WorldWideScience

Sample records for atmospheric muon flux

  1. Simulation of Atmospheric Muon and Neutrino Fluxes with CORSIKA

    CERN Document Server

    Wentz, J; Bercuci, A; Heck, D; Oehlschläger, J; Rebel, H; Vulpescu, B

    2003-01-01

    The fluxes of atmospheric muons and neutrinos are calculated by a three dimensional Monte Carlo simulation with the air shower code CORSIKA using the hadronic interaction models DPMJET, VENUS, GHEISHA, and UrQMD. For the simulation of low energy primary particles the original CORSIKA has been extended by a parametrization of the solar modulation and a microscopic calculation of the directional dependence of the geomagnetic cut-off functions. An accurate description for the geography of the Earth has been included by a digital elevation model, tables for the local magnetic field in the atmosphere, and various atmospheric models for different geographic latitudes and annual seasons. CORSIKA is used to calculate atmospheric muon fluxes for different locations and the neutrino fluxes for Kamioka. The results of CORSIKA for the muon fluxes are verified by an extensive comparison with recent measurements. The obtained neutrino fluxes are compared with other calculations and the influence of the hadronic interaction...

  2. Simulation of atmospheric temperature effects on cosmic ray muon flux

    Energy Technology Data Exchange (ETDEWEB)

    Tognini, Stefano Castro; Gomes, Ricardo Avelino [Instituto de Física, Universidade Federal de Goiás, CP 131, 74001-970, Goiânia, GO (Brazil)

    2015-05-15

    The collision between a cosmic ray and an atmosphere nucleus produces a set of secondary particles, which will decay or interact with other atmosphere elements. This set of events produced a primary particle is known as an extensive air shower (EAS) and is composed by a muonic, a hadronic and an electromagnetic component. The muonic flux, produced mainly by pions and kaons decays, has a dependency with the atmosphere’s effective temperature: an increase in the effective temperature results in a lower density profile, which decreases the probability of pions and kaons to interact with the atmosphere and, consequently, resulting in a major number of meson decays. Such correlation between the muon flux and the atmosphere’s effective temperature was measured by a set of experiments, such as AMANDA, Borexino, MACRO and MINOS. This phenomena can be investigated by simulating the final muon flux produced by two different parameterizations of the isothermal atmospheric model in CORSIKA, where each parameterization is described by a depth function which can be related to the muon flux in the same way that the muon flux is related to the temperature. This research checks the agreement among different high energy hadronic interactions models and the physical expected behavior of the atmosphere temperature effect by analyzing a set of variables, such as the height of the primary interaction and the difference in the muon flux.

  3. Characterization of the atmospheric muon flux in IceCube

    Science.gov (United States)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Archinger, M.; Argüelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fahey, S.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fuchs, T.; Glagla, M.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Gretskov, P.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jero, K.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Saba, S. M.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schimp, M.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Seckel, D.; Seunarine, S.; Shanidze, R.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Vandenbroucke, J.; van Santen, J.; Vanheule, S.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yáñez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.

    2016-05-01

    Muons produced in atmospheric cosmic ray showers account for the by far dominant part of the event yield in large-volume underground particle detectors. The IceCube detector, with an instrumented volume of about a cubic kilometer, has the potential to conduct unique investigations on atmospheric muons by exploiting the large collection area and the possibility to track particles over a long distance. Through detailed reconstruction of energy deposition along the tracks, the characteristics of muon bundles can be quantified, and individual particles of exceptionally high energy identified. The data can then be used to constrain the cosmic ray primary flux and the contribution to atmospheric lepton fluxes from prompt decays of short-lived hadrons. In this paper, techniques for the extraction of physical measurements from atmospheric muon events are described and first results are presented. The multiplicity spectrum of TeV muons in cosmic ray air showers for primaries in the energy range from the knee to the ankle is derived and found to be consistent with recent results from surface detectors. The single muon energy spectrum is determined up to PeV energies and shows a clear indication for the emergence of a distinct spectral component from prompt decays of short-lived hadrons. The magnitude of the prompt flux, which should include a substantial contribution from light vector meson di-muon decays, is consistent with current theoretical predictions. The variety of measurements and high event statistics can also be exploited for the evaluation of systematic effects. In the course of this study, internal inconsistencies in the zenith angle distribution of events were found which indicate the presence of an unexplained effect outside the currently applied range of detector systematics. The underlying cause could be related to the hadronic interaction models used to describe muon production in air showers.

  4. Characterization of the Atmospheric Muon Flux in IceCube

    CERN Document Server

    Aartsen, M G; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Archinger, M; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; Beiser, E; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Börner, M; Bos, F; Bose, D; Böser, S; Botner, O; Braun, J; Brayeur, L; Bretz, H -P; Buzinsky, N; Casey, J; Casier, M; Cheung, E; Chirkin, D; Christov, A; Christy, B; Clark, K; Classen, L; Coenders, S; Cowen, D F; Silva, A H Cruz; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; Rosendo, E del Pino; Dembinski, H; De Ridder, S; Desiati, P; de Vries, K D; de Wasseige, G; de With, M; DeYoung, T; Díaz-Vélez, J C; di Lorenzo, V; Dumm, J P; Dunkman, M; Eagan, R; Eberhardt, B; Ehrhardt, T; Eichmann, B; Euler, S; Evenson, P A; Fadiran, O; Fahey, S; Fazely, A R; Fedynitch, A; Feintzeig, J; Felde, J; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Fösig, C -C; Fuchs, T; Glagla, M; Gaisser, T K; Gaior, R; Gallagher, J; Gerhardt, L; Ghorbani, K; Gier, D; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Góra, D; Grant, D; Gretskov, P; Groh, J C; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hansmann, B; Hanson, K; Hebecker, D; Heereman, D; Helbing, K; Hellauer, R; Hellwig, D; Hickford, S; Hignight, J; Hill, G C; Hoffman, K D; Hoffmann, R; Holzapfe, K; Homeier, A; Hoshina, K; Huang, F; Huber, M; Huelsnitz, W; Hulth, P O; Hultqvist, K; In, S; Ishihara, A; Jacobi, E; Japaridze, G S; Jero, K; Jurkovic, M; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kauer, M; Keivani, A; Kelley, J L; Kemp, J; Kheirandish, A; Kiryluk, J; Kläs, J; Klein, S R; Kohnen, G; Koirala, R; Kolanoski, H; Konietz, R; Koob, A; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krings, K; Kroll, G; Kroll, M; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leuner, J; Lünemann, J; Madsen, J; Maggi, G; Mahn, K B M; Maruyama, R; Mase, K; Matis, H S; Maunu, R; McNally, F; Meagher, K; Medici, M; Meli, A; Menne, T; Merino, G; Meures, T; Miarecki, S; Middell, E; Middlemas, E; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Pandya, H; Paul, L; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Pütz, J; Quinnan, M; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Reimann, R; Relich, M; Resconi, E; Rhode, W; Richman, M; Richter, S; Riedel, B; Robertson, S; Rongen, M; Rott, C; Ruhe, T; Ryckbosch, D; Saba, S M; Sabbatini, L; Sander, H -G; Sandrock, A; Sandroos, J; Sarkar, S; Schatto, K; Scheriau, F; Schimp, M; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Seckel, D; Seunarine, S; Shanidze, R; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stahlberg, M; Stamatikos, M; Stanev, T; Stanisha, N A; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Strotjohann, N L; Sullivan, G W; Sutherland, M; Taavola, H; Taboada, I; Ter-Antonyan, S; Terliuk, A; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Tosi, D; Tselengidou, M; Turcati, A; Unger, E; Usner, M; Vallecorsa, S; van Eijndhoven, N; Vandenbroucke, J; van Santen, J; Vanheule, S; Veenkamp, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallraff, M; Wandkowsky, N; Weaver, Ch; Wendt, C; Westerhoff, S; Whelan, B J; Whitehorn, N; Wichary, C; Wiebe, K; Wiebusch, C H; Wille, L; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Xu, Y; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Zoll, M

    2015-01-01

    Muons produced in atmospheric cosmic ray showers account for the by far dominant part of the event yield in large-volume underground particle detectors. The IceCube detector, with an instrumented volume of about a cubic kilometer, has the potential to conduct unique investigations on atmospheric muons by exploiting the large collection area and the possibility to track particles over a long distance. Through detailed reconstruction of energy deposition along the tracks, the characteristics of muon bundles can be quantified, and individual particles of exceptionally high energy identified. The data can then be used to constrain the cosmic ray primary flux and the contribution to atmospheric lepton fluxes from prompt decays of short-lived hadrons. In this paper, techniques for the extraction of physical measurements from atmospheric muon events are described and first results are presented. The multiplicity spectrum of TeV muons in cosmic ray air showers for primaries in the energy range from the knee to the an...

  5. Measurement of the atmospheric muon flux with the ANTARES detector

    CERN Document Server

    Bazzotti, Marco

    2009-01-01

    ANTARES is a submarine neutrino telescope deployed in the Mediterranean Sea, at a depth of about 2500 m. It consists of a three-dimensional array of photomultiplier tubes that can detect the Cherenkov light induced by charged particles produced in the interactions of neutrinos with the surrounding medium. Down-going muons produced in atmospheric showers are a physical background to the neutrino detection, and are being studied. In this paper the measurement of the Depth Intensity Relation (DIR) of atmospheric muon flux is presented. The data collected in June and July 2007, when the ANTARES detector was in its 5-line configuration, are used in the analysis. The corresponding livetime is $724 h$. A deconvolution method based on a Bayesian approach was developed, which takes into account detector and reconstruction inefficiencies. Comparison with other experimental results and Monte Carlo expectations are presented and discussed.

  6. Atmospheric muons: experimental aspects

    OpenAIRE

    Cecchini, S.; Spurio, M.

    2012-01-01

    We present a review of atmospheric muon flux and energy spectrum measurements over almost six decades of muon momentum. Sea-level and underground/water/ice experiments are considered. Possible sources of systematic errors in the measurements are examinated. The characteristics of underground/water muons (muons in bundle, lateral distribution, energy spectrum) are discussed. The connection between the atmospheric muon and neutrino measurements are also reported.

  7. Atmospheric muons: experimental aspects

    Directory of Open Access Journals (Sweden)

    S. Cecchini

    2012-11-01

    Full Text Available We present a review of atmospheric muon flux and energy spectrum measurements over almost six decades of muon momentum. Sea level and underground/water/ice experiments are considered. Possible sources of systematic errors in the measurements are examined. The characteristics of underground/water muons (muons in bundle, lateral distribution, energy spectrum are discussed. The connection between the atmospheric muon and neutrino measurements are also reported.

  8. Muon and neutrino fluxes

    Science.gov (United States)

    Edwards, P. G.; Protheroe, R. J.

    1985-01-01

    The result of a new calculation of the atmospheric muon and neutrino fluxes and the energy spectrum of muon-neutrinos produced in individual extensive air showers (EAS) initiated by proton and gamma-ray primaries is reported. Also explained is the possibility of detecting atmospheric nu sub mu's due to gamma-rays from these sources.

  9. Tidal Frequencies in the Time Series Measurements of Atmospheric Muon Flux from Cosmic Rays

    CERN Document Server

    Takai, H; Minelli, M; Sundermier, J; Winters, G; Russ, M K; Dodaro, J; Varshney, A; McIlwaine, C J; Tomaszewski, T; Tomaszewski, J; Warasila, W; McDermott, J; Khan, U; Chaves, K; Kassim, O; Ripka, J

    2016-01-01

    Tidal frequencies are detected in time series muon flux measurements performed over a period of eight years. Meson production and subsequent decay produce the muons that are observed at ground level. We interpret the periodic behavior as a consequence of high altitude density variations at the point of meson production. These variations are driven by solar thermal cycles. The detected frequencies are in good agreement with published tidal frequencies and suggest that muons can be a complementary probe to the study of atmospheric tides at altitudes between 20 to 60 km.

  10. Uncertainties in Atmospheric Muon-Neutrino Fluxes Arising from Cosmic-Ray Primaries

    Science.gov (United States)

    Porzio, Salvatore Davide; Evans, Justin; Soldner-Rembold, Stefan; Wren, Steven

    2017-01-01

    We present an updated calculation of the atmospheric muon-neutrino flux uncertainties arising from cosmic-ray primaries, including for the first time the information from recent measurements of the cosmic-ray primaries. We apply a statistical technique that allows the determination of correlations between the parameters of the GSHL primary-flux parametrisation, and the incorporation of these correlations into the uncertainty on the muon-neutrino flux. Given the unexpected hardening of the spectrum of primaries above 100 GeV observed in recent measurements, we propose an alternative parametrisation and discuss its impact on the neutrino flux uncertainties. We obtain an uncertainty on the primary cosmic-ray component of (5- 10) % , depending on energy, which is a about a factor of two smaller than for the previous fit. The hadron production uncertainty is added in quadrature to obtain the total uncertainty on the neutrino flux. Science and Technology Facilities Council (STFC) and the Royal Society.

  11. Zenith distribution and flux of atmospheric muons measured with the 5-line ANTARES detector

    Science.gov (United States)

    ANTARES Collaboration; Aguilar, J. A.; Albert, A.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M. C.; Brown, A. M.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carminati, G.; Carr, J.; Castel, D.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; de Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.-P.; Escoffier, S.; Fehr, F.; Flaminio, V.; Fratini, K.; Fritsch, U.; Fuda, J.-L.; Giacomelli, G.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; de Jong, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Lahmann, R.; Lamare, P.; Lambard, G.; Larosa, G.; Laschinsky, H.; Lefèvre, D.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Lucarelli, F.; Lyons, K.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Maurin, G.; Mazure, A.; Melissas, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Ostasch, R.; Palioselitis, D.; Păvălaş, G. E.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Pillet, R.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Radu, A.; Reed, C.; Richardt, C.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schöck, F.; Schuller, J.-P.; Shanidze, R.; Simeone, F.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Tasca, L.; Toscano, S.; Vallage, B.; van Elewyck, V.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.; ANTARES Collaboration

    2010-10-01

    The ANTARES high-energy neutrino telescope is a three-dimensional array of about 900 photomultipliers distributed over 12 mooring lines installed in the Mediterranean Sea. Between February and November 2007 it acquired data in a 5-line configuration. The zenith angular distribution of the atmospheric muon flux and the associated depth-intensity relation are measured and compared with previous measurements and Monte Carlo expectations. An evaluation of the systematic effects due to uncertainties on environmental and detector parameters is presented.

  12. Differential flux measurement of atmospheric pion, muon, electron and positron energy spectra at balloon altitudes

    Energy Technology Data Exchange (ETDEWEB)

    Grimani, C.; Brunetti, M.T.; Codino, A. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); Papini, P.; Massimo Brancaccio, F.; Finetti, N. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Stephens, S.A. [Tata Institute of Fundamental Researc, Bombay (International Commission on Radiation Units and Measurements); Basini, G.; Bongiorno, F. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Golden, R.L. [New Mexico State Univ. Las Cruces, NM (United States). Particle Astrophysics Lab.

    1995-09-01

    The fluxes of atmospheric electrons, positrons, positive and negative muons and negative pions have been determined using the NMSU Wizard-MASS2 balloons-borne instrument. The instrument was launched from Fort Sumner, New Mexico, (geomagnetic cut-off about 4.5 GV/c) on september 23, 1991. The flight lasted 9.8 hours and remained above 100.000 ft. Muons and negative pions were observed and their momenta were determined. Since these particles are not a part of the primary component, the measurement of their fluxes provides information regarding production and propagation of secondary particles in the atmosphere. Similarly, observations of electrons and positrons well below the geomagnetic cut-off provides insight into electromagnetic cascade processes in the upper atmosphere. In addition, the determination of the energy spectra of rare particles such as positrons can be used for background subtraction for cosmic ray experiments gathering data below a few g/cm{sup 2} of overlying atmosphere.

  13. The atmospheric muon flux in correlation with temperature variations in the low stratosphere (50-200 mb).

    Science.gov (United States)

    Bertaina, M.; Briatore, L.; Longhetto, A.; Navarra, G.; EAS-TOP collaboraiton

    The dependence of the muon flux from the atmospheric parameters (pressure and temperature) is a well known effect since long time ago, that is usually corrected for in cosmic ray measurements. We have correlated at EAS-TOP (LNGS) the muon flux detected by the EMD detector (29 stations, 10m2 each, E_thr>3MeV) with the atmospheric temperature (10-1000mb levels) monitored by the radio-soundings of the Aeronautica Militare at Pratica di Mare (Rome). A significant effect has been observed when the muon flux is correlated with the atmospheric temperature in the region 50-200mb (50-200gr/cm2), as expected, since this is the region where the mesons of first generation are produced. The effect becomes even larger (K_T=-9.5+/-1.1)x10-4 K-1) when the variations of the cosmic ray primary flux is taken into account (Neutron Monitor, Rome). Then, the technique has been used to monitor strong temperature variations in the low stratosphere through the muon flux in two periods, showing that the average temperature variations in the low stratosphere are reproduced with a ~2K uncertainty. The main results of this analysis will be presented.

  14. A mobile detector for measurements of the atmospheric muon flux in underground sites

    Energy Technology Data Exchange (ETDEWEB)

    Mitrica, Bogdan, E-mail: mitrica@nipne.ro [Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O.B. MG-6, 077125 Magurele (Romania); Margineanu, Romul; Stoica, Sabin; Petcu, Mirel; Brancus, Iliana [Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O.B. MG-6, 077125 Magurele (Romania); Jipa, Alexandru; Lazanu, Ionel; Sima, Octavian [Department of Physics, University of Bucharest, P.O.B. MG-11 (Romania); Haungs, Andreas; Rebel, Heinigerd [Institut fur Kernphysik, Karlsruhe Institute of Technology - Campus North, 76021 Karlsruhe (Germany); Petre, Marian; Toma, Gabriel; Saftoiu, Alexandra; Stanca, Denis; Apostu, Ana; Gomoiu, Claudia [Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O.B. MG-6, 077125 Magurele (Romania)

    2011-10-21

    Muons comprise an important contribution of the natural radiation dose in air (approx. 30 nSv/h of a total dose rate of 65-130 nSv/h), as well as in underground sites even when the flux and relative contribution are significantly reduced. The flux of muons observed underground can be used as an estimator for the depth in mwe (meter water equivalent) of the underground site. The water equivalent depth is important information to devise physics experiments feasible for a specific site. A mobile detector for performing measurements of the muon flux was developed in IFIN-HH, Bucharest. Consisting of two scintillator plates (approx. 0.9 m{sup 2}) which measure in coincidence, the detector is installed on a van which facilitates measurements at different locations at the surface or underground. The detector was used to determine muon fluxes at different sites in Romania. In particular, data were taken and the values of meter water equivalents were assessed for several locations at the salt mine in Slanic-Prahova, Romania. The measurements have been performed in two different galleries of the Slanic mine at different depths. In order to test the stability of the method, also measurements of the muon flux at the surface at different elevations were performed. The results were compared with predictions of Monte-Carlo simulations using the CORSIKA and MUSIC codes.

  15. Muon Fluxes From Dark Matter Annihilation

    CERN Document Server

    Erkoca, Arif Emre; Sarcevic, Ina

    2009-01-01

    We calculate the muon flux from annihilation of the dark matter in the core of the Sun, in the core of the Earth and from cosmic diffuse neutrinos produced in dark matter annihilation in the halos. We consider model-independent direct neutrino production and secondary neutrino production from the decay of taus produced in the annihilation of dark matter. We illustrate how muon energy distribution from dark matter annihilation has a very different shape than muon flux from atmospheric neutrinos. We consider both the upward muon flux, when muons are created in the rock below the detector, and the contained flux when muons are created in the (ice) detector. We contrast our results to the ones previously obtained in the literature, illustrating the importance of properly treating muon propagation and energy loss. We comment on neutrino flavor dependence and their detection.

  16. Measurement of the atmospheric muon flux at 3500 m depth with the NEMO Phase-2 detector

    Directory of Open Access Journals (Sweden)

    Distefano C.

    2016-01-01

    Full Text Available In March 2013, the Nemo Phase-2 tower was successfully deployed at 80 km off-shore Capo Passero (Italy at 3500 m depth. The tower operated continuously until August 2014. We present the results of the atmospheric muon analysis from the data collected in 411 days of live time. The zenith-angle distribution of atmospheric muons was measured and results compared with Monte Carlo simulations. The associated depth intensity relation was then measured and compared with previous measurements and theoretical predictions.

  17. Measurement of the atmospheric muon flux with the NEMO Phase-1 detector

    Science.gov (United States)

    Aiello, S.; Ameli, F.; Amore, I.; Anghinolfi, M.; Anzalone, A.; Barbarino, G.; Battaglieri, M.; Bazzotti, M.; Bersani, A.; Beverini, N.; Biagi, S.; Bonori, M.; Bouhadef, B.; Brunoldi, M.; Cacopardo, G.; Capone, A.; Caponetto, L.; Carminati, G.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Cordelli, M.; Costa, M.; D'Amico, A.; De Bonis, G.; De Marzo, C.; De Rosa, G.; De Ruvo, G.; De Vita, R.; Distefano, C.; Falchini, E.; Flaminio, V.; Fratini, K.; Gabrielli, A.; Galatà, S.; Gandolfi, E.; Giacomelli, G.; Giorgi, F.; Giovanetti, G.; Grimaldi, A.; Habel, R.; Imbesi, M.; Kulikovsky, V.; Lattuada, D.; Leonora, E.; Lonardo, A.; Lo Presti, D.; Lucarelli, F.; Marinelli, A.; Margiotta, A.; Martini, A.; Masullo, R.; Migneco, E.; Minutoli, S.; Morganti, M.; Musico, P.; Musumeci, M.; Nicolau, C. A.; Orlando, A.; Osipenko, M.; Papaleo, R.; Pappalardo, V.; Piattelli, P.; Piombo, D.; Raia, G.; Randazzo, N.; Reito, S.; Ricco, G.; Riccobene, G.; Ripani, M.; Rovelli, A.; Ruppi, M.; Russo, G. V.; Russo, S.; Sapienza, P.; Sciliberto, D.; Sedita, M.; Shirokov, E.; Simeone, F.; Sipala, V.; Spurio, M.; Taiuti, M.; Trasatti, L.; Urso, S.; Vecchi, M.; Vicini, P.; Wischnewski, R.

    2010-05-01

    The NEMO Collaboration installed and operated an underwater detector including prototypes of the critical elements of a possible underwater km 3 neutrino telescope: a four-floor tower (called Mini-Tower) and a Junction Box. The detector was developed to test some of the main systems of the km 3 detector, including the data transmission, the power distribution, the timing calibration and the acoustic positioning systems as well as to verify the capabilities of a single tridimensional detection structure to reconstruct muon tracks. We present results of the analysis of the data collected with the NEMO Mini-Tower. The position of photomultiplier tubes (PMTs) is determined through the acoustic position system. Signals detected with PMTs are used to reconstruct the tracks of atmospheric muons. The angular distribution of atmospheric muons was measured and results compared to Monte Carlo simulations.

  18. Measurement of the atmospheric muon flux with the NEMO Phase-1 detector

    CERN Document Server

    Aiello, S; Amore, I; Anghinolfi, M; Anzalone, A; Barbarino, G; Battaglieri, M; Bazzotti, M; Bersani, A; Beverini, N; Biagi, S; Bonori, M; Bouhadef, B; Brunoldi, M; Cacopardo, G; Capone, A; Caponetto, L; Carminati, G; Chiarusi, T; Circella, M; Cocimano, R; Coniglione, R; Cordelli, M; Costa, M; D'Amico, A; De Bonis, G; De Marzo, C; 1,; De Rosa, G; De Ruvo, G; De Vita, R; Distefano, C; Falchini, E; Flaminio, V; Fratini, K; Gabrielli, A; Galatà, S; Gandolfi, E; Giacomelli, G; Giorgi, F; Giovanetti, G; Grimaldi, A; Habel, R; Imbesi, M; Kulikovsky, V; Lattuada, D; Leonora, E; Lonardo, A; Presti, D Lo; Lucarelli, F; Marinelli, A; Margiotta, A; Martini, A; Masullo, R; Migneco, E; Minutoli, S; Morganti, M; Musico, P; Musumeci, M; Nicolau, C A; Orlando, A; Osipenko, M; Papaleo, R; Pappalardo, V; Piattelli, P; Piombo, D; Raia, G; Randazzo, N; Reito, S; Ricco, G; Riccobene, G; Ripani, M; Rovelli, A; Ruppi, M; Russo, G V; Russo, S; Sapienza, P; Sciliberto, D; Sedita, M; Shirokov, E; Simeone, F; Sipala, V; Spurio, M; Taiuti, M; Trasatti, L; Urso, S; Vecchi, M; Vicini, P; Wischnewski, R

    2009-01-01

    The NEMO Collaboration installed and operated an underwater detector including prototypes of the critical elements of a possible underwater km3 neutrino telescope: a four-floor tower (called Mini-Tower) and a Junction Box. The detector was developed to test some of the main systems of the km3 detector, including the data transmission, the power distribution, the timing calibration and the acoustic positioning systems as well as to verify the capabilities of a single tridimensional detection structure to reconstruct muon tracks. We present results of the analysis of the data collected with the NEMO Mini-Tower. The position of photomultiplier tubes (PMTs) is determined through the acoustic position system. Signals detected with PMTs are used to reconstruct the tracks of atmospheric muons. The angular distribution of atmospheric muons was measured and results compared with Monte Carlo simulations.

  19. Influence of hadronic interaction models and the cosmic ray spectrum on the high-energy atmospheric muon and neutrino flux

    Directory of Open Access Journals (Sweden)

    Desiati Paolo

    2013-06-01

    Full Text Available The recent observations of muon charge ratio up to about 10 TeV and of atmospheric neutrinos up to energies of about 400 TeV has triggered a renewed interest into the high-energy interaction models and cosmic ray primary composition. A reviewed calculation of lepton spectra produced in cosmic ray induced extensive air showers is carried out with a primary cosmic ray spectrum that fits the latest direct measurements below the knee. In order to achieve this, we used a full Monte Carlo method to derive the inclusive differential spectra (yields of muons, muon neutrinos and electron neutrinos at the surface for energies between 80 GeV and hundreds of PeV. Using these results the differential flux and the flavor ratios of leptons were calculated. The air shower simulator CORSIKA 6.990 was used for showering and propagation of the secondary particles through the atmosphere, employing the established high energy hadronic interaction models SIBYLL 2.1, QGSJet-01 and QGSJet-II-03. We show that the performance of the interaction models allows makes it possible to predict the spectra within experimental uncertainties, while SIBYLL generally yields a higher flux at the surface than the QGSJet models. The calculation of the flavor and charge ratios has lead to inconsistent results, mainly influenced by the different representations of the K/π ratio within the models. The influence of the knee of cosmic rays is reflected in the secondary spectra at energies between 100 and 200 TeV. Furthermore, we could quantify systematic uncertainties of atmospheric muon- and neutrino fluxes, associated to the models of the primary cosmic ray spectrum and the interaction models. For most recent parametrizations of the cosmic ray primary spectrum, atmospheric muons can be determined with an uncertainty smaller than +15/-13% of the average flux. Uncertainties of the muon and electron neutrino fluxes can be calculated within an average error of +32/-22% and +25

  20. Measurement of the atmospheric muon flux with a 4 GeV threshold in the ANTARES neutrino telescope

    NARCIS (Netherlands)

    Aguilar, J. A.; Al Samarai, I.; Albert, A.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Jesus, A. C. Assis; Astraatmadja, T.; Aubert, J. -J.; Auer, R.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M. C.; Brown, A.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carloganu, C.; Carminati, G.; Carr, J.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Charvis, Ph.; Chiarusi, T.; Sen, N. Chon; Circella, M.; Coniglione, R.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; De Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J. -P.; Escoffier, S.; Fehr, F.; Flaminio, V.; Fratini, K.; Fritsch, U.; Fuda, J. -L.; Gay, P.; Giacomelli, G.; Gomez-Gonzalez, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernandez-Rey, J. J.; Herold, B.; Hoessl, J.; de Jong, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Lahmann, R.; Lamare, P.; Lambard, G.; Larosa, G.; Laschinsky, H.; Lefevre, D.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Lucarelli, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Mazure, A.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Ostasch, R.; Palioselitis, G.; Pavalas, G. E.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Pillet, R.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Radu, A.; Reed, C.; Richardt, C.; Rujoiu, M.; Russo, V.; Salesa, F.; Sapienza, P.; Schoeck, F.; Schuller, J. -P.; Shanidze, R.; Simeone, F.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Tamburini, C.; Tasca, L.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zuniga, J.

    2010-01-01

    A new method for the measurement of the muon flux in the deep-sea ANTARES neutrino telescope and its dependence on the depth is presented. The method is based oil the observation of coincidence signals in adjacent storeys of the detector. This yields an energy threshold of about 4 GeV. The main sour

  1. Atmospheric lepton fluxes

    Directory of Open Access Journals (Sweden)

    Gaisser Thomas K.

    2015-01-01

    Full Text Available This review of atmospheric muons and neutrinos emphasizes the high energy range relevant for backgrounds to high-energy neutrinos of astrophysical origin. After a brief historical introduction, the main distinguishing features of atmospheric νμ and νe are discussed, along with the implications of the muon charge ratio for the νµ / ν̅µ ratio. Methods to account for effects of the knee in the primary cosmic-ray spectrum and the energy-dependence of hadronic interactions on the neutrino fluxes are discussed and illustrated in the context of recent results from IceCube. A simple numerical/analytic method is proposed for systematic investigation of uncertainties in neutrino fluxes arising from uncertainties in the primary cosmic-ray spectrum/composition and hadronic interactions.

  2. Measurement of the atmospheric muon flux with a 4 GeV threshold in the ANTARES neutrino telescope

    CERN Document Server

    Aguilar, J A

    2009-01-01

    A new method for the measurement of the muon flux in the deep-sea ANTARES neutrino telescope and its dependence on the depth is presented. The method is based on the observation of coincidence signals in adjacent storeys of the detector. This yields an energy threshold of about 4 GeV. The main sources of optical background are the decay of 40K and the bioluminescence in the sea water. The 40K background is used to calibrate the efficiency of the photo-multiplier tubes.

  3. Measurement of the atmospheric muon flux with a 4 GeV threshold in the ANTARES neutrino telescope

    Science.gov (United States)

    Aguilar, J. A.; Al Samarai, I.; Albert, A.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M. C.; Brown, A.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Charvis, Ph.; Chiarusi, T.; Chon Sen, N.; Circella, M.; Coniglione, R.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; de Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.-P.; Escoffier, S.; Fehr, F.; Flaminio, V.; Fratini, K.; Fritsch, U.; Fuda, J.-L.; Gay, P.; Giacomelli, G.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; de Jong, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Lahmann, R.; Lamare, P.; Lambard, G.; Larosa, G.; Laschinsky, H.; Lefèvre, D.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Lucarelli, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Mazure, A.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Ostasch, R.; Palioselitis, G.; Păvălaş, G. E.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Pillet, R.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Radu, A.; Reed, C.; Richardt, C.; Rujoiu, M.; Russo, V.; Salesa, F.; Sapienza, P.; Schoeck, F.; Schuller, J.-P.; Shanidze, R.; Simeone, F.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Tamburini, C.; Tasca, L.; Toscano, S.; Vallage, B.; van Elewyck, V.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2010-03-01

    A new method for the measurement of the muon flux in the deep-sea ANTARES neutrino telescope and its dependence on the depth is presented. The method is based on the observation of coincidence signals in adjacent storeys of the detector. This yields an energy threshold of about 4 GeV. The main sources of optical background are the decay of 40K and the bioluminescence in the sea water. The 40K background is used to calibrate the efficiency of the photo-multiplier tubes.

  4. Constraints on the energy spectra of charged particles predicted in some model interactions of hadrons with help of the atmospheric muon flux

    CERN Document Server

    Dedenko, L G; Roganova, T M

    2015-01-01

    It has been shown that muon flux intensities calculated in terms of the EPOS LHC and EPOS 1.99 models at the energy of 10^4 GeV exceed the data of the classical experiments L3+Cosmic, MACRO and LVD on the spectra of atmospheric muons by a factor of 1.9 and below these data at the same energy by a factor of 1.8 in case of the QGSJET II-03 model. It has been concluded that these tested models overestimate (underestimate in case of QGSJET II-03 model) the production of secondary particles with the highest energies in interactions of hadrons by a factor of ~1.5. The LHCf and TOTEM accelerator experiments show also this type of disagreements with these model predictions at highest energies of secondary particles.

  5. Detection of atmospheric muons with ALICE detectors

    Energy Technology Data Exchange (ETDEWEB)

    Alessandro, B. [Istituto Nazionale di Fisica Nucleare and Dep. di Fisica Universita di Torino, Torino (Italy); Cortes Maldonado, I. [Fac. Ciencias Fisico Mat. and Fac. Ciencias Electronica, Benemerita Universidad Autonoma de Puebla (Mexico); Cuautle, E. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (Mexico); Fernandez Tellez, A. [Fac. Ciencias Fisico Mat. and Fac. Ciencias Electronica, Benemerita Universidad Autonoma de Puebla (Mexico); Gomez Jimenez, R. [Dpto. de Fisica, Centro de Investigacion y Estudios Avanzados (Mexico); Gonzalez Santos, H. [Fac. Ciencias Fisico Mat. and Fac. Ciencias Electronica, Benemerita Universidad Autonoma de Puebla (Mexico); Herrera Corral, G. [Escuela de Fisica, Universidad Autonoma de Sinaloa, Culiacan, Sinaloa (Mexico); Leon, I. [Dpto. de Fisica, Centro de Investigacion y Estudios Avanzados (Mexico); Martinez, M.I.; Munoz Mata, J.L. [Fac. Ciencias Fisico Mat. and Fac. Ciencias Electronica, Benemerita Universidad Autonoma de Puebla (Mexico); Podesta, P. [Dpto. de Fisica, Centro de Investigacion y Estudios Avanzados (Mexico); Ramirez Reyes, A. [Escuela de Fisica, Universidad Autonoma de Sinaloa, Culiacan, Sinaloa (Mexico); Rodriguez Cahuantzi, M., E-mail: mrodrigu@mail.cern.c [Fac. Ciencias Fisico Mat. and Fac. Ciencias Electronica, Benemerita Universidad Autonoma de Puebla (Mexico); Sitta, M. [Universita Piemonte Orientale, Alessandria (Italy); Subieta, M. [Istituto Nazionale di Fisica Nucleare and Dep. di Fisica Universita di Torino, Torino (Italy); Tejeda Munoz, G.; Vargas, A.; Vergara, S. [Fac. Ciencias Fisico Mat. and Fac. Ciencias Electronica, Benemerita Universidad Autonoma de Puebla (Mexico)

    2010-05-21

    The calibration, alignment and commissioning of most of the ALICE (A Large Ion Collider Experiment at the CERN LHC) detectors have required a large amount of cosmic events during 2008. In particular two types of cosmic triggers have been implemented to record the atmospheric muons passing through ALICE. The first trigger, called ACORDE trigger, is performed by 60 scintillators located on the top of three sides of the large L3 magnet surrounding the central detectors, and selects atmospheric muons. The Silicon Pixel Detector (SPD) installed on the first two layers of the Inner Tracking System (ITS) gives the second trigger, called SPD trigger. This trigger selects mainly events with a single atmospheric muon crossing the SPD. Some particular events, in which the atmospheric muon interacts with the iron of the L3 magnet and creates a shower of particles crossing the SPD, are also selected. In this work the reconstruction of events with these two triggers will be presented. In particular, the performance of the ACORDE detector will be discussed by the analysis of multi-muon events. Some physical distributions are also shown.

  6. Search for Diffuse Astrophysical Neutrino Flux Using Ultra-High Energy Upward-Going Muons in Super-Kamiokande I

    CERN Document Server

    Swanson, M E C; Hosaka, J; Iida, T; Ishihara, K; Kameda, J; Koshio, Y; Minamino, A; Mitsuda, C; Miura, M; Moriyama, S; Nakahata, M; Obayashi, Y; Ogawa, H; Shiozawa, M; Suzuki, Y; Takeda, A; Takeuchi, Y; Ueshima, K; Higuchi, I; Ishihara, C; Ishitsuka, M; Kajita, T; Kaneyuki, K; Mitsuka, G; Nakayama, S; Nishino, H; Okada, A; Okumura, K; Saji, C; Takenaga, Y; Clark, S; Desai, S; Dufour, F; Kearns, E; Likhoded, S; Litos, M; Raaf, Jennifer L; Stone, J L; Sulak, L R; Wang, W; Goldhaber, M; Casper, D; Cravens, J P; Dunmore, J; Kropp, W R; Liu, D W; Mine, S; Regis, C; Smy, M B; Sobel, H W; Vagins, M R; Ganezer, K S; Hill, J E; Keig, W E; Jang, J S; Kim, J Y; Lim, I T; Scholberg, K; Tanimoto, N; Walter, C W; Wendell, R; Ellsworth, R W; Tasaka, S; Guillian, G; Learned, J G; Matsuno, S; Messier, M D; Hayato, Y; Ichikawa, A K; Ishida, T; Ishii, T; Iwashita, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Nitta, K; Oyama, Y; Totsuka, Y; Suzuki, A T; Hasegawa, M; Hiraide, K; Kato, I; Maesaka, H; Nakaya, T; Nishikawa, K; Sasaki, T; Sato, H; Yamamoto, S; Yokoyama, M; Haines, T J; Dazeley, S; Hatakeyama, S; Svoboda, R; Sullivan, G W; Turcan, D; Cooley, J; Mahn, K B M; Habig, A; Fukuda, Y; Sato, T; Itow, Y; Koike, T; Jung, C K; Kato, T; Kobayashi, K; Malek, M; McGrew, C; Sarrat, A; Terri, R; Yanagisawa, C; Tamura, N; Sakuda, M; Sugihara, M; Kuno, Y; Yoshida, M; Kim, S B; Yang, B S; Yoo, J; Ishizuka, T; Okazawa, H; Choi, Y; Seo, H K; Gando, Y; Hasegawa, T; Inoue, K; Ishii, H; Nishijima, K; Ishino, H; Watanabe, Y; Koshiba, M; Kielczewska, D; Zalipska, J; Berns, H G; Gran, R; Shiraishi, K K; Stachyra, A; Thrane, E; Washburn, K; Wilkes, R J002626770 100 L; Adams, J

    2006-01-01

    Many astrophysical models predict a diffuse flux of high energy neutrinos from active galactic nuclei and other extra-galactic sources. At muon energies above a TeV, the upward-going muon flux induced by neutrinos from active galactic nuclei is expected to exceed the flux due to atmospheric neutrinos. We have performed a search for this astrophysical neutrino flux by looking for upward-going muons in the highest energy data sample from the Super-Kamiokande detector using 1679.6 live days of data. We found 1 extremely high energy upward-going muon event, compared with an expected atmospheric neutrino background of 0.46 plus or minus 0.23 events. Using this result, we set an upper limit on the diffuse flux of upward-going muons due to neutrinos from astrophysical sources in the muon energy range 3.16-100 TeV.

  7. Cosmic muon flux measurements at the Kimballton Underground Research Facility

    Science.gov (United States)

    Kalousis, L. N.; Guarnaccia, E.; Link, J. M.; Mariani, C.; Pelkey, R.

    2014-08-01

    In this article, the results from a series of muon flux measurements conducted at the Kimballton Underground Research Facility (KURF), Virginia, United States, are presented. The detector employed for these investigations, is made of plastic scintillator bars readout by wavelength shifting fibers and multianode photomultiplier tubes. Data was taken at several locations inside KURF, spanning rock overburden values from ~ 200 to 1450 m.w.e. From the extracted muon rates an empirical formula was devised, that estimates the muon flux inside the mine as a function of the overburden. The results are in good agreement with muon flux calculations based on analytical models and MUSIC.

  8. Cosmic Muon Flux Measurements at the Kimballton Underground Research Facility

    CERN Document Server

    Kalousis, L N; Link, J M; Mariani, C; Pelkey, R

    2014-01-01

    In this article, the results from a series of muon flux measurements conducted at the Kimballton Underground Research Facility (KURF), Virginia, United States, are presented. The detector employed for these investigations, is made of plastic scintillator bars readout by wavelength shifting fibers and multianode photomultiplier tubes. Data was taken at several locations inside KURF, spanning rock overburden values from ~ 200 to 1450 m.w.e. From the extracted muon rates an empirical formula was devised, that estimates the muon flux inside the mine as a function of the overburden. The results are in good agreement with muon flux calculations based on analytical models and MUSIC.

  9. The cosmic ray proton, helium and CNO fluxes in the 100 TeV energy region from TeV muons and EAS atmospheric Cherenkov light observations of MACRO and EAS-TOP

    CERN Document Server

    Aglietta, M; Ambrosio, M; Antolini, R; Antonioli, P; Arneodo, F; Baldini, A; Barbarino, G C; Barish, B C; Battistoni, G; Becherini, Y; Bellotti, R; Bemporad, C; Bergamasco, L; Bernardini, P; Bertaina, M; Bilokon, H; Bower, C; Brigida, M; Bussino, S; Cafagna, F; Calicchio, M; Campana, D; Carboni, M; Caruso, R; Castagnoli, C; Castellina, A; Cecchini, S; Cei, F; Chiarella, V; Chiarusi, T; Chiavassa, A; Choudhary, B C; Cini, G; Coutu, S; Cozzi, M; De Cataldo, G; De Marzo, C; De Mitri, I; De Vincenzi, M; Dekhissi, H; Derkaoui, J; Di Credico, A; Di Sciascio, G; Erriquez, O; Favuzzi, C; Forti, C; Fulgione, W; Fusco, P; Galeotti, P; Ghia, P L; Giacomelli, G; Giannini, G; Giglietto, N; Giorgini, M; Grassi, M; Grillo, A; Guarino, F; Gustavino, C; Habig, A; Hanson, K; Heinz, R; Iacovacci, M; Iarocci, E; Katsavounidis, E; Katsavounidis, I; Kearns, E; Kim, H; Kyriazopoulou, S; Lamanna, E; Lane, C; Levin, D S; Lipari, P; Longley, N P; Longo, M J; Loparco, F; Maaroufi, F; Mancarella, G; Mandrioli, G; Mannocchi, G; Margiotta, A; Marini, A; Martello, D; Marzari-Chiesa, A; Mazziotta, M N; Michael, D G; Monacelli, P; Montaruli, T; Monteno, M; Morello, C; Mufson, S; Musser, J; Navarra, G; Nicolò, D; Nolty, R; Orth, C; Osteria, G; Palamara, O; Patera, V; Patrizii, L; Pazzi, R; Peck, C W; Perrone, L; Petrera, S; D'Ettorre-Piazzoli, B; Popa, V; Rainó, A; Reynoldson, J; Ronga, F; Saavedra, O; Satriano, C; Scapparone, E; Scholberg, K; Sciubba, A; Sioli, M; Sirri, G; Sitta, M; Spinelli, P; Spinetti, M; Spurio, M; Stamerra, A; Steinberg, R; Stone, J L; Sulak, L R; Surdo, A; Tarle, G; Togo, V; Trinchero, G C; Vakili, M; Valchierotti, S; Vallania, P; Vernetto, S; Vigorito, C; Walter, C W; Webb, R; 10.1016/j.astropartphys.2004.01.005

    2004-01-01

    The primary cosmic ray (CR) proton, helium and CNO fluxes in the energy range 80-300 TeV are studied at the National Gran Sasso Laboratories by means of EAS-TOP (Campo Imperatore, 2005 m a.s.l.) and MACRO (deep underground, 3100 m w.e., the surface energy threshold for a muon reaching the detector being E/sub mu //sup th/ approximately=1.3 TeV). The measurement is based on: (a) the selection of primaries based on their energy/nucleon (i.e., with energy/nucleon sufficient to produce a muon with energy larger than 1.3 TeV) and the reconstruction of the shower geometry by means of the muons recorded by MACRO in the deep underground laboratories; (b) the detection of the associated atmospheric Cherenkov light (C.l.) signals by means of the C.l. detector of EAS-TOP. The C.l. density at core distance r>100 m is directly related to the total primary energy E/sub 0/. Proton and helium ("p+He") and proton, helium and CNO ("p +He+CNO") primaries are thus selected at E/sub 0/ approximately=80 Te V, and at E/sub 0/ appro...

  10. 3-D density imaging with muon flux measurements from underground galleries

    Science.gov (United States)

    Lesparre, N.; Cabrera, J.; Marteau, J.

    2017-03-01

    Atmospheric muon flux measurements provide information on subsurface density distribution. In this study, muon flux was measured underground, in the Tournemire experimental platform (France). The objective was to image the medium between the galleries and the surface and evaluate the feasibility to detect the presence of discontinuities, for example, produced by secondary subvertical faults or by karstic networks. Measurements were performed from three different sites with a partial overlap of muon trajectories, offering the possibility to seek density variations at different depths. The conversion of the measured muon flux to average density values showed global variations further analysed through a 3-D nonlinear inversion procedure. Main results are the presence of a very low density region at the level of the upper aquifer, compatible with the presence of a karstic network hosting local cavities, and the absence of secondary faults. We discuss the validity of the present results and propose different strategies to improve the accuracy of such measurements and analysis.

  11. Horizontal muon flux measured with the LVD detector at LNGS

    Energy Technology Data Exchange (ETDEWEB)

    Garbini, Marco, E-mail: garbini@bo.infn.it [Museo Storico della Fisica e Centro Studi e Ricerche ' E. Fermi' Roma and INFN Bologna (Italy)

    2011-12-15

    We report the measure of underground horizontal (cos({theta})<0.3) muon flux with the Large Volume Detector (LVD) at the I.N.F.N. Gran Sasso National Laboratory. The analysis is based on the whole muon data collected by LVD since start of data taking in 1992.

  12. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    Science.gov (United States)

    SNO collaboration; Aharmim, B.; Ahmed, S. N.; Andersen, T. C.; Anthony, A. E.; Barros, N.; Beier, E. W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S. D.; Boudjemline, K.; Boulay, M. G.; Burritt, T. H.; Cai, B.; Chan, Y. D.; Chen, M.; Chon, M. C.; Cleveland, B. T.; Cox-Mobrand, G. A.; Currat, C. A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P. J.; Dosanjh, R. S.; Doucas, G.; Drouin, P.-L.; Duncan, F. A.; Dunford, M.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R. J.; Formaggio, J. A.; Gagnon, N.; Goon, J. TM.; Grant, D. R.; Guillian, E.; Habib, S.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hargrove, C. K.; Harvey, P. J.; Harvey, P. J.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Hemingway, R. J.; Henning, R.; Hime, A.; Howard, C.; Howe, M. A.; Huang, M.; Jamieson, B.; Jelley, N. A.; Klein, J. R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C. B.; Kutter, T.; Kyba, C. C. M.; Lange, R.; Law, J.; Lawson, I. T.; Lesko, K. T.; Leslie, J. R.; Levine, I.; Loach, J. C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H. B.; Maneira, J.; Marino, A. D.; Martin, R.; McCauley, N.; McDonald, A. B.; McGee, S.; Mifflin, C.; Miller, M. L.; Monreal, B.; Monroe, J.; Noble, A. J.; Oblath, N. S.; Okada, C. E.; O'Keeffe, H. M.; Opachich, Y.; Orebi Gann, G. D.; Oser, S. M.; Ott, R. A.; Peeters, S. J. M.; Poon, A. W. P.; Prior, G.; Rielage, K.; Robertson, B. C.; Robertson, R. G. H.; Rollin, E.; Schwendener, M. H.; Secrest, J. A.; Seibert, S. R.; Simard, O.; Simpson, J. J.; Sinclair, D.; Skensved, P.; Smith, M. W. E.; Sonley, T. J.; Steiger, T. D.; Stonehill, L. C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R. G.; VanDevender, B. A.; Virtue, C. J.; Waller, D.; Waltham, C. E.; Wan Chan Tseung, H.; Wark, D. L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J. F.; Wilson, J. R.; Wouters, J. M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-07-10

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  13. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    SNO collaboration; Aharmim, B.; Ahmed, S.N.; Andersen, T.C.; Anthony, A.E.; Barros, N.; Beier, E.W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S.D.; Boudjemline, K.; Boulay, M.G.; Burritt, T.H.; Cai, B.; Chan, Y.D.; Chen, M.; Chon, M.C.; Cleveland, B.T.; Cox-Mobrand, G.A.; Currat, C.A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P.J.; Dosanjh, R.S.; Doucas, G.; Drouin, P.-L.; Duncan, F.A.; Dunford, M.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R.J.; Formaggio, J.A.; Gagnon, N.; Goon, J.TM.; Grant, D.R.; Guillian, E.; Habib, S.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hargrove, C.K.; Harvey, P.J.; Harvey, P.J.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Hemingway, R.J.; Henning, R.; Hime, A.; Howard, C.; Howe, M.A.; Huang, M.; Jamieson, B.; Jelley, N.A.; Klein, J.R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C.B.; Kutter, T.; Kyba, C.C.M.; Lange, R.; Law, J.; Lawson, I.T.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Loach, J.C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H.B.; Maneira, J.; Marino, A.D.; Martin, R.; McCauley, N.; McDonald, A.B.; McGee, S.; Mifflin, C.; Miller, M.L.; Monreal, B.; Monroe, J.; Noble, A.J.; Oblath, N.S.; Okada, C.E.; O?Keeffe, H.M.; Opachich, Y.; Orebi Gann, G.D.; Oser, S.M.; Ott, R.A.; Peeters, S.J.M.; Poon, A.W.P.; Prior, G.; Rielage, K.; Robertson, B.C.; Robertson, R.G.H.; Rollin, E.; Schwendener, M.H.; Secrest, J.A.; Seibert, S.R.; Simard, O.; Simpson, J.J.; Sinclair, D.; Skensved, P.; Smith, M.W.E.; Sonley, T.J.; Steiger, T.D.; Stonehill, L.C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R.G.; VanDevender, B.A.; Virtue, C.J.; Waller, D.; Waltham, C.E.; Wan Chan Tseung, H.; Wark, D.L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J.F.; Wilson, J.R.; Wouters, J.M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-02-16

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  14. Simulations of Muon Flux in Slanic Salt Mine

    Directory of Open Access Journals (Sweden)

    Mehmet Bektasoglu

    2012-01-01

    Full Text Available Geant4 simulation package was used to simulate muon fluxes at different locations, the floor of UNIREA mine and two levels of CANTACUZINO mine, of Slanic Prahova site in Romania. This site is specially important since it is one of the seven sites in Europe that are under consideration of housing large detector components of Large Apparatus studying Grand Unification and Neutrino Astrophysics (LAGUNA project. Simulations were performed for vertical muons and for muons with a zenith angle θ≤60°. Primary muon flux and energies at ground level were obtained from previous measurements. Results of the simulations are in general agreement with previous simulations made using MUSIC simulation program and with the measurements made using a mobile detector.

  15. Flux Modulations seen by the Muon Veto of the GERDA Experiment

    CERN Document Server

    Agostini, M; Bakalyarov, A M; Balata, M; Barabanov, I; Barros, N; Baudis, L; Bauer, C; Becerici-Schmidt, N; Bellotti, E; Belogurov, S; Belyaev, S T; Benato, G; Bettini, A; Bezrukov, L; Bode, T; Borowicz, D; Brudanin, V; Brugnera, R; Caldwell, A; Cattadori, C; Chernogorov, A; D'Andrea, V; Demidova, E V; di Vacri, A; Domula, A; Doroshkevich, E; Egorov, V; Falkenstein, R; Fedorova, O; Freund, K; Frodyma, N; Gangapshev, A; Garfagnini, A; Grabmayr, P; Gurentsov, V; Gusev, K; Hegai, A; Heisel, M; Hemmer, S; Hofmann, W; Hult, M; Inzhechik, L V; Ioannucci, L; Csáthy, J Janicskó; Jochum, J; Junker, M; Kazalov, V; Kihm, T; Kirpichnikov, I V; Kirsch, A; Klimenko, A; Knapp, M; Knöpfle, K T; Kochetov, O; Kornoukhov, V N; Kuzminov, V V; Laubenstein, M; Lazzaro, A; Lebedev, V I; Lehnert, B; Liao, H Y; Lindner, M; Lippi, I; Lubashevskiy, A; Lubsandorzhiev, B; Lutter, G; Macolino, C; Majorovits, B; Maneschg, W; Medinaceli, E; Misiaszek, M; Moseev, P; Nemchenok, I; Palioselitis, D; Panas, K; Pandola, L; Pelczar, K; Pullia, A; Riboldi, S; Ritter, F; Rumyantseva, N; Sada, C; Salathe, M; Schmitt, C; Schneider, B; Schönert, S; Schreiner, J; Schütz, A -K; Schulz, O; Schwingenheuer, B; Selivanenko, O; Shevchik, E; Shirchenko, M; Simgen, H; Smolnikov, A; Stanco, L; Stepaniuk, M; Strecker, H; Vanhoefer, L; Vasenko, A A; Veresnikova, A; vonSturm, K; Wagner, V; Walter, M; Wegmann, A; Wester, T; Wilsenach, H; Wojcik, M; Yanovich, E; Zhitnikov, I; Zhukov, S V; Zinatulina, D; Zuber, K; Zuzel, G

    2016-01-01

    The GERDA experiment at LNGS of INFN is equipped with an active muon veto. The main part of the system is a water Cherenkov veto with 66~PMTs in the water tank surrounding the GERDA cryostat. The muon flux recorded by this veto shows a seasonal modulation. Two effects have been identified which are caused by secondary muons from the CNGS neutrino beam (2.2 %) and a temperature modulation of the atmosphere (1.4 %). A mean cosmic muon rate of $I^0_{\\mu} = (3.477 \\pm 0.002_{\\textrm{stat}} \\pm 0.067_{\\textrm{sys}}) \\times 10^{-4}$/(s$\\cdot$m$^2$) was found in good agreement with other experiments at LNGS at a depth of 3500~meter water equivalent.

  16. Energy and angular distributions of atmospheric muons at the Earth

    CERN Document Server

    Shukla, Prashant

    2016-01-01

    A fair knowledge of the atmospheric muon distributions at Earth is a prerequisite for the simulations of cosmic ray setups and rare event search detectors. A modified power law is proposed for atmospheric muon energy distribution which gives good description of the cosmic muon data in low as well as high energy regime. Using this distribution, analytical forms for zenith angle ($\\theta$) distribution are obtained. Assuming a flat Earth, it leads to the $\\cos^{n-1}\\theta$ form where it is shown that the parameter $n$ is nothing but the power of the energy distribution. A new analytical form for zenith angle distribution is obtained without assuming a flat Earth which gives an improved description of the data at all angles even above $70^o$. These distributions are tested with the available atmospheric muon data of energy and angular distributions. The parameters of these distributions can be used to characterize the cosmic muon data as a function of energy, angle and altitude.

  17. The WiZard Collaboration cosmic ray muon measurements in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Circella, M. E-mail: marco.circella@ba.infn.it; Ambriola, M.L.; Barbiellini, G.; Bartalucci, S.; Bellotti, R.; Bergstroem, D.; Bidoli, V.; Boezio, M.; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Ciacio, F.; Circella, M.; De Marzo, C.N.; De Pascale, M.P.; Finetti, N.; Francke, T.; Grinstein, S.; Hof, M.; Khalchukov, F.; Kremer, J.; Menn, W.; Mitchell, J.W.; Morselli, A.; Ormes, J.F.; Papini, P.; Piccardi, S.; Picozza, P.; Ricci, M.; Schiavon, P.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stephens, S.A.; Stochaj, S.J.; Streitmatter, R.E.; Suffert, M.; Vacchi, A.; Zampa, N

    2000-05-01

    Balloon-borne experiments allow cosmic ray measurements to be performed over large ranges of atmospheric depths. The WiZard Collaboration is involved in a long-range investigation of the cosmic ray muon fluxes in the atmosphere. In this paper, we will discuss the relevance of such measurements to the atmospheric neutrino calculations and will review the results reported by the Collaboration, with particular emphasis on those coming from the latest flight CAPRICE98.

  18. Annual modulation of the muon flux in the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Falkenstein, Raphael; Freund, Kai; Grabmayr, Peter; Hegai, Alexander; Jochum, Josef; Schmitt, Christopher; Schuetz, Ann-Kathrin [Eberhard Karls Univeritaet Tuebingen (Germany); Collaboration: GERDA-Collaboration

    2015-07-01

    The Gerda collaboration aims to determine the half life of the neutrinoless double beta decay (0νββ) of {sup 76}Ge. In Phase I, the experimental background was reduced to 10{sup -2} cts/(keV.kg.yr) in the region around Q{sub ββ}. For Phase II we want to reduce the background contribution by one order of magnitude. Cosmic muons induce part of this dangerous background and must be vetoed. The muon veto consists of a water Cherenkov detector with 66 PMTs in the water tank surrounding the Gerda cryostat which contains the germanium crystals. The muon veto operated stably for 806 days where only 2 PMTs were lost. The rate however is modulated by the Cngs neutrino beam and the atmospheric temperature effect, both will be presented in this talk.

  19. Observation of the Moon Shadow in Deep Underground Muon Flux

    CERN Document Server

    Cobb, J H; Allison, W W M; Alner, G J; Ayres, D S; Barrett, W L; Bode, C; Border, P M; Brooks, C B; Cotton, R J; Courant, H; Demuth, D M; Fields, T H; Gallagher, H R; García-García, C; Goodman, M C; Gran, R; Joffe-Minor, T M; Kafka, T; Kasahara, S M; Leeson, W; Lichtfield, P J; Longley, N P; Mann, W A; Milburn, R H; Miller, W H; Moon, C; Mualem, L M; Napier, A; Oliver, W P; Pearce, G F; Peterson, E A; Petyt, D A; Price, L E; Ruddick, K; Sánchez, M; Sankey, P; Schneps, J; Schub, M H; Seidlein, R; Stassinakis, A; Thron, J L; Vasilev, V; Villaume, G; Wakely, S P; West, N; Wall, D

    1999-01-01

    A shadow of the moon, with a statistical significance of $5\\sigma$, has been observed in the underground muon flux at a depth of 2090 mwe using the Soudan 2 detector. The angular resolution of the detector is well described by a Gaussian with $\\sigma \\le 0.3^{\\circ}$. The position of the shadow confirms the alignment of the detector to better than $0.15^{\\circ}$. This alignment has remained stable during 10 years of data taking from 1989 through 1998.

  20. Measurement of the charge ratio of atmospheric muons with the CMS detector

    Energy Technology Data Exchange (ETDEWEB)

    Khachatryan, Vardan [Yerevan Physics Inst. (Armenia); et al.

    2010-08-01

    We present a measurement of the ratio of positive to negative muon fluxes from cosmic ray interactions in the atmosphere, using data collected by the CMS detector both at ground level and in the underground experimental cavern at the CERN LHC. Muons were detected in the momentum range from 5 GeV/c to 1 TeV/c. The surface flux ratio is measured to be 1.2766 \\pm 0.0032(stat.) \\pm 0.0032 (syst.), independent of the muon momentum, below 100 GeV/c. This is the most precise measurement to date. At higher momenta the data are consistent with an increase of the charge ratio, in agreement with cosmic ray shower models and compatible with previous measurements by deep-underground experiments.

  1. Modeling high-energy cosmic ray induced terrestrial muon flux: A lookup table

    CERN Document Server

    Atri, Dimitra

    2010-01-01

    On geological timescales, the Earth is likely to be exposed to an increased flux of high energy cosmic rays (HECRs) from astrophysical sources such as nearby supernovae, gamma ray bursts or by galactic shocks. Typical cosmic ray energies may be much higher than the ~ 1 GeV flux which normally dominates. These high-energy particles strike the Earth's atmosphere initiating an extensive air shower. As the air shower propagates deeper, it ionizes the atmosphere by producing charged secondary particles. Secondary particles such as muons and thermal neutrons produced as a result of nuclear interactions are able to reach the ground, enhancing the radiation dose. Muons contribute 85% to the radiation dose from cosmic rays. This enhanced dose could be potentially harmful to the biosphere. This mechanism has been discussed extensively in literature but has never been quantified. Here, we have developed a lookup table that can be used to quantify this effect by modeling terrestrial muon flux from any arbitrary cosmic ra...

  2. Interpretation of the atmospheric muon charge ratio in MINOS

    CERN Document Server

    Schreiner, Philip

    2007-01-01

    MINOS is the first large magnetic detector deep underground and is the first to measure the muon charge ratio with high statistics in the region near 1 TeV.\\cite{bib:adamson} An approximate formula for the muon charge ratio can be expressed in terms of $\\epsilon_\\pi$ = 115 GeV, $\\epsilon_K$ = 850 GeV and $\\ec$. The implications for K production in the atmosphere will be discussed.

  3. Local anisotropy of muon flux during Forbush decreases from URAGAN data

    Science.gov (United States)

    Barbashina, N.; Ampilogov, N.; Astapov, I.; Borog, V.; Dmitrieva, A.; Kovylyaeva, A.; Kokoulin, R.; Kompaniets, K.; Mannocchi, G.; Mishutina, Yu; Petrukhin, A.; Saavedra, O.; Shutenko, V.; Sit'ko, O.; Trinchero, G.; Yakovleva, E.; Yashin, I.

    2015-08-01

    The approach to the analysis of spatial-angular characteristics of the muon flux variations at different phases of Forbush decrease development according to the muon snapshots (muongraphies) obtained using muon hodoscope URAGAN, as well as the analysis results are presented.

  4. Cosmic Ray Sun Shadow in Soudan 2 Underground Muon Flux

    CERN Document Server

    Allison, W W M; Ayres, D S; Barrett, W L; Bode, C; Border, P M; Brooks, C B; Cobb, J H; Cotton, R J; Courant, H; Demuth, D M; Fields, T H; Gallagher, H R; García-García, C; Goodman, M C; Gran, R; Joffe-Minor, T M; Kafka, T; Kasahara, S M; Leeson, W; Lichtfield, P J; Longley, N P; Mann, W A; Marshak, M L; Milburn, R H; Miller, W H; Mualem, L M; Napier, A; Oliver, W P; Pearce, G F; Peterson, E A; Petyt, D A; Price, L E; Ruddick, K; Sánchez, M; Schneps, J; Schub, M H; Seidlein, R; Stassinakis, A; Thron, J L; Vasilev, V; Villaume, G; Wakely, S P; West, N; Wall, D

    1999-01-01

    The absorption of cosmic rays by the sun produces a shadow at the earth. The angular offset and broadening of the shadow are determined by the magnitude and structure of the interplanetary magnetic field (IPMF) in the inner solar system. We report the first measurement of the solar cosmic ray shadow by detection of deep underground muon flux in observations made during the entire ten-year interval 1989 to 1998. The sun shadow varies significantly during this time, with a $3.3\\sigma$ shadow observed during the years 1995 to 1998.

  5. Flux modulations seen by the muon veto of the GERDA experiment

    Science.gov (United States)

    GERDA Collaboration; Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; di Vacri, A.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Fedorova, O.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hegai, A.; Heisel, M.; Hemmer, S.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Janicsk'o Cs'athy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knapp, M.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Ritter, F.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schütz, A.-K.; Schulz, O.; Schwingenheuer, B.; Selivanenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Stepaniuk, M.; Strecker, H.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2016-11-01

    The GERDA experiment at LNGS of INFN is equipped with an active muon veto. The main part of the system is a water Cherenkov veto with 66 PMTs in the water tank surrounding the GERDA cryostat. The muon flux recorded by this veto shows a seasonal modulation. Two causes have been identified: (i) secondary muons from the CNGS neutrino beam (2.2%) and (ii) a temperature modulation of the atmosphere (1.4%). A mean cosmic muon rate of Iμ0 =(3.477 ± 0 .002stat ± 0 .067sys) ×10-4 /(s · m2) was found in good agreement with other experiments at LNGS. Combining the present result with those from previous experiments at LNGS the effective temperature coefficient αT , Lngs is determined to 0.93 ± 0.03. A fit of the temperature coefficients measured at various underground sites yields a kaon to pion ratio rK/π of 0.10 ± 0.03.

  6. Atmospheric neutrino flux calculation using the NRLMSISE00 atmospheric model

    CERN Document Server

    Honda, M; Kajita, T; Kasahara, K; Midorikawa, S

    2015-01-01

    In this paper, we extend the calculation of the atmospheric neutrino flux~\\cite{hkkm2004,hkkms2006,hkkm2011} to the sites in polar and tropical regions. In our earliest full 3D-calculation~\\cite{hkkm2004}, we used DPMJET-III~\\cite{dpm} for the hadronic interaction model above 5~GeV, and NUCRIN~\\cite{nucrin} below 5~GeV. We modified DPMJET-III as in Ref.~\\cite{hkkms2006} to reproduce the experimental muon spectra better, mainly using the data observed by BESS group~\\cite{BESSTeVpHemu}. In a recent work~\\cite{hkkm2011}, we introduced JAM interaction model for the low energy hadronic interactions. JAM is a nuclear interaction model developed with PHITS (Particle and Heavy-Ion Transport code System)~\\cite{phits}. In Ref.~\\cite{hkkm2011}, we could reproduce the observed muon flux at the low energies at balloon altitude with DPMJET-III above 32 GeV and JAM below that better than the combination of DPMJET-III above 5~GeV and NUCRIN below that. Besides the interaction model, we have also improved the calculation sche...

  7. Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 59-string configuration

    CERN Document Server

    Aartsen, M G; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H -P; Brown, A M; Bruijn, R; Casey, J; Casier, M; Chirkin, D; Christov, A; Christy, B; Clark, K; Classen, L; Clevermann, F; Coenders, S; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; De Ridder, S; Desiati, P; de Vries, K D; de With, M; DeYoung, T; Díaz-Vélez, J C; Dunkman, M; Eagan, R; Eberhardt, B; Eichmann, B; Eisch, J; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grandmont, D T; Grant, D; Gretskov, P; Groh, J C; Groß, A; Ha, C; Ismail, A Haj; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Hebecker, D; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huang, F; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Jagielski, K; Japaridze, G S; Jero, K; Jlelati, O; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kauer, M; Kelley, J L; Kiryluk, J; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kriesten, A; Krings, K; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leute, J; Lünemann, J; Macías, O; Madsen, J; Maggi, G; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Paul, L; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Quinnan, M; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Reimann, R; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Robertson, S; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Shanidze, R; Sheremata, C; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stanisha, N A; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Strotjohann, N L; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Toscano, S; Tselengidou, M; Unger, E; Usner, M; Vallecorsa, S; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Waldenmaier, T; Wallraff, M; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whelan, B; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zoll, M

    2013-01-01

    A search for high-energy neutrinos was performed using data collected by the IceCube Neutrino Observatory from May 2009 to May 2010, when the array was running in its 59-string configuration. The data sample was optimized to contain muon neutrino induced events with a background contamination of atmospheric muons of less than 1%. These data, which are dominated by atmospheric neutrinos, are analyzed with a global likelihood fit to search for possible contributions of prompt atmospheric and astrophysical neutrinos, neither of which have yet been identified. Such signals are expected to follow a harder energy spectrum than conventional atmospheric neutrinos. In addition, the zenith angle distribution differs for astrophysical and atmospheric signals. A global fit of the reconstructed energies and directions of observed events is performed, including possible neutrino flux contributions for an astrophysical signal and atmospheric backgrounds as well as systematic uncertainties of the experiment and theoretical p...

  8. Modeled Differential Muon Flux Measurements for Monitoring Geological Storage of Carbon Dioxide

    Science.gov (United States)

    Coleman, M. L.; Naudet, C. J.; Gluyas, J.

    2012-12-01

    Recently, we published the first, theoretical feasibility study of the use of muon tomography to monitor injection of supercritical carbon dioxide into a geological storage reservoir for carbon storage (Kudryavtsev et al., 2012). Our initial concept showed that attenuation of the total muon downward flux, which is controlled effectively by its path-length and the density of the material through which it passes, could quantify the replacement in a porous sandstone reservoir of relatively dense aqueous brine by less dense supercritical carbon dioxide (specific gravity, 0.75). Our model examined the change in the muon flux over periods of about one year. However, certainly, in the initial stages of carbon dioxide injection it would be valuable to examine its emplacement over much shorter periods of time. Over a year there are small fluctuations of about 2% in the flux of high energy cosmic ray muons, because of changes in pressure and temperature, and therefore density, of the upper atmosphere (Ambrosio, 1997). To improve precision, we developed the concept of differential muon monitoring. The muon flux at the bottom of the reservoir is compared with the incident flux at its top. In this paper we present the results of three simulations. In all of them, as in our previous modeling exercise, we assume a 1000 sq. m total area of muon detectors, but in this case both above and below a 300 m thick sandstone bed, with 35% porosity, capped by shale and filled initially with a dense brine (specific gravity, 1.112). We assume high sweep efficiency, since supercritical CO2 and water are miscible, and therefore that 80% of the water will be replaced over a period of injection spanning 10 years. In the first two cases the top of the reservoir is at 1200 m and the overburden is either continuous shale or a 100m shale horizon beneath a sandstone aquifer, respectively. In the third case, which is somewhat analogous to the FutureGen 2.0 site in Illinois (FutureGen Industrial

  9. Shape of primary proton spectrum in multi-TeV region from data on vertical muon flux

    CERN Document Server

    Yushkov, A V

    2008-01-01

    It is shown, that primary proton spectrum, reconstructed from sea-level and underground data on muon spectrum with the use of QGSJET 01, QGSJET II, NEXUS 3.97 and SIBYLL 2.1 interaction models, demonstrates not only model-dependent intensity, but also model-dependent form. For correct reproduction of muon spectrum shape primary proton flux should have non-constant power index for all considered models, except SIBYLL 2.1, with break at energies around 10-15 TeV and value of exponent before break close to that obtained in ATIC-2 experiment. To validate presence of this break understanding of inclusive spectra behavior in fragmentation region in p-air collisions should be improved, but we show, that it is impossible to do on the basis of the existing experimental data on primary nuclei, atmospheric muon and hadron fluxes.

  10. Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 40-string detector

    Science.gov (United States)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; de Clercq, C.; Demirörs, L.; Denger, T.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Gora, D.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hajismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schönwald, A.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Stür, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.

    2011-10-01

    The IceCube Neutrino Observatory is a 1km3 detector currently taking data at the South Pole. One of the main strategies used to look for astrophysical neutrinos with IceCube is the search for a diffuse flux of high-energy neutrinos from unresolved sources. A hard energy spectrum of neutrinos from isotropically distributed astrophysical sources could manifest itself as a detectable signal that may be differentiated from the atmospheric neutrino background by spectral measurement. This analysis uses data from the IceCube detector collected in its half completed configuration which operated between April 2008 and May 2009 to search for a diffuse flux of astrophysical muon neutrinos. A total of 12 877 upward-going candidate neutrino events have been selected for this analysis. No evidence for a diffuse flux of astrophysical muon neutrinos was found in the data set leading to a 90% C.L. upper limit on the normalization of an E-2 astrophysical νμ flux of 8.9×10-9GeVcm-2s-1sr-1. The analysis is sensitive in the energy range between 35 TeV and 7 PeV. The 12 877 candidate neutrino events are consistent with atmospheric muon neutrinos measured from 332 GeV to 84 TeV and no evidence for a prompt component to the atmospheric neutrino spectrum is found.

  11. Effects of the South Atlantic Anomaly on the muon flux at sea level

    CERN Document Server

    Augusto, C R A; Navia, C E; Tsui, K H

    2008-01-01

    The goal of this study is to examine the response and changes of the muon intensity at ground, due to magnetic anomaly over south Atlantic. Based on the data of two directional muon telescopes and located at 22S and 43W. These coordinates are inside of the South Atlantic Anomaly (SAA) region, a dip in the magnetosphere. This characteristic offers to the muon telescopes the lowest rigidity of response to cosmic protons and ions ($\\geq 0.4$ GV). The magnetosphere's dip is responsible for several processes, such as the high conductivity of the atmospheric layers due to the precipitation of energetic particles in this region and an zonal electric field known as the pre-reversal electric field (PRE) with an enhancement at evening hours. In addition the open magnetosphere, propitiate the magnetic reconnections of the IMF lines that will take place in this site in the day side. These factors are responsible for an unusually large particle flux present in the SAA region, including particles with energies above the pi...

  12. Atmospheric muons reconstruction with Antares; Reconstruction de muons atmospheriques avec ANTARES

    Energy Technology Data Exchange (ETDEWEB)

    Melissas, M

    2007-09-15

    The ANTARES collaboration is building a neutrino telescope in the Mediterranean Sea. This detector contains 900 photomultiplier tubes, dispatched on 12 lines, in order to detect Cerenkov light from muon induced by neutrino interactions in the the vicinity of the detector. Currently the first 5 lines have been deployed. A first task consists in studying the stability of the detector calibration, which is a necessary step to understand the detector response. Then we studied optical properties of water, for this we developed a reconstruction method dedicated to LED Beacon. The extracted parameters are compatible with earlier measurements. A quality criteria to reject badly reconstructed track has been developed based on the likelihood of the tracks fit versus point fit. This has been applied to real data and a preliminary analysis of atmospheric muons with a 5-lines detector is performed. (author)

  13. A parametrization of the cosmic-ray muon flux at sea-level

    CERN Document Server

    Guan, Mengyun; Cao, Jun; Luk, Kam-Biu; Yang, Changgen

    2015-01-01

    Based on the standard Gaisser's formula, a modified parametrization for the sea-level cosmic-ray muon flux is introduced. The modification is verified against experimental results. The average vertical cosmic-ray muon intensity as a function of depth of standard rock is simulated using the modified formula as input to the MUSIC code. The calculated muon intensities is consistent with the experimental measurements.

  14. Searches for diffuse astrophysical muon-neutrino fluxes with IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Gary C; Hoshina, Kotoyo; Boersma, David, E-mail: ghill@icecube.wisc.edu, E-mail: hoshina@icecube.wisc.edu, E-mail: boersma@icecube.wisc.edu

    2008-11-01

    The IceCube detector, located at the Amundsen-Scott South Pole station, is the largest neutrino detector ever constructed. It currently consists of 40 of the planned 80 strings -each instrumented with 60 optical modules between 1500 and 2500 metres depth in the clear Antarctic ice. One of the key searches is for a diffuse flux of high energy extraterrestrial neutrinos, in excess of that observed from cosmic-ray induced atmospheric neutrinos. To date, the best constraints on a diffuse flux come from IceCube's predecessor, AMANDA (Antarctic Muon And Neutrino Detector Array). The current focus is on analysis of the 2007 IceCube 22 string data, which will exceed the sensitivity of the integrated AMANDA exposure. Here we review the methodology and discuss the progress and status of the 22 string analysis.

  15. Measurement of the muon beam direction and muon flux for the T2K neutrino experiment

    CERN Document Server

    Suzuki, K; Ariga, A; Ariga, T; Bay, F; Bronner, C; Ereditato, A; Friend, M; Hartz, M; Hiraki, T; Ichikawa, A K; Ishida, T; Ishii, T; Juget, F; Kikawa, T; Kobayashi, T; Kubo, H; Matsuoka, K; Maruyama, T; Minamino, A; Murakami, A; Nakadaira, T; Nakaya, T; Nakayoshi, K; Oyama, Y; Pistillo, C; Sakashita, K; Sekiguchi, T; Suzuki, S Y; Tada, S; Yamada, Y; Yamamoto, K; Yokoyama, M

    2014-01-01

    The Tokai-to-Kamioka (T2K) neutrino experiment measures neutrino oscillations by using an almost pure muon neutrino beam produced at the J-PARC accelerator facility. The T2K muon monitor was installed to measure the direction and stability of the muon beam which is produced together with the muon neutrino beam. The systematic error in the muon beam direction measurement was estimated, using data and MC simulation, to be 0.28 mrad. During beam operation, the proton beam has been controlled using measurements from the muon monitor and the direction of the neutrino beam has been tuned to within 0.3 mrad with respect to the designed beam-axis. In order to understand the muon beam properties,measurement of the absolute muon yield at the muon monitor was conducted with an emulsion detector. The number of muon tracks was measured to be $(4.06\\pm0.05)\\times10^4$ cm$^{-2}$ normalized with $4\\times10^{11}$ protons on target with 250 kA horn operation. The result is in agreement with the prediction which is corrected ba...

  16. Explanation for the low flux of high energy astrophysical muon-neutrinos

    CERN Document Server

    Pakvasa, Sandip; Mohanty, Subhendra

    2012-01-01

    We consider the possibility that some exotic neutrino property is responsible for reducing the muon neutrino flux at high energies from distant neutrino sources; specifically, we consider (i) neutrino decay and (ii) neutrinos being pseudo-Dirac particles. This would provide a mechanism for the lack of high energy muons in the Icecube detector.

  17. High-energy cosmic ray fluxes in the Earth atmosphere: calculations vs experiments

    CERN Document Server

    Kochanov, A A; Sinegovsky, S I

    2008-01-01

    A new calculation of the atmospheric fluxes of cosmic-ray hadrons and muons in the energy range 10-10^5 GeV has been performed for the set of hadron production models, EPOS 1.6, QGSJET II-03, SIBYLL 2.1, and others that are of interest to cosmic ray physicists. The fluxes of secondary cosmic rays at several levels in the atmosphere are computed using directly data of the ATIC-2, GAMMA experiments, and the model proposed recently by Zatsepin and Sokolskaya as well as the parameterization of the primary cosmic ray spectrum by Gaisser and Honda. The calculated energy spectra of the hadrons and muon flux as a function of zenith angle are compared with measurements as well as other calculations. The effect of uncertainties both in the primary cosmic ray flux and hadronic model predictions on the spectra of atmospheric hadrons and muons is considered.

  18. Measurement of the cosmic ray muon spectrum and charge ratio in the atmosphere from ground level to balloon altitudes

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G.; Bongiorno, F. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Bellotti, R.; Cafagna, F.; Circella, M.; De Cataldo, G.; De Marzo, C.N. [Bari Univ. (Italy)]|[INFN, Bari (Italy); Brunetti, M.T.; Codini, A. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy)]|[INFN, Rome (Italy)

    1995-09-01

    A measurement of the cosmic ray muon flux in the atmosphere has been carried out from the data collected by the MASS2 (Matter Antimatter Spectrometer System) apparatus during the ascent of the 1991 flight. The experiment was performed on September 23, 1991 from Fort Sumner, New Mexico (USA) at a geomagnetic cutoff of about 4.5 GV/c. The negative muon spectrum has been determined in different depth ranges in the momentum interval 0.33-40 GeV/c with higher statistics and better background rejection than reported before. Taking advantage of the high geomagnetic cutoff and of the high performances of the instrument, the positive muon spectrum has also been determined and the altitude dependence of the muon charge ratio has been investigated in the 0.33-1.5 GeV/c momentum range.

  19. High-energy fluxes of atmospheric neutrinos

    CERN Document Server

    Sinegovskaya, T S; Sinegovsky, S I

    2013-01-01

    High-energy neutrinos from decays of mesons, produced in collisions of cosmic ray particles with air nuclei, form unavoidable background for detection of astrophysical neutrinos. More precise calculations of the high-energy neutrino spectrum are required since measurements in the IceCube experiment reach the intriguing energy region where a contribution of the prompt neutrinos and/or astrophysical ones should be discovered. Basing on the referent hadronic models QGSJET II-03, SIBYLL 2.1, we calculate high-energy spectra, both of the muon and electron atmospheric neutrinos, averaged over zenith-angles. The computation is made using three parameterizations of cosmic ray spectra which include the knee region. All calculations are compared with the atmospheric neutrino measurements by Frejus and IceCube. The prompt neutrino flux predictions obtained with thequark-gluon string model (QGSM) for the charm production by Kaidalov & Piskunova do not contradict to the IceCube measurements and upper limit on the astr...

  20. Muon-pair production by atmospheric muons in CosmoALEPH.

    Science.gov (United States)

    Maciuc, F; Grupen, C; Hashim, N-O; Luitz, S; Mailov, A; Müller, A-S; Putzer, A; Sander, H-G; Schmeling, S; Schmelling, M; Tcaciuc, R; Wachsmuth, H; Ziegler, Th; Zuber, K

    2006-01-20

    Data from a dedicated cosmic ray run of the ALEPH detector were used in a study of muon trident production, i.e., muon pairs produced by muons. Here the overburden and the calorimeters are the target materials while the ALEPH time projection chamber provides the momentum measurements. A theoretical estimate of the muon trident cross section is obtained by developing a Monte Carlo simulation for muon propagation in the overburden and the detector. Two muon trident candidates were found to match the expected theoretical pattern. The observed production rate implies that the nuclear form factor cannot be neglected for muon tridents.

  1. Limits on the muon flux from neutralino annihilations at the center of the Earth with AMANDA

    NARCIS (Netherlands)

    Achterberg, A; Duvoort, M.R.; Heise, J.; van Eijndhoven, N.J.A.M.

    2006-01-01

    A search has been performed for nearly vertically upgoing neutrino-induced muons with the Antarctic Muon And Neutrino Detector Array (AMANDA), using data taken over the three year period 1997–99. No excess above the expected atmospheric neutrino background has been found. Upper limits at 90% confide

  2. On the Charm Contribution to the Atmospheric Neutrino Flux

    CERN Document Server

    Halzen, Francis

    2016-01-01

    We revisit the estimate of the charm particle contribution to the atmospheric neutrino flux that is expected to dominate at high energies because long-lived high-energy pions and kaons interact in the atmosphere before decaying into neutrinos. We focus on the production of forward charm particles which carry a large fraction of the momentum of the incident proton. In the case of strange particles, such a component is familiar from the abundant production of $K^{+} \\Lambda$ pairs. These forward charm particles can dominate the high-energy atmospheric neutrino flux in underground experiments. Modern collider experiments have no coverage in the very large rapidity region where charm forward pair production dominates. Using archival accelerator data as well as IceCube measurements of atmospheric electron and muon neutrino fluxes, we obtain an upper limit on forward $\\bar{D}^0 \\Lambda_c$ pair production and on the associated flux of high-energy atmospheric neutrinos. We conclude that the prompt flux may dominate t...

  3. Balloon Measurements of Cosmic Ray Muon Spectra in the Atmosphere along with those of Primary Protons and Helium Nuclei over Mid-Latitude

    CERN Document Server

    Bellotti, R; Circella, M; De Marzo, C; Golden, R L; Stochaj, S J; De Pascale, M P; Morselli, A; Picozza, P; Stephens, S A; Hof, M; Menn, W; Simon, M; Mitchell, J W; Ormes, J F; Streitmatter, R E; Finetti, N; Grimani, C; Papini, P; Piccardi, S; Spillantini, P; Basini, G; Ricci, M

    1999-01-01

    We report here the measurements of the energy spectra of atmospheric muons and of the cosmic ray primary proton and helium nuclei in a single experiment. These were carried out using the MASS superconducting spectrometer in a balloon flight experiment in 1991. The relevance of these results to the atmospheric neutrino anomaly is emphasized. In particular, this approach allows uncertainties caused by the level of solar modulation, the geomagnetic cut-off of the primaries and possible experimental systematics to be decoupled in the comparison of calculated fluxes of muons to measured muon fluxes. The muon observations cover the momentum and depth ranges of 0.3-40 GeV/c and 5-886 g/cmsquared, respectively. The proton and helium primary measurements cover the rigidity range from 3 to 100 GV, in which both the solar modulation and the geomagnetic cut-off affect the energy spectra at low energies.

  4. First Observations of Separated Atmospheric Muon Neutrino and Muon Anti-Neutrino Events in the MINOS Detector

    CERN Document Server

    Adamson, P; Allison, W W M; Alner, G J; Anderson, K; Andreopoulos, C; Andrews, M; Andrews, R; Arroyo, C; Avvakumov, S; Ayres, D S; Baller, B; Barish, B; Barker, M A; Barnes, P D; Barr, G; Barrett, W L; Beall, E; Becker, B R; Belias, A; Bergfeld, T; Bernstein, R H; Bhattacharya, D; Bishai, M; Blake, A; Bocean, V; Bock, B; Bock, G J; Bogert, D; Border, P M; Bower, C; Boyd, S; Buckley-Geer, E; Byon-Wagner, A; Böhm, J; Böhnlein, D J; Cabrera, A; Chapman, J D; Chase, T R; Chernichenko, S K; Childress, S; Choudhary, B C; Cobb, J H; Cossairt, J D; Courant, H; Crane, D A; Culling, A J; Dawson, J W; De Muth, D M; De Santo, A; Dierckxsens, M; Diwan, M V; Dorman, M; Drake, G; Ducar, R; Durkin, T; Erwin, A R; Escobar, C O; Evans, J; Fackler, O D; Falk-Harris, E; Feldman, G J; Felt, N; Fields, T H; Ford, R; Frohne, M V; Gallagher, H R; Gebhard, M; Godley, A; Gogos, J; Goodman, M C; Gornushkin, Yu; Gouffon, P; Grashorn, E; Grossman, N; Grudzinski, J J; Grzelak, K; Guarino, V; Habig, A; Halsall, R; Hanson, J; Harris, D; Harris, P G; Hartnell, J; Hartouni, E P; Hatcher, R; Heller, K; Hill, N; Ho, Y; Howcroft, C; Hylen, J; Ignatenko, M A; Indurthy, D; Irwin, G M; James, C; Jenner, L; Jensen, D; Joffe-Minor, T M; Kafka, T; Kang, H J; Kasahara, S M; Kilmer, J; Kim, H; Koizumi, G; Kopp, S; Kordosky, M; Koskinen, D J; Kostin, M; Krakauer, D A; Kumaratunga, S; Ladran, A S; Lang, K; Laughton, C; Lebedev, A; Lee, R; Lee, W Y; Libkind, M A; Litchfield, P J; Litchfield, R P; Liu, J; Longley, N P; Lucas, P; Luebke, W; Madani, S; Maher, E; Makeev, V; Mann, W A; Marchionni, A; Marino, A D; Marshak, M L; Marshall, J S; McDonald, J; McGowan, A; Meier, J R; Merzon, G I; Messier, M D; Michael, D G; Milburn, R H; Miller, J L; Miller, W H; Mishra, S R; Miyagawa, P S; Moore, Cristopher; Morf, J; Morse, R; Mualem, L; Mufson, S; Murgia, S; Murtagh, M J; Musser, J; Naples, D; Nelson, C; Nelson, J K; Newman, H B; Nezrick, F A; Nichol, R J; Nicholls, T C; Ochoa-Ricoux, J P; Oliver, J; Oliver, W P; Onuchin, V A; Osiecki, T; Ospanov, R; Paley, J; Paolone, V; Para, A; Patzak, T; Pavlovich, Z; Pearce, G F; Pearson, N; Peck, C W; Perry, C; Peterson, E A; Petyt, D A; Ping, H; Piteira, R; Pla-Dalmau, A; Plunkett, R K; Price, L E; Proga, M; Pushka, D R; Rahman, D; Rameika, R A; Raufer, T M; Read, A L; Rebel, B; Reyna, D E; Rosenfeld, C; Rubin, H A; Ruddick, K; Ryabov, V A; Saakyan, R; Sanchez, M C; Saoulidou, N; Schneps, J; Schoessow, P V; Schreiner, P; Schwienhorst, R; Semenov, V K; Seun, S M; Shanahan, P; Shield, P D; Smart, W; Smirnitsky, A V; Smith, C; Smith, P N; Sousa, A; Speakman, B; Stamoulis, P; Stefanik, A; Sullivan, P; Swan, J M; Symes, P A; Tagg, N; Talaga, R L; Tetteh-Lartey, E; Thomas, J; Thompson, J; Thomson, M A; Thron, J L; Trendler, R; Trevor, J; Trostin, I; Tsarev, V A; Tzanakos, G S; Urheim, J; Vahle, P; Vakili, M; Vaziri, K; Velissaris, C; Verebryusov, V; Viren, B; Wai, L; Ward, C P; Ward, D R; Watabe, M; Webb, R C; Weber, A; Wehmann, A; West, N; White, C; White, R F; Wojcicki, S G; Wright, D M; Wu, Q K; Yan, W G; Yang, T; Yumiceva, F X; Yun, J C; Zheng, H; Zois, M; Zwaska, R

    2006-01-01

    The complete 5.4 kton MINOS far detector has been taking data since the beginning of August 2003 at a depth of 2070 meters water-equivalent in the Soudan mine, Minnesota. This paper presents the first MINOS observations of muon neutrino and muon anti-neutrino charged-current atmospheric neutrino interactions based on an exposure of 418 days. The ratio of upward to downward-going events in the data is compared to the Monte Carlo expectation in the absence of neutrino oscillations giving: R_data(up/down)/R_MC(up/down) = 0.62^{+0.19}_{-0.14} (stat.) +- 0.02 (sys.). An extended maximum likelihood analysis of the observed L/E distributions excludes the null hypothesis of no neutrino oscillations at the 98 % confidence level. Using the curvature of the observed muons in the 1.3 T MINOS magnetic field muon neutrino and muon anti-neutrino interactions are separated. The ratio of muon neutrino to muon anti-neutrino events in the data is compared to the Monte Carlo expectation assuming neutrinos and anti-neutrinos osci...

  5. Atmospheric Neutrino Induced Muons in the MINOS Far Detector

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Aftabur Dipu [Univ. of Minnesota, Minneapolis, MN (United States)

    2007-02-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long baseline neutrino oscillation experiment. The MINOS Far Detector, located in the Soudan Underground Laboratory in Soudan MN, has been collecting data since August 2003. The scope of this dissertation involves identifying the atmospheric neutrino induced muons that are created by the neutrinos interacting with the rock surrounding the detector cavern, performing a neutrino oscillation search by measuring the oscillation parameter values of Δm$2\\atop{23}$ and sin223, and searching for CPT violation by measuring the charge ratio for the atmospheric neutrino induced muons. A series of selection cuts are applied to the data set in order to extract the neutrino induced muons. As a result, a total of 148 candidate events are selected. The oscillation search is performed by measuring the low to high muon momentum ratio in the data sample and comparing it to the same ratio in the Monte Carlo simulation in the absence of neutrino oscillation. The measured double ratios for the ''all events'' (A) and high resolution (HR) samples are RA = R$data\\atop{low/high}$/R$MC\\atop{low/high}$ = 0.60$+0.11\\atop{-0.10}$(stat) ± 0.08(syst) and RHR = R$data\\atop{low/high}$/R$MC\\atop{low/high}$ = 0.58$+0.14\\atop{-0.11}$(stat) ± 0.05(syst), respectively. Both event samples show a significant deviation from unity giving a strong indication of neutrino oscillation. A combined momentum and zenith angle oscillation fit is performed using the method of maximum log-likelihood with a grid search in the parameter space of Δm2 and sin2 2θ. The best fit point for both event samples occurs at Δm$2\\atop{23}$ = 1.3 x 10-3 eV2, and sin223 = 1. This result is compatible with previous measurements from the Super Kamiokande experiment and Soudan 2 experiments. The MINOS Far Detector is the first

  6. Explanation for the Low Flux of High Energy Astrophysical Muon Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Pakvasa, Sandip [Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Joshipura, Anjan; Mohanty, Subhendra [Physical Research Laboratory, Ahmedabad, India 380009 (India)

    2014-01-15

    There has been some concern about the unexpected paucity of cosmic high energy muon neutrinos in detectors probing the energy region beyond 1 PeV. As a possible solution we consider the possibility that some exotic neutrino property is responsible for reducing the muon neutrino flux at high energies from distant sources; specifically, we consider: (i) neutrino decay and (ii) neutrinos being pseudo-Dirac particles. This would provide a mechanism for the reduction of high energy muon events in the IceCube detector, for example.

  7. Explanation for the low flux of high-energy astrophysical muon neutrinos.

    Science.gov (United States)

    Pakvasa, Sandip; Joshipura, Anjan; Mohanty, Subhendra

    2013-04-26

    There has been some concern about the unexpected paucity of cosmic high-energy muon neutrinos in detectors probing the energy region beyond 1 PeV. As a possible solution we consider the possibility that some exotic neutrino property is responsible for reducing the muon neutrino flux at high energies from distant sources; specifically, we consider (i) neutrino decay and (ii) neutrinos being pseudo-Dirac-particles. This would provide a mechanism for the reduction of high-energy muon events in the IceCube detector, for example.

  8. Results of the search for a diffuse astrophysical muon neutrino flux with IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Schukraft, Anne; Raedel, Leif; Schoenen, Sebastian; Wallraff, Marius; Wiebusch, Christopher; Zilles, Anne [RWTH Aachen Univ. (Germany). III. Physikalisches Inst.; Collaboration: IceCube-Collaboration

    2013-07-01

    High-energy neutrinos propagate unaffected through the universe and are therefore ideal messenger particles to discover the sources and acceleration mechanisms of cosmic rays. The IceCube experiment has been constructed to measure neutrinos of TeV energies and above. A promising approach is the search for a high-energy diffuse muon neutrino flux. This method is directionally independent and therefore sensitive to the cumulative flux from all potential neutrino sources, e.g. Active Galactic Nuclei. The experimental signature is an excess of high-energy neutrinos over the foreground of lower-energetic atmospheric neutrinos. Data, measured between May 2009 and May 2010, has been analyzed with a two-dimensional likelihood approach taking full advantage of the information of neutrino energies and arrival directions with a consistent treatment of systematic uncertainties. This analysis achieves a superior sensitivity compared to previous searches, which is for the first time below the Waxman-Bahcall upper bound. The result is a non-zero astrophysical neutrino flux, which is consistent with zero at the level of less than 2σ. This is interpreted in context of other diffuse neutrino searches, and implications for astrophysical neutrino predictions are discussed.

  9. Measurement of integrated flux of cosmic ray muons at sea level using the INO-ICAL prototype detector

    Energy Technology Data Exchange (ETDEWEB)

    Pal, S.; Acharya, B.S.; Majumder, G.; Mondal, N.K.; Samuel, D.; Satyanarayana, B., E-mail: sumanta@tifr.res.in, E-mail: acharya@tifr.res.in, E-mail: gobinda@tifr.res.in, E-mail: nkm@tifr.res.in, E-mail: samuel@tifr.res.in, E-mail: bsn@tifr.res.in [Department of High Energy Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India)

    2012-07-01

    The India-based Neutrino Observatory (INO) collaboration is planning to set-up a magnetized Iron-CALorimeter (ICAL) to study atmospheric neutrino oscillations with precise measurements of oscillations parameters. The ICAL uses 50 kton iron as target mass and about 28800 Resistive Plate Chambers (RPC) of 2 m × 2 m in area as active detector elements. As part of its R and D program, a prototype detector stack comprising 12 layers of RPCs of 1 m × 1 m in area has been set-up at Tata Institute of Fundamental Research (TIFR) to study the detector parameters using cosmic ray muons. We present here a study of muon flux measurement at sea level and lower latitude. (Site latitude: 18°54'N, longitude: 72°48'E.)

  10. Search for point-like sources using the diffuse astrophysical muon-neutrino flux in IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, Rene; Haack, Christian; Raedel, Leif; Schoenen, Sebastian; Schumacher, Lisa; Wiebusch, Christopher [III. Physikalisches Institut B, RWTH Aachen (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    IceCube, a cubic-kilometer sized neutrino detector at the geographic South Pole, has recently confirmed a flux of high-energy astrophysical neutrinos in the track-like muon channel. Although this muon-neutrino flux has now been observed with high significance, no point sources or source classes could be identified yet with these well pointing events. We present a search for point-like sources based on a six year sample of upgoing muon-neutrinos with very low background contamination. To improve the sensitivity, the standard likelihood approach has been modified to focus on the properties of the measured astrophysical muon-neutrino flux.

  11. High Energy Atmospheric Neutrino Fluxes From a Realistic Primary Spectrum

    Science.gov (United States)

    Campos Penha, Felipe; Dembinski, Hans; Gaisser, Thomas K.; Tilav, Serap

    2016-03-01

    Atmospheric neutrino fluxes depend on the energy spectrum of primary nucleons entering the top of the atmosphere. Before the advent of AMANDA and the IceCube Neutrino Observatory, measurements of the neutrino fluxes were generally below ~ 1TeV , a regime in which a simple energy power law sufficed to describe the primary spectrum. Now, IceCube's muon neutrino data extends beyond 1PeV , including a combination of neutrinos from astrophysical sources with background from atmospheric neutrinos. At such high energies, the steepening at the knee of the primary spectrum must be accounted for. Here, we describe a semi-analytical approach for calculating the atmospheric differential neutrino fluxes at high energies. The input is a realistic primary spectrum consisting of 4 populations with distinct energy cutoffs, each with up to 7 representative nuclei, where the parameters were extracted from a global fit. We show the effect of each component on the atmospheric neutrino spectra, above 10TeV . The resulting features follow directly from recent air shower measurements included in the fit. Felipe Campos Penha gratefully acknowledges financial support from CAPES (Processo BEX 5348/14-5), CNPq (Processo 142180/2012-2), and the Bartol Research Institute.

  12. Measurement of the atmospheric muon charge ratio with the OPERA detector

    CERN Document Server

    Agafonova, N; Aoki, S; Ariga, A; Ariga, T; Autiero, D; Badertscher, A; Bagulya, A; Bertolin, A; Besnier, M; Bick, D; Boyarkin, V; Bozza, C; Brugière, T; Brugnera, R; Brunetti, G; Buontempo, S; Cazes, A; Chaussard, L; Chernyavsky, M; Chiarella, V; Chon-Sen, N; Chukanov, A; Cozzi, M; D'Amato, G; Corso, F Dal; D'Ambrosio, N; De Lellis, G; D'eclais, Y; De Serio, M; Di Capua, F; Di Ferdinando, D; Di Giovanni, A; Di Marco, N; Dmitrievski, S; Dracos, M; Duchesneau, D; Dusini, S; Ebert, J; Egorov, O; Enikeev, R; Ereditato, A; Esposito, L S; Favier, J; Felici, G; Ferber, T; Fini, R; Frekers, D; Fukuda, T; Fukushima, C; Galkin, V I; Garfagnini, A; Giacomelli, G; Giorgini, M; Goellnitz, C; Goldberg, J; Golubkov, D; Goncharova, L; Gornushkin, Y; Grella, G; Grianti, F; Guler, M; Gustavino, C; Hagner, C; Hamada, K; Hara, T; Hierholzer, M; Hoshino, K; Ieva, M; Jakovcic, K; Jollet, C; Juget, F; Kazuyama, M; Kim, S H; Kimura, M; Klicek, B; Knuesel, J; Kodama, K; Komatsu, M; Kose, U; Kreslo, I; Kubota, H; Lazzaro, C; Lenkeit, J; Ljubicic, A; Longhin, A; Lutter, G; Malgin, A; Mandrioli, G; Marotta, A; Marteau, J; Matsuo, T; Matveev, V; Mauri, N; Medinaceli, E; Meisel, F; Meregaglia, A; Migliozzi, P; Mikado, S; Miyamoto, S; Monacelli, P; Morishima, K; Moser, U; Muciaccia, M T; Naganawa, N; Naka, T; Nakamura, M; Nakano, T; Naumov, D; Nikitina, V; Niwa, K; Nonoyama, Y; Ogawa, S; Olchevski, A; Oldorf, C; Orlova, G; Osedlo, V; Paniccia, M; Paoloni, A; Park, B D; Park, I G; Pastore, A; Patrizii, L; Pennacchio, E; Pessard, H; Pilipenko, V; Pistillo, C; Policastro, G; Polukhina, N; Pozzato, M; Pretzl, K; Publichenko, P; Pupilli, F; Rescigno, R; Roganova, T; Rokujo, H; Romano, G; Rosa, G; Rostovtseva, I; Rubbia, A; Russo, A; Ryasny, V; Ryazhskaya, O; Sato, O; Sato, Y; Schembri, A; Parzefall, W Schmidt; Schroeder, H; Lavina, L Scotto; Sheshukov, A; Shibuya, H; Simone, S; Sioli, M; Sirignano, C; Sirri, G; Song, J S; Spinetti, M; Stanco, L; Starkov, N; Stipcevic, M; Strauss, T; Strolin, P; Takahashi, S; Tenti, M; Terranova, F; Tezuka, I; Tioukov, V; Tolun, P; Tran, T; Tufanli, S; Vilain, P; Vladimirov, M; Votano, L; Vuilleumier, J L; Wilquet, G; Wonsak, B; Yakushev, V; Yoon, C S; Yoshioka, T; Yoshida, J; Zaitsev, Y; Zemskova, S; Zghiche, A; Zimmermann, R

    2010-01-01

    The OPERA detector at the Gran Sasso underground laboratory (LNGS) was used to measure the atmospheric muon charge ratio in the TeV energy region. We analyzed 403069 atmospheric muons corresponding to 113.4 days of livetime during the 2008 CNGS run. We computed separately the muon charge ratio for single and for multiple muon events in order to select different energy regions of the primary cosmic ray spectrum and to test the charge ratio dependence on the primary composition. The measured charge ratio values were corrected taking into account the charge-misidentification errors. Data have also been grouped in five bins of the "vertical surface energy". A fit to a simplified model of muon production in the atmosphere allowed the determination of the pion and kaon charge ratios weighted by the cosmic ray energy spectrum.

  13. Muon Flux Measurements at the Davis Campus of the Sanford Underground Research Facility with the {\\sc Majorana Demonstrator} Veto System

    CERN Document Server

    Abgrall, N; Avignone, F T; Barabash, A S; Bertrand, F E; Bradley, A W; Brudanin, V; Busch, M; Buuck, M; Byram, D; Caldwell, A S; Chan, Y-D; Christofferson, C D; Chu, P -H; Cuesta, C; Detwiler, J A; Dunagan, C; Efremenko, Yu; Ejiri, H; Elliott, S R; Galindo-Uribarri, A; Gilliss, T; Giovanetti, G K; Goett, J; Green, M P; Gruszko, J; Guinn, I S; Guiseppe, V E; Henning, R; Hoppe, E W; Howard, S; Howe, M A; Jasinski, B R; Keeter, K J; Kidd, M F; Konovalov, S I; Kouzes, R T; LaFerriere, B D; Leon, J; Lopez, A M; MacMullin, J; Martin, R D; Massarczyk, R; Meijer, S J; Mertens, S; Orrell, J L; O'Shaughnessy, C; Overman, N R; Poon, A W P; Radford, D C; Rager, J; Rielage, K; Robertson, R G H; Romero-Romero, E; Ronquest, M C; Schmitt, C; Shanks, B; Shirchenko, M; Snyder, N; Suriano, A M; Tedeschi, D; Trimble, J E; Varner, R L; Vasilyev, S; Vetter, K; Vorren, K; White, B R; Wilkerson, J F; Wiseman, C; Xu, W; Yakushev, E; Yu, C -H; Yumatov, V; Zhitnikov, I

    2016-01-01

    We report the first measurement of the total MUON flux underground at the Davis Campus of the Sanford Underground Research Facility at the 4850 ft level. Measurements were done with the Majorana Demonstrator veto system arranged in two different configurations. The measured total flux is (5.04+/-0.16) x 10^-9 muons/s/cm^2.

  14. Biological implications of high-energy cosmic ray induced muon flux in the extragalactic shock model

    CERN Document Server

    Atri, Dimitra

    2011-01-01

    A ~ 62 My periodicity in fossil biodiversity has been observed in independent studies of paleobiology databases going back 542 My. The period and phase of this biodiversity cycle coincides with the motion of our solar system in the galactic disk that oscillates perpendicular to the galactic plane with an amplitude of about 70 parsecs and a period of 63.6 My. Our Galaxy is falling toward the Virgo cluster due to its gravitational pull, forming a galactic shock at the north end of our galaxy due to this motion, capable of accelerating particles and exposing our galaxy's northern side to a higher flux of cosmic rays. These high-energy particles strike the Earth's atmosphere initiating extensive air showers, ionizing the atmosphere by producing charged secondary particles. Secondary particles such as muons produced as a result of nuclear interactions are able to reach the ground, enhancing the biological radiation dose, causing DNA damage and increasing mutation rates, which can have serious biological implicatio...

  15. Determination of the Atmospheric Neutrino Fluxes from Atmospheric Neutrino Data

    CERN Document Server

    González-Garciá, M C; Rojo, J

    2006-01-01

    The precise knowledge of the atmospheric neutrino fluxes is a key ingredient in the interpretation of the results from any atmospheric neutrino experiment. In the standard atmospheric neutrino data analysis, these fluxes are theoretical inputs obtained from sophisticated numerical calculations based on the convolution of the primary cosmic ray spectrum with the expected yield of neutrinos per incident cosmic ray. In this work we present an alternative approach to the determination of the atmospheric neutrino fluxes based on the direct extraction from the experimental data on neutrino event rates. The extraction is achieved by means of a combination of artificial neural networks as interpolants and Monte Carlo methods for faithful error estimation

  16. Measurement of Neutron and Muon Fluxes 100~m Underground with the SciBath Detector

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, Lance [Indiana Univ., Bloomington, IN (United States)

    2014-01-01

    The SciBath detector is an 80 liter liquid scintillator detector read out by a three dimensional grid of 768 wavelength-shifting fibers. Initially conceived as a fine-grained charged particle detector for neutrino studies that could image charged particle tracks in all directions, it is also sensitive to fast neutrons (15-200 MeV). In fall of 2011 the apparatus performed a three month run to measure cosmic-induced muons and neutrons 100~meters underground in the FNAL MINOS near-detector area. Data from this run has been analyzed and resulted in measurements of the cosmic muon flux as \

  17. Measurement of the Atmospheric Muon Spectrum from 20 to 3000 GeV

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Van den Ancker, M E; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Bähr, J; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, G J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chiarusi, T; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Ding, L K; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Durán, I; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Faber, G; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, F; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grabosch, H J; Grenier, G; Grimm, O; Groenstege, H L; Grünewald, M W; Guida, M; Guo, Y N; Gupta, S; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Haller, C; Hatzifotiadou, D; Hayashi, Y; He, Z X; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hoferjun, H; Hohlmann, M; Holzner, G; Hou, S R; Huo, A X; Hu, Y; Ito, N; Jin, B N; Jing, C L; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kantserov, V A; Kaur, M; Kawakami, S; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kok, E; Korn, A J; Kopal, M; Koutsenko, V F; Kräber, M H; Kuang Hao Huai; Krämer, R W; Krüger, A; Kuijpers, J; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Lei, Y; Leich, H; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Li, L; Li, Z C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Ma, X H; Ma, Y Q; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Meng, X W; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Van Mil, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Monteleoni, B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Nahnhauer, R; Naumov, V A; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Parriaud, J F; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pieri, M; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Qing, C R; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Ravindran, K C; Razis, P; Ren, D; Rescigno, M; Reucroft, S; Rewiersma, P A M; Riemann, S; Riles, K; Roe, B P; Rojkov, A; Romero, L; Rosca, A; Rosemann, C; Rosenbleck, C; Rosier-Lees, S; Roth, S; Rubio, J A; Ruggiero, G; Rykaczewski, H; Saidi, R; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schmitt, V; Schöneich, B; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shen, C Q; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sulanke, H; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, L; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Trowitzsch, G; Tully, C; Tung, K L; Ulbricht, J; Unger, M; Valente, E; Verkooijen, H; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, R G; Wang, Q; Wang, X L; Wang, X W; Wang, Z M; Weber, M; Van Wijk, R F; Wijnen, T A M; Wilkens, H; Wynhoff, S; Xia, L; Xu, Y P; Xu, J S; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yang, X F; Yao, Z G; Yeh, S C; Yu, Z Q; Zalite, A; Zalite, Yu; Zhang, C; Zhang, F; Zhang, J; Zhang, S; Zhang, Z P; Zhao, J; Zhou, S J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zhu, Q Q; Zichichi, A; Zimmermann, B; Zöller, M; Zwart, A N M

    2004-01-01

    The absolute muon flux between 20 GeV and 300 GeV is measured with the L3 magnetic muon spectrometer for zenith angles ranging from 0 degree to 58 degrees. Due to the large exposure of about 150 m2 sr d, and the excellent momentum resolution of the L3 muon chambers, a precision of 2.3% at 150 GeV in the vertical direction is achieved. The ratio of positive to negative muons is studied between 20 GeV and 500 GeV, and the average vertical muon charge ratio is found to be 1.285 +- 0.003 (stat.)+- 0.019 (syst.).

  18. Cosmic Ray Muon Flux at the Sanford Underground Laboratory at Homestake

    CERN Document Server

    Gray, F E; Totushek, J; Mei, D -M; Thomas, K; Zhang, C

    2010-01-01

    Measuring the muon flux is important to the Sanford Underground Laboratory at Homestake, for which several low background experiments are being planned. The cosmic ray muon flux was measured in three locations at this laboratory: on the surface ($1.149\\pm0.017 \\times 10^{-2}~\\rm{s}^{-1}~\\rm{cm}^{-2}~\\rm{sr}^{-1}$), at the 800-ft level ($2.67\\pm0.06 \\times 10^{-6}~\\rm{s}^{-1}~\\rm{cm}^{-2}~\\rm{sr}^{-1}$), and at the 2000-ft level ($2.51\\pm0.25 \\times 10^{-7}~\\rm{s}^{-1}~\\rm{cm}^{-2}~\\rm{sr}^{-1}$). These fluxes agree well with model predictions.

  19. Why should we keep measuring zenital dependence of muon flux? Results obtained at Campinas (SP) BR

    CERN Document Server

    Daniel, B; Nunes, M; Vieira, T V; Kemp, E

    2013-01-01

    The zenital dependence of muon flux which reaches the earth's surface is well known as proportional to cos^n(\\theta). Generally, for practical purposes and simplicity in calculations, n is taken as 2. However, compilations of measurements show dependence on the geographical location of the experiments as well as the muons energy range. Since analytical solutions appear to be increasingly less necessary because of the higher accessibility to low cost computational power, accurate and precise determination of the value of the exponent n, under different conditions, can be useful in the necessary calculations to estimate signals and backgrounds, either for terrestrial and underground experiments. In this work we discuss a method for measuring n using a simple muon telescope and the results obtained for measurements taken at Campinas (SP), Brazil. After validation of the method, we intend to extend the measurements for different geographic locations due to the simplicity of the method, and thus collect more value...

  20. Measuring the mass hierarchy with muon and hadron events in atmospheric neutrino experiments

    Science.gov (United States)

    Ghosh, Anushree; Choubey, Sandhya

    2013-10-01

    Neutrino mass hierarchy can be measured in atmospheric neutrino experiments through the observation of earth matter effects. Magnetized iron calorimeters have been shown to be good in this regard due to their charge identification capabilities. The charged current interaction of ν μ in this detector, produces a muon track and a hadron shower. The direction of the muon track can be measured very accurately. We show the improvement expected in the reach of this class of experiments to the neutrino mass hierarchy, as we improve the muon energy resolution and the muon reconstruction efficiency. We next propose to include the hadron events in the analysis, by tagging them with the zenith angle of the corresponding muon and binning the hadron data first in energy and then in zenith angle. To the best of our knowledge this way of performing the analysis of the atmospheric neutrino data has not be considered before. We show that the hadron events increase the mass hierarchy sensitivity of the experiment. Finally, we show the expected mass hierarchy sensitivity in terms of the reconstructed neutrino energy and zenith angle. We show how the detector resolutions spoil the earth matter effects in the neutrino channel and argue why the sensitivity obtained from the neutrino analysis cannot be significantly better than that obtained from the analysis using muon data alone. As a result, the best mass hierarchy sensitivity is obtained when we add the contribution of the muon and the hadron data. For sin2 2 θ 13 = 0.1, sin2 θ 23 = 0.5, a muon energy resolution of 2%, reconstruction efficiency of 80% and exposure of 50 × 10 kton-year, we could get up to 4.5 σ signal for the mass hierarchy from combining the muon and hadron data. The signal will go up when the atmospheric data is combined with data from other existing experiments, particularly NO νA.

  1. Atmospheric Effect on Cosmic Ray Muons at High Cut-Off Rigidity Station

    Directory of Open Access Journals (Sweden)

    Abdullrahman Maghrabi

    2016-01-01

    Full Text Available Cosmic ray data and radiosonde measurements from Riyadh, Saudi Arabia (Rc = 14.4 GV, for the period 2002–2012, were used to study the effect of atmospheric pressure, level of pion production, and temperature at that level, on cosmic ray muons. We found that, even if corrections were made to the detected muons using these three parameters, seasonal variations of the cosmic rays still exist. This suggests that other terrestrial and/or extraterrestrial causes may be considered. The levels of pion production and atmospheric pressure are inversely correlated with the muon rate. On the other hand, the temperature at the pion production level is correlated with muons in spring and winter and inversely correlated in fall and summer. There is no clear explanation for this behavior.

  2. Observation and Characterization of a Cosmic Muon Neutrino Flux from the Northern Hemisphere Using Six Years of IceCube Data

    Science.gov (United States)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Burgman, A.; Carver, T.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Mohrmann, L.; Montaruli, T.; Moulai, M.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schimp, M.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; Icecube Collaboration

    2016-12-01

    The IceCube Collaboration has previously discovered a high-energy astrophysical neutrino flux using neutrino events with interaction vertices contained within the instrumented volume of the IceCube detector. We present a complementary measurement using charged current muon neutrino events where the interaction vertex can be outside this volume. As a consequence of the large muon range the effective area is significantly larger but the field of view is restricted to the Northern Hemisphere. IceCube data from 2009 through 2015 have been analyzed using a likelihood approach based on the reconstructed muon energy and zenith angle. At the highest neutrino energies between 194 {TeV} and 7.8 {PeV} a significant astrophysical contribution is observed, excluding a purely atmospheric origin of these events at 5.6σ significance. The data are well described by an isotropic, unbroken power-law flux with a normalization at 100 {TeV} neutrino energy of ({0.90}-0.27+0.30)× {10}-18 {{GeV}}-1 {{cm}}-2 {{{s}}}-1 {{sr}}-1 and a hard spectral index of γ =2.13+/- 0.13. The observed spectrum is harder in comparison to previous IceCube analyses with lower energy thresholds which may indicate a break in the astrophysical neutrino spectrum of unknown origin. The highest-energy event observed has a reconstructed muon energy of (4.5+/- 1.2) {PeV} which implies a probability of less than 0.005 % for this event to be of atmospheric origin. Analyzing the arrival directions of all events with reconstructed muon energies above 200 {TeV} no correlation with known γ-ray sources was found. Using the high statistics of atmospheric neutrinos we report the current best constraints on a prompt atmospheric muon neutrino flux originating from charmed meson decays which is below 1.06 in units of the flux normalization of the model in Enberg et al.

  3. A Search for a Diffuse Flux of Astrophysical Muon Neutrinos with the IceCube 40-String Detector

    CERN Document Server

    Abbasi, R

    2011-01-01

    The IceCube Neutrino Observatory is a 1 km$^{3}$ detector currently taking data at the South Pole. One of the main strategies used to look for astrophysical neutrinos with IceCube is the search for a diffuse flux of high-energy neutrinos from unresolved sources. If there are many weak or moderate sources of extraterrestrial neutrinos, their output will appear as an diffuse flux. A hard energy spectrum of neutrinos from isotropically distributed astrophysical sources could manifest themselves as a detectable signal that may be differentiated from the atmospheric neutrino background by spectral measurement. Since astrophysical neutrinos are expected to have a harder energy spectrum than atmospheric neutrinos, a reliable method of estimating the energy of the neutrino-induced lepton is crucial. This analysis uses data from the IceCube detector collected in its half completed configuration which operated between April 2008 and May 2009 to search for a diffuse flux of astrophysical muon neutrinos. A total of 12,87...

  4. Time calibration with atmospheric muon tracks in the ANTARES neutrino telescope

    CERN Document Server

    Adrián-Martínez, S; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bogazzi, C.; Bormuth, R.; Bou-Cabo, M.; Bouwhuis, M.C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fermani, P.; Flaminio, V.; Folger, F.; Fusco, L.A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gracia-Ruiz, R.; Gómez-González, J.P.; Graf, K.; van Haren, H.; Heijboer, A.J.; Hello, Y.; Hernández-Rey, J.J.; Herrero, A.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C.W.; de Jong, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Lattuada, D.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J.A.; Martini, S.; Mathieu, A.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Neff, M.; Nezri, E.; Păvălaş, G.E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Rostovtsev, A.; Saldaña, M.; Samtleben, D.F.E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schulte, S.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Steijger, J.J.M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Trovato, A.; Tselengidou, M.; Tönnis, C.; Turpin, D.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J.D.; Zúñiga, J.

    2016-01-01

    The ANTARES experiment consists of an array of photomultipliers distributed along 12 lines and located deep underwater in the Mediterranean Sea. It searches for astrophysical neutrinos collecting the Cherenkov light induced by the charged particles, mainly muons, produced in neutrino interactions around the detector. Since at energies of $\\sim$10 TeV the muon and the incident neutrino are almost collinear, it is possible to use the ANTARES detector as a neutrino telescope and identify a source of neutrinos in the sky starting from a precise reconstruction of the muon trajectory. To get this result, the arrival times of the Cherenkov photons must be accurately measured. A to perform time calibrations with the precision required to have optimal performances of the instrument is described. The reconstructed tracks of the atmospheric muons in the ANTARES detector are used to determine the relative time offsets between photomultipliers. Currently, this method is used to obtain the time calibration constants for ph...

  5. Time dependences of atmospheric Carbon dioxide fluxes

    CERN Document Server

    DeSalvo, Riccardo

    2014-01-01

    Understanding the lifetime of CO2 in the atmosphere is critical for predictions regarding future climate changes. A simple mass conservation analysis presented here generates tight estimations for the atmosphere's retention time constant. The analysis uses a leaky integrator model that combines the observed deficit (only less than 40% of CO2 produced from combustion of fossil fuels is actually retained in the atmosphere, while more than 60% is continuously shed) with the exponential growth of fossil fuel burning. It reveals a maximum characteristic time of less than 23 year for the transfer of atmospheric CO2 to a segregation sink. This time constant is further constrained by the rapid disappearance of 14C after the ban of atmospheric atomic bomb tests, which provides a lower limit of 18 years for this transfer. The study also generates evaluations of other CO2 fluxes, exchange time constants and volumes exchanged. Analysis of large harmonic oscillations of atmospheric CO2 concentration, often neglected in th...

  6. Measurement of the flux and zenith-angle distribution of upward through-going muons by Super-Kamiokande

    CERN Document Server

    Fukuda, Y; Ichihara, E; Inoue, K; Ishihara, K; Ishino, H; Itow, Y; Kajita, T; Kameda, J; Kasuga, S; Kobayashi, K; Kobayashi, Y; Koshio, Y; Miura, M; Nakahata, M; Nakayama, S; Okada, A; Okumura, K; Sakurai, N; Shiozawa, M; Suzuki, Y; Takeuchi, Y; Totsuka, Y; Yamada, S; Earl, M; Habig, A; Kearns, E; Messier, M D; Scholberg, K; Stone, J L; Sulak, L R; Walter, C W; Goldhaber, M; Barszczak, T; Casper, D; Gajewski, W; Kropp, W R; Price, L R; Reines, F; Smy, M B; Sobel, H W; Vagins, M R; Ganezer, K S; Keig, W E; Ellsworth, R W; Tasaka, S; Flanagan, J W; Kibayashi, A; Learned, J G; Matsuno, S; Stenger, V J; Takemori, D; Ishii, T; Kanzaki, J; Kobayashi, T; Mine, S; Nakamura, K; Nishikawa, K; Oyama, Y; Sakai, A; Sakuda, M; Sasaki, O; Echigo, S; Kohama, M; Suzuki, A T; Haines, T J; Blaufuss, E; Kim, B K; Sanford, R; Svoboda, R; Chen, M L; Goodman, J A; Sullivan, G W; Hill, J; Jung, C K; Martens, K; Mauger, C; McGrew, C; Sharkey, E; Viren, B; Yanagisawa, C; Doki, W; Miyano, K; Okazawa, H; Saji, C; Takahata, M; Nagashima, Y; Takita, M; Yamaguchi, T; Yoshida, M; Kim, S B; Etoh, M; Fujita, K; Hasegawa, A; Hasegawa, T; Hatakeyama, S; Iwamoto, T; Koga, M; Maruyama, T; Ogawa, H; Shirai, J; Suzuki, A; Tsushima, F; Koshiba, M; Nemoto, M; Nishijima, K; Futagami, T; Hayato, Y; Kanaya, Y; Kaneyuki, K; Watanabe, Y; Kielczewska, D; Doyle, R A; George, J S; Stachyra, A L; Wai, L L; Wilkes, R J; Young, K K

    1999-01-01

    A total of 614 upward through-going muons of minimum energy 1.6 GeV are observed by Super-Kamiokande during 537 detector live days. The measured muon flux is 1.74+/-0.07(stat.)+/-0.02(sys.)x10^{-13}cm^{-2}s^{-1}sr^{-1} compared to an expected flux of 1.97+/-0.44(theo.)x10^{-13}cm^{-2}s^{-1}sr^{-1}. The absolute measured flux is in agreement with the prediction within the errors. However, the zenith angle dependence of the observed upward through-going muon flux does not agree with no-oscillation predictions. The observed distortion in shape is consistent with the \

  7. Tau Neutrinos Favored over Sterile Neutrinos in Atmospheric Muon Neutrino Oscillations

    CERN Document Server

    Fukuda, S; Ishitsuka, M; Itow, Y; Kajita, T; Kameda, J; Kaneyuki, K; Kobayashi, K; Koshio, Y; Miura, M; Moriyama, S; Nakahata, M; Nakayama, S; Obayashi, Y; Okada, A; Okumura, K; Sakurai, N; Shiozawa, M; Suzuki, Y; Takeuchi, H; Takeuchi, Y; Toshito, T; Totsuka, Y; Yamada, S; Earl, M A; Habig, A; Kearns, E T; Messier, M D; Scholberg, K; Stone, J L; Sulak, Lawrence R; Walter, C W; Goldhaber, M; Barszczak, T; Casper, David William; Gajewski, W; Kropp, W R; Mine, S; Price, L R AU Fukuda, S; Smy, M B; Sobel, H W; Vagins, M R; Ganezer, K S; Keig, W E; Ellsworth, R W; Tasaka, S; Kibayashi, A; Learned, J G; Matsuno, S; Takemori, D; Hayato, Y; Ishii, T; Kobayashi, T; Nakamura, K; Oyama, Y; Sakai, A; Sakuda, M; Sasaki, O; Kohama, M; Suzuki, A T; Inagaki, T; Nishikawa, K; Haines, T J; Blaufuss, E; Kim, B K; Sanford, R; Svoboda, R; Chen, M L; Goodman, J A; Guillian, G; Sullivan, G W; Hill, J; Jung, C K; Martens, K; Malek, M; Mauger, C; McGrew, C; Sharkey, E; Viren, B M; Yanagisawa, C; Kirisawa, M; Inaba, S; Mitsuda, C; Miyano, K; Okazawa, H; Saji, C; Takahashi, M; Takahata, M; Nagashima, Y; Nitta, K; Takita, M; Yoshida, M; Kim, S B; Ishizuka, T; Etoh, M; Gando, Y; Hasegawa, T; Inoue, K; Ishihara, K; Maruyama, T; Shirai, J; Suzuki, A; Koshiba, M; Hatakeyama, Y; Ichikawa, Y; Koike, M; Nishijima, K; Fujiyasu, H; Ishino, H; Morii, M; Watanabe, Y; Golebiewska, U; Kielczewska, D; Boyd, S C; Stachyra, A L; Wilkes, R J; Young, K K

    2000-01-01

    The previously published atmospheric neutrino data did not distinguish whether muon neutrinos were oscillating into tau neutrinos or sterile neutrinos, as both hypotheses fit the data. Using data recorded in 1100 live-days of the Super-Kamiokande detector, we use three complementary data samples to study the difference in zenith angle distribution due to neutral currents and matter effects. We find no evidence favoring sterile neutrinos, and reject the hypothesis at the 99% confidence level. On the other hand, we find that oscillation between muon and tau neutrinos suffices to explain all the results in hand.

  8. Tau neutrinos favored over sterile neutrinos in atmospheric muon neutrino oscillations.

    Science.gov (United States)

    Fukuda, S; Fukuda, Y; Ishitsuka, M; Kajita, T; Kameda, J; Kaneyuki, K; Kobayashi, K; Koshio, Y; Miura, M; Moriyama, S; Nakahata, M; Nakayama, S; Obayashi, Y; Okada, A; Okumura, K; Sakurai, N; Shiozawa, M; Suzuki, Y; Takeuchi, H; Takeuchi, Y; Toshito, T; Totsuka, Y; Yamada, S; Earl, M; Habig, A; Kearns, E; Messier, M D; Scholberg, K; Stone, J L; Sulak, L R; Walter, C W; Goldhaber, M; Barszczak, T; Casper, D; Gajewski, W; Kropp, W R; Mine, S; Price, L R; Smy, M; Sobel, H W; Vagins, M R; Ganezer, K S; Keig, W E; Ellsworth, R W; Tasaka, S; Kibayashi, A; Learned, J G; Matsuno, S; Takemori, D

    2000-11-01

    The previously published atmospheric neutrino data did not distinguish whether muon neutrinos were oscillating into tau neutrinos or sterile neutrinos, as both hypotheses fit the data. Using data recorded in 1100 live days of the Super-Kamiokande detector, we use three complementary data samples to study the difference in zenith angle distribution due to neutral currents and matter effects. We find no evidence favoring sterile neutrinos, and reject the hypothesis at the 99% confidence level. On the other hand, we find that oscillation between muon and tau neutrinos suffices to explain all the results in hand.

  9. Effective Temperature Calculation and Monte Carlo Simulation of Temperature Effect on Muon Flux%有效温度的计算和大气μ子温度效应的Monte Carlo模拟

    Institute of Scientific and Technical Information of China (English)

    孟祥伟

    2004-01-01

    高空大气气温变化引起地面或地下探测到的宇宙线μ强度变化.本文介绍了基于日内瓦附近Payerne气象站气球数据的大气μ子有效温度的计算,并选取代表性的8个大气样本模拟了L3+Cosmics探测器位置的宇宙线μ子温度效应,计算了温度系数,得到极端高空温度情况下可能探测到的μ子强度变化的量级,为L3+Cosmics μ谱精细测量和温度系数的抽取提供参考.%Many experiments have reported observations on possible correlations between the muon flux and temperature variation in the atmosphere, and especially recent MACRO and AMANDA observed apparent seasonal variation in the absolute muon rate. We report the calculation of effective temperature from Payerne meteorological data, and the simulation of temperature effect on muon flux from its representative atmosphere samples, which gives temperature coefficient At prediction in muon threshold energy range 30 GeV up to 2000 GeV and the order of possible influence on absolute muon flux.

  10. Influence of the Atmospheric Mass on the High Energy Cosmic Ray Muons during a Solar Cycle

    Directory of Open Access Journals (Sweden)

    A. H. Maghrabi

    2015-01-01

    Full Text Available The rate of the detected cosmic ray muons depends on the atmospheric mass, height of pion production level, and temperature. Corrections for the changes in these parameters are importance to know the properties of the primary cosmic rays. In this paper, the effect of atmospheric mass, represented here by the atmospheric pressure, on the cosmic ray was studied using data from the KACST muon detector during the 2002–2012 period. The analysis was conducted by calculating the barometric coefficient (α using regression analysis between the two parameters. The variation of α over different time scales was investigated. The results revealed a seasonal cycle of α with a maximum in September and a minimum in March. Data from Adelaide muon detector were used, and different monthly variation was found. The barometric coefficient displays considerable variability at the interannual scale. Study of the annual variations of α indicated cyclic variation with maximums between 2008 and 2009 and minimums between 2002 and 2003. This variable tendency is found to be anticorrelated with the solar activity, represented by the sunspot number. This finding was compared with the annual trend of α for the Adelaide muon detector for the same period of time, and a similar trend was found.

  11. Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 59-string configuration

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Abbasi, R.; Ackermann, M.

    2014-01-01

    A search for high-energy neutrinos was performed using data collected by the IceCube Neutrino Observatory from May 2009 to May 2010, when the array was running in its 59-string configuration. The data sample was optimized to contain muon neutrino induced events with a background contamination...... of atmospheric muons of less than 1%. These data, which are dominated by atmospheric neutrinos, are analyzed with a global likelihood fit to search for possible contributions of prompt atmospheric and astrophysical neutrinos, neither of which have yet been identified. Such signals are expected to follow a harder...

  12. Observation and Characterization of a Cosmic Muon Neutrino Flux from the Northern Hemisphere using six years of IceCube data

    CERN Document Server

    Aartsen, M G; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Andeen, K; Anderson, T; Ansseau, I; Anton, G; Archinger, M; Argüelles, C; Auffenberg, J; Axani, S; Bai, X; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blot, S; Bohm, C; Börner, M; Bos, F; Bose, D; Böser, S; Botner, O; Braun, J; Brayeur, L; Bretz, H -P; Burgman, A; Carver, T; Casier, M; Cheung, E; Chirkin, D; Christov, A; Clark, K; Classen, L; Coenders, S; Collin, G H; Conrad, J M; Cowen, D F; Cross, R; Day, M; de André, J P A M; De Clercq, C; Rosendo, E del Pino; Dembinski, H; De Ridder, S; Desiati, P; de Vries, K D; de Wasseige, G; de With, M; DeYoung, T; Díaz-Vélez, J C; di Lorenzo, V; Dujmovic, H; Dumm, J P; Dunkman, M; Eberhardt, B; Ehrhardt, T; Eichmann, B; Eller, P; Euler, S; Evenson, P A; Fahey, S; Fazely, A R; Feintzeig, J; Felde, J; Filimonov, K; Finley, C; Flis, S; Fösig, C -C; Franckowiak, A; Friedman, E; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Ghorbani, K; Giang, W; Gladstone, L; Glagla, M; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Grant, D; Griffith, Z; Haack, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hansen, E; Hansmann, B; Hansmann, T; Hanson, K; Hebecker, D; Heereman, D; Helbing, K; Hellauer, R; Hickford, S; Hignight, J; Hill, G C; Hoffman, K D; Hoffmann, R; Holzapfel, K; Hoshina, K; Huang, F; Huber, M; Hultqvist, K; In, S; Ishihara, A; Jacobi, E; Japaridze, G S; Jeong, M; Jero, K; Jones, B J P; Jurkovic, M; Kappes, A; Karg, T; Karle, A; Katz, U; Kauer, M; Keivani, A; Kelley, J L; Kemp, J; Kheirandish, A; Kim, M; Kintscher, T; Kiryluk, J; Kittler, T; Klein, S R; Kohnen, G; Koirala, R; Kolanoski, H; Konietz, R; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krings, K; Kroll, M; Krückl, G; Krüger, C; Kunnen, J; Kunwar, S; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larson, M J; Lauber, F; Lennarz, D; Lesiak-Bzdak, M; Leuermann, M; Leuner, J; Lu, L; Lünemann, J; Madsen, J; Maggi, G; Mahn, K B M; Mancina, S; Mandelartz, M; Maruyama, R; Mase, K; Maunu, R; McNally, F; Meagher, K; Medici, M; Meier, M; Meli, A; Menne, T; Merino, G; Meures, T; Miarecki, S; Mohrmann, L; Montaruli, T; Moulai, M; Nahnhauer, R; Naumann, U; Neer, G; Niederhausen, H; Nowicki, S C; Nygren, D R; Pollmann, A Obertacke; Olivas, A; O'Murchadha, A; Palczewski, T; Pandya, H; Pankova, D V; Peiffer, P; Penek, Ö; Pepper, J A; Heros, C Pérez de los; Pieloth, D; Pinat, E; Price, P B; Przybylski, G T; Quinnan, M; Raab, C; Rädel, L; Rameez, M; Rawlins, K; Reimann, R; Relethford, B; Relich, M; Resconi, E; Rhode, W; Richman, M; Riedel, B; Robertson, S; Rongen, M; Rott, C; Ruhe, T; Ryckbosch, D; Rysewyk, D; Sabbatini, L; Herrera, S E Sanchez; Sandrock, A; Sandroos, J; Sarkar, S; Satalecka, K; Schimp, M; Schlunder, P; Schmidt, T; Schoenen, S; Schöneberg, S; Schumacher, L; Seckel, D; Seunarine, S; Soldin, D; Song, M; Spiczak, G M; Spiering, C; Stahlberg, M; Stanev, T; Stasik, A; Steuer, A; Stezelberger, T; Stokstad, R G; Stößl, A; Ström, R; Strotjohann, N L; Sullivan, G W; Sutherland, M; Taavola, H; Taboada, I; Tatar, J; Tenholt, F; Ter-Antonyan, S; Terliuk, A; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Toscano, S; Tosi, D; Tselengidou, M; Turcati, A; Unger, E; Usner, M; Vandenbroucke, J; van Eijndhoven, N; Vanheule, S; van Rossem, M; van Santen, J; Veenkamp, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallace, A; Wallraff, M; Wandkowsky, N; Weaver, Ch; Weiss, M J; Wendt, C; Westerhoff, S; Whelan, B J; Wickmann, S; Wiebe, K; Wiebusch, C H; Wille, L; Williams, D R; Wills, L; Wolf, M; Wood, T R; Woolsey, E; Woschnagg, K; Xu, D L; Xu, X W; Xu, Y; Yanez, J P; Yodh, G; Yoshida, S; Zoll, M

    2016-01-01

    The IceCube Collaboration has previously discovered a high-energy astrophysical neutrino flux using neutrino events with interaction vertices contained within the instrumented volume of the IceCube detector. We present a complementary measurement using charged current muon neutrino events where the interaction vertex can be outside this volume. As a consequence of the large muon range the effective area is significantly larger but the field of view is restricted to the Northern Hemisphere. IceCube data from 2009 through 2015 have been analyzed using a likelihood approach based on the reconstructed muon energy and zenith angle. At the highest neutrino energies between 191 TeV and 8.3 PeV a significant astrophysical contribution is observed, excluding a purely atmospheric origin of these events at $5.6\\,\\sigma$ significance. The data are well described by an isotropic, unbroken power law flux with a normalization at 100 TeV neutrino energy of $\\left(0.90^{+0.30}_{-0.27}\\right)\\times10^{-18}\\,\\mathrm{GeV^{-1}\\,c...

  13. Probing the Cosmic Ray "Knee" and Very High Energy Prompt Muon and Neutrino fluxes via Underground Muons

    CERN Document Server

    Gandhi, R; Gandhi, Raj; Panda, Sukanta

    2006-01-01

    We calculate event rate and demonstrate the observational feasibility of very high energy muons (1 TeV-1000 TeV) in a large mass underground detector operating as a pair-meter. This energy range corresponds to surface muon energies of $\\sim$(2 TeV - 5000 TeV) and primary cosmic ray energies of $\\sim$ (20 TeV - 5 $\\times 10^4$ TeV). Such measurements would significantly assist in an improved understanding of the prompt contribution to $\

  14. Effect of muon-nuclear inelastic scattering on high-energy atmospheric muon spectrum at large depth underwater

    CERN Document Server

    Sinegovsky, S I; Lokhtin, K S; Takahashi, N

    2007-01-01

    The energy spectra of hadron cascade showers produced by the cosmic ray muons travelling through water as well as the muon energy spectra underwater at the depth up to 4 km are calculated with two models of muon inelastic scattering on nuclei, the recent hybrid model (two-component, 2C) and the well-known generalized ector-meson-dominance model for the comparison. The 2C model involves photonuclear interactions at low and moderate virtualities as well as the hard scattering including the weak neutral current processes. For the muon scattering off nuclei substantial uclear effects, shadowing, nuclear binding and Fermi motion of nucleons are taken into account. It is shown that deep nderwater muon energy spectrum calculated with the 2C model are noticeably distorted at energies above 100 TeV as compared to that obtained with the GVMD model.

  15. Observation of a shadow of the Moon in the underground muon flux in the Soudan 2 detector

    Science.gov (United States)

    Cobb, J. H.; Marshak, M. L.; Allison, W. W.; Alner, G. J.; Ayres, D. S.; Barrett, W. L.; Bode, C.; Border, P. M.; Brooks, C. B.; Cotton, R. J.; Courant, H.; Demuth, D. M.; Fields, T. H.; Gallagher, H. R.; Goodman, M. C.; Gran, R.; Joffe-Minor, T.; Kafka, T.; Kasahara, S. M.; Leeson, W.; Litchfield, P. J.; Longley, N. P.; Mann, W. A.; Milburn, R. H.; Miller, W. H.; Moon, C.; Mualem, L.; Napier, A.; Oliver, W. P.; Pearce, G. F.; Peterson, E. A.; Petyt, D. A.; Price, L. E.; Ruddick, K.; Sanchez, M.; Sankey, P.; Schneps, J.; Schub, M. H.; Seidlein, R.; Stassinakis, A.; Thron, J. L.; Vassiliev, V.; Villaume, G.; Wakely, S. P.; West, N.; Wall, D.

    2000-05-01

    A shadow of the Moon, with a statistical significance of 5σ, has been observed in the underground muon flux at a depth of 2090 mwe using the Soudan 2 detector. The angular resolution of the detector is well described by a Gaussian with a sigma <=0.3°. The position of the shadow confirms that the alignment of the detector is known to better than 0.15° and has remained stable during ten years of data taking.

  16. High-energy neutrino fluxes and flavor ratio in the Earth atmosphere

    CERN Document Server

    Sinegovskaya, T S; Sinegovsky, S I

    2014-01-01

    High-energy neutrinos from decays of mesons, produced in collisions of cosmic-ray particles with air nuclei, form unavoidable background for detection of astrophysical neutrinos. More precise calculations of the high-energy neutrino spectrum are required since measurements in the IceCube experiment reach the intriguing energy range where a contribution of the prompt neutrinos and/or astrophysical ones should be uncovered. The calculation of muon and electron neutrino fluxes in the energy range 100 GeV - 10 PeV is performed for three hadronic models, QGSJET II, SIBYll 2.1 and Kimel & Mokhov, taking into consideration the "knee" of the cosmic-ray spectrum. All calculations are compared with the atmospheric neutrino measurements by Frejus, AMANDA, IceCube and ANTARES. The prompt neutrino flux predictions obtained with the quark-gluon string model (QGSM) for the charm production by Kaidalov & Piskunova do not contradict to the measurements and upper limits on the astrophysical muon neutrino flux obtained ...

  17. Measurement of the Muon Atmospheric Production Depth with the Water Cherenkov Detectors of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Molina Bueno, Laura [Univ. of Granada (Spain)

    2015-09-01

    Ultra-high-energy cosmic rays (UHECR) are particles of uncertain origin and composition, with energies above 1 EeV (1018 eV or 0.16 J). The measured flux of UHECR is a steeply decreasing function of energy. The largest and most sensitive apparatus built to date to record and study cosmic ray Extensive Air Showers (EAS) is the Pierre Auger Observatory. The Pierre Auger Observatory has produced the largest and finest amount of data ever collected for UHECR. A broad physics program is being carried out covering all relevant topics of the field. Among them, one of the most interesting is the problem related to the estimation of the mass composition of cosmic rays in this energy range. Currently the best measurements of mass are those obtained by studying the longitudinal development of the electromagnetic part of the EAS with the Fluorescence Detector. However, the collected statistics is small, specially at energies above several tens of EeV. Although less precise, the volume of data gathered with the Surface Detector is nearly a factor ten larger than the fluorescence data. So new ways to study composition with data collected at the ground are under investigation. The subject of this thesis follows one of those new lines of research. Using preferentially the time information associated with the muons that reach the ground, we try to build observables related to the composition of the primaries that initiated the EAS. A simple phenomenological model relates the arrival times with the depths in the atmosphere where muons are produced. The experimental confirmation that the distributions of muon production depths (MPD) correlate with the mass of the primary particle has opened the way to a variety of studies, of which this thesis is a continuation, with the aim of enlarging and improving its range of applicability. We revisit the phenomenological model which is at the root of the analysis and discuss a new way to improve some aspects of the model. We carry

  18. Study of atmospheric neutrinos with the MACRO detector

    CERN Document Server

    Scapparone, E

    2003-01-01

    The MACRO experiment detected different categories of atmospheric muon neutrinos. We describe in this paper the energy estimate of upward throughgoing muons by using the multiple coulomb scattering. Combining the results of such analysis with the upgoing muon angular distribution, both not using the absolute nu flux normalization information, an evidence above 4 sigma for atmospheric neutrino oscillation is found. (7 refs).

  19. Seasonal Modulations of the Underground Cosmic-Ray Muon Energy

    CERN Document Server

    Malgin, A S

    2016-01-01

    The parameters of the seasonal modulations (variations) in the intensity of muons and cosmogenic neutrons generated by them at a mean muon energy of 280 GeV have been determined in the LVD (Large Volume Detector) experiment. The modulations of muons and neutrons are caused by a temperature effect, the seasonal temperature and density variations of the upper atmospheric layers. The analysis performed here leads to the conclusion that the variations in the mean energy of the muon flux are the main source of underground cosmogenic neutron variations, because the energy of muons is more sensitive to the temperature effect than their intensity. The parameters of the seasonal modulations in the mean energy of muons and the flux of cosmogenic neutrons at the LVD depth have been determined from the data obtained over seven years of LVD operation.

  20. Neutron Monitors and muon detectors for solar modulation studies: Interstellar flux, yield function, and assessment of critical parameters in count rate calculations

    CERN Document Server

    Maurin, D; Derome, L; Ghelfi, A; Hubert, G

    2014-01-01

    Particles count rates at given Earth location and altitude result from the convolution of (i) the interstellar (IS) cosmic-ray fluxes outside the solar cavity, (ii) the time-dependent modulation of IS into Top-of-Atmosphere (TOA) fluxes, (iii) the rigidity cut-off (or geomagnetic transmission function) and grammage at the counter location, (iv) the atmosphere response to incoming TOA cosmic rays (shower development), and (v) the counter response to the various particles/energies in the shower. Count rates from neutron monitors or muon counters are therefore a proxy to solar activity. In this paper, we review all ingredients, discuss how their uncertainties impact count rate calculations, and how they translate into variation/uncertainties on the level of solar modulation $\\phi$ (in the simple Force-Field approximation). The main uncertainty for neutron monitors is related to the yield function. However, many other effects have a significant impact, at the 5-10% level on $\\phi$ values. We find no clear ranking...

  1. Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 59-string configuration

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Abbasi, R.; Ackermann, M.;

    2014-01-01

    A search for high-energy neutrinos was performed using data collected by the IceCube Neutrino Observatory from May 2009 to May 2010, when the array was running in its 59-string configuration. The data sample was optimized to contain muon neutrino induced events with a background contamination of ...... for astrophysical neutrinos surpasses the Waxman and Bahcall upper bound, the experimental limit at 90% confidence level is a factor of 1.5 above at a flux of E^2⋅Φ(E) = 1.44x10^−8 GeV cm^−2 s^−1 sr^−1....

  2. The Observation of a Shadow of the Moon in the Underground muon flux in the Soudan 2 detector

    CERN Document Server

    Cobb, J H; Allison, W W M; Alner, G J; Ayres, D S; Barrett, W L; Bode, C; Border, P M; Brooks, C B; Cotton, R J; Courant, H; Demuth, D M; Fields, T H; Gallagher, H R; Goodman, M C; Gran, R; Joffe-Minor, T M; Kafka, T; Kasahara, S M; Leeson, W; Lichtfield, P J; Longley, N P; Mann, W A; Milburn, R H; Miller, W H; Moon, C; Mualem, L M; Napier, A; Oliver, W P; Pearce, G F; Peterson, E A; Petyt, D A; Price, L E; Ruddick, K; Sánchez, M; Sankey, P; Schneps, J; Schub, M H; Seidlein, R; Stassinakis, A; Thron, J L; Vasilev, V; Villaume, G; Wakely, S P; West, N; Wall, D

    2000-01-01

    A shadow of the moon, with a statistical significance of 5 sigma, has been observed in the underground muon flux at a depth of 2090 mwe using the Soudan 2 detector. The angular resolution of the detector is well described by a Gaussian with a sigma of less than 0.3 degrees. The position of the shadow confirms that the alignment of the detector is known to better than 0.15 degrees and has remained stable during ten years of data taking.

  3. Volcanoes muon imaging using Cherenkov telescopes

    CERN Document Server

    Catalano, Osvaldo; Mineo, Teresa; Cusumano, Giancarlo; Maccarone, Maria Concetta; Pareschi, Giovanni

    2015-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energ...

  4. Numerical study of the electron and muon lateral distribution in atmospheric showers of high energy cosmic rays

    Science.gov (United States)

    Georgios, Atreidis

    2017-03-01

    The lateral distribution of an atmospheric shower depends on the characteristics of the high energy interactions and the type of the primary particle. The influence of the primary particle in the secondary development of the shower into the atmosphere, is studied by analyzing the lateral distribution of electron and muon showers having as primary particle, proton, photon or iron nucleus. This study of the lateral distribution can provide useful conclusions for the mass and energy of the primary particle. This paper compares the data that we get from simulations with CORSIKA program with experimental data and the theoretical NKG function expressing lateral electron and muon distribution. Then we modify the original NKG function to fit better to the simulation data and propose a method for determining the mass of the original particle started the atmospheric shower.

  5. An atmospheric muon neutrino disappearance measurement with the MINOS far detector

    Energy Technology Data Exchange (ETDEWEB)

    Gogos, Jeremy Peter [Univ. of Minnesota, Minneapolis, MN (United States)

    2007-12-01

    It is now widely accepted that the Standard Model assumption of massless neutrinos is wrong, due primarily to the observation of solar and atmospheric neutrino flavor oscillations by a small number of convincing experiments. The MINOS Far Detector, capable of observing both the outgoing lepton and associated showering products of a neutrino interaction, provides an excellent opportunity to independently search for an oscillation signature in atmospheric neutrinos. To this end, a MINOS data set from an 883 live day, 13.1 kt-yr exposure collected between July, 2003 and April, 2007 has been analyzed. 105 candidate charged current muon neutrino interactions were observed, with 120.5 ± 1.3 (statistical error only) expected in the absence of oscillation. A maximum likelihood analysis of the observed log(L/E) spectrum shows that the null oscillation hypothesis is excluded at over 96% confidence and that the best fit oscillation parameters are sin223 = 0.95 -0.32 and Δm$2\\atop{23}$ = 0.93$+3.94\\atop{ -0.44}$ x 10-3 eV2. This measurement of oscillation parameters is consistent with the best fit values from the Super-Kamiokande experiment at 68% confidence.

  6. Skymap for atmospheric muons at TeV energies measured in deep-sea neutrino telescope ANTARES

    CERN Document Server

    Mangano, Salvatore

    2009-01-01

    Recently different experiments mention to have observed a large scale cosmic-ray anisotropy at TeV energies, e.g. Milagro, Tibet and Super-Kamiokande. For these energies the cosmic-rays are expected to be nearly isotropic. Any measurements of cosmic-rays anisotropy could bring some information about propagation and origin of cosmic-rays. Though the primary aim of the ANTARES neutrino telescope is the detection of high energy cosmic neutrinos, the detector measures mainly down-doing muons, which are decay products of cosmic-rays collisions in the Earth's atmosphere. This proceeding describes an anlaysis method for the first year measurement of down-going atmospheric muons at TeV energies in the ANTARES experiment, when five out of the final number of twelve lines were taking data.

  7. Three dimensional calculation of flux of low energy atmospheric neutrinos

    Science.gov (United States)

    Lee, H.; Bludman, S. A.

    1985-01-01

    Results of three-dimensional Monte Carlo calculation of low energy flux of atmospheric neutrinos are presented and compared with earlier one-dimensional calculations 1,2 valid at higher neutrino energies. These low energy neutrinos are the atmospheric background in searching for neutrinos from astrophysical sources. Primary cosmic rays produce the neutrino flux peaking at near E sub=40 MeV and neutrino intensity peaking near E sub v=100 MeV. Because such neutrinos typically deviate by 20 approximately 30 from the primary cosmic ray direction, three-dimensional effects are important for the search of atmospheric neutrinos. Nevertheless, the background of these atmospheric neutrinos is negligible for the detection of solar and supernova neutrinos.

  8. Charge-Separated Atmospheric Neutrino-Induced Muons in the MINOS Far Detector

    CERN Document Server

    Adamson, P; Arms, K E; Armstrong, R; Auty, D J; Avvakumov, S; Ayres, D S; Baller, B; Barish, B; Barnes, P D; Barr, G; Barrett, W L; Beall, E; Becker, B R; Belias, A; Bergfeld, T; Bernstein, R H; Bhattacharya, D; Bishai, M; Blake, A; Bock, B; Bock, G J; Bogert, D; Border, P M; Bower, C; Buckley-Geer, E; Böhm, J; Böhnlein, D J; Cabrera, A; Chapman, J D; Cherdack, D; Childress, S; Choudhary, B C; Cobb, J H; Culling, A J; De Jong, J K; De Santo, A; Dierckxsens, M; Diwan, M V; Dorman, M; Drakoulakos, D; Durkin, T; Erwin, A R; Escobar, C O; Evans, J J; Falk-Harris, E; Feldman, G J; Fields, T H; Ford, R; Frohne, M V; Gallagher, H R; Giurgiu, G A; Godley, A; Gogos, J; Goodman, M C; Gouffon, P; Gran, R; Grashorn, E W; Grossman, N; Grzelak, K; Habig, A; Harris, D; Harris, P G; Hartnell, J; Hartouni, E P; Hatcher, R; Heller, K; Holin, A; Howcroft, C; Hylen, J; Indurthy, D; Irwin, G M; Ishitsuka, M; Jaffe, D E; James, C; Jenner, L; Jensen, D; Joffe-Minor, T; Kafka, T; Kang, H J; Kasahara, S M; Kim, M S; Koizumi, G; Kopp, S; Kordosky, M; Koskinen, D J; Kotelnikov, S K; Kreymer, A; Kumaratunga, S; Lang, K; Lebedev, A; Lee, R; Ling, 6J; Litchfield, P J; Litchfield, R P; Liu, J; Lucas, P; Mann, W A; Marchionni, A; Marino, A D; Marshak, M L; Marshall, J S; Mayer, N; McGowan, A M; Meier, J R; Merzon, G I; Messier, M D; Michael, D G; Milburn, R H; Miller, J L; Miller, W H; Mishra, S R; Mislivec, A; Miyagawa, P S; Moore, C D; Morfin, J; Mualem, L; Mufson, S; Murgia, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nicholls, T C; Ochoa-Ricoux, J P; Oliver, W P; Osiecki, T; Ospanov, R; Paley, J; Paolone, V; Para, A; Patzak, T; Pavlovic, Z; Pearce, G F; Peck, C W; Peterson, E A; Petyt, D A; Ping, H; Piteira, R; Pittam, R; Plunkett, R K; Rahman, D; Rameika, R A; Raufer, T M; Rebel, B; Reichenbacher, J; Reyna, D E; Rosenfeld, C; Rubin, H A; Ruddick, K; Ryabov, V A; Saakyan, R; Sanchez, M C; Saoulidou, N; Schneps, J; Schreiner, P; Semenov, V K; Seun, S M; Shanahan, P; Smart, W; Smirnitsky, V; Smith, C; Sousa, A; Speakman, B; Stamoulis, P; Symes, P A; Tagg, N; Talaga, R L; Tetteh-Lartey, E; Thomas, J; Thompson, J; Thomson, M A; Thron, J L; Tinti, G; Trostin, I; Tsarev, V A; Tzanakos, G; Urheim, J; Vahle, P; Verebryusov, V; Viren, B; Ward, C P; Ward, D R; Watabe, M; Webb, R C; Weber, A; Wehmann, A; West, N; White, C; Wojcicki, S G; Wright, D M; Wu, Q K; Yang, T; Yumiceva, F X; Zheng, H; Zois, M; Zwaska, R

    2007-01-01

    We found 140 neutrino-induced muons in 854.24 live days in the MINOS far detector. We looked for evidence of neutrino disappearance in this data set by computing the ratio of the number of low momentum muons to the sum of the number of high momentum and unknown momentum muons for both data and Monte Carlo expectation in the absence of neutrino oscillations. The ratio of data and Monte Carlo ratios is consistent with an oscillation signal. A fit to the data for the oscillation parameters excludes the null oscillation hypothesis at the 94% confidence level. We separated the muons by charge sign in both the data and Monte Carlo events and found the ratio of the total number of negative to positive muons in both samples. The ratio of those ratios is a test of CPT conservation. The result is consistent with CPT conservation.

  9. Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data

    CERN Document Server

    Aartsen, M G; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bos, F; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H -P; Brown, A M; Brunner, J; Buzinsky, N; Casey, J; Casier, M; Cheung, E; Chirkin, D; Christov, A; Christy, B; Clark, K; Classen, L; Clevermann, F; Coenders, S; Cowen, D F; Silva, A H Cruz; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; De Ridder, S; Desiati, P; de Vries, K D; de With, M; DeYoung, T; Díaz-Vélez, J C; Dunkman, M; Eagan, R; Eberhardt, B; Eichmann, B; Eisch, J; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Felde, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Frantzen, K; Fuchs, T; Gaisser, T K; Gaior, R; Gallagher, J; Gerhardt, L; Gier, D; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grant, D; Gretskov, P; Groh, J C; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Hebecker, D; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hellwig, D; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huang, F; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jero, K; Jlelati, O; Jurkovic, M; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kauer, M; Keivani, A; Kelley, J L; Kheirandish, A; Kiryluk, J; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Koob, A; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Kriesten, A; Krings, K; Kroll, G; Kroll, M; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larsen, D T; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Lünemann, J; Madsen, J; Maggi, G; Maruyama, R; Mase, K; Matis, H S; Maunu, R; McNally, F; Meagher, K; Medici, M; Meli, A; Meures, T; Miarecki, S; Middell, E; Middlemas, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Paul, L; Penek, Ö; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Pütz, J; Quinnan, M; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Rees, I; Reimann, R; Relich, M; Resconi, E; Rhode, W; Richman, M; Riedel, B; Robertson, S; Rodrigues, J P; Rongen, M; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Sander, H -G; Sandroos, J; Santander, M; Sarkar, S; Schatto, K; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Shanidze, R; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stanisha, N A; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Strotjohann, N L; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Terliuk, A; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Tosi, D; Tselengidou, M; Unger, E; Usner, M; Vallecorsa, S; van Eijndhoven, N; Vandenbroucke, J; van Santen, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallraff, M; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whelan, B J; Whitehorn, N; Wichary, C; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zoll, M

    2014-01-01

    We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10\\,GeV and 100\\,GeV, where a strong disappearance signal is expected. The detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscillation parameters from the data, with the best fit given by $\\Delta m^2_{32}=2.72^{+0.19}_{-0.20}\\times 10^{-3}\\,\\mathrm{eV}^2$ and $\\sin^2\\theta_{23} = 0.53^{+0.09}_{-0.12}$ (normal mass hierarchy assumed). The results are compatible and comparable in precision to those of dedicated oscillation experiments.

  10. Regional-Scale Carbon Flux Partitioning Using Atmospheric Carbonyl Sulfide

    Science.gov (United States)

    Abu-Naser, M.; Campbell, J. E.; Berry, J. A.

    2011-12-01

    Simultaneous analysis of atmospheric concentrations of carbonyl sulfide (COS) and carbon dioxide (CO2) has been proposed as an approach to partitioning gross primary production and respiration fluxes at regional and global scales. The basis for this approach was that the observation and regional gradients in atmospheric CO2 are dominated by net ecosystem fluxes while regional gradients in atmospheric COS are dominated by GPP-related plant uptake. Here we investigate the spatial and temporal gradients in airborne COS and CO2 measurements in comparison to flux estimates from ecosystem models and eddy covariance methods over North America. The spatial gradients in the ecosystem relative uptake (ERU), the normalized ratio of COS and CO2 vertical gradients, were consistent with the theoretical relationship to flux estimates from ecosystem models and eddy covariance methods. The seasonality of the gross primary productivity flux estimates was consistent with airborne observations in the midwestern region but had mixed results in the southeastern region. Inter-annual changes in the ERU and regional drought index data suggested a potential relationship between drought stress and low ratios of gross primary production to net ecosystem exchange.

  11. A measurement of the cosmic-ray muon flux with a module of the NESTOR neutrino telescope

    Science.gov (United States)

    Nestor Collaboration; Aggouras, G.; Anassontzis, E. G.; Ball, A. E.; Bourlis, G.; Chinowsky, W.; Fahrun, E.; Grammatikakis, G.; Green, C.; Grieder, P.; Katrivanos, P.; Koske, P.; Leisos, A.; Markopoulos, E.; Minkowsky, P.; Nygren, D.; Papageorgiou, K.; Przybylski, G.; Resvanis, L. K.; Siotis, I.; Sopher, J.; Staveris-Polikalas, A.; Tsagli, V.; Tsirigotis, A.; Zhukov, V. A.

    2005-05-01

    A module of the NESTOR underwater neutrino telescope was deployed at a depth of 3800 m in order to test the overall detector performance and particularly that of the data acquisition systems. A prolonged period of running under stable operating conditions made it possible to measure the cosmic ray muon flux, I0·cosα(θ), as a function of the zenith angle θ. Measured values of index α and the vertical intensity I0 α=4.7±0.5(stat)±0.2(syst)I0=9.0×10-9±0.7×10-9(stat)±0.4×10-9(syst)cm-2s-1sr-1 are in good agreement with previous measurements and phenomenological predictions.

  12. Seasonal variation of surface fluxes and atmospheric interaction in Istanbul

    Energy Technology Data Exchange (ETDEWEB)

    Aslan, Z.; Topcu, S. [Istanbul Technical Univ. (Turkey)

    1994-12-31

    A central objective of micrometeorological research is to establish fluxes from a knowledge of the mean temperature, humidity and wind speed profiles. The effect of time and spatial variations of surface heat and momentum fluxes is studied for various geographic regions. These analysis show the principal boundary conditions for micro and meso-scale analysis, air-sea interactions, weather forecasting air pollution, agrometeorology and climate changing models. The fluxes of heat and momentum can be obtained from observed profiles of wind speed and temperature using the similarity relations for the atmospheric surface layer. In recent years, harmonic analysis is a particularly useful tool in studying annual patterns of some meteorological parameters at the field of micrometeorological studies.

  13. Measurement of atmospheric production depths of muons with the pierre auger observatory

    Directory of Open Access Journals (Sweden)

    García-Gámez D.

    2013-06-01

    Full Text Available The time structure of muons at ground retains valuable information about the longitudinal development of the hadronic component in extensive air showers. Using the signals collected by the surface detector array of the Pierre Auger Observatory it is possible to reconstruct the Muon Production Depth (MPD distribution. In this work we explore the main features of these reconstructions for zenith angles around 60° and different energies of the primary particle. From the MPDs we define a new observable, Xμmax as the depth, along the shower axis, where the maximum number of muons is produced. The potentiality of Xμmax to infer the mass composition of cosmic rays is studied.

  14. Solar Flux Deposition And Heating Rates In Jupiter's Atmosphere

    Science.gov (United States)

    Perez-Hoyos, Santiago; Sánchez-Lavega, A.

    2009-09-01

    We discuss here the solar downward net flux in the 0.25 - 2.5 µm range in the atmosphere of Jupiter and the associated heating rates under a number of vertical cloud structure scenarios focusing in the effect of clouds and hazes. Our numerical model is based in the doubling-adding technique to solve the radiative transfer equation and it includes gas absorption by CH4, NH3 and H2, in addition to Rayleigh scattering by a mixture of H2 plus He. Four paradigmatic Jovian regions have been considered (hot-spots, belts, zones and Polar Regions). The hot-spots are the most transparent regions with downward net fluxes of 2.5±0.5 Wm-2 at the 6 bar level. The maximum solar heating is 0.04±0.01 K/day and occurs above 1 bar. Belts and zones characterization result in a maximum net downward flux of 0.5 Wm-2 at 2 bar and 0.015 Wm-2 at 6 bar. Heating is concentrated in the stratospheric and tropospheric hazes. Finally, Polar Regions are also explored and the results point to a considerable stratospheric heating of 0.04±0.02 K/day. In all, these calculations suggest that the role of the direct solar forcing in the Jovian atmospheric dynamics is limited to the upper 1 - 2 bar of the atmosphere except in the hot-spot areas. Acknowledgments: This work has been funded by Spanish MEC AYA2006-07735 with FEDER support and Grupos Gobierno Vasco IT-464-07.

  15. Muons in air showers at the Pierre Auger Observatory: Measurement of atmospheric production depth

    Science.gov (United States)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, A. J.; Matthews, J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; PÈ©kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Peters, C.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Thao, N. T.; Theodoro, V. M.; Tiffenberg, J.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Whelan, B. J.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Pierre Auger Collaboration

    2014-07-01

    The surface detector array of the Pierre Auger Observatory provides information about the longitudinal development of the muonic component of extensive air showers. Using the timing information from the flash analog-to-digital converter traces of surface detectors far from the shower core, it is possible to reconstruct a muon production depth distribution. We characterize the goodness of this reconstruction for zenith angles around 60° and different energies of the primary particle. From these distributions, we define Xmaxμ as the depth along the shower axis where the production of muons reaches maximum. We explore the potentiality of Xmaxμ as a useful observable to infer the mass composition of ultrahigh-energy cosmic rays. Likewise, we assess its ability to constrain hadronic interaction models.

  16. Measurement of the Atmospheric Muon Charge Ratio at TeV Energies with MINOS

    CERN Document Server

    Adamson, P; Arms, K E; Armstrong, R; Auty, D J; Avvakumov, S; Ayres, D S; Baller, B; Barish, B; Barnes, P D; Barr, G; Barrett, W L; Beall, E; Becker, B R; Belias, A; Bergfeld, T; Bernstein, R H; Bhattacharya, D; Bishai, M; Blake, A; Bock, B; Bock, G J; Böhm, J; Böhnlein, D J; Bogert, D; Border, P M; Bower, C; Buckley-Geer, E; Bungau, C; Cabrera, A; Chapman, J D; Cherdack, D; Childress, S; Choudhary, B C; Cobb, J H; Culling, A J; De Jong, J K; De Santo, A; Dierckxsens, M; Diwan, M V; Dorman, M; Drakoulakos, D; Durkin, T; Erwin, A R; Escobar, C O; Evans, J J; Falk-Harris, E; Feldman, G J; Fields, T H; Ford, R; Frohne, M V; Gallagher, H R; Giurgiu, G A; Godley, A; Gogos, J; Goodman, M C; Gouffon, P; Gran, R; Grashorn, E W; Grossman, N; Grzelak, K; Habig, A; Harris, D; Harris, P G; Hartnell, J; Hartouni, E P; Hatcher, R; Heller, K; Holin, A; Howcroft, C; Hylen, J; Indurthy, D; Irwin, G M; Ishitsuka, M; Jaffe, D E; James, C; Jenner, L; Jensen, D; Joffe-Minor, T; Kafka, T; Kang, H J; Kasahara, S M S; Kim, M S; Koizumi, G; Kopp, S; Kordosky, M; Koskinen, D J; Kotelnikov, S K; Kreymer, A; Kumaratunga, S; Lang, K; Lebedev, A; Lee, R; Ling, J; Liu, J; Litchfield, P J; Litchfield, R P; Lucas, P; Mann, W A; Marchionni, A; Marino, A D; Marshak, M L; Marshall, J S; Mayer, N; McGowan, A M; Meier, J R; Merzon, G I; Messier, M D; Michael, D G; Milburn, R H; Miller, J L; Miller, W H; Mishra, S R; Mislivec, A; Miyagawa, P S; Moore, C D; Morfin, J; Mualem, L; Mufson, S; Murgia, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nicholls, T C; Ochoa-Ricoux, J P; Oliver, W P; Osiecki, T; Ospanov, R; Paley, J; Paolone, V; Para, A; Patzak, T; Pavlovic, Z; Pearce, G F; Peck, C W; Peterson, E A; Petyt, D A; Ping, H; Piteira, R; Pittam, R; Plunkett, R K; Rahman, D; Rameika, R A; Raufer, T M; Rebel, B; Reichenbacher, J; Reyna, D E; Rosenfeld, C; Rubin, H A; Ruddick, K; Ryabov, V A; Saakyan, R; Sanchez, M C; Saoulidou, N; Schneps, J; Schreiner, P; Semenov, V K; Seun, S M; Shanahan, P; Smart, W; Smirnitsky, V; Smith, C; Sousa, A; Speakman, B; Stamoulis, P; Symes, P A; Tagg, N; Talaga, R L; Tetteh-Lartey, E; Thomas, J; Thompson, J; Thomson, M A; Thron, J L; Tinti, G; Trostin, I; Tsarev, V A; Tzanakos, G; Urheim, J; Vahle, P; Velissaris, C; Verebryusov, V; Viren, B; Ward, C P; Ward, D R; Watabe, M; Weber, A; Webb, R C; Wehmann, A; West, N; White, C; Wojcicki, S G; Wright, D M; Wu, Q K; Yang, T; Yumiceva, F X; Zheng, H; Zois, M; Zwaska, R

    2007-01-01

    The 5.4 kton MINOS far detector has been taking charge-separated cosmic ray muon data since the beginning of August, 2003 at a depth of 2070 meters-water-equivalent in the Soudan Underground Laboratory, Minnesota, USA. The data with both forward and reversed magnetic field running configurations were combined to minimize systematic errors in the determination of the underground muon charge ratio. When averaged, two independent analyses find the charge ratio underground to be 1.374 +/- 0.004 (stat.) +0.012 -0.010(sys.). Using the map of the Soudan rock overburden, the muon momenta as measured underground were projected to the corresponding values at the surface in the energy range 1-7 TeV. Within this range of energies at the surface, the MINOS data are consistent with the charge ratio being energy independent at the two standard deviation level. When the MINOS results are compared with measurements at lower energies, a clear rise in the charge ratio in the energy range 0.3 -- 1.0 TeV is apparent. A qualitativ...

  17. Muons and Neutrinos 2007

    OpenAIRE

    Gaisser, Thomas K.

    2008-01-01

    This paper is the written version of the rapporteur talk on Section HE-2, muons and neutrinos, presented at the 30th International Cosmic Ray Conference, Merida, Yucatan, July 11, 2007. Topics include atmospheric muons and neutrinos, solar neutrinos and astrophysical neutrinos as well as calculations and instrumentation related to these topics.

  18. Observation of seasonal variation of atmospheric multiple-muon events in the MINOS near and far detectors

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). et al.

    2015-06-09

    We report the first observation of seasonal modulations in the rates of cosmic ray multiple-muon events at two underground sites, the MINOS Near Detector with an overburden of 225 mwe, and the MINOS Far Detector site at 2100 mwe. Thus, at the deeper site, multiple-muon events with muons separated by more than 8 m exhibit a seasonal rate that peaks during the summer, similar to that of single-muon events. In contrast and unexpectedly, the rate of multiple-muon events with muons separated by less than 5–8 m, and the rate of multiple-muon events in the smaller, shallower Near Detector, exhibit a seasonal rate modulation that peaks in the winter.

  19. Observation of seasonal variation of atmospheric multiple-muon events in the MINOS Near and Far Detectors

    CERN Document Server

    Adamson, P; Aurisano, A; Barr, G; Bishai, M; Blake, A; Bock, G J; Bogert, D; Cao, S V; Castromonte, C M; Childress, S; Coelho, J A B; Corwin, L; Cronin-Hennessy, D; de Jong, J K; Devan, A V; Devenish, N E; Diwan, M V; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grzelak, K; Habig, A; Hahn, S R; Hartnell, J; Hatcher, R; Holin, A; Huang, J; Hylen, J; Irwin, G M; Isvan, Z; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kordosky, M; Kreymer, A; Lang, K; Ling, J; Litchfield, P J; Lucas, P; Mann, W A; Marshak, M L; Mayer, N; McGivern, C; Medeiros, M M; Mehdiyev, R; Meier, J R; Messier, M D; Miller, W H; Mishra, S R; Sher, S Moed; Moore, C D; Mualem, L; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; Connor, J O; Orchanian, M; Osprey, S; Pahlka, R B; Paley, J; Patterson, R B; Pawloski, G; Perch, A; Phan-Budd, S; Plunkett, R K; Poonthottathil, N; Qiu, X; Radovic, A; Rebel, B; Rosenfeld, C; Rubin, H A; Sanchez, M C; Schneps, J; Schreckenberger, A; Schreiner, P; Sharma, R; Sousa, A; Tagg, N; Talaga, R L; Thomas, J; Thomson, M A; Tian, X; Timmons, A; Tognini, S C; Toner, R; Torretta, D; Urheim, J; Vahle, P; Viren, B; Weber, A; Webb, R C; White, C; Whitehead, L; Whitehead, L H; Wojcicki, S G; Zwaska, R

    2015-01-01

    We report the first observation of seasonal modulations in the rates of cosmic ray multiple-muon events at two underground sites, the MINOS Near Detector with an overburden of 225 mwe, and the MINOS Far Detector site at 2100 mwe. At the deeper site, multiple-muon events with muons separated by more than 8 m exhibit a seasonal rate that peaks during the summer, similar to that of single-muon events. In contrast and unexpectedly, the rate of multiple-muon events with muons separated by less than 5-8 m, and the rate of multiple-muon events in the smaller, shallower Near Detector, exhibit a seasonal rate modulation that peaks in the winter.

  20. Comparison of CO2 fluxes estimated using atmospheric and oceanic inversions, and role of fluxes and their interannual variability in simulating atmospheric CO2 concentrations

    Science.gov (United States)

    Patra, P. K.; Mikaloff Fletcher, S. E.; Ishijima, K.; Maksyutov, S.; Nakazawa, T.

    2006-07-01

    We use a time-dependent inverse (TDI) model to estimate regional sources and sinks of atmospheric CO2 from 64 and then 22 regions based on atmospheric CO2 observations at 87 stations. The air-sea fluxes from the 64-region atmospheric-CO2 inversion are compared with fluxes from an analogous ocean inversion that uses ocean interior observations of dissolved inorganic carbon (DIC) and other tracers and an ocean general circulation model (OGCM). We find that, unlike previous atmospheric inversions, our flux estimates in the southern hemisphere are generally in good agreement with the results from the ocean inversion, which gives us added confidence in our flux estimates. In addition, a forward tracer transport model (TTM) is used to simulate the observed CO2 concentrations using (1) estimates of fossil fuel emissions and a priori estimates of the terrestrial and oceanic fluxes of CO2, and (2) two sets of TDI model corrected fluxes. The TTM simulations of TDI model corrected fluxes show improvements in fitting the observed interannual variability in growth rates and seasonal cycles in atmospheric CO2. Our analysis suggests that the use of interannually varying (IAV) meteorology and a larger observational network have helped to capture the regional representation and interannual variabilities in CO2 fluxes realistically.

  1. Narrow muon bundles from muon pair production in rock

    CERN Document Server

    Kudryavtsev, V A; Spooner, N J C

    1999-01-01

    We revise the process of muon pair production by high-energy muons in rock using the recently published cross-section. The three- dimensional Monte Carlo code MUSIC has been used to obtain the characteristics of the muon bundles initiated via this process. We have compared them with those of conventional muon bundles initiated in the atmosphere and shown that large underground detectors, capable of collecting hundreds of thousands of multiple muon events, can discriminate statistically muon induced bundles from conventional ones. However, we find that the enhancement of the measured muon decoherence function over that predicted at small distances, recently reported by the MACRO experiment, cannot be explained by the effect of muon pair production alone, unless its cross-section is underestimated by a factor of 3. (20 refs).

  2. Narrow muon bundles from muon pair production in rock

    CERN Document Server

    Kudryavtsev, V A; Spooner, N J C; 10.1016/S0370-2693(99)01378-7

    2009-01-01

    We revise the process of muon pair production by high-energy muons in rock using the recently published cross-section. The three-dimensional Monte Carlo code MUSIC has been used to obtain the characteristics of the muon bundles initiated via this process. We have compared them with those of conventional muon bundles initiated in the atmosphere and shown that large underground detectors, capable of collecting hundreds of thousands of multiple muon events, can discriminate statistically muon induced bundles from conventional ones. However, we find that the enhancement of the measured muon decoherence function over that predicted at small distances, recently reported by the MACRO experiment, cannot be explained by the effect of muon pair production alone, unless its cross-section is underestimated by a factor of 3.

  3. Progress in Modeling Global Atmospheric CO2 Fluxes and Transport: Results from Simulations with Diurnal Fluxes

    Science.gov (United States)

    Collatz, G. James; Kawa, R.

    2007-01-01

    Progress in better determining CO2 sources and sinks will almost certainly rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. Use of advanced data requires improved modeling and analysis capability. Under NASA Carbon Cycle Science support we seek to develop and integrate improved formulations for 1) atmospheric transport, 2) terrestrial uptake and release, 3) biomass and 4) fossil fuel burning, and 5) observational data analysis including inverse calculations. The transport modeling is based on meteorological data assimilation analysis from the Goddard Modeling and Assimilation Office. Use of assimilated met data enables model comparison to CO2 and other observations across a wide range of scales of variability. In this presentation we focus on the short end of the temporal variability spectrum: hourly to synoptic to seasonal. Using CO2 fluxes at varying temporal resolution from the SIB 2 and CASA biosphere models, we examine the model's ability to simulate CO2 variability in comparison to observations at different times, locations, and altitudes. We find that the model can resolve much of the variability in the observations, although there are limits imposed by vertical resolution of boundary layer processes. The influence of key process representations is inferred. The high degree of fidelity in these simulations leads us to anticipate incorporation of realtime, highly resolved observations into a multiscale carbon cycle analysis system that will begin to bridge the gap between top-down and bottom-up flux estimation, which is a primary focus of NACP.

  4. Feasibility of using backscattered muons for archeological imaging

    Science.gov (United States)

    Bonal, N.; Preston, L. A.

    2013-12-01

    Use of nondestructive methods to accurately locate and characterize underground objects such as rooms and tools found at archeological sites is ideal to preserve these historic sites. High-energy cosmic ray muons are very sensitive to density variation and have been used to image volcanoes and archeological sites such as the Egyptian and Mayan pyramids. Muons are subatomic particles produced in the upper atmosphere that penetrate the earth's crust up to few kilometers. Their absorption rate depends on the density of the materials through which they pass. Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and the detector, much like a CAT scan. Currently, muon tomography can resolve features to the sub-meter scale making it useful for this type of work. However, the muon detector must be placed below the target of interest. For imaging volcanoes, the upper portion is imaged when the detector is placed on the earth's surface at the volcano's base. For sites of interest beneath the ground surface, the muon detector would need to be placed below the site in a tunnel or borehole. Placing the detector underground can be costly and may disturb the historical site. We will assess the feasibility of imaging the subsurface using upward traveling muons, to eliminate the current constraint of positioning the detector below the target. This work consists of three parts 1) determine the backscattered flux rate from theory, 2) distinguish backscattered from forward scattered muons at the detector, and 3) validate the theoretical results with field experimentation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. Limits on a muon flux from Kaluza-Klein dark matter annihilations in the Sun from the IceCube 22-string detector

    Energy Technology Data Exchange (ETDEWEB)

    IceCube Collaboration; Abbasi, R.; al., et

    2009-10-23

    A search for muon neutrinos from Kaluza-Klein dark matter annihilations in the Sun has been performed with the 22-string configuration of the IceCube neutrino detector using data collected in 104.3 days of live-time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured lightest Kaluza-Klein particle (LKP) WIMPs in the Sun and converted to limits on the LKP-proton cross-sections for LKP masses in the range 250 - 3000 GeV. These results are the most stringent limits to date on LKP annihilation in the Sun.

  6. Measuring the Mass Hierarchy with Muon and Hadron Events in Atmospheric Neutrino Experiments

    CERN Document Server

    Ghosh, Anushree

    2013-01-01

    Neutrino mass hierarchy can be measured in atmospheric neutrino experiments through the observation of earth matter effects. Magnetized iron calorimeters have been shown to be good in this regard due to their charge identification capabilities. The charged current interaction of $\

  7. Muons and neutrinos

    Science.gov (United States)

    Stanev, T.

    1986-01-01

    The first generation of large and precise detectors, some initially dedicated to search for nucleon decay has accumulated significant statistics on neutrinos and high-energy muons. A second generation of even better and bigger detectors are already in operation or in advanced construction stage. The present set of experimental data on muon groups and neutrinos is qualitatively better than several years ago and the expectations for the following years are high. Composition studies with underground muon groups, neutrino detection, and expected extraterrestrial neutrino fluxes are discussed.

  8. Detection of Atmospheric Muon Neutrinos with the IceCube 9-String Detector

    CERN Document Server

    Achterberg, A; Adams, J; Ahrens, J; Andeen, K; Auffenberg, J; Bahcall, J N; Bai, X; Baret, B; Barwick, S W; Bay, R; Beattie, K; Becka, T; Becker, J K; Becker, K H; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Beimforde, M; Blaufuss, E; Boersma, D J; Bohm, C; Bolmont, J; Boser, S; Botner, O; Bouchta, A; Braun, J; Burgess, C; Burgess, T; Castermans, T; Chirkin, D; Christy, B; Clem, J; Cowen, D F; D'Agostino, M V; Davour, A; Day, C T; De Clercq, C; Demirors, L; Descamps, F; Desiati, P; De Young, T; Díaz-Veléz, J C; Dreyer, J; Dumm, J P; Duvoort, M R; Edwards, W R; Ehrlich, R; Eisch, J; Ellsworth, R W; Evenson, P A; Fadiran, O; Fazely, A R; Filimonov, K; Finley, C; Foerster, M M; Fox, B D; Franckowiak, A; Franke, R; Gaisser, T K; Gallagher, J; Ganugapati, R; Geenen, H; Gerhardt, L; Goldschmidt, A; Goodman, J A; Gozzini, R; Griesel, T; Grullon, S; Gross, A; Gunasingha, R M; Gurtner, M; Ha, C; Hallgren, A; Halzen, F; Han, K; Hanson, K; Hardtke, D; Hardtke, R; Hart, J E; Hasegawa, Y; Hauschildt, T; Hays, D; Heise, J; Helbing, K; Hellwig, M; Herquet, P; Hill, G C; Hodges, J; Hoffman, K D; Hommez, B; Hoshina, K; Hubert, D; Hughey, B; Hulth, P O; Hultqvist, K; Hulss, J P; Hundertmark, S; Inaba, M; Ishihara, A; Jacobsen, J; Japaridze, G S; Johansson, H; Jones, A; Joseph, J M; Kampert, K H; Kappes, A; Karg, T; Karle, A; Kawai, H; Kelley, J L; Kislat, F; Kitamura, N; Klein, S R; Klepser, S; Kohnen, G; Kolanoski, H; Köpke, L; Kowalski, M; Kowarik, T; Krasberg, M; Kühn, K; Labare, M; Landsman, H; Lauer, R; Leich, H; Leier, D; Liubarsky, I; Lundberg, J; Lunemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McCauley, T; McParland, C P; Meagher, K; Meli, A; Messarius, T; Mészáros, P; Miyamoto, H; Mokhtarani, A; Montaruli, T; Morey, A; Morse, R; Movit, S M; Munich, K; Nahnhauer, R; Nam, J W; Niessen, P; Nygren, D R; Ogelman, H; Olivas, A; Patton, S; Peña-Garay, C; Perez de los Heros, C; Piegsa, A; Pieloth, D; Pohl, A C; Porrata, R; Pretz, J; Price, P B; Przybylski, G T; Rawlins, K; Razzaque, S; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Rizzo, A; Robbins, S; Roth, P; Rothmaier, F; Rott, C; Rutledge, D; Ryckbosch, D; Sander, H G; Sarkar, S; Satalecka, K; Schlenstedt, S; Schmidt, T; Schneider, D; Seckel, D; Semburg, B; Seo, S H; Sestayo, Y; Seunarine, S; Silvestri, A; Smith, A J; Song, C; Sopher, J E; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stezelberger, T; Stokstad, R G; Stoufer, M C; Stoyanov, S; Strahler, E A; Straszheim, T; Sulanke, K H; Sullivan, G W; Sumner, T J; Taboada, I; Tarasova, O; Tepe, A; Thollander, L; Tilav, S; Tluczykont, M; Toale, P A; Tosi, D; Turcan, D; van Eijndhoven, N; Vandenbroucke, J; Van Overloop, A; De Vries-Uiterweerd, G; Viscomi, V; Voigt, B; Wagner, W; Walck, C; Waldmann, H; Walter, M; Wang, Y R; Wendt, C; Wiebusch, C; Wikström, G; Williams, D R; Wischnewski, R; Wissing, H; Woschnagg, K; Xu, X W; Yodh, G; Yoshida, S; De Dios-Zornoza-Gomez, Juan

    2007-01-01

    The IceCube neutrino detector is a cubic kilometer TeV to PeV neutrino detector under construction at the geographic South Pole. The dominant population of neutrinos detected in IceCube is due to meson decay in cosmic-ray air showers. These atmospheric neutrinos are relatively well-understood and serve as a calibration and verification tool for the new detector. In 2006, the detector was approximately 10% completed, and we report on data acquired from the detector in this configuration. We observe an atmospheric neutrino signal consistent with expectations, demonstrating that the IceCube detector is capable of identifying neutrino events. In the first 137.4 days of livetime, 234 neutrino candidates were selected with an expectation of 211 +/- 76.1(syst.) +/- 14.5(stat.) events from atmospheric neutrinos.

  9. Perturbations to aquatic photosynthesis due to high-energy cosmic ray induced muon flux in the extragalactic shock model

    CERN Document Server

    Rodriguez, Lien; Rodriguez, Oscar

    2013-01-01

    We modify a mathematical model of photosynthesis to quantify the perturbations that high energy muons could make on aquatic primary productivity. Then we apply this in the context of the extragalactic shock model, according to which Earth receives an enhanced dose of high-energy cosmic rays when it is at the galactic north. We obtain considerable reduction in the photosynthesis rates, consistent with potential drops in biodiversity.

  10. A new contribution to the conventional atmospheric neutrino flux

    CERN Document Server

    Gaisser, Thomas K

    2014-01-01

    Atmospheric neutrinos are an important background to astrophysical neutrino searches, and are also of considerable interest in their own right. This paper points out that the contribution to conventional atmospheric $\

  11. Quantifying the drivers of ocean-atmosphere CO2 fluxes

    Science.gov (United States)

    Lauderdale, Jonathan M.; Dutkiewicz, Stephanie; Williams, Richard G.; Follows, Michael J.

    2016-07-01

    A mechanistic framework for quantitatively mapping the regional drivers of air-sea CO2 fluxes at a global scale is developed. The framework evaluates the interplay between (1) surface heat and freshwater fluxes that influence the potential saturated carbon concentration, which depends on changes in sea surface temperature, salinity and alkalinity, (2) a residual, disequilibrium flux influenced by upwelling and entrainment of remineralized carbon- and nutrient-rich waters from the ocean interior, as well as rapid subduction of surface waters, (3) carbon uptake and export by biological activity as both soft tissue and carbonate, and (4) the effect on surface carbon concentrations due to freshwater precipitation or evaporation. In a steady state simulation of a coarse-resolution ocean circulation and biogeochemistry model, the sum of the individually determined components is close to the known total flux of the simulation. The leading order balance, identified in different dynamical regimes, is between the CO2 fluxes driven by surface heat fluxes and a combination of biologically driven carbon uptake and disequilibrium-driven carbon outgassing. The framework is still able to reconstruct simulated fluxes when evaluated using monthly averaged data and takes a form that can be applied consistently in models of different complexity and observations of the ocean. In this way, the framework may reveal differences in the balance of drivers acting across an ensemble of climate model simulations or be applied to an analysis and interpretation of the observed, real-world air-sea flux of CO2.

  12. Neutrino oscillation effects in Soudan 2 upward-stopping muons

    Science.gov (United States)

    Allison, W. W. M.; Alner, G. J.; Ayres, D. S.; Barr, G. D.; Barrett, W. L.; Border, P. M.; Cobb, J. H.; Cockerill, D. J. A.; Courant, H.; Demuth, D. M.; Fields, T. H.; Gallagher, H. R.; Goodman, M. C.; Kafka, T.; Kasahara, S. M. S.; Litchfield, P. J.; Mann, W. A.; Marshak, M. L.; Miller, W. H.; Mualem, L.; Nelson, J. K.; Napier, A.; Oliver, W. P.; Pearce, G. F.; Peterson, E. A.; Petyt, D. A.; Ruddick, K.; Sanchez, M.; Schneps, J.; Sousa, A.; Thron, J. L.; West, N.

    2005-09-01

    Upward-going stopping muons initiated by atmospheric νμ and ν¯μ interactions in the rock below the Soudan 2 detector have been isolated, together with a companion sample of neutrino-induced single muons, created within the detector, which travel downwards and exit. The downward-going sample is consistent with the atmospheric-neutrino flux prediction, but the upward-going sample exhibits a sizable depletion. Both are consistent with previously reported Soudan 2 neutrino-oscillation results. Inclusion of the two samples in an all-event likelihood analysis, using recent 3D-atmospheric-neutrino-flux calculations, reduces both the allowed oscillation parameter region and the probability of the no-oscillation hypothesis.

  13. Delivering the world's most intense muon beam

    Science.gov (United States)

    Cook, S.; D'Arcy, R.; Edmonds, A.; Fukuda, M.; Hatanaka, K.; Hino, Y.; Kuno, Y.; Lancaster, M.; Mori, Y.; Ogitsu, T.; Sakamoto, H.; Sato, A.; Tran, N. H.; Truong, N. M.; Wing, M.; Yamamoto, A.; Yoshida, M.

    2017-03-01

    A new muon beam line, the muon science innovative channel, was set up at the Research Center for Nuclear Physics, Osaka University, in Osaka, Japan, using the 392 MeV proton beam impinging on a target. The production of an intense muon beam relies on the efficient capture of pions, which subsequently decay to muons, using a novel superconducting solenoid magnet system. After the pion-capture solenoid, the first 36° of the curved muon transport line was commissioned and the muon flux was measured. In order to detect muons, a target of either copper or magnesium was placed to stop muons at the end of the muon beam line. Two stations of plastic scintillators located upstream and downstream from the muon target were used to reconstruct the decay spectrum of muons. In a complementary method to detect negatively charged muons, the x-ray spectrum yielded by muonic atoms in the target was measured in a germanium detector. Measurements, at a proton beam current of 6 pA, yielded (10.4 ±2.7 )×1 05 muons per watt of proton beam power (μ+ and μ-), far in excess of other facilities. At full beam power (400 W), this implies a rate of muons of (4.2 ±1.1 )×1 08 muons s-1 , among the highest in the world. The number of μ- measured was about a factor of 10 lower, again by far the most efficient muon beam produced. The setup is a prototype for future experiments requiring a high-intensity muon beam, such as a muon collider or neutrino factory, or the search for rare muon decays which would be a signature for phenomena beyond the Standard Model of particle physics. Such a muon beam can also be used in other branches of physics, nuclear and condensed matter, as well as other areas of scientific research.

  14. Diffractive contribution to the elasticity and the nucleonic flux in the atmosphere

    CERN Document Server

    Bellandi, J; Godoi, A L; Montanha, J

    1997-01-01

    We calculate the average elasticity considering non-diffractive and single diffractive interactions and perform an analysis of the cosmic-ray flux by means of an analytical solution for the nucleonic diffusion equation. We show that the diffractive contribution is important for the adequate description of the nucleonic and hadronic fluxes in the atmosphere.

  15. Statistical study of emerging flux regions and the response of the upper atmosphere

    Institute of Scientific and Technical Information of China (English)

    Jie Zhao; Hui Li

    2012-01-01

    We statistically study the properties of emerging flux regions (EFRs) and response of the upper solar atmosphere to the flux emergence using data from the Helioseismic and Magnetic Imager and the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory.Parameters including total emerged flux,flux growth rate,maximum area,duration of the emergence and separation speed of the opposite polarities are adopted to delineate the properties of EFRs.The response of the upper atmosphere is addressed by the response of the atmosphere at different wavelengths (and thus at different temperatures).According to our results,the total emerged fluxes are in the range of (0.44-11.2)× 1019 Mx while the maximum area ranges from 17 to 182 arcsec2.The durations of the emergence are between 1 and 12 h,which are positively correlated to both the total emerged flux and the maximum area.The maximum distances between the opposite polarities are 7-25 arcsec and are also positively correlated to the duration.The separation speeds are from 0.05 to 1.08 km S-1,negatively correlated to the duration.The derived flux growth rates are (0.1-1.3) × 1019 Mxh-1,which are positively correlated to the total emerging flux.The upper atmosphere first responds to the flux emergence in the 1600(A) chromospheric line,and then tens to hundreds of seconds later,in coronal lines,such as the 171(A) (T = 105.8 K) and 211(A)(T = 106.3 K) lines almost simultaneously,suggesting the successive heating of the atmosphere from the chromosphere to the corona.

  16. Volcanoes muon imaging using Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, O. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Del Santo, M., E-mail: melania@ifc.inaf.it [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Mineo, T.; Cusumano, G.; Maccarone, M.C. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Pareschi, G. [INAF Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807, Merate (Italy)

    2016-01-21

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  17. Volcanoes muon imaging using Cherenkov telescopes

    Science.gov (United States)

    Catalano, O.; Del Santo, M.; Mineo, T.; Cusumano, G.; Maccarone, M. C.; Pareschi, G.

    2016-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  18. Atmospheric Neutrinos

    OpenAIRE

    Takaaki Kajita

    1994-01-01

    Atmospheric neutrinos are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith angle and energy-dependent deficit of muon-neutrino events. It was found that neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. This paper discusses...

  19. VARIABILITY OF ATMOSPHERIC CO2 OVER INDIA AND SURROUNDING OCEANS AND CONTROL BY SURFACE FLUXES

    Directory of Open Access Journals (Sweden)

    R. K. Nayak

    2012-08-01

    Full Text Available In the present study, seasonal and inter-annual variability of atmospheric CO2 concentration over India and surrounding oceans during 2002–2010 derived from Atmospheric InfrarRed Sounder observation and their relation with the natural flux exchanges over terrestrial Indian and surrounding oceans were analyzed. The natural fluxes over the terrestrial Indian in the form of net primary productivity (NPP were simulated based on a terrestrial biosphere model governed by time varying climate parameters (solar radiation, air temperature, precipitation etc and satellite greenness index together with the land use land cover and soil attribute maps. The flux exchanges over the oceans around India (Tropical Indian Ocean: TIO were calculated based on a empirical model of CO2 gas dissolution in the oceanic water governed by time varying upper ocean parameters such as gradient of partial pressure of CO2 between ocean and atmosphere, winds, sea surface temperature and salinity. Comparison between the variability of atmospheric CO2 anomaly with the anomaly of surface fluxes over India and surrounding oceans suggests that biosphere uptake over India and oceanic uptake over the south Indian Ocean could play positive role on the control of seasonal variability of atmospheric carbon dioxide growth rate. On inter-annual scale, flux exchanges over the tropical north Indian Ocean could play positive role on the control of atmospheric carbon dioxide growth rate.

  20. Magnetohydrostatic Equilibrium. II. Three-dimensional Multiple Open Magnetic Flux Tubes in the Stratified Solar Atmosphere

    Science.gov (United States)

    Gent, F. A.; Fedun, V.; Erdélyi, R.

    2014-07-01

    A system of multiple open magnetic flux tubes spanning the solar photosphere and lower corona is modeled analytically, within a realistic stratified atmosphere subject to solar gravity. This extends results for a single magnetic flux tube in magnetohydrostatic equilibrium, described in Gent et al. Self-similar magnetic flux tubes are combined to form magnetic structures, which are consistent with high-resolution observations. The observational evidence supports the existence of strands of open flux tubes and loops persisting in a relatively steady state. Self-similar magnetic flux tubes, for which an analytic solution to the plasma density and pressure distribution is possible, are combined. We calculate the appropriate balancing forces, applying to the equations of momentum and energy conservation to preserve equilibrium. Multiplex flux tube configurations are observed to remain relatively stable for up to a day or more, and it is our aim to apply our model as the background condition for numerical studies of energy transport mechanisms from the solar surface to the corona. We apply magnetic field strength, plasma density, pressure, and temperature distributions consistent with observational and theoretical estimates for the lower solar atmosphere. Although each flux tube is identical in construction apart from the location of the radial axis, combinations can be applied to generate a non-axisymmetric magnetic field with multiple non-uniform flux tubes. This is a considerable step forward in modeling the realistic magnetized three-dimensional equilibria of the solar atmosphere.

  1. Scaling from Flux Towers to Ecosystem Models: Regional Constraints on GPP from Atmospheric Carbonyl Sulfide

    Science.gov (United States)

    Abu-Naser, M.; Campbell, J.; Berry, J. A.; Seibt, U.; Maseyk, K. S.; Torn, M. S.; Biraud, S. C.; Fischer, M. L.; Billesbach, D. P.; Baker, I. T.; Collatz, G. J.; Chen, H.; Montzka, S. A.; Sweeney, C.

    2012-12-01

    Process-level information on terrestrial carbon fluxes are typically observed at small spatial scales (e.g. eddy flux towers) but critical applications exist at much larger spatial scales (e.g. global ecosystem models). New methodologies are needed to fill this spatial gap. Recent work suggests that analysis of atmospheric carbonyl sulfide (COS) could fill this gap by providing constraints on GPP fluxes at large scales. This proposal is based on evidence that COS plant uptake is quantitatively related to photosynthesis and that COS plant uptake is the dominant COS budget flux influencing atmospheric concentrations over northern extratropical continents. Previous atmospheric analysis of COS has focused on continental or larger scales and only one ecosystem model. Here we explore the spatial and temporal COS variation within North America and their relationship to a range of ecosystem models using regional and global atmospheric transport models. Airborne COS observations are examined from the NOAA-ESRL network including 13 North American airborne sites and a total of 1,447 vertical profiles from years 2004 to 2012. In addition to COS plant uptake, we examined the influence of atmospheric transport treatments, boundary conditions, soil fluxes (mechanistic and empirical), and anthropogenic emissions. The atmospheric COS simulations were consistent with the primary observed spatial and temporal variations in the US mid-continent. This consistency is supportive of ecosystem models because the dominant input for these atmospheric COS simulations is ecosystem model GPP data. However, only the COS simulations driven by a subset of the ecosystem models were able to reproduce the observed COS seasonality in a semiarid cultivated region (ARM/SGP). This subset of ecosystem models produced GPP seasonality that was similar to eddy flux estimates, suggesting a role for COS observations in extending flux tower data to regional spatial scales.

  2. Using Muons to Image the Subsurface.

    Energy Technology Data Exchange (ETDEWEB)

    Bonal, Nedra [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cashion, Avery Ted [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cieslewski, Grzegorz [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dorsey, Daniel J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Foris, Adam [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Timothy J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Barry L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Su, Jiann-Cherng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dreesen, Wendi [NSTec, Livermore, CA (United States); Green, J. Andrew [NSTec, Livermore, CA (United States); Schwellenbach, David [NSTec, Livermore, CA (United States)

    2016-11-01

    Muons are subatomic particles that can penetrate the earth 's crust several kilometers and may be useful for subsurface characterization . The absorption rate of muons depends on the density of the materials through which they pass. Muons are more sensitive to density variation than other phenomena, including gravity, making them beneficial for subsurface investigation . Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and the detector, much like a CAT scan. Currently, muon tomography can resolve features to the sub-meter scale. This work consists of three parts to address the use of muons for subsurface characterization : 1) assess the use of muon scattering for estimating density differences of common rock types, 2 ) using muon flux to detect a void in rock, 3) measure muon direction by designing a new detector. Results from this project lay the groundwork for future directions in this field. Low-density objects can be detected by muons even when enclosed in high-density material like lead, and even small changes in density (e.g. changes due to fracturing of material) can be detected. Rock density has a linear relationship with muon scattering density per rock volume when this ratio is greater than 0.10 . Limitations on using muon scattering to assess density changes among common rock types have been identified. However, other analysis methods may show improved results for these relatively low density materials. Simulations show that muons can be used to image void space (e.g. tunnels) within rock but experimental results have been ambiguous . Improvements are suggested to improve imaging voids such as tunnels through rocks. Finally, a muon detector has been designed and tested to measure muon direction, which will improve signal-to-noise ratio and help address fundamental questions about the source of upgoing muons .

  3. Multi-year Estimates of Methane Fluxes in Alaska from an Atmospheric Inverse Model

    Science.gov (United States)

    Miller, S. M.; Commane, R.; Chang, R. Y. W.; Miller, C. E.; Michalak, A. M.; Dinardo, S. J.; Dlugokencky, E. J.; Hartery, S.; Karion, A.; Lindaas, J.; Sweeney, C.; Wofsy, S. C.

    2015-12-01

    We estimate methane fluxes across Alaska over a multi-year period using observations from a three-year aircraft campaign, the Carbon Arctic Reservoirs Vulnerability Experiment (CARVE). Existing estimates of methane from Alaska and other Arctic regions disagree in both magnitude and distribution, and before the CARVE campaign, atmospheric observations in the region were sparse. We combine these observations with an atmospheric particle trajectory model and a geostatistical inversion to estimate surface fluxes at the model grid scale. We first use this framework to estimate the spatial distribution of methane fluxes across the state. We find the largest fluxes in the south-east and North Slope regions of Alaska. This distribution is consistent with several estimates of wetland extent but contrasts with the distribution in most existing flux models. These flux models concentrate methane in warmer or more southerly regions of Alaska compared to the estimate presented here. This result suggests a discrepancy in how existing bottom-up models translate wetland area into methane fluxes across the state. We next use the inversion framework to explore inter-annual variability in regional-scale methane fluxes for 2012-2014. We examine the extent to which this variability correlates with weather or other environmental conditions. These results indicate the possible sensitivity of wetland fluxes to near-term variability in climate.

  4. CO2 Flux Estimation Errors Associated with Moist Atmospheric Processes

    Science.gov (United States)

    Parazoo, N. C.; Denning, A. S.; Kawa, S. R.; Pawson, S.; Lokupitiya, R.

    2012-01-01

    Vertical transport by moist sub-grid scale processes such as deep convection is a well-known source of uncertainty in CO2 source/sink inversion. However, a dynamical link between vertical transport, satellite based retrievals of column mole fractions of CO2, and source/sink inversion has not yet been established. By using the same offline transport model with meteorological fields from slightly different data assimilation systems, we examine sensitivity of frontal CO2 transport and retrieved fluxes to different parameterizations of sub-grid vertical transport. We find that frontal transport feeds off background vertical CO2 gradients, which are modulated by sub-grid vertical transport. The implication for source/sink estimation is two-fold. First, CO2 variations contained in moist poleward moving air masses are systematically different from variations in dry equatorward moving air. Moist poleward transport is hidden from orbital sensors on satellites, causing a sampling bias, which leads directly to small but systematic flux retrieval errors in northern mid-latitudes. Second, differences in the representation of moist sub-grid vertical transport in GEOS-4 and GEOS-5 meteorological fields cause differences in vertical gradients of CO2, which leads to systematic differences in moist poleward and dry equatorward CO2 transport and therefore the fraction of CO2 variations hidden in moist air from satellites. As a result, sampling biases are amplified and regional scale flux errors enhanced, most notably in Europe (0.43+/-0.35 PgC /yr). These results, cast from the perspective of moist frontal transport processes, support previous arguments that the vertical gradient of CO2 is a major source of uncertainty in source/sink inversion.

  5. Measurement of the atmospheric neutrino energy spectrum from 100 GeV to 400 TeV with IceCube

    CERN Document Server

    Abbasi, R; Abu-Zayyad, T; Adams, J; Aguilar, J A; Ahlers, M; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Bay, R; Alba, J L Bazo; Beattie, K; Beatty, J J; Bechet, S; Becker, J K; Becker, K -H; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Braun, J; Buitink, S; Carson, M; Chirkin, D; Christy, B; Clem, J; Clevermann, F; Cohen, S; Colnard, C; Cowen, D F; D'Agostino, M V; Danninger, M; Davis, J C; De Clercq, C; Demirörs, L; Depaepe, O; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Díaz-Vélez, J C; Dierckxsens, M; Dreyer, J; Dumm, J P; Duvoort, M R; Ehrlich, R; Eisch, J; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feusels, T; Filimonov, K; Finley, C; Foerster, M M; Fox, B D; Franckowiak, A; Franke, R; Gaisser, T K; Gallagher, J; Geisler, M; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Grant, D; Griesel, T; Groß, A; Grullon, S; Gurtner, M; Ha, C; Hallgren, A; Halzen, F; Han, K; Hanson, K; Helbing, K; Herquet, P; Hickford, S; Hill, G C; Hoffman, K D; Homeier, A; Hoshina, K; Hubert, D; Huelsnitz, W; Hülß, J -P; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobsen, J; Japaridze, G S; Johansson, H; Joseph, J M; Kampert, K -H; Karg, T; Karle, A; Kelley, J L; Kemming, N; Kenny, P; Kiryluk, J; Kislat, F; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Koskinen, D J; Kowalski, M; Kowarik, T; Krasberg, M; Krings, T; Kroll, G; Kuehn, K; Kuwabara, T; Labare, M; Lafebre, S; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lehmann, R; Lünemann, J; Madsen, J; Majumdar, P; Marotta, A; Maruyama, R; Mase, K; Matis, H S; Matusik, M; Meagher, K; Merck, M; Mészáros, P; Meures, T; Middell, E; Milke, N; Miller, J; Montaruli, T; Morse, A R; Movit, S M; Nahnhauer, R; Nam, J W; Naumann, U; Nießen, P; Nygren, D R; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Ono, M; Panknin, S; Paul, L; Heros, C Pérez de los; Petrovic, J; Piegsa, A; Pieloth, D; Porrata, R; Posselt, J; Price, P B; Prikockis, M; Przybylski, G T; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Rizzo, A; Rodrigues, J P; Roth, P; Rothmaier, F; Rott, C; Ruhe, T; Rutledge, D; Ruzybayev, B; Ryckbosch, D; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Schlenstedt, S; Schmidt, T; Schukraft, A; Schultes, A; Schulz, O; Schunck, M; Seckel, D; Semburg, B; Seo, S H; Sestayo, Y; Seunarine, S; Silvestri, A; Singh, K; Slipak, A; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, B T; Stephens, G; Stezelberger, T; Stokstad, R G; Stoyanov, S; Strahler, E A; Straszheim, T; Sullivan, G W; Swillens, Q; Taavola, H; Taboada, I; Tamburro, A; Tarasova, O; Tepe, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Tosi, D; Turčan, D; van Eijndhoven, N; Vandenbroucke, J; Van Overloop, A; van Santen, J; Voge, M; Voigt, B; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Wikström, G; Williams, D R; Wischnewski, R; Wissing, H; Wolf, M; Woschnagg, K; Xu, C; Xu, X W; Yodh, G; Yoshida, S; Zarzhitsky, P

    2010-01-01

    A measurement of the atmospheric muon neutrino energy spectrum from 100 GeV to 400 TeV was performed using a data sample of about 18,000 up-going atmospheric muon neutrino events in IceCube. Boosted decision trees were used for event selection to reject mis-reconstructed atmospheric muons and obtain a sample of up-going muon neutrino events. Background contamination in the final event sample is less than one percent. This is the first measurement of atmospheric neutrinos up to 400 TeV, and is fundamental to understanding the impact of this neutrino background on astrophysical neutrino observations with IceCube. The measured spectrum is consistent with predictions for the atmospheric muon neutrino plus muon antineutrino flux.

  6. Muon colliders

    Science.gov (United States)

    Palmer, R. B.; Sessler, A.; Skrinsky, A.; Tollestrup, A.; Baltz, A. J.; Chen, P.; Cheng, W.-H.; Cho, Y.; Courant, E.; Fernow, R. C.; Gallardo, J. C.; Garren, A.; Green, M.; Kahn, S.; Kirk, H.; Lee, Y. Y.; Mills, F.; Mokhov, N.; Morgan, G.; Neuffer, D.; Noble, R.; Norem, J.; Popovic, M.; Schachinger, L.; Silvestrov, G.; Summers, D.; Stumer, I.; Syphers, M.; Torun, Y.; Trbojevic, D.; Turner, W.; Van Ginneken, A.; Vsevolozhskaya, T.; Weggel, R.; Willen, E.; Winn, D.; Wurtele, J.

    1996-05-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity μ+μ- colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed.

  7. Muon colliders

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R.B. [Brookhaven National Lab., Upton, NY (United States)]|[Stanford Linear Accelerator Center, Menlo Park, CA (United States); Sessler, A. [Lawrence Berkeley Lab., CA (United States); Skrinsky, A. [BINP, RU-630090 Novosibirsk (Russian Federation)] [and others

    1996-01-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity {micro}{sup +}{micro}{sup {minus}}colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed.

  8. Magnetohydrostatic equilibrium. II. Three-dimensional multiple open magnetic flux tubes in the stratified solar atmosphere

    CERN Document Server

    Gent, Frederick A; Erd'elyi, Rebertus

    2014-01-01

    A system of multiple open magnetic flux tubes spanning the solar photosphere and lower corona is modelled analytically, within a realistic stratified atmosphere subject to solar gravity. This extends results for a single magnetic flux tube in magnetohydrostatic equilibrium, described in Gent et al. (MNRAS, 435, 689, 2013). Self-similar magnetic flux tubes are combined to form magnetic structures, which are consistent with high-resolution observations. The observational evidence supports the existence of strands of open flux tubes and loops persisting in a relatively steady state. Self-similar magnetic flux tubes, for which an analytic solution to the plasma density and pressure distribution is possible, are combined. We calculate the appropriate balancing forces, applying to the equations of momentum and energy conservation to preserve equilibrium. Multiplex flux tube configurations are observed to remain relatively stable for up to a day or more, and it is our aim to apply our model as the background conditi...

  9. Measurement of the Atmospheric $\

    CERN Document Server

    Aartsen, M G; Abdou, Y; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beattie, K; Beatty, J J; Bechet, S; Tjus, J Becker; Becker, K -H; Bell, M; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohaichuk, S; Bohm, C; Bose1, D; Boser, S; Botner, O; Brayeur, L; Brown, A M; Bruijn, R; Brunner, J; Buitink, S; Carson, M; Casey, J; Casier, M; Chirkin, D; Christy, B; Clark, K; Clevermann, F; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; De Ridder, S; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Diaz-Velez, J C; Dreyer, J; Dumm, J P; Dunkman, M; Eagan, R; Eberhardt, B; Eisch, J; Ellsworth, R W; Engdegard, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glusenkamp, T; Goldschmidt, A; Golup, G; Goodman, J A; Gora, D; Grant, D; Gross, A; Grullon, S; Gurtner, M; Ha, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heimann, P; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jlelati, O; Kappes, A; Karg, T; Karle, A; Kiryluk, J; Kislat, F; Klas, J; Klein, S R; Kohne, J -H; Kohnen, G; Kolanoski, H; Kopke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lauer, R; Lesiak-Bzdak, M; Lunemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Meszaros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Panknin, S; Paul, L; Pepper, J A; Heros, C Perez de los; Pieloth, D; Pirk, N; Posselt, J; Price, P B; Przybylski, G T; Radel, L; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Salameh, T; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Scheel, M; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schoneberg, S; Schonherr, L; Schonwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Seo, S H; Sestayo, Y; Seunarine, S; Sheremata, C; Smith, M W E; Soiron, M; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stoss, A; Strahler, E A; Strom, R; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Usner, M; van der Drift, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge1, M; Vraeghe, M; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Wasserman, R; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zilles, A; Zoll, M

    2012-01-01

    We report the first observation in a high energy neutrino telescope of cascades induced by atmospheric electron neutrinos and by neutral current interactions of atmospheric neutrinos of all flavors. Using data recorded during the first year of operation of IceCube's DeepCore low energy extension, a sample of 1029 events is observed in 281 days of data. The number of observed cascades is $N_{\\rm cascade} = 496 \\pm 66 (stat.) \\pm 88(syst.)$ and the rest of the sample consists of residual backgrounds due to atmospheric muons and charged current interactions of atmospheric muon neutrinos. The flux of the atmospheric electron neutrinos is determined in the energy range between approximately 80 GeV and 6 TeV and is consistent with models of atmospheric neutrinos.

  10. Inverse estimation of radon flux distribution for East Asia using measured atmospheric radon concentration.

    Science.gov (United States)

    Hirao, S; Hayashi, R; Moriizumi, J; Yamazawa, H; Tohjima, Y; Mukai, H

    2015-11-01

    In this study, the (222)Rn flux density distribution at surface was estimated in East Asia with the Bayesian synthesis inversion using measurement data and a long-range atmospheric (222)Rn transport model. Surface atmospheric (222)Rn concentrations measured at Hateruma Island in January 2008 were used. The estimated (222)Rn flux densities were generally higher than the prior ones. The area-weighted mean (222)Rn flux density for East Asia in January 2008 was estimated to be 44.0 mBq m(-2) s(-1). The use of the estimated (222)Rn flux density improved the discrepancy of the model-calculated concentrations with the measurements at Hateruma Island.

  11. Free atmospheric phosphine concentrations and fluxes in different wetland ecosystems, China

    Energy Technology Data Exchange (ETDEWEB)

    Han Chao [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China); Geng Jinju, E-mail: jjgeng@nju.edu.c [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China); Hong Yuning [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China); Zhang Rui [School of Chemistry and Environmental Science, Nanjing Normal University, Nanjing 210097 (China); Gu Xueyuan; Wang Xiaorong; Gao Shixiang [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China); Glindemann, Dietmar [Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061 (United States)

    2011-02-15

    Atmospheric phosphine (PH{sub 3}) fluxes from typical types of wetlands and PH{sub 3} concentrations in adjacent atmospheric air were measured. The seasonal distribution of PH{sub 3} in marsh and paddy fields were observed. Positive PH{sub 3} fluxes are significantly related to high air temperature (summer season) and increased vegetation. It is concluded that vegetation speeds up the liberation of PH{sub 3} from soils, while water coverage might function as a diffusion barrier from soils or sediments to the atmosphere. The concentrations of atmospheric PH{sub 3} (ng m{sup -3}) above different wetlands decrease in the order of paddy fields (51.8 {+-} 3.1) > marsh (46.5 {+-} 20.5) > lake (37.0 {+-} 22.7) > coastal wetland (1.71 {+-} 0.73). Highest atmospheric PH{sub 3} levels in marsh are found in summer. In paddy fields, atmospheric PH{sub 3} concentrations in flourishing stages are higher than those in slowly growing stages. - Research highlights: P could migrate as PH{sub 3} gas in different wetland ecosystems. Wetlands act as a source and sink of atmospheric PH{sub 3}. Positive PH{sub 3} fluxes are significantly related to high temperature and increased vegetation. Environmental PH{sub 3} concentrations in China are generally higher. - Environmental PH{sub 3} concentrations in China are generally higher compared to other parts of the world.

  12. Precipitation of energetic neutral atoms and induced non-thermal escape fluxes from the Martian atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Lewkow, N. R.; Kharchenko, V. [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States)

    2014-08-01

    The precipitation of energetic neutral atoms, produced through charge exchange collisions between solar wind ions and thermal atmospheric gases, is investigated for the Martian atmosphere. Connections between parameters of precipitating fast ions and resulting escape fluxes, altitude-dependent energy distributions of fast atoms and their coefficients of reflection from the Mars atmosphere, are established using accurate cross sections in Monte Carlo (MC) simulations. Distributions of secondary hot (SH) atoms and molecules, induced by precipitating particles, have been obtained and applied for computations of the non-thermal escape fluxes. A new collisional database on accurate energy-angular-dependent cross sections, required for description of the energy-momentum transfer in collisions of precipitating particles and production of non-thermal atmospheric atoms and molecules, is reported with analytic fitting equations. Three-dimensional MC simulations with accurate energy-angular-dependent cross sections have been carried out to track large ensembles of energetic atoms in a time-dependent manner as they propagate into the Martian atmosphere and transfer their energy to the ambient atoms and molecules. Results of the MC simulations on the energy-deposition altitude profiles, reflection coefficients, and time-dependent atmospheric heating, obtained for the isotropic hard sphere and anisotropic quantum cross sections, are compared. Atmospheric heating rates, thermalization depths, altitude profiles of production rates, energy distributions of SH atoms and molecules, and induced escape fluxes have been determined.

  13. Improving Surface Flux Parameterizations in the Navy’s Coastal Ocean Atmosphere Prediction System

    Science.gov (United States)

    2016-06-07

    Improving Surface Flux Parameterizations in the Navy’s Coastal Ocean Atmosphere Prediction System Shouping Wang Naval Research Laboratory...this research is to improve the surface flux and boundary layer turbulence parameteri- zation in COAMPS®1 for low- and high-wind events over the...processes and developing new parameterizations for the surface and boundary layer turbulence mixing. We pro- vide real-time COAMPS weather forecasts

  14. Martian upper atmosphere response to solar EUV flux and soft X-ray flares

    Science.gov (United States)

    Jain, Sonal; Stewart, Ian; Schneider, Nicholas M.; Deighan, Justin; Stiepen, Arnaud; Evans, J. Scott; Stevens, Michael H.; Chaffin, Michael S.; Crismani, Matteo; McClintock, William; Montmessin, Franck; Thiemann, E. M.; Eparvier, Frank; Chamberlin, Phillip C.; Jacosky, Bruce

    2016-10-01

    Planetary upper atmosphere energetics is mainly governed by absorption of solar extreme ultraviolet (EUV) radiation. Understanding the response of planetary upper atmosphere to the daily, long and short term variation in solar flux is very important to quantify energy budget of upper atmosphere. We report a comprehensive study of Mars dayglow observations made by the IUVS instrument aboard the MAVEN spacecraft, focusing on upper atmospheric response to solar EUV flux. Our analysis shows both short and long term effect of solar EUV flux on Martian thermospheric temperature. We find a significant drop (> 100 K) in thermospheric temperature between Ls = 218° and Ls = 140°, attributed primarily to the decrease in solar activity and increase in heliocentric distance. IUVS has observed response of Martian thermosphere to the 27-day solar flux variation due to solar rotation.We also report effect of two solar flare events (19 Oct. 2014 and 24 March 2015) on Martian dayglow observations. IUVS observed about ~25% increase in observed brightness of major ultraviolet dayglow emissions below 120 km, where most of the high energy photons (< 10 nm) deposit their energy. The results presented in this talk will help us better understand the role of EUV flux in total heat budget of Martian thermosphere.

  15. Sensitivity of upper atmospheric emissions calculations to solar/stellar UV flux

    Directory of Open Access Journals (Sweden)

    Barthelemy Mathieu

    2014-01-01

    Full Text Available The solar UV (UltraViolet flux, especially the EUV (Extreme UltraViolet and FUV (Far UltraViolet components, is one of the main energetic inputs for planetary upper atmospheres. It drives various processes such as ionization, or dissociation which give rise to upper atmospheric emissions, especially in the UV and visible. These emissions are one of the main ways to investigate the upper atmospheres of planets. However, the uncertainties in the flux measurement or modeling can lead to biased estimates of fundamental atmospheric parameters, such as concentrations or temperatures in the atmospheres. We explore the various problems that can be identified regarding the uncertainties in solar/stellar UV flux by considering three examples. The worst case appears when the solar reflection component is dominant in the recorded spectrum as is seen for outer solar system measurements from HST (Hubble Space Telescope. We also show that the estimation of some particular line parameters (intensity and shape, especially Lyman α, is crucial, and that both total intensity and line profile are useful. In the case of exoplanets, the problem is quite critical since the UV flux of their parent stars is often very poorly known.

  16. Formation of extreme surface turbulent heat fluxes from the ocean to the atmosphere in the North Atlantic

    Science.gov (United States)

    Tilinina, N. D.; Gulev, S. K.; Gavrikov, A. V.

    2016-01-01

    The role of extreme surface turbulent fluxes in total oceanic heat loss in the North Atlantic is studied. The atmospheric circulation patterns enhancing ocean-atmosphere heat flux in regions with significant contributions of the extreme heat fluxes (up to 60% of the net heat loss) are analyzed. It is shown that extreme heat fluxes in the Gulf Stream and the Greenland and Labrador Seas occur in zones with maximal air pressure gradients, i.e., in cyclone-anticyclone interaction zones.

  17. Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations Part I: Surface fluxes

    Directory of Open Access Journals (Sweden)

    H. Giordani

    Full Text Available A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer

  18. Precipitation of Energetic Neutral Atoms and Induced Non-Thermal Escape Fluxes from the Martian Atmosphere

    CERN Document Server

    Lewkow, Nicholas

    2014-01-01

    The precipitation of energetic neutral atoms (ENAs), produced through charge exchange (CX) collisions between solar wind (SW) ions and thermal atmospheric gases, is investigated. Subsequent induced non-thermal escape fluxes have been carried out for the Martian atmosphere. Detailed modeling of the ENA energy input and determination of connections between parameters of precipitating ENAs and resulting escape fluxes, reflection coefficients of fast atoms from the Mars atmosphere, and altitude dependent ENA energy distributions are established using Monte Carlo (MC) simulations of the precipitation process with accurate quantum mechanical (QM) cross sections. Detailed descriptions of secondary hot (SH) atoms and molecules induced by ENAs have been obtained for a better understanding of the mechanisms responsible for atmospheric escape and evolution. The effects of using isotropic hard sphere (HS) cross sections as compared to realistic, anisotropic quantum cross sections are examined for energy-deposition profil...

  19. Sea ice-atmospheric interaction: Application of multispectral satellite data in polar surface energy flux estimates

    Science.gov (United States)

    Steffen, Konrad; Key, J.; Maslanik, J.; Schweiger, A.

    1993-01-01

    This is the third annual report on: Sea Ice-Atmosphere Interaction - Application of Multispectral Satellite Data in Polar Surface Energy Flux Estimates. The main emphasis during the past year was on: radiative flux estimates from satellite data; intercomparison of satellite and ground-based cloud amounts; radiative cloud forcing; calibration of the Advanced Very High Resolution Radiometer (AVHRR) visible channels and comparison of two satellite derived albedo data sets; and on flux modeling for leads. Major topics covered are arctic clouds and radiation; snow and ice albedo, and leads and modeling.

  20. Observation of muon intensity variations by season with the MINOS Near Detector

    CERN Document Server

    Adamson, P; Aurisano, A; Barr, G; Bishai, M; Blake, A; Bock, G J; Bogert, D; Cao, S V; Castromonte, C M; Childress, S; Coelho, J A B; Corwin, L; Cronin-Hennessy, D; de Jong, J K; Devan, A V; Devenish, N E; Diwan, M V; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Fields, T H; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grzelak, K; Habig, A; Hahn, S R; Hartnell, J; Hatcher, R; Holin, A; Huang, J; Hylen, J; Irwin, G M; Isvan, Z; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kordosky, M; Kreymer, A; Lang, K; Ling, J; Litchfield, P J; Lucas, P; Mann, W A; Marshak, M L; Mathis, M; Mayer, N; McGivern, C; Medeiros, M M; Mehdiyev, R; Meier, J R; Messier, M D; Miller, W H; Mishra, S R; Sher, S Moed; Moore, C D; Mualem, L; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; Connor, J O; Orchanian, M; Osprey, S; Pahlka, R B; Paley, J; Patterson, R B; Pawloski, G; Perch, A; Phan-Budd, S; Plunkett, R K; Poonthottathil, N; Qiu, X; Radovic, A; Rebel, B; Rosenfeld, C; Rubin, H A; Sanchez, M C; Schneps, J; Schreckenberger, A; Schreiner, P; Sharma, R; Sousa, A; Tagg, N; Talaga, R L; Thomas, J; Thomson, M A; Tian, X; Timmons, A; Tognini, S C; Toner, R; Torretta, D; Urheim, J; Vahle, P; Viren, B; Weber, A; Webb, R C; White, C; Whitehead, L; Whitehead, L H; Wojcicki, S G; Zwaska, R

    2014-01-01

    A sample of 1.53$\\times$10$^{9}$ cosmic-ray-induced single muon events has been recorded at 225 meters-water-equivalent using the MINOS Near Detector. The underground muon rate is observed to be highly correlated with the effective atmospheric temperature. The coefficient $\\alpha_{T}$, relating the change in the muon rate to the change in the vertical effective temperature, is determined to be 0.428$\\pm$0.003(stat.)$\\pm$0.059(syst.). An alternative description is provided by the weighted effective temperature, introduced to account for the differences in the temperature profile and muon flux as a function of zenith angle. Using the latter estimation of temperature, the coefficient is determined to be 0.352$\\pm$0.003(stat.)$\\pm$0.046(syst.).

  1. Observation of muon intensity variations by season with the MINOS Near Detector

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, P.; et al.

    2014-07-22

    A sample of 1.53$\\times$10$^{9}$ cosmic-ray-induced single muon events has been recorded at 225 meters-water-equivalent using the MINOS Near Detector. The underground muon rate is observed to be highly correlated with the effective atmospheric temperature. The coefficient $\\alpha_{T}$, relating the change in the muon rate to the change in the vertical effective temperature, is determined to be 0.428$\\pm$0.003(stat.)$\\pm$0.059(syst.). An alternative description is provided by the weighted effective temperature, introduced to account for the differences in the temperature profile and muon flux as a function of zenith angle. Using the latter estimation of temperature, the coefficient is determined to be 0.352$\\pm$0.003(stat.)$\\pm$0.046(syst.).

  2. Observation of muon intensity variations by season with the MINOS near detector

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, P.; Anghel, I.; Aurisano, A.; Barr, G.; Bishai, M.; Blake, A.; Bock, G. J.; Bogert, D.; Cao, S. V.; Castromonte, C. M.; Childress, S.; Coelho, J. A. B.; Corwin, L.; Cronin-Hennessy, D.; de Jong, J. K.; Devan, A. V.; Devenish, N. E.; Diwan, M. V.; Escobar, C. O.; Evans, J. J.; Falk, E.; Feldman, G. J.; Fields, T. H.; Frohne, M. V.; Gallagher, H. R.; Gomes, R. A.; Goodman, M. C.; Gouffon, P.; Graf, N.; Gran, R.; Grzelak, K.; Habig, A.; Hahn, S. R.; Hartnell, J.; Hatcher, R.; Holin, A.; Huang, J.; Hylen, J.; Irwin, G. M.; Isvan, Z.; James, C.; Jensen, D.; Kafka, T.; Kasahara, S. M. S.; Koizumi, G.; Kordosky, M.; Kreymer, A.; Lang, K.; Ling, J.; Litchfield, P. J.; Lucas, P.; Mann, W. A.; Marshak, M. L.; Mathis, M.; Mayer, N.; McGivern, C.; Medeiros, M. M.; Mehdiyev, R.; Meier, J. R.; Messier, M. D.; Miller, W. H.; Mishra, S. R.; Moed Sher, S.; Moore, C. D.; Mualem, L.; Musser, J.; Naples, D.; Nelson, J. K.; Newman, H. B.; Nichol, R. J.; Nowak, J. A.; O’Connor, J.; Orchanian, M.; Osprey, S.; Pahlka, R. B.; Paley, J.; Patterson, R. B.; Pawloski, G.; Perch, A.; Phan-Budd, S.; Plunkett, R. K.; Poonthottathil, N.; Qiu, X.; Radovic, A.; Rebel, B.; Rosenfeld, C.; Rubin, H. A.; Sanchez, M. C.; Schneps, J.; Schreckenberger, A.; Schreiner, P.; Sharma, R.; Sousa, A.; Tagg, N.; Talaga, R. L.; Thomas, J.; Thomson, M. A.; Tian, X.; Timmons, A.; Tognini, S. C.; Toner, R.; Torretta, D.; Urheim, J.; Vahle, P.; Viren, B.; Weber, A.; Webb, R. C.; White, C.; Whitehead, L.; Whitehead, L. H.; Wojcicki, S. G.; Zwaska, R.

    2014-07-01

    A sample of 1.53$\\times$10$^{9}$ cosmic-ray-induced single muon events has been recorded at 225 meters-water-equivalent using the MINOS Near Detector. The underground muon rate is observed to be highly correlated with the effective atmospheric temperature. The coefficient $\\alpha_{T}$, relating the change in the muon rate to the change in the vertical effective temperature, is determined to be 0.428$\\pm$0.003(stat.)$\\pm$0.059(syst.). An alternative description is provided by the weighted effective temperature, introduced to account for the differences in the temperature profile and muon flux as a function of zenith angle. Using the latter estimation of temperature, the coefficient is determined to be 0.352$\\pm$0.003(stat.)$\\pm$0.046(syst.).

  3. Methane fluxes to the atmosphere from deepwater hydrocarbon seeps in the northern Gulf of Mexico

    Science.gov (United States)

    Hu, Lei; Yvon-Lewis, Shari A.; Kessler, John D.; MacDonald, Ian R.

    2012-01-01

    Three deepwater hydrocarbon seep sites in the northern Gulf of Mexico that feature near-seafloor gas hydrates, MC118 (depth = 900 m), GC600 (depth = 1250 m) and GC185 (depth = 550 m), were investigated during the Remote Sensing and Sea-Truth Measurements of Methane Flux to the Atmosphere (HYFLUX) study in July 2009. Continuous measurements of air and sea surface concentrations of methane were made to obtain high spatial and temporal resolution of the diffusive net sea-to-air fluxes. The atmospheric methane fluctuated between 1.70 and 2.40 parts per million (ppm) during the entire cruise except for high concentrations (up to 4.01 ppm) sampled during the end of the occupation of GC600 and the transit between GC600 and GC185. In conjunction with air-mass back trajectory analysis, these high concentrations are likely from a localized methane source to the atmosphere. Methane concentrations in surface seawater and methane net sea-to-air fluxes show high temporal and spatial variability within and between sites. The presence of ethane and propane in the surface seawater indicates a thermogenic source in the plume areas, suggesting the surface methane could be at least partly attributable to transport from the deepwater hydrocarbon seeps. Results from interpolations within the survey areas show the daily methane fluxes to the atmosphere at the three sites range from 0.744 to 300 mol d-1. Extrapolating the highest daily sea-to-air flux of methane to other deepwater seeps in the northern Gulf of Mexico suggests that the net diffusive sea-to-air flux from deepwater hydrocarbon seeps in this region is an insignificant source to the atmospheric methane.

  4. Atmospheric radiative flux divergence from Clouds and Earth Radiant Energy System (CERES)

    Science.gov (United States)

    Smith, Louis G.; Charlock, Thomas P.; Crommelynk, D.; Rutan, David; Gupta, Shashi

    1990-01-01

    A major objective of the Clouds and Earth Radiant Energy System (CERES) is the computation of vertical profiles through the atmosphere of the divergence of radiation flux, with global coverage. This paper discusses the need for radiation divergence and presents some options for its inference from CERES measurements and other data from the Earth Observating System.

  5. Estimates of radiative flux divergence in the atmosphere from satellite data

    Science.gov (United States)

    Smith, G. L.; Charlock, Thomas P.; Bess, T. D.; Gupta, Shashi; Rutan, David; Rose, Fred G.

    1990-01-01

    Several options for the inference of the atmospheric radiative flux divergence (ARD) on the basis of satellite data are discussed. Attention is given to the clear-sky case and the cloudy-sky case. LW ARD profiles for different climatological regimes are presented and the effect of cloud base height on LW ARD divergence at various heights is illustrated.

  6. On inferring isoprene emission surface flux from atmospheric boundary layer concentration measurements

    NARCIS (Netherlands)

    Vilà-Guerau de Arellano, J.; Dries, van den K.; Pino, D.

    2009-01-01

    We examine the dependence of the inferred isoprene surface emission flux from atmospheric concentration on the diurnal variability of the convective boundary layer (CBL). A series of systematic numerical experiments carried out using the mixed-layer technique enabled us to study the sensitivity of i

  7. A multiyear estimate of methane fluxes in Alaska from CARVE atmospheric observations

    Science.gov (United States)

    Miller, Scot M.; Miller, Charles E.; Commane, Roisin; Chang, Rachel Y.-W.; Dinardo, Steven J.; Henderson, John M.; Karion, Anna; Lindaas, Jakob; Melton, Joe R.; Miller, John B.; Sweeney, Colm; Wofsy, Steven C.; Michalak, Anna M.

    2016-10-01

    Methane (CH4) fluxes from Alaska and other arctic regions may be sensitive to thawing permafrost and future climate change, but estimates of both current and future fluxes from the region are uncertain. This study estimates CH4 fluxes across Alaska for 2012-2014 using aircraft observations from the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) and a geostatistical inverse model (GIM). We find that a simple flux model based on a daily soil temperature map and a static map of wetland extent reproduces the atmospheric CH4 observations at the statewide, multiyear scale more effectively than global-scale process-based models. This result points to a simple and effective way of representing CH4 fluxes across Alaska. It further suggests that process-based models can improve their representation of key processes and that more complex processes included in these models cannot be evaluated given the information content of available atmospheric CH4 observations. In addition, we find that CH4 emissions from the North Slope of Alaska account for 24% of the total statewide flux of 1.74 ± 0.26 Tg CH4 (for May-October). Global-scale process models only attribute an average of 3% of the total flux to this region. This mismatch occurs for two reasons: process models likely underestimate wetland extent in regions without visible surface water, and these models prematurely shut down CH4 fluxes at soil temperatures near 0°C. Lastly, we find that the seasonality of CH4 fluxes varied during 2012-2014 but that total emissions did not differ significantly among years, despite substantial differences in soil temperature and precipitation.

  8. CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport

    Directory of Open Access Journals (Sweden)

    M. Heimann

    2003-05-01

    Full Text Available Based on about 20 years of NOAA/CMDL's atmospheric CO2 concentration data and a global atmospheric tracer transport model, we estimate interannual variations and spatial patterns of surface CO2 fluxes in the period 01/1982–12/2000, by using a time-dependent Bayesian inversion technique. To increase the reliability of the estimated temporal features, particular care is exerted towards the selection of data records that are homogeneous in time. Fluxes are estimated on a grid-scale resolution (~8° latitude×10° longitude, constrained by a-priori spatial correlations, and then integrated over different sets of regions. The transport model is driven by interannually varying re-analysed meteorological fields. We make consistent use of unsmoothed measurements. In agreement with previous studies, land fluxes are estimated to be the main driver of interannual variations in the global CO2 fluxes, with the pace predominantly being set by the El Niño/La Niña contrast. An exception is a 2–3 year period of increased sink of atmospheric carbon after Mt. Pinatubo's volcanic eruption in 1991. The largest differences in fluxes between El Niño and La Niña are found in the tropical land regions, the main share being due to the Amazon basin. The flux variations for the Post-Pinatubo period, the 1997/1998 El Niño, and the 1999 La Niña events are exploited to investigate relations between CO2 fluxes and climate forcing. A rough comparison points to anomalies in precipitation as a prominent climate factor for short-term variability of tropical land fluxes, both through their role on NPP and through promoting fire in case of droughts. Some large flux anomalies seem to be directly related to large biomass burning events recorded by satellite observation. Global ocean carbon uptake shows a trend similar to the one expected if ocean uptake scales proportional to the anthropogenic atmospheric perturbation. In contrast to temporal variations, the longterm spatial

  9. [Atmospheric deposition fluxes and seasonal variations of elements in northeast of Sichuan, central China].

    Science.gov (United States)

    Tong, Xiao-Ning; Zhou, Hou-Yun; You, Chen-Feng; Tang, Jing; Liu, Hou-Chun; Huang, Ying; He, Hai-Bo

    2014-01-01

    Monthly atmospheric deposition was collected in Northeast of Sichuan Province from August 2011 to July 2012. Contents of Na, Mg, Ca, K, Si, Sr, Ba and Zn in weak-acid leachable fraction (with pH values of ca. 2) of the deposition were determined using ICP-MS. The results indicated that the deposition fluxes of all these elements exhibited notable seasonal variations. For example, the deposition flux of Na increased with precipitation, suggesting a dominant derivation from wet deposition; whereas the fluxes of Ca, Ba, Si, Sr and Mg displayed higher values during winter or spring season, suggesting that these elements may be closely associated with atmospheric dust activity. The annual fluxes of these elements were remarkably different in value. Na had the highest flux of 30 497 microg x (10(2) cm2 x a)(-1), more than three orders of magnitude higher than the lowest flux of Ba of 27.4 microg x (10(2) cm2 x a)(-1).

  10. High Resolution Muon Computed Tomography at Neutrino Beam Facilities

    CERN Document Server

    Suerfu, Burkhant

    2015-01-01

    X-ray computed tomography (CT) has an indispensable role in constructing 3D images of objects made from light materials. However, limited by absorption coefficients, X-rays cannot deeply penetrate materials such as copper and lead. Here we show via simulation that muon beams can provide high resolution tomographic images of dense objects and of structures within the interior of dense objects. The effects of resolution broadening from multiple scattering diminish with increasing muon momentum. As the momentum of the muon increases, the contrast of the image goes down and therefore requires higher resolution in the muon spectrometer to resolve the image. The variance of the measured muon momentum reaches a minimum and then increases with increasing muon momentum. The impact of the increase in variance is to require a higher integrated muon flux to reduce fluctuations. The flux requirements and level of contrast needed for high resolution muon computed tomography are well matched to the muons produced in the pio...

  11. Energetic electron precipitation into the middle atmosphere -- Constructing the loss cone fluxes from MEPED POES

    Science.gov (United States)

    Nesse Tyssøy, H.; Sandanger, M. I.; Ødegaard, L.-K. G.; Stadsnes, J.; Aasnes, A.; Zawedde, A. E.

    2016-06-01

    The impact of energetic electron precipitation (EEP) on the chemistry of the middle atmosphere (50-90 km) is still an outstanding question as accurate quantification of EEP is lacking due to instrumental challenges and insufficient pitch angle coverage of current particle detectors. The Medium Energy Proton and Electron Detectors (MEPED) instrument on board the NOAA/Polar Orbiting Environmental Satellites (POES) and MetOp spacecraft has two sets of electron and proton telescopes pointing close to zenith (0°) and in the horizontal plane (90°). Using measurements from either the 0° or 90° telescope will underestimate or overestimate the bounce loss cone flux, respectively, as the energetic electron fluxes are often strongly anisotropic with decreasing fluxes toward the center of the loss cone. By combining the measurements from both telescopes with electron pitch angle distributions from theory of wave-particle interactions in the magnetosphere, a complete bounce loss cone flux is constructed for each of the electron energy channels >50 keV, >100 keV, and >300 keV. We apply a correction method to remove proton contamination in the electron counts. We also account for the relativistic (>1000 keV) electrons contaminating the proton detector at subauroral latitudes. This gives us full range coverage of electron energies that will be deposited in the middle atmosphere. Finally, we demonstrate the method's applicability on strongly anisotropic pitch angle distributions during a weak geomagnetic storm in February 2008. We compare the electron fluxes and subsequent energy deposition estimates to OH observations from the Microwave Limb Sounder on the Aura satellite substantiating that the estimated fluxes are representative for the true precipitating fluxes impacting the atmosphere.

  12. Particle concentration and flux dynamics in the atmospheric boundary layer as the indicator of formation mechanism

    Directory of Open Access Journals (Sweden)

    J. Lauros

    2010-08-01

    Full Text Available We carried out column model simulations to study particle fluxes and deposition and to evaluate different particle formation mechanisms at a boreal forest site in Finland. We show that kinetic nucleation of sulphuric acid cannot be responsible for new particle formation alone as the vertical profile of particle number distribution does not correspond to observations. Instead organic induced nucleation leads to good agreement confirming the relevance of the aerosol formation mechanism including organic compounds emitted by biosphere.

    Simulation of aerosol concentration inside the atmospheric boundary layer during nucleation days shows highly dynamical picture, where particle formation is coupled with chemistry and turbulent transport. We have demonstrated suitability of our turbulent mixing scheme in reproducing most important characteristics of particle dynamics inside the atmospheric boundary layer. Deposition and particle flux simulations show that deposition affects noticeably only the smallest particles at the lowest part of the atmospheric boundary layer.

  13. Solar diurnal anisotropy measured using muons in GRAPES-3 experiment in 2006

    Indian Academy of Sciences (India)

    P K Mohanty; D Atri; S R Dugad; S K Gupta; B Hariharan; Y Hayashi; A Jain; S Kawakami; S D Morris; P K Nayak; A Oshima; B S Rao

    2013-08-01

    The GRAPES-3 experiment at Ooty contains a large-area (560 m2) tracking muon detector. This detector consists of 16 modules, each 35 m2 in area, that are grouped into four supermodules of 140 m2 each. The threshold energy of muons is $\\sec()$ GeV along a direction with zenith angle and the angular resolution of the muon detector is 6°. Typically, it records ∼ 4 × 109 muons every day. The muon detector has been operating uninterruptedly since 2001, thus providing a high statistics record of the cosmic ray flux as a function of time over one decade. However, prior to using these data, the muon rate has to be corrected for two important atmospheric effects, namely, variations in atmospheric pressure and temperature. Because of the near equatorial location of Ooty (11.4°N), the seasonal variations in the atmospheric temperature are relatively small and shall be ignored here. Due to proximity to the equator, the pressure changes at Ooty display a dominant 12 h periodic behaviour in addition to other seasonal changes. Here, we discuss various aspects of a novel method for accurate pressure measurement and subsequent corrections applied to the GRAPES-3 muon data to correct these pressure-induced variations. The pressure-corrected muon data are used to measure the profile of the solar diurnal anisotropy during 2006. The data, when divided into four segments, display significant variation both in the amplitude (∼ 45%) and phase (∼42 m) of the solar diurnal anisotropy during 2006, which was a period of relatively low solar activity.

  14. Comparing Global Atmospheric CO2 Flux and Transport Models with Remote Sensing (and Other) Observations

    Science.gov (United States)

    Kawa, S. R.; Collatz, G. J.; Pawson, S.; Wennberg, P. O.; Wofsy, S. C.; Andrews, A. E.

    2010-01-01

    We report recent progress derived from comparison of global CO2 flux and transport models with new remote sensing and other sources of CO2 data including those from satellite. The overall objective of this activity is to improve the process models that represent our understanding of the workings of the atmospheric carbon cycle. Model estimates of CO2 surface flux and atmospheric transport processes are required for initial constraints on inverse analyses, to connect atmospheric observations to the location of surface sources and sinks, to provide the basic framework for carbon data assimilation, and ultimately for future projections of carbon-climate interactions. Models can also be used to test consistency within and between CO2 data sets under varying geophysical states. Here we focus on simulated CO2 fluxes from terrestrial vegetation and atmospheric transport mutually constrained by analyzed meteorological fields from the Goddard Modeling and Assimilation Office for the period 2000 through 2009. Use of assimilated meteorological data enables direct model comparison to observations across a wide range of scales of variability. The biospheric fluxes are produced by the CASA model at 1x1 degrees on a monthly mean basis, modulated hourly with analyzed temperature and sunlight. Both physiological and biomass burning fluxes are derived using satellite observations of vegetation, burned area (as in GFED-3), and analyzed meteorology. For the purposes of comparison to CO2 data, fossil fuel and ocean fluxes are also included in the transport simulations. In this presentation we evaluate the model's ability to simulate CO2 flux and mixing ratio variability in comparison to remote sensing observations from TCCON, GOSAT, and AIRS as well as relevant in situ observations. Examples of the influence of key process representations are shown from both forward and inverse model comparisons. We find that the model can resolve much of the synoptic, seasonal, and interannual

  15. Continuous wavelet transform and discrete multi-resolution analysis of surface fluxes and atmospheric stability

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Variations of land surface fluxes of sensible heat (H), latent heat ( LE ), and CO2(F-CO2) obtained from the eddy-covariance measurements above a winter wheat field from March 30 to April 24, 2001 have been studied at scales ranging from 10 minutes to days. Wavelet transform is used in the analysis of land surface fluxes and atmospheric stability (ζ) calculated from the measurements to reveal the changes in land surface fluxes in hours to days scales. The main results are: (1) Concise and compact information about the fluxes, net radiation (Rn), temperature (T) and ζ in the scale-time domain are extracted from the data by continuous wavelet analysis,and 1 day, 0.5 day and short-period (shorter than 0.5 day) components are revealed. Continuous wavelet coefficients can be used to characterize periodic components of changes in fluxes and ζ. (2) Discrete-time multi-resolution analysis can be used to concentrate total energy variance of time series of the measurements to a small number of coefficients, plotting the relative energy distribution to get several meaningful characteristics of the data. (3) Under neutral atmospheric conditions, the relative energy distributions of the Haar multi-resolution analysis of the three non-dimensional coefficients (T/T* , q/q * and c/c * ) display clear similarities.

  16. Defining Top-of-Atmosphere Flux Reference Level for Earth Radiation Budget Studies

    Science.gov (United States)

    Loeb, N. G.; Kato, S.; Wielicki, B. A.

    2002-01-01

    To estimate the earth's radiation budget at the top of the atmosphere (TOA) from satellite-measured radiances, it is necessary to account for the finite geometry of the earth and recognize that the earth is a solid body surrounded by a translucent atmosphere of finite thickness that attenuates solar radiation differently at different heights. As a result, in order to account for all of the reflected solar and emitted thermal radiation from the planet by direct integration of satellite-measured radiances, the measurement viewing geometry must be defined at a reference level well above the earth s surface (e.g., 100 km). This ensures that all radiation contributions, including radiation escaping the planet along slant paths above the earth s tangent point, are accounted for. By using a field-of- view (FOV) reference level that is too low (such as the surface reference level), TOA fluxes for most scene types are systematically underestimated by 1-2 W/sq m. In addition, since TOA flux represents a flow of radiant energy per unit area, and varies with distance from the earth according to the inverse-square law, a reference level is also needed to define satellite-based TOA fluxes. From theoretical radiative transfer calculations using a model that accounts for spherical geometry, the optimal reference level for defining TOA fluxes in radiation budget studies for the earth is estimated to be approximately 20 km. At this reference level, there is no need to explicitly account for horizontal transmission of solar radiation through the atmosphere in the earth radiation budget calculation. In this context, therefore, the 20-km reference level corresponds to the effective radiative top of atmosphere for the planet. Although the optimal flux reference level depends slightly on scene type due to differences in effective transmission of solar radiation with cloud height, the difference in flux caused by neglecting the scene-type dependence is less than 0.1%. If an inappropriate

  17. Atmospheric Forcing of the Winter Air–Sea Heat Fluxes over the Northern Red Sea

    KAUST Repository

    Papadopoulos, Vassilis P.

    2013-03-01

    The influence of the atmospheric circulation on the winter air–sea heat fluxes over the northern Red Sea is investigated during the period 1985–2011. The analysis based on daily heat flux values reveals that most of the net surface heat exchange variability depends on the behavior of the turbulent components of the surface flux (the sum of the latent and sensible heat). The large-scale composite sea level pressure (SLP) maps corresponding to turbulent flux minima and maxima show distinct atmospheric circulation patterns associated with each case. In general, extreme heat loss (with turbulent flux lower than −400 W m−2) over the northern Red Sea is observed when anticyclonic conditions prevail over an area extending from the Mediterranean Sea to eastern Asia along with a recession of the equatorial African lows system. Subcenters of high pressure associated with this pattern generate the required steep SLP gradient that enhances the wind magnitude and transfers cold and dry air masses from higher latitudes. Conversely, turbulent flux maxima (heat loss minimization with values from −100 to −50 W m−2) are associated with prevailing low pressures over the eastern Mediterranean and an extended equatorial African low that reaches the southern part of the Red Sea. In this case, a smooth SLP field over the northern Red Sea results in weak winds over the area that in turn reduce the surface heat loss. At the same time, southerlies blowing along the main axis of the Red Sea transfer warm and humid air northward, favoring heat flux maxima.

  18. Variability of Summer Atmospheric Moisture Flux and Its Effect on Precipitation over East China

    Institute of Scientific and Technical Information of China (English)

    JIANG Ying; ZHAI ranmao; WANG Qiyi

    2005-01-01

    Using the in-situ precipitation and NCEP/NCAR daily reanalysis data, we found by studies of change of moisture flux and its effect that the northward water vapor transport represented by moisture flux in East China tends to retreat southward, and the eastward water vapor transport tends to weaken with weakening of the intensity of moisture flux. The north boundary of meridional moisture flux (50 kg m-1s-1) retreats 2.8 degrees in latitude per decade during 1968-2003. The weakening of water vapor transport implies the weakening and southward retreat of East Asian monsoon, which leads to the tendency of decrease in moisture flux convergence over North China and the middle and lower reaches of the Yellow River, and the tendency of decrease in precipitation over those regions, but on the contrary the enhanced water vapor transport convergence over the middle and lower reaches of the Yangtze River implies the tendency of increase in precipitation to some extent. Indeed the long-term variability of precipitation in East China has a close relation with that of atmospheric moisture flux.

  19. Muon Muon Collider: Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, J.C.; Palmer, R.B.; /Brookhaven; Tollestrup, A.V.; /Fermilab; Sessler, A.M.; /LBL, Berkeley; Skrinsky, A.N.; /Novosibirsk, IYF; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley

    2012-04-05

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle

  20. Methane Fluxes to the Atmosphere from Perennial Hydrocarbon Plumes in the Northern Gulf of Mexico

    Science.gov (United States)

    Solomon, E.; Kastner, M.; MacDonald, I.

    2006-12-01

    Methane is a radiatively important trace gas in the atmosphere playing a significant role in greenhouse warming and ozone destruction. The current atmospheric methane budget, however, is still clouded by large uncertainties in the individual source strengths. Estimates of the flux of methane from the ocean to the atmosphere range from 5-15 Tg/yr, but do not include seafloor methane seepage. The large uncertainty in the magnitude of this flux emphasizes the importance of better constraining the spatial and temporal variations in marine methane emissions. Improved constraints on the natural input of methane from the oceans will enable better estimates of changes in anthropogenic inputs over time and their contribution to global climate change. The northern Gulf of Mexico (GOM) contains prolific seafloor gas vents, oil seeps, and gas hydrate deposits. During two research expeditions in the GOM in 2002 and 2003, methane concentrations and carbon isotopic ratios were measured within the water column by a novel experiment in which bubble plumes from 5 seafloor seeps and one mud volcano were sampled with an ascending submersible from the seafloor to the sea surface. Traditionally, CTD casts have been used to sample methane in the water column, which, because of currents, at best only meander through these relatively narrow plumes. Based on δ13C-DIC values of pore waters extracted from push cores at the seeps, methane is not consumed by anaerobic oxidation in the sediment column, thus all of the methane advecting from depth enters the water column. The δ13C of the bottom water methane ranges from -54.38 to -45.91‰, indicating most of it is thermogenic in origin. The gas bubbles also contain C2-C4 hydrocarbons and are coated with oil, which inhibits methane oxidation and bubble dissolution during ascent. This is observed in the only slight increase in δ13C- CH4 to the surface within the plumes. Surface waters have an average δ13C-CH4 of - 47.00‰, thus using an

  1. Prompt neutrino fluxes in the atmosphere with PROSA parton distribution functions

    CERN Document Server

    Garzelli, M V; Zenaiev, O; Cooper-Sarkar, A; Geiser, A; Lipka, K; Placakyte, R; Sigl, G

    2016-01-01

    Effects on atmospheric prompt neutrino fluxes of present uncertainties affecting the nucleon composition are studied by using the PROSA fit to parton distribution functions (PDFs). The PROSA fit extends the precision of the PDFs to low x, which is the kinematic region of relevance for high-energy neutrino production, by taking into account LHCb data on charm and bottom hadroproduction. In the range of neutrino energies explored by present Very Large Volume Neutrino Telescopes, it is found that PDF uncertainties are far smaller with respect to those due to renormalization and factorization scale variation and to assumptions on the cosmic ray composition, which at present dominate and limit our knowledge of prompt neutrino fluxes. A discussion is presented on how these uncertainties affect the expected number of atmospheric prompt neutrino events in the analysis of high-energy events characterized by interaction vertices fully contained within the instrumented volume of the detector, performed by the IceCube co...

  2. Midlatitude atmospheric responses to Arctic sensible heat flux anomalies in Community Climate Model, Version 4

    Science.gov (United States)

    Mills, Catrin M.; Cassano, John J.; Cassano, Elizabeth N.

    2016-12-01

    Possible linkages between Arctic sea ice loss and midlatitude weather are strongly debated in the literature. We analyze a coupled model simulation to assess the possibility of Arctic ice variability forcing a midlatitude response, ensuring consistency between atmosphere, ocean, and ice components. We work with weekly running mean daily sensible heat fluxes with the self-organizing map technique to identify Arctic sensible heat flux anomaly patterns and the associated atmospheric response, without the need of metrics to define the Arctic forcing or measure the midlatitude response. We find that low-level warm anomalies during autumn can build planetary wave patterns that propagate downstream into the midlatitudes, creating robust surface cold anomalies in the eastern United States.

  3. Intercomparison and interpretation of surface energy fluxes in atmospheric general circulation models

    Science.gov (United States)

    Randall, D. A.; Cess, R. D.; Blanchet, J. P.; Boer, G. J.; Dazlich, D. A.; Del Genio, A. D.; Deque, M.; Dymnikov, V.; Galin, V.; Ghan, S. J.

    1992-01-01

    Responses of the surface energy budgets and hydrologic cycles of 19 atmospheric general circulation models to an imposed, globally uniform sea surface temperature perturbation of 4 K were analyzed. The responses of the simulated surface energy budgets are extremely diverse and are closely linked to the responses of the simulated hydrologic cycles. The response of the net surface energy flux is not controlled by cloud effects; instead, it is determined primarily by the response of the latent heat flux. The prescribed warming of the oceans leads to major increases in the atmospheric water vapor content and the rates of evaporation and precipitation. The increased water vapor amount drastically increases the downwelling IR radiation at the earth's surface, but the amount of the change varies dramatically from one model to another.

  4. Energetic electron precipitation into the middle atmosphere - Constructing the loss cone fluxes from MEPED POES

    CERN Document Server

    Tyssøy, H Nesse; Ødegaard, L -K G; Stadsnes, J; Aasnes, A; Zawedde, A E

    2016-01-01

    The impact of energetic electron precipitation (EEP) on the chemistry of the middle atmosphere (50-90 km) is still an outstanding question as accurate quantification of EEP is lacking due to instrumental challenges and insufficient pitch angle coverage of current particle detectors. The Medium Energy Proton and Electron Detectors (MEPED) instrument on board the NOAA/Polar Orbiting Environmental Satellites(POES) and MetOp spacecraft has two sets of electron and proton telescopes pointing close to zenith ($0\\,^{\\circ}$) and in the horizontal plane ($90\\,^{\\circ}$). Using measurements from either the $0\\,^{\\circ}$ or $90\\,^{\\circ}$ telescope will underestimate or overestimate the bounce loss cone flux, respectively, as the energetic electron fluxes are often strongly anisotropic with decreasing fluxes toward the center of the loss cone. By combining the measurements from both telescopes with electron pitch angle distributions from theory of wave-particle interactions in the magnetosphere, a complete bounce loss ...

  5. On inferring isoprene emission surface flux from atmospheric boundary layer concentration measurements

    Directory of Open Access Journals (Sweden)

    J. Vilà-Guerau de Arellano

    2009-06-01

    Full Text Available We examine the dependence of the inferred isoprene surface emission flux from atmospheric concentration on the diurnal variability of the convective boundary layer (CBL. A series of systematic numerical experiments carried out using the mixed-layer technique enabled us to study the sensitivity of isoprene fluxes to the entrainment process, the partition of surface fluxes, the horizontal advection of warm/cold air masses and subsidence. Our findings demonstrate the key role played by the evolution of boundary layer height in modulating the retrieved isoprene flux. More specifically, inaccurate values of the potential temperature lapse rate lead to changes in the dilution capacity of the CBL and as a result the isoprene flux may be overestimated or underestimated by as much as 20%. The inferred emission flux estimated in the early morning hours is highly dependent on the accurate estimation of the discontinuity of the thermodynamic values between the residual layer and the rapidly forming CBL. Uncertainties associated with the partition of the sensible and latent heat flux also yield large deviations in the calculation of the isoprene surface flux. Similar results are obtained if we neglect the influence of warm or cold advection in the development of the CBL. We show that all the above-mentioned processes are non-linear, for which reason the dynamic and chemical evolutions of the CBL must be solved simultaneously. Based on the discussion of our results, we suggest the measurements needed to correctly apply the mixed-layer technique in order to minimize the uncertainties associated with the diurnal variability of the convective boundary layer.

  6. On inferring isoprene emission surface flux from atmospheric boundary layer concentration measurements

    Directory of Open Access Journals (Sweden)

    J. Vilà-Guerau de Arellano

    2009-02-01

    Full Text Available We examine the dependence of the inferred isoprene surface emission flux from atmospheric concentration on the diurnal variability of the convective boundary layer (CBL. A series of systematic numerical experiments carried out using the mixed-layer technique enabled us to study the sensitivity of isoprene fluxes to the entrainment process, the partition of surface fluxes, the horizontal advection of warm/cold air masses and subsidence. Our findings demonstrate the key role played by the evolution of boundary layer height in modulating the retrieved isoprene flux. More specifically, inaccurate values of the potential temperature lapse rate lead to changes in the dilution capacity of the CBL and as a result the isoprene flux may be overestimated or underestimated by as much as 20%. The inferred emission flux estimated in the early morning hours is highly dependent on the accurate estimation of the discontinuity of the thermodynamic values between the residual layer and the rapidly forming CBL. Uncertainties associated with the partition of the sensible and latent heat flux also yield large deviations in the calculation of the isoprene surface flux. Similar results are obtained if we neglect the influence of warm or cold advection in the development of the CBL. We show that all the above-mentioned processes are non-linear, for which reason the dynamic and chemical evolutions of the CBL must be solved simultaneously. Based on the discussion of our results, we suggest the measurements needed to correctly apply the mixed-layer technique in order to minimize the uncertainties associated with the diurnal variability of the convective boundary layer.

  7. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes

    Science.gov (United States)

    Novick, Kimberly A.; Ficklin, Darren L.; Stoy, Paul C.; Williams, Christopher A.; Bohrer, Gil; Oishi, A. Christopher; Papuga, Shirley A.; Blanken, Peter D.; Noormets, Asko; Sulman, Benjamin N.; Scott, Russell L.; Wang, Lixin; Phillips, Richard P.

    2016-11-01

    Soil moisture supply and atmospheric demand for water independently limit--and profoundly affect--vegetation productivity and water use during periods of hydrologic stress. Disentangling the impact of these two drivers on ecosystem carbon and water cycling is difficult because they are often correlated, and experimental tools for manipulating atmospheric demand in the field are lacking. Consequently, the role of atmospheric demand is often not adequately factored into experiments or represented in models. Here we show that atmospheric demand limits surface conductance and evapotranspiration to a greater extent than soil moisture in many biomes, including mesic forests that are of particular importance to the terrestrial carbon sink. Further, using projections from ten general circulation models, we show that climate change will increase the importance of atmospheric constraints to carbon and water fluxes in all ecosystems. Consequently, atmospheric demand will become increasingly important for vegetation function, accounting for >70% of growing season limitation to surface conductance in mesic temperate forests. Our results suggest that failure to consider the limiting role of atmospheric demand in experimental designs, simulation models and land management strategies will lead to incorrect projections of ecosystem responses to future climate conditions.

  8. Atmospheric Neutrinos

    Directory of Open Access Journals (Sweden)

    Takaaki Kajita

    2012-01-01

    Full Text Available Atmospheric neutrinos are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith angle and energy-dependent deficit of muon-neutrino events. It was found that neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. This paper discusses atmospheric neutrino experiments and the neutrino oscillation studies with these neutrinos.

  9. Atmospheric Response to of an Active Region to new Small Flux Emergence

    CERN Document Server

    Shelton, D L; Green, L M

    2014-01-01

    We investigate the atmospheric response to a small emerging flux region (EFR) that occurred in the positive polarity of Active Region 11236 on 23 \\,-\\ 24 June 2011. Data from the \\textit{Solar Dynamics Observatory's Atmopheric Imaging Assembly} (AIA), the \\textit{Helioseismic and Magnetic Imager} (HMI) and Hinode's \\textit{EUV imaging spectrometer} (EIS) are used to determine the atmospheric response to new flux emerging into a pre-existing active region. Brightenings are seen forming in the upper photosphere, chromosphere, and corona over the EFR's location whilst flux cancellation is observed in the photosphere. The impact of the flux emergence is far reaching, with new large-scale coronal loops forming up to 43 Mm from the EFR and coronal upflow enhancements of approximately 10 km s$^{-1}$ on the north side of the EFR. Jets are seen forming in the chromosphere and the corona over the emerging serpentine field. This is the first time that coronal jets have been seen over the serpentine field.

  10. Implementation of a boundary layer heat flux parameterization into the Regional Atmospheric Modeling System (RAMS

    Directory of Open Access Journals (Sweden)

    E. L. McGrath-Spangler

    2008-07-01

    Full Text Available The response of atmospheric carbon dioxide to a given amount of surface flux is inversely proportional to the depth of the boundary layer. Overshooting thermals that entrain free tropospheric air down into the boundary layer modify the characteristics and depth of the lower layer through the insertion of energy and mass. This alters the surface energy budget by changing the Bowen ratio and thereby altering the vegetative response and the surface boundary conditions. Although overshooting thermals are important in the physical world, their effects are unresolved in most regional models. A parameterization to include the effects of boundary layer entrainment was introduced into a coupled ecosystem-atmosphere model (SiB-RAMS. The parameterization is based on a downward heat flux at the top of the boundary layer that is proportional to the heat flux at the surface. Results with the parameterization show that the boundary layer simulated is deeper, warmer, and drier than when the parameterization is turned off. These results alter the vegetative stress factors thereby changing the carbon flux from the surface. The combination of this and the deeper boundary layer change the concentration of carbon dioxide in the boundary layer.

  11. Regional inversion of CO2 ecosystem fluxes from atmospheric measurements. Reliability of the uncertainty estimates

    Energy Technology Data Exchange (ETDEWEB)

    Broquet, G.; Chevallier, F.; Breon, F.M.; Yver, C.; Ciais, P.; Ramonet, M.; Schmidt, M. [Laboratoire des Sciences du Climat et de l' Environnement, CEA-CNRS-UVSQ, UMR8212, IPSL, Gif-sur-Yvette (France); Alemanno, M. [Servizio Meteorologico dell' Aeronautica Militare Italiana, Centro Aeronautica Militare di Montagna, Monte Cimone/Sestola (Italy); Apadula, F. [Research on Energy Systems, RSE, Environment and Sustainable Development Department, Milano (Italy); Hammer, S. [Universitaet Heidelberg, Institut fuer Umweltphysik, Heidelberg (Germany); Haszpra, L. [Hungarian Meteorological Service, Budapest (Hungary); Meinhardt, F. [Federal Environmental Agency, Kirchzarten (Germany); Necki, J. [AGH University of Science and Technology, Krakow (Poland); Piacentino, S. [ENEA, Laboratory for Earth Observations and Analyses, Palermo (Italy); Thompson, R.L. [Max Planck Institute for Biogeochemistry, Jena (Germany); Vermeulen, A.T. [Energy research Centre of the Netherlands ECN, EEE-EA, Petten (Netherlands)

    2013-07-01

    The Bayesian framework of CO2 flux inversions permits estimates of the retrieved flux uncertainties. Here, the reliability of these theoretical estimates is studied through a comparison against the misfits between the inverted fluxes and independent measurements of the CO2 Net Ecosystem Exchange (NEE) made by the eddy covariance technique at local (few hectares) scale. Regional inversions at 0.5{sup 0} resolution are applied for the western European domain where {approx}50 eddy covariance sites are operated. These inversions are conducted for the period 2002-2007. They use a mesoscale atmospheric transport model, a prior estimate of the NEE from a terrestrial ecosystem model and rely on the variational assimilation of in situ continuous measurements of CO2 atmospheric mole fractions. Averaged over monthly periods and over the whole domain, the misfits are in good agreement with the theoretical uncertainties for prior and inverted NEE, and pass the chi-square test for the variance at the 30% and 5% significance levels respectively, despite the scale mismatch and the independence between the prior (respectively inverted) NEE and the flux measurements. The theoretical uncertainty reduction for the monthly NEE at the measurement sites is 53% while the inversion decreases the standard deviation of the misfits by 38 %. These results build confidence in the NEE estimates at the European/monthly scales and in their theoretical uncertainty from the regional inverse modelling system. However, the uncertainties at the monthly (respectively annual) scale remain larger than the amplitude of the inter-annual variability of monthly (respectively annual) fluxes, so that this study does not engender confidence in the inter-annual variations. The uncertainties at the monthly scale are significantly smaller than the seasonal variations. The seasonal cycle of the inverted fluxes is thus reliable. In particular, the CO2 sink period over the European continent likely ends later than

  12. Microseepage in drylands: Flux and implications in the global atmospheric source/sink budget of methane

    Science.gov (United States)

    Etiope, Giuseppe; Klusman, Ronald W.

    2010-07-01

    Drylands are considered a net sink for atmospheric methane and a main item of the global inventories of the greenhouse gas budget. It is outlined here, however, that a significant portion of drylands occur over sedimentary basins hosting natural gas and oil reservoirs, where gas migration to the surface takes place, producing positive fluxes of methane into the atmosphere. New field surveys, in different hydrocarbon-prone basins, confirm that microseepage, enhanced by faults and fractures in the rocks, overcomes the methanotrophic consumption occurring in dry soil throughout large areas, especially in the winter season. Fluxes of a few units to some tens of mg m - 2 day - 1 are frequent over oil-gas fields, whose global extent is estimated at 3.5-4.2 million km 2; higher fluxes (> 50 mg m - 2 day - 1 ) are primarily, but not exclusively, found in basins characterized by macro-seeps. Microseepage may however potentially exist over a wider area (˜ 8 million km 2, i.e. 15% of global drylands), including the Total Petroleum Systems, coal measures and portions of sedimentary basins that have experienced thermogenesis. Based on a relatively large and geographically dispersed data-set (563 measurements) from different hydrocarbon-prone basins in USA and Europe, upscaling suggests that global microseepage emission exceeding 10 Tg year - 1 is very likely. Microseepage is then only one component of a wider class of geological sources, including mud volcanoes, seeps, geothermal and marine seepage, which cannot be ignored in the atmospheric methane budget.

  13. The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data – HOAPS-3

    Directory of Open Access Journals (Sweden)

    A. Andersson

    2010-09-01

    Full Text Available The availability of microwave instruments on satellite platforms allows the retrieval of essential water cycle components at high quality for improved understanding and evaluation of water processes in climate modelling. HOAPS-3, the latest version of the satellite climatology "Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data" provides fields of turbulent heat fluxes, evaporation, precipitation, freshwater flux and related atmospheric variables over the global ice-free ocean. This paper describes the content, methodology and retrievals of the HOAPS climatology. A sophisticated processing chain, including all available Special Sensor Microwave Imager (SSM/I instruments aboard the satellites of the Defense Meteorological Satellites Program (DMSP and careful inter-sensor calibration, ensures a homogeneous time-series with dense data sampling and hence detailed information of the underlying weather situations. The completely reprocessed data set with a continuous time series from 1987 to 2005 contains neural network based algorithms for precipitation and wind speed and Advanced Very High Resolution Radiometer (AVHRR based SST fields. Additionally, a new 85 GHz synthesis procedure for the defective SSM/I channels on DMSP F08 from 1988 on has been implemented. Freely available monthly and pentad means, twice daily composites and scan-based data make HOAPS-3 a versatile data set for studying ocean-atmosphere interaction on different temporal and spatial scales. HOAPS-3 data products are available via http://www.hoaps.org.

  14. The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data – HOAPS-3

    Directory of Open Access Journals (Sweden)

    A. Andersson

    2010-05-01

    Full Text Available The availability of microwave instruments on satellite platforms allows the retrieval of essential water cycle components at high quality for improved understanding and evaluation of water processes in climate modelling. HOAPS-3, the latest version of the satellite climatology "Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data" provides fields of turbulent heat fluxes, evaporation, precipitation, freshwater flux and related atmospheric variables over the global ice-free ocean. This paper describes the content, methodology and retrievals of the HOAPS climatology. A sophisticated processing chain, including all available Special Sensor Microwave Imager (SSM/I instruments aboard the satellites of the Defense Meteorological Satellites Program (DMSP and careful inter-sensor calibration, ensures a homogeneous time-series with dense data sampling and hence detailed information of the underlying weather situations. The completely reprocessed data set with a continuous time series from 1987 to 2005 contains neural network based algorithms for precipitation and wind speed and Advanced Very High Resolution Radiometer (AVHRR based SST fields. Additionally, a new 85 GHz synthesis procedure for the defective SSM/I channels on DMSP F08 from 1989 on has been implemented. Freely available monthly and pentad means, twice daily composites and scan-based data make HOAPS-3 a versatile data set for studying ocean-atmosphere interaction on different temporal and spatial scales. HOAPS-3 data products are available via http://www.hoaps.org.

  15. Production of selected cosmogenic radionuclides by muons; 1, Fast muons

    CERN Document Server

    Heisinger, B; Jull, A J T; Kubik, P W; Ivy-Ochs, S; Neumaier, S; Knie, K; Lazarev, V A; Nolte, E

    2002-01-01

    To investigate muon-induced nuclear reactions leading to the production of radionuclides, targets made of C/sub 9/H/sub 12/, SiO /sub 2/, Al/sub 2/O/sub 3/, Al, S, CaCO/sub 3/, Fe, Ni, Cu, Gd, Yb and Tl were irradiated with 100 and 190 GeV muons in the NA54 experimental setup at CERN. The radionuclide concentrations were measured with accelerator mass spectrometry and gamma -spectroscopy. Results are presented for the corresponding partial formation cross- sections. Several of the long-lived and short-lived radionuclides studied are also produced by fast cosmic ray muons in the atmosphere and at depths underground. Because of their importance to Earth sciences investigations, calculations of the depth dependence of production rates by fast cosmic ray muons have been made. (48 refs).

  16. Carbon Flux to the Atmosphere from Land-Use Changes: 1850 to 1990

    Energy Technology Data Exchange (ETDEWEB)

    Houghton, R.A.

    2001-02-22

    The database documented in this numeric data package, a revision to a database originally published by the Carbon Dioxide Information Analysis Center (CDIAC) in 1995, consists of annual estimates, from 1850 through 1990, of the net flux of carbon between terrestrial ecosystems and the atmosphere resulting from deliberate changes in land cover and land use, especially forest clearing for agriculture and the harvest of wood for wood products or energy. The data are provided on a year-by-year basis for nine regions (North America, South and Central America, Europe, North Africa and the Middle East, Tropical Africa, the Former Soviet Union, China, South and Southeast Asia, and the Pacific Developed Region) and the globe. Some data begin earlier than 1850 (e.g., for six regions, areas of different ecosystems are provided for the year 1700) or extend beyond 1990 (e.g., fuelwood harvest in South and Southeast Asia, by forest type, is provided through 1995). The global net flux during the period 1850 to 1990 was 124 Pg of carbon (1 petagram = 10{sup 15} grams). During this period, the greatest regional flux was from South and Southeast Asia (39 Pg of carbon), while the smallest regional flux was from North Africa and the Middle East (3 Pg of carbon). For the year 1990, the global total net flux was estimated to be 2.1 Pg of carbon.

  17. Dynamics of local isolated magnetic flux tubes in a fast-rotating stellar atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Chou, W.; Tajima, C.T. [Univ. of Texas, Austin, TX (United States). Dept. of Physics; Matsumoto, R. [Chiba Univ. (Japan)]|[ASRC, JAERI, Naka (Japan); Shibata, K. [National Astronomical Observatory, Mitaka (Japan)

    1998-01-01

    Dynamics of magnetic flux tubes in the fast rotating stellar atmosphere is studied. We focus on the effects and signatures of the instability of the flux tube emergence influenced by the Coriolis force. We present the result from a linear stability analysis and discuss its possible signatures in the course of the evolution of G-type and M-type stars. We present a three dimensional magnetohydrodynamical simulation of local isolated magnetic flux tubes under a magnetic buoyancy instability in co-rotating Cartesian coordinates. We find that the combination of the buoyancy instability and the Coriolis effect gives rise to a mechanism, to twist the emerging magnetic flux tube into a helical structure. The tilt angle, east-west asymmetry and magnetic helicity of the Twisted flux tubes in the simulations are studied in detail. The linear and nonlinear analyses provide hints as to what kind of pattern of large spots in young M-type main-sequence stars might be observed. We find that young and old G-type stars may have different distributions of spots while M-type stars may always have low latitudes spots. The size of stellar spots may decrease when a star becomes older, due to the decreasing of magnetic field. A qualitative comparison with solar observations is also presented.

  18. On extreme atmospheric and marine nitrogen fluxes and chlorophyll-a levels in the Kattegat Strait

    DEFF Research Database (Denmark)

    Hasager, C.B.; Carstensen, J.; Ellermann, T.

    2003-01-01

    A retrospective analysis is carried out to investigate the importance of the vertical fluxes of nitrogen to the marine sea surface layer in which high chlorophyll a levels may cause blooms of harmful algae and subsequent turn over and oxygen depletion at the bottom of the sea. Typically nitrogen...... are calculated by the periodic maximum method and the results are successfully compared to a map of chlorophyll return periods based on in-situ observations. The one-year return of extreme atmospheric wet deposition is around 60 mg N m(-2) day(-1) and 30 mg N m(-2) day(-1) for deep-water entrainment. Atmospheric......-water entrainment forced by high winds greatly exceeds the atmospheric pool of nitrogen washed out by precipitation. At the frontal zone of the Kattegat Strait and Skagerrak, the nitrogen deep-water entrainment is very high and this explains the high 10-year return chlorophyll level at 8 mg m(-3) in the Kattegat...

  19. Muon-induced neutrons do not explain the DAMA data

    CERN Document Server

    Klinger, J

    2015-01-01

    We present an accurate model of the muon-induced background in the DAMA/LIBRA experiment. Our work challenges proposed mechanisms which seek to explain the observed DAMA signal modulation with muon-induced backgrounds. Muon generation and transport are performed using the MUSIC/MUSUN code, and subsequent interactions in the vicinity of the DAMA detector cavern are simulated with Geant4. We estimate the total muon-induced neutron flux in the detector cavern to be $\\Phi_n^\

  20. Muon Muon Collider: Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, J.C.; Palmer, R.B.; /Brookhaven; Tollestrup, A.V.; /Fermilab; Sessler, A.M.; /LBL, Berkeley; Skrinsky, A.N.; /Novosibirsk, IYF; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley

    2012-04-05

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle

  1. Quantifying the Observability of CO2 Flux Uncertainty in Atmospheric CO2 Records Using Products from Nasa's Carbon Monitoring Flux Pilot Project

    Science.gov (United States)

    Ott, Lesley; Pawson, Steven; Collatz, Jim; Watson, Gregg; Menemenlis, Dimitris; Brix, Holger; Rousseaux, Cecile; Bowman, Kevin; Bowman, Kevin; Liu, Junjie; Eldering, Annmarie; Gunson, Michael; Kawa, Stephan R.

    2014-01-01

    NASAs Carbon Monitoring System (CMS) Flux Pilot Project (FPP) was designed to better understand contemporary carbon fluxes by bringing together state-of-the art models with remote sensing datasets. Here we report on simulations using NASAs Goddard Earth Observing System Model, version 5 (GEOS-5) which was used to evaluate the consistency of two different sets of observationally constrained land and ocean fluxes with atmospheric CO2 records. Despite the strong data constraint, the average difference in annual terrestrial biosphere flux between the two land (NASA Ames CASA and CASA-GFED) models is 1.7 Pg C for 2009-2010. Ocean models (NOBM and ECCO2-Darwin) differ by 35 in their global estimates of carbon flux with particularly strong disagreement in high latitudes. Based upon combinations of terrestrial and ocean fluxes, GEOS-5 reasonably simulated the seasonal cycle observed at northern hemisphere surface sites and by the Greenhouse gases Observing SATellite (GOSAT) while the model struggled to simulate the seasonal cycle at southern hemisphere surface locations. Though GEOS-5 was able to reasonably reproduce the patterns of XCO2 observed by GOSAT, it struggled to reproduce these aspects of AIRS observations. Despite large differences between land and ocean flux estimates, resulting differences in atmospheric mixing ratio were small, typically less than 5 ppmv at the surface and 3 ppmv in the XCO2 column. A statistical analysis based on the variability of observations shows that flux differences of these magnitudes are difficult to distinguish from natural variability, regardless of measurement platform.

  2. The analysis of VERITAS muon images using convolutional neural networks

    CERN Document Server

    Feng, Qi

    2016-01-01

    Imaging atmospheric Cherenkov telescopes (IACTs) are sensitive to rare gamma-ray photons, buried in the background of charged cosmic-ray (CR) particles, the flux of which is several orders of magnitude greater. The ability to separate gamma rays from CR particles is important, as it is directly related to the sensitivity of the instrument. This gamma-ray/CR-particle classification problem in IACT data analysis can be treated with the rapidly-advancing machine learning algorithms, which have the potential to outperform the traditional box-cut methods on image parameters. We present preliminary results of a precise classification of a small set of muon events using a convolutional neural networks model with the raw images as input features. We also show the possibility of using the convolutional neural networks model for regression problems, such as the radius and brightness measurement of muon events, which can be used to calibrate the throughput efficiency of IACTs.

  3. GENERATION OF MAGNETOHYDRODYNAMIC WAVES IN LOW SOLAR ATMOSPHERIC FLUX TUBES BY PHOTOSPHERIC MOTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mumford, S. J.; Fedun, V.; Erdélyi, R., E-mail: s.mumford@sheffield.ac.uk [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH UK (United Kingdom)

    2015-01-20

    Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions, small-scale magnetic flux tubes are generated via the interaction of granulation motion and the background magnetic field. This paper studies the effects of these motions on magnetohydrodynamic (MHD) wave excitation from broadband photospheric drivers. Numerical experiments of linear MHD wave propagation in a magnetic flux tube embedded in a realistic gravitationally stratified solar atmosphere between the photosphere and the low choromosphere (above β = 1) are performed. Horizontal and vertical velocity field drivers mimic granular buffeting and solar global oscillations. A uniform torsional driver as well as Archimedean and logarithmic spiral drivers mimic observed torsional motions in the solar photosphere. The results are analyzed using a novel method for extracting the parallel, perpendicular, and azimuthal components of the perturbations, which caters to both the linear and non-linear cases. Employing this method yields the identification of the wave modes excited in the numerical simulations and enables a comparison of excited modes via velocity perturbations and wave energy flux. The wave energy flux distribution is calculated to enable the quantification of the relative strengths of excited modes. The torsional drivers primarily excite Alfvén modes (≈60% of the total flux) with small contributions from the slow kink mode, and, for the logarithmic spiral driver, small amounts of slow sausage mode. The horizontal and vertical drivers primarily excite slow kink or fast sausage modes, respectively, with small variations dependent upon flux surface radius.

  4. Flux measurements in the surface Marine Atmospheric Boundary Layer over the Aegean Sea, Greece.

    Science.gov (United States)

    Kostopoulos, V E; Helmis, C G

    2014-10-01

    Micro-meteorological measurements within the surface Marine Atmospheric Boundary Layer took place at the shoreline of two islands at northern and south-eastern Aegean Sea of Greece. The primary goal of these experimental campaigns was to study the momentum, heat and humidity fluxes over this part of the north-eastern Mediterranean Sea, characterized by limited spatial and temporal scales which could affect these exchanges at the air-sea interface. The great majority of the obtained records from both sites gave higher values up to factor of two, compared with the estimations from the most widely used parametric formulas that came mostly from measurements over open seas and oceans. Friction velocity values from both campaigns varied within the same range and presented strong correlation with the wind speed at 10 m height while the calculated drag coefficient values at the same height for both sites were found to be constant in relation with the wind speed. Using eddy correlation analysis, the heat flux values were calculated (virtual heat fluxes varied from -60 to 40 W/m(2)) and it was found that they are affected by the limited spatial and temporal scales of the responding air-sea interaction mechanism. Similarly, the humidity fluxes appeared to be strongly influenced by the observed intense spatial heterogeneity of the sea surface temperature.

  5. 3D Simulations of Magnetohydrodynamic Waves in Lower Solar Atmospheric Flux Tubes Driven by Photospheric Motion

    CERN Document Server

    Mumford, S J; Erdélyi, R

    2013-01-01

    Aims. Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions small-scale magnetic flux tubes are generated due to the interaction of granulation motion and background magnetic field. This paper aims to study the effects of these motions, in regions of enhanced magnetic field, on magnetohydrodynamic wave excitation, propagation and energy flux from the solar photosphere up towards the solar corona. Methods. Numerical experiments of magnetohydrodynamic wave propagation in a realistic gravitationally stratified solar atmosphere from five different modelled photospheric drivers are performed. Horizontal and vertical drivers to mimic granular buffeting and solar global oscillations, a uniform torsional driver, an Archimedean spiral and a logarithmic spiral to mimic observed torsional motions in the solar photosphere are investigated. The numerical results are analysed using a novel method for extracting the parallel...

  6. Background concentrations and fluxes of atmospheric ammonia over a deciduous forest

    DEFF Research Database (Denmark)

    Hansen, K.; Pryor, S. C.; Boegh, E.;

    2015-01-01

    . In this study, we present two months of half-hourly NH3 fluxes and concentrations measured using a Relaxed Eddy Accumulation system during late summer and fall 2013 above a remote forest site in the central Midwest in USA. Supplementary nitric acid (HNO3) flux and size-resolved aerosol-N measurements are used.......11 μg NH3-N m−2 s−1. The wetness of the forest surfaces (assessed using a proxy of time since precipitation) was found to be crucial in controlling both deposition and emission of atmospheric NH3. Size resolved aerosol concentrations (of NH4+, NO3−, Cl− and SO42−) indicated that the aerosol and gas...

  7. Modelling the CO2 atmosphere-ocean flux in the upwelling zones using radiative transfer tools

    Science.gov (United States)

    Krapivin, Vladimir F.; Varotsos, Costas A.

    2016-12-01

    An advanced mathematical model of the radiation forcing on the ocean surface is proposed for the assessment of the CO2 fluxes between atmosphere and ocean boundary in the upwelling zones. Two types of the upwelling are considered: coastal and local in the open ocean that are closely associated with changes in solar irradiance. The proposed model takes into account the maximal number of the carbon fluxes in the upwelling ecosystem considering that in the latter the only original source of energy and matter for all forms of life is the energy of the solar radiation. The vertical structure of the upwelling zone is represented by four levels: the upper mixed layer above the thermocline, the intermediate photic layer below the thermocline, the deep ocean and the near-bottom layer. Peruvian upwelling and typical local upwelling of tropical pelagic region are considered as examples for the model calculations.

  8. Heat Flux Characterization of DC Laminar-plasma Jets Impinging on a Flat Plate at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    孟显; 潘文霞; 张文宏; 吴承康

    2001-01-01

    By using steady and transient methods, the total heat fluxes and the distributions of the heat flux were measured experimentally for an argon DC laminar plasma jet impinging normally on a flat plate at atmospheric pressure. Results show that the total heat fluxes measured with a steady method are a little bit higher than those with a transient method. Numerical simulation work was executed to compare with the experimental results.

  9. Fluxes of atmospheric methane using novel instruments, field measurements, and inverse modeling

    Science.gov (United States)

    Santoni, Gregory Winn

    The atmospheric concentration of methane (CH4) -- the most significant non-CO2 anthropogenic long-lived greenhouse gas -- stabilized between 1999 and 2006 and then began to rise again. Explanations for this behavior differ but studies agree that more measurements and better modeling are needed to reliably explain the model-data discrepancies and predict future change. This dissertation focuses on measurements of CH4 and inverse modeling of atmospheric CH4 fluxes using field measurements at a variety of spatial scales. We first present a new fast-response instrument to measure the isotopic composition of CH4 in ambient air. The instrument was used to characterize mass fluxes and isofluxes (a isotopically-weighted mass flux) from a well-studied research fen in New Hampshire. Eddycovariance and automatic chamber techniques produced consistent estimates of both the CH4 fluxes and their isotopic composition at sub-hourly resolution. We then characterize fluxes of CH4 from aircraft engines using measurements made with the same instrument during the Alternative Aviation Fuel Experiment (AAFEX), a study that aimed to determine the atmospheric impacts of alternative fuel use in the growing aviation industry. Emissions of CO2, CH4, and N2O from different synthetic fuels were statistically indistinguishable from those of the widely used JP-8 jet fuel. We then present airborne observations of the long-lived greenhouse gas suite -- CO2, CH4, N2O, and CO -- during two aircraft campaigns, HIPPO and CalNex, made using a similar instrument built specifically for the NCAR HIAPER GV aircraft. These measurements are compared to data from other onboard sensors and show excellent agreement. We discuss the details of the end-to-end calibration procedures and the data quality-assurance and qualitycontrol (QA/QC). Lastly, we quantify a top-down estimate of California's CH4 emission inventory using the CalNex CH4 observations. Observed CH4 enhancements above background concentrations are

  10. MUON ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    BERG,S.J.

    2003-11-18

    One of the major motivations driving recent interest in FFAGs is their use for the cost-effective acceleration of muons. This paper summarizes the progress in this area that was achieved leading up to and at the FFAG workshop at KEK from July 7-12, 2003. Much of the relevant background and references are also given here, to give a context to the progress we have made.

  11. Particle concentration and flux dynamics in the atmospheric boundary layer as the indicator of formation mechanism

    DEFF Research Database (Denmark)

    Lauros, J.; Sogachev, Andrey; Smolander, S.;

    2010-01-01

    profile of particle number distribution does not correspond to observations. Instead organic induced nucleation leads to good agreement confirming the relevance of the aerosol formation mechanism including organic compounds emitted by biosphere. Simulation of aerosol concentration inside the atmospheric......We carried out column model simulations to study particle fluxes and deposition and to evaluate different particle formation mechanisms at a boreal forest site in Finland. We show that kinetic nucleation of sulphuric acid cannot be responsible for new particle formation alone as the vertical...

  12. Source, flux and balance of atmospheric deposition of metals at Ile-de-France; Source, flux et bilan des retombees atmospheriques de metaux en Ile de France

    Energy Technology Data Exchange (ETDEWEB)

    Azimi, S.

    2004-07-15

    The urban atmosphere is submitted to large inputs of anthropogenic contaminants arising from both stationary (power plants, industries, etc.) and mobile (road traffic) sources. These small particles may be transported over long distances and affect ecosystems. Significant dry and wet atmospheric deposition also occurs locally and contributes to the contamination of urban runoff. The aim of this study is to compare heavy metal and hydrocarbon atmospheric deposition fluxes to other input ways on agricultural and urban areas to assess their importance. Moreover, a source investigation has been done to identify the main origins of these pollutants. Before the quantification of pollutant fluxes, a comparison of several sampling procedures was performed. As a result, the sampling of total atmospheric deposition is not affected by the funnel material (Teflon and polyethylene) or by the sampling duration (7 and 28 days). However, the rinsing step of the funnel walls showed a higher relative importance during short sampling periods. The relative amount contained in these solutions reached 24 to 40 % of the total flux during weekly sampling periods and 8 to 18 % during monthly sampling periods, whatever the element considered. The temporal evolution of atmospheric deposition showed no seasonal influence on flux variations during the 2001-2002 period. Considering an 8-year period behaviour, between 1994 and 2002, a significant decrease of the deposition fluxes of Cd, Cu, Pb and Zn occurred at the Creteil site which is placed in an industrialized area of the Paris suburb. The decreasing factor reached 16, 2.5, 4 and 7.5 for these elements respectively. At the Ile-de-France scale, the deposition flux levels on urban and semi-urban areas were of the same order of magnitude (?20 tonnes per year for Ba, Cu, Pb and Sr). Since semi-urban surface area is four times higher than urban ones, the important influence of anthropogenic activities on atmospheric deposition of urban areas is

  13. Imaging the Subsurface with Upgoing Muons

    Science.gov (United States)

    Bonal, N.; Preston, L. A.; Schwellenbach, D.; Dreesen, W.; Green, A.

    2014-12-01

    We assess the feasibility of imaging the subsurface using upgoing muons. Traditional muon imaging focuses on more-prevalent downgoing muons. Muons are subatomic particles capable of penetrating the earth's crust several kilometers. Downgoing muons have been used to image the Pyramid of Khafre of Giza, various volcanoes, and smaller targets like cargo. Unfortunately, utilizing downgoing muons requires below-target detectors. For aboveground objects like a volcano, the detector is placed at the volcano's base and the top portion of the volcano is imaged. For underground targets like tunnels, the detector would have to be placed below the tunnel in a deeper tunnel or adjacent borehole, which can be costly and impractical for some locations. Additionally, detecting and characterizing subsurface features like voids from tunnels can be difficult. Typical characterization methods like sonar, seismic, and ground penetrating radar have shown mixed success. Voids have a marked density contrast with surrounding materials, so using methods sensitive to density variations would be ideal. High-energy cosmic ray muons are more sensitive to density variation than other phenomena, including gravity. Their absorption rate depends on the density of the materials through which they pass. Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and detector, much like a CAT scan. Currently, tomography using downgoing muons can resolve features to the sub-meter scale. We present results of exploratory work, which demonstrates that upgoing muon fluxes appear sufficient to achieve target detection within a few months. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Measurements of the atmospheric neutrino flux by Super-Kamiokande: energy spectra, geomagnetic effects, and solar modulation

    CERN Document Server

    Richard, E; Abe, K; Haga, Y; Hayato, Y; Ikeda, M; Iyogi, K; Kameda, J; Kishimoto, Y; Miura, M; Moriyama, S; Nakahata, M; Nakajima, T; Nakano, Y; Nakayama, S; Orii, A; Sekiya, H; Shiozawa, M; Takeda, A; Tanaka, H; Tomura, T; Wendell, R A; Akutsu, R; Irvine, T; Kajita, T; Kaneyuki, K; Nishimura, Y; Labarga, L; Fernandez, P; Gustafson, J; Kachulis, C; Kearns, E; Raaf, J L; Stone, J L; Sulak, L R; Berkman, S; Nantais, C M; Tanaka, H A; Tobayama, S; Goldhaber, M; Kropp, W R; Mine, S; Weatherly, P; Smy, M B; Sobel, H W; Takhistov, V; Ganezer, K S; Hartfiel, B L; Hill, J; Hong, N; Kim, J Y; Lim, I T; Park, R G; Himmel, A; Li, Z; OSullivan, E; Scholberg, K; Walter, C W; Wongjirad, T; Ishizuka, T; Tasaka, S; Jang, J S; Learned, J G; Matsuno, S; Smith, S N; Friend, M; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Suzuki, A T; Takeuchi, Y; Yano, T; Cao, S V; Hiraki, T; Hirota, S; Huang, K; Kikawa, T; Minamino, A; Nakaya, T; Suzuki, K; Fukuda, Y; Choi, K; Itow, Y; Suzuki, T; Mijakowski, P; Frankiewicz, K; Hignight, J; Imber, J; Jung, C K; Li, X; Palomino, J L; Wilking, M J; Yanagisawa, C; Fukuda, D; Ishino, H; Kayano, T; Kibayashi, A; Koshio, Y; Mori, T; Sakuda, M; Xu, C; Kuno, Y; Tacik, R; Kim, S B; Okazawa, H; Choi, Y; Nishijima, K; Koshiba, M; Totsuka, Y; Suda, Y; Yokoyama, M; Bronner, C; Hartz, M; Martens, K; Marti, Ll; Suzuki, Y; Vagins, M R; Martin, J F; Konaka, A; Chen, S; Zhang, Y; Wilkes, R J

    2015-01-01

    A comprehensive study on the atmospheric neutrino flux in the energy region from sub-GeV up to several TeV using the Super-Kamiokande water Cherenkov detector is presented in this paper. The energy and azimuthal spectra of the atmospheric ${\

  15. A method for detection of muon induced electromagnetic showers with the ANTARES detector

    Science.gov (United States)

    Aguilar, J. A.; Al Samarai, I.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J. J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, P.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J. P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J. L.; Galatà, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schöck, F.; Schuller, J. P.; Schüssler, F.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, T.; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2012-05-01

    The primary aim of ANTARES is neutrino astronomy with upward going muons created in charged current muon neutrino interactions in the detector and its surroundings. Downward going muons are background for neutrino searches. These muons are the decay products of cosmic-ray collisions in the Earth's atmosphere far above the detector. This paper presents a method to identify and count electromagnetic showers induced along atmospheric muon tracks with the ANTARES detector. The method is applied to both cosmic muon data and simulations and its applicability to the reconstruction of muon event energies is demonstrated.

  16. Microbial imprint on soil-atmosphere H2, COS, and CO2 fluxes

    Science.gov (United States)

    Meredith, L. K.; Commane, R.; Munger, J. W.; Wofsy, S. C.; Prinn, R. G.

    2013-12-01

    Microorganisms drive large trace gas fluxes between soil and atmosphere, but the signal can be difficult to detect and quantify in the presence of stronger exchange processes in an ecosystem. Partitioning methods are often needed to estimate trace gas budgets and to develop process-based models to explore the sensitivity of microbe-mediated fluxes. In this study, we test the performance of trace gases with predominantly microbe-mediated soil fluxes as a metric of the soil microbial uptake activity of other trace gases. Using simultaneous, collocated measurements at Harvard Forest, we consider three trace gases with microbe-mediated soil fluxes of various importance relative to their other (mainly plant-mediated) ecosystem fluxes: molecular hydrogen (H2), carbonyl sulfide (COS), and carbon dioxide (CO2). These gases probe different aspects of the soil trace-gas microbiology. Soil H2 uptake is a redox reaction driving the energy metabolism of a portion of the microbial community, while soil CO2 respiration is a partial proxy for the overall soil microbial metabolism. In comparison, very little is understood about the microbiological and environmental drivers of soil COS uptake and emissions. In this study, we find that H2, COS, and CO2 soil uptake rates are often correlated, but the relative soil uptake between gases is not constant, and is influenced by seasonality and local environmental conditions. We also consider how differences in the microbial communities and pathways involved in the soil fluxes may explain differences in the observations. Our results are important for informing previous studies using tracer approaches. For example, H2 has been used to estimate COS soil uptake, which must be accounted for to use COS as a carbon cycle tracer. Furthermore, the global distribution of H2 deposition velocity has been inferred from net primary productivity (CO2). Given that insufficient measurement frequency and spatial distribution exists to partition global net

  17. Propagation and energy deposition of cosmic rays' muons on terrestrial environments

    CERN Document Server

    Marinho, Franciole; Galante, Douglas

    2014-01-01

    Earth is constantly struck by radiation coming from the interstellar medium. The very low energy end of the spectrum is shielded by the geomagnetic field but charged particles with energies higher than the geomagnetic cutoff will penetrate the atmosphere and are likely to interact, giving rise to secondary particles. Some astrophysical events, such as gamma ray bursts and supernovae, when happening at short distances, may affect the planet's biosphere due to the temporary enhanced radiation flux. Muons are abundantly produced by high energy cosmic rays in the Earth's atmosphere. These particles, due to their low cross section, are able to penetrate deep underground and underwater, with the possibility of affecting biological niches normally considered shielded from radiation. We investigate the interaction of muons produced by high energy cosmic rays on Earth's atmosphere using the Geant4 toolkit. We analyze penetration power in water and crust and also the interaction effects within bacteria-like material ac...

  18. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review

    Science.gov (United States)

    Brüggemann, N.; Gessler, A.; Kayler, Z.; Keel, S. G.; Badeck, F.; Barthel, M.; Boeckx, P.; Buchmann, N.; Brugnoli, E.; Esperschütz, J.; Gavrichkova, O.; Ghashghaie, J.; Gomez-Casanovas, N.; Keitel, C.; Knohl, A.; Kuptz, D.; Palacio, S.; Salmon, Y.; Uchida, Y.; Bahn, M.

    2011-11-01

    The terrestrial carbon (C) cycle has received increasing interest over the past few decades, however, there is still a lack of understanding of the fate of newly assimilated C allocated within plants and to the soil, stored within ecosystems and lost to the atmosphere. Stable carbon isotope studies can give novel insights into these issues. In this review we provide an overview of an emerging picture of plant-soil-atmosphere C fluxes, as based on C isotope studies, and identify processes determining related C isotope signatures. The first part of the review focuses on isotopic fractionation processes within plants during and after photosynthesis. The second major part elaborates on plant-internal and plant-rhizosphere C allocation patterns at different time scales (diel, seasonal, interannual), including the speed of C transfer and time lags in the coupling of assimilation and respiration, as well as the magnitude and controls of plant-soil C allocation and respiratory fluxes. Plant responses to changing environmental conditions, the functional relationship between the physiological and phenological status of plants and C transfer, and interactions between C, water and nutrient dynamics are discussed. The role of the C counterflow from the rhizosphere to the aboveground parts of the plants, e.g. via CO2 dissolved in the xylem water or as xylem-transported sugars, is highlighted. The third part is centered around belowground C turnover, focusing especially on above- and belowground litter inputs, soil organic matter formation and turnover, production and loss of dissolved organic C, soil respiration and CO2 fixation by soil microbes. Furthermore, plant controls on microbial communities and activity via exudates and litter production as well as microbial community effects on C mineralization are reviewed. A further part of the paper is dedicated to physical interactions between soil CO2 and the soil matrix, such as CO2 diffusion and dissolution processes within the

  19. Check of the accuracy of the relativity theory with atmospheric muon neutrinos from the AMANDA data of the years 2000 to 2003; Ueberpruefung der Genauigkeit der Relativitaetstheorie mit atmosphaerischen Myonneutrinos aus den AMANDA-Daten der Jahre 2000 bis 2003

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, J.C.

    2006-11-08

    Atmospheric neutrinos allow one to test the principles of the Theory of Relativity in particular Lorentz invariance and the equivalence principle. Small deviations from these principles could lead, according to some theories, to detectable neutrino oscillations. Such oscillation effects are analysed in this thesis, using the data collected by the AMANDA detector. The neutrino telescope AMANDA is located at the South Pole and embedded in the Antarctic ice shield at a depth between 1500 m and 2000 m. AMANDA detects muon neutrinos via the Cherenkov light of neutrino induced muons allowing the reconstruction of the original neutrino direction. From the data of the years 2000 to 2003, which contain about seven billion recorded events and which mainly consist of the background of atmospheric muons, a sample of 3401 neutrino induced events has been selected. No indication for alternative oscillation effects has been found. For maximal mixing angles, a lower limit for parameters which violate Lorentz invariance or the equivalence principle could be set to {delta}{beta}(2 vertical stroke {phi} vertical stroke {delta}{gamma}){<=}5.15.10{sup -27}. (orig)

  20. Coastal upwelling fluxes of O2, N2O, and CO2 assessed from continuous atmospheric observations at Trinidad, California

    Directory of Open Access Journals (Sweden)

    T. J. Lueker

    2004-01-01

    Full Text Available Continuous atmospheric records of O2/N2, CO2 and N2O obtained at Trinidad, California document the effects of air-sea exchange during coastal upwelling and plankton bloom events. The atmospheric records provide continuous observations of air-sea fluxes related to synoptic scale upwelling events over several upwelling seasons. Combined with satellite, buoy and local meteorology data, calculated anomalies in O2/N2 and N2O were utilized in a simple atmospheric transport model to compute air-sea fluxes during coastal upwelling. CO2 fluxes were linked to the oceanic component of the O2 fluxes through local hydrographic data and estimated as a function of upwelling intensity (surface ocean temperature and wind speed. Regional air-sea fluxes of O2/N2, N2O, and CO2 during coastal upwelling were estimated with the aid of satellite wind and SST data. Upwelling CO2 fluxes were found to represent ~10% of export production along the northwest coast of North America. Synoptic scale upwelling events impact the net exchange of atmospheric CO2 along the coastal margin, and will vary in response to the frequency and duration of alongshore winds that are subject to climate change.

  1. MUON DETECTOR

    CERN Multimedia

    F. Gasparini

    Barrel Muons The last CMS week was dominated by the lowering of YB0. The date of lowering was fixed in January for February 28th. RPC and DT cabling of YB0 had to be done on the surface to allow a complete check of the status of the chambers before lowering. When the decision of the date was taken, the wheel cabling, planned to start at end of December, was not yet started for several “muon independent” reasons. Cabling and DT /RPC test started on Jan 22nd and ended on Feb 19th. Several teams worked on the surface of the wheel in parallel on the three different items, finishing just in time for lowering. This was a real challenge and a significant result. So by the end of the CMS Week, all the positive part of CMS plus YB0 were in the cavern. YB+2 had been lowered in January 19th, and YB+1 on February 1st. The vertical chambers of sectors 1 and 7 (8 DT/RPC packs), whose space was taken by the lowering machinery, had to be installed after lowering. This was done from Jan 24 to Jan 26 for...

  2. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review

    Directory of Open Access Journals (Sweden)

    N. Brüggemann

    2011-04-01

    Full Text Available The terrestrial carbon (C cycle has received increasing interest over the past few decades, however, there is still a lack of understanding of the fate of newly assimilated C allocated within plants and to the soil, stored within ecosystems and lost to the atmosphere. Stable carbon isotope studies can give novel insights into these issues. In this review we provide an overview of an emerging picture of plant-soil-atmosphere C fluxes, as based on C isotope studies, and identify processes determining related C isotope signatures. The first part of the review focuses on isotopic fractionation processes within plants during and after photosynthesis. The second major part elaborates on plant-internal and plant-rhizosphere C allocation patterns at different time scales (diel, seasonal, interannual, including the speed of C transfer and time lags in the coupling of assimilation and respiration, as well as the magnitude and controls of plant-soil C allocation and respiratory fluxes. Plant responses to changing environmental conditions, the functional relationship between the physiological and phenological status of plants and C transfer, and interactions between C, water and nutrient dynamics are discussed. The role of the C counterflow from the rhizosphere to the aboveground parts of the plants, e.g. via CO2 dissolved in the xylem water or as xylem-transported sugars, is highlighted. The third part is centered around belowground C turnover, focusing especially on above- and belowground litter inputs, soil organic matter formation and turnover, production and loss of dissolved organic C, soil respiration and CO2 fixation by soil microbes. Furthermore, plant controls on microbial communities and activity via exudates and litter production as well as microbial community effects on C mineralization are reviewed. The last part of the paper is dedicated to physical interactions between soil CO2 and the soil matrix, such as CO

  3. Development of a Portable Muon Witness System

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Orrell, John L.

    2011-01-01

    Since understanding and quantifying cosmic ray induced radioactive backgrounds in copper and germanium are important to the MAJORANA DEMONSTRATOR, methods are needed for monitoring the levels of such backgrounds produced in materials being transported and processed for the experiment. This report focuses on work conducted at Pacific Northwest National Laboratory to develop a muon witness system as a one way of monitoring induced activities. The operational goal of this apparatus is to characterize cosmic ray exposure of materials. The cosmic ray flux at the Earth’s surface is composed of several types of particles, including neutrons, muons, gamma rays and protons. These particles induce nuclear reactions, generating isotopes that contribute to the radiological background. Underground, the main mechanism of activation is by muon produced spallation neutrons since the hadron component of cosmic rays is removed at depths greater than a few tens of meters. This is a sub-dominant contributor above ground, but muons become predominant in underground experiments. For low-background experiments cosmogenic production of certain isotopes, such as 68Ge and 60Co, must be accounted for in the background budgets. Muons act as minimum ionizing particles, depositing a fixed amount of energy per unit length in a material, and have a very high penetrating power. Using muon flux measurements as a “witness” for the hadron flux, the cosmogenic induced activity can be quantified by correlating the measured muon flux and known hadronic production rates. A publicly available coincident muon cosmic ray detector design, the Berkeley Lab Cosmic Ray Detector (BLCRD), assembled by Juniata College, is evaluated in this work. The performance of the prototype is characterized by assessing its muon flux measurements. This evaluation is done by comparing data taken in identical scenarios with other cosmic ray telescopes. The prototype is made of two plastic scintillator paddles with

  4. Tropical Controls on the CO2 Atmospheric Growth Rate 2010-2011 from the NASA Carbon Monitoring System Flux (CMS-Flux) Project

    Science.gov (United States)

    Bowman, K. W.; Liu, J.; Parazoo, N.; Lee, M.; Menemenlis, D.; Gierach, M. M.; Brix, H.; Gurney, K. R.; Collatz, G. J.; Bousserez, N.; Henze, D. K.

    2014-12-01

    Interannual variations in the atmospheric growth rate of CO2 have been attributed to the tropical regions and the controls are correlated with temperature anomalies. We investigate the spatial drivers of the atmospheric growth rate and the processes controlling them over the exceptional period of 2010-2011. This period was marked by a marked shift from an El Nino to La Nina period resulting in historically high sea surface temperature anomalies in the tropical Atlantic leading to serious droughts in the Amazon. However, in 2011, unusual precipitation in Australia was linked to gross primary productivity anomalies in semi-arid regions. We use satellite observations of CO2, CO, and solar induced fluorescence assimilated into the NASA Carbon Monitoring System Project (CMS-Flux) to attribute the atmospheric growth rate to global, spatially resolved fluxes. This system is based upon observationally-constrained "bottom-up" estimates from the Fossil Fuel Data Assimilation System (FFDAS), the ECCO2­-Darwin physical and biogeochemical adjoint ocean state estimation system, and CASA-GFED3 land-surface biogeochemical model. The system is used to compute regional tropical and extra-tropical fluxes and quantify the role of biomass burning and gross primary productivity in controlling those fluxes.

  5. The potential for regional-scale bias in top-down CO2 flux estimates due to atmospheric transport errors

    Directory of Open Access Journals (Sweden)

    S. M. Miller

    2014-09-01

    Full Text Available Estimates of CO2 fluxes that are based on atmospheric data rely upon a meteorological model to simulate atmospheric CO2 transport. These models provide a quantitative link between surface fluxes of CO2 and atmospheric measurements taken downwind. Therefore, any errors in the meteorological model can propagate into atmospheric CO2 transport and ultimately bias the estimated CO2 fluxes. These errors, however, have traditionally been difficult to characterize. To examine the effects of CO2 transport errors on estimated CO2 fluxes, we use a global meteorological model-data assimilation system known as "CAM–LETKF" to quantify two aspects of the transport errors: error variances (standard deviations and temporal error correlations. Furthermore, we develop two case studies. In the first case study, we examine the extent to which CO2 transport uncertainties can bias CO2 flux estimates. In particular, we use a common flux estimate known as CarbonTracker to discover the minimum hypothetical bias that can be detected above the CO2 transport uncertainties. In the second case study, we then investigate which meteorological conditions may contribute to month-long biases in modeled atmospheric transport. We estimate 6 hourly CO2 transport uncertainties in the model surface layer that range from 0.15 to 9.6 ppm (standard deviation, depending on location, and we estimate an average error decorrelation time of ∼2.3 days at existing CO2 observation sites. As a consequence of these uncertainties, we find that CarbonTracker CO2 fluxes would need to be biased by at least 29%, on average, before that bias were detectable at existing non-marine atmospheric CO2 observation sites. Furthermore, we find that persistent, bias-type errors in atmospheric transport are associated with consistent low net radiation, low energy boundary layer conditions. The meteorological model is not necessarily more uncertain in these conditions. Rather, the extent to which meteorological

  6. The potential for regional-scale bias in top-down CO2 flux estimates due to atmospheric transport errors

    Science.gov (United States)

    Miller, S. M.; Fung, I.; Liu, J.; Hayek, M. N.; Andrews, A. E.

    2014-09-01

    Estimates of CO2 fluxes that are based on atmospheric data rely upon a meteorological model to simulate atmospheric CO2 transport. These models provide a quantitative link between surface fluxes of CO2 and atmospheric measurements taken downwind. Therefore, any errors in the meteorological model can propagate into atmospheric CO2 transport and ultimately bias the estimated CO2 fluxes. These errors, however, have traditionally been difficult to characterize. To examine the effects of CO2 transport errors on estimated CO2 fluxes, we use a global meteorological model-data assimilation system known as "CAM-LETKF" to quantify two aspects of the transport errors: error variances (standard deviations) and temporal error correlations. Furthermore, we develop two case studies. In the first case study, we examine the extent to which CO2 transport uncertainties can bias CO2 flux estimates. In particular, we use a common flux estimate known as CarbonTracker to discover the minimum hypothetical bias that can be detected above the CO2 transport uncertainties. In the second case study, we then investigate which meteorological conditions may contribute to month-long biases in modeled atmospheric transport. We estimate 6 hourly CO2 transport uncertainties in the model surface layer that range from 0.15 to 9.6 ppm (standard deviation), depending on location, and we estimate an average error decorrelation time of ∼2.3 days at existing CO2 observation sites. As a consequence of these uncertainties, we find that CarbonTracker CO2 fluxes would need to be biased by at least 29%, on average, before that bias were detectable at existing non-marine atmospheric CO2 observation sites. Furthermore, we find that persistent, bias-type errors in atmospheric transport are associated with consistent low net radiation, low energy boundary layer conditions. The meteorological model is not necessarily more uncertain in these conditions. Rather, the extent to which meteorological uncertainties

  7. Remote Sensing and Sea-Truth Measurements of Methane Flux to the Atmosphere (HYFLUX project)

    Energy Technology Data Exchange (ETDEWEB)

    Ian MacDonald

    2011-05-31

    , respectively. Based on the contemporaneous wind speeds at this site, contemporary estimates of the diffusive fluxes from the mixed layer to the atmosphere for methane, ethane, and propane are 26.5, 2.10, and 2.78 {micro}mol/m{sup 2}d, respectively. Continuous measurements of air and sea surface concentrations of methane were made to obtain high spatial and temporal resolution of the diffusive net sea-to-air fluxes. The atmospheric methane fluctuated between 1.70 ppm and 2.40 ppm during the entire cruise except for high concentrations (up to 4.01 ppm) sampled during the end of the occupation of GC600 and the transit between GC600 and GC185. Results from interpolations within the survey areas show the daily methane fluxes to the atmosphere at the three sites range from 0.744 to 300 mol d-1. Considering that the majority of seeps in the GOM are deep (>500 m), elevated CH{sub 4} concentrations in near-surface waters resulting from bubble-mediated CH4 transport in the water column are expected to be widespread in the Gulf of Mexico.

  8. Muon radiography for exploration of Mars geology

    Directory of Open Access Journals (Sweden)

    S. Kedar

    2013-06-01

    Full Text Available Muon radiography is a technique that uses naturally occurring showers of muons (penetrating particles generated by cosmic rays to image the interior of large-scale geological structures in much the same way as standard X-ray radiography is used to image the interior of smaller objects. Recent developments and application of the technique to terrestrial volcanoes have demonstrated that a low-power, passive muon detector can peer deep into geological structures up to several kilometers in size, and provide crisp density profile images of their interior at ten meter scale resolution. Preliminary estimates of muon production on Mars indicate that the near horizontal Martian muon flux, which could be used for muon radiography, is as strong or stronger than that on Earth, making the technique suitable for exploration of numerous high priority geological targets on Mars. The high spatial resolution of muon radiography also makes the technique particularly suited for the discovery and delineation of Martian caverns, the most likely planetary environment for biological activity. As a passive imaging technique, muon radiography uses the perpetually present background cosmic ray radiation as the energy source for probing the interior of structures from the surface of the planet. The passive nature of the measurements provides an opportunity for a low power and low data rate instrument for planetary exploration that could operate as a scientifically valuable primary or secondary instrument in a variety of settings, with minimal impact on the mission's other instruments and operation.

  9. Muon radiography for exploration of Mars geology

    Directory of Open Access Journals (Sweden)

    S. Kedar

    2012-10-01

    Full Text Available Muon radiography is a technique that uses naturally occurring showers of muons (penetrating particles generated by cosmic rays to image the interior of large scale geological structures in much the same way as standard X-ray radiography is used to image the interior of smaller objects. Recent developments and application of the technique to terrestrial volcanoes have demonstrated that a low-power, passive muon detector can peer deep into geological structures up to several kilometers in size, and provide crisp density profile images of their interior at ten meter scale resolution. Preliminary estimates of muon production on Mars indicate that the near horizontal Martian muon flux, which could be used for muon radiography, is as strong or stronger than that on Earth, making the technique suitable for exploration of numerous high priority geological targets on Mars. The high spatial resolution of muon radiography also makes the technique particularly suited for the discovery and delineation of Martian caverns, the most likely planetary environment for biological activity. As a passive imaging technique, muon radiography uses the perpetually present background cosmic ray radiation as the energy source for probing the interior of structures from the surface of the planet. The passive nature of the measurements provides an opportunity for a low power and low data rate instrument for planetary exploration that could operate as a scientifically valuable primary or secondary instrument in a variety of settings, with minimal impact on the mission's other instruments and operation.

  10. Muon tomography applied to active volcanoes

    CERN Document Server

    Marteau, Jacques; Gibert, Dominique; Ianigro, Jean-Christophe; Jourde, Kevin; Kergosien, Bruno; Rolland, Pascal

    2015-01-01

    Muon tomography is a generic imaging method using the differential absorption of cosmic muons by matter. The measured contrast in the muons flux reflects the matter density contrast as it does in conventional medical imaging. The applications to volcanology present may advantadges induced by the features of the target itself: limited access to dangerous zones, impossible use of standard boreholes information, harsh environmental conditions etc. The Diaphane project is one of the largest and leading collaboration in the field and the present article summarizes recent results collected on the Lesser Antilles, with a special emphasis on the Soufri\\`ere of Guadeloupe.

  11. Neutrons produced by muons at 25 mwe

    Science.gov (United States)

    Dragić, A.; Aničin, I.; Banjanac, R.; Udovičić, V.; Joković, D.; Maletić, D.; Savić, M.; Veselinović, N.; Puzović, J.

    2013-02-01

    The flux of fast neutrons produced by CR muons in lead at the depth of 25 mwe is measured. Lead is a common shielding material and neutrons produced in it in muon interactions are unavoidable background component, even in sensitive deep underground experiments. A low background gamma spectrometer, equipped with high purity Ge detector in coincidence with muon detector is used for this purpose. Neutrons are identified by the structure at 692 KeV in the spectrum of delayed coincidences, caused by the neutron inelastic scattering on Ge-72 isotope. Preliminary result for the fast neutron rate is 3.1(5) × 10--4n/cm2 · s.

  12. Outer scale and Monin-Obukhov flux relationships of atmospheric turbulence under dry convective conditions

    Science.gov (United States)

    De Bruin, Henk; Hartogensis, Oscar

    2015-04-01

    In this study we will investigate the assumption that in the atmospheric surface layer the outer scale (L0) is proportional to the height above the surface, under dry convective conditions. For this purpose we analyzed raw sonic anemometers data collected at 3.5 m and at 9 m in a field campaign at the Santa Cruz Flats (32040.3190'N, 111032.641'W, 526 m of elevation) near Eloy, Arizona. For simplicity, we define the L0 as that separation distance at which the spatial correlation coefficient of air temperature at two points in the surface layer is 0.5. Then, according to the 2/3-Kolmogorov scaling law in the inertial sub-range, L0 is determined by the variance and the structure parameter of T . It is found that L0 does not scale with height. Possible reasons for this negative result will be discussed, by considering the methodology to determine structure parameters, Taylor's frozen turbulence hypothesis, effects of intermittency and Monin-Obukhov flux relationships for variance and structure parameter for T . The question is asked whether the concept of surface constant flux layer still holds under strong convective condition.

  13. MuSIC: delivering the world's most intense muon beam

    CERN Document Server

    Cook, S; Edmonds, A; Fukuda, M; Hatanaka, K; Hino, Y; Kuno, Y; Lancaster, M; Mori, Y; Ogitsu, T; Sakamoto, H; Sato, A; Tran, N H; Truong, N M; Wing, M; Yamamoto, A; Yoshida, M

    2016-01-01

    A new muon beamline, muon science innovative channel (MuSIC), was set up at the Research Centre for Nuclear Physics (RCNP), Osaka University, in Osaka, Japan, using the 392 MeV proton beam impinging on a target. The production of an intense muon beam relies on the efficient capture of pions, which subsequently decay to muons, using a novel superconducting solenoid magnet system. After the pion-capture solenoid the first $36^\\circ$ of the curved muon transport line was commissioned and the muon flux was measured. In order to detect muons, a target of either copper or magnesium was placed to stop muons at the end of the muon beamline. Two stations of plastic scintillators located upstream and downstream from the muon target were used to reconstruct the decay spectrum of muons. In a complementary method to detect negatively-charged muons, the X-ray spectrum yielded by muonic atoms in the target were measured in a germanium detector. Measurements, at a proton beam current of 6 pA, yielded $(10.4 \\pm 2.7) \\times 1...

  14. Effect of atmospheric flux uncertainties on the determination of the neutrino mass hierarchy

    Directory of Open Access Journals (Sweden)

    Sandroos Joakim

    2016-01-01

    Full Text Available The next generation of large-volume neutrino telescopes will include low-energy subarrays which will be able to measure neutrinos with energies of a few GeV. In this energy range the primary signal below the horizon is neutrinos created by cosmic ray interactions in the atmosphere. The measured event rate will depend on the neutrino mass hierarchy, allowing determination of this quantity to a significance level of about 3.5 sigma within a 5-year period, mostly limited by systematic uncertainties. We present here the impact of the uncertainties on the atmospheric neutrino flux normalization on the determination of the neutrino mass hierarchy. We suggest constraining the systematic uncertainties by including the downgoing neutrino sample, which will increase the significance. This work was performed using simulation data from the low-energy extension to the IceCube detector located at the geographic south pole, PINGU, and is relevant to a wide range of other experiments.

  15. Flux induced growth of atmospheric nano-particles by organic vapors

    Directory of Open Access Journals (Sweden)

    J. Wang

    2012-09-01

    Full Text Available Atmospheric aerosols play critical roles in air quality, public health, and visibility. In addition, they strongly influence climate by scattering solar radiation and by changing the reflectivity and lifetime of clouds. One major but still poorly understood source of atmospheric aerosol is new particle formation, which consists of the formation of thermodynamically stable clusters from trace gas molecules (homogeneous nucleation followed by growth of these clusters to a detectable size (~3 nm. Because freshly nucleated clusters are most susceptible to loss due to high rate of coagulation with pre-existing aerosol population, the initial growth rate strongly influences the rate of new particle formation and ambient aerosol population. Whereas many field observations and modeling studies indicate that organics enhance the initial growth of the clusters and therefore new particle formation, thermodynamic considerations would suggest that the strong increase of equilibrium vapor concentration due to cluster surface curvature (Kelvin effect may prevent ambient organics from condensing on these small clusters. Here the initial condensational growth of freshly nucleated clusters is described as heterogeneous nucleation of organic molecules onto these clusters. We find that the strong gradient in cluster population with respect to its size lead to positive cluster number flux, and therefore driving the growth of clusters substantially smaller than the Kelvin diameter, conventionally considered as the minimum particle size that can be grown through condensation. The conventional approach neglects this contribution from the cluster concentration gradient, and underestimates the rate of new particle formation by a factor of up to 60.

  16. Flux induced growth of atmospheric nano-particles by organic vapors

    Science.gov (United States)

    Wang, J.; McGraw, R. L.; Kuang, C.

    2012-09-01

    Atmospheric aerosols play critical roles in air quality, public health, and visibility. In addition, they strongly influence climate by scattering solar radiation and by changing the reflectivity and lifetime of clouds. One major but still poorly understood source of atmospheric aerosol is new particle formation, which consists of the formation of thermodynamically stable clusters from trace gas molecules (homogeneous nucleation) followed by growth of these clusters to a detectable size (~3 nm). Because freshly nucleated clusters are most susceptible to loss due to high rate of coagulation with pre-existing aerosol population, the initial growth rate strongly influences the rate of new particle formation and ambient aerosol population. Whereas many field observations and modeling studies indicate that organics enhance the initial growth of the clusters and therefore new particle formation, thermodynamic considerations would suggest that the strong increase of equilibrium vapor concentration due to cluster surface curvature (Kelvin effect) may prevent ambient organics from condensing on these small clusters. Here the initial condensational growth of freshly nucleated clusters is described as heterogeneous nucleation of organic molecules onto these clusters. We find that the strong gradient in cluster population with respect to its size lead to positive cluster number flux, and therefore driving the growth of clusters substantially smaller than the Kelvin diameter, conventionally considered as the minimum particle size that can be grown through condensation. The conventional approach neglects this contribution from the cluster concentration gradient, and underestimates the rate of new particle formation by a factor of up to 60.

  17. Hadron Production for the Neutrino Factory and for the Atmospheric Neutrino Flux

    CERN Multimedia

    2002-01-01

    The HARP experiment carries out, at the CERN PS, a programme of measurements of secondary hadron production, over the full solid angle, produced on thin and thick nuclear targets by beams of protons and pions with momenta in the range 2 to 15~\\GeVc. The first aim of this experiment is to acquire adequate knowledge of pion yields for an optimal design of the proton driver of the Neutrino Factory. The second aim is to reduce substantially the existing $\\sim 30$\\% uncertainty in the calculation of absolute atmospheric neutrino fluxes and the $\\sim 7$\\% uncertainty in the ratio of neutrino flavours, required for a refined interpretation of the evidence for neutrino oscillation from the study of atmospheric neutrinos in present and forthcoming experiments. The HARP experiment comprises a large-acceptance charged-particle magnetic spectrometer of conventional design, located in the East Hall of the CERN PS and using the T9 tagged charged-particle beam. The main detector is a cylindrical TPC inside a solenoid magnet...

  18. Magnetic Reconnection resulting from Flux Emergence: Implications for Jet Formation in the lower solar atmosphere?

    CERN Document Server

    Ding, J Y; Doyle, J G; Lu, Q M; Vanninathan, K; Huang, Z

    2011-01-01

    We aim at investigating the formation of jet-like features in the lower solar atmosphere, e.g. chromosphere and transition region, as a result of magnetic reconnection. Magnetic reconnection as occurring at chromospheric and transition regions densities and triggered by magnetic flux emergence is studied using a 2.5D MHD code. The initial atmosphere is static and isothermal, with a temperature of 20,000 K. The initial magnetic field is uniform and vertical. Two physical environments with different magnetic field strength (25 G and 50 G) are presented. In each case, two sub-cases are discussed, where the environments have different initial mass density. In the case where we have a weaker magnetic field (25 G) and higher plasma density ($N_e=2\\times 10^{11}$ cm$^{-3}$), valid for the typical quiet Sun chromosphere, a plasma jet would be observed with a temperature of 2--3 $\\times 10^4$ K and a velocity as high as 40 km/s. The opposite case of a medium with a lower electron density ($N_e=2\\times 10^{10}$ cm$^{-3...

  19. Atmospheric bromine flux from the coastal Abu Dhabi sabkhat: A ground-water mass-balance investigation

    Science.gov (United States)

    Wood, Warren W.; Sanford, Ward E.

    2007-07-01

    A solute mass-balance study of ground water of the 3000 km2 coastal sabkhat (salt flats) of the Emirate of Abu Dhabi, United Arab Emirates, documents an annual bromide loss of approximately 255 metric tons (0.0032 Gmoles), or 85 kg/km2. This value is an order of magnitude greater than previously published direct measurements from the atmosphere over an evaporative environment of a salar in Bolivia. Laboratory evidence, consistent with published reports, suggests that this loss is by vapor transport to the atmosphere. If this bromine flux to the atmosphere is representative of the total earth area of active salt flats then it is a significant, and generally under recognized, input to the global atmospheric bromide flux.

  20. Atmospheric stability and turbulence fluxes at Horns Rev—an intercomparison of sonic, bulk and WRF model data

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Hahmann, Andrea N.

    2012-01-01

    Direct estimations of turbulent fluxes and atmospheric stability were performed from a sonic anemometer at 50 m height on a meteorological mast at the Horns Rev wind farm in the North Sea. The stability and flux estimations from the sonic measurements are compared with bulk results from a cup...... anemometer at 15 m height and potential temperature differences between the water and the air above. Surface flux estimations from the advanced weather research and forecast (WRF) model are also validated against the sonic and bulk data. The correlation between the sonic and bulk estimates of friction...

  1. A Carbon Flux Super Site. New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Leclerc, Monique Y. [The University of Georgia Research Foundation, Athens, GA (United States)

    2014-11-17

    This final report presents the main activities and results of the project “A Carbon Flux Super Site: New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling” from 10/1/2006 to 9/30/2014. It describes the new AmeriFlux tower site (Aiken) at Savanna River Site (SC) and instrumentation, long term eddy-covariance, sodar, microbarograph, soil and other measurements at the site, and intensive field campaigns of tracer experiment at the Carbon Flux Super Site, SC, in 2009 and at ARM-CF site, Lamont, OK, and experiments in Plains, GA. The main results on tracer experiment and modeling, on low-level jet characteristics and their impact on fluxes, on gravity waves and their influence on eddy fluxes, and other results are briefly described in the report.

  2. A method for detection of muon induced electromagnetic showers with the ANTARES detector

    CERN Document Server

    Aguilar, J A; Albert, A; André, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Jesus, A C Assis; Astraatmadja, T; Aubert, J J; Baret, B; Basa, S; Bertin, V; Biagi, S; Bigi, A; Bigongiari, C; Bogazzi, C; Bou-Cabo, M; Bouhou, B; Bouwhuis, M C; Brunner, J; Busto, J; Camarena, F; Capone, A; Carloganu, C; Carminati, G; Carr, J; Cecchini, S; Charif, Z; Charvis, P; Chiarusi, T; Circella, M; Coniglione, R; Costantini, H; Coyle, P; Curtil, C; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Eberl, T; Emanuele, U; Enzenhöfer, A; Ernenwein, J P; Escoffier, S; Fermani, P; Ferri, M; Flaminio, V; Folger, F; Fritsch, U; Fuda, J L; Galatà, S; Gay, P; Giacomelli, G; Giordano, V; Gómez-González, J P; Graf, K; Guillard, G; Halladjian, G; Hallewell, G; van Haren, H; Hartman, J; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Hö\\ssl, J; Hsu, C C; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Katz, U; Kavatsyuk, O; Kooijman, P; Kopper, C; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lamare, P; Larosa, G; Lattuada, D; Lefèvre, D; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Mangano, S; Marcelin, M; Margiotta, A; Martinez-Mora, J A; Meli, A; Montaruli, T; Moscoso, L; Motz, H; Neff, M; Nezri, E; Palioselitis, D; P\\uav\\uala\\cs, G E; Payet, K; Payre, P; Petrovic, J; Piattelli, P; Picot-Clemente, N; Popa, V; Pradier, T; Presani, E; Racca, C; Reed, C; Richardt, C; Richter, R; Rivière, C; Robert, A; Roensch, K; Rostovtsev, A; Ruiz-Rivas, J; Rujoiu, M; Russo, G V; Salesa, F; Sapienza, P; Schöck, F; Schuller, J P; Schüssler, F; Shanidze, R; Simeone, F; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, T; Sánchez-Losa, A; Taiuti, M; Tamburini, C; Toscano, S; Vallage, B; Van Elewyck, V; Vannoni, G; Vecchi, M; Vernin, P; Wijnker, G; Wilms, J; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zúñiga, J

    2011-01-01

    The primary aim of ANTARES is neutrino astronomy with upward going muons created in charged current muon neutrino interactions in the detector and its surroundings. Downward going muons are background for neutrino searches. These muons are the decay products of cosmic-ray collisions in the Earth's atmosphere far above the detector. This paper presents a method to identify and count electromagnetic showers produced by muons with the ANTARES detector. The method is applied to both cosmic muon data and simulations and its applicability to the reconstruction of muon event energies is demonstrated.

  3. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review

    Directory of Open Access Journals (Sweden)

    N. Brüggemann

    2011-11-01

    Full Text Available The terrestrial carbon (C cycle has received increasing interest over the past few decades, however, there is still a lack of understanding of the fate of newly assimilated C allocated within plants and to the soil, stored within ecosystems and lost to the atmosphere. Stable carbon isotope studies can give novel insights into these issues. In this review we provide an overview of an emerging picture of plant-soil-atmosphere C fluxes, as based on C isotope studies, and identify processes determining related C isotope signatures. The first part of the review focuses on isotopic fractionation processes within plants during and after photosynthesis. The second major part elaborates on plant-internal and plant-rhizosphere C allocation patterns at different time scales (diel, seasonal, interannual, including the speed of C transfer and time lags in the coupling of assimilation and respiration, as well as the magnitude and controls of plant-soil C allocation and respiratory fluxes. Plant responses to changing environmental conditions, the functional relationship between the physiological and phenological status of plants and C transfer, and interactions between C, water and nutrient dynamics are discussed. The role of the C counterflow from the rhizosphere to the aboveground parts of the plants, e.g. via CO2 dissolved in the xylem water or as xylem-transported sugars, is highlighted. The third part is centered around belowground C turnover, focusing especially on above- and belowground litter inputs, soil organic matter formation and turnover, production and loss of dissolved organic C, soil respiration and CO2 fixation by soil microbes. Furthermore, plant controls on microbial communities and activity via exudates and litter production as well as microbial community effects on C mineralization are reviewed. A further part of the paper is dedicated to physical interactions between soil CO2 and the soil matrix, such as

  4. Impact of drought on the CO2 atmospheric growth rate 2010-2012 from the NASA Carbon Monitoring System Flux (CMS-Flux) Project

    Science.gov (United States)

    Bowman, K. W.; Liu, J.; Parazoo, N.; Jiang, Z.; Bloom, A. A.; Lee, M.; Menemenlis, D.; Gierach, M.; Collatz, G. J.; Gurney, K. R.

    2015-12-01

    The La Nina between 2011-2012 led to significant droughts in the US and Northeastern Brazil while the historic drought in Amazon in 2010 was caused in part by the historic central Pacific El Nino. In order to investigate the role of drought on the atmospheric CO2 growth rate, we use satellite observations of CO2 and CO to infer spatially resolved carbon fluxes and attribute those fluxes to combustion sources correlated with drought conditions. Solar induced fluorescence in turn is used to estimate the impact of drought on productivity and its relationship to total flux. Preliminary results indicate that carbon losses in Mexico are comparable to the total fossil fuel production for that region. These in turn played an important role in the acceleration of the atmospheric growth rate from 2011-2012. These results were enabled using the NASA Carbon Monitoring System Project (CMS-Flux), which is based upon a 4D-variational assimilation system that incorporates observationally-constrained "bottom-up" estimates from the Fossil Fuel Data Assimilation System (FFDAS), the ECCO2-­Darwin physical and biogeochemical adjoint ocean state estimation system, and CASA-GFED3 land-surface biogeochemical model.

  5. MUON DETECTORS: CSC

    CERN Multimedia

    R. Breedon

    During the ongoing period before beam operation resumes, the Endcap Muon system is dedicated to bringing all components of the system up to the best possible performance condition. As CMS was opened, starting with the +Endcap side, electronic boards, cables, and connectors of the Cathode Strip Chamber (CSC) system were replaced or repaired as necessary as access became possible. Due to scheduling constraints, on the –Endcap side this effort has been delayed until the muon stations are each briefly accessible as the experiment is closed again. The CSC gas mixture includes 10% CF4 (carbon tetrafluoride) to reduce aging of the chambers when subjected to high levels of charged particle fluxes during LHC running. CF4, however, is the most expensive component of the gas mixture, and since it is not necessary to protect against aging during chamber commissioning with cosmic rays, the amount of CF4 was temporarily reduced by half to realize a substantial cost saving. Additional filters have been added to ...

  6. Implementation of sub-nanoseconds TDC in FPGA: applications to time-of-flight analysis in muon radiography

    CERN Document Server

    Marteau, J; Gibert, D; Jourde, K; Gardien, S; Girerd, C; Ianigro, J -C

    2014-01-01

    Time-of-flight (tof) techniques are standard techniques in high energy physics to determine particles propagation directions. Since particles velocities are generally close to c, the speed of light, and detectors typical dimensions at the meter level, the state-of-the-art tof techniques should reach sub-nanosecond timing resolution. Among the various techniques already available, the recently developed ring oscillator TDC ones, implemented in low cost FPGA, feature a very interesting figure of merit since a very good timing performance may be achieved with limited processing ressources. This issue is relevant for applications where unmanned sensors should have the lowest possible power consumption. Actually this article describes in details the application of this kind of tof technique to muon tomography of geological bodies. Muon tomography aims at measuring density variations and absolute densities through the detection of atmospheric muons flux's attenuation, due to the presence of matter. When the measure...

  7. Soil-atmosphere and vadose zone water fluxes at the Wagna - lysimeter: Workflow, models, and results

    Science.gov (United States)

    Fank, Johann

    2014-05-01

    A precise knowledge of the water fluxes between the soil-plant system and the atmosphere is of great importance for understanding and modeling water, solute and energy transfer in the soil-plant-atmosphere system. Weighing lysimeters are precise tools to allow the determination of the hydrological cycle components in very short time intervals. Lysimeters with controlled suction at the lower boundary allow estimation of capillary rise and deep water percolation on short time scales. Evapotranspiration, rainfall, and irrigation can be computed from weight changes. In the last decades resolution and precision of the weighing systems have been substantially improved, so that modern lysimeters, resting on weighing cells can reach resolutions of up to 0.01 mm. Nevertheless, a lot of external effects (e.g. from maintenance, surface treatment) and small mechanical disturbances (e.g. caused by wind) became visible in the data. Seepage mass data are affected by water sampling and the emptying process of the seepage water container. Increasing parts of corrected seepage mass data show deep water percolation, decreasing parts in dry weather periods can be interpreted as capillary rise. In the evaluation process of corrected lysimeter mass data every increase in system weight (lysimeter mass + cumulative seepage mass) might be interpreted as rainfall or irrigation, whereas every decrease in system weight is interpreted as evapotranspiration. To apply this concept correctly, the noise in both data sets has to be separated from signals using a filtering routine (e.g. Peters et al., 2013) which is appropriate for any event, including events with low disturbances as well as strong wind and heavy precipitation in small time intervals. Based on the data set from the "Wagna" lysimeter in Austria with a high resolution of the scale (~ 0,015 mm) and very low noise due to low wind velocities for the year 2010 a lysimeter data preparation workflow will be executed: (a) correction of the

  8. CLIC Muon Sweeper Design

    CERN Document Server

    Aloev, A; Gatignon, L; Modena, M; Pilicer, B; Tapan, I

    2016-01-01

    There are several background sources which may affect the analysis of data and detector performans at the CLIC project. One of the important background source is halo muons, which are generated along the beam delivery system (BDS), for the detector performance. In order to reduce muon background, magnetized muon sweepers have been used as a shielding material that is already described in a previous study for CLIC [1]. The realistic muon sweeper has been designed with OPERA. The design parameters of muon sweeper have also been used to estimate muon background reduction with BDSIM Monte Carlo simulation code [2, 3].

  9. Studies on muon tomography for archaeological internal structures scanning

    Science.gov (United States)

    Gómez, H.; Carloganu, C.; Gibert, D.; Jacquemier, J.; Karyotakis, Y.; Marteau, J.; Niess, V.; Katsanevas, S.; Tonazzo, A.

    2016-05-01

    Muon tomography is a potential non-invasive technique for internal structure scanning. It has already interesting applications in geophysics and can be used for archaeological purposes. Muon tomography is based on the measurement of the muon flux after crossing the structure studied. Differences on the mean density of these structures imply differences on the detected muon rate for a given direction. Based on this principle, Monte Carlo simulations represent a useful tool to provide a model of the expected muon rate and angular distribution depending on the composition of the studied object, being useful to estimate the expected detected muons and to better understand the experimental results. These simulations are mainly dependent on the geometry and composition of the studied object and on the modelling of the initial muon flux at surface. In this work, the potential of muon tomography in archaeology is presented and evaluated with Monte Carlo simulations by estimating the differences on the muon rate due to the presence of internal structures and its composition. The influence of the chosen muon model at surface in terms of energy and angular distributions in the final result has been also studied.

  10. Fluvial carbon export from a lowland Amazonian rainforest in relation to atmospheric fluxes

    Science.gov (United States)

    Vihermaa, Leena E.; Waldron, Susan; Domingues, Tomas; Grace, John; Cosio, Eric G.; Limonchi, Fabian; Hopkinson, Chris; Rocha, Humberto Ribeiro; Gloor, Emanuel

    2016-12-01

    We constructed a whole carbon budget for a catchment in the Western Amazon Basin, combining drainage water analyses with eddy covariance (EC) measured terrestrial CO2 fluxes. As fluvial C export can represent permanent C export it must be included in assessments of whole site C balance, but it is rarely done. The footprint area of the flux tower is drained by two small streams ( 5-7 km2) from which we measured the dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), particulate organic carbon (POC) export, and CO2 efflux. The EC measurements showed the site C balance to be +0.7 ± 9.7 Mg C ha-1 yr-1 (a source to the atmosphere) and fluvial export was 0.3 ± 0.04 Mg C ha-1 yr-1. Of the total fluvial loss 34% was DIC, 37% DOC, and 29% POC. The wet season was most important for fluvial C export. There was a large uncertainty associated with the EC results and with previous biomass plot studies (-0.5 ± 4.1 Mg C ha-1 yr-1); hence, it cannot be concluded with certainty whether the site is C sink or source. The fluvial export corresponds to only 3-7% of the uncertainty related to the site C balance; thus, other factors need to be considered to reduce the uncertainty and refine the estimated C balance. However, stream C export is significant, especially for almost neutral sites where fluvial loss may determine the direction of the site C balance. The fate of C downstream then dictates the overall climate impact of fluvial export.

  11. Variance Method to Determine Turbulent Fluxes of Momentum And Sensible Heat in The Stable Atmospheric Surface Layer

    NARCIS (Netherlands)

    Debruin, H.A.R.; Hartogensis, O.K.

    2005-01-01

    Evidence is presented that in the stable atmospheric surface layer turbulent fluxes of heat and momentum can be determined from the standard deviations of longitudinal wind velocity and temperature, ¿u and ¿T respectively, measured at a single level. An attractive aspect of this method is that it yi

  12. Rich soil carbon and nitrogen but low atmospheric greenhouse gas fluxes from North Sulawesi mangrove swamps in Indonesia.

    Science.gov (United States)

    Chen, Guang C; Ulumuddin, Yaya I; Pramudji, Sastro; Chen, Shun Y; Chen, Bin; Ye, Yong; Ou, Dan Y; Ma, Zhi Y; Huang, Hao; Wang, Jing K

    2014-07-15

    The soil to atmosphere fluxes of greenhouse gases N2O, CH4 and CO2 and their relationships with soil characteristics were investigated in three tropical oceanic mangrove swamps (Teremaal, Likupang and Kema) in North Sulawesi, Indonesia. Mangrove soils in North Sulawesi were rich in organic carbon and nitrogen, but the greenhouse gas fluxes were low in these mangroves. The fluxes ranged -6.05-13.14 μmol m(-2)h(-1), -0.35-0.61 μmol m(-2)h(-1) and -1.34-3.88 mmol m(-2)h(-1) for N2O, CH4 and CO2, respectively. The differences in both N2O and CH4 fluxes among different mangrove swamps and among tidal positions in each mangrove swamp were insignificant. CO2 flux was influenced only by mangrove swamps and the value was higher in Kema mangrove. None of the measured soil parameters could explain the variation of CH4 fluxes among the sampling plots. N2O flux was negatively related to porewater salinity, while CO2 flux was negatively correlated with water content and organic carbon. This study suggested that the low gas emissions due to slow metabolisms would lead to the accumulations of organic matters in North Sulawesi mangrove swamps.

  13. Sensitivity of net thermal flux to the abundance of trace gases in the lower atmosphere of Venus

    Science.gov (United States)

    Lee, Yeon Joo; Sagawa, Hideo; Haus, Rainer; Stefani, Stefania; Imamura, Takeshi; Titov, Dmitrij V.; Piccioni, Giuseppe

    2016-09-01

    We calculated the net thermal flux in the atmosphere of Venus from the surface to 100 km altitude. Our atmospheric model was carefully constructed especially for altitudes below the clouds (Venus using 20-50 ppmv H2O, suggesting that the high H2O abundance of 200 ppmv derived in the earlier analysis is not required. Our sensitivity study shows that the trace gases SO2, H2O, and OCS are effective thermal agents, while CO and HCl influences are rather weak. We suggest that the influence of the former three gases should be taken into account to estimate the net radiative energy in the deep atmosphere.

  14. Spatial distributions of the energy and energy flux density of partially coherent electromagnetic beams in atmospheric turbulence.

    Science.gov (United States)

    Li, Jianlong; Lü, Baida; Zhu, Shifu

    2009-07-06

    The formulas of the energy and energy flux density of partially coherent electromagnetic beams in atmospheric turbulence are derived by using Maxwell's equations. Expressions expressed by elements of electric cross spectral density matrixes of the magnetic and the mutual cross spectral density matrix are obtained for the partially coherent electromagnetic beams. Taken the partially coherent Cosh-Gaussian (ChG) electromagnetic beam as a typical example, the spatial distributions of the energy and energy flux density in atmospheric turbulence are numerically calculated. It is found that the turbulence shows a broadening effect on the spatial distributions of the energy and energy flux density. Some interesting results are obtained and explained with regard to their physical nature.

  15. MUON DETECTOR

    CERN Multimedia

    F. Gasparini

    DT Commissioning of the two negative wheels was done on the surface to gain time; YB-1 was completed in June and that of YB-2 on October 3. A new test is ongoing following their lowering into the experiment cavern (UX). In the UX cavern, YB0 and YB+1 testing was completed by the end of August, and the two last sectors of YB+2 will be finished by the end of November. The two negative wheels were lowered at the beginning of October and the installation of the chambers in the vertical sectors was done immediately. Three important events took place at the end of October: the last of the 250 DT +RPC packs was installed in Sector 7 of YB-2; full power was switched on for the first time in a full wheel (on YB0, albeit with temporary power distribution) and 50,000 events of cosmic muons, including many spectacular showers crossing the fully active YB0 (50 chambers), were recorded in about 15 minutes. Other crucial tests were achieved, in difficult conditions, to prove the performance of the DT DAQ. The DAQ ha...

  16. The chemical composition and fluxes of atmospheric wet deposition at four sites in South Africa

    Science.gov (United States)

    Conradie, E. H.; Van Zyl, P. G.; Pienaar, J. J.; Beukes, J. P.; Galy-Lacaux, C.; Venter, A. D.; Mkhatshwa, G. V.

    2016-12-01

    South Africa is the economic hub of southern Africa and is regarded as an important source region of atmospheric pollutants. A nitrogen dioxide (NO2) hotspot is clearly visible from space over the South African Mpumalanga Highveld, while South Africa is also regarded as the 9th largest anthropogenic sulphur (S) emitting country. Notwithstanding the importance of South Africa with regard to nitrogen (N) and S emissions, very limited data has been published on the chemical composition of wet deposition for this region. This paper presents the concentrations of sodium (Na+), ammonium (NH4+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), nitrate (NO3-), chloride (Cl-), sulphate (SO42-) and water-soluble organic acids (OA) in the wet deposition samples collected between 2009 and 2014 at four South African IDAF (IGAC DEBITS Africa) sites, which are regarded as regional representatives of the north-eastern interior. Also, wet deposition fluxes of the ten ions are calculated and presented in this paper. The results show that the total ionic concentrations and fluxes of wet deposition were much higher at the two sites closer to anthropogenic emissions, while the pH of wet deposition at these two sites were lower compared to that of the two sites that were less impacted by anthropogenic emissions. . The major sources of the ten ions included marine, terrigenous (crust), fossil fuel combustion, agriculture and biomass burning. Significant contributions from fossil fuel combustion were determined for the two sites in close proximity to anthropogenic source regions. The results of back trajectory analysis, however, did indicate that the two remote sites are also affected by air masses passing over the source region through anti-cyclonic recirculation. The largest contributions at the two sites distant from the anthropogenic source regions were marine sources, while the impact of biomass burning was also more significant at the remote sites. Comparison to previous wet

  17. Estimating sources, sinks and fluxes of reactive atmospheric compounds within a forest canopy

    Science.gov (United States)

    Ghannam, K.; Duman, T.; Walker, J. T.; Bash, J. O.; Huang, C. W.; Khlystov, A.; Katul, G. G.

    2015-12-01

    While few dispute the significance of within-canopy sources or sinks of reactive gaseous and particulate compounds, their estimation continues to be the subject of active research and debate. Reactive species undergo turbulent dispersion within an inhomogeneous flow field, and may be subjected to chemical, biological and/or physical deposition, emissions or transformations on leaves, woody elements, and the forest floor. This system involves chemical reactions and biological processes with multiple time scales and represents the terrestrial ecosystem's exposure to nutrient and acid deposition and atmospheric oxidants. The quantification of these processes is a first step in better understanding the ecological impact of air pollution and feedback to atmospheric composition. Hence, it follows that direct measurements of sources or sinks is difficult to conduct in the presence of all these processes. However, mean scalar concentration profiles measured within the canopy can be used to infer the profile distribution of effective sinks and sources if the flow field is known. This is commonly referred to as the 'inverse problem'. In-canopy and above-canopy multi-level concentration measurements of reactive nitrogen compounds (ammonia, nitric acid, nitrous acid), as well as other compounds that are highly reactive to ammonia and its secondary products (hydrochloric acid and sulfur dioxide), are presented within a deciduous second-growth 180 year old oak-hickory forest situated within the Southeastern U.S. Two different approaches are used to solve for the source-sink distribution from the measured mean scalar concentration profiles: (1) an Eulerian high-order closure model that solves the scalar flux budget equation and (2) a new Lagrangian stochastic model that estimates the dispersion matrix. As each of these methods is subject to different assumptions, the combination of the two can be used to constrain the solution to the inverse problem and permit inference on the

  18. Heterogeneity and scaling land-atmospheric water and energy fluxes in climate systems

    Science.gov (United States)

    Wood, Eric F.

    1993-01-01

    The effects of small-scale heterogeneity in land surface characteristics on the large-scale fluxes of water and energy in land-atmosphere system has become a central focus of many of the climatology research experiments. The acquisition of high resolution land surface data through remote sensing and intensive land-climatology field experiments (like HAPEX and FIFE) has provided data to investigate the interactions between microscale land-atmosphere interactions and macroscale models. One essential research question is how to account for the small scale heterogeneities and whether 'effective' parameters can be used in the macroscale models. To address this question of scaling, three modeling experiments were performed and are reviewed in the paper. The first is concerned with the aggregation of parameters and inputs for a terrestrial water and energy balance model. The second experiment analyzed the scaling behavior of hydrologic responses during rain events and between rain events. The third experiment compared the hydrologic responses from distributed models with a lumped model that uses spatially constant inputs and parameters. The results show that the patterns of small scale variations can be represented statistically if the scale is larger than a representative elementary area scale, which appears to be about 2 - 3 times the correlation length of the process. For natural catchments this appears to be about 1 - 2 sq km. The results concerning distributed versus lumped representations are more complicated. For conditions when the processes are nonlinear, then lumping results in biases; otherwise a one-dimensional model based on 'equivalent' parameters provides quite good results. Further research is needed to fully understand these conditions.

  19. Investigating sources of measured forest-atmosphere ammonia fluxes using two-layer bi-directional modelling

    DEFF Research Database (Denmark)

    Hansen, K.; Personne, E.; Skjøth, C.A.

    2017-01-01

    not for forest ecosystems due to the complex nature of this soil-vegetation-atmosphere system. Furthermore, the high reactivity of NH3 makes it technically complex and expensive to measure and understand the forest-atmospheric NH3 exchange. The aim of this study is to investigate the NH3 flux partitioning...... between the ground layer, cuticle and stomata compartments for two temperate deciduous forest ecosystems located in Midwestern, USA (MMSF) and in Denmark (DK-Sor). This study is based on measurements and simulations of the surface energy balance, fluxes of CO2 and NH3 during two contrasted periods...... of the forest ecosystems, a period with full developed canopy (MMSF) and a senescent period for the DK-Sor site, with leaf fall and leaf litter build-up. Both datasets indicate emissions of NH3 from the forest to the atmosphere. The two-layer NH3 compensation point model SURFATM-NH3 was used in combination...

  20. The Application of Flux-Form Semi-Lagrangian Transport Scheme in a Spectral Atmosphere Model

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaocong; LIU Yimin; WU Guoxiong; Shian-Jiann LIN; BAO Qing

    2013-01-01

    A flux-form semi-Lagrangian transport scheme (FFSL) was implemented in a spectral atmospheric GCM developed and used at IAP/LASG.Idealized numerical experiments show that the scheme is good at shape preserving with less dissipation and dispersion,in comparison with other conventional schemes.Importantly,FFSL can automatically maintain the positive definition of the transported tracers,which was an underlying problem in the previous spectral composite method (SCM).To comprehensively investigate the impact of FFSL on GCM results,we conducted sensitive experiments.Three main improvements resulted:first,rainfall simulation in both distribution and intensity was notably improved,which led to an improvement in precipitation frequency.Second,the dry bias in the lower troposphere was significantly reduced compared with SCM simulations.Third,according to the Taylor diagram,the FFSL scheme yields simulations that are superior to those using the SCM:a higher correlation between model output and observation data was achieved with the FFSL scheme,especially for humidity in lower troposphere.However,the moist bias in the middle and upper troposphere was more pronounced with the FFSL scheme.This bias led to an over-simulation of precipitable water in comparison with reanalysis data.Possible explanations,as well as solutions,are discussed herein.

  1. Exploration of the link between Emiliania huxleyi bloom dynamics and aerosol fluxes to the lower Atmosphere

    Science.gov (United States)

    Trainic, M.

    2013-12-01

    Phytoplankton blooms are responsible for about 50% of the global photosynthesis, thus are a key component of the major nutrient cycles in the ocean. These blooms can be a significant source for flux of volatiles and aerosols, affecting physical chemical processes in the atmosphere. One of the most widely distributed and abundant phytoplankton species in the oceans is the coccolithophore Emiliania huxleyi. In this research, we explore the influence of the different stages of E. huxleyi bloom on the emission of primary aerosols. For this purpose, we conducted a series of controlled lab experiments to measure aerosol emissions during the growth of E. huxleyi. The cultures were grown in a specially designed growth chamber, and the aerosols were generated in a bubbling system. We collected the emitted aerosol particles on filters, and conducted a series of analysis. Scanning electron microscopy (SEM) analysis of the aerosols emitted from E.huxleyi 1216 cultures demonstrate emission of CaCO3 platelets from their exoskeleton into the air, while coccolithophores cells were absent. The results suggest that while healthy coccolithophore cells are too heavy to aerosolize, during cell lysis the coccoliths shed from the coccolithophore cells are emitted into the atmosphere. Therefore, aerosol production during bloom demise may be greater than from healthy E.huxleyi populations. We also investigated the size distribution of the aerosols at various stages of E. huxleyi growth. The presence of calcified cells greatly effects the size distribution of the emitted aerosol population. This work motivated us to explore aerosols emitted during E. huxleyi spring bloom, in a laboratory we constructed onboard the R/V Knorr research vessel, as part of the North Atlantic Virus Infection of Coccolithophore Expedition (June-July 2012). These results have far-reaching implications on the effect of E. huxleyi bloom dynamics on aerosol properties. We not only show that the E. huxleyi calcite

  2. Muon Diagnostics : A New Technique of Heliosphere Investigations

    NARCIS (Netherlands)

    Petrukhin, A. A.

    2009-01-01

    A new technique of remote monitoring of dynamic processes in the heliosphere (muon diagnostics) has been presented. The approach is based on the analysis of spatial-angular and temporal variations of muon flux detected at the ground level simultaneously from all directions of the upper hemisphere. F

  3. Characteristics of neutrons produced by muons in a standard rock

    Energy Technology Data Exchange (ETDEWEB)

    Malgin, A. S., E-mail: malgin@lngs.infn.it [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)

    2015-10-15

    Characteristics of cosmogenic neutrons, such as the yield, production rate, and flux, were determined for a standard rock. The dependences of these quantities on the standard-rock depth and on the average muon energy were obtained. These properties and dependences make it possible to estimate easy the muon-induced neutron background in underground laboratories for various chemical compositions of rock.

  4. Characteristics of land-atmosphere energy and turbulent fluxes over the plateau steppe in central Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    MaoShan Li; ZhongBo Su; YaoMing Ma; XueLong Chen; Lang Zhang; ZeYong Hu

    2016-01-01

    The land-atmosphere energy and turbulence exchange is key to understanding land surface processes on the Tibetan Plateau (TP). Using observed data for Aug. 4 to Dec. 3, 2012 from the Bujiao observation point (BJ) of the Nagqu Plateau Climate and Environment Station (NPCE-BJ), different characteristics of the energy flux during the Asian summer monsoon (ASM) season and post-monsoon period were analyzed. This study outlines the impact of the ASM on energy fluxes in the central TP. It also demonstrates that the surface energy closure rate during the ASM season is higher than that of the post-monsoon period. Footprint modeling shows the distribution of data quality assessments (QA) and quality controls (QC) surrounding the observation point. The measured turbulent flux data at the NPCE-BJ site were highly rep-resentative of the target land-use type. The target surface contributed more to the fluxes under unstable conditions than under stable conditions. The main wind directions (180° and 210°) with the highest data density showed flux contributions reaching 100%, even under stable conditions. The lowest flux contributions were found in sectors with low data density, e.g., 90.4% in the 360° sector under stable conditions during the ASM season. Lastly, a surface energy water balance (SEWAB) model was used to gap-fill any absent or corrected turbulence data. The potential simulation error was also explored in this study. The Nash-Sutcliffe model efficiency coefficients (NSEs) of the observed fluxes with the SEWAB model runs were 0.78 for sensible heat flux and 0.63 for latent heat flux during the ASM season, but unrealistic values of−0.9 for latent heat flux during the post-monsoon period.

  5. Muon telescope based on Micromegas detectors: From design to data acquisition

    Directory of Open Access Journals (Sweden)

    Lázaro Ignacio

    2014-01-01

    Full Text Available We describe the basis of the muon telescope used within the Temporal Tomography Densitometric by the Measure of Muons (T2DM2 project developed in the LSBB URL facilities. The telescope allows measuring the flux of muons, as well as their energy and origin for the characterization of spatial and temporal rock density variations.

  6. Detecting Neutrinos from AGN New Fluxes and Cross Sections

    CERN Document Server

    Hill, G C

    1996-01-01

    New information on the structure of the nucleon from the HERA ep collider leads to higher neutrino cross sections for the processes nu_mu + N --> mu + X needed to calculate the expected rates of astrophysical neutrino induced muons in large detectors either under construction, or in the design stage. These higher cross sections lead to higher muon rates for arrival angles where neutrino attenuation in the earth is less important. On the other hand, new estimates of AGN neutrino fluxes suggest that the expected muon rates in these detectors may be much lower than previously calculated. I use the new cross sections to calculate the expected muon rates and angular distributions in large detectors for a variety of AGN models and compare these rates with the atmospheric neutrino backrounds (from both conventional decay channels and the "prompt" charmed meson decay channels). If the lowest flux estimates are correct, there may be diffculties in determining the origin of a small excess of muons, due to the large unc...

  7. Estimating local atmosphere-surface fluxes using eddy covariance and numerical Ogive optimization

    DEFF Research Database (Denmark)

    Sievers, Jakob; Papakyriakou, Tim; Larsen, Søren

    2014-01-01

    Estimating representative surface-fluxes using eddy covariance leads invariably to questions concerning inclusion or exclusion of low-frequency flux contributions. For studies where fluxes are linked to local physical parameters and up-scaled through numerical modeling efforts, low-frequency cont......Estimating representative surface-fluxes using eddy covariance leads invariably to questions concerning inclusion or exclusion of low-frequency flux contributions. For studies where fluxes are linked to local physical parameters and up-scaled through numerical modeling efforts, low......-frequency contributions interfere with our ability to isolate local biogeochemical processes of interest, as represented by turbulent fluxes. No method currently exists to disentangle low-frequency contributions on flux estimates. Here, we present a novel comprehensive numerical scheme to identify and separate out low...

  8. Solated Muon Trigger

    CERN Document Server

    Albajar, Carmen

    2000-01-01

    An Isolated Muon L1 Trigger is proposed to reject muons from decays of b and c-quarks preserving high efficiency for muons from heavier objects. It is shown that the proposed algorithm is feasible and significant rejection factor ( 3-10) can be achieved. Similar algorithm can be applied at L2.

  9. Muon catalyzed fusion

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, K. [Advanced Meson Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Nagamine, K. [Muon Science Laboratory, IMSS-KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Matsuzaki, T. [Advanced Meson Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kawamura, N. [Muon Science Laboratory, IMSS-KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2005-12-15

    The latest progress of muon catalyzed fusion study at the RIKEN-RAL muon facility (and partly at TRIUMF) is reported. The topics covered are magnetic field effect, muon transfer to {sup 3}He in solid D/T and ortho-para effect in dd{mu} formation.

  10. A variational data assimilation system for soil–atmosphere flux estimates for the Community Land Model (CLM3.5

    Directory of Open Access Journals (Sweden)

    C. M. Hoppe

    2014-05-01

    Full Text Available This paper presents the development and implementation of a spatio-temporal variational data assimilation system (4D-var for the soil–vegetation–atmosphere transfer model "Community Land Model" (CLM3.5, along with the development of the adjoint code for the core soil–atmosphere transfer scheme of energy and soil moisture. The purpose of this work is to obtain an improved estimation technique for the energy fluxes (sensible and latent heat fluxes between the soil and the atmosphere. Optimal assessments of these fluxes are neither available from model simulations nor measurements alone, while a 4D-var data assimilation has the potential to combine both information sources by a Best Linear Unbiased Estimate (BLUE. The 4D-var method requires the development of the adjoint model of the CLM which is established in this work. The new data assimilation algorithm is able to assimilate soil temperature and soil moisture measurements for one-dimensional columns of the model grid. Numerical experiments were first used to test the algorithm under idealised conditions. It was found that the analysis delivers improved results whenever there is a dependence between the initial values and the assimilated quantity. Furthermore, soil temperature and soil moisture from in situ field measurements were assimilated. These calculations demonstrate the improved performance of flux estimates, whenever soil property parameters are available of sufficient quality. Misspecifications could also be identified by the performance of the variational scheme.

  11. Response of Atmospheric-Methane Oxidation to Methane-Flux Manipulation in a Laboratory Soil-Column Experiment

    Science.gov (United States)

    Schroth, M. H.; Mignola, I.; Henneberger, R.

    2015-12-01

    Upland soils are an important sink for atmospheric methane (CH4). Uptake of atmospheric CH4 in soils is generally diffusion limited, and is mediated by aerobic CH4 oxidizing bacteria (MOB) that possess a high-affinity form of a key enzyme, allowing CH4 consumption at near-atmospheric concentrations (≤ 1.9 µL/L). As cultivation attempts for these high-affinity MOB have shown little success, there remains much speculation regarding their functioning in different environments. For example, it is frequently assumed that they are highly sensitive to physical disturbance, but their response in activity and abundance to changes in substrate availability remains largely unknown. We present results of a laboratory column experiment conducted to investigate the response in activity and abundance of high-affinity MOB to an increase in CH4 flux. Intact soil cores, collected at a field site where atmospheric CH4 oxidation activity is frequently quantified, were transferred into two 1-m-long, 12-cm-dia. columns. The columns were operated at constant temperature in the dark, their headspace being continuously flushed with air. Diffusive gas-transport conditions were maintained in the reference column, whereas CH4 flux was increased in several steps in the treatment column by inducing advective gas flow using a diaphragm pump. Soil-gas samples periodically collected from ports installed along the length of the columns were analyzed for CH4 content. Together with measurements of soil-water content, atmospheric CH4 oxidation was quantified using the soil-profile method. First results indicate that atmospheric CH4 oxidation activity comparable with the field was maintained in the reference column throughout the experiment. Moreover, high-affinity MOB quickly adjusted to an increase in CH4 flux in the treatment column, efficiently consuming CH4. Quantification of MOB abundance is currently ongoing. Our data provide new insights into controls on atmospheric CH4 oxidation in soils.

  12. Measurements of the atmospheric neutrino flux by Super-Kamiokande: Energy spectra, geomagnetic effects, and solar modulation

    Science.gov (United States)

    Richard, E.; Okumura, K.; Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakajima, T.; Nakano, Y.; Nakayama, S.; Orii, A.; Sekiya, H.; Shiozawa, M.; Takeda, A.; Tanaka, H.; Tomura, T.; Wendell, R. A.; Akutsu, R.; Irvine, T.; Kajita, T.; Kaneyuki, K.; Nishimura, Y.; Labarga, L.; Fernandez, P.; Gustafson, J.; Kachulis, C.; Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Berkman, S.; Nantais, C. M.; Tanaka, H. A.; Tobayama, S.; Goldhaber, M.; Kropp, W. R.; Mine, S.; Weatherly, P.; Smy, M. B.; Sobel, H. W.; Takhistov, V.; Ganezer, K. S.; Hartfiel, B. L.; Hill, J.; Hong, N.; Kim, J. Y.; Lim, I. T.; Park, R. G.; Himmel, A.; Li, Z.; O'Sullivan, E.; Scholberg, K.; Walter, C. W.; Wongjirad, T.; Ishizuka, T.; Tasaka, S.; Jang, J. S.; Learned, J. G.; Matsuno, S.; Smith, S. N.; Friend, M.; Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.; Suzuki, A. T.; Takeuchi, Y.; Yano, T.; Cao, S. V.; Hiraki, T.; Hirota, S.; Huang, K.; Kikawa, T.; Minamino, A.; Nakaya, T.; Suzuki, K.; Fukuda, Y.; Choi, K.; Itow, Y.; Suzuki, T.; Mijakowski, P.; Frankiewicz, K.; Hignight, J.; Imber, J.; Jung, C. K.; Li, X.; Palomino, J. L.; Wilking, M. J.; Yanagisawa, C.; Fukuda, D.; Ishino, H.; Kayano, T.; Kibayashi, A.; Koshio, Y.; Mori, T.; Sakuda, M.; Xu, C.; Kuno, Y.; Tacik, R.; Kim, S. B.; Okazawa, H.; Choi, Y.; Nishijima, K.; Koshiba, M.; Totsuka, Y.; Suda, Y.; Yokoyama, M.; Bronner, C.; Hartz, M.; Martens, K.; Marti, Ll.; Suzuki, Y.; Vagins, M. R.; Martin, J. F.; Konaka, A.; Chen, S.; Zhang, Y.; Wilkes, R. J.; Super-Kamiokande Collaboration

    2016-09-01

    A comprehensive study of the atmospheric neutrino flux in the energy region from sub-GeV up to several TeV using the Super-Kamiokande (SK) water Cherenkov detector is presented in this paper. The energy and azimuthal spectra, and variation over time, of the atmospheric νe+ν¯ e and νμ+ν¯μ fluxes are measured. The energy spectra are obtained using an iterative unfolding method by combining various event topologies with differing energy responses. The azimuthal spectra depending on energy and zenith angle, and their modulation by geomagnetic effects, are also studied. A predicted east-west asymmetry is observed in both the νe and νμ samples at 8.0 σ and 6.0 σ significance, respectively, and an indication that the asymmetry dipole angle changes depending on the zenith angle was seen at the 2.2 σ level. The measured energy and azimuthal spectra are consistent with the current flux models within the estimated systematic uncertainties. A study of the long-term correlation between the atmospheric neutrino flux and the solar magnetic activity cycle is performed, and a weak preference for a correlation was seen at the 1.1 σ level, using SK-I-SK-IV data spanning a 20-year period. For several particularly strong solar activity periods, corresponding to Forbush decrease events, no theoretical prediction is available but a deviation below the typical neutrino event rate is seen at the 2.4 σ level. The seasonal modulation of the neutrino flux is also examined, but the change in flux at the SK site is predicted to be negligible, and, as expected, no evidence for a seasonal correlation is seen.

  13. Regional Carbon Fluxes and Atmospheric Carbon Dynamics in the Southern Great Plains during the 2007 Mid Continent Intensive of NACP

    Science.gov (United States)

    Torn, M. S.; Fischer, M. L.; Riley, W. J.; Jackson, T. J.; Avissar, R.; Biraud, S. C.; Billesbach, D. P.; Sweeney, C.; Tans, P. P.; Berry, J. A.

    2006-12-01

    In June 2007, an intensive regional campaign will take place in the Southern Great Plains (SGP) to estimate land-atmosphere exchanges of CO2, water, and energy at 1 to 100 km scales. The primary goals of this North American Carbon Program (NACP) campaign are to evaluate top-down and bottom-up estimates of regional fluxes and to understand the influence of moisture gradients, surface heterogeneity, and atmospheric transport patterns on these fluxes (and their estimation). The work will be integrated with the Cloud and Land Surface Interaction Campaign (CLASIC), centered on the US DOE Atmospheric Radiation Measurement Program SGP region. CLASIC will focus on interactions among the land surface, convective boundary layer, and cumulus clouds, and will utilize an array of atmospheric measurements. Carbon and meteorological data streams and logistical resources will be available to other NACP researchers. Carbon flux and concentration data will be collected from tower and airborne platforms. Eddy flux towers will be deployed in the four major land cover types, distributed over the region's SE to NW precipitation gradient. In addition, CO2, water, and energy fluxes will be observed with the Duke Helicopter Observation Platform (HOP) at various heights in the boundary layer, including in the surface layer (the few meters near the surface). Two aircraft will carry precise CO2 measurement systems and NOAA12-flask packages for carbon cycle gases and isotopes. Continuous CO2 and CO concentrations, NOAA flasks, and isotope diel flasks (14C, 13C, and 18O) will also be collected from a centrally located 60 m tower. Flights are planned to constrain simple boundary layer budget models and to conduct Lagrangian air mass following experiments. A distributed model of land surface fluxes will be run off line and coupled to MM5 with tracer capability. In addition to characterizing the influence of the land surface on the atmosphere, the aircraft data (in combination with observations of

  14. The program in muon and neutrino physics: Superbeams, cold muon beams, neutrino factory and the muon collider

    Energy Technology Data Exchange (ETDEWEB)

    R. Raja et al.

    2001-08-08

    The concept of a Muon Collider was first proposed by Budker [10] and by Skrinsky [11] in the 60s and early 70s. However, there was little substance to the concept until the idea of ionization cooling was developed by Skrinsky and Parkhomchuk [12]. The ionization cooling approach was expanded by Neufer [13] and then by Palmer [14], whose work led to the formation of the Neutrino Factory and Muon Collider Collaboration (MC) [3] in 1995. The concept of a neutrino source based on a pion storage ring was originally considered by Koshkarev [18]. However, the intensity of the muons created within the ring from pion decay was too low to provide a useful neutrino source. The Muon Collider concept provided a way to produce a very intense muon source. The physics potential of neutrino beams produced by muon storage rings was investigated by Geer in 1997 at a Fermilab workshop [19, 20] where it became evident that the neutrino beams produced by muon storage rings needed for the muon collider were exciting on their own merit. The neutrino factory concept quickly captured the imagination of the particle physics community, driven in large part by the exciting atmospheric neutrino deficit results from the SuperKamiokande experiment. As a result, the MC realized that a Neutrino Factory could be an important first step toward a Muon Collider and the physics that could be addressed by a Neutrino Factory was interesting in its own right. With this in mind, the MC has shifted its primary emphasis toward the issues relevant to a Neutrino Factory. There is also considerable international activity on Neutrino Factories, with international conferences held at Lyon in 1999, Monterey in 2000 [21], Tsukuba in 2001 [22], and another planned for London in 2002.

  15. 3D Simulations of the variability of the atmospheric escape at Mars with the EUV solar flux

    Science.gov (United States)

    Chaufray, J.-Y.; Leblanc, F.; Modolo, R.; Gonzalez-Galindo, F.; Lopez-Valverde, M.; Forget, F.

    2014-04-01

    The exosphere is the collisionless region surrounding a planetary atmosphere. The exosphere of Mars is an important region to characterize the escape processes. It is mainly formed from processes responsible of the atmospheric escape in the underlying atmosphere/ionosphere. The Martian exosphere is mainly composed of atomic hydrogen, molecular hydrogen and atomic oxygen. Atomic and molecular hydrogen escape is dominated by the thermal escape while the oxygen escape is dominated by the O2+ dissociative recombination in the Martian upper ionosphere. Therefore their escape rates are expected to vary strongly with the EUV solar flux which is the main driver of the heating and ionization of the Martian upper atmosphere. In this presentation, we will present simulations obtained from a 3D Martian exospheric model, coupled to the 3D GCM-LMD model for different solar UV conditions representative of current and past conditions.

  16. Greenhouse gases regional fluxes estimated from atmospheric measurements; Estimation des flux de gaz a effet de serre a l'echelle regionale a partir de mesures atmospheriques

    Energy Technology Data Exchange (ETDEWEB)

    Messager, C

    2007-07-15

    build up a new system to measure continuously CO{sub 2} (or CO), CH{sub 4}, N{sub 2}O and SF{sub 6} mixing ratios. It is based on a commercial gas chromatograph (Agilent 6890N) which have been modified to reach better precision. Reproducibility computed with a target gas on a 24 hours time step gives: 0.06 ppm for CO{sub 2}, 1.4 ppb for CO, 0.7 ppb for CH{sub 4}, 0.2 ppb for N{sub 2}O and 0.05 ppt for SF{sub 6}. The instrument's run is fully automated, an air sample analysis takes about 5 minutes. In July 2006, I install instrumentation on a telecommunication tall tower (200 m) situated near Orleans forest in Trainou, to monitor continuously greenhouse gases (CO{sub 2}, CH{sub 4}, N{sub 2}O, SF{sub 6}), atmospheric tracers (CO, Radon-222) and meteorological parameters. Intake lines were installed at 3 levels (50, 100 and 180 m) and allow us to sample air masses along the vertical. Continuous measurement started in January 2007. I used Mace Head (Ireland) and Gif-sur-Yvette continuous measurements to estimate major greenhouse gases emission fluxes at regional scale. To make the link between atmospheric measurements and surface fluxes, we need to quantify dilution due to atmospheric transport. I used Radon-222 as tracer (radon tracer method) and planetary boundary layer heights estimates from ECMWF model (boundary layer budget method) to parameterize atmospheric transport. In both cases I compared results to available emission inventories. (author)

  17. LHCb - Novel Muon Identification Algorithms for the LHCb Upgrade

    CERN Multimedia

    Cogoni, Violetta

    2016-01-01

    The present LHCb Muon Identification procedure was optimised to guarantee high muon detection efficiency at the istantaneous luminosity $\\mathcal{L}$ of $2\\cdot10^{32}$~cm$^{-2}$~s$^{-1}$. In the current data taking conditions, the luminosity is higher than foreseen and the low energy background contribution to the visible rate in the muon system is larger than expected. A worse situation is expected for Run III when LHCb will operate at $\\mathcal{L} = 2\\cdot10^{33}$~cm$^{-2}$~s$^{-1}$ causing the high particle fluxes to deteriorate the muon detection efficiency, because of the increased dead time of the electronics, and in particular to worsen the muon identification capabilities, due to the increased contribution of the background, with deleterious consequences especially for the analyses requiring high purity signal. In this context, possible new algorithms for the muon identification will be illustrated. In particular, the performance on combinatorial background rejection will be shown, together with the ...

  18. Muon Catalyzed Fusion

    Science.gov (United States)

    Armour, Edward A.G.

    2007-01-01

    Muon catalyzed fusion is a process in which a negatively charged muon combines with two nuclei of isotopes of hydrogen, e.g, a proton and a deuteron or a deuteron and a triton, to form a muonic molecular ion in which the binding is so tight that nuclear fusion occurs. The muon is normally released after fusion has taken place and so can catalyze further fusions. As the muon has a mean lifetime of 2.2 microseconds, this is the maximum period over which a muon can participate in this process. This article gives an outline of the history of muon catalyzed fusion from 1947, when it was first realised that such a process might occur, to the present day. It includes a description of the contribution that Drachrnan has made to the theory of muon catalyzed fusion and the influence this has had on the author's research.

  19. Air-sea fluxes in a climate model using hourly coupling between the atmospheric and the oceanic components

    Science.gov (United States)

    Tian, Fangxing; von Storch, Jin-Song; Hertwig, Eileen

    2016-06-01

    We analyse the changes in the air-sea fluxes of momentum, heat and fresh water flux caused by increasing the ocean-atmosphere coupling frequency from once per day to once per hour in the Max Planck Institute Earth System Model. We diagnose the relative influences of daily averaging and high-frequency feedbacks on the basic statistics of the air-sea fluxes at grid point level and quantify feedback modes responsible for large scale changes in fluxes over the Southern Ocean and the Equatorial Pacific. Coupling once per hour instead of once per day reduces the mean of the momentum-flux magnitude by up to 7 % in the tropics and increases it by up to 10 % in the Southern Ocean. These changes result solely from feedbacks between atmosphere and ocean occurring on time scales shorter than 1 day . The variance and extremes of all the fluxes are increased in most parts of the oceans. Exceptions are found for the momentum and fresh water fluxes in the tropics. The increases result mainly from the daily averaging, while the decreases in the tropics are caused by the high-frequency feedbacks. The variance increases are substantial, reaching up to 50 % for the momentum flux, 100 % for the fresh water flux, and a factor of 15 for the net heat flux. These diurnal and intra-diurnal variations account for up to 50-90 % of the total variances and exhibit distinct seasonality. The high-frequency coupling can influence the large-scale feedback modes that lead to large-scale changes in the magnitude of wind stress over the Southern Ocean and Equatorial Pacific. In the Southern Ocean, the dependence of the SST-wind-stress feedback on the mean state of SST, which is colder in the experiment with hourly coupling than in the experiment with daily coupling, leads to an increase of westerlies. In the Equatorial Pacific, Bjerknes feedback in the hourly coupled experiment reveals a diurnal cycle during the El Niño events, with the feedback being stronger in the nighttime than in the daytime and

  20. Evaluating the Capacity of Global CO2 Flux and Atmospheric Transport Models to Incorporate New Satellite Observations

    Science.gov (United States)

    Kawa, S. R.; Collatz, G. J.; Erickson, D. J.; Denning, A. S.; Wofsy, S. C.; Andrews, A. E.

    2007-01-01

    As we enter the new era of satellite remote sensing for CO2 and other carbon cyclerelated quantities, advanced modeling and analysis capabilities are required to fully capitalize on the new observations. Model estimates of CO2 surface flux and atmospheric transport are required for initial constraints on inverse analyses, to connect atmospheric observations to the location of surface sources and sinks, and ultimately for future projections of carbon-climate interactions. For application to current, planned, and future remotely sensed CO2 data, it is desirable that these models are accurate and unbiased at time scales from less than daily to multi-annual and at spatial scales from several kilometers or finer to global. Here we focus on simulated CO2 fluxes from terrestrial vegetation and atmospheric transport mutually constrained by analyzed meteorological fields from the Goddard Modeling and Assimilation Office for the period 1998 through 2006. Use of assimilated meteorological data enables direct model comparison to observations across a wide range of scales of variability. The biospheric fluxes are produced by the CASA model at lxi degrees on a monthly mean basis, modulated hourly with analyzed temperature and sunlight. Both physiological and biomass burning fluxes are derived using satellite observations of vegetation, burned area (as in GFED-2), and analyzed meteorology. For the purposes of comparison to CO2 data, fossil fuel and ocean fluxes are also included in the transport simulations. In this presentation we evaluate the model's ability to simulate CO2 flux and mixing ratio variability in comparison to in situ observations at sites in Northern mid latitudes and the continental tropics. The influence of key process representations is inferred. We find that the model can resolve much of the hourly to synoptic variability in the observations, although there are limits imposed by vertical resolution of boundary layer processes. The seasonal cycle and its

  1. Measurement of Cosmic-ray Muons and Muon-induced Neutrons in the Aberdeen Tunnel Underground Laboratory

    CERN Document Server

    Blyth, S C; Chen, X C; Chu, M C; Cui, K X; Hahn, R L; Ho, T H; Hsiung, Y B; Hu, B Z; Kwan, K K; Kwok, M W; Kwok, T; Lau, Y P; Leung, J K C; Leung, K Y; Lin, G L; Lin, Y C; Luk, K B; Luk, W H; Ngai, H Y; Ngan, S Y; Pun, C S J; Shih, K; Tam, Y H; Tsang, R H M; Wang, C H; Wong, C M; Wong, H L; Wong, K K; Yeh, M; Zhang, B J

    2015-01-01

    We measured the muon flux and the production rate of muon-induced neutrons at a depth of 611 meters water equivalent. Our apparatus comprises of three layers of crossed plastic scintillator hodoscopes for tracking the incident cosmic-ray muons, and 760 L of gadolinium-doped liquid scintillator for both neutron production and detection targets. The vertical muon intensity was measured to be $I_{\\mu}$ = (5.7 $\\pm$ 0.6) $\\times$ 10$^{-6}$ cm$^{-2}$ s$^{-1}$ sr$^{-1}$. The muon-induced neutron yield in the liquid scintillator was determined to be $Y_{n}$ = (1.19 $\\pm$ 0.08(stat.) $\\pm$ 0.21(syst.)) $\\times$ 10$^{-4}$ neutrons / ($\\mu$ g cm$^{-2}$). A fitting to recently measured neutron yields at different depths gave a muon energy dependence of $\\left\\langle E_{\\mu} \\right\\rangle^{0.76 \\pm 0.03}$ for scintillator targets.

  2. Dissolved methane in the Beaufort Sea and the Arctic Ocean, 1992-2009; sources and atmospheric flux

    Science.gov (United States)

    Lorenson, Thomas D.; Greinert, Jens; Coffin, Richard B.

    2016-01-01

    Methane concentration and isotopic composition was measured in ice-covered and ice-free waters of the Arctic Ocean during eleven surveys spanning the years of 1992-1995 and 2009. During ice-free periods, methane flux from the Beaufort shelf varies from 0.14 to 0.43 mg CH4 m-2 day-1. Maximum fluxes from localized areas of high methane concentration are up to 1.52 mg CH4 m-2 day-1. Seasonal buildup of methane under ice can produce short-term fluxes of methane from the Beaufort shelf that varies from 0.28 to 1.01 to mg CH4 m-2 day-1. Scaled-up estimates of minimum methane flux from the Beaufort Sea and pan-Arctic shelf for both ice-free and ice-covered periods range from 0.02 Tg CH4 yr-1 and 0.30 Tg CH4 yr-1 respectively to maximum fluxes of 0.18 Tg CH4 yr-1 and 2.2 Tg CH4 yr-1 respectively. A methane flux of 0.36 Tg CH4 yr-1from the deep Arctic Ocean was estimated using data from 1993-94. The flux can be as much as 2.35 Tg CH4 yr-1 estimated from maximum methane concentrations and wind speeds of 12 m/s, representing only 0.42% of the annual atmospheric methane budget of ~560 Tg CH4 yr-1. There were no significant changes in methane fluxes during the time period of this study. Microbial methane sources predominate with minor influxes from thermogenic methane offshore Prudhoe Bay and the Mackenzie River delta and may include methane from gas hydrate. Methane oxidation is locally important on the shelf and is a methane sink in the deep Arctic Ocean.

  3. Water to atmosphere fluxes of {sup 131}I in relation with alkyl-iodide compounds from the Seine Estuary (France)

    Energy Technology Data Exchange (ETDEWEB)

    Connan, Olivier [Laboratoire de Radioecologie de Cherbourg-Octeville, Institut de Radioprotection et de Surete nucleaire (IRSN), Service d' Etudes et du Comportement des Radionucleides dans l' Environnement (SECRE), rue Max Pol Fouchet, 50130 Cherbourg-Octeville (France)], E-mail: olivier.connan@irsn.fr; Tessier, Emmanuel [Laboratoire de Chimie Analytique et Bio-Inorganique et Environnement, UMR CNRS universite de Pau et des Pays de l' Adour, Helioparc Pau Pyrenees, 2 Avenue Pierre Angot, 64053 Pau Cedex 9 (France); Maro, Denis [Laboratoire de Radioecologie de Cherbourg-Octeville, Institut de Radioprotection et de Surete nucleaire (IRSN), Service d' Etudes et du Comportement des Radionucleides dans l' Environnement (SECRE), rue Max Pol Fouchet, 50130 Cherbourg-Octeville (France); Amouroux, David [Laboratoire de Chimie Analytique et Bio-Inorganique et Environnement, UMR CNRS universite de Pau et des Pays de l' Adour, Helioparc Pau Pyrenees, 2 Avenue Pierre Angot, 64053 Pau Cedex 9 (France); Hebert, Didier; Rozet, Marianne; Voiseux, Claire; Solier, Luc [Laboratoire de Radioecologie de Cherbourg-Octeville, Institut de Radioprotection et de Surete nucleaire (IRSN), Service d' Etudes et du Comportement des Radionucleides dans l' Environnement (SECRE), rue Max Pol Fouchet, 50130 Cherbourg-Octeville (France)

    2008-07-15

    This study presents an original work on measurements of stable and radioactive iodinated species in the Seine estuary (France), with estimates fluxes of volatile gaseous species from water to the atmosphere. Various iodinated compounds were identified in water and air in particular {sup 131}I in water, what is unusual. Concentrations and behaviour of iodinated elements in the Seine estuary seem similar to what has been observed in other European estuaries. MeI (Methyl Iodide) and Total Volatile Iodine (TVI) fluxes from water to air vary between 392 and 13949 pmol m{sup -2} d{sup -1} and between 1279 and 16484 pmol m{sup -2} d{sup -1}, respectively. Water to air flux of TVI for the Seine river was estimated in the range 4-46 kg y{sup -1}. Measurements of {sup 131}I in water varying between 0.4 and 11.9 Bq m{sup -3}. Fluxes of {sup 131}I from water to atmosphere are in the range 2.4 x 10{sup 5}-1.3 x 10{sup 7} Bq y{sup -1}, close to an annual discharge of {sup 131}I by a nuclear reactor.

  4. Cosmic ray muons in the deep ocean

    Science.gov (United States)

    Dumand Collaboration; Babson, J.; Barish, B.; Becker-Szenzy, R.; Bradner, H.; Cady, R.; Clem, J.; Dye, S.; Gaidos, J.; Gorham, P.; Grieder, P.; Kitamura, T.; Kropp, W.; Learned, J.; Matsuno, S.; March, R.; Mitsui, K.; O'Conner, D.; Ohashi, Y.; Okada, A.; Peterson, V.; Price, L.; Reines, F.; Roberts, A.; Roos, C.; Sobel, H.; Stenger, V.; Webster, M.; Wilson, C.

    1990-03-01

    A measurement of cosmic ray muon flux was obtained at ocean depths ranging from 2 km to 4 km at 500 m intervals off the West Coast of the Big Island of Hawaii. A brief description of the experiment and the results will be presented in this paper.

  5. Cosmic ray muons in the deep ocean

    Energy Technology Data Exchange (ETDEWEB)

    Babson, J.; Becker-Szenzy, R.; Cady, R.; Dye, S.; Gorham, P.; Learned, J.; Matsuno, S.; O' Conner, D.; Peterson, V.; Roberts, A.; Stenger, V. (Hawaii Univ., Honolulu (USA)); Barish, B. (California Inst. of Tech., Pasadena (USA)); Bradner, H. (California Univ., San Diego, La Jolla (USA)); Clem, J.; Roos, C.; Webster, M. (Vanderbilt Univ., Nashville, TN (USA)); Gaidos, J.; Wilson, C. (Purdue Univ., Lafayette, IN (USA)); Grieder, P. (Bern Univ. (Switzerland)); Kitamura, T.; Mitsui, K.; Ohashi, Y.; Okada, A. (Tokyo Univ. (Japan). Inst. for Cosmic Ray Research); Kropp, W.; Price, L.; Reines, F.; Sobel, H. (California Univ., Irvine (USA)); March, R. (Wisconsin Univ., Madison (USA)); DUMAND Collaboration

    1990-03-01

    A measurement of cosmic ray muon flux was obtained at ocean depths ranging from 2 km to 4 km at 500 m intervals off the West Coast of the Big Island of Hawaii. A brief description of the experiment and the results will be presented in this paper. (orig.).

  6. Seasonal effects of irrigation on land-atmosphere latent heat, sensible heat, and carbon fluxes in semiarid basin

    Science.gov (United States)

    Zeng, Yujin; Xie, Zhenghui; Liu, Shuang

    2017-02-01

    Irrigation, which constitutes ˜ 70 % of the total amount of freshwater consumed by the human population, is significantly impacting land-atmosphere fluxes. In this study, using the improved Community Land Model version 4.5 (CLM4.5) with an active crop model, two high-resolution (˜ 1 km) simulations investigating the effects of irrigation on latent heat (LH), sensible heat (SH), and carbon fluxes (or net ecosystem exchange, NEE) from land to atmosphere in the Heihe River basin in northwestern China were conducted using a high-quality irrigation dataset compiled from 1981 to 2013. The model output and measurements from remote sensing demonstrated the capacity of the developed models to reproduce ecological and hydrological processes. The results revealed that the effects of irrigation on LH and SH are strongest during summer, with a LH increase of ˜ 100 W m-2 and a SH decrease of ˜ 60 W m-2 over intensely irrigated areas. However, the reactions are much weaker during spring and autumn when there is much less irrigation. When the irrigation rate is below 5 mm day-1, the LH generally increases, whereas the SH decreases with growing irrigation rates. However, when the irrigation threshold is in excess of 5 mm day-1, there is no accrued effect of irrigation on the LH and SH. Irrigation produces opposite effects to the NEE during spring and summer. During the spring, irrigation yields more discharged carbon from the land to the atmosphere, increasing the NEE value by 0.4-0.8 gC m-2 day-1, while the summer irrigation favors crop fixing of carbon from atmospheric CO2, decreasing the NEE value by ˜ 0.8 gC m-2 day-1. The repercussions of irrigation on land-atmosphere fluxes are not solely linked to the irrigation amount, and other parameters (especially the temperature) also control the effects of irrigation on LH, SH, and NEE.

  7. On the ability of a global atmospheric inversion to constrain variations of CO2 fluxes over Amazonia

    Directory of Open Access Journals (Sweden)

    L. Molina

    2015-07-01

    Full Text Available The exchanges of carbon, water and energy between the atmosphere and the Amazon basin have global implications for the current and future climate. Here, the global atmospheric inversion system of the Monitoring of Atmospheric Composition and Climate (MACC service is used to study the seasonal and interannual variations of biogenic CO2 fluxes in Amazonia during the period 2002–2010. The system assimilated surface measurements of atmospheric CO2 mole fractions made at more than 100 sites over the globe into an atmospheric transport model. The present study adds measurements from four surface stations located in tropical South America, a region poorly covered by CO2 observations. The estimates of net ecosystem exchange (NEE optimized by the inversion are compared to an independent estimate of NEE upscaled from eddy-covariance flux measurements in Amazonia. They are also qualitatively evaluated against reports on the seasonal and interannual variations of the land sink in South America from the scientific literature. We attempt at assessing the impact on NEE of the strong droughts in 2005 and 2010 (due to severe and longer-than-usual dry seasons and the extreme rainfall conditions registered in 2009. The spatial variations of the seasonal and interannual variability of optimized NEE are also investigated. While the inversion supports the assumption of strong spatial heterogeneity of these variations, the results reveal critical limitations of the coarse-resolution transport model, the surface observation network in South America during the recent years and the present knowledge of modelling uncertainties in South America that prevent our inversion from capturing the seasonal patterns of fluxes across Amazonia. However, some patterns from the inversion seem consistent with the anomaly of moisture conditions in 2009.

  8. On the ability of a global atmospheric inversion to constrain variations of CO2 fluxes over Amazonia

    Directory of Open Access Journals (Sweden)

    L. Molina

    2015-01-01

    Full Text Available The exchanges of carbon, water, and energy between the atmosphere and the Amazon Basin have global implications for current and future climate. Here, the global atmospheric inversion system of the Monitoring of Atmospheric Composition and Climate service (MACC was used to further study the seasonal and interannual variations of biogenic CO2 fluxes in Amazonia. The system assimilated surface measurements of atmospheric CO2 mole fractions made over more than 100 sites over the globe into an atmospheric transport model. This study added four surface stations located in tropical South America, a region poorly covered by CO2 observations. The estimates of net ecosystem exchange (NEE optimized by the inversion were compared to independent estimates of NEE upscaled from eddy-covariance flux measurements in Amazonia, and against reports on the seasonal and interannual variations of the land sink in South America from the scientific literature. We focused on the impact of the interannual variation of the strong droughts in 2005 and 2010 (due to severe and longer-than-usual dry seasons, and of the extreme rainfall conditions registered in 2009. The spatial variations of the seasonal and interannual variability of optimized NEE were also investigated. While the inversion supported the assumption of strong spatial heterogeneity of these variations, the results revealed critical limitations that prevent global inversion frameworks from capturing the data-driven seasonal patterns of fluxes across Amazonia. In particular, it highlighted issues due to the configuration of the observation network in South America and the lack of continuity of the measurements. However, some robust patterns from the inversion seemed consistent with the abnormal moisture conditions in 2009.

  9. Search for Dark Matter WIMPs using Upward Through-going Muons in Super-Kamiokande

    CERN Document Server

    Desai, S; Fukuda, S; Fukuda, Y; Ishihara, K; Itow, Y; Koshio, Y; Minamino, A; Miura, M; Moriyama, S; Nakahata, M; Namba, T; Nambu, R; Obayashi, Y; Sakurai, N; Shiozawa, M; Suzuki, Y; Takeuchi, H; Takeuchi, Y; Yamada, S; Ishitsuka, M; Kajita, T; Kaneyuki, K; Nakayama, S; Okada, A; Ooyabu, T; Saji, C; Earl, M; Kearns, E; Stone, J L; Sulak, L R; Walter, C W; Wang, W; Goldhaber, M; Barszczak, T; Casper, D; Cravens, J P; Gajewski, W; Kropp, W R; Mine, S; Liu, D W; Smy, M B; Sobel, H W; Sterner, C W; Vagins, M R; Ganezer, K S; Hill, J; Keig, W E; Kim, J Y; Lim, I T; Ellsworth, R W; Tasaka, S; Guillian, G; Kibayashi, A; Learned, J G; Matsuno, S; Takemori, D; Messier, M D; Hayato, Y; Ichikawa, A K; Ishida, T; Ishii, T; Iwashita, T; Kameda, J; Kobayashi, T; Maruyama, T; Nakamura, K; Nitta, K; Oyama, Y; Sakuda, M; Totsuka, Y; Suzuki, A T; Hasegawa, M; Hayashi, K; Inagaki, T; Kato, I; Maesaka, H; Morita, T; Nakaya, T; Nishikawa, K; Sasaki, T; Ueda, S; Yamamoto, S; Haines, T J; Dazeley, S; Hatakeyama, S; Svoboda, R; Blaufuss, E; Goodman, J A; Sullivan, G W; Turcan, D; Scholberg, K; Habig, A; Jung, C K; Kato, T; Kobayashi, K; Malek, M; Mauger, C; McGrew, C; Sarrat, A; Sharkey, E; Yanagisawa, C; Toshito, T; Mitsuda, C; Miyano, K; Shibata, T; Kajiyama, Y; Nagashima, Y; Takita, M; Yoshida, M; Kim, H I; Kim, S B; Yoo, J; Okazawa, H; Ishizuka, T; Choi, Y; Seo, H K; Gando, Y; Hasegawa, T; Inoue, K; Shirai, J; Suzuki, A; Koshiba, M; Hashimoto, T; Nakajima, Y; Nishijima, K; Harada, T; Ishino, H; Morii, M; Nishimura, R; Watanabe, Y; Kielczewska, D; Zalipska, J; Gran, R; Shiraishi, K K; Washburn, K; Wilkes, R J

    2004-01-01

    We present the results of indirect searches for Weakly Interacting Massive Particles (WIMPs) with 1679.6 live days of data from the Super-Kamiokande detector using neutrino-induced upward through-going muons. The search is performed by looking for an excess of high energy muon neutrinos from WIMP annihilations in the Sun, the core of the Earth, and the Galactic Center, as compared to the number expected from the atmospheric neutrino background. No statistically significant excess was seen. We calculate flux limits in various angular cones around each of the above celestial objects. We obtain conservative model-independent upper limits on WIMP-nucleon cross-section as a function of WIMP mass and compare these results with the corresponding results from direct dark matter detection experiments.

  10. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    2011-01-01

    The Muon Alignment work now focuses on producing a new track-based alignment with higher track statistics, making systematic studies between the results of the hardware and track-based alignment methods and aligning the barrel using standalone muon tracks. Currently, the muon track reconstruction software uses a hardware-based alignment in the barrel (DT) and a track-based alignment in the endcaps (CSC). An important task is to assess the muon momentum resolution that can be achieved using the current muon alignment, especially for highly energetic muons. For this purpose, cosmic ray muons are used, since the rate of high-energy muons from collisions is very low and the event statistics are still limited. Cosmics have the advantage of higher statistics in the pT region above 100 GeV/c, but they have the disadvantage of having a mostly vertical topology, resulting in a very few global endcap muons. Only the barrel alignment has therefore been tested so far. Cosmic muons traversing CMS from top to bottom are s...

  11. Estimating local atmosphere-surface fluxes using eddy covariance and numerical Ogive optimization

    DEFF Research Database (Denmark)

    Sievers, Jakob; Papakyriakou, Tim; Larsen, Søren;

    2014-01-01

    -frequency contributions interfere with our ability to isolate local biogeochemical processes of interest, as represented by turbulent fluxes. No method currently exists to disentangle low-frequency contributions on flux estimates. Here, we present a novel comprehensive numerical scheme to identify and separate out low...

  12. ATLAS Muon DCS Upgrades and Optimizations

    CERN Document Server

    Bakalis, Christos; The ATLAS collaboration

    2017-01-01

    The Muon subsystem is comprised of four detector types: Resistive Plate Chambers (RPC) and Thin Gap Chambers (TGC) for trigger purposes, and Cathode Strip Chambers (CSC) and Muon Drift Tubes (MDT) for muon track reconstruction. The MDTs cover a large area at the outer part of the detector. In total, there are over a 1’000 MDT chambers, which are made of about 350’000 tubes. The luminosity upgrade of the HL-LHC is expected to pose a serious challenge to the MDTs. The expected increase of particle flux will set new, higher standards regarding the operation and control of the chambers. A step towards optimizing the ATLAS Muon Detector Control System (DCS) was to develop several DCS tools, namely a High Luminosity vs Trip Limit panel with its accompanying scripts and managers. The ultimate goal of this tool is to protect the MDT chambers from the rising particle flux and its associated increase in chamber current. In addition to optimizing the ATLAS Muon DCS, several tasks to accommodate the newly installed B...

  13. Panofsky Prize Lecture: Evidence for Oscillation of Atmospheric Neutrinos

    Science.gov (United States)

    Totsuka, Yoji

    2002-04-01

    Atmospheric neutrinos are decay products of pions and kaons (and of their decay products muons) produced by nuclear interactions of cosmic rays with air nuclei. Though their flux is not known well, only within 20 %, physics quantities that are independent of the flux uncertainty exist. The ratio of the number of muon neutrinos to the number of electron neutrinos is estimated to be accurate within 5 %. The other quantity is the shape of the zenith-angle distribution. Kamiokande and Super-Kamiokande are water Cherenkov detectors with 3,000 ton and 50,000 ton pure water, respectively. Kamiokande was operational in 1983 - 1996, and Super-K in 1996 - 2001 and 2003 - in future. We had already noted in 1988 that the observed μ/e ratio, which represented ν_mu/ν_e, was smaller by about 40 %. Later in 1994 we noted that the zenith angle distribution of muon neutrinos was strongly distorted, namely much fewer muons observed in the upward direction, while downward-going muons were what we expected. Electrons were quite normal. In 1996 Super-Kamiokande was ready. Its fiducial volume is 22.5 kton, much larger than Kamiokande's 1.04 kton. In 1998 based on 25.5 kton years of data we presented convincing results on the small μ/e ratio which was caused by fewer number of muons in the upward direction. The essential feature of the observed anomaly was that the disappearance of muon neutrinos depended strongly on their path length and on their energies. Electrons showed no anomaly within the experimental limit. These results were quantitatively and almost uniquely explained by oscillation of muon neutrinos to tau neutrinos, thus evidence for the finite but tiny mass of neutrinos.

  14. The marine atmospheric boundary layer under strong wind conditions: Organized turbulence structure and flux estimates by airborne measurements

    Science.gov (United States)

    Brilouet, Pierre-Etienne; Durand, Pierre; Canut, Guylaine

    2017-02-01

    During winter, cold air outbreaks take place in the northwestern Mediterranean sea. They are characterized by local strong winds (Mistral and Tramontane) which transport cold and dry continental air across a warmer sea. In such conditions, high values of surface sensible and latent heat flux are observed, which favor deep oceanic convection. The HyMeX/ASICS-MED field campaign was devoted to the study of these processes. Airborne measurements, gathered in the Gulf of Lion during the winter of 2013, allowed for the exploration of the mean and turbulent structure of the marine atmospheric boundary layer (MABL). A spectral analysis based on an analytical model was conducted on 181 straight and level runs. Profiles of characteristic length scales and sharpness parameter of the vertical wind spectrum revealed larger eddies along the mean wind direction associated with an organization of the turbulence field into longitudinal rolls. These were highlighted by boundary layer cloud bands on high-resolution satellite images. A one-dimensional description of the vertical exchanges is then a tricky issue. Since the knowledge of the flux profile throughout the entire MABL is essential for the estimation of air-sea exchanges, a correction of eddy covariance turbulent fluxes was developed taking into account the systematic and random errors due to sampling and data processing. This allowed the improvement of surface fluxes estimates, computed from the extrapolation of the stacked levels. A comparison between those surface fluxes and bulk fluxes computed at a moored buoy revealed considerable differences, mainly regarding the latent heat flux under strong wind conditions.

  15. Coupled atmosphere-mixed layer ocean response to ocean heat flux convergence along the Kuroshio current extension

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young-Oh [Woods Hole Oceanographic Institution, Physical Oceanography Department, Woods Hole, MA (United States); Deser, Clara [National Center for Atmospheric Research, Boulder, CO (United States); Cassou, Christophe [CNRS-CERFACS, Toulouse (France)

    2011-06-15

    The winter response of the coupled atmosphere-ocean mixed layer system to anomalous geostrophic ocean heat flux convergence in the Kuroshio Extension is investigated by means of experiments with an atmospheric general circulation model coupled to an entraining ocean mixed layer model in the extra-tropics. The direct response consists of positive SST anomalies along the Kuroshio Extension and a baroclinic (low-level trough and upper-level ridge) circulation anomaly over the North Pacific. The low-level component of this atmospheric circulation response is weaker in the case without coupling to an extratropical ocean mixed layer, especially in late winter. The inclusion of an interactive mixed layer in the tropics modifies the direct coupled atmospheric response due to a northward displacement of the Pacific Inter-Tropical Convergence Zone which drives an equivalent barotropic anomalous ridge over the North Pacific. Although the tropically driven component of the North Pacific atmospheric circulation response is comparable to the direct response in terms of sea level pressure amplitude, it is less important in terms of wind stress curl amplitude due to the mitigating effect of the relatively broad spatial scale of the tropically forced atmospheric teleconnection. (orig.)

  16. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2011-01-01

    A new set of muon alignment constants was approved in August. The relative position between muon chambers is essentially unchanged, indicating good detector stability. The main changes concern the global positioning of the barrel and of the endcap rings to match the new Tracker geometry. Detailed studies of the differences between track-based and optical alignment of DTs have proven to be a valuable tool for constraining Tracker alignment weak modes, and this information is now being used as part of the alignment procedure. In addition to the “split-cosmic” analysis used to investigate the muon momentum resolution at high momentum, a new procedure based on reconstructing the invariant mass of di-muons from boosted Zs is under development. Both procedures show an improvement in the momentum precision of Global Muons with respect to Tracker-only Muons. Recent developments in track-based alignment include a better treatment of the tails of residual distributions and accounting for correla...

  17. Horizontal Muons and a Search for AGN Neutrinos in Soudan 2

    CERN Document Server

    Demuth, D M

    2004-01-01

    We measure the horizontal ($|\\cos(\\theta_z)|<0.14$) neutrino-induced muon flux in Soudan 2 to be $3.81\\pm 0.47\\pm 0.29\\times 10^{-13} $cm$^{-2}$sr$^{-1}$s$^{-1}$. From the absence of horizontal muons with large energy loss, we set a limit on the flux of muon neutrinos from Active Galactic Nuclei.

  18. Multiple muons in MACRO

    Science.gov (United States)

    Heinz, R.

    1985-01-01

    An analysis of the multiple muon events in the Monopole Astrophysics and Cosmic Ray Observatory detector was conducted to determine the cosmic ray composition. Particular emphasis is placed on the interesting primary cosmic ray energy region above 2000 TeV/nucleus. An extensive study of muon production in cosmic ray showers has been done. Results were used to parameterize the characteristics of muon penetration into the Earth to the location of a detector.

  19. Interpreting the variations in atmospheric methane fluxes observed above a restored wetland

    DEFF Research Database (Denmark)

    Herbst, Mathias; Friborg, Thomas; Ringgaard, Rasmus;

    2011-01-01

    The eddy flux of methane (CH4) was measured over 14 months above a restored wetland in western Denmark. The average annual daily CH4 flux was 30.2mgm-2 d-1, but the daily emission rates varied considerably over time. Several factors were identified that explained some of this variation. (1) Grazing...... cattle moving through the source area of the eddy flux mast increased the measured emission rates by one order of magnitude during short time periods. (2) Friction velocity exerted a strong control on the CH4 flux whenever there were water pools on the surface. (3) An exponential response of the daily CH...... of the source area. This area covered not only different plant communities but also a gravel road and a river surface, and it had a microtopography that visibly induced a large spatial variability in the wetness of the top soil. It is shown that the control mechanisms for the methane emission from restored...

  20. Multi-year search for a diffuse flxu of muon neutrinos with AMANDA-II

    Energy Technology Data Exchange (ETDEWEB)

    IceCube Collaboration; Klein, Spencer; Achterberg, A.; Collaboration, IceCube

    2008-04-13

    A search for TeV-PeV muon neutrinos from unresolved sources was performed on AMANDA-II data collected between 2000 and 2003 with an equivalent livetime of 807 days. This diffuse analysis sought to find an extraterrestrial neutrino flux from sources with non-thermal components. The signal is expected to have a harder spectrum than the atmospheric muon and neutrino backgrounds. Since no excess of events was seen in the data over the expected background, an upper limit of E{sup 2}{Phi}{sub 90%C.L.} < 7.4 x 10{sup -8} GeV cm{sup -2} s{sup -1} sr{sup -1} is placed on the diffuse flux of muon neutrinos with a {Phi} {proportional_to} E{sup -2} spectrum in the energy range 16 TeV to 2.5 PeV. This is currently the most sensitive {Phi} {proportional_to} E{sup -2} diffuse astrophysical neutrino limit. We also set upper limits for astrophysical and prompt neutrino models, all of which have spectra different than {Phi} {proportional_to} E{sup -2}.

  1. Muon collider design

    Science.gov (United States)

    Palmer, R.; Sessler, A.; Skrinsky, A.; Tollestrup, A.; Baltz, A.; Caspi, S.; P., Chen; W-H., Cheng; Y., Cho; Cline, D.; Courant, E.; Fernow, R.; Gallardo, J.; Garren, A.; Gordon, H.; Green, M.; Gupta, R.; Hershcovitch, A.; Johnstone, C.; Kahn, S.; Kirk, H.; Kycia, T.; Y., Lee; Lissauer, D.; Luccio, A.; McInturff, A.; Mills, F.; Mokhov, N.; Morgan, G.; Neuffer, D.; K-Y., Ng; Noble, R.; Norem, J.; Norum, B.; Oide, K.; Parsa, Z.; Polychronakos, V.; Popovic, M.; Rehak, P.; Roser, T.; Rossmanith, R.; Scanlan, R.; Schachinger, L.; Silvestrov, G.; Stumer, I.; Summers, D.; Syphers, M.; Takahashi, H.; Torun, Y.; Trbojevic, D.; Turner, W.; van Ginneken, A.; Vsevolozhskaya, T.; Weggel, R.; Willen, E.; Willis, W.; Winn, D.; Wurtele, J.; Zhao, Y.

    1996-11-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity \\mu^+ \\mu^- colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Detector background, polarization, and nonstandard operating conditions are discussed.

  2. The long term recovery of heat and moisture fluxes to the atmosphere following fire in Australia's tropical savanna

    Science.gov (United States)

    Tapper, N.; Beringer, J.; Hutley, L.; Coutts, A.

    2003-04-01

    Fire is probably the greatest natural and anthropogenic environmental disturbance in Australia's tropical savannas, with the vast area burned each year (up to 250,000 km^2) likely to increase with predicted regional climate change. Globally savanna ecosystems cover 11.5% of the global landscape (Scholes and Hall 1996). As much as 75% of this landscape burns annually (Hao et al., 1990), accounting for more than 40% of all global biomass consumed (Hao and Ward 1993). These landscape-scale fires undoubtedly have massive impacts on regional water, energy and carbon dioxide exchanges and as a result may have important feedbacks to the atmosphere and regional climate. Fire may influence climate directly through the emission of smoke and trace gases from burning, but there are other important impacts of fire that may affect the atmosphere. Fire and the subsequent fire scars are likely to radically alter the surface energy budgets of tropical savannas through reduced surface albedo, increased available energy for partitioning into the convective fluxes, and increased substrate heat flux. The aerodynamic and biological properties of the ecosystem may also change, affecting surface-atmosphere coupling. There is a clear potential to influence atmospheric motion and moist convection at a range of scales. Potential fire scar impacts such as those mentioned above have previously been largely ignored and are the focus of the Savanna Fire Experiment (SAFE). Tower measurements of radiation, heat, moisture and CO_2 fluxes above burned and unburned savanna near Darwin, Australia, were initiated in August 2001 to observe the impacts of fire and fire scarring on flux exchange with the atmosphere, along with the longer term post-fire recovery of fluxes. Intensive field campaigns were mounted in the dry (fire) seasons of both 2001 and 2002, with flux recovery observed into the each of the subsequent monsoon seasons. Results and an early analysis of the time series of heat and moisture

  3. The flux of carbonyl sulfide and carbon disulfide between the atmosphere and a spruce forest

    Directory of Open Access Journals (Sweden)

    X. Xu

    2002-01-01

    Full Text Available Turbulent fluxes of carbonyl sulfide (COS and carbon disulfide (CS2 were measured over a spruce forest in Central Germany using the relaxed eddy accumulation (REA technique. A REA sampler was developed and validated using simultaneous measurements of CO2 fluxes by REA and by eddy correlation. REA measurements were conducted during six campaigns covering spring, summer, and fall between 1997 and 1999. Both uptake and emission of COS and CS2 by the forest were observed, with deposition occurring mainly during the sunlit period and emission mainly during the dark period. On the average, however, the forest acts as a sink for both gases. The average fluxes for COS and CS2 are  -93 ± 11.7 pmol m-2 s-1 and  -18 ± 7.6 pmol m-2 s-1, respectively. The fluxes of both gases appear to be correlated to photosynthetically active radiation and to the CO2 and chem{H_2O} fluxes, supporting the idea that the air-vegetation exchange of both gases is controlled by stomata. An uptake ratio COS/CO2 of 10 ± 1.7 pmol m mol-1 has been derived from the regression line for the correlation between the COS and CO2 fluxes. This uptake ratio, if representative for the global terrestrial net primary production, would correspond to a sink of 2.3 ± 0.5 Tg COS yr-1.

  4. Muons tomography applied to geosciences and volcanology

    Energy Technology Data Exchange (ETDEWEB)

    Marteau, J., E-mail: marteau@ipnl.in2p3.fr [Institut de Physique Nucleaire de Lyon (UMR CNRS-IN2P3 5822), Universite Lyon 1, Lyon (France); Gibert, D.; Lesparre, N. [Institut de Physique du Globe de Paris (UMR CNRS 7154), Sorbonne Paris Cite, Paris (France); Nicollin, F. [Geosciences Rennes (CNRS UMR 6118), Universite Rennes 1, Bat. 15 Campus de Beaulieu, 35042 Rennes cedex (France); Noli, P. [Universita degli studi di Napoli Federico II and INFN sez. Napoli (Italy); Giacoppo, F. [Laboratory for High Energy Physics, University of Bern, SidlerStrasse 5, CH-3012 Bern (Switzerland)

    2012-12-11

    Imaging the inner part of large geological targets is an important issue in geosciences with various applications. Different approaches already exist (e.g. gravimetry, electrical tomography) that give access to a wide range of information but with identified limitations or drawbacks (e.g. intrinsic ambiguity of the inverse problem, time consuming deployment of sensors over large distances). Here we present an alternative and complementary tomography method based on the measurement of the cosmic muons flux attenuation through the geological structures. We detail the basics of this muon tomography with a special emphasis on the photo-active detectors.

  5. Muons tomography applied to geosciences and volcanology

    CERN Document Server

    Marteau, J; Lesparre, N; Nicollin, F; Noli, P; Giacoppo, F

    2012-01-01

    Imaging the inner part of large geological targets is an important issue in geosciences with various applications. Dif- ferent approaches already exist (e.g. gravimetry, electrical tomography) that give access to a wide range of informations but with identified limitations or drawbacks (e.g. intrinsic ambiguity of the inverse problem, time consuming deployment of sensors over large distances). Here we present an alternative and complementary tomography method based on the measurement of the cosmic muons flux attenuation through the geological structures. We detail the basics of this muon tomography with a special emphasis on the photo-active detectors.

  6. Multiwavelength Observations of Small-Scale Reconnection Events triggered by Magnetic Flux Emergence in the Solar Atmosphere

    CERN Document Server

    Guglielmino, S L; Zuccarello, F; Aulanier, G; Domínguez, S Vargas; Kamio, S

    2010-01-01

    The interaction between emerging magnetic flux and the pre-existing ambient field has become a "hot" topic for both numerical simulations and high-resolution observations of the solar atmosphere. The appearance of brightenings and surges during episodes of flux emergence is believed to be a signature of magnetic reconnection processes. We present an analysis of a small-scale flux emergence event in NOAA 10971, observed simultaneously with the Swedish 1-m Solar Telescope on La Palma and the \\emph{Hinode} satellite during a joint campaign in September 2007. Extremely high-resolution G-band, H$\\alpha$, and \\ion{Ca}{2} H filtergrams, \\ion{Fe}{1} and \\ion{Na}{1} magnetograms, EUV raster scans, and X-ray images show that the emerging region was associated with chromospheric, transition region and coronal brightenings, as well as with chromospheric surges. We suggest that these features were caused by magnetic reconnection at low altitude in the atmosphere. To support this idea, we perform potential and linear force...

  7. Toward an estimation of daily european CO{sub 2} fluxes at high spatial resolution by inversion of atmospheric transport; Vers une estimation des flux de CO{sub 2} journaliers europeens a haute resolution par inversion du transport atmospherique

    Energy Technology Data Exchange (ETDEWEB)

    Carouge, C

    2006-04-15

    Since the end of the 1980's, measurements of atmospheric carbon dioxide have been used to estimate global and regional fluxes of CO{sub 2}. This is possible because CO{sub 2} concentration variation is directly linked to flux variation by atmospheric transport. We can find the spatial and temporal distribution of fluxes from concentration measurements by 'inverting' the atmospheric transport. Until recently, most CO{sub 2} inversions have used monthly mean CO{sub 2} atmospheric concentration measurements to infer monthly fluxes. Considering the sparseness of the global CO{sub 2} measurement network, fluxes were a priori aggregated on sub-continental regions and distributed on a fixed spatial pattern within these regions. Only one flux coefficient per month for each region was optimized. With this strong constraint, estimated fluxes can be biased by non-perfect distribution of fluxes within each region (aggregation error). Therefore, flux estimation at model resolution is being developed where the hard constraint of a fixed distribution within a region is replaced by a soft constraint of covariances between flux uncertainties. The use of continuous observations from an increasing number of measurement sites offers a new challenge for inverse modelers. We investigate the use of daily averaged observations to infer daily CO{sub 2} fluxes at model resolution over Europe. We have developed a global synthesis Bayesian inversion to invert daily fluxes at model resolution (50 x 50 km over Europe) from daily averaged CO{sub 2} concentrations. We have obtained estimated fluxes for the year 2001 over Europe using the 10 European continuous sites from the AEROCARB network. The global atmospheric model LMDZt is used with a nested grid over Europe. It is necessary to add a priori spatial and temporal correlations between flux errors to constrain the Bayesian inversion. We present the impact on estimated fluxes of three different spatial correlations based on

  8. The flux tube paradigm and its role in MHD turbulence in the solar atmosphere

    Science.gov (United States)

    Matthaeus, W. H.; Greco, A.; Servidio, S.; Wan, M.; Osman, K.; Ruffolo, D. J.

    2011-12-01

    Descriptions of magnetic field and plasma structures in terms of flux tubes, plasmoids and other bundles of magnetic field lines are familiar in the vocabulary of observational and theoretical space physics. "Spaghetti models" and flux ropes are well known examples. Flux tubes and families of field lines can also be defined in a medium that admits magnetic fluctuations, including strong MHD turbulence, but their behavior can become complicated. In 3D fluctuations the smooth flux tube description itself becomes in some sense unstable, as nearby field lines diverge and flux surfaces shred. This lends complexity to the structure of flux tubes, and can give rise to temporarily trapped field lines and charged test particle trajectories, with immediate implications for transport, e.g., of solar energetic particles. The properties of the turbulent magnetic field can also be strongly influenced by the dynamics of turbulence. Large scale self organizing behavior, or inverse cascade, can enhance very long wavelength structure, favoring Bohm scaling of diffusion coefficients. Meanwhile smaller scale flux tube structures are integral features of the inertial range of turbulence, giving rise to a cellularization of the plasma due to rapid dynamical relaxation processes. These drive the turbulent system locally towards low-acceleration states, including Alfvenic, Beltrami and force-free states. Cell boundaries are natural positions for formation of near discontinuous boundaries, where dynamical activity can be enhanced. A primary example is appearance of numerous discontinuities and active reconnection sites in turbulence, which appear to support a wide distribution of reconnection rates associated with coherent current structures. These discontinuities are also potential sites of enhanced heating, as expected in Kolmogorov's Refined Similarity Hypothesis. All of these features are related to self organization, cascade and intermittency of the turbulence. Examples of these

  9. {sup 210}Pb atmospheric flux and growth rates of a microbial mat from the northwestern Mediterranean Sea (Ebro River Delta)

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Cabeza, J.A.; Masque, P.; Martinez-Alonso, M.; Mir, J.; Esteve, I.

    1999-11-01

    Environmental archives are needed to study the variability of natural systems and the impact of man on them. Microbial mats, modern homologues of stromatolites, can be found in extreme environments such as the Ebro River Delta and were studied as potential environmental archives of atmospheric deposition. {sup 210}Pb, a radiotracer widely used in geochronology studies, was used both to determine the growth rates of a microbial mat from this environment and to estimate the {sup 210}Pb atmospheric flux in the northwestern Mediterranean Sea. The {sup 210}Pb profile showed the presence of three distinct peaks related to low growth-rate periods. This variability indicted the sensitivity of the system to external forcing. The annual atmospheric flux of {sup 210}Pb was 81.2 {+-} 1.4 B1 m{sup {minus}2}yr{sup {minus}1}, which is similar to other values found in the literature. The age profile showed two layers of differing growth rates, being 0.99 {+-} 0.10 mm yr{sup {minus}1} from the surface down to 10 mm depth. The accumulated mass profile showed a change at about 9 mm depth, corresponding to year 1983 {+-} 1. It is noteworthy that this is coincident with a strong El Nino Southern Oscillation event during 1982--1983, which has been shown to affect other ecosystems, including some in the Mediterranean area.

  10. Variance Method to Determine Turbulent Fluxes of Momentum And Sensible Heat in The Stable Atmospheric Surface Layer

    Science.gov (United States)

    de Bruin, H. A. R.; Hartogensis, O. K.

    2005-08-01

    Evidence is presented that in the stable atmospheric surface layer turbulent fluxes of heat and momentum can be determined from the standard deviations of longitudinal wind velocity and temperature, σ u and σ T respectively, measured at a single level. An attractive aspect of this method is that it yields fluxes from measurements that can be obtained with two-dimensional sonic anemometers. These instruments are increasingly being used at official weather stations, where they replace the standard cup anemometer wind vane system. With methods such as the one described in this note, a widespread, good quality, flux network can be established, which would greatly benefit the modelling community. It is shown that a ‘variance’ dimensionless height (ζ σ) defined from σ u and σ T is highly related to the ‘conventional’ dimensionless stability parameter ζ=z/L, where z is height and L is the Obukhov length. Empirical functions for ζ σ are proposed that allow direct calculation of heat and momentum fluxes from σ u and σ T. The method performs fairly well also during a night of intermittent turbulence.

  11. Short-term fluctuations in the eddy heat flux and baroclinic stability of the atmosphere

    Science.gov (United States)

    Stone, P. H.; Ghan, S. J.; Spiegel, D.; Rambaldi, S.

    1982-01-01

    National Meteorological Center data from midlatitudes for three Januaries is used in calculating time series of the zonal mean meridional eddy heat flux and the zonal mean baroclinic stability, as measured by the difference between the zonal wind shear and the critical value of the shear in two-level models. Time-lagged correlations between the two series reveal a highly significant negative correlation for short time lags, peaking at approximately -0.4 when the stability parameter lags one half day behind the eddy flux. They also reveal that strongly unstable conditions are not followed by significant increases in the eddy flux. These results are seen as indicating that the synoptic variations of the zonal mean eddy flux are not closely related to the degree of baroclinic instability of the zonal mean flow. The autocorrelation of the eddy flux is then compared with those expected for autoregressive processes. A Bayesian information criterion suggests that the behavior is represented best by a damped oscillation, with a damping time of 0.8 day and a period of five days.

  12. Vertical fluxes and atmospheric cycling of methanol, acetaldehyde, and acetone in a coastal environment

    Directory of Open Access Journals (Sweden)

    M. Yang

    2013-03-01

    Full Text Available We present here vertical fluxes of methanol, acetaldehyde, and acetone measured directly with eddy covariance (EC during March to July 2012 near the southwest coast of the UK. The performance of the proton-transfer reaction mass spectrometer (PTR-MS for flux measurement is characterized, with additional considerations given to the homogeneity and stationarity assumptions required by EC. Concentrations and fluxes of these compounds vary significantly with time of day and wind direction. Higher values of acetaldehyde and acetone are usually observed in the daytime and from the direction of a forested park, most likely due to light-driven emissions from terrestrial plants. Methanol concentration and flux do not demonstrate clear diel variability, suggesting sources in addition to plants. We estimate air–sea exchange and photochemical rates of these compounds, which are compared to measured vertical fluxes. For acetaldehyde, the mean (1σ concentration of 0.13 (0.02 ppb at night may be maintained by oceanic emission, while photochemical destruction outpaces production during the day. Air-sea exchange and photochemistry are probably net sinks of methanol and acetone in this region. Their nighttime concentrations of 0.46 (0.20 and 0.39 (0.08 ppb appear to be affected more by terrestrial emissions and long distance transport, respectively.

  13. Differential Muon Tomography to Continuously Monitor Changes in the Composition of Subsurface Fluids

    Science.gov (United States)

    Coleman, Max; Kudryavtsev, Vitaly A.; Spooner, Neil J.; Fung, Cora; Gluyas, John

    2013-01-01

    Muon tomography has been used to seek hidden chambers in Egyptian pyramids and image subsurface features in volcanoes. It seemed likely that it could be used to image injected, supercritical carbon dioxide as it is emplaced in porous geological structures being used for carbon sequestration, and also to check on subsequent leakage. It should work equally well in any other application where there are two fluids of different densities, such as water and oil, or carbon dioxide and heavy oil in oil reservoirs. Continuous monitoring of movement of oil and/or flood fluid during enhanced oil recovery activities for managing injection is important for economic reasons. Checking on leakage for geological carbon storage is essential both for safety and for economic purposes. Current technology (for example, repeat 3D seismic surveys) is expensive and episodic. Muons are generated by high- energy cosmic rays resulting from supernova explosions, and interact with gas molecules in the atmosphere. This innovation has produced a theoretical model of muon attenuation in the thickness of rock above and within a typical sandstone reservoir at a depth of between 1.00 and 1.25 km. Because this first simulation was focused on carbon sequestration, the innovators chose depths sufficient for the pressure there to ensure that the carbon dioxide would be supercritical. This innovation demonstrates for the first time the feasibility of using the natural cosmic-ray muon flux to generate continuous tomographic images of carbon dioxide in a storage site. The muon flux is attenuated to an extent dependent on, amongst other things, the density of the materials through which it passes. The density of supercritical carbon dioxide is only three quarters that of the brine in the reservoir that it displaces. The first realistic simulations indicate that changes as small as 0.4% in the storage site bulk density could be detected (equivalent to 7% of the porosity, in this specific case). The initial

  14. Scaling water and energy fluxes in climate systems - Three land-atmospheric modeling experiments

    Science.gov (United States)

    Wood, Eric F.; Lakshmi, Venkataraman

    1993-01-01

    Three numerical experiments that investigate the scaling of land-surface processes - either of the inputs or parameters - are reported, and the aggregated processes are compared to the spatially variable case. The first is the aggregation of the hydrologic response in a catchment due to rainfall during a storm event and due to evaporative demands during interstorm periods. The second is the spatial and temporal aggregation of latent heat fluxes, as calculated from SiB. The third is the aggregation of remotely sensed land vegetation and latent and sensible heat fluxes using TM data from the FIFE experiment of 1987 in Kansas. In all three experiments it was found that the surface fluxes and land characteristics can be scaled, and that macroscale models based on effective parameters are sufficient to account for the small-scale heterogeneities investigated.

  15. Solar Modulation of Inner Trapped Belt Radiation Flux as a Function of Atmospheric Density

    Science.gov (United States)

    Lodhi, M. A. K.

    2005-01-01

    No simple algorithm seems to exist for calculating proton fluxes and lifetimes in the Earth's inner, trapped radiation belt throughout the solar cycle. Most models of the inner trapped belt in use depend upon AP8 which only describes the radiation environment at solar maximum and solar minimum in Cycle 20. One exception is NOAAPRO which incorporates flight data from the TIROS/NOAA polar orbiting spacecraft. The present study discloses yet another, simple formulation for approximating proton fluxes at any time in a given solar cycle, in particular between solar maximum and solar minimum. It is derived from AP8 using a regression algorithm technique from nuclear physics. From flux and its time integral fluence, one can then approximate dose rate and its time integral dose.

  16. Muon Fluence Measurements for Homeland Security Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ankney, Austin S.; Berguson, Timothy J.; Borgardt, James D.; Kouzes, Richard T.

    2010-08-10

    This report focuses on work conducted at Pacific Northwest National Laboratory to better characterize aspects of backgrounds in RPMs deployed for homeland security purposes. Two polyvinyl toluene scintillators were utilized with supporting NIM electronics to measure the muon coincidence rate. Muon spallation is one mechanism by which background neutrons are produced. The measurements performed concentrated on a broad investigation of the dependence of the muon flux on a) variations in solid angle subtended by the detector; b) the detector inclination with the horizontal; c) depth underground; and d) diurnal effects. These tests were conducted inside at Building 318/133, outdoors at Building 331G, and underground at Building 3425 at Pacific Northwest National Laboratory.

  17. Ship-based Surface Flux Observations Under Atmospheric Rivers During the CALWATER 2015 Field Campaign

    Science.gov (United States)

    Blomquist, B.; Fairall, C. W.; Intrieri, J. M.; Wolfe, D. E.; Pezoa, S.

    2015-12-01

    The NOAA Physical Sciences Division portable flux system was deployed on the R/V Ron Brown as part of the surface observational strategy for the CALWATER 2015 field investigation. Measurements included turbulent fluxes of temperature, water vapor and wind stress. A refined 'best' set of bulk meteorological measurements for the duration of the cruise was produced from combined NOAA, DOE ARM-AMF2 and shipboard sensors. Direct eddy correlation and bulk model estimates of sensible and latent heat are broadly consistent (RMSE transport budget.

  18. Ultraviolet actinic flux in clear and cloudy atmospheres: model calculations and aircraft-based measurements

    OpenAIRE

    G. G. Palancar; Shetter, R. E.; S. R. Hall; B. M. Toselli; S. Madronich

    2011-01-01

    Ultraviolet (UV) actinic fluxes measured with two Scanning Actinic Flux Spectroradiometers (SAFS) aboard the NASA DC-8 aircraft are compared with the Tropospheric Ultraviolet-Visible (TUV) model. The observations from 17 days in July–August 2004 (INTEX-NA field campaign) span a wide range of latitudes (27.5° N–53.0° N), longitudes (45.1° W–139.5° W), altitudes (0.1–11.9 km), ozone columns (285.4–352.7 DU), and solar zenith angles (1.7°–85&de...

  19. OPAL Muon Chamber

    CERN Multimedia

    OPAL was one of the 4 experiments installed at the LEP particle accelerator from 1989 to 2000. This is a slice of the outermost layer of OPAL : the muon chambers. This outside layer detects particles which are not stopped by the previous layers. These are mostly muons.

  20. Telecommunication using muon beams

    Science.gov (United States)

    Arnold, Richard C.

    1976-01-01

    Telecommunication is effected by generating a beam of mu mesons or muons, varying a property of the beam at a modulating rate to generate a modulated beam of muons, and detecting the information in the modulated beam at a remote location.

  1. Slow Muons and Muonium

    CERN Document Server

    Kirch, Klaus

    2016-01-01

    The Paul Scherrer Institut in Switzerland operates the high intensity proton accelerator facility HIPA. A 590 MeV kinetic energy proton beam of presently up to 2.4 mA is sent to target stations producing pions, muons and neutrons for fundamental and applied physics. The beam power of 1.4 MW provides the world's highest intensities of low momentum muons which can be stopped in low mass targets. Rates of surface muons of up to about $10^8$/s are being provided to various unique precision particle physics experiments. Two feasibility studies are ongoing to considerably improve the available muon beams. The high intensity muon beamline, HiMB, could deliver on the order of $10^{10}$/s surface muons and the stopped muon cooler, muCool, aims at a gain factor of $10^{10}$ in phase space quality while sacrificing only less than 3 orders of magnitude in intensity for low energy $\\mu^+$. These beams will allow a new generation of precision physics experiments with stopped muons and muonium atoms.

  2. A Measurement of Atmospheric Neutrino Flux Consistent with Tau Neutrino Appearance

    CERN Document Server

    Abe, K; Iida, T; Ishihara, K; Kameda, J; Koshio, Y; Minamino, A; Mitsuda, C; Miura, M; Moriyama, S; Nakahata, M; Obayashi, Y; Ogawa, H; Shiozawa, M; Suzuki, Y; Takeda, A; Takeuchi, Y; Ueshima, K; Higuchi, I; Ishihara, C; Ishitsuka, M; Kajita, T; Kaneyuki, K; Mitsuka, G; Nakayama, S; Nishino, H; Okumura, K; Saji, C; Takenaga, Y; Totsuka, Y; Clark, S; Desai, S; Dufour, F; Kearns, E; Likhoded, S; Litos, M; Raaf, Jennifer L; Stone, J L; Sulak, L R; Wang, W; Goldhaber, M; Casper, D; Cravens, J P; Kropp, W R; Liu, D W; Mine, S; Regis, C; Smy, M B; Sobel, H W; Vagins, M R; Ganezer, K S; Hill, J E; Keig, W E; Jang, J S; Kim, J Y; Lim, I T; Scholberg, K; Tanimoto, N; Walter, C W; Wendell, R; Ellsworth, R W; Tasaka, S; Guillian, E; Learned, J G; Matsuno, S; Messier, M D; Ichikawa, A K; Ishida, T; Ishii, T; Iwashita, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Nitta, K; Oyama, Y; Suzuki, A T; Hasegawa, M; Kato, I; Maesaka, H; Nakaya, T; Nishikawa, K; Sasaki, T; Sato, H; Yamamoto, S; Yokoyama, M; Haines, T J; Dazeley, S; Hatakeyama, S; Svoboda, R; Sullivan, G W; Habig, A; Gran, R; Fukuda, Y; Sato, T; Itow, Y; Koike, T; Jung, C K; Kato, T; Kobayashi, K; Malek, M; McGrew, C; Sarrat, A; Terri, R; Yanagisawa, C; Tamura, N; Sakuda, M; Sugihara, M; Kuno, Y; Yoshida, M; Kim, S B; Yoo, J; Ishizuka, T; Okazawa, H; Choi, Y; Seo, H K; Gando, Y; Hasegawa, T; Inoue, K; Ishii, H; Nishijima, K; Ishino, H; Watanabe, Y; Koshiba, M; Kielczewska, D; Zalipska, J; Berns, H G; Shiraishi, K K; Washburn, K; Wilkes, R J

    2006-01-01

    A search for the appearance of tau neutrinos from \\mutau oscillations in the atmospheric neutrinos has been performed using the atmospheric neutrino data from the Super-Kamiokande-I experiment. A tau neutrino enriched sample is selected by a statistical analysis method with a set of variables characterizing the decay of tau leptons. The zenith angle distribution of the selected sample is fitted with a combination of the expected tau neutrino signals resulting from oscillations and the predicted atmospheric neutrino background events including oscillations. The Super-Kamiokande-I atmospheric neutrino data for 1489.2 days, which find a best fit tau neutrino appearance signal of 138 $\\pm$ 48 (stat.) $^{+15}_{-32}$ (sys.), disfavor the hypothesis of no tau neutrino appearance by 2.4 sigma. The data are consistent with tau neutrino appearance.

  3. Pion-Muon Concentrating System for Detectors of Highly Enriched Uranium

    CERN Document Server

    Kurennoy, Sergey; Blind, Barbara; Jason, Andrew J; Neri, Filippo

    2005-01-01

    One of many possible applications of low-energy antiprotons collected in a Penning trap can be a portable muon source. Released antiprotons annihilate on impact with normal matter producing on average about 3 charged pions per antiproton, which in turn decay into muons. Existence of such negative-muon sources of sufficient intensity would bring into play, for example, detectors of highly enriched uranium based on muonic X-rays. We explore options of collecting and focusing pions and resulting muons to enhance the muon flux toward the detector. Simulations with MARS and MAFIA are used to choose the target material and parameters of the magnetic system consisting of a few solenoids.

  4. Western Pacific atmospheric nutrient deposition fluxes, their impact on surface ocean productivity

    Science.gov (United States)

    Martino, M.; Hamilton, D.; Baker, A. R.; Jickells, T. D.; Bromley, T.; Nojiri, Y.; Quack, B.; Boyd, P. W.

    2014-07-01

    The atmospheric deposition of both macronutrients and micronutrients plays an important role in driving primary productivity, particularly in the low-latitude ocean. We report aerosol major ion measurements for five ship-based sampling campaigns in the western Pacific from ~25°N to 20°S and compare the results with those from Atlantic meridional transects (~50°N to 50°S) with aerosols collected and analyzed in the same laboratory, allowing full incomparability. We discuss sources of the main nutrient species (nitrogen (N), phosphorus (P), and iron (Fe)) in the aerosols and their stoichiometry. Striking north-south gradients are evident over both basins with the Northern Hemisphere more impacted by terrestrial dust sources and anthropogenic emissions and the North Atlantic apparently more impacted than the North Pacific. We estimate the atmospheric supply rates of these nutrients and the potential impact of the atmospheric deposition on the tropical western Pacific. Our results suggest that the atmospheric deposition is P deficient relative to the needs of the resident phytoplankton. These findings suggest that atmospheric supply of N, Fe, and P increases primary productivity utilizing some of the residual excess phosphorus (P*) in the surface waters to compensate for aerosol P deficiency. Regional primary productivity is further enhanced via the stimulation of nitrogen fixation fuelled by the residual atmospheric iron and P*. Our stoichiometric calculations reveal that a P* of 0.1 µmol L-1 can offset the P deficiency in atmospheric supply for many months. This study suggests that atmospheric deposition may sustain ~10% of primary production in both the western tropical Pacific.

  5. Reanalysis of the Atmospheric Flux of Nutrient Elements to the Southern Yellow Sea and the East China Sea

    Institute of Scientific and Technical Information of China (English)

    Wan Xiaofang; Wu Zengmao; Chang Zhiqing

    2003-01-01

    Based on the recent research results on dry and wet deposition of nutrient elements and sulphate, we estimate the atmospheric flux of nutrient elements and sulphate to the southern Yellow Sea and the East China Sea in each season. The results suggest that the concentrations of nutrient elements and sulphate in aerosol and precipitation show an apparent seasonal cycle with the maximum values in winter and the minimum values in summer. Depositions of nitrate and sulphate are dominated by wet deposition, while the deposition for phosphate is mainly dry deposition. Moreover, compared with the riverine inputs, the atmospheric deposition may be the main source of dissolved inorganic nutrients in the southern Yellow Sea and the East China Sea.

  6. Impacts of a decadal drainage disturbance on surface-atmosphere fluxes of carbon dioxide in a permafrost ecosystem

    Science.gov (United States)

    Kittler, Fanny; Burjack, Ina; Corradi, Chiara A. R.; Heimann, Martin; Kolle, Olaf; Merbold, Lutz; Zimov, Nikita; Zimov, Sergey; Göckede, Mathias

    2016-09-01

    Hydrologic conditions are a major controlling factor for carbon exchange processes in high-latitude ecosystems. The presence or absence of water-logged conditions can lead to significant shifts in ecosystem structure and carbon cycle processes. In this study, we compared growing season CO2 fluxes of a wet tussock tundra ecosystem from an area affected by decadal drainage to an undisturbed area on the Kolyma floodplain in northeastern Siberia. For this comparison we found the sink strength for CO2 in recent years (2013-2015) to be systematically reduced within the drained area, with a minor increase in photosynthetic uptake due to a higher abundance of shrubs outweighed by a more pronounced increase in respiration due to warmer near-surface soil layers. Still, in comparison to the strong reduction of fluxes immediately following the drainage disturbance in 2005, recent CO2 exchange with the atmosphere over this disturbed part of the tundra indicate a higher carbon turnover, and a seasonal amplitude that is comparable again to that within the control section. This indicates that the local permafrost ecosystem is capable of adapting to significantly different hydrologic conditions without losing its capacity to act as a net sink for CO2 over the growing season. The comparison of undisturbed CO2 flux rates from 2013-2015 to the period of 2002-2004 indicates that CO2 exchange with the atmosphere was intensified, with increased component fluxes (ecosystem respiration and gross primary production) over the past decade. Net changes in CO2 fluxes are dominated by a major increase in photosynthetic uptake, resulting in a stronger CO2 sink in 2013-2015. Application of a MODIS-based classification scheme to separate the growing season into four sub-seasons improved the interpretation of interannual variability by illustrating the systematic shifts in CO2 uptake patterns that have occurred in this ecosystem over the past 10 years and highlighting the important role of the late

  7. Precision Muon Physics

    CERN Document Server

    Gorringe, T P

    2015-01-01

    The muon is playing a unique role in sub-atomic physics. Studies of muon decay both determine the overall strength and establish the chiral structure of weak interactions, as well as setting extraordinary limits on charged-lepton-flavor-violating processes. Measurements of the muon's anomalous magnetic moment offer singular sensitivity to the completeness of the standard model and the predictions of many speculative theories. Spectroscopy of muonium and muonic atoms gives unmatched determinations of fundamental quantities including the magnetic moment ratio $\\mu_\\mu / \\mu_p$, lepton mass ratio $m_{\\mu} / m_e$, and proton charge radius $r_p$. Also, muon capture experiments are exploring elusive features of weak interactions involving nucleons and nuclei. We will review the experimental landscape of contemporary high-precision and high-sensitivity experiments with muons. One focus is the novel methods and ingenious techniques that achieve such precision and sensitivity in recent, present, and planned experiment...

  8. Influence and impact of the parametrization of the turbulent air-sea fluxes on atmospheric moisture and convection in the tropics

    Science.gov (United States)

    Torres, Olivier; Braconnot, Pascale; Gainusa-Bogdan, Alina; Hourdin, Frédéric; Marti, Olivier; Pelletier, Charles

    2016-04-01

    The turbulent fluxes across the ocean/atmosphere interface represent one of the principal driving forces of the global atmospheric and oceanic circulation and are also responsible for various phenomena like the water supply to the atmospheric column, which itself is extremely important for atmospheric convection. Although the representation of these fluxes has been the subject of major studies, it still remains a very challenging problem. Our aim is to better understand the role of these fluxes in climate change experiments and in the equator-pole redistribution of heat and water by the oceanic and atmospheric circulation. For this, we are developing a methodology starting from idealized 1D experiments and going all the way up to fully coupled ocean-atmosphere simulations of past and future climates. The poster will propose a synthesis of different simulations we have performed with a 1D version of the LMDz atmosphere model towards a first objective of understanding how different parameterizations of the turbulent fluxes affect the moisture content of the atmosphere and the feedback with the atmospheric boundary layer and convection schemes. Air-sea fluxes are not directly resolved by the models because they are subgrid-scale phenomena and are therefore represented by parametrizations. We investigate the differences between several 1D simulations of the TOGA-COARE campaign (1992-1993, Pacific warm pool region), for which 1D boundary conditions and observations are available to test the results of atmospheric models. Each simulation considers a different version of the LMDz model in terms of bulk formula (four) used to compute the turbulent fluxes. We also consider how the representation of gustiness in these parameterizations affects the results. The use of this LMDz test case (very constrained within an idealized framework) allows us to determine how the response of surface fluxes helps to reinforce or damp the atmospheric water vapor content or cloud feedbacks

  9. Ultraviolet actinic flux in clear and cloudy atmospheres: model calculations and aircraft-based measurements

    Directory of Open Access Journals (Sweden)

    G. G. Palancar

    2011-01-01

    Full Text Available Ultraviolet (UV actinic fluxes measured with two Scanning Actinic Flux Spectroradiometers (SAFS aboard the NASA DC-8 aircraft are compared with the Tropospheric Ultraviolet-Visible (TUV model. The observations from 17 days in July–August 2004 (INTEX-NA field campaign span a wide range of latitudes (27.5° N–53.0° N, longitudes (45.1° W–139.5° W, altitudes (0.1–11.9 km, ozone columns (285.4–352.7 DU, and solar zenith angles (1.7°–85°. Both cloudy and cloud-free conditions were encountered. For cloud-free conditions, the ratio of observed to clear-sky-model actinic flux (integrated from 298 to 422 nm is 1.01±0.04, i.e. in good agreement with observations. The agreement improves to 1.00±0.03 for the down-welling component under clear sky conditions. In the presence of clouds, both down-welling and up-welling components show reductions or enhancements from clear sky values, depending on the position of the airplane relative to clouds. The correlations between up-welling and down-welling deviations are well reproduced with sensitivity studies using the TUV model, and are understood qualitatively with a simple conceptual model. This analysis of actinic flux observations illustrates opportunities for future evaluations of photolysis rates in three-dimensional chemistry-transport models.

  10. Lateral transport of soil carbon and land-atmosphere CO2 flux induced by water erosion in China.

    Science.gov (United States)

    Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G L; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof

    2016-06-14

    Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land-atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt C⋅y(-1) of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt C⋅y(-1), equivalent to 8-37% of the terrestrial carbon sink previously assessed in China. Interestingly, the "hotspots," largely distributed in mountainous regions in the most intensive sink areas (>40 g C⋅m(-2)⋅y(-1)), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty.

  11. Lateral transport of soil carbon and land-atmosphere CO2 flux induced by water erosion in China

    Science.gov (United States)

    Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G. L.; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof

    2016-06-01

    Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land-atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt Cṡy-1 of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt Cṡy-1, equivalent to 8-37% of the terrestrial carbon sink previously assessed in China. Interestingly, the “hotspots,” largely distributed in mountainous regions in the most intensive sink areas (>40 g Cṡm-2ṡy-1), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty.

  12. Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: observations of midwinter SHEBA conditions

    Science.gov (United States)

    Persson, P. Ola G.; Shupe, Matthew D.; Perovich, Don; Solomon, Amy

    2016-10-01

    Observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) project are used to describe a sequence of events linking midwinter long-range advection of atmospheric heat and moisture into the Arctic Basin, formation of supercooled liquid water clouds, enhancement of net surface energy fluxes through increased downwelling longwave radiation, and reduction in near-surface conductive heat flux loss due to a warming of the surface, thereby leading to a reduction in sea-ice bottom growth. The analyses provide details of two events during Jan. 1-12, 1998, one entering the Arctic through Fram Strait and the other from northeast Siberia; winter statistics extend the results. Both deep, precipitating frontal clouds and post-frontal stratocumulus clouds impact the surface radiation and energy budget. Cloud liquid water, occurring preferentially in stratocumulus clouds extending into the base of the inversion, provides the strongest impact on surface radiation and hence modulates the surface forcing, as found previously. The observations suggest a minimum water vapor threshold, likely case dependent, for producing liquid water clouds. Through responses to the radiative forcing and surface warming, this cloud liquid water also modulates the turbulent and conductive heat fluxes, and produces a thermal wave penetrating into the sea ice. About 20-33 % of the observed variations of bottom ice growth can be directly linked to variations in surface conductive heat flux, with retarded ice growth occurring several days after these moisture plumes reduce the surface conductive heat flux. This sequence of events modulate pack-ice wintertime environmental conditions and total ice growth, and has implications for the annual sea-ice evolution, especially for the current conditions of extensive thinner ice.

  13. Ultraviolet actinic flux in clear and cloudy atmospheres: model calculations and aircraft-based measurements

    Directory of Open Access Journals (Sweden)

    G. G. Palancar

    2011-06-01

    Full Text Available Ultraviolet (UV actinic fluxes measured with two Scanning Actinic Flux Spectroradiometers (SAFS aboard the NASA DC-8 aircraft are compared with the Tropospheric Ultraviolet-Visible (TUV model. The observations from 17 days in July-August 2004 (INTEX-NA field campaign span a wide range of latitudes (28° N–53° N, longitudes (45° W–140° W, altitudes (0.1–11.9 km, ozone columns (285–353 DU, and solar zenith angles (2°–85°. Both cloudy and cloud-free conditions were encountered. For cloud-free conditions, the ratio of observed to clear-sky-model actinic flux (integrated from 298 to 422 nm was 1.01±0.04, i.e. in good agreement with observations. The agreement improved to 1.00±0.03 for the down-welling component under clear sky conditions. In the presence of clouds and depending on their position relative to the aircraft, the up-welling component was frequently enhanced (by as much as a factor of 8 relative to cloud-free values while the down-welling component showed both reductions and enhancements of up to a few tens of percent. Including all conditions, the ratio of the observed actinic flux to the cloud-free model value was 1.1±0.3 for the total, or separately 1.0±0.2 for the down-welling and 1.5±0.8 for the up-welling components. The correlations between up-welling and down-welling deviations are well reproduced with sensitivity studies using the TUV model, and are understood qualitatively with a simple conceptual model. This analysis of actinic flux observations illustrates opportunities for future evaluations of photolysis rates in three-dimensional chemistry-transport models.

  14. Muon background studies for shallow depth Double - Chooz near detector

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, H. [Laboratoire Astroparticule et Cosmologie (APC) - Université Paris 7. Paris (France)

    2015-08-17

    Muon events are one of the main concerns regarding background in neutrino experiments. The placement of experimental set-ups in deep underground facilities reduce considerably their impact on the research of the expected signals. But in the cases where the detector is installed on surface or at shallow depth, muon flux remains high, being necessary their precise identification for further rejection. Total flux, mean energy or angular distributions are some of the parameters that can help to characterize the muons. Empirically, the muon rate can be measured in an experiment by a number of methods. Nevertheless, the capability to determine the muons angular distribution strongly depends on the detector features, while the measurement of the muon energy is quite difficult. Also considering that on-site measurements can not be extrapolated to other sites due to the difference on the overburden and its profile, it is necessary to find an adequate solution to perform the muon characterization. The method described in this work to obtain the main features of the muons reaching the experimental set-up, is based on the muon transport simulation by the MUSIC software, combined with a dedicated sampling algorithm for shallow depth installations based on a modified Gaisser parametrization. This method provides all the required information about the muons for any shallow depth installation if the corresponding overburden profile is implemented. In this work, the method has been applied for the recently commissioned Double - Chooz near detector, which will allow the cross-check between the simulation and the experimental data, as it has been done for the far detector.

  15. Equivalent dose rate by muons to the human body.

    Science.gov (United States)

    Băcioiu, I

    2011-11-01

    In this paper, the relative sensitivity from different human tissues of the human body, at a ground level, from muon cosmic radiation has been studied. The aim of this paper was to provide information on the equivalent dose rates received from atmospheric muons to human body, at the ground level. The calculated value of the effective dose rate by atmospheric muons plus the radiation levels of the natural annual background radiation dose, at the ground level, in the momentum interval of cosmic ray muon (0.2-120.0 GeV/c) is about 2.106±0.001 mSv/y, which is insignificant in comparison with the values of the doses from the top of the atmosphere.

  16. Modeling concentrations and fluxes of atmospheric CO2 in the North East Atlantic region

    DEFF Research Database (Denmark)

    Geels, C.; Christensen, J.H.; Hansen, A.W.

    2001-01-01

    As part of the Danish NEAREX project a three-dimensional Eulerian hemispheric air pollution model is used to study the transport and concentrations of atmospheric CO2 in the North East Atlantic region. The model domain covers the major part of the Northern Hemisphere and currently the model...... source types. Here the model setup and the used parameterizations will be described. The model is validated by comparing the results with atmospheric measurements from four monitoring stations in or close to the northern part of the North Atlantic. Some preliminary model results will be shown and shortly...... includes simple parameterizations of the main sinks and sources for atmospheric CO2. One of the objectives of the project is to study and maybe quantify the relative importance of the various sinks and source types and areas for this region. In order to do so the model has been run with differentiated...

  17. Three-dimensional parameterizations of the synoptic scale kinetic energy and momentum flux in the Earth's atmosphere

    Directory of Open Access Journals (Sweden)

    D. Coumou

    2011-11-01

    Full Text Available We present a new set of statistical-dynamical equations (SDEs which can accurately reproduce the three-dimensional atmospheric fields of synoptic scale kinetic energy and momentum flux. The set of equations is closed by finding proper parameterizations for the vertical macro-turbulent diffusion coefficient and ageostrophic terms. The equations have been implemented in a new SD atmosphere model, named Aeolus. We show that the synoptic scale kinetic energy and momentum fluxes generated by the model are in good agreement with empirical data, which were derived from bandpass-filtered ERA-40 data. In addition to present-day climate, the model is tested for substantially colder (last glacial maximum and warmer (2×CO2 climates, and shown to be in agreement with general circulation model (GCM results. With the derived equations, one can efficiently study the position and strength of storm tracks under different climate scenarios with calculation time a fraction of those of GCMs. This work prepares ground for the development of a new generation of fast Earth System Models of Intermediate Complexity which are able to perform multi-millennia simulations in a reasonable time frame while appropriately accounting for the climatic effect of storm tracks.

  18. Tutorial models of the climate and habitability of Proxima Centauri b: a thin atmosphere is sufficient to distribute heat given low stellar flux

    CERN Document Server

    Goldblatt, Colin

    2016-01-01

    Proxima Centauri b, an Earth-size planet in the habitable zone of our nearest stellar neighbour, has just been discovered. A theoretical framework of synchronously rotating planets, in which the risk of a runaway greenhouse on the sunlight side and atmospheric collapse on the reverse side are mutually ameliorated via heat transport is discussed. This is developed via simple (tutorial) models of the climate. These show that lower incident stellar flux means that less heat transport, so less atmospheric mass, is required. The incident stellar flux at Proxima Centauri b is indeed low, which may help enhance habitability if it has suffered some atmospheric loss or began with a low volatile inventory.

  19. How large is the cosmic dust flux into the Earth's atmosphere?

    Science.gov (United States)

    Plane, John; Janches, Diego; Gomez-Martin, Juan Carlos; Bones, David; Diego Carrillo-Sanchez, Juan; James, Sandy; Nesvorny, David; Pokorny, Petr

    2016-07-01

    Cosmic dust particles are produced in the solar system from the sublimation of comets as they orbit close to the sun, and also from collisions between asteroids in the belt between Mars and Jupiter. Current estimates of the magnitude of the cosmic dust input rate into the Earth's atmosphere range from 2 to well over 100 tons per day, depending on whether the measurements are made in space, in the middle atmosphere, or at the surface in polar ice cores. This nearly 2 order-of-magnitude discrepancy indicates that there are serious flaws in the interpretation of observations that have been used to make the estimates. Dust particles enter the atmosphere at hyperthermal velocities (11 - 72 km s ^{-1}), and mostly ablate at heights between 80 and 120 km in a region of the atmosphere known as the mesosphere/lower thermosphere (MLT). The resulting metal vapours (Fe, Mg, Si and Na etc.) then oxidize and recondense to form nm-size particles, termed "meteoric smoke". These particles are too small to sediment downwards. Instead, they are transported by the general circulation of the atmosphere, taking roughly 5 years to reach the surface. There is great interest in the role smoke particles play as condensation nuclei of noctilucent ice clouds in the mesosphere, and polar stratospheric clouds in the lower stratosphere. Various new estimates of the dust input will be discussed. The first is from a zodiacal dust cloud model which predicts that more than 90% of the dust entering the atmosphere comes from Jupiter Family Comets; this model is constrained by observations of the zodiacal cloud using the IRAS, COBE and Planck satellites. The cometary dust is predicted to mostly be in a near-prograde orbit, entering the atmosphere with an average velocity around 14 km s ^{-1}. The total dust input should then be about 40 t d ^{-1}. However, relatively few of these particles are observed, even by the powerful Arecibo 430 MHz radar. Coupled models of meteoroid differential ablation

  20. A cosmic Ray Muon Experiment: a Way to Teach Standard Model of Particles at Community Colleges

    Science.gov (United States)

    Barazandeh, C.; Gutarra-Leon, A.; Rivas, R.; Glaser, H.; Majewski, W.

    2016-11-01

    This experiment is an example of research for early undergraduate students and of its benefits and challenges as an accessible strategy for community colleges, in the spirit of the report on improving undergraduate STEM education from the US President's Council of Advisors on Science and Technology. The goals of this project include measuring average low- energy muon flux, day/night flux difference, time dilation, energy spectra of electrons and muons in arbitrary units, muon decay curve, average lifetime of muons. From the lifetime data we calculate the weak coupling constant gw, electric charge e and the Higgs energy density.

  1. A biogenic CO2 flux adjustment scheme for the mitigation of large-scale biases in global atmospheric CO2 analyses and forecasts

    Science.gov (United States)

    Agustí-Panareda, Anna; Massart, Sébastien; Chevallier, Frédéric; Balsamo, Gianpaolo; Boussetta, Souhail; Dutra, Emanuel; Beljaars, Anton

    2016-08-01

    Forecasting atmospheric CO2 daily at the global scale with a good accuracy like it is done for the weather is a challenging task. However, it is also one of the key areas of development to bridge the gaps between weather, air quality and climate models. The challenge stems from the fact that atmospheric CO2 is largely controlled by the CO2 fluxes at the surface, which are difficult to constrain with observations. In particular, the biogenic fluxes simulated by land surface models show skill in detecting synoptic and regional-scale disturbances up to sub-seasonal time-scales, but they are subject to large seasonal and annual budget errors at global scale, usually requiring a posteriori adjustment. This paper presents a scheme to diagnose and mitigate model errors associated with biogenic fluxes within an atmospheric CO2 forecasting system. The scheme is an adaptive scaling procedure referred to as a biogenic flux adjustment scheme (BFAS), and it can be applied automatically in real time throughout the forecast. The BFAS method generally improves the continental budget of CO2 fluxes in the model by combining information from three sources: (1) retrospective fluxes estimated by a global flux inversion system, (2) land-use information, (3) simulated fluxes from the model. The method is shown to produce enhanced skill in the daily CO2 10-day forecasts without requiring continuous manual intervention. Therefore, it is particularly suitable for near-real-time CO2 analysis and forecasting systems.

  2. Effects of atmospheric deposition nitrogen flux and its composition on soil solution chemistry from a red soil farmland, southeast China.

    Science.gov (United States)

    Cui, Jian; Zhou, Jing; Peng, Ying; Chan, Andrew; Mao, Jingdong

    2015-12-01

    A detailed study on the solution chemistry of red soil in South China is presented. Data are collected from two simulated column-leaching experiments with an improved setup to evaluate the effects of atmospheric N deposition (ADN) composition and ADN flux on agricultural soil acidification using a (15)N tracer technique and an in situ soil solution sampler. The results show that solution pH values decline regardless of the increase of the NH4(+)/NO3(-) ratio in the ADN composition or ADN flux, while exchangeable Al(3+), Ca(2+), Mg(2+), and K(+) concentrations increase at different soil depths (20, 40, and 60 cm). Compared with the control, ADN (60 kg per ha per year N, NH4(+)/NO3(-) ratio of 2 : 1) decreases solution pH values, increases solution concentrations of NO3(-)-N, Al(3+), Ca(2+) and Mg(2+) at the middle and lower soil depths, and promotes their removal. NH4(+)-N was not detected in red soil solutions of all the three soil layers, which might be attributed to effects of nitrification, absorption and fixation in farmland red soil. Some of the NO3(-)-N concentrations at 40-60 cm soil depth exceed the safe drinking level of 10 mg L(-1), especially when the ADN flux is beyond 60 kg ha(-1) N. These features are critical for understanding the ADN agro-ecological effects, and for future assessment of ecological critical loads of ADN in red soil farmlands.

  3. Heat flux to the helium cryogenic system elements in the case of incidental vacuum vessel ventilation with atmospheric air

    CERN Document Server

    CERN. Geneva

    2016-01-01

    The selection process for size in safety equipment for cold vessels or process pipes in cryogenic systems should take into consideration the incidental ventilation of the vacuum vessel with atmospheric air. In this case, a significant heat input toward the cold elements of the system can be expected. A number of experimental investigations have been done for the elements at liquid helium temperature which have been covered with 10 layers of MLI. The typical values of the heat flux were measured in a range of 3.7 to 5.0 kW/m2 of the element surface. The helium temperature parts are typically surrounded by thermal shields that are kept in a temperature range of 50-80K. On the external side, the thermal shields are covered with 30-40 layers of MLI while on the internal side, the shields are bare. The theoretical calculations of heat flux to the thermal shield, with respect to the possibility of air condensation and freezing on the bare side of the thermal shield, show that the heat flux to the thermal shield can...

  4. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    M. Dallavalle

    2013-01-01

    A new Muon misalignment scenario for 2011 (7 TeV) Monte Carlo re-processing was re-leased. The scenario is based on running of standard track-based reference-target algorithm (exactly as in data) using single-muon simulated sample (with the transverse-momentum spectrum matching data). It used statistics similar to what was used for alignment with 2011 data, starting from an initially misaligned Muon geometry from uncertainties of hardware measurements and using the latest Tracker misalignment geometry. Validation of the scenario (with muons from Z decay and high-pT simulated muons) shows that it describes data well. The study of systematic uncertainties (dominant by now due to huge amount of data collected by CMS and used for muon alignment) is finalised. Realistic alignment position errors are being obtained from the estimated uncertainties and are expected to improve the muon reconstruction performance. Concerning the Hardware Alignment System, the upgrade of the Barrel Alignment is in progress. By now, d...

  5. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez and Y. Pakhotin

    2012-01-01

      A new track-based alignment for the DT chambers is ready for deployment: an offline tag has already been produced which will become part of the 52X Global Tag. This alignment was validated within the muon alignment group both at low and high momentum using a W/Z skim sample. It shows an improved mass resolution for pairs of stand-alone muons, improved curvature resolution at high momentum, and improved DT segment extrapolation residuals. The validation workflow for high-momentum muons used to depend solely on the “split cosmics” method, looking at the curvature difference between muon tracks reconstructed in the upper or lower half of CMS. The validation has now been extended to include energetic muons decaying from heavily boosted Zs: the di-muon invariant mass for global and stand-alone muons is reconstructed, and the invariant mass resolution is compared for different alignments. The main areas of development over the next few months will be preparing a new track-based C...

  6. A comparative study between the fluxes of trace elements in bulk atmospheric deposition at industrial, urban, traffic, and rural sites.

    Science.gov (United States)

    Fernández-Olmo, I; Puente, M; Irabien, A

    2015-09-01

    The input of trace elements via atmospheric deposition towards industrial, urban, traffic, and rural areas is quite different and depends on the intensity of the anthropogenic activity. A comparative study between the element deposition fluxes in four sampling sites (industrial, urban, traffic, and rural) of the Cantabria region (northern Spain) has been performed. Sampling was carried out monthly using a bulk (funnel bottle) sampler. The trace elements, As, Cd, Cr, Cu, Mn, Mo, Ni, Pb, Ti, Zn, and V, were determined in the water soluble and insoluble fractions of bulk deposition samples. The element deposition fluxes at the rural, urban, and traffic sites followed a similar order (Zn > Mn> > Cu ≈ Ti > Pb > V ≈ Cr > Ni> > As ≈ Mo > Cd). The most enriched elements were Cd, Zn, and Cu, while V, Ni, and Cr were less enriched. An extremely high deposition of Mn was found at the industrial site, leading to high enrichment factor values, resulting from the presence of a ferro-manganese/silico-manganese production plant in the vicinity of the sampling site. Important differences were found in the element solubilities in the studied sites; the element solubilities were higher at the traffic and rural sites, and lower at the urban and industrial sites. For all sites, Zn and Cd were the most soluble elements, whereas Cr and Ti were less soluble. The inter-site correlation coefficients for each element were calculated to assess the differences between the sites. The rural and traffic sites showed some similarities in the sources of trace elements; however, the sources of these elements at the industrial and rural sites were quite different. Additionally, the element fluxes measured in the insoluble fraction of the bulk atmospheric deposition exhibited a good correlation with the daily traffic volume at the traffic site.

  7. Z to Muon Muon Collision Event Animation

    CERN Multimedia

    ATLAS experiment

    2010-01-01

    This animation was created of an actual ATLAS collision event in 2010. This animation shows from the particle view the race through the LHC, ending in the detector where the particle collision occurs. Candidate for an event with a Z boson decaying to two muons.

  8. Preservation of atmospheric dimethyl sulphide samples on Tenax in sea-to-air flux measurements

    NARCIS (Netherlands)

    Zemmelink, H.J.; Gieskes, W.W C; Holland, P.M.; Dacey, J.W

    2002-01-01

    The low concentration of dimethyl sulphide (DMS) in the atmosphere makes it necessary to concentrate the gas before gas-chromatographic analysis. One of the preferred methods has been to use a cold Tenax adsorbent in this concentration step. DMS concentration onto Tenax-TA traps is shown to be sensi

  9. Experiments on muon radiography with emulsion track detectors

    Directory of Open Access Journals (Sweden)

    Aleksandrov Andrey

    2016-01-01

    Full Text Available Muon radiography is a method of study the internal structure of large natural and industrial objects based on sensing an object with a flux of cosmic muons with their subsequent registration and analysis of the pattern of their dispersion, or conplete (or partial absorption. The Lebedev Physical Institute of the Russian Academy of Sciences and the Skobeltsyn Institute of Nuclear Physics of Moscow State University have started a series of muon radiography experiments with nuclear emulsion detectors. As a result, the optimal conditions for experiment arrangement have been determined, algorithms of data processing have been worked out, and peculiarities of the method have been ultimately investigated.

  10. Measuring the Disappearance of Muon Neutrinos with the MINOS Detector

    Energy Technology Data Exchange (ETDEWEB)

    Radovic, Alexander [Univ. College London, Bloomsbury (United Kingdom)

    2013-08-01

    MINOS is a long baseline neutrino oscillation experiment. It measures the flux from the predominately muon neutrino NuMI beam first 1 km from beam start and then again 735 km later using a pair of steel scintillator tracking calorimeters. The comparison of measured neutrino energy spectra at our Far Detector with the prediction based on our Near Detector measurement allows for a measurement of the parameters which define neutrino oscillations. This thesis will describe the most recent measurement of muon neutrino disappearance in the NuMI muon neutrino beam using the MINOS experiment.

  11. Muons reveal the interior of volcanoes

    CERN Multimedia

    Francesco Poppi

    2010-01-01

    The MU-RAY project has the very challenging aim of providing a “muon X-ray” of the Vesuvius volcano (Italy) using a detector that records the muons hitting it after traversing the rock structures of the volcano. This technique was used for the first time in 1971 by the Nobel Prize-winner Louis Alvarez, who was searching for unknown burial chambers in the Chephren pyramid.   The location of the muon detector on the slopes of the Vesuvius volcano. Like X-ray scans of the human body, muon radiography allows researchers to obtain an image of the internal structures of the upper levels of volcanoes. Although such an image cannot help to predict ‘when’ an eruption might occur, it can, if combined with other observations, help to foresee ‘how’ it could develop and serves as a powerful tool for the study of geological structures. Muons come from the interaction of cosmic rays with the Earth's atmosphere. They are able to traverse layers of ro...

  12. The Active Muon Shield

    CERN Document Server

    Bezshyiko, Iaroslava

    2016-01-01

    In the SHiP beam-dump of the order of 1011 muons will be produced per second. An active muon-shield is used to magnetically deflect these muons out of the acceptance of the spectrom- eter. This note describes how this shield is modelled and optimized. The SHiP spectrometer is being re-optimized using a conical decay-vessel, and utilizing the possibility to magnetize part of the beam-dump shielding iron. A shield adapted to these new conditions is presented which is significantly shorter and lighter than the shield used in the Technical Proposal (TP), while showing a similar performance.

  13. The Effect of Cumulus Cloud Field Anisotropy on Domain-Averaged Solar Fluxes and Atmospheric Heating Rates

    Science.gov (United States)

    Hinkelman, Laura M.; Evans, K. Franklin; Clothiaux, Eugene E.; Ackerman, Thomas P.; Stackhouse, Paul W., Jr.

    2006-01-01

    Cumulus clouds can become tilted or elongated in the presence of wind shear. Nevertheless, most studies of the interaction of cumulus clouds and radiation have assumed these clouds to be isotropic. This paper describes an investigation of the effect of fair-weather cumulus cloud field anisotropy on domain-averaged solar fluxes and atmospheric heating rate profiles. A stochastic field generation algorithm was used to produce twenty three-dimensional liquid water content fields based on the statistical properties of cloud scenes from a large eddy simulation. Progressively greater degrees of x-z plane tilting and horizontal stretching were imposed on each of these scenes, so that an ensemble of scenes was produced for each level of distortion. The resulting scenes were used as input to a three-dimensional Monte Carlo radiative transfer model. Domain-average transmission, reflection, and absorption of broadband solar radiation were computed for each scene along with the average heating rate profile. Both tilt and horizontal stretching were found to significantly affect calculated fluxes, with the amount and sign of flux differences depending strongly on sun position relative to cloud distortion geometry. The mechanisms by which anisotropy interacts with solar fluxes were investigated by comparisons to independent pixel approximation and tilted independent pixel approximation computations for the same scenes. Cumulus anisotropy was found to most strongly impact solar radiative transfer by changing the effective cloud fraction, i.e., the cloud fraction when the field is projected on a surface perpendicular to the direction of the incident solar beam.

  14. A new muon-pion collection and transport system design using superconducting solenoids based on CSNS

    Science.gov (United States)

    Xiao, Ran; Liu, Yan-Fen; Xu, Wen-Zhen; Ni, Xiao-Jie; Pan, Zi-Wen; Ye, Bang-Jiao

    2016-05-01

    A new muon and pion capture system is proposed for the China Spallation Neutron Source (CSNS), currently under construction. Using about 4% of the pulsed proton beam (1.6 GeV, 4 kW and 1 Hz) of CSNS to bombard a cylindrical graphite target inside a superconducting solenoid, both surface muons and pions can be acquired. The acceptance of this novel capture system - a graphite target wrapped up by a superconducting solenoid - is larger than the normal muon beam lines using quadrupoles at one side of the separated muon target. The muon and pion production at different capture magnetic fields was calculated using Geant4. The bending angle of the capture solenoid with respect to the proton beam was also optimized in simulation to achieve more muons and pions. Based on the layout of the muon experimental area reserved at the CSNS project, a preliminary muon beam line was designed with multi-purpose muon spin rotation areas (surface, decay and low-energy muons). Finally, high-flux surface muons (108/s) and decay muons (109/s) simulated by G4beamline will be available at the end of the decay solenoid based on the first phase of CSNS. This collection and transport system will be a very effective beam line at a proton current of 2.5 μA. Supported by National Natural Science Foundation of China (11527811)

  15. Particle concentration and flux dynamics in the atmospheric boundary layer as the indicator of formation mechanism

    DEFF Research Database (Denmark)

    Lauros, J.; Sogachev, Andrey; Smolander, S.;

    2011-01-01

    vertical profile of particle number concentration does not correspond to observations. Instead organic induced nucleation leads to good agreement confirming the relevance of the aerosol formation mechanism including organic compounds emitted by the biosphere. The simulation of aerosol concentration within......We carried out column model simulations to study particle fluxes and deposition and to evaluate different particle formation mechanisms at a boreal forest site in Finland. We show that kinetic nucleation of sulphuric acid cannot be responsible for new particle formation alone as the simulated...

  16. A study of muon neutrino disappearance in the MINOS detectors and the NuMI beam

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Jiajie [Univ. of South Carolina, Columbia, SC (United States)

    2010-01-01

    There is now substantial evidence that the proper description of neutrino involves two representations related by the 3 x 3 PMNS matrix characterized by either distinct mass or flavor. The parameters of this mixing matrix, three angles and a phase, as well as the mass differences between the three mass eigenstates must be determined experimentally. The Main Injector Neutrino Oscillation Search experiment is designed to study the flavor composition of a beam of muon neutrinos as it travels between the Near Detector at Fermi National Accelerator Laboratory at 1 km from the target, and the Far Detector in the Soudan iron mine in Minnesota at 735 km from the target. From the comparison of reconstructed neutrino energy spectra at the near and far location, precise measurements of neutrino oscillation parameters from muon neutrino disappearance and electron neutrino appearance are expected. It is very important to know the neutrino flux coming from the source in order to achieve the main goal of the MINOS experiment: precise measurements of the atmospheric mass splitting |Δm232|, sin2 θ23. The goal of my thesis is to accurately predict the neutrino flux for the MINOS experiment and measure the neutrino mixing angle and atmospheric mass splitting.

  17. Coastal upwelling fluxes of O2, N2O, and CO2 assessed from continuous atmospheric observations at Trinidad,California

    Directory of Open Access Journals (Sweden)

    T. J. Lueker

    2004-08-01

    Full Text Available Continuous atmospheric records of O2/N2, CO2 and N2O obtained at Trinidad, California document the effects of air-sea exchange during coastal upwelling and plankton bloom events. The atmospheric records provide continuous observations of air-sea fluxes related to synoptic scale upwelling events over several upwelling seasons. Combined with satellite, buoy and local meteorology data, calculated anomalies in O2/N2 and N2O were utilized in a simple atmospheric transport model to compute air-sea fluxes during coastal upwelling. CO2 fluxes were linked to the oceanic component of the O2 fluxes through local hydrographic data and estimated as a function of upwelling intensity (surface ocean temperature and wind speed. Regional air-sea fluxes of O2/N2O, and CO2 during coastal upwelling were estimated with the aid of satellite wind and SST data. Upwelling CO2 fluxes were found to represent ~10% of export production along the northwest coast of North America. Synoptic scale upwelling events impact the net exchange of atmospheric CO2 along the coastal margin, and will vary in response to the frequency and duration of alongshore winds that are subject to climate change.

  18. Development and analysis of prognostic equations for mesoscale kinetic energy and mesoscale (subgrid scale) fluxes for large-scale atmospheric models

    Science.gov (United States)

    Avissar, Roni; Chen, Fei

    1993-01-01

    Generated by landscape discontinuities (e.g., sea breezes) mesoscale circulation processes are not represented in large-scale atmospheric models (e.g., general circulation models), which have an inappropiate grid-scale resolution. With the assumption that atmospheric variables can be separated into large scale, mesoscale, and turbulent scale, a set of prognostic equations applicable in large-scale atmospheric models for momentum, temperature, moisture, and any other gaseous or aerosol material, which includes both mesoscale and turbulent fluxes is developed. Prognostic equations are also developed for these mesoscale fluxes, which indicate a closure problem and, therefore, require a parameterization. For this purpose, the mean mesoscale kinetic energy (MKE) per unit of mass is used, defined as E-tilde = 0.5 (the mean value of u'(sub i exp 2), where u'(sub i) represents the three Cartesian components of a mesoscale circulation (the angle bracket symbol is the grid-scale, horizontal averaging operator in the large-scale model, and a tilde indicates a corresponding large-scale mean value). A prognostic equation is developed for E-tilde, and an analysis of the different terms of this equation indicates that the mesoscale vertical heat flux, the mesoscale pressure correlation, and the interaction between turbulence and mesoscale perturbations are the major terms that affect the time tendency of E-tilde. A-state-of-the-art mesoscale atmospheric model is used to investigate the relationship between MKE, landscape discontinuities (as characterized by the spatial distribution of heat fluxes at the earth's surface), and mesoscale sensible and latent heat fluxes in the atmosphere. MKE is compared with turbulence kinetic energy to illustrate the importance of mesoscale processes as compared to turbulent processes. This analysis emphasizes the potential use of MKE to bridge between landscape discontinuities and mesoscale fluxes and, therefore, to parameterize mesoscale fluxes

  19. A Search For Atmospheric Neutrino-Induced Cascades with IceCube

    CERN Document Server

    D'Agostino, Michelangelo

    2009-01-01

    The IceCube detector is an all-flavor neutrino telescope. For several years IceCube has been detecting muon tracks from charged-current muon neutrino interactions in ice. However, IceCube has yet to observe the electromagnetic or hadronic particle showers or "cascades" initiated by charged or neutral-current neutrino interactions. The first detection of such an event signature will likely come from the known flux of atmospheric electron and muon neutrinos. A search for atmospheric neutrino-induced cascades was performed using a full year of IceCube data. Reconstruction and background rejection techniques were developed to reach, for the first time, an expected signal-to-background ratio ~1 or better.

  20. A mechanistic model of H{sub 2}{sup 18}O and C{sup 18}OO fluxes between ecosystems and the atmosphere: Model description and sensitivity analyses

    Energy Technology Data Exchange (ETDEWEB)

    Riley, W.J.; Still, C.J.; Torn, M.S.; Berry, J.A.

    2002-01-01

    The concentration of 18O in atmospheric CO2 and H2O is a potentially powerful tracer of ecosystem carbon and water fluxes. In this paper we describe the development of an isotope model (ISOLSM) that simulates the 18O content of canopy water vapor, leaf water, and vertically resolved soil water; leaf photosynthetic 18OC16O (hereafter C18OO) fluxes; CO2 oxygen isotope exchanges with soil and leaf water; soil CO2 and C18OO diffusive fluxes (including abiotic soil exchange); and ecosystem exchange of H218O and C18OO with the atmosphere. The isotope model is integrated into the land surface model LSM, but coupling with other models should be straightforward. We describe ISOLSM and apply it to evaluate (a) simplified methods of predicting the C18OO soil-surface flux; (b) the impacts on the C18OO soil-surface flux of the soil-gas diffusion coefficient formulation, soil CO2 source distribution, and rooting distribution; (c) the impacts on the C18OO fluxes of carbonic anhydrase (CA) activity in soil and leaves; and (d) the sensitivity of model predictions to the d18O value of atmospheric water vapor and CO2. Previously published simplified models are unable to capture the seasonal and diurnal variations in the C18OO soil-surface fluxes simulated by ISOLSM. Differences in the assumed soil CO2 production and rooting depth profiles, carbonic anhydrase activity in soil and leaves, and the d18O value of atmospheric water vapor have substantial impacts on the ecosystem CO2 flux isotopic composition. We conclude that accurate prediction of C18OO ecosystem fluxes requires careful representation of H218O and C18OO exchanges and transport in soils and plants.

  1. First space-based derivation of the global atmospheric methanol emission fluxes

    Science.gov (United States)

    Stavrakou, T.; Guenther, A.; Razavi, A.; Clarisse, L.; Clerbaux, C.; Coheur, P.-F.; Hurtmans, D.; Karagulian, F.; de Mazière, M.; Vigouroux, C.; Amelynck, C.; Schoon, N.; Laffineur, Q.; Heinesch, B.; Aubinet, M.; Rinsland, C.; Müller, J.-F.

    2011-05-01

    This study provides improved methanol emission estimates on the global scale, in particular for the largest methanol source, the terrestrial biosphere, and for biomass burning. To this purpose, one complete year of spaceborne measurements of tropospheric methanol columns retrieved for the first time by the thermal infrared sensor IASI aboard the MetOp satellite are compared with distributions calculated by the IMAGESv2 global chemistry-transport model. Two model simulations are performed using a priori biogenic methanol emissions either from the new MEGANv2.1 emission model, which is fully described in this work and is based on net ecosystem flux measurements, or from a previous parameterization based on net primary production by Jacob et al. (2005). A significantly better model performance in terms of both amplitude and seasonality is achieved through the use of MEGANv2.1 in most world regions, with respect to IASI data, and to surface- and air-based methanol measurements, even though important discrepancies over several regions are still present. As a second step of this study, we combine the MEGANv2.1 and the IASI column abundances over continents in an inverse modelling scheme based on the adjoint of the IMAGESv2 model to generate an improved global methanol emission source. The global optimized source totals 187 Tg yr-1 with a contribution of 100 Tg yr-1 from plants, only slightly lower than the a priori MEGANv2.1 value of 105 Tg yr-1. Large decreases with respect to the MEGANv2.1 biogenic source are inferred over Amazonia (up to 55 %) and Indonesia (up to 58 %), whereas more moderate reductions are recorded in the Eastern US (20-25 %) and Central Africa (25-35 %). On the other hand, the biogenic source is found to strongly increase in the arid and semi-arid regions of Central Asia (up to a factor of 5) and Western US (factor of 2), probably due to a source of methanol specific to these ecosystems which is unaccounted for in the MEGANv2.1 inventory. The most

  2. Inversion and Application of Muon Tomography Data for Cave Exploration in Budapest, Hungary

    Science.gov (United States)

    Molnár, Gábor; Surányi, Gergely; Gábor Barnaföldi, Gergely; Oláh, László; Hamar, Gergö; Varga, Dezsö

    2016-04-01

    In this contribution we present a prospecting muon-tomograph and its application for cave exploration in Budapest, Hungary. The more than 50 years old basic idea behind muon tomography is the ability of muon particles, generated in the upper atmosphere to penetrate tens of meters into rocks with continuous attenuation before decay. This enables us placing a detector in a tunnel and measure muon fluxes from different directions and convert these fluxes to rock density data. The lightweight, 51x46x32 cm3 size, muon tomograph containing 5 detector layers was developed by Wigner Research Centre for Physics, Budapest, Hungary. A muon passing at least 4 of the 5 detector layers along one line are classified as unique muon detection. Its angular resolution is approximately 1 degree and it is effective up to 50 degrees off zenith. During the measurement campaign we installed the muon detector at seventeen locations along an abandoned, likely Cold War air raid shelter tunnel for 10-15 days at each location, collecting large set of events. The measured fluxes are converted to apparent density lengths (multiplication of rock densities by along path lengths) using an empirically tested relationship. For inverting measurements, a 3D block model of the subsurface was developed. It consisted of cuboids, with equal horizontal size, equal number in every line and in every row of the model. Additionally it consisted of blocks with different heights, equal number of blocks in every column. (Block height was constant in a column, but varied from column to column.) The heights of the blocks in a column were chosen, that top face of the uppermost blocks has an elevation defined by a Digital Elevation Model. Initially the density of every model blocks was set to a realistic value. We calculated the theoretical density length for every detector location and for a subset of flux measurement directions. We also calculated the partial derivatives of these theoretical density length values

  3. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2012-01-01

      A new muon alignment has been produced for 2012 A+B data reconstruction. It uses the latest Tracker alignment and single-muon data samples to align both DTs and CSCs. Physics validation has been performed and shows a modest improvement in stand-alone muon momentum resolution in the barrel, where the alignment is essentially unchanged from the previous version. The reference-target track-based algorithm using only collision muons is employed for the first time to align the CSCs, and a substantial improvement in resolution is observed in the endcap and overlap regions for stand-alone muons. This new alignment is undergoing the approval process and is expected to be deployed as part of a new global tag in the beginning of December. The pT dependence of the φ-bias in curvature observed in Monte Carlo was traced to a relative vertical misalignment between the Tracker and barrel muon systems. Moving the barrel as a whole to match the Tracker cures this pT dependence, leaving only the &phi...

  4. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Gervasio Gomez

    2012-01-01

      The new alignment for the DT chambers has been successfully used in physics analysis starting with the 52X Global Tag. The remaining main areas of development over the next few months will be preparing a new track-based CSC alignment and producing realistic APEs (alignment position errors) and MC misalignment scenarios to match the latest muon alignment constants. Work on these items has been delayed from the intended timeline, mostly due to a large involvement of the muon alignment man-power in physics analyses over the first half of this year. As CMS keeps probing higher and higher energies, special attention must be paid to the reconstruction of very-high-energy muons. Recent muon POG reports from mid-June show a φ-dependence in curvature bias in Monte Carlo samples. This bias is observed already at the tracker level, where it is constant with muon pT, while it grows with pT as muon chamber information is added to the tracks. Similar studies show a much smaller effect in data, at le...

  5. Electromagnetic Interactions of Muons

    CERN Multimedia

    2002-01-01

    This experiment was the first in a programme of physics experiments with high-energy muons using a large spectrometer facility. The aim of this experiment is to study the inelastic scattering of muons with various targets to try to understand better the physics of virtual photon interactions over a wide range of four-momentum transfer (q$^{2}$).\\\\ \\\\ The spectrometer includes a large aperture dipole magnet (2m x 1m) of bending power $\\simeq$5 T.m and a magnetized iron filter to distinguish the scattered muons from hadrons. Drift chambers and MWPC are used before and after the magnet to detect charged products of the interaction and to allow a momentum determination of the scattered muon to an accuracy of $\\simeq$at 100 GeV/c, and an angular definition of $\\pm$ 0.1 mrad. The triggering on scattered muons relies on three planes of scintillation counter hodoscopes before and after the magnetized iron, whose magnetic field serves to eliminate triggers from low momentum muons which are produced copiously by pion d...

  6. Alfven waves in the solar atmosphere. III - Nonlinear waves on open flux tubes

    Science.gov (United States)

    Hollweg, J. V.; Jackson, S.; Galloway, D.

    1982-01-01

    Consideration is given the nonlinear propagation of Alfven waves on solar magnetic flux tubes, where the tubes are taken to be vertical, axisymmetric and initially untwisted and the Alfven waves are time-dependent axisymmetric twists. The propagation of the waves into the chromosphere and corona is investigated through the numerical solution of a set of nonlinear, time-dependent equations coupling the Alfven waves into motions that are parallel to the initial magnetic field. It is concluded that Alfven waves can steepen into fast shocks in the chromosphere, pass through the transition region to produce high-velocity pulses, and then enter the corona, which they heat. The transition region pulses have amplitudes of about 60 km/sec, and durations of a few tens of seconds. In addition, the Alfven waves exhibit a tendency to drive upward flows, with many of the properties of spicules.

  7. An analytical approach to scattering between two thin magnetic flux tubes in a stratified atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Chris S.; Cally, Paul S., E-mail: christopher.hanson@monash.edu [Monash Centre for Astrophysics and School of Mathematical Sciences, Monash University, Clayton, Victoria 3800 (Australia)

    2014-02-01

    We expand on recent studies to analytically model the behavior of two thin flux tubes interacting through the near- and acoustic far-field. The multiple scattering that occurs between the pair alters the absorption and phase of the outgoing wave when compared to non-interacting tubes. We have included both the sausage and kink scatter produced by the pair. It is shown that the sausage mode's contribution to the scattered wave field is significant, and plays an equally important role in the multiple scattering regime. A disparity between recent numerical results and analytical studies, in particular the lack of symmetry between the two kink modes, is addressed. This symmetry break is found to be caused by an incorrect solution for the near-field modes.

  8. An Analytical Approach to Scattering Between Two Thin Magnetic Flux Tubes in a Stratified Atmosphere

    CERN Document Server

    Hanson, Chris S

    2014-01-01

    We expand on recent studies to analytically model the behavior of two thin flux tubes interacting through the near- and acoustic far-field. The multiple scattering that occurs between the pair alters the absorption and phase of the outgoing wave, when compared to non-interacting tubes. We have included both the sausage and kink scatter produced by the pair. It is shown that the sausage mode's contribution to the scattered wave field is significant, and plays an equally important role in the multiple scattering regime. A disparity between recent numerical results and analytical studies, in particular the lack of symmetry between the two kink modes, is addressed. This symmetry break is found to be caused by an incorrect solution for the near-field modes.

  9. Numerical calculation of mean intensity and radiative flux in plane-parallel stellar atmospheres

    Science.gov (United States)

    Nariai, K.; Yoshioka, K.

    The four-point Gaussian-quadrature formulas of Kegel (1962) for the evaluation of the intensity and flux (F) integrals is improved by using Bessel's interpolation technique and by subdividing the integral range. Steps in the analysis include the calculation of the Gaussian points of division and weightings for the interval (y, z), for a small (y, z), and for (O, z); determination of the precision of n-point formulas in calculating intensity and F; and the derivation of a four-point version of the two-point quadrature method of Cayrel (1960) and Norton (Mihalas, 1967). The numerical results are presented and compared with those of other models. The gray-model delta-F/F ratio calculated by this method is found to be less than 0.01 percent.

  10. Comparing Evapotranspiration Rates Estimated from Atmospheric Flux and TDR Soil Moisture Measurements

    DEFF Research Database (Denmark)

    Schelde, Kirsten; Ringgaard, Rasmus; Herbst, Mathias

    2011-01-01

    limit estimate (disregarding dew evaporation) of evapotranspiration on dry days. During a period of 7 wk, the two independent measuring techniques were applied in a barley (Hordeum vulgare L.) field, and six dry periods were identified. Measurements of daily root zone soil moisture depletion were...... compared with daily estimates of water vapor loss. During the first dry periods, agreement between the two approaches was good, with average daily deviation between estimates below 1.0 mm d-1 Toward the end of the measurement period, the estimates of the two techniques tended to deviate due to different......Measurements of water vapor fluxes using eddy covariance (EC) and measurements of root zone soil moisture depletion using time domain reflectometry (TDR) represent two independent approaches to estimating evapotranspiration. This study investigated the possibility of using TDR to provide a lower...

  11. Research on flux of dry atmospheric falling dust and its characterization in a subtropical city, Guangzhou, South China.

    Science.gov (United States)

    Zhao, Jinping; Peng, Ping'an; Song, Jianzhong; Ma, Shexia; Sheng, Guoying; Fu, Jiamo

    2010-09-01

    Guangzhou is the central city in the Pearl River Delta (PRD), China, and is one of the most polluted cities in the world. To characterize the ambient falling dust pollution, two typical sampling sites: urban (Wushan) and suburban (University Town) areas in Guangzhou city were chosen for falling dust collection over 1 year at time intervals of 1 or 2 months. The flux of dry deposition was calculated. In addition, mineral composition and morphology of atmospheric falling dust were studied by X-ray diffraction, scanning electron microscopy, and microscopic observation. The results revealed that the dust flux in Guangzhou city was 3.34-3.78 g/(m(2) month) during the study period. The main minerals in the dust were quartz, illite, calcite, kaolinite, gypsum, plagioclase, dolomite, and amorphous matter. The morphological types included grained and flaky individual minerals, chain-like aggregates, spherical flying beads, and irregular aggregates, with the chain-like and spherical aggregates indicators of industrial ash. The major dusts were derived from industrial and construction activities. The gypsum present in the dust collected in winter season was not only derived from cement dust but may also have originated from the reaction of calcic material with sulfuric acids resulting from photooxidation of SO(x) and NO(x), which confirmed serious air pollution due to SO(x) and NO(x) in Guangzhou. The abatement of fossil fuel combustion emissions and construction dust will have a significant beneficial effect on dust reduction.

  12. Growth rates of atmospheric molecular clusters determined from cluster appearance times and collision-evaporation fluxes

    Science.gov (United States)

    Kontkanen, Jenni; Olenius, Tinja; Lehtipalo, Katrianne; Vehkamäki, Hanna; Kulmala, Markku

    2015-04-01

    The probability of freshly formed particles to survive to climatically relevant sizes is determined by the competition between the coagulation loss rate and the particle growth rate. Therefore, various methods have been developed to deduce the growth rates from measured particle size distributions. Recently, the growth rates of sub-3nm clusters have been determined based on the appearance times of different cluster sizes. However, it is not clear to what extent these growth rates are consistent with the growth rates corresponding to molecular fluxes between clusters. In this work, we simulated the time evolution of a population of sub-3 nm molecular clusters and compared the growth rates determined (1) from the cluster appearance times and (2) from the collision-evaporation fluxes between different cluster sizes. We performed a number of simulations by varying the ambient conditions and the properties of the model substance. In the first simulation set, the Gibbs free energy of the formation of the clusters was assumed to have a single maximum and no minima, corresponding to a monotonically increasing stability as a function of cluster size. The saturation vapor pressure was selected so that the growth proceeded solely via monomer additions. The growth rates were determined separately for each cluster. However, to see the effect of finite size resolution, we also performed simulations where the clusters were grouped into size bins, for which we determined the growth rates. In the second simulation set, the saturation vapor pressure was lowered so that the collisions of small clusters significantly contributed to the growth. As the growth rate of a single cluster is ambiguous in this case, the growth rates were determined only for different size bins. We performed simulations using a similar free energy profile as in other simulations but we also used a free energy profile containing a local minimum, corresponding to small stable clusters. Our simulations show that

  13. Atmospheric dry deposition fluxes of trace elements measured in Queretaro City, Mexico

    Science.gov (United States)

    Garcia, R.; Hernandez, R.; Solis, S.; Perez, R.; Hernandez, G.; Morton, O.; Hernandez, E.; Torres, M. C.; Baez, A.

    2012-04-01

    Sampling was made in the southern section of downtown Mexico City. Samples were collected with an Mini-Vol PM10 . Eight different sources were identified for PM10 aerosols: secondary sulfate, wood combustion, fireworks, road traffic, mineral dust, de-icing salt, industrial and local anthropogenic activities. The ions SO42-, NO3-, Cl-, Na+, K+, Ca2+, Mg2+ and NH4+,were analyzed by ion chromatography and the trace metals using an atomic absorption spectrometer. The result indicated that SO42- was the most abundant ion and with respect to trace metal. All the trace elements except Mn and V show statistically significant differences between monitoring sites. The Pearson's correlation applied to all data, showed a high correlation among SO42-, NO3- and NH4+, indicating a common anthropogenic origin. In addition the correlation found between Ca2+ and Al indicated a crustal origin. On the other hand, in considering the total sampling period for particles as well as for all the metals, it is appreciable the significant differences between sites and meteorological seasons. The cluster analysis of air back-trajectories employed in the paper is a technique widely used to identify transport patterns and potential sources of both anthropogenic pollution and natural constituents of the atmosphere, including atmospheric aerosols. It is also used to determine how aerosol optical properties observed over the station differ depending on source region and transport pathways In order to gain a better insight into the origin of trace metal and major inorganic ions, a Principal Component Analysis was applied to the results for 6 elements and 8 ions, from the years 2009 and 2010. Further, the statistical analysis demonstrated the adequate selection of the monitoring areas, confirming that main emission source of these atmospheric pollutants is anthropogenic origin. Evidence suggests that the organic and inorganic species are not always internally mixed, especially in the small modes. The

  14. Inverse constraints for emission fluxes of atmospheric tracers estimated from concentration measurements and Lagrangian transport

    Science.gov (United States)

    Pisso, Ignacio; Patra, Prabir; Breivik, Knut

    2015-04-01

    Lagrangian transport models based on times series of Eulerian fields provide a computationally affordable way of achieving very high resolution for limited areas and time periods. This makes them especially suitable for the analysis of point-wise measurements of atmospheric tracers. We present an application illustrated with examples of greenhouse gases from anthropogenic emissions in urban areas and biogenic emissions in Japan and of pollutants in the Arctic. We asses the algorithmic complexity of the numerical implementation as well as the use of non-procedural techniques such as Object-Oriented programming. We discuss aspects related to the quantification of uncertainty from prior information in the presence of model error and limited number of observations. The case of non-linear constraints is explored using direct numerical optimisation methods.

  15. High energy muon induced radioactive nuclides in nickel plate and its use for 2-D muon-beam image profile

    Energy Technology Data Exchange (ETDEWEB)

    Kurebayashi, Y. [Graduate School of Science and Engineering, Yamagata University, Yamagata 990-8560 (Japan); Sakurai, H., E-mail: sakurail@sci.kj.yamagata-u.ac.jp [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Takahashi, Y. [Graduate School of Science and Engineering, Yamagata University, Yamagata 990-8560 (Japan); Doshita, N. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Kikuchi, S. [Graduate School of Science and Engineering, Yamagata University, Yamagata 990-8560 (Japan); Tokanai, F. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Horiuchi, K. [Graduate School of Science and Technology, Hirosaki University, 3, Bunkyo-chou, Hirosaki 036-8561, Aomori (Japan); Tajima, Y. [Institute of Arts and Sciences, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Oe, T. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Sato, T. [Graduate School of Science and Engineering, Yamagata University, Yamagata 990-8560 (Japan); Gunji, S. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Inui, E. [Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Kondo, K. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Iwata, N. [Dept. of Earth and Environmental Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Sasaki, N. [Graduate School of Science and Technology, Hirosaki University, 3, Bunkyo-chou, Hirosaki 036-8561, Aomori (Japan); Matsuzaki, H. [Micro Analysis Laboratory, Tandem accelerator (MALT), The University Museum, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Kunieda, S. [Nuclear Data Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun 319-1195, Ibaraki (Japan)

    2015-11-01

    Target materials were exposed to a muon beam with an energy of 160 GeV/c at the COMPASS experiment line in CERN-SPS to measure the production cross-sections for muon-induced radionuclides. A muon imager containing four nickel plates, each measuring 100 mm×100 mm, exposed to the IP plate successfully detected the muon beam image during an irradiation period of 33 days. The contrasting density rate of the nickel plate was (5.2±0.7)×10{sup –9} PSL/muon per one-day exposure to IP. The image measured 122 mm and 174 mm in horizontal and vertical lengths, respectively, in relation to the surface of the base, indicating that 50±6% of the muon beam flux is confined to an area of 18% of the whole muon beam. The number of muons estimated from the PSL value in the total beam image area (0.81±0.1)×10{sup 13} was comparable to the total muon counts of the ion-chamber at the M2 beam line in the CERN-SPS. The production cross-sections of Cr-51, Mn-54, Co-56, Co-57, and Co-58 in nickel were 0.19±0.08, 0.34±0.06, 0.5±0.05, 3.44±0.07, 0.4±0.03 in the unit of mb, respectively, reducing muon associated particles effects. They are approximately 10 times smaller than that a proceeding study by Heisinger et al.

  16. Tree species influence soil-atmosphere fluxes of the greenhouse gases CO2, CH4 and N2O

    Science.gov (United States)

    Steffens, Christina; Vesterdal, Lars; Pfeiffer, Eva-Maria

    2016-04-01

    In the temperate zone, forests are the greatest terrestrial sink for atmospheric CO2, and tree species affect soil C stocks and soil CO2 emissions. When considering the total greenhouse gas (GHG) balance of the forest soil, the relevant GHGs CH4 and N2O should also be considered as they have a higher global warming potential than CO2. The presented data are first results from a field study in a common garden site in Denmark where tree species with ectomycorrhizal colonization (beech - Fagus sylvatica, oak - Quercus robur) and with arbuscular mycorrhizal colonization (maple - Acer pseudoplatanus, ash - Fraxinus excelsior) have been planted in monocultures in adjacent blocks of about 0.25 ha in the year 1973 on former arable land. The soil-atmosphere fluxes of all three gases were measured every second week since August 2015. The hypothesis is that the total GHG efflux from forest soil would differ between species, and that these differences could be related to the type of mycorrhizal association and leaf litter quality. Preliminary results (August to December 2015) indicate that tree species influence the fluxes (converted to CO2-eq) of the three GHGs. Total soil CO2 efflux was in the low end of the range reported for temperate broadleaved forests but similar to the measurements at the same site approximately ten years ago. It was highest under oak (9.6±2.4 g CO2 m-2 d-1) and lowest under maple (5.2±1.6 g CO2 m-2 d-1). In contrast, soil under oak was a small but significant sink for CH4(-0.005±0.003 g CO2-eq m-2 d-1), while there were almost no detectable CH4 fluxes in maple. Emissions of N2O were highest under beech (0.6±0.6 g CO2-eq m-2 d-1) and oak (0.2±0.09 g CO2-eq m-2 d-1) and lowest under ash (0.03±0.04 g CO2-eq m-2 d-1). In the total GHG balance, soil CH4 uptake was negligible (≤0.1% of total emissions). Emissions of N2O (converted to CO2-eq) contributed mycorrhiza and produce leaf litter with a lower lignin:N ratio.

  17. Energy Characteristics of Forbush Decreases for Different Types of Heliospheric Disturbances According to Muon Hodoscope URAGAN

    Science.gov (United States)

    Yakovleva, E. I.; Astapov, I. I.; Barbashina, N. S.; Dmitrieva, A. N.; Kovylyaeva, A. A.; Mishutina, Yu. N.; Petrukhin, A. A.; Sit'ko, O. A.; Shutenko, V. V.; Yashin, I. I.

    Experimentally obtained energy characteristics of the muon flux during Forbush decreases registered by means of the muon hodoscope URAGAN at different phases of 23rd and 24th solar cycles are studied. To obtain the energy spectra of Forbush decrease amplitudes in the flux of the primary particles, coupling functions of the primary and the secondary cosmic ray fluxes for five zenith-angular intervals of the muon hodoscope URAGAN were used. It is shown that the energy characteristics of Forbush decreases, caused by heliospheric disturbances of different types, significantly differ on phases of maximum and minimum of the solar cycle.

  18. Neutron/muon correlation functions to improve neutron detection capabilities outside nuclear facilities

    Science.gov (United States)

    Ordinario, Donald Thomas

    The natural neutron background rate is largely due to cosmic ray interactions in the atmosphere and the subsequent neutron emission from the interaction products. The neutron background is part of a larger cosmic radiation shower that also includes electrons, gamma rays, and muons. Since neutrons interact much differently than muons in building materials, the muon and neutron fluence rates in the natural background can be compared to the measured muon and neutron fluence rate when shielded by common building materials. The simultaneous measurement of muon and neutron fluence rates might allow for an earlier identification of man-made neutron sources, such as hidden nuclear materials. This study compares natural background neutron rates to computer simulated neutron rates shielded by common structural and building materials. The characteristic differences between neutrons and muons resulted in different attenuation properties under the same shielded conditions. Correlation functions between cosmic ray generated neutrons and muons are then used to predict neutron fluence rates in different urban environments.

  19. Results from atmospheric neutrinos

    Indian Academy of Sciences (India)

    J G Learned

    2000-07-01

    With the announcement of new evidence for muon neutrino disappearance observed by the super-Kamiokande experiment, the more than a decade old atmospheric neutrino anomaly moved from a possible indication for neutrino oscillations to an apparently inescapable fact. The evidence is reviewed, and new indications are presented that the oscillations are probably between muon and tau neutrinos. Implications and future directions are discussed.

  20. Performance of the Majorana Demonstrator Muon Veto System

    Science.gov (United States)

    Wiseman, Clinton; Majorana Collaboration

    2015-10-01

    The Majorana Demonstrator is a neutrinoless double beta decay experiment operating at the 4850-ft. level of the Sanford Underground Research Facility in Lead, SD. The low-background goals of this Ge-based experiment require a muon veto system. The operation of the partial veto panel array (2/3 coverage) provides the first opportunity to study muon events during the commissioning of the Ge detectors. The Prototype Ge detector module operated in the Demonstrator shield for a total exposure of over 600 kg*day with the partial veto system. The operation of Module 1, consisting of 22.5 kg of Ge mass, in the shield with full veto panel coverage will provide a complete array to study muon-induced events in the experiment. The veto panels are synchronized with Ge detectors using a common 100MHz clock, presenting a unique opportunity to 1) study the flux and angular distribution of muons incident on the Demonstrator using the experiment's modular veto panel design, and 2) examine the effect of muon-related events on the Ge detectors. In this talk the performance of the muon veto system, including an analysis of the coincidence patterns of the incident muons and the corresponding spectra produced in the Ge detectors, is presented. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility.

  1. Horizontal muons and a search for AGN neutrinos in Soudan 2

    Science.gov (United States)

    Demuth, D.; Alner, G. J.; Ayres, D.; Barrett, W. L.; Border, P.; Cockerill, D. J. A.; Cobb, J. H.; Courant, H.; Fields, T.; Gallagher, H.; Goodman, M. C.; Gran, R.; Joffe-Minor, T.; Kafka, T.; Kasahara, S.; Litchfield, P. J.; Mann, W. A.; Marshak, M.; Milburn, R.; Miller, W.; Mualem, L.; Napier, A.; Oliver, W.; Pearce, G. F.; Peterson, E.; Petyt, D.; Ruddick, K.; Sanchez, M.; Schneps, J.; Sousa, A.; Speakman, B.; Thron, J.; Trost, H. J.; Uretsky, J.; Villaume, G.; West, N.

    2004-02-01

    We measure the horizontal (|cos(θz)|1.8 GeV) in Soudan 2 to be 4.01+/-0.50+/-0.30×10-13 cm-2sr-1s-1. From the absence of horizontal muons with large energy loss, we set a limit on the flux of muon neutrinos from active galactic nuclei.

  2. Atmospheric concentrations and dry deposition fluxes of particulate trace metals in Salvador, Bahia, Brazil

    Science.gov (United States)

    de P. Pereira, Pedro A.; Lopes, Wilson A.; Carvalho, Luiz S.; da Rocha, Gisele O.; de Carvalho Bahia, Nei; Loyola, Josiane; Quiterio, Simone L.; Escaleira, Viviane; Arbilla, Graciela; de Andrade, Jailson B.

    Respiratory system is the major route of entry for airborne particulates, being the effect on the human organism dependent on chemical composition of the particles, exposure time and individual susceptibility. Airborne particulate trace metals are considered to represent a health hazard since they may be absorbed into human lung tissues during breathing. Fossil fuel and wood combustion, as well as waste incineration and industrial processes, are the main anthropic sources of metals to the atmosphere. In urban areas, vehicular emissions—and dust resuspension associated to road traffic—become the most important manmade source. This work investigated the atmospheric concentrations of TSP, PM 10 and elements such as iron, manganese, copper and zinc, from three different sites around Salvador Region (Bahia, Brazil), namely: (i) Lapa Bus Station, strongly impacted by heavy-duty diesel vehicles; (ii) Aratu harbor, impacted by an intense movement of goods, including metal ores and concentrates and near industrial centers and; (iii) Bananeira Village located on Maré Island, a non-vehicle-influenced site, with activities such as handcraft work and fishery, although placed near the port. Results have pointed out that TSP concentrations ranged between 16.9 (Bananeira) and 354.0 μg m -3 (Aratu#1), while for PM 10 they ranged between 30.9 and 393.0 μg m -3, both in the Lapa Bus Station. Iron was the major element in both Lapa Station and Aratu (#1 and #2), with average concentrations in the PM 10 samples of 148.9, 79.6 and 205.0 ng m -3, respectively. Zinc, on the other hand, was predominant in samples from Bananeira, with an average concentration of 145.0 ng m -3 in TSP samples, since no PM 10 sample was taken from this site. The main sources of iron in the Lapa Station and Aratu harbor were, respectively, soil resuspension by buses and discharge of solid granaries, as fertilizers and metal ores. On the other hand, zinc and copper in the bus station were mainly from

  3. Seasonal variations of the rate of multiple-muons in the Gran Sasso underground laboratory

    CERN Document Server

    Ronga, F

    2016-01-01

    It is well known that the rate of cosmic ray muons depends on the atmospheric temperature, and that for events with a single muon the peak of the rate is in summer, in underground laboratories in the northern hemisphere. In 2015 the MINOS experiment, in USA, found that, for small distances between the multiple-muons, the rate of multiple-muons peaks in the winter and that the amplitude of the modulation is smaller than in the case of a single muon. I have done a re-analysis of data of the past MACRO experiment. The result is that under Gran Sasso the rate of multiple-muons at small distances peaks in the summer. This difference with MINOS could be explained by differences in the atmospheric temperature due to latitude. This results could be of interest for dark matter experiments looking to dark matter seasonal modulation due to the Earth's motion.

  4. Tidal and atmospheric forcing of the upper ocean in the Gulf of California. 2. Surface heat flux

    Science.gov (United States)

    Paden, Cynthia A.; Winant, Clinton D.; Abbott, Mark R.

    1993-01-01

    Satellite infrared imagery and coastal meteorological data for March 1984 through February 1985 are used to estimate the net annual surface heat flux for the northern Gulf of California. The average annual surface heat flux for the area north of Guaymas and Santa Rosalia is estimated to be +74 W m-2 for the 1984-1985 time period. This is comparable to the +20-50 W m-2 previously obtained from heat and freshwater transport estimates made with hydrographic surveys from different years and months. The spatial distribution of the net surface heat flux shows a net gain of heat over the whole northern gulf. Except for a local maximum near San Esteban Island, the largest heat gain (+110-120 W m-2) occurs in the Ballenas and Salsipuedes channels, where strong tidal mixing produces anomalously cold sea surface temperatures (SSTs) over much of the year. The lowest heat gain occurs in the Guaymas Basin (+40-50 W m-2), where SSTs are consistently warmer. In the relatively shallow northern basin the net surface heat flux is fairly uniform, with a net annual gain of approximately +70 W m-2. A local minimum in heat gain (approximately +60 W m-2) is observed over the shelf in the northwest, where spring and summer surface temperatures are particularly high. A similar minimum in heat gain over the shelf was observed in a separate study in which historical SSTs and 7 years (1979-1986) of meteorological data from Puerto Peñasco were used to estimate the net surface heat flux for the northern basin. In that study, however, the heat fluxes were higher, with a gain of +100 W m-2 over the shelf and +114 W m-2 in the northern basin. These larger values are directly attributable to the higher humidities in the 1979-1986 study compared to the 1984-1985 satellite study. Significant interannual variations in humidity appear to occur in the northern gulf, with relatively high humidities during El Niño years and low humidities during anti-El Niño years. High humidities reduce evaporation and

  5. Cosmic ray energy spectrum measurement with the Antarctic Muon and Neutrino Detector Array (AMANDA)

    Science.gov (United States)

    Chirkin, Dmitry Aleksandrovich

    AMANDA-II is a neutrino telescope composed of 677 optical sensors organized along 19 strings buried deep in the Antarctic ice cap. It is designed to detect Cherenkov light produced by cosmic-ray- and neutrino-induced charged leptons. The majority of events recorded by AMANDA-II are caused by muons which are produced in the atmosphere by high-energy cosmic rays. The leading uncertainties in simulating such events come from the choice of the high-energy model used to describe the first interaction of the cosmic rays, uncertainties in our knowledge and implementation of the ice properties at the depth of the detector, and individual optical module sensitivities. Contributions from uncertainties in the atmospheric conditions and muon cross sections in ice are smaller. The downgoing muon simulation was substantially improved by using the extensive air shower generator CORSIKA to describe the shower development in the atmosphere, and by writing a new software package for the muon propagation (MMC), which reduced computational and algorithm errors below the level of uncertainties of the muon cross sections in ice. A method was developed that resulted in a flux measurement of cosmic rays with energies 1.5--200 TeV per nucleon (95% of primaries causing low-multiplicity events in AMANDA-II have energies in this range) independent of ice model and optical module sensitivities. Predictions of six commonly used high-energy interaction models (QGSJET, VENUS, NEXUS, DPMJET, HDPM, and SIBYLL) are compared to data. The best agreement with direct measurements is achieved with QGSJET, VENUS, and NEXUS. Assuming a power-law energy spectrum (phi0,i · E -gammai) for cosmic-ray components from hydrogen to iron (i = H,..., Fe) and their mass distribution according to Wiebel-South (Wiebel-South & Biermann, 1999), phi 0,i and gammai were corrected to achieve the best description of the data. For the hydrogen component, values of phi0,H = 0.106 +/- 0.007 m-2 sr-1s-1TeV-1 , gammaH = 2

  6. Going to the school of muons

    CERN Multimedia

    2005-01-01

    Italian secondary school pupils will be given the opportunity to take part in a large-scale experiment looking at cosmic muons thanks to the EEE Project. Two Italian pupils building an MRPC muon chamber in CERN's Building 29. For several months, Italian secondary school pupils have been coming to CERN each week and heading for Building 29. They are not just visiting. They are participating in the EEE (Extreme Energy Events) Project, the aim of which is to carry out a real-life experiment in search of large atmospheric showers using muon detectors located in their schools. In this hall at CERN they are helping to build and test muon chambers - MRPCs (Multigap Resistive Plate Chambers). These chambers, which were invented several years ago by Crispin Williams as part of the LAA Project led by Professor Antonino Zichichi, are similar to those that will be used for ALICE's TOF (Time of Flight) detector at the LHC. In this way, the pupils are receiving a direct, practical and effective initiation to particle phy...

  7. Local flux-profile relationships of wind speed and temperature in a canopy layer in atmospheric stable conditions

    Science.gov (United States)

    Zhang, G.; Leclerc, M. Y.; Karipot, A.

    2010-11-01

    The particularities of the physics of the canopy layer pose challenges to the determination and use of traditional universal functions so helpful in the atmospheric surface layer. Progress toward "universal-like functions" such as those provided by Monin-Obukhov similarity theory for the canopy layer has been modest. One of the challenges lies in that the assumptions underlying Monin-Obukhov similarity theory do not hold within a canopy layer. This paper thus examines the local flux-profile relations for wind (Φm) and for temperature (Φh). It uses three different stability parameters, i.e., h/L(h) at tree top, local z/L(z), and the local bulk Richardson number (Ri), within a tall forest canopy in nighttime stable (indicated by h/L(h) > 0) conditions. Results suggest that the in-canopy Φm can be described using the local Richardson number Ri. Furthermore, Φm is found to increase linearly with Ri in the upper canopy layer for |Ri| 1, |Φm| decreases with |Ri| in a power function, a result consistent for all levels of measurements within the canopy. When both local Φh and local Ri are positive, i.e., the local downward turbulent heat flux is consistent with the local temperature gradient, the local Φh increases with the local Ri when Ri 1. The relationship between local Φh and Ri disappears when counter-gradient heat transfer occurs in strongly stable conditions. A self-correlation analysis is used to examine the influence of self-correlation and the physical meaning of these relationships.

  8. Methane Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Methane (CH4) flux is the net rate of methane exchange between an ecosystem and the atmosphere. Data of this variable were generated by the USGS LandCarbon project...

  9. High-energy atmospheric neutrinos

    CERN Document Server

    Sinegovsky, S I; Sinegovskaya, T S

    2010-01-01

    High-energy neutrinos, arising from decays of mesons that were produced through the cosmic rays collisions with air nuclei, form unavoidable background noise in the astrophysical neutrino detection problem. The atmospheric neutrino flux above 1 PeV should be supposedly dominated by the contribution of charmed particle decays. These (prompt) neutrinos originated from decays of massive and shortlived particles, $D^\\pm$, $D^0$, $\\bar{D}{}^0$, $D_s^\\pm$, $\\Lambda^+_c$, form the most uncertain fraction of the high-energy atmospheric neutrino flux because of poor explored processes of the charm production. Besides, an ambiguity in high-energy behavior of pion and especially kaon production cross sections for nucleon-nucleus collisions may affect essentially the calculated neutrino flux. There is the energy region where above flux uncertainties superimpose. A new calculation presented here reveals sizable differences, up to the factor of 1.8 above 1 TeV, in muon neutrino flux predictions obtained with usage of known...

  10. Estimation of the atmosphere-ocean fluxes of greenhouse gases and aerosols at the finer resolution of the coastal ocean.

    Science.gov (United States)

    Vieira, Vasco; Sahlée, Erik; Jurus, Pavel; Clementi, Emanuela; Pettersson, Heidi; Mateus, Marcos

    2016-04-01

    The balances and fluxes of greenhouse gases and aerosols between atmosphere and ocean are fundamental for Earth's heat budget. Hence, the scientific community needs to know and simulate them with accuracy in order to monitor climate change from Earth-Observation satellites and to produce reliable estimates of climate change using Earth-System Models (ESM). So far, ESM have represented earth's surface with coarser resolutions so that each cell of the marine domain is dominated by the open ocean. In such case it is enough to use simple algorithms considering the wind speed 10m above sea-surface (u10) as sole driver of the gas transfer velocity. The formulation by Wanninkhof (1992) is broadly accepted as the best. However, the ESM community is becoming increasingly aware of the need to model with finer resolutions. Then, it is no longer enough to only consider u10 when modelling gas transfer velocities across the coastal oceans' surfaces. More comprehensive formulations are required that adjust better to local conditions by also accounting for the effects of sea-surface agitation, wave breaking, atmospheric stability of the Surface Boundary Layer, current drag with the bottom, surfactants and rain. Accurate algorithms are also fundamental to monitor atmosphere and ocean greenhouse gas concentrations using satellite data and reverse modelling. Past satellite missions ERS, Envisat, Jason-2, Aqua, Terra and Metop, have already been remotely sensing the ocean's surface at much finer resolutions than ESM using instruments like MERIS, MODIS, AMR, AATSR, MIPAS, Poseidon-3, SCIAMACHY, SeaWiFS, and IASI. The planned new satellite missions Sentinel-3, OCO-2 and GOSAT will further increase the resolutions. We developed a framework to congregate competing formulations for the estimation of the solubility and transfer velocity of virtually any gas on the biosphere taking into consideration the atmosphere and ocean fundamental variables and their derived geophysical processes

  11. nuSTORM: Neutrinos from STORed Muons

    CERN Document Server

    Kyberd, P; Coney, L; Pascoli, S; Ankenbrandt, C; Brice, S J; Bross, A D; Cease, H; Kopp, J; Mokhov, N; Morfin, J; Neuffer, D; Popovic, M; Rubinov, P; Striganov, S; Blondel, A; Bravar, A; Noah, E; Bayes, R; Soler, F J P; Dobbs, A; Long, K; Pasternak, J; Santos, E; Wascko, M O; Agarwalla, S K; Bogacz, S A; Mori, Y; Lagrange, J B; de Gouvêa, A; Kuno, Y; Sato, A; Blackmore, V; Cobb, J; Tunnell, C D; Link, J M; Huber, P; Winter, W

    2012-01-01

    The results of LSND and MiniBooNE, along with the recent papers on a possible reactor neutrino flux anomaly give tantalizing hints of new physics. Models beyond the neutrino-SM have been developed to explain these results and involve one or more additional neutrinos that are non-interacting or "sterile." Neutrino beams produced from the decay of muons in a racetrack-like decay ring provide a powerful way to study this potential new physics. In this Letter of Intent, we describe a facility, nuSTORM, "Neutrinos from STORed Muons," and an appropriate far detector for neutrino oscillation searches at short baseline. We present sensitivity plots that indicated that this experimental approach can provide over 10 sigma confirmation or rejection of the LSND/MinBooNE results. In addition we indicate how the facility can be used to make precision neutrino interaction cross section measurements important to the next generation of long-baseline neutrino oscillation experiments.

  12. Corrections to the fluxes of a neutrino factory

    Energy Technology Data Exchange (ETDEWEB)

    Broncano, A.; Mena, O. [Dept. de Fisica Teorica, Univ. Autonoma de Madrid (Spain)

    2003-07-01

    To reach their physical goals, future neutrino factories using muon decay aim at an overall flux precision of O(1%) or better. We analytically study the QED radiative corrections to the neutrino differential distributions from muon decay. Kinematic uncertainties due to the divergence of the muon beam are considered as well. The resulting corrections to the neutrino flux turn out to be of order O(0.1%), safely below the required precision. (orig.)

  13. Bridging nations through muons

    CERN Multimedia

    2006-01-01

    From America to Israel and Japan, a team of international technicians and scientists are working together to build the ATLAS endcap muon chambers. The Israeli and Pakistani teams stand in front of part of the ATLAS endcap muon spectrometer. They are working on the project along with...... a team from American universities and research institutions. It's a small world; at least you might think so after a visit to Building 180. Inside, about 30 engineers and physicists weld, measure and hammer away, many of whom are miles from their homes and families. They hail from Pakistan, Israel, Japan, China, Russia and the United States. Coordinated by a group of CERN engineers, the team represents an international collaboration in every sense. Whether they've been here for years or months, CERN is their temporary home as they work toward one common goal: the completion of the ATLAS muon chamber endcaps. When finished, the ATLAS muon spectrometer will include four moving 'big wheel'structures on each end of the detecto...

  14. Muon capture at PSI

    CERN Document Server

    Winter, Peter

    2010-01-01

    Measuring the rate of muon capture in hydrogen provides one of the most direct ways to study the axial current of the nucleon. The MuCap experiment uses a negative muon beam stopped in a time projection chamber operated with ultra-pure hydrogen gas. Surrounded by a decay electron detector, the lifetime of muons in hydrogen can be measured to determine the singlet capture rate Lambda_s to a final precision of 1%. The capture rate determines the nucleon's pseudoscalar form factor g_p. A first result, g_p = 7.3 +- 1.1, has been published and the final analysis of the full statistics will reduce the error by a factor of up to 3. Muon capture on the deuteron probes the weak axial current in the two-nucleon system. Within the framework of effective field theories the calculation of such two-nucleon processes involving the axial current requires the knowledge of one additional low energy constant which can be extracted from the doublet capture rate Lambda_d. The same constant then allows to model-independently calcu...

  15. FFAGS FOR MUON ACCELERATION.

    Energy Technology Data Exchange (ETDEWEB)

    BERG,J.S.KAHN,S.PALMER,R.TRBOJEVIC,D.JOHNSTONE,C.KEIL,Y.OGITSU,T.OHMORI,C.SESSLER,A.KOSCIELNIAK,S.

    2003-06-26

    Due to their finite lifetime, muons must be accelerated very rapidly. It is challenging to make the magnets ramp fast enough to accelerate in a synchrotron, and accelerating in a linac is very expensive. One can use a recirculating accelerator (like CEBAF), but one needs a different arc for each turn, and this limits the number of turns one can use to accelerate, and therefore requires significant amounts of RF to achieve the desired energy gain. An alternative method for muon acceleration is using a fixed field alternating gradient (FFAG) accelerator. Such an accelerator has a very large energy acceptance (a factor of two or three), allowing one to use the same arc with a magnetic field that is constant over time. Thus, one can in principle make as many turns as one can tolerate due to muon decay, therefore reducing the RF cost without increasing the arc cost. This paper reviews the current status of research into the design of FFAGs for muon acceleration. Several current designs are described and compared. General design considerations are also discussed.

  16. Atmospheric Inversion of the Global Surface Carbon Flux with Consideration of the Spatial Distributions of US Crop Production and Consumption

    Science.gov (United States)

    Fung, Jonathan Winston

    Carbon dioxide is taken up by crops during production and released back to the atmosphere at different geographical locations through respiration of consumed crop commodities. In this study, spatially distributed county-level US cropland net primary productivity, harvested biomass, changes in soil carbon, and human and livestock consumption data were integrated into the prior terrestrial biosphere flux generated by the Boreal Ecosystem Productivity Simulator (BEPS). A global time-dependent Bayesian synthesis inversion with a nested focus on North America was carried out based on CO2 observations at 210 stations. Overall, the inverted annual North American CO2 sink weakened by 6.5% over the period from 2002 to 2007 compared to simulations disregarding US crop statistical data. The US Midwest is found to be the major sink of 0.36±0.13 PgC yr-1 whereas the large sink in the US Southeast forests weakened to 0.16±0.12 PgC yr-1 partly due to local CO2 sources from crop consumption.

  17. Riparian ecohydrology: regulation of water flux from the ground to the atmosphere in the Middle Rio Grande, New Mexico

    Science.gov (United States)

    Cleverly, James R.; Dahm, Clifford N.; Thibault, James R.; McDonnell, Dianne E.; Allred Coonrod, Julie E.

    2006-10-01

    During the previous decade, the south-western United States has faced declining water resources and escalating forest fires due to long-term regional drought. Competing demands for water resources require a careful accounting of the basin water budget. Water lost to the atmosphere through riparian evapotranspiration (ET) is believed to rank in the top third of water budget depletions. To better manage depletions in a large river system, patterns of riparian ET must be better understood. This paper provides a general overview of the ecological, hydrological, and atmospheric issues surrounding riparian ET in the Middle Rio Grande (MRG) of New Mexico. Long-term measurements of ET, water table depth, and micro-meteorological conditions have been made at sites dominated by native cottonwood (Populus deltoides) forests and non-native saltcedar (Tamarix chinensis) thickets along the MRG. Over periods longer than one week, groundwater and leaf area index (LAI) dynamics relate well with ET rates. Evapotranspiration from P. deltoides forests was unaffected by annual drought conditions in much of the MRG where the water table is maintained within 3 m of the surface. Evapotranspiration from a dense Tamarix chinensis thicket did not decline with increasing groundwater depth; instead, ET increased by 50%, from 6 mm/day to 9 mm/day, as the water table receded at nearly 7 cm/day. Leaf area index of the T. chinensis thicket, likewise, increased during groundwater decline. Leaf area index can be manipulated as well following removal of non-native species. When T. chinensis and non-native Russian olive (Elaeagnus angustifolia) were removed from a P. deltoides understory, water salvaged through reduced ET was 26 cm/yr in relation to ET measured at reference sites. To investigate correlates to short-term variations in ET, stepwise multiple linear regression was used to evaluate atmospheric conditions under which ET is elevated or depressed. At the P. deltoides-dominated sites, ET

  18. Towards Direct Numerical Simulation of mass and energy fluxes at the soil-atmospheric interface with advanced Lattice Boltzmann methods

    Science.gov (United States)

    Wang, Ying; Krafczyk, Manfred; Geier, Martin; Schönherr, Martin

    2014-05-01

    The quantification of soil evaporation and of soil water content dynamics near the soil surface are critical in the physics of land-surface processes on many scales and are dominated by multi-component and multi-phase mass and energy fluxes between the ground and the atmosphere. Although it is widely recognized that both liquid and gaseous water movement are fundamental factors in the quantification of soil heat flux and surface evaporation, their computation has only started to be taken into account using simplified macroscopic models. As the flow field over the soil can be safely considered as turbulent, it would be natural to study the detailed transient flow dynamics by means of Large Eddy Simulation (LES [1]) where the three-dimensional flow field is resolved down to the laminar sub-layer. Yet this requires very fine resolved meshes allowing a grid resolution of at least one order of magnitude below the typical grain diameter of the soil under consideration. In order to gain reliable turbulence statistics, up to several hundred eddy turnover times have to be simulated which adds up to several seconds of real time. Yet, the time scale of the receding saturated water front dynamics in the soil is on the order of hours. Thus we are faced with the task of solving a transient turbulent flow problem including the advection-diffusion of water vapour over the soil-atmospheric interface represented by a realistic tomographic reconstruction of a real porous medium taken from laboratory probes. Our flow solver is based on the Lattice Boltzmann method (LBM) [2] which has been extended by a Cumulant approach similar to the one described in [3,4] to minimize the spurious coupling between the degrees of freedom in previous LBM approaches and can be used as an implicit LES turbulence model due to its low numerical dissipation and increased stability at high Reynolds numbers. The kernel has been integrated into the research code Virtualfluids [5] and delivers up to 30% of the

  19. Can simulations of flux exchanges between the land surface and the atmosphere be improved by a more complex description of soil and plant processes?

    Science.gov (United States)

    Klein, Christian

    2013-04-01

    Can simulations of flux exchanges between the land surface and the atmosphere be improved by a more complex description of soil and plant processes? Christian Klein, Christian Biernath, Peter Hoffmann and Eckart Priesack Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Soil Ecology, Oberschleissheim, Germany christian.klein@helmholtz-muenchen.de, ++ 49 89 3187 3015 Recent studies show, that uncertainties in regional and global climate simulations are partly caused by inadequate descriptions of soil-plant-atmosphere. Therefore, we coupled the soil-plant model system Expert-N to the regional climate and weather forecast model WRF. Key features of the Expert-N model system are the simulation of water flow, heat transfer and solute transport in soils and the transpiration of grassland and forest stands. Particularly relevant for the improvement of regional weather forecast are simulations of the feedback between the land surface and atmosphere, which influences surface temperature, surface pressure and precipitation. The WRF model was modified to optionally select either the land surface model Expert-N or NOAH to simulate the exchange of water and energy fluxes between the land surface and the atmosphere for every single grid cell within the simulation domain. Where the standard land surface model NOAH interpolates monthly LAI input values to simulate interactions between plant and atmosphere Expert-N simulates a dynamic plant growth with respect to water and nutrient availability in the soil. In this way Expert-N can be applied to study the effect of dynamic vegetation growth simulation on regional climate simulation results. For model testing Expert-N was used with two different soil parameterizations. The first parametrization used the USGS soil texture classification and simplifies the soil profile to one horizon (similar to the NOAH model). The second parameterization is based on the German soil texture classification

  20. Summer fluxes of atmospheric greenhouse gases N{sub 2}O, CH{sub 4} and CO{sub 2} from mangrove soil in South China

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G.C. [Department of Biology and Chemistry, City University of Hong Kong, Hong Kong SAR (China); Tam, N.F.Y., E-mail: bhntam@cityu.edu.hk [Department of Biology and Chemistry, City University of Hong Kong, Hong Kong SAR (China); Ye, Y. [State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian (China)

    2010-06-01

    The atmospheric fluxes of N{sub 2}O, CH{sub 4} and CO{sub 2} from the soil in four mangrove swamps in Shenzhen and Hong Kong, South China were investigated in the summer of 2008. The fluxes ranged from 0.14 to 23.83 {mu}mol m{sup -2} h{sup -1}, 11.9 to 5168.6 {mu}mol m{sup -2} h{sup -1} and 0.69 to 20.56 mmol m{sup -2} h{sup -1} for N{sub 2}O, CH{sub 4} and CO{sub 2}, respectively. Futian mangrove swamp in Shenzhen had the highest greenhouse gas fluxes, followed by Mai Po mangrove in Hong Kong. Sha Kong Tsuen and Yung Shue O mangroves in Hong Kong had similar, low fluxes. The differences in both N{sub 2}O and CH{sub 4} fluxes among different tidal positions, the landward, seaward and bare mudflat, in each swamp were insignificant. The N{sub 2}O and CO{sub 2} fluxes were positively correlated with the soil organic carbon, total nitrogen, total phosphate, total iron and NH{sub 4}{sup +}-N contents, as well as the soil porosity. However, only soil NH{sub 4}{sup +}-N concentration had significant effects on CH{sub 4} fluxes.

  1. Evaluation of radioactive cesium impact from atmospheric deposition and direct release fluxes into the North Pacific from the Fukushima Daiichi nuclear power plant

    Science.gov (United States)

    Tsubono, Takaki; Misumi, Kazuhiro; Tsumune, Daisuke; Bryan, Frank O.; Hirose, Katsumi; Aoyama, Michio

    2016-09-01

    The North Pacific distribution of 134Cs released from the Fukushima Daiichi nuclear power plant (F1NPP) has been investigated using an eddy-resolving model. We conducted simulations based on two scenarios: (1) an input flux that was a combination of atmospheric deposition and direct release from the F1NPP (combination-flux scenario) and (2) an input flux that took account only of the direct release of 134Cs (single-flux scenario). The combination-flux scenario simulation successfully reproduced the distribution of 134Cs activity observed in the surface layer from April 2011 to January 2014. The results indicate that 134Cs deposited via atmospheric deposition into the Kuroshio-Oyashio Interfrontal Zone and 134Cs directly released from F1NPP were both transported to south of the Subarctic Front around 42°N in June of 2012. The combination-flux scenario suggests that the 134Cs activities observed in the area north of 42°N in 2012 originated from atmospheric deposition and that the 134Cs activity was subducted in Central Mode Water during the winters of 2011 and 2012. We directly compared simulated and observed 134Cs activities in the surface layer at 179 points across a wide area to the east of 155°E from 2011 to 2013 to evaluate the accuracy of the two scenarios. The root-mean-square error and correlation coefficient, R, were 7.3 Bq m-3 and 0.86, respectively, for the combination-flux scenario and 13.8 Bq m-3 and 0.46, respectively, for the single-flux scenario, confirming that reproduction of the 134Cs activity in the North Pacific after the F1NPP accident requires taking both fluxes into consideration. Based on a linear least-squares regression between simulated and observed 134Cs activity, the total 134Cs flux into the North Pacific was estimated at 16.1±1.4 PBq.

  2. Overestimation of soil CO2 fluxes from closed chamber measurements at low atmospheric turbulence biases the diurnal pattern and the annual soil respiration budget

    Science.gov (United States)

    Braendholt, Andreas; Steenberg Larsen, Klaus; Ibrom, Andreas; Pilegaard, Kim

    2016-04-01

    Precise quantification of the diurnal and seasonal variation of soil respiration (Rs) is crucial to correctly estimate annual soil carbon fluxes as well as to correctly interpret the response of Rs to biotic and abiotic factors on different time scale. In this study we found a systematic effect of low atmospheric turbulence on continuous hourly Rs measurements with closed chambers throughout one year in a temperate Danish beech forest. Using friction velocity (u⋆) measured at the site above the canopy, we filtered out chamber flux data measured at low atmospheric turbulence. The non-filtered data showed a clear diurnal pattern of Rs across all seasons with highest fluxes during night time suggesting an implausible negative temperature sensitivity of Rs. When filtering out data at low turbulence, the annually averaged diurnal pattern changed, such that the highest Rs fluxes were seen during day time, i.e. following the course of soil temperatures. This effect on the diurnal pattern was due to low turbulence primarily occurring during night time. We calculated different annual Rs budgets by filtering out fluxes for different levels of u⋆. The highest annual Rs budget was found when including all data and it decreased with an increasing u⋆ filter threshold. Our results show that Rs was overestimated at low atmospheric turbulence throughout the year and that this overestimation considerably biased the diurnal pattern of Rs and led to an overestimation of the annual Rs budget. Thus we recommend that that any analysis of the diurnal pattern of Rs must consider overestimation of Rs at low atmospheric turbulence, to yield unbiased diurnal patterns. This is crucial when investigating temperature responses and potential links between CO2 production and Rs on a short time scale, but also for correct estimation of annual Rs budgets. Acknowledgements: This study was funded by the free Danish Ministry for Research, Innovation and higher Education, the free Danish Research

  3. Neutrino-induced upward stopping muons in Super-Kamiokande

    CERN Document Server

    Fukuda, Y; Itow, Y; Kajita, T; Kameda, J; Kasuga, S; Kobayashi, K; Kobayashi, Y; Koshio, Y; Miura, M; Nakahata, M; Nakayama, S; Obayashi, Y; Okada, A; Okumura, K; Sakurai, N; Shiozawa, M; Suzuki, Y; Takeuchi, H; Takeuchi, Y; Totsuka, Y; Yamada, S; Earl, M; Habig, A; Kearns, E; Messier, M D; Scholberg, K; Stone, J L; Sulak, L R; Walter, C W; Goldhaber, M; Barszczak, T; Casper, D; Gajewski, W; Kropp, W R; Mine, S; Price, L R; Smy, M B; Sobel, H W; Vagins, M R; Ganezer, K S; Keig, W E; Ellsworth, R W; Tasaka, S; Kibayashi, A; Learned, J G; Matsuno, S; Stenger, V J; Takemori, D; Ishii, T; Ishino, H; Kobayashi, T; Nakamura, K; Oyama, Y; Sakai, A; Sakuda, M; Sasaki, O; Echigo, S; Kohama, M; Suzuki, A T; Inagaki, T; Nishikawa, K; Haines, T J; Blaufuss, E; Kim, B K; Sanford, R; Svoboda, R; Chen, M L; Goodman, J A; Sullivan, G W; Hill, J; Jung, C K; Martens, K; Mauger, C; McGrew, C; Sharkey, E; Viren, B; Yanagisawa, C; Doki, W; Kirisawa, M; Inaba, S; Miyano, K; Okazawa, H; Saji, C; Takahashi, M; Takahata, M; Higuchi, K; Nagashima, Y; Takita, M; Yamaguchi, T; Yoshida, M; Kim, S B; Etoh, M; Hasegawa, A; Hasegawa, T; Hatakeyama, S; Inoue, K; Iwamoto, T; Koga, M; Maruyama, T; Ogawa, H; Shirai, J; Suzuki, A; Tsushima, F; Koshiba, M; Hatakeyama, Y; Koike, M; Nemoto, M; Nishijima, K; Fujiyasu, H; Futagami, T; Hayato, Y; Kanaya, Y; Kaneyuki, K; Watanabe, Y; Kielczewska, D; George, J S; Stachyra, A L; Wilkes, R J; Young, K K

    1999-01-01

    A total of 137 upward stopping muons of minimum energy 1.6 GeV are observed by Super-Kamiokande during 516 detector live days. The measured muon flux is 0.39+/-0.04(stat.)+/-0.02(syst.)x10^{-13}cm^{-2}s^{-1}sr^{-1} compared to an expected flux of 0.73+/-0.16(theo.)x10^{-13}cm^{-2}s^{-1}sr^{-1}. Using our previously-published measurement of the upward through-going muon flux, we calculate the stopping/through-going flux ratio R}, which has less theoretical uncertainty. The measured value of R=0.22+/-0.02(stat.)+/-0.01(syst.) is significantly smaller than the value 0.37^{+0.05}_{-0.04}(theo.) expected using the best theoretical information (the probability that the measured R is a statistical fluctuation below the expected value is 0.39%). A simultaneous fitting to zenith angle distributions of upward stopping and through-going muons gives a result which is consistent with the hypothesis of neutrino oscillations with the parameters sin^2 2\\theta >0.7 and 1.5x10^{-3} < \\Delta m^2 < 1.5x10^{-2} eV^2 at 90% ...

  4. Evidence For Oscillation Of Atmospheric Neutrinos

    CERN Document Server

    Fukuda, Y; Ichihara, E; Inoue, K; Ishihara, K; Ishino, H; Itow, Y; Kajita, T; Kameda, J; Kasuga, S; Kobayashi, K; Kobayashi, Y; Koshio, Y; Miura, M; Nakahata, M; Nakayama, S; Okada, A; Okumura, K; Sakurai, N; Shiozawa, M; Suzuki, Y; Takeuchi, Y; Totsuka, Y; Yamada, S; Earl, M A; Habig, A; Kearns, E T; Messier, M D; Scholberg, K; Stone, J L; Sulak, Lawrence R; Walter, C W; Goldhaber, M; Barszczak, T; Casper, David William; Gajewski, W; Halverson, P G; Hsu, J; Kropp, W R; Price, L R; Reines, F; Smy, M B; Sobel, H W; Vagins, M R; Ganezer, K S; Keig, W E; Ellsworth, R W; Tasaka, S; Flanagan, J W; Kibayashi, A; Learned, J G; Matsuno, S; Stenger, Victor J; Takemori, D; Ishii, T; Kanzaki, J I; Kobayashi, T; Mine, S; Nakamura, K; Nishikawa, K; Oyama, Y; Sakai, A; Sakuda, M; Sasaki, O; Echigo, S; Kohama, M; Suzuki, A T; Haines, T J; Blaufuss, E; Kim, B K; Sanford, R; Svoboda, R; Chen, M L; Conner, Z; Goodman, J A; Sullivan, G W; Hill, J; Jung, C K; Martens, K; Mauger, C; McGrew, C; Sharkey, E; Viren, B M; Yanagisawa, C; Doki, W; Miyano, K; Okazawa, H; Saji, C; Takahata, M; Nagashima, Y; Takita, M; Yamaguchi, T; Yoshida, M; Kim, S B; Etoh, M; Fujita, K; Hasegawa, A; Hasegawa, T; Hatakeyama, S; Iwamoto, T; Koga, M; Maruyama, T; Ogawa, H; Shirai, J; Suzuki, A; Tsushima, F; Koshiba, M; Nemoto, M; Nishijima, K; Futagami, T; Hayato, Y; Kanaya, Y; Kaneyuki, K; Watanabe, Y; Kielczewska, D; Doyle, R A; George, J S; Stachyra, A L; Wai, L L; Wilkes, R J; Young, K K

    1998-01-01

    We present an analysis of atmospheric neutrino data from a 33.0 kiloton-year (535-day) exposure of the Super-Kamiokande detector. The data exhibit a zenith angle dependent deficit of muon neutrinos which is inconsistent with expectations based on calculations of the atmospheric neutrino flux. Experimental biases and uncertainties in the prediction of neutrino fluxes and cross sections are unable to explain our observation. The data are consistent, however, with two-flavor nu_mu nu_tau oscillations with sin^2(2theta)>0.82 and 5x10^-4 < delta m^2 < 6x10^-3 eV^2 at 90% confidence level.

  5. Evidence from the Soudan 1 experiment for underground muons associated with Cygnus X-3

    Science.gov (United States)

    Ayres, D. S. E.

    1986-01-01

    The Soudan 1 experiment has yielded evidence for an average underground muon flux of approximately 7 x 10 to the minus 11th power/sq cm/s which points back to the X-ray binary Cygnus X-3, and which exhibits the 4.8 h periodicity observed for other radiation from this source. Underground muon events which seem to be associated with Cygnus X-3 also show evidence for longer time variability of the flux. Such underground muons cannot be explained by any conventional models of the propagation and interaction of cosmic rays.

  6. Effects of source spatial partial coherence on temporal fade statistics of irradiance flux in free-space optical links through atmospheric turbulence.

    Science.gov (United States)

    Chen, Chunyi; Yang, Huamin; Zhou, Zhou; Zhang, Weizhi; Kavehrad, Mohsen; Tong, Shoufeng; Wang, Tianshu

    2013-12-01

    The temporal covariance function of irradiance-flux fluctua-tions for Gaussian Schell-model (GSM) beams propagating in atmospheric turbulence is theoretically formulated by making use of the method of effective beam parameters. Based on this formulation, new expressions for the root-mean-square (RMS) bandwidth of the irradiance-flux temporal spectrum due to GSM beams passing through atmospheric turbulence are derived. With the help of these expressions, the temporal fade statistics of the irradiance flux in free-space optical (FSO) communication systems, using spatially partially coherent sources, impaired by atmospheric turbulence are further calculated. Results show that with a given receiver aperture size, the use of a spatially partially coherent source can reduce both the fractional fade time and average fade duration of the received light signal; however, when atmospheric turbulence grows strong, the reduction in the fractional fade time becomes insignificant for both large and small receiver apertures and in the average fade duration turns inconsiderable for small receiver apertures. It is also illustrated that if the receiver aperture size is fixed, changing the transverse correlation length of the source from a larger value to a smaller one can reduce the average fade frequency of the received light signal only when a threshold parameter in decibels greater than the critical threshold level is specified.

  7. Local Magnetic Fields in Ferromagnetics Studied by Positive Muon Precession

    CERN Multimedia

    2002-01-01

    Positive muons are used to study local magnetic fields in different materials. A polarized muon beam is employed with energies of 30-50 MeV, and the muons are stopped in the target being studied. During its lifetime the muon will precess in the magnetic fields present, and after the decay of the muon the emitted positron is detected in plastic scintillators. The time and angle of the detected positron is used to calculate the magnetic field at the position of the muon in the sample. \\\\ \\\\ The detector system consists of plastic scintillators. Most of the measurements are made in an applied magnetic field. A dilution cryostat is used to produce temperatures down to well below $ 1 ^0 $ K. \\\\ \\\\ The present line of experiments concern mainly: \\item a)~~~~Local magnetism in the paramagnetic state of the Lave's phase type REAl$_{2} $ and RENi$_{2} $ systems ~~~where RE is a rare-earth ion. \\item b)~~~~Local magnetic fields and critical behaviour of the magnetism in Gd metal. \\item c)~~~~Investigation of flux exclu...

  8. Industrial radiography with cosmic-ray muons: A progress report

    Science.gov (United States)

    Gilboy, W. B.; Jenneson, P. M.; Simons, S. J. R.; Stanley, S. J.; Rhodes, D.

    2007-09-01

    Cosmic-ray produced muons arrive at the surface of the earth with enormous energies ranging up to 1012 GeV. There have been sporadic attempts to exploit their extreme penetration through matter to probe the internal structures of very large objects, including an Egyptian pyramid and a volcano but their very low intensity per unit area ( ≈1 cm-2 per min) generally restricts the practicably attainable spatial resolution to large dimensions. Nevertheless the more intense low energy region of the muon spectrum has recently been shown to be capable of detecting high-Z objects with dimensions of the order of 10 cm hidden inside large transport containers in measurement times of minutes. These various developments have encouraged further studies of potential industrial uses of cosmic-ray muons in industrial applications. In order to gain maximum benefit from the low muon flux large area detectors are required and plastic scintillators offer useful advantages in size, cost and simplicity. Scintillator slabs up to 1 m2 square and 76.2 mm thick are undergoing testing for applications in the nuclear industry. The most direct approach employs photomultiplier tubes at each corner to measure the relative sizes of muon induced pulses to determine the location of each muon track passing through the scintillator. The performance of this technique is reported and its imaging potential is assessed.

  9. Local flux-profile relationships of wind speed and temperature in a canopy layer in atmospheric stable conditions

    Directory of Open Access Journals (Sweden)

    G. Zhang

    2010-11-01

    Full Text Available The particularities of the physics of the canopy layer pose challenges to the determination and use of traditional universal functions so helpful in the atmospheric surface layer. Progress toward "universal-like functions" such as those provided by Monin-Obukhov similarity theory for the canopy layer has been modest. One of the challenges lies in that the assumptions underlying Monin-Obukhov similarity theory do not hold within a canopy layer. This paper thus examines the local flux-profile relations for wind (Φm and for temperature (Φh. It uses three different stability parameters, i.e., h/L(h at tree top, local z/L(z, and the local bulk Richardson number (Ri, within a tall forest canopy in nighttime stable (indicated by h/L(h > 0 conditions. Results suggest that the in-canopy Φm can be described using the local Richardson number Ri. Furthermore, Φm is found to increase linearly with Ri in the upper canopy layer for |Ri| < 1. When local |Ri| > 1, |Φm| decreases with |Ri| in a power function, a result consistent for all levels of measurements within the canopy. When both local Φh and local Ri are positive, i.e., the local downward turbulent heat flux is consistent with the local temperature gradient, the local Φh increases with the local Ri when Ri < 1. However, Φh does not change with Ri (or much more scattered when Ri > 1. The relationship between local Φh and Ri disappears when counter-gradient heat transfer occurs in strongly stable conditions. A self-correlation analysis is used to examine the influence of self-correlation and the physical meaning of these relationships.

  10. Direct observation of muon-pair production by high-energy muons in the liquid-argon calorimeter BARS

    NARCIS (Netherlands)

    Anikeev, VB; Gurzhiev, SN; Denisov, SP; Zolina, OS; Kelner, [No Value; Kirina, TM; Kokoulin, RP; Lipaev, VV; Petrukhin, AA; Rybin, AM; Sergiampietri, F; Yanson, EE

    2005-01-01

    Experimental data accumulated over a long-term exposure of the big liquid-argon spectrometer BARS at the Institute for High Energy Physics (IHEP, Protvino) in a horizontal flux of cosmic rays are analyzed with the aim of selecting events that correspond to muon-pair production by mucus in the sensit

  11. CO{sub 2} and CH{sub 4} fluxes and carbon balance in the atmospheric interaction of boreal peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Alm, J.

    1997-12-31

    contributed to the total peat CO{sub 2} efflux by 10-40 % as root respiration and root associated heterotrophic CO{sub 2} release. Much of the spatial variability in the gas fluxes was attributed to the microsite properties in natural peatlands. Winter CO{sub 2} and CH{sub 4} emissions were important components in the C balance, comprising 10Ae30 % of the annual gas release from peat. According to the simulation results, the CH{sub 4} release from expanding peatlands could have contributed to the early interglacial atmospheric warming during several millennia, at least prior to the ombrotrophication and increased peat accumulation from about 3500 years BP onwards. The atmospheric cooling effect by peat accumulation is less clear. (orig.)

  12. Muon identification with Muon Telescope Detector at the STAR experiment

    Science.gov (United States)

    Huang, T. C.; Ma, R.; Huang, B.; Huang, X.; Ruan, L.; Todoroki, T.; Xu, Z.; Yang, C.; Yang, S.; Yang, Q.; Yang, Y.; Zha, W.

    2016-10-01

    The Muon Telescope Detector (MTD) is a newly installed detector in the STAR experiment. It provides an excellent opportunity to study heavy quarkonium physics using the dimuon channel in heavy ion collisions. In this paper, we report the muon identification performance for the MTD using proton-proton collisions at √{ s }=500 GeV with various methods. The result using the Likelihood Ratio method shows that the muon identification efficiency can reach up to ∼90% for muons with transverse momenta greater than 3 GeV/c and the significance of the J / ψ signal is improved by a factor of 2 compared to using the basic selection.

  13. The LHCb Muon Upgrade

    CERN Multimedia

    Cardini, A

    2013-01-01

    The LHCb collaboration is currently working on the upgrade of the experiment to allow, after 2018, an efficient data collection while running at an instantaneous luminosity of 2x10$^{33}$/cm$^{-2}$s$^{-1}$. The upgrade will allow 40 MHz detector readout, and events will be selected by means of a very flexible software-based trigger. The muon system will be upgraded in two phases. In the first phase, the off-detector readout electronics will be redesigned to allow complete event readout at 40 MHz. Also, part of the channel logical-ORs, used to reduce the total readout channel count, will be removed to reduce dead-time in critical regions. In a second phase, higher-granularity detectors will replace the ones installed in highly irradiated regions, to guarantee efficient muon system performances in the upgrade data taking conditions.

  14. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Z. Szillasi and G. Gomez.

    2013-01-01

    When CMS is opened up, major components of the Link and Barrel Alignment systems will be removed. This operation, besides allowing for maintenance of the detector underneath, is needed for making interventions that will reinforce the alignment measurements and make the operation of the alignment system more reliable. For that purpose and also for their general maintenance and recalibration, the alignment components will be transferred to the Alignment Lab situated in the ISR area. For the track-based alignment, attention is focused on the determination of systematic uncertainties, which have become dominant, since now there is a large statistics of muon tracks. This will allow for an improved Monte Carlo misalignment scenario and updated alignment position errors, crucial for high-momentum muon analysis such as Z′ searches.

  15. An Initial Investigation into the Use of a Flux Chamber Technique to Measure Soil-Atmosphere Gas Exchanges from Application of Biosolids to UK Soils

    Directory of Open Access Journals (Sweden)

    S. M. Donovan

    2011-01-01

    Full Text Available While a significant amount of work has been conducted to assess the concentration of pollutants in soils and waterways near land that has been amended with biosolids, a relatively small body of research investigating emissions to atmosphere is available in the literature. Some studies have indicated that while the CO2 emissions from soils decrease with fertiliser application, the CH4 and N2O emissions might be increased, offsetting the benefit. The objective of the research presented in this paper was to address this gap, by the use of a flux chamber technique to measure soil-atmosphere gas exchanges from the application of biosolids to land. This was done by applying three different types of biosolids to soils and measuring gases at the soil-atmosphere interface. The measurements were taken on areas with three different types of vegetation. The gases were collected using a flux chamber technique and analysed by gas chromatography. The results presented here are preliminary findings of an ongoing experiment. Insignificant variation appeared to occur between different areas of vegetation; however, small variations in gas concentrations were observed indicating a need for continued monitoring of soil-atmosphere gas exchanges to determine the long-term impacts on the atmosphere and the environment.

  16. Atmospheric fluxes of organic matter to the Mediterranean Sea: contribution to the elemental C: N: P ratios of surface dissolved organic matter

    Science.gov (United States)

    Djaoudi, Kahina; Barani, Aude; Hélias-Nunige, Sandra; Van Wambeke, France; Pulido-Villena, Elvira

    2016-04-01

    It has become increasingly apparent that atmospheric transport plays an important role in the supply of macro- and micro-nutrients to the surface ocean. This atmospheric input is especially important in oligotrophic regions where the vertical supply from the subsurface is low particularly during the stratification period. Compared to its inorganic counterpart, the organic fraction of atmospheric deposition and its impact on surface ocean biogeochemistry has been poorly explored. In the ocean, carbon export to depth (and therefore, its long term storage with presumed consequences on climate) occurs both through particle sedimentation and through the transfer of dissolved organic matter (DOM) via diffusion or convection. DOM export from the surface ocean represents up to 50% of total organic carbon flux to the deep ocean in oligotrophic regions such as the Mediterranean Sea. The efficiency of this C export pathway depends, among others, on the elemental C: N: P ratios of surface DOM which might be affected by the relative contribution of microbial processes and allochthonous sources. This work reports a one-year time-series (April 2015-April 2016) of simultaneous measurements of (1) total (dry + wet) atmospheric fluxes of organic carbon, organic nitrogen, and organic phosphorus and (2) concentration of dissolved organic carbon, dissolved organic nitrogen, and dissolved organic phosphate at the surface layer (0-200 m) in the NW Mediterranean Sea. Atmospheric and oceanic surveys were conducted at the Frioul and ANTARES sites, respectively, operated by the long-term observation network MOOSE (Mediterranean Oceanic Observation System for the Environment).

  17. The US Muon Accelerator Program

    Energy Technology Data Exchange (ETDEWEB)

    Torun, Y.; /IIT, Chicago; Kirk, H.; /Brookhaven; Bross, A.; Geer, Steve; Shiltsev, Vladimir; /Fermilab; Zisman, M.; /LBL, Berkeley

    2010-05-01

    An accelerator complex that can produce ultra-intense beams of muons presents many opportunities to explore new physics. A facility of this type is unique in that, in a relatively straightforward way, it can present a physics program that can be staged and thus move forward incrementally, addressing exciting new physics at each step. At the request of the US Department of Energy's Office of High Energy Physics, the Neutrino Factory and Muon Collider Collaboration (NFMCC) and the Fermilab Muon Collider Task Force (MCTF) have recently submitted a proposal to create a Muon Accelerator Program that will have, as a primary goal, to deliver a Design Feasibility Study for an energy-frontier Muon Collider by the end of a 7 year R&D program. This paper presents a description of a Muon Collider facility and gives an overview of the proposal.

  18. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    2010-01-01

    The main developments in muon alignment since March 2010 have been the production, approval and deployment of alignment constants for the ICHEP data reprocessing. In the barrel, a new geometry, combining information from both hardware and track-based alignment systems, has been developed for the first time. The hardware alignment provides an initial DT geometry, which is then anchored as a rigid solid, using the link alignment system, to a reference frame common to the tracker. The “GlobalPositionRecords” for both the Tracker and Muon systems are being used for the first time, and the initial tracker-muon relative positioning, based on the link alignment, yields good results within the photogrammetry uncertainties of the Tracker and alignment ring positions. For the first time, the optical and track-based alignments show good agreement between them; the optical alignment being refined by the track-based alignment. The resulting geometry is the most complete to date, aligning all 250 DTs, ...

  19. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez.

    Since June of 2009, the muon alignment group has focused on providing new alignment constants and on finalizing the hardware alignment reconstruction. Alignment constants for DTs and CSCs were provided for CRAFT09 data reprocessing. For DT chambers, the track-based alignment was repeated using CRAFT09 cosmic ray muons and validated using segment extrapolation and split cosmic tools. One difference with respect to the previous alignment is that only five degrees of freedom were aligned, leaving the rotation around the local x-axis to be better determined by the hardware system. Similarly, DT chambers poorly aligned by tracks (due to limited statistics) were aligned by a combination of photogrammetry and hardware-based alignment. For the CSC chambers, the hardware system provided alignment in global z and rotations about local x. Entire muon endcap rings were further corrected in the transverse plane (global x and y) by the track-based alignment. Single chamber track-based alignment suffers from poor statistic...

  20. An improved measurement of muon antineutrino disappearance in MINOS

    CERN Document Server

    Adamson, P; Backhouse, C; Barr, G; Bishai, M; Blake, A; Bock, G J; Boehnlein, D J; Bogert, D; Cao, S V; Childress, S; Coelho, J A B; Corwin, L; Cronin-Hennessy, D; Danko, I Z; de Jong, J K; Devenish, N E; Diwan, M V; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grzelak, K; Habig, A; Hartnell, J; Hatcher, R; Himmel, A; Holin, A; Huang, X; Hylen, J; Irwin, G M; Isvan, Z; Jaffe, D E; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kopp, S; Kordosky, M; Kreymer, A; Lang, K; Ling, J; Litchfield, P J; Loiacono, L; Lucas, P; Mann, W A; Marshak, M L; Mathis, M; Mayer, N; Mehdiyev, R; Meier, J R; Messier, M D; Michael, D G; Miller, W H; Mishra, S R; Mitchell, J; Moore, C D; Mualem, L; Mufson, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; Oliver, W P; Orchanian, M; Pahlka, R B; Paley, J; Patterson, R B; Pawloski, G; Phan-Budd, S; Plunkett, R K; Qiu, X; Radovic, A; Ratchford, J; Rebel, B; Rosenfeld, C; Rubin, H A; Sanchez, M C; Schneps, J; Schreckenberger, A; Schreiner, P; Sharma, R; Sousa, A; Strait, M; Tagg, N; Talaga, R L; Thomas, J; Thomson, M A; Tinti, G; Toner, R; Torretta, D; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Walding, J J; Weber, A; Webb, R C; White, C; Whitehead, L; Wojcicki, S G; Zwaska, R

    2012-01-01

    We report an improved measurement of muon anti-neutrino disappearance over a distance of 735km using the MINOS detectors and the Fermilab Main Injector neutrino beam in a muon anti-neutrino enhanced configuration. From a total exposure of 2.95e20 protons on target, of which 42% have not been previously analyzed, we make the most precise measurement of the anti-neutrino "atmospheric" delta-m squared = 2.62 +0.31/-0.28 (stat.) +/- 0.09 (syst.) and constrain the anti-neutrino atmospheric mixing angle >0.75 (90%CL). These values are in agreement with those measured for muon neutrinos, removing the tension reported previously.

  1. Magnetic flux motion in (P rxY1 -x ) B a2C u3O7 -δ polycrystal samples sintered in Ar and O2 atmospheres

    Science.gov (United States)

    Favre, S.; Yelpo, C.; Romero, P.; Stari, C.; Ariosa, D.

    2016-09-01

    We present a comparative study of the magnetic flux motion in ceramic pellets made of (P rxY1 -x ) B a2C u3O7 -δ as a function of their composition and morphology. Samples produced in Ar or O2 atmosphere present noticeable differences in their magnetic response that we explain in terms of their structural parameters. The material's parameters that most influence the flux dynamics are morphology and oxygen content, that change dramatically with the sintering atmosphere. Moderate changes are also observed as a function of the Pr content. Magnetic pinning efficiency is discussed in terms of intergranular couplings and effective activation energies, estimated from AC-susceptibility and magnetoresistance measurements.

  2. Muon colliders and neutrino factories

    CERN Document Server

    Geer, S

    2012-01-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate O(1021) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  3. The ATLAS Trigger Muon "Vertical Slice"

    CERN Document Server

    Sidoti, A; Biglietti, M; Carlino, G; Cataldi, G; Conventi, F; Del Prete, T; Di Mattia, A; Falciano, S; Gorini, S; Kanaya, N; Kohno, T; Krasznahorkay, A; Lagouri, T; Luci, C; Luminari, L; Marzano, F; Nagano, K; Nisati, A; Panikashvili, N; Pasqualucci, E; Primavera, M; Scannicchio, D A; Spagnolo, S; Tarem, S; Tarem, Z; Tokushuku, K; Usai, G; Ventura, A; Vercesi, V; Yamazaki, Y; 10th Pisa Meeting on Advanced Detectors : Frontier Detectors For Frontier Physics

    2007-01-01

    The muon trigger system is a fundamental component of the ATLAS detector at the LHC collider. In this paper we describe the ATLAS multi-level trigger selecting events with muons: the Muon Trigger Slice.

  4. Temporal and spatial changes in mixed layer properties and atmospheric net heat flux in the Nordic Seas

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A; Alekseev, G [SI ' Arctic and Antarctic Research Institute' , St. Petersburg (Russian Federation); Korablev, A; Esau, I, E-mail: avsmir@aari.nw.r [Nansen Environmental and Remote Sensing Centre, Bergen (Norway)

    2010-08-15

    The Nordic Seas are an important area of the World Ocean where warm Atlantic waters penetrate far north forming the mild climate of Northern Europe. These waters represent the northern rim of the global thermohaline circulation. Estimates of the relationships between the net heat flux and mixed layer properties in the Nordic Seas are examined. Oceanographic data are derived from the Oceanographic Data Base (ODB) compiled in the Arctic and Antarctic Research Institute. Ocean weather ship 'Mike' (OWS) data are used to calculate radiative and turbulent components of the net heat flux. The net shortwave flux was calculated using a satellite albedo dataset and the EPA model. The net longwave flux was estimated by Southampton Oceanography Centre (SOC) method. Turbulent fluxes at the air-sea interface were calculated using the COARE 3.0 algorithm. The net heat flux was calculated by using oceanographic and meteorological data of the OWS 'Mike'. The mixed layer depth was estimated for the period since 2002 until 2009 by the 'Mike' data as well. A good correlation between these two parameters has been found. Sensible and latent heat fluxes controlled by surface air temperature/sea surface temperature gradient are the main contributors into net heat flux. Significant correlation was found between heat fluxes variations at the OWS 'Mike' location and sea ice export from the Arctic Ocean.

  5. Characteristics of the Forbush decrease of 22 June 2015 measured by means of the muon hodoscope URAGAN

    Science.gov (United States)

    Barbashina, N. S.; Ampilogov, N. V.; Astapov, I. I.; Borog, V. V.; Dmitrieva, A. N.; Petrukhin, A. A.; Sitko, O. A.; Shutenko, V. V.; Yakovleva, E. I.

    2016-02-01

    Results of the studies of cosmic ray muon flux variations during the powerful Forbush effect registered by the muon hodoscope URAGAN on June 22, 2015 are presented. From the muon flux angular distribution, the dependence of the intensity decrease amplitude on the primary particle energy in the region above 10 GeV has been obtained. The changes of this dependence at different phases of the Forbush effect development have been studied. Based on the analysis of spatial and angular variations of the muon flux, the values of the local anisotropy vector parameters, as well as unique muon snapshots (muonographies) have been obtained. The characteristics of the heliospheric and magnetospheric disturbances during the considered event have been analyzed.

  6. Optimising a muon spectrometer for measurements at the ISIS pulsed muon source

    Energy Technology Data Exchange (ETDEWEB)

    Giblin, S.R. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom); Cottrell, S.P., E-mail: stephen.cottrell@stfc.ac.uk [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); King, P.J.C.; Tomlinson, S.; Jago, S.J.S.; Randall, L.J.; Roberts, M.J.; Norris, J.; Howarth, S.; Mutamba, Q.B.; Rhodes, N.J.; Akeroyd, F.A. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom)

    2014-07-01

    This work describes the development of a state-of-the-art muon spectrometer for the ISIS pulsed muon source. Conceived as a major upgrade of the highly successful EMU instrument, emphasis has been placed on making effective use of the enhanced flux now available at the ISIS source. This has been achieved both through the development of a highly segmented detector array and enhanced data acquisition electronics. The pulsed nature of the ISIS beam is particularly suited to the development of novel experiments involving external stimuli, and therefore the ability to sequence external equipment has been added to the acquisition system. Finally, the opportunity has also been taken to improve both the magnetic field and temperature range provided by the spectrometer, to better equip the instrument for running the future ISIS user programme.

  7. Electron-Muon Ranger: performance in the MICE Muon Beam

    CERN Document Server

    Adams, D; Vankova-Kirilova, G.; Bertoni, R.; Bonesini, M.; Chignoli, F.; Mazza, R.; Palladino, V.; de Bari, A.; Cecchet, G.; Capponi, M.; Iaciofano, A.; Orestano, D.; Pastore, F.; Tortora, L.; Kuno, Y.; Sakamoto, H.; Ishimoto, S.; Filthaut, F.; Hansen, O.M.; Ramberger, S.; Vretenar, M.; Asfandiyarov, R.; Bene, P.; Blondel, A.; Cadoux, F.; Debieux, S.; Drielsma, F.; Graulich, J.S.; Husi, C.; Karadzhov, Y.; Masciocchi, F.; Nicola, L.; Messomo, E.Noah; Rothenfusser, K.; Sandstrom, R.; Wisting, H.; Charnley, G.; Collomb, N.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Oates, A.; Owens, P.; Stokes, G.; Warburton, P.; White, C.; Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Watson, S.; Wilson, A.; Bayes, R.; Nugent, J.C.; Soler, F.J.P.; Cooke, P.; Gamet, R.; Alekou, A.; Apollonio, M.; Barber, G.; Colling, D.; Dobbs, A.; Dornan, P.; Hunt, C.; Lagrange, J-B.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Santos, E.; Savidge, T.; Uchida, M.A.; Blackmore, V.J.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.A.; Tunnell, C.D.; Booth, C.N.; Hodgson, P.; Langlands, J.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.J.; Dick, A.; Ronald, K.; Speirs, D.; Whyte, C.G.; Young, A.; Boyd, S.; Franchini, P.; Greis, J.; Pidcott, C.; Taylor, I.; Gardener, R.; Kyberd, P.; Littlefield, M.; Nebrensky, J.J.; Bross, A.D.; Fitzpatrick, T.; Leonova, M.; Moretti, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; Rucinski, R.; Roberts, T.J.; Bowring, D.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.; Zisman, M.; Hanlet, P.; Kafka, G.; Kaplan, D.M.; Rajaram, D.; Snopok, P.; Torun, Y.; Blot, S.; Kim, Y.K.; Bravar, U.; Onel, Y.; Cremaldi, L.M.; Hart, T.L.; Luo, T.; Sanders, D.A.; Summers, D.J.; Cline, D.; Yang, X.; Coney, L.; Hanson, G.G.; Heidt, C.

    2015-01-01

    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100-280 MeV/$c$.

  8. Nitrous oxide in the Changjiang (Yangtze River Estuary and its adjacent marine area: Riverine input, sediment release and atmospheric fluxes

    Directory of Open Access Journals (Sweden)

    G.-L. Zhang

    2010-11-01

    Full Text Available Dissolved nitrous oxide (N2O was measured in the waters of the Changjiang (Yangtze River Estuary and its adjacent marine area during five surveys covering the period of 2002–2006. Dissolved N2O concentrations ranged from 6.04 to 21.3 nM, and indicate great temporal and spatial variations. Distribution of N2O in the Changjiang Estuary was influenced by multiple factors and the key factor varied between cruises. Dissolved riverine N2O was observed monthly at station Xuliujing of the Changjiang, and ranged from 12.4 to 33.3 nM with an average of 19.4 ± 7.3 nM. N2O concentrations in the river waters showed obvious seasonal variations with higher values occurring in both summer and winter. Annual input of N2O from the Changjiang to the estuary was estimated to be 15.0 × 106 mol/yr. N2O emission rates from the sediments of the Changjiang Estuary in spring ranged from −1.88 to 2.02 μmol m−2 d−1, which suggests that sediment can act as either a source or a sink of N2O in the Changjiang Estuary. Average annual sea-to-air N2O fluxes from the studied area were estimated to be 7.7 ± 5.5, 15.1 ± 10.8 and 17.0 ± 12.6 μmol m−2d−1 using LM86, W92 and RC01 relationships, respectively. Hence the Changjiang Estuary and its adjacent marine area are a net source of atmospheric N2O.

  9. Effects of elevated atmospheric CO2, prolonged summer drought and temperature increase on N2O and CH4 fluxes in a temperate heathland

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Ambus, Per; Albert, Kristian Rost;

    2011-01-01

    In temperate regions, climate change is predicted to increase annual mean temperature and intensify the duration and frequency of summer droughts, which together with elevated atmospheric carbon dioxide (CO2) concentrations, may affect the exchange of nitrous oxide (N2O) and methane (CH4) between...... terrestrial ecosystems and the atmosphere. We report results from the CLIMAITE experiment, where the effects of these three climate change parameters were investigated solely and in all combinations in a temperate heathland. Field measurements of N2O and CH4 fluxes took place 1–2 years after the climate...... change manipulations were initiated. The soil was generally a net sink for atmospheric CH4. Elevated temperature (T) increased the CH4 uptake by on average 10 μg C m−2 h−1, corresponding to a rise in the uptake rate of about 20%. However, during winter elevated CO2 (CO2) reduced the CH4 uptake, which...

  10. Annual input fluxes and source identification of trace elements in atmospheric deposition in Shanxi Basin: the largest coal base in China.

    Science.gov (United States)

    Zhong, Cong; Yang, Zhongfang; Jiang, Wei; Yu, Tao; Hou, Qingye; Li, Desheng; Wang, Jianwu

    2014-11-01

    Industrialization and urbanization have led to a great deterioration of air quality and provoked some serious environmental concerns. One hundred and five samples of atmospheric deposition were analyzed for their concentrations of 13 trace elements (As, Cd, Cu, Fe, Al, Co, Cr, Hg, Mn, Mo, Pb, Se, and Zn) in Shanxi Basin, which includes six isolate basins. The input fluxes of the trace elements in atmospheric deposition were observed and evaluated. Geostatistical analysis (EF, PCA, and CA ) were conducted to determine the spatial distribution, possible sources, and enrichment degrees of trace elements in atmospheric deposition. Fe/Al and K/Al also contribute to identify the sources of atmospheric deposition. The distribution of trace elements in atmospheric deposition was proved to be geographically restricted. The results show that As, Cd, Pb, Zn, and Se mainly come from coal combustion. Fe, Cu, Mn, Hg, and Co originate mainly from interactions between local polluted soils and blowing dust from other places, while the main source of Al, Cr, and Mo are the soil parent materials without pollution. This work provides baseline information to develop policies to control and reduce trace elements, especially toxic elements, from atmospheric deposition. Some exploratory analytical methods applied in this work are also worth considering in similar researches.

  11. Study of the ANTARES detector sensitivity to a diffuse high-energy cosmic neutrino flux; Etude de la sensibilite du detecteur ANTARES a un flux diffus de neutrinos cosmiques de haute energie

    Energy Technology Data Exchange (ETDEWEB)

    Romeyer, A

    2003-04-01

    The ANTARES collaboration aims to built an underwater neutrino telescope, 2 400 m deep, 40 km from Toulon (France). This detector is constituted by 12 strings, each one comprising 90 photomultipliers. Neutrinos are detected through their charged current interaction in the medium surrounding the detector (water or rock) leading to the production of a muon in the final state. Its Cherenkov light emitted all along its travel is detected by a three dimensional array of photomultipliers. The diffuse neutrino flux is constituted by the addition of the neutrino emission of sources. Only astrophysical ones have been discussed. The different theoretical models predicting such a flux have been listed and added to the simulation possibilities. As the muon energy reconstruction was a crucial parameter in this analysis, a new energy estimator has been developed. It gives a resolution of a factor three on the muon energy above 1 TeV. Discriminant variables have been also developed in order to reject the atmospheric muon background. Including all these developments, the ANTARES sensitivity is found to be around 8.10{sup -8} GeV-cm{sup -2}-s{sup -1}-sr{sup -1} after one year of data taking for an E{sup -2} spectrum and a 10 string detector. (author)

  12. Cosmic-ray muons in the deep ocean

    Energy Technology Data Exchange (ETDEWEB)

    Babson, J.; Barish, B.; Becker-Szendy, R.; Bradner, H.; Cady, R.; Clem, J.; Dye, S.T.; Gaidos, J.; Gorham, P.; Grieder, P.K.F.; Jaworski, M.; Kitamura, T.; Kropp, W.; Learned, J.G.; Matsuno, S.; March, R.; Mitsui, K.; O' Connor, D.; Ohashi, Y.; Okada, A.; Peterson, V.; Price, L.; Reines, F.; Roberts, A.; Roos, C.; Sobel, H.; Stenger, V.J.; Webster, M.; Wilson, C. (University of Bern, Bern (Switzerland) California Institute of Technology, Pasadena, CA (USA) University of California at Irvine, Irvine, CA (USA) University of California at San Diego, La Jolla, CA (USA) Hawaii DUMAND Center, University of Hawaii, Honolulu, HI (USA) Purdue University, Layfayette, IN (USA) Institute for Cosmic Ray Research, University of Tokyo, Tokyo (Japan) Vanderbilt University, Nashville, TN (USA) University of Wisconsin, Madison, WI (USA)); DUMAND Collaboration

    1990-12-01

    A string of seven optical detectors deployed from a ship was used to detect the Cherenkov light from muons at ocean depths ranging from 2000 to 4000 m in intervals of {similar to}500 m. The flux and angular distributions of cosmic-ray muons were measured. An effective area for fivefold coincidences of 420 m{sup 2} for downward-going muons was achieved. The results are consistent with those derived from underground observations and theoretical calculations. The measured vertical intensity ranges from (9.84{plus minus}6.5){times}10{sup {minus}8} cm{sup {minus}2} s{sup {minus}1} sr{sup {minus}1} at 2090 m of water equivalent (mwe) to (4.57{plus minus}1.37){times}10{sup {minus}9} cm{sup {minus}2} s{sup {minus}1} sr{sup {minus}1} at 4157 mwe.

  13. Cosmic-ray muons in the deep ocean

    Science.gov (United States)

    Babson, J.; Barish, B.; Becker-Szendy, R.; Bradner, H.; Cady, R.; Clem, J.; Dye, S. T.; Gaidos, J.; Gorham, P.; Grieder, P. K.; Jaworski, M.; Kitamura, T.; Kropp, W.; Learned, J. G.; Matsuno, S.; March, R.; Mitsui, K.; O'connor, D.; Ohashi, Y.; Okada, A.; Peterson, V.; Price, L.; Reines, F.; Roberts, A.; Roos, C.; Sobel, H.; Stenger, V. J.; Webster, M.; Wilson, C.

    1990-12-01

    A string of seven optical detectors deployed from a ship was used to detect the Cherenkov light from muons at ocean depths ranging from 2000 to 4000 m in intervals of ~500 m. The flux and angular distributions of cosmic-ray muons were measured. An effective area for fivefold coincidences of 420 m2 for downward-going muons was achieved. The results are consistent with those derived from underground observations and theoretical calculations. The measured vertical intensity ranges from (9.84+/-6.5)×10-8 cm-2 s-1 sr-1 at 2090 m of water equivalent (mwe) to (4.57+/-1.37)×10-9 cm-2 s-1 sr-1 at 4157 mwe.

  14. Application of a GC-ECD for measurements of biosphere–atmosphere exchange fluxes of peroxyacetyl nitrate using the relaxed eddy accumulation and gradient method

    Directory of Open Access Journals (Sweden)

    A. Moravek

    2014-02-01

    Full Text Available Peroxyacetyl nitrate (PAN may constitute a significant fraction of reactive nitrogen in the atmosphere. Current knowledge about the biosphere–atmosphere exchange of PAN is limited and only few studies have investigated the deposition of PAN to terrestrial ecosystems. We developed a flux measurement system for the determination of biosphere–atmosphere exchange fluxes of PAN using both the hyperbolic relaxed eddy accumulation (HREA method and the modified Bowen ratio (MBR method. The system consists of a modified, commercially available gas chromatograph with electron capture detection (GC-ECD, Meteorologie Consult GmbH, Germany. Sampling was performed by trapping PAN onto two pre-concentration columns; during HREA operation one was used for updraft and one for downdraft events and during MBR operation the two columns allowed simultaneous sampling at two measurement heights. The performance of the PAN flux measurement system was tested at a natural grassland site, using fast response ozone (O3 measurements as a proxy for both methods. The measured PAN fluxes were comparatively small (daytime PAN deposition was on average −0.07 nmol m−2 s−1 and, thus, prone to significant uncertainties. A major challenge in the design of the system was the resolution of the small PAN mixing ratio differences. Consequently, the study focuses on the performance of the analytical unit and a detailed analysis of errors contributing to the overall uncertainty. The error of the PAN mixing ratio differences ranged from 4 to 15 ppt during the MBR and between 18 and 26 ppt during the HREA operation, while during daytime measured PAN mixing ratios were of similar magnitude. Choosing optimal settings for both the MBR and HREA method, the study shows that the HREA method did not have a significant advantage towards the MBR method under well mixed conditions as it was expected.

  15. High luminosity muon collider design

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R.; Gallardo, J.

    1996-10-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should be regarded as complementary. Parameters are given of 4 TeV high luminosity {mu}{sup +}{mu}{sup {minus}} collider, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders.

  16. Muon collider design

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R. [Brookhaven National Lab., Upton, NY (United States)]|[Stanford Linear Accelerator Center, Menlo Park, CA (United States); Sessler, A. [Lawrence Berkeley National Lab., CA (United States); Skrinsky, A. [AN SSSR, Novosibirsk (Russian Federation). Inst. Yadernoj Fiziki

    1996-03-01

    The possibility of muon colliders was introduced by Skrinsky et al., Neuffer, and others. More recently, several workshops and collaboration meetings have greatly increased the level of discussion. In this paper we present scenarios for 4 TeV and 0.5 TeV colliders based on an optimally designed proton source, and for a lower luminosity 0.5 TeV demonstration based on an upgraded version of the AGS. It is assumed that a demonstration version based on upgrades of the FERMILAB machines would also be possible. 53 refs., 25 figs., 8 tabs.

  17. Composition from high pT muons in IceCube

    Directory of Open Access Journals (Sweden)

    Soldin Dennis

    2015-01-01

    Full Text Available Cosmic rays with energies up to 1011 GeV enter the atmosphere and produce showers of secondary particles. Inside these showers muons with high transverse momentum (pT ≳ 2 GeV are produced from the decay of heavy hadrons, or from high pT pions and kaons very early in the shower development. These isolated muons can have large transverse separations from the shower core up to several hundred meters, together with the muon bundle forming a double or triple track signature in IceCube. The separation from the core is a measure of the transverse momentum of the muon's parent particle. Assuming the validity of perturbative quantum chromodynamics (pQCD the muon lateral distribution depends on the composition of the incident nuclei, thus the composition of high energy cosmic rays can be determined from muon separation measurements. Vice versa these muons can help to understand uncertainties due to phenomenological models as well as test pQCD predictions of high energy interactions involving heavy nuclei. After introducing the physics scenario of high pT muons in kilometer-scale neutrino telescopes we will review results from IceCube in its 59-string configuration as a starting point and discuss recent studies on composition using laterally separated muons in the final detector configuration.

  18. An improved method for measuring muon energy using the truncated mean of dE/dx

    CERN Document Server

    Abbasi, R; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beattie, K; Beatty, J J; Bechet, S; Tjus, J Becker; Becker, K -H; Bell, M; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Brown, A M; Bruijn, R; Brunner, J; Buitink, S; Carson, M; Casey, J; Casier, M; Chirkin, D; Christy, B; Clevermann, F; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Díaz-Vélez, J C; Dreyer, J; Dumm, J P; Dunkman, M; Eagan, R; Eisch, J; Elliott, C; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Góra, D; Grant, D; Groß, A; Grullon, S; Gurtner, M; Ha, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heimann, P; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jlelati, O; Kappes, A; Karg, T; Karle, A; Kiryluk, J; Kislat, F; Kläs, J; Klein, S R; Klepser, S; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lesiak-Bzdak, M; Lünemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McDermott, A; McNally, F; Meagher, K; Merck, M; Mészáros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Movit, S M; Nahnhauer, R; Naumann, U; Nießen, P; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Panknin, S; Paul, L; Pepper, J A; Heros, C Pérez de los; Pieloth, D; Pirk, N; Posselt, J; Price, P B; Przybylski, G T; Rädel, L; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Roth, J; Rothmaier, F; Rott, C; Roucelle, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Salameh, T; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Scheel, M; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönherr, L; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Seo, S H; Sestayo, Y; Seunarine, S; Shulman, L; Smith, M W E; Soiron, M; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Stoyanov, S; Strahler, E A; Ström, R; Sulanke, K-H; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Usner, M; van der Drift, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Wasserman, R; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zilles, A; Zoll, M

    2012-01-01

    The measurement of muon energy is critical for many analyses in large Cherenkov detectors, particularly those that involve separating extraterrestrial neutrinos from the atmospheric neutrino background. Muon energy has traditionally been determined by measuring the specific energy loss (dE/dx) along the muon's path and relating the dE/dx to the muon energy. Because high-energy muons (E_mu > 1 TeV) lose energy randomly, the spread in dE/dx values is quite large, leading to a typical energy resolution of 0.29 in log10(E_mu) for a muon observed over a 1 km path length in the IceCube detector. In this paper, we present an improved method that uses a truncated mean and other techniques to determine the muon energy. The muon track is divided into separate segments with individual dE/dx values. The elimination of segments with the highest dE/dx results in an overall dE/dx that is more closely correlated to the muon energy. This method results in an energy resolution of 0.22 in log10(E_mu), which gives a 26% improvem...

  19. Cosmic-muon characterization and annual modulation measurement with Double Chooz detectors

    CERN Document Server

    Abrahão, T; Anjos, J E dos; Appel, S; Baussan, E; Bekman, I; Bezerra, T J C; Bezrukov, L; Blucher, E; Brugière, T; Buck, C; Busenitz, J; Cabrera, A; Camilleri, L; Carr, R; Cerrada, M; Chauveau, E; Chimenti, P; Corpace, O; Crespo-Anadón, J I; Dawson, J V; Dhooghe, J; Djurcic, Z; Dracos, M; Etenko, A; Fallot, M; Franco, D; Franke, M; Furuta, H; Gil-Botella, I; Giot, L; Givaudan, A; Gögger-Neff, M; Gómez, H; Gonzalez, L F G; Goodman, M; Hara, T; Haser, J; Hellwig, D; Hourlier, A; Ishitsuka, M; Jochum, J; Jollet, C; Kale, K; Kampmann, P; Kaneda, M; Kaplan, D M; Kawasaki, T; Kemp, E; de Kerret, H; Kryn, D; Kuze, M; Lachenmaier, T; Lane, C; Laserre, T; Lastoria, C; Lhuillier, D; Lima, H; Lindner, M; López-Castaño, J M; LoSecco, J M; Lubsandorzhiev, B; Maeda, J; Mariani, C; Maricic, J; Matsubara, T; Mention, G; Meregaglia, A; Miletic, T; Nagasaka, Y; Navas-Nicolás, D; Novella, P; Oberauer, L; Obolensky, M; Onillon, A; Oralbaev, A; Palomares, C; Pepe, I; Pronost, G; Reinhold, B; Rybolt, B; Sakamoto, Y; Santorelli, R; Schönert, S; Schoppmann, S; Sharankova, R; Sibille, V; Sinev, V; Skorokhvatov, M; Soiron, M; Soldin, P; Stahl, A; Stancu, I; Stokes, L F F; Strait, M; Suekane, F; Sukhotin, S; Sumiyoshi, T; Sun, Y; Svoboda, B; Tonazzo, A; Veyssiere, C; Vivier, M; Wagner, S; Wiebusch, C; Wurm, M; Yang, G; Yermia, F; Zimmer, V

    2016-01-01

    A study on cosmic muons has been performed for the two identical near and far neutrino detectors of the Double Chooz experiment, placed at $\\sim$120 and $\\sim$300 m.w.e. underground respectively, including the corresponding simulations using the MUSIC simulation package. This characterization has allowed to measure the muon flux reaching both detectors to be (3.64 $\\pm$ 0.04) $\\times$ 10$^{-4}$ cm$^{-2}$s$^{-1}$ for the near detector and (7.00 $\\pm$ 0.05) $\\times$ 10$^{-5}$ cm$^{-2}$s$^{-1}$ for the far one. The seasonal modulation of the signal has also been studied observing a positive correlation with the atmospheric temperature, leading to an effective temperature coefficient of $\\alpha_{T}$ = 0.212 $\\pm$ 0.024 and 0.355 $\\pm$ 0.019 for the near and far detectors respectively. These measurements, in good agreement with expectations based on theoretical models, represent one of the first measurements of this coefficient in shallow depth installations.

  20. Investigation of the zenith angle dependence of cosmic-ray muons at sea level

    Indian Academy of Sciences (India)

    Mehmet Bektasoglu; Halil Arslan

    2013-05-01

    Angular distribution of cosmic-ray muons at sea level has been investigated using the Geant4 simulation package. The model used in the simulations was tested by comparing the simulation results with the measurements made using the Berkeley Lab cosmic ray detector. Primary particles’ energy and fluxes were obtained from the experimental measurements. Simulations were run at each zenith angle starting from = 0° up to = 70° with 5° increment. The angular distribution of muons at sea level has been estimated to be in the form $I() = I(0^{°}) \\cos^{n}()$, where (0°) is the muon intensity at 0° and is a function of the muon momentum. The exponent = 1.95 ± 0.08 for muons with energies above 1 GeV is in good agreement, within error, with the values reported in the literature.

  1. Effects of upward-going cosmic muons on density radiography of volcanoes

    CERN Document Server

    Jourde, K; Marteau, J; D'ars, J De Bremond; Gardien, S; Girerd, C; Ianigro, J -C; Carbone, D

    2013-01-01

    Muon tomography aims at deriving the density structure of geological bodies from their screening attenuation produced on the natural cosmic muons flux. Because of their open-sky exposure, muons telescopes are subject to noise fluxes with large intensities relative to the tiny flux of interest. A recognized source of noise flux comes from fake tracks caused by particles that fortuitously trigger the telescope detectors at the same time. Such a flux may be reduced by using multiple-detector telescopes so that fortuitous events become very unlikely. In the present study, we report on a different type of noise flux caused by upward-going muons crossing the detectors from the rear side. We describe field experiments on La Soufri\\'ere of Guadeloupe and Mount Etna, and give details on the high-resolution clocking system and the statistical procedure necessary to detect upward-going muons. We analyse several data sets acquired either in calibration or in volcano tomography situation. All data sets are shown clearly b...

  2. Can muon-induced backgrounds explain the DAMA data?

    Science.gov (United States)

    Klinger, Joel; Kudryavtsev, Vitaly A.

    2016-05-01

    We present an accurate simulation of the muon-induced background in the DAMA/LIBRA experiment. Muon sampling underground has been performed using the MUSIC/MUSUN codes and subsequent interactions in the rock around the DAMA/LIBRA detector cavern and the experimental setup including shielding, have been simulated with GEANT4.9.6. In total we simulate the equivalent of 20 years of muon data. We have calculated the total muon-induced neutron flux in the DAMA/LIBRA detector cavern as Φμ n = 1.0 × 10-9 cm-2s-1, which is consistent with other simulations. After selecting events which satisfy the DAMA/LIBRA signal criteria, our simulation predicts 3.49 × 10-5 cpd/kg/keV which accounts for less than 0.3% of the DAMA/LIBRA modulation amplitude. We conclude from our work that muon-induced backgrounds are unable to contribute to the observed signal modulation.

  3. Observations of atmosphere-biosphere exchange of total and speciated peroxynitrates: nitrogen fluxes and biogenic sources of peroxynitrates

    Directory of Open Access Journals (Sweden)

    K.-E. Min

    2012-10-01

    Full Text Available Peroxynitrates are responsible for global scale transport of reactive nitrogen. Recent laboratory observations suggest that they may also play an important role in delivery of nutrients to plant canopies. We measured eddy covariance fluxes of total peroxynitrates (ΣPNs and three individual peroxynitrates (APNs ≡ PAN + PPN + MPAN over a ponderosa pine forest during the Biosphere Effects on AeRosols and Photochemistry EXperiment 2009 (BEARPEX 2009. Concentrations of these species were also measured at multiple heights above and within the canopy. While the above-canopy daytime concentrations are nearly identical for ΣPNs and APNs, we observed the downward flux of ΣPNs to be 30–60% slower than the flux of APNs. The vertical concentration gradients of ΣPNs and APNs vary with time of day and exhibit different temperature dependencies. These differences can be explained by the production of peroxynitrates other than PAN, PPN, and MPAN within the canopy (presumably as a consequence of biogenic VOC emissions and upward fluxes of these PN species. The impact of this implied peroxynitrate flux on the interpretation of NOx fluxes and ecosystem N exchange is discussed.

  4. Observations of atmosphere-biosphere exchange of total and speciated peroxynitrates: nitrogen fluxes and biogenic sources of peroxynitrates

    Directory of Open Access Journals (Sweden)

    K.-E. Min

    2012-02-01

    Full Text Available Peroxynitrates are responsible for global scale transport of reactive nitrogen. Recent laboratory observations suggest that they may also play an important role in delivery of nutrients to plant canopies. We measured eddy covariance fluxes of total peroxynitrates (ΣPNs and three individual peroxynitrates (APNs ≡ PAN + PPN + MPAN over a ponderosa pine forest during the Biosphere Effects on AeRosols and Photochemistry EXperiment 2009 (BEARPEX 2009. Concentrations of these species were also measured at multiple heights above and within the canopy. While the above-canopy daytime concentrations are nearly identical for ΣPNs and APNs, we observed the downward flux of ΣPNs to be 30–60% slower than the flux of APNs. The vertical concentration gradients of ΣPNs and APNs vary with time of day and exhibit different temperature dependencies. These differences can be explained by the production of peroxynitrates other than PAN, PPN, and MPAN within the canopy (presumably as a consequence of biogenic VOC emissions and upward fluxes of these PN species. The impact of this implied peroxynitrate flux on the interpretation of NOx fluxes and ecosystem N exchange is discussed.

  5. Ten years of CO2, CH4, CO and N2O fluxes over Western Europe inferred from atmospheric measurements at Mace Head, Ireland

    Directory of Open Access Journals (Sweden)

    S. G. Jennings

    2008-01-01

    Full Text Available We estimated CO2, CH4, CO and N2O emission fluxes over the British Isles and Western Europe using atmospheric radon observations and concentrations recorded at the Mace Head Atmospheric Research Station between 1996 and 2005. We classified hourly concentration data into either long-range European or regional sources from Ireland and UK, by using local wind speed data in conjunction with 222Rn and 212Pb threshold criteria. This leads to the selection of about 7% of the total data for both sectors. We then used continuous 222Rn measurements and assumptions on the surface emissions of 222Rn to deduce the unknown fluxes of CO2, CH4, CO and N2O. Our results have been compared to the UNFCCC, EMEP and EDGAR statistical inventories and to inversion results for CH4. For Western Europe, we found yearly mean fluxes of 4.1±1.5 106 kg CO2 km−2 yr−1 , 11.9±2.0 103 kg CH4 km−2 yr−1, 12.8±4.2 103 kg CO km−2 yr−1 and 520.2±129.2 kg N2O km−2 yr−1, respectively, for CO2, CH4, CO and N2O over the period 1996–2005. The method based upon 222Rn to infer emissions has many sources of systematic errors, in particular its poorly known and variable footprint, uncertainties in 222Rn soil fluxes and in atmospheric mixing of air masses with background air. However, these biases are likely to remain constant in the long-term, which makes the method quite efficient to detect trends in fluxes. Over the last ten years period, the decrease of the anthropogenic CH4, CO and N2O emissions in Europe estimated by inventories (respectively −30%, −35% and −23% is confirmed by the Mace Head data within 2%. Therefore, the 222Rn method provides an independent way of verification of changes in national emissions derived from inventories. Using European-wide estimates of the CO/CO2 emission ratio, we also found that it is possible to separate the fossil fuel CO2 emissions contribution from the one of total CO2 fluxes. The fossil fuel CO2 emissions and their trends

  6. Land-atmosphere fluxes of methane and carbon dioxide at Siberian polygonal tundra - new data from 2009 in comparison to data from 2003/04 and 2006.

    Science.gov (United States)

    Schreiber, Peter; Wille, Christian; Sachs, Torsten; Pfeiffer, Eva-Maria; Kutzbach, Lars

    2010-05-01

    The fluxes of carbon dioxide (CO2) and methane (CH4) between wet arctic polygonal tundra and the atmosphere were investigated by the eddy covariance method and empirical modeling. The study site is situated in the Lena River Delta in Northern Siberia (72° 22' N, 126° 30' E) and is characterized by a polar and distinctly continental climate, very cold and ice-rich permafrost, and its position at the interface between the Eurasian continent and the Arctic Ocean. The soils at the site are characterized by high organic matter content, low nutrient availability and pronounced water logging. The vegetation is dominated by sedges and mosses. Flux measurements were performed during one 'synthetic' growing season consisting of the periods July - October 2003 and May - July 2004, one full growing season in 2006 (June - September), and during July - August in 2009. The main carbon exchange processes - gross photosynthesis, ecosystem respiration, and CH4 emissions - were generally found to be of low intensity. Over the 2004/2003 growing season (June - September), these gas fluxes accumulated to -0.43 kg m-2, +0.33 kg m-2, and +2 g m-2, respectively. CH4 emissions from June - September 2006 were 1.96 g m-2 with highest emissions in July (+0.57 g m-2) and August (+0.64 g m-2). Day-to-day variations of photosynthesis were mainly controlled by radiation and hence by the synoptic weather conditions. Variations of ecosystem respiration were best explained by an exponential function of surface temperature, which indicates that plant respiration plays a major role within the tundra carbon balance. The factors controlling CH4 emissions were found to be soil temperature and near-surface atmospheric turbulence. The influence of atmospheric turbulence was attributed to the high coverage of open water surfaces in the tundra. For the 2003- 2004 period, winter fluxes were modeled based on functional relationships found in the measured data. On an annual basis, CH4 emissions accounted for

  7. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2011-01-01

    During data-taking in 2010 the RPC system behaviour was very satisfactory for both the detector and trigger performances. Most of the data analyses are now completed and many results and plots have been approved in order to be published in the muon detector paper. A very detailed analysis of the detector efficiency has been performed using 60 million muon events taken with the dedicated RPC monitor stream. The results have shown that the 96.3% of the system was working properly with an average efficiency of 95.4% at 9.35 kV in the Barrel region and 94.9% at 9.55 kV in the Endcap. Cluster size goes from 1.6 to 2.2 showing a clear and well-known correlation with the strip pitch. Average noise in the Barrel is less than 0.4 Hz/cm2 and about 98% of full system has averaged noise less then 1 Hz/cm2. A linear dependence of the noise versus the luminosity has been preliminary observed and is now under study. Detailed chamber efficiency maps have shown a few percent of chambers with a non-uniform efficiency distribu...

  8. CMS tracker observes muons

    CERN Multimedia

    2006-01-01

    A computer image of a cosmic ray traversing the many layers of the TEC+ silicon sensors. The first cosmic muon tracks have been observed in one of the CMS tracker endcaps. On 14 March, a sector on one of the two large tracker endcaps underwent a cosmic muon run. Since then, thousands of tracks have been recorded. These data will be used not only to study the tracking, but also to exercise various track alignment algorithms The endcap tested, called the TEC+, is under construction at RWTH Aachen in Germany. The endcaps have a modular design, with silicon strip modules mounted onto wedge-shaped carbon fibre support plates, so-called petals. Up to 28 modules are arranged in radial rings on both sides of these plates. One eighth of an endcap is populated with 18 petals and called a sector. The next major step is a test of the first sector at CMS operating conditions, with the silicon modules at a temperature below -10°C. Afterwards, the remaining seven sectors have to be integrated. In autumn 2006, TEC+ wil...

  9. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    Since December, the muon alignment community has focused on analyzing the data recorded so far in order to produce new DT and CSC Alignment Records for the second reprocessing of CRAFT data. Two independent algorithms were developed which align the DT chambers using global tracks, thus providing, for the first time, a relative alignment of the barrel with respect to the tracker. These results are an important ingredient for the second CRAFT reprocessing and allow, for example, a more detailed study of any possible mis-modelling of the magnetic field in the muon spectrometer. Both algorithms are constructed in such a way that the resulting alignment constants are not affected, to first order, by any such mis-modelling. The CSC chambers have not yet been included in this global track-based alignment due to a lack of statistics, since only a few cosmics go through the tracker and the CSCs. A strategy exists to align the CSCs using the barrel as a reference until collision tracks become available. Aligning the ...

  10. MUON DETECTORS: CSC

    CERN Multimedia

    Jay Hauser

    2013-01-01

    Great progress has been made on the CSC improvement projects during LS1, the construction of the new ME4/2 muon station, and the refurbishing of the electronics in the high-rate inner ME1/1 muon station. CSC participated successfully in the Global Run in November (GRiN) cosmic ray test, but with just stations +2 and +3, due to the large amount of work going on. The test suite used for commissioning chambers is more comprehensive than the previous tests, and should lead to smoother running in the future. The chamber factory at Prevessin’s building 904 has just finished assembling all the new ME4/2 chambers, which number 67 to be installed plus five spares, and is now finishing up the long-term HV training and testing of the last chambers. At Point 5, installation of the new chambers on the positive endcap went well, and they are now all working well. Gas leak rates are very low. Services are in good shape, except for the HV system, which will be installed during the coming month. We will then be w...

  11. 20 years of cosmic muons research performed in IFIN-HH

    Energy Technology Data Exchange (ETDEWEB)

    Mitrica, Bogdan [Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Bucharest, P.O.B.MG-6 (Romania)

    2012-11-20

    During the last two decades a modern direction in particle physics research has been developed in IFIN-HH Bucharest, Romania. The history started with the WILLI detector built in IFIN-HH Bucharest in collaboration with KIT Karlsruhe (formerly Forschungszentrum Karlsruhe). The detector was designed for measurements of the low energy muon charge ratio (< 1GeV) based on a delayed coincidence method, measuring the decay time of the muons stopped in the detector: the positive muons decay freely, but the negative muons are captured in the atom thus creating muonic atoms and decay depending on the nature of the host atom. In a first configuration, the WILLI detector was placed in a fixed position for measuring vertical muons. Further WILLI has been transformed in a rotatable device which allows directional measurements of muon charge ratio and muon flux. The results exhibit a pronounced azimuthal asymmetry (East-West effect) due to the different in fluence of the geomagnetic field on the trajectories of positive and negative muons in air. In parallel, flux measurement, taking into account muon events with nergies > 0.4GeV, show a diurnal modulation of the muon flux. The analysis of the muon events for energies < 0.6GeV reveals an aperiodic variation of the muon flux. A new detection system performing coincidence measurements between the WILLI calorimeter and a small array of 12 scintillators plates has been installed in IFIN-HH starting from the autumn of 2010. The aim of the system is to investigate muon charge ratio from individual EAS by using the mini-array as trigger for the WILLI calorimeter. Such experimental studies could provide detailed information on hadronic interaction models and primary cosmic ray composition at energies around 10{sup 15}eV. Simulation studies and preliminary experimental tests, regarding the performances of the mini-array, have been performed using H and Fe primaries, with energies in a range 10{sup 13}eV - 10{sup 15}eV. The results show

  12. Air-sea fluxes of CO2 and CH4 from the Penlee Point Atmospheric Observatory on the south-west coast of the UK

    Science.gov (United States)

    Yang, Mingxi; Bell, Thomas G.; Hopkins, Frances E.; Kitidis, Vassilis; Cazenave, Pierre W.; Nightingale, Philip D.; Yelland, Margaret J.; Pascal, Robin W.; Prytherch, John; Brooks, Ian M.; Smyth, Timothy J.

    2016-05-01

    We present air-sea fluxes of carbon dioxide (CO2), methane (CH4), momentum, and sensible heat measured by the eddy covariance method from the recently established Penlee Point Atmospheric Observatory (PPAO) on the south-west coast of the United Kingdom. Measurements from the south-westerly direction (open water sector) were made at three different sampling heights (approximately 15, 18, and 27 m above mean sea level, a.m.s.l.), each from a different period during 2014-2015. At sampling heights ≥ 18 m a.m.s.l., measured fluxes of momentum and sensible heat demonstrate reasonable ( ≤ ±20 % in the mean) agreement with transfer rates over the open ocean. This confirms the suitability of PPAO for air-sea exchange measurements in shelf regions. Covariance air-sea CO2 fluxes demonstrate high temporal variability. Air-to-sea transport of CO2 declined from spring to summer in both years, coinciding with the breakdown of the spring phytoplankton bloom. We report, to the best of our knowledge, the first successful eddy covariance measurements of CH4 emissions from a marine environment. Higher sea-to-air CH4 fluxes were observed during rising tides (20 ± 3; 38 ± 3; 29 ± 6 µmole m-2 d-1 at 15, 18, 27 m a.m.s.l.) than during falling tides (14 ± 2; 22 ± 2; 21 ± 5 µmole m-2 d-1), consistent with an elevated CH4 source from an estuarine outflow driven by local tidal circulation. These fluxes are a few times higher than the predicted CH4 emissions over the open ocean and are significantly lower than estimates from other aquatic CH4 hotspots (e.g. polar regions, freshwater). Finally, we found the detection limit of the air-sea CH4 flux by eddy covariance to be 20 µmole m-2 d-1 over hourly timescales (4 µmole m-2 d-1 over 24 h).

  13. A semianalytical algorithm for quantitatively estimating sediment and atmospheric deposition flux from MODIS-derived sea ice albedo in the Bohai Sea, China

    Science.gov (United States)

    Xu, Zhantang; Hu, Shuibo; Wang, Guifen; Zhao, Jun; Yang, Yuezhong; Cao, Wenxi; Lu, Peng

    2016-05-01

    Quantitative estimates of particulate matter [PM) concentration in sea ice using remote sensing data is helpful for studies of sediment transport and atmospheric dust deposition flux. In this study, the difference between the measured dirty and estimated clean albedo of sea ice was calculated and a relationship between the albedo difference and PM concentration was found using field and laboratory measurements. A semianalytical algorithm for estimating PM concentration in sea ice was established. The algorithm was then applied to MODIS data over the Bohai Sea, China. Comparisons between MODIS derived and in situ measured PM concentration showed good agreement, with a mean absolute percentage difference of 31.2%. From 2005 to 2010, the MODIS-derived annual average PM concentration was approximately 0.025 g/L at the beginning of January. After a month of atmospheric dust deposition, it increased to 0.038 g/L. Atmospheric dust deposition flux was estimated to be 2.50 t/km2/month, simi