospheric neutrino fluxes from experimental event rate data

    NARCIS (Netherlands)

    Gonzalez-Garcia, M. C.; Maltoni, M.; Rojo, J.

    2007-01-01

    The precise knowledge of the atmospheric neutrino fluxes is a key ingredient in the interpretation of the results from any atmospheric neutrino experiment. In the standard atmospheric neutrino data analysis, these fluxes are theoretical inputs obtained from sophisticated numerical calculations. In

  12. Hadron Production for the Neutrino Factory and for the Atmospheric Neutrino Flux

    CERN Document Server

    2002-01-01

    The HARP experiment carries out, at the CERN PS, a programme of measurements of secondary hadron production, over the full solid angle, produced on thin and thick nuclear targets by beams of protons and pions with momenta in the range 2 to 15~\\GeVc. The first aim of this experiment is to acquire adequate knowledge of pion yields for an optimal design of the proton driver of the Neutrino Factory. The second aim is to reduce substantially the existing $\\sim 30$\\% uncertainty in the calculation of absolute atmospheric neutrino fluxes and the $\\sim 7$\\% uncertainty in the ratio of neutrino flavours, required for a refined interpretation of the evidence for neutrino oscillation from the study of atmospheric neutrinos in present and forthcoming experiments. The HARP experiment comprises a large-acceptance charged-particle magnetic spectrometer of conventional design, located in the East Hall of the CERN PS and using the T9 tagged charged-particle beam. The main detector is a cylindrical TPC inside a solenoid magnet...

  13. The prompt atmospheric neutrino flux in the light of LHCb

    International Nuclear Information System (INIS)

    Gauld, Rhorry; Rojo, Juan; Rottoli, Luca; Sarkar, Subir; Talbert, Jim

    2016-01-01

    The recent observation of very high energy cosmic neutrinos by IceCube heralds the beginning of neutrino astronomy. At these energies, the dominant background to the astrophysical signal is the flux of ‘prompt’ neutrinos, arising from the decay of charmed mesons produced by cosmic ray collisions in the atmosphere. In this work we provide predictions for the prompt atmospheric neutrino flux in the framework of perturbative QCD, using state-of-the-art Monte Carlo event generators. Our calculation includes the constraints set by charm production measurements from the LHCb experiment at 7 TeV, recently validated with the corresponding 13 TeV data. Our result for the prompt flux is a factor of about 2 below the previous benchmark calculation, in general agreement with other recent estimates, but with an improved estimate of the uncertainty. This alleviates the existing tension between the theoretical prediction and IceCube limits, and suggests that a direct detection of the prompt flux is imminent.

  14. Atmospheric neutrino oscillations from upward throughgoing muon multiple scattering in MACRO

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, M.; Antolini, R.; Bakari, D.; Baldini, A.; Barbarino, G.C.; Barish, B.C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bloise, C.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Caruso, R.; Cecchini, S.; Cei, F.; Chiarella, V.; Chiarusi, T.; Choudhary, B.C.; Coutu, S.; Cozzi, M.; De Cataldo, G.; Dekhissi, H.; De Marzo, C.; De Mitri, I.; Derkaoui, J.; De Vincenzi, M.; Di Credico, A.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Grillo, A.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kumar, A.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D.S.; Lipari, P.; Longo, M.J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Manzoor, S.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M.N.; Michael, D.G.; Mikheyev, S.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolo, D.; Nolty, R.; Orth, C.; Osteria, G.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C.W.; Perrone, L.; Petrera, S.; Popa, V.; Raino, A.; Reynoldson, J.; Ronga, F.; Rrhioua, A.; Satriano, C.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra, P.; Sioli, M.; Sirri, G.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J.L.; Sulak, L.R.; Surdo, A.; Tarle, G.; Togo, V.; Vakili, M.; Walter, C.W.; Webb, R

    2003-07-24

    The energy of atmospheric neutrinos detected by MACRO was estimated using multiple Coulomb scattering of upward throughgoing muons. This analysis allows a test of atmospheric neutrino oscillations, relying on the distortion of the muon energy distribution. These results have been combined with those coming from the upward throughgoing muon angular distribution only. Both analyses are independent of the neutrino flux normalization and provide strong evidence, above the 4{sigma} level, in favour of neutrino oscillations.

  15. Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data

    International Nuclear Information System (INIS)

    Honda, M.; Kajita, T.; Kasahara, K.; Midorikawa, S.; Sanuki, T.

    2007-01-01

    Using the 'modified DPMJET-III' model explained in the previous paper [T. Sanuki et al., preceding Article, Phys. Rev. D 75, 043005 (2007).], we calculate the atmospheric neutrino flux. The calculation scheme is almost the same as HKKM04 [M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 70, 043008 (2004).], but the usage of the 'virtual detector' is improved to reduce the error due to it. Then we study the uncertainty of the calculated atmospheric neutrino flux summarizing the uncertainties of individual components of the simulation. The uncertainty of K-production in the interaction model is estimated using other interaction models: FLUKA'97 and FRITIOF 7.02, and modifying them so that they also reproduce the atmospheric muon flux data correctly. The uncertainties of the flux ratio and zenith angle dependence of the atmospheric neutrino flux are also studied

  16. Muon/electron separation for atmospheric neutrino interactions

    International Nuclear Information System (INIS)

    Allison, W.W.M.; Barr, G.D.; Brooks, C.B.; Cobb, J.H.; Kirby-Gallagher, L.M.; Giles, R.H.; Giller, G.L.; Perkins, D.H.; Shield, P.D.; Thomson, M.A.; West, N.; Alner, G.J.; Cockerill, D.J.A.; Edwards, V.W.; Garcia-Garcia, C.; Litchfield, P.J.; Pearce, G.F.; Woods, C.A.; Ambats, I.; Ayres, D.S.; Balka, L.; Barrett, W.L.; Dawson, J.W.; Fields, T.; Goodman, M.C.; Hill, N.; Jankowski, D.J.; Lopez, F.; May, E.N.; Price, L.E.; Schlereth, J.; Thron, J.L.; Uretsky, J.L.; Courant, H.; Dahlin, B.; Demuth, D.; Gray, R.; Heppelmann, S.; Johns, K.; Joyce, T.; Kasahara, S.; Longley, N.; Lowe, M.; Marshak, M.L.; Miller, W.H.; Minor, C.; Peterson, E.A.; Roback, D.; Rosen, D.; Ruddick, K.; Schmid, D.; Shupe, M.; Villaume, G.; Weems, L.; Werkema, S.J.

    1991-08-01

    A study has been made of the ability of the Soudan 2 nucleon decay detector to distinguish between showering and non-showering particles, utilizing several different pattern recognition techniques. This work has direct application in the determination of the ν μ /ν e ratio for atmospheric neutrino induced events. The results of the application of these techniques to Monte Carlo data and to calibration data from the ISIS test beam are presented

  17. Atmospheric neutrino oscillation analysis with external constraints in Super-Kamiokande I-IV

    Science.gov (United States)

    Abe, K.; Bronner, C.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kato, Y.; Kishimoto, Y.; Marti, Ll.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakajima, T.; Nakano, Y.; Nakayama, S.; Okajima, Y.; Orii, A.; Pronost, G.; Sekiya, H.; Shiozawa, M.; Sonoda, Y.; Takeda, A.; Takenaka, A.; Tanaka, H.; Tasaka, S.; Tomura, T.; Akutsu, R.; Irvine, T.; Kajita, T.; Kametani, I.; Kaneyuki, K.; Nishimura, Y.; Okumura, K.; Richard, E.; Tsui, K. M.; Labarga, L.; Fernandez, P.; Blaszczyk, F. d. M.; Gustafson, J.; Kachulis, C.; Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Berkman, S.; Tobayama, S.; Goldhaber, M.; Carminati, G.; Elnimr, M.; Kropp, W. R.; Mine, S.; Locke, S.; Renshaw, A.; Smy, M. B.; Sobel, H. W.; Takhistov, V.; Weatherly, P.; Ganezer, K. S.; Hartfiel, B. L.; Hill, J.; Hong, N.; Kim, J. Y.; Lim, I. T.; Park, R. G.; Akiri, T.; Himmel, A.; Li, Z.; O'Sullivan, E.; Scholberg, K.; Walter, C. W.; Wongjirad, T.; Ishizuka, T.; Nakamura, T.; Jang, J. S.; Choi, K.; Learned, J. G.; Matsuno, S.; Smith, S. N.; Amey, J.; Litchfield, R. P.; Ma, W. Y.; Uchida, Y.; Wascko, M. O.; Cao, S.; Friend, M.; Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.; Abe, KE.; Hasegawa, M.; Suzuki, A. T.; Takeuchi, Y.; Yano, T.; Hayashino, T.; Hirota, S.; Huang, K.; Ieki, K.; Jiang, M.; Kikawa, T.; Nakamura, KE.; Nakaya, T.; Patel, N. D.; Suzuki, K.; Takahashi, S.; Wendell, R. A.; Anthony, L. H. V.; McCauley, N.; Pritchard, A.; Fukuda, Y.; Itow, Y.; Mitsuka, G.; Murase, M.; Muto, F.; Suzuki, T.; Mijakowski, P.; Frankiewicz, K.; Hignight, J.; Imber, J.; Jung, C. K.; Li, X.; Palomino, J. L.; Santucci, G.; Vilela, C.; Wilking, M. J.; Yanagisawa, C.; Ito, S.; Fukuda, D.; Ishino, H.; Kayano, T.; Kibayashi, A.; Koshio, Y.; Mori, T.; Nagata, H.; Sakuda, M.; Xu, C.; Kuno, Y.; Wark, D.; Di Lodovico, F.; Richards, B.; Tacik, R.; Kim, S. B.; Cole, A.; Thompson, L.; Okazawa, H.; Choi, Y.; Ito, K.; Nishijima, K.; Koshiba, M.; Totsuka, Y.; Suda, Y.; Yokoyama, M.; Calland, R. G.; Hartz, M.; Martens, K.; Quilain, B.; Simpson, C.; Suzuki, Y.; Vagins, M. R.; Hamabe, D.; Kuze, M.; Yoshida, T.; Ishitsuka, M.; Martin, J. F.; Nantais, C. M.; de Perio, P.; Tanaka, H. A.; Konaka, A.; Chen, S.; Wan, L.; Zhang, Y.; Wilkes, R. J.; Minamino, A.; Super-Kamiokande Collaboration

    2018-04-01

    An analysis of atmospheric neutrino data from all four run periods of Super-Kamiokande optimized for sensitivity to the neutrino mass hierarchy is presented. Confidence intervals for Δ m322 , sin2θ23, sin2θ13 and δC P are presented for normal neutrino mass hierarchy and inverted neutrino mass hierarchy hypotheses, based on atmospheric neutrino data alone. Additional constraints from reactor data on θ13 and from published binned T2K data on muon neutrino disappearance and electron neutrino appearance are added to the atmospheric neutrino fit to give enhanced constraints on the above parameters. Over the range of parameters allowed at 90% confidence level, the normal mass hierarchy is favored by between 91.9% and 94.5% based on the combined Super-Kamiokande plus T2K result.

  18. CPT conservation and atmospheric neutrinos in the MINOS far detector

    International Nuclear Information System (INIS)

    Becker, Bernard Raymond

    2006-01-01

    The MINOS Far Detector is a 5400 ton iron calorimeter located at the Soudan state park in Soudan Minnesota. The MINOS far detector can observe atmospheric neutrinos and separate charge current ν μ and (bar ν) μ interactions by using a 1.4 T magnetic field to identify the charge of the produced muon. The CPT theorem requires that neutrinos and anti-neutrinos oscillate in the same way. In a fiducial exposure of 5.0 kilo-ton years a total of 41 candidate neutrino events are observed with an expectation of 53.1 ± 7.6(system.) ± 7.2(stat.) unoscillated events or 31.6 ± 4.7(system.) ± 5.6(stat.) events with Δm 2 = 2.4 x 10 -3 eV 2 , sin 2 (2θ) = 1.0 as oscillation parameters. These include 28 events which can have there charge identified with high confidence. These 28 events consist of 18 events consistent with being produced by ν μ and 10 events being consistent with being produced by (bar ν) μ . No evidence of CPT violation is observed

  19. CPT conservation and atmospheric neutrinos in the MINOS far detector

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Bernard Raymond [Univ. of Minnesota, Minneapolis, MN (United States)

    2006-02-01

    The MINOS Far Detector is a 5400 ton iron calorimeter located at the Soudan state park in Soudan Minnesota. The MINOS far detector can observe atmospheric neutrinos and separate charge current νμ and $\\bar{v}$μ interactions by using a 1.4 T magnetic field to identify the charge of the produced muon. The CPT theorem requires that neutrinos and anti-neutrinos oscillate in the same way. In a fiducial exposure of 5.0 kilo-ton years a total of 41 candidate neutrino events are observed with an expectation of 53.1 ± 7.6(system.) ± 7.2(stat.) unoscillated events or 31.6 ± 4.7(system.) ± 5.6(stat.) events with Δm2 = 2.4 x 10-3 eV2, sin2(2θ) = 1.0 as oscillation parameters. These include 28 events which can have there charge identified with high confidence. These 28 events consist of 18 events consistent with being produced by νμ and 10 events being consistent with being produced by $\\bar{v}$μ. No evidence of CPT violation is observed.

  20. Study of atmospherical neutrinos therapeutic potential

    International Nuclear Information System (INIS)

    Roustit, Rudy

    2008-01-01

    Glioblastoma is nowadays one of the most murderer cancers with only 5 % survival after 3 years in case of classic treatment in radiotherapy. However, recently a new treatment have been create, the Boron Neutron Capture Therapy (BNCT) using interaction's properties between bore 10 atoms and low energy neutrons that produced by giant accelerators or nuclear reactors. The target of this stage consist in adapt this technique in using a natural neutron source (atmospheric neutrons) and to know his radio-biologic efficacy. For this, we have been realised a numerical simulation of this source throughout a patient's brain [fr

  1. Do the SuperKamiokande atmospheric neutrino results explain electric charge quantisation?

    International Nuclear Information System (INIS)

    Foot, R.; Volkas, R.R.

    1998-08-01

    It is shown that the SuperKamiokande atmospheric neutrino results explain electric charge quantisation, provided that the oscillation mode is ν μ → ν τ and that the neutrino mass is of the Majorana type. It is emphasised that neutrino oscillation and neutrinoless double beta decay experiments provide important information regarding the seemingly unrelated issue of electric charge quantisation

  2. Minimalistic Neutrino Mass Model

    CERN Document Server

    De Gouvêa, A; Gouvea, Andre de

    2001-01-01

    We consider the simplest model which solves the solar and atmospheric neutrino puzzles, in the sense that it contains the smallest amount of beyond the Standard Model ingredients. The solar neutrino data is accounted for by Planck-mass effects while the atmospheric neutrino anomaly is due to the existence of a single right-handed neutrino at an intermediate mass scale between 10^9 GeV and 10^14 GeV. Even though the neutrino mixing angles are not exactly predicted, they can be naturally large, which agrees well with the current experimental situation. Furthermore, the amount of lepton asymmetry produced in the early universe by the decay of the right-handed neutrino is very predictive and may be enough to explain the current baryon-to-photon ratio if the right-handed neutrinos are produced out of thermal equilibrium. One definitive test for the model is the search for anomalous seasonal effects at Borexino.

  3. Searching for oscillations of atmospheric and accelerator neutrinos with GeNIUS

    International Nuclear Information System (INIS)

    Michael, Douglas G.

    1994-01-01

    A very large (17KT) fine-grained sampling calorimeter is discussed for use in studying contained events induced by atmospheric or accelerator neutrinos for the purpose of searching for neutrino oscillations. The ratio of neutral current to charged current events can be used to rule out a large region of the currently allowed parameter space with accelerator and atmospheric neutrinos providing complimentary measurements. ((orig.))

  4. Prompt atmospheric neutrino fluxes: perturbative QCD models and nuclear effects

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Atri [Department of Physics, University of Arizona,1118 E. 4th St. Tucson, AZ 85704 (United States); Space sciences, Technologies and Astrophysics Research (STAR) Institute,Université de Liège,Bât. B5a, 4000 Liège (Belgium); Enberg, Rikard [Department of Physics and Astronomy, Uppsala University,Box 516, SE-75120 Uppsala (Sweden); Jeong, Yu Seon [Department of Physics and IPAP, Yonsei University,50 Yonsei-ro Seodaemun-gu, Seoul 03722 (Korea, Republic of); National Institute of Supercomputing and Networking, KISTI,245 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Kim, C.S. [Department of Physics and IPAP, Yonsei University,50 Yonsei-ro Seodaemun-gu, Seoul 03722 (Korea, Republic of); Reno, Mary Hall [Department of Physics and Astronomy, University of Iowa,Iowa City, Iowa 52242 (United States); Sarcevic, Ina [Department of Physics, University of Arizona,1118 E. 4th St. Tucson, AZ 85704 (United States); Department of Astronomy, University of Arizona,933 N. Cherry Ave., Tucson, AZ 85721 (United States); Stasto, Anna [Department of Physics, 104 Davey Lab, The Pennsylvania State University,University Park, PA 16802 (United States)

    2016-11-28

    We evaluate the prompt atmospheric neutrino flux at high energies using three different frameworks for calculating the heavy quark production cross section in QCD: NLO perturbative QCD, k{sub T} factorization including low-x resummation, and the dipole model including parton saturation. We use QCD parameters, the value for the charm quark mass and the range for the factorization and renormalization scales that provide the best description of the total charm cross section measured at fixed target experiments, at RHIC and at LHC. Using these parameters we calculate differential cross sections for charm and bottom production and compare with the latest data on forward charm meson production from LHCb at 7 TeV and at 13 TeV, finding good agreement with the data. In addition, we investigate the role of nuclear shadowing by including nuclear parton distribution functions (PDF) for the target air nucleus using two different nuclear PDF schemes. Depending on the scheme used, we find the reduction of the flux due to nuclear effects varies from 10% to 50% at the highest energies. Finally, we compare our results with the IceCube limit on the prompt neutrino flux, which is already providing valuable information about some of the QCD models.

  5. Atmospheric gamma-ray observation with the BETS detectorfor calibrating atmospheric neutrino flux calculations

    CERN Document Server

    Kasahara, K.; Torii, S.; Tamura, T.; Tateyama, N.; Yoshida, K.; Yamagami, T.; Saito, Y.; Nishimura, J.; Murakami, H.; Kobayashi, T.; Komori, Y.; Honda, M.; Ohuchi, T.; Midorikawa, S.; Yuda, T.

    2002-01-01

    We observed atmospheric gamma-rays around 10 GeV at balloon altitudes (15~25 km) and at a mountain (2770 m a.s.l). The observed results were compared with Monte Carlo calculations to find that an interaction model (Lund Fritiof1.6) used in an old neutrino flux calculation was not good enough for describing the observed values. In stead, we found that two other nuclear interaction models, Lund Fritiof7.02 and dpmjet3.03, gave much better agreement with the observations. Our data will serve for examining nuclear interaction models and for deriving a reliable absolute atmospheric neutrino flux in the GeV region.

  6. Prompt neutrino fluxes in the atmosphere with PROSA parton distribution functions

    International Nuclear Information System (INIS)

    Garzelli, M.V.; Moch, S.; Placakyte, R.; Sigl, G.; Cooper-Sarkar, A.

    2016-11-01

    Effects on atmospheric prompt neutrino fluxes of present uncertainties affecting the nucleon composition are studied by using the PROSA fit to parton distribution functions (PDFs). The PROSA fit extends the precision of the PDFs to low x, which is the kinematic region of relevance for high-energy neutrino production, by taking into account LHCb data on charm and bottom hadroproduction. In the range of neutrino energies explored by present Very Large Volume Neutrino Telescopes, it is found that PDF uncertainties are far smaller with respect to those due to renormalization and factorization scale variation and to assumptions on the cosmic ray composition, which at present dominate and limit our knowledge of prompt neutrino fluxes. A discussion is presented on how these uncertainties affect the expected number of atmospheric prompt neutrino events in the analysis of high-energy events characterized by interaction vertices fully contained within the instrumented volume of the detector, performed by the IceCube collaboration.

  7. Geomagnetic-cutoff distribution functions for use in estimating detector response to neutrinos of atmospheric origin

    International Nuclear Information System (INIS)

    Cooke, D.J.

    1983-01-01

    A procedure has been developed for deriving functions which characterize the effect of geomagnetic cutoffs on the charged primary cosmic rays that give rise to neutrinos arriving in any given direction at specified points on or in the earth. These cutoff distribution functions, for use in atmospheric-neutrino flux calculations, have been determined for eight nucleon-decay--experiment sites, by use of a technique which employs the Stormer cutoff expression, and which assumes collinear motion of neutrino and parent primary

  8. Atmospheric anomalies in summer 1908: Water in the atmosphere

    Science.gov (United States)

    Gladysheva, O. G.

    2011-10-01

    A gigantic noctilucent cloud field was formed and different solar halos were observed after the Tunguska catastrophe. To explain these anomalous phenomena, it is necessary to assume that a large quantity of water was carried into the atmosphere, which indicates that the Tunguska cosmic body was of a comet origin. According to rough estimates, the quantity of water that is released into the atmosphere as a result of a cosmic body's destruction is more than 1010 kg. The observation of a flying object in an area with a radius of ≥700 km makes it possible to state that the Tunguska cosmic body looked like a luminous coma with a diameter not smaller than ≥10 km and became visible at heights of >500 km. The assumption that the Tunguska cosmic body started disintegrating at a height of ˜1000 km explains the formation of an area where its mater diffused and formed a luminous area above Europe.

  9. Expections for future neutrino searches at accelerators

    International Nuclear Information System (INIS)

    Reay, N.W.

    1995-01-01

    Anomalies in the flux of solar and atmosphere neutrinos have motivated a renaissance in the study of neutrino oscillations. Among many new experiments proposed, approved or commencing to run are several which rely on neutrino beams created at accelerators. These latter can be divided into short-baseline efforts searching at ultra-small mixing for neutrino masses in the cosmologically interesting mass range, and long-baseline efforts searching at larger mixing for oscillations in the mass range suggested by the atmosphere anomaly. A brief summary of these searches will be presented

  10. Intensity of Upward Muon Flux Due to Cosmic-Ray Neutrinos Produced in the Atmosphere

    Science.gov (United States)

    Lee, T. D.; Robinson, H.; Schwartz, M.; Cool, R.

    1963-06-01

    Calculations were performed to determine the upward going muon flux leaving the earth's surface after production by cosmic-ray neutrinos in the crust. Only neutrinos produced in the earth's atmosphere are considered. Rates of the order of one per 100 sq m/day might be expected if an intermediate boson exists and has a mass less than 2 Bev. (auth)

  11. Neutrino masses and mixing

    International Nuclear Information System (INIS)

    Fogli, G.

    1998-01-01

    The paper presents an analysis of the solar neutrino problem in terms of both Mikheyev-Smirnov-Wolfenstein (MSW) and vacuum neutrino oscillations, with the inclusion of the data collected by the SuperKamiokande experiment during 306.3 days of operation. In particular, the observed energy spectrum of the recoil electrons from 8 B neutrino scattering is discussed in detail and used to constrain the mass-mixing parameter space. Going to the atmospheric neutrino anomaly, the paper performs both a two- and three-flavor analysis of the most recent SuperKamiokande atmospheric neutrino data. The variations of the zenith distributions of ν events in the presence of flavor oscillations are investigated. It is seen that fits to the SK data, with and without the addition of the CHOOZ constrains, strongly limit the parameter space. Detailed bounds in triangle graphs are reported

  12. Radon anomalies prior to earthquakes (2). Atmospheric radon anomaly observed before the Hyogoken-Nanbu earthquake

    International Nuclear Information System (INIS)

    Ishikawa, Tetsuo; Tokonami, Shinji; Yasuoka, Yumi; Shinogi, Masaki; Nagahama, Hiroyuki; Omori, Yasutaka; Kawada, Yusuke

    2008-01-01

    Before the 1995 Hyogoken-Nanbu earthquake, various geochemical precursors were observed in the aftershock area: chloride ion concentration, groundwater discharge rate, groundwater radon concentration and so on. Kobe Pharmaceutical University (KPU) is located about 25 km northeast from the epicenter and within the aftershock area. Atmospheric radon concentration had been continuously measured from 1984 at KPU, using a flow-type ionization chamber. The radon concentration data were analyzed using the smoothed residual values which represent the daily minimum of radon concentration with the exclusion of normalized seasonal variation. The radon concentration (smoothed residual values) demonstrated an upward trend about two months before the Hyogoken-Nanbu earthquake. The trend can be well fitted to a log-periodic model related to earthquake fault dynamics. As a result of model fitting, a critical point was calculated to be between 13 and 27 January 1995, which was in good agreement with the occurrence date of earthquake (17 January 1995). The mechanism of radon anomaly before earthquakes is not fully understood. However, it might be possible to detect atmospheric radon anomaly as a precursor before a large earthquake, if (1) the measurement is conducted near the earthquake fault, (2) the monitoring station is located on granite (radon-rich) areas, and (3) the measurement is conducted for more than several years before the earthquake to obtain background data. (author)

  13. Time calibration with atmospheric muon tracks in the ANTARES neutrino telescope

    CERN Document Server

    Adrián-Martínez, S.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bogazzi, C.; Bormuth, R.; Bou-Cabo, M.; Bouwhuis, M.C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fermani, P.; Flaminio, V.; Folger, F.; Fusco, L.A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gracia-Ruiz, R.; Gómez-González, J.P.; Graf, K.; van Haren, H.; Heijboer, A.J.; Hello, Y.; Hernández-Rey, J.J.; Herrero, A.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C.W.; de Jong, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Lattuada, D.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J.A.; Martini, S.; Mathieu, A.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Neff, M.; Nezri, E.; Păvălaş, G.E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Rostovtsev, A.; Saldaña, M.; Samtleben, D.F.E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schulte, S.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Steijger, J.J.M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Trovato, A.; Tselengidou, M.; Tönnis, C.; Turpin, D.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J.D.; Zúñiga, J.

    The ANTARES experiment consists of an array of photomultipliers distributed along 12 lines and located deep underwater in the Mediterranean Sea. It searches for astrophysical neutrinos collecting the Cherenkov light induced by the charged particles, mainly muons, produced in neutrino interactions around the detector. Since at energies of $\\sim$10 TeV the muon and the incident neutrino are almost collinear, it is possible to use the ANTARES detector as a neutrino telescope and identify a source of neutrinos in the sky starting from a precise reconstruction of the muon trajectory. To get this result, the arrival times of the Cherenkov photons must be accurately measured. A to perform time calibrations with the precision required to have optimal performances of the instrument is described. The reconstructed tracks of the atmospheric muons in the ANTARES detector are used to determine the relative time offsets between photomultipliers. Currently, this method is used to obtain the time calibration constants for ph...

  14. Solar atmospheric neutrinos and the sensitivity floor for solar dark matter annihilation searches

    Energy Technology Data Exchange (ETDEWEB)

    Argüelles, C.A. [Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge MA (United States); De Wasseige, G. [Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Brussels (Belgium); Fedynitch, A. [Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); Jones, B.J.P., E-mail: caad@mit.edu, E-mail: gdewasse@vub.ac.be, E-mail: anatoli.fedynitch@desy.de, E-mail: ben.jones@uta.edu [University of Texas at Arlington, 108 Science Hall, 502 Yates St, Arlington TX (United States)

    2017-07-01

    Cosmic rays interacting in the solar atmosphere produce showers that result in a flux of high-energy neutrinos from the Sun. These form an irreducible background to indirect solar WIMP self-annihilation searches, which look for heavy dark matter particles annihilating into final states containing neutrinos in the Solar core. This background will eventually create a sensitivity floor for indirect WIMP self-annihilation searches analogous to that imposed by low-energy solar neutrino interactions for direct dark matter detection experiments. We present a new calculation of the flux of solar atmospheric neutrinos with a detailed treatment of systematic uncertainties inherent in solar atmospheric shower evolution, and we use this to derive the sensitivity floor for indirect solar WIMP annihilation analyses. We find that the floor lies less than one order of magnitude beyond the present experimental limits on spin-dependent WIMP-proton cross sections for some mass points, and that the high-energy solar atmospheric neutrino flux may be observable with running and future neutrino telescopes.

  15. Atmospheric neutrino-induced muons in the MACRO detector

    CERN Document Server

    Ronga, F

    1999-01-01

    A measurement of the flux of neutrino-induced muons using the MACRO detector is presented. Different event topologies, corresponding to different neutrino parent energies can be detected. The upward throughgoing muon sample is the larger event sample. The observed upward-throughgoing muons are 26% fewer than expected and the zenith angle distribution does not fit with the expected one. Assuming neutrino oscillations, both measurements suggest maximum mixing and Dm2 of a few times 10-3 eV2. The other samples are due to the internally produced events and to upward-going stopping muons. These data show a regular deficit of observed events in each angular bin, as expected assuming neutrino oscillations with maximum mixing, in agreement with the analysis of the upward-throughgoing muon sample.

  16. Effect of atmospheric flux uncertainties on the determination of the neutrino mass hierarchy

    Directory of Open Access Journals (Sweden)

    Sandroos Joakim

    2016-01-01

    Full Text Available The next generation of large-volume neutrino telescopes will include low-energy subarrays which will be able to measure neutrinos with energies of a few GeV. In this energy range the primary signal below the horizon is neutrinos created by cosmic ray interactions in the atmosphere. The measured event rate will depend on the neutrino mass hierarchy, allowing determination of this quantity to a significance level of about 3.5 sigma within a 5-year period, mostly limited by systematic uncertainties. We present here the impact of the uncertainties on the atmospheric neutrino flux normalization on the determination of the neutrino mass hierarchy. We suggest constraining the systematic uncertainties by including the downgoing neutrino sample, which will increase the significance. This work was performed using simulation data from the low-energy extension to the IceCube detector located at the geographic south pole, PINGU, and is relevant to a wide range of other experiments.

  17. Direct search for neutrino mass and anomaly in the tritium beta-spectrum: Status of 'Troitsk neutrino mass' experiment

    International Nuclear Information System (INIS)

    Lobashev, V.M.; Aseev, V.N.; Belesev, A.I.; Berlev, A.I.; Geraskin, E.V.; Golubev, A.A.; Kazachenko, O.V.; Kuznetsov, Yu.E.; Ostroumov, R.P.; Rivkis, L.A.; Stern, B.E.; Titov, N.A.; Zadoroghny, C.V.; Zakharov, Yu.I.

    2000-01-01

    Results of the 'Troitsk ν-mass' experiment on search for the neutrino rest mass in the tritium beta-decay are presented. New data on the time dependence of the anomalous, bump-like structure at the end of the beta spectrum reported earlier are discussed. Possible systematics is considered in view of contradiction of 'Troitsk nu-mass' observation with those of 'Mainz neutrino' set-up. An upper limit for electron antineutrino rest mass remains at m ν 2 at 95% C.L

  18. Winter to winter recurrence of atmospheric circulation anomalies over East Asia and its impact on winter surface air temperature anomalies.

    Science.gov (United States)

    Zhao, Xia; Yang, Guang

    2017-01-01

    The persistence of atmospheric circulation anomalies over East Asia shows a winter to winter recurrence (WTWR) phenomenon. Seasonal variations in sea level pressure anomalies and surface wind anomalies display significantly different characteristics between WTWR and non-WTWR years. The WTWR years are characterized by the recurrence of both a strong (weak) anomalous Siberian High and an East Asian winter monsoon over two successive winters without persistence through the intervening summer. However, anomalies during the non-WTWR years have the opposite sign between the current and ensuing winters. The WTWR of circulation anomalies contributes to that of surface air temperature anomalies (SATAs), which is useful information for improving seasonal and interannual climate predictions over East Asia and China. In the positive (negative) WTWR years, SATAs are cooler (warmer) over East Asia in two successive winters, but the signs of the SATAs are opposite in the preceding and subsequent winters during the non-WTWR years.

  19. Non-standard interactions with high-energy atmospheric neutrinos at IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Salvado, Jordi; Mena, Olga; Palomares-Ruiz, Sergio; Rius, Nuria [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València,Apartado de Correos 22085, E-46071 Valencia (Spain)

    2017-01-31

    Non-standard interactions in the propagation of neutrinos in matter can lead to significant deviations from expectations within the standard neutrino oscillation framework and atmospheric neutrino detectors have been considered to set constraints. However, most previous works have focused on relatively low-energy atmospheric neutrino data. Here, we consider the one-year high-energy through-going muon data in IceCube, which has been already used to search for light sterile neutrinos, to constrain new interactions in the μτ-sector. In our analysis we include several systematic uncertainties on both, the atmospheric neutrino flux and on the detector properties, which are accounted for via nuisance parameters. After considering different primary cosmic-ray spectra and hadronic interaction models, we improve over previous analysis by using the latest data and showing that systematics currently affect very little the bound on the off-diagonal ε{sub μτ}, with the 90% credible interval given by −6.0×10{sup −3}<ε{sub μτ}<5.4×10{sup −3}, comparable to previous results. In addition, we also estimate the expected sensitivity after 10 years of collected data in IceCube and study the precision at which non-standard parameters could be determined for the case of ε{sub μτ} near its current bound.

  20. Improvement of low energy atmospheric neutrino flux calculation using the JAM nuclear interaction model

    International Nuclear Information System (INIS)

    Honda, M.; Kajita, T.; Kasahara, K.; Midorikawa, S.

    2011-01-01

    We present the calculation of the atmospheric neutrino fluxes with an interaction model named JAM, which is used in PHITS (Particle and Heavy-Ion Transport code System) [K. Niita et al., Radiation Measurements 41, 1080 (2006).]. The JAM interaction model agrees with the HARP experiment [H. Collaboration, Astropart. Phys. 30, 124 (2008).] a little better than DPMJET-III[S. Roesler, R. Engel, and J. Ranft, arXiv:hep-ph/0012252.]. After some modifications, it reproduces the muon flux below 1 GeV/c at balloon altitudes better than the modified DPMJET-III, which we used for the calculation of atmospheric neutrino flux in previous works [T. Sanuki, M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 75, 043005 (2007).][M. Honda, T. Kajita, K. Kasahara, S. Midorikawa, and T. Sanuki, Phys. Rev. D 75, 043006 (2007).]. Some improvements in the calculation of atmospheric neutrino flux are also reported.

  1. Atmospheric, Long Baseline, and Reactor Neutrino Data Constraints on θ13

    Science.gov (United States)

    Roa, J. E.; Latimer, D. C.; Ernst, D. J.

    2009-08-01

    An atmospheric neutrino oscillation tool that uses full three-neutrino oscillation probabilities and a full three-neutrino treatment of the Mikheyev-Smirnov-Wolfenstein effect, together with an analysis of the K2K, MINOS, and CHOOZ data, is used to examine the bounds on θ13. The recent, more finely binned, Super-K atmospheric data are employed. For L/Eν≳104km/GeV, we previously found significant linear in θ13 terms. This analysis finds θ13 bounded from above by the atmospheric data while bounded from below by CHOOZ. The origin of this result arises from data in the previously mentioned very long baseline region; here, matter effects conspire with terms linear in θ13 to produce asymmetric bounds on θ13. Assuming CP conservation, we find θ13=-0.07-0.11+0.18 (90% C.L.).

  2. Atmospheric, Long Baseline, and Reactor Neutrino Data Constraints on θ13

    International Nuclear Information System (INIS)

    Roa, J. E.; Ernst, D. J.; Latimer, D. C.

    2009-01-01

    An atmospheric neutrino oscillation tool that uses full three-neutrino oscillation probabilities and a full three-neutrino treatment of the Mikheyev-Smirnov-Wolfenstein effect, together with an analysis of the K2K, MINOS, and CHOOZ data, is used to examine the bounds on θ 13 . The recent, more finely binned, Super-K atmospheric data are employed. For L/E ν > or approx. 10 4 km/GeV, we previously found significant linear in θ 13 terms. This analysis finds θ 13 bounded from above by the atmospheric data while bounded from below by CHOOZ. The origin of this result arises from data in the previously mentioned very long baseline region; here, matter effects conspire with terms linear in θ 13 to produce asymmetric bounds on θ 13 . Assuming CP conservation, we find θ 13 =-0.07 -0.11 +0.18 (90% C.L.).

  3. Atmospheric, long baseline, and reactor neutrino data constraints on theta_{13}.

    Science.gov (United States)

    Roa, J E; Latimer, D C; Ernst, D J

    2009-08-07

    An atmospheric neutrino oscillation tool that uses full three-neutrino oscillation probabilities and a full three-neutrino treatment of the Mikheyev-Smirnov-Wolfenstein effect, together with an analysis of the K2K, MINOS, and CHOOZ data, is used to examine the bounds on theta_{13}. The recent, more finely binned, Super-K atmospheric data are employed. For L/E_{nu} greater, similar 10;{4} km/GeV, we previously found significant linear in theta_{13} terms. This analysis finds theta_{13} bounded from above by the atmospheric data while bounded from below by CHOOZ. The origin of this result arises from data in the previously mentioned very long baseline region; here, matter effects conspire with terms linear in theta_{13} to produce asymmetric bounds on theta_{13}. Assuming CP conservation, we find theta_{13} = -0.07_{-0.11};{+0.18} (90% C.L.).

  4. Weird Weather Tales of Astronomical and Atmospheric Anomalies

    CERN Document Server

    Seargent, David A J

    2012-01-01

    Have you ever heard the story of the tornado that lifted a man’s wallet right from his pants pocket? What about the myth of the Min-Min light in Australia?  Do you have a story about seeing the “Green Flash” or want an explanation of the mysterious Sun Dogs? Weird Weather: Tales of Astronomical and Atmospheric Anomalies is about the strange, unusual, and inexplicable events that take place in the air and sky. These include meteors that appear inside a darkened house, ghost lights that follow lone travelers, lightning emerging from patches of fog, and much more. Many of these climatic brainteasers occur within Earth’s skies, but there are parallel curiosities on other worlds, including: lightning on Venus, methane spouts on Titan, thunderstorms twice the size of Earth on Saturn, whirlwinds and dust storms on Mars , and auroras on Jupiter! Just as atmosphere and outer space are not separated by a sharp boundary, so the subject of this book is not confined to the skies. Earth is the way it is because of...

  5. The possibility to observe the non-standard interaction by the Hyperkamiokande atmospheric neutrino experiment

    Energy Technology Data Exchange (ETDEWEB)

    Fukasawa, Shinya; Yasuda, Osamu, E-mail: yasuda@phys.se.tmu.ac.jp

    2017-01-15

    It was suggested that a tension between the mass-squared differences obtained from the solar neutrino and KamLAND experiments can be solved by introducing the non-standard flavor-dependent interaction in neutrino propagation. In this paper we discuss the possibility to test such a hypothesis by atmospheric neutrino observations at the future Hyper-Kamiokande experiment. Assuming that the mass hierarchy is known, we find that the best-fit value from the solar neutrino and KamLAND data can be tested at more than 8σ, while the one from the global analysis can be examined at 5.0σ (1.4σ) for the normal (inverted) mass hierarchy.

  6. Neutrino masses and neutrino oscillations

    CERN Document Server

    Di Lella, L

    2000-01-01

    These lectures review direct measurements of neutrino masses and the status of neutrino oscillation searches using both natural neutrino sources (the Sun and cosmic rays interacting in the Earth atmosphere) and artificial neutrinos (produced by nuclear reactors and accelerators). Finally, future experiments and plans are presented. (68 refs).

  7. Solar and atmospheric neutrinos in three generations with a magnetic moment

    International Nuclear Information System (INIS)

    Pulido, J.; Tao, Z.

    1995-01-01

    A solution to the solar and atomospheric neutrino problems in three generations in the joint context of matter oscillations and the magnetic moment is investigated. An appropriate rotation of the evolution Hamiltonian reduces the three generation case to a two generation one. A convenient background for such a scenario with small neutrino masses and large magnetic moments is given by the Zee-type models, in which the mass generation mechanism leads to a pair of separate orders of magnitude for the mass square differences between neutrino species. We obtain a ratio var-epsilon congruent 10 -2 --10 -3 between these orders of magnitude, so that one of them [(0.3--3)x10 -2 eV 2 ] is suitable for the atmospheric neutrino solution and the other (∼10 -5 eV 2 ) for the solar neutrino solution. The magnetic moment leads to a decrease of the survival probability with solar neutrino energy. Such a decrease is consistent with the experimental situation

  8. Sterile Neutrinos in Cold Climates

    International Nuclear Information System (INIS)

    Jones, Benjamin J.P.

    2015-01-01

    Measurements of neutrino oscillations at short baselines contain an intriguing set of experimental anomalies that may be suggestive of new physics such as the existence of sterile neutrinos. This three-part thesis presents research directed towards understanding these anomalies and searching for sterile neutrino oscillations. Part I contains a theoretical discussion of neutrino coherence properties. The open-quantum-system picture of neutrino beams, which allows a rigorous prediction of coherence distances for accelerator neutrinos, is presented. Validity of the standard treatment of active and sterile neutrino oscillations at short baselines is verified, and non-standard coherence loss effects at longer baselines are predicted. Part II concerns liquid argon detector development for the MicroBooNE experiment, which will search for short-baseline oscillations in the Booster Neutrino Beam at Fermilab. Topics include characterization and installation of the MicroBooNE optical system; test-stand measurements of liquid argon optical properties with dissolved impurities; optimization of wavelength-shifting coatings for liquid argon scintillation light detection; testing and deployment of high-voltage surge arrestors to protect TPC field cages; and software development for optical and TPC simulation and reconstruction. Part III presents a search for sterile neutrinos using the IceCube neutrino telescope, which has collected a large sample of atmospheric-neutrino-induced events in the 1-10 TeV energy range. Sterile neutrinos would modify the detected neutrino flux shape via MSW-resonant oscillations. Following a careful treatment of systematic uncertainties in the sample, no evidence for MSW-resonant oscillations is observed, and exclusion limits on 3+1 model parameter space are derived. Under the mixing assumptions made, the 90% confidence level exclusion limit extends to sin 2 2θ 24 ≤ 0.02 at m 2 ~ 0.3 eV 2 , and the LSND and MiniBooNE allowed regions are excluded at

  9. Measuring the deviation of the 2-3 lepton mixing from maximal with atmospheric neutrinos

    CERN Document Server

    González-Garciá, M C; Smirnov, A Yu

    2004-01-01

    The measurement of the deviation of the 2-3 leptonic mixing from maximal, D_23 = 1/2 - sin^2(theta_23), is one of the key issues for understanding the origin of the neutrino masses and mixing. In the three-neutrino context we study the dependence of various observables in the atmospheric neutrinos on D_23. We perform a global three-neutrino analysis of the atmospheric and reactor neutrino data taking into account the effects of both the oscillations driven by the "solar" parameters (Delta_m_21^2 and theta_12) and the 1-3 mixing. The departure from the one-dominant mass scale approximation results into the shift of the 2-3 mixing from maximal by Delta_sin^2(theta_23) ~ 0.04, so that D_23 ~ 0.04 +- 0.07 (1 sigma). Though value of the shift is not statistically significant, the tendency is robust. The shift is induced by the excess of the e-like events in the sub-GeV sample. We show that future large scale water Cherenkov detectors can determine D_23 with accuracy of a few percent, comparable with the sensitivit...

  10. An atmospheric muon neutrino disappearance measurement with the MINOS far detector

    Energy Technology Data Exchange (ETDEWEB)

    Gogos, Jeremy Peter [Univ. of Minnesota, Minneapolis, MN (United States)

    2007-12-01

    It is now widely accepted that the Standard Model assumption of massless neutrinos is wrong, due primarily to the observation of solar and atmospheric neutrino flavor oscillations by a small number of convincing experiments. The MINOS Far Detector, capable of observing both the outgoing lepton and associated showering products of a neutrino interaction, provides an excellent opportunity to independently search for an oscillation signature in atmospheric neutrinos. To this end, a MINOS data set from an 883 live day, 13.1 kt-yr exposure collected between July, 2003 and April, 2007 has been analyzed. 105 candidate charged current muon neutrino interactions were observed, with 120.5 ± 1.3 (statistical error only) expected in the absence of oscillation. A maximum likelihood analysis of the observed log(L/E) spectrum shows that the null oscillation hypothesis is excluded at over 96% confidence and that the best fit oscillation parameters are sin223 = 0.95 -0.32 and Δm$2\\atop{23}$ = 0.93$+3.94\\atop{ -0.44}$ x 10-3 eV2. This measurement of oscillation parameters is consistent with the best fit values from the Super-Kamiokande experiment at 68% confidence.

  11. Neutrino mixing and R{sub K} anomaly in U(1){sub X} models: a bottom-up approach

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, Disha; Chakraborty, Sabyasachi; Dighe, Amol [Tata Institute of Fundamental Research,Mumbai 400005 (India)

    2017-03-22

    We identify a class of U(1){sub X} models which can explain the R{sub K} anomaly and the neutrino mixing pattern, by using a bottom-up approach. The different X-charges of lepton generations account for the lepton universality violation required to explain R{sub K}. In addition to the three right-handed neutrinos needed for the Type-I seesaw mechanism, these minimal models only introduce an additional doublet Higgs and a singlet scalar. While the former helps in reproducing the quark mixing structure, the latter gives masses to neutrinos and the new gauge boson Z{sup ′}. Our bottom-up approach determines the X-charges of all particles using theoretical consistency and experimental constraints. We find the parameter space allowed by the constraints from neutral meson mixing, rare b→s decays and direct collider searches for Z{sup ′}. Such a Z{sup ′} may be observable at the ongoing run of the Large Hadron Collider with a few hundred fb{sup −1} of integrated luminosity.

  12. Testing the very-short-baseline neutrino anomalies at the solar sector

    Science.gov (United States)

    Palazzo, Antonio

    2011-06-01

    Motivated by the accumulating hints of new sterile neutrino species at the eV scale, we explore the consequences of such an hypothesis on the solar sector phenomenology. After introducing the theoretical formalism needed to describe the Mikheyev-Smirnov-Wolfenstein conversion of solar neutrinos in the presence of one (or more) sterile neutrino state(s) located “far” from the (ν1, ν2) “doublet”, we perform a quantitative analysis of the available experimental results, focusing on the electron neutrino mixing. We find that the present data posses a sensitivity to the amplitude of the lepton mixing matrix element Ue4—encoding the admixture of the electron neutrino with a new mass eigenstate—which is comparable to that achieved on the standard matrix element Ue3. In addition, and more importantly, our analysis evidences that, in a 4-flavor framework, the current preference for |Ue3|≠0 is indistinguishable from that for |Ue4|≠0, having both a similar statistical significance (which is ˜1.3σ adopting the old reactor fluxes determinations, and ˜1.8σ using their new estimates.) We also point out that, differently from the standard 3-flavor case, in a 3+1 scheme the Dirac CP-violating phases cannot be eliminated from the description of solar neutrino conversions.

  13. Measurement of the atmospheric muon neutrino energy spectrum with IceCube in the 79- and 86-String configuration

    Directory of Open Access Journals (Sweden)

    Ruhe T.

    2016-01-01

    Full Text Available IceCube is a neutrino telescope with an instrumented volume of one cubic kilometer. A total of 5160 Digital Optical Modules (DOMs is deployed on 86 strings forming a three dimensional detector array. Although primarily designed for the detection of neutrinos from astrophysical sources, the detector can be used for spectral measurements of atmospheric neutrinos. These spectral measurements are hindered by a dominant background of atmospheric muons. State-of-the-art techniques from Machine Learning and Data Mining are required to select a high-purity sample of atmospheric neutrino candidates. The energy spectrum of muon neutrinos is obtained from energy-dependent input variables by utilizing regularized unfolding. The results obtained using IceCube in the 79- and 86-string configuration are presented in this paper.

  14. Unified fit of solar and atmospheric neutrinos: towards the MNSP matrix

    International Nuclear Information System (INIS)

    2002-01-01

    Present solar and atmospheric neutrino give a strong indication that neutrinos oscillate between the three active species. This is the first step towards the determination of their mass. But we have also to determine the 3 x 3 neutrino mixing matrix (3 angles and one or several phases linked to CP violation), called MNSP (Maki-Nakagawa-Suzuki-Pontecorvo) and similar to the quark mixing matrix, called CKM (Cabibbo-Kobayashi-Maskawa). The purpose of the colloquium (one day) is to give an overview of the present situation and what progresses are expected in the forthcoming years. 3 guidelines: pedagogical approach, critical review of the experimental situation and of the different analyses, lookout to the future. (author)

  15. Study of cosmic ray interaction model based on atmospheric muons for the neutrino flux calculation

    International Nuclear Information System (INIS)

    Sanuki, T.; Honda, M.; Kajita, T.; Kasahara, K.; Midorikawa, S.

    2007-01-01

    We have studied the hadronic interaction for the calculation of the atmospheric neutrino flux by summarizing the accurately measured atmospheric muon flux data and comparing with simulations. We find the atmospheric muon and neutrino fluxes respond to errors in the π-production of the hadronic interaction similarly, and compare the atmospheric muon flux calculated using the HKKM04 [M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 70, 043008 (2004).] code with experimental measurements. The μ + +μ - data show good agreement in the 1∼30 GeV/c range, but a large disagreement above 30 GeV/c. The μ + /μ - ratio shows sizable differences at lower and higher momenta for opposite directions. As the disagreements are considered to be due to assumptions in the hadronic interaction model, we try to improve it phenomenologically based on the quark parton model. The improved interaction model reproduces the observed muon flux data well. The calculation of the atmospheric neutrino flux will be reported in the following paper [M. Honda et al., Phys. Rev. D 75, 043006 (2007).

  16. Anomalies

    International Nuclear Information System (INIS)

    Bardeen, W.A.

    1985-08-01

    Anomalies have a diverse impact on many aspects of physical phenomena. The role of anomalies in determining physical structure from the amplitude for π 0 decay to the foundations of superstring theory will be reviewed. 36 refs

  17. A Monte Carlo study of atmospheric muon-neutrinos in Amanda

    Energy Technology Data Exchange (ETDEWEB)

    Dalberg, E.

    1998-01-01

    The response of AMANDA detector to atmospheric muon-neutrinos has been simulated. The neutrino flux, which has its origin from cosmic ray interactions with the atmosphere, induce muons in the vicinity of the detector. These muons will be relativistic and emit Cerenkov photons which can be detected by the optical modules buried in the deep South Pole glacier ice. The aim of the simulations is to predict the trigger rates in the existing detector, as well as in future extensions. The efficiency to detect muons with different angles and energies is also studied. Some of the simulated events have been analysed and it is discussed how the quality of this analysis can be judged. 35 refs, 30 figs.

  18. Neutrino astrophysics

    International Nuclear Information System (INIS)

    Roulet, E.

    2001-01-01

    A general overview of neutrino physics and astrophysics is given, starting with a historical account of the development of our understanding of neutrinos and how they helped to unravel the structure of the Standard Model. We discuss why it is so important to establish if neutrinos are massive and introduce the main scenarios to provide them a mass. The present bounds and the positive indications in favor of non-zero neutrino masses are discussed, including the recent results on atmospheric and solar neutrinos. The major role that neutrinos play in astrophysics and cosmology is illustrated. (author)

  19. Atmospheric circulation patterns and phenological anomalies of grapevine in Italy

    Science.gov (United States)

    Cola, Gabriele; Alilla, Roberta; Dal Monte, Giovanni; Epifani, Chiara; Mariani, Luigi; Parisi, Simone Gabriele

    2014-05-01

    Grapevine (Vitis vinifera L.) is a fundamental crop for Italian agriculture as testified by the first place of Italy in the world producers ranking. This justify the importance of quantitative analyses referred to this crucial crop and aimed to quantify meteorological resources and limitations to development and production. Phenological rhythms of grapevine are strongly affected by surface fields of air temperature which in their turn are affected by synoptic circulation. This evidence highlights the importance of an approach based on dynamic climatology in order to detect and explain phenological anomalies that can have relevant effects on quantity and quality of grapevine production. In this context, this research is aimed to study the existing relation among the 850 hPa circulation patterns over the Euro-Mediterranean area from NOAA Ncep dataset and grapevine phenological fields for Italy over the period 2006-2013, highlighting the main phenological anomalies and analyzing synoptic determinants. This work is based on phenological fields with a standard pixel of 2 km routinely produced from 2006 by the Iphen project (Italian Phenological network) on the base of phenological observations spatialized by means of a specific algorithm based on cumulated thermal resources expressed as Normal Heat Hours (NHH). Anomalies have been evaluated with reference to phenological normal fields defined for the Italian area on the base of phenological observations and Iphen model. Results show that relevant phenological anomalies observed over the reference period are primarily associated with long lasting blocking systems driving cold air masses (Arctic or Polar-Continental) or hot ones (Sub-Tropical) towards the Italian area. Specific cases are presented for some years like 2007 and 2011.

  20. New enhancement mechanism of the transitions in the Earth of the solar and atmospheric neutrinos crossing the Earth core

    International Nuclear Information System (INIS)

    Petcov, S.T.

    1999-01-01

    It is shown that the ν 2 → ν e and ν μ → ν e (ν e → ν μ(τ) ) transitions respectively of the solar and atmospheric neutrinos in the Earth in the case of ν e - ν μ(τ) mixing in vacuum, are strongly enhanced by a new type of resonance when the neutrinos cross the Earth core. The resonance is operative at small mixing angles but differs from the MSW one. It is in many respects similar to the electron paramagnetic resonance taking place in a specific configuration of two magnetic fields. The conditions for existence of the new resonance include, in particular, specific constraints on the neutrino oscillation lengths in the Earth mantle and in the Earth core, thus the resonance is a 'neutrino oscillation length resonance'. It leads also to enhancement of the ν 2 → ν e and ν e → ν s transitions in the case of ν e - ν s mixing and of the ν-bar s (or ν μ → ν s ) transitions at small mixing angles. The presence of the neutrino oscillation length resonance in the transitions of solar and atmospheric neutrinos traversing the Earth core has important implications for current and future solar and atmospheric neutrino experiments, and more specifically, for the interpretation of the results of the Super-Kamiokande experiment

  1. Determination of the atmospheric muon flux with the neutrino telescope ANTARES

    International Nuclear Information System (INIS)

    Picq, C.

    2009-06-01

    The neutrino telescope ANTARES is a deep-sea detector located in the Mediterranean Sea. The universe is transparent to neutrinos, so their study provides a unique means of improving our knowledge of the nature of cosmic rays, their origins and their emission from the most powerful astrophysical sources in the cosmos. Neutrinos also offer the possibility of opening a new energy window (>TeV) for observation of the universe. This thesis is dedicated to the study of the main background noise of the detector, due to the passage of atmospheric muons produced by high energy cosmic rays interacting with atmospheric nuclei. The first part of this thesis focuses on the study of the detector. The different characteristics and the calibration of the detector as well as the techniques of monitoring the electronic are described. The second part of this thesis reports the various results obtained on the atmospheric muons with the five line detector. A detailed presentation of the simulations used is presented. The first difficulty of detecting atmospheric muons is due to the geometry of the detector. The second is due to the fact that the atmospheric muons often arrive in bundles and that the number of muons in these bundles is unknown at a depth of 2500 m. A first study based on simulations makes it possible to discriminate between the muons alone and the bundles of muons. A second study is dedicated to the measurement of the muon flux depending on the slant depth. The measurement is compatible with the results of other instruments when the systematic uncertainties are taken into account. (author)

  2. Direct search for neutrino mass and anomaly in the tritium beta-spectrum

    International Nuclear Information System (INIS)

    Lobashev, V.M.; Assev, V.N.; Belesev, A.I.; Berlev, A.I.; Geraskin, E.V.; Golubev, A.A.; Kazachenko, O.V.; Kuznetsov, Y.E.; Ostroumov, R.P.; Rivkis, L.A.; Stern, B.E.; Titov, N.A.; Zasoroghny, C.V.; Zakharov, Y.I.

    2001-01-01

    Results of the ''Troitsk ν-mass'' experiment on search for the neutrino rest mass in the tritium beta-decay are presented. Study of time dependence of anomalous, bump-like structure at the end of the beta spectrum reported earlier gives indication of a periodic shift of the position of the bump with respect to the end-point energy with period of 0.5 year. New upper limit for electron antineutrino rest mass m ν 2 is derived after accounting for the bump. (authors)

  3. Potential ocean–atmosphere preconditioning of late autumn Barents-Kara sea ice concentration anomaly

    Directory of Open Access Journals (Sweden)

    Martin P. King

    2016-02-01

    Full Text Available Many recent studies have revealed the importance of the climatic state in November on the seasonal climate of the subsequent winter. In particular, it has been shown that interannual variability of sea ice concentration (SIC over the Barents-Kara (BK seas in November is linked to winter atmospheric circulation anomaly that projects on the North Atlantic Oscillation. Understanding the lead–lag processes involving the different components of the climate system from autumn to winter is therefore important. This note presents dynamical interpretation for the ice-ocean–atmosphere relationships that can affect the BK SIC anomaly in late autumn. It is found that cyclonic (anticyclonic wind anomaly over the Arctic in October, by Ekman drift, can be responsible for positive (negative SIC in the BK seas in November. The results also suggest that ocean heat transport via the Barents Sea Opening in September and October can contribute to BK SIC anomaly in November.

  4. Unfolding measurement of the atmospheric muon neutrino spectrum using IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Boerner, Mathis; Ruhe, Tim; Meier, Maximilian; Schlunder, Philipp; Menne, Thorben; Fuchs, Tomasz [Dept. of Physics, Technical University of Dortmund, 44227 Dortmund (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    IceCube is a cubic kilometer neutrino observatory located at the geographic South Pole. With its huge volume, the detector is well suited for measurements of the atmospheric muon neutrino energy spectrum. Over the last years, several unfolding analyses for single years were able to provide model independent measurements for the northern hemisphere in an energy region between 200 GeV and 3.2 PeV. In this talk, the extension of the analyses to four additional years of data is presented. With this significant enlargement of the data basis, it is possible to reanalyze the full northern hemisphere with smaller statistical errors. Moreover, the spectrum can be unfolded in several small zenith bands. Measurements of the energy spectrum for different zenith regions provide further information on the composition and the shape of the flux.

  5. Local Doppler Effect, Index of Refraction through the Earth Crust, PDF and the CNGS Neutrino Anomaly?

    Directory of Open Access Journals (Sweden)

    Assis A. V. D. B.

    2012-04-01

    Full Text Available In this brief paper, we show the neutrino velocity discrepancy obtained in the OPERA experiment may be due to the local Doppler effect between a local clock attached to a given detector at Gran Sasso, say C G , and the respective instantaneous clock crossing C G , say C C , being this latter at rest in the instantaneous inertial frame having got the velocity of rotation of CERN about Earth’s axis in relation to the fixed stars. With this effect, the index of refraction of the Earth crust may accomplish a refractive effect by which the neutrino velocity through the Earth crust turns out to be small in relation to the speed of light in the empty space, leading to an encrusted discrepancy that may have contamined the data obtained from the block of detectors at Gran Sasso, leading to a time interval excess that did not provide an exact match between the shift of the protons PDF (probability distribution function by TOF c and the detection data at Gran Sasso via the maximum likelihood matching.

  6. Neutrino 2004: Collection of Presentations

    International Nuclear Information System (INIS)

    2004-01-01

    The scientific program covers the latest developments in neutrino physics, astrophysics and related topics through a set of invited talks and 2 poster sessions. The following issues are addressed: - solar neutrinos, - atmospheric neutrinos, - short and long baseline experiments, - neutrino oscillations, - double beta decay, - direct neutrino mass limits, - theory for neutrino masses, neutrino telescopes and ultra-high energy neutrinos, - dark matter searches, - neutrino in astrophysics and cosmology, and - future projects beams and experiments

  7. Neutrino 2004: Collection of Presentations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The scientific program covers the latest developments in neutrino physics, astrophysics and related topics through a set of invited talks and 2 poster sessions. The following issues are addressed: - solar neutrinos, - atmospheric neutrinos, - short and long baseline experiments, - neutrino oscillations, - double beta decay, - direct neutrino mass limits, - theory for neutrino masses, neutrino telescopes and ultra-high energy neutrinos, - dark matter searches, - neutrino in astrophysics and cosmology, and - future projects beams and experiments.

  8. Measurement of Atmospheric Neutrino Oscillations at 6-56 GeV with IceCube DeepCore

    Science.gov (United States)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barron, J. P.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bourbeau, J.; Bradascio, F.; Braun, J.; Brayeur, L.; Brenzke, M.; Bretz, H.-P.; Bron, S.; Brostean-Kaiser, J.; Burgman, A.; Carver, T.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; Hünnefeld, M.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalaczynski, P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koschinsky, J. P.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Liu, Q. R.; Lu, L.; Lünemann, J.; Luszczak, W.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nahnhauer, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Plum, M.; Price, P. B.; Przybylski, G. T.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Rea, I. C.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sälzer, T.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soedingrekso, J.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.; Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Vehring, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky, N.; Waza, A.; Weaver, C.; Weiss, M. J.; Wendt, C.; Werthebach, J.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, J.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; Zoll, M.; IceCube Collaboration

    2018-02-01

    We present a measurement of the atmospheric neutrino oscillation parameters using three years of data from the IceCube Neutrino Observatory. The DeepCore infill array in the center of IceCube enables the detection and reconstruction of neutrinos produced by the interaction of cosmic rays in Earth's atmosphere at energies as low as ˜5 GeV . That energy threshold permits measurements of muon neutrino disappearance, over a range of baselines up to the diameter of the Earth, probing the same range of L /Eν as long-baseline experiments but with substantially higher-energy neutrinos. This analysis uses neutrinos from the full sky with reconstructed energies from 5.6 to 56 GeV. We measure Δ m322=2.31-0.13+0.11×10-3 eV2 and sin2θ23=0.5 1-0.09+0.07, assuming normal neutrino mass ordering. These results are consistent with, and of similar precision to, those from accelerator- and reactor-based experiments.

  9. Depletion of atmospheric muon-neutrino fluxes and structure of Majorana mass matrix

    International Nuclear Information System (INIS)

    Tanimoto, Morimitsu; Matsuda, Masahisa

    1993-01-01

    We study the structures of the Dirac and Majorana mass matrices which give rise to the large lepton mixing expected from the depleted atmospheric muonneutrino flux. In the case that the Majorana mass matrix has a hierarchy for generations, a certain kind of the neutrino Dirac mass matrix with the hierarchical structure leads to the large lepton mixing between the second generation and the third one. Our model-independent analyses serve the model-building of the mass matrices based on the quark-lepton unified theory. (orig.)

  10. Constraints on a general 3-generation neutrino mass matrix from neutrino data application to the MSSM with R-parity violation

    CERN Document Server

    Abada, A

    2000-01-01

    We consider a general symmetric $(3\\times 3)$ mass matrix for three generations of neutrinos. Imposing the constraints, from the atmospheric neutrino and solar neutrino anomalies as well as from the CHOOZ experiment, on the mass squared differences and on the mixing angles, we identify the ranges of allowed inputs for the 6 matrix elements. We apply our results to Majorana left-handed neutrino masses generated at tree level and through The present experimental results on neutrinos from laboratories, cosmology and astrophysics are implemented to either put bounds on trilinear ($\\lambda_{ijk}, or constrain combinations of products of these couplings.

  11. Frontiers in neutrino physics - Transparencies

    International Nuclear Information System (INIS)

    Akhmedov, E.; Balantekin, B.; Conrad, J.; Engel, J.; Fogli, G.; Giunti, C.; Espinoza, C.; Lasserre, T.; Lazauskas, R.; Lhuiller, D.; Lindner, M.; Martinez-Pinedo, G.; Martini, M.; McLaughlin, G.; Mirizzi, A.; Pehlivan, Y.; Petcov, S.; Qian, Y.; Serenelli, A.; Stancu, I.; Surman, R.; Vaananen, D.; Vissani, F.; Vogel, P.

    2012-01-01

    This document gathers the slides of the presentations. The purpose of the conference was to discuss the last advances in neutrino physics. The presentations dealt with: -) the measurement of the neutrino velocity, -) neutrino oscillations, -) anomaly in solar models and neutrinos, -) double beta decay, -) self refraction of neutrinos, -) cosmic neutrinos, -) antineutrino spectra from reactors, and -) some aspects of neutrino physics with radioactive ion beams. (A.C.)

  12. Influence of Atlantic SST anomalies on the atmospheric circulation in the Atlantic-European sector

    Directory of Open Access Journals (Sweden)

    E. Kestenare

    2003-06-01

    Full Text Available Recent studies of observational data suggest that Sea Surface Temperature (SST anomalies in the Atlantic Ocean have a significant influence on the atmospheric circulation in the Atlantic-European sector in early winter and in spring. After reviewing this work and showing that the spring signal is part of a global air-sea interaction, we analyze for comparison an ensemble of simulations with the ECHAM4 atmospheric general circulation model in T42 resolution forced by the observed distribution of SST and sea ice, and a simulation with the ECHAM4/OPA8 coupled model in T30 resolution. In the two cases, a significant influence of the Atlantic on the atmosphere is detected in the Atlantic-European sector. In the forced mode, ECHAM4 responds to SST anomalies from early spring to late summer, and also in early winter. The forcing involves SST anomalies not only in the tropical Atlantic, but also in the whole tropical band, suggesting a strong ENSO influence. The modeled signal resembles that seen in the observations in spring, but not in early winter. In the coupled mode, the Atlantic SST only has a significant influence on the atmosphere in summer. Although the SST anomaly is confined to the Atlantic, the summer signal shows some similarity with that seen in the forced simulations. However, there is no counterpart in the observations.

  13. Near Real Time website for IASI observations of atmospheric anomalies

    Science.gov (United States)

    Hayer, Catherine; Grainger, Don; Marsh, Kevin; Carboni, Elisa; Ventress, Lucy; Smith, Andrew

    2014-05-01

    Rapid analysis of satellite observations of the state of the atmosphere and the contaminant levels within it can be used for pollution monitoring, forest fire detection and volcanic activity monitoring. There are numerous operational satellite instruments for which this is possible. The IASI instruments, currently flying on board the MetOp-A and MetOp-B satellite platforms, are used to produce Near Real Time (NRT) data using analysis algorithms developed by Oxford University. The data is then displayed on a website within 3 hours of measurement. This allows for the semi-continuous monitoring of the state of the atmosphere over most of the globe, both in daylight and at night. Global coverage is achieved 4 times per day, which is a significant advantage over most of the alternatives, either geostationary, giving limited spatial coverage, or UV instruments which are only able to observe during the daylight side of the orbit. The website includes flags for atmospheric contaminants detectable by IASI, including dust, biomass burning-derived species and volcanic ash and SO2. In the near future, the website will be developed to also include a quantitative estimate of the mass loading of SO2 contained within any volcanic cloud. Emissions of volcanic products, such as ash and SO2, are useful indicators of a change in the activity level of a volcano. Since many volcanoes are only monitored by remote sensing methods, such as satellite instruments, this can be the only such indicator available. These emissions are also dangerous to passing aircraft, causing damage to external surfaces of the plane and to the engines, sometimes leading to failure. Evacuation of regions surrounding volcanoes, and cessation or diversion of air traffic around actively erupting volcanoes is costly and highly disruptive but is sometimes required. Up to date information is of critical importance as to when to make these sensitive decisions. An archive of data will be available to allow for easy

  14. Neutrino mass, a status report

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1993-01-01

    Experimental approaches to neutrino mass include kinematic mass measurements, neutrino oscillation searches at rectors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indications that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing

  15. Unified fit of solar and atmospheric neutrinos: towards the MNSP matrix; Ajustements globaux des resultats des experiences de neutrinos solaires et atmospheriques: vers la determination de la matrice de melange des neutrinos (dite MNSP)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-01-01

    Present solar and atmospheric neutrino give a strong indication that neutrinos oscillate between the three active species. This is the first step towards the determination of their mass. But we have also to determine the 3 x 3 neutrino mixing matrix (3 angles and one or several phases linked to CP violation), called MNSP (Maki-Nakagawa-Suzuki-Pontecorvo) and similar to the quark mixing matrix, called CKM (Cabibbo-Kobayashi-Maskawa). The purpose of the colloquium (one day) is to give an overview of the present situation and what progresses are expected in the forthcoming years. 3 guidelines: pedagogical approach, critical review of the experimental situation and of the different analyses, lookout to the future. (author)

  16. Sterile Neutrinos in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Benjamin J.P. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2015-09-01

    Measurements of neutrino oscillations at short baselines contain an intriguing set of experimental anomalies that may be suggestive of new physics such as the existence of sterile neutrinos. This three-part thesis presents research directed towards understanding these anomalies and searching for sterile neutrino oscillations. Part I contains a theoretical discussion of neutrino coherence properties. The open-quantum-system picture of neutrino beams, which allows a rigorous prediction of coherence distances for accelerator neutrinos, is presented. Validity of the standard treatment of active and sterile neutrino oscillations at short baselines is verified, and non-standard coherence loss effects at longer baselines are predicted. Part II concerns liquid argon detector development for the MicroBooNE experiment, which will search for short-baseline oscillations in the Booster Neutrino Beam at Fermilab. Topics include characterization and installation of the MicroBooNE optical system; test-stand measurements of liquid argon optical properties with dissolved impurities; optimization of wavelength-shifting coatings for liquid argon scintillation light detection; testing and deployment of high-voltage surge arrestors to protect TPC field cages; and software development for optical and TPC simulation and reconstruction. Part III presents a search for sterile neutrinos using the IceCube neutrino telescope, which has collected a large sample of atmospheric-neutrino-induced events in the 1-10 TeV energy range. Sterile neutrinos would modify the detected neutrino flux shape via MSW-resonant oscillations. Following a careful treatment of systematic uncertainties in the sample, no evidence for MSW-resonant oscillations is observed, and exclusion limits on 3+1 model parameter space are derived. Under the mixing assumptions made, the 90% confidence level exclusion limit extends to sin224 ≤ 0.02 at m2 ~ 0.3 eV2, and the LSND and Mini

  17. D meson production asymmetry, unfavored fragmentation, and consequences for prompt atmospheric neutrino production

    Science.gov (United States)

    Maciuła, Rafał; Szczurek, Antoni

    2018-04-01

    We consider unfavored light quark/antiquark to D meson fragmentation. We discuss nonperturbative effects for small transverse momenta. The asymmetry for D+ and D- production measured by the LHCb collaboration provides natural constraints on the parton (quark/antiquark) fragmentation functions. We find that already a fraction of q /q ¯→D fragmentation probability is sufficient to account for the measured asymmetry. We make predictions for similar asymmetry for neutral D mesons. Large D -meson production asymmetries are found for large xF which is related to dominance of light quark/antiquark q /q ¯→D fragmentation over the standard c →D fragmentation. As a consequence, prompt atmospheric neutrino flux at high neutrino energies can be much larger than for the conventional c →D fragmentation. The latter can constitute a sizeable background for the cosmic neutrinos claimed to be observed recently by the IceCube Observatory. Large rapidity-dependent D+/D- and D0/D¯0 asymmetries are predicted for low (√{s }=20 - 100 GeV ) energies. The q /q ¯→D fragmentation leads to enhanced production of D mesons at low energies. At √{s }=20 GeV the enhancement factor with respect to the conventional contribution is larger than a factor of five. In the considered picture the large-xF D mesons are produced dominantly via fragmentation of light quarks/antiquarks. Predictions for fixed target p + 4He collisions relevant for a fixed target LHCb experiment are presented.

  18. Prompt Neutrinos from Atmospheric cc-bar and bb-bar Production and the Gluon at Very Small x

    CERN Document Server

    Martin, A D; Stasto, A M

    2003-01-01

    We improve the accuracy of the extrapolation of the gluon distribution of the proton to very small x, and show that the charm production cross section, needed to calculate the cosmic ray-induced 'atmospheric' flux of ultrahigh energy prompt nu submu and nu subtau neutrinos, may be predicted within perturbative QCD to within about a factor of three. We follow the sequence of interactions and decays in order to calculate the neutrino fluxes as a function of energy up to 10 sup 9 GeV. We also compute the prompt nu subtau flux from bb-bar production, hadronization and decay. New cosmic sources of neutrinos will be indicated if more prompt neutrinos are observed than predicted. If fewer neutrinos are observed than predicted, then constraints will be imposed on the nuclear composition of cosmic rays. The advantages of studying nu subtau neutrinos are emphasized. We provide a simple parametrization of the prediction for the inclusive cross section for c quark production in high energy proton-air collisions.

  19. Time-Shift in the OPERA set-up: proof against superluminal neutrinos without the need of knowing the CERN-LNGS distance and Reminiscences on the origin of the Gran Sasso Lab, of the 3rd neutrino and of the "Teramo Anomaly"

    CERN Document Server

    Zichichi, Antonino

    2012-01-01

    The LVD time stability allows to establish a time-shift in the OPERA experiment, thus providing the first proof against Superluminal neutrinos, using the horizontal muons of the "Teramo Anomaly". This proof is particularly interesting since does not need the knowledge of the distance between the place where the neutrinos are produced (CERN) and the place where they are detected (LNGS). Since the Superluminal neutrinos generated in the physics community a vivid interest in good and bad behaviour in physics research, the author thought it was appropriate to recall the origin of the Gran Sasso Lab, of the 3rd neutrino, of the horizontal muons due to the "Teramo Anomaly" and of the oscillation between leptonic flavours, when the CERN-Gran Sasso neutrino beam was included in the project for the most powerful underground Laboratory in the world.

  20. Prompt neutrinos from atmospheric charm in the general-mass variable-flavor-number scheme

    International Nuclear Information System (INIS)

    Benzke, M.; Garzelli, M.V.; Kniehl, B.A.; Kramer, G.; Moch, S.; Sigl, G.

    2017-08-01

    We present predictions for the prompt-neutrino flux arising from the decay of charmed mesons and baryons produced by the interactions of high-energy cosmic rays in the Earth's atmosphere, making use of a QCD approach on the basis of the general-mass variable-flavor-number scheme for the description of charm hadroproduction at NLO, complemented by a consistent set of fragmentation functions. We compare the theoretical results to those already obtained by our and other groups with different theoretical approaches. We provide comparisons with the experimental results obtained by the IceCube Collaboration in two different analyses and we discuss the implications for parton distribution functions.

  1. Neutrino Oscillations

    Indian Academy of Sciences (India)

    work of Takaaki Kajita and Arthur B McDonald clearly demon- strated the ... time belief that neutrinos are massless particles. .... SK is a second generation, 50,000 t wa- ..... values of the parameters of the PMNS matrix based on a global .... [13] Y Ashie et al., Evidence for an oscillatory signature in atmospheric neutrino.

  2. Interannual tropical Pacific sea surface temperature anomalies teleconnection to Northern Hemisphere atmosphere in November

    Science.gov (United States)

    King, Martin P.; Herceg-Bulić, Ivana; Kucharski, Fred; Keenlyside, Noel

    2018-03-01

    We investigate the Northern Hemisphere atmospheric circulation anomalies associated to the sea surface temperature (SST) anomalies that are related to the eastern-Pacific and central-Pacific El Nino-Southern Oscillations in the late autumn (November). This research is motivated by the need for improving understanding of the autumn climate conditions which can impact on winter climate, as well as the relative lack of study on the boreal autumn climate processes compared to winter. Using reanalysis and SST datasets available from the late nineteenth century through the recent years, we found that there are two major atmospheric responses; one is a hemispheric-wide wave number-4 pattern, another has a more annular pattern. Both of these project on the East Atlantic pattern (southward-shifted North Atlantic Oscillation) in the Atlantic sector. Which of the patterns is active is suggested to depend on the background mean flow, with the annular anomaly active in the most recent decades, while the wave-4 pattern in the decades before. This switch is associated with a change of correlation sign in the North Pacific. We discuss the robustness of this finding. The ability of two atmospheric general circulation models (ICTP-AGCM and ECHAM-AGCM) to reproduce the teleconnections is also examined. Evidence provided shows that the wave-4 pattern and the East Atlantic pattern signals can be reproduced by the models, while the shift from this to an annular response for the recent years is not found conclusively.

  3. Neutrinos and Einstein

    CERN Document Server

    Suzuki, Yoichiro

    2005-01-01

    A tiny neutrino mass is a clue to the physics beyond the standard model of elementary particle physics. The primary cosmic rays, mostly protons, are created and accelerated to the relativistic energy in supernova remnants. They traverse the universe and reach the earth. The incoming primary cosmic rays interact with the earth's atmosphere to produce secondary particles, which subsequently decay into neutrinos, called atmospheric neutrinos. The atmospheric neutrinos have shown the evidence of the finite neutrino masses through the phenomena called neutrino oscillations. Neutrinos are detected by large detectors underground like, for example, Super-Kamiokande, SNO and KamLAND. Those detectors use large photomultiplier tubes, which make use of the photo-electric effect to convert photons created by the interaction of neutrinos to electrons to form electric pulses. Neutrinos are therefore created and detected by "Einstein" and have step forward beyond the current physics. Neutrinos may also carry a hit to the ori...

  4. The relationship between sea surface temperature anomalies and atmospheric circulation in general circulation model experiments

    International Nuclear Information System (INIS)

    Kharin, V.V.

    1994-01-01

    Several multi-year integrations of the Hamburg version of the ECMWF/T21 general circulation model driven by the sea surface temperature (SST) observed in the period 1970-1988 were examined to study the extratropical response of the atmospheric circulation to SST anomalies in the Northern Hemisphere in winter. In the first 19-years run SST anomalies were prescribed globally (GAGO run), and in two others SST variability was limited to extratropical regions (MOGA run) and to tropics (TOGA run), respectively. A canonical correlation analysis was applied to the monthly means to find the best correlated patterns of SST anomalies in the Atlantic and Pacific Oceans and the Northern Hemisphere atmospheric flow. Contrary to expectation, the extratropical response in the GAGO run is not equal to the linear combination of the responses in the MOGA and TOGA runs. In the GAGO integration with globally prescribed SST the best correlated atmospheric pattern is global and is characterized by dipole structures of the same polarity in the North Atlantic and the North Pacific sectors. In the MOGA and TOGA experiments the atmospheric response is more local with main centers in the North Atlantic and North Pacific, respectively. The atmospheric modes found by the CCA were compared with the normal modes of the barotropic vorticity equation linearized about the 500 mb winter climate of the control integration driven by the climatological SST. The normal modes with smallest eigenvalues are similar to the canonical patterns of 500 mb geopotential height. The corresponding eigenvectors of the adjoint operator, which represent an external forcing optimal for exciting normal modes, have a longitudinal structure with maxima in regions characterized by enhanced high frequency baroclinic activity over both oceans. It was suggested that variability of storm tracks could play an important role in variability of the barotropic normal modes. (orig.)

  5. Sterile neutrino search in the STEREO experiment

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Christian; Lindner, Manfred; Roca, Christian [MPIK (Germany)

    2016-07-01

    In neutrino oscillations, a canonical understanding has been established during the last decades after the measurement of the mixing angles θ{sub 12}, θ{sub 23}, θ{sub 13} via solar, atmospheric and, most recently, reactor neutrinos. However, the re-evaluation of the reactor neutrino theoretical flux has forced a re-analysis of most reactor neutrino measurements at short distances. This has led to an unexpected experimental deficit of neutrinos with respect to the theory that needs to be accommodated, commonly known as the ''reactor neutrino anomaly''. This deficit can be interpreted as the existence of a light sterile neutrino state into which reactor neutrinos oscillate at very short distances. The STEREO experiment aims to find an evidence of such oscillations. The ILL research reactor in Grenoble (France) operates at a power of 58MW and provides a large flux of electron antineutrinos with an energy range of a few MeV. These neutrinos will be detected in a 2000 liter organic liquid scintillator detector doped with Gadolinium and consisting of 6 cells stacked along the direction of the core. Given the proximity of the detector, neutrinos will only travel a few meters until they interact with the scintillator. The detector will be placed about 10 m from the reactor core, allowing STEREO to be sensitive to oscillations into the above mentioned neutrino sterile state. The project presents a high potential for a discovery that would impact deeply the paradigms of neutrino oscillations and in consequence the current understanding of particle physics and cosmology.

  6. Light Sterile Neutrinos: A White Paper

    DEFF Research Database (Denmark)

    Abazajian, K. N.; Acero, M. A.; Agarwalla, S. K.

    2012-01-01

    This white paper addresses the hypothesis of light sterile neutrinos based on recent anomalies observed in neutrino experiments and the latest astrophysical data.......This white paper addresses the hypothesis of light sterile neutrinos based on recent anomalies observed in neutrino experiments and the latest astrophysical data....

  7. Particle precipitation and atmospheric X-and gamma-rays in the South Atlantic magnetic anomaly by balloon experiments

    International Nuclear Information System (INIS)

    Costa, J.M. da.

    1981-06-01

    Studies concerning particle precipitation and atmospheric X-and low energy gamma-rays in the South Atlantic magnetic anomaly by balloons experiments that have been made at INPE since 1968 are reported. (Author) [pt

  8. Response of the Adriatic Sea to the atmospheric anomaly in 2003

    Directory of Open Access Journals (Sweden)

    B. Grbec

    2007-05-01

    Full Text Available Unusual weather conditions over the southern Europe and the Mediterranean area in 2003 significantly impacted the oceanographic properties of the Adriatic Sea. To document these changes, both in the atmosphere and the sea, anomalies from the normal climate were calculated. The winter 2003 was extremely cold, whereas the spring/summer period was extremely warm. The air temperature in June was more than 3 standard deviations above the average. On the other hand, precipitation and river runoff were extremely low between February and August. The response of the sea was remarkable, especially in surface salinity during spring and summer, with values at least one standard deviation above the average. Analysis of thermohaline properties in the middle Adriatic showed the importance of two phenomena responsible for the occurrence of exceptionally high salinity: (1 enhanced inflow of saline Levantine Intermediate Water (LIW in the Adriatic, and (2 extremely low precipitation and river runoff, accompanied with strong evaporation. Two large-scale atmospheric indices: NAOI (North Atlantic Oscillation Index and MOI (Mediterranean Oscillation Index, although generally correlated to the Adriatic climate, failed to describe anomalies in 2003. The air pressure gradients used for the definition of both indices significantly decreased in 2003 due to the presence of the high pressure areas over most of Europe and the northern Atlantic, and were actually responsible for the observed anomalies above and in the Adriatic.

  9. What Would It Take for an Atmospheric Neutrino Detector to Constrain the Hydrogen Content of the Earth's Core ?

    Science.gov (United States)

    Bourret, S.; Coelho, J. A. B.; Kaminski, E. C.; Van Elewyck, V.

    2017-12-01

    The difference between PREM density and seismic profiles in the Earth's core and the values for pure iron and iron-nickel alloys inferred from high pressure/high temperature experiments and ab initio calculations requires the presence of a few wt% of light elements. The nature and amount of these light elements (O, Si, S, H, C...) remains controversial. Recent studies have renewed the interest in H. It is the most abundant element in the nebula and can be easily dissolved in iron in the early stages of Earth's evolution. 1 to 2 wt% of H could explain the difference between PREM and pure iron. However, current geophysical methods alone cannot settle the debate between H and the other candidate elements. Neutrino oscillation tomography using atmospheric neutrinos opens an avenue to collect independent data on Earth's core composition. This method exploits the quantum phenomenon of neutrino flavour oscillations, which depends on the electron density along the path of the neutrino through the Earth. The combination of a neutrino-based measurement of the electron density with the PREM mass density profile constrains the average proton-to-nucleon ratio of the medium (Z/A). Since this parameter varies among chemical elements, e.g. 0.466 for Fe and 1 for H, this technique has the potential to provide unprecedented insights into the chemical composition of the core, and in particular its hydrogen content. Performing such a measurement requires large-size detectors with good efficiency in the relevant energy range and precise determination of the neutrino energy, arrival direction, and flavour. Considering a generic but realistic model of detector response, we quantify the influence of various detector performance indicators on the sensitivity to the average Z/A in the core. We further evaluate the impact of systematic uncertainties, such as those related to the physical model for neutrino oscillations and the incoming flux of atmospheric neutrinos. We consider specific

  10. On the differences between early and middle winter atmospheric responses to sea surface temperature anomalies in the northwest Atlantic

    International Nuclear Information System (INIS)

    Peng, S.; Mysak, L.A.; Derome, J.; Ritchie, H.; Dugas, B.

    1994-01-01

    Using an atmospheric global spectral model at RPN with T42 horizontal resolution, we have shown that the winter atmosphere in the mid-latitude is capable of reacting to the SST anomalies prescribed in the northwest Atlantic with two different responses. The nature of the response is determined by the climatological conditions of the winter system. Experiments are conducted using either the perpetual November or January conditions, with or without the SST anomalies prescribed. Six 50-day integrations, with positive (or negative) SST anomalies prescribed, initialized from independent November analyses and similarly, four runs initialized from January analyses, have been examined in comparison with their control runs

  11. Impacts of SST anomalies on the North Atlantic atmospheric circulation: a case study for the northern winter 1995/1996

    Energy Technology Data Exchange (ETDEWEB)

    Losada, T.; Rodriguez-Fonseca, B. [Universidad Complutense de Madrid, Departmento de Geofisica y Meteorologia, Madrid (Spain); Mechoso, C.R.; Ma, H.Y. [University of California Los Angeles, Department of Atmospheric and Oceanic Sciences, Los Angeles, CA (United States)

    2007-12-15

    The present paper selects the northern winter of December 1995-February 1996 for a case study on the impact of sea surface temperature (SST) anomalies on the atmospheric circulation over the North Atlantic and Western Europe. In the Atlantic, the selected winter was characterized by positive SST anomalies over the northern subtropics and east of Newfoundland, and negative anomalies along the US coast. A weak La Nina event developed in the Pacific. The North Atlantic Oscillation (NAO) index was low, precipitation over the Iberian Peninsula and northern Africa was anomalously high, and precipitation over northern Europe was anomalously low. The method of study consists of assessing the sensitivity of ensemble simulations by the UCLA atmospheric general circulation model (UCLA AGCM) to SST anomalies from the observation, which are prescribed either in the World Oceans, the Atlantic Ocean only, or the subtropical North Atlantic only. The results obtained are compared with a control run that uses global, time-varying climatological SST. The ensemble simulations with global and Atlantic-only SST anomalies both produce results that resemble the observations over the North Atlantic and Western Europe. It is suggested that the anomalous behavior of the atmosphere in the selected winter over those regions, therefore, was primarily determined by conditions within the Atlantic basin. The simulated fields in the tropical North Atlantic show anomalous upward motion and lower (upper) level convergence (divergence) in the atmosphere overlying the positive SST anomalies. Consistently, the subtropical jet intensifies and its core moves equatorward, and precipitation increases over northern Africa and southern Europe. The results also suggest that the SST anomalies in the tropical North Atlantic only do not suffice to produce the atmospheric anomalies observed in the basin during the selected winter. The extratropical SST anomalies would provide a key contribution through increased

  12. Search for anomalies in the neutrino sector with muon spectrometers and large LArTPC imaging detectors at CERN

    CERN Document Server

    Antonello, A.; Baibussinov, B.; Bilokon, H.; Boffelli, F.; Bonesini, M.; Calligarich, E.; Canci, N.; Centro, S.; Cesana, A.; Cieslik, K.; Cline, D.B.; Cocco, A.G.; Dequal, D.; Dermenev, A.; Dolfini, R.; De Gerone, M.; Dussoni, S.; Farnese, C.; Fava, A.; Ferrari, A.; Fiorillo, G.; Garvey, G.T.; Gatti, F.; Gibin, D.; Gninenko, S.; Guber, F.; Guglielmi, A.; Haranczyk, M.; Holeczek, J.; Ivashkin, A.; Kirsanov, M.; Kisiel, J.; Kochanek, I.; Kurepin, A.; Lagoda, J.; Lucchini, G.; Louis, W.C.; Mania, S.; Mannocchi, G.; Marchini, S.; Matveev, V.; Menegolli, A.; Meng, G.; Mills, G.B.; Montanari, C.; Nicoletto, M.; Otwinowski, S.; Palczewki, T.J.; Passardi, G.; Perfetto, F.; Picchi, P.; Pietropaolo, F.; Plonski, P.; Rappoldi, A.; Raselli, G.L.; Rossella, M.; Rubbia, C.; Sala, P.; Scaramelli, A.; Segreto, E.; Stefan, D.; Stepaniak, J.; Sulej, R.; Suvorova, O.; Terrani, M.; Tlisov, D.; Van de Water, R.G.; Trinchero, G.; Turcato, M.; Varanini, F.; Ventura, S.; Vignoli, C.; Wang, H.G.; Yang, X.; Zani, A.; Zaremba, K; Benettoni, M.; Bernardini, P.; Bertolin, A.; Brugnera, R.; Calabrese, M.; Cecchetti, A.; Cecchini, S.; Collazuol, G.; Creti, P.; Corso, F.Dal; Del Prete, A.; De Mitri, I.; De Robertis, G.; De Serio, M.; Esposti, L.Degli; Di Ferdinando, D.; Dore, U.; Dusini, S.; Fabbricatore, P.; Fanin, C.; Fini, R.A.; Fiore, G.; Garfagnini, A.; Giacomelli, G.; Giacomelli, R.; Guandalini, C.; Guerzoni, M.; Kose, U.; Laurenti, G.; Laveder, M.; Lippi, I.; Loddo, F.; Longhin, A.; Loverre, P.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marsella, G.; Mauri, N.; Medinaceli, E.; Mengucci, A.; Mezzetto, M.; Michinelli, R.; Muciaccia, M.T.; Orecchini, D.; Paoloni, A.; Papadia, G.; Pastore, A.; Patrizii, L.; Pozzato, M.; Rosa, G.; Sahnounm, Z.; Simone, S.; Sioli, M.; Sirri, G.; Spurio, M.; Stanco, L.; Surdo, A.; Tenti, M.; Togo, V.; Ventura, M.; Zago, M.

    2012-01-01

    A new experiment with an intense ~2 GeV neutrino beam at CERN SPS is proposed in order to definitely clarify the possible existence of additional neutrino states, as pointed out by neutrino calibration source experiments, reactor and accelerator experiments and measure the corresponding oscillation parameters. The experiment is based on two identical LAr-TPCs complemented by magnetized spectrometers detecting electron and muon neutrino events at Far and Near positions, 1600 m and 300 m from the proton target, respectively. The ICARUS T600 detector, the largest LAr-TPC ever built with a size of about 600 ton of imaging mass, now running in the LNGS underground laboratory, will be moved at the CERN Far position. An additional 1/4 of the T600 detector (T150) will be constructed and located in the Near position. Two large area spectrometers will be placed downstream of the two LAr-TPC detectors to perform charge identification and muon momentum measurements from sub-GeV to several GeV energy range, greatly comple...

  13. Atmospheric and astrophysical Neutrinos above 1 TeV Interacting in IceCube

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Ackermann, M.; Adam, J.

    2015-01-01

    The IceCube Neutrino Observatory was designed primarily to search for high-energy (TeV-PeV) neutrinos produced in distant astrophysical objects. A search for ≳100  TeV neutrinos interacting inside the instrumented volume has recently provided evidence for an isotropic flux of such neutrinos...... the energy threshold for neutrinos from the southern sky below 10 TeV for the first time, far below the threshold of the previous high-energy analysis. Astrophysical neutrinos remain the dominant component in the southern sky down to a deposited energy of 10 TeV. From these data we derive new constraints...... on the diffuse astrophysical neutrino spectrum, Φ_ν=2.06_{-0.3}^{+0.4}×10-18(E_ν/10^5  GeV)^{-2.46±0.12} GeV^-1 cm^−2 sr^−1 s^-1 for 25  TeV

  14. Influence of hadronic interaction models and the cosmic ray spectrum on the high-energy atmospheric muon and neutrino flux

    Directory of Open Access Journals (Sweden)

    Desiati Paolo

    2013-06-01

    Full Text Available The recent observations of muon charge ratio up to about 10 TeV and of atmospheric neutrinos up to energies of about 400 TeV has triggered a renewed interest into the high-energy interaction models and cosmic ray primary composition. A reviewed calculation of lepton spectra produced in cosmic ray induced extensive air showers is carried out with a primary cosmic ray spectrum that fits the latest direct measurements below the knee. In order to achieve this, we used a full Monte Carlo method to derive the inclusive differential spectra (yields of muons, muon neutrinos and electron neutrinos at the surface for energies between 80 GeV and hundreds of PeV. Using these results the differential flux and the flavor ratios of leptons were calculated. The air shower simulator CORSIKA 6.990 was used for showering and propagation of the secondary particles through the atmosphere, employing the established high energy hadronic interaction models SIBYLL 2.1, QGSJet-01 and QGSJet-II-03. We show that the performance of the interaction models allows makes it possible to predict the spectra within experimental uncertainties, while SIBYLL generally yields a higher flux at the surface than the QGSJet models. The calculation of the flavor and charge ratios has lead to inconsistent results, mainly influenced by the different representations of the K/π ratio within the models. The influence of the knee of cosmic rays is reflected in the secondary spectra at energies between 100 and 200 TeV. Furthermore, we could quantify systematic uncertainties of atmospheric muon- and neutrino fluxes, associated to the models of the primary cosmic ray spectrum and the interaction models. For most recent parametrizations of the cosmic ray primary spectrum, atmospheric muons can be determined with an uncertainty smaller than +15/-13% of the average flux. Uncertainties of the muon and electron neutrino fluxes can be calculated within an average error of +32/-22% and +25

  15. Experimental search for the ''LSND anomaly'' with the ICARUS detector in the CNGS neutrino beam

    Energy Technology Data Exchange (ETDEWEB)

    Antonello, M.; Canci, N.; Scantamburlo, E.; Segreto, E.; Stefan, D.; Vignoli, C. [INFN - Laboratori Nazionali del Gran Sasso, Assergi (Italy); Baibussinov, B.; Centro, S.; Dequal, D.; Farnese, C.; Fava, A.; Gibin, D.; Guglielmi, A.; Meng, G.; Pietropaolo, F.; Varanini, F.; Ventura, S. [Universita di Padova (Italy); INFN, Padova (Italy); Benetti, P.; Calligarich, E.; Dolfini, R.; Menegolli, A.; Montanari, C.; Piazzoli, A.; Rappoldi, A.; Raselli, G.L.; Rossella, M. [Universita di Pavia (Italy); INFN, Pavia (Italy); Cesana, A.; Terrani, M. [Politecnico di Milano (Italy); INFN, Milano (Italy); Cieslik, K.; Dabrowska, A.; Haranczyk, M.; Szarska, M.; Zalewska, A. [H. Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Cline, D.B.; Otwinowski, S.; Wang, H.G.; Yang, X. [UCLA, Department of Physics, Los Angeles (United States); Cocco, A.G.; Fiorillo, G. [Universita Federico II di Napoli (Italy); INFN, Napoli (Italy); Dermenev, A.; Gninenko, S.; Kirsanov, M. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Ferrari, A. [CERN, Geneva (Switzerland); Holeczek, J.; Ivashkin, A.; Kisiel, J.; Kochanek, I.; Mania, S. [A. Soltan Institute for Nuclear Studies, Warszawa (Poland); Lagoda, J.; Stepaniak, J. [University of Silesia, Institute of Physics, Katowice (Poland); Picchi, P. [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Plonski, P.; Zaremba, K. [Warsaw University of Technology, Institute for Radioelectronics, Warsaw (Poland); Rubbia, C. [INFN - Laboratori Nazionali del Gran Sasso, Assergi (Italy); CERN, Geneva (Switzerland); Sala, P.R.; Scaramelli, A. [INFN Milano, Milano (Italy); Sergiampietri, F. [Universita di Pisa (Italy); INFN, Pisa (Italy); Sulej, R. [INFN - Laboratori Nazionali del Gran Sasso, Assergi (Italy); University of Silesia, Institute of Physics, Katowice (Poland)

    2013-03-15

    We report an early result from the ICARUS experiment on the search for a {nu}{sub {mu}} {yields} {nu}{sub e} signal due to the LSND anomaly. The search was performed with the ICARUS T600 detector located at the Gran Sasso Laboratory, receiving CNGS neutrinos from CERN at an average energy of about 20 GeV, after a flight path of {proportional_to}730 km. The LSND anomaly would manifest as an excess of {nu}{sub e} events, characterized by a fast energy oscillation averaging approximately to sin {sup 2}(1.27{Delta} m{sup 2}{sub new}L/E{sub {nu}}){approx} 1/2 with probability P{sub {nu}{sub {mu}{yields}{nu}{sub e}}} = 1/2 sin{sup 2}(2{theta}{sub new}). The present analysis is based on 1091 neutrino events, which are about 50 % of the ICARUS data collected in 2010-2011. Two clear {nu}{sub e} events have been found, compared with the expectation of 3.7 {+-} 0.6 events from conventional sources. Within the range of our observations, this result is compatible with the absence of a LSND anomaly. At 90 % and 99 % confidence levels the limits of 3.4 and 7.3 events corresponding to oscillation probabilities left angle P{sub {nu}{sub {mu}{yields}{nu}{sub e}}} right angle {<=} 5.4 x 10{sup -3} and left angle P{sub {nu}{sub {mu}{yields}{nu}{sub e}}} right angle {<=} 1.1 x 10{sup -2} are set respectively. The result strongly limits the window of open options for the LSND anomaly to a narrow region around ({Delta}m{sup 2}, sin{sup 2}(2{theta})){sub new} = (0.5 eV{sup 2}, 0.005), where there is an overall agreement (90 % CL) between the present ICARUS limit, the published limits of KARMEN and the published positive signals of LSND and MiniBooNE Collaborations. (orig.)

  16. Three flavour oscillation interpretation of neutrino data

    Indian Academy of Sciences (India)

    To explain the atmospheric neutrino problem in terms of neutrino oscillations, ЖС¾ of about 10-¿. eV. ¾. [8] is needed whereas the neutrino oscil- lation solution to the solar neutrino problem requires ЖС¾ ~10- eV. ¾ . Hence both solar and atmospheric neutrino problems cannot be explained in terms of e ° μ oscillations.

  17. Study of X-rays at the atmosphere of the South Atlantic Magnetic Anomaly

    International Nuclear Information System (INIS)

    Pinto Junior, O.

    1985-06-01

    A study of X-rays at the atmosphere of the South Atlantic Magnetic Anomaly is presented in this work, in which an analysis of all existing balloon measurements carried out at this region has been done. It is concluded that the X-ray flux due to electron precipitation depends strongly on geomagnetic activity, reaching at Sao Jose dos Campos a maximum doward flux of 10 -2 photons/cm 2 .sec.KeV for 4g/cm 2 and for the energy range of 30-150KeV. The related flux of precipitating electrons was computed by Monte Carlo method with values of about 500 electrons/cm 2 .sec and energy espectra of the type e -T/200 . This electron flux is shown to represent the main ionization flux for the atmosphere at about 60 Km height. Furthermore, the atmospheric and diffuse components were determined at balloon altitudes (approximately 5g/cm 2 ) of Sao Jose dos campos (λ m = 11 0 S) to be of the same order. (author) [pt

  18. Check of the accuracy of the relativity theory with atmospheric muon neutrinos from the AMANDA data of the years 2000 to 2003

    International Nuclear Information System (INIS)

    Ahrens, J.C.

    2006-01-01

    Atmospheric neutrinos allow one to test the principles of the Theory of Relativity in particular Lorentz invariance and the equivalence principle. Small deviations from these principles could lead, according to some theories, to detectable neutrino oscillations. Such oscillation effects are analysed in this thesis, using the data collected by the AMANDA detector. The neutrino telescope AMANDA is located at the South Pole and embedded in the Antarctic ice shield at a depth between 1500 m and 2000 m. AMANDA detects muon neutrinos via the Cherenkov light of neutrino induced muons allowing the reconstruction of the original neutrino direction. From the data of the years 2000 to 2003, which contain about seven billion recorded events and which mainly consist of the background of atmospheric muons, a sample of 3401 neutrino induced events has been selected. No indication for alternative oscillation effects has been found. For maximal mixing angles, a lower limit for parameters which violate Lorentz invariance or the equivalence principle could be set to Δβ(2 vertical stroke φ vertical stroke Δγ)≤5.15.10 -27 . (orig)

  19. Neutrino Physics at Drexel

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Charles [Drexel Univ., Philadelphia, PA (United States); Dolinski, Michelle [Drexel Univ., Philadelphia, PA (United States); Neilson, Russell [Drexel Univ., Philadelphia, PA (United States)

    2017-07-11

    Our primary goal is to improve the understanding of the properties and interactions of neutrinos. We are pursuing this by means of the DUNE long-baseline and PROSPECT short-baseline neutrino experiments. For DUNE, a neutrino beam from Fermilab will be detected at the SURF facility in South Dakota, with the aim of determining the neutrino mass hierarchy (the mass ordering of neutrino flavors), and a measurement or limit on CP-violation via neutrinos. Our near-term experimental goal is to improve the characterization of the neutrino beam by measurements of muons produced as a byproduct of neutrino beam generation, to quantify the beam composition and flux. The short-range neutrino program has the aim of using the HFIR reactor at Oak Ridge as a neutrino source, with a detector placed nearby to find if there are short-distance oscillations to sterile neutrino flavors, and to resolve the 'reactor neutrino spectral anomaly' which has shown up as an unexplained 'bump' in the neutrino energy spectrum in recent experiments.

  20. The physics of neutrinos

    CERN Document Server

    Barger, Vernon D; Whisnant, Kerry

    2012-01-01

    The physics of neutrinos- uncharged elementary particles that are key to helping us better understand the nature of our universe - is one of the most exciting frontiers of modern science. This book provides a comprehensive overview of neutrino physics today and explores promising new avenues of inquiry that could lead to future breakthroughs. The Physics of Neutrinos begins with a concise history of the field and a tutorial on the fundamental properties of neutrinos, and goes on to discuss how the three neutrino types interchange identities as they propagate from their sources to detectors. The book shows how studies of neutrinos produced by such phenomena as cosmic rays in the atmosphere and nuclear reactions in the solar interior provide striking evidence that neutrinos have mass, and it traces our astounding progress in deciphering the baffling experimental findings involving neutrinos. The discovery of neutrino mass offers the first indication of a new kind of physics that goes beyond the Standard Model ...

  1. Influence of hadronic interaction models and the cosmic ray spectrum on the high energy atmospheric muon and neutrino flux

    OpenAIRE

    Fedynitch, Anatoli; Tjus, Julia Becker; Desiati, Paolo

    2012-01-01

    The recent observations of muon charge ratio up to about 10 TeV and of atmospheric neutrinos up to energies of about 400 TeV has triggered a renewed interest into the high-energy interaction models and cosmic ray primary composition. A reviewed calculation of lepton spectra produced in cosmic ray induced extensive air showers is carried out with a primary cosmic ray spectrum that fits the latest direct measurements below the knee. In order to achieve this, we used a full Monte Carlo method to...

  2. Hardron production and neutrino beams

    Science.gov (United States)

    Guglielmi, A.

    2006-11-01

    The precise measurements of the neutrino mixing parameters in the oscillation experiments at accelerators require new high-intensity and high-purity neutrino beams. Ancillary hadron-production measurements are then needed as inputs to precise calculation of neutrino beams and of atmospheric neutrino fluxes.

  3. Mapping the dominant regions of the phase space associated with c c ¯ production relevant for the prompt atmospheric neutrino flux

    Science.gov (United States)

    Goncalves, Victor P.; Maciuła, Rafał; Pasechnik, Roman; Szczurek, Antoni

    2017-11-01

    We present a detailed mapping of the dominant kinematical domains contributing to the prompt atmospheric neutrino flux at high neutrino energies by studying their sensitivity to the cuts on several kinematical variables crucial for charm production in cosmic ray scattering in the atmosphere. This includes the maximal center-of-mass energy for proton-proton scattering, the longitudinal momentum fractions of partons in the projectile (cosmic ray) and target (nucleus of the atmosphere), the Feynman xF variable, and the transverse momentum of charm quark/antiquark. We find that the production of neutrinos with energies larger than Eν>107 GeV is particularly sensitive to the c.m. energies larger than the ones at the LHC and to the longitudinal momentum fractions in the projectile 10-8ranges beyond the reach of the current collider measurements.

  4. Accelerator studies of neutrino oscillations

    CERN Document Server

    Ereditato, A

    2000-01-01

    The question of whether the neutrino has a non-vanishing mass plays acrucial role in particle physics. A massive neutrino would unambiguously reveal the existence of new physics beyond the Standard Model. In addition, it could have profound implications on astrophysics and cosmology, with effects on the evolution of the Universe. Experiments aiming at direct neutrino-mass measurements based on kinematics have not been able, so far, to measure the very small neutrino mass. Indirect measurements can be performed by exploiting reactions which may only occur for massive neutrinos. Neutrino oscillation is one of those processes. The mass difference between neutrino mass-eigenstates can be inferred from a phase measurement. This feature allows for high sensitivity experiments. Neutrinos from different sources can be used to search for oscillations: solar neutrinos, neutrinos produced in the interaction of cosmic rays with the atmosphere and artificially produced neutrinos from nuclear reactors and particle accelera...

  5. On the IceCube spectral anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Palladino, Andrea; Vissani, Francesco [Gran Sasso Science Institute, L' Aquila (Italy); Spurio, Maurizio, E-mail: andrea.palladino@gssi.infn.it, E-mail: maurizio.spurio@bo.infn.it, E-mail: francesco.vissani@lngs.infn.it [Dipartimento di Fisica e Astronomia Università di Bologna and INFN Sezione di Bologna, Bologna (Italy)

    2016-12-01

    Recently it was noted that different IceCube datasets are not consistent with the same power law spectrum of the cosmic neutrinos: this is the IceCube spectral anomaly , that suggests that they observe a multicomponent spectrum. In this work, the main possibilities to enhance the description in terms of a single extragalactic neutrino component are examined. The hypothesis of a sizable contribution of Galactic high-energy neutrino events distributed as E {sup −2.7} [ Astrophys. J. 826 (2016) 185] is critically analyzed and its natural generalization is considered. The stability of the expectations is studied by introducing free parameters, motivated by theoretical considerations and observational facts. The upgraded model here examined has 1) a Galactic component with different normalization and shape E {sup −2.4}; 2) an extragalactic neutrino spectrum based on new data; 3) a non-zero prompt component of atmospheric neutrinos. The two key predictions of the model concern the 'high-energy starting events' collected from the Southern sky. The Galactic component produces a softer spectrum and a testable angular anisotropy. A second, radically different class of models, where the second component is instead isotropic, plausibly extragalactic and with a relatively soft spectrum, is disfavored instead by existing observations of muon neutrinos from the Northern sky and below few 100 TeV.

  6. Neutrino masses in the SU(5) x (lower case x) SU(5)' mirror symmetric model

    International Nuclear Information System (INIS)

    Collie, M.; Foot, R.

    1998-02-01

    Motivated by the atmospheric and solar neutrino anomalies, we study neutrino masses in a parity invariant SU(5) x SU(5)' grand unified model. Two distinct ways of incorporating neutrino masses into this model are envisaged. One way involves adding a gauge singlet fermion to each generation. The other way, is to extend the scalar sector. This possibility suggests that photon - mirror photon kinetic mixing is non-zero since is generated radiatively. It is argued that the kinetic mixing is such models may well be close to the experimental limit

  7. Neutrino mass and mixing, and non-accelerator experiments

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1992-01-01

    We review the current status of experimental knowledge about neutrinos derived from kinematic mass measurements, neutrino oscillation searches at reactors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indication that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing

  8. The experimental status of neutrino masses and mixings

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1992-01-01

    We review the current status of experimental knowledge about neutrinos derived from kinematic mass measurements, neutrino oscillation searches at reactors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indications that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing

  9. Super-PINGU for measurement of the leptonic CP-phase with atmospheric neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Razzaque, Soebur [Department of Physics, University of Johannesburg,PO Box 524, Auckland Park 2006 (South Africa); Smirnov, A.Yu. [Max-Planck-Institute for Nuclear Physics,Saupfercheckweg 1, D-69117 Heidelberg (Germany); International Centre for Theoretical Physics,Strada Costiera 11, I-34100 Trieste (Italy)

    2015-05-27

    We explore a possibility to measure the CP-violating phase δ using multi-megaton scale ice or water Cherenkov detectors with low, (0.2–1) GeV, energy threshold assuming that the neutrino mass hierarchy is identified. We elaborate the relevant theoretical and phenomenological aspects of this possibility. The distributions of the ν{sub μ} (track) and ν{sub e} (cascade) events in the neutrino energy and zenith angle (E{sub ν}−θ{sub z}) plane have been computed for different values of δ. We study properties and distinguishability of the distributions before and after smearing over the neutrino energy and zenith angle. The CP-violation effects are not washed out by smearing, and furthermore, the sensitivity to δ increases with decrease of the energy threshold. The ν{sub e} events contribute to the CP-sensitivity as much as the ν{sub μ} events. While sensitivity of PINGU to δ is low, we find that future possible upgrade, Super-PINGU, with few megaton effective volume at (0.5–1) GeV and e.g. after 4 years of exposure will be able to disentangle values of δ=π/2, π, 3π/2 from δ=0 with “distinguishability” (∼ significance in σ’s) S{sub σ}{sup tot}=(3–8), (6–14), (3–8) correspondingly. Here the intervals of S{sub σ}{sup tot} are due to various uncertainties of detection of the low energy events, especially the flavor identification, systematics, etc. Super-PINGU can be used simultaneously for the proton decay searches.

  10. Neutrinos (1/3)

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    The neutrino, the lightest and most weakly interacting particle of the Standard Model has revealed itself as the messenger of very exciting news in particle physics: there is Physics Beyond the Standard Model. All this thanks to the quantum-mechanical phenomenon of flavour oscillations which is intrinsically connected to the question of neutrino mass and which has been observed in neutrinos produced in natural sources, like the Sun and the Earth's atmosphere, as well as with human made neutrino beams at accelerator and reactors. The purpose of these lectures is to overview some aspects of the phenomenology of massive neutrinos. I will present the simplest extensions for adding neutrino masses to the SM, and then I will describe the phenomenology associated with neutrino oscillations in vacuum and in matter and its present signatures.

  11. Neutrino Physics

    CERN Multimedia

    CERN. Geneva; Dydak, Friedrich

    2001-01-01

    Starting from a review of theoretical concepts and experimental results in the early years of neutrino physics after Pauli's 1930 letter, today's double role of the neutrino as a cornerstone of the Standard Model and as a promising probe of physics beyond the Standard Model will be discussed. Topics comprise: - Conventional neutrino beams - Neutrinos as probes of the nucleon structure - Neutrinos from the universe - Dirac or Majorana neutrinos - Neutrino oscillations - MNS matrix - CP violation in the lepton sector - Neutrino factory.

  12. Neutrino Physics

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    Starting from a review of theoretical concepts and experimental results in the early years of neutrino physics after Pauli's 1930 letter, today's double role of the neutrino as a cornerstone of the Standard Model and as a promising probe of physics beyond the Standard Model will be discussed. Topics comprise: - Conventional neutrino beams - Neutrinos as probes of the nucleon structure - Neutrinos from the universe - Dirac or Majorana neutrinos - Neutrino oscillations - MNS matrix - CP violation in the lepton sector - Neutrino factory.

  13. Observed Local Soil Moisture-Atmosphere Feedbacks within the Context of Remote SST Anomalies: Lessons From Recent Droughts

    Science.gov (United States)

    Tawfik, A. B.; Dirmeyer, P.; Lawrence, D. M.

    2015-12-01

    The existence and possible transition from positive to negative soil moisture-atmosphere feedbacks is explored in this presentation using collocated flux tower measurements (Ameriflux) and atmospheric profiles from reanalysis. The focus is on the series of physical processes that lead to these local feedbacks connecting remote sea surface temperature changes (SST anomalies) to local soil moisture and boundary layer responses. Seasonal and Agricultural droughts are particularly useful test beds for examining these feedback processes because they are typically characterized by prolonged stretches of rain-free days followed by some termination condition. To quantify the full process-chain across these distinct spatial scales, complimentary information from several well-established land-atmosphere coupling metrics are used including, but not limited to, Mixing Diagram approaches, Soil Moisture Memory, and the Heated Condensation Framework. Preliminary analysis shows that there may be transitions from negative and positive soil moisture-atmosphere feedbacks as droughts develop. This is largely instigated by persistent atmospheric forcing that initially promotes increased surface latent heat flux, which limits boundary layer depth and dry air entrainment. However, if stagnant synoptic conditions continue eventually soil moisture is depleted to the point of shutting off surface latent heat flux producing deep boundary layers and increased dry air entrainment thus deepening drought stress. A package of standardized Fortran 90 modules called the Coupling Metrics Toolkit (CoMeT; https://github.com/abtawfik/coupling-metrics) used to calculate these land-atmosphere coupling metrics is also briefly presented.

  14. The Baikal Neutrino Telescope

    International Nuclear Information System (INIS)

    Aynutdinov, V. M.; Balkanov, V. A.; Belolaptikov, I. A.; Bezrukov, L. B.; Borschev, D. A.; Budnev, N. M.; Burmistrov, K. V.; Danilchenko, I. A.; Davidov, Ya. I.; Domogatsky, G. V.; Doroshenko, A. A.; Dyachok, A. N.; Dzhilkibaev, Zh.-A. M.; Fialkovsky, S. V.; Gaponenko, O. N.; Golubkov, K. V.; Gress, O. A.; Gress, T. I.; Grishin, O. V.; Klabukov, A. M.

    2006-01-01

    We review the present status of the Baikal Neutrino Experiment and present results of a search for upward-going atmospheric neutrinos and magnetic monopoles obtained with the detector NT200. The results of a search for very high energy neutrinos are presented and an upper limit on the extraterrestrial diffuse neutrino flux is obtained. We describe the strategy of upgrading the NT200 to NT200+ and creating a detector on the Gigaton scale at Lake Baikal. The first results obtained with the new NT200+ detector as a basic cell of a future Gigaton detector are presented

  15. Studies of neutrino asymmetries generated by ordinary-sterile neutrino oscillations in the early Universe and implications for big bang nucleosynthesis bounds

    Energy Technology Data Exchange (ETDEWEB)

    Foot, R.; Volkas, R.R. [Research Centre for High Energy Physics, School of Physics, University of Melbourne, Parkville, 3052 (Australia)

    1997-04-01

    Ordinary-sterile neutrino oscillations can generate a significant lepton number asymmetry in the early Universe. We study this phenomenon in detail. We show that the dynamics of ordinary-sterile neutrino oscillations in the early Universe can be approximately described by a single integrodifferential equation which we derive from both the density matrix and Hamiltonian formalisms. This equation reduces to a relatively simple ordinary first-order differential equation if the system is sufficiently smooth (static limit). We study the conditions for which the static limit is an acceptable approximation. We also study the effect of the thermal distribution of neutrino momenta on the generation of lepton number. We apply these results to show that it is possible to evade (by many orders of magnitude) the big bang nucleosynthesis (BBN) bounds on the mixing parameters {delta}m{sup 2} and sin{sup 2}2{theta}{sub 0} describing ordinary-sterile neutrino oscillations. We show that the large angle or maximal vacuum oscillation solution to the solar neutrino problem does not significantly modify BBN for most of the parameter space of interest, provided that the {tau} and/or {mu} neutrinos have masses greater than about 1 eV. We also show that the large angle or maximal ordinary-sterile neutrino oscillation solution to the atmospheric neutrino anomaly does not significantly modify BBN for a range of parameters. {copyright} {ital 1997} {ital The American Physical Society}

  16. Neutrino physics with JUNO

    Science.gov (United States)

    An, Fengpeng; An, Guangpeng; An, Qi; Antonelli, Vito; Baussan, Eric; Beacom, John; Bezrukov, Leonid; Blyth, Simon; Brugnera, Riccardo; Buizza Avanzini, Margherita; Busto, Jose; Cabrera, Anatael; Cai, Hao; Cai, Xiao; Cammi, Antonio; Cao, Guofu; Cao, Jun; Chang, Yun; Chen, Shaomin; Chen, Shenjian; Chen, Yixue; Chiesa, Davide; Clemenza, Massimiliano; Clerbaux, Barbara; Conrad, Janet; D'Angelo, Davide; De Kerret, Hervé; Deng, Zhi; Deng, Ziyan; Ding, Yayun; Djurcic, Zelimir; Dornic, Damien; Dracos, Marcos; Drapier, Olivier; Dusini, Stefano; Dye, Stephen; Enqvist, Timo; Fan, Donghua; Fang, Jian; Favart, Laurent; Ford, Richard; Göger-Neff, Marianne; Gan, Haonan; Garfagnini, Alberto; Giammarchi, Marco; Gonchar, Maxim; Gong, Guanghua; Gong, Hui; Gonin, Michel; Grassi, Marco; Grewing, Christian; Guan, Mengyun; Guarino, Vic; Guo, Gang; Guo, Wanlei; Guo, Xin-Heng; Hagner, Caren; Han, Ran; He, Miao; Heng, Yuekun; Hsiung, Yee; Hu, Jun; Hu, Shouyang; Hu, Tao; Huang, Hanxiong; Huang, Xingtao; Huo, Lei; Ioannisian, Ara; Jeitler, Manfred; Ji, Xiangdong; Jiang, Xiaoshan; Jollet, Cécile; Kang, Li; Karagounis, Michael; Kazarian, Narine; Krumshteyn, Zinovy; Kruth, Andre; Kuusiniemi, Pasi; Lachenmaier, Tobias; Leitner, Rupert; Li, Chao; Li, Jiaxing; Li, Weidong; Li, Weiguo; Li, Xiaomei; Li, Xiaonan; Li, Yi; Li, Yufeng; Li, Zhi-Bing; Liang, Hao; Lin, Guey-Lin; Lin, Tao; Lin, Yen-Hsun; Ling, Jiajie; Lippi, Ivano; Liu, Dawei; Liu, Hongbang; Liu, Hu; Liu, Jianglai; Liu, Jianli; Liu, Jinchang; Liu, Qian; Liu, Shubin; Liu, Shulin; Lombardi, Paolo; Long, Yongbing; Lu, Haoqi; Lu, Jiashu; Lu, Jingbin; Lu, Junguang; Lubsandorzhiev, Bayarto; Ludhova, Livia; Luo, Shu; Lyashuk, Vladimir; Möllenberg, Randolph; Ma, Xubo; Mantovani, Fabio; Mao, Yajun; Mari, Stefano M.; McDonough, William F.; Meng, Guang; Meregaglia, Anselmo; Meroni, Emanuela; Mezzetto, Mauro; Miramonti, Lino; Mueller, Thomas; Naumov, Dmitry; Oberauer, Lothar; Ochoa-Ricoux, Juan Pedro; Olshevskiy, Alexander; Ortica, Fausto; Paoloni, Alessandro; Peng, Haiping; Peng, Jen-Chieh; Previtali, Ezio; Qi, Ming; Qian, Sen; Qian, Xin; Qian, Yongzhong; Qin, Zhonghua; Raffelt, Georg; Ranucci, Gioacchino; Ricci, Barbara; Robens, Markus; Romani, Aldo; Ruan, Xiangdong; Ruan, Xichao; Salamanna, Giuseppe; Shaevitz, Mike; Sinev, Valery; Sirignano, Chiara; Sisti, Monica; Smirnov, Oleg; Soiron, Michael; Stahl, Achim; Stanco, Luca; Steinmann, Jochen; Sun, Xilei; Sun, Yongjie; Taichenachev, Dmitriy; Tang, Jian; Tkachev, Igor; Trzaska, Wladyslaw; van Waasen, Stefan; Volpe, Cristina; Vorobel, Vit; Votano, Lucia; Wang, Chung-Hsiang; Wang, Guoli; Wang, Hao; Wang, Meng; Wang, Ruiguang; Wang, Siguang; Wang, Wei; Wang, Yi; Wang, Yi; Wang, Yifang; Wang, Zhe; Wang, Zheng; Wang, Zhigang; Wang, Zhimin; Wei, Wei; Wen, Liangjian; Wiebusch, Christopher; Wonsak, Björn; Wu, Qun; Wulz, Claudia-Elisabeth; Wurm, Michael; Xi, Yufei; Xia, Dongmei; Xie, Yuguang; Xing, Zhi-zhong; Xu, Jilei; Yan, Baojun; Yang, Changgen; Yang, Chaowen; Yang, Guang; Yang, Lei; Yang, Yifan; Yao, Yu; Yegin, Ugur; Yermia, Frédéric; You, Zhengyun; Yu, Boxiang; Yu, Chunxu; Yu, Zeyuan; Zavatarelli, Sandra; Zhan, Liang; Zhang, Chao; Zhang, Hong-Hao; Zhang, Jiawen; Zhang, Jingbo; Zhang, Qingmin; Zhang, Yu-Mei; Zhang, Zhenyu; Zhao, Zhenghua; Zheng, Yangheng; Zhong, Weili; Zhou, Guorong; Zhou, Jing; Zhou, Li; Zhou, Rong; Zhou, Shun; Zhou, Wenxiong; Zhou, Xiang; Zhou, Yeling; Zhou, Yufeng; Zou, Jiaheng

    2016-03-01

    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy (MH) as a primary physics goal. The excellent energy resolution and the large fiducial volume anticipated for the JUNO detector offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. In this document, we present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. Following an introduction summarizing the current status and open issues in neutrino physics, we discuss how the detection of antineutrinos generated by a cluster of nuclear power plants allows the determination of the neutrino MH at a 3-4σ significance with six years of running of JUNO. The measurement of antineutrino spectrum with excellent energy resolution will also lead to the precise determination of the neutrino oscillation parameters {{sin}}2{θ }12, {{Δ }}{m}212, and | {{Δ }}{m}{ee}2| to an accuracy of better than 1%, which will play a crucial role in the future unitarity test of the MNSP matrix. The JUNO detector is capable of observing not only antineutrinos from the power plants, but also neutrinos/antineutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, and solar neutrinos. As a result of JUNO's large size, excellent energy resolution, and vertex reconstruction capability, interesting new data on these topics can be collected. For example, a neutrino burst from a typical core-collapse supernova at a distance of 10 kpc would lead to ˜5000 inverse-beta-decay events and ˜2000 all-flavor neutrino-proton ES events in JUNO, which are of crucial importance for understanding the mechanism of supernova explosion and for exploring novel phenomena such as collective neutrino oscillations

  17. Neutrino oscillations: present status and outlook

    International Nuclear Information System (INIS)

    Schwetz, T.

    2005-01-01

    In this talk the present status of neutrino oscillations is reviewed, based on a global analysis of world neutrino oscillation data from solar, atmospheric, reactor, and accelerator neutrino experiments. Furthermore, I discuss the expected improvements in the determination of neutrino parameters by future oscillation experiments within a timescale of 10 years. (author)

  18. Neutrino oscillations on the way to long-baseline experiments

    CERN Document Server

    Ryabov, V A

    2003-01-01

    The motivations and physical objectives of experiments in the search for nu /sub mu / to nu /sub e/, nu /sub tau / oscillations in long- baseline accelerator neutrino beams are reviewed. Neutrino beams, detectors, and methods for detecting oscillations (detection of the disappearance of nu /sub mu /, and the appearance of nu /sub e/ and nu /sub tau /) in the current K2K (KEK to Super Kamiokande) experiment and in the MINOS (FNAL to Soudan) and OPERA (CERN to Gran Sasso) near-future experiments are discussed. Possibilities of measuring the oscillation parameters in these experiments are considered in connection with new data obtained in CHOOZ and Palo Verde reactor experiments, the solar neutrino deficit and nu /sub mu // nu /sub e/ anomaly of atmospheric neutrinos, which are observed in large-scale underground detectors, and the excess of nu /sub e/ events in the LSND experiment. Neutrino-oscillation scenarios used in models with three and four (including sterile) types of neutrino, as well as the possibility...

  19. Neutrino geophysics - a future possibility

    International Nuclear Information System (INIS)

    Kiss, Dezsoe

    1988-01-01

    The history and basic properties of the neutrinos are reviewed. A new idea: neutrino tomography of the Earth interior is discussed in detail. The main contradiction: the high pervasivity of neutrinos, which makes possible the transillumination of the Earth, and the gigantic technical problems of detection caused by the small cross section is pointed out. The proposed possibilities of detection (radiowaves, sound, muons and Cherenkov light emitted by neutrinos) are described. Proposed futuristic technical ideas (mobile muon detectors aboard trucks, floating proton accelerators of 100 km circumference, moving in the ocean) and supposed geological aims (Earth's core, internal density anomalies, quarries of minerals and crude oil) are discussed. (D.Gy.) 5 figs

  20. New neutrino oscillation results from NOVA

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Neutrinos oscillate among flavors as they travel because a neutrino of a particular flavor is also a superposition of multiple neutrinos with slightly different masses.  The interferometric nature of oscillations allows these tiny mass differences to be measured, along with the parameters of the PMNS matrix which governs the mixing. However, since neutrinos only interact weakly, a powerful neutrino source and massive detectors are required to measure them. In this talk I will show recently updated results from NOvA, a long-baseline neutrino oscillation experiment at Fermilab with two functionally identical scintillator detectors. I will present measurements of muon neutrino disappearance and electron neutrino appearance, and what constraints those measurements put on the remaining open questions in neutrino oscillations: Is the neutrino mass hierarchy "normal" or "inverted?" Do neutrino oscillations violate CP symmetry? Is the mixing in the atmospheric sector maximal? The recent update includes 50%...

  1. Sterile Neutrino Search with MINOS

    International Nuclear Information System (INIS)

    Devan, Alena V.

    2015-01-01

    MINOS, Main Injector Neutrino Oscillation Search, is a long-baseline neutrino oscillation experiment in the NuMI muon neutrino beam at the Fermi National Accelerator Laboratory in Batavia, IL. It consists of two detectors, a near detector positioned 1 km from the source of the beam and a far detector 734 km away in Minnesota. MINOS is primarily designed to observe muon neutrino disappearance resulting from three flavor oscillations. The Standard Model of Particle Physics predicts that neutrinos oscillate between three active flavors as they propagate through space. This means that a muon-type neutrino has a certain probability to later interact as a different type of neutrino. In the standard picture, the neutrino oscillation probabilities depend only on three neutrino flavors and two mass splittings, Δm 2 . An anomaly was observed by the LSND and MiniBooNE experiments that suggests the existence of a fourth, sterile neutrino flavor that does not interact through any of the known Standard Model interactions. Oscillations into a theoretical sterile flavor may be observed by a deficit in neutral current interactions in the MINOS detectors. A distortion in the charged current energy spectrum might also be visible if oscillations into the sterile flavor are driven by a large mass-squared difference, Δm s 2 ~ 1 eV 2 . The results of the 2013 sterile neutrino search are presented here.

  2. Sterile Neutrino Search with MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Devan, Alena V. [College of William and Mary, Williamsburg, VA (United States)

    2015-08-01

    MINOS, Main Injector Neutrino Oscillation Search, is a long-baseline neutrino oscillation experiment in the NuMI muon neutrino beam at the Fermi National Accelerator Laboratory in Batavia, IL. It consists of two detectors, a near detector positioned 1 km from the source of the beam and a far detector 734 km away in Minnesota. MINOS is primarily designed to observe muon neutrino disappearance resulting from three flavor oscillations. The Standard Model of Particle Physics predicts that neutrinos oscillate between three active flavors as they propagate through space. This means that a muon-type neutrino has a certain probability to later interact as a different type of neutrino. In the standard picture, the neutrino oscillation probabilities depend only on three neutrino flavors and two mass splittings, Δm2. An anomaly was observed by the LSND and MiniBooNE experiments that suggests the existence of a fourth, sterile neutrino flavor that does not interact through any of the known Standard Model interactions. Oscillations into a theoretical sterile flavor may be observed by a deficit in neutral current interactions in the MINOS detectors. A distortion in the charged current energy spectrum might also be visible if oscillations into the sterile flavor are driven by a large mass-squared difference, ms2 ~ 1 eV2. The results of the 2013 sterile neutrino search are presented here.

  3. Simulation of the diurnal variations of the oxygen isotope anomaly (Δ17O of reactive atmospheric species

    Directory of Open Access Journals (Sweden)

    J. Savarino

    2011-04-01

    Full Text Available The isotope anomaly (Δ17O of secondary atmospheric species such as nitrate (NO3− or hydrogen peroxide (H2O2 has potential to provide useful constrains on their formation pathways. Indeed, the Δ17O of their precursors (NOx, HOx etc. differs and depends on their interactions with ozone, which is the main source of non-zero Δ17O in the atmosphere. Interpreting variations of Δ17O in secondary species requires an in-depth understanding of the Δ17O of their precursors taking into account non-linear chemical regimes operating under various environmental settings. This article reviews and illustrates a series of basic concepts relevant to the propagation of the Δ17O of ozone to other reactive or secondary atmospheric species within a photochemical box model. We present results from numerical simulations carried out using the atmospheric chemistry box model CAABA/MECCA to explicitly compute the diurnal variations of the isotope anomaly of short-lived species such as NOx and HOx. Using a simplified but realistic tropospheric gas-phase chemistry mechanism, Δ17O was propagated from ozone to other species (NO, NO2, OH, HO2, RO2, NO3, N2O5, HONO, HNO3, HNO4, H2O2 according to the mass-balance equations, through the implementation of various sets of hypotheses pertaining to the transfer of Δ17O during chemical reactions. The model results confirm that diurnal variations in Δ17O of NOx predicted by the photochemical steady-state relationship during the day match those from the explicit treatment, but not at night. Indeed, the Δ17O of NOx is "frozen" at night as soon as the photolytical lifetime of NOx drops below ca. 10 min. We introduce and quantify the diurnally-integrated isotopic signature (DIIS of sources of atmospheric nitrate and H2O2, which is of particular relevance to larger-scale simulations of Δ17O where high computational costs cannot be afforded.

  4. Development of an expert system for analysis of Shuttle atmospheric revitalization and pressure control subsystem anomalies

    Science.gov (United States)

    Lafuse, Sharon A.

    1991-01-01

    The paper describes the Shuttle Leak Management Expert System (SLMES), a preprototype expert system developed to enable the ECLSS subsystem manager to analyze subsystem anomalies and to formulate flight procedures based on flight data. The SLMES combines the rule-based expert system technology with the traditional FORTRAN-based software into an integrated system. SLMES analyzes the data using rules, and, when it detects a problem that requires simulation, it sets up the input for the FORTRAN-based simulation program ARPCS2AT2, which predicts the cabin total pressure and composition as a function of time. The program simulates the pressure control system, the crew oxygen masks, the airlock repress/depress valves, and the leakage. When the simulation has completed, other SLMES rules are triggered to examine the results of simulation contrary to flight data and to suggest methods for correcting the problem. Results are then presented in form of graphs and tables.

  5. Check of the accuracy of the relativity theory with atmospheric muon neutrinos from the AMANDA data of the years 2000 to 2003; Ueberpruefung der Genauigkeit der Relativitaetstheorie mit atmosphaerischen Myonneutrinos aus den AMANDA-Daten der Jahre 2000 bis 2003

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, J.C.

    2006-11-08

    Atmospheric neutrinos allow one to test the principles of the Theory of Relativity in particular Lorentz invariance and the equivalence principle. Small deviations from these principles could lead, according to some theories, to detectable neutrino oscillations. Such oscillation effects are analysed in this thesis, using the data collected by the AMANDA detector. The neutrino telescope AMANDA is located at the South Pole and embedded in the Antarctic ice shield at a depth between 1500 m and 2000 m. AMANDA detects muon neutrinos via the Cherenkov light of neutrino induced muons allowing the reconstruction of the original neutrino direction. From the data of the years 2000 to 2003, which contain about seven billion recorded events and which mainly consist of the background of atmospheric muons, a sample of 3401 neutrino induced events has been selected. No indication for alternative oscillation effects has been found. For maximal mixing angles, a lower limit for parameters which violate Lorentz invariance or the equivalence principle could be set to {delta}{beta}(2 vertical stroke {phi} vertical stroke {delta}{gamma}){<=}5.15.10{sup -27}. (orig)

  6. Neutrino physics

    International Nuclear Information System (INIS)

    Gil-Botella, I.

    2011-01-01

    The fundamental properties of neutrinos are reviewed in these lectures. The first part is focused on the basic characteristics of neutrinos in the Standard Model and how neutrinos are detected. Neutrino masses and oscillations are introduced and a summary of the most important experimental results on neutrino oscillations to date is provided. Then, present and future experimental proposals are discussed, including new precision reactor and accelerator experiments. Finally, different approaches for measuring the neutrino mass and the nature (Majorana or Dirac), of neutrinos are reviewed. The detection of neutrinos from supernovae explosions and the information that this measurement can provide are also summarized at the end. (author)

  7. Effect of boreal spring precipitation anomaly pattern change in the late 1990s over tropical Pacific on the atmospheric teleconnection

    Science.gov (United States)

    Guo, Yuanyuan; Wen, Zhiping; Chen, Ruidan; Li, Xiuzhen; Yang, Xiu-Qun

    2018-02-01

    Observational evidence showed that the leading mode of precipitation variability over the tropical Pacific during boreal spring experienced a pronounced interdecadal change around the late 1990s, characterized by a precipitation pattern shift from an eastern Pacific (EP) type to a central Pacific (CP) type. The distinct impacts of such a precipitation pattern shift on the extratropical atmospheric teleconnection were examined. An apparent poleward teleconnection extending from the tropics to the North Atlantic region was observed after 1998, while, there was no significant teleconnection before 1998. To understand why only the CP-type precipitation mode is associated with a striking atmospheric teleconnection after 1998, diagnostic analyses with the Eliassen-Palm flux and Rossby wave source (RWS) based on the barotropic vorticity equation were performed. The results show that for the EP-type precipitation mode, no significant RWS anomalies appeared over the subtropical Pacific due to the opposite effect of the vortex stretching and absolute vorticity advection processes. For the CP-type precipitation mode, however, there are both significant vorticity forcing source over the subtropical CP and clear poleward-propagation of Rossby wave. The spatial distribution of the CP-type precipitation pattern tends to excite a conspicuous anomalous southerly and a well-organized negative vorticity center over the subtropical CP where both the mean absolute vorticity gradient and mean divergence flow are large, hence, the interaction between the heating-induced anomalous circulation and the basic state made the generation of Rossby waves conceivable and effective. Such corresponding teleconnection responses to the prescribed heating were also examined by using a Linear Baroclinic Model (LBM). It turned out that significant poleward teleconnection pattern is only caused by the CP-type precipitation mode, rather than by the EP-type precipitation mode. Further sensitive experiments

  8. Updated Global Analysis of Neutrino Oscillations in the Presence of eV-Scale Sterile Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Dentler, Mona [U. Mainz, PRISMA; Hernández-Cabezudo, Alvaro [KIT, Karlsruhe, IKP; Kopp, Joachim [CERN; Machado, Pedro [Fermilab; Maltoni, Michele [Madrid, IFT; Martinez-Soler, Ivan [Madrid, IFT; Schwetz, Thomas [KIT, Karlsruhe, IKP

    2018-03-28

    We discuss the possibility to explain the anomalies in short-baseline neutrino oscillation experiments in terms of sterile neutrinos. We work in a 3+1 framework and pay special attention to recent new data from reactor experiments, IceCube and MINOS+. We find that results from the DANSS and NEOS reactor experiments support the sterile neutrino explanation of the reactor anomaly, based on an analysis that relies solely on the relative comparison of measured reactor spectra. Global data from the $\

  9. Anti-neutrino imprint in solar neutrino flare

    Science.gov (United States)

    Fargion, D.

    2006-10-01

    A future neutrino detector at megaton mass might enlarge the neutrino telescope thresholds revealing cosmic supernova background and largest solar flares (SFs) neutrinos. Indeed the solar energetic (Ep>100 MeV) flare particles (protons, α), while scattering among themselves on solar corona atmosphere must produce prompt charged pions, whose chain decays are source of a solar (electron muon) neutrino 'flare' (at tens or hundreds MeV energy). These brief (minutes) neutrino 'bursts' at largest flare peak may overcome by three to five orders of magnitude the steady atmospheric neutrino noise on the Earth, possibly leading to their detection above detection thresholds (in a full mixed three flavour state). Moreover the birth of anti-neutrinos at a few tens of MeV very clearly flares above a null thermal 'hep' anti-neutrino solar background and also above a tiny supernova relic and atmospheric noise. The largest prompt solar anti-neutrino 'burst' may be well detected in future Super Kamikande (gadolinium implemented) anti-neutrino \\bar\

  10. Impacts of Local Soil Moisture Anomalies on the Atmospheric Circulation and on Remote Surface Meteorological Fields During Boreal Summer: A Comprehensive Analysis over North America

    Science.gov (United States)

    Koster, Randal D.; Chang, Yehui; Wang, Hailan; Schubert, Siegfried D.

    2016-01-01

    We perform a series of stationary wave model (SWM) experiments in which the boreal summer atmosphere is forced, over a number of locations in the continental U.S., with an idealized diabatic heating anomaly that mimics the atmospheric heating associated with a dry land surface. For localized heating within a large portion of the continental interior, regardless of the specific location of this heating, the spatial pattern of the forced atmospheric circulation anomaly (in terms of 250-mb eddy streamfunction) is largely the same: a high anomaly forms over west central North America and a low anomaly forms to the east. In supplemental atmospheric general circulation model (AGCM) experiments, we find similar results; imposing soil moisture dryness in the AGCM in different locations within the US interior tends to produce the aforementioned pattern, along with an associated near-surface warming and precipitation deficit in the center of the continent. The SWM-based and AGCM-based patterns generally agree with composites generated using reanalysis and precipitation gauge data. The AGCM experiments also suggest that dry anomalies imposed in the lower Mississippi Valley have remote surface impacts of particularly large spatial extent, and a region along the eastern half of the US-Canada border is particularly sensitive to dry anomalies in a number of remote areas. Overall, the SWM and AGCM experiments support the idea of a positive feedback loop operating over the continent: dry surface conditions in many interior locations lead to changes in atmospheric circulation that act to enhance further the overall dryness of the continental interior.

  11. ICARUS+NESSiE: A proposal for short baseline neutrino anomalies with innovative LAr imaging detectors coupled with large muon spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Gibin, D., E-mail: daniele.gibin@pd.infn.it

    2013-04-15

    The proposal for an experimental search for sterile neutrinos beyond the Standard Model with a new CERN-SPS neutrino beam is presented. The experiment is based on two identical LAr-TPC's followed by magnetized spectrometers, observing the electron and muon neutrino events at 1600 and 300 m from the proton target. This project will exploit the ICARUS T600, moved from LNGS to the CERN “Far” position. An additional 1/4 of the T600 detector will be constructed and located in the “Near” position. Two spectrometers will be placed downstream of the two LAr-TPC detectors to greatly complement the physics capabilities. Comparing the two detectors, in absence of oscillations, all cross sections and experimental biases cancel out. Any difference of the event distributions at the locations of the two detectors might be attributed to the possible existence of ν-oscillations, presumably due to additional neutrinos with a mixing angle sin{sup 2}(2θ{sub new}) and a larger mass difference Δm{sub new}{sup 2}. The superior quality of the LAr imaging TPC, in particular its unique electron-π{sub 0} discrimination allows full rejection of backgrounds and offers a lossless ν{sub e} detection capability. The determination of the muon charge with the spectrometers allows the full separation of ν{sub μ} from anti-ν{sub μ} and therefore controlling systematics from muon mis-identification largely at high momenta.

  12. ICARUS+NESSiE: A proposal for short baseline neutrino anomalies with innovative LAr imaging detectors coupled with large muon spectrometers

    Science.gov (United States)

    Gibin, D.

    2013-04-01

    The proposal for an experimental search for sterile neutrinos beyond the Standard Model with a new CERN-SPS neutrino beam is presented. The experiment is based on two identical LAr-TPC's followed by magnetized spectrometers, observing the electron and muon neutrino events at 1600 and 300 m from the proton target. This project will exploit the ICARUS T600, moved from LNGS to the CERN "Far" position. An additional 1/4 of the T600 detector will be constructed and located in the "Near" position. Two spectrometers will be placed downstream of the two LAr-TPC detectors to greatly complement the physics capabilities. Comparing the two detectors, in absence of oscillations, all cross sections and experimental biases cancel out. Any difference of the event distributions at the locations of the two detectors might be attributed to the possible existence of ν-oscillations, presumably due to additional neutrinos with a mixing angle sin2(2θ) and a larger mass difference Δmnew2. The superior quality of the LAr imaging TPC, in particular its unique electron-π0 discrimination allows full rejection of backgrounds and offers a lossless νe detection capability. The determination of the muon charge with the spectrometers allows the full separation of νμ from anti-νμ and therefore controlling systematics from muon mis-identification largely at high momenta.

  13. Neutrino cosmology

    International Nuclear Information System (INIS)

    Berstein, J.

    1984-01-01

    These lectures offer a self-contained review of the role of neutrinos in cosmology. The first part deals with the question 'What is a neutrino.' and describes in a historical context the theoretical ideas and experimental discoveries related to the different types of neutrinos and their properties. The basic differences between the Dirac neutrino and the Majorana neutrino are pointed out and the evidence for different neutrino 'flavours', neutrino mass, and neutrino oscillations is discussed. The second part summarizes current views on cosmology, particularly as they are affected by recent theoretical and experimental advances in high-energy particle physics. Finally, the close relationship between neutrino physics and cosmology is brought out in more detail, to show how cosmological constraints can limit the various theoretical possibilities for neutrinos and, more particularly, how increasing knowledge of neutrino properties can contribute to our understanding of the origin, history, and future of the Universe. The level is that of the beginning graduate student. (orig.)

  14. Experimental Neutrino Physics

    Energy Technology Data Exchange (ETDEWEB)

    Wilkes, Richard Jeffrey [Univ. of Washington, Seattle, WA (United States)

    2017-11-15

    The University of Washington (UW) HEP neutrino group performed experimental research on the physics of neutrinos, using the capabilities offered by the T2K Experiment and the Super-Kamiokande Neutrino Observatory. The UW group included senior investigator R. J. Wilkes, two PhD students, four MS degree students, and a research engineer, all of whom are members of the international scientific collaborations for T2K and Super-Kamiokande. During the period of support, within T2K we pursued new precision studies sensitive to new physics, going beyond the limits of current measurements of the fundamental neutrino oscillation parameters (mass differences and mixing angles). We began efforts to measure (or significantly determine the absence of) 1 the CP-violating phase parameter δCP and determine the neutrino mass hierarchy. Using the Super-Kamiokande (SK) detector we pursued newly increased precision in measurement of neutrino oscillation parameters with atmospheric neutrinos, and extended the current reach in searches for proton decay, in addition to running the most sensitive supernova watch instrument [Scholberg 2012], performing other astrophysical neutrino studies, and analyzing beam-induced events from T2K. Overall, the research addressed central questions in the field of particle physics. It included the training of graduate students (both PhD and professional MS degree students), and postdoctoral researchers. Undergraduate students also participated as laboratory assistants.

  15. Results from neutrino experiments

    International Nuclear Information System (INIS)

    Smirnov, A.Yu.

    1993-11-01

    Recent (first or/and the best) results from the neutrino experiments are reviewed and their implications for the theory are discussed. The sense of the experiments is the searching for neutrino masses, mixing and interactions beyond the standard model. Present laboratory experiments give upper bounds on the masses and the mixing which are at the level of predictions of the ''electroweak see-saw''. Positive indications of nonzero lepton mixing follow from studies of the solar and atmospheric neutrinos. (author). 95 refs, 11 figs

  16. The reactor antineutrino anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Haser, Julia; Buck, Christian; Lindner, Manfred [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2016-07-01

    Major discoveries were made in the past few years in the field of neutrino flavour oscillation. Nuclear reactors produce a clean and intense flux of electron antineutrinos and are thus an essential neutrino source for the determination of oscillation parameters. Most currently the reactor antineutrino experiments Double Chooz, Daya Bay and RENO have accomplished to measure θ{sub 13}, the smallest of the three-flavour mixing angles. In the course of these experiments two anomalies emerged: (1) the reanalysis of the reactor predictions revealed a deficit in experimentally observed antineutrino flux, known as the ''reactor antineutrino anomaly''. (2) The high precision of the latest generation of neutrino experiments resolved a spectral shape distortion relative to the expected energy spectra. Both puzzles are yet to be solved and triggered new experimental as well as theoretical studies, with the search for light sterile neutrinos as most popular explanation for the flux anomaly. This talk outlines the two reactor antineutrino anomalies. Discussing possible explanations for their occurrence, recent and upcoming efforts to solve the reactor puzzles are highlighted.

  17. Neutrino mass?

    International Nuclear Information System (INIS)

    Kayser, B.

    1992-01-01

    After arguing that we should be looking for evidence of neutrino mass, we illustrate the possible consequences of neutrino mass and mixing. We then turn to the question of whether neutrinos are their own antiparticles, and to the process which may answer this question: neutrinoless double beta decay. Next, we review the proposed Mikheyev-Smirnov-Wolfenstein solution to the solar neutrino problem, and discuss models which can generate neutrino electromagnetic moments large enough to play a role in the sun. Finally, we consider how the possible 17 keV neutrino, if real, would fit in with everything we know about neutrinos. (orig.)

  18. NeSSiE and sterile neutrinos

    Science.gov (United States)

    Marsella, G.; NESSiE Collaboration

    2015-08-01

    The wonderful frame pinpointed for the 3 standard neutrinos, beautifully adjusted by the Θ13 measurement, left out some relevant questions such as leptonic CP violation, mass values, Dark Matter and anomalies and discrepancies in several neutrino experiment results. The NESSiE collaboration proposes to undertake conclusive experiments to clarify the muon neutrino disappearance measurements at small L/E, which will be able to put severe constraints to models with more than the three-standard neutrinos, or even to robustly measure the presence of a new kind of neutrino oscillation for the first time.

  19. Long baseline neutrino experiments

    Indian Academy of Sciences (India)

    Atmospheric neutrino experiments (IMB, Kamiokande, Super-Kamiokande (SK)) show that νµ created in cosmic ray interactions with atmospheric nuclei are being converted into ντ but νe created in such interactions are unaffected. SK measure- ment of νµ and νe event rates as functions of zenith angle is the key ...

  20. Discrete Symmetry Approach to Lepton Flavour, Neutrino Mixing and Leptonic CP Violation, and Neutrino Related Physics Beyond the Standard Theory

    OpenAIRE

    Girardi, Ivan

    2016-01-01

    The experimental evidences of neutrino oscillation, caused by non-zero neutrino masses and neutrino mixing, which were obtained in the experiments with solar, atmospheric, accelerator and reactor neutrinos, opened new field of research in elementary particle physics. The principal goal is to understand at fundamental level the mechanism giving rise to non-zero neutrino masses and neutrino mixing. The open fundamental questions include those of the nature — Dirac or Majorana — of massive neutr...

  1. Identification and localization of neutrino events in the OPERA detector

    International Nuclear Information System (INIS)

    Heritier, C.

    2004-07-01

    The OPERA experiment is designed for the appearance search of ν μ → ν τ oscillations in the parameters indicated by the atmospheric neutrino anomaly. To prove the appearance of ν τ at 732 km from the CERN, an hybrid detector is under construction at the Gran Sasso laboratory. The target, composed by bricks made of lead plates and emulsion sheets, allows the direct observation of the τ lepton produced in ν τ charged current interactions. The tracking, the localization of neutrino events in the target and the muon identification are allowed by trackers located inside the target (scintillators) and in the spectrometer following the target (RPC). The development of algorithms, based on electronic detectors, is necessary to identify the neutrino interaction and to locate the bricks where the interaction occurred. A classification of neutrino events is performed using the identification of the muon produced in ν μ CC and ν τ CC with τ → μ decay. This classification is optimised with tracking informations and also with topological and calorimetric parameters which describe the nature of the interaction (quasi-elastic, deep inelastic); the algorithm of the localization of neutrino event is performed for each category. A tridimensional brick probability map is built and can be exploited to implement sophisticated extraction brick strategies. To conclude, a feasibility study of a test beam experiment OPERETTE is presented. The project was to install a similar OPERA detector in the COMPASS neutrino beam, in the CERN North Area. It was a good opportunity to prepare OPERA for the scanning emulsion films with neutrino events and to test the analysis procedures. (author)

  2. Physics Projects for a Future CERN-LNGS Neutrino Programme

    OpenAIRE

    Picchi, P.; Pietropaolo, F.

    1998-01-01

    We present an overview of the future projects concerning the neutrino oscillation physics in Europe. Recently a joint CERN-LNGS scientific committee has reviewed several proposals both for the study of atmospheric neutrinos and for long (LBL) and short baseline (SBL) neutrino oscillation experiments. The committee has indicated the priority that the European high energy physics community should follows in the field of neutrino physics, namely a new massive, atmospheric neutrino detector and a...

  3. Methane anomalies in seawaters of the Ragay Gulf, Philippines: methane cycling and contributions to atmospheric greenhouse gases

    International Nuclear Information System (INIS)

    Heggie, D.T.; Evans, D.; Bishop, J.H.

    1999-01-01

    The vertical distribution of methane has been measured in the water column of a semi-enclosed basin, the Ragay Gulf, in the Philippines archipelago. The methane distribution is characterised by unusual mid-water and bottom-water plumes, between 80 and 100 m thick. The plumes are confined to water depths between about 100 and 220 m. where the temperature-depth (a proxy for seawater density) gradient is steepest. Plumes of high methane are 'trapped' within the main thermocline; these are local features, persisting over kilometre-scale distances. Geochemical and geological evidence suggests that the elevated methane concentrations are thermogenic in origin (although an oxidised biogenic origin cannot be ruled out for some of the methane anomalies), and have migrated from the sea floor into the overlying water. The mid and bottom-water methane maxima support fluxes of methane from depth into surface waters and, subsequently, from the oceans to the atmosphere. The average supersaturation of methane in the top 5 m of the sea, at nine locations, was 206±16.5%; range 178-237%. The average estimated sea-air flux was 101 nmole.cm -2 .y -1 and probably represents a minimum flux, because of low wind speeds of <10 knots. These fluxes, we suggest, are supported by seepage from the sea floor and represent naturally occurring fluxes of mostly fossil methane (in contrast to anthropogenic fossil methane), from the sea to the atmosphere. The estimated minimum fluxes of naturally occurring fossil methane are comparable to those biogenic fluxes measured elsewhere in the surface oceans, but are less than those naturally occurring methane inputs from sediments of the Barents Sea. Ragay Gulf fluxes are also less than anthropogenic fluxes measured in areas of petroleum exploration and development, such as the Texas and Louisiana, USA shelf areas

  4. Evolution of ENSO-related rainfall anomalies in Southeast Asia region and its relationship with atmosphere-ocean variations in Indo-Pacific sector

    Energy Technology Data Exchange (ETDEWEB)

    Juneng, Liew; Tangang, Fredolin T. [Technology National University of Malaysia, Marine Science Program, School of Environmental and Natural Resource Sciences, Bangi Selangor (Malaysia)

    2005-09-01

    The Southeast Asia rainfall (SEAR) anomalies depend strongly on phases of El Nino (La Nina). Using an extended empirical orthogonal function (EEOF) analysis, it is shown that the dominant EEOF mode of SEAR anomalies evolves northeastward throughout a period from the summer when El Nino develops to spring the following year when the event weakens. This evolution is consistent with northeastward migration of the ENSO-related anomalous out going radiation field. During boreal summer (winter), the strong ENSO-related anomaly tends to reside in regions south (north) of the equator. The evolution of dominant mode of SEAR anomalies is in tandem with the evolution of ENSO-related sea surface temperature (SST) anomalies. The strengthening and weakening of ''boomerang-shaped'' SST in western Pacific, the changing sign of anomalous SST in Java Sea and the warming in Indian Ocean and South China Sea are all part of ENSO-related changes and all are linked to SEAR anomaly. The anomalous low-level circulation associated with ENSO-related SEAR anomaly indicates the strengthening and weakening of two off-equatorial anticyclones, one over the Southern Indian Ocean and the other over the western North Pacific. Together with patterns of El Nino minus La Nina composites of various fields, it is proposed that the northeastward evolution of SEAR anomaly is basically part of the large-scale eastward evolution of ENSO-related signal in the Indo-Pacific sector. The atmosphere-ocean interaction plays an important role in this evolution. (orig.)

  5. Identification and localization of neutrino events in the OPERA detector; Identification et localisation des evenements neutrino dans le detecteur OPERA

    Energy Technology Data Exchange (ETDEWEB)

    Heritier, C

    2004-07-15

    The OPERA experiment is designed for the appearance search of {nu}{sub {mu}} {yields} {nu}{sub {tau}} oscillations in the parameters indicated by the atmospheric neutrino anomaly. To prove the appearance of {nu}{sub {tau}} at 732 km from the CERN, an hybrid detector is under construction at the Gran Sasso laboratory. The target, composed by bricks made of lead plates and emulsion sheets, allows the direct observation of the {tau} lepton produced in {nu}{sub {tau}} charged current interactions. The tracking, the localization of neutrino events in the target and the muon identification are allowed by trackers located inside the target (scintillators) and in the spectrometer following the target (RPC). The development of algorithms, based on electronic detectors, is necessary to identify the neutrino interaction and to locate the bricks where the interaction occurred. A classification of neutrino events is performed using the identification of the muon produced in {nu}{sub {mu}} CC and {nu}{sub {tau}} CC with {tau} {yields} {mu} decay. This classification is optimised with tracking informations and also with topological and calorimetric parameters which describe the nature of the interaction (quasi-elastic, deep inelastic); the algorithm of the localization of neutrino event is performed for each category. A tridimensional brick probability map is built and can be exploited to implement sophisticated extraction brick strategies. To conclude, a feasibility study of a test beam experiment OPERETTE is presented. The project was to install a similar OPERA detector in the COMPASS neutrino beam, in the CERN North Area. It was a good opportunity to prepare OPERA for the scanning emulsion films with neutrino events and to test the analysis procedures. (author)

  6. Parametric resonance in neutrino oscillations in matter

    Indian Academy of Sciences (India)

    Neutrino oscillations in matter can exhibit a specific resonance enhancement - parametric resonance, which is different from the MSW resonance. Oscillations of atmospheric and solar neutrinos inside the earth can undergo parametric enhancement when neutrino trajectories cross the core of the earth. In this paper we ...

  7. Neutrino physics

    CERN Document Server

    Hernandez, P.

    2016-01-01

    This is the writeup of the lectures on neutrino physics delivered at various schools: TASI and Trieste in 2013 and the CERN-Latin American School in 2015. The topics discussed in this lecture include: general properties of neutrinos in the SM, the theory of neutrino masses and mixings (Dirac and Majorana), neutrino oscillations both in vacuum and in matter, as well as an overview of the experimental evidence for neutrino masses and of the prospects in neutrino oscillation physics. We also briefly review the relevance of neutri- nos in leptogenesis and in beyond-the-Standard-Model physics.

  8. Neutrino Oscillations Physics

    Science.gov (United States)

    Fogli, Gianluigi

    2005-06-01

    We review the status of the neutrino oscillations physics, with a particular emphasis on the present knowledge of the neutrino mass-mixing parameters. We consider first the νμ → ντ flavor transitions of atmospheric neutrinos. It is found that standard oscillations provide the best description of the SK+K2K data, and that the associated mass-mixing parameters are determined at ±1σ (and NDF = 1) as: Δm2 = (2.6 ± 0.4) × 10-3 eV2 and sin 2 2θ = 1.00{ - 0.05}{ + 0.00} . Such indications, presently dominated by SK, could be strengthened by further K2K data. Then we point out that the recent data from the Sudbury Neutrino Observatory, together with other relevant measurements from solar and reactor neutrino experiments, in particular the KamLAND data, convincingly show that the flavor transitions of solar neutrinos are affected by Mikheyev-Smirnov-Wolfenstein (MSW) effects. Finally, we perform an updated analysis of two-family active oscillations of solar and reactor neutrinos in the standard MSW case.

  9. Neutrino oscillations and the seesaw origin of neutrino mass

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, O.G., E-mail: omr@fis.cinvestav.mx [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740, 07000 Mexico, Distrito Federal (Mexico); Valle, J.W.F. [AHEP Group, Institut de Física Corpuscular – C.S.I.C./Universitat de València, Parc Cientific de Paterna, C/Catedratico José Beltrán, 2, E-46980 Paterna (València) (Spain)

    2016-07-15

    The historical discovery of neutrino oscillations using solar and atmospheric neutrinos, and subsequent accelerator and reactor studies, has brought neutrino physics to the precision era. We note that CP effects in oscillation phenomena could be difficult to extract in the presence of unitarity violation. As a result upcoming dedicated leptonic CP violation studies should take into account the non-unitarity of the lepton mixing matrix. Restricting non-unitarity will shed light on the seesaw scale, and thereby guide us towards the new physics responsible for neutrino mass generation.

  10. The singular seesaw mechanism with hierarchical Dirac neutrino mass

    International Nuclear Information System (INIS)

    Chikira, Y.; Mimura, Y.

    2000-01-01

    The singular seesaw mechanism can naturally explain the atmospheric neutrino deficit by maximal oscillations between ν μ L and ν μ R . This mechanism can also induce three different scales of the neutrino mass squared differences, which can explain the neutrino deficits of three independent experiments (solar, atmospheric, and LSND) by neutrino oscillations. In this paper we show that realistic mixing angles among the neutrinos can be obtained by introducing a hierarchy in the Dirac neutrino mass. In the case where the Majorana neutrino mass matrix has rank 2, the solar neutrino deficit is explained by vacuum oscillations between ν e and ν τ . We also consider the case where the Majorana neutrino mass matrix has rank 1. In this case, the matter enhanced Mikheyev-Smirnov-Wolfenstein solar neutrino solution is preferred as the solution of the solar neutrino deficit. (orig.)

  11. Identifying the neutrino mass spectrum from a supernova neutrino burst

    International Nuclear Information System (INIS)

    Dighe, A.S.; Smirnov, A.Yu.

    1999-12-01

    We study the role that the future detection of the neutrino burst from a galactic supernova can play in the reconstruction of the neutrino mass spectrum. We consider all possible 3ν mass and flavor spectra which describe the solar and atmospheric neutrino data. For each of these spectra we find the observable effects of the supernova neutrino conversions both in the matter of the star and the earth. We show that studies of the electron neutrino and antineutrino spectra as well as observations of the neutral current effects from supernova will allow us (i) to identify the solar neutrino solution, (ii) to determine the type of mass hierarchy (normal or inverted) and (iii) to probe the mixing vertical bar U e3 vertical bar 2 to values as low as 10 -4 - 10 -3 . (author)

  12. Neutrino mass textures with maximal CP violation

    International Nuclear Information System (INIS)

    Aizawa, Ichiro; Kitabayashi, Teruyuki; Yasue, Masaki

    2005-01-01

    We show three types of neutrino mass textures, which give maximal CP violation as well as maximal atmospheric neutrino mixing. These textures are described by six real mass parameters: one specified by two complex flavor neutrino masses and two constrained ones and the others specified by three complex flavor neutrino masses. In each texture, we calculate mixing angles and masses, which are consistent with observed data, as well as Majorana CP phases

  13. Search for AGN neutrinos with the Soudan 2 detector

    International Nuclear Information System (INIS)

    DeMuth, D.M.

    1997-05-01

    Several authors have presented models for neutrino production from Active Galactic Nuclei (AGN) that allow for the possibility of AGN neutrinos outnumbering the atmospheric neutrino flux for energies in excess of 30 TeV. Preliminary results from a search for high energy neutrinos from AGN using the underground Soudan 2 Detector are presented

  14. Neutrino Physics

    CERN Document Server

    Barenboim, G.

    2014-12-10

    The Standard Model has been incredibly successful in predicting the outcome of almost all the experiments done up so far. In it, neutrinos are mass-less. However, in recent years we have accumulated evidence pointing to tiny masses for the neutrinos (as compared to the charged leptons). These masses allow neutrinos to change their flavour and oscillate. In these lectures I review the properties of neutrinos in and beyond the Standard Model.

  15. Low Energy Neutrino Cross Sections

    International Nuclear Information System (INIS)

    Zeller, G.P.

    2004-01-01

    Present atmospheric and accelerator based neutrino oscillation experiments operate at low neutrino energies (Ev ∼ 1 GeV) to access the relevant regions of oscillation parameter space. As such, they require precise knowledge of the cross sections for neutrino-nucleon interactions in the sub-to-few GeV range. At these energies, neutrinos predominantly interact via quasi-elastic (QE) or single pion production processes, which historically have not been as well studied as the deep inelastic scattering reactions that dominate at higher energies.Data on low energy neutrino cross sections come mainly from bubble chamber, spark chamber, and emulsion experiments that collected their data decades ago. Despite relatively poor statistics and large neutrino flux uncertainties, these measurements provide an important and necessary constraint on Monte Carlo models in present use. The following sections discuss the current status of QE, resonant single pion, coherent pion, and single kaon production cross section measurements at low energy

  16. Los Neutrinos Los Neutrinos

    Directory of Open Access Journals (Sweden)

    Julián Félix

    2012-02-01

    Full Text Available From all the proposals to understand the structure of matter, and the way the natural world is conformed, the one about neutrinos is the most enigmatic, abstract, and foreign to immediate experience; however, this is the one that has delved more deeply over the nearly eighty years since it was formulated by Wolfgang Pauli –in 1930- as a radical proposition to understand nucleon decay, and the decay of other particles, without the violation of the principle of conservation of energy and momentum at subatomic level. This proposition has evolved through the years, and from Pauli’s original idea only the basic elements remain.This article contains the tale of the hypothesis of neutrinos, its early history, its evolution up to present day, and the efforts done nowadays to study them. In summary, this is the physics of neutrinos. De todas las propuestas para entender la estructura de la materia, y la conformación del mundo natural, los neutrinos es la más enigmática, abstracta, y ajena a la experiencia inmediata; sin embargo, es la que más hondo ha ido calando a lo largo de los ya casi ochenta años de haber sido formulada por Wolfgang Pauli –en el año 1930- como una medida radical para entender el decaimiento de los nucleones, y otras partículas, sin que se violara el principio de la conservación de la energía y del momento a nivel subatómico. La propuesta ha evolucionado a lo largo de los años, y de la idea original de Pauli ya sólo lo básico permanece. En este artículo está el relato de la hipótesis de los neutrinos, su historia primera, su evolución hasta el presente, los esfuerzos que en la actualidad se realizan para estudiarlos. En breve, ésta es la física de los neutrinos.

  17. India-based Neutrino Observatory

    Indian Academy of Sciences (India)

    2012-11-17

    Nov 17, 2012 ... to large water Cerenkov and other detectors worldwide. ... atmospheric neutrino interaction was observed at KGF in 1965 [1] (see figure 1). ..... event generator, which was developed for Kamiokande experiment and has been ...

  18. Solar neutrinos

    International Nuclear Information System (INIS)

    Phillips, R.J.N.

    1987-09-01

    The problem with solar neutrinos is that there seem to be too few of them, at least near the top end of the spectrum, since the 37 Cl detector finds only about 35% of the standard predicted flux. Various kinds of explanation have been offered: (a) the standard solar model is wrong, (b) neutrinos decay, (c) neutrinos have magnetic moments, (d) neutrinos oscillate. The paper surveys developments in each of these areas, especially the possible enhancement of neutrino oscillations by matter effects and adiabatic level crossing. The prospects for further independent experiments are also discussed. (author)

  19. Sterile neutrino

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    Paper deals with the information on the occurrence of the fields of the sterile neutrinos (the righthanded ones) mixed with the normal neutrinos (the lefthanded ones). Both the Max Plank Radioastronomy Institute and the Los Angeles University assumes that the occurrence of the keV mass sterile neutrinos may explain the dark matter nature, the fast rotation of the observed pulsars and the reionization processes. The issues associated with the possibility to record the sterile neutrinos were analyzed in the course of the Sterile Neutrinos in Astrophysics and Cosmology Workshop (Crans Montana, March 2006 [ru

  20. Neutrino Mass Matrix Textures: A Data-driven Approach

    CERN Document Server

    Bertuzzo, E; Machado, P A N

    2013-01-01

    We analyze the neutrino mass matrix entries and their correlations in a probabilistic fashion, constructing probability distribution functions using the latest results from neutrino oscillation fits. Two cases are considered: the standard three neutrino scenario as well as the inclusion of a new sterile neutrino that potentially explains the reactor and gallium anomalies. We discuss the current limits and future perspectives on the mass matrix elements that can be useful for model building.

  1. Neutrino oscillations in Gallium and reactor experiments and cosmological effects of a light sterile neutrino

    International Nuclear Information System (INIS)

    Acero-Ortega, Mario Andres

    2009-01-01

    Neutrino oscillations is a very well studied phenomenon and the observations from Solar, very-long-baseline Reactor, Atmospheric and Accelerator neutrino oscillation experiments give very robust evidence of three-neutrino mixing. On the other hand, some experimental data have shown anomalies that could be interpreted as indication of exotic neutrino physics beyond three-neutrino mixing. Furthermore, from a cosmological point of view, the possibility of extra light species contributing as a subdominant hot (or warm) component of the Universe is still interesting. In the first part of this Thesis, we focused on the anomaly observed in the Gallium radioactive source experiments. These experiments were done to test the Gallium solar neutrino detectors GALLEX and SAGE, by measuring the electron neutrino flux produced by intense artificial radioactive sources placed inside the detectors. The measured number of events was smaller than the expected one. We interpreted this anomaly as a possible indication of the disappearance of electron neutrinos and, in the effective framework of two-neutrino mixing, we obtained sin 2 2θ ≥ 0.03 and Δm 2 ≥ 0.1 eV 2 . We also studied the compatibility of this result with the data of the Bugey and Chooz reactor antineutrino disappearance experiments. We found that the Bugey data present a hint of neutrino oscillations with 0.02 ≤ sin 2 2θ ≤ 0.07 and Δm 2 ≅ 1.95 eV 2 , which is compatible with the Gallium allowed region of the mixing parameters. Then, combining the data of Bugey and Chooz, the data of Gallium and Bugey, and the data of Gallium, Bugey and Chooz, we found that this hint persists, with an acceptable compatibility of the experimental data. Furthermore, we analyzed the experimental data of the I.L.L., S.R.S, and Gosgen nuclear Reactor experiments. We obtained a good fit of the I.L.L. data, showing 1 and 2σ allowed regions in the oscillation parameters space. However, the combination of I.L.L. data with the Bugey

  2. Neutrino factories

    International Nuclear Information System (INIS)

    Dydak, F.

    2002-01-01

    The discovery of neutrino oscillations marks a major milestone in the history of neutrino physics, and opens a window to what lies beyond the Standard Model. Many current and forthcoming experiments will answer open questions; however, a major step forward, up to and possibly including CP violation in the neutrino mixing matrix, will be offered by the neutrino beams from a neutrino factory. The neutrino factory is a new concept for producing neutrino beams of unprecedented quality in terms of intensity, flavour composition, and precision of the beam parameters. These beams enable the exploration of otherwise inaccessible domains in neutrino oscillation physics by exploiting baselines of planetary dimensions. Suitable detectors pose formidable challenges but seem within reach with only moderate extrapolations from existing technologies. Although the main physics attraction of the neutrino factory is in the area of neutrino oscillations, an interesting spectrum of further opportunities ranging from high-precision, high-rate neutrino scattering to physics with high-intensity stopped muons comes with it

  3. Neutrinos today

    International Nuclear Information System (INIS)

    Pontecorvo, B.; Bilen'kij, S.

    1987-01-01

    After the famous 1983 discovery of intermediate W, Z 0 bosons it may be stated with certainty that W, Z 0 are entirely responsible for the production of neutrinos and for their interactions. Neutrino physics notions are presented from this point of view in the first four introductory, quite elementary, paragraphs of the paper. The following seven paragraphs are more sophisticated. They are devoted to the neutrino mass and neutrino mixing question, which is the most actual problem in today neutrino physics. Vacuum neutrino oscillations, matter neutrino oscillations and netrinoless double-decay are considered. Solar neutrino physics is discussed in some detail from the point of view of vacuum and matter neutrino oscillations. The role played by neutrinos in the Universe is briefly considered. In the last paragraph there discussed the probable observation by different groups of neutrinos connected with the Supernova 1987 A: the first observation of gravitational star collapse (at least the general rehearsal of such observation) opens up a new era in astronomy of today exerimental physics and astrophysics is presented at the end of the paper in the form of a Table

  4. Neutrino Factory

    CERN Document Server

    Bogomilov, M; Tsenov, R; Dracos, M; Bonesini, M; Palladino, V; Tortora, L; Mori, Y; Planche, T; Lagrange, J  B; Kuno, Y; Benedetto, E; Efthymiopoulos, I; Garoby, R; Gilardoini, S; Martini, M; Wildner, E; Prior, G; Blondel, A; Karadzhow, Y; Ellis, M; Kyberd, P; Bayes, R; Laing, A; Soler, F  J  P; Alekou, A; Apollonio, M; Aslaninejad, M; Bontoiu, C; Jenner, L  J; Kurup, A; Long, K; Pasternak, J; Zarrebini, A; Poslimski, J; Blackmore, V; Cobb, J; Tunnell, C; Andreopoulos, C; Bennett, J  R  J; Brooks, S; Caretta, O; Davenne, T; Densham, C; Edgecock, T  R; Fitton, M; Kelliher, D; Loveridge, P; McFarland, A; Machida, S; Prior, C; Rees, G; Rogers, C; Rooney, M; Thomason, J; Wilcox, D; Booth, C; Skoro, G; Back, J  J; Harrison, P; Berg, J  S; Fernow, R; Gallardo, J  C; Gupta, R; Kirk, H; Simos, N; Stratakis, D; Souchlas, N; Witte, H; Bross, A; Geer, S; Johnstone, C; Mokhov, N; Neuffer, D; Popovic, M; Strait, J; Striganov, S; Morfín, J  G; Wands, R; Snopok, P; Bogacz, S  A; Morozov, V; Roblin, Y; Cline, D; Ding, X; Bromberg, C; Hart, T; Abrams, R  J; Ankenbrandt, C  M; Beard, K  B; Cummings, M  A  C; Flanagan, G; Johnson, R  P; Roberts, T  J; Yoshikawa, C  Y; Graves, V  B; McDonald, K  T; Coney, L; Hanson, G

    2014-01-01

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that $\\theta_{13} > 0$. The measured value of $\\theta_{13}$ is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti)neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO$\

  5. Measurement of the atmospheric muon flux with a 4 GeV threshold in the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    Aguilar, J.A.; Al Samarai, I.; Albert, A.; Anghinolfi, M.; Anton, G.; Anvar, S.; Baret, B.; Donzaud, C.; Kouchner, A.; Moscoso, L.; Van Elewyck, V.; Basa, S.; Marcelin, M.; Mazure, A.; Tasca, L.; Carloganu, C.; Gay, P.; Charvis, Ph.; Deschamps, A.; Hello, Y.; Pillet, R.; Cottini, N.; Loucatos, S.; Moscoso, L.; Naumann, C.; Picq, C.; Schuller, J.P.; Stolarczyk, Th.; Vallage, B.; Vernin, P.

    2010-01-01

    A new method for the measurement of the muon flux in the deep-sea ANTARES neutrino telescope and its dependence on the depth is presented. The method is based oil the observation of coincidence signals in adjacent storeys of the detector. This yields an energy threshold of about 4 GeV. The main sources of optical background are the decay of 40 K and the bioluminescence in the sea water. The 40 K background is used to calibrate the efficiency of the photo-multiplier tubes. (authors)

  6. Measurement of the atmospheric muon flux with a 4 GeV threshold in the ANTARES neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, J.A. [IFIC - Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC - Universitat de Valencia, Apdo. de Correos 22085, 46071 Valencia (Spain); Al Samarai, I. [CPPM - Centre de Physique des Particules de Marseille, CNRS/IN2P3 et Universite de la Mediterranee, 163 Avenue de Luminy, Case 902, 13288 Marseille Cedex 9 (FR); Albert, A. [GRPHE - Institut Universitaire de Technologie de Colmar, 34 Rue du Grillenbreit, BP 50568, 68008 Colmar (FR); Anghinolfi, M. [INFN - Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, D-91058 Erlangen (Germany); Anvar, S. [Direction des Sciences de la Matiere - Institut de Recherche sur les lois Fondamentales de l' Univers - Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, 91191 Gif-sur-Yvette Cedex (FR); Baret, B.; Donzaud, C.; Kouchner, A.; Moscoso, L.; Van Elewyck, V. [APC - Laboratoire AstroParticule et Cosmologie, UMR 7164, CNRS, Universite Paris 7 Diderot, CEA, Observatoire de Paris, 10, Rue Alice Domon et Leonie Duquet, 75205 Paris Cedex 13 (FR); Basa, S.; Marcelin, M.; Mazure, A.; Tasca, L. [Laboratoire d' Astrophysique de Marseille, Pole de l' Etoile Site de Chateau-Gombert, Marseille (FR); Carloganu, C.; Gay, P. [Lab. de Physique Corpusculaire, IN2P3-CNRS, Universite Blaise Pascal, Clermont-Ferrand (FR); Charvis, Ph.; Deschamps, A.; Hello, Y.; Pillet, R. [Geoazur - Universite de Nice Sophia-Antipolis, CNRS/INSU, IRD, Observatoire de la Cote d' Azur and Universite Pierre et Marie Curie, BP 48, F-06235 Villefranche-sur-mer (FR); Cottini, N.; Loucatos, S.; Moscoso, L.; Naumann, C.; Picq, C.; Schuller, J.P.; Stolarczyk, Th.; Vallage, B.; Vernin, P. [Direction des Sciences de la Matiere - Institut de Recherche sur les lois Fondamentales de l' Univers - Service de Physique des Particules, CEA Saclay, 91191 Gif-sur-Yvette (FR)

    2010-07-01

    A new method for the measurement of the muon flux in the deep-sea ANTARES neutrino telescope and its dependence on the depth is presented. The method is based oil the observation of coincidence signals in adjacent storeys of the detector. This yields an energy threshold of about 4 GeV. The main sources of optical background are the decay of {sup 40}K and the bioluminescence in the sea water. The {sup 40}K background is used to calibrate the efficiency of the photo-multiplier tubes. (authors)

  7. Neutrino sunshine

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: On 10 June 1992, at the Neutrino 92 meeting in Grenada, Spain, Till Kirsten of Heidelberg's Max Planck Institute reported that neutrinos from sunshine had been seen. Most of the energy pumped out by the Sun comes from the fusion of protons into alpha particles, a process which also liberates neutrinos. While it takes about a million years for radiant energy formed in the deep interior of the Sun to fight its way to the surface, the highly penetrating neutrinos emerge almost immediately. It was in 1970 that Ray Davis and his team began taking data with a tank containing 615 tons of perchloroethylene (dry cleaning fluid) 1500 metres underground in the Homestake gold mine, South Dakota. The observed signal is consistently smaller than what is expected. This 'solar neutrino problem' was confirmed by the Kamioka mine experiment in Japan, looking at the Cherenkov light released by neutrino interactions in some 700 tons of water. However these experiments are only sensitive to a tiny high energy tail of the solar neutrino spectrum, and to understand what is going on needs measurements of the primary neutrinos from proton fusion. To get at these neutrinos, two large new detectors, using gallium and sensitive to these lower energy particles, have been built and commissioned in the past few years. The detectors are SAGE ('Soviet' American Gallium Experiment) in the Baksan Neutrino Observatory in the Caucasus, and Gallex, a team from France, Germany, Israel, Italy and the US in the Italian Gran Sasso underground Laboratory. At Grenada, Kirsten reported unmistakable signs of solar neutrinos of proton origin recorded in Gallex. SAGE and Gallex do not yet have enough data to unambiguously fix the level of primary solar neutrinos reaching the Earth, and the interpretation of the interim results tends to be subjective. However after 23 years of conditioning through watching the solar neutrinos' high energy tail, the prospect of a neutrino

  8. NEUTRINO MASS

    OpenAIRE

    Kayser, Boris

    1988-01-01

    This is a review article about the most recent developments on the field of neutrino mass. The first part of the review introduces the idea of neutrino masses and mixing angles, summarizes the most recent experimental data then discusses the experimental prospects and challenges in this area. The second part of the review discusses the implications of these results for particle physics and cosmology, including the origin of neutrino mass, the see-saw mechanism and sequential dominance, and la...

  9. Neutrino masses

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Postulated in the early days of quantum mechanics by Wolfgang Pauli to make energy-momentum conservation in nuclear beta decay come out right, the neutrino has never strayed far from physicists' attention. The Moriond Workshop on Massive Neutrinos in Particle Physics and Astrophysics held recently in the French Alps showed that more than half a century after Pauli's prediction, the neutrino stubbornly refuses to yield up all its secrets

  10. Neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-04-15

    Postulated in the early days of quantum mechanics by Wolfgang Pauli to make energy-momentum conservation in nuclear beta decay come out right, the neutrino has never strayed far from physicists' attention. The Moriond Workshop on Massive Neutrinos in Particle Physics and Astrophysics held recently in the French Alps showed that more than half a century after Pauli's prediction, the neutrino stubbornly refuses to yield up all its secrets.

  11. Neutrino mass

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1992-01-01

    Despite intensive experimental work since the neutrino's existence was proposed by Pauli 60 years ago, and its first observation by Reines and Cowan almost 40 years ago, the neutrino's fundamental properties remain elusive. Among those properties are the masses of the three known flavors, properties under charge conjugation, parity and time-reversal, and static and dynamic electromagnetic moments. Mass is perhaps the most fundamental, as it constrains the other properties. The present status of the search for neutrino mass is briefly reviewed

  12. The Lake Baikal neutrino experiment: present and future

    International Nuclear Information System (INIS)

    Lubsandorzhiev, B.K.

    2001-01-01

    We review the present status and future of the Lake Baikal Neutrino Experiment. Selected physics results concerning a search for upward-going atmospheric neutrinos, WIMPs and relativistic magnetic monopoles are presented

  13. Global Analysis of Neutrino Data

    CERN Document Server

    González-Garciá, M C

    2005-01-01

    In this talk I review the present status of neutrino masses and mixing and some of their implications for particle physics phenomenology. I first discuss the minimum extension of the Standard Model of particle physics required to accommodate neutrino masses and introduce the new parameters present in the model and in particular the possibility of leptonic mixing. I then describe the phenomenology of neutrino masses and mixing leading to flavour oscillations and present the existing evidence from solar, reactor, atmospheric and long-baseline neutrinos as well as the results from laboratory searches at short distances. I derive the allowed ranges for the mass and mixing parameters when the bulk of data is consistently analyzed in the framework of mixing between the three active neutrinos and obtain as a result the most up-to-date determination of the leptonic mixing matrix. Then I briefly summarize the status of some proposed phenomenological explanations to accommodate the LSND results: the role of sterile neu...

  14. Eclipsed neutrinos

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Full text: The total solar eclipse visible in Southern Asia on 24 October provided an opportunity for an unusual physics experiment. At face value, the levels of solar neutrinos detected on the Earth's surface are difficult to understand and suggest that perhaps the composition of solar neutrinos oscillates between different neutrino types on their journey. In this way neutrinos originating in the Sun as electrontype could convert into heavy neutrinos, which could subsequently disintegrate into an electron-neutrino and a photon. In certain neutrino scenarios, such a photon would have an energy corresponding to that of visible light, and in principle should be detectable if there are enough of them. The problem is that they would normally be swamped by the copious photons of sunlight. The 24 October solar eclipse provided a chance to check this out. A team led by François Vannucci, spokesman of the Nomad neutrino experiment at CERN, en route to the 'Rencontres du Vietnam' physics meeting in Ho Chi Minh Ville, set up a CCD-equipped telescope. To insure against cloud cover, a second telescope followed the eclipse in the desert of Rajastan, India, where the eclipse was to last only half as long, but the chance of cloud was minimal. No background solar signal was seen, or, expressed in physics terms, if solar radiation has any heavy neutrino component, then less than a millionth of it disintegrates into an electron neutrino and a visible photon before it arrives at the Earth. The negative result also has implications for candidate massive, unstable neutrinos from other sources, notably a component of the missing 'dark matter' of the Universe. The next such eclipse should be visible in North Asia in 1997, when hopefully better measurements will be made

  15. JUNO. Determination of the neutrino mass hierarchy using reactor neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Wonsak, Bjoern [Hamburg University, Inst. Exp. Phys., Hamburg (Germany)

    2015-07-01

    The Jiangmen Underground Neutrino Observatory (JUNO) is a medium-baseline reactor neutrino experiment located in China. Its aim is to determine the neutrino mass hierarchy at more than 3 sigma significance after six years of data taking by using a 20kt liquid scintillator detector. To achieve this goal, an energy resolution of less than 3%/√(E) is necessary, creating strict requirements on the detector design and the liquid scintillator. Moreover, JUNO will be the only experiment in the near future able to measure the solar mixing parameters with a precision of better than 1%. This is at the same level as our current knowledge on flavour mixing in the quark sector, marking an important milestone of neutrino physics. In addition, supernova neutrinos, geo-neutrinos, sterile neutrinos as well as solar and atmospheric neutrinos can be studied. JUNO was approved in 2013 and the construction of the underground facility started early this year. In this talk the status of the experiment and its prospects is discussed.

  16. Neutrino masses and mixing: evidence and implications

    International Nuclear Information System (INIS)

    Gonzalez-Garcia, M.C.; Nir, Yosef

    2003-01-01

    Measurements of various features of the fluxes of atmospheric and solar neutrinos have provided evidence for neutrino oscillations and therefore for neutrino masses and mixing. The authors review the phenomenology of neutrino oscillations in vacuum and in matter. They present the existing evidence from solar and atmospheric neutrinos as well as the results from laboratory searches, including the final status of the Liquid Scintillator Neutrino Detector (LSND) experiment. The theoretical inputs that are used to interpret the experimental results are described in terms of neutrino oscillations. The allowed ranges for the mass and mixing parameters are derived in two frameworks: First, each set of observations is analyzed separately in a two-neutrino framework; Second, the data from solar and atmospheric neutrinos are analyzed in a three-active-neutrino framework. The theoretical implications of these results are then discussed, including the existence of new physics, the estimate of the scale of this new physics, and the lessons for grand unified theories, for models of extra dimensions and singlet fermions in the bulk, and for flavor models

  17. Looking for Cosmic Neutrino Background

    Directory of Open Access Journals (Sweden)

    Chiaki eYanagisawa

    2014-06-01

    Full Text Available Since the discovery of neutrino oscillation in atmospheric neutrinos by the Super-Kamiokande experiment in 1998, study of neutrinos has been one of exciting fields in high-energy physics. All the mixing angles were measured. Quests for 1 measurements of the remaining parameters, the lightest neutrino mass, the CP violating phase(s, and the sign of mass splitting between the mass eigenstates m3 and m1, and 2 better measurements to determine whether the mixing angle theta23 is less than pi/4, are in progress in a well-controlled manner. Determining the nature of neutrinos, whether they are Dirac or Majorana particles is also in progress with continuous improvement. On the other hand, although the ideas of detecting cosmic neutrino background have been discussed since 1960s, there has not been a serious concerted effort to achieve this goal. One of the reasons is that it is extremely difficult to detect such low energy neutrinos from the Big Bang. While there has been tremendous accumulation of information on Cosmic Microwave Background since its discovery in 1965, there is no direct evidence for Cosmic Neutrino Background. The importance of detecting Cosmic Neutrino Background is that, although detailed studies of Big Bang Nucleosynthesis and Cosmic Microwave Background give information of the early Universe at ~a few minutes old and ~300 k years old, respectively, observation of Cosmic Neutrino Background allows us to study the early Universe at $sim$ 1 sec old. This article reviews progress made in the past 50 years on detection methods of Cosmic Neutrino Background.

  18. Radiochemical solar neutrino experiments

    International Nuclear Information System (INIS)

    Rich, R.; Spiro, M.

    1993-01-01

    This review covers the three presently running radiochemical solar neutrino experiments, namely the Chlorine, SAGE, and GALLEX experiments. The focus of the review is on a discussion of statistical consistency checks of the available data. The chlorine radiochemical experiment is conceptually simple and shows no strong indication of any statistical anomalies. It still forms the basis of the solar neutrino problem. Each of the two gallium experiments show internal statistical consistency. SAGE's recent preliminary results are consistent with the published GALLEX results. If this convergence is confirmed by a more definitive analysis, this would suggest that the combined result of the two gallium experiments, SAGE and GALLEX, be used for comparisons with theoretical expectations. 5 refs., 15 figs

  19. Neutrino 2012: Outlook – theory

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A.Yu. [International Center for Theoretical Physics, Trieste (Italy)

    2013-02-15

    Ongoing developments in theory and phenomenology are related to the measured large value of 1–3 mixing and indications of significant deviation of the 2–3 mixing from maximal one. “Race” for the mass hierarchy has started and there is good chance that multi-megaton scale atmospheric neutrino detectors with low threshold (e.g. PINGU) will establish the type of hierarchy. Two IceCube candidates of the PeV cosmic neutrinos if confirmed, is the beginning of new era of high energy neutrino astronomy. Accumulation of data on solar neutrinos (energy spectrum, D-N asymmetry, value of Δm{sub 21}{sup 2}) may uncover some new physics. The Tri-bimaximal mixing is disfavored and the existing discrete symmetry paradigm may change. The confirmed QLC prediction, θ{sub 13}≈θ{sub C}/√(2), testifies for GUT, seesaw and some symmetry at very high scales. However, the same value of 1–3 mixing can be obtained in various ways which have different implications. The situation in lepton sector changes from special (with specific neutrino symmetries, etc.) to normal, closer to that in the quark sector. Sterile neutrinos are challenge for neutrino physics but also opportunity with many interesting phenomenological consequences. Further studies of possible connections between neutrinos and the dark sector of the Universe may lead to breakthrough both in particle physics and cosmology.

  20. Neutrino oscillations at proton accelerators

    International Nuclear Information System (INIS)

    Michael, Douglas

    2002-01-01

    Data from many different experiments have started to build a first glimpse of the phenomenology associated with neutrino oscillations. Results on atmospheric and solar neutrinos are particularly clear while a third result from LSND suggests a possibly very complex oscillation phenomenology. As impressive as the results from current experiments are, it is clear that we are just getting started on a long-term experimental program to understand neutrino masses, mixings and the physics which produce them. A number of exciting fundamental physics possibilities exist, including that neutrino oscillations could demonstrate CP or CPT violation and could be tied to exotic high-energy phenomena including strings and extra dimensions. A complete exploration of oscillation phenomena demands many experiments, including those possible using neutrino beams produced at high energy proton accelerators. Most existing neutrino experiments are statistics limited even though they use gigantic detectors. High intensity proton beams are essential for producing the intense neutrino beams which we need for next generation neutrino oscillation experiments

  1. Neutrino Oscillations at Proton Accelerators

    Science.gov (United States)

    Michael, Douglas

    2002-12-01

    Data from many different experiments have started to build a first glimpse of the phenomenology associated with neutrino oscillations. Results on atmospheric and solar neutrinos are particularly clear while a third result from LSND suggests a possibly very complex oscillation phenomenology. As impressive as the results from current experiments are, it is clear that we are just getting started on a long-term experimental program to understand neutrino masses, mixings and the physics which produce them. A number of exciting fundamental physics possibilities exist, including that neutrino oscillations could demonstrate CP or CPT violation and could be tied to exotic high-energy phenomena including strings and extra dimensions. A complete exploration of oscillation phenomena demands many experiments, including those possible using neutrino beams produced at high energy proton accelerators. Most existing neutrino experiments are statistics limited even though they use gigantic detectors. High intensity proton beams are essential for producing the intense neutrino beams which we need for next generation neutrino oscillation experiments.

  2. Neutrino oscillations in the Earth suggest a terrestrial test of solution to solar neutrino problem

    International Nuclear Information System (INIS)

    Dar, A.; Mann, A.; Technicon-Israel Inst. of Tech., Haifa. Space Research Inst.)

    1987-01-01

    The verification of the Mikheyev-Smirnov-Wolfenstein (MSW) solution of the solar neutrino problem is discussed. One verification experiment concerns the detection of sizeable oscillations of atmospheric neutrinos in the earth, which can be detected with the massive underground proton decay detectors. Diurnal and seasonal modulations of the solar neutrino flux can perhaps be detected by the radiochemical Cl and Ga detectors. Moreover, neutrino oscillations in the Earth may modify the values of the oscillation parameters which can solve the solar neutrino problem and help determine their values. (UK)

  3. The AMANDA Neutrino Detector - Status report

    International Nuclear Information System (INIS)

    Wischnewski, R.; Andres, E.; Bai, X.; Barouch, G.; Barwick, S.; Bay, R.; Becker, K.; Bergstroem, L.; Bertrand, D.; Besson, D.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Carius, S.; Carlson, M.; Chinowsky, W.; Chirkin, D.; Conrad, J.; Cowen, D.F.; Costa, C.; Dalberg, E.; Desiati, P.; Dewulf, J.; Deyoung, T.; Doksus, P.; Edsjoe, J.; Ekstroem, P.; Feser, T.; Frichter, G.; Gaisser, T.; Goldschmidt, A.; Goobar, A.; Hallgren, A.; Halzen, F.; Hardtke, R.; Hellwig, M.; Hill, G.; Hulth, P.; Hundertmark, S.; Jacobsen, J.; Karle, A.; Kim, J.; Koepke, L.; Kowalski, M.; Kravchenko, I.; Lamoureux, J.; Leich, H.; Leuthold, M.; Lindahl, P.; Liss, T.; Loaiza, P.; Lowder, D.; Ludvig, J.; Marciniewski, P.; Matis, H.; Miller, T.; Miocinovic, P.; Mock, P.; Morse, R.; Neunhoeffer, T.; Newcomer, M.; Niessen, P.; Nygren, D.; Perez de los Heros, C.; Porrata, R.; Price, P.; Przybylski, G.; Rawlins, K.; Rhode, W.; Richter, S.; Rodriguez, J.; Romenesko, P.; Ross, D.; Rubinstein, H.; Sander, H.; Schaefer, U.; Schmidt, T.; Schneider, E.; Schwarz, R.; Schwendicke, U.; Silvestri, A.; Smoot, G.; Solarz, M.; Spiczak, G.; Spiering, C.; Starinski, N.; Steffen, P.; Stokstad, R.; Streicher, O.; Taboada, I.; Thollander, L.; Thon, T.; Tilav, S.; Vander Donckt, M.; Walck, C.; Wiebusch, C.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S.

    2000-01-01

    The first stage of the AMANDA High Energy Neutrino Detector at the South Pole, the 302 PMT array AMANDA-B10, is taking data since 1997. We describe results on atmospheric neutrinos, limits on indirect WIMP detection, seasonal muon flux variation, relativistic monopole flux limits, a search for gravitational collapse neutrinos, and a depth scan of the optical ice properties. The next stage 19-string detector AMANDA-II with ∼650 PMTs will be completed in spring 2000

  4. Nuclear effects in neutrino oscillation experiments

    International Nuclear Information System (INIS)

    Chauhan, S.; Athar, M. Sajjad; Singh, S. K.

    2011-01-01

    We have studied the nuclear medium effects in the neutrino(antineutrino) induced interactions in nuclei which are relevant for present neutrino oscillation experiments in the few GeV energy region. The study is specially focused on calculating the cross sections and the event rates for atmospheric and accelerator neutrino experiments. The nuclear effects are found to be important for the quasielastic lepton production and the charged current incoherent and coherent pion production processes.

  5. Solar neutrinos

    International Nuclear Information System (INIS)

    Schatzman, E.

    1983-01-01

    The solar energy is produced by a series of nuclear reactions taking place in the deep interior of the sun. Some of these reactions produce neutrinos which may be detected, the proper detection system being available. The results of the Davis experiment (with 37 Cl) are given, showing a deficiency in the solar neutrino flux. The relevant explanation is either a property of the neutrino or an important change in the physics of the solar models. The prospect of a new experiment (with 71 Ga) is important as it will decide which of the two explanations is correct [fr

  6. Discrete symmetries and solar neutrino mixing

    Energy Technology Data Exchange (ETDEWEB)

    Kapetanakis, D.; Mayr, P.; Nilles, H.P. (Physik Dept., Technische Univ. Muenchen, Garching (Germany) Max-Planck-Inst. fuer Physik, Werner-Heisenberg-Inst., Muenchen (Germany))

    1992-05-21

    We study the question of resonant solar neutrino mixing in the framework of the supersymmetric extension of the standard model. Discrete symmetries that are consistent with solar neutrino mixing and proton stability are classified. In the minimal model they are shown to lead to two distinct patterns of allowed dimension-four operators. Imposing anomaly freedom, only three different discrete Z{sub N}-symmetries (with N=2, 3, 6) are found to be phenomenologically acceptable. (orig.).

  7. Discrete symmetries and solar neutrino mixing

    International Nuclear Information System (INIS)

    Kapetanakis, D.; Mayr, P.; Nilles, H.P.

    1992-01-01

    We study the question of resonant solar neutrino mixing in the framework of the supersymmetric extension of the standard model. Discrete symmetries that are consistent with solar neutrino mixing and proton stability are classified. In the minimal model they are shown to lead to two distinct patterns of allowed dimension-four operators. Imposing anomaly freedom, only three different discrete Z N -symmetries (with N=2, 3, 6) are found to be phenomenologically acceptable. (orig.)

  8. Neutrino sunshine

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Gordon

    1992-09-15

    Most of the Sun's energy comes from the fusion of protons into deuterium. Sunshine is necessary for life, but the first evidence for the neutrinos which accompany and explain this basic process still makes science history.

  9. Supernova neutrinos

    International Nuclear Information System (INIS)

    John Beacom

    2003-01-01

    We propose that neutrino-proton elastic scattering, ν + p → ν + p, can be used for the detection of supernova neutrinos. Though the proton recoil kinetic energy spectrum is soft, with T p ≅ 2E ν 2 /M p , and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from (bar ν) e + p → e + + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum, which solves a long-standing problem of how to separately measure the total energy release and temperature of ν μ , ν τ , (bar ν) μ , and (bar ν) τ . The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos

  10. Neutrino cosmology

    CERN Document Server

    Lesgourgues, Julien; Miele, Gennaro; Pastor, Sergio

    2013-01-01

    The role that neutrinos have played in the evolution of the Universe is the focus of one of the most fascinating research areas that has stemmed from the interplay between cosmology, astrophysics and particle physics. In this self-contained book, the authors bring together all aspects of the role of neutrinos in cosmology, spanning from leptogenesis to primordial nucleosynthesis, their role in CMB and structure formation, to the problem of their direct detection. The book starts by guiding the reader through aspects of fundamental neutrino physics, such as the standard cosmological model and the statistical mechanics in the expanding Universe, before discussing the history of neutrinos in chronological order from the very early stages until today. This timely book will interest graduate students and researchers in astrophysics, cosmology and particle physics, who work with either a theoretical or experimental focus.

  11. Neutrino sunshine

    International Nuclear Information System (INIS)

    Fraser, Gordon

    1992-01-01

    Most of the Sun's energy comes from the fusion of protons into deuterium. Sunshine is necessary for life, but the first evidence for the neutrinos which accompany and explain this basic process still makes science history

  12. Neutrino overview

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1994-01-01

    I discuss some of the open issues in neutrino physics, emphasizing areas of intersection with astrophysics, that occupied the participants of the Snowmass Workshop on Nuclear and Particle Astrophysics and Cosmology in the Next Millenium

  13. Neutrino masses and oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A Yu

    1996-11-01

    New effects related to refraction of neutrinos in different media are reviewed and implication of the effects to neutrino mass and mixing are discussed. Patterns of neutrino masses and mixing implied by existing hints/bounds are described. Recent results on neutrino mass generation are presented. They include neutrino masses in SO(10) GUT`s and models with anomalous U(1), generation of neutrino mass via neutrino-neutralino mixing, models of sterile neutrino. (author). 95 refs, 9 figs.

  14. Complex scaling and residual flavour symmetry in the neutrino mass ...

    Indian Academy of Sciences (India)

    Probir Roy

    2017-10-09

    Oct 9, 2017 ... Leptonic Dirac CP violation must be maximal while atmospheric neutrino mixing need not be exactly maximal. Each of the two Majorana phases, to be probed by the search for 0νββ decay, has to be zero or π and a normal neutrino mass hierarchy is allowed. Keywords. Neutrinos; residual flavour symmetry; ...

  15. New Conditions for a Total Neutrino Conversion in a Medium

    OpenAIRE

    Chizhov, M. V.; Petcov, S. T.

    1999-01-01

    A new effect of total neutrino conversion is possible when neutrino propagates through multi-layer medium of nonperiodic constant density layers. The effect can take place in the oscillations in the Earth of the Earth-core-crossing solar and atmospheric neutrinos.

  16. Neutrino Oscillations:. a Phenomenological Approach

    Science.gov (United States)

    Fogli, G. L.; Lisi, E.; Marrone, A.; Palazzo, A.; Rotunno, A. M.; Montanino, D.

    We review the status of the neutrino oscillations physics, with a particular emphasis on the present knowledge of the neutrino mass-mixing parameters. We consider first the νμ → ντ flavor transitions of atmospheric neutrinos. It is found that standard oscillations provide the best description of the SK+K2K data, and that the associated mass-mixing parameters are determined at ±1σ (and NDF = 1) as: Δm2 = (2.6 ± 0.4) × 10-3 eV2 and sin 2 2θ = 1.00{ - 0.05}{ + 0.00} . Such indications, presently dominated by SK, could be strengthened by further K2K data. Then we point out that the recent data from the Sudbury Neutrino Observatory, together with other relevant measurements from solar and reactor neutrino experiments, in particular the KamLAND data, convincingly show that the flavor transitions of solar neutrinos are affected by Mikheyev-Smirnov-Wolfenstein (MSW) effects. Finally, we perform an updated analysis of two-family active oscillations of solar and reactor neutrinos in the standard MSW case.

  17. Supernova neutrino detection

    International Nuclear Information System (INIS)

    Selvi, M.

    2005-01-01

    Neutrinos emitted during a supernova core collapse represent a unique feature to study both stellar and neutrino properties. After discussing the details of the neutrino emission in the star and the effect of neutrino oscillations on the expected neutrino fluxes at Earth, a review of the detection techniques is presented in this paper, with particular attention to the problem of electron neutrino detection

  18. The Giant Radio Array for Neutrino Detection

    DEFF Research Database (Denmark)

    Martineau-Huynh, Olivier; Bustamante, Mauricio; Carvalho, Washington

    2017-01-01

    The Giant Radio Array for Neutrino Detection (GRAND) is a planned array of ~200 000 radio antennas deployed over ~200 000 km2 in a mountainous site. It aims primarly at detecting high-energy neutrinos via the observation of extensive air showers induced by the decay in the atmosphere of taus...

  19. India-Based Neutrino Observatory (INO)

    Indian Academy of Sciences (India)

    India-Based Neutrino Observatory (INO) · Atmospheric neutrinos – India connection · INO Collaboration · INO Project components · ICAL: The physics goals · Slide 6 · Slide 7 · INO site : Bodi West Hills · Underground Laboratory Layout · Status of activities at INO Site · Slide 11 · Slide 12 · INO-ICAL Detector · ICAL factsheet.

  20. Neutrino oscillations in a predictive SUSY GUT

    International Nuclear Information System (INIS)

    Blazek, T.; Raby, S.; Tobe, K.

    1999-01-01

    In this paper we present a predictive SO(10) supersymmetric grand unified theory with the family symmetry U(2)xU(1) which has several nice features. We are able to fit fermion masses and mixing angles, including recent neutrino data, with nine parameters in the charged fermion sector and four in the neutrino sector. The family symmetry plays a preeminent role. (i) The model is ''natural''--we include all terms allowed by the symmetry. It restricts the number of arbitrary parameters and enforces many zeros in the effective mass matrices. (ii) Family symmetry breaking from U(2)xU(1)→U(1)→ nothing generates the family hierarchy. It also constrains squark and slepton mass matrices, thus ameliorating flavor violation resulting from squark and slepton loop contributions. (iii) It naturally gives large angle ν μ -ν τ mixing describing atmospheric neutrino oscillation data and small angle ν e -ν s mixing, consistent with the small mixing angle Mikheyev-Smirnov-Wolfenstein (MSW) solution to solar neutrino data. (iv) Finally, in this paper we assume minimal family symmetry-breaking vacuum expectation values (VEV's). As a result we cannot obtain a three neutrino solution to both atmospheric and solar neutrino oscillations. In addition, the solution discussed here cannot fit liquid scintillation neutrino detector (LSND) data even though this solution requires a sterile neutrino ν s . It is important to note, however, that with nonminimal family symmetry-breaking VEV's, a three neutrino solution is possible with the small mixing angle MSW solution to solar neutrino data and large angle ν μ -ν τ mixing describing atmospheric neutrino oscillation data. In the four neutrino case, nonminimal family VEV's may also permit a solution for LSND. The results with nonminimal family breaking are still under investigation and will be reported in a future paper. (c) 1999 The American Physical Society

  1. Renormalisation group analysis of single right-handed neutrino dominance

    International Nuclear Information System (INIS)

    King, S.F.; Nimai Singh, N.

    2000-01-01

    We perform a renormalisation group (RG) analysis of neutrino masses and mixing angles in the see-saw mechanism in the minimal supersymmetric standard model with three right-handed neutrinos, including the effects of the heavy neutrino thresholds. We focus on the case that one of the right-handed neutrinos provides the dominant contribution to the 23 block of the light Majorana matrix, causing its determinant to approximately vanish and giving an automatic neutrino mass hierarchy, so-called single right-handed neutrino dominance which may arise from a U(1) family symmetry. In these models radiative corrections can increase atmospheric and solar neutrino mixing by up to about 10% and 5%, respectively, and may help to achieve bi-maximal mixing. Significantly we find that the radiative corrections over the heavy neutrino threshold region are at least as important as those usually considered from the lightest right-handed neutrino down to low energies

  2. On the 17-keV neutrino

    International Nuclear Information System (INIS)

    Hime, A.

    1993-04-01

    A brief review on the status of the 17-keV neutrino is presented. Several different experiments found spectral distortions which were consistently interpreted as evidence for a heavy neutrino admixture in β decay. Recent experiments, however, rule out the existence of a 17-keV neutrino as well as escaping criticisms of earlier null results. Moreover, the majority of positive results have been reinterpreted in terms of instrumental effects, despite the need for a different explanation in each case. Anomalies persist in the low energy region of the tritium spectrum which deserve further investigation

  3. Sterile neutrinos beyond LSND at the neutrino factory

    International Nuclear Information System (INIS)

    Meloni, Davide; Tang Jian; Winter, Walter

    2010-01-01

    We discuss the effects of one additional sterile neutrino at the Neutrino Factory. Compared to earlier analyses, which have been motivated by Liquid Scintillator Neutrino Detector (LSND) results, we do not impose any constraint on the additional mass squared splitting. This means that the additional mass eigenstate could, with small mixings, be located among the known ones, as it is suggested by the recent analysis of cosmological data. We use a self-consistent framework at the Neutrino Factory without any constraints on the new parameters. We demonstrate for a combined short and long baseline setup that near detectors can provide the expected sensitivity at the LSND-motivated Δm 41 2 -range, while some sensitivity can also be obtained in the region of the atmospheric mass splitting from the long baselines. We point out that limits on such very light sterile neutrinos may also be obtained from a reanalysis of atmospheric and solar neutrino oscillation data, as well as from supernova neutrino observations. In the second part of the analysis, we compare our sensitivity with the existing literature using additional assumptions, such as |Δm 41 2 |>>|Δm 31 2 |, leading to averaging of the fast oscillations in the far detectors. We demonstrate that while the Neutrino Factory has excellent sensitivity compared to existing studies using similar assumptions, one has to be very careful interpreting these results for a combined short and long baseline setup where oscillations could occur in the near detectors. We also test the impact of additional ν τ detectors at the short and long baselines, and we do not find a substantial improvement of the sensitivities.

  4. Neutrino oscillations in dense neutrino gases

    International Nuclear Information System (INIS)

    Samuel, S.

    1993-01-01

    We consider oscillations of neutrinos under conditions in which the neutrino density is sufficiently large that neutrino-neutrino interactions cannot be neglected. A formalism is developed to treat this highly nonlinear system. Numerical analysis reveals a rich array of phenomena. In certain gases, a self-induced Mikheyev-Smirnov-Wolfenstein effect occurs in which electron neutrinos are resonantly converted into muon neutrinos. In another relatively low-density gas, an unexpected parametric resonant conversion takes place. Finally, neutrino-neutrino interactions maintain coherence in one system for which a priori one expected decoherence

  5. Neutrino astronomy with supernova neutrinos

    Science.gov (United States)

    Brdar, Vedran; Lindner, Manfred; Xu, Xun-Jie

    2018-04-01

    Modern neutrino facilities will be able to detect a large number of neutrinos from the next Galactic supernova. We investigate the viability of the triangulation method to locate a core-collapse supernova by employing the neutrino arrival time differences at various detectors. We perform detailed numerical fits in order to determine the uncertainties of these time differences for the cases when the core collapses into a neutron star or a black hole. We provide a global picture by combining all the relevant current and future neutrino detectors. Our findings indicate that in the scenario of a neutron star formation, supernova can be located with precision of 1.5 and 3.5 degrees in declination and right ascension, respectively. For the black hole scenario, sub-degree precision can be reached.

  6. A conceptual prediction model for seasonal drought processes using atmospheric and oceanic standardized anomalies: application to regional drought processes in China

    Science.gov (United States)

    Liu, Zhenchen; Lu, Guihua; He, Hai; Wu, Zhiyong; He, Jian

    2018-01-01

    Reliable drought prediction is fundamental for water resource managers to develop and implement drought mitigation measures. Considering that drought development is closely related to the spatial-temporal evolution of large-scale circulation patterns, we developed a conceptual prediction model of seasonal drought processes based on atmospheric and oceanic standardized anomalies (SAs). Empirical orthogonal function (EOF) analysis is first applied to drought-related SAs at 200 and 500 hPa geopotential height (HGT) and sea surface temperature (SST). Subsequently, SA-based predictors are built based on the spatial pattern of the first EOF modes. This drought prediction model is essentially the synchronous statistical relationship between 90-day-accumulated atmospheric-oceanic SA-based predictors and SPI3 (3-month standardized precipitation index), calibrated using a simple stepwise regression method. Predictor computation is based on forecast atmospheric-oceanic products retrieved from the NCEP Climate Forecast System Version 2 (CFSv2), indicating the lead time of the model depends on that of CFSv2. The model can make seamless drought predictions for operational use after a year-to-year calibration. Model application to four recent severe regional drought processes in China indicates its good performance in predicting seasonal drought development, despite its weakness in predicting drought severity. Overall, the model can be a worthy reference for seasonal water resource management in China.

  7. NEUTRINO mass textures and the nature of new physics implied by present neutrino data

    International Nuclear Information System (INIS)

    Mohapatra, R.N.

    1997-01-01

    If all the indications for neutrino oscillations observed in the solar, atmospheric neutrino data as well as in the LSND experiment are borned out by the ongoing and future experiments, then they severely constrain the neutrino mass texture. In particular, the need for an extra ultra-light sterile neutrino species is hard to avoid. Such an extra neutrino has profound implication not only for physics beyond the standard model but even perhaps for physics beyond conventional grand unification. A scenario involving a parallel (or shadow) universe that interacts with the familiar universe only via the gravitational interactions where the ultra-lightness of the sterile neutrino follows from the same physics that explains the near masslessness of the familiar neutrinos is discussed in the presentation

  8. Solar neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, D [Tokyo Univ. (Japan). Coll. of General Education

    1975-01-01

    The measurement of solar neutrino was performed by using the reaction /sup 37/cl+..nu..sub(e)..-->../sup 37/Ar+e/sup -/ by Davis et al. The argon gas produced through the above mentioned reaction in a tank containing 610 ton of C/sub 2/Cl/sub 4/ was collected and measured. The rate of production of /sup 37/Ar was 0.13+-0.20/day, and the net production rate by the solar neutrino was 0.06+-0.20/day, being corrected for background. This value corresponds to 0.5+-1.0 SNU. Theoretical calculation with the model of spherically symmetric solar development gave an expected value of 5.6 SNU, which is in contradiction with the experimental value. Reason of this discrepancy was considered. The possibility of decay of neutrino to the other particles with weak interaction is very slight. Various models of the sun were investigated, but the results were still inconsistent with the experiment. The mixing of matters in the sun may cause the reduction of neutrino. If He gas comes to the center of the sun by mixing, the reaction, /sup 3/He+/sup 3/He, progresses excessively at the center, and it produces the expansion of the core of the sun. Then, the temperature drops and the neutrino is reduced. Various models which can explain the neutrino of less than ISNU have been presented. However, other theory says that the reduction of neutrino is not expected even if the mixing is considered. A problem concerning the mixing is whether the thermal instability which causes the mixing exists. (Kato, T.).

  9. Experimental neutrino physics

    CERN Document Server

    Link, Jonathan M

    2018-01-01

    Neutrinos have a smaller mass than any other known particle and are the subject of intense recent studies, as well as this book. The author provides a coherent introduction to the necessary theoretical background and experimental methods used by modern neutrino physicists. It’s designed as a one-stop reference addressing what is currently known about the neutrino hypothesis, discovery of the neutrino, theory of weak interactions, solar neutrino puzzle, and neutrino oscillation. It then gives a detailed account of practical approaches for study of precision oscillations, neutrino mass and other neutrino properties, sterile neutrinos, and neutrino messengers from space and Earth’s interior.

  10. Thermal, atmospheric and ionospheric anomalies around the time of the Colima M7.8 earthquake of 21 January 2003

    Directory of Open Access Journals (Sweden)

    S. A. Pulinets

    2006-05-01

    Full Text Available The paper examines the possible relationship of anomalous variations of different atmospheric and ionospheric parameters observed around the time of a strong earthquake (Mw 7.8 which occurred in Mexico (state of Colima on 21 January 2003. These variations are interpreted within the framework of the developed model of the Lithosphere-Atmosphere-Ionosphere coupling. The main attention is focused on the processes in the near ground layer of the atmosphere involving the ionization of air by radon, the water molecules' attachment to the formed ions, and the corresponding changes in the latent heat. Model considerations are supported by experimental measurements showing the local diminution of air humidity one week prior to the earthquake, accompanied by the anomalous thermal infrared (TIR signals and surface latent heat flux (SLHF and anomalous variations of the total electron content (TEC registered over the epicenter of the impending earthquake three days prior to the main earthquake event. Statistical processing of the data of the GPS receivers network, together with various other atmospheric parameters demonstrate the possibility of an early warning of an impending strong earthquake.

  11. Phenomenology of neutrino oscillations at the neutrino factory

    International Nuclear Information System (INIS)

    Tang, Jian

    2011-01-01

    We consider the prospects for a neutrino factory measuring mixing angles, the CP violating phase and mass-squared differences by detecting wrong-charge muons arising from the chain μ + → ν e → ν μ → μ - and the right-charge muons coming from the chain μ + → anti ν μ → anti ν μ → μ - (similar to μ - chains), where ν e → ν μ and anti ν μ → anti ν μ are neutrino oscillation channels through a long baseline. First, we study physics with near detectors and consider the treatment of systematic errors including cross section errors, flux errors, and background uncertainties. We illustrate for which measurements near detectors are required, discuss how many are needed, and what the role of the flux monitoring is. We demonstrate that near detectors are mandatory for the leading atmospheric parameter measurements if the neutrino factory has only one baseline, whereas systematic errors partially cancel if the neutrino factory complex includes the magic baseline. Second, we perform the baseline and energy optimization of the neutrino factory including the latest simulation results from the magnetized iron neutrino detector (MIND). We also consider the impact of τ decays, generated by appearance channels ν μ → ν τ and ν e → ν τ , on the discovery reaches of the mass orderings, the leptonic CP violation, and the non-zero θ 13 , which we find to be negligible for the considered detector. Third, we make a comparison of a high energy neutrino factory to a low energy neutrino factory and find that they are just two versions of the same experiment optimized for different regions of the parameter space. In addition, we briefly comment on whether it is useful to build the bi-magic baseline at the low energy neutrino factory. Finally, the effects of one additional massive sterile neutrino are discussed in the context of a combined short and long baseline setup. It is found that near detectors can provide the required sensitivity at the

  12. Phenomenology of neutrino oscillations at the neutrino factory

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jian

    2011-12-19

    We consider the prospects for a neutrino factory measuring mixing angles, the CP violating phase and mass-squared differences by detecting wrong-charge muons arising from the chain {mu}{sup +} {yields} {nu}{sub e} {yields} {nu}{sub {mu}} {yields} {mu}{sup -} and the right-charge muons coming from the chain {mu}{sup +} {yields} anti {nu}{sub {mu}} {yields} anti {nu}{sub {mu}} {yields} {mu}{sup -} (similar to {mu}{sup -} chains), where {nu}{sub e} {yields} {nu}{sub {mu}} and anti {nu}{sub {mu}} {yields} anti {nu}{sub {mu}} are neutrino oscillation channels through a long baseline. First, we study physics with near detectors and consider the treatment of systematic errors including cross section errors, flux errors, and background uncertainties. We illustrate for which measurements near detectors are required, discuss how many are needed, and what the role of the flux monitoring is. We demonstrate that near detectors are mandatory for the leading atmospheric parameter measurements if the neutrino factory has only one baseline, whereas systematic errors partially cancel if the neutrino factory complex includes the magic baseline. Second, we perform the baseline and energy optimization of the neutrino factory including the latest simulation results from the magnetized iron neutrino detector (MIND). We also consider the impact of {tau} decays, generated by appearance channels {nu}{sub {mu}} {yields} {nu}{sub {tau}} and {nu}{sub e} {yields} {nu}{sub {tau}}, on the discovery reaches of the mass orderings, the leptonic CP violation, and the non-zero {theta}{sub 13}, which we find to be negligible for the considered detector. Third, we make a comparison of a high energy neutrino factory to a low energy neutrino factory and find that they are just two versions of the same experiment optimized for different regions of the parameter space. In addition, we briefly comment on whether it is useful to build the bi-magic baseline at the low energy neutrino factory. Finally, the

  13. Beta decay anomalies and the 17-keV conundrum

    International Nuclear Information System (INIS)

    Hime, A.

    1993-01-01

    Recent developments in pursuance of the 17-keV neutrino are reviewed. Several different experiments found anomalies in β decay spectra which were consistently interpreted as evidence for a heavy neutrino. On the other hand, recent null results definitively rule out the existence of a 17-keV neutrino, as well as escaping criticisms applicable to earlier experiments. While missing links remain, it seems that any strong evidence for a 17-keV neutrino has vanished. Specifically, the anomalies observed in 35 S and 63 Ni spectra at Oxford can be reinterpreted in terms of electron scattering effects. In addition, the discrepancy amongst internal bremsstrahlung measurements has an instrumental origin, and recent results disfavour a 17-keV neutrino. Anomalies persist in the low energy region of the tritium spectrum which deserve further investigation

  14. Planck scale effects in neutrino physics

    International Nuclear Information System (INIS)

    Akhmedov, E.K.; Berezhiani, Z.G.; Senjanovic, G.; Tao, Z.

    1993-01-01

    We study the phenomenology and cosmology of the Majoron (flavon) models of three active and one inert neutrino paying special attention to the possible (almost) conserved generalization of the Zeldovich-Konopinski-Mahmoud lepton charge. Using Planck scale physics effects which provide the breaking of the lepton charge, we show how in this picture one can incorporate the solutions to some of the central issues in neutrino physics such as the solar and atmospheric neutrino puzzles and the dark matter problem with the possible existence of a heavy (1--10 keV) neutrino. These gravitational effects induce tiny Majorana mass terms for neutrinos and considerable masses for flavons. The cosmological demand for the sufficiently fast decay of flavons implies a lower limit on the electron-neutrino mass in the range of 0.1--1 eV

  15. Neutrino masses twenty-five years later

    International Nuclear Information System (INIS)

    Valle, J.W.F.

    2003-01-01

    The discovery of neutrino mass marks a turning point in elementary particle physics, with important implications for nuclear and astroparticle physics. Here I give a brief update, where I summarize the current status of three-neutrino oscillation parameters from current solar, atmospheric, reactor and accelerator neutrino data, discuss the case for sterile neutrinos and LSND, and also the importance of tritium and double beta decay experiments probing the absolute scale of neutrino mass. In this opinionated look at the present of neutrino physics, I keep an eye in the future, and a perspective of the past, taking the opportunity to highlight Joe Schechter's pioneering contribution, which I have had the fortune to share, as his PhD student back in the early eighties

  16. On the Hierarchy of Neutrino Masses

    International Nuclear Information System (INIS)

    Jezabek, M.; Urban, P.

    2002-01-01

    We present a model of neutrino masses combining the seesaw mechanism and strong Dirac mass hierarchy and at the same time exhibiting a significantly reduced hierarchy at the level of active neutrino masses. The heavy Majorana masses are assumed to be degenerate. The suppression of the hierarchy is due to a symmetric and unitary operator R whose role is discussed. The model gives realistic mixing and mass spectrum. The mixing of atmospheric neutrinos is attributed to the charged lepton sector whereas the mixing of solar neutrinos is due to the neutrino sector. Small U e3 is a consequence of the model. The masses of the active neutrinos are given by μ 3 ≅ √(Δm 2 O ) and μ 1 /μ 2 = ≅ tan 2 (θ O ). (author)

  17. Planck scale effects in neutrino physics

    International Nuclear Information System (INIS)

    Akhmedov, E.Kh.; Senjanovic, G.; Tao Zhijan; Berezhiani, Z.G.

    1992-08-01

    We study the phenomenology and cosmology of the Majoron (flavon) models of three active and one inert neutrino paying special attention to the possible (almost) conserved generalization of the Zeldovich-Konopinski-Mahmoud lepton charge. Using Planck scale physics effects which provide the breaking of the lepton charge, we show how in this picture one can incorporate the solutions to some of the central issues in neutrino physics such as the solar and atmospheric neutrino puzzles, dark matter and a 17 keV neutrino. These gravitation effects induce tiny Majorana mass terms for neutrinos and considerable masses for flavons. The cosmological demand for the sufficiently fast decay of flavons implies a lower limit on the electron neutrino mass in the range of 0.1-1 eV. (author). 32 refs, 1 fig., 1 tab

  18. Matter effects in upward-going muons and sterile neutrino oscillations

    CERN Document Server

    Ambrosio, M; Auriemma, G; Bakari, D; Baldini, A; Barbarino, G C; Barish, B C; Battistoni, G; Becherini, Y; Bellotti, R; Bemporad, C; Bernardini, P; Bilokon, H; Bisi, V; Bloise, C; Bower, C; Brigida, M; Bussino, S; Cafagna, F; Calicchio, M; Campana, D; Carboni, M; Caruso, R; Cecchini, S; Cei, F; Chiarella, V; Choudhary, B C; Coutu, S; De Cataldo, G; Dekhissi, H; De Marzo, C; De Mitri, I; Derkaoui, J E; De Vincenzi, M; Di Credico, A; Erriquez, O; Favuzzi, C; Forti, C; Fusco, P; Giacomelli, G; Giannini, G; Giglietto, N; Giorgini, M; Grassi, M; Gray, L; Grillo, A; Guarino, F; Gustavino, C; Habig, A; Hanson, K; Heinz, R; Iarocci, Enzo; Katsavounidis, E; Katsavounidis, I; Kearns, E T; Kim, H; Kyriazopoulou, S; Lammanna, E; Lane, C; Levins, D S; Lipari, P; Longley, N P; Longo, M J; Loparco, F; Maaroufi, F; Mancarella, G; Mandrioli, G; Margiotta, A; Marini, A; Martello, D; Marzari-Chiesa, A; Mazziotta, M N; Michael, D G; Mikheyev, S P; Miller, L; Monacelli, P; Montaruli, T; Monteno, M; Mufson, S L; Musser, J; Nicolò, D; Nolty, R; Orth, C; Osteria, G; Palamara, O; Patera, V; Patrizii, L; Pazzi, R; Peck, C W; Perrone, L; Petrera, S; Pistilli, P; Popa, V; Rainó, A; Reynoldson, J; Ronga, F; Rrhioua, A; Satriano, C; Scapparone, E; Scholberg, K; Sciubba, A; Serra, P; Sioli, M; Sirri, G; Sitta, M; Spinelli, P; Spinetti, M; Spurio, M; Steinberg, R; Stone, J L; Sulak, Lawrence R; Surdo, A; Tarle, G; Togo, V; Vakili, M; Walter, C W; Webb, R

    2001-01-01

    The angular distribution of upward-going muons produced by atmospheric neutrinos in the rock below the MACRO detector shows anomalies in good agreement with two flavor nu /sub mu / to nu /sub tau / oscillations with maximum mixing and Delta m/sup 2/ around 0.0024 eV/sup 2/. Exploiting the dependence of magnitude of the matter effect on the oscillation channel, and using a set of 809 upward-going muons observed in MACRO, we show that the two flavor nu /sub mu / to nu /sub s/ oscillation is disfavored with 99% C.L. with respect to nu /sub mu / to nu /sub tau /. (29 refs).

  19. Experimental and phenomenological status of neutrino anomalies

    Indian Academy of Sciences (India)

    too few, some factor of two off from expectations [5]. This was the first ... (KEK to Kamioka) experiment utilizes the 12 GeV Ps at KEK to produce. ' μ× and shoots ..... г× in μ → г oscillations; (vi) to settle the LsND question; (vii) to measure the. 356.

  20. Neutrino mass and the solar neutrino problem

    International Nuclear Information System (INIS)

    Wolfenstein, L.

    1987-01-01

    Theoretical ideas about neutrino mass based on grand-unified theories are reviewed. These give the see-saw formula in which neutrino mass is inversely proportional to a large mass scale M. For M between 10/sup 11/ and 10/sup 15/ Gev the study of solar neutrinos appears to be the best probe of neutrino masses and mixings

  1. Two Light Sterile Neutrinos that Mix Maximally with Each Other and Moderately with Three Active Neutrinos

    International Nuclear Information System (INIS)

    Krolikowski, W.

    2004-01-01

    Since the 3+1 neutrino models with one light sterile neutrino turn out to be not very effective, at least two light sterile neutrinos may be needed to reconcile the solar and atmospheric neutrino experiments with the LSND result, if this is confirmed by the ongoing MiniBooNE experiment (and when the CPT invariance is assumed to hold for neutrino oscillations). We present an attractive 3+2 neutrino model, where two light sterile neutrinos mix maximally with each other, in analogy to the observed maximal mixing of muon and tauon active neutrinos. But, while the mixing of ν e and (ν μ - ν τ )/√2 is observed as large (though not maximal), the mixing of ν e with the corresponding combination of two light sterile neutrinos is expected to be only moderate because of the reported smallness of LSND oscillation amplitude. The presented model turns out, however, not to be more effective in explaining the hypothetic LSND result than the simplest 3+1 neutrino model. On the other hand, in the considered 3+2 model, the deviations from conventional oscillations of three active neutrinos appear to be minimal within a larger class of 3+2 models. (author)

  2. Nuclear structure and neutrino-nucleus interaction

    International Nuclear Information System (INIS)

    Krmpotic, Francisco

    2011-01-01

    Recent years have witnessed an intense experimental and theoretical activity oriented towards a better comprehension of neutrino nucleus interaction. While the main motivation for this task is the demand coming from oscillation experiments in their search for a precise determination of neutrino properties, the relevance of neutrino interaction with matter is more wide-ranging. It is imperative for astrophysics, hadronic and nuclear physics, and physics beyond the standard model. The experimental information on neutrino induced reactions is rapidly growing, and the corresponding theoretical description is a challenging proposition, since the energy scales of interest span a vast region, going from few MeV for solar neutrinos, to tens of MeV for the interpretation of experiments with the muon and pion decay at rest and the detection of neutrinos coming from the core collapse of supernova, and to hundreds of MeV or few GeV for the detection of atmospheric neutrinos, and for the neutrino oscillation program of the MiniBooNE experiment. The presence of neutrinos, being chargeless particles, can only be inferred by detecting the secondary particles created in colliding and interacting with the matter. Nuclei are often used as neutrino detectors, and in particular 12 C which is a component of many scintillator detectors. Thus, the interpretation of neutrino data heavily relies on detailed and quantitative knowledge of the features of the neutrino-nucleus interaction. The nuclear structure methods used in the evaluation of the neutrino-nucleus cross section are reviewed. Detailed comparison between the experimental and theoretical results establishes benchmarks needed for verification and/or parameter adjustment of the nuclear models. Having a reliable tool for such calculation is of great importance in a variety of applications, such as the description of the r-process nucleosynthesis. (author)

  3. Neutrino clouds

    International Nuclear Information System (INIS)

    Stephenson Jr, G.J.; McKellar, B.H.J.

    1997-01-01

    We consider the possibility that neutrinos are coupled very weakly to an extremely light scalar boson. We first analyze the simple problem of one generation of neutrino and show that, for ranges of parameters that are allowed by existing data, such a system can have serious consequences for the evolution of stars and could impact precision laboratory measurements. We discuss the extension to more generations and show that the general conclusion remains viable. Finally, we note that, should such a scalar field be present, experiments give information about effective masses, not the masses that arise in unified field theories. (authors). 23 refs., 9 figs

  4. Neutrino clouds

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson Jr, G.J. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Physics and Astronomy; Goldman, T. [Los Alamos National Lab., NM (United States); McKellar, B.H.J. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-06-01

    We consider the possibility that neutrinos are coupled very weakly to an extremely light scalar boson. We first analyze the simple problem of one generation of neutrino and show that, for ranges of parameters that are allowed by existing data, such a system can have serious consequences for the evolution of stars and could impact precision laboratory measurements. We discuss the extension to more generations and show that the general conclusion remains viable. Finally, we note that, should such a scalar field be present, experiments give information about effective masses, not the masses that arise in unified field theories. (authors). 23 refs., 9 figs.

  5. Neutrino Telescope

    International Nuclear Information System (INIS)

    Coelin Baldo, Milla

    2009-01-01

    The present volume contains the proceedings of the 13. International Workshop on 'Neutrino Telescope', 17. of the series 'Un altro modo di guardare il cielo', held in Venice at the 'Istituto Veneto di Scienze, Lettere ed Arti' from March 10 to March 13, 2009. This series started in Venice 21 years ago, in 1988, motivated by the growing interest in the exciting field of the neutrino physics and astrophysics, with the aim to bring together experimentalists and theorists and encourage discussion on the most recent results and to chart the direction of future researchers.

  6. Searches for sterile neutrinos and other BSM physics with the IceCube detector

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    In this talk I will show the potential of IceCube to explore new physics in the context of neutrino oscillations. In the first part I will discus the recent analysis on the O(eV) light sterile neutrino that, up to date, gives the most stringent bounds in the region motivated by the short baseline neutrino anomalies. In the second part I will present other new physics scenarios which might be tested at neutrino telescopes.

  7. Sterile neutrinos: the necessity for a 5 sigma definitive clarification

    CERN Document Server

    Rubbia, Carlo; Pietropaolo, Francesco; Sala, Paola

    2013-01-01

    Several different experiments have hinted to the existence of "anomalies" in the neutrino sector, implying the possible presence of additional sterile neutrinos or of other options. A definitive experimental search, capable to clarify either in favour or against all these anomalies at the appropriate > 5 sigma level has been proposed by the ICARUS-NESSIE Collaboration. The technique is based on two innovative concepts, namely (1) a large mass Liquid Argon Time Projection Chamber (LAr-TPC) now in full operation at LNGS and (2) the search for spectral differences in two identical detectors at different distances along the (anti-)neutrino line(s).

  8. Neutrino mixing and future accelerator neutrino experiments

    International Nuclear Information System (INIS)

    Bilenky, S.M.

    1992-01-01

    No evidence for neutrino mixing has been obtained in experiments searching for oscillations with neutrinos from accelerators and reactors. The possible reason is that neutrino masses are too small to produce any sizable effects in the experiments with terrestrial neutrinos. We put forward here the point of view that the reason for that can be traced to the presence of a hierarchy of neutrino masses as well as strength of couplings between lepton families. (orig.)

  9. Search for sterile neutrinos with IceCube DeepCore

    Energy Technology Data Exchange (ETDEWEB)

    Terliuk, Andrii [DESY, Platanenallee 6, 15738 Zeuthen (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    The DeepCore detector is a sub-array of the IceCube Neutrino Observatory that lowers the energy threshold for neutrino detection down to approximately 10 GeV. DeepCore is used for a variety of studies including atmospheric neutrino oscillations. The standard three-neutrino oscillation paradigm is tested using the DeepCore detector by searching for an additional light, sterile neutrino with a mass on the order of 1 eV. Sterile neutrinos do not interact with the ordinary matter, however they can be mixed with the three active neutrino states. Such mixture changes the picture of standard neutrino oscillations for atmospheric neutrinos with energies below 100 GeV. The capabilities of DeepCore detector to measure such sterile neutrino mixing will be presented in this talk.

  10. Neutrino horn

    CERN Multimedia

    1967-01-01

    View of the new neutrino horn installed in its blockhouse from the target end. Protons pass through the 2mm hole in the centre of the small fluorescent screen, hitting the target immediately behind it. The circular tubes carry pressurized cooling water.

  11. Neutrino Oscillations

    Indian Academy of Sciences (India)

    The 2015 Nobel Prize in Physics was awarded to two physicists-Takaaki Kajita and Arthur B McDonald, whose teams discoveredthat neutrinos, which come in three flavours, changefrom one flavour to another. This discovery is a major milestonein particle physics as it gives a clear evidence of physicsbeyond the Standard ...

  12. Solar Neutrinos

    Indian Academy of Sciences (India)

    7,81. The Chlorine experiment, located in the Homestake Gold Mine in Lead, South Dakota, was the first solar neutrino experiment to be set up. A tank of. 105 gallons of perchloroethylene in which the electron neu- trino reacts with chlorine to ...

  13. A conceptual prediction model for seasonal drought processes using atmospheric and oceanic standardized anomalies and its application to four recent severe regional drought events in China

    Science.gov (United States)

    Liu, Z.; LU, G.; He, H.; Wu, Z.; He, J.

    2017-12-01

    Reliable drought prediction is fundamental for seasonal water management. Considering that drought development is closely related to the spatio-temporal evolution of large-scale circulation patterns, we develop a conceptual prediction model of seasonal drought processes based on atmospheric/oceanic Standardized Anomalies (SA). It is essentially the synchronous stepwise regression relationship between 90-day-accumulated atmospheric/oceanic SA-based predictors and 3-month SPI updated daily (SPI3). It is forced with forecasted atmospheric and oceanic variables retrieved from seasonal climate forecast systems, and it can make seamless drought prediction for operational use after a year-to-year calibration. Simulation and prediction of four severe seasonal regional drought processes in China were forced with the NCEP/NCAR reanalysis datasets and the NCEP Climate Forecast System Version 2 (CFSv2) operationally forecasted datasets, respectively. With the help of real-time correction for operational application, model application during four recent severe regional drought events in China revealed that the model is good at development prediction but weak in severity prediction. In addition to weakness in prediction of drought peak, the prediction of drought relief is possible to be predicted as drought recession. This weak performance may be associated with precipitation-causing weather patterns during drought relief. Based on initial virtual analysis on predicted 90-day prospective SPI3 curves, it shows that the 2009/2010 drought in Southwest China and 2014 drought in North China can be predicted and simulated well even for the prospective 1-75 day. In comparison, the prospective 1-45 day may be a feasible and acceptable lead time for simulation and prediction of the 2011 droughts in Southwest China and East China, after which the simulated and predicted developments clearly change.

  14. Oxygen isotope anomaly in tropospheric CO2 and implications for CO2 residence time in the atmosphere and gross primary productivity.

    Science.gov (United States)

    Liang, Mao-Chang; Mahata, Sasadhar; Laskar, Amzad H; Thiemens, Mark H; Newman, Sally

    2017-10-13

    The abundance variations of near surface atmospheric CO 2 isotopologues (primarily 16 O 12 C 16 O, 16 O 13 C 16 O, 17 O 12 C 16 O, and 18 O 12 C 16 O) represent an integrated signal from anthropogenic/biogeochemical processes, including fossil fuel burning, biospheric photosynthesis and respiration, hydrospheric isotope exchange with water, and stratospheric photochemistry. Oxygen isotopes, in particular, are affected by the carbon and water cycles. Being a useful tracer that directly probes governing processes in CO 2 biogeochemical cycles, Δ 17 O (=ln(1 + δ 17 O) - 0.516 × ln(1 + δ 18 O)) provides an alternative constraint on the strengths of the associated cycles involving CO 2 . Here, we analyze Δ 17 O data from four places (Taipei, Taiwan; South China Sea; La Jolla, United States; Jerusalem, Israel) in the northern hemisphere (with a total of 455 measurements) and find a rather narrow range (0.326 ± 0.005‰). A conservative estimate places a lower limit of 345 ± 70 PgC year -1 on the cycling flux between the terrestrial biosphere and atmosphere and infers a residence time of CO 2 of 1.9 ± 0.3 years (upper limit) in the atmosphere. A Monte Carlo simulation that takes various plant uptake scenarios into account yields a terrestrial gross primary productivity of 120 ± 30 PgC year -1 and soil invasion of 110 ± 30 PgC year -1 , providing a quantitative assessment utilizing the oxygen isotope anomaly for quantifying CO 2 cycling.

  15. Neutrino Interactions

    International Nuclear Information System (INIS)

    Kamyshkov, Yuri; Handler, Thomas

    2016-01-01

    The neutrino group of the University of Tennessee, Knoxville was involved from 05/01/2013 to 04/30/2015 in the neutrino physics research funded by DOE-HEP grant DE-SC0009861. Contributions were made to the Double Chooz nuclear reactor experiment in France where second detector was commissioned during this period and final series of measurements has been started. Although Double Chooz was smaller experimental effort than competitive Daya Bay and RENO experiments, its several advantages make it valuable for understanding of systematic errors in measurements of neutrino oscillations. Double Chooz was the first experiment among competing three that produced initial result for neutrino angle θ_1_3 measurement, giving other experiments the chance to improve measured value statistically. Graduate student Ben Rybolt defended his PhD thesis on the results of Double Chooz experiment in 2015. UT group has fulfilled all the construction and analysis commitments to Double Chooz experiment, and has withdrawn from the collaboration by the end of the mentioned period to start another experiment. Larger effort of UT neutrino group during this period was devoted to the participation in another DOE-HEP project - NOvA experiment. The 14,000-ton 'FAR' neutrino detector was commissioned in northern Minnesota in 2014 together with 300-ton 'NEAR' detector located at Fermilab. Following that, the physics measurement program has started when Fermilab accelerator complex produced the high-intensity neutrino beam propagating through Earth to detector in MInnessota. UT group contributed to NOvA detector construction and developments in several aspects. Our Research Associate Athanasios Hatzikoutelis was managing (Level 3 manager) the construction of the Detector Control System. This work was successfully accomplished in time with the commissioning of the detectors. Group was involved in the development of the on-line software and study of the signatures of the cosmic ray backgrounds

  16. Neutrino Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kamyshkov, Yuri [Univ. of Tennesse, Knoxville, TN (United States); Handler, Thomas [Univ. of Tennesse, Knoxville, TN (United States)

    2016-10-24

    The neutrino group of the University of Tennessee, Knoxville was involved from 05/01/2013 to 04/30/2015 in the neutrino physics research funded by DOE-HEP grant DE-SC0009861. Contributions were made to the Double Chooz nuclear reactor experiment in France where second detector was commissioned during this period and final series of measurements has been started. Although Double Chooz was smaller experimental effort than competitive Daya Bay and RENO experiments, its several advantages make it valuable for understanding of systematic errors in measurements of neutrino oscillations. Double Chooz was the first experiment among competing three that produced initial result for neutrino angle θ13 measurement, giving other experiments the chance to improve measured value statistically. Graduate student Ben Rybolt defended his PhD thesis on the results of Double Chooz experiment in 2015. UT group has fulfilled all the construction and analysis commitments to Double Chooz experiment, and has withdrawn from the collaboration by the end of the mentioned period to start another experiment. Larger effort of UT neutrino group during this period was devoted to the participation in another DOE-HEP project - NOvA experiment. The 14,000-ton "FAR" neutrino detector was commissioned in northern Minnesota in 2014 together with 300-ton "NEAR" detector located at Fermilab. Following that, the physics measurement program has started when Fermilab accelerator complex produced the high-intensity neutrino beam propagating through Earth to detector in MInnessota. UT group contributed to NOvA detector construction and developments in several aspects. Our Research Associate Athanasios Hatzikoutelis was managing (Level 3 manager) the construction of the Detector Control System. This work was successfully accomplished in time with the commissioning of the detectors. Group was involved in the development of the on-line software and study of the signatures of the cosmic ray backgrounds

  17. The search for sterile neutrinos at reactors and underground laboratories

    Science.gov (United States)

    Langford, Thomas

    2017-01-01

    From the initial discovery of neutrinos to the observation of neutrino oscillations, unexpected results have lead to deeper understanding of physics. However, as experiments and theoretical predictions have improved, new anomalies have surfaced that could point to beyond the Standard Model physics. Leading hypotheses invoke a new form of matter, sterile neutrinos, as a possible resolution of these outstanding questions. New experimental efforts are underway to probe short-baseline neutrino oscillations with reactors and radioactive sources. This talk will highlight developments in current and next generation experiments and present possible outcomes for the next few years.

  18. Neutrino mass and mixing in the seesaw playground

    International Nuclear Information System (INIS)

    King, Stephen F.

    2016-01-01

    We discuss neutrino mass and mixing in the framework of the classic seesaw mechanism, involving right-handed neutrinos with large Majorana masses, which provides an appealing way to understand the smallness of neutrino masses. However, with many input parameters, the seesaw mechanism is in general not predictive. We focus on natural implementations of the seesaw mechanism, in which large cancellations do not occur, where one of the right-handed neutrinos is dominantly responsible for the atmospheric neutrino mass, while a second right-handed neutrino accounts for the solar neutrino mass, leading to an effective two right-handed neutrino model. We discuss recent attempts to predict lepton mixing and CP violation within such natural frameworks, focusing on the Littlest Seesaw and its distinctive predictions.

  19. Muon neutrino disappearance at MINOS

    International Nuclear Information System (INIS)

    Armstrong, R.

    2009-01-01

    A strong case has been made by several experiments that neutrinos oscillate, although important questions remain as to the mechanisms and precise values of the parameters. In the standard picture, two parameters describe the nature of how the neutrinos oscillate: the mass-squared difference between states and the mixing angle. The purpose of this thesis is to use data from the MINOS experiment to precisely measure the parameters associated with oscillations first observed in studies of atmospheric neutrinos. MINOS utilizes two similar detectors to observe the oscillatory nature of neutrinos. The Near Detector, located 1 km from the source, observes the unoscillated energy spectrum while the Far Detector, located 735 km away, is positioned to see the oscillation signal. Using the data in the Near Detector, a prediction of the expected neutrino spectrum at the Far Detector assuming no oscillations is made. By comparing this prediction with the MINOS data, the atmospheric mixing parameters are measured to be Δm 32 2 = 2.45 +0.12 -0.12 x 10 -3 eV 2 and sin 2 (2θ 32 ) = 1.00 -0.04 +0.00 (> 0.90 at 90% confidence level).

  20. High-resolution lake sediment archives of midcontinental atmospheric and hydroclimate variability during the Medieval Climate Anomaly and Little Ice Age

    Science.gov (United States)

    Bird, B. W.; Wilson, J. J.; Gilhooly, W., III; Steinman, B. A.; Stamps, L. G.; Ahmed, M. N.; Abbott, M. B.; Pompeani, D. P.; Hillman, A. L.; Finkenbinder, M. S.

    2017-12-01

    Hydroclimate variability in the midcontinental United States (US) during the last 2000 years is not well characterized because there are few high-resolution paleoclimate records from the region. The majority of information about late Holocene midcontinental hydroclimate variability comes from scattered lake and bog sediment archives (primarily north of 42˚N) and gridded Palmer Drought Severity Index (PDSI) data calculated from a network of tree-ring records. The density of tree-ring records is lowest in the midcontinent, however, and decreases precipitously with time. In order to address this midcontinental paleoclimate data gap, we are developing a series of new lake-sediment-based hydroclimate records spanning 85˚ to 98˚W and 38˚ to 45˚N. New results from the eastern and central portions of the study area indicate large hydroclimate changes during the last 2000 years. Specifically, the Ohio and central Mississippi River valleys were wetter during the Medieval Climate Anomaly (MCA; 950-1250 CE), but drier during the Little Ice Age (LIA; 1350-1850 CE) with an especially severe, multi-decadal drought between 1350-1450 CE. Comparison with western (west of 96˚W) drought and fire records supports the existence of a hydroclimate dipole, with opposite hydroclimate conditions west and east of 96˚W. Isotopic changes in precipitation during the MCA and LIA suggest hydroclimate anomalies during these events were associated with mean state atmospheric circulation changes that resemble modern Pacific North American Mode (PNA) variability. Midcontinental Native American populations appear to have responded to MCA and LIA hydroclimate variability, with the latter event contributing to midcontinental depopulation between 1350-1500 CE.

  1. HIGH IMPACT HEAT WAVES OVER THE EURO-MEDITERRANEAN REGION AND TURKEY - IN CONCERT WITH ATMOSPHERIC BLOCKING AND LARGE DYNAMICAL AND PHYSICAL ANOMALIES

    Directory of Open Access Journals (Sweden)

    Meral Demirtaş

    2017-03-01

    Full Text Available The increase in high impact heat waves in the Euro-Mediterranean region and Turkey is related to a number of concurring factors that include the persistent anticyclonic weather regimes. The present study investigates the June-July-August (JJA of 2000, 2007 and 2010 heat wave events in concert with some meteorological anomalies (the 500 hPa geopotential height, 850 hPa temperature, sea surface temperature and soil wetness and blocking anticyclones, focusing on heat wave occurrences on a grid point base. Detection methods for atmospheric blocking and heat wave are introduced and applied for the mentioned years. During the 2000 JJA very high temperatures were recorded over the Balkan Peninsula and in Turkey where 42 cities had breaking all time highest temperature records for June, but the duration of heat wave was the shortest. The 2007 summer was also abnormally hot for the region and record breaking temperatures were observed in Greece, Romania, Bulgaria and Turkey where 34 cities had highest temperature records for June and July, and the highest total heat wave duration was 60-70 days. The 2010 JJA period was extremely hot over Russia and nearby countries including Turkey where 9 cities had highest temperature records for August. The 2010 case was marked for; large anomalies, the longest heat wave duration and the highest heat wave intensity. In all cases, heat wave occurrences found to be particularly high over the western part of Turkey. The abnormally hot summers of 2000, 2007 and 2010 could reflect summers to come. The results indicate that summer climate might experience a pronounced increase in year-to-year variability. Increase in variability might be able to explain the high impact heat waves, and would strongly affect their incidence in the future. The results may also contribute to a better understanding of heat waves in context of climate variability.

  2. A 4-neutrino model with a Higgs triplet

    International Nuclear Information System (INIS)

    Grimus, W.; Pfeiffer, R.; Schwetz, T.

    2000-01-01

    We take as a starting point the Gelmini-Roncadelli model enlarged by a term with explicit lepton number violation in the Higgs potential and add a neutrino singlet field that is coupled via a scalar doublet to the usual leptons. This scenario allows us to take into account all three present indications in favor of neutrino oscillations provided by the solar, atmospheric, and LSND neutrino oscillation experiments. Furthermore, it suggests a model which reproduces naturally one of the two 4-neutrino mass spectra favored by the data. In this model, the solar neutrino problem is solved by large mixing MSW ν e →ν τ transitions, and the atmospheric neutrino problem by transitions of ν μ into a sterile neutrino. (orig.)

  3. PINGU sensitivity to neutrino mass hierarchy

    International Nuclear Information System (INIS)

    Groß, Andreas

    2014-01-01

    Determination of the neutrino mass hierarchy (NMH) is among the most fundamental questions in particle physics. Recent measurements of 1) a large mixing angle between the first and the third neutrino mass eigenstates and 2) the first observation of atmospheric neutrino oscillations at tens of GeV with neutrino telescopes, open the intriguing new possibility to exploit matter effects in neutrino oscillation to determine the neutrino mass hierarchy. A further extension of IceCube/DeepCore called PINGU (Precision IceCube Next Generation Upgrade) has been recently envisioned with the ultimate goal to measure neutrino mass hierarchy. PINGU would consist of additional IceCube-like strings of detectors deployed in the deepest and cleanest ice in the center of IceCube. More densely deployed instrumentation would provide a threshold substantially below 10 GeV and enhance the sensitivity to the mass hierarchy signal in atmospheric neutrinos. Here we discuss an estimate of the PINGU sensitivity to the mass hierarchy determined using an approximation with an Asimov dataset and an oscillation parameter fit

  4. Accelerator-based neutrino oscillation searches

    International Nuclear Information System (INIS)

    Whitehouse, D.A.; Rameika, R.; Stanton, N.

    1993-01-01

    This paper attempts to summarize the neutrino oscillation section of the Workshop on Future Directions in Particle and Nuclear Physics at Multi-GeV Hadron Beam Facilities. There were very lively discussions about the merits of the different oscillation channels, experiments, and facilities, but we believe a substantial consensus emerged. First, the next decade is one of great potential for discovery in neutrino physics, but it is also one of great peril. The possibility that neutrino oscillations explain the solar neutrino and atmospheric neutrino experiments, and the indirect evidence that Hot Dark Matter (HDM) in the form of light neutrinos might make up 30% of the mass of the universe, point to areas where accelerator-based experiments could play a crucial role in piecing together the puzzle. At the same time, the field faces a very uncertain future. The LSND experiment at LAMPF is the only funded neutrino oscillation experiment in the United States and it is threatened by the abrupt shutdown of LAMPF proposed for fiscal 1994. The future of neutrino physics at the Brookhaven National Laboratory AGS depends the continuation of High Energy Physics (HEP) funding after the RHIC startup. Most proposed neutrino oscillation searches at Fermilab depend on the completion of the Main Injector project and on the construction of a new neutrino beamline, which is uncertain at this point. The proposed KAON facility at TRIUMF would provide a neutrino beam similar to that at the AGS but with a much increase intensity. The future of KAON is also uncertain. Despite the difficult obstacles present, there is a real possibility that we are on the verge of understanding the masses and mixings of the neutrinos. The physics importance of such a discovery can not be overstated. The current experimental status and future possibilities are discussed below

  5. Gravitational anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Leutwyler, H; Mallik, S

    1986-12-01

    The effective action for fermions moving in external gravitational and gauge fields is analyzed in terms of the corresponding external field propagator. The central object in our approach is the covariant energy-momentum tensor which is extracted from the regular part of the propagator at short distances. It is shown that the Lorentz anomaly, the conformal anomaly and the gauge anomaly can be expressed in terms of the local polynomials which determine the singular part of the propagator. (There are no coordinate anomalies). Except for the conformal anomaly, for which we give explicit representations only in dless than or equal to4, we consider an arbitrary number of dimensions.

  6. Future neutrino experiments

    CERN Document Server

    Di Lella, L

    2001-01-01

    Future experiments to search for neutrino oscillations using neutrinos from the Sun, from reactors and accelerators are reviewed. Possible long-term developments based on neutrino factories are also described. (29 refs).

  7. Effects of neutrino oscillations on the supernova signal in LVD

    International Nuclear Information System (INIS)

    Aglietta, M.; Antonioli, P.; Bari, G.; Castagnoli, C.; Fulgione, W.; Galeotti, P.; Ghia, P.L.; Giusti, P.; Kemp, E.; Malguin, A.S.; Nurzia, G.; Pesci, A.; Picchi, P.; Pless, I.A.; Ryasny, V.G.; Ryazhskaya, O.G.; Sartorelli, G.; Selvi, M.; Vigorito, C.; Vissani, F.; Votano, L.; Yakushev, V.F.; Zatsepin, G.T.; Zichichi, A.

    2002-01-01

    We study the impact of neutrino oscillations on the supernova neutrino signal in the Large Volume Detector (LVD). The number of expected events for a galactic supernova (D = 10 kpc) is calculated, assuming neutrino masses and mixing that explain solar and atmospheric neutrino results. The possibility to detect neutrinos in different channels makes LVD sensitive to different scenarios for ν properties, such as normal or inverted ν mass hierarchy, and/or adiabatic or non adiabatic MSW resonances associated to U e3 . Of particular importance are the charged current (c.c.) reactions on 12 C: oscillations increase by almost one order of magnitude the number of events expected from this channel

  8. Neutrinos: Theory and Phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Parke, Stephen

    2013-10-22

    The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.

  9. Supernova neutrinos

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In the first part of his in-depth article on the 1987 supernova, David Schramm of the University of Chicago and the NASA/Fermilab Astrophysics Centre reviewed the background to supernovae, the composition of massive stars and the optical history of SN 1987A, and speculated on what the 1987 remnant might be. In such a Type II supernova, gravitational pressure crushes the atoms of the star's interior producing neutron matter, or even a black hole, and releasing an intense burst of neutrinos. 1987 was the first time that physicists were equipped (but not entirely ready!) to intercept these particles, and in the second part of his article, David Schramm covers the remarkable new insights from the science of supernova neutrino astronomy, born on 23 February 1987

  10. A measurement of neutrino oscillations with muon neutrinos in the MINOS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Stephen James [College of William and Mary, Williamsburg, VA (United States)

    2011-05-01

    Experimental evidence has established that neutrino flavor states evolve over time. A neutrino of a particular flavor that travels some distance can be detected in a different neutrino flavor state. The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline experiment that is designed to study this phenomenon, called neutrino oscillations. MINOS is based at Fermilab near Chicago, IL, and consists of two detectors: the Near Detector located at Fermilab, and the Far Detector, which is located in an old iron mine in Soudan, MN. Both detectors are exposed to a beam of muon neutrinos from the NuMI beamline, and MINOS measures the fraction of muon neutrinos that disappear after traveling the 734 km between the two detectors. One can measure the atmospheric neutrino mass splitting and mixing angle by observing the energy-dependence of this muon neutrino disappearance. MINOS has made several prior measurements of these parameters. Here I describe recently-developed techniques used to enhance our sensitivity to the oscillation parameters, and I present the results obtained when they are applied to a dataset that is twice as large as has been previously analyzed. We measure the mass splitting Δm232 = (2.32-0.08+0.12) x 10-3 eV2/c4 and the mixing angle sin2(2θ32) > 0.90 at 90% C.L. These results comprise the world's best measurement of the atmospheric neutrino mass splitting. Alternative disappearance models are also tested. The neutrino decay hypothesis is disfavored at 7.2σ and the neutrino quantum decoherence hypothesis is disfavored at 9.0σ.

  11. A search for sterile neutrinos in MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Osiecki, Thomas Henry [Univ. of Texas, Austin, TX (United States)

    2007-01-01

    MINOS, the Main Injector Neutrino Oscillation Search, is a long baseline neutrino oscillation experiment based at Fermilab National Accelerator Laboratory. The experiment uses a neutrino beam, which is measured 1 km downstream from its origin in the Near detector at Fermilab and then 735 km later in the Far detector at the Soudan mine. By comparing these two measurements, MINOS can attain a very high precision for parameters in the atmospheric sector of neutrino oscillations. In addition to precisely determining Δm$2\\atop{23}$ and θ23 through the disappearance of vμ, MINOS is able to measure vμ → vsterile by looking for a deficit in the number of neutral current interactions seen in the Far detector. In this thesis, we present the results of a search for sterile neutrinos in MINOS.

  12. A search for sterile neutrinos in MINOS

    International Nuclear Information System (INIS)

    Osiecki, Thomas Henry

    2007-01-01

    MINOS, the Main Injector Neutrino Oscillation Search, is a long baseline neutrino oscillation experiment based at Fermilab National Accelerator Laboratory. The experiment uses a neutrino beam, which is measured 1 km downstream from its origin in the Near detector at Fermilab and then 735 km later in the Far detector at the Soudan mine. By comparing these two measurements, MINOS can attain a very high precision for parameters in the atmospheric sector of neutrino oscillations. In addition to precisely determining Δm 23 2 and θ 23 through the disappearance of ν μ , MINOS is able to measure ν μ → ν sterile by looking for a deficit in the number of neutral current interactions seen in the Far detector. In this thesis, we present the results of a search for sterile neutrinos in MINOS

  13. Nearly degenerate neutrinos, supersymmetry and radiative corrections

    International Nuclear Information System (INIS)

    Casas, J.A.; Espinosa, J.R.; Ibarra, A.; Navarro, I.

    2000-01-01

    If neutrinos are to play a relevant cosmological role, they must be essentially degenerate with a mass matrix of the bimaximal mixing type. We study this scenario in the MSSM framework, finding that if neutrino masses are produced by a see-saw mechanism, the radiative corrections give rise to mass splittings and mixing angles that can accommodate the atmospheric and the (large angle MSW) solar neutrino oscillations. This provides a natural origin for the Δm 2 sol 2 atm hierarchy. On the other hand, the vacuum oscillation solution to the solar neutrino problem is always excluded. We discuss also in the SUSY scenario other possible effects of radiative corrections involving the new neutrino Yukawa couplings, including implications for triviality limits on the Majorana mass, the infrared fixed point value of the top Yukawa coupling, and gauge coupling and bottom-tau unification

  14. Neutrino particle astrophysics: status and outlook

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The discovery of astrophysical neutrinos at high energy by IceCube raises a host of questions: What are the sources? Is there a Galactic as well as an extragalactic component? How does the astrophysical spectrum continue to lower energy where the dominant signal is from atmospheric neutrinos? Is there a measureable flux of cosmogenic neutrinos at higher energy? What is the connection to cosmic rays? At what level and in what energy region should we expect to see evidence of the π0 decay photons that must accompany the neutrinos at production? Such questions are stimulating much theoretical activity and many multi-wavelength follow-up observations as well as driving plans for new detectors. My goal in this presentation will be to connect the neutrino data and their possible interpretations to ongoing multi-messenger observations and to the design of future detectors.

  15. The Intermediate Neutrino Program

    CERN Document Server

    Adams, C.; Ankowski, A.M.; Asaadi, J.A.; Ashenfelter, J.; Axani, S.N.; Babu, K.; Backhouse, C.; Band, H.R.; Barbeau, P.S.; Barros, N.; Bernstein, A.; Betancourt, M.; Bishai, M.; Blucher, E.; Bouffard, J.; Bowden, N.; Brice, S.; Bryan, C.; Camilleri, L.; Cao, J.; Carlson, J.; Carr, R.E.; Chatterjee, A.; Chen, M.; Chen, S.; Chiu, M.; Church, E.D.; Collar, J.I.; Collin, G.; Conrad, J.M.; Convery, M.R.; Cooper, R.L.; Cowen, D.; Davoudiasl, H.; de Gouvea, A.; Dean, D.J.; Deichert, G.; Descamps, F.; DeYoung, T.; Diwan, M.V.; Djurcic, Z.; Dolinski, M.J.; Dolph, J.; Donnelly, B.; Dwyer, D.A.; Dytman, S.; Efremenko, Y.; Everett, L.L.; Fava, A.; Figueroa-Feliciano, E.; Fleming, B.; Friedland, A.; Fujikawa, B.K.; Gaisser, T.K.; Galeazzi, M.; Galehouse, D.C.; Galindo-Uribarri, A.; Garvey, G.T.; Gautam, S.; Gilje, K.E.; Gonzalez-Garcia, M.; Goodman, M.C.; Gordon, H.; Gramellini, E.; Green, M.P.; Guglielmi, A.; Hackenburg, R.W.; Hackenburg, A.; Halzen, F.; Han, K.; Hans, S.; Harris, D.; Heeger, K.M.; Herman, M.; Hill, R.; Holin, A.; Huber, P.; Jaffe, D.E.; Johnson, R.A.; Joshi, J.; Karagiorgi, G.; Kaufman, L.J.; Kayser, B.; Kettell, S.H.; Kirby, B.J.; Klein, J.R.; Kolomensky, Yu. G.; Kriske, R.M.; Lane, C.E.; Langford, T.J.; Lankford, A.; Lau, K.; Learned, J.G.; Ling, J.; Link, J.M.; Lissauer, D.; Littenberg, L.; Littlejohn, B.R.; Lockwitz, S.; Lokajicek, M.; Louis, W.C.; Luk, K.; Lykken, J.; Marciano, W.J.; Maricic, J.; Markoff, D.M.; Martinez Caicedo, D.A.; Mauger, C.; Mavrokoridis, K.; McCluskey, E.; McKeen, D.; McKeown, R.; Mills, G.; Mocioiu, I.; Monreal, B.; Mooney, M.R.; Morfin, J.G.; Mumm, P.; Napolitano, J.; Neilson, R.; Nelson, J.K.; Nessi, M.; Norcini, D.; Nova, F.; Nygren, D.R.; Orebi Gann, G.D.; Palamara, O.; Parsa, Z.; Patterson, R.; Paul, P.; Pocar, A.; Qian, X.; Raaf, J.L.; Rameika, R.; Ranucci, G.; Ray, H.; Reyna, D.; Rich, G.C.; Rodrigues, P.; Romero, E.Romero; Rosero, R.; Rountree, S.D.; Rybolt, B.; Sanchez, M.C.; Santucci, G.; Schmitz, D.; Scholberg, K.; Seckel, D.; Shaevitz, M.; Shrock, R.; Smy, M.B.; Soderberg, M.; Sonzogni, A.; Sousa, A.B.; Spitz, J.; St. John, J.M.; Stewart, J.; Strait, J.B.; Sullivan, G.; Svoboda, R.; Szelc, A.M.; Tayloe, R.; Thomson, M.A.; Toups, M.; Vacheret, A.; Vagins, M.; Van de Water, R.G.; Vogelaar, R.B.; Weber, M.; Weng, W.; Wetstein, M.; White, C.; White, B.R.; Whitehead, L.; Whittington, D.W.; Wilking, M.J.; Wilson, R.J.; Wilson, P.; Winklehner, D.; Winn, D.R.; Worcester, E.; Yang, L.; Yeh, M.; Yokley, Z.W.; Yoo, J.; Yu, B.; Yu, J.; Zhang, C.

    2015-01-01

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summ...

  16. The Intermediate Neutrino Program

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C.; et al.

    2015-03-23

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  17. The Intermediate Neutrino Program

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C. [Yale Univ., New Haven, CT (United States); Alonso, J. R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ankowski, A. M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Asaadi, J. A. [Syracuse Univ., NY (United States); Ashenfelter, J. [Yale Univ., New Haven, CT (United States); Axani, S. N. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Babu, K [Oklahoma State Univ., Stillwater, OK (United States); Backhouse, C. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Band, H. R. [Yale Univ., New Haven, CT (United States); Barbeau, P. S. [Duke Univ., Durham, NC (United States); Barros, N. [Univ. of Pennsylvania, Philadelphia, PA (United States); Bernstein, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Betancourt, M. [Illinois Inst. of Technology, Chicago, IL (United States); Bishai, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blucher, E. [Univ. of Chicago, IL (United States); Bouffard, J. [State Univ. of New York (SUNY), Albany, NY (United States); Bowden, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brice, S. [Illinois Inst. of Technology, Chicago, IL (United States); Bryan, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Camilleri, L. [Columbia Univ., New York, NY (United States); Cao, J. [Inst. of High Energy Physics, Beijing (China); Carlson, J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carr, R. E. [Columbia Univ., New York, NY (United States); Chatterjee, A. [Univ. of Texas, Arlington, TX (United States); Chen, M. [Univ. of California, Irvine, CA (United States); Chen, S. [Tsinghua Univ., Beijing (China); Chiu, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Church, E. D. [Illinois Inst. of Technology, Chicago, IL (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collar, J. I. [Univ. of Chicago, IL (United States); Collin, G. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Conrad, J. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Convery, M. R. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Cooper, R. L. [Indiana Univ., Bloomington, IN (United States); Cowen, D. [Pennsylvania State Univ., University Park, PA (United States); Davoudiasl, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gouvea, A. D. [Northwestern Univ., Evanston, IL (United States); Dean, D. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deichert, G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Descamps, F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); DeYoung, T. [Michigan State Univ., East Lansing, MI (United States); Diwan, M. V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Djurcic, Z. [Argonne National Lab. (ANL), Argonne, IL (United States); Dolinski, M. J. [Drexel Univ., Philadelphia, PA (United States); Dolph, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Donnelly, B. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Dwyer, D. A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dytman, S. [Univ. of Pittsburgh, PA (United States); Efremenko, Y. [Univ. of Tennessee, Knoxville, TN (United States); Everett, L. L. [Univ. of Wisconsin, Madison, WI (United States); Fava, A. [University of Padua, Padova (Italy); Figueroa-Feliciano, E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Fleming, B. [Yale Univ., New Haven, CT (United States); Friedland, A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fujikawa, B. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gaisser, T. K. [Univ. of Delaware, Newark, DE (United States); Galeazzi, M. [Univ. of Miami, FL (United States); Galehouse, DC [Univ. of Akron, OH (United States); Galindo-Uribarri, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Garvey, G. T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gautam, S. [Tribhuvan Univ., Kirtipur (Nepal); Gilje, K. E. [Illinois Inst. of Technology, Chicago, IL (United States); Gonzalez-Garcia, M. [Stony Brook Univ., NY (United States); Goodman, M. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Gordon, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gramellini, E. [Yale Univ., New Haven, CT (United States); Green, M. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guglielmi, A. [University of Padua, Padova (Italy); Hackenburg, R. W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hackenburg, A. [Yale Univ., New Haven, CT (United States); Halzen, F. [Univ. of Wisconsin, Madison, WI (United States); Han, K. [Yale Univ., New Haven, CT (United States); Hans, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Harris, D. [Illinois Inst. of Technology, Chicago, IL (United States); Heeger, K. M. [Yale Univ., New Haven, CT (United States); Herman, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hill, R. [Univ. of Chicago, IL (United States); Holin, A. [Univ. College London, Bloomsbury (United Kingdom); Huber, P. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Jaffe, D. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Johnson, R. A. [Univ. of Cincinnati, OH (United States); Joshi, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Karagiorgi, G. [Univ. of Manchester (United Kingdom); Kaufman, L. J. [Indiana Univ., Bloomington, IN (United States); Kayser, B. [Illinois Inst. of Technology, Chicago, IL (United States); Kettell, S. H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kirby, B. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Klein, J. R. [Univ. of Texas, Arlington, TX (United States); Kolomensky, Y. G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Kriske, R. M. [Univ. of Minnesota, Minneapolis, MN (United States); Lane, C. E. [Drexel Univ., Philadelphia, PA (United States); Langford, T. J. [Yale Univ., New Haven, CT (United States); Lankford, A. [Univ. of California, Irvine, CA (United States); Lau, K. [Univ. of Houston, TX (United States); Learned, J. G. [Univ. of Hawaii, Honolulu, HI (United States); Ling, J. [Univ. of Illinois, Urbana-Champaign, IL (United States); Link, J. M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Lissauer, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Littenberg, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Littlejohn, B. R. [Illinois Inst. of Technology, Chicago, IL (United States); Lockwitz, S. [Illinois Inst. of Technology, Chicago, IL (United States); Lokajicek, M. [Inst. of Physics of the Academy of Sciences of Czech Republic, Prague (Czech Republic); Louis, W. C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Luk, K. [Univ. of California, Berkeley, CA (United States); Lykken, J. [Illinois Inst. of Technology, Chicago, IL (United States); Marciano, W. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Maricic, J. [Univ. of Hawaii, Honolulu, HI (United States); Markoff, D. M. [North Carolina Central Univ., Durham, NC (United States); Caicedo, D. A. M. [Illinois Inst. of Technology, Chicago, IL (United States); Mauger, C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mavrokoridis, K. [Univ. of Liverpool (United Kingdom); McCluskey, E. [Illinois Inst. of Technology, Chicago, IL (United States); McKeen, D. [Univ. of Washington, Seattle, WA (United States); McKeown, R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mills, G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mocioiu, I. [Pennsylvania State Univ., University Park, PA (United States); Monreal, B. [Univ. of California, Santa Barbara, CA (United States); Mooney, M. R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Morfin, J. G. [Illinois Inst. of Technology, Chicago, IL (United States); Mumm, P. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Napolitano, J. [Temple Univ., Philadelphia, PA (United States); Neilson, R. [Drexel Univ., Philadelphia, PA (United States); Nelson, J. K. [College of William and Mary, Williamsburg, VA (United States); Nessi, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Norcini, D. [Yale Univ., New Haven, CT (United States); Nova, F. [Univ. of Texas, Austin, TX (United States); Nygren, D. R. [Univ. of Texas, Arlington, TX (United States); Gann, GDO [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Palamara, O. [Illinois Inst. of Technology, Chicago, IL (United States); Parsa, Z. [Brookhaven National Lab. (BNL), Upton, NY (United States); Patterson, R. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Paul, P. [Stony Brook Univ., NY (United States); Pocar, A. [Univ. of Massachusetts, Amherst, MA (United States); Qian, X. [Brookhaven National Lab. (BNL), Upton, NY (United States); Raaf, J. L. [Illinois Inst. of Technology, Chicago, IL (United States); Rameika, R. [Illinois Inst. of Technology, Chicago, IL (United States); Ranucci, G. [National Inst. of Nuclear Physics, Milano (Italy); Ray, H. [Univ. of Florida, Gainesville, FL (United States); Reyna, D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rich, G. C. [Triangle Universities Nuclear Lab., Durham, NC (United States); Rodrigues, P. [Univ. of Rochester, NY (United States); Romero, E. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Rosero, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rountree, S. D. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Rybolt, B. [Univ. of Tennessee, Knoxville, TN (United States); Sanchez, M. C. [Iowa State Univ., Ames, IA (United States); Santucci, G. [Stony Brook Univ., NY (United States); Schmitz, D. [Univ. of Chicago, IL (United States); Scholberg, K. [Duke Univ., Durham, NC (United States); Seckel, D. [Univ. of Delaware, Newark, DE (United States); Shaevitz, M. [Columbia Univ., New York, NY (United States); Shrock, R. [Stony Brook Univ., NY (United States); Smy, M. B. [Univ. of California, Irvine, CA (United States); Soderberg, M. [Syracuse Univ., NY (United States); Sonzogni, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sousa, A. B. [Univ. of Cincinnati, OH (United States); Spitz, J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); John, J. M. S. [Univ. of Cincinnati, OH (United States); Stewart, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Strait, J. B. [Illinois Inst. of Technology, Chicago, IL (United States); Sullivan, G. [Univ. of Maryland, College Park, MD (United States); Svoboda, R. [Univ. of California, Davis, CA (United States); Szelc, A. M. [Yale Univ., New Haven, CT (United States); Tayloe, R. [Indiana Univ., Bloomington, IN (United States); Thomson, M. A. [Univ. of Cambridge (United Kingdom); Toups, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Vacheret, A. [Univ. of Oxford (United Kingdom); Vagins, M. [Univ. of California, Irvine, CA (United States); Water, R. G. V. D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vogelaar, R. B. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Weber, M. [Bern (Switzerland); Weng, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wetstein, M. [Univ. of Chicago, IL (United States); White, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); White, B. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Whitehead, L. [Univ. of Houston, TX (United States); Whittington, D. W. [Indiana Univ., Bloomington, IN (United States); Wilking, M. J. [Stony Brook Univ., NY (United States); Wilson, R. J. [Colorado State Univ., Fort Collins, CO (United States); Wilson, P. [Illinois Inst. of Technology, Chicago, IL (United States); Winklehner, D. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Winn, D. R. [Fairfield Univ., CT (United States); Worcester, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yang, L. [Univ. of Illinois, Urbana-Champaign, IL (United States); Yeh, M [Brookhaven National Lab. (BNL), Upton, NY (United States); Yokley, Z. W. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Yoo, J. [Illinois Inst. of Technology, Chicago, IL (United States); Yu, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yu, J. [Univ. of Texas, Arlington, TX (United States); Zhang, C. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-04-03

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  18. Is the neutrino as changeable as a weather vane?

    CERN Multimedia

    2003-01-01

    We conclude the first part of our feature on the CNGS project with a sneak preview of next week's articles. The neutrino is something of a headache for physicists, who have come to wonder whether the muon neutrino is capable of changing into a tau neutrino. This hypothesis would explain the deficit of muon neutrinos in the atmosphere. When cosmic rays interact with the nuclei of atoms from the upper atmosphere, two kinds of neutrino are produced: muon neutrinos and electron neutrinos. Measurements have shown that there are fewer muon neutrinos than would normally have been expected. In 1998, the Super Kamiokande experiment in Japan revealed that the oscillation (or transformation) of muon neutrinos into tau neutrinos could be responsible for this shortfall, an idea which was supported, shortly afterwards, by the K2K (KEK to Kamioka) experiment. The main purpose of the experiments at the CNGS (CERN Neutrinos to Gran Sasso) project is to demonstrate this oscillation, which is thought to occur over long distan...

  19. Latest results from the IceCube neutrino observatory

    Energy Technology Data Exchange (ETDEWEB)

    Schukraft, Anne [RWTH Aachen Univ. (Germany). III. Physikalisches Inst.; Collaboration: IceCube-Collaboration

    2013-07-01

    The IceCube Neutrino Observatory is the world's largest neutrino detector with a broad physics program covering the neutrino spectrum from several tens of GeV up to EeV energies. With its completion in 2010 it has reached its full sensitivity and analyses with unprecedented statistics are performed. One of the major research efforts is the search for extraterrestrial neutrino sources, which have not yet been discovered but would be a smoking gun for hadronic acceleration and could allow to identify the sources of high-energy cosmic rays. Such include steady galactic and extragalactic source candidates, e.g. Supernova Remnants and Active Galactic Nuclei, as well as transient phenomena like flaring objects and Gamma Ray Bursts. With its searches for diffuse neutrino fluxes in different energy ranges, IceCube is sensitive to fluxes of prompt atmospheric neutrinos, extragalactic neutrinos and cosmogenic neutrinos. In the low-energy range below 100 GeV, IceCube supplements classical neutrino oscillation experiments with its sensitivity to the deficit of atmospheric muon neutrinos at 25 GeV and searches for neutrinos from the annihilation of dark matter. The IceCube physics program is complemented by the surface array IceTop, which together with the detector part inside the ice serves for cosmic ray anisotropy, spectrum and composition measurements around the knee. The presentation summarizes ongoing IceCube physics analyses and recent results.

  20. Neutrino problems proliferate (Neutrino 94 conference report)

    International Nuclear Information System (INIS)

    Gordon, Fraser

    1994-01-01

    The enigma of the neutrino continues. More than sixty years after its hesitant prediction by Pauli and forty years after its discovery by Reines and Cowan, the neutrino still refuses to give up all its secrets. The longer we travel down the neutrino road and the more we find out about these particles, the more problems we uncover en route. The present state of the neutrino mystery was highlighted at the Neutrino 94 meeting in Eilat, Israel, from 29 May to 3 June. It was a distinguished meeting, with the first morning including one session chaired by neutrino co-discoverer Fred Reines, and an introductory talk by muon-neutrino co-discoverer Leon Lederman. One figurehead neutrino personality conspicuously absent this time was Bruno Pontecorvo, who died last year and had attended the previous conference in the series, in Grenada, Spain, in 1992

  1. Neutrino problems proliferate (Neutrino 94 conference report)

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Fraser

    1994-09-15

    The enigma of the neutrino continues. More than sixty years after its hesitant prediction by Pauli and forty years after its discovery by Reines and Cowan, the neutrino still refuses to give up all its secrets. The longer we travel down the neutrino road and the more we find out about these particles, the more problems we uncover en route. The present state of the neutrino mystery was highlighted at the Neutrino 94 meeting in Eilat, Israel, from 29 May to 3 June. It was a distinguished meeting, with the first morning including one session chaired by neutrino co-discoverer Fred Reines, and an introductory talk by muon-neutrino co-discoverer Leon Lederman. One figurehead neutrino personality conspicuously absent this time was Bruno Pontecorvo, who died last year and had attended the previous conference in the series, in Grenada, Spain, in 1992.

  2. Bolivian Bouguer Anomaly Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Bouguer anomaly grid for the country of Bolivia.Number of columns is 550 and number of rows is 900. The order of the data is from the lower left to the...

  3. Minnesota Bouguer Anomaly Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1.5 kilometer Bouguer anomaly grid for the state of Minnesota. Number of columns is 404 and number of rows is 463. The order of the data is from the lower left to...

  4. Holonomy anomalies

    International Nuclear Information System (INIS)

    Bagger, J.; Nemeschansky, D.; Yankielowicz, S.

    1985-05-01

    A new type of anomaly is discussed that afflicts certain non-linear sigma models with fermions. This anomaly is similar to the ordinary gauge and gravitational anomalies since it reflects a topological obstruction to the reparametrization invariance of the quantum effective action. Nonlinear sigma models are constructed based on homogeneous spaces G/H. Anomalies arising when the fermions are chiral are shown to be cancelled sometimes by Chern-Simons terms. Nonlinear sigma models are considered based on general Riemannian manifolds. 9 refs

  5. Evidence and Search for Sterile Neutrinos at Accelerators

    Directory of Open Access Journals (Sweden)

    W. C. Louis

    2013-01-01

    Full Text Available The LSND short-baseline neutrino experiment has published evidence for antineutrino oscillations at a mass scale of ~1 eV2. The MiniBooNE experiment, designed to test this evidence for oscillations at an order of magnitude higher neutrino energy and distance, observes excesses of events in both neutrino mode and antineutrino mode. While the MiniBooNE neutrino excess has a neutrino energy spectrum that is softer than expected from LSND, the MiniBooNE antineutrino excess is consistent with neutrino oscillations and with the LSND oscillation signal. When combined with oscillation measurements at the solar and atmospheric mass scales, assuming that the LSND and MiniBooNE signals are due to neutrino oscillations, these experiments imply the existence of more than three neutrino mass states and, therefore, one or more sterile neutrinos. Such sterile neutrinos, if proven to exist, would have a big impact on particle physics, nuclear physics, and astrophysics and would contribute to the dark matter of the universe. Future experiments under construction or proposed at Fermilab, ORNL, CERN, and in Japan will provide a definitive test of short-baseline neutrino oscillations and will have the capability of proving the existence of sterile neutrinos.

  6. A Search for Neutrinos from Fast Radio Bursts with IceCube

    International Nuclear Information System (INIS)

    Fahey, Samuel; Kheirandish, Ali; Vandenbroucke, Justin; Xu, Donglian

    2017-01-01

    We present a search for neutrinos in coincidence in time and direction with four fast radio bursts (FRBs) detected by the Parkes and Green Bank radio telescopes during the first year of operation of the complete IceCube Neutrino Observatory (2011 May through 2012 May). The neutrino sample consists of 138,322 muon neutrino candidate events, which are dominated by atmospheric neutrinos and atmospheric muons but also contain an astrophysical neutrino component. Considering only neutrinos detected on the same day as each FRB, zero IceCube events were found to be compatible with the FRB directions within the estimated 99% error radius of the neutrino directions. Based on the non-detection, we present the first upper limits on the neutrino fluence from FRBs.

  7. A Search for Neutrinos from Fast Radio Bursts with IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Fahey, Samuel; Kheirandish, Ali; Vandenbroucke, Justin; Xu, Donglian, E-mail: justin.vandenbroucke@wisc.edu [Wisconsin IceCube Particle Astrophysics Center and Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)

    2017-08-10

    We present a search for neutrinos in coincidence in time and direction with four fast radio bursts (FRBs) detected by the Parkes and Green Bank radio telescopes during the first year of operation of the complete IceCube Neutrino Observatory (2011 May through 2012 May). The neutrino sample consists of 138,322 muon neutrino candidate events, which are dominated by atmospheric neutrinos and atmospheric muons but also contain an astrophysical neutrino component. Considering only neutrinos detected on the same day as each FRB, zero IceCube events were found to be compatible with the FRB directions within the estimated 99% error radius of the neutrino directions. Based on the non-detection, we present the first upper limits on the neutrino fluence from FRBs.

  8. Constraints on decay plus oscillation solutions of the solar neutrino problem

    Science.gov (United States)

    Joshipura, Anjan S.; Massó, Eduard; Mohanty, Subhendra

    2002-12-01

    We examine the constraints on the nonradiative decay of neutrinos from the observations of solar neutrino experiments. The standard oscillation hypothesis among three neutrinos solves the solar and atmospheric neutrino problems. The decay of a massive neutrino mixed with the electron neutrino results in the depletion of the solar neutrino flux. We introduce neutrino decay in the oscillation hypothesis and demand that decay does not spoil the successful explanation of solar and atmospheric observations. We obtain a lower bound on the ratio of the lifetime over the mass of ν2, τ2/m2>22.7 s/MeV for the Mikheyev-Smirnov-Wolfenstein solution of the solar neutrino problem and τ2/m2>27.8 s/MeV for the vacuum oscillation solution (at 99% C.L.).

  9. Interior Alaska Bouguer Gravity Anomaly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. All grid cells within the rectangular data area (from 61 to 66 degrees North latitude and...

  10. Interior Alaska Bouguer Gravity Anomaly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. Only those grid cells within 10 kilometers of a gravity data point have gravity values....

  11. Study of Neutrino Interactions in MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Richa [Panjab Univ., Chandigarh (India)

    2014-01-01

    MINOS stands for Main Injector Neutrino Oscillation Search. It is a long baseline experiment located in the USA and is composed of two detectors. The Near Detector is at Fermilab, 1 km from the source of neutrinos. The Far Detector is in Minnesota at a distance of 735 km from the source. Both detectors are steel scintillator tracking calorimeters. MINOS searches for neutrino oscillations by comparing the neutrino energy spectrum at the Far Detector with that obtained from a prediction based on the spectrum at the Near Detector. The primary aim of MINOS is to measure the atmospheric oscillation parameters Δm2 32 and θ23. CPT symmetry requires that these parameters should be same for neutrinos and antineutrinos. Di erences between neutrino and antineutrino oscillations would be an indication of new physics beyond the neutrino-Standard Model ( SM). Additionally, violation of Lorentz or CPT symmetry could also give rise to oscillations di erent from that expected from the SM predictions, such as neutrino to antineutrino transitions.

  12. DUMAND: The Ocean as a Neutrino Detector

    Energy Technology Data Exchange (ETDEWEB)

    Blood, H.; Learned, J.; Reines, F.; Roberts, A.

    1976-06-01

    We consider the possibility of using the ocean as a neutrino detector; neutrino-produced interactions result in charged particles that generate Cerenkov radiation in the water, which can be detected by light-gathering equipment and photomultipliers. The properties of the ocean as seen from this standpoint are critically examined, and the advantages and disadvantages pointed out. Possible uses for such a neutrino detector include 1) the detection of neutrinos emitted in gravitational collapse of stars (supernova production), not only in our own galaxy, but in other galaxies up to perhaps twenty-million light-years away, 2) the extension of high-energy neutrino physics, as currently practiced up to 200 GeV at high-energy accelerators, to energies up to 50 times higher, using neutrinos generated in the atmosphere by cosmic rays, and 3) the possible detection of neutrinos produced by cosmic-ray interactions outside the earth's atmosphere. The technology for such an undertaking seems to be within reach.

  13. ABSOLUTE NEUTRINO MASSES

    DEFF Research Database (Denmark)

    Schechter, J.; Shahid, M. N.

    2012-01-01

    We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos.......We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos....

  14. Working Group Report: Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    de Gouvea, A.; Pitts, K.; Scholberg, K.; Zeller, G. P. [et al.

    2013-10-16

    This document represents the response of the Intensity Frontier Neutrino Working Group to the Snowmass charge. We summarize the current status of neutrino physics and identify many exciting future opportunities for studying the properties of neutrinos and for addressing important physics and astrophysics questions with neutrinos.

  15. Underground neutrino astronomy

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1983-02-01

    A review is made of possible astronomical neutrino sources detectable with underground facilities. Comments are made about solar neutrinos and gravitational-collapse neutrinos, and particular emphasis is placed on ultra-high-energy astronomical neutrino sources. An appendix mentions the exotic possibility of monopolonium

  16. Introduction to massive neutrinos

    International Nuclear Information System (INIS)

    Kayser, B.

    1984-01-01

    We discuss the theoretical ideas which make it natural to expect that neutrinos do indeed have mass. Then we focus on the physical consequences of neutrino mass, including neutrino oscillation and other phenomena whose observation would be very interesting, and would serve to demonstrate that neutrinos are indeed massive. We comment on the legitimacy of comparing results from different types of experiments. Finally, we consider the question of whether neutrinos are their own antiparticles. We explain what this question means, discuss the nature of a neutrino which is its own antiparticles, and consider how one might determine experimentally whether neutrinos are their own antiparticles or not

  17. Neutrinos in Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    McKeown, Bob [bmck@jlab.org

    2015-06-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  18. High energy neutrinos from Cyg X-3

    International Nuclear Information System (INIS)

    Walker, T.P.; Kolb, E.W.; Turner, M.S.

    1985-07-01

    Assuming that the UHE air showers from Cyg X-3 are produced by photons, we calculate the expected neutrino emission from a model which produces the γ-rays in the atmosphere of the Cyg X-3 companion. We discuss the possibility of detecting such neutrinos in underground detectors and the constraints that such a signal places on the use of this model in other particle production scenarios. 16 refs., 5 figs

  19. Nonzero θ13 and neutrino masses from the modified tri-bi-maximal neutrino mixing matrix

    International Nuclear Information System (INIS)

    Damanik, A.

    2014-01-01

    There are 3 types of neutrino mixing matrices: tri-bi-maximal, bi-maximal and democratic. These 3 types of neutrino mixing matrices predict that the mixing angle θ 13 should be null. Motivated by the recent experimental evidence of nonzero and relatively large θ 13 , we modified the tribimaximal mixing matrix by introducing a simple perturbation matrix into tribimaximal neutrino mixing matrix. In this scenario, we obtained nonzero mixing angle θ 13 =7.9 degrees which is in agreement with the present experimental results. By imposing 2 zeros texture into the obtained neutrino mass matrix from modified tribimaximal mixing matrix, we then have the neutrino mass spectrum in normal hierarchy. Some phenomenological implications are also discussed. It appears that if we use the solar neutrino squared-mass difference to determine the values of neutrino masses, then we cannot have the correct value for the atmospheric squared-mass difference. Conversely, if we use the experimental value of the squared-mass difference to determine the neutrino masses, then we cannot have the correct value for the solar neutrino squared-mass difference

  20. Simulation of coherent nonlinear neutrino flavor transformation in the supernova environment: Correlated neutrino trajectories

    Science.gov (United States)

    Duan, Huaiyu; Fuller, George M.; Carlson, J.; Qian, Yong-Zhong

    2006-11-01

    We present results of large-scale numerical simulations of the evolution of neutrino and antineutrino flavors in the region above the late-time post-supernova-explosion proto-neutron star. Our calculations are the first to allow explicit flavor evolution histories on different neutrino trajectories and to self-consistently couple flavor development on these trajectories through forward scattering-induced quantum coupling. Employing the atmospheric-scale neutrino mass-squared difference (|δm2|≃3×10-3eV2) and values of θ13 allowed by current bounds, we find transformation of neutrino and antineutrino flavors over broad ranges of energy and luminosity in roughly the “bi-polar” collective mode. We find that this large-scale flavor conversion, largely driven by the flavor off-diagonal neutrino-neutrino forward scattering potential, sets in much closer to the proto-neutron star than simple estimates based on flavor-diagonal potentials and Mikheyev-Smirnov-Wolfenstein evolution would indicate. In turn, this suggests that models of r-process nucleosynthesis sited in the neutrino-driven wind could be affected substantially by active-active neutrino flavor mixing, even with the small measured neutrino mass-squared differences.

  1. 50 years of neutrinos

    CERN Document Server

    Goldhaber, M

    1980-01-01

    On December 4 1930, Wolfgang Pauli addressed an "open letter" to Lise Meitner and others attending a physics meeting, suggesting the neutrino as a way out of the difficulties confronted in beta rays research, especially by the existence of a continuous beta spectrum. He proposed a new particle later called the neutrino. The prehistory leading up to Pauli's letter will be reviewed, as well as the later discovery of the electron-neutrino followed by the muon-neutrino. There are now believed to be three different types of neutrino and their anti-particles. Neutrinos have a spin 1/2; but only one spin component has been found in nature: neutrinos go forward as "left-handed" screws and anti-neutrinos as "right-handed" ones. A question still not convincingly resolved today is wether neutrinos have a mass different from zero and, if they do, what consequences this would have for the behaviour of neutrinos and for cosmology.

  2. The solar neutrinos epopee

    CERN Document Server

    Lasserre, T

    2003-01-01

    The 2002 year has been fruitful for the neutrino physics. First, the Sudbury Neutrino Observatory (SNO) experiment has shown that the electron neutrinos nu sub e emitted by the sun are converted into muon neutrinos (nu submu) and tau neutrinos (nu subtau), thus closing the 30 years old problem of solar neutrinos deficit. This discovery validates the model of nuclear energy production inside the sun but it shakes the theory describing the weak interactions between the fundamental constituents of matter. This theory considers the neutrinos (and the photons) as massless particles, while the taste conversion phenomenon necessarily implies that neutrinos have a mass. In October 2000, the Universe exploration by the cosmic neutrinos is jointly recognized by R. Davis (USA) and M. Koshiba (Japan) who received the Nobel price of physics. Finally, in December 2000, the KamLAND experiment quantitatively demonstrated the neutrinos metamorphosis by detecting a deficit in the flux of electron antineutrinos coming from the ...

  3. Symmetry breaking, and the effect of matter density on neutrino oscillation

    Science.gov (United States)

    Mohseni Sadjadi, H.; Khosravi Karchi, A. P.

    2018-04-01

    A proposal for the neutrino mass, based on neutrino-scalar field interaction, is introduced. The scalar field is also non-minimally coupled to the Ricci scalar, and hence relates the neutrino mass to the matter density. In a dense region, the scalar field obeys the Z2 symmetry, and the neutrino is massless. In a dilute region, the Z2 symmetry breaks and neutrino acquires mass from the non-vanishing expectation value of the scalar field. We consider this scenario in the framework of a spherical dense object whose outside is a dilute region. In this background, we study the neutrino flavors oscillation, along with the consequences of the theory on oscillation length and MSW effect. This preliminary model may shed some lights on the existing anomalies within the neutrino data, concerning the different oscillating behavior of the neutrinos in regions with different densities.

  4. Neutrino physics in heaven

    International Nuclear Information System (INIS)

    Raffelt, G.

    2005-01-01

    After a brief overview of the usual topics that connect astrophysics and cosmology with neutrino physics I will focus on two main themes. First, what can we learn from the neutrino signal of a future galactic supernova, in particular about the neutrino mass ordering. Second, what can we learn about neutrino properties from cosmological observables, notably about the neutrino absolute mass scale from cosmological large-scale structure observables. (author)

  5. Two lectures on neutrinos

    International Nuclear Information System (INIS)

    Ramond, P.

    1992-01-01

    These notes are based on two lectures delivered at the School. A general description of neutrinos is presented, first in purely kinematic terms, then in the context of the Standard Model, focusing on the role of the global lepton numbers. Standard Model extensions with massive neutrinos are cataloged. Several popular mass matrices for neutrinos, and their consequences are presented. They proceed to give an extended discussion of neutrino oscillations in matter, and apply the results to the solar neutrinos

  6. Workshop: Neutrino telescopes

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Despite being the most elusive of the known particles, neutrinos provide vital new physics insights. Most neutrino knowledge so far has come from studies using beams from reactors and accelerators, but in recent years important new contributions have resulted from investigation of natural neutrinos from cosmic rays, nearby stars (the sun), or distant sources, such as the 1987 supernova. The supernova observations marked the start of a new era in neutrino astronomy, but neutrino telescopes were anyway assured of an important ongoing role

  7. Workshop: Neutrino telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-05-15

    Despite being the most elusive of the known particles, neutrinos provide vital new physics insights. Most neutrino knowledge so far has come from studies using beams from reactors and accelerators, but in recent years important new contributions have resulted from investigation of natural neutrinos from cosmic rays, nearby stars (the sun), or distant sources, such as the 1987 supernova. The supernova observations marked the start of a new era in neutrino astronomy, but neutrino telescopes were anyway assured of an important ongoing role.

  8. Collective neutrino oscillations and neutrino wave packets

    Energy Technology Data Exchange (ETDEWEB)

    Akhmedov, Evgeny; Lindner, Manfred [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Kopp, Joachim, E-mail: akhmedov@mpi-hd.mpg.de, E-mail: jkopp@uni-mainz.de, E-mail: lindner@mpi-hd.mpg.de [PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Johannes Gutenberg University, 55099 Mainz (Germany)

    2017-09-01

    Effects of decoherence by wave packet separation on collective neutrino oscillations in dense neutrino gases are considered. We estimate the length of the wave packets of neutrinos produced in core collapse supernovae and the expected neutrino coherence length, and then proceed to consider the decoherence effects within the density matrix formalism of neutrino flavour transitions. First, we demonstrate that for neutrino oscillations in vacuum the decoherence effects are described by a damping term in the equation of motion of the density matrix of a neutrino as a whole (as contrasted to that of the fixed-momentum components of the neutrino density matrix). Next, we consider neutrino oscillations in ordinary matter and dense neutrino backgrounds, both in the adiabatic and non-adiabatic regimes. In the latter case we study two specific models of adiabaticity violation—one with short-term and another with extended non-adiabaticity. It is demonstrated that, while in the adiabatic case a damping term is present in the equation of motion of the neutrino density matrix (just like in the vacuum oscillation case), no such term in general appears in the non-adiabatic regime.

  9. Comparing and contrasting the νμ → ντ and νμ → νs solutions to the atmospheric neutrino problem with SuperKamiokande data

    International Nuclear Information System (INIS)

    Foot, R.; Volkas, R.R.; Yasuda, O.

    1998-01-01

    The ν μ → ν τ and ν μ → ν s solutions to the atmospheric neutrino problem are compared with SuperKamiokande data. The differences between these solutions due to matter effects in the Earth are calculated for the ratio of μ-like to e-like events and for up-down flux asymmetries. These quantities are chosen because they are relatively insensitive to theoretical uncertainties in the overall neutrino flux normalisation and detection cross-sections and efficiencies. A χ 2 analysis using these quantities is performed yielding 3σ ranges which are approximately given by (0.725-1.0, 4 x l0 -4 -2 x 10 -2 eV 2 ) and (0.74-1.0, 1 x 10 -3 -2 x 10 -2 eV 2 ) for (sin 2 2θ, Δm 2 ) for the ν μ →ν τ and ν μ → ν s solutions, respectively. Values of Δm 2 smaller than about 2 x 10 -3 eV 2 are disfavoured for the ν μ → ν s solution, suggesting that future long baseline experiments should see a positive signal if this scenario is the correct one. (authors)

  10. Solar Neutrinos

    Directory of Open Access Journals (Sweden)

    V. Antonelli

    2013-01-01

    relevant indications on the fundamental interactions among particles. After reviewing the striking results of the last two decades, which were determinant to solve the long standing solar neutrino puzzle and refine the Standard Solar Model, we focus our attention on the more recent results in this field and on the experiments presently running or planned for the near future. The main focus at the moment is to improve the knowledge of the mass and mixing pattern and especially to study in detail the lowest energy part of the spectrum, which represents most of the solar neutrino spectrum but is still a partially unexplored realm. We discuss this research project and the way in which present and future experiments could contribute to make the theoretical framework more complete and stable, understanding the origin of some “anomalies” that seem to emerge from the data and contributing to answer some present questions, like the exact mechanism of the vacuum to matter transition and the solution of the so-called solar metallicity problem.

  11. Short distance neutrino oscillations with Borexino

    Directory of Open Access Journals (Sweden)

    Caminata A.

    2016-01-01

    Full Text Available The Borexino detector has convincingly shown its outstanding performances in the low energy, sub-MeV regime through its unprecedented accomplishments in the solar and geo-neutrinos detection. These performances make it the ideal tool to accomplish a state-of-the-art experiment able to test unambiguously the long-standing issue of the existence of a sterile neutrino, as suggested by the several anomalous results accumulated over the past two decades, i.e. the outputs of the LSND and Miniboone experiments, the results of the source calibration of the two Gallium solar neutrino experiments, and the recently hinted reactor anomaly. The SOX project will exploit two sources, based on Chromium and Cerium, respectively, which deployed under the experiment, in a location foreseen on purpose at the time of the construction of the detector, will emit two intense beams of neutrinos (Cr and anti-neutrinos (Ce. Interacting in the active volume of the liquid scintillator, each beam would create an unmistakable spatial wave pattern in case of oscillation of the νe (or ν̅e into the sterile state: such a pattern would be the smoking gun proving the existence of the new sterile member of the neutrino family. Otherwise, its absence will allow setting a very stringent limit on its existence.

  12. Experimental Neutrino Physics and Astrophysics with the IMB-3 Detector

    Science.gov (United States)

    Casper, David William

    1990-01-01

    Description of the universe on the smallest (elementary particle physics) and largest (cosmology) scales has become dependent on the properties of the most weakly interacting fundamental particle known, the neutrino. The IMB experiment, designed to study nucleon decay, is also the world's largest detector of neutrinos. The experiment uses 6800 tons (3300 tons fiducial) of water as both target and detecting medium. Relativistic charges particles traversing the water radiate Cerenkov light. The distinctive ring patterns are imaged by 2048 light collectors (each a photo-multiplier tube coupled with a wavelength-shifting plate) distributed over the surfaces of the tank. This dissertation describes the IMB-3 detector, a four-fold increase in sensitivity over the original apparatus. Neutrino interactions of both atmospheric and extragalactic origin were collected during a 3.4 kiloton-year exposure. A consequence of non-zero neutrino mass could be oscillation of neutrino flavor. The energies and long flight distances of atmospheric neutrinos offer a unique opportunity to explore this possibility. To study the composition of the atmospheric neutrinos, single-ring events are classified as showering or non-showering using the geometry of the Cerenkov pattern. A simulation of neutrino interactions and a model of atmospheric neutrino production are used to predict the composition of the sample. The showering/non-showering character of an event is strongly correlated with the flavor of its neutrino parent. In the lepton momentum range p mass or "dark matter" problem result in high-energy neutrino production within the Sun. A model of dark matter capture and annihilation in the Sun predicts the resulting neutrino fluxes at Earth. No evidence of the phenomenon is observed, but for canonical values of dark matter density and velocity in the solar system, greater exposure will be required to verify or exclude the expected signal.

  13. Solar neutrinos as a probe of dark matter-neutrino interactions

    Energy Technology Data Exchange (ETDEWEB)

    Capozzi, Francesco; Vecchi, Luca [Dipartimento di Fisica e Astronomia, Università di Padova, via Marzolo 8, I-35131 Padova (Italy); Shoemaker, Ian M., E-mail: capozzi.12@osu.edu, E-mail: ian.shoemaker@usd.edu, E-mail: vecchi@infn.pd.it [Department of Physics, University of South Dakota, Vermillion, SD 57069 (United States)

    2017-07-01

    Sterile neutrinos at the eV scale have long been studied in the context of anomalies in short baseline neutrino experiments. Their cosmology can be made compatible with our understanding of the early Universe provided the sterile neutrino sector enjoys a nontrivial dynamics with exotic interactions, possibly providing a link to the Dark Matter (DM) puzzle. Interactions between DM and neutrinos have also been proposed to address the long-standing 'missing satellites' problem in the field of large scale structure formation. Motivated by these considerations, in this paper we discuss realistic scenarios with light steriles coupled to DM . We point out that within this framework active neutrinos acquire an effective coupling to DM that manifests itself as a new matter potential in the propagation within a medium of asymmetric DM . Assuming that at least a small fraction of asymmetric DM has been captured by the Sun, we show that a sizable region of the parameter space of these scenarios can be probed by solar neutrino experiments, especially in the regime of small couplings and light mediators where all other probes become inefficient. In the latter regime these scenarios behave as familiar 3+1 models in all channels except for solar data, where a Solar Dark MSW effect takes place. Solar Dark MSW is characterized by modifications of the most energetic {sup 8}B and CNO neutrinos, whereas the other fluxes remain largely unaffected.

  14. Search for a diffuse flux of extragalactic neutrinos with the IceCube neutrino observatory

    Energy Technology Data Exchange (ETDEWEB)

    Schukraft, Anne

    2013-06-07

    Since the discovery of cosmic rays it has been one of the major research goals to identify the sources and acceleration mechanisms behind these high-energy particles observed from space, with energies up to several EeV. The study of high-energy charged particles and photons has advantages and disadvantages: the detection techniques for charged cosmic rays are very advanced though high-energy charged nuclei are not able to reveal their sources due to magnetic deflection. In the last years, there have been discoveries of many gamma-ray sources, where photon fluxes up to energies of 100 TeV have been observed. However, the universe is opaque to photons with energies larger than 100 TeV since gamma rays interact with the cosmic microwave background. Neutrinos suffer from neither of these limitations. They are ideal messenger particles in order to investigate the sources of cosmic rays since they propagate unaffected, but their detection is difficult and no extraterrestrial neutrino sources at high energies have yet been found. The IceCube experiment, located at the geographic South Pole, was built in order to detect high-energy neutrinos from the universe. It was completed in December 2010 and is the largest neutrino observatory on Earth. It detects neutrinos via their interaction with the Antarctic ice inside and around the detection volume. In these interactions, high-energy leptons are produced, which follow the direction of the initial neutrino and produce a cone of Cherenkov light along their path. This light is detected by optical sensors deployed in the instrumented volume. The search for a diffuse neutrino flux is a very promising approach to look for an extragalactic flux of astrophysical neutrinos. Its sensitivity is mainly based on neutrino energies since astrophysical neutrinos are expected to be more energetic than atmospheric neutrinos. It searches for an astrophysical flux from the sum of all sources in the universe. These sources can be individually

  15. The neutrino mass hierarchy measurement with a neutrino telescope in the Mediterranean Sea: A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Tsirigotis, A. G. [Physics Laboratory, Hellenic Open University (Greece); Collaboration: KM3NeT Collaboration

    2014-11-18

    With the measurement of a non zero value of the θ{sub 13} neutrino mixing parameter, interest in neutrinos as source of the baryon asymmetry of the universe has increased. Among the measurements of a rich and varied program in near future neutrino physics is the determination of the mass hierarchy. We present the status of a study of the feasibility of using a densely instrumented undersea neutrino detector to determine the mass hierarchy, utilizing the Mikheyev-Smirnov-Wolfenstein (MSW) effect on atmospheric neutrino oscillations. The detector will use technology developed for KM3NeT. We present the systematic studies of the optimization of a detector in the required 5–10 GeV energy regime. These studies include new tracking and interaction identification algorithms as well as geometrical optimizations of the detector.

  16. Search for a diffuse flux of extragalactic neutrinos with the IceCube neutrino observatory

    International Nuclear Information System (INIS)

    Schukraft, Anne

    2013-01-01

    Since the discovery of cosmic rays it has been one of the major research goals to identify the sources and acceleration mechanisms behind these high-energy particles observed from space, with energies up to several EeV. The study of high-energy charged particles and photons has advantages and disadvantages: the detection techniques for charged cosmic rays are very advanced though high-energy charged nuclei are not able to reveal their sources due to magnetic deflection. In the last years, there have been discoveries of many gamma-ray sources, where photon fluxes up to energies of 100 TeV have been observed. However, the universe is opaque to photons with energies larger than 100 TeV since gamma rays interact with the cosmic microwave background. Neutrinos suffer from neither of these limitations. They are ideal messenger particles in order to investigate the sources of cosmic rays since they propagate unaffected, but their detection is difficult and no extraterrestrial neutrino sources at high energies have yet been found. The IceCube experiment, located at the geographic South Pole, was built in order to detect high-energy neutrinos from the universe. It was completed in December 2010 and is the largest neutrino observatory on Earth. It detects neutrinos via their interaction with the Antarctic ice inside and around the detection volume. In these interactions, high-energy leptons are produced, which follow the direction of the initial neutrino and produce a cone of Cherenkov light along their path. This light is detected by optical sensors deployed in the instrumented volume. The search for a diffuse neutrino flux is a very promising approach to look for an extragalactic flux of astrophysical neutrinos. Its sensitivity is mainly based on neutrino energies since astrophysical neutrinos are expected to be more energetic than atmospheric neutrinos. It searches for an astrophysical flux from the sum of all sources in the universe. These sources can be individually

  17. Neutrino GDR meeting

    International Nuclear Information System (INIS)

    Aguilar-Saavedra, J.A.; Camilleri, L.; Mention, G.; VanElewyck, V.; Verderi, M.; Blondel, A.; Augier, C.; Bellefon, A. de; Coc, A.; Duchesneau, D.; Favier, J.; Lesgourgues, J.; Payet, J.

    2006-01-01

    The purpose of the neutrino GDR (research program coordination) is to federate the activities of French research teams devoted to studying the neutrino. The presentations have been organized on 2 days. A review of the present status of the theoretical and experimental knowledge on neutrinos on a worldwide basis has been made on the first day while the second day has been dedicated to reporting the activities of the 5 following working groups: 1) determination of neutrino parameters, 2) physics beyond the standard model, 3) neutrinos in the universe, 4) neutrino detection, and 5) common tools. During the first day the American neutrino research program has been presented through the description of the 2 neutrino detection systems: Nova and Minor. The following neutrino experiments involving nuclear reactors: Chooz (France), Daya-bay (China), Reno (Korea) and Angra (Brazil) have also been reviewed. This document is made up of the slides of the presentations

  18. Molybdenum solar neutrino experiment

    International Nuclear Information System (INIS)

    Wolfsberg, K.; Cowan, G.A.; Bryant, E.A.

    1984-01-01

    The goal of the molybdenum solar neutrino experiment is to deduce the 8 B solar neutrino flux, averaged over the past several million years, from the concentration of 98 Tc in a deeply buried molybdenum deposit. The experiment is important to an understanding of stellar processes because it will shed light on the reason for the discrepancy between theory and observation of the chlorine solar neutrino experiment. Possible reasons for the discrepancy may lie in the properties of neutrinos (neutrino oscillations or massive neutrinos) or in deficiencies of the standard solar model. The chlorine experiment only measures the 8 B neutrino flux in current times and does not address possible temporal variations in the interior of the sun, which are also not considered in the standard model. In the molybdenum experiment, we plan to measure 98 Tc (4.2 Myr), also produced by 8 B neutrinos, and possibly 97 Tc (2.6 Myr), produced by lower energy neutrinos

  19. Probing CPT violation in neutrino oscillation: A three flavor analysis

    International Nuclear Information System (INIS)

    Samanta, Abhijit

    2010-01-01

    We have studied CPT violation in neutrino oscillation considering three flavor framework with matter effect. We have constructed a new way to find the oscillation probability incorporating CPT violating terms without any approximation. Then CPT violation with atmospheric neutrinos for a magnetized iron calorimeter detector considering the muons (directly measurable with high resolution) of the charge current events has been studied for zero and nonzero θ 13 values. It is found that a potential bound of δb 32 ≤6x10 -24 GeV at 99% CL can be obtained with 1 Mton.year exposure of this detector; and unlike neutrino beam experiments, there is no possibility to generate 'fake' CPT violation due to matter effect with atmospheric neutrinos. The advantages of atmospheric neutrinos to discriminate CPT violation from CP violation and nonstandard interactions are also discussed.

  20. Overview of the present status and challenges of neutrino oscillation physics

    Energy Technology Data Exchange (ETDEWEB)

    Mocioiu, Irina [Pennsylvania State University, 104 Davey Lab, University Park, PA 16802 (United States)

    2012-11-20

    This is an overview of the current status of neutrino oscillation physics, including atmospheric, solar, reactor and accelerator neutrino experiments. After summarizing our present understanding of all data, I discuss the open questions and how they might be addressed in the future. I also discuss how neutrinos can be used to learn about new physics and astrophysics.

  1. Nonlinear neutrino-photon interactions inside strong laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Meuren, Sebastian; Keitel, Christoph H.; Di Piazza, Antonino [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)

    2016-07-01

    As different neutrino mass eigenstates exist, only the lightest neutrino is absolutely stable. However, due to the small phase space and the GIM suppression mechanism the radiative neutrino lifetime is much larger than the age of the universe. Interestingly, the photon-emission probability by a neutrino is drastically increased in the presence of an external background field. Therefore, it is natural to ask the question whether this so-called ''electromagnetic catalysis'' could be studied in an laboratory experiment using existing and upcoming laser facilities. To shed light on this question, we derive the vector-axialvector coupling tensor in the presence of an arbitrary plane-wave background field, which is needed for the calculation of the radiative neutrino decay. Furthermore, we study the Adler-Bell-Jackiw anomaly associated with this object in detail.

  2. The neutrino mirror

    International Nuclear Information System (INIS)

    Vannucci, F.

    2003-09-01

    The neutrino is not an elementary particle like others, it is the most stunning of all: the neutrino is undetectable by itself, we have only indirect evidences of its existence, but the neutrino is essential to explain the weak interaction, to understand why matter triumphed over anti-matter just after the Big-bang, or to solve the riddle of the hidden mass of the universe. This book is a popular work dedicated to the neutrino from its discovery in beta decays to the most recent theories such as neutrino oscillations, and via the worldwide experiments dedicated to the study of the neutrinos. (A.C.)

  3. The Giant Radio Array for Neutrino Detection

    Directory of Open Access Journals (Sweden)

    Martineau-Huynh Olivier

    2016-01-01

    Full Text Available High-energy neutrino astronomy will probe the working of the most violent phenomena in the Universe. The Giant Radio Array for Neutrino Detection (GRAND project consists of an array of ∼ 105 radio antennas deployed over ∼ 200 000 km2 in a mountainous site. It aims at detecting high-energy neutrinos via the measurement of air showers induced by the decay in the atmosphere of τ leptons produced by the interaction of cosmic neutrinos under the Earth surface. Our objective with GRAND is to reach a neutrino sensitivity of 5 × 10−11E−2 GeV−1 cm−2 s−1 sr−1 above 3 × 1016 eV. This sensitivity ensures the detection of cosmogenic neutrinos in the most pessimistic source models, and up to 100 events per year are expected for the standard models. GRAND would also probe the neutrino signals produced at the potential sources of UHECRs.

  4. Experimental Neutrino Physics: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Charles E.; Maricic, Jelena

    2012-09-05

    Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

  5. Physics possibilities at India-based Neutrino Observatory

    Indian Academy of Sciences (India)

    cosmic ray background environments. The ICAL consists of 140 ... neglecting ∆21 and θ13, the muon neutrino oscillation survival probability is given by. Pµµ = 1 − sin2 2θ23 ... surface of the earth at which atmospheric neutrinos are produced.

  6. Search for neutrino-induced particle showers with IceCube-40

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Abbasi, R.; Ackermann, M.

    2014-01-01

    optimized for different energy regimes. The analysis with the lowest energy threshold (2 TeV) targeted atmospheric neutrinos. A total of 67 events were found, consistent with the expectation of 41 atmospheric muons and 30 atmospheric neutrino events. The two other analyses targeted a harder, astrophysical...

  7. Status and aims of the DUMAND neutrino project: the ocean as a neutrino detector

    International Nuclear Information System (INIS)

    Roberts, A.; Blood, H.; Learned, J.; Reines, F.

    1976-07-01

    The possibility of using the ocean as a neutrino detector is considered. Neutrino-produced interactions result in charged particles that generate Cherenkov radiation in the water, which can be detected by light-gathering equipment and photomultipliers. The properties of the ocean as seen from this standpoint are critically examined, and the advantages and disadvantages pointed out. Possible uses for such a neutrino detector include (1) the detection of neutrinos emitted in gravitational collapse of stars (supernova production), not only in our own galaxy, but in other galaxies up to perhaps twenty-million light-years away, (2) the extension of high-energy neutrino physics, as currently practiced up to 200 GeV at high-energy accelerators, to energies up to 50 times higher, using neutrinos generated in the atmosphere by cosmic rays, and (3) the possible detection of neutrinos produced by cosmic-ray interactions outside the earth's atmosphere. The technology for such an undertaking seems to be within reach

  8. Status and Aims of the DUMAND Neutrino Project: the Ocean as a Neutrino Detector

    Science.gov (United States)

    Roberts, A.; Blood, H.; Learned, J.; Reines, F.

    1976-07-01

    The possibility of using the ocean as a neutrino detector is considered. Neutrino-produced interactions result in charged particles that generate Cherenkov radiation in the water, which can be detected by light-gathering equipment and photomultipliers. The properties of the ocean as seen from this standpoint are critically examined, and the advantages and disadvantages pointed out. Possible uses for such a neutrino detector include (1) the detection of neutrinos emitted in gravitational collapse of stars (supernova production), not only in our own galaxy, but in other galaxies up to perhaps twenty-million light-years away, (2) the extension of high-energy neutrino physics, as currently practiced up to 200 GeV at high-energy accelerators, to energies up to 50 times higher, using neutrinos generated in the atmosphere by cosmic rays, and (3) the possible detection of neutrinos produced by cosmic-ray interactions outside the earth`s atmosphere. The technology for such an undertaking seems to be within reach.

  9. COHERENT enlightenment of the neutrino dark side

    Science.gov (United States)

    Coloma, Pilar; Gonzalez-Garcia, M. C.; Maltoni, Michele; Schwetz, Thomas

    2017-12-01

    In the presence of nonstandard neutrino interactions (NSI), oscillation data are affected by a degeneracy which allows the solar mixing angle to be in the second octant (also known as the dark side) and implies a sign flip of the atmospheric mass-squared difference. This leads to an ambiguity in the determination of the ordering of neutrino masses, one of the main goals of the current and future experimental neutrino program. We show that the recent observation of coherent neutrino-nucleus scattering by the COHERENT experiment, in combination with global oscillation data, excludes the NSI degeneracy at the 3.1 σ (3.6 σ ) C.L. for NSI with up (down) quarks.

  10. Golden measurements at a neutrino factory

    International Nuclear Information System (INIS)

    Cervera, A.; Donini, A.; Gavela, M.B.; Gomez Cadenas, J.J.; Hernandez, P.; Mena, O.; Rigolin, S.

    2000-01-01

    The precision and discovery potential of a neutrino factory based on muon storage rings is studied. For three-family neutrino oscillations, we analyse how to measure or severely constraint the angle θ 13 , CP-violation, MSW effects and the sign of the atmospheric mass difference Δm 2 23 . We present a simple analytical formula for the oscillation probabilities in matter, with all neutrino mass differences non-vanishing, which clarifies the subtleties involved in disentangling the unknown parameters. The appearance of 'wrong-sign muons' at three reference baselines is considered: 732 km, 3500 km, and 7332 km. We exploit the dependence of the signal on the neutrino energy, and include as well realistic background estimations and detection efficiencies. The optimal baseline turns out to be O (3000 km). Analyses combining the information from different baselines are also presented

  11. Measurement of the cosmic ray and neutrino-induced muon flux at the Sudbury neutrino observatory

    OpenAIRE

    Aharmim, B; Peeters, S J M; SNO Collaboration,

    2009-01-01

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between $-1 \\le \\cos{\\theta}_{\\rm zenith} \\le 0.4$ in a tota...

  12. Investigation of matter enhanced neutrino oscillations relevant to the solar neutrino problem

    International Nuclear Information System (INIS)

    Losecco, J.M.; Bionta, R.M.; Casper, D.; Claus, R.; Errede, S.; Foster, G.; Park, H.S.; Seidel, S.; Shumard, E.; Sinclair, D.; Stone, J.L.; Sulak, L.; Van der Velde, J.C.; Blewitt, G.; Cortez, B.; Lehmann, E.; Bratton, C.B.; Gajewski, W.; Ganezer, K.S.; Haines, T.J.; Kropp, W.R.; Reines, F.; Schultz, J.; Sobel, H.W.; Wuest, C.; Goldhaber, M.; Jones, T.W.; Kielczewska, D.; Learned, J.G.; Svoboda, R.

    1987-01-01

    We study the effect of matter enhanced neutrino oscillations on atmospheric neutrinos. A recently proposed solution to the solar neutrino problem with Δm 2 =1.1x10 -4 eV 2 suggests enhanced effects in the range 200 MeV-500 MeV. We find no evidence of this effect for ν μ ??ν e mixing. Limits are set on the magnitude of the mixing angle. Our limit is sin θ V <0.14 at 90% confidence level. The limit is dominated by statistical errors and may be improved. (orig.)

  13. A three-parameter neutrino mass matrix with maximal CP violation

    International Nuclear Information System (INIS)

    Grimus, W.; Lavoura, L.

    2009-01-01

    Using the seesaw mechanism, we construct a model for the light-neutrino Majorana mass matrix which yields trimaximal lepton mixing together with maximal CP violation and maximal atmospheric-neutrino mixing. We demonstrate that, in our model, the light-neutrino mass matrix retains its form under the one-loop renormalization-group evolution. With our neutrino mass matrix, the absolute neutrino mass scale is a function of |U e3 | and of the atmospheric mass-squared difference. We study the effective mass in neutrinoless ββ decay as a function of |U e3 |, showing that it contains a fourfold ambiguity

  14. Research in theoretical nuclear and neutrino physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sarcevic, Ina [Univ. of Arizona, Tucson, AZ (United States). Dept. of Physics

    2014-06-14

    The main focus of the research supported by the nuclear theory grant DE-FG02-04ER41319 was on studying parton dynamics in high-energy heavy ion collisions, perturbative approach to charm production and its contribution to atmospheric neutrinos, application of AdS/CFT approach to QCD, neutrino signals of dark mattter annihilation in the Sun and on novel processes that take place in dense stellar medium and their role in stellar collapse, in particular the effect of new neutrino interactions on neutrino flavor conversion in Supernovae. We present final technical report on projects completed under the grant.

  15. Research in theoretical nuclear and neutrino physics. Final report

    International Nuclear Information System (INIS)

    Sarcevic, Ina

    2014-01-01

    The main focus of the research supported by the nuclear theory grant DE-FG02-04ER41319 was on studying parton dynamics in high-energy heavy ion collisions, perturbative approach to charm production and its contribution to atmospheric neutrinos, application of AdS/CFT approach to QCD, neutrino signals of dark mattter annihilation in the Sun and on novel processes that take place in dense stellar medium and their role in stellar collapse, in particular the effect of new neutrino interactions on neutrino flavor conversion in Supernovae. We present final technical report on projects completed under the grant.

  16. The Neutrinos Saga

    International Nuclear Information System (INIS)

    La Souchere, Marie-Christine de; Moran, John

    2009-04-01

    The author proposes a history of the discovery and study of neutrinos. This history starts shortly after the discovery of radioactivity in 1896 with the observation of an inhomogeneous deceleration of electrons in the radioactive source which raised an issue of shortage of energy. Pauli then introduced the idea of a ghost particle which could preserve the principle of energy conservation and also the issue of statistics related to the laws of quantum mechanics. Works by the Joliot-Curies and Chadwick resulted in the identification of a neutral particle, first called a neutron, and then neutrino. The author then reports experiments performed to highlight neutrinos, and to identify different forms of neutrinos: muon, tau, lepton. She also addresses questions raised by solar neutrinos, experiments proving the metamorphosis of electron neutrinos into muon neutrinos. She discusses the interest of neutrino as cosmic messengers as they are emitted by various cosmic events, and also as a way to study dark matter

  17. Ghost basis for neutrino

    International Nuclear Information System (INIS)

    Novello, M.

    1976-07-01

    A class of solutions of DIRAC'S equation in gravitational fields for ghost neutrinos is given. Comments are restricted to the neutrino cosmological model recently found by M. Novello e I.D. Soares [pt

  18. Research in Neutrino Physics and Particle Astrophysics: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Kearns, Edward [Boston Univ., MA (United States)

    2016-06-30

    The Boston University Neutrino Physics and Particle Astrophysics Group investigates the fundamental laws of particle physics using natural and man-made neutrinos and rare processes such as proton decay. The primary instrument for this research is the massive Super-Kamiokande (SK) water Cherenkov detector, operating since 1996 at the Kamioka Neutrino Observatory, one kilometer underground in a mine in Japan. We study atmospheric neutrinos from cosmic rays, which were first used to discover that neutrinos have mass, as recognized by the 2015 Nobel Prize in Physics. Our latest measurements with atmospheric neutrinos are giving valuable information, complementary to longbaseline experiments, on the ordering of massive neutrino states and as to whether neutrinos violate CP symmetry. We have studied a variety of proton decay modes, including the most frequently predicted modes such as p → e+π0 and p → ν K+, as well as more exotic baryon number violating processes such as dinucleon decay and neutronantineutron oscillation. We search for neutrinos from dark matter annihilation or decay in the universe. Our group has made significant contributions to detector operation, particularly in the area of electronics. Most recently, we have contributed to planning for an upgrade to the SK detector by the addition of gadolinium to the water, which will enable efficient neutron capture detection.

  19. Again on neutrino oscillations

    International Nuclear Information System (INIS)

    Bilenky, S.M.; Pontecorvo, B.

    1976-01-01

    The general case is treated of a weak interaction theory in which a term violating lepton charges is present. In such a scheme the particles with definite masses are Majorana neutrinos (2N if in the weak interaction participate N four-component neutrinos). Neutrino oscillations are discussed and it is shown that the minimum average intensity at the earth of solar neutrinos is 1/2N of the intensity expected when oscillations are absent

  20. Leptogenesis and neutrino masses

    International Nuclear Information System (INIS)

    Pluemacher, M.

    2004-01-01

    Thermal leptogenesis explains the baryon asymmetry of the universe by the out-of-equilibrium decays of heavy right-handed neutrinos. In the minimal seesaw model this leads to interesting implications for light neutrino properties. In particular, quasi-degenerate light neutrino masses are incompatible with leptogenesis. An upper bound on light neutrino masses of 0.1 eV can be derived, which will be tested by forthcoming laboratory experiments and cosmology. (author)

  1. Neutrino masses and mixings

    International Nuclear Information System (INIS)

    Wolfenstein, L.

    1991-01-01

    Theoretical prejudices, cosmology, and neutrino oscillation experiments all suggest neutrino mass are far below present direct experimental limits. Four interesting scenarios and their implications are discussed: (1) a 17 keV ν τ , (2) a 30 ev ν τ making up the dark matter, (3) a 10 -3 ev ν μ to solve the solar neutrino problem, and (4) a three-neutrino MSW solution

  2. Geo-neutrino Observation

    International Nuclear Information System (INIS)

    Dye, S. T.; Alderman, M.; Batygov, M.; Learned, J. G.; Matsuno, S.; Mahoney, J. M.; Pakvasa, S.; Rosen, M.; Smith, S.; Varner, G.; McDonough, W. F.

    2009-01-01

    Observations of geo-neutrinos measure radiogenic heat production within the earth, providing information on the thermal history and dynamic processes of the mantle. Two detectors currently observe geo-neutrinos from underground locations. Other detection projects in various stages of development include a deep ocean observatory. This paper presents the current status of geo-neutrino observation and describes the scientific capabilities of the deep ocean observatory, with emphasis on geology and neutrino physics.

  3. Future Long-Baseline Neutrino Facilities and Detectors

    Directory of Open Access Journals (Sweden)

    Milind Diwan

    2013-01-01

    Full Text Available We review the ongoing effort in the US, Japan, and Europe of the scientific community to study the location and the detector performance of the next-generation long-baseline neutrino facility. For many decades, research on the properties of neutrinos and the use of neutrinos to study the fundamental building blocks of matter has unveiled new, unexpected laws of nature. Results of neutrino experiments have triggered a tremendous amount of development in theory: theories beyond the standard model or at least extensions of it and development of the standard solar model and modeling of supernova explosions as well as the development of theories to explain the matter-antimatter asymmetry in the universe. Neutrino physics is one of the most dynamic and exciting fields of research in fundamental particle physics and astrophysics. The next-generation neutrino detector will address two aspects: fundamental properties of the neutrino like mass hierarchy, mixing angles, and the CP phase, and low-energy neutrino astronomy with solar, atmospheric, and supernova neutrinos. Such a new detector naturally allows for major improvements in the search for nucleon decay. A next-generation neutrino observatory needs a huge, megaton scale detector which in turn has to be installed in a new, international underground laboratory, capable of hosting such a huge detector.

  4. Future Long-Baseline Neutrino Facilities and Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Diwan, Milind [Brookhaven; Edgecock, Rob [Huddersfield U.; Hasegawa, Takuya [KEK, Tsukuba; Patzak, Thomas [APC, Paris; Shiozawa, Masato [Kamioka Observ.; Strait, Jim [Fermilab

    2013-01-01

    We review the ongoing effort in the US, Japan, and Europe of the scientific community to study the location and the detector performance of the next-generation long-baseline neutrino facility. For many decades, research on the properties of neutrinos and the use of neutrinos to study the fundamental building blocks of matter has unveiled new, unexpected laws of nature. Results of neutrino experiments have triggered a tremendous amount of development in theory: theories beyond the standard model or at least extensions of it and development of the standard solar model and modeling of supernova explosions as well as the development of theories to explain the matter-antimatter asymmetry in the universe. Neutrino physics is one of the most dynamic and exciting fields of research in fundamental particle physics and astrophysics. The next-generation neutrino detector will address two aspects: fundamental properties of the neutrino like mass hierarchy, mixing angles, and the CP phase, and low-energy neutrino astronomy with solar, atmospheric, and supernova neutrinos. Such a new detector naturally allows for major improvements in the search for nucleon decay. A next-generation neutrino observatory needs a huge, megaton scale detector which in turn has to be installed in a new, international underground laboratory, capable of hosting such a huge detector.

  5. Scientific Opportunities with the Long-Baseline Neutrino Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C.; et al.

    2013-07-28

    In this document, we describe the wealth of science opportunities and capabilities of LBNE, the Long-Baseline Neutrino Experiment. LBNE has been developed to provide a unique and compelling program for the exploration of key questions at the forefront of particle physics. Chief among the discovery opportunities are observation of CP symmetry violation in neutrino mixing, resolution of the neutrino mass hierarchy, determination of maximal or near-maximal mixing in neutrinos, searches for nucleon decay signatures, and detailed studies of neutrino bursts from galactic supernovae. To fulfill these and other goals as a world-class facility, LBNE is conceived around four central components: (1) a new, intense wide-band neutrino source at Fermilab, (2) a fine-grained `near' neutrino detector just downstream of the source, (3) the Sanford Underground Research Facility (SURF) in Lead, South Dakota at an optimal distance (~1300 km) from the neutrino source, and (4) a massive liquid argon time-projection chamber (LArTPC) deployed there as a 'far' detector. The facilities envisioned are expected to enable many other science opportunities due to the high event rates and excellent detector resolution from beam neutrinos in the near detector and atmospheric neutrinos in the far detector. This is a mature, well developed, world class experiment whose relevance, importance, and probability of unearthing critical and exciting physics has increased with time.

  6. A Nine-Year Hunt for Neutrinos

    Science.gov (United States)

    Kohler, Susanna

    2018-02-01

    How do we hunt for elusive neutrinos emitted by distant astrophysical sources? Submerge a huge observatory under ice or water and then wait patiently.Sneaky MessengersNeutrinos tiny, nearly massless particles that only weakly interact with other matter are thought to be produced as a constant background originating from throughout our universe. In contrast to known point sources of neutrinos (for instance, nearby supernovae), the diffuse flux of cosmic neutrinos could be emitted from unresolved astrophysical sources too faint to be individually detected, or from the interactions of high-energy cosmic rays propagating across the universe.Observations of this diffuse flux of cosmic neutrinos would be a huge step toward understanding cosmic-ray production, acceleration, and interaction properties. Unfortunately, these observations arent easy to make!Diagram showing the path of a neutrino from a distant astrophysical source (accelerator) through the Earth. It is eventually converted into an upward-traveling muon that registers in the ANTARES detector under the sea. [ANTARES]Looking for What Doesnt Want to Be FoundBecause neutrinos so rarely interact with matter, most pass right through us, eluding detection. The most common means of spotting the rare interacting neutrino is to look for Cherenkov radiation in a medium like ice or water, produced when a neutrino has interacted with matterto produce a charged particle (for instance, a muon) moving faster than the speed of light in the medium.Muons produced in our atmosphere can also register in such detectors, however, so we need a way of filtering out these non-cosmic background events. The solution is a clever trick: search for particles traveling upward, not downward. Atmospheric muons will come only from above, whereas muons produced by neutrinos should travel through the detectors in all directions, since cosmic neutrinos arrive from all directions including from below, after passing through the Earth

  7. Towards neutrino astronomy

    International Nuclear Information System (INIS)

    Lagage, P.O.; Spiro, M.

    1985-01-01

    Neutrino sources are numerous and varied; the sun, a supernova explosion, the cosmic radiation interaction with interstellar medium are neutrino or antineutrino sources. The aim of this article is to overview the international projects of neutrino detection while giving the preference to the experimental side of the detection [fr

  8. Neutrino disintegration of deuterium

    International Nuclear Information System (INIS)

    Ying, S.; Haxton, W.; Henley, E.M.

    1989-01-01

    We calculate the rate of both neutral- and charged-current neutrino and antineutrino disintegration of deuterium. These rates are of interest for solar 8 B and hep ( 3 He + p) spectra and supernovae neutrinos, and are relevant for the Sudbury Neutrino Observatory (SNO)

  9. Reconstructing Neutrino Mass Spectrum

    OpenAIRE

    Smirnov, A. Yu.

    1999-01-01

    Reconstruction of the neutrino mass spectrum and lepton mixing is one of the fundamental problems of particle physics. In this connection we consider two central topics: (i) the origin of large lepton mixing, (ii) possible existence of new (sterile) neutrino states. We discuss also possible relation between large mixing and existence of sterile neutrinos.

  10. Particle Astrophysics of Neutrinos

    Indian Academy of Sciences (India)

    Amol Dighe

    Energy spectra of neutrino sources. ASPERA. Page 4. Some unique features of neutrinos. The second most abundant particles in the universe. Cosmic microwave background photons: 400 / cm3. Cosmic background neutrinos: 330 / cm3. The lightest massive particles. A million times lighter than the electron. No direct mass ...

  11. Solar neutrinos and gravity

    International Nuclear Information System (INIS)

    Kuo, T.K.

    2001-01-01

    We review the possibility that the solar neutrino problem can be explained by neutrinos violating the equivalence principle. It is found that such a scenario can be ruled out when one takes into account data from high energy accelerator neutrino experiments

  12. CERN: Neutrino facelift

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1991-11-15

    With the termination this summer of the CHARM II neutrino experiment at the SPS proton synchrotron, CERN's 30- year tradition of neutrino physics came to a temporary halt. However with these enigmatic particles playing a vital role in today's Standard Model but continually reluctant to give up all their secrets, neutrino physics will continue to be in the forefront of this research.

  13. Large Extra Dimensions, Sterile Neutrinos and Solar Neutrino Data

    International Nuclear Information System (INIS)

    Caldwell, D. O.; Mohapatra, R. N.; Yellin, S. J.

    2001-01-01

    Solar, atmospheric, and LSND neutrino oscillation results require a light sterile neutrino, ν B , which can exist in the bulk of extra dimensions. Solar ν e , confined to the brane, can oscillate in the vacuum to the zero mode of ν B and via successive Mikheyev-Smirnov-Wolfenstein transitions to Kaluza-Klein states of ν B . This new way to fit solar data is provided by both low and intermediate string scale models. From average rates seen in the three types of solar experiments, the Super-Kamiokande spectrum is predicted with 73% probability, but dips characteristic of the 0.06 mm extra dimension should be seen in the SNO spectrum

  14. Large extra dimensions, sterile neutrinos and solar neutrino data.

    Science.gov (United States)

    Caldwell, D O; Mohapatra, R N; Yellin, S J

    2001-07-23

    Solar, atmospheric, and LSND neutrino oscillation results require a light sterile neutrino, nu(B), which can exist in the bulk of extra dimensions. Solar nu(e), confined to the brane, can oscillate in the vacuum to the zero mode of nu(B) and via successive Mikheyev-Smirnov-Wolfenstein transitions to Kaluza-Klein states of nu(B). This new way to fit solar data is provided by both low and intermediate string scale models. From average rates seen in the three types of solar experiments, the Super-Kamiokande spectrum is predicted with 73% probability, but dips characteristic of the 0.06 mm extra dimension should be seen in the SNO spectrum.

  15. Neutrino oscillations and neutrino-electron scattering

    International Nuclear Information System (INIS)

    Kayser, B.; Rosen, S.P.

    1980-10-01

    Neutrino flavor oscillations can significantly alter the cross section for neutrino-electron scattering. As a result, such oscillations can affect the comparison between existing reactor data and theories of neutral-current processes. They may also lead to strikingly large effects in high-energy accelerator experiments

  16. Neutrino observations from the Sudbury Neutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Q.R.; Allen, R.C.; Andersen, T.C.; Anglin, J.D.; Barton,J.C.; Beier, E.W.; Bercovitch, M.; Bigu, J.; Biller, S.D.; Black, R.A.; Blevis, I.; Boardman, R.J.; Boger, J.; Bonvin, E.; Boulay, M.G.; Bowler,M.G.; Bowles, T.J.; Brice, S.J.; Browne, M.C.; Bullard, T.V.; Buhler, G.; Cameron, J.; Chan, Y.D.; Chen, H.H.; Chen, M.; Chen, X.; Cleveland, B.T.; Clifford, E.T.H.; Cowan, J.H.M.; Cowen, D.F.; Cox, G.A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W.F.; Doe, P.J.; Doucas, G.; Dragowsky,M.R.; Duba, C.A.; Duncan, F.A.; Dunford, M.; Dunmore, J.A.; Earle, E.D.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Ferraris, A.P.; Ford, R.J.; Formaggio, J.A.; Fowler, M.M.; Frame, K.; Frank, E.D.; Frati, W.; Gagnon, N.; Germani, J.V.; Gil, S.; Graham, K.; Grant, D.R.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hamer, A.S.; Hamian, A.A.; Handler, W.B.; Haq, R.U.; Hargrove, C.K.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Hepburn, J.D.; Heron, H.; Hewett, J.; Hime, A.; Hykawy, J.G.; Isaac,M.C.P.; Jagam, P.; Jelley, N.A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P.T.; Klein, J.R.; Knox, A.B.; Komar, R.J.; Kouzes, R.; Kutter,T.; Kyba, C.C.M.; Law, J.; Lawson, I.T.; Lay, M.; Lee, H.W.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Locke, W.; Luoma, S.; Lyon, J.; Majerus, S.; Mak, H.B.; Maneira, J.; Manor, J.; Marino, A.D.; McCauley, N.; McDonald,D.S.; McDonald, A.B.; McFarlane, K.; McGregor, G.; Meijer, R.; Mifflin,C.; Miller, G.G.; Milton, G.; Moffat, B.A.; Moorhead, M.; Nally, C.W.; Neubauer, M.S.; Newcomer, F.M.; Ng, H.S.; Noble, A.J.; Norman, E.B.; Novikov, V.M.; O' Neill, M.; Okada, C.E.; Ollerhead, R.W.; Omori, M.; Orrell, J.L.; Oser, S.M.; Poon, A.W.P.; Radcliffe, T.J.; Roberge, A.; Robertson, B.C.; Robertson, R.G.H.; Rosendahl, S.S.E.; Rowley, J.K.; Rusu, V.L.; Saettler, E.; Schaffer, K.K.; Schwendener,M.H.; Schulke, A.; Seifert, H.; Shatkay, M.; Simpson, J.J.; Sims, C.J.; et al.

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  17. Neutrino Observations from the Sudbury Neutrino Observatory

    Science.gov (United States)

    Q. R. Ahmad, R. C. Allen, T. C. Andersen, J. D. Anglin, G. B?hler, J. C. Barton, E. W. Beier, M. Bercovitch, J. Bigu, S. Biller, R. A. Black, I. Blevis, R. J. Boardman, J. Boger, E. Bonvin, M. G. Boulay, M. G. Bowler, T. J. Bowles, S. J. Brice, M. C. Browne, T. V. Bullard, T. H. Burritt, K. Cameron, J. Cameron, Y. D. Chan, M. Chen, H. H. Chen, X. Chen, M. C. Chon, B. T. Cleveland, E. T. H. Clifford, J. H. M. Cowan, D. F. Cowen, G. A. Cox, Y. Dai, X. Dai, F. Dalnoki-Veress, W. F. Davidson, P. J. Doe, G. Doucas, M. R. Dragowsky, C. A. Duba, F. A. Duncan, J. Dunmore, E. D. Earle, S. R. Elliott, H. C. Evans, G. T. Ewan, J. Farine, H. Fergani, A. P. Ferraris, R. J. Ford, M. M. Fowler, K. Frame, E. D. Frank, W. Frati, J. V. Germani, S. Gil, A. Goldschmidt, D. R. Grant, R. L. Hahn, A. L. Hallin, E. D. Hallman, A. Hamer, A. A. Hamian, R. U. Haq, C. K. Hargrove, P. J. Harvey, R. Hazama, R. Heaton, K. M. Heeger, W. J. Heintzelman, J. Heise, R. L. Helmer, J. D. Hepburn, H. Heron, J. Hewett, A. Hime, M. Howe, J. G. Hykawy, M. C. P. Isaac, P. Jagam, N. A. Jelley, C. Jillings, G. Jonkmans, J. Karn, P. T. Keener, K. Kirch, J. R. Klein, A. B. Knox, R. J. Komar, R. Kouzes, T. Kutter, C. C. M. Kyba, J. Law, I. T. Lawson, M. Lay, H. W. Lee, K. T. Lesko, J. R. Leslie, I. Levine, W. Locke, M. M. Lowry, S. Luoma, J. Lyon, S. Majerus, H. B. Mak, A. D. Marino, N. McCauley, A. B. McDonald, D. S. McDonald, K. McFarlane, G. McGregor, W. McLatchie, R. Meijer Drees, H. Mes, C. Mifflin, G. G. Miller, G. Milton, B. A. Moffat, M. Moorhead, C. W. Nally, M. S. Neubauer, F. M. Newcomer, H. S. Ng, A. J. Noble, E. B. Norman, V. M. Novikov, M. O'Neill, C. E. Okada, R. W. Ollerhead, M. Omori, J. L. Orrell, S. M. Oser, A. W. P. Poon, T. J. Radcliffe, A. Roberge, B. C. Robertson, R. G. H. Robertson, J. K. Rowley, V. L. Rusu, E. Saettler, K. K. Schaffer, A. Schuelke, M. H. Schwendener, H. Seifert, M. Shatkay, J. J. Simpson, D. Sinclair, P. Skensved, A. R. Smith, M. W. E. Smith, N. Starinsky, T. D. Steiger, R. G. Stokstad, R. S. Storey, B. Sur, R. Tafirout, N. Tagg, N. W. Tanner, R. K. Taplin, M. Thorman, P. Thornewell, P. T. Trent, Y. I. Tserkovnyak, R. Van Berg, R. G. Van de Water, C. J. Virtue, C. E. Waltham, J.-X. Wang, D. L. Wark, N. West, J. B. Wilhelmy, J. F. Wilkerson, J. Wilson, P. Wittich, J. M. Wouters, and M. Yeh

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  18. Sterile Neutrino Searches in MINOS and MINOS+ Experiments

    International Nuclear Information System (INIS)

    Huang, Junting

    2015-01-01

    This dissertation presents the searches on sterile neutrinos using the data collected in MINOS+ Experiment from September 2013 to September 2014, and the full data set of MINOS Experiment collected from 2005 to 2012. Anomalies in short baseline experiments, such as LSND and MiniBooNE, showed hints of sterile neutrinos, a type of neutrino that does not interact with the Standard Model particles. In this work, two models are considered: 3+1 and large extra dimension (LED). In the 3+1 model, one sterile neutrino state is added into the standard oscillation scheme consisting of three known active neutrino states v e , v μ and v τ . In the LED model, sterile neutrinos arise as Kaluza-Klein (KK) states due to assumed large extra dimensions. Mixing between sterile and active neutrino states may modify the oscillation patterns observed in the MINOS detectors. Both searches yield null results. For 3+1, a combined fit of MINOS and MINOS+ data gives a stronger limit on θ 24 in the range of 10 -2 eV 2 < Δm 43 2 < 1 eV 2 than previous experiments. For LED, with the complete MINOS data set, the size of extra dimensions is constrained to be smaller than ~ 0.35 μm at 90% C.L. in the limit of a vanishing lightest neutrino mass.

  19. Sterile Neutrino Searches in MINOS and MINOS+ Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Junting [Univ. of Texas, Austin, TX (United States)

    2015-05-01

    This dissertation presents the searches on sterile neutrinos using the data collected in MINOS+ Experiment from September 2013 to September 2014, and the full data set of MINOS Experiment collected from 2005 to 2012. Anomalies in short baseline experiments, such as LSND and MiniBooNE, showed hints of sterile neutrinos, a type of neutrino that does not interact with the Standard Model particles. In this work, two models are considered: 3+1 and large extra dimension (LED). In the 3+1 model, one sterile neutrino state is added into the standard oscillation scheme consisting of three known active neutrino states ve, vμ and vτ. In the LED model, sterile neutrinos arise as Kaluza-Klein (KK) states due to assumed large extra dimensions. Mixing between sterile and active neutrino states may modify the oscillation patterns observed in the MINOS detectors. Both searches yield null results. For 3+1, a combined fit of MINOS and MINOS+ data gives a stronger limit on θ24 in the range of 10-2 eV2 < Δm412 < 1 eV2 than previous experiments. For LED, with the complete MINOS data set, the size of extra dimensions is constrained to be smaller than ~ 0.35 μm at 90% C.L. in the limit of a vanishing lightest neutrino mass.

  20. DOWN'S ANOMALY.

    Science.gov (United States)

    PENROSE, L.S.; SMITH, G.F.

    BOTH CLINICAL AND PATHOLOGICAL ASPECTS AND MATHEMATICAL ELABORATIONS OF DOWN'S ANOMALY, KNOWN ALSO AS MONGOLISM, ARE PRESENTED IN THIS REFERENCE MANUAL FOR PROFESSIONAL PERSONNEL. INFORMATION PROVIDED CONCERNS (1) HISTORICAL STUDIES, (2) PHYSICAL SIGNS, (3) BONES AND MUSCLES, (4) MENTAL DEVELOPMENT, (5) DERMATOGLYPHS, (6) HEMATOLOGY, (7)…

  1. LSND neutrino oscillation results

    International Nuclear Information System (INIS)

    Louis, W.C.

    1996-01-01

    In the past several years, a number of experiments have searched for neutrino oscillations, where a neutrino of one type (say bar ν μ ) spontaneously transforms into a neutrino of another type (say bar ν e ). For this phenomenon to occur, neutrinos must be massive and the apparent conservation law of lepton families must be violated. In 1995 the LSND experiment published data showing candidate events that are consistent with bar ν μ oscillations. Additional data are reported here which provide stronger evidence for neutrino oscillations

  2. Neutrino book

    International Nuclear Information System (INIS)

    Spiro, Michel

    1995-01-01

    André Rousset's book (in French - Gargamelle et les Courants Neutres - Ecole des Mines de Paris) tells the story of Gargamelle and the discovery at CERN in 1973 of neutral currents, the cornerstone of the electroweak theory. This vital discovery helped to give credence to the Standard Model of particle physics. Rousset is both an observer and one of the key figures in the story. His book is lively and well documented; in it he uses archive material to ensure the accuracy of his information on dates, choices and decisions. After an introduction to particle physics which puts into perspective the electroweak theory unifying weak and electromagnetic interactions, Rousset comes straight to the point. From the late 1950s onwards he was involved in the construction of the first heavy liquid bubble chambers by the BP1, BP2 and BP3 teams at the Ecole Polytechnique in Paris. For Gargamelle a bigger laboratory was needed, and it was at the CEA (French Atomic Energy Commission) in Saclay that the chamber was designed by teams from the Saturne accelerator and the Ecole Polytechnique. However, the decision to build Gargamelle was taken in 1965 through the impetus of André Lagarrigue, in defiance of the normal CERN procedures. Gargamelle was then in competition with the other big bubble chamber project, BEBC; was it really necessary to build two big chambers? The decision by Francis Perrin and the CEA to contribute ''generously'' to the project was probably what swung the decision. Construction took five years, during which many problems were encountered, right up to the fault in the main part of the chamber which caused delays and, a few years later, was to prove fatal to the detector. As Rousset correctly states, Gargamelle was probably the first big detector designed to be built on industrial lines, in direct cooperation with industry. The reward: the first neutrino interaction was photographed on 28 January 1971

  3. Case for neutrino oscillations

    International Nuclear Information System (INIS)

    Ramond, P.

    1982-01-01

    The building of a machine capable of producing an intense, well-calibrated beam of muon neutrinos is regarded by particle physicists with keen interest because of its ability of studying neutrino oscillations. The possibility of neutrino oscillations has long been recognized, but it was not made necessary on theoretical or experimental grounds; one knew that oscillations could be avoided if neutrinos were massless, and this was easily done by the conservation of lepton number. The idea of grand unification has led physicists to question the existence (at higher energies) of global conservation laws. The prime examples are baryon-number conservation, which prevents proton decay, and lepton-number conservation, which keeps neutrinos massless, and therefore free of oscillations. The detection of proton decay and neutrino oscillations would therefore be an indirect indication of the idea of Grand Unification, and therefore of paramount importance. Neutrino oscillations occur when neutrinos acquire mass in such a way that the neutrino mass eigenstates do not match the (neutrino) eigenstates produced by the weak interactions. We shall study the ways in which neutrinos can get mass, first at the level of the standard SU 2 x U 1 model, then at the level of its Grand Unification Generalizations

  4. Sudbury neutrino observatory proposal

    International Nuclear Information System (INIS)

    Ewan, G.T.; Evans, H.C.; Lee, H.W.

    1987-10-01

    This report is a proposal by the Sudbury Neutrino Observatory (SNO) collaboration to develop a world class laboratory for neutrino astrophysics. This observatory would contain a large volume heavy water detector which would have the potential to measure both the electron-neutrino flux from the sun and the total solar neutrino flux independent of neutrino type. It will therefore be possible to test models of solar energy generation and, independently, to search for neutrino oscillations with a sensitivity many orders of magnitude greater than that of terrestrial experiments. It will also be possible to search for spectral distortion produced by neutrino oscillations in the dense matter of the sun. Finally the proposed detector would be sensitive to neutrinos from a stellar collapse and would detect neutrinos of all types thus providing detailed information on the masses of muon- and tau-neutrinos. The neutrino detector would contain 1000 tons of D20 and would be located more than 2000 m below ground in the Creighton mine near Sudbury. The operation and performance of the proposed detector are described and the laboratory design is presented. Construction schedules and responsibilities and the planned program of technical studies by the SNO collaboration are outlined. Finally, the total capital cost is estimated to be $35M Canadian and the annual operating cost, after construction, would be $1.8 M Canadian, including the insurance costs of the heavy water

  5. Is there a high-y anomaly in antineutrino interactions

    International Nuclear Information System (INIS)

    Holder, M.; Knobloch, J.; May, J.; Paar, H.P.; Palazzi, P.; Schlatter, D.; Steinberger, J.; Suter, H.; Wahl, H.; Williams, E.G.H.; Eisele, F.; Geweniger, C.; Kleinknecht, K.; Spahn, G.; Wilutzki, H.; Dorth, W.; Dydak, F.; Hepp, V.; Tittel, K.; Wotschack, J.; Bloch, P.; Devaux, B.; Grimm, M.; Maillard, J.; Peyaud, B.; Rander, J.; Savoy-Navarro, A.; Turlay, R.; Navarria, F.L.

    1977-01-01

    We have analyzed data taken in the CERN narrow-band neutrino and antineutrino beams with regard to the ''high-y anomaly'' observed by previous experiments at Fermilab. At neutrino energies between 30 and 200 GeV, the anti ν and ν charged-current cross-section ratios and muon-inelasticity distributions disagree with the earlier results. In particular, there is no evidence for energy-dependent effects in the antineutrino data which constitute an important aspect of the alleged anomaly

  6. νΛMDM: A model for sterile neutrino and dark matter reconciles cosmological and neutrino oscillation data after BICEP2

    International Nuclear Information System (INIS)

    Ko, P.; Tang, Yong

    2014-01-01

    We propose an ultraviolet complete theory for cold dark matter (CDM) and sterile neutrinos that can accommodate both cosmological data and neutrino oscillation experiments within 1σ level. We assume a new U(1) X dark gauge symmetry which is broken at ∼O(MeV) scale resulting light dark photon. Such a light mediator for DM's self-scattering and scattering-off sterile neutrinos can resolve three controversies for cold DM on small cosmological scales: cusp vs. core, too-big-to-fail and missing satellites. We can also accommodate ∼O(1) eV scale sterile neutrinos as the hot dark matter (HDM) and can fit some neutrino anomalies from neutrino oscillation experiments within 1σ. Finally, the right amount of HDM can make a sizable contribution to dark radiation, and also helps to reconcile the tension between the data on the tensor-to-scalar ratio reported by Planck and BICEP2 Collaborations

  7. Solar neutrino spectrum, sterile neutrinos and additional radiation in the Universe

    International Nuclear Information System (INIS)

    Holanda, Pedro Cunha de

    2011-01-01

    Full text: Recent results from the SNO, Super-Kamiokande and Borexino experiments do not show the expected upturn of the energy spectrum of events (the ratio R ≡ N obs /N SSM ) at low energies. At the same time, cosmological observations testify for possible existence of additional relativistic degrees of freedom in the early Universe: ΔN eff = 1 - 2. These facts strengthen the case of very light sterile neutrino, ν s , with Δm 0 1 2 ∼ (0.7 - 2) . 10 -5 e V 2 , which mixes weakly with the active neutrinos. The ν s mixing in the mass eigenstate ν 1 characterized by sin 2 2∝ ∼ 10 -3 can explain an absence of the upturn. The mixing of ν s in the eigenstate ν 3 with sin 2 β ∼ 0.1 leads to production of ν s via oscillations in the Universe and to additional contribution Δ N eff ∼ 0.7 -1 before the big bang nucleosynthesis and later. Such a mixing can be tested in forthcoming experiments with the atmospheric neutrinos as well as in future accelerator long baseline experiments. It has substantial impact on conversion of the supernova neutrinos. We perform a qualitative and quantitative analysis of solar neutrino data including a fourth neutrino with different mixings with the active neutrino sector.(author)

  8. Properties of neutrinos: Recent results

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1987-01-01

    Recent progress in experimental determinations of the properties of neutrinos is summarized. In particular, the extensive work on direct kinematic measurements of neutrino mass, on neutrino counting and on neutrino oscillations is highlighted. It is concluded that there may already be sufficient information to fix the masses of the neutrinos, but the evidence is still far from convincing. 63 refs., 13 figs

  9. Seven (and a half) reasons to believe in mirror matter: from neutrino puzzles to the inferred dark matter in the universe

    International Nuclear Information System (INIS)

    Foot, R.

    2001-02-01

    Parity and time reversal are obvious and plausible candidates for fundamental symmetries of nature. Hypothesising that these symmetries exist implies the existence of a new form of matter, called mirror matter. The mirror matter theory (or exact parity model) makes four main predictions: 1) Dark matter in the form of mirror matter should exist in the Universe (i.e. mirror galaxies, stars, planets, meteoroids...), 2) Maximal ordinary neutrino - mirror neutrino oscillations if neutrinos have mass, 3) Orthopositronium should have a shorter effective lifetime than predicted by QED (in 'vacuum' experiments) because of the effects of photon-mirror photon mixing and 4) Higgs production and decay rate should be 50% lower than in the standard model due to Higgs mirror - Higgs mixing (assuming that the separation of the Higgs masses is larger than their decay widths). At the present time there is strong experimental/observational evidence supporting the first three of these predictions, while the fourth one is not tested yet because the Higgs boson, predicted in the standard model of particle physics, is yet to be found. This experimental/observational evidence is rich and varied ranging from the atmospheric and solar neutrino deficits, MACHO gravitational microlensing events, strange properties of extra-solar planets, the existence of 'isolated' planets, orthopositronium lifetime anomaly, Tunguska and other strange 'meteor' events including perhaps, the origin of the moon. The purpose of this article is to provide a not too technical review of these ideas along with some new results

  10. High-energy neutrino background: Limitations on models of deuterium production

    International Nuclear Information System (INIS)

    Eichler, D.

    1979-01-01

    It is pointed out that Epstein's model for deuterium production via high-energy spallation reactions produces high-energy neutrinos in sufficient quantity to stand out above those that are produced by cosmic-ray interactions in the Earth's atmosphere. That the Reines experiment detected neutrinos of atmospheric origin without detecting any cosmic component restricts deuterium production by spallation reactions to very high redshifts (z> or approx. =300). Improved neutrino experiments may be able to push these limits back to recombination

  11. Asymmetric Collision of Concepts: Why Eigenstates Alone are Not Enough for Neutrino Flavor Oscillations

    OpenAIRE

    Williams, John Michael

    2000-01-01

    The symmetry of the problem of the apparent deficit in upward-going atmospheric muon neutrinos reveals two possible, nonexclusive kinds of solution: Nonlinearity in distance or nonlinearity in angle of observation. Nonlinearity in distance leads to the most popular theory for the atmospheric problem, neutrino flavor oscillations. If the observed deficit is caused by oscillations and not, say, flavor-changing or other weak-force scattering, neutrinos must be massive. But, if flavor oscillation...

  12. Anomalies in (semi)-leptonic B decays B±→τ±ν, B±→Dτ± ν and B±→D*τ± ν, and possible resolution with sterile neutrino

    Science.gov (United States)

    Cvetič, Gorazd; Halzen, Francis; Kim, C. S.; Oh, Sechul

    2017-11-01

    The universality of the weak interactions can be tested in semileptonic b→c transitions, and in particular in the ratios R(D(*)) ≡ Γ(B→D(*)τν)/Γ(B→D(*)lν) (where l=μ or e). Due to the recent differences between the experimental measurements of these observables by BaBar, Belle and LHCb on the one hand and the Standard Model predicted values on the other hand, we study the predicted ratios R(D(*))=Γ(B→D(*)τ+“missing”)/Γ(B→D(*)lν) in scenarios with an additional sterile heavy neutrino of mass ˜1 GeV. Further, we evaluate the newly defined ratio R(0)≡Γ(B→τ+“missing”)/Γ(B→μν) in such scenarios, in view of the future possibilities of measuring the quantity at Belle-II. G.C. acknowledges the support by FONDECYT (Chile) (1130599), The work of C.S.K. was supported in part by the NRF grant funded by the Korean government of the MEST (2016R1D1A1A02936965)

  13. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    Science.gov (United States)

    SNO collaboration; Aharmim, B.; Ahmed, S. N.; Andersen, T. C.; Anthony, A. E.; Barros, N.; Beier, E. W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S. D.; Boudjemline, K.; Boulay, M. G.; Burritt, T. H.; Cai, B.; Chan, Y. D.; Chen, M.; Chon, M. C.; Cleveland, B. T.; Cox-Mobrand, G. A.; Currat, C. A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P. J.; Dosanjh, R. S.; Doucas, G.; Drouin, P.-L.; Duncan, F. A.; Dunford, M.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R. J.; Formaggio, J. A.; Gagnon, N.; Goon, J. TM.; Grant, D. R.; Guillian, E.; Habib, S.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hargrove, C. K.; Harvey, P. J.; Harvey, P. J.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Hemingway, R. J.; Henning, R.; Hime, A.; Howard, C.; Howe, M. A.; Huang, M.; Jamieson, B.; Jelley, N. A.; Klein, J. R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C. B.; Kutter, T.; Kyba, C. C. M.; Lange, R.; Law, J.; Lawson, I. T.; Lesko, K. T.; Leslie, J. R.; Levine, I.; Loach, J. C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H. B.; Maneira, J.; Marino, A. D.; Martin, R.; McCauley, N.; McDonald, A. B.; McGee, S.; Mifflin, C.; Miller, M. L.; Monreal, B.; Monroe, J.; Noble, A. J.; Oblath, N. S.; Okada, C. E.; O'Keeffe, H. M.; Opachich, Y.; Orebi Gann, G. D.; Oser, S. M.; Ott, R. A.; Peeters, S. J. M.; Poon, A. W. P.; Prior, G.; Rielage, K.; Robertson, B. C.; Robertson, R. G. H.; Rollin, E.; Schwendener, M. H.; Secrest, J. A.; Seibert, S. R.; Simard, O.; Simpson, J. J.; Sinclair, D.; Skensved, P.; Smith, M. W. E.; Sonley, T. J.; Steiger, T. D.; Stonehill, L. C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R. G.; VanDevender, B. A.; Virtue, C. J.; Waller, D.; Waltham, C. E.; Wan Chan Tseung, H.; Wark, D. L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J. F.; Wilson, J. R.; Wouters, J. M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-07-10

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  14. Large or small angle MSW from single right-handed neutrino dominance

    International Nuclear Information System (INIS)

    King, S.F

    2000-01-01

    In this talk we discuss a natural explanation of both neutrino mass hierarchies and large neutrino mixing angles, as required by the atmospheric neutrino data, in terms of a single right-handed neutrino giving the dominant contribution to the 23 block of the light effective neutrino matrix, and illustrate this mechanism in the framework of models with U(1) family symmetries. Sub-dominant contributions from other right-handed neutrinos are required to give small mass splittings appropriate to the MSW solution to the solar neutrino problem. We present three explicit examples for achieving the small angle MSW solution in the framework of U(1) family symmetry models containing three right-handed neutrinos, which can naturally describe all quark and lepton masses and mixing angles. In this talk we also extend the analysis to the large angle MSW solution

  15. Status of the Gribov-Pontecorvo Solution to the Solar Neutrino Problem

    CERN Document Server

    Berezinsky, Veniamin Sergeevich; Peña-Garay, C

    2001-01-01

    We discuss the status of the Gribov--Pontecorvo (GP) solution to the solar neutrino problem. This solution naturally appears in bimaximal neutrino mixing and reduces the solar and atmospheric neutrino problems to vacuum oscillations of three active neutrinos. The GP solution predicts an energy-independent suppression of the solar neutrino flux. It is disfavoured by the rate of the Homestake detector, but its statistical significance greatly improves, when the chlorine rate and the boron neutrino flux are slightly rescaled, and when the Super-Kamiokande neutrino spectrum is included in the analysis. Our results show that rescaling of the chlorine signal by only 10% is sufficient for the GP solution to exist, if the boron--neutrino flux is taken 10 -- 20% lower than the SSM prediction. The regions allowed for the GP solution in the parameter space are found and observational signatures of this solution are discussed.

  16. Solar neutrino observations and neutrino oscillations

    International Nuclear Information System (INIS)

    Kuo, T.K.; Pantaleone, J.

    1990-01-01

    The results of recent Kamiokande-II and 37 Cl solar-neutrino experiments are quantitatively analyzed assuming the Mikheyev-Smirnov-Wolfenstein solution to the solar-neutrino problem. It is found that the parameter region known as the ''large mass'' solution to the solar-neutrino problem is disfavored by a little more than 1 σ while the ''small mass'' and ''large angle'' solutions are in good agreement at this level. The implications on this analysis from time variations in the data are discussed

  17. Neutrinos from WIMP annihilations in the Sun including neutrino oscillations

    International Nuclear Information System (INIS)

    Blennow, Mattias; Edsjö, Joakim; Ohlsson, Tommy

    2011-01-01

    The prospects to detect neutrinos from the Sun arising from dark matter annihilations in the core of the Sun are reviewed. Emphasis is placed on new work investigating the effects of neutrino oscillations on the expected neutrino fluxes.

  18. Neutrinos from WIMP annihilations in the Sun including neutrino oscillations

    International Nuclear Information System (INIS)

    Blennow, Mattias; Edsjoe, Joakim; Ohlsson, Tommy

    2006-01-01

    The prospects for detecting neutrinos from the Sun arising from dark matter annihilations in the core of the Sun are reviewed. Emphasis is placed on new work investigating the effects of neutrino oscillations on the expected neutrino fluxes

  19. Reconstructing neutrino properties from collider experiments in a Higgs triplet neutrino mass model

    International Nuclear Information System (INIS)

    Aristizabal Sierra, D.; Hirsch, M.; Valle, J. W. F.; Villanova del Moral, A.

    2003-01-01

    We extend the minimal supersymmetric standard model with bilinear R-parity violation to include a pair of Higgs triplet superfields. The neutral components of the Higgs triplets develop small vacuum expectation values (VEVs) quadratic in the bilinear R-parity breaking parameters. In this scheme the atmospheric neutrino mass scale arises from bilinear R-parity breaking while for reasonable values of parameters the solar neutrino mass scale is generated from the small Higgs triplet VEVs. We calculate neutrino masses and mixing angles in this model and show how the model can be tested at future colliders. The branching ratios of the doubly charged triplet decays are related to the solar neutrino angle via a simple formula

  20. MINOS Sterile Neutrino Search

    Energy Technology Data Exchange (ETDEWEB)

    Koskinen, David Jason [Univ. College London, Bloomsbury (United Kingdom)

    2009-02-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline accelerator neutrino experiment designed to measure properties of neutrino oscillation. Using a high intensity muon neutrino beam, produced by the Neutrinos at Main Injector (NuMI) complex at Fermilab, MINOS makes two measurements of neutrino interactions. The first measurement is made using the Near Detector situated at Fermilab and the second is made using the Far Detector located in the Soudan Underground laboratory in northern Minnesota. The primary goal of MINOS is to verify, and measure the properties of, neutrino oscillation between the two detectors using the v μ→ Vτ transition. A complementary measurement can be made to search for the existence of sterile neutrinos; an oft theorized, but experimentally unvalidated particle. The following thesis will show the results of a sterile neutrino search using MINOS RunI and RunII data totaling ~2.5 x 1020 protons on target. Due to the theoretical nature of sterile neutrinos, complete formalism that covers transition probabilities for the three known active states with the addition of a sterile state is also presented.

  1. The ideal neutrino beams

    CERN Document Server

    Lindroos, Mats

    2009-01-01

    The advance in neutrino oscillation physics is driven by the availability of well characterized and high flux neutrino beams. The three present options for the next generation neutrino oscillation facility are super beams, neutrino factories and beta-beams. A super-beam is a very high intensity classical neutrino beam generated by protons impinging on a target where the neutrinos are generated by the secondary particles decaying in a tunnel down streams of the target. In a neutrino factory the neutrinos are generated from muons decaying in a storage ring with long straight sections pointing towards the detectors. In a beta-beam the neutrinos are also originating from decay in a storage ring but the decaying particles are radioactive ions rather than muons. I will in this presentation review the three options and discuss the pros and cons of each. The present joint design effort for a future high intensity neutrino oscillation in Europe within a common EU supported design study, EURONU, will also be presented....

  2. The ideal neutrino beams

    Science.gov (United States)

    Lindroos, Mats

    2009-06-01

    The advance in neutrino oscillation physics is driven by the availability of well characterized and high flux neutrino beams. The three present options for the next generation neutrino oscillation facility are super beams, neutrino factories and beta-beams. A super-beam is a very high intensity classical neutrino beam generated by protons impinging on a target where the neutrinos are generated by the secondary particles decaying in a tunnel down streams of the target. In a neutrino factory the neutrinos are generated from muons decaying in a storage ring with long straight sections pointing towards the detectors. In a beta-beam the neutrinos are also originating from decay in a storage ring but the decaying particles are radioactive ions rather than muons. I will in this presentation review the three options and discuss the pros and cons of each. The present joint design effort for a future high intensity neutrino oscillation in Europe within a common EU supported design study, EURONU, will also be presented. The design study will explore the physics reach, the detectors, the feasibility, the safety issues and the cost for each of the options so that the the community can take a decision on what to build when the facilities presently under exploitation and construction have to be replaced.

  3. Indirect detection of dark matter with the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    Lambard, G.

    2008-01-01

    The ANTANARES telescope is composed of an array of 900 photomultipliers (12 lines) that will be immersed in the Mediterranean sea at a depth of 2500 m. The photomultipliers are sensitive to the Cherenkov light emitted by high energy muons produced in the interactions of neutrinos with matter. My work consisted in the calibration of the detector, in time and charge in order to extract the crucial data for the reconstruction of the particle tracks and the ability of the detector to distinguish the atmospheric neutrinos from astrophysical neutrinos. The first part of this work is dedicated to the today understanding of the universe and of its models and of the importance of the neutrinos as the messengers of what occurs in the remote parts of the universe. The detection of neutrinos through the Cerenkov effect is detailed and the ANTANARES detector is presented. The second part deals with the study of the background radiation due to atmospheric muons and neutrinos. A simulation is the only tool to assess the background radiation level and to be able to extract the signal due to solar neutrinos. The third part shows how the solar neutrino flux might be influenced by the interaction of dark matter with baryonic matter. A Monte-Carlo simulation has allowed us to quantify this interaction and measure its impact on the number of events detected by ANTANARES. (A.C.)

  4. Sudbury Neutrino Observatory

    International Nuclear Information System (INIS)

    Beier, E.W.

    1992-03-01

    This document is a technical progress report on work performed at the University of Pennsylvania during the current year on the Sudbury Neutrino Observatory project. The motivation for the experiment is the measurement of neutrinos emitted by the sun. The Sudbury Neutrino Observatory (SNO) is a second generation dedicated solar neutrino experiment which will extend the results of our work with the Kamiokande II detector by measuring three reactions of neutrinos rather than the single reaction measured by the Kamiokande experiment. The collaborative project includes physicists from Canada, the United Kingdom, and the United States. Full funding for the construction of this facility was obtained in January 1990, and its construction is estimated to take five years. The motivation for the SNO experiment is to study the fundamental properties of neutrinos, in particular the mass and mixing parameters, which remain undetermined after decades of experiments in neutrino physics utilizing accelerators and reactors as sources of neutrinos. To continue the study of neutrino properties it is necessary to use the sun as a neutrino source. The long distance to the sun makes the search for neutrino mass sensitive to much smaller mass than can be studied with terrestrial sources. Furthermore, the matter density in the sun is sufficiently large to enhance the effects of small mixing between electron neutrinos and mu or tau neutrinos. This experiment, when combined with the results of the radiochemical 37 Cl and 71 Ga experiments and the Kamiokande II experiment, should extend our knowledge of these fundamental particles, and as a byproduct, improve our understanding of energy generation in the sun

  5. Acquire information about neutrino parameters by detecting supernova neutrinos

    OpenAIRE

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2010-01-01

    We consider the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein (MSW) effects, the collective effects, and the Earth matter effects in the detection of type II supernova neutrinos on the Earth. It is found that the event number of supernova neutrinos depends on the neutrino mass hierarchy, the neutrino mixing angle $\\theta_{13}$, and neutrino masses. Therefore, we propose possible methods to identify the mass hierarchy and acquire information about $\\theta_{13}$ and neutrino masses ...

  6. A combined treatment of neutrino decay and neutrino oscillations

    International Nuclear Information System (INIS)

    Lindner, Manfred; Ohlsson, Tommy; Winter, Walter

    2001-01-01

    Neutrino decay in vacuum has often been considered as an alternative to neutrino oscillations. Because nonzero neutrino masses imply the possibility of both neutrino decay and neutrino oscillations, we present a model-independent formal treatment of these combined scenarios. For that, we show for the example of Majoron decay that in many cases decay products are observable and may even oscillate. Furthermore, we construct a minimal scenario in which we study the physical implications of neutrino oscillations with intermediate decays

  7. Detection and reconstruction of short-lived particles produced by neutrino interactions in emulsion

    CERN Document Server

    Uiterwijk, J W E

    2007-01-01

    In this dissertation, several different topics related to the chorus experiment are pre- sented. The chorus experiment has been used to study neutrino oscillations using the neutrino beam at cern. The neutrino oscillation hypothesis provided an explanation for the lower than expected fluxes of solar and atmospheric neutrinos. There are three neutrino species in nature corresponding to different weak eigenstates, namely, the elec- tron neutrino (νe ), the muon neutrino (νμ ), and the tau neutrino (ντ ). The lower fluxes could be interpreted as spontaneous oscillations between electron and muon neutrinos and between muon and tau neutrinos. The chorus experiment was designed to detect oscillation of muon neutrinos into tau neutrinos with small mixing probability down to 2 · 10−4 and a mass difference square between νμ and ντ larger than 0.5 eV2 . In the last decade, several disappearance experiments have confirmed the neutrino oscillation hypothesis and showed that oscillations occur between mass eig...

  8. Neutrino mass hierarchy determination for θ13 = 0

    International Nuclear Information System (INIS)

    Gandhi, Raj; Ghoshal, Pomita; Goswami, Srubabati; Sankar, S. Uma

    2010-01-01

    We examine the possibility of determining the neutrino mass hierarchy in the limit θ 13 = 0 using atmospheric neutrinos as the source. In this limit, θ 13 driven matter effects are absent so independent measurements of Δ 31 and Δ 32 can, in principle, lead to hierarchy determination. Since their difference is Δ 21 , one needs an experimental arrangement where Δ 21 L/E > or approx. 1 can be achieved. This can be satisfied by atmospheric neutrinos which have a large range of L and E. Still, we find that hierarchy determination in the θ 13 = 0 limit with atmospheric neutrinos is not a realistic possibility, even in conjunction with a beam experiment like T2K or NOνA. We discuss why, and also reiterate the general conditions for hierarchy determination if θ 13 = 0.

  9. Detecting supernova neutrinos in Daya Bay Neutrino Laboratory

    International Nuclear Information System (INIS)

    Huang Mingyang; Guo Xinheng; Yang Binglin

    2011-01-01

    While detecting supernova neutrinos in the Daya Bay neutrino laboratory, several supernova neutrino effects need to be considered, including the supernova shock effects, the neutrino collective effects, the Mikheyev-Smirnov-Wolfenstein (MSW) effects, and the Earth matter effects. The phenomena of neutrino oscillation is affected by the above effects. Using some ratios of the event numbers of different supernova neutrinos, we propose some possible methods to identify the mass hierarchy and acquire information about the neutrino mixing angle θ13 and neutrino masses. (authors)

  10. Acquiring information about neutrino parameters by detecting supernova neutrinos

    Science.gov (United States)

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2010-08-01

    We consider the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein effects, the collective effects, and the Earth matter effects in the detection of type II supernova neutrinos on the Earth. It is found that the event number of supernova neutrinos depends on the neutrino mass hierarchy, the neutrino mixing angle θ13, and neutrino masses. Therefore, we propose possible methods to identify the mass hierarchy and acquire information about θ13 and neutrino masses by detecting supernova neutrinos. We apply these methods to some current neutrino experiments.

  11. Neutrinos and dark energy

    International Nuclear Information System (INIS)

    Schrempp, L.

    2008-02-01

    From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark

  12. Neutrinos and dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Schrempp, L.

    2008-02-15

    From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark

  13. Measuring neutrino oscillation parameters using $\

    Energy Technology Data Exchange (ETDEWEB)

    Backhouse, Christopher James [Oriel College, Oxford (United Kingdom)

    2011-01-01

    MINOS is a long-baseline neutrino oscillation experiment. It consists of two large steel-scintillator tracking calorimeters. The near detector is situated at Fermilab, close to the production point of the NuMI muon-neutrino beam. The far detector is 735 km away, 716m underground in the Soudan mine, Northern Minnesota. The primary purpose of the MINOS experiment is to make precise measurements of the 'atmospheric' neutrino oscillation parameters (Δmatm2 and sin2atm). The oscillation signal consists of an energy-dependent deficit of vμ interactions in the far detector. The near detector is used to characterize the properties of the beam before oscillations develop. The two-detector design allows many potential sources of systematic error in the far detector to be mitigated by the near detector observations. This thesis describes the details of the vμ-disappearance analysis, and presents a new technique to estimate the hadronic energy of neutrino interactions. This estimator achieves a significant improvement in the energy resolution of the neutrino spectrum, and in the sensitivity of the neutrino oscillation fit. The systematic uncertainty on the hadronic energy scale was re-evaluated and found to be comparable to that of the energy estimator previously in use. The best-fit oscillation parameters of the vμ-disappearance analysis, incorporating this new estimator were: Δm2 = 2.32-0.08+0.12 x 10-3 eV2, sin 2 2θ > 0.90 (90% C.L.). A similar analysis, using data from a period of running where the NuMI beam was operated in a configuration producing a predominantly $\\bar{v}$μ beam, yielded somewhat different best-fit parameters Δ$\\bar{m}${sup 2} = (3.36-0.40+0.46(stat.) ± 0.06(syst.)) x 10-3eV2, sin2 2$\\bar{θ}$ = 0.86-0.12_0

  14. Three Dirac neutrinos

    International Nuclear Information System (INIS)

    Joshipura, A.S.; Rindani, S.D.

    1991-01-01

    The consequences of imposing an exact L e +L τ -L μ symmetry on a 6x6 matrix describing neutrino masses are discussed. The presence of right-handed neutrinos avoids the need of introducing any SU(2) Higgs triplet. Hence the conflict with the CERN LEP data on the Z width found in earlier models with L e +L τ -L μ symmetry is avoided. The L e +L τ -L μ symmetry provides an interesting realization of a recent proposal of Glashow to accommodate the 17-keV Dirac neutrino in the SU(2)xU(1) theory. All the neutrinos in this model are Dirac particles. The solar-neutrino problem can be solved in an extension of the model which generates a large (∼10 -11 μ B ) magnetic moment for the electron neutrino

  15. Neutrino mass matrix

    International Nuclear Information System (INIS)

    Strobel, E.L.

    1985-01-01

    Given the many conflicting experimental results, examination is made of the neutrino mass matrix in order to determine possible masses and mixings. It is assumed that the Dirac mass matrix for the electron, muon, and tau neutrinos is similar in form to those of the quarks and charged leptons, and that the smallness of the observed neutrino masses results from the Gell-Mann-Ramond-Slansky mechanism. Analysis of masses and mixings for the neutrinos is performed using general structures for the Majorana mass matrix. It is shown that if certain tentative experimental results concerning the neutrino masses and mixing angles are confirmed, significant limitations may be placed on the Majorana mass matrix. The most satisfactory simple assumption concerning the Majorana mass matrix is that it is approximately proportional to the Dirac mass matrix. A very recent experimental neutrino mass result and its implications are discussed. Some general properties of matrices with structure similar to the Dirac mass matrices are discussed

  16. Galactic neutrino communication

    Energy Technology Data Exchange (ETDEWEB)

    Learned, John G. [Department of Physics and Astronomy, University of Hawaii, 2505 Correa Road, Honolulu, HI 96822 (United States)], E-mail: jgl@phys.hawaii.edu; Pakvasa, Sandip [Department of Physics and Astronomy, University of Hawaii, 2505 Correa Road, Honolulu, HI 96822 (United States)], E-mail: pakvasa@phys.hawaii.edu; Zee, A. [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States)], E-mail: zee@kitp.ucsb.edu

    2009-01-12

    We examine the possibility to employ neutrinos to communicate within the galaxy. We discuss various issues associated with transmission and reception, and suggest that the resonant neutrino energy near 6.3 PeV may be most appropriate. In one scheme we propose to make Z deg. particles in an overtaking e{sup +}-e{sup -} collider such that the resulting decay neutrinos are near the W{sup -} resonance on electrons in the laboratory. Information is encoded via time structure of the beam. In another scheme we propose to use a 30 PeV pion accelerator to create neutrino or anti-neutrino beams. The latter encodes information via the beam CP state as well as timing. Moreover the latter beam requires far less power, and can be accomplished with presently foreseeable technology. Such signals from an advanced civilization, should they exist, will be eminently detectable in existing neutrino detectors.

  17. Solar neutrino detection

    International Nuclear Information System (INIS)

    Miramonti, Lino

    2009-01-01

    More than 40 years ago, neutrinos where conceived as a way to test the validity of the solar models which tell us that stars are powered by nuclear fusion reactions. The first measurement of the neutrino flux, in 1968 in the Homestake mine in South Dakota, detected only one third of the expected value, originating what has been known as the Solar Neutrino Problem. Different experiments were built in order to understand the origin of this discrepancy. Now we know that neutrinos undergo oscillation phenomenon changing their nature traveling from the core of the Sun to our detectors. In the work the 40 year long saga of the neutrino detection is presented; from the first proposals to test the solar models to last real time measurements of the low energy part of the neutrino spectrum.

  18. Visible neutrino decay at DUNE

    Energy Technology Data Exchange (ETDEWEB)

    Coloma, Pilar [Fermilab; Peres, Orlando G. [ICTP, Trieste

    2017-05-09

    If the heaviest neutrino mass eigenstate is unstable, its decay modes could include lighter neutrino eigenstates. In this case part of the decay products could be visible, as they would interact at neutrino detectors via mixing. At neutrino oscillation experiments, a characteristic signature of such \\emph{visible neutrino decay} would be an apparent excess of events at low energies. We focus on a simple phenomenological model in which the heaviest neutrino decays as $\

  19. Enhanced Starting Track Event Selection for Astrophysical Neutrinos in IceCube

    Science.gov (United States)

    Jero, Kyle; IceCube Collaboration

    2017-09-01

    IceCube’s measurements of the astrophysical neutrino flux have applied veto techniques to suppress atmospheric neutrinos and muons. All the vetos thus far have used the outer regions of the detector to identify and reject penetrating muon tracks, leaving the inner parts of the detector available to observe the astrophysical neutrino flux. Here we discuss a method that is optimized for muon neutrinos which have a charged-current interaction with a contained vertex. This analysis exploits the high quality directional information of muons to determine a veto on an event by event basis. The final sample will contain astrophysical neutrinos with good purity starting around 10 TeV.

  20. SOX - Towards the detection of sterile neutrinos in Borexino. Beta spectrum modeling, Monte Carlo development and sensitivity studies for the sterile neutrino search in Borexino

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Mikko

    2016-12-15

    Several experiments have reported anomalies in the neutrino sector which might be explained by the existence of a fourth (sterile) neutrino with a squared mass difference of about 1 eV{sup 2} to the other three active neutrinos. The SOX project is part of the experimental program of the Borexino experiment and seeks for a clarification of the observed anomalies. For that purpose an artificial antineutrino source ({sup 144}Ce-{sup 144}Pr) and possibly neutrino source ({sup 51}Cr) will be deployed underneath the large low background detector Borexino. The detector provides both energy and vertex resolution to observe a possible oscillation signature within the detector volume. The calculation of the antineutrino spectrum is based on existing theoretical models and was performed within this thesis. The modeling includes several sub-leading corrections particularly such as finite size of the nucleus, screening of the atomic electrons and radiative effects. Related to this work, dedicated Monte Carlo generators have been developed to simulate the inverse beta decay reaction and the (anti)neutrino elastic scattering off electrons. Based on a profile likelihood analysis, the sensitivity to the sterile neutrino search of the SOX project was evaluated. The results obtained from this analysis confirm that the currently allowed parameter regions for sterile neutrinos can be tested at 95% confidence level. Finally, an alternative concept for the sterile neutrino search is presented which is based on a cyclotron and a Beryllium target near Borexino (Borexino+IsoDAR).

  1. SOX - Towards the detection of sterile neutrinos in Borexino. Beta spectrum modeling, Monte Carlo development and sensitivity studies for the sterile neutrino search in Borexino

    International Nuclear Information System (INIS)

    Meyer, Mikko

    2016-12-01

    Several experiments have reported anomalies in the neutrino sector which might be explained by the existence of a fourth (sterile) neutrino with a squared mass difference of about 1 eV"2 to the other three active neutrinos. The SOX project is part of the experimental program of the Borexino experiment and seeks for a clarification of the observed anomalies. For that purpose an artificial antineutrino source ("1"4"4Ce-"1"4"4Pr) and possibly neutrino source ("5"1Cr) will be deployed underneath the large low background detector Borexino. The detector provides both energy and vertex resolution to observe a possible oscillation signature within the detector volume. The calculation of the antineutrino spectrum is based on existing theoretical models and was performed within this thesis. The modeling includes several sub-leading corrections particularly such as finite size of the nucleus, screening of the atomic electrons and radiative effects. Related to this work, dedicated Monte Carlo generators have been developed to simulate the inverse beta decay reaction and the (anti)neutrino elastic scattering off electrons. Based on a profile likelihood analysis, the sensitivity to the sterile neutrino search of the SOX project was evaluated. The results obtained from this analysis confirm that the currently allowed parameter regions for sterile neutrinos can be tested at 95% confidence level. Finally, an alternative concept for the sterile neutrino search is presented which is based on a cyclotron and a Beryllium target near Borexino (Borexino+IsoDAR).

  2. Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 59-string configuration

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Abbasi, R.; Ackermann, M.

    2014-01-01

    of atmospheric muons of less than 1%. These data, which are dominated by atmospheric neutrinos, are analyzed with a global likelihood fit to search for possible contributions of prompt atmospheric and astrophysical neutrinos, neither of which have yet been identified. Such signals are expected to follow a harder...

  3. Neutrino Physics at Fermilab

    International Nuclear Information System (INIS)

    Federspiel, F.; Garvey, G.; Louis, W.C.; Mills, G.B.; Tayloe, R.; Sandberg, V.; Sapp, B.; White, D.H.

    1999-01-01

    The Liquid Scintillator Neutrino Detector (LSND), located at the LANSCE (formerly LAMPF) linear accelerator at Los Alamos National Laboratory, has seen evidence for the oscillation of neutrinos, and hence neutrino mass. That discovery was the impetus for this LDRD project, begun in 1996. The goal of this project was to define the appropriate technologies to use in a follow up experiment and to set in place the requirements for such an experiment

  4. Neutrinos from gravitational collapse

    International Nuclear Information System (INIS)

    Mayle, R.; Wilson, J.R.; Schramm, D.N.

    1986-05-01

    Detailed calculations are made of the neutrino spectra emitted during gravitational collapse events (Type II supernovae). Those aspects of the neutrino signal which are relatively independent of the collapse model and those aspects which are sensitive to model details are discussed. The easier-to-detect high energy tail of the emitted neutrinos has been calculated using the Boltzmann equation which is compared with the result of the traditional multi-group flux limited diffusion calculations. 8 figs., 28 refs

  5. Beta rays and neutrinos

    International Nuclear Information System (INIS)

    Adams, S.F.

    1992-01-01

    It was over 30 years between the first observation of the enigmatic process of beta decay and the first postulation of the neutrino. It took a further 26 years until the first neutrino was detected and yet another 27 until the electroweak theory was confirmed by the discovery of W and Z particles. This article traces some of the puzzles and paradoxes associated with the history of the neutrino. (author)

  6. CERN: Neutrino facelift

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    With the termination this summer of the CHARM II neutrino experiment at the SPS proton synchrotron, CERN's 30- year tradition of neutrino physics came to a temporary halt. However with these enigmatic particles playing a vital role in today's Standard Model but continually reluctant to give up all their secrets, neutrino physics will continue to be in the forefront of this research

  7. Neutrinos in the Electron

    International Nuclear Information System (INIS)

    Koschmieder, E. L.

    2007-01-01

    I will show that one half of the rest mass of the electron consists of electron neutrinos and that the other half of the rest mass of the electron consists of the mass in the energy of electric oscillations. With this composition we can explain the rest mass of the electron, its charge, its spin and its magnetic moment We have also determined the rest masses of the muon neutrino and the electron neutrino

  8. Search for a neutrino signal in the first data of the ANTARES experiment

    International Nuclear Information System (INIS)

    Cottini, N.

    2009-06-01

    The ANTARES telescope consists of a three dimensional array of 885 photomultipliers, arranged in 12 lines deployed at 2500 m depth in the Mediterranean Sea, detecting the Cherenkov light produced by neutrino-induced muons. The first five lines of the detector have been taking data between January and December 2007. The 5 line detector operations are described. The data are analyzed to filter the atmospheric neutrino events from the atmospheric muon background. The number of detected neutrinos (185, that is 1.1 per day) is found in agreement with the predictions, thus proving the correct behaviour of the detector. A search for a cosmic neutrino signal is performed, looking for statistically significant neutrino clusters on the sky, with respect to the uniform atmospheric neutrino background. The event distribution is found compatible with the background. The event correlation with potential known sources is also studied, without obtaining a positive result. The presented methods are exploitable for the 12 line data analysis. (author)

  9. Sterile neutrinos with secret interactions—lasting friendship with cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Xiaoyong [International Center for Theoretical Physics, Strada Costiera 11, Trieste, 34014 Italy (Italy); Dasgupta, Basudeb [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400005 India (India); Kopp, Joachim, E-mail: xchu@ictp.it, E-mail: bdasgupta@theory.tifr.res.in, E-mail: jkopp@uni-mainz.de [PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Johannes Gutenberg University, Staudingerweg 7, Mainz, 55128 Germany (Germany)

    2015-10-01

    Sterile neutrinos with mass ≅ 1 eV and order 10% mixing with active neutrinos have been proposed as a solution to anomalies in neutrino oscillation data, but are tightly constrained by cosmological limits. It was recently shown that these constraints are avoided if sterile neutrinos couple to a new MeV-scale gauge boson A'. However, even this scenario is restricted by structure formation constraints when A'-mediated collisional processes lead to efficient active-to-sterile neutrino conversion after neutrinos have decoupled. In view of this, we reevaluate in this paper the viability of sterile neutrinos with such ''secret'' interactions. We carefully dissect their evolution in the early Universe, including the various production channels and the expected modifications to large scale structure formation. We argue that there are two regions in parameter space—one at very small A' coupling, one at relatively large A' coupling—where all constraints from big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and large scale structure (LSS) data are satisfied. Interestingly, the large A' coupling region is precisely the region that was previously shown to have potentially important consequences for the small scale structure of dark matter halos if the A' boson couples also to the dark matter in the Universe.

  10. Sterile neutrinos with secret interactions — lasting friendship with cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Xiaoyong [International Center for Theoretical Physics,Strada Costiera 11, Trieste, 34014 (Italy); Dasgupta, Basudeb [Tata Institute of Fundamental Research,Homi Bhabha Road, Mumbai, 400005 (India); Kopp, Joachim [PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics,Johannes Gutenberg University, Staudingerweg 7, Mainz, 55128 (Germany)

    2015-10-06

    Sterile neutrinos with mass ≃1 eV and order 10% mixing with active neutrinos have been proposed as a solution to anomalies in neutrino oscillation data, but are tightly constrained by cosmological limits. It was recently shown that these constraints are avoided if sterile neutrinos couple to a new MeV-scale gauge boson A{sup ′}. However, even this scenario is restricted by structure formation constraints when A{sup ′}-mediated collisional processes lead to efficient active-to-sterile neutrino conversion after neutrinos have decoupled. In view of this, we reevaluate in this paper the viability of sterile neutrinos with such “secret” interactions. We carefully dissect their evolution in the early Universe, including the various production channels and the expected modifications to large scale structure formation. We argue that there are two regions in parameter space — one at very small A{sup ′} coupling, one at relatively large A{sup ′} coupling — where all constraints from big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and large scale structure (LSS) data are satisfied. Interestingly, the large A{sup ′} coupling region is precisely the region that was previously shown to have potentially important consequences for the small scale structure of dark matter halos if the A{sup ′} boson couples also to the dark matter in the Universe.

  11. Parametrization of Seesaw Models and Light Sterile Neutrinos

    CERN Document Server

    Blennow, Mattias

    2011-01-01

    The recent recomputation of the neutrino fluxes from nuclear reactors relaxes the tension between the LSND and MiniBooNE anomalies and disappearance data when interpreted in terms of sterile neutrino oscillations. The simplest extension of the Standard Model with such fermion singlets is the addition of right-handed sterile neutrinos with small Majorana masses. Even when introducing three right-handed neutrinos, this scenario has less free parameters than the 3+2 scenarios studied in the literature. This begs the question whether the best fit regions obtained can be reproduced by this simplest extension of the Standard Model. In order to address this question, we devise an exact parametrization of Standard Model extensions with right-handed neutrinos. Apart from the usual 3x3 neutrino mixing matrix and the 3 masses of the lightest neutrinos, the extra degrees of freedom are encoded in another 3x3 unitary matrix and 3 additional mixing angles. The parametrization includes all the correlations among masses and ...

  12. Global magnetic anomaly and aurora of Neptune

    International Nuclear Information System (INIS)

    Cheng, A.F.

    1990-01-01

    The large offset and tilt of Neptune's dipole magnetic field combine to create a global magnetic anomaly, analogous to but much more important than Earth's South Atlantic Anomaly. Energetic particle precipitation loss within the Neptune anomaly creates atmospheric drift shadows within which particle fluxes are greatly reduced. The energetic particle dropout observed by Voyager near closest approach occurred near the predicted times when Voyager passed within the atmospheric drift shadow. Extremely soft, structured bursts of ions and electrons within the drift shadow may result from plasma wave-induced pitch angle scattering of trapped particles confined near the magnetic equator. The dropout does not necessarily imply that Voyager passed through an Earth-like discrete auroral zone, as earlier reported. The ion and electron fluxes observed within the dropout period correspond to particles that must precipitate to Neptune's atmosphere within the anomaly region. This anomaly precipitation can account for a major portion of the ultraviolet emissions previously identified as Neptune aurora

  13. Neutrino Oscillation Physics

    International Nuclear Information System (INIS)

    Kayser, Boris

    2014-01-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures

  14. Neutrino properties from cosmology

    DEFF Research Database (Denmark)

    Hannestad, S.

    2013-01-01

    In recent years precision cosmology has become an increasingly powerful probe of particle physics. Perhaps the prime example of this is the very stringent cosmological upper bound on the neutrino mass. However, other aspects of neutrino physics, such as their decoupling history and possible non......-standard interactions, can also be probed using observations of cosmic structure. Here, I review the current status of cosmological bounds on neutrino properties and discuss the potential of future observations, for example by the recently approved EUCLID mission, to precisely measure neutrino properties....

  15. Solar neutrino experiments

    International Nuclear Information System (INIS)

    Hampel, W.

    1996-01-01

    The present status of experimental solar neutrino research is reviewed. Updated results from the Homestake, Kamiokande, GALLEX and SAGE detectors all show a deficit when compared to recent standard solar model calculations. Two of these detectors, GALLEX and SAGE, have recently been checked with artificial 51 Cr neutrino sources. It is shown that astrophysical scenarios to solve the solar neutrino problems are not favoured by the data. There is hope that the results of forthcoming solar neutrino experiments can provide the answers to the open questions. (author) 6 figs., 3 tabs., 36 refs

  16. Neutrino Oscillation Physics

    Energy Technology Data Exchange (ETDEWEB)

    Kayser, Boris [Fermilab (United States)

    2014-07-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures.

  17. Neutrinos in supernovae

    International Nuclear Information System (INIS)

    Cooperstein, J.

    1986-10-01

    The role of neutrinos in Type II supernovae is discussed. An overall view of the neutrino luminosity as expected theoretically is presented. The different weak interactions involved are assessed from the standpoint of how they exchange energy, momentum, and lepton number. Particular attention is paid to entropy generation and the path to thermal and chemical equilibration, and to the phenomenon of trapping. Various methods used to calculate the neutrino flows are considered. These include trapping and leakage schemes, distribution-averaged transfer, and multi-energy group methods. The information obtained from the neutrinos caught from Supernova 1987a is briefly evaluated. 55 refs., 7 figs

  18. Neutrinos in astrophysics

    CERN Document Server

    Rees, Martin J

    1980-01-01

    The amount of 4He synthesised in the "big bang" is sensitive to the early particle content and to the expansion rate. If there was indeed a "big bang", surprisingly strong conclusions can be drawn about the number of species of neutrinos, and about the possibility that such particles have non-zero rest mass. The dynamics of supernovae are sensitive to the det~ils of neutrino physics; such explosions would yield IO L-1053 ergs of -v IO Mev neutrinos, in a burst lasting a few milliseconds. Galactic nuclei, cosmic ray sources and other high energy cosmic phenomena could yield a low background of~ 10 Gev neutrinos.

  19. Question of neutrino mass

    International Nuclear Information System (INIS)

    Branco, G.C.; Senjanovic, G.

    1978-01-01

    We investigate the question of neutrino mass in theories in which neutrinos are four-component Dirac particles. Our analysis is done in the framework of left-right--symmetric theories. The requirement of calculability and natural smallness of neutrino mass leads to the following constraints: (i) left and right charged weak currents must be ''orthogonal'' to each other, and (ii) there should be no W/sub L/-W/sub R/ mixing at the three level. Finally, we exhibit a model in which, due to the existence of an unbroken symmetry of the total Lagrangian, the electron and muon neutrinos remain massless to all orders in perturbation theory

  20. Solar neutrino experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, W [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    1996-11-01

    The present status of experimental solar neutrino research is reviewed. Updated results from the Homestake, Kamiokande, GALLEX and SAGE detectors all show a deficit when compared to recent standard solar model calculations. Two of these detectors, GALLEX and SAGE, have recently been checked with artificial {sup 51}Cr neutrino sources. It is shown that astrophysical scenarios to solve the solar neutrino problems are not favoured by the data. There is hope that the results of forthcoming solar neutrino experiments can provide the answers to the open questions. (author) 6 figs., 3 tabs., 36 refs.

  1. Decays of supernova neutrinos

    International Nuclear Information System (INIS)

    Lindner, Manfred; Ohlsson, Tommy; Winter, Walter

    2002-01-01

    Supernova neutrinos could be well-suited for probing neutrino decay, since decay may be observed even for very small decay rates or coupling constants. We will introduce an effective operator framework for the combined description of neutrino decay and neutrino oscillations for supernova neutrinos, which can especially take into account two properties: one is the radially symmetric neutrino flux, allowing a decay product to be re-directed towards the observer even if the parent neutrino had a different original direction of propagation. The other is decoherence because of the long baselines for coherently produced neutrinos. We will demonstrate how to use this effective theory to calculate the time-dependent fluxes at the detector. In addition, we will show the implications of a Majoron-like decay model. As a result, we will demonstrate that for certain parameter values one may observe some effects which could also mimic signals similar to the ones expected from supernova models, making it in general harder to separate neutrino and supernova properties

  2. NESSiE: an experimental search for sterile neutrinos with the CERN-SPS beam

    International Nuclear Information System (INIS)

    Sirri, G.

    2013-01-01

    Anomalies observed in neutrino oscillation experiments show a tension with the standard three-flavor neutrino framework and seem to require at least an additional sterile neutrino with a mass at the eV scale. NESSiE (Neutrino Experiment with SpectrometerS in Europe) is an experiment at a new CERN Short- Baseline neutrino beam proposed to definitely address the sterile neutrino issue. The experiment is composed by two magnetic spectrometers at different distances from the proton target. Their design allows to measure the charge and momentum of the muons in a wide energy range, from few hundred MeV, using a magnetic field in air, up to several GeV measuring the bending and range of the muon in a large iron dipolar magnet. The spectrometers will complement large LAr detectors used as a target. The time scale foresees to start taking data by 2016.

  3. A Large Neutrino Detector Facility at the Spallation Neutron Source at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Efremenko, Y.V.

    1999-01-01

    The ORLaND (Oak Ridge Large Neutrino Detector) collaboration proposes to construct a large neutrino detector in an underground experimental hall adjacent to the first target station of the Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory. The main mission of a large (2000 ton) Scintillation-Cherenkov detector is to measure bar ν μ -> bar ν e neutrino oscillation parameters more accurately than they can be determined in other experiments, or significantly extending the covered parameter space below (sin'20 le 10 -4 ). In addition to the neutrino oscillation measurements, ORLaND would be capable of making precise measurements of sin 2 θ W , search for the magnetic moment of the muon neutrino, and investigate the anomaly in the KARMEN time spectrum, which has been attributed to a new neutral particle. With the same facility an extensive program of measurements of neutrino nucleus cross sections is also planned to support nuclear astrophysics

  4. More is different: Reconciling eV sterile neutrinos with cosmological mass bounds

    Directory of Open Access Journals (Sweden)

    Yong Tang

    2015-11-01

    Full Text Available It is generally expected that adding light sterile species would increase the effective number of neutrinos, Neff. In this paper we discuss a scenario that Neff can actually decrease due to the neutrino oscillation effect if sterile neutrinos have self-interactions. We specifically focus on the eV mass range, as suggested by the neutrino anomalies. With large self-interactions, sterile neutrinos are not fully thermalized in the early Universe because of the suppressed effective mixing angle or matter effect. As the Universe cools down, flavor equilibrium between active and sterile species can be reached after big bang nucleosynthesis (BBN epoch, but leading to a decrease of Neff. In such a scenario, we also show that the conflict with cosmological mass bounds on the additional sterile neutrinos can be relaxed further when more light species are introduced. To be consistent with the latest Planck results, at least 3 sterile species are needed.

  5. The not-so-sterile 4th neutrino: constraints on new gauge interactions from neutrino oscillation experiments

    Science.gov (United States)

    Kopp, Joachim; Welter, Johannes

    2014-12-01

    Sterile neutrino models with new gauge interactions in the sterile sector are phenomenologically interesting since they can lead to novel effects in neutrino oscillation experiments, in cosmology and in dark matter detectors, possibly even explaining some of the observed anomalies in these experiments. Here, we use data from neutrino oscillation experiments, in particular from MiniBooNE, MINOS and solar neutrino experiments, to constrain such models. We focus in particular on the case where the sterile sector gauge boson A ' couples also to Standard Model particles (for instance to the baryon number current) and thus induces a large Mikheyev-Smirnov-Wolfenstein potential. For eV-scale sterile neutrinos, we obtain strong constraints especially from MINOS, which restricts the strength of the new interaction to be less than ˜ 10 times that of the Standard Model weak interaction unless active-sterile neutrino mixing is very small (sin2 θ 24 ≲ 10-3). This rules out gauge forces large enough to affect short-baseline experiments like MiniBooNE and it imposes nontrivial constraints on signals from sterile neutrino scattering in dark matter experiments.

  6. Detecting Solar Neutrino Flare in Megaton and km3 detectors

    International Nuclear Information System (INIS)

    Fargion, Daniele; Di Giacomo, Paola

    2009-01-01

    To foresee a solar flare neutrino signal we infer its upper and lower bound. The upper bound was derived since a few years by general energy equipartition arguments on observed solar particle flare. The lower bound, the most compelling one for any guarantee neutrino signal, is derived by most recent records of hard Gamma bump due to solar flare on January 2005 (by neutral pion decay). Because neutral and charged pions (made by hadron scattering in the flare) are born on the same foot, their link is compelling: the observed gamma flux [Grechnev V.V. et al., (arXiv:0806.4424), Solar Physics, Vol. 1, October, (2008), 252] reflects into a corresponding one for the neutrinos, almost one to one. Moreover while gamma photons might be absorbed (in deep corona) or at least reduced inside the flaring plasma, the secondaries neutrino are not. So pion neutrinos should be even more abundant than gamma ones. Tens-hundred MeV neutrinos may cross undisturbed the whole Sun, doubling at least their rate respect a unique solar-side for gamma flare. Therefore we obtain minimal bounds opening a windows for neutrino astronomy, already at the edge of present but quite within near future Megaton neutrino detectors. Such detectors are considered mostly to reveal cosmic supernova background or rare Local Group (few Mpc) Supernovas events [Matthew D. Kistler et al. (0810.1959v1)]. However rarest (once a decade), brief (a few minutes) powerful solar neutrino 'flare' may shine and they may overcome by two to three order of magnitude the corresponding steady atmospheric neutrino noise on the Earth, leading in largest Neutrino detector at least to one or to meaning-full few events clustered signals. The voice of such a solar anti-neutrino flare component at a few tens MeVs may induce an inverse beta decay over a vanishing anti-neutrino solar background. Megaton or even inner ten Megaton Ice Cube detector at ten GeV threshold may also reveal traces in hardest energy of solar flares. Icecube

  7. Golden measurements at a neutrino factory

    CERN Document Server

    Cervera-Villanueva, Anselmo; Gavela-Legazpi, Maria Belen; Cadenas, J J G; Hernández, Pilar; Mena, O; Rigolin, Stefano

    2000-01-01

    The precision and discovery potential of a neutrino factory based on muonstorage rings is studied. For three-family neutrino oscillations, we analysehow to measure or severely constraint the angle $\\theta_{13}$, CP violation,MSW effects and the sign of the atmospheric mass difference $\\Delta m^2_{23}$.We present a simple analytical formula for the oscillation probabilities inmatter, with all neutrino mass differences non-vanishing, which clarifies thesubtleties involved in disentangling the unknown parameters. The appearance of``wrong-sign muons'' at three reference baselines is considered: 732 km, 3500km, and 7332 km. We exploit the dependence of the signal on the neutrinoenergy, and include as well realistic background estimations and detectionefficiencies. The optimal baseline turns out to be ${\\cal O}(3000$ km).Analyses combining the information from different baselines are also presented.

  8. Mexico Terrain Corrected Free Air Anomalies (97)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' gravity anomaly grid for Mexico, North-Central America and the Western Caribbean Sea is NOT the input data set used in the development of the MEXICO97 model....

  9. SEG US Bouguer Gravity Anomaly Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SEG gravity data are the product of the ad hoc Gravity Anomaly Map (GAM) Committee, sponsored by the Society of Exploration Geophysicists (SEG) and the U.S....

  10. The Giant Radio Array for Neutrino Detection

    Directory of Open Access Journals (Sweden)

    Martineau-Huynh Olivier

    2017-01-01

    Full Text Available The Giant Radio Array for Neutrino Detection (GRAND is a planned array of ~ 2·105 radio antennas deployed over ~ 200 000 km2 in a mountainous site. It aims primarly at detecting high-energy neutrinos via the observation of extensive air showers induced by the decay in the atmosphere of taus produced by the interaction of cosmic neutrinos under the Earth surface. GRAND aims at reaching a neutrino sensitivity of 5 · 10−11 E−2 GeV−1 cm−2 s−1 sr−1 above 3 · 1016 eV. This ensures the detection of cosmogenic neutrinos in the most pessimistic source models, and ~50 events per year are expected for the standard models. The instrument will also detect UHECRs and possibly FRBs. Here we show how our preliminary design should enable us to reach our sensitivity goals, and discuss the steps to be taken to achieve GRAND, while the compelling science case for GRAND is discussed in more details in [1].

  11. Results from the ANTARES neutrino telescope

    Directory of Open Access Journals (Sweden)

    Spurio M.

    2016-01-01

    Full Text Available ANTARES is the largest neutrino telescope in the Northern hemisphere, running in its final configuration since 2008. After the discovery of a cosmic neutrino diffuse flux by the IceCube detector, the search for its origin has become a key mission in high-energy astrophysics. The ANTARES sensitivity is large enough to constrain the origin of the IceCube excess from regions extended up to 0.2 sr in the Southern sky. The Southern sky has been studied searching for point-like objects, for extended regions of emission (as the Galactic plane and for signal from transient objects selected through multimessenger observations. Upper limits are presented assuming different spectral indexes for the energy spectrum of neutrino sources. In addition, ANTARES provides results on studies of the sky in combination with different multimessenger experiments, on atmospheric neutrinos, on the searches for rare particles in the cosmic radiation (such as magnetic monopoles and nuclearites, and on Earth and Sea science. Particularly relevant are the searches for Dark Matter: the limits obtained for the spin-dependent WIMP-nucleon cross section overcome that of existing direct-detection experiments. The recent results, widely discussed in dedicated presentations during the 7th edition of the Very Large Volume Neutrino Telescope Workshop (VLVνT-2015, are highlighted in this paper.

  12. Precision neutrino experiments vs the Littlest Seesaw

    Energy Technology Data Exchange (ETDEWEB)

    Ballett, Peter [Institute for Particle Physics Phenomenology,Department of Physics, Durham University,South Road, Durham DH1 3LE (United Kingdom); King, Stephen F. [School of Physics and Astronomy, University of Southampton,SO17 1BJ Southampton (United Kingdom); Pascoli, Silvia [Institute for Particle Physics Phenomenology,Department of Physics, Durham University,South Road, Durham DH1 3LE (United Kingdom); Prouse, Nick W. [School of Physics and Astronomy, University of Southampton,SO17 1BJ Southampton (United Kingdom); Particle Physics Research Centre, School of Physics and Astronomy,Queen Mary University of London,Mile End Road, London E1 4NS (United Kingdom); Wang, TseChun [Institute for Particle Physics Phenomenology,Department of Physics, Durham University,South Road, Durham DH1 3LE (United Kingdom)

    2017-03-21

    We study to what extent upcoming precision neutrino oscillation experiments will be able to exclude one of the most predictive models of neutrino mass and mixing: the Littlest Seesaw. We show that this model provides a good fit to current data, predicting eight observables from two input parameters, and provide new assessments of its predictions and their correlations. We then assess the ability to exclude this model using simulations of upcoming neutrino oscillation experiments including the medium-distance reactor experiments JUNO and RENO-50 and the long-baseline accelerator experiments DUNE and T2HK. We find that an accurate determination of the currently least well measured parameters, namely the atmospheric and solar angles and the CP phase δ, provide crucial independent tests of the model. For θ{sub 13} and the two mass-squared differences, however, the model’s exclusion requires a combination of measurements coming from a varied experimental programme. Our results show that the synergy and complementarity of future experiments will play a vital role in efficiently discriminating between predictive models of neutrino flavour, and hence, towards advancing our understanding of neutrino oscillations in the context of the flavour puzzle of the Standard Model.

  13. Oscillating neutrinos from the Galactic center

    International Nuclear Information System (INIS)

    Crocker, R.M.; Volkas, R.R.; Melia, F.

    1999-11-01

    It has recently been demonstrated that the γ-ray emission spectrum of the EGRET-identified, central Galactic source 2EG J1746-2852 can be well fitted by positing that these photons are generated by the decay of π 0, s produced in p-p scattering at or near an energizing shock. Such scattering also produces charged pions which decay leptonically. The ratio of γ-rays to neutrinos generated by the central Galactic source may be accurately determined and a well-defined and potentially-measurable high energy neutrino flux at Earth is unavoidable. An opportunity, therefore, to detect neutrino oscillations over an unprecedented scale is offered by this source. In this paper we assess the prospects for such an observation with the generation of neutrino Cerenkov telescopes now in the planning stage. We determine that the next generation of detectors may find an oscillation signature in the Galactic Center (GC) signal, but that such an observation will probably not further constrain the oscillation parameter space mapped out by current atmospheric, solar, reactor and accelerator neutrino oscillation experiments

  14. Dyonic anomalies

    International Nuclear Information System (INIS)

    Henningson, Mans; Johansson, Erik P.G.

    2005-01-01

    We consider the problem of coupling a dyonic p-brane in d=2p+4 space-time dimensions to a prescribed (p+2)-form field strength. This is particularly subtle when p is odd. For the case p=1, we explicitly construct a coupling functional, which is a sum of two terms: one which is linear in the prescribed field strength, and one which describes the coupling of the brane to its self-field and takes the form of a Wess-Zumino term depending only on the embedding of the brane world-volume into space-time. We then show that this functional is well-defined only modulo a certain anomaly, related to the Euler class of the normal bundle of the brane world-volume

  15. Measurements of neutrino mass

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1985-01-01

    Direct experimental information of neutrino mass as derived from the study of nuclear and elementary-particle weak decays is reviewed. Topics include tritium beta decay; the 3 He-T mass difference; electron capture decay of 163 Ho and 158 Tb; and limits on massive neutrinos from cosmology. 38 references

  16. Wroclaw neutrino event generator

    International Nuclear Information System (INIS)

    Nowak, J A

    2006-01-01

    A neutrino event generator developed by the Wroclaw Neutrino Group is described. The physical models included in the generator are discussed and illustrated with the results of simulations. The considered processes are quasi-elastic scattering and pion production modelled by combining the Δ resonance excitation and deep inelastic scattering

  17. Neutrino bounds from leptogenesis

    International Nuclear Information System (INIS)

    Hambye, T.

    2005-01-01

    Through leptogenesis, baryogenesis could have the same origin as neutrino masses. Emphasis is put on the conditions which, in order that this mechanism works, need to be fulfilled by the neutrino masses as well as by the heavy state masses. The model dependence of these conditions is discussed

  18. Neutrino flavor entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, Massimo [Dipartimento di Fisica, Università degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy); INFN Sezione di Napoli, Gruppo collegato di Salerno (Italy); Dell' Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio [Dipartimento di Ingegneria Industriale, Università degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)

    2013-04-15

    Neutrino oscillations can be equivalently described in terms of (dynamical) entanglement of neutrino flavor modes. We review previous results derived in the context of quantum mechanics and extend them to the quantum field theory framework, were a rich structure of quantum correlations appears.

  19. Neutrino flavor entanglement

    International Nuclear Information System (INIS)

    Blasone, Massimo; Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2013-01-01

    Neutrino oscillations can be equivalently described in terms of (dynamical) entanglement of neutrino flavor modes. We review previous results derived in the context of quantum mechanics and extend them to the quantum field theory framework, were a rich structure of quantum correlations appears

  20. Neutrinos (3/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    In this course, the basic features of neutrino physics are reviewed, pointing to the very special characteristics of this elusive particle and to the related open questions. Emphasis is given to the neutrino oscillation mechanism and to the state of the art of the experimental studies, mostly in relation to the many interesting results obtained in the last years.

  1. Neutrinos (2/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    In this course, the basic features of neutrino physics are reviewed, pointing to the very special characteristics of this elusive particle and to the related open questions. Emphasis is given to the neutrino oscillation mechanism and to the state of the art of the experimental studies, mostly in relation to the many interesting results obtained in the last years.

  2. Neutrinos (1/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    In this course, the basic features of neutrino physics are reviewed, pointing to the very special characteristics of this elusive particle and to the related open questions. Emphasis is given to the neutrino oscillation mechanism and to the state of the art of the experimental studies, mostly in relation to the many interesting results obtained in the last years.

  3. The solar neutrino problem

    International Nuclear Information System (INIS)

    Roxburgh, I.W.

    1981-01-01

    The problems posed by the low flux of neutrinos from the sun detected by Davis and coworkers are reviewed. Several proposals have been advanced to resolve these problems and the more reasonable (in the author's opinion) are presented. Recent claims that the neutrino may have finite mass are also considered. (orig.)

  4. Perturbed S3 neutrinos

    DEFF Research Database (Denmark)

    jora, Renata; Schechter, Joseph; Naeem Shahid, M.

    2009-01-01

    We study the effects of the perturbation which violates the permutation symmetry of three Majorana neutrinos but preserves the well known (23) interchange symmetry. This is done in the presenceof an arbitrary Majorana phase which serves to insure the degeneracy of the three neutrinos at the unper...... at the unperturbed level....

  5. GENIUS Project, Neutrino Oscillations and Cosmology: Neutrinos Reveal Their Nature ?

    International Nuclear Information System (INIS)

    Czakon, M.; Studnik, J.; Zralek, M.; Gluza, J.

    2000-01-01

    The neutrinoless double beta decay as well as any other laboratory experiment has not been able to answer the question of the neutrino's nature. Hints on the answer are available when neutrino oscillations and (ββ) 0ν are considered simultaneously. In this case phenomenologically interesting neutrino mass schemes can lead to non-vanishing and large values of (m ν ). As a consequence, some schemes with Majorana neutrinos can be ruled out even now. If we assume that in addition neutrinos contribute to Hot Dark Matter then the window for Majorana neutrinos is even more restricted, e.g. GENIUS experiment will be sensitive to scenarios with three Majorana neutrinos. (author)

  6. Physics of neutrino flavor transformation through matter-neutrino resonances

    Science.gov (United States)

    Wu, Meng-Ru; Duan, Huaiyu; Qian, Yong-Zhong

    2016-01-01

    In astrophysical environments such as core-collapse supernovae and neutron star-neutron star or neutron star-black hole mergers where dense neutrino media are present, matter-neutrino resonances (MNRs) can occur when the neutrino propagation potentials due to neutrino-electron and neutrino-neutrino forward scattering nearly cancel each other. We show that neutrino flavor transformation through MNRs can be explained by multiple adiabatic solutions similar to the Mikheyev-Smirnov-Wolfenstein mechanism. We find that for the normal neutrino mass hierarchy, neutrino flavor evolution through MNRs can be sensitive to the shape of neutrino spectra and the adiabaticity of the system, but such sensitivity is absent for the inverted hierarchy.

  7. Neutrino astronomy and search for WIMPs with MACRO

    CERN Document Server

    Bernardini, P

    2000-01-01

    Upward-going muons, induced primarily by atmospheric neutrinos, are used to search for neutrinos of astrophysical origin. No evidence has been found looking at the event direction and flux limits are obtained on candidate sources. A space-time correlation between gamma ray bursts and upward-going muons has been also investigated. Furthermore the search for a neutrino signal from the Earth and the Sun induced by weakly interacting massive particles (WIMP) has been updated. The number of events from the Sun and from the Earth is compatible with the background from atmospheric neutrinos. Therefore flux limits for different search cones have been estimated. Here we concentrate on neutralinos as WIMP candidates and limits depending on the neutralino mass are given and compared with the prediction of supersymmetric models. (11 refs).

  8. Physics Potential of Very Intense Conventional Neutrino Beams

    CERN Document Server

    Gómez-Cadenas, J J; Burguet-Castell, J; Casper, David William; DOnega, M; Gilardoni, S S; Hernández, Pilar; Mezzetto, Mauro

    2001-01-01

    The physics potential of high intensity conventional beams is explored. We consider a low energy super beam which could be produced by a proposed new accelerator at CERN, the Super Proton Linac. Water Cherenkov and liquid oil scintillator detectors are studied as possible candidates for a neutrino oscillation experiment which could improve our current knowledge of the atmospheric parameters and measure or severely constrain the parameter connecting the atmospheric and solar realms. It is also shown that a very large water detector could eventually observe leptonic CP violation. The reach of such an experiment to the neutrino mixing parameters would lie in-between the next generation of neutrino experiments (MINOS, OPERA, etc) and a future neutrino factory.

  9. Neutrino mass from Cosmology

    CERN Document Server

    Lesgourgues, Julien

    2012-01-01

    Neutrinos can play an important role in the evolution of the Universe, modifying some of the cosmological observables. In this contribution we summarize the main aspects of cosmological relic neutrinos and we describe how the precision of present cosmological data can be used to learn about neutrino properties, in particular their mass, providing complementary information to beta decay and neutrinoless double-beta decay experiments. We show how the analysis of current cosmological observations, such as the anisotropies of the cosmic microwave background or the distribution of large-scale structure, provides an upper bound on the sum of neutrino masses of order 1 eV or less, with very good perspectives from future cosmological measurements which are expected to be sensitive to neutrino masses well into the sub-eV range.

  10. The solar neutrino problem

    International Nuclear Information System (INIS)

    Zatsepin, G.

    1982-01-01

    The problem of missing solar neutrinos is reviewed and discussed. The experiments of the 70s show a solar neutrino flux to be 4 times lower than the flux predicted by the standard model of the Sun. The three possible origins of this contradiction are analysed: the cross sections of nuclear reactions going on in the internal region of the Sun must be remeasured; the unknown properties of neutrino, like neutrino oscillation or decay, must be investigated theoretically and experimentally; or the standard model of the Sun must be changed, e.g. by a periodically pulsating star model or by a model describing periodic admixtures of He-3 to the central region of the Sun. Some new models and newly proposed experiments are described. The importance of new electronic detection methods of neutrinos is underlined. (D.Gy.)

  11. IceCube: Particle Astrophysics with High Energy Neutrinos

    CERN Multimedia

    Université de Genève

    2012-01-01

    GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92 Monday 7 May 2012 17h. - Ecole de Physique, Auditoire Stueckelberg IceCube: Particle Astrophysics with High Energy Neutrinos Prof. Francis Halzen / University of Wisconsin, Madison Construction and commissioning of the cubic-kilometer IceCube neutrino detector and its low energy extension DeepCore have been completed. The instrument detects neutrinos over a wide energy range: from 10 GeV atmospheric neutrinos to 1010 GeV cosmogenic neutrinos. We will discuss initial results based on a subsample of the ~100,000 neutrino events recorded during construction. We will emphasize the first measurement of the high-energy atmospheric neutrino spectrum, the search for the still enigmatic sources of the Galactic and extragalactic cosmic rays and for the particle nature of dark matter. Une ve...

  12. An all-sky, three-flavor search for neutrinos from gamma-ray bursts with the icecube neutrino observatory

    Science.gov (United States)

    Hellauer, Robert Eugene, III

    Ultra high energy cosmic rays (UHECRs), defined by energy greater than 10. 18 eV, have been observed for decades, but their sources remain unknown. Protons and heavy ions, which comprise cosmic rays, interact with galactic and intergalactic magnetic fields and, consequently, do not point back to their sources upon measurement. Neutrinos, which are inevitably produced in photohadronic interactions, travel unimpeded through the universe and disclose the directions of their sources. Among the most plausible candidates for the origins of UHECRs is a class of astrophysical phenomena known as gamma-ray bursts (GRBs). GRBs are the most violent and energetic events witnessed in the observable universe. The IceCube Neutrino Observatory, located in the glacial ice 1450 m to 2450 m below the South Pole surface, is the largest neutrino detector in operation. IceCube detects charged particles, such as those emitted in high energy neutrino interactions in the ice, by the Cherenkov light radiated by these particles. The measurement of neutrinos of 100 TeV energy or greater in IceCube correlated with gamma-ray photons from GRBs, measured by spacecraft detectors, would provide evidence of hadronic interaction in these powerful phenomena and confirm their role in ultra high energy cosmic ray production. This work presents the first IceCube GRB-neutrino coincidence search optimized for charged-current interactions of electron and tau neutrinos as well as neutral-current interactions of all neutrino flavors, which produce nearly spherical Cherenkov light showers in the ice. These results for three years of data are combined with the results of previous searches over four years of data optimized for charged-current muon neutrino interactions, which produce extended Cherenkov light tracks. Several low significance events correlated with GRBs were detected, but are consistent with the background expectation from atmospheric muons and neutrinos. The combined results produce limits that

  13. Massive Cherenkov neutrino facilities?their evolution, their future: Twenty-five years at these International Neutrino Conferences

    International Nuclear Information System (INIS)

    Sulak, Lawrence R.

    2005-01-01

    This review traces the evolution of massive water Cherenkov tracking calorimeters. Pioneering concepts, first presented in this conference a quarter of a century ago, have led to 1) IMB, the first large detector (10kT), which was designed primarily to search for proton decay, and secondarily to be sensitive to supernova neutrinos and atmospheric oscillations, and 2) Dumand, an attempt to initiate the search for TeV astrophysical neutrinos with a prototype for a 1 km 3 telescope. The concepts and initial work on IMB influenced subsequent detectors: Kamiokande, Super-K, SNO, and, in part, Kamland. These detectors have to their credit the elucidation of the physics of atmospheric, solar, reactor and supernova neutrinos. With the advent of the K2K beam, controlled accelerator neutrinos confirm the atmospheric studies. The path breaking developments of Dumand now are incorporated in the high-volume Amanda and Antares detectors, as well as their sequels, IceCube and the proposed Cubic Kilometer detector. The future (ultimate?) facilities have new physics challenges: A high-resolution megaton detector, eventually coupled with an intense accelerator neutrino source, is critical for precision studies of neutrino oscillation parameters and for the potential discovery of CP violation in the lepton sector. The Gigaton TeV neutrino telescopes (IceCube and Cubic Kilometer) seek to open high-energy neutrino astronomy, still an elusive goal. (Amanda, IceCube, and UNO, as well as Minos, Icarus and other large neutrino facilities using non-Cherenkov technologies, are treated in other contributions to this volume.)

  14. Sudbury neutrino observatory

    International Nuclear Information System (INIS)

    Ewan, G.T.; Mak, H.B.; Robertson, B.C.

    1985-07-01

    This report discusses the proposal to construct a unique neutrino observatory. The observatory would contain a Cerenkov detector which would be located 2070 m below the earth's surface in an INCO mine at Creighton near Sudbury and would contain 1000 tons of D20 which is an excellent target material. Neutrinos carry detailed information in their spectra on the reactions taking place deep in the interstellar interior and also provide information on supernova explosions. In addition to their role as astrophysical probes a knowledge of the properties of neutrinos is crucial to theories of grand unification. There are three main objectives of the laboratory. The prime objective will be to study B electron neutrinos from the sun by a direct counting method that will measure their energy and direction. The second major objective will be to establish if electron neutrinos change into other neutrino species in transit from the sun to the earth. Finally it is hoped to be able to observe a supernova with the proposed detector. The features of the Sudbury Neutrino Observatory which make it unique are its high sensitivity to electron neutrinos and its ability to detect all other types of neutrinos of energy greater than 2.2 MeV. In section II of this proposal the major physics objectives are discussed in greater detail. A conceptual design for the detector, and measurements and calculations which establish the feasibility of the neutrino experiments are presented in section III. Section IV is comprised of a discussion on the possible location of the laboratory and Section V contains a brief indication of the main areas to be studied in Phase II of the design study

  15. The Sudbury neutrino observatory

    International Nuclear Information System (INIS)

    McLatchie, W.; Earle, E.D.

    1987-08-01

    This report initially discusses the Homestake Mine Experiment, South Dakota, U.S.A. which has been detecting neutrinos in 38 x 10 litre vats of cleaning fluid containing chlorine since the 1960's. The interation between neutrinos and chlorine produces argon so the number of neutrinos over time can be calculated. However, the number of neutrinos which have been detected represent only one third to one quarter of the expected number i.e. 11 per month rather than 48. It is postulated that the electron-neutrinos originating in the solar core could change into muon- or tau-neutrinos during passage through the high electron densities of the sun. The 'low' results at Homestake could thus be explained by the fact that the experiment is only sensitive to electron-neutrinos. The construction of a heavy water detector is therefore proposed as it would be able to determine the energy of the neutrinos, their time of arrival at the detector and their direction. It is proposed to build the detector at Creighton mine near Sudbury at a depth of 6800 feet below ground level thus shielding the detector from cosmic rays which would completely obscure the neutrino signals from the detector. The report then discusses the facility itself, the budget estimate and the social and economic impact on the surrounding area. At the time of publication the proposal for the Sudbury Neutrino Observatory was due to be submitted for peer review by Oct. 1, 1987 and then to various granting bodies charged with the funding of scientific research in Canada, the U.S.A. and Britain

  16. Neutrino statistics: elementary problems and some applications

    Energy Technology Data Exchange (ETDEWEB)

    Kuchowicz, B

    1973-01-01

    The treatment of neutrinos includes neutrinos in statistical equilibrium, mathematical refinements, application to stars, the relic neutrinos in cosmology, and some unsolved problems and prospects. (JFP)

  17. High energy neutrinos to see inside the Earth

    International Nuclear Information System (INIS)

    Borriello, E.; De Lellis, G.; Mangano, G.

    2010-01-01

    The new chances offered by elementary particles as probes of the internal structure of our planet are briefly reviewed, by paying particular attention to the case of high energy neutrinos. In particular, the new results concerning the shadow of mountains on ν τ flux at Pierre Auger Observatory is briefly discussed, and moreover the possibility to use the tail of atmospheric neutrinos to probe the core/mantle transition region is just sketched. (author)

  18. A study of muon neutrino to electron neutrino oscillations in the MINOS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tingjun [Stanford Univ., CA (United States)

    2009-03-01

    The observation of neutrino oscillations (neutrino changing from one flavor to another) has provided compelling evidence that the neutrinos have non-zero masses and that leptons mix, which is not part of the original Standard Model of particle physics. The theoretical framework that describes neutrino oscillation involves two mass scales (Δmatm2 and Δmsol2), three mixing angles (θ12, θ23, and θ13) and one CP violating phase (δCP). Both mass scales and two of the mixing angles (θ12 and θ23) have been measured by many neutrino experiments. The mixing angle θ13, which is believed to be very small, remains unknown. The current best limit on θ13 comes from the CHOOZ experiment: θ13 < 11° at 90% C.L. at the atmospheric mass scale. δCP is also unknown today. MINOS, the Main Injector Neutrino Oscillation Search, is a long baseline neutrino experiment based at Fermi National Accelerator Laboratory. The experiment uses a muon neutrino beam, which is measured 1 km downstream from its origin in the Near Detector at Fermilab and then 735 km later in the Far Detector at the Soudan mine. By comparing these two measurements, MINOS can obtain parameters in the atmospheric sector of neutrino oscillations. MINOS has published results on the precise measurement of Δmatm2 and θ23 through the disappearance of muon neutrinos in the Far Detector and on a search for sterile neutrinos by looking for a deficit in the number of neutral current interactions seen in the Far Detector. MINOS also has the potential to improve the limit on the neutrino mixing angle θ13 or make the first measurement of its value by searching for an electron neutrino appearance signal in the Far Detector. This is the focus of the study presented in this thesis. We developed a neural network based algorithm to

  19. The physics of massive neutrinos

    CERN Document Server

    Kayser, Boris; Perrier, Frederic

    1989-01-01

    This book explains the physics and phenomenology of massive neutrinos. The authors argue that neutrino mass is not unlikely and consider briefly the search for evidence of this mass in decay processes before they examine the physics and phenomenology of neutrino oscillation. The physics of Majorana neutrinos (neutrinos which are their own antiparticles) is then discussed. This volume requires of the reader only a knowledge of quantum mechanics and of very elementary quantum field theory.

  20. Status of Heavy Neutrino Experiments

    CERN Document Server

    Wynne, Benjamin; The ATLAS collaboration

    2017-01-01

    The observation of neutrino oscillations raises the possibility that there exist additional, undiscovered high-mass neutrinos, giving mass to Standard Model neutrinos via the seesaw mechanism. By pushing the collider energy frontier at the LHC, the possibility arises that these heavy neutrinos may be produced and identified. We summarise the latest LHC results of searches for heavy neutrinos in a variety of final states.

  1. Neutrino masses and spontaneously broken flavor symmetries

    International Nuclear Information System (INIS)

    Staudt, Christian

    2014-01-01

    We study the phenomenology of supersymmetric flavor models. We show how the predictions of models based on spontaneously broken non-Abelian discrete flavor symmetries are altered when we include so-called Kaehler corrections. Furthermore, we discuss anomaly-free discrete R symmetries which are compatible with SU(5) unification. We find a set of symmetries compatible with suppressed Dirac neutrino masses and a unique symmetry consistent with the Weinberg operator. We also study a pseudo-anomalous U(1) R symmetry which explains the fermion mass hierarchies and, when amended with additional singlet fields, ameliorates the fine-tuning problem.

  2. Neutrinos at CERN

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    CERN's long and distinguished neutrino tradition began in 1958 at the then new 500 MeV synchrocyclotron (SC) with the first observation of the decay of a charged pion into an electron and a neutrino. At that time, the first ideas on the special (vector/axial vector) structure of the weak interactions had been put forward by Feynman and Gell-Mann and by Marshak and Sudarshan, but the continual non-observation of that charged pion decay was holding up progress. This decay is only one part in ten thousand, and is masked by the dominant muon-neutrino channel. A special telescope was built to pick up the high energy electrons from the pion decay. In 1962 came another SC neutrino success, with the first measurement of the decay of a charged pion into a neutral one, with emission of an electron and a neutrino. Meanwhile the main thrust of CERN's neutrino effort was taking shape at the PS. By the close of 1960, CERN had decided to attack neutrino physics using several detectors - a 1m heavy liquid bubble chamber from Andre Lagarrigue's team in Paris, a CERN 1 m heavy liquid bubble chamber, and a hybrid chamber/counter from a group led by Helmut Faissner

  3. Monochromatic neutrino beams

    International Nuclear Information System (INIS)

    Bernabeu, Jose; Burguet-Castell, Jordi; Espinoza, Catalina; Lindroos, Mats

    2005-01-01

    In the last few years spectacular results have been achieved with the demonstration of non vanishing neutrino masses and flavour mixing. The ultimate goal is the understanding of the origin of these properties from new physics. In this road, the last unknown mixing [U e3 ] must be determined. If it is proved to be non-zero, the possibility is open for Charge Conjugation-Parity (CP) violation in the lepton sector. This will require precision experiments with a very intense neutrino source. Here a novel method to create a monochromatic neutrino beam, an old dream for neutrino physics, is proposed based on the recent discovery of nuclei that decay fast through electron capture. Such nuclei will generate a monochromatic directional neutrino beam when decaying at high energy in a storage ring with long straight sections. We also show that the capacity of such a facility to discover new physics is impressive, so that fine tuning of the boosted neutrino energy allows precision measurements of the oscillation parameters even for a [U e3 ] mixing as small as 1 degree. We can thus open a window to the discovery of CP violation in neutrino oscillations

  4. Sudbury neutrino observatory

    International Nuclear Information System (INIS)

    Ewan, G.T.; Evans, H.C.; Lee, H.W.

    1986-10-01

    This report is a supplement to a report (SNO-85-3 (Sudbury Neutrino Observatory)) which contained the results of a feasibility study on the construction of a deep underground neutrino observatory based on a 1000 ton heavy water Cerenkov detector. Neutrinos carry detailed information in their spectra on the reactions taking place deep in the interstellar interior and also provide information on supernova explosions. In addition to their role as astrophysical probes, a knowledge of the properties of neutrinos is crucial to theories of grand unification. The Sudbury Neutrino Observatory is unique in its high sensitivity to electron neutrinos and its ability to detect all other types of neutrinos of energy greater than 2.2 MeV. The results of the July 1985 study indicated that the project is technically feasible in that the proposed detector can measure the direction and energy of electron neutrinos above 7 MeV and the scientific programs will make significant contributions to physics and astrophysics. This present report contains new information obtained since the 1985 feasibility study. The enhanced conversion of neutrinos in the sun and the new physics that could be learned using the heavy water detector are discussed in the physics section. The other sections will discuss progress in the areas of practical importance in achieving the physics objectives such as new techniques to measure, monitor and remove low levels of radioactivity in detector components, ideas on calibration of the detector and so forth. The section entitled Administration contains a membership list of the working groups within the SNO collaboration

  5. Anomaly General Circulation Models.

    Science.gov (United States)

    Navarra, Antonio

    The feasibility of the anomaly model is assessed using barotropic and baroclinic models. In the barotropic case, both a stationary and a time-dependent model has been formulated and constructed, whereas only the stationary, linear case is considered in the baroclinic case. Results from the barotropic model indicate that a relation between the stationary solution and the time-averaged non-linear solution exists. The stationary linear baroclinic solution can therefore be considered with some confidence. The linear baroclinic anomaly model poses a formidable mathematical problem because it is necessary to solve a gigantic linear system to obtain the solution. A new method to find solution of large linear system, based on a projection on the Krylov subspace is shown to be successful when applied to the linearized baroclinic anomaly model. The scheme consists of projecting the original linear system on the Krylov subspace, thereby reducing the dimensionality of the matrix to be inverted to obtain the solution. With an appropriate setting of the damping parameters, the iterative Krylov method reaches a solution even using a Krylov subspace ten times smaller than the original space of the problem. This generality allows the treatment of the important problem of linear waves in the atmosphere. A larger class (nonzonally symmetric) of basic states can now be treated for the baroclinic primitive equations. These problem leads to large unsymmetrical linear systems of order 10000 and more which can now be successfully tackled by the Krylov method. The (R7) linear anomaly model is used to investigate extensively the linear response to equatorial and mid-latitude prescribed heating. The results indicate that the solution is deeply affected by the presence of the stationary waves in the basic state. The instability of the asymmetric flows, first pointed out by Simmons et al. (1983), is active also in the baroclinic case. However, the presence of baroclinic processes modifies the

  6. CONFERENCE: Neutrino mass

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The successes in capturing neutrinos from last year's supernova underlined the usefulness of large underground detectors for this sort of physics, and ambitious new projects are now in the pipeline. Meanwhile another approach to cosmic neutrino detection, carefully prepared during the past decade, has now taken its first experimental steps. DUMAND - Deep Underwater Muon and Neutrino Detector - aims to use the ocean as the active medium, tracking particles with arrays of photomultipliers picking up the tiny nanosecond flashes of blue Cherenkov light emitted by cosmic particles as they pass through seawater

  7. CONFERENCE: Neutrino mass

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1988-06-15

    The successes in capturing neutrinos from last year's supernova underlined the usefulness of large underground detectors for this sort of physics, and ambitious new projects are now in the pipeline. Meanwhile another approach to cosmic neutrino detection, carefully prepared during the past decade, has now taken its first experimental steps. DUMAND - Deep Underwater Muon and Neutrino Detector - aims to use the ocean as the active medium, tracking particles with arrays of photomultipliers picking up the tiny nanosecond flashes of blue Cherenkov light emitted by cosmic particles as they pass through seawater.

  8. Neutrino mass experiments

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1989-01-01

    The current status of the experimental search for neutrino mass is reviewed, with emphasis on direct kinematic methods. Simpson and Hime report finding new evidence for a 17-keV neutrino in the β decay of 3 H and 35 S. The situation concerning the electron neutrino mass as measured in tritium beta decay has not changed significantly in the last two years. We discuss the ''model independent'' lower limit of 17 eV obtained by the ITEP group in light of existing data on the 3 H-- 3 He mass difference. 42 refs., 1 fig., 1 tab

  9. A study of muon neutrino disappearance in the MINOS detectors and the NuMI beam

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Jiajie [Univ. of South Carolina, Columbia, SC (United States)

    2010-01-01

    There is now substantial evidence that the proper description of neutrino involves two representations related by the 3 x 3 PMNS matrix characterized by either distinct mass or flavor. The parameters of this mixing matrix, three angles and a phase, as well as the mass differences between the three mass eigenstates must be determined experimentally. The Main Injector Neutrino Oscillation Search experiment is designed to study the flavor composition of a beam of muon neutrinos as it travels between the Near Detector at Fermi National Accelerator Laboratory at 1 km from the target, and the Far Detector in the Soudan iron mine in Minnesota at 735 km from the target. From the comparison of reconstructed neutrino energy spectra at the near and far location, precise measurements of neutrino oscillation parameters from muon neutrino disappearance and electron neutrino appearance are expected. It is very important to know the neutrino flux coming from the source in order to achieve the main goal of the MINOS experiment: precise measurements of the atmospheric mass splitting |Δm232|, sin2 θ23. The goal of my thesis is to accurately predict the neutrino flux for the MINOS experiment and measure the neutrino mixing angle and atmospheric mass splitting.

  10. A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam

    CERN Document Server

    Antonello, M.; Bellini, V.; Benetti, P.; Bertolucci, S.; Bilokon, H.; Boffelli, F.; Bonesini, M.; Bremer, J.; Calligarich, E.; Centro, S.; Cocco, A.G.; Dermenev, A.; Falcone, A.; Farnese, C.; Fava, A.; Ferrari, A.; Gibin, D.; Gninenko, S.; Golubev, N.; Guglielmi, A.; Ivashkin, A.; Kirsanov, M.; Kisiel, J.; Kose, U.; Mammoliti, F.; Mannocchi, G.; Menegolli, A.; Meng, G.; Mladenov, D.; Montanari, C.; Nessi, M.; Nicoletto, M.; Noto, F.; Picchi, P.; Pietropaolo, F.; Plonski, P.; Potenza, R.; Rappoldi, A.; Raselli, G.L.; Rossella, M.; Rubbia, C.; Sala, P.; Scaramelli, A.; Sobczyk, J.; Spanu, M.; Stefan, D.; Sulej, R.; Sutera, C.M.; Torti, M.; Tortorici, F.; Varanini, F.; Ventura, S.; Vignoli, C.; Wachala, T.; Zani, A.; Adams, C.; Andreopoulos, C.; Ankowski, A.M.; Asaadi, J.; Bagby, L.; Baller, B.; Barros, N.; Bass, M.; Bishai, M.; Bitadze, A.; Bugel, L.; Camilleri, L.; Cavanna, F.; Chen, H.; Chi, C.; Church, E.; Cianci, D.; Collin, G.H.; Conrad, J.M.; De Geronimo, G.; Dharmapalan, R.; Djurcic, Z.; Ereditato, A.; Esquivel, J.; Evans, J.; Fleming, B.T.; Foreman, W.M.; Freestone, J.; Gamble, T.; Garvey, G.; Genty, V.; Goldi, D.; Gramellini, E.; Greenlee, H.; Guenette, R.; Hackenburg, A.; Hanni, R.; Ho, J.; Howell, J.; James, C.; Jen, C.M.; Jones, B.J.P.; Kalousis, L.N.; Karagiorgi, G.; Ketchum, W.; Klein, J.; Klinger, J.; Kreslo, I.; Kudryavtsev, V.A.; Lissauer, D.; Livesly, P.; Louis, W.C.; Luthi, M.; Mariani, C.; Mavrokoridis, K.; McCauley, N.; McConkey, N.; Mercer, I.; Miao, T.; Mills, G.B.; Montanari, D.; Moon, J.; Moss, Z.; Mufson, S.; Norris, B.; Nowak, J.; Pal, S.; Palamara, O.; Pater, J.; Pavlovic, Z.; Perkin, J.; Pulliam, G.; Qian, X.; Qiuguang, L.; Radeka, V.; Rameika, R.; Ratoff, P.N.; Richardson, M.; von Rohr, C.Rudolf; Russell, B.; Schmitz, D.W.; Shaevitz, M.H.; Sippach, B.; Soderberg, M.; Soldner-Rembold, S.; Spitz, J.; Spooner, N.; Strauss, T.; Szelc, A.M.; Taylor, C.E.; Terao, K.; Thiesse, M.; Thompson, L.; Thomson, M.; Thorn, C.; Toups, M.; Touramanis, C.; Van de Water, R.G.; Weber, M.; Whittington, D.; Wongjirad, T.; Yu, B.; Zeller, G.P.; Zennamo, J.; Acciarri, R.; An, R.; Barr, G.; Blake, A.; Bolton, T.; Bromberg, C.; Caratelli, D.; Carls, B.; Convery, M.; Dytmam, S.; Eberly, B.; Gollapinni, S.; Graham, M.; Grosso, R.; Hen, O.; Hewes, J.; Horton-Smith, G.; Johnson, R.A.; Joshi, J.; Jostlein, H.; Kaleko, D.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Li, Y.; Littlejohn, B.; Lockwitz, S.; Lundberg, B.; Marchionni, A.; Marshall, J.; McDonald, K.; Meddage, V.; Miceli, T.; Mooney, M.; Moulai, M.H.; Murrells, R.; Naples, D.; Nienaber, P.; Paolone, V.; Papavassiliou, V.; Pate, S.; Pordes, S.; Raaf, J.L.; Rebel, B.; Rochester, L.; Schukraft, A.; Seligman, W.; St. John, J.; Tagg, N.; Tsai, Y.; Usher, T.; Wolbers, S.; Woodruff, K.; Xu, M.; Yang, T.; Zhang, C.; Badgett, W.; Biery, K.; Brice, S.J.; Dixon, S.; Geynisman, M.; Moore, C.; Snider, E.; Wilson, P.

    2015-01-01

    A Short-Baseline Neutrino (SBN) physics program of three LAr-TPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab is presented. This new SBN Program will deliver a rich and compelling physics opportunity, including the ability to resolve a class of experimental anomalies in neutrino physics and to perform the most sensitive search to date for sterile neutrinos at the eV mass-scale through both appearance and disappearance oscillation channels. Using data sets of 6.6e20 protons on target (P.O.T.) in the LAr1-ND and ICARUS T600 detectors plus 13.2e20 P.O.T. in the MicroBooNE detector, we estimate that a search for muon neutrino to electron neutrino appearance can be performed with ~5 sigma sensitivity for the LSND allowed (99% C.L.) parameter region. In this proposal for the SBN Program, we describe the physics analysis, the conceptual design of the LAr1-ND detector, the design and refurbishment of the T600 detector, the necessary infrastructure required to execute the program, and a possible...

  11. Movement of the pulsars and neutrino oscillations

    International Nuclear Information System (INIS)

    Barkovich, M.A.

    2005-01-01

    The astronomical observations show that the pulsars are not in the center of the remainder of the supernovae that gave its origin, but rather are displaced of the same one and moving to a speed of about 500 km/s, which is much bigger that of the progenitor star. This fact constitutes a strong evidence that the pulsars is accelerated in the moment of its birth and by this it is denominated to this phenomenon 'pulsars kick'. They exist numerous and varied mechanisms to explain this effect, but none makes it in way completely satisfactory. In this thesis we will study in detail a mechanism proposed originally by Kusenko and Segre and that is based on an asymmetric emission of the neutrinos flow induced by the oscillations of the same ones when its spread in a magnetized media. For this end we will develop, in first instance, the Eddington model. This is based on the transport of the neutrino flux and it describes in a reasonable way the atmosphere of a neutron protostar, place where take place the oscillations. Next we will study the problem of the emission of a neutrino gas from a resonance volume. These results will be applied to the study of the kick in the cases of oscillations among active neutrinos and actives with sterile to determine the magnetic field and the oscillation parameters (difference of the square of the masses of those neutrinos and mixture angle in vacuum) required. Finally we will analyze those neutrino oscillations induced by a possible violation of the Equivalence principle and it implication in the pulsars dynamics. (Author)

  12. Sea-ice cover anomalies in the Arctic Basin associated with atmospheric variability from multi-decadal trends to intermittent quasi-biennial oscillations

    Directory of Open Access Journals (Sweden)

    Motoyoshi Ikeda

    2012-06-01

    Full Text Available Arctic Ocean sea ice has been diminishing since 1970, as shown by National Snow and Ice Data Center data. In addition to decadal variability, low ice anomalies in the Pacific–Siberian region have been occurring at shorter timescales. The influence of the widely-known Northern Annular Mode (NAM occurs across all seasons. In this study, empirical orthogonal function (EOF analysis was applied to sea-level pressure in National Centers for Environmental Prediction Reanalysis data for 1960–2007, showing the NAM to be the leading mode of variability and the Arctic Dipole Mode (ADM to be the second leading mode. The ADM changes markedly across seasons. In autumn–winter, it has a pole over Siberia and a pole over Greenland, at opposite signs at a several-year scale, whereas the spring–summer ADM (ADMSS has a pole over Europe and a pole over Canada. In the 1980s, the most influential mode shifted from the NAM to the ADM, when the Pacific sector had low ice cover at a 1-year lag from the positive ADM, which was marked by low pressure over Siberia. In years when the ADMSS was pronounced, it was responsible for distinct ice variability over the East Siberian–Laptev seas. The frequency separation in this study identified the contributions of the ADM and ADMSS. Effects of the latter are difficult to predict since it is intermittent and changes its sign biennially. The ADM and ADMSS should be closely watched in relation to the ongoing ice reduction in the Pacific–Siberian region.

  13. IceCube Gen2. The next-generation neutrino observatory for the South Pole

    Energy Technology Data Exchange (ETDEWEB)

    Santen, Jakob van [DESY, Zeuthen (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    The IceCube Neutrino Observatory is a cubic-kilometer Cherenkov telescope buried in the ice sheet at the South Pole that detects neutrinos of all flavors with energies from tens of GeV to several PeV. The instrument provided the first measurement of the flux of high-energy astrophysical neutrinos, opening a new window to the TeV universe. At the other end of its sensitivity range, IceCube has provided precision measurements of neutrino oscillation parameters that are competitive with dedicated accelerator-based experiments. Here we present design studies for IceCube Gen2, the next-generation neutrino observatory for the South Pole. Instrumenting a volume of more that 5 km{sup 3} with over 100 new strings, IceCube Gen2 will have substantially greater sensitivity to high-energy neutrinos than current-generation instruments. PINGU, a dense infill array, will lower the energy threshold of the inner detector region to 4 GeV, allowing a determination of the neutrino mass hierarchy. On the surface, a large air shower detector will veto high-energy atmospheric muons and neutrinos from the southern hemisphere, enhancing the reach of astrophysical neutrino searches. With its versatile instrumentation, the IceCube Gen2 facility will allow us to explore the neutrino sky with unprecedented sensitivity, providing new constraints on the sources of the highest-energy cosmic rays, and yield precision data on the mixing and mass ordering of neutrinos.

  14. Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 40-string detector

    International Nuclear Information System (INIS)

    Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M.; BenZvi, S.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Feintzeig, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hill, G. C.; Hoshina, K.; Jacobsen, J.; Karle, A.; Krasberg, M.; Kurahashi, N.

    2011-01-01

    The IceCube Neutrino Observatory is a 1 km 3 detector currently taking data at the South Pole. One of the main strategies used to look for astrophysical neutrinos with IceCube is the search for a diffuse flux of high-energy neutrinos from unresolved sources. A hard energy spectrum of neutrinos from isotropically distributed astrophysical sources could manifest itself as a detectable signal that may be differentiated from the atmospheric neutrino background by spectral measurement. This analysis uses data from the IceCube detector collected in its half completed configuration which operated between April 2008 and May 2009 to search for a diffuse flux of astrophysical muon neutrinos. A total of 12 877 upward-going candidate neutrino events have been selected for this analysis. No evidence for a diffuse flux of astrophysical muon neutrinos was found in the data set leading to a 90% C.L. upper limit on the normalization of an E -2 astrophysical ν μ flux of 8.9x10 -9 GeV cm -2 s -1 sr -1 . The analysis is sensitive in the energy range between 35 TeV and 7 PeV. The 12 877 candidate neutrino events are consistent with atmospheric muon neutrinos measured from 332 GeV to 84 TeV and no evidence for a prompt component to the atmospheric neutrino spectrum is found.

  15. Neutrino physics present and future

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    Our understanding of neutrinos has been revolutionized by the discovery that they have nonzero masses and very large mixing. We will explain the phenomenology of massive neutrinos, including neutrino oscillation in vacuum and in matter, and the physics of neutrinos that are their own antiparticles. We will review the evidence for neutrino masses and mixing, and summarize what has been learned about the neutrinos so far. Identifying the very interesting open questions raised by the discovery of neutrino mass, we will discuss how these questions may be answered through future experiments. Finally, we will consider the possibility that CP violation by neutrinos is the key to understanding the matter-antimatter asymmetry of the universe, and discuss the see-saw theory of why neutrino masses are so tiny.

  16. Mirror model for sterile neutrinos

    International Nuclear Information System (INIS)

    Berezinsky, Veniamin; Narayan, Mohan; Vissani, Francesco

    2003-01-01

    Sterile neutrinos are studied as subdominant contribution to solar neutrino physics. The mirror-matter neutrinos are considered as sterile neutrinos. We use the symmetric mirror model with gravitational communication between mirror and visible sectors. This communication term provides mixing between visible and mirror neutrinos with the basic scale μ=v EW 2 /M Pl =2.5x10 -6 eV, where v EW =174 GeV is the vacuum expectation value of the standard electroweak group and M Pl is the Planckian mass. It is demonstrated that each mass eigenstate of active neutrinos splits into two states separated by small Δm 2 . Unsuppressed oscillations between active and sterile neutrinos (ν a ↔ν s ) occur only in transitions between each of these close pairs ('windows'). These oscillations are characterized by very small Δm 2 and can suppress the flux and distort spectrum of pp-neutrinos in detectable way. The other observable effect is anomalous seasonal variation of neutrino flux, which appears in LMA solution. The considered subdominant neutrino oscillations ν a ↔ν s can reveal itself as big effects in observations of supernova neutrinos and high-energy (HE) neutrinos. In the case of HE neutrinos they can provide a very large diffuse flux of active neutrinos unconstrained by the e-m cascade upper limit

  17. Reactor neutrinos study: integration and characterization of the Nucifer detector

    International Nuclear Information System (INIS)

    Gaffiot, Jonathan

    2012-01-01

    The major advances done in the understanding of neutrinos properties and in detector technology have opened the door to a new discipline: the Applied Antineutrino Physics. Indeed, this particle has the great advantage to carry information from its emission place without perturbation. Because neutrinos are inextricably linked to nuclear processes, new applications are in nuclear safeguards. In this context, the Nucifer project aims to test a small electron-antineutrino detector to be installed a few 10 meters from a reactor core for monitoring its thermal power and for testing the sensitivity to the plutonium content. Moreover, recent re-analysis of previous short-distance reactor-neutrino experiments shows a significant discrepancy between measured and expected neutrino count rates. Among the various hypotheses a new phenomenon as the existence of a fourth sterile neutrino can explain this anomaly. To be able to count neutrinos and get the corresponding energy spectrum, the detection is based on the inverse beta decay in about 850 kg of doped liquid scintillator. The experimental challenge is to operate such a small detector in a high background place, due to the closeness with the surface and the reactor radiations. The detector is now finished and data taking has begun at the Osiris research reactor in Saclay since April 2012. Sadly, unexpected low liquid attenuation length and high gamma background level prevented us to highlight neutrinos. We are now waiting for a liquid change and a new lead wall to study reactor monitoring and to test the sterile neutrino hypothesis. (author) [fr

  18. Neutrinos help reconcile Planck measurements with the local universe.

    Science.gov (United States)

    Wyman, Mark; Rudd, Douglas H; Vanderveld, R Ali; Hu, Wayne

    2014-02-07

    Current measurements of the low and high redshift Universe are in tension if we restrict ourselves to the standard six-parameter model of flat ΛCDM. This tension has two parts. First, the Planck satellite data suggest a higher normalization of matter perturbations than local measurements of galaxy clusters. Second, the expansion rate of the Universe today, H0, derived from local distance-redshift measurements is significantly higher than that inferred using the acoustic scale in galaxy surveys and the Planck data as a standard ruler. The addition of a sterile neutrino species changes the acoustic scale and brings the two into agreement; meanwhile, adding mass to the active neutrinos or to a sterile neutrino can suppress the growth of structure, bringing the cluster data into better concordance as well. For our fiducial data set combination, with statistical errors for clusters, a model with a massive sterile neutrino shows 3.5σ evidence for a nonzero mass and an even stronger rejection of the minimal model. A model with massive active neutrinos and a massless sterile neutrino is similarly preferred. An eV-scale sterile neutrino mass--of interest for short baseline and reactor anomalies--is well within the allowed range. We caution that (i) unknown astrophysical systematic errors in any of the data sets could weaken this conclusion, but they would need to be several times the known errors to eliminate the tensions entirely; (ii) the results we find are at some variance with analyses that do not include cluster measurements; and (iii) some tension remains among the data sets even when new neutrino physics is included.

  19. Geo-Neutrinos

    International Nuclear Information System (INIS)

    Dye, S.T.

    2009-01-01

    This paper briefly reviews recent developments in the field of geo-neutrinos. It describes current and future detection projects, discusses modeling projects, suggests an observational program, and visits geo-reactor hypotheses.

  20. Geo-Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Dye, S.T. [Department of Physics and Astronomy, University of Hawaii at Manoa, 2505 Correa Road, Honolulu, Hawaii, 96822 (United States); College of Natural Sciences, Hawaii Pacific University, 45-045 Kamehameha Highway, Kaneohe, Hawaii, 96744 (United States)

    2009-03-15

    This paper briefly reviews recent developments in the field of geo-neutrinos. It describes current and future detection projects, discusses modeling projects, suggests an observational program, and visits geo-reactor hypotheses.