WorldWideScience

Sample records for atmospheric modeling based

  1. Comparison between empirical and physically based models of atmospheric correction

    Science.gov (United States)

    Mandanici, E.; Franci, F.; Bitelli, G.; Agapiou, A.; Alexakis, D.; Hadjimitsis, D. G.

    2015-06-01

    A number of methods have been proposed for the atmospheric correction of the multispectral satellite images, based on either atmosphere modelling or images themselves. Full radiative transfer models require a lot of ancillary information about the atmospheric conditions at the acquisition time. Whereas, image based methods cannot account for all the involved phenomena. Therefore, the aim of this paper is the comparison of different atmospheric correction methods for multispectral satellite images. The experimentation was carried out on a study area located in the catchment area of Yialias river, 20 km South of Nicosia, the Cyprus capital. The following models were tested, both empirical and physically based: Dark object subtraction, QUAC, Empirical line, 6SV, and FLAASH. They were applied on a Landsat 8 multispectral image. The spectral signatures of ten different land cover types were measured during a field campaign in 2013 and 15 samples were collected for laboratory measurements in a second campaign in 2014. GER 1500 spectroradiometer was used; this instrument can record electromagnetic radiation from 350 up to 1050 nm, includes 512 different channels and each channel covers about 1.5 nm. The spectral signatures measured were used to simulate the reflectance values for the multispectral sensor bands by applying relative spectral response filters. These data were considered as ground truth to assess the accuracy of the different image correction models. Results do not allow to establish which method is the most accurate. The physics-based methods describe better the shape of the signatures, whereas the image-based models perform better regarding the overall albedo.

  2. Development of web-based environment for atmospheric dispersion modeling

    Czech Academy of Sciences Publication Activity Database

    Hofman, Radek; Pecha, Petr

    La Garde Park, Illinois, USA : American Nuclear Society, 2013. ISBN 978-0-89448-702-6. [International Topical Meeting on Probabilistic Safety Assessment and Analysis . Columbia, SC (US), 22.09.2013-27.09.2013] R&D Projects: GA MV(CZ) VG20102013018 Institutional support: RVO:67985556 Keywords : distributed computing * atmoshepric dispersion * web environment Subject RIV: DL - Nuclear Waste, Radioactive Pollution ; Quality http://library.utia.cas.cz/separaty/2013/AS/hofman-development of web -based environment for atmospheric dispersion modeling.pdf

  3. Modelling atmospheric turbulence effects on ground-based telescope systems

    Energy Technology Data Exchange (ETDEWEB)

    Bradford, L.W.; Flatte, S.M. [California Univ., Santa Cruz, CA (United States). Dept. of Physics; Max, C.E. [Lawrence Livermore National Lab., CA (United States)

    1993-09-30

    Questions still exist concerning the appropriate model for turbulence- induced phase fluctuations seen in ground-based telescopes. Bester et al. used a particular observable (slope of the Allan variance) with an infrared interferometer in an attempt to distinguish models. The authors have calculated that observable for Kolmogorov and {open_quotes}random walk{close_quotes} models with a variety of outer scales and altitude-dependent turbulence and wind velocity. The authors have found that clear distinction between models requires good data on the vertical distribution of wind and turbulence. Furthermore, measurements at time separations of order 60 s are necessary to distinguish the {open_quotes}random walk{close_quotes} model from the Kolmogorov model.

  4. A global hybrid coupled model based on Atmosphere-SST feedbacks

    CERN Document Server

    Cimatoribus, Andrea A; Dijkstra, Henk A

    2011-01-01

    A global hybrid coupled model is developed, with the aim of studying the effects of ocean-atmosphere feedbacks on the stability of the Atlantic meridional overturning circulation. The model includes a global ocean general circulation model and a statistical atmosphere model. The statistical atmosphere model is based on linear regressions of data from a fully coupled climate model on sea surface temperature both locally and hemispherically averaged, being the footprint of Atlantic meridional overturning variability. It provides dynamic boundary conditions to the ocean model for heat, freshwater and wind-stress. A basic but consistent representation of ocean-atmosphere feedbacks is captured in the hybrid coupled model and it is more than ten times faster than the fully coupled climate model. The hybrid coupled model reaches a steady state with a climate close to the one of the fully coupled climate model, and the two models also have a similar response (collapse) of the Atlantic meridional overturning circulati...

  5. Model-based guidance and control for atmospheric guided entry

    OpenAIRE

    Canuto, Enrico; Ospina, Jose Alejandro

    2012-01-01

    This paper presents a solution of the translational control for a biconic atmospheric entry capsule using the bank angle as a command. The control algorithm is separated into path planning and reference-path tracking. The path-planning algorithm computes the entry trajectory from the navigated state at the Entry Interface Point until the desired Parachute Deployment Point. The algorithm aims to recover the landing site uncertainty caused by Entry Interface Point dispersions. Atmospheric and a...

  6. Study of fundamental physical principles in atmospheric modeling based on identification of atmosphere - climate control factors

    CERN Document Server

    Iudin, M

    2007-01-01

    Several critical review articles have been published on tropospheric halogen chemistry. One of the leading subjects of publications is the Arctic ozone depletion events (ODE) at polar sunrise. The articles deal with a wide spectrum of questions: from the detailed reaction cycles of chlorine, iodine and bromine species to processing of satellite data of vertical column BrO. For a long time, bromine explosion - natural phenomenon of exponential increase in gaseous Br radicals happening in springtime Arctic has remained main puzzle for explorers. In this paper, the possible bromine emission ground inventories in polar Arctic region are examined. Resulted model amounts of BrO and Bry equated satellite data on vertical column BrO. By looking at the bromine spread out in Arctic marine boundary layer (MBL) in the context of a network with rank linkage, the author rationalized model bromine flux empirical expression. Then, based on the obtained features of bromine explosion, author opens discussion on the parametrica...

  7. Hydrological Modeling of Large Drainage Basins Using a GIS-based Hybrid Atmospheric and Terrestrial Water Balance (HATWAB) Model

    OpenAIRE

    Berhanu F. Alemaw

    2012-01-01

    A Hydrological model is proposed to study the spatial and temporal variability of the water budget components of large drainage basin systems from atmospheric and terrestrial water balances. In order to understand the water balances that include, surface runoff, actual evapotranspiration and soil moisture, a GIS-based simple water balance model which is referred as Hydrological Model from Hybrid Atmospheric and Terrestrial Water Balances with acronym HATWAB is presented. The spatio-temporal c...

  8. Planetary atmosphere models: A research and instructional web-based resource

    Science.gov (United States)

    Gray, Samuel Augustine

    The effects of altitude change on the temperature, pressure, density, and speed of sound were investigated. These effects have been documented in Global Reference Atmospheric Models (GRAMs) to be used in calculating the conditions in various parts of the atmosphere for several planets. Besides GRAMs, there are several websites that provide online calculators for the 1976 US Standard Atmosphere. This thesis presents the creation of an online calculator of the atmospheres of Earth, Mars, Venus, Titan, and Neptune. The websites consist of input forms for altitude and temperature adjustment followed by a results table for the calculated data. The first phase involved creating a spreadsheet reference based on the 1976 US Standard Atmosphere and other planetary GRAMs available. Microsoft Excel was used to input the equations and make a graphical representation of the temperature, pressure, density, and speed of sound change as altitude changed using equations obtained from the GRAMs. These spreadsheets were used later as a reference for the JavaScript code in both the design and comparison of the data output of the calculators. The websites were created using HTML, CSS, and JavaScript coding languages. The calculators could accurately display the temperature, pressure, density, and speed of sound of these planets from surface values to various stages within the atmosphere. These websites provide a resource for students involved in projects and classes that require knowledge of these changes in these atmospheres. This project also created a chance for new project topics to arise for future students involved in aeronautics and astronautics.

  9. Effective pollutant emission heights for atmospheric transport modelling based on real-world information

    International Nuclear Information System (INIS)

    Emission data needed as input for the operation of atmospheric models should not only be spatially and temporally resolved. Another important feature is the effective emission height which significantly influences modelled concentration values. Unfortunately this information, which is especially relevant for large point sources, is usually not available and simple assumptions are often used in atmospheric models. As a contribution to improve knowledge on emission heights this paper provides typical default values for the driving parameters stack height and flue gas temperature, velocity and flow rate for different industrial sources. The results were derived from an analysis of the probably most comprehensive database of real-world stack information existing in Europe based on German industrial data. A bottom-up calculation of effective emission heights applying equations used for Gaussian dispersion models shows significant differences depending on source and air pollutant and compared to approaches currently used for atmospheric transport modelling. - The comprehensive analysis of real-world stack data provides detailed default parameter values for improving vertical emission distribution in atmospheric modelling

  10. Influence of atmospheric turbulence on OAM-based FSO system with use of realistic link model

    Science.gov (United States)

    Li, Ming; Yu, Zhongyuan; Cvijetic, Milorad

    2016-04-01

    We study the influence of atmospheric turbulence on OAM-based free-space optical (FSO) communication by using the Pump turbulence spectrum model which accurately characterizes the realistic FSO link. A comprehensive comparison is made between the Pump and Kolmogorov spectrum models with respect to the turbulence impact. The calculated results show that obtained turbulence-induced crosstalk is lower, which means that a higher channel capacity is projected when the realistic Pump spectrum is used instead of the Kolmogorov spectrum. We believe that our results prove that performance of practical OAM-based FSO is better than one predicted by using the original Kolmogorov turbulence model.

  11. Nonisothermal Pluto atmosphere models

    International Nuclear Information System (INIS)

    The present thermal profile calculation for a Pluto atmosphere model characterized by a high number fraction of CH4 molecules encompasses atmospheric heating by solar UV flux absorption and conductive transport cooling to the surface of Pluto. The stellar occultation curve predicted for an atmosphere of several-microbar surface pressures (which entail the existence of a substantial temperature gradient close to the surface) agrees with observations and implies that the normal and tangential optical depth of the atmosphere is almost negligible. The minimum period for atmospheric methane depletion is calculated to be 30 years. 29 refs

  12. Mass-based hygroscopicity parameter interaction model and measurement of atmospheric aerosol water uptake

    Directory of Open Access Journals (Sweden)

    E. Mikhailov

    2013-01-01

    Full Text Available In this study we derive and apply a mass-based hygroscopicity parameter interaction model for efficient description of concentration-dependent water uptake by atmospheric aerosol particles with complex chemical composition. The model approach builds on the single hygroscopicity parameter model of Petters and Kreidenweis (2007. We introduce an observable mass-based hygroscopicity parameter κm which can be deconvoluted into a dilute hygroscopicity parameter (κm0 and additional self- and cross-interaction parameters describing non-ideal solution behavior and concentration dependencies of single- and multi-component systems.

    For reference aerosol samples of sodium chloride and ammonium sulfate, the κm-interaction model (KIM captures the experimentally observed concentration and humidity dependence of the hygroscopicity parameter and is in good agreement with an accurate reference model based on the Pitzer ion-interaction approach (Aerosol Inorganic Model, AIM. Experimental results for pure organic particles (malonic acid, levoglucosan and for mixed organic-inorganic particles (malonic acid – ammonium sulfate are also well reproduced by KIM, taking into account apparent or equilibrium solubilities for stepwise or gradual deliquescence and efflorescence transitions.

    The mixed organic-inorganic particles as well as atmospheric aerosol samples exhibit three distinctly different regimes of hygroscopicity: (I a quasi-eutonic deliquescence & efflorescence regime at low-humidity where substances are just partly dissolved and exist also in a non-dissolved phase, (II a gradual deliquescence & efflorescence regime at intermediate humidity where different solutes undergo gradual dissolution or solidification in the aqueous phase; and (III a dilute regime at high humidity where the solutes are fully dissolved approaching their dilute hygroscopicity.

    For atmospheric aerosol samples

  13. Radiative energy balance of Venus based on improved models of the middle and lower atmosphere

    Science.gov (United States)

    Haus, R.; Kappel, D.; Tellmann, S.; Arnold, G.; Piccioni, G.; Drossart, P.; Häusler, B.

    2016-07-01

    The distribution of sources and sinks of radiative energy forces the atmospheric dynamics. The radiative transfer simulation model described by Haus et al. (2015b) is applied to calculate fluxes and temperature change rates in the middle and lower atmosphere of Venus (0-100 km) covering the energetic significant spectral range 0.125-1000 μm. The calculations rely on improved models of atmospheric parameters (temperature profiles, cloud parameters, trace gas abundances) retrieved from Venus Express (VEX) data (mainly VIRTIS-M-IR, but also VeRa and SPICAV/SOIR with respect to temperature results). The earlier observed pronounced sensitivity of the radiative energy balance of Venus to atmospheric parameter variations is confirmed, but present detailed comparative analyses of possible influence quantities ensure unprecedented insights into radiative forcing on Venus by contrast with former studies. Thermal radiation induced atmospheric cooling rates strongly depend on temperature structure and cloud composition, while heating rates are mainly sensitive to insolation conditions and UV absorber distribution. Cooling and heating rate responses to trace gas variations and cloud mode 1 abundance changes are small, but observed variations of cloud mode 2 abundances and altitude profiles reduce cooling at altitudes 65-80 km poleward of 50°S by up to 30% compared to the neglect of cloud parameter changes. Cooling rate variations with local time below 80 km are in the same order of magnitude. Radiative effects of the unknown UV absorber are modeled considering a proxy that is based on a suitable parameterization of optical properties, not on a specific chemical composition, and that is independent of the used cloud model. The UV absorber doubles equatorial heating near 68 km. Global average radiative equilibrium at the top of atmosphere (TOA) is characterized by the net flux balance of 156 W/m2, the Bond albedo of 0.76, and the effective planetary emission temperature of 228

  14. Mass-based hygroscopicity parameter interaction model and measurement of atmospheric aerosol water uptake

    Directory of Open Access Journals (Sweden)

    E. Mikhailov

    2011-11-01

    Full Text Available In this study we derive and apply a mass-based hygroscopicity parameter interaction model for efficient description of concentration-dependent water uptake by atmospheric aerosol particles. The model approach builds on the single hygroscopicity parameter model of Petters and Kreidenweis (2007. We introduce an observable mass-based hygroscopicity parameter κm, which can be deconvoluted into a dilute intrinsic hygroscopicity parameter (κm,∞ and additional self- and cross-interaction parameters describing non-ideal solution behavior and concentration dependencies of single- and multi-component systems.

    For sodium chloride, the κm-interaction model (KIM captures the observed concentration and humidity dependence of the hygroscopicity parameter and is in good agreement with an accurate reference model based on the Pitzer ion-interaction approach (Aerosol Inorganic Model, AIM. For atmospheric aerosol samples collected from boreal rural air and from pristine tropical rainforest air (secondary organic aerosol we present first mass-based measurements of water uptake over a wide range of relative humidity (1–99% obtained with a new filter-based differential hygroscopicity analyzer (FDHA technique. By application of KIM to the measurement data we can distinguish three different regimes of hygroscopicity in the investigated aerosol samples: (I A quasi-eutonic regime at low relative humidity (~60% RH where the solutes co-exist in an aqueous and non-aqueous phase; (II a gradually deliquescent regime at intermediate humidity (~60%–90% RH where different solutes undergo gradual dissolution in the aqueous phase; and (III a dilute regime at high humidity (≳90% RH where the solutes are fully dissolved approaching their dilute intrinsic hygroscopicity. The characteristic features of the three hygroscopicity regimes are similar for both samples, while the RH threshold values vary as expected

  15. Design of a new dynamical core for global atmospheric models based on some efficient numerical methods

    Institute of Scientific and Technical Information of China (English)

    WANG Bin; WAN Hui; JI Zhongzhen; ZHANG Xin; YU Rucong; YU Yongqiang; LIU Hongtao

    2004-01-01

    A careful study on the integral properties of the primitive hydrostatic balance equations for baroclinic atmosphere is carried out, and a new scheme todesign the global adiabatic model of atmospheric dynamics ispresented. This scheme includes a method of weighted equal-areamesh and a fully discrete finite difference method with quadraticand linear conservations for solving the primitive equationsystem. Using this scheme, we established a new dynamical corewith adjustable high resolution acceptable to the availablecomputer capability, which can be very stable without anyfiltering and smoothing. Especially, some important integralproperties are kept unchanged, such as the anti-symmetries of thehorizontal advection operators and the vertical convectionoperator, the mass conservation, the effective energy conservationunder the standard stratification approximation, and so on. Somenumerical tests on the new dynamical core, respectively regardingits global conservations and its integrated performances inclimatic modeling, incorporated with the physical packagesfrom the Community Atmospheric Model Version 2 (CAM2) of NationalCenter for Atmospheric Research (NCAR), are included.

  16. SPRAYTRAN USER'S GUIDE: A GIS-BASED ATMOSPHERIC SPRAY DROPLET DISPERSION MODELING SYSTEM

    Science.gov (United States)

    The offsite drift of pesticide from spray operations is an ongoing source of concern. The SPRAY TRANsport (SPRAYTRAN) system, documented in this report, incorporates the near-field spray application model, AGDISP, into a meso-scale atmospheric transport model. The AGDISP model ...

  17. Solar Atmosphere Models

    Science.gov (United States)

    Rutten, R. J.

    2002-12-01

    This contribution honoring Kees de Jager's 80th birthday is a review of "one-dimensional" solar atmosphere modeling that followed on the initial "Utrecht Reference Photosphere" of Heintze, Hubenet & de Jager (1964). My starting point is the Bilderberg conference, convened by de Jager in 1967 at the time when NLTE radiative transfer theory became mature. The resulting Bilderberg model was quickly superseded by the HSRA and later by the VAL-FAL sequence of increasingly sophisticated NLTE continuum-fitting models from Harvard. They became the "standard models" of solar atmosphere physics, but Holweger's relatively simple LTE line-fitting model still persists as a favorite of solar abundance determiners. After a brief model inventory I discuss subsequent work on the major modeling issues (coherency, NLTE, dynamics) listed as to-do items by de Jager in 1968. The present conclusion is that one-dimensional modeling recovers Schwarzschild's (1906) finding that the lower solar atmosphere is grosso modo in radiative equilibrium. This is a boon for applications regarding the solar atmosphere as one-dimensional stellar example - but the real sun, including all the intricate phenomena that now constitute the mainstay of solar physics, is vastly more interesting.

  18. Atmospheric Nitrogen Deposition to the Oceans: Observation- and Model-Based Estimates

    Science.gov (United States)

    Baker, Alex

    2016-04-01

    The reactive nitrogen (Nr) burden of the atmosphere has been increased by a factor of 3-4 by anthropogenic activity since the Industrial Revolution. This has led to large increases in the deposition of nitrate and ammonium to the surface waters of the open ocean, particularly downwind of major human population centres, such as those in North America, Europe and Southeast Asia. In oligotrophic waters, this deposition has the potential to significantly impact marine productivity and the global carbon cycle. Global-scale understanding of N deposition to the oceans is reliant on our ability to produce effective models of reactive nitrogen emission, atmospheric chemistry, transport and deposition (including deposition to the land surface). Over land, N deposition models can be assessed using comparisons to regional monitoring networks of precipitation chemistry (notably those located in North America, Europe and Southeast Asia). No similar datasets exist which would allow observation - model comparisons of wet deposition for the open oceans, because long-term wet deposition records are available for only a handful of remote island sites and rain collection over the open ocean itself is logistically very difficult. In this work we attempt instead to use ~2800 observations of aerosol nitrate and ammonium concentrations, acquired from sampling aboard ships in the period 1995 - 2012, to assess the performance of modelled N deposition fields over the remote ocean. This database is non-uniformly distributed in time and space. We selected three ocean regions (the eastern tropical North Atlantic, the northern Indian Ocean and northwest Pacific) where we considered the density and distribution of observational data is sufficient to provide effective comparison to the model ensemble. Our presentation will focus on the eastern tropical North Atlantic region, which has the best data coverage of the three. We will compare dry deposition fluxes calculated from the observed nitrate

  19. Case study of atmospheric correction on CCD data of HJ-1 satellite based on 6S model

    International Nuclear Information System (INIS)

    In this study, atmospheric radiative transfer model 6S was used to simulate the radioactive transfer process in the surface-atmosphere-sensor. An algorithm based on the look-up table (LUT) founded by 6S model was used to correct (HJ-1) CCD image pixel by pixel. Then, the effect of atmospheric correction on CCD data of HJ-1 satellite was analyzed in terms of the spectral curves and evaluated against the measured reflectance acquired during HJ-1B satellite overpass, finally, the normalized difference vegetation index (NDVI) before and after atmospheric correction were compared. The results showed: (1) Atmospheric correction on CCD data of HJ-1 satellite can reduce the ''increase'' effect of the atmosphere. (2) Apparent reflectance are higher than those of surface reflectance corrected by 6S model in band1∼band3, but they are lower in the near-infrared band; the surface reflectance values corrected agree with the measured reflectance values well. (3)The NDVI increases significantly after atmospheric correction, which indicates the atmospheric correction can highlight the vegetation information

  20. Modeling atmospheric longwave radiation at the surface during overcast skies: The role of cloud base height

    Science.gov (United States)

    Viúdez-Mora, A.; Costa-Surós, M.; Calbó, J.; González, J. A.

    2015-01-01

    behavior of the atmospheric downward longwave radiation at the surface under overcast conditions is studied. For optically thick clouds, longwave radiation depends greatly on the cloud base height (CBH), besides temperature and water vapor profiles. The CBH determines the cloud emission temperature and the air layers contributing to the longwave radiation that reaches the surface. Overcast situations observed at Girona (NE Iberian Peninsula) were studied by using a radiative transfer model. The data set includes different seasons, and a large range of CBH (0-5000 m). The atmosphere profiles were taken from the European Center for Medium-Range Weather Forecast analysis. The CBH was determined from ceilometer measurements and also estimated by using a suitable method applied to the vertical profile of relative humidity. The agreement between calculations and pyrgeometer measurements is remarkably good (1.6 ± 6.2 W m-2) if the observed CBH is used; poorer results are obtained with the estimated CBH (4.3 ± 7.0 W m-2). These results are better than those obtained from a simple parameterization based upon ground-level data (1.1 ± 11.6 W m-2), which can be corrected by adding a term that takes into account the CBH (-0.1 ± 7.3 W m-2). At this site, the cloud radiative effect (CRE) at the surface lies in the range 50-80 W m-2, has a clear seasonal behavior (higher CRE in winter), and depends upon the CBH. For the cold and the warm seasons, CRE decreases with CBH at a rate of -5 and -4 W m-2/km, respectively. Results obtained for other climates (subarctic and tropical) are also presented.

  1. Validation of Atmospheric Correction of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Radiance Data Based on Radiative Transfer Modeling

    Science.gov (United States)

    Carrare, V.; Conel, J. E.

    1993-01-01

    An evaluation of atmospheric correction of AVIRIS data using radiative transfer codes LOWTRAN7 and MODTRAN is presented. The algorithm employed is based on a simple model of radiance L at each wavelength at the sensor that can be written approximately LAV=Lp+Tp, where subscript AV referes to AVIRIS, Lp is the path radiance and Tp is the diffuse + direct transmitted radiance of the atmosphere at AVIRIS.

  2. Comparison of co-located independent ground-based middle atmospheric wind and temperature measurements with numerical weather prediction models

    NARCIS (Netherlands)

    Le Pichon, A.; Assink, J.D.; Heinrich, P.; Blanc, E.; Charlton-Perez, A.; Lee, C.F.; Keckhut, P.; Hauchecorne, A.; Rufenacht, R.; Kampfer, N.; Drob, D.P.; Smets, P.S.M.; Evers, L.G.; Ceranna, L.; Pilger, C.; Ross, O.; Claud, C.

    2015-01-01

    High-resolution, ground-based and independent observations including co-located wind radiometer, lidar stations, and infrasound instruments are used to evaluate the accuracy of general circulation models and data-constrained assimilation systems in the middle atmosphere at northern hemisphere midlat

  3. Predicting the risk of soybean rust in Minnesota based on an integrated atmospheric model

    Science.gov (United States)

    Tao, Zhining; Malvick, Dean; Claybrooke, Roger; Floyd, Crystal; Bernacchi, Carl J.; Spoden, Greg; Kurle, James; Gay, David; Bowersox, Van; Krupa, Sagar

    2009-11-01

    To minimize crop loss by assisting in timely disease management and reducing fungicide use, an integrated atmospheric model was developed and tested for predicting the risk of occurrence of soybean rust in Minnesota. The model includes a long-range atmospheric spore transport and deposition module coupled to a leaf wetness module. The latter is required for spore germination and infection. Predictions are made on a daily basis for up to 7 days in advance using forecast data from the United States National Weather Service. Complementing the transport and leaf wetness modules, bulk (wet plus dry) atmospheric deposition samples from Minnesota were examined for soybean rust spores using a specific DNA test and sequence analysis. Overall, the risk prediction worked satisfactorily within the bounds of the uncertainty associated with the use of modeled 7-day weather forecasts, with more than 65% agreement between the model forecast and the DNA test results. The daily predictions are available as an advisory to the user community through the University of Minnesota Extension. However, users must take the actual decision to implement the disease management strategy.

  4. Numerical model of a non-steady atmospheric planetary boundary layer, based on similarity theory

    DEFF Research Database (Denmark)

    Zilitinkevich, S.S.; Fedorovich, E.E.; Shabalova, M.V.

    1992-01-01

    A numerical model of a non-stationary atmospheric planetary boundary layer (PBL) over a horizontally homogeneous flat surface is derived on the basis of similarity theory. The two most typical turbulence regimes are reproduced: one corresponding to a convectively growing PBL and another correspon......A numerical model of a non-stationary atmospheric planetary boundary layer (PBL) over a horizontally homogeneous flat surface is derived on the basis of similarity theory. The two most typical turbulence regimes are reproduced: one corresponding to a convectively growing PBL and another......-surface values of heat, water vapor and momentum fluxes. The internal structure of the PBL is considered self-similar. This allows one to represent the interaction between the air flow and the underlying surface by means of universal heat/mass transfer and resistance laws. Numerical experiments on the diurnal...

  5. Gravity wave propagation in the realistic atmosphere based on a three-dimensional transfer function model

    Directory of Open Access Journals (Sweden)

    L. Sun

    2007-10-01

    Full Text Available In order to study the filter effect of the background winds on the propagation of gravity waves, a three-dimensional transfer function model is developed on the basis of the complex dispersion relation of internal gravity waves in a stratified dissipative atmosphere with background winds. Our model has successfully represented the main results of the ray tracing method, e.g. the trend of the gravity waves to travel in the anti-windward direction. Furthermore, some interesting characteristics are manifest as follows: (1 The method provides the distribution characteristic of whole wave fields which propagate in the way of the distorted concentric circles at the same altitude under the control of the winds. (2 Through analyzing the frequency and wave number response curve of the transfer function, we find that the gravity waves in a wave band of about 15–30 min periods and of about 200–400 km horizontal wave lengths are most likely to propagate to the 300-km ionospheric height. Furthermore, there is an obvious frequency deviation for gravity waves propagating with winds in the frequency domain. The maximum power of the transfer function with background winds is smaller than that without background winds. (3 The atmospheric winds may act as a directional filter that will permit gravity wave packets propagating against the winds to reach the ionospheric height with minimum energy loss.

  6. Immersion freezing by natural dust based on a soccer ball model with the Community Atmospheric Model version 5: climate effects

    International Nuclear Information System (INIS)

    We introduce a simplified version of the soccer ball model (SBM) developed by Niedermeier et al (2014 Geophys. Res. Lett. 41 736–741) into the Community Atmospheric Model version 5 (CAM5). It is the first time that SBM is used in an atmospheric model to parameterize the heterogeneous ice nucleation. The SBM, which was simplified for its suitable application in atmospheric models, uses the classical nucleation theory to describe the immersion/condensation freezing by dust in the mixed-phase cloud regime. Uncertain parameters (mean contact angle, standard deviation of contact angle probability distribution, and number of surface sites) in the SBM are constrained by fitting them to recent natural dust (Saharan dust) datasets. With the SBM in CAM5, we investigate the sensitivity of modeled cloud properties to the SBM parameters, and find significant seasonal and regional differences in the sensitivity among the three SBM parameters. Changes of mean contact angle and the number of surface sites lead to changes of cloud properties in Arctic in spring, which could be attributed to the transport of dust ice nuclei to this region. In winter, significant changes of cloud properties induced by these two parameters mainly occur in northern hemispheric mid-latitudes (e.g., East Asia). In comparison, no obvious changes of cloud properties caused by changes of standard deviation can be found in all the seasons. These results are valuable for understanding the heterogeneous ice nucleation behavior, and useful for guiding the future model developments. (letter)

  7. Improving practical atmospheric dispersion models

    International Nuclear Information System (INIS)

    The new generation of practical atmospheric dispersion model (for short range ≤ 30 km) are based on dispersion science and boundary layer meteorology which have widespread international acceptance. In addition, recent improvements in computer skills and the widespread availability of small powerful computers make it possible to have new regulatory models which are more complex than the previous generation which were based on charts and simple formulae. This paper describes the basis of these models and how they have developed. Such models are needed to satisfy the urgent public demand for sound, justifiable and consistent environmental decisions. For example, it is preferable that the same models are used to simulate dispersion in different industries; in many countries at present different models are used for emissions from nuclear and fossil fuel power stations. The models should not be so simple as to be suspect but neither should they be too complex for widespread use; for example, at public inquiries in Germany, where simple models are mandatory, it is becoming usual to cite the results from highly complex computational models because the simple models are not credible. This paper is written in a schematic style with an emphasis on tables and diagrams. (au) (22 refs.)

  8. Implementing earth observation and advanced satellite based atmospheric sounders for water resource and climate modelling

    DEFF Research Database (Denmark)

    Boegh, E.; Dellwik, Ebba; Hahmann, Andrea N.;

    effective land surface representation in water resource modeling” (2009- 2012). The purpose of the new research project is to develop remote sensing based model tools capable of quantifying the relative effects of site-specific land use change and climate variability at different spatial scales. For this...

  9. Development of a GPU-based high-performance radiative transfer model for the Infrared Atmospheric Sounding Interferometer (IASI)

    International Nuclear Information System (INIS)

    Satellite-observed radiance is a nonlinear functional of surface properties and atmospheric temperature and absorbing gas profiles as described by the radiative transfer equation (RTE). In the era of hyperspectral sounders with thousands of high-resolution channels, the computation of the radiative transfer model becomes more time-consuming. The radiative transfer model performance in operational numerical weather prediction systems still limits the number of channels we can use in hyperspectral sounders to only a few hundreds. To take the full advantage of such high-resolution infrared observations, a computationally efficient radiative transfer model is needed to facilitate satellite data assimilation. In recent years the programmable commodity graphics processing unit (GPU) has evolved into a highly parallel, multi-threaded, many-core processor with tremendous computational speed and very high memory bandwidth. The radiative transfer model is very suitable for the GPU implementation to take advantage of the hardware's efficiency and parallelism where radiances of many channels can be calculated in parallel in GPUs. In this paper, we develop a GPU-based high-performance radiative transfer model for the Infrared Atmospheric Sounding Interferometer (IASI) launched in 2006 onboard the first European meteorological polar-orbiting satellites, METOP-A. Each IASI spectrum has 8461 spectral channels. The IASI radiative transfer model consists of three modules. The first module for computing the regression predictors takes less than 0.004% of CPU time, while the second module for transmittance computation and the third module for radiance computation take approximately 92.5% and 7.5%, respectively. Our GPU-based IASI radiative transfer model is developed to run on a low-cost personal supercomputer with four GPUs with total 960 compute cores, delivering near 4 TFlops theoretical peak performance. By massively parallelizing the second and third modules, we reached 364x

  10. Stochastic models for atmospheric dispersion

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2003-01-01

    Simple stochastic differential equation models have been applied by several researchers to describe the dispersion of tracer particles in the planetary atmospheric boundary layer and to form the basis for computer simulations of particle paths. To obtain the drift coefficient, empirical vertical...... variation by height is adopted. A particular problem for simulation studies with finite time steps is the construction of a reflection rule different from the rule of perfect reflection at the boundaries such that the rule complies with the imposed skewness of the velocity distribution for particle...... positions close to the boundaries. Different rules have been suggested in the literature with justifications based on simulation studies. Herein the relevant stochastic differential equation model is formulated in a particular way. The formulation is based on the marginal transformation of the position...

  11. Rain pattern analysis and forecast model based on GPS estimated atmospheric water vapor content

    OpenAIRE

    Priego De Los Santos, Enrique

    2012-01-01

    Rain is one of the fundamental processes of the hydrologic cycle as it can be the source of wealth or natural hazards. This experiment focuses in the relationship between rain occurrence and atmospheric pressure (Patm) and atmospheric water vapor content (PW), GPS estimated. The available nine years time series of each variable were analyzed. It allowed to state the existence of three rain patterns and monthly differences in the Patm-PW combinations. In spite of rain episodes take place only ...

  12. Modelling land surface - atmosphere interactions

    DEFF Research Database (Denmark)

    Rasmussen, Søren Højmark

    The study is investigates modelling of land surface – atmosphere interactions in context of fully coupled climatehydrological model. With a special focus of under what condition a fully coupled model system is needed. Regional climate model inter-comparison projects as ENSEMBLES have shown bias...

  13. Titan atmospheric models intercomparison

    Science.gov (United States)

    Pernot, P.

    2008-09-01

    Several groups over the world have developed independently models of the photochemistry of Titan. The Cassini mission reveals daily that the chemical complexity is beyond our expectations e. g. observation of heavy positive and negative ions..., and the models are updated accordingly. At this stage, there is no consensus on the various input parameters, and it becomes increasingly difficult to compare outputs form different models. An ISSI team of experts of those models will be gathered shortly to proceed to an intercomparison, i.e. to assess how the models behave, given identical sets of inputs (collectively defined). Expected discrepancies will have to be elucidated and reduced. This intercomparison will also be an occasion to estimate explicitly the importance of various physicalchemical processes on model predictions versus observations. More robust and validated models are expected from this study for the interpretation of Titanrelated data.

  14. Chemical uncertainties in modeling hot Jupiters atmospheres

    Science.gov (United States)

    Hebrard, Eric; Domagal-Goldman, Shawn

    2015-11-01

    Most predictions and interpretations of observations in beyond our Solar System have occurred through the use of 1D photo-thermo-chemical models. Their predicted atmospheric compositions are highly dependent on model parameters. Chemical reactions are based on empirical parameters that must be known at temperatures ranging from 100 K to above 2500 K and at pressures from millibars to hundreds of bars. Obtained from experiments, calculations and educated-guessed estimations, these parameters are always evaluated with substantial uncertainties. However, although of practical use, few models of exoplanetary atmospheres have considered these underlying chemical uncertainties and their consequences. Recent progress has been made recently that allow us to (1) evaluate the accuracy and precision of 1D models of planetary atmospheres, with quantifiable uncertainties on their predictions for the atmospheric composition and associated spectral features, (2) identify the ‘key parameters’ that contribute the most to the models predictivity and should therefore require further experimental or theoretical analysis, (3) reduce and optimize complex chemical networks for their inclusion in multidimensional atmospheric models.First, a global sampling approach based on low discrepancy sequences has been applied in order to propose error bars on simulations of the atmospheres HD 209458b and HD 189733b, using a detailed kinetic model derived from applied combustion models that was methodically validated over a range of temperatures and pressures typical for these hot Jupiters. A two-parameters temperature-dependent uncertainty factor has been assigned to each considered rate constant. Second, a global sensitivity approach based on high dimensional model representations (HDMR) has been applied in order to identify those reactions which make the largest contributions to the overall uncertainty of the simulated results. The HDMR analysis has been restricted to the most important

  15. Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ17O of atmospheric nitrate

    Directory of Open Access Journals (Sweden)

    J. A. Thornton

    2009-05-01

    Full Text Available The oxygen isotopic composition (Δ17O of atmospheric nitrate is a function of the relative abundance of atmospheric oxidants (O3, HOx=OH +HO2+RO2 and the formation pathway of nitrate from its precursor NOx (=NO+NO2. Coupled observations and modeling of nitrate Δ17O can be used to quantify the relative importance of chemical formation pathways leading to nitrate formation and reduce uncertainties in the budget of reactive nitrogen chemistry in the atmosphere. We present the first global model of atmospheric nitrate Δ17O and compare with available observations. The model shows the best agreement with a global compilation of observations when assuming a Δ17O value of tropospheric ozone equal to 35‰ and preferential oxidation of NOx by the terminal oxygen atoms of ozone. Calculated values of annual-mean nitrate Δ17O in the lowest model layer (0–200 m above the surface vary from 6‰ in the tropics to 41‰ in the polar-regions. On the global scale, O3 is the dominant oxidant (81% annual-mean during NOx cycling reactions. The global, annual-mean tropospheric inorganic nitrate burden is dominated by nitrate formation via NO2+OH (76%, followed by N2O5 hydrolysis (18% and NO3+DMS/HC (4%. Model discrepancies are largest in the polar spring and summer, most likely due to the lack of reactive halogen chemistry in the model. The influence of organic nitrates on observations of nitrate Δ17O needs to be determined, especially for observations in summertime and tropical forested regions where organic nitrates can contribute up to 80% of the total NOy (organic plus inorganic nitrate budget.

  16. Atmospheric greenhouse gases retrieved from SCIAMACHY: comparison to ground-based FTS measurements and model results

    Directory of Open Access Journals (Sweden)

    O. Schneising

    2012-02-01

    Full Text Available SCIAMACHY onboard ENVISAT (launched in 2002 enables the retrieval of global long-term column-averaged dry air mole fractions of the two most important anthropogenic greenhouse gases carbon dioxide and methane (denoted XCO2 and XCH4. In order to assess the quality of the greenhouse gas data obtained with the recently introduced v2 of the scientific retrieval algorithm WFM-DOAS, we present validations with ground-based Fourier Transform Spectrometer (FTS measurements and comparisons with model results at eight Total Carbon Column Observing Network (TCCON sites providing realistic error estimates of the satellite data. Such validation is a prerequisite to assess the suitability of data sets for their use in inverse modelling.

    It is shown that there are generally no significant differences between the carbon dioxide annual increases of SCIAMACHY and the assimilation system CarbonTracker (2.00 ± 0.16 ppm yr−1 compared to 1.94 ± 0.03 ppm yr−1 on global average. The XCO2 seasonal cycle amplitudes derived from SCIAMACHY are typically larger than those from TCCON which are in turn larger than those from CarbonTracker. The absolute values of the northern hemispheric TCCON seasonal cycle amplitudes are closer to SCIAMACHY than to CarbonTracker and the corresponding differences are not significant when compared with SCIAMACHY, whereas they can be significant for a subset of the analysed TCCON sites when compared with CarbonTracker. At Darwin we find discrepancies of the seasonal cycle derived from SCIAMACHY compared to the other data sets which can probably be ascribed to occurrences of undetected thin clouds. Based on the comparison with the reference data, we conclude that the carbon dioxide data set can be characterised by a regional relative precision (mean standard deviation of the differences of about 2.2 ppm and a relative accuracy (standard deviation of the mean differences

  17. Soil-vegetation-atmosphere transfer modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ikonen, J.P.; Sucksdorff, Y. [Finnish Environment Agency, Helsinki (Finland)

    1996-12-31

    In this study the soil/vegetation/atmosphere-model based on the formulation of Deardorff was refined to hour basis and applied to a field in Vihti. The effect of model parameters on model results (energy fluxes, temperatures) was also studied as well as the effect of atmospheric conditions. The estimation of atmospheric conditions on the soil-vegetation system as well as an estimation of the effect of vegetation parameters on the atmospheric climate was estimated. Areal surface fluxes, temperatures and moistures were also modelled for some river basins in southern Finland. Land-use and soil parameterisation was developed to include properties and yearly variation of all vegetation and soil types. One classification was selected to describe the hydrothermal properties of the soils. Evapotranspiration was verified against the water balance method

  18. Dutch distribution zones of stable iodine tablets based on atmospheric dispersion modelling of accidental releases from nuclear power plants

    International Nuclear Information System (INIS)

    Rapid administration of stable iodine is essential for the saturation and subsequent protection of the thyroid gland against the potential harm caused by radio-iodines. This paper proposes the Dutch risk analysis that uses an atmospheric dispersion model to calculate the size of the zones around nuclear power plants where radiological thyroid doses for children might be sufficiently high to warrant iodine administration. Dose calculations for possible releases from the nuclear power plants of Borssele (The Netherlands), Doel (Belgium) and Emsland (Germany) are based on two scenarios in combination with a 1-y set of authentic, high-resolution meteorological data. The dimensions of the circular zones were defined for each nuclear power plant. In these zones, with a radius up to 50 km, distribution of stable iodine tablets is advised. (authors)

  19. MARCS model atmospheres

    CERN Document Server

    Plez, Bertrand

    2008-01-01

    In this review presented at the Symposium A stellar journey in Uppsala, June 2008, I give my account of the historical development of the MARCS code from the first version published in 1975 and its premises to the 2008 grid. It is shown that the primary driver for the development team is the science that can be done with the models, and that they constantly strive to include the best possible physical data. A few preliminary comparisons of M star model spectra to spectrophotometric observations are presented. Particular results related to opacity effects are discussed. The size of errors in the spectral energy distribution (SED) and model thermal stratification are estimated for different densities of the wavelength sampling. The number of points used in the MARCS 2008 grid (108000) is large enough to ensure errors of only a few K in all models of the grid, except the optically very thin layers of metal-poor stars. Errors in SEDs may reach about 10% locally in the UV. The published sampled SEDs are thus appro...

  20. Ultraviolet actinic flux in clear and cloudy atmospheres: model calculations and aircraft-based measurements

    Directory of Open Access Journals (Sweden)

    G. G. Palancar

    2011-01-01

    Full Text Available Ultraviolet (UV actinic fluxes measured with two Scanning Actinic Flux Spectroradiometers (SAFS aboard the NASA DC-8 aircraft are compared with the Tropospheric Ultraviolet-Visible (TUV model. The observations from 17 days in July–August 2004 (INTEX-NA field campaign span a wide range of latitudes (27.5° N–53.0° N, longitudes (45.1° W–139.5° W, altitudes (0.1–11.9 km, ozone columns (285.4–352.7 DU, and solar zenith angles (1.7°–85°. Both cloudy and cloud-free conditions were encountered. For cloud-free conditions, the ratio of observed to clear-sky-model actinic flux (integrated from 298 to 422 nm is 1.01±0.04, i.e. in good agreement with observations. The agreement improves to 1.00±0.03 for the down-welling component under clear sky conditions. In the presence of clouds, both down-welling and up-welling components show reductions or enhancements from clear sky values, depending on the position of the airplane relative to clouds. The correlations between up-welling and down-welling deviations are well reproduced with sensitivity studies using the TUV model, and are understood qualitatively with a simple conceptual model. This analysis of actinic flux observations illustrates opportunities for future evaluations of photolysis rates in three-dimensional chemistry-transport models.

  1. Atmospheric winter conditions 2007/08 over the Arctic Ocean based on NP-35 data and regional model simulations

    Directory of Open Access Journals (Sweden)

    M. Mielke

    2014-05-01

    Full Text Available Atmospheric measurements on the drifting Arctic sea ice station "North Pole-35" crossing the Eastern part of the Arctic Ocean during winter 2007/2008 have been compared with regional atmospheric HIRHAM model simulations. The observed near-surface temperature, mean sea level pressure and the vertical temperature, wind and humidity profiles are satisfactorily reproduced by the model. The strongest temperature differences between observations and the simulations occur near the surface due to an overestimated vertical mixing of heat in the stable Arctic boundary layer (ABL. The observations show very strong temperature inversions near the surface, whereas the simulated inversions occur frequently between the surface and 415 m at too high levels. The simulations are not able to reproduce the observed inversion strength. The regional model underestimates the wind speeds and the sharp vertical wind gradients. The strength of internal atmospheric dynamics on the temporal development of atmospheric surface variables and vertical profiles of temperature, wind and relative humidity has been examined. Although the HIRHAM model systematically overestimates relative humidity and produces too high long-wave downward radiation during winter, two different atmospheric circulation states, which are connected to higher or lower pressure systems over the Eastern part of the Arctic Ocean, are simulated in agreement with the NP-35 observations. Sensitivity studies with reduced vertical mixing of heat in the stable ABL have been carried out. A slower increase in the stability functions with decreasing Richardson number under stable stratification has an impact on the horizontal and vertical atmospheric structure. Changes in synoptical cyclones on time scales from 1–3 days over the North Atlantic cyclone path are generated, which influences the atmospheric baroclinic and planetary waves on time scales up to 20 days over the Arctic Ocean basin. The use of increased

  2. Evaluating the extreme precipitation events using a mesoscale atmosphere model and satellite based precipitation product

    Directory of Open Access Journals (Sweden)

    I. Yucel

    2013-12-01

    Full Text Available Quantitative precipitation estimates are obtained with more uncertainty under the influence of changing climate variability and complex topography from numerical weather prediction (NWP models. On the other hand, hydrologic model simulations depend heavily on the availability of reliable precipitation estimates. Difficulties in estimating precipitation impose an important limitation on the possibility and reliability of hydrologic forecasting and early warning systems. This study examines the performance of the Weather Research and Forecasting (WRF model and the Multi Precipitation Estimates (MPE algorithm in producing the temporal and spatial characteristics of the number of extreme precipitation events observed in the West Black Sea Region of Turkey. Precipitations derived from WRF model with and without three-dimensional variational (3-DVAR data assimilation scheme and MPE algorithm at high spatial resolution (4 km are compared with gauge precipitation. WRF-derived precipitation showed capabilities in capturing the timing of precipitation extremes and in some extent the spatial distribution and magnitude of the heavy rainfall events wheras MPE showed relatively weak skills in these aspects. WRF skills in estimating such precipitation characteristics are enhanced with the application of 3-DVAR scheme. Direct impact of data assimilation on WRF precipitation reached to 12% and at some points there exists quantitative match for heavy rainfall events, which are critical for hydrological forecast.

  3. Toward understanding the selective anticancer capacity of cold atmospheric plasma--a model based on aquaporins (Review).

    Science.gov (United States)

    Yan, Dayun; Talbot, Annie; Nourmohammadi, Niki; Sherman, Jonathan H; Cheng, Xiaoqian; Keidar, Michael

    2015-01-01

    Selectively treating tumor cells is the ongoing challenge of modern cancer therapy. Recently, cold atmospheric plasma (CAP), a near room-temperature ionized gas, has been demonstrated to exhibit selective anticancer behavior. However, the mechanism governing such selectivity is still largely unknown. In this review, the authors first summarize the progress that has been made applying CAP as a selective tool for cancer treatment. Then, the key role of aquaporins in the H2O2 transmembrane diffusion is discussed. Finally, a novel model, based on the expression of aquaporins, is proposed to explain why cancer cells respond to CAP treatment with a greater rise in reactive oxygen species than homologous normal cells. Cancer cells tend to express more aquaporins on their cytoplasmic membranes, which may cause the H2O2 uptake speed in cancer cells to be faster than in normal cells. As a result, CAP treatment kills cancer cells more easily than normal cells. Our preliminary observations indicated that glioblastoma cells consumed H2O2 much faster than did astrocytes in either the CAP-treated or H2O2-rich media, which supported the selective model based on aquaporins. PMID:26700469

  4. Atmospheric greenhouse gases retrieved from SCIAMACHY: comparison to ground-based FTS measurements and model results

    OpenAIRE

    Schneising, O.; Bergamaschi, P.; H. Bovensmann; M. Buchwitz; Burrows, J.P.; Deutscher, N.M.; Griffith, D. W. T.; J. Heymann; Macatangay, R.; J. Messerschmidt; Notholt, J.; M. Rettinger; Reuter, M.; Sussmann, R.; V. A. Velazco

    2012-01-01

    SCIAMACHY onboard ENVISAT (launched in 2002) enables the retrieval of global long-term column-averaged dry air mole fractions of the two most important anthropogenic greenhouse gases carbon dioxide and methane (denoted XCO2 and XCH4). In order to assess the quality of the greenhouse gas data obtained with the recently introduced v2 of the scientific retrieval algorithm WFM-DOAS, we present validations with ground-based Fourier Tra...

  5. An inverse modeling approach for tree-ring-based climate reconstructions under changing atmospheric CO2 concentrations

    Science.gov (United States)

    Boucher, É.; Guiot, J.; Hatté, C.; Daux, V.; Danis, P.-A.; Dussouillez, P.

    2013-11-01

    Over the last decades, dendroclimatologists have relied upon linear transfer functions to reconstruct historical climate. Transfer functions need to be calibrated using recent data from periods where CO2 concentrations reached unprecedented levels (near 400 ppm). Based on these transfer functions, dendroclimatologists must then reconstruct a different past, a past where CO2 concentrations were much below 300 ppm. However, relying upon transfer functions calibrated in this way may introduce an unanticipated bias in the reconstruction of past climate, particularly if CO2 levels have had a noticeable fertilizing effect since the beginning of the industrial era. As an alternative to the transfer function approach, we run the MAIDENiso ecophysiological model in an inverse mode to link together climatic variables, atmospheric CO2 concentrations and tree growth parameters. Our approach endeavors to find the optimal combination of meteorological conditions that best simulate observed tree ring patterns. We test our approach in the Fontainebleau forest (France). By comparing two different CO2 scenarios, we present evidence that increasing CO2 concentrations have had a slight, yet significant, effect on reconstruction results. We demonstrate that higher CO2 concentrations augment the efficiency of water use by trees, therefore favoring the reconstruction of a warmer and drier climate. Under elevated CO2 concentrations, trees close their stomata and need less water to produce the same amount of wood. Inverse process-based modeling represents a powerful alternative to the transfer function technique, especially for the study of divergent tree-ring-to-climate relationships. The approach has several advantages, most notably its ability to distinguish between climatic effects and CO2 imprints on tree growth. Therefore our method produces reconstructions that are less biased by anthropogenic greenhouse gas emissions and that are based on sound ecophysiological knowledge.

  6. Stellar model atmospheres with magnetic line blanketing

    CERN Document Server

    Kochukhov, O; Shulyak, D

    2004-01-01

    Model atmospheres of A and B stars are computed taking into account magnetic line blanketing. These calculations are based on the new stellar model atmosphere code LLModels which implements direct treatment of the opacities due to the bound-bound transitions and ensures an accurate and detailed description of the line absorption. The anomalous Zeeman effect was calculated for the field strengths between 1 and 40 kG and a field vector perpendicular to the line of sight. The model structure, high-resolution energy distribution, photometric colors, metallic line spectra and the hydrogen Balmer line profiles are computed for magnetic stars with different metallicities and are discussed with respect to those of non-magnetic reference models. The magnetically enhanced line blanketing changes the atmospheric structure and leads to a redistribution of energy in the stellar spectrum. The most noticeable feature in the optical region is the appearance of the 5200 A depression. However, this effect is prominent only in ...

  7. Modeling of atmospheric pollutant transfers

    International Nuclear Information System (INIS)

    Modeling is today a common tool for the evaluation of the environmental impact of atmospheric pollution events, for the design of air monitoring networks or for the calculation of pollutant concentrations in the ambient air. It is even necessary for the a priori evaluation of the consequences of a pollution plume. A large choice of atmospheric transfer codes exist but no ideal tool is available which allows to model all kinds of situations. The present day approach consists in combining different types of modeling according to the requested results and simulations. The CEA has a solid experience in this domain and has developed independent tools for the impact and safety studies relative to industrial facilities and to the management of crisis situations. (J.S.)

  8. DUSTRAN 1.0 User’s Guide: A GIS-Based Atmospheric Dust Dispersion Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    Allwine, K Jerry; Rutz, Frederick C.; Shaw, William J.; Rishel, Jeremy P.; Fritz, Brad G.; Chapman, Elaine G.; Hoopes, Bonnie L.; Seiple, Timothy E.

    2006-09-22

    The U.S. Department of Energy’s Pacific Northwest National Laboratory just completed a multi-year project to develop a fully tested and documented atmospheric dispersion modeling system (DUST TRANsport or DUSTRAN) to assist the U.S. Department of Defense in addressing particulate air quality issues at military training and testing ranges. This manual documents the DUSTRAN modeling system and includes installation instructions, a user’s guide, and detailed example tutorials.

  9. Model for Simulation Atmospheric Turbulence

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik

    1976-01-01

    A method that produces realistic simulations of atmospheric turbulence is developed and analyzed. The procedure makes use of a generalized spectral analysis, often called a proper orthogonal decomposition or the Karhunen-Loève expansion. A set of criteria, emphasizing a realistic appearance, a...... eigenfunctions and estimates of the distributions of the corresponding expansion coefficients. The simulation method utilizes the eigenfunction expansion procedure to produce preliminary time histories of the three velocity components simultaneously. As a final step, a spectral shaping procedure is then applied....... The method is unique in modeling the three velocity components simultaneously, and it is found that important cross-statistical features are reasonably well-behaved. It is concluded that the model provides a practical, operational simulator of atmospheric turbulence....

  10. Portable University Model of the Atmosphere (PUMA)

    Energy Technology Data Exchange (ETDEWEB)

    Fraedrich, K.; Kirk, E.; Lunkeit, F. [Hamburg Univ. (Germany). Meteorologisches Inst.

    1998-10-01

    The Portable University Model of the Atmosphere (PUMA) is based on the Reading multi-level spectral model SGCM (Simple Global Circulation Model) described by Hoskins and Simmons (1975) and James and Gray (1986). Originally developed as a numerical prediction model, it was changed to perform as a circulation model. For example, James and Gray (1986) studied the influence of surface friction on the circulation of a baroclinic atmosphere, James and James (1992), and James et al. (1994) investigated ultra-low-frequency variability, and Mole and James (1990) analyzed the baroclinic adjustment in the context of a zonally varying flow. Frisius et al. (1998) simulated an idealized storm track by embedding a dipole structure in a zonally symmetric forcing field and Lunkeit et al. (1998) investigated the sensitivity of GCM (General Circulation Model) scenarios by an adaption technique applicapable to SGCMs. (orig.)

  11. Coupling approaches used in atmospheric entry models

    Science.gov (United States)

    Gritsevich, M. I.

    2012-09-01

    While a planet orbits the Sun, it is subject to impact by smaller objects, ranging from tiny dust particles and space debris to much larger asteroids and comets. Such collisions have taken place frequently over geological time and played an important role in the evolution of planets and the development of life on the Earth. Though the search for near-Earth objects addresses one of the main points of the Asteroid and Comet Hazard, one should not underestimate the useful information to be gleaned from smaller atmospheric encounters, known as meteors or fireballs. Not only do these events help determine the linkages between meteorites and their parent bodies; due to their relative regularity they provide a good statistical basis for analysis. For successful cases with found meteorites, the detailed atmospheric path record is an excellent tool to test and improve existing entry models assuring the robustness of their implementation. There are many more important scientific questions meteoroids help us to answer, among them: Where do these objects come from, what are their origins, physical properties and chemical composition? What are the shapes and bulk densities of the space objects which fully ablate in an atmosphere and do not reach the planetary surface? Which values are directly measured and which are initially assumed as input to various models? How to couple both fragmentation and ablation effects in the model, taking real size distribution of fragments into account? How to specify and speed up the recovery of a recently fallen meteorites, not letting weathering to affect samples too much? How big is the pre-atmospheric projectile to terminal body ratio in terms of their mass/volume? Which exact parameters beside initial mass define this ratio? More generally, how entering object affects Earth's atmosphere and (if applicable) Earth's surface? How to predict these impact consequences based on atmospheric trajectory data? How to describe atmospheric entry

  12. Quantifying atmospheric transport, chemistry, and mixing using a new trajectory-box model and a global atmospheric-chemistry GCM

    OpenAIRE

    H. Riede; Jöckel, P.; Sander, R.

    2009-01-01

    We present a novel method for the quantification of transport, chemistry, and mixing along atmospheric trajectories based on a consistent model hierarchy. The hierarchy consists of the new atmospheric-chemistry trajectory-box model CAABA/MJT and the three-dimensional (3-D) global ECHAM/MESSy atmospheric-chemistry (EMAC) general circulation model. CAABA/MJT employs the atmospheric box model CAABA in a configuration using the atmospheric-chemistry submodel MECCA (M), the photochemistry submodel...

  13. Evaluating atmospheric methane inversion model results for Pallas, northern Finland

    OpenAIRE

    Tsuruta, Aki; Aalto, Tuula; Backman, Leif; Peters, Wouter; Krol, Maarten; van der Laan-Luijkx, Ingrid T.; Hatakka, Juha; Heikkinen, Pauli; Dlugokencky, Edward J.; Spahni, Renato; Paramonova, Nina N.

    2015-01-01

    A state-of-the-art inverse model, CarbonTracker Data Assimilation Shell (CTDAS), was used to optimize estimates of methane (CH4) surface fluxes using atmospheric observations of CH4 as a constraint. The model consists of the latest version of the TM5 atmospheric chemistry-transport model and an ensemble Kalman filter based data assimilation system. The model was constrained by atmospheric methane surface concentrations, obtained from the World Data Centre for Greenhouse Gases (WDCGG). Pri...

  14. Retrieval Assimilation and Modeling of Atmospheric Water Vapor from Ground- and Space-Based GPS Networks: Investigation of the Global and Regional Hydrological Cycles

    Science.gov (United States)

    Dickey, Jean O.

    1999-01-01

    Uncertainty over the response of the atmospheric hydrological cycle (particularly the distribution of water vapor and cloudiness) to anthropogenic forcing is a primary source of doubt in current estimates of global climate sensitivity, which raises severe difficulties in evaluating its likely societal impact. Fortunately, a variety of advanced techniques and sensors are beginning to shed new light on the atmospheric hydrological cycle. One of the most promising makes use of the sensitivity of the Global Positioning System (GPS) to the thermodynamic state, and in particular the water vapor content, of the atmosphere through which the radio signals propagate. Our strategy to derive the maximum benefit for hydrological studies from the rapidly increasing GPS data stream will proceed in three stages: (1) systematically analyze and archive quality-controlled retrievals using state-of-the-art techniques; (2) employ both currently available and innovative assimilation procedures to incorporate these determinations into advanced regional and global atmospheric models and assess their effects; and (3) apply the results to investigate selected scientific issues of relevance to regional and global hydrological studies. An archive of GPS-based estimation of total zenith delay (TZD) data and water vapor where applicable has been established with expanded automated quality control. The accuracy of the GPS estimates is being monitored; the investigation of systematic errors is ongoing using comparisons with water vapor radiometers. Meteorological packages have been implemented. The accuracy and utilization of the TZD estimates has been improved by implementing a troposphere gradient model. GPS-based gradients have been validated as real atmospheric moisture gradients, establishing a link between the estimated gradients and the passage of weather fronts. We have developed a generalized ray tracing inversion scheme that can be used to analyze occultation data acquired from space

  15. Use of a Simple GIS-Based Model in Mapping the Atmospheric Concentration of γ-HCH in Europe

    Directory of Open Access Journals (Sweden)

    Pilar Vizcaino

    2014-10-01

    Full Text Available The state-of-the-art of atmospheric contaminant transport modeling provides accurate estimation of chemical concentrations. However, existing complex models, sophisticated in terms of process description and potentially highly accurate, may entail expensive setups and require very detailed input data. In contexts where detailed predictions are not needed (e.g., for regulatory risk assessment or life cycle impact assessment of chemicals, simple models allowing quick evaluation of contaminants may be preferable. The goal of this paper is to illustrate and critically discuss the use of a simple equation proposed by Pistocchi and Galmarini (2010, which can be implemented through basic GIS functions, to predict atmospheric concentrations of lindane (γ-HCH in Europe from both local and remote sources. Concentrations were computed for 1995 and 2005 assuming different modes of use of lindane and consequently different spatial patterns of emissions. Results were compared with those from the well-established MSCE-POP model (2005 developed within EMEP (European Monitoring and Evaluation Programme, and with available monitoring data, showing acceptable correspondence in terms of the orders of magnitude and spatial distribution of concentrations, especially when the background effect of emissions from extracontinental sources, estimated using the same equation, is added to European emissions.

  16. Atmospheric statistical dynamic models. Model performance: the Lawrence Livermore Laboratoy Zonal Atmospheric Model

    International Nuclear Information System (INIS)

    Results from the zonal model indicate quite reasonable agreement with observation in terms of the parameters and processes that influence the radiation and energy balance calculations. The model produces zonal statistics similar to those from general circulation models, and has also been shown to produce similar responses in sensitivity studies. Further studies of model performance are planned, including: comparison with July data; comparison of temperature and moisture transport and wind fields for winter and summer months; and a tabulation of atmospheric energetics. Based on these preliminary performance studies, however, it appears that the zonal model can be used in conjunction with more complex models to help unravel the problems of understanding the processes governing present climate and climate change. As can be seen in the subsequent paper on model sensitivity studies, in addition to reduced cost of computation, the zonal model facilitates analysis of feedback mechanisms and simplifies analysis of the interactions between processes

  17. Final Technical Report: Development of the DUSTRAN GIS-Based Complex Terrain Model for Atmospheric Dust Dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Allwine, K Jerry; Rutz, Frederick C.; Shaw, William J.; Rishel, Jeremy P.; Fritz, Brad G.; Chapman, Elaine G.; Hoopes, Bonnie L.; Seiple, Timothy E.

    2007-05-01

    Activities at U.S. Department of Defense (DoD) training and testing ranges can be sources of dust in local and regional airsheds governed by air-quality regulations. The U.S. Department of Energy’s Pacific Northwest National Laboratory just completed a multi-year project to develop a fully tested and documented atmospheric dispersion modeling system (DUST TRANsport or DUSTRAN) to assist the DoD in addressing particulate air-quality issues at military training and testing ranges.

  18. Centrifuge modeling of soil atmosphere interaction

    OpenAIRE

    CAICEDO, B; TRISTANCHO, J; THOREL, Luc

    2010-01-01

    Atmosphere process of infiltration or evaporation affect the behavior of geotechnical structures located near the soil surface. This paper focuses on the drying process of soils due to evaporation. The scaling laws are analyzed and afterwards the results on applying two cycles of heating and cooling on a soil mass are presented. Based on these results, conclusions about the feasibility of reproducing evaporation on centrifuge models are recommended.

  19. Three-dimensional hydrodynamical CO5BOLD model atmospheres of red giant stars. III. Line formation in the atmospheres of giants located close to the base of the red giant branch

    Science.gov (United States)

    Dobrovolskas, V.; Kučinskas, A.; Steffen, M.; Ludwig, H.-G.; Prakapavičius, D.; Klevas, J.; Caffau, E.; Bonifacio, P.

    2013-11-01

    Aims: We utilize state-of-the-art three-dimensional (3D) hydrodynamical and classical 1D stellar model atmospheres to study the influence of convection on the formation properties of various atomic and molecular spectral lines in the atmospheres of four red giant stars, located close to the base of the red giant branch, RGB (Teff ≈ 5000 K, log g = 2.5), and characterized by four different metallicities, [M/H] = 0.0, -1.0, -2.0, -3.0. Methods: The role of convection in the spectral line formation is assessed with the aid of abundance corrections, i.e., the differences in abundances predicted for a given equivalent width of a particular spectral line with the 3D and 1D model atmospheres. The 3D hydrodynamical and classical 1D model atmospheres used in this study were calculated with the CO5BOLD and 1D LHD codes, respectively. Identical atmospheric parameters, chemical composition, equation of state, and opacities were used with both codes, therefore allowing a strictly differential analysis of the line formation properties in the 3D and 1D models. Results: We find that for lines of certain neutral atoms, such as Mg i, Ti i, Fe i, and Ni i, the abundance corrections strongly depend both on the metallicity of a given model atmosphere and the line excitation potential, χ. While abundance corrections for all lines of both neutral and ionized elements tend to be small at solar metallicity (≤±0.1 dex), for lines of neutral elements with low ionization potential and low-to-intermediate χ they quickly increase with decreasing metallicity, reaching in their extremes -0.6 to -0.8 dex. In all such cases the large abundance corrections are due to horizontal temperature fluctuations in the 3D hydrodynamical models. Lines of neutral elements with higher ionization potentials (Eion ≳ 10 eV) generally behave very similarly to lines of ionized elements characterized by low ionization potentials (Eion ≲ 6 eV). In the latter case, the abundance corrections are small

  20. Atmospheric Circulation Influence on the Winter Thermal Conditions in Poland in 2021-2050 Based on the RACMO2 Model

    Science.gov (United States)

    Jędruszkiewicz, Joanna; Piotrowski, Piotr

    2012-01-01

    Thermal conditions are largely determined by atmospheric circulation. Therefore, projection of future temperature changes should be considered in relation to changes in circulation patterns. This paper assess to what extent changes in circulation correspond to spatial variability of the winter temperature increase in Poland in 2021-2050 period based on the RACMO2 model. The daily data of the mean temperature and sea level pressure (SLP) from selected regional climate model and observations were used. SLP data were used to determine the advection types and circulation character. Firstly, changes in frequency of circulation types between 2021-2050 and 1971-2000 periods were examined. Then changes in air temperature for specific circulation type in relation to reference period were studied. Finally, the influence of atmospheric circulation on spatial temperature variation was discussed. Considerably high increase in cyclonic situation of more than 18%, especially from the west and south-west direction, and decrease in anticyclonic situation mainly from the west and northwest in winter was noticed. Changes in frequency of circulation types result in temperature growth. For some types it is predicted that warming can reach even 3-4°C. The cyclonic (Ec, SEc, Sc) and anticylonic (SEa, Sa, Ea) types are likely to foster the highest warming in the scenario period. Polska charakteryzuje się znacznym zróżnicowaniem przestrzennym w rozkładzie temperatury powietrza w porze zimowej. W sezonie zimowym przeważa południkowy układ izoterm co świadczy o silnym oddziaływaniu z jednej strony ciepłych, wilgotnych mas powietrza napływających znad Atlantyku, a z drugiej chłodniejszych i bardziej suchych znad kontynentu azjatyckiego. Regionalne modele klimatu opracowane dla obszaru Europy wskazują jednoznacznie na wzrost temperatury w okresie zimy na obszarze całego kontynentu, szczególnie a wschodzie i północnym-wschodzie kontynentu, nawet o 3°C. Projekcje te s

  1. Magneto-static modelling of the mixed plasma Beta solar atmosphere based on SUNRISE/IMaX data

    CERN Document Server

    Wiegelmann, T; Nickeler, D H; Solanki, S K; Pillet, V Martinez; Borrero, J M

    2015-01-01

    Our aim is to model the 3D magnetic field structure of the upper solar atmosphere, including regions of non-negligible plasma beta. We use high-resolution photospheric magnetic field measurements from SUNRISE/IMaX as boundary condition for a magneto-static magnetic field model. The high resolution of IMaX allows us to resolve the interface region between photosphere and corona, but modelling this region is challenging for the following reasons. While the coronal magnetic field is thought to be force-free (the Lorentz-force vanishes), this is not the case in the mixed plasma $\\beta$ environment in the photosphere and lower chromosphere. In our model, pressure gradients and gravity forces are taken self-consistently into account and compensate the non-vanishing Lorentz-force. Above a certain height (about 2 Mm) the non-magnetic forces become very weak and consequently the magnetic field becomes almost force-free. Here we apply a linear approach, where the electric current density consists of a superposition of ...

  2. A Global Atmospheric Model of Meteoric Iron

    Science.gov (United States)

    Feng, Wuhu; Marsh, Daniel R.; Chipperfield, Martyn P.; Janches, Diego; Hoffner, Josef; Yi, Fan; Plane, John M. C.

    2013-01-01

    The first global model of meteoric iron in the atmosphere (WACCM-Fe) has been developed by combining three components: the Whole Atmosphere Community Climate Model (WACCM), a description of the neutral and ion-molecule chemistry of iron in the mesosphere and lower thermosphere (MLT), and a treatment of the injection of meteoric constituents into the atmosphere. The iron chemistry treats seven neutral and four ionized iron containing species with 30 neutral and ion-molecule reactions. The meteoric input function (MIF), which describes the injection of Fe as a function of height, latitude, and day, is precalculated from an astronomical model coupled to a chemical meteoric ablation model (CABMOD). This newly developed WACCM-Fe model has been evaluated against a number of available ground-based lidar observations and performs well in simulating the mesospheric atomic Fe layer. The model reproduces the strong positive correlation of temperature and Fe density around the Fe layer peak and the large anticorrelation around 100 km. The diurnal tide has a significant effect in the middle of the layer, and the model also captures well the observed seasonal variations. However, the model overestimates the peak Fe+ concentration compared with the limited rocket-borne mass spectrometer data available, although good agreement on the ion layer underside can be obtained by adjusting the rate coefficients for dissociative recombination of Fe-molecular ions with electrons. Sensitivity experiments with the same chemistry in a 1-D model are used to highlight significant remaining uncertainties in reaction rate coefficients, and to explore the dependence of the total Fe abundance on the MIF and rate of vertical transport.

  3. A Model of the Cosmic Ray Induced Atmospheric Neutron Environment

    OpenAIRE

    Kole, Merlin; Pearce, Mark; Salinas, Maria Muñoz

    2014-01-01

    In order to optimise the design of space instruments making use of detection materials with low atomic numbers, an understanding of the atmospheric neutron environment and its dependencies on time and position is needed. To produce a simple equation based model, Monte Carlo simulations were performed to obtain the atmospheric neutron fluxes produced by charged galactic cosmic ray interactions with the atmosphere. Based on the simulation results the omnidirectional neutron environment was para...

  4. Quantifying sources of black carbon in Western North America using observationally based analysis and an emission tagging technique in the Community Atmosphere Model

    Directory of Open Access Journals (Sweden)

    R. Zhang

    2015-05-01

    Full Text Available The Community Atmosphere Model (CAM5, equipped with a technique to tag black carbon (BC emissions by source regions and types, has been employed to establish source-receptor relationships for atmospheric BC and its deposition to snow over Western North America. The CAM5 simulation was conducted with meteorological fields constrained by reanalysis for year 2013 when measurements of BC in both near-surface air and snow are available for model evaluation. We find that CAM5 has a significant low bias in predicted mixing ratios of BC in snow but only a small low bias in predicted atmospheric concentrations over the Northwest USA and West Canada. Even with a strong low bias in snow mixing ratios, radiative transfer calculations show that the BC-in-snow darkening effect is substantially larger than the BC dimming effect at the surface by atmospheric BC. Local sources contribute more to near-surface atmospheric BC and to deposition than distant sources, while the latter are more important in the middle and upper troposphere where wet removal is relatively weak. Fossil fuel (FF is the dominant source type for total column BC burden over the two regions. FF is also the dominant local source type for BC column burden, deposition, and near-surface BC, while for all distant source regions combined the contribution of biomass/biofuel (BB is larger than FF. An observationally based Positive Matrix Factorization (PMF analysis of the snow-impurity chemistry is conducted to quantitatively evaluate the CAM5 BC source-type attribution. While CAM5 is qualitatively consistent with the PMF analysis with respect to partitioning of BC originating from BB and FF emissions, it significantly underestimates the relative contribution of BB. In addition to a possible low bias in BB emissions used in the simulation, the model is likely missing a significant source of snow darkening from local soil found in the observations.

  5. Quantifying sources of black carbon in Western North America using observationally based analysis and an emission tagging technique in the Community Atmosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rudong; Wang, Hailong; Hegg, D. A.; Qian, Yun; Doherty, Sarah J.; Dang, Cheng; Ma, Po-Lun; Rasch, Philip J.; Fu, Qiang

    2015-11-18

    The Community Atmosphere Model (CAM5), equipped with a technique to tag black carbon (BC) emissions by source regions and types, has been employed to establish source-receptor relationships for atmospheric BC and its deposition to snow over Western North America. The CAM5 simulation was conducted with meteorological fields constrained by reanalysis for year 2013 when measurements of BC in both near-surface air and snow are available for model evaluation. We find that CAM5 has a significant low bias in predicted mixing ratios of BC in snow but only a small low bias in predicted atmospheric concentrations over the Northwest USA and West Canada. Even with a strong low bias in snow mixing ratios, radiative transfer calculations show that the BC-in-snow darkening effect is substantially larger than the BC dimming effect at the surface by atmospheric BC. Local sources contribute more to near-surface atmospheric BC and to deposition than distant sources, while the latter are more important in the middle and upper troposphere where wet removal is relatively weak. Fossil fuel (FF) is the dominant source type for total column BC burden over the two regions. FF is also the dominant local source type for BC column burden, deposition, and near-surface BC, while for all distant source regions combined the contribution of biomass/biofuel (BB) is larger than FF. An observationally based Positive Matrix Factorization (PMF) analysis of the snow-impurity chemistry is conducted to quantitatively evaluate the CAM5 BC source-type attribution. While CAM5 is qualitatively consistent with the PMF analysis with respect to partitioning of BC originating from BB and FF emissions, it significantly underestimates the relative contribution of BB. In addition to a possible low bias in BB emissions used in the simulation, the model is likely missing a significant source of snow darkening from local soil found in the observations.

  6. Models of Pluto's upper atmosphere

    International Nuclear Information System (INIS)

    Best guesses as to the thermal structure and composition of Pluto's atmosphere have led to speculations of substantial loss rates (∼1028 s-1) of methane from the planet over cosmogonic time scales. Results from recent stellar occultation measurements, and using a Parker-type hydrodynamic calculation, show that the loss rates may actually be lower by as much as a factor ∼5, depending upon the efficiency of heating of the atmosphere via the absorption of solar EUV and upon the true atmospheric composition, if the thermal structure of the upper atmosphere is properly taken into account. The loss rate may even be less (by another factor ∼10) if there is minimal heating of the upper atmosphere

  7. A radiative transfer model for an idealized and non-scattering atmosphere and its application for ground-based remote sensing

    International Nuclear Information System (INIS)

    Inversion of tropospheric profiles from ground-based microwave measurements requires a simple and accurate model for calculating the brightness temperatures as received by the radiometer. In the first part, an analytic solution of the radiative transfer equation is derived for an exponentially decaying absorption coefficient and a linear temperature gradient. Based on the obtained analytic expressions, a discretized radiative transfer scheme is developed in the second part. The new scheme incorporates the generic behavior of the atmosphere with the effect that brightness temperatures can be modeled more accurately and with fewer grid points compared to commonly used radiative transfer schemes. The brightness temperature modeling accuracy was improved by a factor of six. The results suggest that the model could be employed for the retrieval of temperature and humidity profiles.

  8. The Atmospheric Radionuclide Transport Model (ARTM) - Validation of a long-term atmospheric dispersion model

    Science.gov (United States)

    Hettrich, Sebastian; Wildermuth, Hans; Strobl, Christopher; Wenig, Mark

    2016-04-01

    In the last couple of years, the Atmospheric Radionuclide Transport Model (ARTM) has been developed by the German Federal Office for Radiation Protection (BfS) and the Society for Plant and Reactor Security (GRS). ARTM is an atmospheric dispersion model for continuous long-term releases of radionuclides into the atmosphere, based on the Lagrangian particle model. This model, developed in the first place as a more realistic replacement for the out-dated Gaussian plume models, is currently being optimised for further scientific purposes to study atmospheric dispersion in short-range scenarios. It includes a diagnostic wind field model, allows for the application of building structures and multiple sources (including linear, 2-and 3-dimensional source geometries), and considers orography and surface roughness. As an output it calculates the activity concentration, dry and wet deposition and can model also the radioactive decay of Rn-222. As such, ARTM requires to undergo an intense validation process. While for short-term and short-range models, which were mainly developed for examining nuclear accidents or explosions, a few measurement data-sets are available for validation, data-sets for validating long-term models are very sparse and the existing ones mostly prove to be not applicable for validation. Here we present a strategy for the validation of long-term Lagrangian particle models based on the work with ARTM. In our validation study, the first part we present is a comprehensive analysis of the model sensitivities on different parameters like e.g. (simulation grid size resolution, starting random number, amount of simulation particles, etc.). This study provides a good estimation for the uncertainties of the simulation results and consequently can be used to generate model outputs comparable to the available measurements data at various distances from the emission source. This comparison between measurement data from selected scenarios and simulation results

  9. ATMOSPHERIC AMMONIA EMISSIONS FROM THE LIVESTOCK SECTOR: DEVELOPMENT AND EVALUATION OF A PROCESS-BASED MODELING APPROACH

    Science.gov (United States)

    We propose multi-faceted research to enhance our understanding of NH3 emissions from livestock feeding operations. A process-based emissions modeling approach will be used, and we will investigate ammonia emissions from the scale of the individual farm out to impacts on region...

  10. Atmospheric transmittance model for photosynthetically active radiation

    Energy Technology Data Exchange (ETDEWEB)

    Paulescu, Marius; Stefu, Nicoleta; Gravila, Paul; Paulescu, Eugenia; Boata, Remus; Pacurar, Angel; Mares, Oana [Physics Department, West University of Timisoara, V Parvan 4, 300223 Timisoara (Romania); Pop, Nicolina [Department of Physical Foundations of Engineering, Politehnica University of Timisoara, V Parvan 2, 300223 Timisoara (Romania); Calinoiu, Delia [Mechanical Engineering Faculty, Politehnica University of Timisoara, Mihai Viteazu 1, 300222 Timisoara (Romania)

    2013-11-13

    A parametric model of the atmospheric transmittance in the PAR band is presented. The model can be straightforwardly applied for calculating the beam, diffuse and global components of the PAR solar irradiance. The required inputs are: air pressure, ozone, water vapor and nitrogen dioxide column content, Ångström's turbidity coefficient and single scattering albedo. Comparison with other models and ground measured data shows a reasonable level of accuracy for this model, making it suitable for practical applications. From the computational point of view the calculus is condensed into simple algebra which is a noticeable advantage. For users interested in speed-intensive computation of the effective PAR solar irradiance, a PC program based on the parametric equations along with a user guide are available online at http://solar.physics.uvt.ro/srms.

  11. Atmospheric dispersion modeling of radioactive effluents

    International Nuclear Information System (INIS)

    In case of a nuclear accident, which could lead to release of radioactive contaminants, fastest countermeasures are needed, relating to sheltering, iodine distribution, evacuation and interdiction of food and water consumption. All these decisions should be based either on estimation of inhaled dose and the dose due to external exposure for public or on the estimation of radioactive concentration in food (which will depend on the radioactive concentration in air and ground deposition). In order to perform any of these calculations of consequences in case of nuclear accident, which leads to release of radioactive contaminants in the atmosphere, we must start with atmospheric dispersion calculations. In the last few years, considerable efforts have been devoted in order to improve computer codes for dispersion in the atmosphere of the radioactive contaminants released in a nuclear accident. The paper presents the model used in computer codes for assessment of nuclear accident consequences and a special attention was paid to the dispersion model used in the Institute for Nuclear Research Pitesti. The values for the used parameters and the results for air and ground concentration are also presented. (authors)

  12. A downscaling scheme for atmospheric variables to drive soil-vegetation-atmosphere transfer models

    Science.gov (United States)

    Schomburg, A.; Venema, V.; Lindau, R.; Ament, F.; Simmer, C.

    2010-09-01

    For driving soil-vegetation-transfer models or hydrological models, high-resolution atmospheric forcing data is needed. For most applications the resolution of atmospheric model output is too coarse. To avoid biases due to the non-linear processes, a downscaling system should predict the unresolved variability of the atmospheric forcing. For this purpose we derived a disaggregation system consisting of three steps: (1) a bi-quadratic spline-interpolation of the low-resolution data, (2) a so-called `deterministic' part, based on statistical rules between high-resolution surface variables and the desired atmospheric near-surface variables and (3) an autoregressive noise-generation step. The disaggregation system has been developed and tested based on high-resolution model output (400m horizontal grid spacing). A novel automatic search-algorithm has been developed for deriving the deterministic downscaling rules of step 2. When applied to the atmospheric variables of the lowest layer of the atmospheric COSMO-model, the disaggregation is able to adequately reconstruct the reference fields. Applying downscaling step 1 and 2, root mean square errors are decreased. Step 3 finally leads to a close match of the subgrid variability and temporal autocorrelation with the reference fields. The scheme can be applied to the output of atmospheric models, both for stand-alone offline simulations, and a fully coupled model system.

  13. Dielectric barrier discharge-based plasma actuator operation in artificial atmospheres for validation of modeling and simulation

    Science.gov (United States)

    Mangina, R. S.; Enloe, C. L.; Font, G. I.

    2015-11-01

    We present an experimental case study of time-resolved force production by an aerodynamic plasma actuator immersed in various mixtures of electropositive (N2) and electronegative gases (O2 and SF6) at atmospheric pressure using a fixed AC high-voltage input of 16 kV peak amplitude at 200 Hz frequency. We have observed distinct changes in the discharge structures during both negative- and positive-going voltage half-cycles, with corresponding variations in the actuator's force production: a ratio of 4:1 in the impulse produced by the negative-going half-cycle of the discharge among the various gas mixtures we explored, 2:1 in the impulse produced by the positive-going half-cycle, and cases in which the negative-going half-cycle dominates force production (by a ratio of 1.5:1), where the half-cycles produce identical force levels, and where the positive-going half cycle dominates (by a ratio of 1:5). We also present time-resolved experimental evidence for the first time that shows electrons do play a significant role in the momentum coupling to surrounding neutrals during the negative going voltage half-cycle of the N2 discharge. We show that there is sufficient macroscopic variation in the plasma that the predictions of numerical models at the microscopic level can be validated even though the plasma itself cannot be measured directly on those spatial and temporal scales.

  14. Changes in atmospheric aerosol loading from space-based measurements and model simulations for the decade 2001-2010

    Science.gov (United States)

    Yoon, J.; Pozzer, A.; Chang, D. Y.; Burrows, J. P.; Lelieveld, J.

    2014-12-01

    This study presents long-term trend estimates of aerosol optical thickness (AOT) retrieved from the space-born instruments (MODIS-Terra, MISR-Terra, SeaWiFS-OrbView-2, and MODIS-Aqua) and simulated by the atmospheric chemistry general circulation model ECHAM5/MESSy (EMAC) for the decade 2001-2010. The satellite-retrieved AOT trends are estimated using the weighted trend method that minimizes the uncertainty effect of unrepresentative monthly means induced by frequent cloud occurrence in cloudy seasons because the AOT products are retrieved from cloud-free radiances by the visible imager. The EMAC simulations distinguish various aerosols components (i.e. black carbon, organic carbon, dust, aerosol water, sea salt, and water soluble compounds) for selected regions and the decomposed trends for each of them. A significant decrease in the satellite-retrieved AOT is estimated over Western Europe (i.e. by up to about -6.59 ± 5.30% per year with a 95% confidence interval) due to the decreasing water-soluble compounds (i.e. ammonium, nitrate and sulphate) and aerosol water content. In contrast, a statistically significant increase is observed over East China (about +5.66 ± 4.14% per year), which is attributed to the increase in black carbon, water-soluble compounds, and aerosol water.

  15. Atmospheric corrosion: statistical validation of models

    International Nuclear Information System (INIS)

    In this paper we discuss two different methods for validation of regression models, applied to corrosion data. One of them is based on the correlation coefficient and the other one is the statistical test of lack of fit. Both methods are used here to analyse fitting of bi logarithmic model in order to predict corrosion for very low carbon steel substrates in rural and urban-industrial atmospheres in Uruguay. Results for parameters A and n of the bi logarithmic model are reported here. For this purpose, all repeated values were used instead of using average values as usual. Modelling is carried out using experimental data corresponding to steel substrates under the same initial meteorological conditions ( in fact, they are put in the rack at the same time). Results of correlation coefficient are compared with the lack of it tested at two different signification levels (α=0.01 and α=0.05). Unexpected differences between them are explained and finally, it is possible to conclude, at least in the studied atmospheres, that the bi logarithmic model does not fit properly the experimental data. (Author) 18 refs

  16. The impact of data assimilation of ground-based GPS precipitable water vapor to numerical weather prediction model on estimation of ray-traced atmospheric slant delays

    Science.gov (United States)

    Ichikawa, R.; Hobiger, T.; Shoji, Y.; Miyauchi, Y.

    2012-12-01

    The ''KAshima RAytracing Tools (KARAT)'' is capable of calculating total slant delays and ray-bending angles considering real atmospheric phenomena. One advantage of KARAT is that the reduction of atmospheric path delay will become more accurate each time the numerical weather model is improved. On October 27, 2009 the JMA started data assimilation of zenith wet delays obtained by the GPS Earth Observation Network System (GEONET) operated by Geospatial Information Authority of Japan (GSI) for meso-scale NWP model. The improved NWP model data assimilating the GPS PWV data has the potential to correct the atmospheric path delay more precisely. Meteorological Research Institute (MRI) of Japan has evaluated the impact of ground-based GPS precipitable water vapor (GPS PWV) derived from the GEONET on meso-scale NWP model under the localized heavy rainfall event in Tokyo, Japan on 5 August 2008. A terrific thunderstorm occurred across the Kanto area of Japan, and it caused flooding in downtown Tokyo. During the event, the rainfall intensity increased to over 100 mm per hour within thirty minutes. We have assessed the impacts of GPS PWV assimilation into the NWP model on the KARAT correction by comparisons of the precise point positioning (PPP) solutions. In the nationwide scale of Japan, the short time repeatability of the PPP results for both horizontal and height positions applying KARAT correction through the MRI NWP model with GPS PWV assimilation are about several percent better than that through the conventional MRI NPW model w/o GPS PWV assimilation. In addition we are now investigating the impact of GPS PWV data assimilation in more detail. We will present the updated results of the comparison study.

  17. Hands-on, online, and workshop-based K-12 weather and climate education resources from the Center for Multi-scale Modeling of Atmospheric Processes

    Science.gov (United States)

    Foster, S. Q.; Johnson, R. M.; Randall, D. A.; Denning, A.; Burt, M. A.; Gardiner, L.; Genyuk, J.; Hatheway, B.; Jones, B.; La Grave, M. L.; Russell, R. M.

    2009-12-01

    The need for improving the representation of cloud processes in climate models has been one of the most important limitations of the reliability of climate-change simulations. Now in its fourth year, the National Science Foundation-funded Center for Multi-scale Modeling of Atmospheric Processes (CMMAP) at Colorado State University (CSU) is addressing this problem through a revolutionary new approach to representing cloud processes on their native scales, including the cloud-scale interaction processes that are active in cloud systems. CMMAP has set ambitious education and human-resource goals to share basic information about the atmosphere, clouds, weather, climate, and modeling with diverse K-12 and public audiences. This is accomplished through collaborations in resource development and dissemination between CMMAP scientists, CSU’s Little Shop of Physics (LSOP) program, and the Windows to the Universe (W2U) program at University Corporation for Atmospheric Research (UCAR). Little Shop of Physics develops new hands on science activities demonstrating basic science concepts fundamental to understanding atmospheric characteristics, weather, and climate. Videos capture demonstrations of children completing these activities which are broadcast to school districts and public television programs. CMMAP and LSOP educators and scientists partner in teaching a summer professional development workshops for teachers at CSU with a semester's worth of college-level content on the basic physics of the atmosphere, weather, climate, climate modeling, and climate change, as well as dozens of LSOP inquiry-based activities suitable for use in classrooms. The W2U project complements these efforts by developing and broadly disseminating new CMMAP-related online content pages, animations, interactives, image galleries, scientists’ biographies, and LSOP videos to K-12 and public audiences. Reaching nearly 20 million users annually, W2U is highly valued as a curriculum enhancement

  18. Organic chemistry in the atmosphere. [laboratory modeling of Titan atmosphere

    Science.gov (United States)

    Sagan, C.

    1974-01-01

    The existence of an at least moderately complex organic chemistry on Titan is stipulated based on clear evidence of methane, and at least presumptive evidence of hydrogen in its atmosphere. The ratio of methane to hydrogen is the highest of any atmosphere in the solar system. Irradiation of hydrogen/methane mixtures produces aromatic and aliphatic hydrocarbons. A very reasonable hypothesis assumes that the red cloud cover of Titan is made of organic chemicals. Two-carbon hydrocarbons experimentally produced from irradiated mixtures of methane, ammonia, water, and hydrogen bear out the possible organic chemistry of the Titanian environment.

  19. Dielectric barrier discharge-based plasma actuator operation in artificial atmospheres for validation of modeling and simulation

    International Nuclear Information System (INIS)

    We present an experimental case study of time-resolved force production by an aerodynamic plasma actuator immersed in various mixtures of electropositive (N2) and electronegative gases (O2 and SF6) at atmospheric pressure using a fixed AC high-voltage input of 16 kV peak amplitude at 200 Hz frequency. We have observed distinct changes in the discharge structures during both negative- and positive-going voltage half-cycles, with corresponding variations in the actuator's force production: a ratio of 4:1 in the impulse produced by the negative-going half-cycle of the discharge among the various gas mixtures we explored, 2:1 in the impulse produced by the positive-going half-cycle, and cases in which the negative-going half-cycle dominates force production (by a ratio of 1.5:1), where the half-cycles produce identical force levels, and where the positive-going half cycle dominates (by a ratio of 1:5). We also present time-resolved experimental evidence for the first time that shows electrons do play a significant role in the momentum coupling to surrounding neutrals during the negative going voltage half-cycle of the N2 discharge. We show that there is sufficient macroscopic variation in the plasma that the predictions of numerical models at the microscopic level can be validated even though the plasma itself cannot be measured directly on those spatial and temporal scales

  20. Holocene North Atlantic Overturning in an atmosphere-ocean-sea ice model compared to proxy-based reconstructions

    Science.gov (United States)

    Blaschek, M.; Renssen, H.; Kissel, C.; Thornalley, D.

    2015-11-01

    Climate and ocean circulation in the North Atlantic region changed over the course of the Holocene, partly because of disintegrating ice sheets and partly because of an orbital-induced insolation trend. In the Nordic Seas, this impact was accompanied by a rather small, but significant, amount of Greenland ice sheet melting. We have employed the EMIC LOVECLIM and compared our model simulations with proxy-based reconstructions of δ13C, sortable silt, and magnetic susceptibility (κ) used to infer changes in past ocean circulation over the last 9000 years. The various reconstructions exhibit different long-term evolutions suggesting changes in either the overturning of the Atlantic in total or of subcomponents of the ocean circulation, such as the overflow waters across the Greenland-Scotland ridge. Thus, the question arises whether these reconstructions are consistent with each other or not. A comparison with model results indicates that δ13C, employed as an indicator of overturning, agrees well with the long-term evolution of the modeled Atlantic meridional overturning circulation (AMOC). The model results suggest that different long-term trends in subcomponents of the AMOC, such as Iceland-Scotland overflow water, are consistent with proxy-based reconstructions and allow some of the reconstructions to be reconciled with the modeled and reconstructed (from δ13C) AMOC evolution. We find a weak early Holocene AMOC, which recovers by 7 kyr B.P. and shows a weak increasing trend of 88 ± 1 mSv/kyr toward present, with relatively low variability on centennial to millennial timescales.

  1. Evaluating a 3-D transport model of atmospheric CO2 using ground-based, aircraft, and space-borne data

    Directory of Open Access Journals (Sweden)

    J.-D. Paris

    2010-07-01

    Full Text Available We evaluate the GEOS-Chem atmospheric transport model (v8-02-01 of CO2 over 2003–2006, driven by GEOS-4 and GEOS-5 meteorology from the NASA Goddard Global Modelling and Assimilation Office, using surface, aircraft and space-borne concentration measurements of CO2. We use an established ensemble Kalman filter to estimate a posteriori biospheric+biomass burning (BS+BB and oceanic (OC CO2 fluxes from 22 geographical regions, following the TransCom 3 protocol, using boundary layer CO2 data from a subset of GLOBALVIEW surface sites. Global annual net BS+BB+OC CO2 fluxes over 2004–2006 for GEOS-4 (GEOS-5 meteorology are −4.4±0.9 (−4.2±0.9, −3.9±0.9 (−4.5±0.9, and −5.2±0.9 (−4.9±0.9 Pg C yr−1 , respectively. The regional a posteriori fluxes are broadly consistent in the sign and magnitude of the TransCom-3 study for 1992–1996, but we find larger net sinks over northern and southern continents. We find large departures from our a priori over Europe during summer 2003, over temperate Eurasia during 2004, and over North America during 2005, reflecting an incomplete description of terrestrial carbon dynamics. We find GEOS-4 (GEOS-5 a posteriori CO2 concentrations reproduce the observed surface trend of 1.91–2.43 ppm yr−1, depending on latitude, within 0.15 ppm yr−1 (0.2 ppm yr−1 and the seasonal cycle within 0.2 ppm (0.2 ppm at all latitudes. We find the a posteriori model reproduces the aircraft vertical profile measurements of CO2 over North America and Siberia generally within 1.5 ppm in the free and upper troposphere but can be biased by up to 4–5 ppm in the boundary layer at the start and end of the growing season. The model has a small negative bias in the free troposphere CO2 trend (1.95–2.19 ppm yr−1 compared to AIRS data which has a trend of 2.21–2.63 ppm yr−1 during 2004–2006, consistent with surface data. Model CO2 concentrations in the upper troposphere, evaluated using CONTRAIL (Comprehensive

  2. Global trends and variability in integrated water vapour from ground-based GPS data and atmospheric models

    Science.gov (United States)

    Bock, Olivier; Parracho, Ana; Bastin, Sophie; Hourdin, Frededic; Mellul, Lidia

    2016-04-01

    A high-quality, consistent, global, long-term dataset of integrated water vapour (IWV) was produced from Global Positioning System (GPS) measurements at more than 400 sites over the globe among which 120 sites have more than 15 years of data. The GPS delay data were converted to IWV using surface pressure and weighted mean temperature estimates from ERA-Interim reanalysis. A two-step screening method was developed to detect and remove outliers in the IWV data. It is based on: 1) GPS data processing information and delay formal errors, and 2) intercomparison with ERA-Interim reanalysis data. The GPS IWV data are also homogenized to correct for offsets due to instrumental changes and other unknown factors. The differential homogenization method uses ERA-Interim IWV as a reference. The resulting GPS data are used to document the mean distribution, the global trends and the variability of IWV over the period 1995-2010, and are analysed in coherence with precipitation and surface temperature data (from observations and ERA-Interim reanalysis). These data are also used to assess global climate model simulations extracted from the IPCC AR5 archive. Large coherent spatial patterns of moistening and drying are evidenced but significant discrepancies are also seen between GPS measurements, reanalysis and climate models in various regions. In terms of variability, the monthly mean anomalies are intercompared. The temporal correlation between GPS and the climate model simulations is overall quite small but the spatial variation of the magnitude of the anomalies is globally well simulated. GPS IWV data prove to be useful to validate global climate model simulations and highlight deficiencies in their representation of the water cycle.

  3. Interannual variability in the atmosphere-biosphere CO2 exchange as simulated by a process-based model for the last decades

    Science.gov (United States)

    Ito, A.

    2001-05-01

    Atmosphere-biosphere CO2 exchange induces not only seasonal oscillation but also interannual change in the atmospheric CO2 concentration. Actually, in 1998, atmospheric CO2 concentration increased at a remarkably high rate, while the growth rate was apparently depressed in 1992 and 1993. Elucidating whether these anomalies were attributable to the ocean or the terrestrial biosphere is an important challenge for carbon cycle researchers. In this study, a process-based model of terrestrial carbon dynamics (Sim-CYCLE) was constructed and used to simulate the terrestrial carbon balance for the period from 1953 to 1999. Climatic variables related to ecosystem processes were derived from the U.S NCEP/NCAR-reanalysis data (T62 spatial resolution), and the Matthews's biome map was adopted. The atmospheric CO2 fertilization effect during the experimental period was also considered in the simulation analysis. Sim-CYCLE includes five carbon compartments (leaves, stems, roots, litter, and humus), and calculates fluxes among them at a monthly step, with taking environmental regulations into account. Accordingly, I could obtain a time-series of net carbon budget, i.e. net ecosystem production (NEP), on the global scale. Through the experimental period, global annual NEP exhibited a considerable interannual variability ranging from +2.0 Pg C in 1971 to ?2.5 Pg C in 1998 (SD 1.1 Pg C yr-1). Tropical ecosystems were most responsible for the interannual variability, especially in such ENSO years as 1973, 1983, and 1998. The estimated NEP anomalies were negatively correlated with surface temperature anomaly, due to the high sensitivity of respiration and decomposition to temperature. Thus, it is inferred that higher temperatures induced by the strong 1997-98 ENSO event would lead to extra CO2 emission and consequently the largest negative NEP anomaly. The estimated responsiveness of terrestrial carbon budget seems enough large to cause anomalies in atmospheric CO2 concentration

  4. Modelling the atmospheric chemistry of volcanic plumes

    OpenAIRE

    Surl, Luke

    2016-01-01

    Abstract Volcanoes are the principal way by which volatiles are transferred from the solid Earth to the atmosphere-hydrosphere system. Once released into the atmosphere, volcanic emissions rapidly undergo a complex series of chemical reactions. This thesis seeks to further the understanding of such processes by both observation and numerical modelling. I have adapted WRF-Chem to model passive degassing from Mount Etna, the chemistry of its plume, and its influence on the ...

  5. Evaporation and condensation in soils: Experimental and modeling investigation to compare non-equilibrium-based approaches under different atmospheric boundary conditions

    Science.gov (United States)

    Trautz, A.; Smits, K. M.; Cihan, A.; Illangasekare, T. H.

    2013-12-01

    Evaporation and condensation in bare soils govern water and energy fluxes between the land and atmosphere. Despite their importance to the hydrologic cycle, there is great uncertainty associated with our understanding of these complex multiphase phenomena. At the representative elementary volume scale, phase change (i.e. evaporation/condensation) between water vapor and liquid water is commonly evaluated in soil hydrology using the equilibrium assumption. The equilibrium-based approach assumes that within the soil pores, phase change occurs instantaneously. However, finite volatilization/condensation times have been observed experimentally under certain conditions calling into question the validity of using the equilibrium assumption for all possible land-atmospheric interaction scenarios. The use of non-equilibrium mass transfer relationships is based on the Hertz-Knudsen (HK) equation derived from the kinetic theory of gases. Multiple formulations have been posited to numerically represent phase change between water vapor and liquid water, many relying on empirical fitting parameters. The purpose of this investigation was to perform an unbiased comparison between the various non-equilibrium phase change formulations using a fully coupled heat and mass transfer model that simulates the processes of evaporation/condensation from soils using precision generated laboratory data. A non-isothermal solution was implemented in a numerical model to account for five different non-equilibrium phase change formulations reported in literature. A series of five experiments were performed using a unique laboratory system consisting of a soil tank with controlled airflow boundary conditions at the soil surface. The apparatus was equipped with a sensor network for continuous and autonomous collection of soil moisture, soil and air temperature, relative humidity, and wind velocity data. Soil surface conditions (e.g. temperature, diurnal variations and wind speed) and initial

  6. Atmospheric pollution. From processes to modelling

    International Nuclear Information System (INIS)

    Air quality, greenhouse effect, ozone hole, chemical or nuclear accidents.. All these phenomena are tightly linked to the chemical composition of atmosphere and to the atmospheric dispersion of pollutants. This book aims at supplying the main elements of understanding of 'atmospheric pollutions': stakes, physical processes involved, role of scientific expertise in decision making. Content: 1 - classifications and scales: chemical composition of the atmosphere, vertical structure, time scales (transport, residence); 2 - matter/light interaction: notions of radiative transfer, application to the Earth's atmosphere; 3 - some elements about the atmospheric boundary layer: notion of scales in meteorology, atmospheric boundary layer (ABL), thermal stratification and stability, description of ABL turbulence, elements of atmospheric dynamics, some elements about the urban climate; 4 - notions of atmospheric chemistry: characteristics, ozone stratospheric chemistry, ozone tropospheric chemistry, brief introduction to indoor air quality; 5 - aerosols, clouds and rains: aerosols and particulates, aerosols and clouds, acid rains and leaching; 6 - towards numerical simulation: equation of reactive dispersion, numerical methods for chemistry-transport models, numerical resolution of the general equation of aerosols dynamics (GDE), modern simulation chains, perspectives. (J.S.)

  7. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  8. Estimate Total Number of the Earth Atmospheric Particle with Standard Atmosphere Model

    Institute of Scientific and Technical Information of China (English)

    GAO Chong-Yi

    2001-01-01

    The total number of atmospheric particle (AP) is an important datum for planetary science and geoscience.Estimating entire AP number is also a familiar question in general physics.With standard atmosphere model,considering the number difference of AP caused by rough and uneven in the earth surface below,the sum of dry clean atmosphere particle is 1.06962 × 1044.So the whole number of AP including water vapor is 1.0740 × 1044.The rough estimation for the total number of AP on other planets (or satellites) in condensed state is also discussed on the base of it.

  9. Simulated Atlantic Meridional Overturning Circulation in the 20th century with an ocean model forced by reanalysis-based atmospheric data sets

    Science.gov (United States)

    He, Yan-Chun; Drange, Helge; Gao, Yongqi; Bentsen, Mats

    2016-04-01

    Global ocean hindcast simulations for the period 1871-2009 have been run with the ocean-sea ice component of the Norwegian Earth System Model (NorESM-O), forced by an adjusted version of the Twentieth Century Reanalysis version 2 data set (20CRv2 data set), as well as by the commonly used second version of atmospheric forcing data set for the Coordinated Ocean-ice Reference Experiments phase-II (CORE-II) for the period 1948-2007 (hereafter CORE.v2 data set). The simulated Atlantic Meridional Overturning Circulation (AMOC) in the 20CR and the CORE simulations have comparable variability as well as mean strength during the last three decades of the integration. The simulated AMOC undergoes, however, distinctly different evolutions during the period 1948-1970, with a sharply declining strength in CORE but a gradual increase in 20CR. Sensitivity experiments suggest that differences in the wind forcing between CORE and 20CR have major impact on the simulated AMOCs during this period. It is furthermore found that differences in the air temperature between the two data sets do contribute to the differences in AMOC, but to a much lesser degree than the wind. An additional factor for the diverging AMOC in the two decades following 1948 is the inevitable switching of atmospheric forcing fields in 1948 in the CORE.v2-based runs due to the cyclic spin-up procedure of the ocean model. The latter is a fundamental issue for any ocean hindcast simulation. The ocean initial state mainly influence the actual value but to a lesser degree also the temporal evolution (variability) of AMOC. It may take about two decades for the AMOC to adjust to a new atmospheric state during the spin-up, although a dynamically balanced ocean initial state tends to reduce the adjustment time and the magnitude of the deviation, implying that an ocean model run with atmospheric forcing fields extending back in time, like 20CRv2, can be used to extend the reliable duration of CORE-type of simulations.

  10. Regional forecasting with global atmospheric models

    International Nuclear Information System (INIS)

    The scope of the report is to present the results of the fourth year's work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals

  11. Users of middle atmosphere models remarks

    Science.gov (United States)

    Gamble, Joe

    1987-01-01

    The procedure followed for shuttle operations is to calculate descent trajectories for each potential shuttle landing site using the Global Reference Atmosphere Model (GRAM) to interactively compute density along the flight path 100 times to bound the statistics. The purpose is to analyze the flight dynamics, along with calculations of heat loads during reentry. The analysis program makes use of the modified version of the Jacchia-70 atmosphere, which includes He bulges over the poles and seasonal latitude variations at lower altitudes. For the troposphere, the 4-D Model is used up to 20 km, Groves from 30 km up to 90 km. It is extrapolated over the globe and faired into the Jacchia atmosphere between 90 and 115 km. Since data on the Southern Hemisphere was lacking, what was done was that the data was flipped over and lagged 6 months. Sometimes when winds are calculated from pressure data in the model there appear to be discontinuities. Modelers indicated that the GRAM was not designed to produce winds, but good wind data is needed for the landing phase of shuttle operations. Use of atmospheric models during reentry is one application where it is obvious that a single integrated atmosphere model is required.

  12. New atmospheric model of Epsilon Eridani

    Science.gov (United States)

    Vieytes, Mariela; Fontenla, Juan; Buccino, Andrea; Mauas, Pablo

    2016-05-01

    We present a new semi-empirical model of the atmosphere of the widely studied K-dwarf Epsilon Eridani (HD 22049). The model is build to reproduce the visible spectral observations from 3800 to 6800 Angstrom and the h and k Mg II lines profiles. The computations were carried out using the Solar-Stellar Radiation Physical Modeling (SSRPM) tools, which calculate non-LTE population for the most important species in the stellar atmosphere. We show a comparison between the synthetic and observed spectrum, obtaining a good agreement in all the studied spectral range.

  13. Modeling of uncertainty in atmospheric transport system using hybrid method

    International Nuclear Information System (INIS)

    Atmospheric dispersion models are routinely used at nuclear and chemical plants to estimate exposure to the members of the public and occupational workers due to release of hazardous contaminants into the atmosphere. Atmospheric dispersion is a stochastic phenomenon and in general, the concentration of the contaminant estimated at a given time and at a predetermined location downwind of a source cannot be predicted precisely. Uncertainty in atmospheric dispersion model predictions is associated with: 'data' or 'parameter' uncertainty resulting from errors in the data used to execute and evaluate the model, uncertainties in empirical model parameters, and initial and boundary conditions; 'model' or 'structural' uncertainty arising from inaccurate treatment of dynamical and chemical processes, approximate numerical solutions, and internal model errors; and 'stochastic' uncertainty, which results from the turbulent nature of the atmosphere as well as from unpredictability of human activities related to emissions, The possibility theory based on fuzzy measure has been proposed in recent years as an alternative approach to address knowledge uncertainty of a model in situations where available information is too vague to represent the parameters statistically. The paper presents a novel approach (called Hybrid Method) to model knowledge uncertainty in a physical system by a combination of probabilistic and possibilistic representation of parametric uncertainties. As a case study, the proposed approach is applied for estimating the ground level concentration of hazardous contaminant in air due to atmospheric releases through the stack (chimney) of a nuclear plant. The application illustrates the potential of the proposed approach. (author)

  14. A General Strategy for Physics-Based Model Validation Illustrated with Earthquake Phenomenology, Atmospheric Radiative Transfer, and Computational Fluid Dynamics

    CERN Document Server

    Sornette, Didier; Kamm, James R; Ide, Kayo

    2007-01-01

    Validation is often defined as the process of determining the degree to which a model is an accurate representation of the real world from the perspective of its intended uses. Validation is crucial as industries and governments depend increasingly on predictions by computer models to justify their decisions. In this article, we survey the model validation literature and propose to formulate validation as an iterative construction process that mimics the process occurring implicitly in the minds of scientists. We thus offer a formal representation of the progressive build-up of trust in the model, and thereby replace incapacitating claims on the impossibility of validating a given model by an adaptive process of constructive approximation. This approach is better adapted to the fuzzy, coarse-grained nature of validation. Our procedure factors in the degree of redundancy versus novelty of the experiments used for validation as well as the degree to which the model predicts the observations. We illustrate the n...

  15. An improved method of Lambertian CCD-camera radiation flux measurement based on SMARTS (simple model of the atmospheric radiative transfer of sunshine) to reduce spectral errors

    International Nuclear Information System (INIS)

    A Lambertian CCD-camera method is convenient to measure concentrating radiation fluxes, where a crucial factor, a calibration factor, always varies with spectra and brings errors. In this paper, a new calibration method is proposed based on spectral normalization calculation and tries to reduce spectral errors in Lambertian CCD-camera measurement. The calibration factor for AM1.5 is standardized over a transmittance range by matching gray values of photos to readings of calorimeter. A spectrum is calculated by SMARTS (simple model of the atmospheric radiative transfer of sunshine) according to the local time, latitude and longitude. A calibration factor is adjusted by calculated spectral offsets accordingly. Therefore an absolute radiation flux distribution is obtained by a gray value captured by the CCD-camera without calorimeter. Calculated results indicate that spectral irradiance between 700 and 800 nm dominates gray values on the target for solar radiation flux measurement. The offsets are increasing continuously from AM1 to AM5, which are validated by experimental results. The difference between measured and calculated calibration factors is 11%, which fits to the results of error estimate. These indicate that the improved method was feasible and reliable to measure concentrating radiation fluxes easily. - Highlights: • An improved Lambertian CCD-camera radiation measurement method is proposed. • The spectral errors are reduced by the calculated offsets based on SMARTS (simple model of the atmospheric radiative transfer of sunshine). • The absolute radiation flux distributions can be obtained without calorimeter. • The total estimated error for the simulator is ±13.17%. • The results of validation experiment demonstrate an error of 11%

  16. Coupled atmosphere-wildland fire modelling

    Directory of Open Access Journals (Sweden)

    Jacques Henri Balbi

    2009-10-01

    Full Text Available Simulating the interaction between fire and atmosphere is critical to the estimation of the rate of spread of the fire. Wildfire’s convection (i.e., entire plume can modify the local meteorology throughout the atmospheric boundary layer and consequently affect the fire propagation speed and behaviour. In this study, we use for the first time the Méso-NH meso-scale numerical model coupled to the point functional ForeFire simplified physical front-tracking wildfire model to investigate the differences introduced by the atmospheric feedback in propagation speed and behaviour. Both numerical models have been developed as research tools for operational models and are currently used to forecast localized extreme events. These models have been selected because they can be run coupled and support decisions in wildfire management in France and Europe. The main originalities of this combination reside in the fact that Méso-NH is run in a Large Eddy Simulation (LES configuration and that the rate of spread model used in ForeFire provides a physical formulation to take into account the effect of wind and slope. Simulations of typical experimental configurations show that the numerical atmospheric model is able to reproduce plausible convective effects of the heat produced by the fire. Numerical results are comparable to estimated values for fire-induced winds and present behaviour similar to other existing numerical approaches.

  17. Atmospheric contamination for CMB ground-based observations

    CERN Document Server

    Errard, J; Akiba, Y; Arnold, K; Atlas, M; Baccigalupi, C; Barron, D; Boettger, D; Borrill, J; Chapman, S; Chinone, Y; Cukierman, A; Delabrouille, J; Dobbs, M; Ducout, A; Elleflot, T; Fabbian, G; Feng, C; Feeney, S; Gilbert, A; Goeckner-Wald, N; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Hill, C; Holzapfel, W L; Hori, Y; Inoue, Y; Jaehnig, G C; Jaffe, A H; Jeong, O; Katayama, N; Kaufman, J; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Jeune, M Le; Lee, A T; Leitch, E M; Leon, D; Linder, E; Matsuda, F; Matsumura, T; Miller, N J; Myers, M J; Navaroli, M; Nishino, H; Okamura, T; Paar, H; Peloton, J; Poletti, D; Puglisi, G; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Rotermund, K M; Schenck, D E; Sherwin, B D; Siritanasak, P; Smecher, G; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Tajima, O; Takakura, S; Tikhomirov, A; Tomaru, T; Whitehorn, N; Wilson, B; Yadav, A; Zahn, O

    2015-01-01

    Atmosphere is one of the most important noise sources for ground-based Cosmic Microwave Background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3d-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive an analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the POLARBEAR-I project first season data set. We compare our results to previous st...

  18. Climate variations in the Northern Hemisphere based on the use of an atmosphere-ocean IPCC model

    International Nuclear Information System (INIS)

    Forced and natural variability of modelled and observed Atlantic Ocean temperature and Atlantic Meridional Overturning Circulation (AMOC) is studied. In the observations and in a forced climate model run, we find increasing temperature at 1000m in the Atlantic (20N). SVD analysis shows that, for both model data and observations, a high index of North Atlantic Oscillation (NAO) correspond to negative temperature anomaly at 1000m to the north of 55N, although geographical details of temperature anomaly distribution are different for the model and observations. Particular attention has been paid to the influence of the fresh water flux due to the present global warming on the slowing down of the AMOC. It is shown that fresh water flux change is only a secondary cause of reduced AMOC in global warming conditions, while heat flux change is probably the main reason. Finally, it is shown that internal model AMOC variability is positively correlated with the near-surface air temperature in Atlantic-European Arctic sector on a 10-year time scale.

  19. Atmospheric neutrino flux calculation using the NRLMSISE00 atmospheric model

    CERN Document Server

    Honda, M; Kajita, T; Kasahara, K; Midorikawa, S

    2015-01-01

    In this paper, we extend the calculation of the atmospheric neutrino flux~\\cite{hkkm2004,hkkms2006,hkkm2011} to the sites in polar and tropical regions. In our earliest full 3D-calculation~\\cite{hkkm2004}, we used DPMJET-III~\\cite{dpm} for the hadronic interaction model above 5~GeV, and NUCRIN~\\cite{nucrin} below 5~GeV. We modified DPMJET-III as in Ref.~\\cite{hkkms2006} to reproduce the experimental muon spectra better, mainly using the data observed by BESS group~\\cite{BESSTeVpHemu}. In a recent work~\\cite{hkkm2011}, we introduced JAM interaction model for the low energy hadronic interactions. JAM is a nuclear interaction model developed with PHITS (Particle and Heavy-Ion Transport code System)~\\cite{phits}. In Ref.~\\cite{hkkm2011}, we could reproduce the observed muon flux at the low energies at balloon altitude with DPMJET-III above 32 GeV and JAM below that better than the combination of DPMJET-III above 5~GeV and NUCRIN below that. Besides the interaction model, we have also improved the calculation sche...

  20. A Model of the Cosmic Ray Induced Atmospheric Neutron Environment

    CERN Document Server

    Kole, Merlin; Salinas, Maria Muñoz

    2014-01-01

    In order to optimise the design of space instruments making use of detection materials with low atomic numbers, an understanding of the atmospheric neutron environment and its dependencies on time and position is needed. To produce a simple equation based model, Monte Carlo simulations were performed to obtain the atmospheric neutron fluxes produced by charged galactic cosmic ray interactions with the atmosphere. Based on the simulation results the omnidirectional neutron environment was parametrised including dependencies on altitude, magnetic latitude and solar activity. The upward- and downward-moving component of the atmospheric neutron flux are considered separately. The energy spectra calculated using these equations were found to be in good agreement with data from a purpose built balloon-borne neutron detector, high altitude aircraft data and previously published simulation based spectra.

  1. Long and short-term atmospheric radiation analyses based on coupled measurements at high altitude remote stations and extensive air shower modeling

    Science.gov (United States)

    Hubert, G.; Federico, C. A.; Pazianotto, M. T.; Gonzales, O. L.

    2016-02-01

    In this paper are described the ACROPOL and OPD high-altitude stations devoted to characterize the atmospheric radiation fields. The ACROPOL platform, located at the summit of the Pic du Midi in the French Pyrenees at 2885 m above sea level, exploits since May 2011 some scientific equipment, including a BSS neutron spectrometer, detectors based on semiconductor and scintillators. In the framework of a IEAv and ONERA collaboration, a second neutron spectrometer was simultaneously exploited since February 2015 at the summit of the Pico dos Dias in Brazil at 1864 m above the sea level. The both high station platforms allow for investigating the long period dynamics to analyze the spectral variation of cosmic-ray- induced neutron and effects of local and seasonal changes, but also the short term dynamics during solar flare events. This paper presents long and short-term analyses, including measurement and modeling investigations considering the both high altitude stations data. The modeling approach, based on ATMORAD computational platform, was used to link the both station measurements.

  2. Radiation environment models and the atmospheric cutoff

    Science.gov (United States)

    Konradi, Andrei; Hardy, Alva C.; Atwell, William

    1987-01-01

    The limitations of radiation environment models are examined by applying the model to the South Atlantic anomaly (SAA). The local magnetic-field-intensity (in gauss) and McIlwain (1961) drift-shell-parameter contours in the SAA are analyzed. It is noted that it is necessary to decouple the atmospheric absorption effects from the trapped radiation models in order to obtain accurate radiation dose predictions. Two methods for obtaining more accurate results are proposed.

  3. EO-based lake-ice cover and surface temperature products: Advancing process understanding and modeling capabilities of lake-atmosphere interactions in cold regions

    Science.gov (United States)

    Duguay, C. R.; Kheyrollah Pour, H.; Ochilov, S.

    2011-12-01

    Our ability to determine the energy and water budgets of lakes is critical to modeling high latitude weather and climate. In recent years, the proper representation of lake processes in numerical weather prediction (NWP) and regional climate (RCM) models has become a topic of much interest by the scientific community. With the increased resolution of the NWP models and RCMs, it has now become possible and necessary to improve the representation of lake-atmosphere interactions to better describe the energy exchange between the atmosphere and the lake surface. Among other lake properties, knowledge about lake surface temperature and ice-coverage is critical. These two parameters can either be obtained from observations or through simulations. Although much progress is being made with lake models, as implemented in NWP/RCM models, the assimilation of data on lake temperature and fractional ice coverage has been identified as highly desirable. Spatially and temporally consistent lake ice and lake surface temperature (LST) products are invaluable in this respect. These can be derived from Earth Observation (EO) systems. However, satellite-based products must be compared with existing lake models, as well as validated and further improved as needed, to generate lake ice and LST products for operational use by the modeling community. The European Space Agency (ESA) is supporting the international efforts coordinated by the Climate and Cryosphere (CliC) project of the World Climate Research Programme (WCRP) to exploit the use of EO technology, models and in situ data to improve the characterization of river and lake ice processes and their contribution to the Northern Hydrology system. The ESA-sponsored North Hydrology project aims to develop a portfolio of novel multi-mission geo-information products, maximizing the use of ESA satellite data, to respond to the scientific requirements of the CliC community and the operational requirements of the weather and climate

  4. Model flames in a hydrostatic atmosphere

    Science.gov (United States)

    Caceres Calleja, Alvaro

    A model flame system based on the advection-diffusion-reaction method is defined and used to numerically study the problem of a flame propagating up an initially hydrostatic atmosphere, in 2-D. We identify and characterize the flame's steady states over a range of parameters, in the case where the gravitational scale height is much greater than the size of the flame, which itself is much greater than the flame's laminar width. We observe both laminar and turbulent steady flames and verify that, for strong enough gravity G, the turbulent flame speed is independent of the laminar flame speed and scales like the square root of GL, where L is the size of our domain. As this scaling law is commonly used to implement flame subgrid models, one of the aims of this thesis is to understand its robustness. We describe the flame geometry and discuss its relationship with the flame speed. The flow statistics inside turbulent flames are measured and found to be gaussian and isotropic, corresponding to strong mixing.

  5. Examining Tatooine: Atmospheric Models of Neptune-Like Circumbinary Planets

    CERN Document Server

    May, E M

    2016-01-01

    Circumbinary planets experience a time varying irradiation pattern as they orbit their two host stars. In this work, we present the first detailed study of the atmospheric effects of this irradiation pattern on known and hypothetical gaseous circumbinary planets. Using both a one-dimensional Energy Balance Model and a three-dimensional General Circulation Model, we look at the temperature differences between circumbinary planets and their equivalent single-star cases in order to determine the nature of the atmospheres of these planets. We find that for circumbinary planets on stable orbits around their host stars, temperature differences are on average no more than 1.0% in the most extreme cases. Based on detailed modeling with the General Circulation Model, we find that these temperature differences are not large enough to excite circulation differences between the two cases. We conclude that gaseous circumbinary planets can be treated as their equivalent single-star case in future atmospheric modeling effor...

  6. ATMOSPHERIC HEALTH EFFECTS FRAMEWORK (AHEF) MODEL

    Science.gov (United States)

    The Atmospheric and Health Effects Framework (AHEF) is used to assess theglobal impacts of substitutes for ozone-depleting substances (ODS). The AHEF is a series of FORTRAN modeling modules that collectively form a simulation framework for (a) translating ODS production into emi...

  7. Correction of atmospheric scattering effects in space-based observations of carbon dioxide: Model study of desert dust aerosol

    International Nuclear Information System (INIS)

    We describe an original methodology for CO2 retrievals using space-based measurements of reflected sunlight spectra. The effects of optical-path modification by aerosols were considered in terms of photon path-length statistics. First, the general approach was verified using a representative set of photon trajectories produced by the Monte Carlo technique. This method enabled accurate consideration of optical-path modification by aerosols and was effective in CO2 retrievals if aerosol optical properties were assumed. The next approach involved a limited number of parameters that describe the photon path-length distribution function (PPDF) and which were retrieved simultaneously with the CO2 amount. This approach was efficient under conditions of strong path modification by desert dust aerosol. The retrieval procedure included the following: estimation of PPDF parameters from radiance spectra in the O2 A-band; the necessary correction to use these estimated parameters in the 1.6-μm band; and, finally, CO2 retrievals from the 1.6-μm band. The procedure was verified by numerical simulations using an independent radiative transfer approach to produce radiance spectra expected for the Greenhouse Gases Observing Satellite (GOSAT) sensor

  8. Fluctuation Theorem in an Atmospheric Circulation Model

    CERN Document Server

    Schalge, Bernd; Wouters, Jeroen; Fraedrich, Klaus; Lunkeit, Frank

    2012-01-01

    Evidence for the validity of the Fluctuation Theorem (FT) in an atmospheric Global Circulation Model is found. The model is hydrostatic with variable numbers of vertical levels and different horizontal resolutions. For finite time intervals the largest local Lyapunov exponent (LLLE) is found to be negative consistent with predictions of the FT. The effect is present for resolutions up to wave numbers l=42 (~ 250km) and 10 levels.

  9. Atmospheric Rivers in a Hierarchy of High-Resolution Global Atmospheric Models

    Science.gov (United States)

    Schiemann, R.; Demory, M. E.; Lavers, D. A.; Mizielinski, M.; Vidale, P. L.; Roberts, M.

    2014-12-01

    Atmospheric rivers are long and narrow plumes that carry moisture over land along frontal zones associated with mid-latitude storms. They can account for 90% of the horizontal moisture transport in a given day and are responsible for major flooding, particularly along western coastal regions (western coasts of North America and Europe). It is therefore crucial to well simulate these events in climate models in order to improve predictions and attributions of heavy precipitation and flooding along western coastal regions. In this study, we investigate the ability of a state-of-the art climate model to represent the location, frequency and structure of atmospheric rivers affecting Western Europe and California. By making use of the UPSCALE (UK on PRACE: weather resolving Simulations of Climate for globAL Environmental risk) campaign, a traceable hierarchy of global atmospheric simulations (based on the Met Office Unified Model, GA3 formulation), with mesh sizes ranging from 130 km to 25 km, we study the impact of improved representation of small-scale processes on the mean climate, its variability and extremes in order to understand the processes underlying observed improvement with higher resolution. Five-member ensembles of 27-year, atmosphere-only integrations are available at these resolutions, using both present day forcing and a future climate scenario. Demory et al (2014) have already shown that a relatively coarse resolution limits the model's ability to simulate moisture transport from ocean to land. This is particularly true at mid-latitude, where the transport is dominated by eddies. Increasing horizontal resolution increases eddy transport of moisture at mid-latitudes. Here, we investigate the climatology of atmospheric rivers, in particular their frequency and associated precipitation, compared to reanalysis products. Some aspects of the relationship between the improved simulation of moisture transport in current climate conditions, and how this impacts

  10. Risk based inspection for atmospheric storage tank

    Science.gov (United States)

    Nugroho, Agus; Haryadi, Gunawan Dwi; Ismail, Rifky; Kim, Seon Jin

    2016-04-01

    Corrosion is an attack that occurs on a metallic material as a result of environment's reaction.Thus, it causes atmospheric storage tank's leakage, material loss, environmental pollution, equipment failure and affects the age of process equipment then finally financial damage. Corrosion risk measurement becomesa vital part of Asset Management at the plant for operating any aging asset.This paper provides six case studies dealing with high speed diesel atmospheric storage tank parts at a power plant. A summary of the basic principles and procedures of corrosion risk analysis and RBI applicable to the Process Industries were discussed prior to the study. Semi quantitative method based onAPI 58I Base-Resource Document was employed. The risk associated with corrosion on the equipment in terms of its likelihood and its consequences were discussed. The corrosion risk analysis outcome used to formulate Risk Based Inspection (RBI) method that should be a part of the atmospheric storage tank operation at the plant. RBI gives more concern to inspection resources which are mostly on `High Risk' and `Medium Risk' criteria and less on `Low Risk' shell. Risk categories of the evaluated equipment were illustrated through case study analysis outcome.

  11. Examining Tatooine: Atmospheric Models of Neptune-like Circumbinary Planets

    Science.gov (United States)

    May, E. M.; Rauscher, E.

    2016-08-01

    Circumbinary planets experience a time-varying irradiation pattern as they orbit their two host stars. In this work, we present the first detailed study of the atmospheric effects of this irradiation pattern on known and hypothetical gaseous circumbinary planets. Using both a one-dimensional energy balance model (EBM) and a three-dimensional general circulation model (GCM), we look at the temperature differences between circumbinary planets and their equivalent single-star cases in order to determine the nature of the atmospheres of these planets. We find that for circumbinary planets on stable orbits around their host stars, temperature differences are on average no more than 1.0% in the most extreme cases. Based on detailed modeling with the GCM, we find that these temperature differences are not large enough to excite circulation differences between the two cases. We conclude that gaseous circumbinary planets can be treated as their equivalent single-star case in future atmospheric modeling efforts.

  12. Atmospheric Turbulence Modeling for Aero Vehicles: Fractional Order Fits

    Science.gov (United States)

    Kopasakis, George

    2015-01-01

    Atmospheric turbulence models are necessary for the design of both inlet/engine and flight controls, as well as for studying coupling between the propulsion and the vehicle structural dynamics for supersonic vehicles. Models based on the Kolmogorov spectrum have been previously utilized to model atmospheric turbulence. In this paper, a more accurate model is developed in its representative fractional order form, typical of atmospheric disturbances. This is accomplished by first scaling the Kolmogorov spectral to convert them into finite energy von Karman forms and then by deriving an explicit fractional circuit-filter type analog for this model. This circuit model is utilized to develop a generalized formulation in frequency domain to approximate the fractional order with the products of first order transfer functions, which enables accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.

  13. Developing Model Constraints on Northern Extra-Tropical Carbon Cycling Based on measurements of the Abundance and Isotopic Composition of Atmospheric CO2

    Energy Technology Data Exchange (ETDEWEB)

    Keeling, Ralph [UCSD-SIO

    2014-12-12

    The objective of this project was to perform CO2 data syntheses and modeling activities to address two central questions: 1) how much has the seasonal cycle in atmospheric CO2 at northern high latitudes changed since the 1960s, and 2) how well do prognostic biospheric models represent these changes. This project also supported the continuation of the Scripps time series of CO2 isotopes and concentration at ten baseline stations distributed globally.

  14. Atmospheric monitoring and model applications at the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Keilhauer Bianca

    2015-01-01

    Full Text Available The Pierre Auger Observatory detects high-energy cosmic rays with energies above ∼1017 eV. It is built as a multi-hybrid detector measuring extensive air showers with different techniques. For the reconstruction of extensive air showers, the atmospheric conditions at the site of the Observatory have to be known quite well. This is particularly true for reconstructions based on data obtained by the fluorescence technique. For these data, not only the weather conditions near ground are relevant, most important are altitude-dependent atmospheric profiles. The Pierre Auger Observatory has set up a dedicated atmospheric monitoring programme at the site in the Mendoza province, Argentina. Beyond this, exploratory studies were performed in Colorado, USA, for possible installations in the northern hemisphere. In recent years, the atmospheric monitoring programme at the Pierre Auger Observatory was supplemented by applying data from atmospheric models. Both GDAS and HYSPLIT are developments by the US weather department NOAA and the data are freely available. GDAS is a global model of the atmospheric state parameters on a 1 degree geographical grid, based on real-time measurements and numeric weather predictions, providing a full altitude-dependent data set every 3 hours. HYSPLIT is a powerful tool to track the movement of air masses at various heights, and with it the aerosols. Combining local measurements of the atmospheric state variables and aerosol scattering with the given model data, advanced studies about atmospheric conditions can be performed and high precision air shower reconstructions are achieved.

  15. Factorial-based response-surface modeling with confidence intervals for optimizing thermal-optical transmission analysis of atmospheric black carbon.

    Science.gov (United States)

    Conny, J M; Norris, G A; Gould, T R

    2009-03-01

    Thermal-optical transmission (TOT) analysis measures black carbon (BC) in atmospheric aerosol on a fibrous filter. The method pyrolyzes organic carbon (OC) and employs laser light absorption to distinguish BC from the pyrolyzed OC; however, the instrument does not necessarily separate the two physically. In addition, a comprehensive temperature protocol for the analysis based on the Beer-Lambert Law remains elusive. Here, empirical response-surface modeling was used to show how the temperature protocol in TOT analysis can be modified to distinguish pyrolyzed OC from BC based on the Beer-Lambert Law. We determined the apparent specific absorption cross sections for pyrolyzed OC (sigma(Char)) and BC (sigma(BC)), which accounted for individual absorption enhancement effects within the filter. Response-surface models of these cross sections were derived from a three-factor central-composite factorial experimental design: temperature and duration of the high-temperature step in the helium phase, and the heating increase in the helium-oxygen phase. The response surface for sigma(BC), which varied with instrument conditions, revealed a ridge indicating the correct conditions for OC pyrolysis in helium. The intersection of the sigma(BC) and sigma(Char) surfaces indicated the conditions where the cross sections were equivalent, satisfying an important assumption upon which the method relies. 95% confidence interval surfaces defined a confidence region for a range of pyrolysis conditions. Analyses of wintertime samples from Seattle, WA revealed a temperature between 830 degrees C and 850 degrees C as most suitable for the helium high-temperature step lasting 150s. However, a temperature as low as 750 degrees C could not be rejected statistically. PMID:19216871

  16. Factorial-based response-surface modeling with confidence intervals for optimizing thermal-optical transmission analysis of atmospheric black carbon

    International Nuclear Information System (INIS)

    Thermal-optical transmission (TOT) analysis measures black carbon (BC) in atmospheric aerosol on a fibrous filter. The method pyrolyzes organic carbon (OC) and employs laser light absorption to distinguish BC from the pyrolyzed OC; however, the instrument does not necessarily separate the two physically. In addition, a comprehensive temperature protocol for the analysis based on the Beer-Lambert Law remains elusive. Here, empirical response-surface modeling was used to show how the temperature protocol in TOT analysis can be modified to distinguish pyrolyzed OC from BC based on the Beer-Lambert Law. We determined the apparent specific absorption cross sections for pyrolyzed OC (σChar) and BC (σBC), which accounted for individual absorption enhancement effects within the filter. Response-surface models of these cross sections were derived from a three-factor central-composite factorial experimental design: temperature and duration of the high-temperature step in the helium phase, and the heating increase in the helium-oxygen phase. The response surface for σBC, which varied with instrument conditions, revealed a ridge indicating the correct conditions for OC pyrolysis in helium. The intersection of the σBC and σChar surfaces indicated the conditions where the cross sections were equivalent, satisfying an important assumption upon which the method relies. 95% confidence interval surfaces defined a confidence region for a range of pyrolysis conditions. Analyses of wintertime samples from Seattle, WA revealed a temperature between 830 deg. C and 850 deg. C as most suitable for the helium high-temperature step lasting 150 s. However, a temperature as low as 750 deg. C could not be rejected statistically

  17. Regional transport model of atmospheric sulfates

    International Nuclear Information System (INIS)

    As part of the Sulfate Regional Experiment (SURE) Design Project, a regional transport model of atmospheric sulfates has been developed. This quasi-Lagrangian three-dimensional grid numerical model uses a detailed SO2 emission inventory of major anthropogenic sources in the Eastern U.S. region, and observed meteorological data during an episode as inputs. The model accounts for advective transport and turbulent diffusion of the pollutants. The chemical transformation of SO2 and SO4/sup =/ and the deposition of the species at the earth's surface are assumed to be linear processes at specified constant rates. The numerical model can predict the daily average concentrations of SO2 and SO4/sup =/ at all receptor locations in the grid region during the episode. Because of the spatial resolution of the grid, this model is particularly suited to investigate the effect of tall stacks in reducing the ambient concentration levels of sulfur pollutants. This paper presents the formulations and assumptions of the regional sulfate transport model. The model inputs and results are discussed. Isopleths of predicted SO2 and SO4/sup =/ concentrations are compared with the observed ground level values. The bulk of the information in this paper is directed to air pollution meteorologists and environmental engineers interested in the atmospheric transport modeling studies of sulfur oxide pollutants

  18. Atmospheric dispersion modeling: Challenges of the Fukushima Daiichi response

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Gayle [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nasstrom, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pobanz, Brenda [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foster, Kevin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vogt, Phil [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Aluzzi, Fernando [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homann, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-05-01

    In this research, the U.S. Department of Energy’s (DOE) National Atmospheric Release Advisory Center (NARAC) provided a wide range of predictions and analyses as part of the response to the Fukushima Daiichi Nuclear Power Plant accident including: daily Japanese weather forecasts and atmospheric transport predictions to inform planning for field monitoring operations and to provide U.S. government agencies with ongoing situational awareness of meteorological conditions; estimates of possible dose in Japan based on hypothetical U.S. Nuclear Regulatory Commission scenarios of potential radionuclide releases to support protective action planning for U.S. citizens; predictions of possible plume arrival times and dose levels at U.S. locations; and source estimation and plume model refinement based on atmospheric dispersion modeling and available monitoring data.

  19. Mars Entry Atmospheric Data System Modeling, Calibration, and Error Analysis

    Science.gov (United States)

    Karlgaard, Christopher D.; VanNorman, John; Siemers, Paul M.; Schoenenberger, Mark; Munk, Michelle M.

    2014-01-01

    The Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI)/Mars Entry Atmospheric Data System (MEADS) project installed seven pressure ports through the MSL Phenolic Impregnated Carbon Ablator (PICA) heatshield to measure heatshield surface pressures during entry. These measured surface pressures are used to generate estimates of atmospheric quantities based on modeled surface pressure distributions. In particular, the quantities to be estimated from the MEADS pressure measurements include the dynamic pressure, angle of attack, and angle of sideslip. This report describes the calibration of the pressure transducers utilized to reconstruct the atmospheric data and associated uncertainty models, pressure modeling and uncertainty analysis, and system performance results. The results indicate that the MEADS pressure measurement system hardware meets the project requirements.

  20. Light self-focusing in the atmosphere: thin window model

    Science.gov (United States)

    Vaseva, Irina A.; Fedoruk, Mikhail P.; Rubenchik, Alexander M.; Turitsyn, Sergei K.

    2016-08-01

    Ultra-high power (exceeding the self-focusing threshold by more than three orders of magnitude) light beams from ground-based laser systems may find applications in space-debris cleaning. The propagation of such powerful laser beams through the atmosphere reveals many novel interesting features compared to traditional light self-focusing. It is demonstrated here that for the relevant laser parameters, when the thickness of the atmosphere is much shorter than the focusing length (that is, of the orbit scale), the beam transit through the atmosphere in lowest order produces phase distortion only. This means that by using adaptive optics it may be possible to eliminate the impact of self-focusing in the atmosphere on the laser beam. The area of applicability of the proposed “thin window” model is broader than the specific physical problem considered here. For instance, it might find applications in femtosecond laser material processing.

  1. Light self-focusing in the atmosphere: thin window model.

    Science.gov (United States)

    Vaseva, Irina A; Fedoruk, Mikhail P; Rubenchik, Alexander M; Turitsyn, Sergei K

    2016-01-01

    Ultra-high power (exceeding the self-focusing threshold by more than three orders of magnitude) light beams from ground-based laser systems may find applications in space-debris cleaning. The propagation of such powerful laser beams through the atmosphere reveals many novel interesting features compared to traditional light self-focusing. It is demonstrated here that for the relevant laser parameters, when the thickness of the atmosphere is much shorter than the focusing length (that is, of the orbit scale), the beam transit through the atmosphere in lowest order produces phase distortion only. This means that by using adaptive optics it may be possible to eliminate the impact of self-focusing in the atmosphere on the laser beam. The area of applicability of the proposed "thin window" model is broader than the specific physical problem considered here. For instance, it might find applications in femtosecond laser material processing. PMID:27480220

  2. On the thermally stratified atmospheric flow modeling

    Czech Academy of Sciences Publication Activity Database

    Sládek, Ivo; Kozel, K.; Jaňour, Zbyněk

    Praha : Ústav termomechaniky, AV ČR, v. v. i., 2010 - (Příhoda, J.; Kozel, K.), s. 135-138 ISBN 978-80-87012-25-3. [Topical Problems of Fluid Mechanics 2010. Praha (CZ), 10.02.2010-11.02.2010] Institutional research plan: CEZ:AV0Z20760514 Keywords : atmospheric boundary layer * turbulence model * finite volume method Subject RIV: DG - Athmosphere Sciences, Meteorology

  3. How realistic are solar model atmospheres?

    CERN Document Server

    Pereira, Tiago M D; Collet, Remo; Thaler, Irina; Trampedach, Regner; Leenaarts, Jorrit

    2013-01-01

    Recently, new solar model atmospheres have been developed to replace classical 1D LTE hydrostatic models and used to for example derive the solar chemical composition. We aim to test various models against key observational constraints. In particular, a 3D model used to derive the solar abundances, a 3D MHD model (with an imposed 10 mT vertical magnetic field), 1D models from the PHOENIX project, the 1D MARCS model, and the 1D semi-empirical model of Holweger & M\\"uller. We confront the models with observational diagnostics of the temperature profile: continuum centre-to-limb variations (CLV), absolute continuum fluxes, and the wings of hydrogen lines. We also test the 3D models for the intensity distribution of the granulation and spectral line shapes. The predictions from the 3D model are in excellent agreement with the continuum CLV observations, performing even better than the Holweger & M\\"uller model (constructed largely to fulfil such observations). The predictions of the 1D theoretical models ...

  4. Observations and Modeling of Tropical Planetary Atmospheres

    Science.gov (United States)

    Laraia, Anne

    2016-01-01

    This thesis is a comprised of three different projects within the topic of tropical atmospheric dynamics. First, I analyze observations of thermal radiation from Saturn's atmosphere and from them, determine the latitudinal distribution of ammonia vapor near the 1.5-bar pressure level. The most prominent feature of the observations is the high brightness temperature of Saturn's subtropical latitudes on either side of the equator. After comparing the observations to a microwave radiative transfer model, I find that these subtropical bands require very low ammonia relative humidity below the ammonia cloud layer in order to achieve the high brightness temperatures observed. We suggest that these bright subtropical bands represent dry zones created by a meridionally overturning circulation. Second, I use a dry atmospheric general circulation model to study equatorial superrotation in terrestrial atmospheres. A wide range of atmospheres are simulated by varying three parameters: the pole-equator radiative equilibrium temperature contrast, the convective lapse rate, and the planetary rotation rate. A scaling theory is developed that establishes conditions under which superrotation occurs in terrestrial atmospheres. The scaling arguments show that superrotation is favored when the off-equatorial baroclinicity and planetary rotation rates are low. Similarly, superrotation is favored when the convective heating strengthens, which may account for the superrotation seen in extreme global-warming simulations. Third, I use a moist slab-ocean general circulation model to study the impact of a zonally-symmetric continent on the distribution of monsoonal precipitation. I show that adding a hemispheric asymmetry in surface heat capacity is sufficient to cause symmetry breaking in both the spatial and temporal distribution of precipitation. This spatial symmetry breaking can be understood from a large-scale energetic perspective, while the temporal symmetry breaking requires

  5. Onboard Atmospheric Modeling and Prediction for Autonomous Aerobraking Missions

    Science.gov (United States)

    Tolson, Robert H.; Prince, Jill L. H.

    2011-01-01

    Aerobraking has proven to be an effective means of increasing the science payload for planetary orbiting missions and/or for enabling the use of less expensive launch vehicles. Though aerobraking has numerous benefits, large operations cost have been required to maintain the aerobraking time line without violating aerodynamic heating or other constraints. Two operations functions have been performed on an orbit by orbit basis to estimate atmospheric properties relevant to aerobraking. The Navigation team typically solves for an atmospheric density scale factor using DSN tracking data and the atmospheric modeling team uses telemetric accelerometer data to recover atmospheric density profiles. After some effort, decisions are made about the need for orbit trim maneuvers to adjust periapsis altitude to stay within the aerobraking corridor. Autonomous aerobraking would reduce the need for many ground based tasks. To be successful, atmospheric modeling must be performed on the vehicle in near real time. This paper discusses the issues associated with estimating the planetary atmosphere onboard and evaluates a number of the options for Mars, Venus and Titan aerobraking missions.

  6. Regional forecasting with global atmospheric models

    International Nuclear Information System (INIS)

    This report was prepared by the Applied Research Corporation (ARC), College Station, Texas, under subcontract to Pacific Northwest Laboratory (PNL) as part of a global climate studies task. The task supports site characterization work required for the selection of a potential high-level nuclear waste repository and is part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work is under the overall direction of the Office of Civilian Radioactive Waste Management (OCRWM), US Department of Energy Headquarters, Washington, DC. The scope of the report is to present the results of the third year's work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain several studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals

  7. Detection of Atmospheric Composition Based on Lidar

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jinye; Tong Yala; Yang Xiaoling; Gong Jiaoli [School of science, Hubei University of Technology, Wuhan 430068 (China); Gong Wei, E-mail: yezi.zh@163.com [State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079 (China)

    2011-02-01

    A summary overview about the types of lidar and their own applications on atmosphere detection is presented. Measurement of atmospheric aerosols by Mie lidar and Raman lidar is focused. The vertical profiles of aerosols in the atmosphere are retrieved. And at the same time, through analyzing aerosol vertical content distribution, the atmosphere boundary layer and the cloud are also observed. All the results show that the lidar has good performance on detecting the atmospheric composition.

  8. Detection of Atmospheric Composition Based on Lidar

    International Nuclear Information System (INIS)

    A summary overview about the types of lidar and their own applications on atmosphere detection is presented. Measurement of atmospheric aerosols by Mie lidar and Raman lidar is focused. The vertical profiles of aerosols in the atmosphere are retrieved. And at the same time, through analyzing aerosol vertical content distribution, the atmosphere boundary layer and the cloud are also observed. All the results show that the lidar has good performance on detecting the atmospheric composition.

  9. The limitations of time in atmospheric transfer models

    International Nuclear Information System (INIS)

    Atmospheric transfer models must be specific to the modelling situation, and the timescale of the problem is important in deriving the model. In the nuclear industry, radionuclides could be released to the atmosphere over a large range of times, depending on the source. These timescales range from seconds, in the case of a puff of radionuclides accidently emitted from a reactor, to many thousands of years in the disposal of nuclear fuel waste. The half-life of the radionuclide partially determines the timescale of its importance, but practical considerations also determine the timescales that must be considered in the transfer models. Here, we give an overview of some of the processes and timescales that need to be considered in four radionuclide release scenarios: an emergency release from a reactor (minutes to hours), routine reactor release (annual average), suspension from an area contaminated previously by a reactor release or groundwater plume (years to decades) and disposal of nuclear fuel wastes (thousands of years). In all cases, atmospheric turbulence is an important driving force. However, detailed turbulence information is not helpful in the assessment of long-term releases, and simpler parameterizations must be used. For very long times, statistical and probabilistic models incorporate averaging, uncertainty and variability, and are superior to physically based models of atmospheric motions. (author)

  10. CIDGA - Coupling of Interior Dynamic models with Global Atmosphere models

    Science.gov (United States)

    Noack, Lena; Plesa, Ana-Catalina; Breuer, Doris

    2010-05-01

    Atmosphere temperatures and in particular the surface temperatures mostly depend on the solar heat flux and the atmospheric composition. The latter can be influenced by interior processes of the planet, i.e. volcanism that releases greenhouse gases such as H2O, CO2 and methane into the atmosphere and plate tectonics through which atmospheric CO2 is recycled via carbonates into the mantle. An increasing concentration of greenhouse gases in the atmosphere results in an increase of the surface temperature. Changes in the surface temperature on the other hand may influence the cooling behaviour of the planet and hence influence its volcanic activity [Phillips et al., 2001]. This feedback relation between mantle convection and atmosphere is not very well understood, since until now mostly either the interior dynamic of a planet or its atmosphere was investigated separately. 2D or 3D mantle convection models to the authors' knowledge haven't been coupled to the atmosphere so far. We have used the 3D spherical simulation code GAIA [Hüttig et al., 2008] including partial melt production and coupled it with the atmosphere module CIDGA using a gray greenhouse model for varying H2O concentrations. This way, not only the influence of mantle dynamics on the atmosphere can be investigated, but also the recoupling effect, that the surface temperature has on the mantle dynamics. So far, we consider one-plate planets without crustal and thus volatile recycling. Phillips et al. [2001] already investigated the coupling effect of the surface temperature on mantle dynamics by using simple parameterized convection models for Venus. In their model a positive feedback mechanism has been observed, i.e., an increase of the surface temperature leads to an increase of partial melt and hence an increase of atmosphere density and surface temperature. Applying our model to Venus, we show that an increase of surface temperature leads not only to an increase of partial melt in the mantle; it also

  11. Supermodeling With A Global Atmospheric Model

    Science.gov (United States)

    Wiegerinck, Wim; Burgers, Willem; Selten, Frank

    2013-04-01

    In weather and climate prediction studies it often turns out to be the case that the multi-model ensemble mean prediction has the best prediction skill scores. One possible explanation is that the major part of the model error is random and is averaged out in the ensemble mean. In the standard multi-model ensemble approach, the models are integrated in time independently and the predicted states are combined a posteriori. Recently an alternative ensemble prediction approach has been proposed in which the models exchange information during the simulation and synchronize on a common solution that is closer to the truth than any of the individual model solutions in the standard multi-model ensemble approach or a weighted average of these. This approach is called the super modeling approach (SUMO). The potential of the SUMO approach has been demonstrated in the context of simple, low-order, chaotic dynamical systems. The information exchange takes the form of linear nudging terms in the dynamical equations that nudge the solution of each model to the solution of all other models in the ensemble. With a suitable choice of the connection strengths the models synchronize on a common solution that is indeed closer to the true system than any of the individual model solutions without nudging. This approach is called connected SUMO. An alternative approach is to integrate a weighted averaged model, weighted SUMO. At each time step all models in the ensemble calculate the tendency, these tendencies are weighted averaged and the state is integrated one time step into the future with this weighted averaged tendency. It was shown that in case the connected SUMO synchronizes perfectly, the connected SUMO follows the weighted averaged trajectory and both approaches yield the same solution. In this study we pioneer both approaches in the context of a global, quasi-geostrophic, three-level atmosphere model that is capable of simulating quite realistically the extra

  12. Detailed Atmosphere Model Fits to Disk-Dominated ULX Spectra

    OpenAIRE

    Hui, Y; Krolik, Julian H.

    2008-01-01

    We have chosen 6 Ultra-Luminous X-ray sources from the {\\it XMM-Newton} archive whose spectra have high signal-to-noise and can be fitted solely with a disk model without requiring any power-law component. To estimate systematic errors in the inferred parameters, we fit every spectrum to two different disk models, one based on local blackbody emission (KERRBB) and one based on detailed atmosphere modelling (BHSPEC). Both incorporate full general relativistic treatment of the disk surface brig...

  13. Numerical modeling of atmospheric washout processes

    International Nuclear Information System (INIS)

    For the washout of particles from the atmosphere by clouds and rain one has to distinguish between processes which work in the first phase of cloud development, when condensation nuclei build up in saturated air (Nucleation Aerosol Scavenging, NAS) and those processes which work at the following cloud development. In the second case particles are taken off by cloud droplets or by falling rain drops via collision (Collision Aerosol Scavenging, CAS). The physics of both processes is described. For the CAS process a numerical model is presented. The report contains a documentation of the mathematical equations and the computer programs (FORTRAN). (KW)

  14. Atmospheric Refraction Path Integrals in Ground-Based Interferometry

    OpenAIRE

    Mathar, Richard J.

    2004-01-01

    The basic effect of the earth's atmospheric refraction on telescope operation is the reduction of the true zenith angle to the apparent zenith angle, associated with prismatic aberrations due to the dispersion in air. If one attempts coherent superposition of star images in ground-based interferometry, one is in addition interested in the optical path length associated with the refracted rays. In a model of a flat earth, the optical path difference between these is not concerned as the transl...

  15. Analysis of software for modeling atmospheric dispersion

    International Nuclear Information System (INIS)

    During last few years, a number software packages for microcomputes have appeared with the aim to simulate diffusion of atmospheric pollutants. These codes, simplifying the models used for safety analyses of industrial plants are becoming more useful, and are even used for post-accidental conditions. The report presents for the first time in a critical manner, principal models available up to this date. The problem arises in adapting the models to the demanded post-accidental interventions. In parallel to this action an analysis of performance was performed. It means, identifying the need of forecasting the most appropriate actions to be performed having in mind short available time and lack of information. Because of these difficulties, it is possible to simplify the software, which will not include all the options but could deal with a specific situation. This would enable minimisation of data to be collected on the site

  16. Optimizing the calculation grid for atmospheric dispersion modelling

    International Nuclear Information System (INIS)

    This paper presents three approaches to find optimized grids for atmospheric dispersion measurements and calculations in emergency planning. This can be useful for deriving optimal positions for mobile monitoring stations, or help to reduce discretization errors and improve recommendations. Indeed, threshold-based recommendations or conclusions may differ strongly on the shape and size of the grid on which atmospheric dispersion measurements or calculations of pollutants are based. Therefore, relatively sparse grids that retain as much information as possible, are required. The grid optimization procedure proposed here is first demonstrated with a simple Gaussian plume model as adopted in atmospheric dispersion calculations, which provides fast calculations. The optimized grids are compared to the Noodplan grid, currently used for emergency planning in Belgium, and to the exact solution. We then demonstrate how it can be used in more realistic dispersion models. - Highlights: • Grid points for atmospheric dispersion calculations are optimized. • Using heuristics the optimization problem results into different grid shapes. • Comparison between optimized models and the Noodplan grid is performed

  17. Statistical modelling of collocation uncertainty in atmospheric thermodynamic profiles

    Directory of Open Access Journals (Sweden)

    A. Fassò

    2013-08-01

    Full Text Available The uncertainty of important atmospheric parameters is a key factor for assessing the uncertainty of global change estimates given by numerical prediction models. One of the critical points of the uncertainty budget is related to the collocation mismatch in space and time among different observations. This is particularly important for vertical atmospheric profiles obtained by radiosondes or LIDAR. In this paper we consider a statistical modelling approach to understand at which extent collocation uncertainty is related to environmental factors, height and distance between the trajectories. To do this we introduce a new statistical approach, based on the heteroskedastic functional regression (HFR model which extends the standard functional regression approach and allows us a natural definition of uncertainty profiles. Moreover, using this modelling approach, a five-folded uncertainty decomposition is proposed. Eventually, the HFR approach is illustrated by the collocation uncertainty analysis of relative humidity from two stations involved in GCOS reference upper-air network (GRUAN.

  18. Sensitivity of Holocene atmospheric CO2 and the modern carbon budget to early human land use: analyses with a process-based model

    Directory of Open Access Journals (Sweden)

    F. Joos

    2011-01-01

    Full Text Available A Dynamic Global Vegetation model coupled to a simplified Earth system model is used to simulate the impact of anthropogenic land cover changes (ALCC on Holocene atmospheric CO2 and the contemporary carbon cycle. The model results suggest that early agricultural activities cannot explain the mid to late Holocene CO2 rise of 20 ppm measured on ice cores and that proposed upward revisions of Holocene ALCC imply a smaller contemporary terrestrial carbon sink. A set of illustrative scenarios is applied to test the robustness of these conclusions and to address the large discrepancies between published ALCC reconstructions. Simulated changes in atmospheric CO2 due to ALCC are less than 1 ppm before 1000 AD and 30 ppm at 2004 AD when the HYDE 3.1 ALCC reconstruction is prescribed for the past 12 000 years. Cumulative emissions of 69 GtC at 1850 and 233 GtC at 2004 AD are comparable to earlier estimates. CO2 changes due to ALCC exceed the simulated natural interannual variability only after 1000 AD. To consider evidence that land area used per person was higher before than during early industrialisation, agricultural areas from HYDE 3.1 were increased by a factor of two prior to 1700 AD (scenario H2. For the H2 scenario, the contemporary terrestrial carbon sink required to close the atmospheric CO2 budget is reduced by 0.5 GtC yr−1. Simulated CO2 remains small even in scenarios where average land use per person is increased beyond the range of published estimates. Even extreme assumptions for preindustrial land conversion and high per-capita land use do not result in simulated CO2 emissions that are sufficient to explain the magnitude and the timing of the late Holocene CO2 increase.

  19. Evaluation of the WIND System atmospheric models: An analytic approach

    International Nuclear Information System (INIS)

    An analytic approach was used in this study to test the logic, coding, and the theoretical limits of the WIND System atmospheric models for the Savannah River Plant. In this method, dose or concentration estimates predicted by the models were compared to the analytic solutions to evaluate their performance. The results from AREA EVACUATION and PLTFF/PLUME were very nearly identical to the analytic solutions they are based on and the evaluation procedure demonstrated that these models were able to reproduce the theoretical characteristics of a puff or a plume. The dose or concentration predicted by PLTFF/PLUME was always within 1% of the analytic solution. Differences between the dose predicted by 2DPUF and its analytic solution were substantially greater than those associated with PUFF/PLUME, but were usually smaller than 6%. This behavior was expected because PUFF/PLUME solves a form of the analytic solution for a single puff, and 2DPUF performs an integration over a period of time for several puffs to obtain the dose. Relatively large differences between the dose predicted by 2DPUF and its analytic solution were found to occur close to the source under stable atmospheric conditions. WIND System users should be aware of these situations in which the assumptions of the System atmospheric models may be violated so that dose predictions can be interpreted correctly. The WIND System atmospheric models are similar to many other dispersion codes used by the EPA, NRC, and DOE. If the quality of the source term and meteorological data is high, relatively accurate and timely forecasts for emergency response situations can be made by the WIND System atmospheric models

  20. PCBs in the Arctic atmosphere: determining important driving forces using a global atmospheric transport model

    OpenAIRE

    Friedman, Carey L.; Selin, Noelle E

    2016-01-01

    We present a spatially and temporally resolved global atmospheric polychlorinated biphenyl (PCB) model, driven by meteorological data, that is skilled at simulating mean atmospheric PCB concentrations and seasonal cycles in the Northern Hemisphere midlatitudes and mean Arctic concentrations. However, the model does not capture the observed Arctic summer maximum in atmospheric PCBs. We use the model to estimate global budgets for seven PCB congeners, and we demonstrate that c...

  1. A Model-based Interpretation of Low-frequency Changes in the Carbon Cycle during the Last 120,000 years and its Implications for the Reconstruction of Atmospheric (delta) 14-C

    Science.gov (United States)

    Koehler, Peter; Muscheler, Raimund; Fischer, Hubertus

    2006-01-01

    A main caveat in the interpretation of observed changes in atmospheric (Delta)C-l4 during the last 50,000 years is the unknown variability of the carbon cycle, which together with changes in the C-14 production rates determines the C-14 dynamics. A plausible scenario explaining glacial/interglacial dynamics seen in atmospheric CO2 and (delta)C-13 was proposed recently (Kohler et al., 2005a). A similar approach that expands its interpretation to the C-14 cycle is an important step toward a deeper understanding of (Delta)C-14 variability. This approach is based on an ocean/atmosphere/biosphere box model of the global carbon cycle (BICYCLE) to reproduce low-frequency changes in atmospheric CO2 as seen in Antarctic ice cores. The model is forced forward in time by various paleoclimatic records derived from ice and sediment cores. The simulation results of our proposed scenario match a compiled CO2 record from various ice cores during the last 120,000 years with high accuracy (r(sup 2) = 0.89). We analyze scenarios with different C-14 production rates, which are either constant or based on Be-10 measured in Greenland ice cores or the recent high-resolution geomagnetic field reconstruction GLOPIS-75 and compare them with the available (Delta)C-14 data covering the last 50,000 years. Our results suggest that during the last glacial cycle in general less than 110%0o f the increased atmospheric (Delta)C-14 is based on variations in the carbon cycle, while the largest part (5/6) of the variations has to be explained by other factors. Glacial atmospheric (Delta)C-14 larger than 700% cannot not be explained within our framework, neither through carbon cycle-based changes nor through variable C-14 production. Superimposed on these general trends might lie positive anomalies in atmospheric (Delta)C-14 of approx. 50% caused by millennial-scale variability of the northern deep water production during Heinrich events and Dansgaard/Oeschger climate fluctuations. According to our

  2. Global Deep Convection Models of Saturn's Atmospheric Features

    Science.gov (United States)

    Heimpel, Moritz; Cuff, Keith; Gastine, Thomas; Wicht, Johannes

    2016-04-01

    The Cassini mission, along with previous missions and ground-based observations, has revealed a rich variety of atmospheric phenomena and time variability on Saturn. Some examples of dynamical features are: zonal flows with multiple jet streams, turbulent tilted shear flows that seem to power the jets, the north polar hexagon, the south polar cyclone, large anticyclones in "storm alley", numerous convective storms (white spots) of various sizes, and the 2010/2011 great storm, which destroyed an array of vortices dubbed the "string of pearls". Here we use the anelastic dynamo code MagIC, in non-magnetic mode, to study rotating convection in a spherical shell. The thickness of the shell is set to approximate the depth of the low electrical conductivity deep atmosphere of Saturn, and the convective forcing is set to yield zonal flows of similar velocity (Rossby number) to those of Saturn. Internal heating and the outer entropy boundary conditions allow simple modelling of atmospheric layers with neutral stability or stable stratification. In these simulations we can identify several saturnian and jovian atmospheric features, with some variations. We find that large anticyclonic vortices tend to form in the first anticyclonic shear zones away from the equatorial jet. Cyclones form at the poles, and polar polygonal jet streams, comparable to Saturn's hexagon, may or may not form, depending on the model conditions. Strings of small scale vortical structures arise as convective plumes near boundaries of shear zones. They typically precede larger scale convective storms that spawn propagating shear flow disturbances and anticyclonic vortices, which tend to drift across anticyclonic shear zones, toward the equator (opposite the drift direction of Saturn's 2010/2011 storm). Our model results indicate that many identifiable dynamical atmospheric features seen on Jupiter and Saturn arise from deep convection, shaped by planetary rotation, underlying and interacting with stably

  3. Comparing the Degree of Land-Atmosphere Interaction in Four Atmospheric General Circulation Models

    Science.gov (United States)

    Koster, Randal D.; Dirmeyer, Paul A.; Hahmann, Andrea N.; Ijpelaar, Ruben; Tyahla, Lori; Cox, Peter; Suarez, Max J.; Houser, Paul R. (Technical Monitor)

    2001-01-01

    Land-atmosphere feedback, by which (for example) precipitation-induced moisture anomalies at the land surface affect the overlying atmosphere and thereby the subsequent generation of precipitation, has been examined and quantified with many atmospheric general circulation models (AGCMs). Generally missing from such studies, however, is an indication of the extent to which the simulated feedback strength is model dependent. Four modeling groups have recently performed a highly controlled numerical experiment that allows an objective inter-model comparison of land-atmosphere feedback strength. The experiment essentially consists of an ensemble of simulations in which each member simulation artificially maintains the same time series of surface prognostic variables. Differences in atmospheric behavior between the ensemble members then indicates the degree to which the state of the land surface controls atmospheric processes in that model. A comparison of the four sets of experimental results shows that feedback strength does indeed vary significantly between the AGCMs.

  4. Charter for the ARM Atmospheric Modeling Advisory Group

    Energy Technology Data Exchange (ETDEWEB)

    Advisory Group, ARM Atmospheric Modeling

    2016-05-01

    The Atmospheric Modeling Advisory Group of the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility is guided by the following: 1. The group will provide feedback on the overall project plan including input on how to address priorities and trade-offs in the modeling and analysis workflow, making sure the modeling follows general best practices, and reviewing the recommendations provided to ARM for the workflow implementation. 2. The group will consist of approximately 6 members plus the PI and co-PI of the Large-Eddy Simulation (LES) ARM Symbiotic Simulation and Observation (LASSO) pilot project. The ARM Technical Director, or his designee, serves as an ex-officio member. This size is chosen based on the ability to efficiently conduct teleconferences and to span the general needs for input to the LASSO pilot project.

  5. Centrifuge modeling of soil atmosphere interaction using climatic chamber

    OpenAIRE

    CAICEDO, B; TRISTANCHO, J; THOREL, Luc

    2010-01-01

    Soil-atmospheric interaction processes such as infiltration or evaporation can have a significant effect on the behavior of geotechnical structures located near the soil surface. This paper focuses on the drying process of soils due to evaporation. The scaling laws are analyzed and the results of the application of two cycles of heating and cooling on a soil mass are presented. Based on these results, conclusions about the feasibility of reproducing evaporation on centrifuge models are recomm...

  6. Assessment of the possible future climatic impact of carbon dioxide increases based on a coupled one-dimensional atmospheric-oceanic model

    International Nuclear Information System (INIS)

    A radiative-convective equilibrium model of the atmosphere has been coupled with a mixed layer model of the ocean to investigate the response of this one-dimensional system to increasing carbon dioxide amounts in the atmosphere. For global mean conditions a surface temperature rise of about 20 K was obtained for a doubling of the carbon dioxide amount, in reasonable agreement with the commonly accepted results of Manabe and Wetherald. This temperature rise was essentially invariant with season and indicates that including a shallow (300 m) ocean slab in this problem does not basically alter previous assessments. While the mixed layer depth of the ocean was only very slightly changed by the temperature increase, which extended throughout the depth of the mixed layer, the impact of this increase on the overall behavior of the ocean warrants further study. A calculation was also made of the temporal variation of the sea surface temperature for three possible carbon dioxide growth rates starting from an initial carbon dioxide content of 300 ppm. This indicated that the thermal inertia of the slab ocean provides a time lag of 8 years in the sea surface temperature response compared to a land situation. This is not considered to be of great significance as regards the likely future climatic impact of carbon dioxide increase

  7. Model of a stationary microwave argon discharge at atmospheric pressure

    International Nuclear Information System (INIS)

    The many applications of microwave gas discharges at atmospheric pressure in various fields of science, technology and medicine require an adequate model of these discharges. Such a model is based on the electromagnetic wave's propagation properties and on the elementary processes in the discharge bulk. In contrast to the microwave discharges at low-gas pressures, where many elementary processes might be ignored because of their negligible contribution to the electron and heavy particle's balance equations, for such discharges at atmospheric pressure the consideration of a large number of collisional processes is mandatory. For the build of a successful discharge-column model one needs three important quantities, notably the power θ necessary for sustaining an electron - ion pair, electron - neutral collision frequency for momentum transfer ven, and gas temperature Tg. The first two key parameters are obtained by a collisional-radiative model of the argon at atmospheric pressure, while the microwave frequency ω/2π = 2.45 GHz, plasma column radius R, gas pressure p and gas temperature Tg are fixed external parameters determined by the experimental conditions. Here, we present a model of a capillary argon microwave plasma column with a length L ≅ 14 cm, sustained by wave power of 110 W - the model yields the longitudinal distributions of the plasma density, expended wave power, wave electric field magnitude, and complex wave number

  8. Model of a stationary microwave argon discharge at atmospheric pressure

    Science.gov (United States)

    Zhelyazkov, I.; Pencheva, M.; Benova, E.

    2008-03-01

    The many applications of microwave gas discharges at atmospheric pressure in various fields of science, technology and medicine require an adequate model of these discharges. Such a model is based on the electromagnetic wave's propagation properties and on the elementary processes in the discharge bulk. In contrast to the microwave discharges at low-gas pressures, where many elementary processes might be ignored because of their negligible contribution to the electron and heavy particle's balance equations, for such discharges at atmospheric pressure the consideration of a large number of collisional processes is mandatory. For the build of a successful discharge-column model one needs three important quantities, notably the power θ necessary for sustaining an electron—ion pair, electron—neutral collision frequency for momentum transfer ven, and gas temperature Tg. The first two key parameters are obtained by a collisional-radiative model of the argon at atmospheric pressure, while the microwave frequency ω/2π = 2.45 GHz, plasma column radius R, gas pressure p and gas temperature Tg are fixed external parameters determined by the experimental conditions. Here, we present a model of a capillary argon microwave plasma column with a length L ≈ 14 cm, sustained by wave power of 110 W—the model yields the longitudinal distributions of the plasma density, expended wave power, wave electric field magnitude, and complex wave number.

  9. Aerial Radioactivity Monitoring Using Atmospheric Dispersion Model

    International Nuclear Information System (INIS)

    Since North Korea announced the underground nuclear test on last October 9th, 2006, many countries including South Korea have worried about the atmospheric dispersion and pollution of radioactive material by nuclear test. To verify the existence of nuclear test by detecting radioactive materials such as xenon and krypton at the early stage, to locate the position of test site, and to chase the trajectory of radioactivity have been heavily issued. And radioactivity detection and radiation monitoring technology using an aircraft have been recently examined by an authority concerned in South Korea. Although various techniques of aerial radioactivity monitoring are developed and operated in the world such as United States of America, Japan, Germany, etc., the relevant technical development or research is wholly lacking in our country. In this study, we performed some case studies on North Korea's nuclear test and accidental releases from nuclear power plant (NPP) using HYSPLIT (HYbrid Single Particle Lagrangian Integrated Trajectory) model developed by National Oceanic and Atmospheric Administration (NOAA) of U.S. Department of Commerce. We also investigated a feasibility of HYSPLIT to the aerial radioactivity monitoring system in terms of deciding potential measuring location and time

  10. Accuracy analysis on Rayleigh lidar measurements of atmospheric temperature based on spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Kun Liang; Yong Ma; Fei Cheng; Hongyuan Wang

    2009-01-01

    We make a detailed analysis on the linearity and accuracy of the relationship between the full-width at half-height (FWHH) of the atmosphere molecules Rayleigh scattering spectrum and the square root of the atmospheric temperature. A simulation of the FWHH of the atmosphere molecules Rayleigh scattering spectrum is made based on the S6 Atmosphere Model and U.S. Standard Atmosphere Model. The calcu-lated temperature is compared with the initial simulation temperature. The result shows that the FWHH of the atmosphere molecules Rayleigh scattering spectrum is nearly proportional to the atmospheric tem-perature. The goodness-of-fit index of the fitting curve is 0.9977 and the maximum absolute error of measured atmospheric temperature is about 2 K.

  11. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model

    Energy Technology Data Exchange (ETDEWEB)

    Riley, W.J.; Hsueh, D.Y.; Randerson, J.T.; Fischer, M.L.; Hatch, J.G.; Pataki, D.E.; Wang, W.; Goulden, M.L.

    2008-05-01

    Characterizing flow patterns and mixing of fossil fuel-derived CO{sub 2} is important for effectively using atmospheric measurements to constrain emissions inventories. Here we used measurements and a model of atmospheric radiocarbon ({sup 14}C) to investigate the distribution and fluxes of atmospheric fossil fuel CO{sub 2} across the state of California. We sampled {sup 14}C in annual C{sub 3} grasses at 128 sites and used these measurements to test a regional model that simulated anthropogenic and ecosystem CO{sub 2} fluxes, transport in the atmosphere, and the resulting {sup 14}C of annual grasses ({Delta}{sub g}). Average measured {Delta}{sub g} in Los Angeles, San Francisco, the Central Valley, and the North Coast were 27.7 {+-} 20.0, 44.0 {+-} 10.9, 48.7 {+-} 1.9, and 59.9 {+-} 2.5{per_thousand}, respectively, during the 2004-2005 growing season. Model predictions reproduced regional patterns reasonably well, with estimates of 27.6 {+-} 2.4, 39.4 {+-} 3.9, 46.8 {+-} 3.0, and 59.3 {+-} 0.2{per_thousand} for these same regions and corresponding to fossil fuel CO{sub 2} mixing ratios (Cf) of 13.7, 6.1, 4.8, and 0.3 ppm. {Delta}{sub g} spatial heterogeneity in Los Angeles and San Francisco was higher in the measurements than in the predictions, probably from insufficient spatial resolution in the fossil fuel inventories (e.g., freeways are not explicitly included) and transport (e.g., within valleys). We used the model to predict monthly and annual transport patterns of fossil fuel-derived CO{sub 2} within and out of California. Fossil fuel CO{sub 2} emitted in Los Angeles and San Francisco was predicted to move into the Central Valley, raising Cf above that expected from local emissions alone. Annually, about 21, 39, 35, and 5% of fossil fuel emissions leave the California airspace to the north, east, south, and west, respectively, with large seasonal variations in the proportions. Positive correlations between westward fluxes and Santa Ana wind conditions were

  12. Physically-Derived Dynamical Cores in Atmospheric General Circulation Models

    Science.gov (United States)

    Rood, Richard B.; Lin, Shian-Kiann

    1999-01-01

    The algorithm chosen to represent the advection in atmospheric models is often used as the primary attribute to classify the model. Meteorological models are generally classified as spectral or grid point, with the term grid point implying discretization using finite differences. These traditional approaches have a number of shortcomings that render them non-physical. That is, they provide approximate solutions to the conservation equations that do not obey the fundamental laws of physics. The most commonly discussed shortcomings are overshoots and undershoots which manifest themselves most overtly in the constituent continuity equation. For this reason many climate models have special algorithms to model water vapor advection. This talk focuses on the development of an atmospheric general circulation model which uses a consistent physically-based advection algorithm in all aspects of the model formulation. The shallow-water model of Lin and Rood (QJRMS, 1997) is generalized to three dimensions and combined with the physics parameterizations of NCAR's Community Climate Model. The scientific motivation for the development is to increase the integrity of the underlying fluid dynamics so that the physics terms can be more effectively isolated, examined, and improved. The expected benefits of the new model are discussed and results from the initial integrations will be presented.

  13. Behaviour of tracer diffusion in simple atmospheric boundary layer models

    Directory of Open Access Journals (Sweden)

    P. S. Anderson

    2006-12-01

    Full Text Available 1-D profiles and time series from an idealised atmospheric boundary layer model are presented, which show agreement with measurements of polar photogenic NO and NO2. Diffusion models are increasingly being used as the framework for studying tropospheric air chemistry dynamics. Models based on standard boundary layer diffusivity profiles have an intrinsic behaviour that is not necessarily intuitive, due to the variation of turbulent diffusivity with height. The relatively simple model provides both a programming and a conceptual tool in the analysis of observed trace gas evolution. A time scale inherent in the model can be tuned by fitting model time series to observations. This scale is then applicable to the more physically simple but chemically complex zeroth order or box models of chemical interactions.

  14. Behaviour of tracer diffusion in simple atmospheric boundary layer models

    Directory of Open Access Journals (Sweden)

    P. S. Anderson

    2007-10-01

    Full Text Available 1-D profiles and time series from an idealised atmospheric boundary layer model are presented, which show agreement with boundary layer measurements of polar NOx. Diffusion models are increasingly being used as the framework for studying tropospheric air chemistry dynamics. Models based on standard boundary layer diffusivity profiles have an intrinsic behaviour that is not necessarily intuitive, due to the variation of turbulent diffusivity with height. The simple model presented captures the essence of the evolution of a trace gas released at the surface, and thereby provides both a programming and a conceptual tool in the analysis of observed trace gas evolution. A time scale inherent in the model can be tuned by fitting model time series to observations. This scale is then applicable to the more physically simple but chemically complex zeroth order or box models of chemical interactions.

  15. Critical review of hydraulic modeling on atmospheric heat dissipation

    International Nuclear Information System (INIS)

    Objectives of this study were: to define the useful roles of hydraulic modeling in understanding the predicting atmospheric effects of heat dissipation systems; to assess the state-of-the-art of hydraulic modeling of atmospheric phenomena; to inventory potentially useful existing hydraulic modeling facilities both in the United States and abroad; and to scope hydraulic model studies to assist the assessment of atmospheric effects of nuclear energy centers

  16. Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective analysis with a process-based biogeochemistry model

    Science.gov (United States)

    Zhuang, Q.; Melillo, J.M.; Kicklighter, D.W.; Prinn, R.G.; McGuire, A.D.; Steudler, P.A.; Felzer, B.S.; Hu, S.

    2004-01-01

    We develop and use a new version of the Terrestrial Ecosystem Model (TEM) to study how rates of methane (CH4) emissions and consumption in high-latitude soils of the Northern Hemisphere have changed over the past century in response to observed changes in the region's climate. We estimate that the net emissions of CH4 (emissions minus consumption) from these soils have increased by an average 0.08 Tg CH4 yr-1 during the twentieth century. Our estimate of the annual net emission rate at the end of the century for the region is 51 Tg CH4 yr-1. Russia, Canada, and Alaska are the major CH4 regional sources to the atmosphere, responsible for 64%, 11%, and 7% of these net emissions, respectively. Our simulations indicate that large interannual variability in net CH4 emissions occurred over the last century. Our analyses of the responses of net CH4 emissions to the past climate change suggest that future global warming will increase net CH4 emissions from the Pan-Arctic region. The higher net CH4 emissions may increase atmospheric CH 4 concentrations to provide a major positive feedback to the climate system. Copyright 2004 by the American Geophysical Union.

  17. Atmospheric ionization induced by precipitating electrons: Comparison of CRAC:EPII model with parametrization model

    CERN Document Server

    Artamonov, A A; Usoskin, I G

    2016-01-01

    A new model CRAC:EPII (Cosmic Ray Atmospheric Cascade: Electron Precipitation Induced Ionization) is presented. The CRAC:EPII is based on Monte Carlo simulation of precipitating electrons propagation and interaction with matter in the Earth atmosphere. It explicitly considers energy deposit: ionization, pair production, Compton scattering, generation of Bremsstrahlung high energy photons, photo-ionization and annihilation of positrons, multiple scattering as physical processes accordingly. The propagation of precipitating electrons and their interactions with atmospheric molecules is carried out with the GEANT4 simulation tool PLANETOCOSMICS code using NRLMSISE 00 atmospheric model. The ionization yields is compared with an analytical parametrization for various energies of incident precipitating electron, using a flux of mono-energetic particles. A good agreement between the two models is achieved. Subsequently, on the basis of balloon-born measured spectra of precipitating electrons at 30.10.2002 and 07.01....

  18. Decadal Periodicities in a Venus Atmosphere General Circulation Model

    Science.gov (United States)

    Parish, Helen; Schubert, G.; Covey, C.; Walterscheid, R.; Grossman, A.; Lebonnois, S.

    2010-10-01

    We have modified a 3-dimensional Earth-based climate model, CAM (Community Atmosphere Model), to simulate the dynamics of Venus' atmosphere. We have removed Earth-related processes and introduced parameters appropriate for Venus. We use a simplified Newtonian cooling approximation for the radiation scheme, without seasonal or diurnal cycles or topography. We use a high resolution (1 degree in latitude and longitude) to take account of small-scale dynamical processes that might be important on Venus. Rayleigh friction is used to represent surface drag and to prevent upper boundary wave reflection. The simulations generate superrotation at cloud heights with wind velocities comparable to those found in measurements. We find a significant decadal oscillation in the zonal winds at cloud top heights and below. A vacillation cycle is seen in the cloud top mid-latitude zonal jets which wax and wane on an approximate 10 year cycle. The decadal oscillations we find may be excited by an instability near the surface, possibly a symmetric instability. Analyses of angular momentum transport show that the jets are built up by poleward transport by a meridional circulation while angular momentum is redistributed to lower latitudes primarily by transient eddies. Observations suggest that a cyclic variation similar to that found in the model might occur in the real Venus atmosphere. Observations by Mariner 10, Pioneer Venus, and Venus Express reveal variability in cloud top wind magnitudes and in the structure of Venus' cloud level mid-latitude jets with timescales of 5 to 10 years. Oscillations in CO composition and in temperature above the cloud tops also exhibit a periodicity around 10 years and changes in the atmospheric SO2 content over 40 years show a periodicity around 20 to 25 years. Venus' atmosphere must be observed over multi-year time scales and below the clouds if we are to understand its dynamics.

  19. A contribution to the modelling of atmospheric corrosion of iron

    International Nuclear Information System (INIS)

    With the aim of predicting the long term atmospheric corrosion behaviour of iron, the characteristics of the rust layer formed during this process and the mechanisms occurring inside the rust layer during a wet-dry cycle are considered. A first step in modelling the behaviour is proposed, based on the description of the cathodic reactions associated with iron oxidation: reduction of a part of the rust layer (lepidocrocite) and reduction of dissolved oxygen on the rust layer. The modelling, by including some composition and morphological data of the rust layer as parameters, is able to account for the metal damage after one Wet-Dry cycle. (authors)

  20. Radiation Transfer Model for Aerosol Events in the Earth Atmosphere

    Science.gov (United States)

    Mukai, Sonoyo; Yokomae, Takuma; Nakata, Makiko; Sano, Itaru

    Recently large scale-forest fire, which damages the Earth environment as biomass burning and emission of carbonaceous particles, frequently occurs due to the unstable climate and/or global warming tendency. It is also known that the heavy soil dust is transported from the China continent to Japan on westerly winds, especially in spring. Furthermore the increasing emis-sions of anthropogenic particles associated with continuing economic growth scatter serious air pollutants. Thus atmospheric aerosols, especially in Asia, are very complex and heavy loading, which is called aerosol event. In the case of aerosol events, it is rather difficult to do the sun/sky photometry from the ground, however satellite observation is an effective for aerosol monitoring. Here the detection algorithms from space for such aerosol events as dust storm or biomass burn-ing are dealt with multispectral satellite data as ADEOS-2/GLI, Terra/Aqua/MODIS and/or GOSAT/CAI first. And then aerosol retrieval algorithms are examined based on new radiation transfer code for semi-infinite atmosphere model. The derived space-based results are validated with ground-based measurements and/or model simulations. Namely the space-or surface-based measurements, multiple scattering calculations and model simulations are synthesized together for aerosol retrieval in this work.

  1. Statistical modelling of collocation uncertainty in atmospheric thermodynamic profiles

    Science.gov (United States)

    Fassò, A.; Ignaccolo, R.; Madonna, F.; Demoz, B. B.; Franco-Villoria, M.

    2014-06-01

    The quantification of measurement uncertainty of atmospheric parameters is a key factor in assessing the uncertainty of global change estimates given by numerical prediction models. One of the critical contributions to the uncertainty budget is related to the collocation mismatch in space and time among observations made at different locations. This is particularly important for vertical atmospheric profiles obtained by radiosondes or lidar. In this paper we propose a statistical modelling approach capable of explaining the relationship between collocation uncertainty and a set of environmental factors, height and distance between imperfectly collocated trajectories. The new statistical approach is based on the heteroskedastic functional regression (HFR) model which extends the standard functional regression approach and allows a natural definition of uncertainty profiles. Along this line, a five-fold decomposition of the total collocation uncertainty is proposed, giving both a profile budget and an integrated column budget. HFR is a data-driven approach valid for any atmospheric parameter, which can be assumed smooth. It is illustrated here by means of the collocation uncertainty analysis of relative humidity from two stations involved in the GCOS reference upper-air network (GRUAN). In this case, 85% of the total collocation uncertainty is ascribed to reducible environmental error, 11% to irreducible environmental error, 3.4% to adjustable bias, 0.1% to sampling error and 0.2% to measurement error.

  2. An analytical model for soil-atmosphere feedback

    Directory of Open Access Journals (Sweden)

    B. Schaefli

    2012-07-01

    Full Text Available Soil-atmosphere feedback is a key for understanding the hydrological cycle and the direction of potential system changes. This paper presents an analytical framework to study the interplay between soil and atmospheric moisture, using as input only the boundary conditions at the upstream end of trajectory, assuming advective moisture transport with average wind speed along this trajectory and vertical moisture exchange with the soil compartment of uniform vertical properties. Precipitation, evaporation from interception and runoff are assumed to depend through simple functional relationships on the soil moisture or the atmospheric moisture. Evaporation from soil moisture (including transpiration depends on both state variables, which introduces a nonlinear relationship between the two compartments. This nonlinear relationship can explain some apparently paradoxical phenomena such as a local decrease of precipitation accompanied by a runoff increase.

    The solutions of the resulting water balance equations correspond to two different spatial moisture regimes showing either an increasing or a decreasing atmospheric moisture content along a trajectory starting at the coast, depending on boundary conditions and parameters. The paper discusses how different model parameters (e.g. time scales of precipitation, evaporation or runoff influence these regimes and how they can create regime switches. Such an analysis has potential to anticipate the range of possible land use and climate changes or to interpret the results of complex land-atmosphere interaction models. Based on derived analytical expressions for the Horton index, the Budyko curve and a precipitation recycling ratio, the analytical framework opens new perspectives for the classification of hydrological systems.

  3. An analytical model for soil-atmosphere feedback

    Directory of Open Access Journals (Sweden)

    B. Schaefli

    2011-09-01

    Full Text Available Soil-atmosphere feedback is a key for understanding the hydrological cycle and the direction of potential system changes. This paper presents an analytical framework to study the interplay between soil and atmospheric moisture, using as input only the boundary conditions at the upstream end of an atmospheric moisture stream line. The underlying Eulerian-Langrangean approach assumes advective moisture transport with average wind speed along the stream line and vertical moisture exchange with the soil compartment of uniform vertical properties. Precipitation, evaporation from interception and runoff are assumed to depend through simple functional relationships on the soil moisture or the atmospheric moisture. Evaporation from soil moisture (including transpiration depends on both state variables, which introduces a nonlinear relationship between the two compartments. This nonlinear relationship can explain some apparently paradoxical phenomena such as a local decrease of precipitation accompanied by a runoff increase.

    The solutions of the resulting water balance equations correspond to two different moisture regimes along a stream line, either monotonically increasing or decreasing when traveling inland, depending on boundary conditions and parameters. The paper discusses how different model parameters (e.g. time scales of precipitation, evaporation or runoff influence these regimes and how they can create regime switches. Such an analysis has potential to anticipate the range of possible land use and climate changes or to interpret the results of complex land-atmosphere interaction models. Based on derived analytical expressions for the Horton index, the Budyko curve and a precipitation recycling ratio, the analytical framework opens new perspectives for the classification of hydrological systems.

  4. Regional forecasting with global atmospheric models; Final report

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, T.J.; Smith, N.R. [Applied Research Corp., College Station, TX (United States)

    1994-05-01

    The purpose of the project was to conduct model simulations for past and future climate change with respect to the proposed Yucca Mtn. repository. The authors report on three main topics, one of which is boundary conditions for paleo-hindcast studies. These conditions are necessary for the conduction of three to four model simulations. The boundary conditions have been prepared for future runs. The second topic is (a) comparing the atmospheric general circulation model (GCM) with observations and other GCMs; and (b) development of a better precipitation data base for the Yucca Mtn. region for comparisons with models. These tasks have been completed. The third topic is preliminary assessments of future climate change. Energy balance model (EBM) simulations suggest that the greenhouse effect will likely dominate climate change at Yucca Mtn. for the next 10,000 years. The EBM study should improve rational choice of GCM CO{sub 2} scenarios for future climate change.

  5. Modeling The Anthropogenic CO2 Footprint in Europe Using a High Resolution Atmospheric Model

    Science.gov (United States)

    Liu, Yu; Gruber, Nicolas; Brunner, Dominik

    2015-04-01

    The localized nature of most fossil fuel emission sources leaves a distinct footprint on atmospheric CO2 concentrations, yet to date, most studies have used relatively coarse atmospheric transport models to simulate this footprint, causing an excess amount of spatial smoothing. In addition, most studies have considered only monthly variations in emissions, neglecting their substantial diurnal and weekly fluctuations. With the fossil fuel emission fluxes dominating the carbon balance in Europe and many other industrialized countries, it is paramount to simulate the fossil fuel footprint in atmospheric CO2 accurately in time and space in order to discern the footprint of the terrestrial biosphere. Furthermore, a good understanding of the fossil fuel footprint also provides the opportunity to monitor and verify any change in fossil fuel emission. We use here a high resolution (7 km) atmospheric model setup for central Europe based on the operational weather forecast model COSMO and simulate the atmospheric CO2 concentrations separately for 5 fossil fuel emission sectors (i.e., power generation, heating, transport, industrial processes, and rest), and for 10 different country-based regions. The emissions were based on high-resolution emission inventory data (EDGAR(10km) and MeteoTest(500m)), to which we have added detailed time functions for each process and country. The total anthropogenic CO2 footprint compares well with observational estimates based on radiocarbon (C14) and CO for a number of sites across Europe, providing confidence in the emission inventory and atmospheric transport. Despite relatively rapid atmospheric mixing, the fossil fuel footprint shows strong annual mean structures reflecting the point-source nature of most emissions. Among all the processes, the emissions from power plants dominates the fossil fuel footprint, followed by industry, while traffic emissions are less distinct, largely owing to their spatially more distributed nature. However

  6. Data Assimilation and Transport Modeling in Terrestrial and Planetary Atmospheres

    Science.gov (United States)

    Houben, Howard C.; Young, Richard E. (Technical Monitor)

    2002-01-01

    Data assimilation is a blanket term used to describe a number of techniques for retrieving important physical parameters from observational data, subject to constraints imposed by prior knowledge (such as, in the case of meteorology, the primitive equations that govern atmospheric motion). Since these newly developed methods make efficient use of computational resources, they are of great importance in the interpretation of the voluminous datasets that are now produced by satellite missions. As proposed, these techniques have been applied to the study of the Martian and terrestrial atmospheres based on available satellite observations. In addition, a sophisticated hydrodynamic model (non-hydrostatic, and therefore applicable to the study of the interiors of the giant planets) has also been developed and successfully applied to the study of tidally induced motions in Jupiter.

  7. Puff models for simulation of fugitive radioactive emissions in atmosphere

    International Nuclear Information System (INIS)

    A puff model for the dispersion of material from fugitive radioactive emissions is presented. For vertical diffusion the model is based on general techniques for solving time dependent advection-diffusion equation: the ADMM (Advection Diffusion Multilayer Method) and GILTT (Generalized Integral Laplace Transform Technique) techniques. The first one is an analytical solution based on a discretization of the Atmospheric Boundary Layer (ABL) in sub-layers where the advection-diffusion equation is solved by the Laplace transform technique. The solution is given in integral form. The second one is a well-known hybrid method that had solved a wide class of direct and inverse problems mainly in the area of Heat Transfer and Fluid Mechanics and the solution is given in series form. Comparisons between values predicted by the models against experimental ground-level concentrations are shown. (author)

  8. Formulations of moist thermodynamics for atmospheric modelling

    CERN Document Server

    Marquet, Pascal

    2015-01-01

    Internal energy, enthalpy and entropy are the key quantities to study thermodynamic properties of the moist atmosphere, because they correspond to the First (internal energy and enthalpy) and Second (entropy) Laws of thermodynamics. The aim of this chapter is to search for analytical formulas for the specific values of enthalpy and entropy and for the moist-air mixture composing the atmosphere. The Third Law of thermodynamics leads to the definition of absolute reference values for thermal enthalpies and entropies of all atmospheric species. It is shown in this Chapter 22 that it is possible to define and compute a general moist-air entropy potential temperature, which is really an equivalent of the moist-air specific entropy in all circumstances (saturated, or not saturated). Similarly, it is shown that it is possible to define and compute the moist-air specific enthalpy, which is different from the thermal part of what is called Moist-Static-Energy in atmospheric studies.

  9. Understanding atmospheric peroxyformic acid chemistry: observation, modeling and implication

    Directory of Open Access Journals (Sweden)

    H. Liang

    2015-01-01

    Full Text Available The existence and importance of peroxyformic acid (PFA in the atmosphere has been under controversy. We present here, for the first time, the observation data for PFA from four field measurements carried out in China. These data provided powerful evidence that PFA can stay in the atmosphere, typically in dozens of pptv level. The relationship between PFA and other detected peroxides was examined. The results showed that PFA had a strong positive correlation with its homolog, peroxyacetic acid, due to their similar sources and sinks. Through an evaluation of PFA production and removal rates, we proposed that the reactions between peroxyformyl radical (HC(OO2 and formaldehyde or the hydroperoxyl radical (HO2 were likely to be the major source and degradation into formic acid (FA was likely to be the major sink for PFA. Based on a box model evaluation, we proposed that the HC(OO2 and PFA chemistry was a major source for FA under low NOx conditions. Furthermore, it is found that the impact of the HC(OO2 and PFA chemistry on radical cycling was dependent on the yield of HC(OO2 radical from HC(O + O2 reaction. When this yield exceeded 50%, the HC(OO2 and PFA chemistry should not be neglected for calculating the radical budget. To make clear the exact importance of HC(OO2 and PFA chemistry in the atmosphere, further kinetic, field and modeling studies are required.

  10. Mesoscale, Sources and Models: Sources for Nitrogen in the Atmosphere

    DEFF Research Database (Denmark)

    Hertel, O.

    1994-01-01

    Projektet Mesoscales, Sources and Models: Sources for Nitrogen in the Atmosphere er opdelt i 3 delprojekter: Sources - farmland, Sources - sea og Sources - biogenic nitrogen.......Projektet Mesoscales, Sources and Models: Sources for Nitrogen in the Atmosphere er opdelt i 3 delprojekter: Sources - farmland, Sources - sea og Sources - biogenic nitrogen....

  11. Modeling low elevation GPS signal propagation in maritime atmospheric ducts

    Science.gov (United States)

    Zhang, Jinpeng; Wu, Zhensen; Wang, Bo; Wang, Hongguang; Zhu, Qinglin

    2012-05-01

    Using the parabolic wave equation (PWE) method, we model low elevation GPS L1 signal propagation in maritime atmospheric ducts. To consider sea surface impedance, roughness, and the effects of earth's curvature, we propose a new initial field model for the GPS PWE split-step solution. On the basis of the comparison between the proposed model and the conventional initial field model for a smooth, perfectly conducting sea surface on a planar earth, we conclude that both the amplitude and phase of the initial field are influenced by surface impedance and roughness, and that the interference behavior between direct and reflected GPS rays is affected by earth's curvature. The performance of the proposed model is illustrated with examples of low elevation GPS L1 signal propagation in three types of ducts: an evaporation duct, a surface-based duct, and an elevated duct. The GPS PWE is numerically implemented using the split-step discrete mixed Fourier transform algorithm to enforce impedance-type boundary conditions at the rough sea surface. Because the GPS signal is right hand circularly polarized, we calculate its power strength by combining the propagation predictions of the horizontally and the vertically polarized components. The effects of the maritime atmospheric ducts on low elevation GPS signal propagation are demonstrated according to the presented examples, and the potential applications of the GPS signals affected by ducts are discussed.

  12. A web service based tool to plan atmospheric research flights

    Directory of Open Access Journals (Sweden)

    M. Rautenhaus

    2012-01-01

    Full Text Available We present a web service based tool for the planning of atmospheric research flights. The tool provides online access to horizontal maps and vertical cross-sections of numerical weather prediction data and in particular allows the interactive design of a flight route in direct relation to the predictions. It thereby fills a crucial gap in the set of currently available tools for using data from numerical atmospheric models for research flight planning. A distinct feature of the tool is its lightweight, web service based architecture, requiring only commodity hardware and a basic Internet connection for deployment. Access to visualisations of prediction data is achieved by using an extended version of the Open Geospatial Consortium Web Map Service (WMS standard, a technology that has gained increased attention in meteorology in recent years. With the WMS approach, we avoid the transfer of large forecast model output datasets while enabling on-demand generated visualisations of the predictions at campaign sites with limited Internet bandwidth. Usage of the Web Map Service standard also enables access to third-party sources of georeferenced data. We have implemented the software using the open-source programming language Python. In the present article, we describe the architecture of the tool. As an example application, we discuss a case study research flight planned for the scenario of the 2010 Eyjafjalla volcano eruption. Usage and implementation details are provided as Supplement.

  13. A web service based tool to plan atmospheric research flights

    Directory of Open Access Journals (Sweden)

    M. Rautenhaus

    2011-09-01

    Full Text Available We present a web service based tool for the planning of atmospheric research flights. The tool provides online access to horizontal maps and vertical cross-sections of numerical weather prediction data and in particular allows the interactive design of a flight route in direct relation to the predictions. It thereby fills a crucial gap in the set of currently available tools for using data from numerical atmospheric models for research flight planning. A distinct feature of the tool is its lightweight, web service based architecture, requiring only commodity hardware and a basic Internet connection for deployment. Access to visualisations of prediction data is achieved by using an extended version of the Open Geospatial Consortium Web Map Service (WMS standard, a technology that has gained increased attention in meteorology in recent years. With the WMS approach, we avoid the transfer of large forecast model output datasets while enabling on-demand generated visualisations of the predictions at campaign sites with limited Internet bandwidth. Usage of the Web Map Service standard also enables access to third-party sources of georeferenced data. We have implemented the software using the open-source programming language Python. In the present article, we describe the architecture of the tool. As an example application, we discuss a case study research flight planned for the scenario of the 2010 Eyjafjalla volcano eruption. Usage and implementation details are provided as Supplement.

  14. Development of local atmospheric model for estimating solar irradiance in Peninsular Malaysia

    Science.gov (United States)

    Yeap, E. C.; Lau, A. M. S.; Busu, I.; Kanniah, K. D.; Rasib, A. W.; Kadir, W. H. W.

    2014-02-01

    Incoming solar irradiance covers a wide range of wavelengths with different intensities which drives almost every biological and physical cycle on earth at a selective wavelength. Estimation of the intensities of each wavelength for the solar irradiance on the earth surface provides a better way to understand and predict the radiance energy. It requires that the atmospheric and geometric input and the availability of atmospheric parameter is always the main concern in estimating solar irradiance. In this study, a local static atmospheric model for Peninsular Malaysia was built to provide the atmospheric parameters in the estimation of solar irradiance. Ten years of monthly Atmospheric Infrared Sounder (AIRS) average data (water vapor, temperature, humidity and pressure profile) of the Peninsular Malaysia was used for the building of the atmospheric model and the atmospheric model were assessed based on the measured meteorological data with RMSE of 4.7% and 0.7k for both humidity and temperature respectively. The atmospheric model were applied on a well-established radiative transfer model namely SMARTS2. Some modifications are required in order to include the atmospheric model into the radiative transfer model. The solar irradiance results were then assessed with measured irradiance data and the results show that both the radiative transfer model and atmospheric model were reliable with RMSE value of 0.5 Wm-2. The atmospheric model was further validated based on the measured meteorological data (temperature and humidity) provided by the Department of Meteorology, Malaysia and high coefficient of determination with R2 value of 0.99 (RMSE value = 4.7%) and 0.90 (RMSE value = 0.7k) were found for both temperature and humidity respectively.

  15. Development of local atmospheric model for estimating solar irradiance in Peninsular Malaysia

    International Nuclear Information System (INIS)

    Incoming solar irradiance covers a wide range of wavelengths with different intensities which drives almost every biological and physical cycle on earth at a selective wavelength. Estimation of the intensities of each wavelength for the solar irradiance on the earth surface provides a better way to understand and predict the radiance energy. It requires that the atmospheric and geometric input and the availability of atmospheric parameter is always the main concern in estimating solar irradiance. In this study, a local static atmospheric model for Peninsular Malaysia was built to provide the atmospheric parameters in the estimation of solar irradiance. Ten years of monthly Atmospheric Infrared Sounder (AIRS) average data (water vapor, temperature, humidity and pressure profile) of the Peninsular Malaysia was used for the building of the atmospheric model and the atmospheric model were assessed based on the measured meteorological data with RMSE of 4.7% and 0.7k for both humidity and temperature respectively. The atmospheric model were applied on a well-established radiative transfer model namely SMARTS2. Some modifications are required in order to include the atmospheric model into the radiative transfer model. The solar irradiance results were then assessed with measured irradiance data and the results show that both the radiative transfer model and atmospheric model were reliable with RMSE value of 0.5 Wm−2. The atmospheric model was further validated based on the measured meteorological data (temperature and humidity) provided by the Department of Meteorology, Malaysia and high coefficient of determination with R2 value of 0.99 (RMSE value = 4.7%) and 0.90 (RMSE value = 0.7k) were found for both temperature and humidity respectively

  16. An Analytic Radiative-Convective Model for Planetary Atmospheres

    CERN Document Server

    Robinson, Tyler D; 10.1088/0004-637X/757/1/104

    2012-01-01

    We present an analytic 1-D radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries, (2) worlds with some attenuation of sunli...

  17. Coupled groundwater-atmosphere modeling: effects on atmospheric boundary layer development

    Science.gov (United States)

    Chow, F. K.; Maxwell, R. M.; Kollet, S. J.; Daniels, M. H.; Rihani, J. F.

    2007-12-01

    Newly-developed coupled land-atmosphere models which incorporate both subsurface and atmospheric moisture dynamics have the potential to change our understanding of the hydrologic cycle. This presentation describes the effects of coupled groundwater-atmosphere modeling on simulations of the atmospheric boundary layer. Both field observations and simulations indicate strong sensitivity of atmospheric dynamics to land-surface conditions, in particular surface soil moisture. Simulations of atmospheric flow in Owens Valley (California) and in the Riviera Valley (Switzerland) show strong sensitivity to land-surface conditions, thus motivating the need for more accurate representations of soil moisture. In addition to influences from weather and seasonal changes, soil moisture dynamics respond to diurnal heat fluxes on the land surface. Using our new fully-coupled groundwater-atmosphere model, we have demonstrated correlations of soil moisture and land-surface heat fluxes with groundwater fluctuations on short, diurnal time scales. By explicitly calculating groundwater dynamics for our domain of interest, we are able to produce realistic time- and space-varying soil moisture distributions that naturally correspond to variations in topography and surface evaporation. Simulations in idealized and real watersheds are shown to illustrate these effects. The observed variations in surface moisture distribution have large impacts on the moisture and temperature structure in the atmosphere, leading to changes in boundary layer depth and convective motions as compared to standard soil moisture representations. Our coupled model framework will allow detailed investigation of the complex cycle of land-atmosphere processes affecting moisture distributions in the subsurface and the atmosphere.

  18. Quantifying atmospheric transport, chemistry, and mixing using a new trajectory-box model and a global atmospheric-chemistry GCM

    Directory of Open Access Journals (Sweden)

    H. Riede

    2009-12-01

    Full Text Available We present a novel method for the quantification of transport, chemistry, and mixing along atmospheric trajectories based on a consistent model hierarchy. The hierarchy consists of the new atmospheric-chemistry trajectory-box model CAABA/MJT and the three-dimensional (3-D global ECHAM/MESSy atmospheric-chemistry (EMAC general circulation model. CAABA/MJT employs the atmospheric box model CAABA in a configuration using the atmospheric-chemistry submodel MECCA (M, the photochemistry submodel JVAL (J, and the new trajectory submodel TRAJECT (T, to simulate chemistry along atmospheric trajectories, which are provided offline. With the same chemistry submodels coupled to the 3-D EMAC model and consistent initial conditions and physical parameters, a unique consistency between the two models is achieved. Since only mixing processes within the 3-D model are excluded from the model consistency, comparisons of results from the two models allow to separate and quantify contributions of transport, chemistry, and mixing along the trajectory pathways. Consistency of transport between the trajectory-box model CAABA/MJT and the 3-D EMAC model is achieved via calculation of kinematic trajectories based on 3-D wind fields from EMAC using the trajectory model LAGRANTO. The combination of the trajectory-box model CAABA/MJT and the trajectory model LAGRANTO can be considered as a Lagrangian chemistry-transport model (CTM moving isolated air parcels. The procedure for obtaining the necessary statistical basis for the quantification method is described as well as the comprehensive diagnostics with respect to chemistry.

    The quantification method presented here allows to investigate the characteristics of transport, chemistry, and mixing in a grid-based 3-D model. The analysis of chemical processes within the trajectory-box model CAABA/MJT is easily extendable to include, for example, the impact of different transport pathways or of mixing processes onto

  19. Proposed reference models for atomic oxygen in the terrestrial atmosphere

    Science.gov (United States)

    Llewellyn, E. J.; Mcdade, I. C.; Lockerbie, M. D.

    1989-01-01

    A provisional Atomic Oxygen Reference model was derived from average monthly ozone profiles and the MSIS-86 reference model atmosphere. The concentrations are presented in tabular form for the altitude range 40 to 130 km.

  20. Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions, and a new approach for estimating net ecosystem exchange from inventory-based data

    Science.gov (United States)

    Hayes, Daniel J.; Turner, David P.; Stinson, Graham; McGuire, A. David; Wei, Yaxing; West, Tristram O.; Heath, Linda S.; de Jong, Bernardus; McConkey, Brian G.; Birdsey, Richard A.; Kurz, Werner A.; Jacobson, Andrew R.; Huntzinger, Deborah N.; Pan, Yude; Post, W. Mac; Cook, Robert B.

    2012-01-01

    We develop an approach for estimating net ecosystem exchange (NEE) using inventory-based information over North America (NA) for a recent 7-year period (ca. 2000–2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non-fossil fuel sources and sinks of CO2, while accounting for lateral transfers of forest and crop products as well as their eventual emissions. The total NEE estimate of a -327 ± 252 TgC yr-1 sink for NA was driven primarily by CO2 uptake in the Forest Lands sector (-248 TgC yr-1), largely in the Northwest and Southeast regions of the US, and in the Crop Lands sector (-297 TgC yr-1), predominantly in the Midwest US states. These sinks are counteracted by the carbon source estimated for the Other Lands sector (+218 TgC yr-1), where much of the forest and crop products are assumed to be returned to the atmosphere (through livestock and human consumption). The ecosystems of Mexico are estimated to be a small net source (+18 TgC yr-1) due to land use change between 1993 and 2002. We compare these inventory-based estimates with results from a suite of terrestrial biosphere and atmospheric inversion models, where the mean continental-scale NEE estimate for each ensemble is -511 TgC yr-1 and -931 TgC yr-1, respectively. In the modeling approaches, all sectors, including Other Lands, were generally estimated to be a carbon sink, driven in part by assumed CO2 fertilization and/or lack of consideration of carbon sources from disturbances and product emissions. Additional fluxes not measured by the inventories, although highly uncertain, could add an additional -239 TgC yr-1 to the inventory-based NA sink estimate, thus suggesting some convergence with the modeling approaches.

  1. New representation of water activity based on a single solute specific constant to parameterize the hygroscopic growth of aerosols in atmospheric models

    Directory of Open Access Journals (Sweden)

    S. Metzger

    2012-06-01

    Full Text Available Water activity is a key factor in aerosol thermodynamics and hygroscopic growth. We introduce a new representation of water activity (aw, which is empirically related to the solute molality (μs through a single solute specific constant, νi. Our approach is widely applicable, considers the Kelvin effect and covers ideal solutions at high relative humidity (RH, including cloud condensation nuclei (CCN activation. It also encompasses concentrated solutions with high ionic strength at low RH such as the relative humidity of deliquescence (RHD. The constant νi can thus be used to parameterize the aerosol hygroscopic growth over a wide range of particle sizes, from nanometer nucleation mode to micrometer coarse mode particles. In contrast to other aw-representations, our νi factor corrects the solute molality both linearly and in exponent form x · ax. We present four representations of our basic aw-parameterization at different levels of complexity for different aw-ranges, e.g. up to 0.95, 0.98 or 1. νi is constant over the selected aw-range, and in its most comprehensive form, the parameterization describes the entire aw range (0–1. In this work we focus on single solute solutions. νi can be pre-determined with a root-finding method from our water activity representation using an aw−μs data pair, e.g. at solute saturation using RHD and solubility measurements. Our aw and supersaturation (Köhler-theory results compare well with the thermodynamic reference model E-AIM for the key compounds NaCl and (NH42SO4 relevant for CCN modeling and calibration studies. Envisaged applications include regional and global atmospheric chemistry and

  2. Inferring the depth of the atmospheric circulation on Jupiter and Saturn through gravity measurements by Juno and Cassini and an adjoint based dynamical model

    Science.gov (United States)

    Galanti, Eli; Kaspi, Yohai

    2014-05-01

    In approximately three years Juno and Cassini will both perform close flybys of Jupiter and Saturn respectively, obtaining a high precision gravity spectrum for these planets. This data can be used to estimate the depth of the observed flows on these planets. Here we use a hierarchy of dynamical models in order to relate the three-dimensional flow to perturbations of the density field, and therefore to the gravity field. The models are set up to allow either zonal flow only, or a full horizontal flow in both zonal and meridional directions based on the observed cloud-level winds. In addition, dynamical perturbations resulting from the the non-spherical shape of the planets are accounted for.In order to invert the gravity field to be measured by Juno and Cassini into the 3D circulation, an adjoint model is constructed for the dynamical model, thus allowing backward integration of the dynamical model. This tool can be used for examination of various scenarios, including cases in which the depth of the winds depend on latitudinal position. We show that given the expected sensitivities of Juno and Cassini, it is possible to use the gravity measurements to derive the depth of the winds, both on Jupiter and Saturn. This hold for a large range of zonal wind possible penetration depths, from ~100km to ~10000km, and for winds depth that vary with latitude. This method proves to be useful also when Incorporating the full horizontal flow, and thus taking into account gravity perturbations that vary with longitude. We show that our adjoint based inversion method allows not only to estimate the depth of the circulation, but allows via iterations with the spacecraft trajectory estimation model to improve the inferred gravity field.

  3. Nonlinear lumped circuit modeling of an atmospheric pressure rf discharge

    Science.gov (United States)

    Lapke, M.; Ziegler, D.; Mussenbrock, T.; Gans, T.; Schulz-von der Gathen, V.

    2006-10-01

    The subject of our modeling approach is a specifically modified version of the atmospheric pressure plasma jet (APPJ, originally proposed by Selwyn and coworkers^1) with reduced discharge volume, the micro atmospheric pressure plasma jet (μ-APPJ). The μ-APPJ is a homogeneous nonequilibrium discharge operated with Argon or Helium as the feedstock gas and a percentage volume admixture of a molecular gas (O2, H2, N2). The efficiency of the discharge is mainly due to the dissociated and activated molecules in the effluent that can be selected depending on the application. A variety of applications in surface treatment have already been demonstrated, e.g., in semiconductor technology, restoration and bio-medicine. In this contribution we present and analyze a nonlinear lumped circuit model of the μ-APPJ. We apply a two-scale formalism. The bulk is modeled by a generalized Ohm's law, whereas the sheath is described on a considerably higher level of mathematical sophistication. The main focus lies on the spectrum of the discharge current in order to support the characterization of the discharge via model-based diagnostics, i.e., the estimation of the spatially averaged electron density from the frequency of certain self-excitated collective resonance modes. J. Park et al., Appl. Phy. Lett. 76, 288 (2000)

  4. Modeling of atmospheric-coupled Rayleigh waves on planets with atmosphere: From Earth observation to Mars and Venus perspectives.

    Science.gov (United States)

    Lognonné, Philippe; Karakostas, Foivos; Rolland, Lucie; Nishikawa, Yasuhiro

    2016-08-01

    Acoustic coupling between solid Earth and atmosphere has been observed since the 1960s, first from ground-based seismic, pressure, and ionospheric sensors and since 20 years with various satellite measurements, including with global positioning system (GPS) satellites. This coupling leads to the excitation of the Rayleigh surface waves by local atmospheric sources such as large natural explosions from volcanoes, meteor atmospheric air-bursts, or artificial explosions. It contributes also in the continuous excitation of Rayleigh waves and associated normal modes by atmospheric winds and pressure fluctuations. The same coupling allows the observation of Rayleigh waves in the thermosphere most of the time through ionospheric monitoring with Doppler sounders or GPS. The authors review briefly in this paper observations made on Earth and describe the general frame of the theory enabling the computation of Rayleigh waves for models of telluric planets with atmosphere. The authors then focus on Mars and Venus and give in both cases the atmospheric properties of the Rayleigh normal modes and associated surface waves compared to Earth. The authors then conclude on the observation perspectives especially for Rayleigh waves excited by atmospheric sources on Mars and for remote ionospheric observations of Rayleigh waves excited by quakes on Venus. PMID:27586770

  5. Modeling the effects of atmospheric emissions on groundwater composition

    International Nuclear Information System (INIS)

    A composite model of atmospheric, unsaturated and groundwater transport is developed to evaluate the processes determining the distribution of atmospherically derived contaminants in groundwater systems and to test the sensitivity of simulated contaminant concentrations to input parameters and model linkages. One application is to screen specific atmospheric emissions for their potential in determining groundwater age. Temporal changes in atmospheric emissions could provide a recognizable pattern in the groundwater system. The model also provides a way for quantifying the significance of uncertainties in the tracer source term and transport parameters on the contaminant distribution in the groundwater system, an essential step in using the distribution of contaminants from local, point source atmospheric emissions to examine conceptual models of groundwater flow and transport

  6. First Analysis Of A Coupled Mediterranean - Atmosphere Model

    Science.gov (United States)

    Somot, S.; Sevault, F.; Béranger, K.; Déqué, M.; Crépon, M.

    A regional coupled ocean-atmosphere model has been developed to study the climate of the Mediterranean Region in a joint research between Météo-France-CNRM and CNRS-IPSL. This model is based on a variable resolution version of the global spectral AGCM Arpège-Climat with an horizontal grid mesh of 50 km over the mediterranean area and a limited area version of the OGCM OPA with an horizontal grid mesh of 10 km. The two models are coupled with the OASIS coupler developed by CERFACS. Outside the Mediterranean Sea, the sea surface temperature is prescribed from interannual observed data. A ten year coupled simulation has been done without relaxation nor correction. Sea- sonal averages as well as interannual variability have been compared with available observations and with uncoupled simulations.

  7. Data Assimilation for Wildland Fires: Ensemble Kalman filters in coupled atmosphere-surface models

    OpenAIRE

    Mandel, Jan; Beezley, Jonathan D.; Coen, Janice L.; Kim, Minjeong

    2007-01-01

    Two wildland fire models are described, one based on reaction-diffusion-convection partial differential equations, and one based on semi-empirical fire spread by the level let method. The level set method model is coupled with the Weather Research and Forecasting (WRF) atmospheric model. The regularized and the morphing ensemble Kalman filter are used for data assimilation.

  8. Data Assimilation for Wildland Fires: Ensemble Kalman filters in coupled atmosphere-surface models

    CERN Document Server

    Mandel, Jan; Coen, Janice L; Kim, Minjeong

    2007-01-01

    Two wildland fire models are described, one based on reaction-diffusion-convection partial differential equations, and one based on empirical fire spread by the level let method. The level set method model is coupled with the Weather Research and Forecasting (WRF) atmospheric model. The regularized and the morphing ensemble Kalman filter are used for data assimilation.

  9. Earth-atmosphere evolution based on new determination of Devonian atmosphere Ar isotopic composition

    Science.gov (United States)

    Stuart, Finlay M.; Mark, Darren F.; Gandanger, Pierre; McConville, Paul

    2016-07-01

    The isotopic composition of the noble gases, in particular Ar, in samples of ancient atmosphere trapped in rocks and minerals provides the strongest constraints on the timing and rate of Earth atmosphere formation by degassing of the Earth's interior. We have re-measured the isotopic composition of argon in the Rhynie chert from northeast Scotland using a high precision mass spectrometer in an effort to provide constraints on the composition of Devonian atmosphere. Irradiated chert samples yield 40Ar/36Ar ratios that are often below the modern atmosphere value. The data define a 40Ar/36Ar value of 289.5 ± 0.4 at K/36Ar = 0. Similarly low 40Ar/36Ar are measured in un-irradiated chert samples. The simplest explanation for the low 40Ar/36Ar is the preservation of Devonian atmosphere-derived Ar in the chert, with the intercept value in 40Ar-39Ar-36Ar space representing an upper limit. In this case the Earth's atmosphere has accumulated only 3% (5.1 ± 0.4 ×1016 mol) of the total 40Ar inventory since the Devonian. The average accumulation rate of 1.27 ± 0.09 ×108 mol40Ar/yr overlaps the rate over the last 800 kyr. This implies that there has been no resolvable temporal change in the outgassing rate of the Earth since the mid-Palaeozoic despite the likely episodicity of Ar degassing from the continental crust. Incorporating the new Devonian atmosphere 40Ar/36Ar into the Earth degassing model of Pujol et al. (2013) provides the most precise constraints on atmosphere formation so far. The atmosphere formed in the first ∼100 Ma after initial accretion during a catastrophic degassing episode. A significant volume of 40Ar did not start to accumulate in the atmosphere until after 4 Ga which implies that stable K-rich continental crust did not develop until this time.

  10. Chemical transport modeling of potential atmospheric CO2 sinks

    International Nuclear Information System (INIS)

    The potential for carbon dioxide (CO2) sequestration via engineered chemical sinks is investigated using a three dimensional chemical transport model (CTM). Meteorological and chemical constraints for flat or vertical systems that would absorb CO2 from the atmosphere, as well as an example chemical system of calcium hydroxide (Ca(OH)2) proposed by Elliott et al. [Compensation of atmospheric CO2 buildup through engineered chemical sinkage, Geophys. Res. Lett. 28 (2001) 1235] are reviewed. The CTM examines land based deposition sinks, with 4ox5o latitude/longitude resolution at various locations, and deposition velocities (v). A maximum uptake of ∼20 Gton (1015 g) C yr-1 is attainable with v>5 cm s -1 at a mid-latitude site. The atmospheric increase of CO2 (3 Gton yr-1) can be balanced by an engineered sink with an area of no more than 75,000 km2 at v of 1 cm s-1. By building the sink upwards or splitting this area into narrow elements can reduce the active area by more than an order of magnitude as discussed in Dubey at el. [31]. (author)

  11. Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions and a new approach for estimating net ecosystem exchange from inventory-based data

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Daniel J [ORNL; Turner, David P [Oregon State University, Corvallis; Stinson, Graham [Pacific Forestry Centre, Canadian Forest Service; Mcguire, David [University of Alaska; Wei, Yaxing [ORNL; West, Tristram O. [Joint Global Change Research Institute, PNNL; Heath, Linda S. [USDA Forest Service; De Jong, Bernardus [ECOSUR; McConkey, Brian G. [Agriculture and Agri-Food Canada; Birdsey, Richard A. [U.S. Department of Agriculture Forest Service; Kurz, Werner [Canadian Forest Service; Jacobson, Andrew [NOAA ESRL and CIRES; Huntzinger, Deborah [University of Michigan; Pan, Yude [U.S. Department of Agriculture Forest Service; Post, Wilfred M [ORNL; Cook, Robert B [ORNL

    2012-01-01

    We develop an approach for estimating net ecosystem exchange (NEE) using inventory-based information over North America (NA) for a recent 7-year period (ca. 2000 2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non-fossil fuel sources and sinks of CO2, while accounting for lateral transfers of forest and crop products as well as their eventual emissions. The total NEE estimate of a 327 252 TgC yr1 sink for NA was driven primarily by CO2 uptake in the Forest Lands sector (248 TgC yr1), largely in the Northwest and Southeast regions of the US, and in the Crop Lands sector (297 TgC yr1), predominantly in the Midwest US states. These sinks are counteracted by the carbon source estimated for the Other Lands sector (+218 TgC yr1), where much of the forest and crop products are assumed to be returned to the atmosphere (through livestock and human consumption). The ecosystems of Mexico are estimated tobe a small net source (+18 TgC yr1) due to land use change between 1993 and 2002. We compare these inventorybased estimates with results from a suite of terrestrial biosphere and atmospheric inversion models, where the mean continental-scale NEE estimate for each ensemble is 511 TgC yr1 and 931 TgC yr1, respectively. In the modeling approaches, all sectors, including Other Lands, were generally estimated to be a carbon sink, driven in part by assumed CO2 fertilization and/or lack of consideration of carbon sources from disturbances and product emissions. Additional fluxes not measured by the inventories, although highly uncertain, could add an additional 239 TgC yr1 to the inventory-based NA sink estimate, thus suggesting some convergence with the modeling approaches.

  12. Accident consequence assessments with different atmospheric dispersion models

    International Nuclear Information System (INIS)

    An essential aim of the improvements of the new program system UFOMOD for Accident Consequence Assessments (ACAs) was to substitute the straight-line Gaussian plume model conventionally used in ACA models by more realistic atmospheric dispersion models. To identify improved models which can be applied in ACA codes and to quantify the implications of different dispersion models on the results of an ACA, probabilistic comparative calculations with different atmospheric dispersion models have been performed. The study showed that there are trajectory models available which can be applied in ACAs and that they provide more realistic results of ACAs than straight-line Gaussian models. This led to a completely novel concept of atmospheric dispersion modelling in which two different distance ranges of validity are distinguished: the near range of some ten kilometres distance and the adjacent far range which are assigned to respective trajectory models. (orig.)

  13. Modeling of wind turbine noise sources and propagation in the atmosphere

    OpenAIRE

    Tian, Yuan

    2016-01-01

    The purpose of this work is to model wind turbine noise sources and propagation in the atmosphere in order to better understand the characteristics of wind turbine noise at long range and to help wind turbine manufacturers and wind farm developers meet the noise regulations. By coupling physically-based aeroacoustic source and propagation models, we are able to predict wind turbine noise spectra, directivity and amplitude modulation in various atmospheric conditions. Amiet's analytical model ...

  14. On atmospheric stability in the dynamic wake meandering model

    DEFF Research Database (Denmark)

    Keck, Rolf-Erik; de Mare, Martin Tobias; Churchfield, Matthew J.; Lee, Sang; Larsen, Gunner Chr.; Aagaard Madsen, Helge

    2014-01-01

    parameters. In order to isolate the effect of atmospheric stability, simulations of neutral and unstable atmospheric boundary layers using large-eddy simulation are performed at the same streamwise turbulence intensity level. The turbulence intensity is kept constant by calibrating the surface roughness in......The present study investigates a new approach for capturing the effects of atmospheric stability on wind turbine wake evolution and wake meandering by using the dynamic wake meandering model. The most notable impact of atmospheric stability on the wind is the changes in length and velocity scales...... turbulence spectra and applied to the dynamic wake meandering model to capture the correct wake meandering behaviour. The ambient turbulence in all stability classes is generated using the Mann turbulence model, where the effects of non-neutral atmospheric stability are approximated by the selection of input...

  15. CFD Modeling of Non-Neutral Atmospheric Boundary Layer Conditions

    DEFF Research Database (Denmark)

    Koblitz, Tilman

    For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics models that focus on modeling the airflow in a neutrally stratified surface-layer. Physical processes like the Coriolis force, buoyancy forces and heat transport, that are important to the...... atmospheric boundary-layer, are mostly ignored so far. In order to decrease the uncertainty of wind resource assessment, the present work focuses on atmospheric flows that include atmospheric stability and the Coriolis effect. Within the present work a RANS model framework is developed and implemented into...

  16. Modeling of atmospheric and ionospheric disturbances from shallow seismic sources

    Science.gov (United States)

    Davies, John Bruce; Archambeau, Charles B.

    Earthquake sources, as well as contained underground explosions and volcanic explosions, initiate atmospheric waves at the air-ground interface which propagate upward and outward. The propagating atmospheric waves produced are of two types: a high-frequency acoustic wave and a low-frequency gravity wave with horizontal wavelength much longer than its vertical wavelength. Because of the exponential decrease of atmospheric density with height, the acoustic and particularly the gravity waves can grow to significant amplitude in the upper atmosphere, where they can affect the ionosphere causing changes in the distribution of neutral and charged particles. The coherent fluctuations of electron densities and ionization layer boundaries produced by these waves can be detected by electromagnetic sounding methods and hence the occurrence and character of the disturbances can be inferred. A particular application of interest is the detection and discrimination of underground and near surface chemical explosions in a nuclear test monitoring context. Specifically, identification of the different source types is enhanced by combining seismic detection methods with detection of the ionospheric disturbances caused by explosion and earthquake sources. In this study, numerical models of non-linear gravity controlled atmospheric disturbances produced by seismic sources near the surface of the Earth are investigated in order to obtain quantitative predictions that might be used in evaluating detection methods based on gravity wave excitation. Explicit numerical integration of the non-linear finite difference equations is used to simulate the transient flows produced in a three-dimensional ARDC atmosphere. Results from the simulations agree with many results from linear theory approximations and also show non-linear characteristics similar to important gravity wave observations. Electron density changes in the ionosphere are predicted with their spatial and temporal behavior found to

  17. Spatio-temporal modelling of atmospheric pollution based on observations provided by an air quality monitoring network at a regional scale

    International Nuclear Information System (INIS)

    This study is devoted to the spatio-temporal modelling of air pollution at a regional scale using a set of statistical methods in order to treat the measurements of pollutant concentrations (NO2, O3) provided by an air quality monitoring network (AIRPARIF). The main objective is the improvement of the pollutant fields mapping using either interpolation methods based on the spatial or spatio-temporal structure of the data (spatial or spatio-temporal kriging) or some algorithms taking into account the observations, in order to correct the concentrations simulated by a deterministic model (Ensemble Kalman Filter). The results show that nitrogen dioxide mapping based only on spatial interpolation (kriging) gives the best results, while the spatial repartition of the monitoring sites is good. For the ozone mapping it is the sequential data assimilation that leads us to a better reconstruction of the plume's form and position for the analyzed cases. Complementary to the pollutant mapping, another objective was to perform a local prediction of ozone concentrations on a 24-hour horizon; this task was performed using Artificial Neural Networks. The performance indices obtained using two types of neural architectures indicate a fair accuracy especially for the first 8 hours of prediction horizon. (author)

  18. Challenges in Modeling of the Global Atmosphere

    Science.gov (United States)

    Janjic, Zavisa; Djurdjevic, Vladimir; Vasic, Ratko; Black, Tom

    2015-04-01

    ") with significant amplitudes can develop. Due to their large scales, that are comparable to the scales of the dominant Rossby waves, such fictitious solutions are hard to identify and remove. Another new challenge on the global scale is that the limit of validity of the hydrostatic approximation is rapidly being approached. Having in mind the sensitivity of extended deterministic forecasts to small disturbances, we may need global non-hydrostatic models sooner than we think. The unified Non-hydrostatic Multi-scale Model (NMMB) that is being developed at the National Centers for Environmental Prediction (NCEP) as a part of the new NOAA Environmental Modeling System (NEMS) will be discussed as an example. The non-hydrostatic dynamics were designed in such a way as to avoid over-specification. The global version is run on the latitude-longitude grid, and the polar filter selectively slows down the waves that would otherwise be unstable. The model formulation has been successfully tested on various scales. A global forecasting system based on the NMMB has been run in order to test and tune the model. The skill of the medium range forecasts produced by the NMMB is comparable to that of other major medium range models. The computational efficiency of the global NMMB on parallel computers is good.

  19. Highly physical penumbra solar radiation pressure modeling with atmospheric effects

    Science.gov (United States)

    Robertson, Robert; Flury, Jakob; Bandikova, Tamara; Schilling, Manuel

    2015-10-01

    We present a new method for highly physical solar radiation pressure (SRP) modeling in Earth's penumbra. The fundamental geometry and approach mirrors past work, where the solar radiation field is modeled using a number of light rays, rather than treating the Sun as a single point source. However, we aim to clarify this approach, simplify its implementation, and model previously overlooked factors. The complex geometries involved in modeling penumbra solar radiation fields are described in a more intuitive and complete way to simplify implementation. Atmospheric effects are tabulated to significantly reduce computational cost. We present new, more efficient and accurate approaches to modeling atmospheric effects which allow us to consider the high spatial and temporal variability in lower atmospheric conditions. Modeled penumbra SRP accelerations for the Gravity Recovery and Climate Experiment (GRACE) satellites are compared to the sub-nm/s2 precision GRACE accelerometer data. Comparisons to accelerometer data and a traditional penumbra SRP model illustrate the improved accuracy which our methods provide. Sensitivity analyses illustrate the significance of various atmospheric parameters and modeled effects on penumbra SRP. While this model is more complex than a traditional penumbra SRP model, we demonstrate its utility and propose that a highly physical model which considers atmospheric effects should be the basis for any simplified approach to penumbra SRP modeling.

  20. RETADDII: modeling long-range atmospheric transport of radionuclides

    International Nuclear Information System (INIS)

    A versatile model is described which estimates atmospheric dispersion based on plume trajectories calculated for the mixed layer. This model allows the treatment of the dispersal from a source at an arbitrary height while taking account of plume depletion by dry and wet deposition together with the decay of material to successor species. The plume depletion, decay and growth equations are solved in an efficient manner which can accommodate up to eight pollutants (i.e. a parent and seven serial decay products). The code is particularly suitable for applications involving radioactive chain decay or for cases involving chemical species with successor decay products. Arbitrary emission rates can be specified for the members of the chain or, as is commonly the case, a sole emission rate can be specified for the first member. The code, in its current configuration, uses readily available upper-air wind data for the North American continent

  1. Memory efficient atmospheric effects modeling for infrared scene generators

    Science.gov (United States)

    Kavak, Çaǧlar; Özsaraç, Seçkin

    2015-05-01

    The infrared (IR) energy radiated from any source passes through the atmosphere before reaching the sensor. As a result, the total signature captured by the IR sensor is significantly modified by the atmospheric effects. The dominant physical quantities that constitute the mentioned atmospheric effects are the atmospheric transmittance and the atmospheric path radiance. The incoming IR radiation is attenuated by the transmittance and path radiance is added on top of the attenuated radiation. In IR scene simulations OpenGL is widely used for rendering purposes. In the literature there are studies, which model the atmospheric effects in an IR band using OpenGLs exponential fog model as suggested by Beers law. In the standard pipeline of OpenGL, the related fog model needs single equivalent OpenGL variables for the transmittance and path radiance, which actually depend on both the distance between the source and the sensor and also on the wavelength of interest. However, in the conditions where the range dependency cannot be modeled as an exponential function, it is not accurate to replace the atmospheric quantities with a single parameter. The introduction of OpenGL Shading Language (GLSL) has enabled the developers to use the GPU more flexible. In this paper, a novel method is proposed for the atmospheric effects modeling using the least squares estimation with polynomial fitting by programmable OpenGL shader programs built with GLSL. In this context, a radiative transfer model code is used to obtain the transmittance and path radiance data. Then, polynomial fits are computed for the range dependency of these variables. Hence, the atmospheric effects model data that will be uploaded in the GPU memory is significantly reduced. Moreover, the error because of fitting is negligible as long as narrow IR bands are used.

  2. Upscalling processes in an ocean-atmosphere multiscale coupled model

    Science.gov (United States)

    Masson, S. G.; Berthet, S.; Samson, G.; Crétat, J.; Colas, F.; Echevin, V.; Jullien, S.; Hourdin, C.

    2015-12-01

    This work explores new pathways toward a better representation of the multi-scale physics that drive climate variability. We are analysing the key upscaling processes by which small-scale localized errors have a knock-on effect onto global climate. We focus on the Peru-Chilli coastal upwelling, an area known to hold among the strongest models biases in the Tropics. Our approach is based on the development of a multiscale coupling interface allowing us to couple WRF with the NEMO oceanic model in a configuration including 2-way nested zooms in the oceanic and/or the atmospheric component of the coupled model. Upscalling processes are evidenced and quantified by comparing three 20-year long simulations of a tropical channel (45°S-45°N), which differ by their horizontal resolution: 0.75° everywhere, 0.75°+0.25° zoom in the southeastern Pacific or 0.25° everywhere. This set of three 20-year long simulations was repeated with 3 different sets of parameterizations to assess the robustness of our results. Our results show that adding an embedded zoom over the southeastern Pacific only in the atmosphere cools down the SST along the Peru-Chili coast, which is a clear improvement. This change is associated with a displacement of the low-level cloud cover, which moves closer to the coast cooling further the coastal area SST. Offshore, we observe the opposite effect with a reduction of the cloud cover with higher resolution, which increases solar radiation and warms the SST. Increasing the resolution in the oceanic component show contrasting results according to the different set parameterization used in the experiments. Some experiment shows a coastal cooling as expected, whereas, in other cases, we observe a counterintuitive response with a warming of the coastal SST. Using at the same time an oceanic and an atmospheric zoom mostly combines the results obtained when using the 2-way nesting in only one component of the coupled model. In the best case, we archive by this

  3. Revisiting the Carrington Event: Updated modeling of atmospheric effects

    CERN Document Server

    Thomas, Brian C; Snyder, Brock R

    2011-01-01

    The terrestrial effects of major solar events such as the Carrington white-light flare and subsequent geomagnetic storm of August-September 1859 are of considerable interest, especially in light of recent predictions that such extreme events will be more likely over the coming decades. Here we present results of modeling the atmospheric effects, especially production of odd nitrogen compounds and subsequent depletion of ozone, by solar protons associated with the Carrington event. This study combines approaches from two previous studies of the atmospheric effect of this event. We investigate changes in NOy compounds as well as depletion of O3 using a two-dimensional atmospheric chemistry and dynamics model. Atmospheric ionization is computed using a range-energy relation with four different proxy proton spectra associated with more recent well-known solar proton events. We find that changes in atmospheric constituents are in reasonable agreement with previous studies, but effects of the four proxy spectra use...

  4. Development of regional atmospheric dynamic and air pollution models for nuclear emergency response system WSPEEDI

    International Nuclear Information System (INIS)

    WSPEEDI (Worldwide version of System for Prediction of Environmental Emergency Dose Information) is a computer-based emergency response system to predict long-range atmospheric dispersion of radionuclides discharged into the atmosphere due to a nuclear accident. WSPEEDI has been applied to several international exercises and real events. Through such experiences, the new version of WSPEEDI aims to employ a combination of an atmospheric dynamic model and a particle random walk model for more accurate predictions. This paper describes these models, improvement of prediction and computational techniques for quick responses. (author)

  5. Advancing Solid Earth Science through Improved Atmosphere Modeling

    Science.gov (United States)

    Niell, A. E.

    2004-01-01

    We proposed to investigate and develop better models for the effect of the hydrostatic and water vapor components of the neutral atmosphere on delay for VLBI and GPS by using a Numerical Weather Model to better simulate realistic atmosphere conditions. By using a raytrace calculation through the model atmosphere at the times of actual VLBI observations, the potential improvement in geodetic results can be evaluated. Also, by calculating the actual variation of delays with elevation and azimuth, the errors in current mapping function models can be assessed. The VLBI data to be initially analyzed are the fifteen days of the CONT02 sessions of 2002 October which included eight stations. There are three segments to the research. 1) The PSU/NCAR fifth generation mesoscale numerical weather model (MM5) will be used to provide the state of the atmosphere with highest horizontal resolution of 3 km. 2) A three-dimensional raytrace program will be developed to determine the delays through the model atmosphere at the times and in the directions of the VLBI observations for each of the sites. 3) The VLBI data will be analyzed using both standard models for the atmosphere mapping functions and the mapping functions derived from the NWM raytracing.

  6. A New Titan Atmospheric Model for Mission Engineering Applications

    Science.gov (United States)

    Waite, J. H.; Bell, J. M.; Lorenz, R.; Achterberg, R.; Flasar, F. M.

    2012-03-01

    Titan’s polar regions and hydrocarbon lakes are of interest for future exploration. This paper describes a new engineering model of Titan’s atmospheric structure with particular reference to the proposed Titan Mare Explorer mission.

  7. Weather Research and Forecasting (WRF) Regional Atmospheric Model: CNMI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the Commonwealth of the...

  8. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Guam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the island of Guam at...

  9. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Oahu

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 3.5-day hourly forecast for the region surrounding the Hawaiian island of Oahu...

  10. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Samoa

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the islands of Samoa at...

  11. Revisions to Photochemical Data for Use in Atmospheric Modeling

    Science.gov (United States)

    Shutter, Joshua D.; Willacy, Karen; Allen, Mark

    2012-01-01

    Solar and stellar flux incident on an atmosphere can cause molecules to dissociate into highly reactive species and allows for photochemical processes to play a fundamental role in atmospheric chemistry. While models have tried to simulate such processes, they are extremely sensitive to photoabsorption cross-sections and quantum yields: two parameters that are important in determining the photodissociation rate, and hence the lifetime, of atmospheric compounds. Obtaining high-resolution and current data for these parameters is therefore highly desirable. Due to this, database and literature searches for high-quality cross-sections and quantum yields were performed and compiled for KINETICS, a Caltech/JPL Chemical Transport Model that can be used in modeling planetary atmospheres. Furthermore, photodissociation rates determined by running a Titan 1-D model were used to verify the completeness of these latest revisions.

  12. Atmospheric Refraction Path Integrals in Ground-Based Interferometry

    CERN Document Server

    Mathar, R J

    2004-01-01

    The basic effect of the earth's atmospheric refraction on telescope operation is the reduction of the true zenith angle to the apparent zenith angle, associated with prismatic aberrations due to the dispersion in air. If one attempts coherent superposition of star images in ground-based interferometry, one is in addition interested in the optical path length associated with the refracted rays. In a model of a flat earth, the optical path difference between these is not concerned as the translational symmetry of the setup means no net effect remains. Here, I evaluate these interferometric integrals in the more realistic arrangement of two telescopes located on the surface of a common earth sphere and point to a star through an atmosphere which also possesses spherical symmetry. Some focus is put on working out series expansions in terms of the small ratio of the baseline over the earth radius, which allows to bypass some numerics which otherwise is challenged by strong cancellation effects in building the opti...

  13. Statistical modelling of collocation uncertainty in atmospheric thermodynamic profiles

    OpenAIRE

    A. Fassò; IGNACCOLO, R.; F. Madonna; B. B. Demoz

    2013-01-01

    The uncertainty of important atmospheric parameters is a key factor for assessing the uncertainty of global change estimates given by numerical prediction models. One of the critical points of the uncertainty budget is related to the collocation mismatch in space and time among different observations. This is particularly important for vertical atmospheric profiles obtained by radiosondes or LIDAR. In this paper we consider a statistical modelling approach to understand at which exte...

  14. ARTEAM - Advanced ray tracing with earth atmospheric models

    OpenAIRE

    Kunz, G.J.; Moerman, M. M.; Eijk, A.M.J. van

    2002-01-01

    The Advanced Ray Tracing with Earth Atmospheric Models (ARTEAM) aims at a description of the electro-optical propagation environment in the marine atmospheric surface layer. For given meteorological conditions, the model evaluates height- and range-resolved transmission losses, refraction and turbulence effects. These results are subsequently applied to an electro-optical sensor with given specifications to evaluate the effective range and performance of the sensor under the prevailing meteor...

  15. Atmospheric & Oceanic Applications of Eulerian and Lagrangian Transport Modelling

    OpenAIRE

    Kjellsson, Joakim

    2014-01-01

    This thesis presents several ways to understand transports of air and water masses in the atmosphere and ocean, and the transports of energy that they imply. It presents work using various kinds of observations as well as computer simulations of the atmosphere and oceans. One of the main focuses is to identify similarities and differences between models and observations, as well as between different models. The first half of the thesis applies Lagrangian methods to study flows in the atmosphe...

  16. Radiative characteristics for atmospheric models from lidar sounding and AERONET

    Science.gov (United States)

    Sapunov, Maxim; Kuznetsov, Anatoly; Efremenko, Dmitry; Bochalov, Valentin; Melnikova, Irina; Samulenkov, Dimity; Vasilyev, Alexander; Poberovsky, Anatoly; Frantsuzova, Inna

    2016-04-01

    Optical models of atmospheric aerosols above of St. Petersburg are constraint on the base of the results of lidar sounding. The lidar system of the Resource Center "Observatory of environmental safety" of the St. Petersburg University Research Park is situated the city center, Vasilievsky Island. The measurements of the vertical profile of velocity and wind direction in the center of St. Petersburg for 2014 -2015 are fulfilled in addition. Height of laser sounding of aerosols is up to 25 km and wind up to 12 km. Observations are accomplished in the daytime and at night and mapped to vertical profiles of temperature, humidity, wind speed and pressure obtained from radiosounding in Voeikovo (St. Petersburg suburb). Results of wind observations are compared with those of upper-air measurements of meteorological service in Voeikovo. The distance between the points of observation is 25 km. Statistics of wind directions at different heights are identified. The comparison is based on the assumption of homogeneity of the wind field on such a scale. In most cases, good agreement between the observed vertical profiles of wind, obtained by both methods is appeared. However, there were several cases, when the results differ sharply or at high altitudes, or, on the contrary, in the surface layer. The analysis of the impact of wind, temperature, and humidity profiles in the atmosphere on the properties and dynamics of solid impurities is implemented. Comparison with AOT results from AERONET observations in St. Petersburg suburb Peterhof is done. It is shown that diurnal and seasonal variations of optical and morphological parameters of atmospheric aerosols in the pollution cap over the city to a large extent determined by the variability of meteorological parameters. The results of the comparison are presented and possible explanation of the differences is proposed. Optical models of the atmosphere in day and night time in different seasons are constructed from lidar and AERONET

  17. Test of existing mathematical models for atmospheric resuspension of radionuclides

    International Nuclear Information System (INIS)

    Atmospheric resuspension of radionuclides can be a secondary source of contamination after a release has stopped, as well as a source of contamination for people and areas not exposed to the original release. A test scenario based on measurements collected after the Chernobyl accident was used to evaluate existing mathematical models for contaminant resuspension from soil, to examine resuspension processes on both local and regional scales, and to investigate the importance of seasonal variations of these processes. Model predictions from 15 participants were compared with measured air concentrations and resuspension factors to investigate and explain the discrepancies both among model predictions and between model predictions and observations and thus to evaluate the predictive capabilities and drawbacks of commonly used generic resuspension models. The empirical models tested can give predictions within an order of magnitude of observations or better if adequately calibrated for site-specific conditions, but they do not describe the process-level events or account for spatial heterogeneity or temporal variations. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  18. Coupled Atmosphere-Fire Simulations of Fireflux: Impacts of Model Resolution on Model Performance

    CERN Document Server

    Kochanski, Adam K; Jenkins, M A; Mandel, J; Beezley, J D

    2011-01-01

    The ability to forecast grass fire spread could be of a great importance for agencies making decisions about prescribed burns. However, the usefulness of the models used for fire-spread predictions is limited by the time required for completing the coupled atmosphere-fire simulations. In this study we analyze the sensitivity of a coupled model with respect to the vertical resolution of the atmospheric grid and the resolution of fire mesh that both affect computational performance of the model. Based on the observations of the plume properties recorded during the FireFlux experiment (Clements et al., 2007), we try to establish the optimal model configuration that provides realistic results for the least computational expense.

  19. ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. I. ATMOSPHERIC DYNAMICS VIA THE SHALLOW WATER SYSTEM

    International Nuclear Information System (INIS)

    Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical, and spherical), rotation, magnetic tension, and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag, and magnetic drag), and magnetic tension are included. The global atmospheric structure is largely controlled by a single key parameter that involves the Rossby and Prandtl numbers. This near-universality breaks down when either molecular viscosity or magnetic drag acts non-uniformly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulations of atmospheric circulation. We also find that hydrodynamic and magnetic sources of friction have dissimilar phase signatures and affect the flow in fundamentally different ways, implying that using Rayleigh drag to mimic magnetic drag is inaccurate. We exhaustively lay down the theoretical formalism (dispersion relations, governing equations, and time-dependent wave solutions) for a broad suite of models. In all situations, we derive the steady state of an atmosphere, which is relevant to interpreting infrared phase and eclipse maps of exoplanetary atmospheres. We elucidate a pinching effect that confines the atmospheric structure to be near the equator. Our suite of analytical models may be used to develop decisively physical intuition and as a reference point for three-dimensional magnetohydrodynamic simulations of atmospheric circulation

  20. Using an atmospheric turbulence model for the stochastic model of geodetic VLBI data analysis

    Science.gov (United States)

    Halsig, Sebastian; Artz, Thomas; Iddink, Andreas; Nothnagel, Axel

    2016-06-01

    Space-geodetic techniques at radio wavelength, such as global navigation satellite systems and very long baseline interferometry (VLBI), suffer from refractivity of the Earth's atmosphere. These highly dynamic processes, particularly refractivity variations in the neutral atmosphere, contribute considerably to the error budget of these space-geodetic techniques. Here, microscale fluctuations in refractivity lead to elevation-dependent uncertainties and induce physical correlations between the observations. However, up to now such correlations are not considered routinely in the stochastic model of space-geodetic observations, which leads to very optimistic standard deviations of the derived target parameters, such as Earth orientation parameters and station positions. In this study, the standard stochastic model of VLBI observations, which only includes, almost exclusively, the uncertainties from the VLBI correlation process, is now augmented by a variance-covariance matrix derived from an atmospheric turbulence model. Thus, atmospheric refractivity fluctuations in space and time can be quantified. One of the main objectives is to realize a suitable stochastic model of VLBI observations in an operational way. In order to validate the new approach, the turbulence model is applied to several VLBI observation campaigns consisting of different network geometries leading the path for the next-generation VLBI campaigns. It is shown that the stochastic model of VLBI observations can be improved by using high-frequency atmospheric variations and, thus, refining the stochastic model leads to far more realistic standard deviations of the target parameters. The baseline length repeatabilities as a general measure of accuracy of baseline length determinations improve for the turbulence-based solution. Further, this method is well suited for routine VLBI data analysis with limited computational costs.

  1. Atmospheric Dispersion Model Validation in Low Wind Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Patrick

    2007-11-01

    Atmospheric plume dispersion models are used for a variety of purposes including emergency planning and response to hazardous material releases, determining force protection actions in the event of a Weapons of Mass Destruction (WMD) attack and for locating sources of pollution. This study provides a review of previous studies that examine the accuracy of atmospheric plume dispersion models for chemical releases. It considers the principles used to derive air dispersion plume models and looks at three specific models currently in use: Aerial Location of Hazardous Atmospheres (ALOHA), Emergency Prediction Information Code (EPIcode) and Second Order Closure Integrated Puff (SCIPUFF). Results from this study indicate over-prediction bias by the EPIcode and SCIPUFF models and under-prediction bias by the ALOHA model. The experiment parameters were for near field dispersion (less than 100 meters) in low wind speed conditions (less than 2 meters per second).

  2. PCBs in the Arctic atmosphere: determining important driving forces using a global atmospheric transport model

    Science.gov (United States)

    Friedman, Carey L.; Selin, Noelle E.

    2016-03-01

    We present a spatially and temporally resolved global atmospheric polychlorinated biphenyl (PCB) model, driven by meteorological data, that is skilled at simulating mean atmospheric PCB concentrations and seasonal cycles in the Northern Hemisphere midlatitudes and mean Arctic concentrations. However, the model does not capture the observed Arctic summer maximum in atmospheric PCBs. We use the model to estimate global budgets for seven PCB congeners, and we demonstrate that congeners that deposit more readily show lower potential for long-range transport, consistent with a recently described "differential removal hypothesis" regarding the hemispheric transport of PCBs. Using sensitivity simulations to assess processes within, outside, or transport to the Arctic, we examine the influence of climate- and emissions-driven processes on Arctic concentrations and their effect on improving the simulated Arctic seasonal cycle. We find evidence that processes occurring outside the Arctic have a greater influence on Arctic atmospheric PCB levels than processes that occur within the Arctic. Our simulations suggest that re-emissions from sea ice melting or from the Arctic Ocean during summer would have to be unrealistically high in order to capture observed temporal trends of PCBs in the Arctic atmosphere. We conclude that midlatitude processes are likely to have a greater effect on the Arctic under global change scenarios than re-emissions within the Arctic.

  3. PCBs in the Arctic atmosphere: determining important driving forces using a global atmospheric transport model

    Directory of Open Access Journals (Sweden)

    C. L. Friedman

    2015-11-01

    Full Text Available We present a spatially and temporally resolved global atmospheric PCB model, driven by meteorological data, that is skilled at simulating mean atmospheric PCB concentrations and seasonal cycles in the Northern Hemisphere mid-latitudes, and mean Arctic concentrations. However, the model does not capture the observed Arctic summer maximum in atmospheric PCBs. We use the model to estimate global budgets for the International Council for the Exploration of the Sea 7 PCBs, and demonstrate that congeners that deposit more readily show lower potential for long-range transport, consistent with a recently-described "differential removal hypothesis" regarding the hemispheric transport of PCBs. Using sensitivity simulations to assess processes within, outside, or transport to the Arctic, we examine the influence of climate- and emissions-driven processes on Arctic concentrations and their effect on improving the simulated Arctic seasonal cycle. We find evidence that processes occurring outside the Arctic have a greater influence on Arctic atmospheric PCB levels than processes that occur within the Arctic. Our simulations suggest that re-emissions from sea ice melting or from the Arctic Ocean during summer would have to be unrealistically high in order to capture observed temporal trends of PCBs in the Arctic atmosphere. We conclude that mid-latitude processes are likely to have a greater effect on the Arctic under global change scenarios than re-emissions within the Arctic.

  4. Atmospheric corrosion model and monitor for low cost solar arrays

    Science.gov (United States)

    Kaelble, D. H.; Mansfeld, F. B.; Jeanjaquet, S. L.; Kendig, M.

    1981-01-01

    An atmospheric corrosion model and corrosion monitoring system has been developed for low cost solar arrays (LSA). The corrosion model predicts that corrosion rate is the product of the surface condensation probability of water vapor and the diffusion controlled corrosion current. This corrosion model is verified by simultaneous monitoring of weather conditions and corrosion rates at the solar array test site at Mead, Nebraska.

  5. Information Flow in an Atmospheric Model and Data Assimilation

    Science.gov (United States)

    Yoon, Young-noh

    2011-01-01

    Weather forecasting consists of two processes, model integration and analysis (data assimilation). During the model integration, the state estimate produced by the analysis evolves to the next cycle time according to the atmospheric model to become the background estimate. The analysis then produces a new state estimate by combining the background…

  6. Measuring the basic parameters of neutron stars using model atmospheres

    International Nuclear Information System (INIS)

    Model spectra of neutron star atmospheres are nowadays widely used to fit the observed thermal X-ray spectra of neutron stars. This fitting is the key element in the method of the neutron star radius determination. Here, we present the basic assumptions used for the neutron star atmosphere modeling as well as the main qualitative features of the stellar atmospheres leading to the deviations of the emergent model spectrum from blackbody. We describe the properties of two of our model atmosphere grids: i) pure carbon atmospheres for relatively cool neutron stars (1-4MK) and ii) hot atmospheres with Compton scattering taken into account. The results obtained by applying these grids to model the X-ray spectra of the central compact object in supernova remnant HESS 1731-347, and two X-ray bursting neutron stars in low-mass X-ray binaries, 4U 1724-307 and 4U 1608-52, are presented. Possible systematic uncertainties associated with the obtained neutron star radii are discussed. (orig.)

  7. Measuring the basic parameters of neutron stars using model atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Suleimanov, V.F. [Universitaet Tuebingen, Institut fuer Astronomie und Astrophysik, Kepler Center for Astro and Particle Physics, Tuebingen (Germany); Kazan Federal University, Kazan (Russian Federation); Poutanen, J. [University of Turku, Tuorla Observatory, Department of Physics and Astronomy, Piikkioe (Finland); KTH Royal Institute of Technology and Stockholm University, Nordita, Stockholm (Sweden); Klochkov, D.; Werner, K. [Universitaet Tuebingen, Institut fuer Astronomie und Astrophysik, Kepler Center for Astro and Particle Physics, Tuebingen (Germany)

    2016-02-15

    Model spectra of neutron star atmospheres are nowadays widely used to fit the observed thermal X-ray spectra of neutron stars. This fitting is the key element in the method of the neutron star radius determination. Here, we present the basic assumptions used for the neutron star atmosphere modeling as well as the main qualitative features of the stellar atmospheres leading to the deviations of the emergent model spectrum from blackbody. We describe the properties of two of our model atmosphere grids: i) pure carbon atmospheres for relatively cool neutron stars (1-4MK) and ii) hot atmospheres with Compton scattering taken into account. The results obtained by applying these grids to model the X-ray spectra of the central compact object in supernova remnant HESS 1731-347, and two X-ray bursting neutron stars in low-mass X-ray binaries, 4U 1724-307 and 4U 1608-52, are presented. Possible systematic uncertainties associated with the obtained neutron star radii are discussed. (orig.)

  8. Measuring the basic parameters of neutron stars using model atmospheres

    CERN Document Server

    Suleimanov, V F; Klochkov, D; Werner, K

    2015-01-01

    Model spectra of neutron star atmospheres are nowadays widely used to fit the observed thermal X-ray spectra of neutron stars. This fitting is the key element in the method of the neutronstar radius determination. Here, we present the basic assumptions used for the neutron star atmosphere modeling as well as the main qualitative features of the stellar atmospheres leading to the deviations of the emergent model spectrum from blackbody. We describe the properties of two of our model atmosphere grids: (i) pure carbon atmospheres for relatively cool neutron stars (1--4 MK) and (ii) hot atmospheres with Compton scattering taken into account. The results obtained by applying these grids to model the X-ray spectra of the central compact object in supernova remnant HESS 1731-347, and two X-ray bursting neutron stars in low-mass X-ray binaries, 4U 1724-307 and 4U 1608-52, are presented. Possible systematic uncertainties associated with the obtained neutron star radii are discussed.

  9. Modeling the global atmospheric transport and deposition of mercury to the Great Lakes

    Directory of Open Access Journals (Sweden)

    Mark D. Cohen

    2016-07-01

    Full Text Available Abstract Mercury contamination in the Great Lakes continues to have important public health and wildlife ecotoxicology impacts, and atmospheric deposition is a significant ongoing loading pathway. The objective of this study was to estimate the amount and source-attribution for atmospheric mercury deposition to each lake, information needed to prioritize amelioration efforts. A new global, Eulerian version of the HYSPLIT-Hg model was used to simulate the 2005 global atmospheric transport and deposition of mercury to the Great Lakes. In addition to the base case, 10 alternative model configurations were used to examine sensitivity to uncertainties in atmospheric mercury chemistry and surface exchange. A novel atmospheric lifetime analysis was used to characterize fate and transport processes within the model. Model-estimated wet deposition and atmospheric concentrations of gaseous elemental mercury (Hg(0 were generally within ∼10% of measurements in the Great Lakes region. The model overestimated non-Hg(0 concentrations by a factor of 2–3, similar to other modeling studies. Potential reasons for this disagreement include model inaccuracies, differences in atmospheric Hg fractions being compared, and the measurements being biased low. Lake Erie, downwind of significant local/regional emissions sources, was estimated by the model to be the most impacted by direct anthropogenic emissions (58% of the base case total deposition, while Lake Superior, with the fewest upwind local/regional sources, was the least impacted (27%. The U.S. was the largest national contributor, followed by China, contributing 25% and 6%, respectively, on average, for the Great Lakes. The contribution of U.S. direct anthropogenic emissions to total mercury deposition varied between 46% for the base case (with a range of 24–51% over all model configurations for Lake Erie and 11% (range 6–13% for Lake Superior. These results illustrate the importance of atmospheric

  10. High resolution transmission spectroscopy as a diagnostic for Jovian exoplanet atmospheres: constraints from theoretical models

    Energy Technology Data Exchange (ETDEWEB)

    Kempton, Eliza M.-R. [Department of Physics, Grinnell College, Grinnell, IA 50112 (United States); Perna, Rosalba [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Heng, Kevin, E-mail: kemptone@grinnell.edu [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2014-11-01

    We present high resolution transmission spectra of giant planet atmospheres from a coupled three-dimensional (3D) atmospheric dynamics and transmission spectrum model that includes Doppler shifts which arise from winds and planetary motion. We model Jovian planets covering more than two orders of magnitude in incident flux, corresponding to planets with 0.9-55 day orbital periods around solar-type stars. The results of our 3D dynamical models reveal certain aspects of high resolution transmission spectra that are not present in simple one-dimensional (1D) models. We find that the hottest planets experience strong substellar to anti-stellar (SSAS) winds, resulting in transmission spectra with net blueshifts of up to 3 km s{sup –1}, whereas less irradiated planets show almost no net Doppler shifts. We find only minor differences between transmission spectra for atmospheres with temperature inversions and those without. Compared to 1D models, peak line strengths are significantly reduced for the hottest atmospheres owing to Doppler broadening from a combination of rotation (which is faster for close-in planets under the assumption of tidal locking) and atmospheric winds. Finally, high resolution transmission spectra may be useful in studying the atmospheres of exoplanets with optically thick clouds since line cores for very strong transitions should remain optically thick to very high altitude. High resolution transmission spectra are an excellent observational test for the validity of 3D atmospheric dynamics models, because they provide a direct probe of wind structures and heat circulation. Ground-based exoplanet spectroscopy is currently on the verge of being able to verify some of our modeling predictions, most notably the dependence of SSAS winds on insolation. We caution that interpretation of high resolution transmission spectra based on 1D atmospheric models may be inadequate, as 3D atmospheric motions can produce a noticeable effect on the absorption

  11. Observations, Thermochemical Calculations, and Modeling of Exoplanetary Atmospheres

    CERN Document Server

    Blecic, Jasmina

    2016-01-01

    This dissertation as a whole aims to provide means to better understand hot-Jupiter planets through observing, performing thermochemical calculations, and modeling their atmospheres. We used Spitzer multi-wavelength secondary-eclipse observations and targets with high signal-to-noise ratios, as their deep eclipses allow us to detect signatures of spectral features and assess planetary atmospheric structure and composition with greater certainty. Chapter 1 gives a short introduction. Chapter 2 presents the Spitzer secondary-eclipse analysis and atmospheric characterization of WASP-14b. WASP-14b is a highly irradiated, transiting hot Jupiter. By applying a Bayesian approach in the atmospheric analysis, we found an absence of thermal inversion contrary to theoretical predictions. Chapter 3 describes the infrared observations of WASP-43b Spitzer secondary eclipses, data analysis, and atmospheric characterization. WASP-43b is one of the closest-orbiting hot Jupiters, orbiting one of the coolest stars with a hot Ju...

  12. High Resolution Global Modeling of the Atmospheric Circulation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An informal review is presented of recent developments in numerical simulation of the global atmospheric circulation with very fine numerical resolution models. The focus is on results obtained recently with versions of the GFDL SKYHI model and the Atmospheric Model for the Earth Simulator (AFES) global atmospheric models. These models have been run with effective horizontal grid resolution of ~10-40 km and fine vertical resolution. The results presented demonstrate the utility of such models for the study of a diverse range of phenomena. Specifically the models are shown to simulate the development of tropical cyclones with peak winds and minimum central pressures comparable to those of the most intense hurricanes actually observed. More fundamentally, the spectrum of energy content in the mesoscale in the flow can be reproduced by these models down to near the smallest explicitly-resolved horizontal scales. In the middle atmosphere it is shown that increasing horizontal resolution can lead to significantly improved overall simulation of the global-scale circulation. The application of the models to two specific problems requiring very fine resolution global will be discussed. The spatial and temporal variability of the vertical eddy flux of zonal momentum associated with gravity waves near the tropopause is evaluated in the very fine resolution AFES model. This is a subject of great importance for understanding and modelling the flow in the middle atmosphere. Then the simulation of the small scale variations of the semidiurnal surface pressure oscillation is analyzed, and the signature of significant topographic modulation of the semidiurnal atmospheric tide is identified.

  13. Exoplanet Atmospheres and Giant Ground-Based Telescopes

    CERN Document Server

    Crossfield, I J M

    2016-01-01

    The study of extrasolar planets has rapidly expanded to encompass the search for new planets, measurements of sizes and masses, models of planetary interiors, planetary demographics and occurrence frequencies, the characterization of planetary orbits and dynamics, and studies of these worlds' complex atmospheres. Our insights into exoplanets dramatically advance whenever improved tools and techniques become available, and surely the largest tools now being planned are the optical/infrared Extremely Large Telescopes (ELTs). Two themes summarize the advantages of atmospheric studies with the ELTs: high angular resolution when operating at the diffraction limit and high spectral resolution enabled by the unprecedented collecting area of these large telescopes. This brief review describes new opportunities afforded by the ELTs to study the composition, structure, dynamics, and evolution of these planets' atmospheres, while specifically focusing on some of the most compelling atmospheric science cases for four qua...

  14. Regional forecasting with global atmospheric models; Fourth year report

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, T.J.; North, G.R.; Smith, N.R. [Applied Research Corp., College Station, TX (United States)

    1994-05-01

    The scope of the report is to present the results of the fourth year`s work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals.

  15. On the attribution of contributions of atmospheric trace gases to emissions in atmospheric model applications

    Directory of Open Access Journals (Sweden)

    V. Grewe

    2010-06-01

    Full Text Available We present a revised tagging method, which describes the combined effect of emissions of various species from individual emission categories, e.g. the impact of both, nitrogen oxides and non-methane hydrocarbon emissions on ozone. This method is applied to two simplified chemistry schemes, which represent the main characteristics of atmospheric ozone chemistry. Analytical solutions are presented for this tagging approach. In the past, besides tagging approaches, sensitivity methods were used, which estimate the contributions from individual sources based on differences in two simulations, a base case and a simulation with a perturbation in the respective emission category. We apply both methods to our simplified chemical systems and demonstrate that potentially large errors (factor of 2 occur with the sensitivity method, which depend on the degree of linearity of the chemical system. For some chemical regimes this error can be minimised by employing only small perturbations of the respective emission, e.g. 5%. Since a complete tagging algorithm for global chemistry models is difficult to achieve, we present two error metrics, which can be applied for sensitivity methods in order to estimate the potential error of this approach for a specific application.

  16. Atmospheric transport and dispersion modeling for the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Radiation doses that may have resulted from operations at the Hanford Site are being estimated in the Hanford Environmental Dose Reconstruction (HEDR) Project. One of the project subtasks, atmospheric transport, is responsible for estimating the transport, diffusion and deposition of radionuclides released to the atmosphere. This report discusses modeling transport and diffusion in the atmospheric pathway. It is divided into three major sections. The first section of the report presents the atmospheric modeling approach selected following discussion with the Technical Steering Panel that directs the HEDR Project. In addition, the section discusses the selection of the MESOI/MESORAD suite of atmospheric dispersion models that form the basis for initial calculations and future model development. The second section of the report describes alternative modeling approaches that were considered. Emphasis is placed on the family of plume and puff models that are based on Gaussian solution to the diffusion equations. The final portion of the section describes the performance of various models. The third section of the report discusses factors that bear on the selection of an atmospheric transport modeling approach for HEDR. These factors, which include the physical setting of the Hanford Site and the available meteorological data, serve as constraints on model selection. Five appendices are included in the report. 39 refs., 4 figs., 2 tabs

  17. The physical theory and propagation model of THz atmospheric propagation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, R; Yao, J Q; Xu, D G; Wang, J L; Wang, P, E-mail: wangran19861014@163.com [College of Precision Instrument and Opto-electronics Engineering, Institute of Laser and Opto-electronics, Tianjin University, Tianjin 300072 (China)

    2011-02-01

    Terahertz (THz) radiation is extensively applied in diverse fields, such as space communication, Earth environment observation, atmosphere science, remote sensing and so on. And the research on propagation features of THz wave in the atmosphere becomes more and more important. This paper firstly illuminates the advantages and outlook of THz in space technology. Then it introduces the theoretical framework of THz atmospheric propagation, including some fundamental physical concepts and processes. The attenuation effect (especially the absorption of water vapor), the scattering of aerosol particles and the effect of turbulent flow mainly influence THz atmosphere propagation. Fundamental physical laws are illuminated as well, such as Lamber-beer law, Mie scattering theory and radiative transfer equation. The last part comprises the demonstration and comparison of THz atmosphere propagation models like Moliere(V5), SARTre and AMATERASU. The essential problems are the deep analysis of physical mechanism of this process, the construction of atmospheric propagation model and databases of every kind of material in the atmosphere, and the standardization of measurement procedures.

  18. A zonally symmetric model for volcanic influence upon atmospheric circulation

    Science.gov (United States)

    Schatten, K. H.; Mayr, H. G.; Harris, I.; Taylor, H. A., Jr.

    1984-01-01

    The effects of volcanic activity upon zonal wind flow in a model atmosphere are considered. A low latitude volcanic eruption could lower the tropospheric pole to equator temperature difference and thereby affect the atmospheric motions. When the temperature contrast decreases, the zonal wind velocities at high altitudes are reduced. To conserve angular momentum, the velocities in the lower atmosphere near the surface must increase, thus providing a momentum source for ocean currents. It is suggested that this momentum source may have played a role as a trigger for inducing the 1982-83 anomalous El Nino and possibly other climate changes.

  19. Toward unification of the multiscale modeling of the atmosphere

    Directory of Open Access Journals (Sweden)

    A. Arakawa

    2011-01-01

    Full Text Available This paper suggests two possible routes to achieve the unification of model physics in coarse- and fine-resolution atmospheric models. As far as representation of deep moist convection is concerned, only two kinds of model physics are used at present: highly parameterized as in the conventional general circulation models (GCMs and explicitly simulated as in the cloud-resolving models (CRMs. Ideally, these two kinds of model physics should be unified so that a continuous transition of model physics from one kind to the other takes place as the resolution changes. With such unification, the GCM can converge to a global CRM (GCRM as the grid size is refined. ROUTE I for unification continues to follow the parameterization approach, but uses a unified parameterization that is applicable to any horizontal resolutions between those typically used by GCMs and CRMs. It is shown that a key to construct such a unified parameterization is to eliminate the assumption of small fractional area covered by convective clouds, which is commonly used in the conventional cumulus parameterizations either explicitly or implicitly. A preliminary design of the unified parameterization is presented, which demonstrates that such an assumption can be eliminated through a relatively minor modification of the existing mass-flux based parameterizations. Partial evaluations of the unified parameterization are also presented. ROUTE II for unification follows the "multi-scale modeling framework (MMF" approach, which takes advantage of explicit representation of deep moist convection and associated cloud-scale processes by CRMs. The Quasi-3-D (Q3-D MMF is an attempt to broaden the applicability of MMF without necessarily using a fully three-dimensional CRM. This is accomplished using a network of cloud-resolving grids with gaps. An outline of the Q3-D algorithm and highlights of preliminary results are reviewed.

  20. Statistical modelling of collocation uncertainty in atmospheric thermodynamic profiles

    OpenAIRE

    A. Fassò; IGNACCOLO, R.; F. Madonna; B. B. Demoz; Franco-Villoria, M.

    2014-01-01

    The quantification of measurement uncertainty of atmospheric parameters is a key factor in assessing the uncertainty of global change estimates given by numerical prediction models. One of the critical contributions to the uncertainty budget is related to the collocation mismatch in space and time among observations made at different locations. This is particularly important for vertical atmospheric profiles obtained by radiosondes or lidar. In this paper we propose a st...

  1. Complex source rate estimation for atmospheric transport and dispersion models

    International Nuclear Information System (INIS)

    The accuracy associated with assessing the environmental consequences of an accidental atmospheric release of radioactivity is highly dependent on our knowledge of the source release rate which is generally poorly known. This paper reports on a technique that integrates the radiological measurements with atmospheric dispersion modeling for more accurate source term estimation. We construct a minimum least squares methodology for solving the inverse problem with no a priori information about the source rate

  2. Global atmospheric model for mercury including oxidation by bromine atoms

    Directory of Open Access Journals (Sweden)

    C. D. Holmes

    2010-12-01

    Full Text Available Global models of atmospheric mercury generally assume that gas-phase OH and ozone are the main oxidants converting Hg0 to HgII and thus driving mercury deposition to ecosystems. However, thermodynamic considerations argue against the importance of these reactions. We demonstrate here the viability of atomic bromine (Br as an alternative Hg0 oxidant. We conduct a global 3-D simulation with the GEOS-Chem model assuming gas-phase Br to be the sole Hg0 oxidant (Hg + Br model and compare to the previous version of the model with OH and ozone as the sole oxidants (Hg + OH/O3 model. We specify global 3-D Br concentration fields based on our best understanding of tropospheric and stratospheric Br chemistry. In both the Hg + Br and Hg + OH/O3 models, we add an aqueous photochemical reduction of HgII in cloud to impose a tropospheric lifetime for mercury of 6.5 months against deposition, as needed to reconcile observed total gaseous mercury (TGM concentrations with current estimates of anthropogenic emissions. This added reduction would not be necessary in the Hg + Br model if we adjusted the Br oxidation kinetics downward within their range of uncertainty. We find that the Hg + Br and Hg + OH/O3 models are equally capable of reproducing the spatial distribution of TGM and its seasonal cycle at northern mid-latitudes. The Hg + Br model shows a steeper decline of TGM concentrations from the tropics to southern mid-latitudes. Only the Hg + Br model can reproduce the springtime depletion and summer rebound of TGM observed at polar sites; the snowpack component of GEOS-Chem suggests that 40% of HgII deposited to snow in the Arctic is transferred to the ocean and land reservoirs, amounting to a net deposition flux to the Arctic of 60 Mg a−1. Summertime events of depleted Hg0 at Antarctic sites due to subsidence are much better simulated by

  3. Evaluating stomatal models and their atmospheric drought response in a land surface scheme: A multibiome analysis

    Science.gov (United States)

    Knauer, Jürgen; Werner, Christiane; Zaehle, Sönke

    2015-10-01

    Stomatal conductance (gs) is a key variable in Earth system models as it regulates the transfer of carbon and water between the terrestrial biosphere and the lower atmosphere. Various approaches have been developed that aim for a simple representation of stomatal regulation applicable at the global scale. These models differ, among others, in their response to atmospheric humidity, which induces stomatal closure in a dry atmosphere. In this study, we compared the widely used empirical Ball-Berry and Leuning stomatal conductance models to an alternative empirical approach, an optimization-based approach, and a semimechanistic hydraulic model. We evaluated these models using evapotranspiration (ET) and gross primary productivity (GPP) observations derived from eddy covariance measurements at 56 sites across multiple biomes and climatic conditions. The different models were embedded in the land surface model JSBACH. Differences in performance across plant functional types or climatic conditions were small, partly owing to the large variations in the observational data. The models yielded comparable results at low to moderate atmospheric drought but diverged under dry atmospheric conditions, where models with a low sensitivity to air humidity tended to overestimate gs. The Ball-Berry model gave the best fit to the data for most biomes and climatic conditions, but all evaluated approaches have proven adequate for use in land surface models. Our findings further encourage future efforts toward a vegetation-type-specific parameterization of gs to improve the modeling of coupled terrestrial carbon and water dynamics.

  4. Medicanes in an ocean–atmosphere coupled regional climate model

    Directory of Open Access Journals (Sweden)

    N. Akhtar

    2014-03-01

    Full Text Available So-called medicanes (Mediterranean hurricanes are meso-scale, marine, and warm-core Mediterranean cyclones that exhibit some similarities to tropical cyclones. The strong cyclonic winds associated with medicanes threaten the highly populated coastal areas around the Mediterranean basin. To reduce the risk of casualties and overall negative impacts, it is important to improve the understanding of medicanes with the use of numerical models. In this study, we employ an atmospheric limited-area model (COSMO-CLM coupled with a one-dimensional ocean model (1-D NEMO-MED12 to simulate medicanes. The aim of this study is to assess the robustness of the coupled model in simulating these extreme events. For this purpose, 11 historical medicane events are simulated using the atmosphere-only model, COSMO-CLM, and coupled model, with different setups (horizontal atmospheric grid-spacings of 0.44°, 0.22°, and 0.08°; with/without spectral nudging, and an ocean grid-spacing of 1/12°. The results show that at high-resolution, the coupled model is able to not only simulate most of medicane events but also improve the track length, core temperature, and wind speed of simulated medicanes compared to the atmosphere-only simulations. The results suggest that the coupled model is more proficient for systemic and detailed studies of historical medicane events, and that this model can be an effective tool for future projections.

  5. The Role of Atmospheric Measurements in Wind Power Statistical Models

    Science.gov (United States)

    Wharton, S.; Bulaevskaya, V.; Irons, Z.; Newman, J. F.; Clifton, A.

    2015-12-01

    The simplest wind power generation curves model power only as a function of the wind speed at turbine hub-height. While the latter is an essential predictor of power output, it is widely accepted that wind speed information in other parts of the vertical profile, as well as additional atmospheric variables including atmospheric stability, wind veer, and hub-height turbulence are also important factors. The goal of this work is to determine the gain in predictive ability afforded by adding additional atmospheric measurements to the power prediction model. In particular, we are interested in quantifying any gain in predictive ability afforded by measurements taken from a laser detection and ranging (lidar) instrument, as lidar provides high spatial and temporal resolution measurements of wind speed and direction at 10 or more levels throughout the rotor-disk and at heights well above. Co-located lidar and meteorological tower data as well as SCADA power data from a wind farm in Northern Oklahoma will be used to train a set of statistical models. In practice, most wind farms continue to rely on atmospheric measurements taken from less expensive, in situ instruments mounted on meteorological towers to assess turbine power response to a changing atmospheric environment. Here, we compare a large suite of atmospheric variables derived from tower measurements to those taken from lidar to determine if remote sensing devices add any competitive advantage over tower measurements alone to predict turbine power response.

  6. Atmospheric multidecadal variations in the North Atlantic realm: proxy data, observations, and atmospheric circulation model studies

    OpenAIRE

    Grosfeld, K.; G. Lohmann; N. Rimbu; Fraedrich, K.; F. Lunkeit

    2007-01-01

    We investigate the spatial and temporal characteristics of multidecadal climate variability in the North Atlantic realm, using observational data, proxy data and model results. The dominant pattern of multidecadal variability of SST depicts a monopolar structure in the North Atlantic during the instrumental period with cold (warm) phases during 1900–1925 and 1970–1990 (1870–1890 and 1940–1960). Two atmospheric general circulation models of different com...

  7. Atmospheric dispersion models for application in relation to radionuclide releases

    International Nuclear Information System (INIS)

    In this document, a state-of-art review of dispersion models relevant to local, regional and global scales and applicable to radionuclide discharges of a continuous and discontinuous nature is presented. The theoretical basis of the models is described in chapter 2, while the uncertainty inherent in model predictions is considered in chapter 6. Chapters 3 to 5 of this report describe a number of models for calculating atmospheric dispersion on local, regional and global scales respectively

  8. Overview of receptor-based source apportionment studies for speciated atmospheric mercury

    Directory of Open Access Journals (Sweden)

    I. Cheng

    2015-02-01

    Full Text Available Receptor-based source apportionment studies of speciated atmospheric mercury are not only concerned with source contributions, but also the influence of transport, transformation, and deposition processes on speciated atmospheric mercury concentrations at receptor locations. Previous studies applied multivariate receptor models including Principal Components Analysis and Positive Matrix Factorization, and back trajectory receptor models including Potential Source Contribution Function, Gridded Frequency Distributions, and Concentration-back trajectory models. Anthropogenic combustion sources, crustal/soil dust, and chemical and physical processes, such as gaseous elemental mercury (GEM oxidation reactions, boundary layer mixing, and GEM flux from surfaces, were inferred from the multivariate studies, which were predominantly conducted at receptor sites in Canada and the US. Back trajectory receptor models revealed potential impacts of large industrial areas such as the Ohio River Valley in the US and throughout China, metal smelters, mercury evasion from the ocean and Great Lakes, and free troposphere transport on receptor measurements. Input data and model parameters specific to atmospheric mercury receptor models are summarized and model strengths and weaknesses are also discussed. One area of improvement that applies to all receptor models is the greater focus on evaluating the accuracy of receptor models at identifying potential speciated atmospheric mercury sources, source locations, and chemical and physical processes in the atmosphere.

  9. Modeling Planetary Atmospheric Energy Deposition By Energetic Ions

    Science.gov (United States)

    Parkinson, Christopher; Bougher, Stephen; Gronoff, Guillaume; Barthelemy, Mathieu

    2016-07-01

    The structure, dynamics, chemistry, and evolution of planetary upper atmospheres are in large part determined by the available sources of energy. In addition to the solar EUV flux, the solar wind and solar energetic particle (SEP) events are also important sources. Both of these particle populations can significantly affect an atmosphere, causing atmospheric loss and driving chemical reactions. Attention has been paid to these sources from the standpoint of the radiation environment for humans and electronics, but little work has been done to evaluate their impact on planetary atmospheres. At unmagnetized planets or those with crustal field anomalies, in particular, the solar wind and SEPs of all energies have direct access to the atmosphere and so provide a more substantial energy source than at planets having protective global magnetic fields. Additionally, solar wind and energetic particle fluxes should be more significant for planets orbiting more active stars, such as is the case in the early history of the solar system for paleo-Venus and Mars. Therefore quantification of the atmospheric energy input from the solar wind and SEP events is an important component of our understanding of the processes that control their state and evolution. We have applied a full Lorentz motion particle transport model to study the effects of particle precipitation in the upper atmospheres of Mars and Venus. Such modeling has been previously done for Earth and Mars using a guiding center precipitation model. Currently, this code is only valid for particles with small gyroradii in strong uniform magnetic fields. There is a clear necessity for a Lorentz formulation, hence, a systematic study of the ionization, excitation, and energy deposition has been conducted, including a comparison of the influence relative to other energy sources (namely EUV photons). The result is a robust examination of the influence of energetic ion transport on the Venus and Mars upper atmosphere which

  10. On the attribution of contributions of atmospheric trace gases to emissions in atmospheric model applications

    Directory of Open Access Journals (Sweden)

    V. Grewe

    2010-10-01

    Full Text Available We present an improved tagging method, which describes the combined effect of emissions of various species from individual emission categories, e.g. the impact of both, nitrogen oxides and non-methane hydrocarbon emissions on ozone. This method is applied to two simplified chemistry schemes, which represent the main characteristics of atmospheric ozone chemistry. Analytical solutions are presented for this tagging approach. In the past, besides tagging approaches, sensitivity methods were used, which estimate the contributions from individual sources based on differences in two simulations, a base case and a simulation with a perturbation in the respective emission category. We apply both methods to our simplified chemical systems and demonstrate that potentially large errors (factor of 2 occur with the sensitivity method, which depend on the degree of linearity of the chemical system. This error depends on two factors, the ability to linearise the chemical system around a base case, and second the completeness of the contributions, which means that all contributions should principally add up to 100%. For some chemical regimes the first error can be minimised by employing only small perturbations of the respective emission, e.g. 5%. The second factor depends on the chemical regime and cannot be minimized by a specific experimental set-up. It is inherent to the sensitivity method. Since a complete tagging algorithm for global chemistry models is difficult to achieve, we present two error metrics, which can be applied for sensitivity methods in order to estimate the potential error of this approach for a specific application.

  11. Development of an advanced atmospheric/transport model for emergency response purposes

    International Nuclear Information System (INIS)

    Atmospheric transport and diffusion models have been developed for real-time calculations of the location and concentration of toxic or radioactive materials during an accidental release at the Savannah River Site (SRS). These models are based Gaussian distributions and have been incorporated into an automated menu-driven program called the WIND (Weather INformation and Display) system. The WIND system atmospheric models employ certain assumptions that allow the computations of the ground-level concentration of toxic or radioactive materials to be made quickly. Gaussian models, such as PF/PL and 2DPUF, suffer from serious limitations including the inability to represent recirculation of pollutants in complex terrain, the use of one stability class at a given time to represent turbulent mixing over heterogeneous terrain, and the use of a wind field computed at only one height in the atmosphere. These limitations arise because the fundamental conservation relations of the atmosphere have been grossly simplified. Three-dimensional coupled atmospheric-dispersion models are not limited by the over-simplifications of the Gaussian assumption and have been used in the past to predict the transport of pollutants in a variety of atmospheric circulations. The disadvantage of these models is that they require large amounts of computational time; however, technology has progressed enough so that real-time simulations of dispersion may be made. These complex models can be run in an operational mode so that routine forecasts of the wind field and particulate concentration can be made

  12. The Middle Miocene climate as modelled in an atmosphere-ocean-biosphere model

    Directory of Open Access Journals (Sweden)

    M. Krapp

    2011-06-01

    Full Text Available We present simulations with a coupled ocean-atmosphere-biosphere model for the Middle Miocene 15 million years ago. The Middle Miocene topography, which alters both large-scale ocean and atmospheric circulations, causes a global warming of 0.7 K compared to present-day. Higher than present-day CO2 levels of 480 and 720 ppm cause a global warming of 2.8 and 4.9 K, thereby matching proxy-based Middle Miocene global temperature estimates of 3–6 K warming. Higher CO2 levels and the associated water vapour feedback enhance the greenhouse effect and lead to a polar amplification of the warming. Although oceanic and atmospheric poleward heat transport are individually altered by 10–30 % in the mid and high latitudes, changes of the total heat transport account only for 4–8 %, pointing toward a compensation between oceanic and atmospheric heat transport. Our model reproduces a denser vegetation in agreement with fossil records. These results suggest that higher than present-day CO2 levels are essential to drive the warm Middle Miocene climate.

  13. Interfacing the Urban Land-Atmosphere System Through Coupled Urban Canopy and Atmospheric Models

    Science.gov (United States)

    Song, Jiyun; Wang, Zhi-Hua

    2015-03-01

    We couple a single column model (SCM) to a cutting-edge single-layer urban canopy model (SLUCM) with realistic representation of urban hydrological processes. The land-surface transport of energy and moisture parametrized by the SLUCM provides lower boundary conditions to the overlying atmosphere. The coupled SLUCM-SCM model is tested against field measurements of sensible and latent heat fluxes in the surface layer, as well as vertical profiles of temperature and humidity in the mixed layer under convective conditions. The model is then used to simulate urban land-atmosphere interactions by changing urban geometry, surface albedo, vegetation fraction and aerodynamic roughness. Results show that changes of landscape characteristics have a significant impact on the growth of the boundary layer as well as on the distributions of temperature and humidity in the mixed layer. Overall, the proposed numerical framework provides a useful stand-alone modelling tool, with which the impact of urban land-surface conditions on the local hydrometeorology can be assessed via land-atmosphere interactions.

  14. 基于6S模型的GF-1卫星影像大气校正及效果%GF-1 satellite image atmospheric correction based on 6S model and its effect

    Institute of Scientific and Technical Information of China (English)

    刘佳; 王利民; 杨玲波; 滕飞; 邵杰; 杨福刚; 富长虹

    2015-01-01

    GF-1 satellite is the first satellite of the high resolution satellite series in China. Since its successful launch on April 26 2013, GF-1 satellite has been widely applied in agricultural remote sensing monitoring practice in China, and it has become a major data source of agricultural remote sensing dynamic monitoring. Based on the principle of radioactive transfer model of 6S (second simulation of a satellite signal in the solar spectrum), this paper designed and realized the algorithm and program suitable for GF-1 satellite data atmospheric correction. By using the 6S model, the algorithm obtains the parameters for the conversion from reflectivity (or irradiance) of Top Of Atmosphere (TOA) to surface reflectance, and then calculates the surface reflectance of each pixel of each image according to the conversion parameter. The algorithm takes GF-1 satellite first level data, metadata, and open parameter of sensor as the input data, without auxiliary data from other sources. The specific process includes 3 steps, i.e. radiometric calibration, running parameters settings and atmospheric correction. Radiometric calibration is to convert the DN (digital number) value of the original GF-1 satellite first level image into radiation brightness, and then calculate apparent reflectance by combining the reflectivity (or irradiance) of TOA. Either reflectivity (or irradiance) of TOA or apparent reflectance can be taken as the input of atmospheric correction program. Precondition for realizing the algorithm is to calculate the average solar irradiance parameters of each wave band of satellite sensor atmospheric top according to spectral response function of GF-1 satellite sensor and WRC (world radiation center) sun spectrum function. Operation parameters include 2 types: 1) input of satellite images, including satellite zenith angle, satellite azimuth angle, solar zenith angle, solar azimuth, sensor height, ground elevation, radiation calibration coefficient and spectral

  15. Overview of receptor-based source apportionment studies for speciated atmospheric mercury

    Science.gov (United States)

    Cheng, I.; Xu, X.; Zhang, L.

    2015-07-01

    Receptor-based source apportionment studies of speciated atmospheric mercury are not only concerned with source contributions but also with the influence of transport, transformation, and deposition processes on speciated atmospheric mercury concentrations at receptor locations. Previous studies applied multivariate receptor models including principal components analysis and positive matrix factorization, and back trajectory receptor models including potential source contribution function, gridded frequency distributions, and concentration-back trajectory models. Combustion sources (e.g., coal combustion, biomass burning, and vehicular, industrial and waste incineration emissions), crustal/soil dust, and chemical and physical processes, such as gaseous elemental mercury (GEM) oxidation reactions, boundary layer mixing, and GEM flux from surfaces were inferred from the multivariate studies, which were predominantly conducted at receptor sites in Canada and the US. Back trajectory receptor models revealed potential impacts of large industrial areas such as the Ohio River valley in the US and throughout China, metal smelters, mercury evasion from the ocean and the Great Lakes, and free troposphere transport on receptor measurements. Input data and model parameters specific to atmospheric mercury receptor models are summarized and model strengths and weaknesses are also discussed. Multivariate models are suitable for receptor locations with intensive air monitoring because they require long-term collocated and simultaneous measurements of speciated atmospheric Hg and ancillary pollutants. The multivariate models provide more insight about the types of Hg emission sources and Hg processes that could affect speciated atmospheric Hg at a receptor location, whereas back trajectory receptor models are mainly ideal for identifying potential regional Hg source locations impacting elevated Hg concentrations. Interpretation of the multivariate model output to sources can be

  16. Chemico-physical models of cometary atmospheres

    International Nuclear Information System (INIS)

    Sublimation (vaporization) of the icy component of a cometary nucleus determines the initial composition of the coma gas as it streams outward and escapes. Photolytic reactions in the inner coma, escape of fast, light species such as atomic and molecular hydrogen, and solar wind interaction in the outer coma alter the chemical composition and the physical nature of the coma gas. Models that describe these interactions must include (1) chemical kinetics, (2) coma energy balance, (3) multifluid flow for the rapidly escaping light components, the heavier bulk fluid, and the plasma with separate temperatures for electrons and the remainder of the gas, (4) transition from a collision dominated inner region to free molecular flow of neutrals in the outer region, (5) pickup of cometary ions by the solar wind, (6) counter and cross streaming of neutrals with respect to the plasma which outside of the contact surface also contains solar wind ions, and (7) magnetic fields carried by the solar wind. Progress on such models is described and results including velocity, temperature, and number density profiles for important chemical species are presented and compared with observations

  17. Atmospheric resuspension of radionuclides. Model testing using Chernobyl data

    International Nuclear Information System (INIS)

    Resuspension can be an important secondary source of contamination after a release has stopped, as well as a source of contamination for people and areas not exposed to the original release. The inhalation of resuspended radionuclides contributes to the overall dose received by exposed individuals. Based on measurements collected after the Chernobyl accident, Scenario R was developed to provide an opportunity to test existing mathematical models of contamination resuspension. In particular, this scenario provided the opportunity to examine data and test models for atmospheric resuspension of radionuclides at several different locations from the release, to investigate resuspension processes on both local and regional scales, and to investigate the importance of seasonal variations of these processes. Participants in the test exercise were provided with information for three different types of locations: (1) within the 30-km zone, where local resuspension processes are expected to dominate; (2) a large urban location (Kiev) 120 km from the release site, where vehicular traffic is expected to be the dominant mechanism for resuspension; and (3) an agricultural area 40-60 km from the release site, where highly contaminated upwind 'hot spots' are expected to be important. Input information included characteristics of the ground contamination around specific sites, climatological data for the sites, characteristics of the terrain and topography, and locations of the sampling sites. Participants were requested to predict the average (quarterly and yearly) concentrations of 137 Cs in air at specified locations due to resuspension of Chernobyl fallout; predictions for 90 Sr and 239 + 240 Pu were also requested for one location and time point. Predictions for specified resuspension factors and rates were also requested. Most participants used empirical models for the resuspension factor as a function of time K(t), as opposed to process-based models. While many of these

  18. A new model on bidirectional reflectance surface-atmospheric coupled radiation

    Institute of Scientific and Technical Information of China (English)

    QIU; Jinhuan; (邱金桓)

    2001-01-01

    An exact and available model on bidirectional reflectance surface-atmospheric coupled radiation is of great significance for spaceborne remote sensing application. Based on the physical process of interaction of solar radiation with the surface and the atmosphere, a new model on bidirectional reflectance surface-atmospheric coupled radiation is developed in this paper. As shown in numerical simulation, this model is evidently better than the 6S model. The standard error among 110112 sets of upward radiance data calculated by this new model is only 0.49%, which is about one fourth of the one by 6S. In the condition of the solar zenith angle qs≤75°and the viewing angle qv≤60°, the error by the new model is usually smaller than 2.5%.

  19. Estimating bacteria emissions from inversion of atmospheric transport: sensitivity to modelled particle characteristics

    OpenAIRE

    S. M. Burrows; Rayner, P. J.; Butler, T; M. G. Lawrence

    2013-01-01

    Model-simulated transport of atmospheric trace components can be combined with observed concentrations to obtain estimates of ground-based sources using various inversion techniques. These approaches have been applied in the past primarily to obtain source estimates for long-lived trace gases such as CO2. We consider the application of similar techniques to source estimation for atmospheric aerosols, using as a case study the estimation of bacteria emissio...

  20. Stable isotope composition of atmospheric carbon monoxide. A modelling study

    International Nuclear Information System (INIS)

    This study aims at an improved understanding of the stable carbon and oxygen isotope composition of the carbon monoxide (CO) in the global atmosphere by means of numerical simulations. At first, a new kinetic chemistry tagging technique for the most complete parameterisation of isotope effects has been introduced into the Modular Earth Submodel System (MESSy) framework. Incorporated into the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model, an explicit treatment of the isotope effects on the global scale is now possible. The expanded model system has been applied to simulate the chemical system containing up to five isotopologues of all carbon- and oxygen-bearing species, which ultimately determine the δ13C, δ18O and Δ17O isotopic signatures of atmospheric CO. As model input, a new stable isotope-inclusive emission inventory for the relevant trace gases has been compiled. The uncertainties of the emission estimates and of the resulting simulated mixing and isotope ratios have been analysed. The simulated CO mixing and stable isotope ratios have been compared to in-situ measurements from ground-based observatories and from the civil-aircraft-mounted CARIBIC-1 measurement platform. The systematically underestimated 13CO/12CO ratios of earlier, simplified modelling studies can now be partly explained. The EMAC simulations do not support the inferences of those studies, which suggest for CO a reduced input of the highly depleted in 13C methane oxidation source. In particular, a high average yield of 0.94 CO per reacted methane (CH4) molecule is simulated in the troposphere, to a large extent due to the competition between the deposition and convective transport processes affecting the CH4 to CO reaction chain intermediates. None of the other factors, assumed or disregarded in previous studies, however hypothesised to have the potential in enriching tropospheric CO in 13C, were found significant when explicitly simulated. The inaccurate surface

  1. Atmospheric multidecadal variations in the North Atlantic realm: proxy data, observations, and atmospheric circulation model studies

    Directory of Open Access Journals (Sweden)

    K. Grosfeld

    2007-01-01

    Full Text Available We investigate the spatial and temporal characteristics of multidecadal climate variability in the North Atlantic realm, using observational data, proxy data and model results. The dominant pattern of multidecadal variability of SST depicts a monopolar structure in the North Atlantic during the instrumental period with cold (warm phases during 1900–1925 and 1970–1990 (1870–1890 and 1940–1960. Two atmospheric general circulation models of different complexity forced with global SST over the last century show SLP anomaly patterns from the warm and cold phases of the North Atlantic similar to the corresponding observed patterns. The analysis of a sediment core from Cariaco Basin, a coral record from the northern Red Sea, and a long-term sea level pressure (SLP reconstruction reveals that the multidecadal mode of the atmospheric circulation characterizes climate variability also in the pre-industrial era. The analyses of SLP reconstruction and proxy data depict a persistent atmospheric mode at least over the last 300 years, where SLP shows a dipolar structure in response to monopolar North Atlantic SST, in a similar way as the models' responses do. The combined analysis of observational and proxy data with model experiments provides an understanding of multidecadal climate modes during the late Holocene. The related patterns are useful for the interpretation of proxy data in the North Atlantic realm.

  2. Atmospheric multidecadal variations in the North Atlantic realm: proxy data, observations, and atmospheric circulation model studies

    Directory of Open Access Journals (Sweden)

    K. Grosfeld

    2006-08-01

    Full Text Available We investigate the spatial and temporal characteristics of multidecadal climate variability in the North Atlantic realm, using observational data, proxy data and model results. The dominant pattern of multidecadal variability of SST depicts a monopolar structure in the North Atlantic during the instrumental period with cold (warm phases during 1900–1925 and 1970–1990 (1870–1890 and 1940–1960. Two atmospheric general circulation models of different complexity forced with global SST over the last century show SLP anomaly patterns from the warm and cold phases of the North Atlantic similar to the corresponding observed patterns. The analysis of a sediment core from Cariaco Basin, a coral record from the northern Red Sea, and a long-term sea level pressure (SLP reconstruction reveals that the multidecadal mode of the atmospheric circulation characterizes climate variability also in the pre-industrial era. The analyses of SLP reconstruction and proxy data depict a persistent atmospheric mode at least over the last 300 years, where SLP shows a dipolar structure in response to monopolar North Atlantic SST, in a similar way as the models' responses do. The combined analysis of observational and proxy data with model experiments provides an understanding of multidecadal climate modes during the late Holocene. The related patterns are useful for the interpretation of proxy data in the North Atlantic realm.

  3. Upconversion-based lidar measurements of atmospheric CO2

    DEFF Research Database (Denmark)

    Høgstedt, Lasse; Fix, Andreas; Wirth, Martin;

    2016-01-01

    For the first time an upconversion based detection scheme is demonstrated for lidar measurements of atmospheric CO2-concentrations, with a hard target at a range of 3 km and atmospheric backscatter from a range of similar to 450 m. The pulsed signals at 1572 nm are upconverted to 635 nm, and dete...... analyzed how the field-of-view of a receiver system, for long range detection, depends critically on the parameters for the nonlinear upconversion process, and how to optimize these parameters in future systems. (C) 2016 Optical Society of America...

  4. Performance examination of atmospheric model at seacoast region

    International Nuclear Information System (INIS)

    A three-dimensional numerical atmospheric model (PHYSIC) was developed to apply it to atmospheric transport and diffusion evaluation. The main frame of PHYSIC is made up of momentum equations with the hydrostatic and Boussinesq approximation, the second-order turbulence closure model level 2.5 and other basic equations of physical process in the atmosphere. A terrain following z* coordinate system is used. The calculation results at a coastal plain were examined using meteorological data observed during atmospheric diffusion experiments at Tokai in 1983. The present model successfully predicts the temporal change of wind field within 20 h from evening to next noon and the occurrence and structure of sea breeze are simulated satisfactorily. The model performance concerning the structure of sea breeze and the distribution of eddy diffusivities is thought to be reasonable, although the direct comparison between calculation and observation is restricted to wind and temperature profiles by limited observation data. Further examination of model performance relating to above items, and over mountainous region, will be needed. (author)

  5. Atomistic modeling of carbon Cottrell atmospheres in bcc iron

    International Nuclear Information System (INIS)

    Atomistic simulations with an EAM interatomic potential were used to evaluate carbon-dislocation binding energies in bcc iron. These binding energies were then used to calculate the occupation probability of interstitial sites in the vicinity of an edge and a screw dislocation. The saturation concentration due to carbon-carbon interactions was also estimated by atomistic simulations in the dislocation core and taken as an upper limit for carbon concentration in a Cottrell atmosphere. We obtained a maximum concentration of 10 ± 1 at.% C at T = 0 K within a radius of 1 nm from the dislocation lines. The spatial carbon distributions around the line defects revealed that the Cottrell atmosphere associated with an edge dislocation is denser than that around a screw dislocation, in contrast with the predictions of the classical model of Cochardt and colleagues. Moreover, the present Cottrell atmosphere model is in reasonable quantitative accord with the three-dimensional atom probe data available in the literature.

  6. Tropical cyclone-ocean interaction in Typhoon Megi (2010)—A synergy study based on ITOP observations and atmosphere-ocean coupled model simulations

    Science.gov (United States)

    Wu, Chun-Chieh; Tu, Wei-Tsung; Pun, Iam-Fei; Lin, I.-I.; Peng, Melinda S.

    2016-01-01

    A mesoscale model coupling the Weather Research and Forecasting model and the three-dimensional Price-Weller-Pinkel ocean model is used to investigate the dynamical ocean response to Megi (2010). It is found that Megi induces sea surface temperature (SST) cooling very differently in the Philippine Sea (PS) and the South China Sea (SCS). The results are compared to the in situ measurements from the Impact of Typhoons on the Ocean in the Pacific (ITOP) 2010 field experiment, satellite observations, and ocean analysis field from Eastern Asian Seas Ocean Nowcast/Forecast System of the U.S. Naval Research Laboratory. The uncoupled and coupled experiments simulate relatively accurately the track and intensity of Megi over PS; however, the simulated intensity of Megi over SCS varies significantly among the experiments. Only the experiment coupled with three-dimensional ocean processes, which generates rational SST cooling, reasonably simulates the storm intensity in SCS. Our results suggest that storm translation speed and upper ocean thermal structure are two main factors responsible for Megi's distinct different impact over PS and over SCS. In addition, it is shown that coupling with one-dimensional ocean process (i.e., only vertical mixing process) is not enough to provide sufficient ocean response, especially under slow translation speed (~2-3 m s-1), during which vertical advection (or upwelling) is significant. Therefore, coupling with three-dimensional ocean processes is necessary and crucial for tropical cyclone forecasting. Finally, the simulation results show that the stable boundary layer forms on top of the Megi-induced cold SST area and increases the inflow angle of the surface wind.

  7. Observations and Modeling of Solar Flare Atmospheric Dynamics

    Science.gov (United States)

    Li, Y.

    2015-09-01

    Solar flares are one of the most energetic events in solar atmosphere, which last minutes to tens of minutes. The eruption of a solar flare involves energy release, plasma heating, particle acceleration, mass flows, waves, etc. A solar flare releases a large amount of energy, and its emission spans a wide wavelength range. Solar flares are usually accompanied by coronal mass ejections (CMEs); therefore they could significantly affect the space environments between the Earth and the Sun. At present, we do not fully understand the whole flare process. There are still many important questions to be resolved, such as when and where is the energy released? How long does the energy release last? What are the main ways of energy release? And how does the solar atmosphere respond to the energy release? To address these questions, we study in detail the flare heating and dynamic evolution. We first give a brief review of previous flare studies (Chapter 1), and introduce the observing instruments (Chapter 2) and the modeling method (Chapter 3) related to this thesis work. Then we use spectral data to investigate the chromospheric evaporation (Chapter 4). Based on the results, we further explore the flare heating problem. With observationally inferred heating functions, we model two flare loops, and compare the results with observations (Chapter 5). A consistency is achieved between modeling and observations. In addition, we model two different sets of flare loop systems with quite different heating profiles and dynamic evolutions (Chapter 6). The details are described as below. Firstly, we investigate the chromospheric evaporation in the flare on 2007 January 16 using line profiles observed by the Extreme-ultraviolet (EUV) Imaging Spectrometer (EIS) on board Hinode. Three points with different magnetic polarities at flare ribbons are analyzed in detail. We find that the three points show different patterns of upflows and downflows in the impulsive phase of the flare. The

  8. Evaluation of atmospheric density models and preliminary functional specifications for the Langley Atmospheric Information Retrieval System (LAIRS)

    Science.gov (United States)

    Lee, T.; Boland, D. F., Jr.

    1980-01-01

    This document presents the results of an extensive survey and comparative evaluation of current atmosphere and wind models for inclusion in the Langley Atmospheric Information Retrieval System (LAIRS). It includes recommended models for use in LAIRS, estimated accuracies for the recommended models, and functional specifications for the development of LAIRS.

  9. A new model for atmospheric oxygen over Phanerozoic time.

    Science.gov (United States)

    Berner, R A; Canfield, D E

    1989-04-01

    Late Carboniferous and Permian periods O2 was higher than previously because of the rise of vascular land plants and the widespread burial of organic matter in vast coal swamps. A large decrease in O2 during the Late Permian was due probably to the drying-up of the coal swamps and deposition of a large proportion of total sediment in C and S-free continental red beds. Sensitivity study shows that major parameters affecting results are the mean C concentration in coal basins and the relative sizes of the reservoirs of young (rapidly recycled) versus old rocks. Less sensitivity was found for changes over time in total land area undergoing weathering and the use of direct O2 negative feedback on marine carbon burial. Good agreement for rates of C burial calculated via our model and via independent models, which are based on the use of stable carbon isotopes, indicates that the dominant factor that has brought about changes in atmospheric O2 level (and the isotopic composition of dissolved inorganic carbon in seawater) over Phanerozoic time is sedimentation and not weathering or higher temperature phenomena such as basalt-seawater reaction. PMID:11539776

  10. Lagrangian modeling of global atmospheric methane (1990-2012)

    Science.gov (United States)

    Arfeuille, Florian; Henne, Stephan; Brunner, Dominik

    2016-04-01

    In the MAIOLICA-II project, the lagrangian particle model FLEXPART is used to simulate the global atmospheric methane over the 1990-2012 period. In this lagrangian framework, 3 million particles are permanently transported based on winds from ERA-interim. The history of individual particles can be followed allowing for a comprehensive analysis of transport pathways and timescales. The link between sources (emissions) and receptors (measurement stations) is then established in a straightforward manner, a prerequisite for source inversion problems. FLEXPART was extended to incorporate the methane loss by reaction with OH, soil uptake and stratospheric loss reactions with prescribed Cl and O(1d) radicals. Sources are separated into 245 different tracers, depending on source origin (anthropogenic, wetlands, rice, biomass burning, termites, wild animals, oceans, volcanoes), region of emission, and time since emission (5 age classes). The inversion method applied is a fixed-lag Kalman smoother similar to that described in Bruhwiler et al. [2005]. Results from the FLEXPART global methane simulation and from the subsequent inversion will be presented. Results notably suggest: - A reduction in methane growth rates due to diminished wetland emissions and anthropogenic European emission in 1990-1993. - A second decrease in 1995-1996 is also mainly attributed to these two emission categories. - A reduced increase in Chinese anthropogenic emissions after 2003 compared to EDGAR inventories. - Large South American wetlands emissions during the entire period. Bruhwiler, L. M. P., Michalak, A. M., Peters, W., Baker, D. F. & Tans, P. 2005: An improved Kalman smoother fore atmospheric inversions, Atmos Chem Phys, 5, 2691-2702.

  11. Aeolian dunes as ground truth for atmospheric modeling on Mars

    Science.gov (United States)

    Hayward, R.K.; Titus, T.N.; Michaels, T.I.; Fenton, L.K.; Colaprete, A.; Christensen, P.R.

    2009-01-01

    Martian aeolian dunes preserve a record of atmosphere/surface interaction on a variety of scales, serving as ground truth for both Global Climate Models (GCMs) and mesoscale climate models, such as the Mars Regional Atmospheric Modeling System (MRAMS). We hypothesize that the location of dune fields, expressed globally by geographic distribution and locally by dune centroid azimuth (DCA), may record the long-term integration of atmospheric activity across a broad area, preserving GCM-scale atmospheric trends. In contrast, individual dune morphology, as expressed in slipface orientation (SF), may be more sensitive to localized variations in circulation, preserving topographically controlled mesoscale trends. We test this hypothesis by comparing the geographic distribution, DCA, and SF of dunes with output from the Ames Mars GCM and, at a local study site, with output from MRAMS. When compared to the GCM: 1) dunes generally lie adjacent to areas with strongest winds, 2) DCA agrees fairly well with GCM modeled wind directions in smooth-floored craters, and 3) SF does not agree well with GCM modeled wind directions. When compared to MRAMS modeled winds at our study site: 1) DCA generally coincides with the part of the crater where modeled mean winds are weak, and 2) SFs are consistent with some weak, topographically influenced modeled winds. We conclude that: 1) geographic distribution may be valuable as ground truth for GCMs, 2) DCA may be useful as ground truth for both GCM and mesoscale models, and 3) SF may be useful as ground truth for mesoscale models. Copyright 2009 by the American Geophysical Union.

  12. Empirical corrections for atmospheric neutral density derived from thermospheric models

    Science.gov (United States)

    Forootan, Ehsan; Kusche, Jürgen; Börger, Klaus; Henze, Christina; Löcher, Anno; Eickmans, Marius; Agena, Jens

    2016-04-01

    Accurately predicting satellite positions is a prerequisite for various applications from space situational awareness to precise orbit determination (POD). Given the fact that atmospheric drag represents a dominant influence on the position of low-Earth orbit objects, an accurate evaluation of thermospheric mass density is of great importance to low Earth orbital prediction. Over decades, various empirical atmospheric models have been developed to support computation of density changes within the atmosphere. The quality of these models is, however, restricted mainly due to the complexity of atmospheric density changes and the limited resolution of indices used to account for atmospheric temperature and neutral density changes caused by solar and geomagnetic activity. Satellite missions, such as Challenging Mini-Satellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE), provide a direct measurement of non-conservative accelerations, acting on the surface of satellites. These measurements provide valuable data for improving our knowledge of thermosphere density and winds. In this paper we present two empirical frameworks to correct model-derived neutral density simulations by the along-track thermospheric density measurements of CHAMP and GRACE. First, empirical scale factors are estimated by analyzing daily CHAMP and GRACE acceleration measurements and are used to correct the density simulation of Jacchia and MSIS (Mass-Spectrometer-Incoherent-Scatter) thermospheric models. The evolution of daily scale factors is then related to solar and magnetic activity enabling their prediction in time. In the second approach, principal component analysis (PCA) is applied to extract the dominant modes of differences between CHAMP/GRACE observations and thermospheric model simulations. Afterwards an adaptive correction procedure is used to account for long-term and high-frequency differences. We conclude the study by providing recommendations on possible

  13. Hydrodynamic model atmospheres for WR stars: Self-consistent modeling of a WC star wind

    CERN Document Server

    Gräfener, G

    2004-01-01

    We present the first non-LTE atmosphere models for WR stars that incorporate a self-consistent solution of the hydrodynamic equations. The models account for iron-group line-blanketing and clumping, and compute the hydrodynamic structure of a radiatively driven wind consistently with the non-LTE radiation transport in the co-moving frame. We construct a self-consistent wind model that reproduces all observed properties of an early-type WC star (WC5). We find that the WR-type mass-loss is initiated at high optical depth by the so-called `Hot Iron Bump' opacities (Fe IX-XVI). The acceleration of the outer wind regions is performed by iron-group ions of lower excitation in combination with C and O. Consequently, the wind structure shows two acceleration regions, one close to the hydrostatic wind base in the optically thick part of the atmosphere, and another farther out in the wind. In addition to the radiative acceleration, the `Iron Bump' opacities are responsible for an intense heating of deep atmospheric lay...

  14. An Exercise in Modelling Using the US Standard Atmosphere

    Science.gov (United States)

    LoPresto, Michael C.; Jacobs, Diane A.

    2007-01-01

    In this exercise the US Standard Atmosphere is used as "data" that a student is asked to model by deriving equations to reproduce it with the help of spreadsheet and graphing software. The exercise can be used as a laboratory or an independent study for a student of introductory physics to provide an introduction to scientific research methods…

  15. Normal seasonal variations for atmospheric radon concentration: a sinusoidal model

    International Nuclear Information System (INIS)

    Anomalous radon readings in air have been reported before an earthquake activity. However, careful measurements of atmospheric radon concentrations during a normal period are required to identify anomalous variations in a precursor period. In this study, we obtained radon concentration data for 5 years (2003–2007) that can be considered a normal period and compared it with data from the precursory period of 2008 until March 2011, when the 2011 Tohoku-Oki Earthquake occurred. Then, we established a model for seasonal variation by fitting a sinusoidal model to the radon concentration data during the normal period, considering that the seasonal variation was affected by atmospheric turbulence. By determining the amplitude in the sinusoidal model, the normal variation of the radon concentration can be estimated. Thus, the results of this method can be applied to identify anomalous radon variations before an earthquake. - Highlights: • Normal seasonal variation of the atmospheric radon concentration was determined by accurately fitting with a sinusoidal model. • The seasonal variation in data was affected by atmospheric turbulence. • The normal radon pattern was used to extract precursory changes before earthquakes

  16. THREE-DIMENSIONAL MODELING OF HOT JUPITER ATMOSPHERIC FLOWS

    International Nuclear Information System (INIS)

    We present a three-dimensional hot Jupiter model, extending from 200 bar to 1 mbar, using the Intermediate General Circulation Model from the University of Reading. Our horizontal spectral resolution is T31 (equivalent to a grid of 48 x 96), with 33 logarithmically spaced vertical levels. A simplified (Newtonian) scheme is employed for the radiative forcing. We adopt a physical setup nearly identical to the model of HD 209458b by Cooper and Showman to facilitate a direct model inter-comparison. Our results are broadly consistent with theirs but significant differences also emerge. The atmospheric flow is characterized by a super-rotating equatorial jet, transonic wind speeds, and eastward advection of heat away from the dayside. We identify a dynamically induced temperature inversion ('stratosphere') on the planetary dayside and find that temperatures at the planetary limb differ systematically from local radiative equilibrium values, a potential source of bias for transit spectroscopic interpretations. While our model atmosphere is quasi-identical to that of Cooper and Showman and we solve the same meteorological equations, we use different algorithmic methods, spectral-implicit versus grid-explicit, which are known to yield fully consistent results in the Earth modeling context. The model discrepancies identified here indicate that one or both numerical methods do not faithfully capture all of the atmospheric dynamics at work in the hot Jupiter context. We highlight the emergence of a shock-like feature in our model, much like that reported recently by Showman et al., and suggest that improved representations of energy conservation may be needed in hot Jupiter atmospheric models, as emphasized by Goodman.

  17. Modeling of the chemical behavior of sodium fire aerosols during atmospheric dispersion

    International Nuclear Information System (INIS)

    Conclusions: • Development of a preliminary kinetic model of NaOH aerosols carbonation based on the shrinking core model for chemical and physical evolutions with transfer time during atmospheric dispersion -> These kinetic models can be implemented in atmospheric dispersion code to calculate mass concentration evolution of each compound. • Validation of kinetic control by internal diffusion of CO2 into solid Na2CO3 external layer by non-dimensional criteria analysis. • First validation of theoretical calculations with available experimental results -> correct results for small aerosols sizes (< 1 μm) but further improvements and validations are required to describe larger particles behavior

  18. Atmospheric dispersion models help to improve air quality; Los modelos de dispersion atmosferica ayudan a mejorar la calidad del aire

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.

    2013-07-01

    One of the main challenges of the atmospheric sciences is to reproduce as well as possible the phenomena and processes of pollutants in the atmosphere. To do it, mathematical models based in this case on fluid dynamics and mass and energy conservation equations, equations that govern the atmospheric chemistry, etc., adapted to the spatial scales to be simulated, are developed. The dispersion models simulate the processes of transport, dispersion, chemical transformation and elimination by deposition that air pollutants undergo once they are emitted. Atmospheric dispersion models with their multiple applications have become essential tools for the air quality management. (Author)

  19. Estimation of Atmospheric Path Delays in TerraSAR-X Data using Models vs. Measurements

    Directory of Open Access Journals (Sweden)

    Donat Perler

    2008-12-01

    Full Text Available Spaceborne synthetic aperture radar (SAR measurements of the Earth’s surface depend on electromagnetic waves that are subject to atmospheric path delays, in turn affecting geolocation accuracy. The atmosphere influences radar signal propagation by modifying its velocity and direction, effects which can be modeled. We use TerraSAR-X (TSX data to investigate improvements in the knowledge of the scene geometry. To precisely estimate atmospheric path delays, we analyse the signal return of four corner reflectors with accurately surveyed positions (based on differential GPS, placed at different altitudes yet with nearly identical slant ranges to the sensor. The comparison of multiple measurements with path delay models under these geometric conditions also makes it possible to evaluate the corrections for the atmospheric path delay made by the TerraSAR processor and to propose possible improvements.

  20. A Review of Water Isotopes in Atmospheric General Circulation Models: Recent Advances and Future Prospects

    Directory of Open Access Journals (Sweden)

    Xi Xi

    2014-01-01

    Full Text Available Stable water isotopologues, mainly 1H2O, 1H2HO (HDO, and H12O18, are useful tracers for processes in the global hydrological cycle. The incorporation of water isotopes into Atmospheric General Circulation Models (AGCMs since 1984 has helped scientists gain substantial new insights into our present and past climate. In recent years, there have been several significant advances in water isotopes modeling in AGCMs. This paper reviews and synthesizes key advances accomplished in modeling (1 surface evaporation, (2 condensation, (3 supersaturation, (4 postcondensation processes, (5 vertical distribution of water isotopes, and (6 spatial δ18O-temperature slope and utilizing (1 spectral nudging technique, (2 higher model resolutions, and (3 coupled atmosphere-ocean models. It also reviews model validation through comparisons of model outputs and ground-based and spaceborne measurements. In the end, it identifies knowledge gaps and discusses future prospects of modeling and model validation.

  1. Atmospheric Absorption Models for the Millimeter Wave Range

    OpenAIRE

    Kuhn, Thomas

    2003-01-01

    This thesis deals with absorption models of water vapor, oxygen and nitrogen which are part of the Atmospheric Radiative Transfer System, ARTS, which is a joint development of the Department of Radio and Space Science, Chalmers University of Technology, Göteborg and the Institute of Environmental Physics, University of Bremen. ARTS is designed to be used in remotely sensed data analysis. Since the absorption models are embedded in the broader frame of the radiative transfer equation, the main...

  2. Modeling atmospheric effects of the September 1859 Solar Flare

    OpenAIRE

    Thomas, Brian; Jackman, Charles; Melott, Adrian

    2006-01-01

    We have modeled atmospheric effects, especially ozone depletion, due to a solar proton event which probably accompanied the extreme magnetic storm of 1-2 September 1859. We use an inferred proton fluence for this event as estimated from nitrate levels in Greenland ice cores. We present results showing production of odd nitrogen compounds and their impact on ozone. We also compute rainout of nitrate in our model and compare to values from ice core data.

  3. Atmospheric Climate Model Experiments Performed at Multiple Horizontal Resolutions

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, T; Bala, G; Gleckler, P; Lobell, D; Mirin, A; Maxwell, R; Rotman, D

    2007-12-21

    This report documents salient features of version 3.3 of the Community Atmosphere Model (CAM3.3) and of three climate simulations in which the resolution of its latitude-longitude grid was systematically increased. For all these simulations of global atmospheric climate during the period 1980-1999, observed monthly ocean surface temperatures and sea ice extents were prescribed according to standard Atmospheric Model Intercomparison Project (AMIP) values. These CAM3.3 resolution experiments served as control runs for subsequent simulations of the climatic effects of agricultural irrigation, the focus of a Laboratory Directed Research and Development (LDRD) project. The CAM3.3 model was able to replicate basic features of the historical climate, although biases in a number of atmospheric variables were evident. Increasing horizontal resolution also generally failed to ameliorate the large-scale errors in most of the climate variables that could be compared with observations. A notable exception was the simulation of precipitation, which incrementally improved with increasing resolution, especially in regions where orography plays a central role in determining the local hydroclimate.

  4. A comparison of Gaussian and diffusivity models of atmospheric dispersion

    International Nuclear Information System (INIS)

    The Gaussian plume diffusion model of Smith and a diffusivity model by Maul are compared over the full range of atmospheric stability. The models' predictions for ground level concentration are found to agree well a) for ground level releases of materials, and b) for elevated releases of material at distances comparable to or greater than the distance of maximum ground level concentration. Surface layer, ground roughness, and dry deposition effects are examined and a simple ground deposition model used in the Gaussian plume model is found to be adequate over most of the stability range. Uncertainties due to the models themselves and the meteorological input data are estimated and the advantages and limitations of both types of model are discussed. It is concluded that the models are suitable for a variety of applications and that they are fast and inexpensive to run as computer models. (author)

  5. Coupled atmosphere-wildland fire modeling with WRF-Fire

    CERN Document Server

    Mandel, Jan; Kochanski, Adam K

    2011-01-01

    We describe the physical model, numerical algorithms, and software structure of WRF-Fire. WRF-Fire consists of a fire-spread model, implemented by the level-set method, coupled with the Weather Research and Forecasting model. In every time step, the fire model inputs the surface wind, which drives the fire, and outputs the heat flux from the fire into the atmosphere, which in turn influences the weather. The level-set method allows submesh representation of the burning region and flexible implementation of various ignition modes. WRF-Fire is distributed as a part of WRF and it uses the WRF parallel infrastructure for parallel computing.

  6. Development of an Accurate Urban Modeling System Using CAD/GIS Data for Atmosphere Environmental Simulation

    Institute of Scientific and Technical Information of China (English)

    Tomosato Takada; Kazuo Kashiyama

    2008-01-01

    This paper presents an urban modeling system using CAD/GIS data for atmosphere environ- mental simulation, such as wind flow and contaminant spread in urban area. The CAD data is used for the shape modeling for the high-storied buildings and civil structures with complicated shape since the data for that is not included in the 3D-GIS data accurately. The unstructured mesh based on the tetrahedron element is employed in order to express the urban structures with complicated shape accurately. It is difficult to un- derstand the quality of shape model and mesh by the conventional visualization technique. In this paper, the stereoscopic visualization using virtual reality (VR) technology is employed for the vedfication of the quality of shape model and mesh. The present system is applied to the atmosphere environmental simulation in ur- ban area and is shown to be an useful planning and design tool to investigate the atmosphere environmental problem.

  7. Evaluation of wetland methane emissions across North America using atmospheric data and inverse modeling

    Science.gov (United States)

    Miller, Scot M.; Commane, Roisin; Melton, Joe R.; Andrews, Arlyn E.; Benmergui, Joshua; Dlugokencky, Edward J.; Janssens-Maenhout, Greet; Michalak, Anna M.; Sweeney, Colm; Worthy, Doug E. J.

    2016-03-01

    Existing estimates of methane (CH4) fluxes from North American wetlands vary widely in both magnitude and distribution. In light of these differences, this study uses atmospheric CH4 observations from the US and Canada to analyze seven different bottom-up, wetland CH4 estimates reported in a recent model comparison project. We first use synthetic data to explore whether wetland CH4 fluxes are detectable at atmospheric observation sites. We find that the observation network can detect aggregate wetland fluxes from both eastern and western Canada but generally not from the US. Based upon these results, we then use real data and inverse modeling results to analyze the magnitude, seasonality, and spatial distribution of each model estimate. The magnitude of Canadian fluxes in many models is larger than indicated by atmospheric observations. Many models predict a seasonality that is narrower than implied by inverse modeling results, possibly indicating an oversensitivity to air or soil temperatures. The LPJ-Bern and SDGVM models have a geographic distribution that is most consistent with atmospheric observations, depending upon the region and season. These models utilize land cover maps or dynamic modeling to estimate wetland coverage while most other models rely primarily on remote sensing inundation data.

  8. A New Laser Based Approach for Measuring Atmospheric Greenhouse Gases

    OpenAIRE

    2013-01-01

    In 2012, we developed a proof-of-concept system for a new open-path laser absorption spectrometer concept for measuring atmospheric CO2. The measurement approach utilizes high-reliability all-fiber-based, continuous-wave laser technology, along with a unique all-digital lock-in amplifier method that, together, enables simultaneous transmission and reception of multiple fixed wavelengths of light. This new technique, which utilizes very little transmitted energy relative to conventional lidar ...

  9. Objectives for next generation of practical short-range atmospheric dispersion models

    International Nuclear Information System (INIS)

    The proceedings contains papers from the workshop ''Objectives for Next Generation of Practical Short-Range Atmospheric Dispersion Models''. They deal with two types of models, namely models for regulatory purposes and models for real-time applications. The workshop was the result of an action started in 1991 for increased cooperation and harmonization within atmospheric dispersion modelling. The focus of the workshop was on the management of model development and the definition of model objectives, rather than on detailed model contents. It was the intention to identify actions that can be taken in order to improve the development and use of atmospheric dispersion models. The papers in the proceedings deal with various topics within the broad spectrum of matters related to up-to-date practical models, such as their scientific basis, requirements for model input and output, meteorological preprocessing, standardisation within modelling, electronic information exchange as a potentially useful tool, model evaluation and data bases for model evaluation. In addition to the papers, the proceedings contain summaries of the discussions at the workshop. These summaries point to a number of recommended actions which can be taken in order to improve ''modelling culture''. (AB)

  10. Evaluation of Atmospheric Loading and Improved Troposphere Modelling

    Science.gov (United States)

    Zelensky, Nikita P.; Chinn, Douglas S.; Lemoine, F. G.; Le Bail, Karine; Pavlis, Despina E.

    2012-01-01

    Forward modeling of non-tidal atmospheric loading displacements at geodetic tracking stations have not routinely been included in Doppler Orbitography and Radiopositionning Integrated by Satellite (DORIS) or Satellite Laser Ranging (SLR) station analyses for either POD applications or reference frame determination. The displacements which are computed from 6-hourly models such as the ECMWF and can amount to 3-10 mm in the east, north and up components depending on the tracking station locations. We evaluate the application of atmospheric loading in a number ways using the NASA GSFC GEODYN software: First we assess the impact on SLR & DORIS-determined orbits such as Jason-2, where we evaluate the impact on the tracking data RMS of fit and how the total orbits are changed with the application of this correction. Preliminary results show an RMS radial change of 0.5 mm for Jason-2 over 54 cycles and a total change in the Z-centering of the orbit of 3 mm peak-to-peak over one year. We also evaluate the effects on other DORIS-satellites such as Cryosat-2, Envisat and the SPOT satellites. In the second step, we produce two SINEX time series based on data from available DORIS satellites and assess the differences in WRMS, scale and Helmert translation parameters. Troposphere refraction is obviously an important correction for radiometric data types such as DORIS. We evaluate recent improvements in DORIS processing at GSFC including the application of the Vienna Mapping Function (VMF1) grids with a-priori hydrostatic (VZHDs) and wet (VZWDs) zenith delays. We reduce the gridded VZHD at the stations height using pressure and temperature derived from GPT (strategy 1) and Saastamoinen. We discuss the validation of the VMF1 implementation and its application to the Jason-2 POD processing, compared to corrections using the Niell mapping function and the GMF. Using one year of data, we also assess the impact of the new troposphere corrections on the DORIS-only solutions, most

  11. Improved Meteorological Input for Atmospheric Release Decision support Systems and an Integrated LES Modeling System for Atmospheric Dispersion of Toxic Agents: Homeland Security Applications

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, E; Simpson, M; Larsen, S; Gash, J; Aluzzi, F; Lundquist, J; Sugiyama, G

    2010-04-26

    When hazardous material is accidently or intentionally released into the atmosphere, emergency response organizations look to decision support systems (DSSs) to translate contaminant information provided by atmospheric models into effective decisions to protect the public and emergency responders and to mitigate subsequent consequences. The Department of Homeland Security (DHS)-led Interagency Modeling and Atmospheric Assessment Center (IMAAC) is one of the primary DSSs utilized by emergency management organizations. IMAAC is responsible for providing 'a single piont for the coordination and dissemination of Federal dispersion modeling and hazard prediction products that represent the Federal position' during actual or potential incidents under the National Response Plan. The Department of Energy's (DOE) National Atmospheric Release Advisory Center (NARAC), locatec at the Lawrence Livermore National Laboratory (LLNL), serves as the primary operations center of the IMAAC. A key component of atmospheric release decision support systems is meteorological information - models and data of winds, turbulence, and other atmospheric boundary-layer parameters. The accuracy of contaminant predictions is strongly dependent on the quality of this information. Therefore, the effectiveness of DSSs can be enhanced by improving the meteorological options available to drive atmospheric transport and fate models. The overall goal of this project was to develop and evaluate new meteorological modeling capabilities for DSSs based on the use of NASA Earth-science data sets in order to enhance the atmospheric-hazard information provided to emergency managers and responders. The final report describes the LLNL contributions to this multi-institutional effort. LLNL developed an approach to utilize NCAR meteorological predictions using NASA MODIS data for the New York City (NYC) region and demonstrated the potential impact of the use of different data sources and data

  12. Detailed atmosphere modelling for the neutron star 1E1207.4-5209: Evidence of Oxygen/Neon atmosphere

    OpenAIRE

    Mori, Kaya; Hailey, Charles J,

    2003-01-01

    We present a comprehensive investigation of the two broad absorption features observed in the X-ray spectrum of the neutron star 1E1207.4-5209 based on a recent analysis of the 260 ksec XMM-Newton data by Mori et al. 2005. Expanding on our earlier work (Hailey & Mori 2002) we have examined all previously proposed atmospheric models for 1E1207.4-5209. Using our atomic code, which rapidly solves Schrodinger's equation for arbitrary ion in strong magnetic field (Mori & Hailey 2002), we have syst...

  13. Advanced InSAR atmospheric correction: MERIS/MODIS combination and stacked water vapour models

    OpenAIRE

    Z. Li; Fielding, E.; Cross, P; R. Preusker

    2009-01-01

    A major source of error for repeat-pass Interferometric Synthetic Aperture Radar (InSAR) is the phase delay in radio signal propagation through the atmosphere (especially the part due to tropospheric water vapour). Based on experience with the Global Positioning System (GPS)/Moderate Resolution Imaging Spectroradiometer (MODIS) integrated model and the Medium Resolution Imaging Spectrometer (MERIS) correction model, two new advanced InSAR water vapour correction models are demonstrated using ...

  14. The global change research center atmospheric chemistry model

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, F.P. Jr.

    1995-01-01

    This work outlines the development of a new model of the chemistry of the natural atmosphere. The model is 2.5-dimensional, having spatial coordinates height, latitude, and, the half-dimension, land and ocean. The model spans both the troposphere and stratosphere, although the troposphere is emphasized and the stratosphere is simple and incomplete. The chemistry in the model includes the O{sub x}, HO{sub x}, NO{sub x}, and methane cycles in a highly modular fashion which allows model users great flexibility in selecting simulation parameters. A detailed modeled sensitivity analysis is also presented. A key aspect of the model is its inclusion of clouds. The model uses current understanding of the distribution and optical thickness of clouds to determine the true radiation distribution in the atmosphere. As a result, detailed studies of the radiative effects of clouds on the distribution of both oxidant concentrations and trace gas removal are possible. This work presents a beginning of this study with model results and discussion of cloud effects on the hydroxyl radical.

  15. Atmospheric mercury dispersion modelling from two nearest hypothetical point sources

    Directory of Open Access Journals (Sweden)

    Khandakar Md Habib Al Razi, Moritomi Hiroshi, Kambara Shinji

    2012-01-01

    Full Text Available The Japan coastal areas are still environmentally friendly, though there are multiple air emission sources originating as a consequence of several developmental activities such as automobile industries, operation of thermal power plants, and mobile-source pollution. Mercury is known to be a potential air pollutant in the region apart from SOX, NOX, CO and Ozone. Mercury contamination in water bodies and other ecosystems due to deposition of atmospheric mercury is considered a serious environmental concern. Identification of sources contributing to the high atmospheric mercury levels will be useful for formulating pollution control and mitigation strategies in the region. In Japan, mercury and its compounds were categorized as hazardous air pollutants in 1996 and are on the list of "Substances Requiring Priority Action" published by the Central Environmental Council of Japan. The Air Quality Management Division of the Environmental Bureau, Ministry of the Environment, Japan, selected the current annual mean environmental air quality standard for mercury and its compounds of 0.04 μg/m3. Long-term exposure to mercury and its compounds can have a carcinogenic effect, inducing eg, Minamata disease. This study evaluates the impact of mercury emissions on air quality in the coastal area of Japan. Average yearly emission of mercury from an elevated point source in this area with background concentration and one-year meteorological data were used to predict the ground level concentration of mercury. To estimate the concentration of mercury and its compounds in air of the local area, two different simulation models have been used. The first is the National Institute of Advanced Science and Technology Atmospheric Dispersion Model for Exposure and Risk Assessment (AIST-ADMER that estimates regional atmospheric concentration and distribution. The second is the Hybrid Single Particle Lagrangian Integrated trajectory Model (HYSPLIT that estimates the

  16. An evaluation of the simulated bare soil evaporation of an atmospheric model

    Science.gov (United States)

    Schulz, Jan-Peter; Vogel, Gerd

    2016-04-01

    Land surface processes have a significant impact on near-surface atmospheric phenomena. They determine, among others, near-surface sensible and latent heat fluxes and the radiation budget, and thus influence atmosphere and land characteristics, such as temperature and humidity, the structure of the planetary boundary layer, and even cloud formation processes. It is therefore important to simulate the land surface processes in atmospheric models as realistically as possible. Verifications have shown that the bare soil evaporation computed by the land surface scheme TERRA of the COSMO atmospheric model is systematically overestimated. Since this flux is part of the surface water and energy balance it affects, for instance, the other components of the turbulent heat fluxes as well as the soil water content and the surface temperature. Data from the Meteorological Observatory Lindenberg of the German Meteorological Service were used to analyse this model behaviour. In the standard model configuration of TERRA, the formulation of bare soil evaporation is based on the Biosphere Atmosphere Transfer Scheme (BATS), following the work by R. E. Dickinson. In order to reduce the excessive evaporation simulated by BATS, other formulations for the bare soil evaporation were tested in TERRA. In turned out that a scheme based on a resistance formulation efficiently reduces the simulated vapour flux, leading to a better agreement with the measurements.

  17. Linking Hydrology and Atmospheric Sciences in Continental Water Dynamics Modeling

    Science.gov (United States)

    David, C. H.; Gochis, D. J.; Maidment, D. R.; Wilhelmi, O.

    2006-12-01

    Atmospheric observation and model output datasets as well as hydrologic datasets are increasingly becoming available on a continental scale. Although the availability of these datasets could allow large-scale water dynamics modeling, the different objects and semantics used in atmospheric science and hydrology set barriers to their interoperability. Recent work has demonstrated the feasibility for modeling terrestrial water dynamics for the continental United States of America. Continental water dynamics defines the interaction of the hydrosphere, the land surface and subsurface at spatial scales ranging from point to continent. The improved version of the National Hydrographic Dataset (NHDPlus, an integrated suite of geospatial datasets stored in a vector and raster GIS format) was used as hydrologic and elevation data input to the Noah community Land Surface Model, developed at NCAR. Noah was successfully run on a watershed in the Ohio River Basin with NHDPlus inputs. The use of NHDPlus as input data for Noah is a crucial improvement for community modeling efforts allowing users to by-pass much of the time consumed in Digital Elevation Model and hydrological network processing. Furthermore, the community Noah land surface model, in its hydrologically-enhanced configuration, is capable of providing flow inputs for a river dynamics model. Continued enhancement of Noah will, as a consequence, be beneficial to the atmospheric science community as well as to the hydrologic community. Ongoing research foci include using a diversity of weather drivers as an input to Noah, and investigation of how to use land surface model outputs for river forecasting, using both the ArcHydro and OpenMI frameworks.

  18. Vector radiative transfer numerical model of coupled ocean-atmosphere system using matrix-operator method

    Institute of Scientific and Technical Information of China (English)

    HE XianQiang; PAN DeLu; BAI Yan; ZHU QianKun; GONG Fang

    2007-01-01

    A vector radiative transfer numerical model of the coupled ocean-atmosphere system is developed based on the matrix-operator method,which is named PCOART.Using the Fourier analysis,the vector radiative transfer equation (VRTE) is separated into a set of equations depending only on the observation zenith angle.Using the Gaussian-Quadrature method,VRTE is finally transferred into the matrix equation solved by the adding-doubling method.According to the reflective and refractive properties of the ocean-atmosphere interface,the vector radiative transfer numerical model of the ocean and atmosphere is coupled in PCOART.Compared with the exact Rayleigh scattering look-up tables of MODIS (Moderate-resolution Imaging Spectroradiometer),it is shown that PCOART is an exactly numerical model,and the processing methods of the multi-scattering and polarization are correct.Also,validated with the standard problems of the radiative transfer in water,it is shown that PCOART can be used to calculate the underwater radiative transfer problems.Therefore,PCOART is a useful tool for exactly calculating the vector radiative transfer of the coupled ocean-atmosphere system,which can be used to study the polarization properties of the radiance in the whole ocean-atmosphere system and the remote sensing of the atmosphere and ocean.

  19. Vector radiative transfer numerical model of coupled ocean-atmosphere system using matrix-operator method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A vector radiative transfer numerical model of the coupled ocean-atmosphere system is developed based on the matrix-operator method, which is named PCOART. Using the Fourier analysis, the vector radiative transfer equation (VRTE) is separated into a set of equations depending only on the observa-tion zenith angle. Using the Gaussian-Quadrature method, VRTE is finally transferred into the matrix equation solved by the adding-doubling method. According to the reflective and refractive properties of the ocean-atmosphere interface, the vector radiative transfer numerical model of the ocean and at-mosphere is coupled in PCOART. Compared with the exact Rayleigh scattering look-up tables of MODIS (Moderate-resolution Imaging Spectroradiometer), it is shown that PCOART is an exactly numerical model, and the processing methods of the multi-scattering and polarization are correct. Also, validated with the standard problems of the radiative transfer in water, it is shown that PCOART can be used to calculate the underwater radiative transfer problems. Therefore, PCOART is a useful tool for exactly calculating the vector radiative transfer of the coupled ocean-atmosphere system, which can be used to study the polarization properties of the radiance in the whole ocean-atmosphere system and the remote sensing of the atmosphere and ocean.

  20. Comparative calculations and validation studies with atmospheric dispersion models

    International Nuclear Information System (INIS)

    This report presents the results of an intercomparison of different mesoscale dispersion models and measured data of tracer experiments. The types of models taking part in the intercomparison are Gaussian-type, numerical Eulerian, and Lagrangian dispersion models. They are suited for the calculation of the atmospherical transport of radionuclides released from a nuclear installation. For the model intercomparison artificial meteorological situations were defined and corresponding arithmetical problems were formulated. For the purpose of model validation real dispersion situations of tracer experiments were used as input data for model calculations; in these cases calculated and measured time-integrated concentrations close to the ground are compared. Finally a valuation of the models concerning their efficiency in solving the problems is carried out by the aid of objective methods. (orig./HP)

  1. National Atmospheric Release Advisory Center (NARAC) model development and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, G. [Lawrence Livermore National Lab., Livermore, CA (United States)

    2004-07-01

    This paper describes model development and evaluation efforts of the National Atmospheric Release Advisory Center (NARAC) located at Lawrence Livermore National Laboratory (LLNL). NARAC is a U.S. Department of Energy (DOE) and Department of Homeland Security (DHS) operational system, which provides detailed predictions of the consequences of atmospheric releases of hazardous materials for real-time emergency response, preplanning, and post-incident assessments. Automated predictions of plume exposure limits and protective action guidelines for emergency responders and managers are available in 5-10 minutes. These can be followed immediately by increasingly refined, quality-assured analyses performed by NARAC's 24 x 7 on-duty / on-call operational staff as additional information and/or data become available. NARAC provides an all-hazards modeling system for assessments of chemical, biological, radiological/nuclear, and natural airborne hazards. The system employs a hierarchy of simulation tools, appropriate for different release types, distance and time scales, and/or response times. Source terms models are available for fires, explosions, hazardous material spills, sprayers, and momentum and buoyancy driven sources. The NARAC models are supported by extensive geographical, material, and health effects databases, as well as real-time access to worldwide meteorological observations and forecasts provided via redundant communications links to National Oceanic and Atmospheric Administration, the U.S. Navy and the U.S. Air Force. (orig.)

  2. The improved sequential puff model for atmospheric dispersion evaluation (SPADE)

    International Nuclear Information System (INIS)

    The present report describes the improved version of the Sequential Puff for Atmospheric Dispersion Evaluation Model (SPADE), developed at EKEA-DISP as a component of ARIES (Atmospheric Release Impact Evaluation System). SPADE has been originally designed for real time assessment of the consequences of a nuclear release into the atmosphere, but it is also suited for sensitivity studies, investigations, or routine applications. It can estimate ground-level air concentrations, deposition and cloud γ dose rate in flat or gently rolling terrain in the vicinity of a point source. During the last years several aspects of the modelling of dispersion processes have been improved, and new modules have been implemented in SPADE. In the first part of the report, a general description of the model is given, and the assumptions and parameterizations used to simulate the main physical processes are described. The second part concerns with the structure of the computer code and of input and output files, and can be regarded as a user's guide to the model. (author)

  3. Evaluation of atmospheric dispersion/consequence models supporting safety analysis

    International Nuclear Information System (INIS)

    Two DOE Working Groups have completed evaluation of accident phenomenology and consequence methodologies used to support DOE facility safety documentation. The independent evaluations each concluded that no one computer model adequately addresses all accident and atmospheric release conditions. MACCS2, MATHEW/ADPIC, TRAC RA/HA, and COSYMA are adequate for most radiological dispersion and consequence needs. ALOHA, DEGADIS, HGSYSTEM, TSCREEN, and SLAB are recommended for chemical dispersion and consequence applications. Additional work is suggested, principally in evaluation of new models, targeting certain models for continued development, training, and establishing a Web page for guidance to safety analysts

  4. ATMOS: a model of radionuclide migration in the atmosphere

    International Nuclear Information System (INIS)

    For use with scenarios involving airborne contamination, an atmospheric transport model called ATMOS has been developed for the safety assessment code COSMOS-S/D. It is a one-wind Gaussian plume model, made more general using wind-rose information that calculates ground-level air concentration factors at a common receptor point for each of a number of sources. These multiply a source strength, calculated elsewhere, to obtain the actual airborne radionuclide concentrations. The model presented in this report is an improved version of the original. Accounting is now made of area of the source region, and plume depletion by both wet and dry deposition mechanisms

  5. A Coupled Atmospheric and Wave Modeling System for Storm Simulations

    DEFF Research Database (Denmark)

    Du, Jianting; Larsén, Xiaoli Guo; Bolanos, R.

    2015-01-01

    This study aims at improving the simulation of wind and waves during storms in connection with wind turbine design and operations in coastal areas. For this particular purpose, we investigated the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System which couples the Weather...... for the coastal condition. With the current model setup, using high spatial resolution gives better results for strong winds both for the open ocean and coastal sites. The signicant wave height (Hm0) is very sensitive to the model resolution and bathymetry data for the coastal zone. In addition, using...

  6. Atmospheric turbulence parameters for modeling wind turbine dynamics

    Science.gov (United States)

    Holley, W. E.; Thresher, R. W.

    1982-01-01

    A model which can be used to predict the response of wind turbines to atmospheric turbulence is given. The model was developed using linearized aerodynamics for a three-bladed rotor and accounts for three turbulent velocity components as well as velocity gradients across the rotor disk. Typical response power spectral densities are shown. The system response depends critically on three wind and turbulence parameters, and models are presented to predict desired response statistics. An equation error method, which can be used to estimate the required parameters from field data, is also presented.

  7. A wavenumber-frequency spectral model for atmospheric boundary layers

    International Nuclear Information System (INIS)

    Motivated by the need to characterize power fluctuations in wind farms, we study spatio-temporal correlations of a neutral atmospheric boundary layer in terms of the joint wavenumber-frequency spectrum of the streamwise velocity fluctuations. To this end, we perform a theoretical analysis of a simple advection model featuring the advection of small- scale velocity fluctuations by the mean flow and large-scale velocity fluctuations. The model is compared to data from large-eddy simulations (LES). We find that the model captures the trends observed in LES, specifically a Doppler shift of frequencies due to the mean flow as well as a Doppler broadening due to random sweeping effects

  8. RESEARCH ON THE LOCAL CORRECTION MODEL OF ATMOSPHERIC DRY DELAY IN GPS REMOTE SENSING WATER VAPOR

    Institute of Scientific and Technical Information of China (English)

    GU Xiao-ping; WANG Chang-yao; WANG Wen; JIANG Guo-hua

    2005-01-01

    The precision of atmospheric dry delay model is closely correlated with the accuracy of GPS water vapor in the process of GPS (Global Position System) remote sensing. Radiosonde data (from 1996 to 2001) at Qingyuan are used to calculate the exact values of the atmospheric dry delay. Base on these calculations and the surface meteorological parameters, the local year and month correction models of dry delay at the zenith angle of 0° are established by statistical methods. The analysis result shows that the local model works better and is slight more sensitive to altitude angle than universal models and that it is not necessary to build models for each month due to the slight difference between year model and month model. Furthermore, when the altitude angle is less than 75°, the difference between curve path and straight path increases rapidly with altitude angle's decrease.

  9. A Real-Time Atmospheric Dispersion Modeling System

    International Nuclear Information System (INIS)

    This paper describes a new 3-D multi-scale atmospheric dispersion modeling system and its on-going evaluation. This system is being developed for both real-time operational applications and detailed assessments of events involving atmospheric releases of hazardous material. It is part of a new, modernized Department of Energy (DOE) National Atmospheric Release Advisory Center (NARAC) emergency response computer system at Lawrence Livermore National Laboratory. This system contains coupled meteorological data assimilation and dispersion models, initial versions of which were described by Sugiyama and Chan (1998) and Leone et al. (1997). Section 2 describes the current versions of these models, emphasizing new features. This modeling system supports cases involving both simple and complex terrain, and multiple space and time scales from the microscale to mesoscale. Therefore, several levels of verification and evaluation are required. The meteorological data assimilation and interpolation algorithms have been previously evaluated by comparison to observational data (Sugiyama and Chan, 1998). The non-divergence adjustment algorithm was tested against potential flow solutions and wind tunnel data (Chan and Sugiyama, 1997). Initial dispersion model results for a field experiment case study were shown by Leone et al. (1997). A study in which an early, prototype version of the new modeling system was evaluated and compared to the current NARAC operational models showed that the new system provides improved results (Foster et al., 1999). In Section 3, we show example results from the current versions of the models, including verification using analytic solutions to the advection-diffusion equation as well as on-going evaluation using microscale and mesoscale dispersion field experiments

  10. Atmospheric boundary layer top height in South Africa: measurements with lidar and radiosonde compared to three atmospheric models

    Directory of Open Access Journals (Sweden)

    K. Korhonen

    2013-07-01

    Full Text Available Atmospheric lidar measurements were carried out at Elandsfontein measurement station, on the eastern Highveld approximately 150 km east of Johannesburg in South Africa (SA throughout 2010. The height of the planetary boundary layer (PBL top was continuously measured using a~Raman lidar, PollyXT (POrtabLe Lidar sYstem eXTended. High atmospheric variability together with a large surface temperature range and significant seasonal changes in precipitation were observed, which had an impact on the vertical mixing of particulate matter (PM, and hence, on the PBL evolution. The results were compared to radio soundings, CALIOP (Cloud–Aerosol Lidar with Orthogonal Polarization space-borne lidar measurements and three atmospheric models that followed different approaches to determine the PBL top height. These models included two weather forecast models operated by ECMWF (European Centre for Medium-range Weather Forecasts and SAWS (South African Weather Service and one mesoscale prognostic meteorological and air pollution regulatory model TAPM (The Air Pollution Model. The ground-based lidar used in this study was operational for 4935 h during 2010 (49% of the time. The PBL top height was detected 86% of the total measurement time (42% of the total time. Large seasonal and diurnal variations were observed between the different methods utilised. Comparison of lidar measurements to the models indicated that the ECMWF model agreed the best with mean absolute difference of 15.4%, while the second best correlation was with the SAWS model with corresponding difference of 20.1%. TAPM was found to have a tendency to underestimate the PBL top height. The wind speeds in SAWS operated and TAPM models were strongly underestimated which probably led to underestimation of the vertical wind and turbulence and thus underestimation of the PBL top height. High variation was found when lidar measurements were compared to radiosonde measurements. This could be partially due

  11. The NASA/MSFC global reference atmospheric model: 1990 version (GRAM-90). Part 2: Program/data listings

    Science.gov (United States)

    Justus, C. G.; Alyea, F. N.; Cunnold, D. M.; Jeffries, W. R., III; Johnson, D. L.

    1991-01-01

    A new (1990) version of the NASA/MSFC Global Reference Atmospheric Model (GRAM-90) was completed and the program and key data base listing are presented. GRAM-90 incorporate extensive new data, mostly collected under the Middle Atmosphere Program, to produce a completely revised middle atmosphere model (20 to 120 km). At altitudes greater than 120 km, GRAM-90 uses the NASA Marshall Engineering Thermosphere model. Complete listings of all program and major data bases are presented. Also, a test case is included.

  12. Meteorological fluid dynamics asymptotic modelling, stability and chaotic atmospheric motion

    CERN Document Server

    Zeytounian, Radyadour K

    1991-01-01

    The author considers meteorology as a part of fluid dynamics. He tries to derive the properties of atmospheric flows from a rational analysis of the Navier-Stokes equations, at the same time analyzing various types of initial and boundary problems. This approach to simulate nature by models from fluid dynamics will be of interest to both scientists and students of physics and theoretical meteorology.

  13. Atmospheric dispersion modeling near a roadway under calm meteorological conditions

    OpenAIRE

    Fallah Shorshani, Masoud; Seigneur, Christian; POLO REHN, Lucie; CHANUT, Hervé; PELLAN, Yann; Jaffrezo, Jean-Luc; CHARRON, Aurélie; Andre, Michel

    2015-01-01

    Atmospheric pollutant dispersion near sources is typically simulated by Gaussian models because of their efficient compromise between reasonable accuracy and manageable com- putational time. However, the standard Gaussian dispersion formula applies downwind of a source under advective conditions with a well-defined wind direction and cannot calculate air pollutant concentrations under calm conditions with fluctuating wind direction and/or upwind of the emission source. Attempts have been made...

  14. Revisiting the Carrington Event: Updated modeling of atmospheric effects

    OpenAIRE

    Thomas, Brian C.; Arkenberg, Keith R.; Snyder II, Brock R.

    2011-01-01

    The terrestrial effects of major solar events such as the Carrington white-light flare and subsequent geomagnetic storm of August-September 1859 are of considerable interest, especially in light of recent predictions that such extreme events will be more likely over the coming decades. Here we present results of modeling the atmospheric effects, especially production of odd nitrogen compounds and subsequent depletion of ozone, by solar protons associated with the Carrington event. This study ...

  15. Spectral classification of stars using synthetic model atmospheres

    OpenAIRE

    E. Bertone; Buzzoni, A.

    2001-01-01

    We devised a straightforward procedure to derive the atmosphere fundamental parameters of stars across the different MK spectral types by comparing mid-resolution spectroscopic observations with theoretical grids of synthetic spectra.The results of a preliminary experiment, by matching the Gunn and Stryker and Jacoby et al. spectrophotometric atlases with the Kurucz models, are briefly discussed. For stars in the A-K spectral range, effective temperature is obtained within a 1-2% relative unc...

  16. Modeling Guru: Knowledge Base for NASA Modelers

    Science.gov (United States)

    Seablom, M. S.; Wojcik, G. S.; van Aartsen, B. H.

    2009-05-01

    Modeling Guru is an on-line knowledge-sharing resource for anyone involved with or interested in NASA's scientific models or High End Computing (HEC) systems. Developed and maintained by the NASA's Software Integration and Visualization Office (SIVO) and the NASA Center for Computational Sciences (NCCS), Modeling Guru's combined forums and knowledge base for research and collaboration is becoming a repository for the accumulated expertise of NASA's scientific modeling and HEC communities. All NASA modelers and associates are encouraged to participate and provide knowledge about the models and systems so that other users may benefit from their experience. Modeling Guru is divided into a hierarchy of communities, each with its own set forums and knowledge base documents. Current modeling communities include those for space science, land and atmospheric dynamics, atmospheric chemistry, and oceanography. In addition, there are communities focused on NCCS systems, HEC tools and libraries, and programming and scripting languages. Anyone may view most of the content on Modeling Guru (available at http://modelingguru.nasa.gov/), but you must log in to post messages and subscribe to community postings. The site offers a full range of "Web 2.0" features, including discussion forums, "wiki" document generation, document uploading, RSS feeds, search tools, blogs, email notification, and "breadcrumb" links. A discussion (a.k.a. forum "thread") is used to post comments, solicit feedback, or ask questions. If marked as a question, SIVO will monitor the thread, and normally respond within a day. Discussions can include embedded images, tables, and formatting through the use of the Rich Text Editor. Also, the user can add "Tags" to their thread to facilitate later searches. The "knowledge base" is comprised of documents that are used to capture and share expertise with others. The default "wiki" document lets users edit within the browser so others can easily collaborate on the

  17. Inter-annual variability of the atmospheric carbon dioxide concentrations as simulated with global terrestrial biosphere models and an atmospheric transport model

    International Nuclear Information System (INIS)

    Seasonal and inter-annual variations of atmospheric CO2 for the period from 1961 to 1997 have been simulated using a global tracer transport model driven by a new version of the Biome BioGeochemical Cycle model (Biome-BGC). Biome-BGC was forced by daily temperature and precipitation from the NCEP reanalysis dataset, and the calculated monthly-averaged CO2 fluxes were used as input to the global transport model. Results from an inter-comparison with the Carnegie-Ames-Stanford Approach model (CASA) and the Simulation model of Carbon CYCLE in Land Ecosystems (Sim-CYCLE) model are also reported. The phase of the seasonal cycle in the Northern Hemisphere was reproduced generally well by Biome-BGC, although the amplitude was smaller compared to the observations and to the other biosphere models. The CO2 time series simulated by Biome-BGC were compared to the global CO2 concentration anomalies from the observations at Mauna Loa and the South Pole. The modeled concentration anomalies matched the phase of the inter-annual variations in the atmospheric CO2 observations; however, the modeled amplitude was lower than the observed value in several cases. The result suggests that a significant part of the inter-annual variability in the global carbon cycle can be accounted for by the terrestrial biosphere models. Simulations performed with another climate-based model, Sim-CYCLE, produced a larger amplitude of inter-annual variability in atmospheric CO2, making the amplitude closer to the observed range, but with a more visible phase mismatch in a number of time periods. This may indicate the need to increase the Biome-BGC model sensitivity to seasonal and inter-annual changes in temperature and precipitation

  18. Transmission Spectra of Three-Dimensional Hot Jupiter Model Atmospheres

    CERN Document Server

    Fortney, J J; Showman, A P; Lian, Y; Freedman, R S; Marley, M S; Lewis, N K

    2009-01-01

    We compute models of the transmission spectra of planets HD 209458b, HD 189733b, and generic hot Jupiters. We examine the effects of temperature, surface gravity, and metallicity for the generic planets as a guide to understanding transmission spectra in general. We find that carbon dioxide absorption at 4.4 and 15 microns is prominent at high metallicity, and is a clear metallicity indicator. For HD 209458b and HD 189733b, we compute spectra for both one-dimensional and three-dimensional model atmospheres and examine the differences between them. The differences are usually small, but can be large if atmospheric temperatures are near important chemical abundance boundaries. The calculations for the 3D atmospheres, and their comparison with data, serve as constraints on these dynamical models that complement the secondary eclipse and light curve data sets. For HD 209458b, even if TiO and VO gases are abundant on the day side, their abundances can be considerably reduced on the cooler planetary limb. However, ...

  19. Modeling the (upper) solar atmosphere including the magnetic field

    CERN Document Server

    Peter, H

    2007-01-01

    The atmosphere of the Sun is highly structured and dynamic in nature. From the photosphere and chromosphere into the transition region and the corona plasma-$\\beta$ changes from above to below one, i.e. while in the lower atmosphere the energy density of the plasma dominates, in the upper atmosphere the magnetic field plays the governing role -- one might speak of a ``magnetic transition''. Therefore the dynamics of the overshooting convection in the photosphere, the granulation, is shuffling the magnetic field around in the photosphere. This leads not only to a (re-)structuring of the magnetic field in the upper atmosphere, but induces also the dynamic reaction of the coronal plasma e.g. due to reconnection events. Therefore the (complex) structure and the interaction of various magnetic patches is crucial to understand the structure, dynamics and heating of coronal plasma as well as its acceleration into the solar wind. The present article will emphasize the need for three-dimensional modeling accounting fo...

  20. Atmospheric mirage and distortion modeling for IR target injection simulations

    Science.gov (United States)

    Church, Steven R.

    1996-06-01

    Atmospheric effects at low elevation angles can complicate shipboard infrared search and tracking (SIRST) of distant low altitude targets, such as sea skimming cruise missiles. Here we focus upon the effects of ray refraction and atmospheric distortion. For constant-flux surface layer conditions we discuss target magnification and demagnification and atmospheric distortions. For sufficiently negative air-sea temperature differences (ASTD), the maximum intervision range (MIVR) of low altitude targets is reduced, but the target is significantly magnified compared to no-refraction predictions. Negative ASTD can give rise to an inferior mirage which we discuss with a model-data comparison. Positive ASTD extends a target MIVR, but the target image is severely demagnified, closer to the horizon, and more degraded by atmospheric turbulence. We discuss environments that are likely to violate constant-flux conditions and include an example of a superior mirage. Although horizontal inhomogeneity may well influence superior mirage formation, we show that inhomogeneity is not necessary to explain features such as numerous mirages or multiple (three) horizons.

  1. Towards robust regional estimates of CO_2 sources and sinks using atmospheric transport models

    OpenAIRE

    Gurney, Kevin Robert; Randerson, James

    2002-01-01

    Information about regional carbon sources and sinks can be derived from variations in observed atmospheric CO_2 concentrations via inverse modelling with atmospheric tracer transport models. A consensus has not yet been reached regarding the size and distribution of regional carbon fluxes obtained using this approach, partly owing to the use of several different atmospheric transport models. Here we report estimates of surface–atmosphere CO_2 fluxes from an intercomparison of atmospheric CO_2...

  2. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models

    OpenAIRE

    Randerson, JT; Gurney, KR; Law, RM; Denning, AS; Rayner, PJ; Baker, D.; Bousquet, P.; Bruhwiler, L.; Chen, YH; Ciais, P.; Fan, S.; Fung, IY; Gloor, M.; Heimann, M.; Higuchi, K

    2002-01-01

    Information about regional carbon sources and sinks can be derived from variations in observed atmospheric CO2 concentrations via inverse modelling with atmospheric tracer transport models. A consensus has not yet been reached regarding the size and distribution of regional carbon fluxes obtained using this approach, partly owing to the use of several different atmospheric transport models(1-9). Here we report estimates of surface- atmosphere CO2 fluxes from an intercomparison of atmospheric ...

  3. Time-dependent atmospheric CO2 inversions based on interannually varying tracer transport

    International Nuclear Information System (INIS)

    The use of inverse calculations to estimate surface CO2 fluxes from atmospheric concentration measurements has gained large attention in recent years. The success of an inversion will, among other factors, depend strongly on how realistically atmospheric tracer transport is represented by the employed transport model, as it links surface CO2 fluxes to modelled concentrations at the location of measurement stations. We present sensitivity studies demonstrating that transport modelling should be based on interannually varying meteorology, as compared to the traditional use of repeating a single year's winds only. Moreover, we propose an improved procedure of representing the concentration sampling in the model, which allows consistency with the measurements and uses their information content more efficiently. In further sensitivity tests, we estimate the effect of different spatial transport model resolutions and different meteorological driver data sets. Finally, we assess the quality of the inversion results with the help of independent measurements and flux estimates, and preliminarily discuss some of the resulting features

  4. A comparison of models fos dispersion of atmospheric contaminants

    International Nuclear Information System (INIS)

    In this work a stack emission in actual atmospheric conditions was modeled with AERMOD, HPDM, PCCOSYMA and HYSPLIT codes. The first two have Gaussian stationary plume models and they were developed to calculate environmental impact produced by chemical contaminants. PCCOSYMA has a Gaussian-type segmented plume model, developed for assessing radiological impact of nuclear accidents. HYSPLIT has a hybrid code that uses a Lagrangian reference system to describe the transport of a puff mass center and an Eulerian system to describe the dispersion within the puff. The emission was fixed in 0.3 g.s-1, 284 K and 0 m.s-1, that is in equilibrium with the environment, in order to compare the different codes results. Flat terrain with fixed 0.1 m surface rough was considered. Meteorological and topographic data used were obtained from runs of the prognostic code RAMS, provided by NOAA. The main contribution of this work is to provide recommendations about the validity range of each code depending on the model used. For Gaussian models the distance in which the atmospheric condition can be considered homogeneous determines the validity range. On the other hand the validity range of HYSPLIT model is determined by the availability of the meteorological data spatial extension. There was a significant difference between the dispersion parameters used by the Gaussian codes. (author)

  5. North Atlantic thermohaline circulation predictability in a coupled ocean-atmosphere model

    CERN Document Server

    Griffies, S M; Griffies, Stephen M.; Bryan, Kirk

    1995-01-01

    Predictability of the North Atlantic thermohaline circulation (THC) variability as simulated in the GFDL coupled ocean-atmosphere general circulation model is established for a set of ensemble experiments. The ensembles consist of identical oceanic initial conditions underneath a model atmosphere chosen randomly from the model climatology. This experimental design is based on the separation in time scales present in the model which motivates the assumption that the predictability deduced from these ensembles provides an upper limit to the model's THC predictability. The climatology is taken from a multi-century model integration whose THC variability has power concentrated at the 40-60 year time scale. A linear stochastic perspective is shown to be generally consistent with the ensemble statistics. The linear theory suggests a natural measure of ensemble predictability as the time at which the ensemble variance becomes a subjectively defined fraction (0.5 used here) of the climatological variance. It is furth...

  6. Thermal shallow water models of geostrophic turbulence in Jovian atmospheres

    International Nuclear Information System (INIS)

    Conventional shallow water theory successfully reproduces many key features of the Jovian atmosphere: a mixture of coherent vortices and stable, large-scale, zonal jets whose amplitude decreases with distance from the equator. However, both freely decaying and forced-dissipative simulations of the shallow water equations in Jovian parameter regimes invariably yield retrograde equatorial jets, while Jupiter itself has a strong prograde equatorial jet. Simulations by Scott and Polvani [“Equatorial superrotation in shallow atmospheres,” Geophys. Res. Lett. 35, L24202 (2008)] have produced prograde equatorial jets through the addition of a model for radiative relaxation in the shallow water height equation. However, their model does not conserve mass or momentum in the active layer, and produces mid-latitude jets much weaker than the equatorial jet. We present the thermal shallow water equations as an alternative model for Jovian atmospheres. These equations permit horizontal variations in the thermodynamic properties of the fluid within the active layer. We incorporate a radiative relaxation term in the separate temperature equation, leaving the mass and momentum conservation equations untouched. Simulations of this model in the Jovian regime yield a strong prograde equatorial jet, and larger amplitude mid-latitude jets than the Scott and Polvani model. For both models, the slope of the non-zonal energy spectra is consistent with the classic Kolmogorov scaling, and the slope of the zonal energy spectra is consistent with the much steeper spectrum observed for Jupiter. We also perform simulations of the thermal shallow water equations for Neptunian parameter values, with a radiative relaxation time scale calculated for the same 25 mbar pressure level we used for Jupiter. These Neptunian simulations reproduce the broad, retrograde equatorial jet and prograde mid-latitude jets seen in observations. The much longer radiative time scale for the colder planet Neptune

  7. Thermal shallow water models of geostrophic turbulence in Jovian atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Warneford, Emma S., E-mail: emma.warneford@maths.ox.ac.uk; Dellar, Paul J., E-mail: dellar@maths.ox.ac.uk [OCIAM, Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Oxford OX2 6GG (United Kingdom)

    2014-01-15

    Conventional shallow water theory successfully reproduces many key features of the Jovian atmosphere: a mixture of coherent vortices and stable, large-scale, zonal jets whose amplitude decreases with distance from the equator. However, both freely decaying and forced-dissipative simulations of the shallow water equations in Jovian parameter regimes invariably yield retrograde equatorial jets, while Jupiter itself has a strong prograde equatorial jet. Simulations by Scott and Polvani [“Equatorial superrotation in shallow atmospheres,” Geophys. Res. Lett. 35, L24202 (2008)] have produced prograde equatorial jets through the addition of a model for radiative relaxation in the shallow water height equation. However, their model does not conserve mass or momentum in the active layer, and produces mid-latitude jets much weaker than the equatorial jet. We present the thermal shallow water equations as an alternative model for Jovian atmospheres. These equations permit horizontal variations in the thermodynamic properties of the fluid within the active layer. We incorporate a radiative relaxation term in the separate temperature equation, leaving the mass and momentum conservation equations untouched. Simulations of this model in the Jovian regime yield a strong prograde equatorial jet, and larger amplitude mid-latitude jets than the Scott and Polvani model. For both models, the slope of the non-zonal energy spectra is consistent with the classic Kolmogorov scaling, and the slope of the zonal energy spectra is consistent with the much steeper spectrum observed for Jupiter. We also perform simulations of the thermal shallow water equations for Neptunian parameter values, with a radiative relaxation time scale calculated for the same 25 mbar pressure level we used for Jupiter. These Neptunian simulations reproduce the broad, retrograde equatorial jet and prograde mid-latitude jets seen in observations. The much longer radiative time scale for the colder planet Neptune

  8. The environmental radiological atmospheric impact modelling system (ERAIMS) at ANSTO, Lucas Heights

    International Nuclear Information System (INIS)

    Decision-makers managing the emergency response to an actual or potential release of airborne radionuclides from the Lucas Heights Science and Technology Centre (LHSTC) require real-time estimates of the trajectory and dispersion of any released radionuclides. Complex terrain surrounding the LHSTC has an impact on the downwind trajectory and atmospheric dispersion of released radionuclides. Under certain atmospheric conditions, the released cloud could be transported into the valley without direct impact on the nearest population. This entrapment in the steep sided, narrow valley, might mean that the cloud could remain more concentrated and cause impacts on more distant receptor populations down the valley. Alternatively, the cloud could disperse directly across the valley to the nearest residential population without any significant entrainment into, or impact, on the valley. The Environmental Radiological Atmospheric Impact Modelling System (ERAIMS) is a realtime response model which has been developed for the LHSTC. It estimates downwind impacts based on a pre-set source term, prevailing meteorological conditions which are measured every 15 minutes, receptor characteristics and exposure pathways. This paper describes the total system, from collection and calibration of meteorological data, to the running of the models in the ANSTO emergency response facility and display of data for controllers of any emergency. The current assessment of different atmospheric dispersion models available for use in this facility will also be discussed in terms of atmospheric tracer studies conducted in the region and International Best Practice. Copyright (2000) Australasian Radiation Protection Society Inc

  9. Validation of 3-D CFD Model of Tritium Transport in the Atmosphere

    International Nuclear Information System (INIS)

    When solving 3-D problems for the atmospheric impurity transport in the bounded area, it is essential for the atmospheric dynamics to be correctly computed taking into account the actual terrain topography and environments specified by the boundary conditions. Such conditions as turbulence, convection, condensation and moisture evaporation processes, etc. are to be also taken into account as well as the interaction processes among impurities (gases, aerosols), atmosphere and the Earth's surface.3-D computational fluid dynamics model(CFD) developed on the basis of SRP hydrodynamic code was used to simulate tritium plume evolution and tritium transport in atmosphere under the area with relatively complex topography. SRP code is based on the continuum motion equations (Navier-Stockes equations) and thermodynamic relations taking into account specific features of atmospheric flows and complex topography and is designed to use on PC-type computers.The model has been validated using experimental release of tritium with specified source term and meteorology. Due to low release height above the underlying surface a fine grid was used in the vertical direction near the underlying surface. HT and HTO/H2O vertical fluxes were taken into account. Evolution of HT and HTO activities at 2 sampling locations along the plume axe were available for model-experiment inter-comparison. The modeling results of HT and HTO activities in the air during plume travel are in satisfactory agreement with observed values

  10. STAMPI, Application to the Coupling of Atmosphere Model (MM5) and Land-surface Model (SOLVEG)

    International Nuclear Information System (INIS)

    Description of program or function: A new method to couple atmosphere and land-surface models using the message passing interface (MPI) was proposed to develop an atmosphere-land model for studies on heat, water, and material exchanges around the land surface. A non-hydrostatic atmospheric dynamic model of Pennsylvania State University and National Center for Atmospheric Research (PUS/NCAR-MM5) and a detailed land surface model (SOLVEG) including the surface-layer atmosphere, soil, and vegetation developed at Japan Atomic Energy Research Institute (JAERI) are used as the atmosphere and land-surface models, respectively. Concerning the MPI, a message passing library named STAMPI developed at JAERI that can be used between different parallel computers is used. The models are coupled by exchanging calculation results by using MPI on their independent parallel calculations. The modifications for this model coupling are easy, simply adding some modules for data exchanges to each model code without changing each model's original structure. Moreover, this coupling method is flexible and allows the use of independent time step and grid interval for each model

  11. A computer-based simulator of the atmospheric turbulence

    Science.gov (United States)

    Konyaev, Petr A.

    2015-11-01

    Computer software for modeling the atmospheric turbulence is developed on the basis of a time-varying random medium simulation algorithm and a split-step Fourier transform method for solving a wave propagation equation. A judicious choice of the simulator parameters, like the velocity of the evolution and motion of the medium, turbulence spectrum and scales, enables different effects of a random medium on the optical wavefront to be simulated. The implementation of the simulation software is shown to be simple and efficient due to parallel programming functions from the MKL Intel ® Parallel Studio libraries.

  12. Meteorological Uncertainty of atmospheric Dispersion model results (MUD)

    DEFF Research Database (Denmark)

    Havskov Sørensen, Jens; Amstrup, Bjarne; Feddersen, Henrik;

    uncertainties of the meteorological model results. These uncertainties stem from e.g. limits in meteorological observations used to initialise meteorological forecast series. By perturbing e.g. the initial state of an NWP model run in agreement with the available observational data, an ensemble of...... meteorological forecasts is produced from which uncertainties in the various meteorological parameters are estimated, e.g. probabilities for rain. Corresponding ensembles of atmospheric dispersion can now be computed from which uncertainties of predicted radionuclide concentration and deposition patterns can be...

  13. Regional forecasting with global atmospheric models; Third year report

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, T.J.; North, G.R.; Smith, N.R. [Applied Research Corp., College Station, TX (United States)

    1994-05-01

    This report was prepared by the Applied Research Corporation (ARC), College Station, Texas, under subcontract to Pacific Northwest Laboratory (PNL) as part of a global climate studies task. The task supports site characterization work required for the selection of a potential high-level nuclear waste repository and is part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work is under the overall direction of the Office of Civilian Radioactive Waste Management (OCRWM), US Department of Energy Headquarters, Washington, DC. The scope of the report is to present the results of the third year`s work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain several studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals.

  14. A tool model for predicting atmospheric kinetics with sensitivity analysis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A package( a tool model) for program of predicting atmospheric chemical kinetics with sensitivity analysis is presented. The new direct method of calculating the first order sensitivity coefficients using sparse matrix technology to chemical kinetics is included in the tool model, it is only necessary to triangularize the matrix related to the Jacobian matrix of the model equation. The Gear type procedure is used to integrate amodel equation and its coupled auxiliary sensitivity coefficient equations. The FORTRAN subroutines of the model equation, the sensitivity coefficient equations, and their Jacobian analytical expressions are generated automatically from a chemical mechanism. The kinetic representation for the model equation and its sensitivity coefficient equations, and their Jacobian matrix is presented. Various FORTRAN subroutines in packages, such as SLODE, modified MA28, Gear package, with which the program runs in conjunction are recommended.The photo-oxidation of dimethyl disulfide is used for illustration.

  15. Model-based geostatistics

    CERN Document Server

    Diggle, Peter J

    2007-01-01

    Model-based geostatistics refers to the application of general statistical principles of modeling and inference to geostatistical problems. This volume provides a treatment of model-based geostatistics and emphasizes on statistical methods and applications. It also features analyses of datasets from a range of scientific contexts.

  16. Mesoscale atmospheric modeling of the July 12, 1992 tritium release from the Savannah River Site

    International Nuclear Information System (INIS)

    In August of 1991, the Environmental Transport Group (ETG) began the development of an advanced Emergency Response (ER) system based upon the Colorado State University Regional Atmospheric Modeling System (RAMS). This model simulates the three-dimensional, time-dependent, flow field and thermodynamic structure of the planetary boundary layer (PBL). A companion Lagrangian Particle Dispersion Model (LPDM) simulates contaminant transport based on the flow and turbulence fields generated by RAMS. This paper describes the performance of the advanced ER system in predicting transport and diffusion near the SRS when compared to meteorological and sampling data taken during the July 12, 1992 tritium release. Since PUFF/PLUME and 2DPUF are two Weather INformation and Display (WIND) System atmospheric models that were used to predict the transport and diffusion of the plume at the time of the release, the results from the advanced ER system are also compared to those produced by PUFF/PLUME and 2DPUF

  17. Soil-Vegetation-Atmosphere Radiative Transfer Model in Microwave Region

    Institute of Scientific and Technical Information of China (English)

    JIA Yuanyuan; LI Zhaoliang

    2008-01-01

    The radiative transfer is one of the significant theories that describe the processes of scattering,emission,and absorption of electromagnetic radiant intensity through scattering medium.It is the basis of the study on the quantitative remote sensing.In this paper,the radiative characteristics of soil,vegetation,and atmosphere were described respectively.The numerical solution of radiative transfer was accomplished by Successive Orders of Scattering (SOS).A radiative transfer model for simulating microwave brightness temperature over land surfaces was constructed,designed,and implemented.Analyzing the database generated from soil-vegetation-atmosphere radiative transfer model under Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) configuration showed that the atmospheric effects on microwave brightness temperature should not be neglected,particularly for higher frequency,and can be parameterized.At the same time,the relationship between the emissivities of the different channels was developed.The study results will promote the development of algorithm to retrieve geophysical parameters from microwave remotely sensed data.

  18. New Freeform Manufacturing Chains Based on Atmospheric Plasma Jet Machining

    Science.gov (United States)

    Arnold, T.; Boehm, G.; Paetzelt, H.

    2016-01-01

    New manufacturing chains for precise fabrication of asphere and freeform optical surfaces including atmospheric Plasma Jet Machining (PJM) technology will be presented. PJM is based on deterministic plasma-assisted material removal. It has the potential for flexible and cost-efficient shape generation and correction of small and medium-sized optical freeform elements. The paper discusses the interactions between the plasma tools and optical fused silica samples in the context of the pre-machined and intermediate surface states and identifies several plasma jet machining methods for freeform generation, surface correction, and finishing as well as suitable auxiliary polishing methods. The successful application of either processing chain is demonstrated.

  19. Integrated method for the measurement of trace atmospheric bases

    Directory of Open Access Journals (Sweden)

    D. Key

    2011-09-01

    Full Text Available Nitrogenous atmospheric bases are thought to play a key role in the global nitrogen cycle, but their sources, transport, and sinks remain poorly understood. Of the many methods available to measure such compounds in ambient air, few meet the current need of being applicable to the complete range of potential analytes and fewer still are convenient to implement using instrumentation that is standard to most laboratories. In this work, an integrated approach to measuring trace atmospheric nitrogenous bases has been developed and validated. The method uses a simple acid scrubbing step to capture and concentrate the bases as their phosphite salts, which then are derivatized and analyzed using GC/MS and/or LC/MS. The advantages of both techniques in the context of the present measurements are discussed. The approach is sensitive, selective, reproducible, as well as convenient to implement and has been validated for different sampling strategies. The limits of detection for the families of tested compounds are suitable for ambient measurement applications, as supported by field measurements in an urban park and in the exhaust of on-road vehicles.

  20. Integrated method for the measurement of trace nitrogenous atmospheric bases

    Science.gov (United States)

    Key, D.; Stihle, J.; Petit, J.-E.; Bonnet, C.; Depernon, L.; Liu, O.; Kennedy, S.; Latimer, R.; Burgoyne, M.; Wanger, D.; Webster, A.; Casunuran, S.; Hidalgo, S.; Thomas, M.; Moss, J. A.; Baum, M. M.

    2011-12-01

    Nitrogenous atmospheric bases are thought to play a key role in the global nitrogen cycle, but their sources, transport, and sinks remain poorly understood. Of the many methods available to measure such compounds in ambient air, few meet the current need of being applicable to the complete range of potential analytes and fewer still are convenient to implement using instrumentation that is standard to most laboratories. In this work, an integrated approach to measuring trace, atmospheric, gaseous nitrogenous bases has been developed and validated. The method uses a simple acid scrubbing step to capture and concentrate the bases as their phosphite salts, which then are derivatized and analyzed using GC/MS and/or LC/MS. The advantages of both techniques in the context of the present measurements are discussed. The approach is sensitive, selective, reproducible, as well as convenient to implement and has been validated for different sampling strategies. The limits of detection for the families of tested compounds are suitable for ambient measurement applications (e.g., methylamine, 1 pptv; ethylamine, 2 pptv; morpholine, 1 pptv; aniline, 1 pptv; hydrazine, 0.1 pptv; methylhydrazine, 2 pptv), as supported by field measurements in an urban park and in the exhaust of on-road vehicles.

  1. Integrated method for the measurement of trace atmospheric bases

    Science.gov (United States)

    Key, D.; Stihle, J.; Petit, J.-E.; Bonnet, C.; Depernon, L.; Liu, O.; Kennedy, S.; Latimer, R.; Burgoyne, M.; Wanger, D.; Webster, A.; Casunuran, S.; Hidalgo, S.; Thomas, M.; Moss, J. A.; Baum, M. M.

    2011-09-01

    Nitrogenous atmospheric bases are thought to play a key role in the global nitrogen cycle, but their sources, transport, and sinks remain poorly understood. Of the many methods available to measure such compounds in ambient air, few meet the current need of being applicable to the complete range of potential analytes and fewer still are convenient to implement using instrumentation that is standard to most laboratories. In this work, an integrated approach to measuring trace atmospheric nitrogenous bases has been developed and validated. The method uses a simple acid scrubbing step to capture and concentrate the bases as their phosphite salts, which then are derivatized and analyzed using GC/MS and/or LC/MS. The advantages of both techniques in the context of the present measurements are discussed. The approach is sensitive, selective, reproducible, as well as convenient to implement and has been validated for different sampling strategies. The limits of detection for the families of tested compounds are suitable for ambient measurement applications, as supported by field measurements in an urban park and in the exhaust of on-road vehicles.

  2. Spatial heterogeneity in geothermally-influenced lakes derived from atmospherically corrected Landsat thermal imagery and three-dimensional hydrodynamic modelling

    Science.gov (United States)

    Allan, Mathew G.; Hamilton, David P.; Trolle, Dennis; Muraoka, Kohji; McBride, Christopher

    2016-08-01

    Atmospheric correction of Landsat 7 thermal data was carried out for the purpose of retrieval of lake skin water temperature in Rotorua lakes, and Lake Taupo, North Island, New Zealand. The effect of the atmosphere was modelled using four sources of atmospheric profile data as input to the MODerate resolution atmospheric TRANsmission (MODTRAN) radiative transfer model. The retrieved skin water temperatures were validated using a high-frequency temperature sensor deployed from a monitoring buoy at the water surface of Lake Rotorua. The most accurate atmospheric correction method was with Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric profile data (root-mean-square-error, RMSE, 0.48 K), followed by radiosonde (0.52 K), Atmospheric Infrared Sounder (AIRS) Level 3 (0.54 K), and the NASA atmospheric correction parameter calculator (0.94 K). Retrieved water temperature was used for assessing spatial heterogeneity and accuracy of surface water temperature simulated with a three-dimensional (3-D) hydrodynamic model of Lake Rotoehu, located approximately 20 km east of Lake Rotorua. This comparison indicated that the model was suitable for reproducing the dominant horizontal variations in surface water temperature in the lake. This study demonstrated the potential of accurate satellite-based thermal monitoring to validate temperature outputs from 3-D hydrodynamic model simulations. It also provided atmospheric correction options for local and global applications of Landsat thermal data.

  3. A High Resolution Nonhydrostatic Tropical Atmospheric Model and Its Performance

    Institute of Scientific and Technical Information of China (English)

    SHEN Xueshun; Akimasa SUMI

    2005-01-01

    A high resolution nonhydrostatic tropical atmospheric model is developed by using a ready-made regional atmospheric modeling system. The motivation is to investigate the convective activities associated with the tropical intraseasonal oscillation (ISO) through a cloud resolving calculation. Due to limitations in computing resources, a 2000 km×2000 km region covering the forefront of an ISO-related westerly is selected as the model domain, in which a cloud-resolving integration with a 5-km horizontal resolution is conducted. The results indicate the importance of stratus-cumulus interactions in the organization of the cloud clusters embedded in the ISO. In addition, comparative integrations with 2-km and 5-km grid sizes are conducted, which suggest no distinctive differences between the two cases although some finer structures of convections are discernible in the 2-km case. The significance of this study resides in supplying a powerful tool for investigating tropical cloud activities without the controversy of cloud parameterizations. The parallel computing method applied in this model allows sufficient usage of computer memory, which is different from the usual method used when parallelizing regional model. Further simulation for the global tropics with a resolution around 5 km is being prepared.

  4. Modelling the impact of aircraft emissions on atmospheric composition

    Science.gov (United States)

    Wasiuk, D. K.; Lowenberg, M. H.; Shallcross, D. E.

    2012-12-01

    Emissions of the trace gases CO2, CO, H2O, HC, NOx, and SOx that have the potential to perturb large scale atmospheric composition are accumulating in the atmosphere at an unprecedented rate as the demand for air traffic continues to grow. We investigate the global and regional effects of aircraft emissions on the atmosphere and climate using mathematical modelling, sensitivity simulations, and perturbation simulations and present historical and spatial distribution evolution of the global and regional number of departures, fuel burn and emissions. A comprehensive aircraft movement database spanning years 2005 - 2012, covering 225 countries and over 223 million departures on approximately 41000 unique routes serves as a basis for our investigation. We combine air traffic data with output from an aircraft performance model (fuel burn and emissions) including 80 distinct aircraft types, representing 216 of all the aircraft flown in the world in 2005 - 2012. This accounts for fuel burn and emissions for 99.5% of the total number of departures during that time. Simulations are being performed using a state of the art 3D Lagrangian global chemical transport model (CTM) CRI-STOCHEM for simulation of tropospheric chemistry. The model is applied with the CRI (Common Representative Intermediates) chemistry scheme with 220 chemical species, and 609 reactions. This allows us to study in detail the chemical cycles driven by NOx, governing the rate of formation of O3 which controls the production of OH and indirectly determines the lifetime of other greenhouse gases. We also investigate the impact of the Eyjafjallajökull eruption on the European air traffic and present a model response to the perturbation of NOx emissions that followed.

  5. Characterizing uniform discharge in atmospheric helium by numerical modelling

    Institute of Scientific and Technical Information of China (English)

    Lü Bo; Wang Xin-Xin; Luo Hai-Yun; Liang Zhuo

    2009-01-01

    One-dimensional fluid model of dielectric barrier discharge (DBD) in helium at atmospheric pressure was estab-lished and the discharge was numerically simulated. It was found that not only the spatial distributions of the internal parameters such as the electric field, the electron density and ion density are similar to those in a low-pressure glow discharge, but also the visually apparent attribute (light emission) is exactly the same as the observable feature of a low-pressure glow discharge. This confirms that the uniform DBD in atmosphcric helium is a glow type discharge. The fact that the thickness of the cathode fall layer is about 0.5 ram, much longer than that of a normal glow dischargc in helium at atmospheric pressure, indicates the discharge being a sub-normal glow discharge close to normal one. The multipulse phenomenon was reproduced in the simulation and a much less complicated explanation for this phenomenon was given.

  6. Models of atmosphere-ecosystem-hydrology interactions: Approaches and testing

    Science.gov (United States)

    Schimel, David S.

    1992-01-01

    Interactions among the atmosphere, terrestrial ecosystems, and the hydrological cycle have been the subject of investigation for many years, although most of the research has had a regional focus. The topic is broad, including the effects of climate and hydrology on vegetation, the effects of vegetation on hydrology, the effects of the hydrological cycle on the atmosphere, and interactions of the cycles via material flux such as solutes and trace gases. The intent of this paper is to identify areas of critical uncertainty, discuss modeling approaches to resolving those problems, and then propose techniques for testing. I consider several interactions specifically to illustrate the range of problems. These areas are as follows: (1) cloud parameterizations and the land surface, (2) soil moisture, and (3) the terrestrial carbon cycle.

  7. An overview of the coupled atmosphere-wildland fire model WRF-Fire

    CERN Document Server

    Mandel, Jan; Kochanski, Adam K

    2011-01-01

    We describe the coupled atmosphere-wildfire model WRF-Fire, which is distributed as a part of WRF. The fire module is based on a fire-spread model, implemented by the level-set method. In each time step, the fire module takes the wind as input and returns the latent and sensible heat fluxes. We report on the software architecture and features of the software.

  8. Development of atmosphere-soil-vegetation model for investigation of radioactive materials transport in terrestrial biosphere

    International Nuclear Information System (INIS)

    In order to investigate the transport of radionuclides in the terrestrial biosphere we have developed a one-dimensional numerical model named SOLVEG that predicts the transfer of water, heat, and gaseous and particulate matters in atmosphere-soil-vegetation system. The SOLVEG represents atmosphere, soil, and vegetation as an aggregation of several layers. Basic equations used in the model are solved using the finite difference method. Most of predicted variables are interrelated with the source/sink terms of momentum, water, heat, gases, and particles based on mathematically described biophysical processes in atmosphere, soil and vegetation. The SOLVEG can estimate dry, wet and fog deposition of gaseous and particulate matters at each canopy layer. Performance tests of the SOLVEG with several observational sites were carried out. The SOLVEG predicted the observed temporal changes in water vapor, CO2, and ozone fluxes over vegetated surfaces. The SOLVEG also reproduced measured fluxes of fog droplets and of fine aerosols over the forest. (author)

  9. A consistent turbulence formulation for the dynamic wake meandering model in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Keck, Rolf-Erik; Veldkamp, Dick; Wedel-Heinen, Jens Jakob;

    This thesis describes the further development and validation of the dynamic meandering wake model for simulating the flow field and power production of wind farms operating in the atmospheric boundary layer (ABL). The overall objective of the conducted research is to improve the modelling...... of the wind industry, four areas were identified as high prioritizations for further research: 1. the turbulence distribution in a single wake 2. multiple wake deficits and build-up of turbulence over a row of turbines 3. the effect of the atmospheric boundary layer on wake turbulence and wake deficit...... evolution 4. atmospheric stability effects on wake deficit evolution and meandering The conducted research is to a large extent based on detailed wake investigations and reference data generated through computational fluid dynamics simulations, where the wind turbine rotor has been represented...

  10. Latest development of a chemical model combined with an atmospheric transport model in CERES NRBC-E

    International Nuclear Information System (INIS)

    CERES NRBC-E is an operational platform, developed by CEA DAM that is used to assess the impact on the environment and on health of atmospheric releases of radiological, chemical and biological elements. The last development takes into account the chemical reactions occurring during the atmospheric transport. The chemical reaction model between the species in gaseous phases and aqueous phases is based on the DSMACC code (Dynamically Simple Model for Atmospheric Chemical Complexity), on the preprocessor KPP (kinetic Pre-processor) and the TUV (Tropospheric Ultraviolet-photolysis). A preliminary version of CERES NRBC-E is available for testing. The atmospheric dispersion of an ammoniac release has been computed. Results show that taking into account chemical reactions occurring between OH radicals and ammoniac, leads to a reduction of the atmospheric ratio of NH3. The next step will be to include in CERES NRBC-E the chemical reactions that happen between the atmospheric releases and the aqueous phase generated by the presence of fog and clouds

  11. The influence of atmospheric circulation on the mid-Holocene climate of Europe: a data-model comparison

    Directory of Open Access Journals (Sweden)

    A. Mauri

    2013-10-01

    Full Text Available The atmospheric circulation is a key area of uncertainty in climate model simulations of future climate change, especially in mid-latitude regions such as Europe where atmospheric dynamics have a significant role in climate variability. It has been proposed that the mid-Holocene was characterized in Europe by a stronger westerly circulation in winter comparable with a more positive AO/NAO, and a weaker westerly circulation in summer caused by anti-cyclonic blocking near Scandinavia. Model simulations indicate at best only a weakly positive AO/NAO, whilst changes in summer atmospheric circulation have not been widely investigated. Here we use a new pollen-based reconstruction of European mid-Holocene climate to investigate the role of atmospheric circulation in explaining the spatial pattern of seasonal temperature and precipitation anomalies. We find that the footprint of the anomalies is entirely consistent with those from modern analogue atmospheric circulation patterns associated with a strong westerly circulation in winter (positive AO/NAO and a weak westerly circulation in summer (positive SCAND. We find little agreement between the reconstructed anomalies and those from a climate model simulation, which as with most model simulations shows a much greater sensitivity to local radiative forcing from top-of-the-atmosphere changes in solar insolation. Our findings are consistent with data-model comparisons on contemporary timescales that indicate that models underestimate the role of atmospheric circulation in climate change, whilst also highlighting the importance of atmospheric dynamics in explaining interglacial warming.

  12. Modeling atmospheric deposition using a stochastic transport model

    International Nuclear Information System (INIS)

    An advanced stochastic transport model has been modified to include the removal mechanisms of dry and wet deposition. Time-dependent wind and turbulence fields are generated with a prognostic mesoscale numerical model and are used to advect and disperse individually released particles that are each assigned a mass. These particles are subjected to mass reduction in two ways depending on their physical location. Particles near the surface experience a decrease in mass using the concept of a dry deposition velocity, while the mass of particles located within areas of precipitation are depleted using a scavenging coefficient. Two levels of complexity are incorporated into the particle model. The simple case assumes constant values of dry deposition velocity and scavenging coefficient, while the more complex case varies the values according to meteorology, surface conditions, release material, and precipitation intensity. Instantaneous and cumulative dry and wet deposition are determined from the mass loss due to these physical mechanisms. A useful means of validating the model results is with data available from a recent accidental release of Cesium-137 from a steel-processing furnace in Algeciras, Spain in May, 1998. This paper describes the deposition modeling technique, as well as a comparison of simulated concentration and deposition with measurements taken for the Algeciras release

  13. Atmospheric statistical dynamic models. Climate experiments: albedo experiments with a zonal atmospheric model

    International Nuclear Information System (INIS)

    The zonal model experiments with modified surface boundary conditions suggest an initial chain of feedback processes that is largest at the site of the perturbation: deforestation and/or desertification → increased surface albedo → reduced surface absorption of solar radiation → surface cooling and reduced evaporation → reduced convective activity → reduced precipitation and latent heat release → cooling of upper troposphere and increased tropospheric lapse rates → general global cooling and reduced precipitation. As indicated above, although the two experiments give similar overall global results, the location of the perturbation plays an important role in determining the response of the global circulation. These two-dimensional model results are also consistent with three-dimensional model experiments. These results have tempted us to consider the possibility that self-induced growth of the subtropical deserts could serve as a possible mechanism to cause the initial global cooling that then initiates a glacial advance thus activating the positive feedback loop involving ice-albedo feedback (also self-perpetuating). Reversal of the cycle sets in when the advancing ice cover forces the wave-cyclone tracks far enough equatorward to quench (revegetate) the subtropical deserts

  14. Finite-difference numerical modelling of gravitoacoustic wave propagation in a windy and attenuating atmosphere

    Science.gov (United States)

    Brissaud, Quentin; Martin, Roland; Garcia, Raphaël F.; Komatitsch, Dimitri

    2016-07-01

    Acoustic and gravity waves propagating in planetary atmospheres have been studied intensively as markers of specific phenomena such as tectonic events or explosions or as contributors to atmosphere dynamics. To get a better understanding of the physics behind these dynamic processes, both acoustic and gravity waves propagation should be modelled in a 3-D attenuating and windy atmosphere extending from the ground to the upper thermosphere. Thus, in order to provide an efficient numerical tool at the regional or global scale, we introduce a finite difference in the time domain (FDTD) approach that relies on the linearized compressible Navier-Stokes equations with a background flow (wind). One significant benefit of such a method is its versatility because it handles both acoustic and gravity waves in the same simulation, which enables one to observe interactions between them. Simulations can be performed for 2-D or 3-D realistic cases such as tsunamis in a full MSISE-00 atmosphere or gravity-wave generation by atmospheric explosions. We validate the computations by comparing them to analytical solutions based on dispersion relations in specific benchmark cases: an atmospheric explosion, and a ground displacement forcing.

  15. An atmospheric tritium release database for model comparisons. Revision 1

    International Nuclear Information System (INIS)

    A database of vegetation, soil, and air tritium concentrations at gridded coordinate locations following nine accidental atmospheric releases is described. While none of the releases caused a significant dose to the public, the data collected are valuable for comparison with the results of tritium transport models used for risk assessment. The largest, potential, individual off-site dose from any of the releases was calculated to be 1.6 mrem. The population dose from this same release was 46 person-rem which represents 0.04% of the natural background radiation dose to the population in the path of the release

  16. Modeling of Atmospheric Turbulence Effect on Terrestrial FSO Link

    Directory of Open Access Journals (Sweden)

    A. Prokes

    2009-04-01

    Full Text Available Atmospheric turbulence results in many effects causing fluctuation in the received optical power. Terrestrial laser beam communication is affected above all by scintillations. The paper deals with modeling the influence of scintillation on link performance, using the modified Rytov theory. The probability of correct signal detection in direct detection system in dependence on many parameters such as link distance, power link margin, refractive-index structure parameter, etc. is discussed and different approaches to the evaluation of scintillation effect are compared. The simulations are performed for a horizontal-path propagation of the Gaussian-beam wave.

  17. An atmospheric tritium release database for model comparisons

    International Nuclear Information System (INIS)

    A database of vegetation, soil, and air tritium concentrations at gridded coordinate locations following nine accidental atmospheric releases is described. While none of the releases caused a significant dose to the public, the data collected is valuable for comparison with the results of tritium transport models used for risk assessment. The largest, potential, individual off-site dose from any of the releases was calculated to be 1.6 mrem. The population dose from this same release was 46 person-rem which represents 0.04% of the natural background radiation dose to the population in the path of the release

  18. Fingering convection and cloudless models for cool brown dwarf atmospheres

    CERN Document Server

    Tremblin, P; Mourier, P; Baraffe, I; Chabrier, G; Drummond, B; Homeier, D; Venot, O

    2015-01-01

    This work aims to improve the current understanding of the atmospheres of brown dwarfs, especially cold ones with spectral type T and Y, whose modeling is a current challenge. Silicate and iron clouds are believed to disappear at the photosphere at the L/T transition, but cloudless models fail to reproduce correctly the spectra of T dwarfs, advocating for the addition of more physics, e.g. other types of clouds or internal energy transport mechanisms. We use a one-dimensional (1D) radiative/convective equilibrium code ATMO to investigate this issue. This code includes both equilibrium and out-of-equilibrium chemistry and solves consistently the PT structure. Included opacity sources are H2-H2, H2-He, H2O, CO, CO2, CH4, NH3, K, Na, and TiO, VO if they are present in the atmosphere. We show that the spectra of Y dwarfs can be accurately reproduced with a cloudless model if vertical mixing and NH3 quenching are taken into account. T dwarf spectra still have some reddening in e.g. J - H compared to cloudless mode...

  19. Dynamical modeling of long-period variable star atmospheres

    International Nuclear Information System (INIS)

    Using a new flexible computer program, numerical calculations were performed to investigate the dynamical structure and behavior of a spherical model atmosphere for cool pulsating Mira-like stars with masses from 0.8 to 2.0 solar masses and fundamental-mode pulsation periods from 175 to 1000 days. In particular, the response of the model to periodic driving at its inner boundary was examined for a considerable range of stellar parameters for both fundamental and overtone modes, various driving amplitudes, and various assumptions about the physical processes involved; radiation pressure on dust and time-dependent temperature relaxation were included. Stable steady state models with periodic shocks were obtained in all cases. Both shocks and dust were found to be essential for rapid mass loss. The shocks increase the density and thus greatly increase the amount of dust formed in the cool outer atmosphere. Radiation pressure accelerates the grains, which drive a slow cool wind. Calculated mass-loss rates appear to be of the right order of magnitude to agree with observations and show how mass loss can be expected to depend on the stellar parameters. 42 references

  20. Atmospheric Probe Model: Construction and Wind Tunnel Tests

    Science.gov (United States)

    Vogel, Jerald M.

    1998-01-01

    The material contained in this document represents a summary of the results of a low speed wind tunnel test program to determine the performance of an atmospheric probe at low speed. The probe configuration tested consists of a 2/3 scale model constructed from a combination of hard maple wood and aluminum stock. The model design includes approximately 130 surface static pressure taps. Additional hardware incorporated in the baseline model provides a mechanism for simulating external and internal trailing edge split flaps for probe flow control. Test matrix parameters include probe side slip angle, external/internal split flap deflection angle, and trip strip applications. Test output database includes surface pressure distributions on both inner and outer annular wings and probe center line velocity distributions from forward probe to aft probe locations.

  1. 3D Servicescape Model: Atmospheric Qualities of Virtual Reality Retailing

    Directory of Open Access Journals (Sweden)

    Aasim Munir Dad

    2016-02-01

    Full Text Available The purpose of this paper is to provide a 3D servicescape conceptual model which explores the potential effect of 3D virtual reality retail stores’ environment on shoppers' behaviour. Extensive review of literature within two different domains, namely: servicescape models, and retail atmospherics, was carried out in order to propose a conceptual model. Further, eight detailed interviews were conducted to confirm the stimulus dimension of the conceptual model. A 3D servicescape conceptual model is offered on the basis of stimulus-organism-dimension, which proposes that a 3D virtual reality retail (VRR store environment consists of physical, social, socially symbolic and natural dimensions. These dimensions are proposed to affect shoppers’ behaviour through the mediating variables of emotions (pleasure and arousal. An interrelationship between pleasure and arousal, as mediating variables, is also proposed. This research opens a number of new avenues for further research through the proposed model of shoppers’ behaviour in a VRR store environment. Further, a systematic taxonomy development of VRR store environment is attempted through this proposed model that may prove to be an important step in theory building. A comprehensive 3D service scape model along with a large number of propositions is made to define a 3D VRR store environment.

  2. ATTILA - Atmospheric Tracer Transport In a Langrangian Model

    Energy Technology Data Exchange (ETDEWEB)

    Reithmeier, C.; Sausen, R.

    2000-07-01

    The Lagrangian model ATTILA (atmospheric tracer transport in a Lagrangian model) has been developed to treat the global-scale transport of passive trace species in the atmosphere within the framework of a general circulation model (GCM). ATTILA runs online within the GCM ECHAM4 and uses the GCM produced wind field to advect the centrois of 80.000 to 180.000 constant mass air parcels into which the model atmosphere is divided. Each trace constituent is thereby represented by a mass mixing ratio in each parcel. ATTILA contains state-of-the-art parameterizations of convection, turbulent boundary layer mixing, and interparcel transport and provides an algorithm to map the tracer concentrations from the trajectories to the ECHAM model grid. We use two experiments to evaluate the transport characteristics of ATTILA against observations and the standard semiLagrangian transport scheme of ECHAM. In the first experiment we simulate the distribution of the short-lived tracer Radon ({sup 222}Rn) in order to examine fast vertical transport over continents, and long-range transport from the continents to remote areas. In the second experiment, we simulate the distribution of radiocarbon ({sup 14}C) that was injected into the northern stratosphere during the nuclear weapon tests in the early 60ties, in order to examine upper tropospheric and stratospheric transport characteristics. ATTILA compares well to the observations and in many respects to the semiLagrangian scheme. However, contrary to the semiLagrangian scheme, ATTILA shows a greatly reduced meridional transport in the upper troposphere and lower stratosphere, and a reduced downward flux from the stratosphere to the troposphere, especially in midlatitudes. Since both transport schemes use the same model meteorology, we conclude that the often cited enhanced meridional transport and overestimated downward flux in ECHAM as described above is rather due to the numerical properties of the semiLagrangian scheme than due to an

  3. Modeling the atmospheric and terrestrial water and energy cycles in the ScaleX experiment through a fully-coupled atmosphere-hydrology model

    Science.gov (United States)

    Senatore, Alfonso; Benjamin, Fersch; Thomas, Rummler; Caroline, Brosy; Christian, Chwala; Junkermann, Wolfgang; Ingo, Völksch; Harald, Kunstmann

    2016-04-01

    The TERENO preAlpine Observatory, comprising a series of observatory sites along an altitudinal gradient within the Ammer catchment (southern Bavaria, Germany), has been designed as an international research platform, open for participation and integration, and has been provided with comprehensive technical infrastructure to allow joint analyses of water-, energy- and nutrient fluxes. In June and July 2015 the operational monitoring has been complemented by the ScaleX intensive measurement campaign, where additional precipitation and soil moisture measurements, remote sensing measurements of atmospheric wind, humidity and temperature profiles have been performed, complemented by micro-light aircraft- and UAV-based remote sensing for three-dimensional pattern information. The comprehensive observations serve as validation and evaluation basis for compartment-crossing modeling systems. Specifically, the fully two-way dynamically coupled atmosphere-hydrology modeling system WRF-Hydro has been used to investigate the interplay of energy and water cycles at the regional scale and across the compartments atmosphere, stream, vadose zone and groundwater during the ScaleX campaign and to assess the closure of the budgets involved. Here, several high-resolution modeled hydro-meteorological variables, such as precipitation, soil moisture, river discharge and air moisture and temperature along vertical profiles are compared with observations from multiple sources, such as rain gauges and soil moisture networks, rain radars, stream gauges, UAV and a micro-light aircraft. Results achieved contribute to the objective of addressing questions on energy- and water-cycling within the TERENO-Ammer region at a very high scale and degree of integration, and provides hints on how well can observations constrain uncertainties associated with the modeling of atmospheric and terrestrial water and energy balances.

  4. The Risoe model for calculating the consequences of the release of radioactive material to the atmosphere

    International Nuclear Information System (INIS)

    A brief description is given of the model used at Risoe for calculating the consequences of releases of radioactive material to the atmosphere. The model is based on the Gaussian plume model, and it provides possibilities for calculation of: doses to individuals, collective doses, contamination of the ground, probability distribution of doses, and the consequences of doses for give dose-risk relationships. The model is implemented as a computer program PLUCON2, written in ALGOL for the Burroughs B6700 computer at Risoe. A short description of PLUCON2 is given. (author)

  5. Modeling Activities in the Department of Energy’s Atmospheric Sciences Program

    Energy Technology Data Exchange (ETDEWEB)

    Fast, Jerome D.; Ghan, Steven J.; Schwartz, Stephen E.

    2009-03-01

    The Department of Energy's Atmospheric Science Program (ASP) conducts research pertinent to radiative forcing of climate change by atmospheric aerosols. The program consists of approximately 40 highly interactive peer-reviewed research projects that examine aerosol properties and processes and the evolution of aerosols in the atmosphere. Principal components of the program are instrument development, laboratory experiments, field studies, theoretical investigations, and modeling. The objectives of the Program are to 1) improve the understanding of aerosol processes associated with light scattering and absorption properties and interactions with clouds that affect Earth's radiative balance and to 2) develop model-based representations of these processes that enable the effects of aerosols on Earth's climate system to be properly represented in global-scale numerical climate models. Although only a few of the research projects within ASP are explicitly identified as primarily modeling activities, modeling actually comprises a substantial component of a large fraction of ASP research projects. This document describes the modeling activities within the Program as a whole, the objectives and intended outcomes of these activities, and the linkages among the several modeling components and with global-scale modeling activities conducted under the support of the Department of Energy's Climate Sciences Program and other aerosol and climate research programs.

  6. Examining the exobase approximation: DSMC models of Titan's upper atmosphere

    Science.gov (United States)

    Tucker, Orenthal J.; Waalkes, William; Tenishev, Valeriy M.; Johnson, Robert E.; Bieler, Andre; Combi, Michael R.; Nagy, Andrew F.

    2016-07-01

    Chamberlain ([1963] Planet. Space Sci., 11, 901-960) described the use of the exobase layer to determine escape from planetary atmospheres, below which it is assumed that molecular collisions maintain thermal equilibrium and above which collisions are deemed negligible. De La Haye et al. ([2007] Icarus., 191, 236-250) used this approximation to extract the energy deposition and non-thermal escape rates for Titan's atmosphere by fitting the Cassini Ion Neutral Mass Spectrometer (INMS) density data. De La Haye et al. assumed the gas distributions were composed of an enhanced population of super-thermal molecules (E >> kT) that could be described by a kappa energy distribution function (EDF), and they fit the data using the Liouville theorem. Here we fitted the data again, but we used the conventional form of the kappa EDF. The extracted kappa EDFs were then used with the Direct Simulation Monte Carlo (DSMC) technique (Bird [1994] Molecular Gas Dynamics and the Direct Simulation of Gas Flows) to evaluate the effect of collisions on the exospheric profiles. The INMS density data can be fit reasonably well with thermal and various non-thermal EDFs. However, the extracted energy deposition and escape rates are shown to depend significantly on the assumed exobase altitude, and the usefulness of such fits without directly modeling the collisions is unclear. Our DSMC results indicate that the kappa EDFs used in the Chamberlain approximation can lead to errors in determining the atmospheric temperature profiles and escape rates. Gas kinetic simulations are needed to accurately model measured exospheric density profiles, and to determine the altitude ranges where the Liouville method might be applicable.

  7. Inverse modelling of national and European CH4 emissions using the atmospheric zoom model TM5

    Directory of Open Access Journals (Sweden)

    P. Bergamaschi

    2005-01-01

    Full Text Available A synthesis inversion based on the atmospheric zoom model TM5 is used to derive top-down estimates of CH4 emissions from individual European countries for the year 2001. We employ a model zoom over Europe with 1° × 1° resolution that is two-way nested into the global model domain (with resolution of 6° × 4°. This approach ensures consistent boundary conditions for the zoom domain and thus European top-down estimates consistent with global CH4 observations. The TM5 model, driven by ECMWF analyses, simulates synoptic scale events at most European and global sites fairly well, and the use of high-frequency observations allows exploiting the information content of individual synoptic events. A detailed source attribution is presented for a comprehensive set of 56 monitoring sites, assigning the atmospheric signal to the emissions of individual European countries and larger global regions. The available observational data put significant constraints on emissions from different regions. Within Europe, in particular several Western European countries are well constrained. The inversion results suggest up to 50-90% higher anthropogenic CH4 emissions in 2001 for Germany, France and UK compared to reported UNFCCC values (EEA, 2003. A recent revision of the German inventory, however, resulted in an increase of reported CH4 emissions by 68.5% (EEA, 2004, being now in very good agreement with our top-down estimate. The top-down estimate for Finland is distinctly smaller than the a priori estimate, suggesting much smaller CH4 emissions from Finnish wetlands than derived from the bottom-up inventory. The EU-15 totals are relatively close to UNFCCC values (within 4-30% and appear very robust for different inversion scenarios.

  8. The NASA/MSFC Global Reference Atmospheric Model: 1999 Version (GRAM-99)

    Science.gov (United States)

    Justus, C. G.; Johnson, D. L.

    1999-01-01

    The latest version of Global Reference Atmospheric Model (GRAM-99) is presented and discussed. GRAM-99 uses either (binary) Global Upper Air Climatic Atlas (GUACA) or (ASCII) Global Gridded Upper Air Statistics (GGUAS) CD-ROM data sets, for 0-27 km altitudes. As with earlier versions, GRAM-99 provides complete geographical and altitude coverage for each month of the year. GRAM-99 uses a specially-developed data set, based on Middle Atmosphere Program (MAP) data, for 20-120 km altitudes, and NASA's 1999 version Marshall Engineering Thermosphere (MET-99) model for heights above 90 km. Fairing techniques assure smooth transition in overlap height ranges (20-27 km and 90-120 km). GRAM-99 includes water vapor and 11 other atmospheric constituents (O3, N2O, CO, CH4, CO2, N2, O2, O, A, He and H). A variable-scale perturbation model provides both large-scale (wave) and small-scale (stochastic) deviations from mean values for thermodynamic variables and horizontal and vertical wind components. The small-scale perturbation model includes improvements in representing intermittency ("patchiness"). A major new feature is an option to substitute Range Reference Atmosphere (RRA) data for conventional GRAM climatology when a trajectory passes sufficiently near any RRA site. A complete user's guide for running the program, plus sample input and output, is provided. An example is provided for how to incorporate GRAM-99 as subroutines in other programs (e.g., trajectory codes).

  9. A new astrobiological model of the atmosphere of Titan

    CERN Document Server

    Willacy, Karen; Yung, Yuk

    2016-01-01

    We present results of an investigation into the formation of nitrogen-bearing molecules in the atmosphere of Titan. We extend a previous model (Li et al. 2015, 2016) to cover the region below the tropopause, so the new model treats the atmosphere from Titan's surface to an altitude of 1500 km. We consider the effects of condensation and sublimation using a continuous, numerically stable method. This is coupled with parameterized treatments of the sedimentation of the aerosols and their condensates, and the formation of haze particles. These processes affect the abundances of heavier species such as the nitrogen-bearing molecules, but have less effect on the abundances of lighter molecules. Removal of molecules to form aerosols also plays a role in determining the mixing ratios, in particular of HNC, HC3N and HCN. We find good agreement with the recently detected mixing ratios of C2H5CN, with condensation playing an important role in determining the abundance of this molecule below 500 km. Of particular intere...

  10. Global empirical models of ionospheric electron temperature in the upper F-region and plasmasphere based on in situ measurements from the Atmosphere Explorer-C, ISIS-1 and ISIS-2 satellites

    Science.gov (United States)

    Brace, L. H.; Theis, R. F.

    1981-01-01

    Langmuir probe measurements of electron temperature, T sub e, in the vicinity of 300, 400, 1400 and 3000 km from the Atmosphere Explorer-C and the ISIS satellites have been employed to construct empirical models of the global distribution of T sub e at each of these altitudes. Legendre polynomials are employed to describe the observations at solstice and equinox in terms of dip latitude and local time. Sources of T sub e variations, such as solar activity, magnetic activity and longitude are found to be of second order importance, although they are resolvable in some cases by comparisons of the data with the model. The behavior of T sub e at the altitudes of these models is discussed in terms of its implications for our understanding of the energy exchange between the F-region and the plasmasphere.

  11. Causes and Implications of Persistent Atmospheric Carbon Dioxide Biases in Earth System Models

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Forrest M [ORNL; Randerson, James T. [University of California, Irvine; Arora, Vivek K. [Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada; Bao, Qing [State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics; Cadule, Patricia [Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l' Environment; Ji, Duoying [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing; Jones, Chris D. [Hadley Centre, U.K. Met Office; Kawamiya, Michio [Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Khatiwala, Samar [Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY; Lindsay, Keith [National Center for Atmospheric Research (NCAR); Obata, Atsushi [Meteorological Research Institute, Japan; Shevliakova, Elena [Princeton University; Six, Katharina D. [Max Planck Institute for Meteorology, Hamburg, Germany; Tjiputra, Jerry F. [Uni Climate, Uni Research; Volodin, Evgeny M. [Institute of Numerical Mathematics, Russian Academy of Science, Moscow; Wu, Tongwen [China Meteorological Administration (CMA), Beijing

    2014-01-01

    The strength of feedbacks between a changing climate and future CO2 concentrations are uncertain and difficult to predict using Earth System Models (ESMs). We analyzed emission-driven simulations--in which atmospheric CO2 levels were computed prognostically--for historical (1850-2005) and future periods (RCP 8.5 for 2006-2100) produced by 15 ESMs for the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5). Comparison of ESM prognostic atmospheric CO2 over the historical period with observations indicated that ESMs, on average, had a small positive bias in predictions of contemporary atmospheric CO2. Weak ocean carbon uptake in many ESMs contributed to this bias, based on comparisons with observations of ocean and atmospheric anthropogenic carbon inventories. We found a significant linear relationship between contemporary atmospheric CO2 biases and future CO2 levels for the multi-model ensemble. We used this relationship to create a contemporary CO2 tuned model (CCTM) estimate of the atmospheric CO2 trajectory for the 21st century. The CCTM yielded CO2 estimates of 600 {plus minus} 14 ppm at 2060 and 947 {plus minus} 35 ppm at 2100, which were 21 ppm and 32 ppm below the multi-model mean during these two time periods. Using this emergent constraint approach, the likely ranges of future atmospheric CO2, CO2-induced radiative forcing, and CO2-induced temperature increases for the RCP 8.5 scenario were considerably narrowed compared to estimates from the full ESM ensemble. Our analysis provided evidence that much of the model-to-model variation in projected CO2 during the 21st century was tied to biases that existed during the observational era, and that model differences in the representation of concentration-carbon feedbacks and other slowly changing carbon cycle processes appear to be the primary driver of this variability. By improving models to more closely match the long-term time series of CO2 from Mauna Loa, our analysis suggests uncertainties in

  12. Spectral classification of stars using synthetic model atmospheres

    CERN Document Server

    Bertone, E

    2001-01-01

    We devised a straightforward procedure to derive the atmosphere fundamental parameters of stars across the different MK spectral types by comparing mid-resolution spectroscopic observations with theoretical grids of synthetic spectra.The results of a preliminary experiment, by matching the Gunn and Stryker and Jacoby et al. spectrophotometric atlases with the Kurucz models, are briefly discussed. For stars in the A-K spectral range, effective temperature is obtained within a 1-2% relative uncertainty (at 2 sigma confidence level). This value raises to 4-5% for the hottest stars in the samples (O-B spectral types). A poorer fit is obtained throughout for stars cooler than 4000 K mainly due to the limiting input physics in the Kurucz models.

  13. Data Needs for Stellar Atmosphere and Spectrum Modeling

    Science.gov (United States)

    Short, C. I.

    2006-01-01

    The main data need for stellar atmosphere and spectrum modeling remains atomic and molecular transition data, particularly energy levels and transition cross-sections. We emphasize that data is needed for bound-free (b - f) as well as bound-bound (b - b), and collisional as well as radiative transitions. Data is now needed for polyatomic molecules as well as atoms, ions, and diatomic molecules. In addition, data for the formation of, and extinction due to, liquid and solid phase dust grains is needed. A prioritization of species and data types is presented, and gives emphasis to Fe group elements, and elements important for the investigation of nucleosynthesis and Galactic chemical evolution, such as the -elements and n-capture elements. Special data needs for topical problems in the modeling of cool stars and brown dwarfs are described.

  14. Reconciling modeled and observed atmospheric deposition of soluble organic nitrogen at coastal locations

    Science.gov (United States)

    Ito, Akinori; Lin, Guangxing; Penner, Joyce E.

    2014-06-01

    Atmospheric deposition of reactive nitrogen (N) species from air pollutants is a significant source of exogenous nitrogen in marine ecosystems. Here we use an atmospheric chemical transport model to investigate the supply of soluble organic nitrogen (ON) from anthropogenic sources to the ocean. Comparisons of modeled deposition with observations at coastal and marine locations show good overall agreement for inorganic nitrogen and total soluble nitrogen. However, previous modeling approaches result in significant underestimates of the soluble ON deposition if the model only includes the primary soluble ON and the secondary oxidized ON in gases and aerosols. Our model results suggest that including the secondary reduced ON in aerosols as a source of soluble ON contributes to an improved prediction of the deposition rates (g N m-2 yr-1). The model results show a clear distinction in the vertical distribution of soluble ON in aerosols between different processes from the primary sources and the secondary formation. The model results (excluding the biomass burning and natural emission changes) suggest an increase in soluble ON outflow from atmospheric pollution, in particular from East Asia, to the oceans in the twentieth century. These results highlight the necessity of improving the process-based quantitative understanding of the chemical reactions of inorganic nitrogen species with organics in aerosol and cloud water.

  15. Carbon-14 transfer into rice plants from a continuous atmospheric source: observations and model predictions

    International Nuclear Information System (INIS)

    Carbon-14 (14C) is one of the most important radionuclides from the perspective of dose estimation due to the nuclear fuel cycle. Ten years of monitoring data on 14C in airborne emissions, in atmospheric CO2 and in rice grain collected around the Tokai reprocessing plant (TRP) showed an insignificant radiological effect of the TRP-derived 14C on the public, but suggested a minor contribution of the TRP-derived 14C to atmospheric 14C concentrations, and an influence on 14C concentrations in rice grain at harvest. This paper also summarizes a modelling exercise (the so-called rice scenario of the IAEA's EMRAS program) in which 14C concentrations in air and rice predicted with various models using information on 14C discharge rates, meteorological conditions and so on were compared with observed concentrations. The modelling results showed that simple Gaussian plume models with different assumptions predict monthly averaged 14C concentrations in air well, even for near-field receptors, and also that specific activity and dynamic models were equally good for the prediction of inter-annual changes in 14C concentrations in rice grain. The scenario, however, offered little opportunity for comparing the predictive capabilities of these two types of models because the scenario involved a near-chronic release to the atmosphere. A scenario based on an episodic release and short-term, time-dependent observations is needed to establish the overall confidence in the predictions of environmental 14C models

  16. Using meteorological ensembles for atmospheric dispersion modelling of the Fukushima nuclear accident

    Science.gov (United States)

    Périllat, Raphaël; Korsakissok, Irène; Mallet, Vivien; Mathieu, Anne; Sekiyama, Thomas; Didier, Damien; Kajino, Mizuo; Igarashi, Yasuhito; Adachi, Kouji

    2016-04-01

    Dispersion models are used in response to an accidental release of radionuclides of the atmosphere, to infer mitigation actions, and complement field measurements for the assessment of short and long term environmental and sanitary impacts. However, the predictions of these models are subject to important uncertainties, especially due to input data, such as meteorological fields or source term. This is still the case more than four years after the Fukushima disaster (Korsakissok et al., 2012, Girard et al., 2014). In the framework of the SAKURA project, an MRI-IRSN collaboration, a meteorological ensemble of 20 members designed by MRI (Sekiyama et al. 2013) was used with IRSN's atmospheric dispersion models. Another ensemble, retrieved from ECMWF and comprising 50 members, was also used for comparison. The MRI ensemble is 3-hour assimilated, with a 3-kilometers resolution, designed to reduce the meteorological uncertainty in the Fukushima case. The ECMWF is a 24-hour forecast with a coarser grid, representative of the uncertainty of the data available in a crisis context. First, it was necessary to assess the quality of the ensembles for our purpose, to ensure that their spread was representative of the uncertainty of meteorological fields. Using meteorological observations allowed characterizing the ensembles' spread, with tools such as Talagrand diagrams. Then, the uncertainty was propagated through atmospheric dispersion models. The underlying question is whether the output spread is larger than the input spread, that is, whether small uncertainties in meteorological fields can produce large differences in atmospheric dispersion results. Here again, the use of field observations was crucial, in order to characterize the spread of the ensemble of atmospheric dispersion simulations. In the case of the Fukushima accident, gamma dose rates, air activities and deposition data were available. Based on these data, selection criteria for the ensemble members were

  17. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    Directory of Open Access Journals (Sweden)

    E. D. Sofen

    2015-07-01

    Full Text Available The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent dataset for the evaluation of chemical transport and chemistry-climate (Earth System models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total dataset of approximately 6600 sites and 500 million hourly observations from 1971–2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regional background locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This dataset is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily eight-hour average (MDA8, SOMO35, AOT40, and metrics related to air quality regulatory thresholds. Gridded datasets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi:10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452. We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  18. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    Science.gov (United States)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.; Apadula, F.; Bonasoni, P.; Cupeiro, M.; Ellul, R.; Galbally, I. E.; Girgzdiene, R.; Luppo, S.; Mimouni, M.; Nahas, A. C.; Saliba, M.; Tørseth, K.

    2016-02-01

    The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent data set for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total data set of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regionally representative locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This data set is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily 8-hour average (MDA8), sum of means over 35 ppb (daily maximum 8-h; SOMO35), accumulated ozone exposure above a threshold of 40 ppbv (AOT40), and metrics related to air quality regulatory thresholds. Gridded data sets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi: 10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  19. An Object-Oriented Python Implementation of an Intermediate-Level Atmospheric Model

    Science.gov (United States)

    Lin, J. W.

    2008-12-01

    The Neelin-Zeng Quasi-equilibrium Tropical Circulation Model (QTCM1) is a Fortran-based intermediate-level atmospheric model that includes simplified treatments of several physical processes, including a GCM-like convective scheme and a land-surface scheme with representations of different surface types, evaporation, and soil moisture. This model has been used in studies of the Madden-Julian oscillation, ENSO, and vegetation-atmosphere interaction effects on climate. Through the assumption of convective quasi-equilibrium in the troposphere, the QTCM1 is able to include full nonlinearity, resolve baroclinic disturbances, and generate a reasonable climatology, all at low computational cost. One year of simulation on a PC at 5.625 × 3.75 degree longitude-latitude resolution takes under three minutes of wall-clock time. The Python package qtcm implements the QTCM1 in a mixed-language environment that retains the speed of compiled Fortran while providing the benefits of Python's object-oriented framework and robust suite of utilities and datatypes. We describe key programming constructs used to create this modeling environment: the decomposition of model runs into Python objects, providing methods so visualization tools are attached to model runs, and the use of Python's mutable datatypes (lists and dictionaries) to implement the "run list" entity, which enables total runtime control of subroutine execution order and content. The result is an interactive modeling environment where the traditional sequence of "hypothesis → modeling → visualization and analysis" is opened up and made nonlinear and flexible. In this environment, science tasks such as parameter-space exploration and testing alternative parameterizations can be easily automated, without the need for multiple versions of the model code interacting with a bevy of makefiles and shell scripts. The environment also simplifies interfacing of the atmospheric model to other models (e.g., hydrologic models

  20. Atmosphere

    Science.gov (United States)

    Ghosh, D.; Mitra, S. K.

    2014-05-01

    This paper investigates the high-temperature corrosion behavior of microstructurally different regions of the weldment of 9 Cr-1 Mo steel used in thermal power plant boiler in SO2 + O2 environment. The weldment is produced by tungsten inert gas welding method, and the different regions of the weldment (weld metal, heat-affected zone, and base metal) are exposed in SO2 + O2 (ratio 2:1) environment at 973 K for 120 h. The reaction kinetics and corrosion growth rate of different regions of weldment in isothermal condition are evaluated. The post corroded scales of the different specimens are studied in SEM, EDS, and XRD. The results indicate that the weld metal shows higher corrosion rate followed by HAZ and base metal. The higher rate of corrosion of weldmetal is mainly attributed to the least protective inner scale of Cr2O3 with minimum Cr Content. This is due to the formation of delta ferrite, which leads to the precipitation of the Cr-based secondary phases and depletes the free Cr from the matrix. The thermal cycles during welding at high temperature are favorable for the formation of delta ferrite. On the other hand, in absence of delta ferrite, the base metal and HAZ regions of the weldment show lower corrosion rate than weld metal. The difference in corrosion rate in the three regions of the weldment is supplemented by post-corroded scale characterizations.

  1. Application of several activity coefficient models to water-organic-electrolyte aerosols of atmospheric interest

    Directory of Open Access Journals (Sweden)

    T. Raatikainen

    2005-01-01

    Full Text Available In this work, existing and modified activity coefficient models are examined in order to assess their capabilities to describe the properties of aqueous solution droplets relevant in the atmosphere. Five different water-organic-electrolyte activity coefficient models were first selected from the literature. Only one of these models included organics and electrolytes which are common in atmospheric aerosol particles. In the other models, organic species were solvents such as alcohols, and important atmospheric ions like NH4+ could be missing. The predictions of these models were compared to experimental activity and solubility data in aqueous single electrolyte solutions with 31 different electrolytes. Based on the deviations from experimental data and on the capabilities of the models, four predictive models were selected for fitting of new parameters for binary and ternary solutions of common atmospheric electrolytes and organics. New electrolytes (H+, NH4+, Na+, Cl-, NO3- and SO42- and organics (dicarboxylic and some hydroxy acids were added and some modifications were made to the models if it was found useful. All new and most of the existing parameters were fitted to experimental single electrolyte data as well as data for aqueous organics and aqueous organic-electrolyte solutions. Unfortunately, there are very few data available for organic activities in binary solutions and for organic and electrolyte activities in aqueous organic-electrolyte solutions. This reduces model capabilities in predicting solubilities. After the parameters were fitted, deviations from measurement data were calculated for all fitted models, and for different data types. These deviations and the calculated property values were compared with those from other non-electrolyte and organic-electrolyte models found in the literature. Finally, hygroscopic growth factors were calculated for four 100 nm organic-electrolyte particles and these predictions were compared to

  2. A New Laser Based Approach for Measuring Atmospheric Greenhouse Gases

    Directory of Open Access Journals (Sweden)

    Jeremy Dobler

    2013-11-01

    Full Text Available In 2012, we developed a proof-of-concept system for a new open-path laser absorption spectrometer concept for measuring atmospheric CO2. The measurement approach utilizes high-reliability all-fiber-based, continuous-wave laser technology, along with a unique all-digital lock-in amplifier method that, together, enables simultaneous transmission and reception of multiple fixed wavelengths of light. This new technique, which utilizes very little transmitted energy relative to conventional lidar systems, provides high signal-to-noise (SNR measurements, even in the presence of a large background signal. This proof-of-concept system, tested in both a laboratory environment and a limited number of field experiments over path lengths of 680 m and 1,600 m, demonstrated SNR values >1,000 for received signals of ~18 picoWatts averaged over 60 s. A SNR of 1,000 is equivalent to a measurement precision of ±0.001 or ~0.4 ppmv. The measurement method is expected to provide new capability for automated monitoring of greenhouse gas at fixed sites, such as carbon sequestration facilities, volcanoes, the short- and long-term assessment of urban plumes, and other similar applications. In addition, this concept enables active measurements of column amounts from a geosynchronous orbit for a network of ground-based receivers/stations that would complement other current and planned space-based measurement capabilities.

  3. Nonlinear dynamics approach to the predictability of the Cane-Zebiak coupled ocean-atmosphere model

    Science.gov (United States)

    Siqueira, L.; Kirtman, B.

    2014-01-01

    The predictability of the Cane-Zebiak coupled ocean-atmosphere model is investigated using nonlinear dynamics analysis. Newer theoretical concepts are applied to the coupled model in order to help quantify maximal prediction horizons for finite amplitude perturbations on different scales. Predictability analysis based on the maximum Lyapunov exponent considers infinitesimal perturbations, which are associated with errors in the smallest fastest-evolving scales of motion. However, these errors become irrelevant for the predictability of larger scale motions. In this study we employed finite-size Lyapunov exponent analysis to assess the predictability of the Cane-Zebiak coupled ocean-atmosphere model as a function of scale. We demonstrate the existence of fast and slow timescales, as noted in earlier studies, and the expected enhanced predictability of the anomalies on large scales. The final results and conclusions clarify the applicability of these new methods to seasonal forecasting problems.

  4. Model parameters and validation for tritium transfer in plants from atmospheric release

    International Nuclear Information System (INIS)

    Model parameters and validation for tritium transfer in plants from atmospheric release are examined in different effluent modes. In most cases, tritium uptake by plants can be explained using simple models based on the flux of transpiration and/or vapor diffusion. But, concerning the organically bound tritium in plants, the production rate of it differed with different plant species and plant parts. So, the modeling of the production rate of OBT in target plants and parts still needs experimental results and theoretical consideration. For the release of atmospheric tritiated organic material, the mechanism of tritium incorporation into plant should be known. Tritium was detected in the plant leaves which were exposed to tritiated methane, not only in the water soluble form but also in the organically bound tritium form. The mechanism of this tritium accumulation in plant leaves is still uncertain. (author)

  5. A multi-layer land surface energy budget model for implicit coupling with global atmospheric simulations

    Science.gov (United States)

    Ryder, J.; Polcher, J.; Peylin, P.; Ottlé, C.; Chen, Y.; van Gorsel, E.; Haverd, V.; McGrath, M. J.; Naudts, K.; Otto, J.; Valade, A.; Luyssaert, S.

    2016-01-01

    In Earth system modelling, a description of the energy budget of the vegetated surface layer is fundamental as it determines the meteorological conditions in the planetary boundary layer and as such contributes to the atmospheric conditions and its circulation. The energy budget in most Earth system models has been based on a big-leaf approach, with averaging schemes that represent in-canopy processes. Furthermore, to be stable, that is to say, over large time steps and without large iterations, a surface layer model should be capable of implicit coupling to the atmospheric model. Surface models with large time steps, however, have difficulties in reproducing consistently the energy balance in field observations. Here we outline a newly developed numerical model for energy budget simulation, as a component of the land surface model ORCHIDEE-CAN (Organising Carbon and Hydrology In Dynamic Ecosystems - CANopy). This new model implements techniques from single-site canopy models in a practical way. It includes representation of in-canopy transport, a multi-layer long-wave radiation budget, height-specific calculation of aerodynamic and stomatal conductance, and interaction with the bare-soil flux within the canopy space. Significantly, it avoids iterations over the height of the canopy and so maintains implicit coupling to the atmospheric model LMDz (Laboratoire de Météorologie Dynamique Zoomed model). As a first test, the model is evaluated against data from both an intensive measurement campaign and longer-term eddy-covariance measurements for the intensively studied Eucalyptus stand at Tumbarumba, Australia. The model performs well in replicating both diurnal and annual cycles of energy and water fluxes, as well as the vertical gradients of temperature and of sensible heat fluxes.

  6. Continental scale atmospheric and terrestrial water budget modeling and comparison to GRACE

    Science.gov (United States)

    Fersch, B.; Kunstmann, H.; Sneeuw, N.; Devaraju, B.

    2009-04-01

    Estimation of large scale water balances is still an unsolved challenge in hydrological sciences, particularly for data spare regions. The GRACE satellite mission (launched in 2002) provides a completely new opportunity to investigate seasonal large scale water mass changes based on measurements of gravitational acceleration differences. Our study aims at determining the potential of GRACE data for hydrological applications. Our approach assumes that vertically integrated atmospheric moisture convergence equals 1) precipitated minus evapotranspired water masses and therefore equals 2) aggregated surface runoff minus water storage changes. Using observed basin runoff, this interrelation allows us to compare GRACE derived water storage changes with modeled atmospheric moisture convergences. As regional atmospheric modeling is expected to yield more accurate meteorological fields than global model results, we use the WRF model for a dynamic downscaling of global atmospheric fields and hence derive high resolution fields of air pressure, horizontal moisture flux divergence, precipitation minus evapotranspiration, soil water storage, etc. Our study focuses on sensitivities and uncertainties of regionally modeled atmospheric mass and moisture fluxes due to specific model setup, origin of global driving data (NCEP vs. ECMWF) and spatial resolution. This is performed for four regions: Australia, Sahara, Siberia and the Amazon. The first three regions are characterized by a simplified hydrological mass balance, i.e. either evaporation or precipitation is close to zero. Central Australia represents a region with no outlet, meaning runoff is negligible. The Sahara also has zero runoff and for the dry periods evapotranspiration is close to zero. Siberia, comprising the catchments of Lena and Yenisei has negligible evapotranspiration for the winter months. The basin of the Amazon is representative for regions with high precipitation and evaporation terms. For the years 2003 to

  7. Cloud condensation nuclei properties of model and atmospheric HULIS

    Directory of Open Access Journals (Sweden)

    E. Dinar

    2006-02-01

    Full Text Available Humic like substances (HULIS have been identified as a major fraction of the organic component of atmospheric aerosols. These large multifunctional compounds of both primary and secondary sources are surface active and water soluble. Hence, it is expected that they could affect activation of organic aerosols into cloud droplets. We have compared the activation of aerosols containing atmospheric HULIS extracted from fresh and slightly aged smoke particles and from daily pollution particles to activation of size fractionated fulvic acid from an aquatic source (Suwannee River fulvic acid, and correlated it to the estimated molecular weight and measured surface tension. A correlation was found between CCN-activation diameter of SRFA fractions and number average molecular weight of the fraction. The lower molecular weight fractions activated at lower critical diameters, which is explained by the greater number of solute species in the droplet with decreasing molecular weight. The three aerosol-extracted HULIS samples activated at lower diameters than any of the size-fractionated or bulk SRFA. By considering estimated number average molecular weight (MN, measured surface tension (ST and activation diameters, the Köhler model was found to account for activation diameters, provided that accurate physico-chemical parameters are known.

  8. Cloud Condensation Nuclei properties of model and atmospheric HULIS

    Directory of Open Access Journals (Sweden)

    E. Dinar

    2006-01-01

    Full Text Available Humic like substances (HULIS have been identified as a major fraction of the organic component of atmospheric aerosols. These large multifunctional compounds of both primary and secondary sources are surface active and water soluble. Hence, it is expected that they could affect activation of organic aerosols into cloud droplets. We have compared the activation of aerosols containing atmospheric HULIS extracted from fresh, aged and pollution particles to activation of size fractionated fulvic acid from an aquatic source (Suwannee River Fulvic Acid, and correlated it to the estimated molecular weight and measured surface tension. A correlation was found between CCN-activation diameter of SRFA fractions and number average molecular weight of the fraction. The lower molecular weight fractions activated at lower critical diameters, which is explained by the greater number of solute species in the droplet with decreasing molecular weight. The three aerosol-extracted HULIS samples activated at lower diameters than any of the size-fractionated or bulk SRFA. The Köhler model was found to account for activation diameters, provided that accurate physico-chemical parameters are known.

  9. Synoptic solar radio observations as proxies for upper atmosphere modelling

    CERN Document Server

    de Wit, Thierry Dudok; Shibasaki, Kiyoto

    2014-01-01

    The specification of the upper atmosphere strongly relies on solar proxies that can properly reproduce the solar energetic input in the UV. Whilst the microwave flux at 10.7 cm (also called F10.7 index) has been routinely used as a solar proxy, we show that the radio flux at other wavelengths provides valuable complementary information that enhances their value for upper atmospheric modelling. We merged daily observations from various observatories into a single homogeneous data set of fluxes at wavelengths of 30, 15, 10.7, 8 and 3.2 cm, spanning from 1957 to today. Using blind source separation (BSS), we show that their rotational modulation contains three contributions, which can be interpreted in terms of thermal bremsstrahlung and gyro-resonance emissions. The latter account for 90% of the rotational variability in the F10.7 index. Most solar proxies, such as the MgII index, are remarkably well reconstructed by simple linear combination of radio fluxes at various wavelengths. The flux at 30 cm stands out ...

  10. Gravity Waves in Polar Mesosphere and Lower Thermosphere Revealed in a Whole-atmospheric Global Atmospheric Model

    Science.gov (United States)

    Song, I. S.; Jee, G.; Kim, B. M.

    2015-12-01

    Mesoscale gravity waves are simulated by carrying out the specified chemistry whole atmosphere community climate model (SC-WACCM) at the horizontal resolution of about 25 km to understand the origin of gravity waves in the polar mesosphere and lower thermosphere (MLT) and their propagation properties throughout the whole atmosphere. Modeled gravity waves are also compared with gravity-wave activities estimated from meteor radar observations made in Antarctica by Korea Polar Research Institute. For this comparison, SC-WACCM is initialized at a specific date and time using atmospheric state variables from the ground to the thermosphere obtained from various data sets such as operational analyses and empirical wind and temperature model results. Model initial conditions are corrected for mass and dynamical balance to reduce spurious waves due to initial shocks. At conference, preliminary results of the mesoscale SC-WACCM simulation and its comparison with observations will be presented.

  11. NOAA/NCEP Global Forecast System (GFS) Atmospheric Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — U.S. National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) numerical weather...

  12. Atmospheric Prognostic and Dispersion Model Design for use in the European Ensemble Modeling Exercises

    International Nuclear Information System (INIS)

    The Savannah River Technology Center (SRTC) of the Department of Energy (DOE)Savannah River Site (SRS) has been involved with predicting the transport and dispersion of hazardous atmospheric releases for many years. The SRS utilizes an automated, real-time capability for consequence assessment during emergency response to local releases. The emphasis during these situations is to provide accurate guidance as quickly as possible. Consequently, atmospheric transport and dispersion models of a simple physical nature (such as Gaussian plume models) have typically been used in an effort to provide timely responses. However, use of one or two-dimensional (steady-state) winds are inadequate in conditions of high spatial and temporal variability (such as during frontal passage). Increased computing capabilities have led to the use of more sophisticated three dimensional prognostic models that may capture some of these higher resolution phenomena. In an ideal situation, the decision-maker would want to use the best model each time an accident occurred. Unfortunately, due to the nonunique nature of solutions to the nonlinear equations governing the atmosphere, model A may perform better than models B and C in one type of weather scenario, and worse during a different situation.Therefore, it is not always possible to distinguish which model is best, especially during a forecast situation. The use of an ensemble approach of averaging results from a variety of model solutions is beneficial to the modeler in providing the DM guidance on model uncertainties. Meteorological forecasts generated by numerical models provide individual realizations of the atmosphere. The resulting wind and turbulence fields are then used to drive atmospheric dispersion (transport and diffusion) models. Although many modeling agencies utilize ensemble-modeling techniques to determine atmospheric model sensitivities of prognostic fields (i.e. wind, temperature, radiation, etc.), the European Union has

  13. Atmosphere-soil-vegetation model including CO2 exchange processes: SOLVEG2

    International Nuclear Information System (INIS)

    A new atmosphere-soil-vegetation model named SOLVEG2 (SOLVEG version 2) was developed to study the heat, water, and CO2 exchanges between the atmosphere and land-surface. The model consists of one-dimensional multilayer sub-models for the atmosphere, soil, and vegetation. It also includes sophisticated processes for solar and long-wave radiation transmission in vegetation canopy and CO2 exchanges among the atmosphere, soil, and vegetation. Although the model usually simulates only vertical variation of variables in the surface-layer atmosphere, soil, and vegetation canopy by using meteorological data as top boundary conditions, it can be used by coupling with a three-dimensional atmosphere model. In this paper, details of SOLVEG2, which includes the function of coupling with atmosphere model MM5, are described. (author)

  14. Atmospheric boundary layers in storms: advanced theory and modelling applications

    Directory of Open Access Journals (Sweden)

    S. S. Zilitinkevich

    2005-01-01

    Full Text Available Turbulent planetary boundary layers (PBLs control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow. It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S

  15. Modelling of global mass effects in hydrology, atmosphere and oceans on surface gravity

    Science.gov (United States)

    Mikolaj, M.; Meurers, B.; Güntner, A.

    2016-08-01

    We present a MatlabTM/Octave-based software tool mGlobe to compute the effect of atmospheric, continental water storage, and non-tidal ocean mass variations on surface gravity. These effects must be considered or reduced prior to any analysis of geophysical phenomena using observations of superconducting gravimeters. Contrary to the alternative providers, mGlobe allows the computation for an arbitrary location worldwide, supports a larger number of input models and offers more flexibility in terms of computation settings. The high number of supported models is important for assessment of model uncertainties. Discrepancies exceeding 75% were found. The continental water storage effect showed low sensitivity to spatial and temporal resolution. The deficient temporal resolution affects the non-tidal loading and atmospheric effects significantly. The same holds true for the influence of the spatial resolution on atmospheric effects. To compensate this effect, we introduce a site-specific correction factor based on differences between the real topography and model's orography.

  16. Evaluating Satellite Observed CO2 Column by a 3-D Atmospheric Transport Model

    International Nuclear Information System (INIS)

    Satellite remote sensing is the latest method of measuring atmospheric CO2, which covers a wide range and makes periodic observation. But due to lack of ground-based observation sites, global satellite observed CO2 column is not evaluated efficiently. This paper assess the applicability of using GEOS-Chem model to forward simulate atmospheric CO2 for verifying Greenhouse Gas Observation SATellite (GOSAT) observed CO2 column. It is shown that GEOS-Chem performs well in modelling atmospheric CO2 and there are generally no significant differences between ground-based observation and model results. According to the comparsion, the spatial and temporal distribution of XCO2 agrees well between GOSAT and GEOS-Chem. GOSAT XCO2 is turned out to be 2.6 ppm lower than the model results. The mean difference observed between GOSAT and GEOS-Chem varies from −1.8 to −3.1 ppm seasonally, with the standard deviation ranging from 1.4 to 2.1 ppm. And in general, the difference is larger in summer than that in winter, in land area than in sea area. It might have been caused by the different land-sea distribution and eco-system's changing with seasons

  17. Fluxtube model atmospheres and Stokes V zero-crossing wavelengths

    CERN Document Server

    Rubio, L R B; Collados, M

    1997-01-01

    First results of the inversion of Stokes I and V profiles from plage regions near disk center are presented. Both low and high spatial resolution spectra of FeI 6301.5 and FeI 6302.5 A obtained with the Advanced Stokes Polarimeter (ASP) have been considered for analysis. The thin flux tube approximation, implemented in an LTE inversion code based on response functions, is used to describe unresolved magnetic elements. The code allows the simultaneous and consistent inference of all atmospheric quantities determining the radiative transfer with the sole assumption of hydrostatic equilibrium. By considering velocity gradients within the tubes we are able to match the full ASP Stokes profiles. The magnetic atmospheres derived from the inversion are characterized by the absence of significant motions in high layers and strong velocity gradients in deeper layers. These are essential to reproduce the asymmetries of the observed profiles. Our scenario predicts a shift of the Stokes V zero-crossing wavelengths which ...

  18. The geometrical optics approach to atmospheric propagation models

    Science.gov (United States)

    Doss-Hammel, Stephen M.

    2003-04-01

    An accurate model for the propagation of infrared and optical frequencies through the atmosphere is a requirement for a number of important communications and surveillance systems. These systems operate over long nearly-horizontal paths that are close to the land or sea surface. There can be strong heat and mass flux gradients near the surface which make accurate transmission predictions difficult. The development and utility of geometrical optics, or ray-trace, methods for the EOSTAR and IRWarp models will be addressed. Both models are driven by bulk meteorological models to provide the environmental fields that can subsequently be used to define the refractivity field. The ray-trace algorithm uses the refractivity field to generate a transfer map. The transfer map provides precise information concerning the number, location, and orientation of the images of a source point. One application of this information is the geometric gain, or the refractive propagation factor, which is an output consisting of a vertical signal intensity profile at a given range. A second application is a passive ranging capability for sub-refractive conditions. The ranging calculation uses the existence of an inferior mirage image to deduce the target range and height.

  19. Simple atmospheric transmittance calculation based on a Fourier-transformed Voigt profile.

    Science.gov (United States)

    Kobayashi, Hirokazu

    2002-11-20

    A method of line-by-line transmission calculation for a homogeneous atmospheric layer that uses the Fourier-transformed Voigt profile is presented. The method is based on a pure Voigt function with no approximation and an interference term that takes into account the line-mixing effect. One can use the method to calculate transmittance, considering each line shape as it is affected by temperature and pressure, with a line database with an arbitrary wave-number range and resolution. To show that the method is feasible for practical model development, we compared the calculated transmittance with that obtained with a conventional model, and good consistency was observed. PMID:12463237

  20. The efficiency and sensitivity analysis of observations for atmospheric transport model with emissions

    Science.gov (United States)

    Wu, Xueran; Elbern, Hendrik; Jacob, Birgit

    2015-04-01

    Air quality and climate change are influenced by the fluxes of green house gases, reactive emissions and aerosols in the atmosphere. But observations of the chemical states in the atmosphere typically have low temporal and spatial density. Therefore, many works are introduced to spatio-temporal data assimilation methods in atmospheric chemistry in recent years. There is no doubt that the optimization of the initial state is always of great importance for the improvement of predictive skill. However, specified to the chemistry transport model with high dependence on the emissions in the troposphere, the optimization of the initial state is no longer the only issue. The lack of the ability to observe and estimate surface emission fluxes and important inner atmospheric fluxes with necessary accuracy is a major roadblock of hampering the progress in predictive skills of the atmospheric transport model. However, in many cases, the better estimations for both the initial state and emission rates are not always obtained with certain observational network configurations via various popular data assimilation methods, such as the ensemble Kalman filter and smoother and 4D-variation. It leads to the waste of resource by optimizing the improper parameters or brings the inaccuracy of the optimization by unsuitable weight between the initial state and emission rates. Hence, in order to make a scientific and quantitative decision about which parameters to be optimized and how to balance them before any data assimilation procedure, we establish the dynamic model for emission rates with the constraint of diurnal profile shape and extend the state vector of atmospheric transport model so that the emission rates are included. Then, a theoretical approach, based on Kalman filter and smoother and their ensemble cases, to evaluate the potential improvement is introduced. By singular value decomposition, the efficiency of observations to optimize initial state and emission rates of the

  1. Modeling the fallout from stabilized nuclear clouds using the HYSPLIT atmospheric dispersion model

    International Nuclear Information System (INIS)

    The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, developed by the National Oceanic and Atmospheric Administration's Air Resources Laboratory, has been configured to simulate the dispersion and deposition of nuclear materials from a surface-based nuclear detonation using publicly available information on nuclear explosions. Much of the information was obtained from “The Effects of Nuclear Weapons” by Glasstone and Dolan (1977). The model was evaluated against the measurements of nuclear fallout from six nuclear tests conducted between 1951 and 1957 at the Nevada Test Site using the global NCEP/NCAR Reanalysis Project (NNRP) and the Weather Research and Forecasting (WRF) meteorological data as input. The model was able to reproduce the general direction and deposition patterns using the coarse NNRP data with Figure of Merit in Space (FMS – the percent overlap between predicted and measured deposition patterns) scores in excess of 50% for four of six simulations for the smallest dose rate contour, with FMS scores declining for higher dose rate contours. When WRF meteorological data were used the FMS scores were 5–20% higher in five of the six simulations, especially at the higher dose rate contours. The one WRF simulation where the scores declined slightly (10–30%) was also the best scoring simulation when using the NNRP data. When compared with measurements of dose rate and time of arrival from the Town Data Base (Thompson et al., 1994), similar results were found with the WRF simulations providing better results for four of six simulations. The overall result was that the different plume simulations using WRF data had more consistent performance than the plume simulations using NNRP data fields. - Highlights: • Modeled the fallout from six Nevada nuclear tests between 1951 and 1957 using HYSPLIT. • Modeled dose rate patterns compared favorably to measurements. • Plume overlap was best for the smallest dose rate

  2. Modeling short-term concentration fluctuations of semi-volatile pollutants in the soil-plant-atmosphere system.

    Science.gov (United States)

    Bao, Zhongwen; Haberer, Christina M; Maier, Uli; Beckingham, Barbara; Amos, Richard T; Grathwohl, Peter

    2016-11-01

    Temperature changes can drive cycling of semi-volatile pollutants between different environmental compartments (e.g. atmosphere, soil, plants). To evaluate the impact of daily temperature changes on atmospheric concentration fluctuations we employed a physically based model coupling soil, plants and the atmosphere, which accounts for heat transport, effective gas diffusion, sorption and biodegradation in the soil as well as eddy diffusion and photochemical oxidation in the atmospheric boundary layer of varying heights. The model results suggest that temperature-driven re-volatilization and uptake in soils cannot fully explain significant diurnal concentration fluctuations of atmospheric pollutants as for example observed for polychlorinated biphenyls (PCBs). This holds even for relatively low water contents (high gas diffusivity) and high sorption capacity of the topsoil (high organic carbon content and high pollutant concentration in the topsoil). Observed concentration fluctuations, however, can be easily matched if a rapidly-exchanging environmental compartment, such as a plant layer, is introduced. At elevated temperatures, plants release organic pollutants, which are rapidly distributed in the atmosphere by eddy diffusion. For photosensitive compounds, e.g. some polycyclic aromatic hydrocarbons (PAHs), decreasing atmospheric concentrations would be expected during daytime for the bare soil scenario. This decline is buffered by a plant layer, which acts as a ground-level reservoir. The modeling results emphasize the importance of a rapidly-exchanging compartment above ground to explain short-term atmospheric concentration fluctuations. PMID:27341116

  3. Modeling the Cloudy Atmospheres of Cool Stars, Brown Dwarfs and Hot Exoplanets

    DEFF Research Database (Denmark)

    Juncher, Diana

    -consistent cloudy atmosphere models that can be used to properly determine the stellar parameters of cool stars. With this enhanced model atmosphere code I have created a grid of cool, dusty atmosphere models ranging in effective temperatures from Teff = 2000 − 3000 K. I have studied the formation and structure of...... properties of its host star, it is crucial that the stellar models linking the observations of a star to its properties are as precise as possible. The primary goal of this project is therefore to merge the model atmosphere code MARCS with the dust model code DRIFT, thus facilitating the computation of self...

  4. Ultrafast High Accuracy PCRTM_SOLAR Model for Cloudy Atmosphere

    Science.gov (United States)

    Yang, Qiguang; Liu, Xu; Wu, Wan; Yang, Ping; Wang, Chenxi

    2015-01-01

    An ultrafast high accuracy PCRTM_SOLAR model is developed based on PCA compression and principal component-based radiative transfer model (PCRTM). A fast algorithm for simulation of multi-scattering properties of cloud and/or aerosols is integrated into the fast infrared PCRTM. We completed radiance simulation and training for instruments, such as IASI, AIRS, CrIS, NASTI and SHIS, under diverse conditions. The new model is 5 orders faster than 52-stream DISORT with very high accuracy for cloudy sky radiative transfer simulation. It is suitable for hyperspectral remote data assimilation and cloudy sky retrievals.

  5. Forecast of surface layer meteorological parameters at Cerro Paranal with a mesoscale atmospherical model

    CERN Document Server

    Lascaux, Franck; Fini, Luca

    2015-01-01

    This article aims at proving the feasibility of the forecast of all the most relevant classical atmospherical parameters for astronomical applications (wind speed and direction, temperature) above the ESO ground-base site of Cerro Paranal with a mesoscale atmospherical model called Meso-Nh. In a precedent paper we have preliminarily treated the model performances obtained in reconstructing some key atmospherical parameters in the surface layer 0-30~m studying the bias and the RMSE on a statistical sample of 20 nights. Results were very encouraging and it appeared therefore mandatory to confirm such a good result on a much richer statistical sample. In this paper, the study was extended to a total sample of 129 nights between 2007 and 2011 distributed in different parts of the solar year. This large sample made our analysis more robust and definitive in terms of the model performances and permitted us to confirm the excellent performances of the model. Besides, we present an independent analysis of the model p...

  6. Stellar model atmospheres with magnetic line blanketing. II. Introduction of polarized radiative transfer

    CERN Document Server

    Khan, S A

    2006-01-01

    The technique of model atmosphere calculation for magnetic Ap and Bp stars with polarized radiative transfer and magnetic line blanketing is presented. A grid of model atmospheres of A and B stars are computed. These calculations are based on direct treatment of the opacities due to the bound-bound transitions that ensures an accurate and detailed description of the line absorption and anomalous Zeeman splitting. The set of model atmospheres was calculated for the field strengths between 1 and 40 kG. The high-resolution energy distribution, photometric colors and the hydrogen Balmer line profiles are computed for magnetic stars with different metallicities and are compared to those of non-magnetic reference models and to the previous paper of this series. The results of modelling confirmed the main outcomes of the previous study: energy redistribution from UV to the visual region and flux depression at 5200A. However, we found that effects of enhanced line blanketing when transfer for polarized radiation take...

  7. Modelled suppression of boundary-layer clouds by plants in a CO2-rich atmosphere

    Science.gov (United States)

    Vila-Guerau Arellano, J.; Vanheerwaarden, C.; Lelieveld, J.

    2013-12-01

    We will present and discuss a conceptual modelling framework that can facilitate the understanding of the interactions between land processes and atmospheric boundary layer dynamics/chemistry at diurnal scales. This framework has been successful applied to the interpretation of field experiments, but also to identify the non-linear relations that occur at larger spatial and temporal scales. We will then discuss in depth the link between shallow cumulus and vegetation exchange of water and carbon dioxide. Cumulus clouds in the atmospheric boundary layer play a key role in the hydrologic cycle, in the onset of severe weather by thunderstorms, and in modulating the Earth's reflectivity and climate. How these clouds respond to climate change, in particular over land, and how they interact with the carbon cycle is poorly understood. It is expected that as a consequence of rising atmospheric CO2 the plant stomata will close leading to lower latent heat fluxes and higher sensible heat fluxes. During the presentation, we will show that this causes a decline in boundary layer cloud formation in middle latitudes. This could be partly counteracted by the greater ability of a warmer atmosphere to take up water and by a growth in biomass due to CO2 fertilization. Our results are based on a new soil-water-atmosphere-plant model supported by comprehensive observational evidence, from which we identify the dominant atmospheric responses to plant physiological processes. They emphasize the intricate connection between biological and physical aspects of the climate system and the relevance of short-term and small-scale processes in establishing this connection

  8. Radiative transfer modeling in the coupled atmosphere- ocean system and its application to the remote sensing of ocean color imagery

    Science.gov (United States)

    Yan, Banghua

    2001-12-01

    Ocean color is the radiance emanating from the ocean due to scattering by chlorophyll pigments and particles of organic and inorganic origin. Thus, it contains information about chlorophyll concentrations which can be used to estimate primary productivity. Observations of ocean color from space can be used to monitor the variability in marine primary productivity, thereby permitting a quantum leap in our understanding of oceanographic processes from regional to global scales. Satellite remote sensing of ocean color requires accurate removal of the contribution by atmospheric molecules and aerosols to the radiance measured at the top of the atmosphere (TOA). This removal process is called ``atmospheric correction''. Since about 90% of the radiance received by the satellite sensor comes from the atmosphere, accurate removal of this portion is very important. A prerequisite for accurate atmospheric correction is accurate and reliable simulation of the transport of radiation in the atmosphere-ocean system. This thesis focuses on this radiative transfer process, and investigates the impact of particles in the atmosphere (aerosols) and ocean (oceanic chlorophylls and air bubbles) on our ability to remove the atmospheric contribution from the received signal. To explore these issues, a comprehensive radiative transfer model for the coupled atmosphere-ocean system is used to simulate the radiative transfer process and provide a physically sound link between surface-based measurements of oceanic and atmospheric parameters and radiances observed by satellite-deployed ocean color sensors. This model has been upgraded to provide accurate radiances in arbitrary directions as required to analyze satellite data. The model is then applied to quantify the uncertainties associated with several commonly made assumptions invoked in atmospheric correction algorithms. Since atmospheric aerosols consist of a mixture of absorbing and non- absorbing components that may or may not be

  9. Atmospheric pressure chemical vapor deposition of ZnO: Process modeling and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Deelen, J. van, E-mail: joop.vandeelen@tno.nl [TNO, Department of Thin Film Technology, De Rondom 1, 5612 AP Eindhoven (Netherlands); Illiberi, A.; Kniknie, B.; Beckers, E.H.A. [TNO, Department of Thin Film Technology, De Rondom 1, 5612 AP Eindhoven (Netherlands); Simons, P.J.P.M.; Lankhorst, A. [Celsian, De Rondom 1, 5612 AP Eindhoven (Netherlands)

    2014-03-31

    The deposition of zinc oxide has been performed by atmospheric pressure chemical vapor deposition and trends in growth rates are compared with the literature. Diethylzinc and tertiary butanol were used as the primary reactants and deposition rates above 800 nm/min were obtained. The reaction kinetics were studied and detailed process modeling based on a reaction mechanism that includes the formation of an alkylzinc alkoxide intermediate product is discussed. This mechanism can explain the temperature dependent variety in deposition profiles observed in the static deposition experiments. The capability of modeling to gain insight in the local process conditions inside a reactor is demonstrated. - Highlights: • ZnO deposition at high rates of 800 nm/min • Modeling based on two step mechanism gives good fit. • Modeling gives insight in the inside of the reactor. • Modeling can even predict static deposition profiles.

  10. Atmospheric pressure chemical vapor deposition of ZnO: Process modeling and experiments

    International Nuclear Information System (INIS)

    The deposition of zinc oxide has been performed by atmospheric pressure chemical vapor deposition and trends in growth rates are compared with the literature. Diethylzinc and tertiary butanol were used as the primary reactants and deposition rates above 800 nm/min were obtained. The reaction kinetics were studied and detailed process modeling based on a reaction mechanism that includes the formation of an alkylzinc alkoxide intermediate product is discussed. This mechanism can explain the temperature dependent variety in deposition profiles observed in the static deposition experiments. The capability of modeling to gain insight in the local process conditions inside a reactor is demonstrated. - Highlights: • ZnO deposition at high rates of 800 nm/min • Modeling based on two step mechanism gives good fit. • Modeling gives insight in the inside of the reactor. • Modeling can even predict static deposition profiles

  11. The use of coupled atmospheric and hydrological models for water-resources management in headwater basins

    Science.gov (United States)

    Leavesley, G.; Hay, L.

    1998-01-01

    Coupled atmospheric and hydrological models provide an opportunity for the improved management of water resources in headwater basins. Issues currently limiting full implementation of coupled-model methodologies include (a) the degree of uncertainty in the accuracy of precipitation and other meteorological variables simulated by atmospheric models, and (b) the problem of discordant scales between atmospheric and bydrological models. Alternative methodologies being developed to address these issues are reviewed.

  12. The Limiting Effects of Dust in Brown Dwarf Model Atmospheres

    CERN Document Server

    Allard, F; Alexander, D R; Tamanai, A; Schweitzer, A; Allard, France; Hauschildt, Peter H.; Alexander, David R.; Tamanai, Akemi; Schweitzer, Andreas

    2001-01-01

    We present opacity sampling model atmospheres, synthetic spectra and colors for brown dwarfs and very low mass stars in two limiting case of dust grain formation: 1) inefficient gravitational settling i.e. the dust is distributed according to the chemical equilibrium predictions, 2) efficient gravitational settling i.e. the dust forms and depletes refractory elements from the gas, but their opacity does not affect the thermal structure. The models include the formation of over 600 gas phase species, and 1000 liquids and crystals, and the opacities of 30 different types of grains including corundum (Al$_2$O$_3$), the magnesium aluminum spinel MgAl$_2$O$_4$, iron, enstatite (MgSiO$_3$), forsterite (Mg$_2$SiO$_4$), amorphous carbon, SiC, and a number of calcium silicates. The models extend from the beginning of the grain formation regime well into the condensation regime of water ice ($\\teff= 3000 - 100$ K) and encompasses the range of $\\log g= 2.5 - 6.0$ at solar metallicity. We find that silicate dust grains c...

  13. Recent improvements in atmospheric environment models for Space Station applications

    Science.gov (United States)

    Anderson, B. Jeffrey; Suggs, Ronnie J.; Smith, Robert E.; Hickey, Michael; Catlett, Karen

    1991-01-01

    The capability of empirical models of the earth's thermosphere must continually be updated if they are to keep pace with their many applications in the aerospace industry. This paper briefly summarizes the progress of several such efforts in support of the Space Station Program. The efforts consists of the development of data bases, analytical studies of the data, and evaluation and intercomparison of thermosphere models. A geomagnetic storm model of Slowey does not compare as well to the MSIS-86 model as does the Marshall Engineering Thermosphere (MET). LDEF orbit decay data is used to evaluate the performance of the MET and MSIS-86 during a period of high solar activity; equal to or exceeding the highest levels that existed during the time of the original data sets upon which these models are based.

  14. THE GREAT OXIDATION OF EARTH'S ATMOSPHERE: CONTESTING THE YOYO MODEL VIA TRANSITION STABILITY ANALYSIS

    International Nuclear Information System (INIS)

    A significant controversy regarding the climate history of the Earth and its relationship to the development of complex life forms concerns the rise of oxygen in the early Earth's atmosphere. Geological records show that this rise occurred about 2.4 Gyr ago, when the atmospheric oxygen increased from less than 10-5 present atmospheric level (PAL) to more than 0.01 PAL and possibly above 0.1 PAL. However, there is a debate whether this rise happened relatively smoothly or with well-pronounced ups and downs (the Yoyo model). In our study, we explore a simplified atmospheric chemical system consisting of oxygen, methane, and carbon that is driven by the sudden decline of the net input of reductants to the surface as previously considered by Goldblatt et al. Based on the transition stability analysis for the system equations, constituting a set of non-autonomous and non-linear differential equations, as well as the inspection of the Lyapunov exponents, it is found that the equations do not exhibit chaotic behavior. In addition, the rise of oxygen occurs relative smoothly, possibly with minor bumps (within a factor of 1.2), but without major jumps. This result clearly argues against the Yoyo model in agreement with recent geological findings.

  15. Molecule-based approach for computing chemical-reaction rates in upper atmosphere hypersonic flows.

    Energy Technology Data Exchange (ETDEWEB)

    Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert

    2009-08-01

    This report summarizes the work completed during FY2009 for the LDRD project 09-1332 'Molecule-Based Approach for Computing Chemical-Reaction Rates in Upper-Atmosphere Hypersonic Flows'. The goal of this project was to apply a recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary nonequilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological non-equilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, the difference between the two models can exceed 10 orders of magnitude. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates. Extensions of the model to reactions typically found in combustion flows and ionizing reactions are also found to be in very good agreement with available measurements, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates.

  16. Modeling of Water Flow Processes in the Soil-Plant-Atmosphere System: The Soil-Tree-Atmosphere Continuum Model

    Science.gov (United States)

    Massoud, E. C.; Vrugt, J. A.

    2015-12-01

    Trees and forests play a key role in controlling the water and energy balance at the land-air surface. This study reports on the calibration of an integrated soil-tree-atmosphere continuum (STAC) model using Bayesian inference with the DREAM algorithm and temporal observations of soil moisture content, matric head, sap flux, and leaf water potential from the King's River Experimental Watershed (KREW) in the southern Sierra Nevada mountain range in California. Water flow through the coupled system is described using the Richards' equation with both the soil and tree modeled as a porous medium with nonlinear soil and tree water relationships. Most of the model parameters appear to be reasonably well defined by calibration against the observed data. The posterior mean simulation reproduces the observed soil and tree data quite accurately, but a systematic mismatch is observed between early afternoon measured and simulated sap fluxes. We will show how this points to a structural error in the STAC-model and suggest and test an alternative hypothesis for root water uptake that alleviates this problem.

  17. A Multi-billion Parcel Atmospheric Trajectory Model

    Science.gov (United States)

    Cruz, C.; Clune, T. L.; Lait, L. R.; Ranawake, U.; Burns, R. W.

    2009-12-01

    We present a new parallel implementation of an atmospheric trajectory modelling framework which provides improved numerical accuracy, greater flexibility for specifying experiments, and sufficient raw performance to simultaneously simulate billions of parcel trajectories on suitable computing platforms. The application is parallelized using the Message Passing Interface (MPI) library and can scale efficiently on a wide variety of modern computing platforms. The ability to treat such large numbers of parcels is expected to enable a new generation of experiments to explore questions related to global stratosphere-troposphere exchange, age-of-air spectra, and transport of trace gases and aerosols. The modelling framework is written in C++ for easy integration with other computing technologies. It also provides a great deal of flexibility by allowing users to select from (or add to) alternative subclasses for vertical coordinates (pressure, potential temperature), integration schemes (Runge-Kutta, Euler), meteorological data sources (NCEP/NCAR Reanalsyis, MERRA), data interpolation methods (linear, log-linear, splines), and output (parcel histories, summary statistics, min/max quantities encountered). Significantly improved numerical accuracy, especially near the poles, is provided by expressing integration in terms of purely geometric constructs which avoid various complications associated with spherical coordinates near the poles. The entire package has been rigorously developed using Test-Driven Development (TDD) which both provides confidence in the implementation and should also assist other developers that wish to extend the framework. Several tests are performed to demonstrate the fourth-order Runge-Kutta integration scheme with our spherical geometric constructs. Tilted solid body rotation provides a baseline synthetic wind field for assessing model performance, and a time-varying case is used to examine the errors introduced by interpolating linearly in time

  18. Modelling and tracer studies of atmospheric dispersion and deposition in regions of complex topography

    International Nuclear Information System (INIS)

    An indium tracer aerosol generating apparatus based on an alcohol/oxygen burner, and an analytical procedure by which filter samples containing tracer material could be analysed quantitatively by means of neutron activation analysis, were developed for use in atmospheric dispersion and deposition studies. A number of series of atmospheric dispersion experiments were conducted in the Richards Bay and Koeberg- Cape Town areas. The results are given, comparing the airbone tracer concentrations measured at ground level with values predicted by means of a numerical model, utilising two to three schemes, varying in sophistication, for calculating the dispersion coefficients. Recommendations are given regarding a dispersion model and dispersion coefficients for regular use in the Koeberg area, and ways for estimating plume trajectories

  19. How well do state-of-the-art atmosphere-ocean general circulation models reproduce atmospheric teleconnection patterns?

    Directory of Open Access Journals (Sweden)

    Dörthe Handorf

    2012-11-01

    Full Text Available This article evaluates the ability of state-of-the-art climate models to reproduce the low-frequency variability of the mid-tropospheric winter flow of the Northern Hemisphere in terms of atmospheric teleconnection patterns. Therefore, multi-model simulations for present-day conditions, performed for the 4th assessment report of the Intergovernmental Panel on Climate Change, have been analysed and compared with re-analysis data sets. The spatial patterns of atmospheric teleconnections are reproduced reasonably by most of the models. The comparison of coupled with atmosphere-only runs confirmed that a better representation of the forcing by sea surface temperatures has the potential to slightly improve the representation of only wave train-like patterns. Due to internally generated climate variability, the models are not able to reproduce the observed temporal behaviour. Insights into the dynamical reasons for the limited skill of climate models in reproducing teleconnections have been obtained by studying the relation between major teleconnections and zonal wind variability patterns. About half of the models are able to reproduce the observed relationship. For these cases, the quality of simulated teleconnection patterns is largely determined by the quality of zonal wind variability patterns. Therefore, improvements of simulated eddy-mean flow interaction have the potential to improve the atmospheric teleconnections.

  20. Model estimates of inelastic calcium-hydrogen collision data for non-LTE stellar atmospheres modeling

    Science.gov (United States)

    Belyaev, A. K.; Yakovleva, S. A.; Guitou, M.; Mitrushchenkov, A. O.; Spielfiedel, A.; Feautrier, N.

    2016-03-01

    Aims: Inelastic processes in low-energy Ca + H and Ca+ + H- collisions are treated for the states from the ground state up to the ionic state with the aim to provide rate coefficients needed for non-LTE modeling of Ca in cool stellar atmospheres. Methods: The electronic molecular structure was determined using a recently proposed model approach that is based on an asymptotic method. Nonadiabatic nuclear dynamics were treated by means of multichannel formulas, based on the Landau-Zener model for nonadiabatic transition probabilities. Results: The cross sections and rate coefficients for inelastic processes in Ca + H and Ca+ + H- collisions were calculated for all transitions between 17 low-lying covalent states plus the ionic state. It is shown that the highest rate coefficient values correspond to the excitation, de-excitation, ion-pair formation, and mutual neutralization processes involving the Ca(4s5s 1,3S) and the ionic Ca+ + H- states. The next group with the second highest rate coefficients includes the processes involving the Ca(4s5p 1,3P), Ca(4s4d 1,3D), and Ca(4s4p 1P) states. The processes from these two groups are likely to be important for non-LTE modeling. Tables 2-11 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A114

  1. Estimating atmospheric visibility using synergy of MODIS data and ground-based observations

    Science.gov (United States)

    Komeilian, H.; Mohyeddin Bateni, S.; Xu, T.; Nielson, J.

    2015-05-01

    Dust events are intricate climatic processes, which can have adverse effects on human health, safety, and the environment. In this study, two data mining approaches, namely, back-propagation artificial neural network (BP ANN) and supporting vector regression (SVR), were used to estimate atmospheric visibility through the synergistic use of Moderate Resolution Imaging Spectroradiometer (MODIS) Level 1B (L1B) data and ground-based observations at fourteen stations in the province of Khuzestan (southwestern Iran), during 2009-2010. Reflectance and brightness temperature in different bands (from MODIS) along with in situ meteorological data were input to the models to estimate atmospheric visibility. The results show that both models can accurately estimate atmospheric visibility. The visibility estimates from the BP ANN network had a root-mean-square error (RMSE) and Pearson's correlation coefficient (R) of 0.67 and 0.69, respectively. The corresponding RMSE and R from the SVR model were 0.59 and 0.71, implying that the SVR approach outperforms the BP ANN.

  2. Propagation of Laguerre-Gaussian and Bessel-Gaussian Schell-model beams through paraxial optical systems in turbulent atmosphere

    Science.gov (United States)

    Cang, Ji; Xiu, Peng; Liu, Xu

    2013-12-01

    Based on the extended Huygens-Fresnel diffraction integral, the expressions for the average intensity and the effective size of Laguerre-Gaussian and Bessel-Gaussian Schell-model beams propagating through a paraxial ABCD optical system are obtained in the turbulent atmosphere. The influences of the source coherence and atmospheric turbulence on the propagation of Laguerre-Gaussian and Bessel-Gaussian Schell-model beams in the turbulent atmosphere are investigated in detail. It is found that the beam profile will eventually evolve into a Gaussian-like distribution through turbulence in contrast to ring-shaped far-field pattern in free space. The effective size of Laguerre-Gaussian and Bessel-Gaussian Schell-model beams with lower source coherence is less affected by turbulence. The parameter β and index n of the sources have some effects on intensity distribution and beam spreading through atmospheric turbulence.

  3. Non-LTE oxygen line formation in 3D hydrodynamic model stellar atmospheres

    CERN Document Server

    Amarsi, A M; Collet, R; Leenaarts, J

    2015-01-01

    The OI 777 nm lines are among the most commonly used diagnostics for the oxygen abundances in the atmospheres of FGK-type stars. However, they form in conditions that are far from local thermodynamic equilibrium (LTE). We explore the departures from LTE of atomic oxygen, and their impact on OI lines, across the Stagger-grid of three-dimensional hydrodynamic model atmospheres. For the OI 777 nm triplet we find significant departures from LTE. These departures are larger in stars with larger effective temperatures, smaller surface gravities, and larger oxygen abundances. We present grids of predicted 3D non-LTE based equivalent widths for the OI616nm, [OI] 630 nm, [OI] 636 nm, and OI 777 nm lines, as well as abundance corrections to 1D LTE based results.

  4. Advances in understanding, models and parameterizations of biosphere-atmosphere ammonia exchange

    Directory of Open Access Journals (Sweden)

    C. R. Flechard

    2013-07-01

    Full Text Available Atmospheric ammonia (NH3 dominates global emissions of total reactive nitrogen (Nr, while emissions from agricultural production systems contribute about two-thirds of global NH3 emissions; the remaining third emanates from oceans, natural vegetation, humans, wild animals and biomass burning. On land, NH3 emitted from the various sources eventually returns to the biosphere by dry deposition to sink areas, predominantly semi-natural vegetation, and by wet and dry deposition as ammonium (NH4+ to all surfaces. However, the land/atmosphere exchange of gaseous NH3 is in fact bi-directional over unfertilized as well as fertilized ecosystems, with periods and areas of emission and deposition alternating in time (diurnal, seasonal and space (patchwork landscapes. The exchange is controlled by a range of environmental factors, including meteorology, surface layer turbulence, thermodynamics, air and surface heterogeneous-phase chemistry, canopy geometry, plant development stage, leaf age, organic matter decomposition, soil microbial turnover, and, in agricultural systems, by fertilizer application rate, fertilizer type, soil type, crop type, and agricultural management practices. We review the range of processes controlling NH3 emission and uptake in the different parts of the soil-canopy-atmosphere continuum, with NH3 emission potentials defined at the substrate and leaf levels by different [NH4+] / [H+] ratios (Γ. Surface/atmosphere exchange models for NH3 are necessary to compute the temporal and spatial patterns of emissions and deposition at the soil, plant, field, landscape, regional and global scales, in order to assess the multiple environmental impacts of airborne and deposited NH3 and NH4+. Models of soil/vegetation/atmosphere NH3 exchange are reviewed from the substrate and leaf scales to the global scale. They range from simple steady-state, "big leaf" canopy resistance models, to dynamic, multi-layer, multi-process, multi

  5. Advances in understanding, models and parameterizations of biosphere-atmosphere ammonia exchange

    Science.gov (United States)

    Flechard, C. R.; Massad, R.-S.; Loubet, B.; Personne, E.; Simpson, D.; Bash, J. O.; Cooter, E. J.; Nemitz, E.; Sutton, M. A.

    2013-07-01

    Atmospheric ammonia (NH3) dominates global emissions of total reactive nitrogen (Nr), while emissions from agricultural production systems contribute about two-thirds of global NH3 emissions; the remaining third emanates from oceans, natural vegetation, humans, wild animals and biomass burning. On land, NH3 emitted from the various sources eventually returns to the biosphere by dry deposition to sink areas, predominantly semi-natural vegetation, and by wet and dry deposition as ammonium (NH4+) to all surfaces. However, the land/atmosphere exchange of gaseous NH3 is in fact bi-directional over unfertilized as well as fertilized ecosystems, with periods and areas of emission and deposition alternating in time (diurnal, seasonal) and space (patchwork landscapes). The exchange is controlled by a range of environmental factors, including meteorology, surface layer turbulence, thermodynamics, air and surface heterogeneous-phase chemistry, canopy geometry, plant development stage, leaf age, organic matter decomposition, soil microbial turnover, and, in agricultural systems, by fertilizer application rate, fertilizer type, soil type, crop type, and agricultural management practices. We review the range of processes controlling NH3 emission and uptake in the different parts of the soil-canopy-atmosphere continuum, with NH3 emission potentials defined at the substrate and leaf levels by different [NH4+] / [H+] ratios (Γ). Surface/atmosphere exchange models for NH3 are necessary to compute the temporal and spatial patterns of emissions and deposition at the soil, plant, field, landscape, regional and global scales, in order to assess the multiple environmental impacts of airborne and deposited NH3 and NH4+. Models of soil/vegetation/atmosphere NH3 exchange are reviewed from the substrate and leaf scales to the global scale. They range from simple steady-state, "big leaf" canopy resistance models, to dynamic, multi-layer, multi-process, multi-chemical species schemes

  6. A sustained oscillation in a toy-model of the coupled atmosphere-ocean system

    CERN Document Server

    Bothe, Oliver

    2011-01-01

    Interaction between atmospheric mid-latitude flow and wind-driven ocean circulation is studied coupling two idealized low-order spectral models. The barotropic Charney-DeVore model with three components simulates a bimodal mid-latitude atmospheric circulation in a channel with two stable flow patterns induced by topography. The wind-driven ocean double gyre circulation in a square basin (of half the channel length) is modeled by an equivalent barotropic formulation of the Veronis model with 21 components, which captures Rossby-wave dynamics and nonlinear decadal variability. When coupled, the atmosphere forces the ocean by wind-stress while, simultaneously, the ocean affects the atmosphere by thermal forcing in terms of a vorticity source. Coupled atmosphere-ocean simulations show two stable flow patterns associated with the topographically induced atmospheric bimodality and a sustained oscillation due to interaction between atmospheric bimodality and oceanic Rossby dynamics. The oscillation is of inter-annua...

  7. Evaluating Land-Atmosphere Coupling Strength Over CONUS Using Satellite-based Remote Sensing

    Science.gov (United States)

    Wood, E. F.; Ferguson, C.

    2008-12-01

    Understanding the coupling strength between land and its overlying boundary layer is important to establishing the role of the surface state in boundary layer development and related processes. Much of our current understanding has resulted from model diagnostics carried out by Alan K. Betts using the European Center's (ECMWF) forecast and reanalysis model outputs. Other model based analysis under the GEWEX Land Atmospheric Coupling Experiments (GLACE), lead by Randy Koster, has suggested that models with strong coupling have inferred "hot spots" that imply enhanced predictability of seasonal precipitation. Other analysis (Mitchell, personal communication) suggests that models with strong coupling fail to represent the observed diurnal cycle of precipitation across the central U.S. Dirmeyer et al. in 2006 compared the coupling strength (using Betts" measure that relates surface soil moisture to the lifting condensation level (LCL) pressure) for a number of models from the GLACE experiment, which showed a wide range of strength. This presentation utilizes space-based remote sensing (RS) observations to estimate the strength of warm season land-atmosphere coupling over the continental US. The remote sensing products are derived from the suite of sensors on-board NASA Aqua, including AMSR-E (soil moisture), AIRS (relative humidity, air temperature, skin temperature), MODIS (LAI, NDVI), and CERES (radiation). The relative strength of coupling is quantified in terms of observational diagnostics set forth by the work of Alan Betts, based on his work with the ERA40 model output data set, and Fendall and Eltahir, based on radiosonde data. While the analysis covers the continental US (CONUS), emphasis is placed on the southern Great Plains where dense in-situ measurements enable direct comparison between coupling strengths obtained from ground observations and those from remote sensing, and a region that previous studies by Koster et al. have inferred to be a coupling "hot

  8. A moist aquaplanet variant of the Held-Suarez test for atmospheric model dynamical cores

    Science.gov (United States)

    Thatcher, Diana R.; Jablonowski, Christiane

    2016-04-01

    A moist idealized test case (MITC) for atmospheric model dynamical cores is presented. The MITC is based on the Held-Suarez (HS) test that was developed for dry simulations on "a flat Earth" and replaces the full physical parameterization package with a Newtonian temperature relaxation and Rayleigh damping of the low-level winds. This new variant of the HS test includes moisture and thereby sheds light on the nonlinear dynamics-physics moisture feedbacks without the complexity of full-physics parameterization packages. In particular, it adds simplified moist processes to the HS forcing to model large-scale condensation, boundary-layer mixing, and the exchange of latent and sensible heat between the atmospheric surface and an ocean-covered planet. Using a variety of dynamical cores of the National Center for Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM), this paper demonstrates that the inclusion of the moist idealized physics package leads to climatic states that closely resemble aquaplanet simulations with complex physical parameterizations. This establishes that the MITC approach generates reasonable atmospheric circulations and can be used for a broad range of scientific investigations. This paper provides examples of two application areas. First, the test case reveals the characteristics of the physics-dynamics coupling technique and reproduces coupling issues seen in full-physics simulations. In particular, it is shown that sudden adjustments of the prognostic fields due to moist physics tendencies can trigger undesirable large-scale gravity waves, which can be remedied by a more gradual application of the physical forcing. Second, the moist idealized test case can be used to intercompare dynamical cores. These examples demonstrate the versatility of the MITC approach and suggestions are made for further application areas. The new moist variant of the HS test can be considered a test case of intermediate complexity.

  9. Global atmospheric dispersion modelling after the Fukushima accident

    Energy Technology Data Exchange (ETDEWEB)

    Suh, K.S.; Youm, M.K.; Lee, B.G.; Min, B.I. [Korea Atomic Energy Research Institute (Korea, Republic of); Raul, P. [Universidad de Sevilla (Spain)

    2014-07-01

    A large amount of radioactive material was released to the atmosphere due to the Fukushima nuclear accident in March 2011. The radioactive materials released into the atmosphere were mostly transported to the Pacific Ocean, but some of them were fallen on the surface due to dry and wet depositions in the northwest area from the Fukushima nuclear site. Therefore, northwest part of the nuclear site was seriously contaminated and it was designated with the restricted zone within a radius of 20 ∼ 30 km around the Fukushima nuclear site. In the early phase of the accident from 11 March to 30 March, the radioactive materials were dispersed to an area of the inland and offshore of the nuclear site by the variations of the wind. After the Fukushima accident, the radionuclides were detected through the air monitoring in the many places over the world. The radioactive plume was transported to the east part off the site by the westerly jet stream. It had detected in the North America during March 17-21, in European countries during March 23-24, and in Asia during from March 24 to April 6, 2011. The radioactive materials were overall detected across the northern hemisphere passed by 15 ∼ 20 days after the accident. Three dimensional numerical model was applied to evaluate the dispersion characteristics of the radionuclides released into the air. Simulated results were compared with measurements in many places over the world. Comparative results had good agreements in some places, but they had a little differences in some locations. The difference between the calculations and measurements are due to the meteorological data and relatively coarse resolutions in the model. Some radioactive materials were measured in Philippines, Taiwan, Hon Kong and South Korea during from March 23-28. It inferred that it was directly transported from the Fukushima by the northeastern monsoon winds. This event was well represented in the numerical model. Generally, the simulations had a good

  10. Forecasting the consequences of accidental releases of radionuclides in the atmosphere from ensemble dispersion modelling

    International Nuclear Information System (INIS)

    The RTMOD system is presented as a tool for the intercomparison of long-range dispersion models as well as a system for support of decision making. RTMOD is an internet-based procedure that collects the results of more than 20 models used around the world to predict the transport and deposition of radioactive releases in the atmosphere. It allows the real-time acquisition of model results and their intercomparison. Taking advantage of the availability of several model results, the system can also be used as a tool to support decision making in case of emergency. The new concept of ensemble dispersion modelling is introduced which is the basis for the decision-making application of RTMOD. New statistical parameters are presented that allow gathering the results of several models to produce a single dispersion forecast. The devised parameters are presented and tested on the results of RTMOD exercises

  11. AERAD, the atmospheric dispersion model for emergency response at the Whiteshell Laboratories, Manitoba, Canada

    International Nuclear Information System (INIS)

    The Whiteshell Laboratories atmospheric dispersion model, AERAD, which would be used in the case of an accidental atmospheric release of radioactivity, is described. We outline the potential source terms at the Whiteshell site and the methodology used to calculate atmospheric concentrations and radiological doses to humans. (author). 26 refs., 6 tabs., 4 figs

  12. Where is the equator? A definition based on the atmosphere and its implications for atmospheric chemistry and climate

    Science.gov (United States)

    Holmes, C. D.; Prather, M. J.

    2014-12-01

    The concentration of hydroxyl (OH)—the main sink for the greenhouse gases methane and hydrofluorocarbons—in Earth's northern and southern hemispheres is an important longstanding puzzle in atmospheric chemistry. Observations of methylchloroform imply that there is about 10% more OH-loss in the southern hemisphere. In contrast, global 3-D atmospheric models (CTMs and GCMs) simulate 28 ± 10 % greater OH concentrations and methane loss in the northern hemisphere, according to a recent survey. This apparent shortcoming of many models derives in large part from an inconsistent definition of the hemispheres. For model results, OH concentrations and methane/methylchloroform loss are commonly averaged over the geographic hemispheres, with the geographic equator as the dividing line. For the observations, however, the hemispheres are separated by the atmosphere's circulatory mixing barrier, which rarely coincides with the geographic equator. Instead the barrier to interhemispheric mixing corresponds to the rising branch of the Hadley circulation and follows the seasonal migration of the sun. We use artificial tracers in a CTM to define the atmospheric (as opposed to geographic) hemispheres. We show that the tracer definition corresponds with the Intertropical Convergence Zone (ITCZ) where it is well defined and robust against several different tracer definitions. The atmospheric equator lies at 3°N on average (10°N in boreal summer) and extends as far as 30°N during the South Asian summer monsoon (Figure 1). When methane/methylchloroform loss rates are calculated for the dynamic and time-varying hemispheres, the CTM has just 5% greater loss in the northern hemisphere (Figure 1). Thus, using a definition of atmospheric hemispheres that is consistent with atmospheric circulations reveals that OH distributions in CTMs, while still slightly overestimating northern hemisphere OH, are much closer to observational constraints than has been implied by past work. We also

  13. A thermal model for photovoltaic panels under varying atmospheric conditions

    International Nuclear Information System (INIS)

    The response of the photovoltaic (PV) panel temperature is dynamic with respect to the changes in the incoming solar radiation. During periods of rapidly changing conditions, a steady state model of the operating temperature cannot be justified because the response time of the PV panel temperature becomes significant due to its large thermal mass. Therefore, it is of interest to determine the thermal response time of the PV panel. Previous attempts to determine the thermal response time have used indoor measurements, controlling the wind flow over the surface of the panel with fans or conducting the experiments in darkness to avoid radiative heat loss effects. In real operating conditions, the effective PV panel temperature is subjected to randomly varying ambient temperature and fluctuating wind speeds and directions; parameters that are not replicated in controlled, indoor experiments. A new thermal model is proposed that incorporates atmospheric conditions; effects of PV panel material composition and mounting structure. Experimental results are presented which verify the thermal behaviour of a photovoltaic panel for low to strong winds.

  14. Spatio-temporal statistical models with applications to atmospheric processes

    International Nuclear Information System (INIS)

    This doctoral dissertation is presented as three self-contained papers. An introductory chapter considers traditional spatio-temporal statistical methods used in the atmospheric sciences from a statistical perspective. Although this section is primarily a review, many of the statistical issues considered have not been considered in the context of these methods and several open questions are posed. The first paper attempts to determine a means of characterizing the semiannual oscillation (SAO) spatial variation in the northern hemisphere extratropical height field. It was discovered that the midlatitude SAO in 500hPa geopotential height could be explained almost entirely as a result of spatial and temporal asymmetries in the annual variation of stationary eddies. It was concluded that the mechanism for the SAO in the northern hemisphere is a result of land-sea contrasts. The second paper examines the seasonal variability of mixed Rossby-gravity waves (MRGW) in lower stratospheric over the equatorial Pacific. Advanced cyclostationary time series techniques were used for analysis. It was found that there are significant twice-yearly peaks in MRGW activity. Analyses also suggested a convergence of horizontal momentum flux associated with these waves. In the third paper, a new spatio-temporal statistical model is proposed that attempts to consider the influence of both temporal and spatial variability. This method is mainly concerned with prediction in space and time, and provides a spatially descriptive and temporally dynamic model

  15. Models of neutron star atmospheres enriched with nuclear burning ashes

    CERN Document Server

    Nättilä, Joonas; Kajava, Jari J E; Poutanen, Juri

    2015-01-01

    Low-mass X-ray binaries hosting neutron stars (NS) exhibit thermonuclear (type-I) X-ray bursts, which are powered by unstable nuclear burning of helium and/or hydrogen into heavier elements deep in the NS "ocean". In some cases the burning ashes may rise from the burning depths up to the NS photosphere by convection, leading to the appearance of the metal absorption edges in the spectra, which then force the emergent X-ray burst spectra to shift toward lower energies. These effects may have a substantial impact on the color correction factor $f_c$ and the dilution factor $w$, the parameters of the diluted blackbody model $F_E \\approx w B_E(f_c T_{eff})$ that is commonly used to describe the emergent spectra from NSs. The aim of this paper is to quantify how much the metal enrichment can change these factors. We have developed a new NS atmosphere modeling code, which has a few important improvements compared to our previous code required by inclusion of the metals. The opacities and the internal partition func...

  16. Land-Surface-Atmosphere Coupling in Observations and Models

    Directory of Open Access Journals (Sweden)

    Alan K Betts

    2009-07-01

    Full Text Available The diurnal cycle and the daily mean at the land-surface result from the coupling of many physical processes. The framework of this review is largely conceptual; looking for relationships and information in the coupling of processes in models and observations. Starting from the surface energy balance, the role of the surface and cloud albedos in the shortwave and longwave fluxes is discussed. A long-wave radiative scaling of the diurnal temperature range and the night-time boundary layer is summarized. Several aspects of the local surface energy partition are presented: the role of soilwater availability and clouds; vector methods for understanding mixed layer evolution, and the coupling between surface and boundary layer that determines the lifting condensation level. Moving to larger scales, evaporation-precipitation feedback in models is discussed; and the coupling of column water vapor, clouds and precipitation to vertical motion and moisture convergence over the Amazon. The final topic is a comparison of the ratio of surface shortwave cloud forcing to the diabatic precipitation forcing of the atmosphere in ERA-40 with observations.

  17. An analytical model for soil-atmosphere feedback

    OpenAIRE

    Schaefli, B.; R. J. van der Ent; Woods, R; Savenije, H. H. G.

    2012-01-01

    Soil-atmosphere feedback is a key for understanding the hydrological cycle and the direction of potential system changes. This paper presents an analytical framework to study the interplay between soil and atmospheric moisture, using as input only the boundary conditions at the upstream end of an atmospheric moisture stream line. The underlying Eulerian-Langrangean approach assumes advective moisture transport with average wind speed along the stream line and vertical moisture exchange with t...

  18. A comparison of chemistry and dust cloud formation in ultracool dwarf model atmospheres

    CERN Document Server

    Helling, Ch; Allard, F; Dehn, M; Hauschild, P; Homeier, D; Lodders, K; Marley, M; Rietmeijer, F; Tsuji, T; Woitke, P

    2008-01-01

    The atmospheres of substellar objects contain clouds of oxides, iron, silicates, and other refractory condensates. Water clouds are expected in the coolest objects. The opacity of these `dust' clouds strongly affects both the atmospheric temperature-pressure profile and the emergent flux. Thus any attempt to model the spectra of these atmospheres must incorporate a cloud model. However the diversity of cloud models in atmospheric simulations is large and it is not always clear how the underlying physics of the various models compare. Likewise the observational consequences of different modeling approaches can be masked by other model differences, making objective comparisons challenging. In order to clarify the current state of the modeling approaches, this paper compares five different cloud models in two sets of tests. Test case 1 tests the dust cloud models for a prescribed L, L--T, and T-dwarf atmospheric (temperature T, pressure p, convective velocity vconv)-structures. Test case 2 compares complete mode...

  19. Data Assimilation Into a Coupled Ocean Atmosphere Model: Application to the 1997-1998 El Nino

    Science.gov (United States)

    Lee, Tong

    1999-01-01

    As part of JPL's ocean data assimilation effort to study ocean circulation and seasonal-interannual climate variability, sea level anomaly observed by TOPEX altimeter, together with sea surface temperature and wind stress data, are assimilated into a simple coupled ocean atmosphere model of the tropical Pacific. Model-data consistency is examined. Impact of the assimilation (as initialization) on El Nino Southern Oscillation (ENSO) forecasts is evaluated. The coupled model consists of a shallow water component with two baroclinic modes, an Ekman shear layer, a simplified mixed-layer temperature equation, and a statistical atmosphere based on dominant correlations between historical surface temperature and wind stress anomaly data. The adjoins method is used to fit the coupled model to the data over various six-month periods from late 1996 to early 1998 by optimally adjusting the initial state, model parameters, and basis functions of the statistical atmosphere. On average, the coupled model can be fitted to the data to approximately within the data and representation errors (5 cm, 0.5 C, and 10 sq m/sq m for sea level, surface temperature, and pseudo wind stress anomalies, respectively). The estimated fields resemble observed spatio-temporal structure reasonably well. Hindcasts/forecasts of the 1997/1998 El Nino initialized from forced estimated ocean states and parameters are much more realistic than those simply initialized from ocean states (see figure below). In particular, the ability of the model to produce significant warming beyond the initial state is dramatically improved. Parameter estimation, which compensates for some model errors, is found to be important to obtaining better fits of the model to data and to improving forecasts.

  20. Different atmospheric parameters influence on spectral UV radiation (measurements and modelling)

    Energy Technology Data Exchange (ETDEWEB)

    Chubarova, N.Y. [Moscow State Univ. (Russian Federation). Meteorological Observatory; Krotkov, N.A. [Maryland Univ., MD (United States). JCESS/Meteorology Dept.; Geogdzhaev, I.V.; Bushnev, S.V.; Kondranin, T.V. [SUMGF/MIPT, Dolgoprudny (Russian Federation); Khattatov, V.U. [Central Aerological Observatory, Dolgoprudny (Russian Federation)

    1995-12-31

    The ultraviolet (UV) radiation plays a vital role in the biophysical processes despite its small portion in the total solar flux. UV radiation is subject to large variations at the Earth surface depending greatly on solar elevation, ozone and cloud amount, aerosols and surface albedo. The analysis of atmospheric parameters influence is based on the spectral archive data of three spectral instruments: NSF spectroradiometer (Barrow network) (NSF Polar Programs UV Spectroradiometer Network 1991-1992,1992), spectrophotometer (SUVS-M) of Central Aerological Observatory CAO, spectroradiometer of Meteorological Observatory of the Moscow State University (MO MSU) and model simulations based on delta-Eddington approximation

  1. Numerical modelling of pollution dispersion in 3D atmospheric boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Benes, L.; Bodnar, T.; Kozel, K. [Czech Technical Univ. of Prague (Czech Republic). Dept. of Technical Mathematics; Fraunie, Ph. [Univ. de Toulon et du Var, La Garde (France). Lab. de Sondages Electromagnetiques et Environnemental Terrestre

    2002-07-01

    The main goal of this work is to present the applicable models and numerical methods for solution of flow and pollution dispersion in 3D atmospheric boundary layer (ABL). Mathematical models are based on the system of Reynolds averaged Navier-Stokes equations and its simplifications. The sets of governing equations are completed by the transport equations for passive impurities and potential temperature. A simple algebraic turbulent closure model is used. The thermal stability phenomenon is taken into account. For each mathematical model a numerical scheme based on finite-difference or finite-volume discretization is proposed and discussed. Some results of numerical tests are presented for pollution dispersion from point sources and flows over simple geometries. (orig.)

  2. Analytical Models of Exoplanetary Atmospheres: Atmospheric Dynamics via the Shallow Water System

    CERN Document Server

    Heng, Kevin

    2014-01-01

    Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical and spherical), rotation, magnetic tension and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag and magnetic drag) and magnetic tension are included. The global atmospheric structure is largely controlled by a single, key parameter that involves the Rossby and Prandtl numbers. This near-universality breaks down when either molecular viscosity or magnetic drag varies significantly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulatio...

  3. Modeling Daily Rainfall Conditional on Atmospheric Predictors: An application to Western Greece

    Science.gov (United States)

    Langousis, Andreas; Kaleris, Vassilios

    2013-04-01

    Due to its intermittent and highly variable character, daily precipitation is the least well reproduced hydrologic variable by both General Circulation Models (GCMs) and Limited Area Models (LAMs). To that extent, several statistical procedures (usually referred to as downscaling schemes) have been suggested to generate synthetic rainfall time series conditional on predictor variables that are descriptive of the atmospheric circulation at the mesoscale. In addition to be more accurately simulated by GCMs and LAMs, large-scale atmospheric predictors are important indicators of the local weather. Currently used downscaling methods simulate rainfall series using either stable statistical relationships (usually referred to as transfer functions) between certain characteristics of the rainfall process and mesoscale atmospheric predictor variables, or simple stochastic schemes (e.g. properly transformed autoregressive models) with parameters that depend on the large-scale atmospheric conditions. The latter are determined by classifying large-scale circulation patterns into broad categories of weather states, using empirical or theoretically based classification schemes, and modeled by resampling from those categories; a process usually referred to as weather generation. In this work we propose a statistical framework to generate synthetic rainfall timeseries at a daily level, conditional on large scale atmospheric predictors. The latter include the mean sea level pressure (MSLP), the magnitude and direction of upper level geostrophic winds, and the 500 hPa geopotential height, relative vorticity and divergence. The suggested framework operates in continuous time, avoiding the use of transfer functions, and weather classification schemes. The suggested downscaling approach is validated using atmospheric data from the ERA-Interim archive (see http://www.ecmwf.int/research/era/do/get/index), and daily rainfall data from Western Greece, for the 14-year period from 01 October

  4. Model analysis of the effects of atmospheric drivers on storage water use in Scots pine

    Directory of Open Access Journals (Sweden)

    H. Verbeeck

    2007-08-01

    Full Text Available Storage water use is an indirect consequence of the interplay between different meteorological drivers through their effect on water flow and water potential in trees. We studied these microclimatic drivers of storage water use in Scots pine (Pinus sylvestris L. growing in a temperate climate. The storage water use was modeled using the ANAFORE model, integrating a dynamic water flow and – storage model with a process-based transpiration model. The model was calibrated and validated with sap flow measurements for the growing season of 2000 (26 May–18 October.

    Because there was no severe soil drought during the study period, we were able to study atmospheric effects. Incoming radiation and vapour pressure deficit (VPD were the main atmospheric drivers of storage water use. The general trends of sap flow and storage water use are similar, and follow more or less the pattern of incoming radiation. Nevertheless, considerable differences in the day-to-day pattern of sap flow and storage water use were observed. VPD was determined to be one of the main drivers of these differences. During dry atmospheric conditions (high VPD storage water use was reduced. This reduction was higher than the reduction in measured sap flow. Our results suggest that the trees did not rely more on storage water during periods of atmospheric drought, without severe soil drought. The daily minimum tree water content was lower in periods of high VPD, but the reserves were not completely depleted after the first day of high VPD, due to refilling during the night.

    Nevertheless, the tree water content deficit was a third important factor influencing storage water use. When storage compartments were depleted beyond a threshold, storage water use was limited due to the low water potential in the storage compartments. The maximum relative contribution of storage water to daily transpiration was also constrained by an increasing tree water content

  5. Atmosphere-soil-vegetation model including CO2 exchange processes; SOLVEG2

    OpenAIRE

    永井 晴康

    2004-01-01

    A new atmosphere-soil-vegetation model named SOLVEG2 (SOLVEG version 2) was developed to study the heat, water, and CO2 exchanges between the atmosphere and land-surface. The model consists of one-dimensional multilayer sub-models for the atmosphere, soil, and vegetation. It also includes sophisticated processes for solar and long-wave radiation transmission in vegetation canopy and CO2 exchanges among the atmosphere, soil, and vegetation. The model can be also used by coupling with a three-d...

  6. Should we use a simple or complex model for moisture recycling and atmospheric moisture tracking?

    NARCIS (Netherlands)

    Van der Ent, R.J.; Tuinenburg, O.A.; Knoche, H.R.; Kunstmann, H.; Savenije, H.H.G.

    2013-01-01

    This paper compares three state-of-the-art atmospheric moisture tracking models. Such models are typically used to study the water component of coupled land and atmosphere models, in particular quantifying moisture recycling and the source-sink relations between evaporation and precipitation. Howeve

  7. Should we use a simple or complex model for moisture recycling and atmospheric moisture tracking?

    NARCIS (Netherlands)

    Ent, van der R.J.; Tuinenburg, O.A.; Knoche, H.R.; Kunstmann, H.; Savenije, H.H.G.

    2013-01-01

    This paper compares state-of-the-art atmospheric moisture tracking models. Such models are typically used to study the water component of coupled land and atmosphere models, in particular quantifying moisture recycling and the source-sink relations between evaporation and precipitation. There are se

  8. Limb darkening laws for two exoplanet host stars derived from 3D stellar model atmospheres

    CERN Document Server

    Hayek, W; Pont, F; Asplund, M

    2012-01-01

    We compare limb darkening laws derived from 3D hydrodynamical model atmospheres and 1D hydrostatic MARCS models for the host stars of the two transiting exoplanet systems HD 209458 and HD 189733. The surface brightness distribution of the stellar disks is calculated using 3D LTE spectrum formation and opacity sampling. We test our predictions using least-squares fits of model light curves to primary eclipses that were observed with the Hubble Space Telescope (HST). The limb darkening law derived from the 3D model of HD 209458 between 2900 A and 5700 A produces significantly better fits to the HST data, removing systematic residuals that were previously observed for model light curves based on 1D predictions. This difference arises mainly from the shallower mean temperature structure of the 3D model, which is a consequence of the explicit simulation of surface granulation. In the case of HD 189733, the model atmospheres produce practically equivalent limb darkening curves between 2900 A and 5700 A, partly due ...

  9. 3D cut-cell modelling for high-resolution atmospheric simulations

    CERN Document Server

    Yamazaki, H; Nikiforakis, N

    2015-01-01

    With the recent, rapid development of computer technology, the resolution of atmospheric numerical models has increased substantially. As a result, steep gradients in mountainous terrain are now being resolved in high-resolution models. This results in large truncation errors in those models using terrain-following coordinates. In this study, a new 3D Cartesian coordinate non-hydrostatic atmospheric model is developed. A cut-cell representation of topography based on finite-volume discretization is combined with a cell-merging approach, in which small cut-cells are merged with neighboring cells either vertically or horizontally. In addition, a block-structured mesh-refinement technique achieves a variable resolution on the model grid with the finest resolution occurring close to the terrain surface. The model successfully reproduces a flow over a 3D bell-shaped hill that shows a good agreement with the flow predicted by the linear theory. The ability of the model to simulate flows over steep terrain is demons...

  10. Directional Time-Distance Probing of Model Sunspot Atmospheres

    CERN Document Server

    Moradi, H; Przybylski, D; Shelyag, S

    2015-01-01

    A crucial feature not widely accounted for in local helioseismology is that surface magnetic regions actually open a window from the interior into the solar atmosphere, and that the seismic waves leak through this window, reflect high in the atmosphere, and then re-enter the interior to rejoin the seismic wave field normally confined there. In a series of recent numerical studies using translation invariant atmospheres, we utilised a "directional time-distance helioseismology" measurement scheme to study the implications of the returning fast and Alfv\\'en waves higher up in the solar atmosphere on the seismology at the photosphere (Cally & Moradi 2013; Moradi & Cally 2014). In this study, we extend our directional time-distance analysis to more realistic sunspot-like atmospheres to better understand the direct effects of the magnetic field on helioseismic travel-time measurements in sunspots. In line with our previous findings, we uncover a distinct frequency-dependant directional behaviour in the tra...

  11. A computer programmed model for calculation of fall and dispersion of particles in the atmosphere

    International Nuclear Information System (INIS)

    An atmospheric model has been designed and developed to provide estimates of air concentrations or ground deposit densities of particles released in the atmosphere up to 90-km altitude. Particle density and diameter may range from 1 to 10 g/cm3 and about 3 to 300μ, respectively, for given instantaneous point or line sources. The particle cloud is allowed to move horizontally in accordance with analytically simulated winds and to fall at terminal velocity plus vertical air velocity. Small-scale cloud growth rate is specified empirically at values based on past instantaneous tracer experiments while large-scale growth results from trajectory subdivision and divergence of new particle trajectories. Some specific computer runs at Sandia were done to assess hazards resulting from possible rocket abort situations and atmospheric re-entry from improper orbits of isotopic or reactor power supplies. The results have been compared with other modes of estimation derived from simpler models of world-wide contaminant spread. While existing data are insufficient for full verification, it is felt that the present model is one of the most comprehensive and realistic available. (author)

  12. Simulation of global warming with a simple coupled ocean-atmosphere model

    International Nuclear Information System (INIS)

    A highly simplified ocean-atmosphere coupling system is established based on a two-dimensional oceanic thermohaline circulation model and an energy balance atmospheric model. Transient responses of the coupled system to a radiation forcing corresponding to the doubling of the atmospheric CO2 concentration have been investigated with an emphasis on the role of the model's thermohaline circulation in the warming processes of the system. The results show that there are some significant differences between the Pacific and the Atlantic in their transient responses. On the whole, the warming in the Atlantic is slower in the surface and faster in the deep layers than those in the Pacific due to the process of the deep water formation in the northern North Atlantic, where the active convection and the downward vertical advection transport the surface thermal anomalies into the lower layers efficiently. On a hundred-year time scale, the thermohaline circulation in the North Atlantic is weakened. As a result, the warming in the upper layer of the northern North Atlantic will be further delayed because of the reduction of the northward heat transport

  13. Atmospheric inverse modeling with known physical bounds: an example from trace gas emissions

    Directory of Open Access Journals (Sweden)

    S. M. Miller

    2013-09-01

    Full Text Available Many inverse problems in the atmospheric sciences involve parameters with known physical constraints. Examples include non-negativity (e.g., emissions of some urban air pollutants or upward limits implied by reaction or solubility constants. However, probabilistic inverse modeling approaches based on Gaussian assumptions cannot incorporate such bounds and thus often produce unrealistic results. The atmospheric literature lacks consensus on the best means to overcome this problem, and existing atmospheric studies rely on a limited number of the possible methods with little examination of the relative merits of each. This paper investigates the applicability of several approaches to bounded inverse problems and is also the first application of Markov chain Monte Carlo (MCMC to estimation of atmospheric trace gas fluxes. The approaches discussed here are broadly applicable. A common method of data transformations is found to unrealistically skew estimates for the examined example application. The method of Lagrange multipliers and two MCMC methods yield more realistic and accurate results. In general, the examined MCMC approaches produce the most realistic result but can require substantial computational time. Lagrange multipliers offer an appealing alternative for large, computationally intensive problems when exact uncertainty bounds are less central to the analysis. A synthetic data inversion of US anthropogenic methane emissions illustrates the strengths and weaknesses of each approach.

  14. Prediction model of atmospheric refractive index structure parameter in coastal area

    Science.gov (United States)

    Wang, Hongxing; Li, Bifeng; Wu, Xiaojun; Liu, Chuanhui; Hu, Zhihui; Xu, Pengfei

    2015-09-01

    In this paper, we focus on the prediction of atmospheric refractive index structure parameter (?) in coastal area using the routine meteorological parameters. Based on the micrometeorology, macrometeorology and Monin-Obukhov similarity theory, three modified prediction models of ? are presented in combination with the long-term observation data of ? and meteorological parameters in coastal city, respectively. For different weather, the applicable cases of three ? prediction models are comparatively analysed and their applicable effects are comprehensively evaluated. The results indicate that the modified micrometeorology model of ? shows better applicability for overcast sky, the offshore macrometeorology model of ? displays better predictability for sunny day and the offshore Thiermann model provides better availability for overcast sky, cloudy day, overcast to sunny or sunny to overcast day.

  15. Application of an acoustic noise removal method to aircraft-based atmospheric temperature measurements

    Science.gov (United States)

    Hugo, Ronald J.; Nowlin, Scott R.; Hahn, Ila L.; Eaton, Frank D.; McCrae, Kim A.

    2003-01-01

    An acoustic noise removal method is used to reject engine acoustical disturbances from aircraft-based atmospheric temperature measurements. Removal of engine noise from atmospheric temperature measurements allows a larger wave number range to be fit while quantifying the magnitude of atmospheric temperature turbulence. The larger wave number range was found to result in a more statistically certain spectral slope estimate, with up to a 50% reduction in the standard deviation of measured spectral slopes. The noise removal technique was found to break down under conditions of weak atmospheric temperature turbulence where the engine acoustical disturbance can be several orders of magnitude larger than atmospheric temperature turbulence.

  16. Fluctuations, Response, and Resonances in a Simple Atmospheric Model

    CERN Document Server

    Gritsun, Andrey

    2016-01-01

    We study the response of a simple quasi-geostrophic barotropic model of the atmosphere to various classes of perturbations affecting its forcing and its dissipation using the formalism of the Ruelle response theory. We investigate the geometry of such perturbations using the covariant Lyapunov vectors on the unperturbed system and discover in one specific case - orographic forcing - a substantial projection of the perturbation onto the stable directions of the flow. As a result, we find a clear violation of the fluctuation-dissipation theorem, in agreement with the basic tenets of nonequilibrium statistical mechanics. This results into a very strong response in the form of a forced Rossby-like wave that has no resemblance to the natural variability in the same range of spatial and temporal scales. We further analyze such a feature and discover it can be interpreted as resonant response to a specific group of rarely visited unstable periodic orbits of the unperturbed system. Our results reinforce the idea of u...

  17. Prompt atmospheric neutrino fluxes: perturbative QCD models and nuclear effects

    CERN Document Server

    Bhattacharya, Atri; Jeong, Yu Seon; Kim, C S; Reno, Mary Hall; Sarcevic, Ina; Stasto, Anna

    2016-01-01

    We evaluate the prompt atmospheric neutrino flux at high energies using three different frameworks for calculating the heavy quark production cross section in QCD: NLO perturbative QCD, $k_T$ factorization including low-$x$ resummation, and the dipole model including parton saturation. We use QCD parameters, the value for the charm quark mass and the range for the factorization and renormalization scales that provide the best description of the total charm cross section measured at fixed target experiments, at RHIC and at LHC. Using these parameters we calculate differential cross sections for charm and bottom production and compare with the latest data on forward charm meson production from LHCb at $7$ TeV and at $13$ TeV, finding good agreement with the data. In addition, we investigate the role of nuclear shadowing by including nuclear parton distribution functions (PDF) for the target air nucleus using two different nuclear PDF schemes. Depending on the scheme used, we find the reduction of the flux due t...

  18. 基于叶片-冠层-大气耦合的植物星上光谱特性模拟分析%Simulation analysis of vegetation TOA reflectance based on coupled leaf-canopy-atmosphere radiative transfer model

    Institute of Scientific and Technical Information of China (English)

    佃袁勇; 方圣辉

    2013-01-01

    Coupled plant leaf spectral model PROSPECT,vegetation canopy spectral model SAIL (scattering by arbitrarily inclined leaves) and atmospheric radiative transfer model 6S(second simulation of the satellite signal in the solar spectrum) were used to simulate the top of atmospheric (TOA) reflectance of vegetation under different conditions.And then the influences on the spectrum of the leaf mesophyll structure parameters,chlorophyll content,leaf dry weight,leaf water content,plant canopy of LAI,solar zenith angle,aerosol optical thickness (AOT),adjacency effect and mix-pixel effect were analyzed.The research results show that the vegetation TOA reflectance error caused by the atmosphere is by far larger than the error caused by the biochemical parameters of plant itself.At the leaf level scale,the main factors causing reflectance change are chlorophyll content and mesophyll structure parameters,the effect of water content is very small on leaf reflectance in 400 ~ 900 nm.At the canopy level,the main factors causing spectral change are LAI and leaf angle distribution.%将植物叶片光谱模型PROSPECT、植被冠层光谱模型SAIL与大气辐射传输模型6S进行耦合,模拟不同参数条件下植被星上光谱信息在400~ 900 nm谱段的变化,并分析从地表植物叶片光谱、冠层光谱到卫星入瞳处光谱的过程中,植物叶片的叶肉结构参数、叶绿素含量、干重、叶片含水量和植物冠层的叶面积指数(LAI)、太阳天顶角、气溶胶光学厚度、地表邻近效应以及混合像元等参数对植物光谱的影响.研究结果表明,由大气引起的误差要远大于由植物本身的各种生化参数引起的误差;在叶片尺度上引起反射率发生变化的主要因素是叶绿素含量和叶肉结构参数,含水量的影响非常小,可以忽略;在冠层尺度上引起光谱发生变化的因素主要有LAI和叶片倾角.

  19. FORest canopy atmosphere transfer (FORCAsT 1.0: a 1-D model of biosphere–atmosphere chemical exchange

    Directory of Open Access Journals (Sweden)

    K. Ashworth

    2015-07-01

    Full Text Available Biosphere-atmosphere interactions play a critical role in governing atmospheric composition, mediating the concentration of key species such as ozone and aerosol, thereby influencing air quality and climate. The exchange of reactive trace gases and their oxidation products (both gas and particle phase is of particular importance in this process. The FORCAsT (FORest Canopy AtmoSphere Transfer one-dimensional model is developed to study the emission, deposition, chemistry and transport of volatile organic compounds (VOCs and their oxidation products in the atmosphere within and above the forest canopy. We include an equilibrium partitioning scheme, making FORCAsT one of the few canopy models currently capable of simulating the formation of secondary organic aerosols (SOA from VOC oxidation in a forest environment. We evaluate the capability of FORCAsT to reproduce observed concentrations of key gas-phase species and report modeled SOA concentrations within and above a mixed forest at the University of Michigan Biological Station (UMBS during the Community Atmosphere-Biosphere Interactions Experiment (CABINEX field campaign in summer 2009. We examine the impact of two different gas-phase chemical mechanisms on modelled concentrations of short-lived primary emissions, such as isoprene and monoterpenes, and their oxidation products. While the two chemistry schemes perform similarly under high-NOx conditions, they diverge at the low levels of NOx at UMBS. We identify peroxy radical and alkyl nitrate chemistry as the key causes of the differences, highlighting the importance of this chemistry in understanding the fate of biogenic VOCs (bVOCs for both the modelling and measurement communities.

  20. FORest Canopy Atmosphere Transfer (FORCAsT) 1.0: a 1-D model of biosphere-atmosphere chemical exchange

    Science.gov (United States)

    Ashworth, K.; Chung, S. H.; Griffin, R. J.; Chen, J.; Forkel, R.; Bryan, A. M.; Steiner, A. L.

    2015-11-01

    Biosphere-atmosphere interactions play a critical role in governing atmospheric composition, mediating the concentrations of key species such as ozone and aerosol, thereby influencing air quality and climate. The exchange of reactive trace gases and their oxidation products (both gas and particle phase) is of particular importance in this process. The FORCAsT (FORest Canopy Atmosphere Transfer) 1-D model is developed to study the emission, deposition, chemistry and transport of volatile organic compounds (VOCs) and their oxidation products in the atmosphere within and above the forest canopy. We include an equilibrium partitioning scheme, making FORCAsT one of the few canopy models currently capable of simulating the formation of secondary organic aerosols (SOAs) from VOC oxidation in a forest environment. We evaluate the capability of FORCAsT to reproduce observed concentrations of key gas-phase species and report modeled SOA concentrations within and above a mixed forest at the University of Michigan Biological Station (UMBS) during the Community Atmosphere-Biosphere Interactions Experiment (CABINEX) field campaign in the summer of 2009. We examine the impact of two different gas-phase chemical mechanisms on modelled concentrations of short-lived primary emissions, such as isoprene and monoterpenes, and their oxidation products. While the two chemistry schemes perform similarly under high-NOx conditions, they diverge at the low levels of NOx at UMBS. We identify peroxy radical and alkyl nitrate chemistry as the key causes of the differences, highlighting the importance of this chemistry in understanding the fate of biogenic VOCs (bVOCs) for both the modelling and measurement communities.

  1. Improving the Ni I atomic model for solar and stellar atmospheric models

    CERN Document Server

    Vieytes, Mariela C

    2013-01-01

    Neutral nickel (Ni I) is abundant in the solar atmosphere and is one of the important elements that contribute to the emission and absorption of radiation in the spectral range between 1900 and 3900 A. Previously, the Solar Radiation Physical Modeling (SRPM) models of the solar atmosphere considered only few levels of this species. Here we improve the Ni I atomic model by taking into account 61 levels and 490 spectral lines. We compute the populations of these levels in full NLTE using the SRPM code and compare the resulting emerging spectrum with observations. The present atomic model improves significantly the calculation of the solar spectral irradiance at near-UV wavelengths that are important for Earth atmo spheric studies, and particularly for ozone chemistry.

  2. Applications of Mars Global Reference Atmospheric Model (Mars-GRAM 2005) Supporting Mission Site Selection for Mars Science Laboratory

    Science.gov (United States)

    Justh, Hilary L.; Justus, Carl G.

    2008-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM 2005) is an engineering level atmospheric model widely used for diverse mission applications. An overview is presented of Mars-GRAM 2005 and its new features. One new feature of Mars-GRAM 2005 is the 'auxiliary profile' option. In this option, an input file of temperature and density versus altitude is used to replace mean atmospheric values from Mars-GRAM's conventional (General Circulation Model) climatology. An auxiliary profile can be generated from any source of data or alternate model output. Auxiliary profiles for this study were produced from mesoscale model output (Southwest Research Institute's Mars Regional Atmospheric Modeling System (MRAMS) model and Oregon State University's Mars mesoscale model (MMM5)model) and a global Thermal Emission Spectrometer(TES) database. The global TES database has been specifically generated for purposes of making Mars-GRAM auxiliary profiles. This data base contains averages and standard deviations of temperature, density, and thermal wind components,averaged over 5-by-5 degree latitude-longitude bins and 15 degree L(s) bins, for each of three Mars years of TES nadir data. Results are presented using auxiliary profiles produced from the mesoscale model output and TES observed data for candidate Mars Science Laboratory (MSL) landing sites. Input parameters rpscale (for density perturbations) and rwscale (for wind perturbations) can be used to "recalibrate" Mars-GRAM perturbation magnitudes to better replicate observed or mesoscale model variability.

  3. The coupled atmosphere-chemistry-ocean model SOCOL-MPIOM

    Directory of Open Access Journals (Sweden)

    S. Muthers

    2014-05-01

    Full Text Available The newly developed atmosphere–ocean-chemistry-climate model SOCOL-MPIOM is presented by demonstrating the influence of the interactive chemistry module on the climate state and the variability. Therefore, we compare pre-industrial control simulations with (CHEM and without (NOCHEM interactive chemistry. In general, the influence of the chemistry on the mean state and the variability is small and mainly restricted to the stratosphere and mesosphere. The largest differences are found for the atmospheric dynamics in the polar regions, with slightly stronger northern and southern winter polar vortices in CHEM. The strengthening of the vortex is related to larger stratospheric temperature gradients, which are attributed to a parametrization of the absorption of ozone and oxygen in the Lyman-alpha, Schumann–Runge, Hartley, and Higgins bands. This effect is parametrized in the version with interactive chemistry only. A second reason for the temperature differences between CHEM and NOCHEM is related to diurnal variations in the ozone concentrations in the higher atmosphere, which are missing in NOCHEM. Furthermore, stratospheric water vapour concentrations differ substantially between the two experiments, but their effect on the temperatures is small. In both setups, the simulated intensity and variability of the northern polar vortex is inside the range of present day observations. Sudden stratospheric warming events are well reproduced in terms of their frequency, but the distribution amongst the winter months is too uniform. Additionally, the performance of SOCOL-MPIOM under changing external forcings is assessed for the period 1600–2000 using an ensemble of simulations driven by a spectral solar forcing reconstruction. The amplitude of the reconstruction is large in comparison to other state-of-the-art reconstructions, providing an upper limit for the importance of the solar signal. In the pre-industrial period (1600–1850 the simulated

  4. The model study of water mass and energy exchange between the inland water body and atmosphere

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on a one-dimensional eddy diffusion model,a model to study the water mass and energy exchange between the water body(such as lake and wetland) and the atmosphere is developed,which takes the phase change process due to the seasonal melting and freezing of water and the convection mixing process of energy caused by temperature stratification into consideration. The model uses enthalpy instead of temperature as predictive variable,which will help to deal with the phase change process and to design an efficient numerical scheme for obtaining the solution more easily. The performance of the model and the rationality of taking convection mixing into the consideration are validated by using observed data of Kinneret Lake in Israel and Lower Two Medicine Lake in Montana State in America. The comparison of model results with observed data indicates that the model presented here is capable of describing the physical process of water mass and energy between the water body(lake and wetland) and atmosphere. Comparison of the result from wetland with shallow and deep lakes under the same forcing conditions shows that the evaporation from wetland is much greater than that from lakes,which accords with the real observation fact and physical mechanism.

  5. Bayesian statistical modeling of spatially correlated error structure in atmospheric tracer inverse analysis

    Directory of Open Access Journals (Sweden)

    C. Mukherjee

    2011-01-01

    Full Text Available Inverse modeling applications in atmospheric chemistry are increasingly addressing the challenging statistical issues of data synthesis by adopting refined statistical analysis methods. This paper advances this line of research by addressing several central questions in inverse modeling, focusing specifically on Bayesian statistical computation. Motivated by problems of refining bottom-up estimates of source/sink fluxes of trace gas and aerosols based on increasingly high-resolution satellite retrievals of atmospheric chemical concentrations, we address head-on the need for integrating formal spatial statistical methods of residual error structure in global scale inversion models. We do this using analytically and computationally tractable spatial statistical models, know as conditional autoregressive spatial models, as components of a global inversion framework. We develop Markov chain Monte Carlo methods to explore and fit these spatial structures in an overall statistical framework that simultaneously estimates source fluxes. Additional aspects of the study extend the statistical framework to utilize priors in a more physically realistic manner, and to formally address and deal with missing data in satellite retrievals. We demonstrate the analysis in the context of inferring carbon monoxide (CO sources constrained by satellite retrievals of column CO from the Measurement of Pollution in the Troposphere (MOPITT instrument on the TERRA satellite, paying special attention to evaluating performance of the inverse approach using various statistical diagnostic metrics. This is developed using synthetic data generated to resemble MOPITT data to define a~proof-of-concept and model assessment, and then in analysis of real MOPITT data.

  6. Numerical Modeling of Normal-Mode Oscillations in Planetary Atmospheres: Application to Saturn and Titan

    Science.gov (United States)

    Friedson, Andrew James; Ding, Leon

    2015-11-01

    We have developed a numerical model to calculate the frequencies and eigenfunctions of adiabatic, non-radial normal-mode oscillations in the gas giants and Titan. The model solves the linearized momentum, energy, and continuity equations for the perturbation displacement, pressure, and density fields and solves Poisson’s equation for the perturbation gravitational potential. The response to effects associated with planetary rotation, including the Coriolis force, centrifugal force, and deformation of the equilibrium structure, is calculated numerically. This provides the capability to accurately compute the influence of rotation on the modes, even in the limit where mode frequency approaches the rotation rate, when analytical estimates based on functional perturbation analysis become inaccurate. This aspect of the model makes it ideal for studying the potential role of low-frequency modes for driving spiral density waves in the C ring that possess relatively low pattern speeds (Hedman, M.M and P.D. Nicholson, MNRAS 444, 1369-1388). In addition, the model can be used to explore the effect of internal differential rotation on the eigenfrequencies. We will (1) present examples of applying the model to calculate the properties of normal modes in Saturn and their relationship to observed spiral density waves in the C ring, and (2) discuss how the model is used to examine the response of the superrotating atmosphere of Titan to the gravitational tide exerted by Saturn. This research was supported by a grant from the NASA Planetary Atmosphere Program.

  7. Photochemistry in Terrestrial Exoplanet Atmospheres I: Photochemistry Model and Benchmark Cases

    CERN Document Server

    Hu, Renyu; Bains, William

    2012-01-01

    We present a comprehensive photochemistry model for exploration of the chemical composition of terrestrial exoplanet atmospheres. The photochemistry model is designed from the ground up to have the capacity to treat all types of terrestrial planet atmospheres, ranging from oxidizing through reducing, which makes the code suitable for applications for the wide range of anticipated terrestrial exoplanet compositions. The one-dimensional chemical transport model treats up to 800 chemical reactions, photochemical processes, dry and wet deposition, surface emission and thermal escape of O, H, C, N and S bearing species, as well as formation and deposition of elemental sulfur and sulfuric acid aerosols. We validate the model by computing the atmospheric composition of current Earth and Mars and find agreement with observations of major trace gases in Earth's and Mars' atmospheres. We simulate several plausible atmospheric scenarios of terrestrial exoplanets, and choose three benchmark cases for atmospheres from red...

  8. A coupled lake-atmosphere model (CLAM) and its application to Lake Kinneret

    Science.gov (United States)

    Pan, Hai

    1999-08-01

    Kinneret is a 166-km2 lake located in Northern Israel, in the central part of the Jordan Valley, a corridor running from north to south, between the Galilee hills in the west and the Golan Heights in the east. Both the Galilee hills and the Golan Heights reach an elevation of about 400 m above mean sea level (MSL), and the lake is about -210 m (MSL). North of the lake is the mountainous area of the Hermon, culminating at about 2800 m (MSL). About 120 km south of it is the Dead Sea, which is about -410 m (MSL), and about 45 km west of it is the Mediterranean Sea. The complexity of the terrain, combined with relatively arid soil and various ground covers surrounding the lake, results in a very complicated system of atmospheric and lake processes. To understand this system, especially the processes affecting the atmosphere and lake dynamics and thermodynamics, and their effects on Lake Kinneret evaporation, a coupled lake-atmosphere model (CLAM) was developed and applied to the lake region. The CLAM is based on the Regional Atmospheric Modeling System (RAMS) and the oceanic S-coordinate Rutgers University Model (SCRUM). Energy, mass, and momentum are conserved at the interface between the atmosphere and the lake, and appropriate balance equations are applied there. In the atmospheric module, two nested grids are employed to simulate Northern Israel at a resolution of 4 x 4 km2, and the near-lake region at a resolution of 1 x 1 km 2. Synoptic conditions obtained from the National Meteorological Center (NMC) reanalysis are assimilated by the model. Soil moisture, which appears to have a significant impact on atmospheric circulation in this region, was transformed from the normalized difference vegetation index (NDVI). Observations collected during two summers above and inside the lake emphasize the good capability of CLAM to simulate surface fluxes and other microclimatic conditions, as well as lake temperature and currents. Although the lake is small (about 12-km wide

  9. N-body model of magnetic flux tubes reconnecting in the solar atmosphere

    CERN Document Server

    Giovannelli, Luca; Del Moro, Dario; Scardigli, Stefano; Consolini, Giuseppe; Stangalini, Marco; Giannattasio, Fabio; Caroli, Adalia; Pucci, Fulvia; Penza, Valentina

    2016-01-01

    The investigation of dynamics of the small scale magnetic field on the Sun photosphere is necessary to understand the physical processes occurring in the higher layers of solar atmosphere due to the magnetic coupling between the photosphere and the corona. We present a simulation able to address these phenomena investigating the statistics of magnetic loops reconnections. The simulation is based on N-body model approach and is divided in two computational layers. We simplify the convection problem, interpreting the larger convective scale, mesogranulation, as the result of the collective interaction of convective downflow of granular scale. The N-body advection model is the base to generate a synthetic time series of nanoflares produced by interacting magnetic loops. The reconnection of magnetic field lines is the result of the advection of the magnetic footpoints following the velocity field generated by the interacting downflows. The model gives a quantitative idea of how much energy is expected to be relea...

  10. CRUNCH, Dispersion Model for Continuous Dense Vapour Release in Atmosphere

    International Nuclear Information System (INIS)

    ambient atmospheric turbulence, and to follow the dispersion processes down to low concentrations, especially important for toxic gases, a virtual source passive dispersion model is fitted to the slumping plume. 2 - Restrictions on the complexity of the problem: Acceleration of the plume to the wind velocity is not considered, since an analysis of inertial effects has shown that the time for which these are important is short, compared to the dispersion time. Additionally, wind shear effects on cloud structure are not included; for a puff release producing a cloud of finite extent, this may not be valid but for a plume, extending to large downwind distances, they can be argued to have only a minor influence at the advancing front

  11. Advances in understanding, models and parameterisations of biosphere-atmosphere ammonia exchange

    Science.gov (United States)

    Flechard, C. R.; Massad, R.-S.; Loubet, B.; Personne, E.; Simpson, D.; Bash, J. O.; Cooter, E. J.; Nemitz, E.; Sutton, M. A.

    2013-03-01

    Atmospheric ammonia (NH3) dominates global emissions of total reactive nitrogen (Nr), while emissions from agricultural production systems contribute about two thirds of global NH3 emissions; the remaining third emanates from oceans, natural vegetation, humans, wild animals and biomass burning. On land, NH3 emitted from the various sources eventually returns to the biosphere by dry deposition to sink areas, predominantly semi-natural vegetation, and by wet and dry deposition as ammonium (NH4+) to all surfaces. However, the land/atmosphere exchange of gaseous NH3 is in fact bi-directional over unfertilized as well as fertilized ecosystems, with periods and areas of emission and deposition alternating in time (diurnal, seasonal) and space (patchwork landscapes). The exchange is controlled by a range of environmental factors, including meteorology, surface layer turbulence, thermodynamics, air and surface heterogeneous-phase chemistry, canopy geometry, plant development stage, leaf age, organic matter decomposition, soil microbial turnover, and, in agricultural systems, by fertilizer application rate, fertilizer type, soil type, crop type, and agricultural management practices. We review the range of processes controlling NH3 emission and uptake in the different parts of the soil-canopy-atmosphere continuum, with NH3 emission potentials defined at the substrate and leaf levels by different [NH4+] / [H+] ratios (Γ). Surface/atmosphere exchange models for NH3 are necessary to compute the temporal and spatial patterns of emissions and deposition at the soil, plant, field, landscape, regional and global scales, in order to assess the multiple environmental impacts of air-borne and deposited NH3 and NH4+. Models of soil/vegetation/atmosphereem NH3 exchange are reviewed from the substrate and leaf scales to the global scale. They range from simple steady-state, "big leaf" canopy resistance models, to dynamic, multi-layer, multi-process, multi

  12. Advances in understanding, models and parameterisations of biosphere-atmosphere ammonia exchange

    Directory of Open Access Journals (Sweden)

    C. R. Flechard

    2013-03-01

    Full Text Available Atmospheric ammonia (NH3 dominates global emissions of total reactive nitrogen (Nr, while emissions from agricultural production systems contribute about two thirds of global NH3 emissions; the remaining third emanates from oceans, natural vegetation, humans, wild animals and biomass burning. On land, NH3 emitted from the various sources eventually returns to the biosphere by dry deposition to sink areas, predominantly semi-natural vegetation, and by wet and dry deposition as ammonium (NH4+ to all surfaces. However, the land/atmosphere exchange of gaseous NH3 is in fact bi-directional over unfertilized as well as fertilized ecosystems, with periods and areas of emission and deposition alternating in time (diurnal, seasonal and space (patchwork landscapes. The exchange is controlled by a range of environmental factors, including meteorology, surface layer turbulence, thermodynamics, air and surface heterogeneous-phase chemistry, canopy geometry, plant development stage, leaf age, organic matter decomposition, soil microbial turnover, and, in agricultural systems, by fertilizer application rate, fertilizer type, soil type, crop type, and agricultural management practices. We review the range of processes controlling NH3 emission and uptake in the different parts of the soil-canopy-atmosphere continuum, with NH3 emission potentials defined at the substrate and leaf levels by different [NH4+] / [H+] ratios (Γ. Surface/atmosphere exchange models for NH3 are necessary to compute the temporal and spatial patterns of emissions and deposition at the soil, plant, field, landscape, regional and global scales, in order to assess the multiple environmental impacts of air-borne and deposited NH3 and NH4+. Models of soil/vegetation/atmosphereem NH3 exchange are reviewed from the substrate and leaf scales to the global scale. They range from simple steady-state, "big leaf" canopy resistance models, to dynamic, multi-layer, multi

  13. An unstructured-mesh atmospheric model for nonhydrostatic dynamics: Towards optimal mesh resolution

    Science.gov (United States)

    Szmelter, Joanna; Zhang, Zhao; Smolarkiewicz, Piotr K.

    2015-08-01

    The paper advances the limited-area anelastic model (Smolarkiewicz et al. (2013) [45]) for investigation of nonhydrostatic dynamics in mesoscale atmospheric flows. New developments include the extension to a tetrahedral-based median-dual option for unstructured meshes and a static mesh adaptivity technique using an error indicator based on inherent properties of the Multidimensional Positive Definite Advection Transport Algorithm (MPDATA). The model employs semi-implicit nonoscillatory forward-in-time integrators for soundproof PDEs, built on MPDATA and a robust non-symmetric Krylov-subspace elliptic solver. Finite-volume spatial discretisation adopts an edge-based data structure. Simulations of stratified orographic flows and the associated gravity-wave phenomena in media with uniform and variable dispersive properties verify the advancement and demonstrate the potential of heterogeneous anisotropic discretisation with large variation in spatial resolution for study of complex stratified flows that can be computationally unattainable with regular grids.

  14. Simulated changes in the atmospheric water balance over South Asia in the eight IPCC AR4 coupled climate models

    Science.gov (United States)

    Prasanna, Venkatraman; Yasunari, Tetsuzo

    2011-05-01

    This paper evaluates the performance of eight state-of-art IPCC-AR4 coupled atmosphere-ocean general circulation models in their representation of regional characteristics of atmospheric water balance over South Asia. The results presented here are the regional climate change scenarios of atmospheric water balance components, precipitation, moisture convergence and evaporation ( P, C and E) up to the end of the twenty-second century based on IPCC AR4 modelling experiments conducted for (A1B) future greenhouse gas emission scenario. The AOGCMs, despite their relatively coarse resolution, have shown a reasonable skill in depicting the hydrological cycle over the South Asian region. However, considerable biases do exist with reference to the observed atmospheric water balance and also inter-model differences. The monsoon rainfall and atmospheric water balance changes under A1B scenario are discussed in detail. Spatial patterns of rainfall change projections indicate maximum increase over northwest India in most of the models, but changes in the atmospheric water balance are generally widespread over South Asia. While the scenarios presented in this study are indicative of the expected range of rainfall and water balance changes, it must be noted that the quantitative estimates still have large uncertainties associated with them.

  15. Beyond Passing Variables: Thinking Like a Coupled Surface-Atmosphere Model (Invited)

    Science.gov (United States)

    Lofgren, B. M.

    2010-12-01

    The purpose of evapotranspiration algorithms or surface-atmosphere transfer schemes, from a hydrologic point of view, is to project variables such as soil moisture, runoff, and streamflow. From a meteorological point of view, it is to derive lower boundary conditions for fluxes of sensible heat, water vapor, and radiation, often with a much shorter time scale of interest. Coupled modeling needs to take all of these interests into account, and process-based modeling at the interface seems to be a necessity to do this. Furthermore, a shift to coupled algorithms can also require an adjustment in one's "mental model" or paradigm. For example, in climate change, rather than thinking that the air warms and this has consequences for the surface, a more accurate picture is that warming of both the surface and the troposphere occurs in a tight two-way coupling between them. Examples from the Laurentian Great Lakes region will be shown of paradigms gone amiss, substitution of more energy budget-based approaches to climate change effects on regional hydrology, and regional coupled atmosphere-hydrology models.

  16. Meridional thermal field of a coupled ocean-atmosphere system: a conceptual model

    Science.gov (United States)

    Ou, Hsien-Wang

    2006-05-01

    This paper constitutes the author's continuing effort in the construction of a minimal theory of the earth's climate. In an earlier paper published in the Journal of Climate in 2001, this author has derived the global-mean fields of an aquatic planet forced by the solar insolation, which provide the necessary constraints for the present derivation of the meridional thermal field. The model closure invokes maximized entropy production (MEP), a thermodynamic principle widely used in turbulence and climate studies. Based on differing convective regimes of the ocean and atmosphere, both fluids are first reduced two thermal masses with aligned fronts, consistent with a minimal description of the observed field. Subjected to natural bounds, a robust solution is then found, characterized by an ice-free ocean, near-freezing cold fluid masses, mid-latitude fronts, and comparable ocean and atmosphere heat transports. The presence of polar continents, however, sharply reduces the ocean heat transport outside the tropics, but leaves the thermal field largely unchanged. Given the limitation of an extremely crude model, the deduced thermal field nonetheless seems sensible, suggesting that the model has captured the physics for a minimal account of the observed field. Together with the above-mentioned paper, the model reinforces the pre-eminent role of the triple point of water in stabilizing the surface temperature - against changing external condition. Such internal control is made possible by the turbulent nature of the climate fluids, which necessitates a selection rule based on extremization.

  17. Atmosphere Behavior in Gas-Closed Mouse-Algal Systems: An Experimental and Modelling Study

    Science.gov (United States)

    Averner, M. M.; Moore, B., III; Bartholomew, I.; Wharton, R.

    1985-01-01

    A dual approach of mathematical modelling and laboratory experimentation aimed at examining the gas exchange characteristics of artificial animal/plant systems closed to the ambient atmosphere was initiated. The development of control techniques and management strategies for maintaining the atmospheric levels of carbon dioxide and oxygen at physiological levels is examined. A mathematical model simulating the atmospheric behavior in these systems was developed and an experimental gas closed system was constructed. These systems are described and preliminary results are presented.

  18. Thermal Tides in the Atmosphere of Venus: Comparison of Model Results with Observations

    OpenAIRE

    Pechmann, Judith Burt; Ingersoll, Andrew P.

    1984-01-01

    A linearized primitive equation (LPE) model is developed to study thermal tides in the atmosphere of Venus. The LPE model describes diurnal and semidiurnal oscillations of a cyclostrophically balanced atmosphere in which zonal velocity varies with altitude and latitude. The numerical algorithm follows Staniforth and Daley. The solar thermal forcing is increased algebraically in time to separate the forced tidal response from free atmospheric oscillations. Parameters of the basic state and for...

  19. Modelling of pollution dispersion in atmosphere; Modelowanie procesow propagacji skazen w atmosferze

    Energy Technology Data Exchange (ETDEWEB)

    Borysiewicz, M.; Stankiewicz, R.

    1994-12-31

    The paper contains the review of the mathematical foundation of atmospheric dispersion models. The atmospheric phenomena relevant to atmospheric dispersion model are discussed. In particular the parametrization of processes with time and space scales smaller than numerical grid size, limited by available computer power, is presented. The special attention was devoted to similarity theory and parametrization of boundary layer. The numerical methods are analysed and the drawbacks of the method are presented. (author). 99 refs, 15 figs, 3 tabs.

  20. Model-based segmentation

    OpenAIRE

    Heimann, Tobias; Delingette, Hervé

    2011-01-01

    This chapter starts with a brief introduction into model-based segmentation, explaining the basic concepts and different approaches. Subsequently, two segmentation approaches are presented in more detail: First, the method of deformable simplex meshes is described, explaining the special properties of the simplex mesh and the formulation of the internal forces. Common choices for image forces are presented, and how to evolve the mesh to adapt to certain structures. Second, the method of point...

  1. Risk Based Inspection Methodology and Software Applied to Atmospheric Storage Tanks

    International Nuclear Information System (INIS)

    A new risk-based inspection (RBI) methodology and software is presented in this paper. The objective of this work is to allow management of the inspections of atmospheric storage tanks in the most efficient way, while, at the same time, accident risks are minimized. The software has been built on the new risk framework architecture, a generic platform facilitating efficient and integrated development of software applications using risk models. The framework includes a library of risk models and the user interface is automatically produced on the basis of editable schemas. This risk-framework-based RBI tool has been applied in the context of RBI for above-ground atmospheric storage tanks (AST) but it has been designed with the objective of being generic enough to allow extension to the process plants in general. This RBI methodology is an evolution of an approach and mathematical models developed for Det Norske Veritas (DNV) and the American Petroleum Institute (API). The methodology assesses damage mechanism potential, degradation rates, probability of failure (PoF), consequence of failure (CoF) in terms of environmental damage and financial loss, risk and inspection intervals and techniques. The scope includes assessment of the tank floor for soil-side external corrosion and product-side internal corrosion and the tank shell courses for atmospheric corrosion and internal thinning. It also includes preliminary assessment for brittle fracture and cracking. The data are structured according to an asset hierarchy including Plant, Production Unit, Process Unit, Tag, Part and Inspection levels and the data are inherited / defaulted seamlessly from a higher hierarchy level to a lower level. The user interface includes synchronized hierarchy tree browsing, dynamic editor and grid-view editing and active reports with drill-in capability.

  2. Risk Based Inspection Methodology and Software Applied to Atmospheric Storage Tanks

    Science.gov (United States)

    Topalis, P.; Korneliussen, G.; Hermanrud, J.; Steo, Y.

    2012-05-01

    A new risk-based inspection (RBI) methodology and software is presented in this paper. The objective of this work is to allow management of the inspections of atmospheric storage tanks in the most efficient way, while, at the same time, accident risks are minimized. The software has been built on the new risk framework architecture, a generic platform facilitating efficient and integrated development of software applications using risk models. The framework includes a library of risk models and the user interface is automatically produced on the basis of editable schemas. This risk-framework-based RBI tool has been applied in the context of RBI for above-ground atmospheric storage tanks (AST) but it has been designed with the objective of being generic enough to allow extension to the process plants in general. This RBI methodology is an evolution of an approach and mathematical models developed for Det Norske Veritas (DNV) and the American Petroleum Institute (API). The methodology assesses damage mechanism potential, degradation rates, probability of failure (PoF), consequence of failure (CoF) in terms of environmental damage and financial loss, risk and inspection intervals and techniques. The scope includes assessment of the tank floor for soil-side external corrosion and product-side internal corrosion and the tank shell courses for atmospheric corrosion and internal thinning. It also includes preliminary assessment for brittle fracture and cracking. The data are structured according to an asset hierarchy including Plant, Production Unit, Process Unit, Tag, Part and Inspection levels and the data are inherited / defaulted seamlessly from a higher hierarchy level to a lower level. The user interface includes synchronized hierarchy tree browsing, dynamic editor and grid-view editing and active reports with drill-in capability.

  3. Modification of PBDEs (BDE-15, BDE-47, BDE-85 and BDE-126) biological toxicity, bio-concentration, persistence and atmospheric long-range transport potential based on the pharmacophore modeling assistant with the full factor experimental design.

    Science.gov (United States)

    Jiang, Long; Li, Yu

    2016-04-15

    In this study, the properties of AhR binding affinity, bio-concentration factor, half-life and vapor pressure were selected as the typical indicators of biological toxicity, bio-concentration, persistence and atmospheric long-range transport potential for polybrominated diphenyl ethers (PBDEs), respectively. A three-dimensional pharmacophore modeling assistant with a full factor experimental design for each property was used to reveal the significant pharmacophore features and the substituent effects to obtain reasonable modified schemes for the selected target PBDEs. Finally, the performances of the persistent organic pollutant (POP) properties, the synthesis feasibility and the fire resistance of the modified compounds were evaluated. The most influential pharmacophore feature for all POP properties was the hydrophobic group, especially the vinyl and propyl groups. Modified compounds with two additional hydrophobic groups exhibited a better regulatory performance. The average reduction in the proportions of the four POP properties for the modified compounds (except for 3-phenyl-BDE-15) was 70.60%, 52.44%, 47.04% and 70.88%. In addition, the energy and the C-Br bond dissociation enthalpy of the four typical PBDEs were higher than those of the modified compounds (except for 3-phenyl-BDE-15), indicating the synthesis feasibility and the lower energy barrier of the modified compounds to release Br free radicals to provide fire resistance. PMID:26785211

  4. Assessment of model estimates of land-atmosphere CO2 exchange across Northern Eurasia

    Science.gov (United States)

    Rawlins, M. A.; McGuire, A. D.; Kimball, J. S.; Dass, P.; Lawrence, D.; Burke, E.; Chen, X.; Delire, C.; Koven, C.; MacDougall, A.; Peng, S.; Rinke, A.; Saito, K.; Zhang, W.; Alkama, R.; Bohn, T. J.; Ciais, P.; Decharme, B.; Gouttevin, I.; Hajima, T.; Ji, D.; Krinner, G.; Lettenmaier, D. P.; Miller, P.; Moore, J. C.; Smith, B.; Sueyoshi, T.

    2015-07-01

    A warming climate is altering land-atmosphere exchanges of carbon, with a potential for increased vegetation productivity as well as the mobilization of permafrost soil carbon stores. Here we investigate land-atmosphere carbon dioxide (CO2) cycling through analysis of net ecosystem productivity (NEP) and its component fluxes of gross primary productivity (GPP) and ecosystem respiration (ER) and soil carbon residence time, simulated by a set of land surface models (LSMs) over a region spanning the drainage basin of Northern Eurasia. The retrospective simulations cover the period 1960-2009 at 0.5° resolution, which is a scale common among many global carbon and climate model simulations. Model performance benchmarks were drawn from comparisons against both observed CO2 fluxes derived from site-based eddy covariance measurements as well as regional-scale GPP estimates based on satellite remote-sensing data. The site-based comparisons depict a tendency for overestimates in GPP and ER for several of the models, particularly at the two sites to the south. For several models the spatial pattern in GPP explains less than half the variance in the MODIS MOD17 GPP product. Across the models NEP increases by as little as 0.01 to as much as 0.79 g C m-2 yr-2, equivalent to 3 to 340 % of the respective model means, over the analysis period. For the multimodel average the increase is 135 % of the mean from the first to last 10 years of record (1960-1969 vs. 2000-2009), with a weakening CO2 sink over the latter decades. Vegetation net primary productivity increased by 8 to 30 % from the first to last 10 years, contributing to soil carbon storage gains. The range in regional mean NEP among the group is twice the multimodel mean, indicative of the uncertainty in CO2 sink strength. The models simulate that inputs to the soil carbon pool exceeded losses, resulting in a net soil carbon gain amid a decrease in residence time. Our analysis points to improvements in model elements

  5. Assessment of model estimates of land–atmosphere CO2 exchange across Northern Eurasia

    Directory of Open Access Journals (Sweden)

    M. A. Rawlins

    2015-02-01

    Full Text Available A warming climate is altering land–atmosphere exchanges of carbon, with a potential for increased vegetation productivity as well as the mobilization of permafrost soil carbon stores. Here we investigate land–atmosphere carbon dioxide (CO2 dynamics through analysis of net ecosystem productivity (NEP and its component fluxes of gross primary productivity (GPP and ecosystem respiration (ER and soil carbon residence time, simulated by a set of land surface models (LSMs over a region spanning the drainage basin of northern Eurasia. The retrospective simulations were conducted over the 1960–2009 record and at 0.5° resolution, which is a scale common among many global carbon and climate model simulations. Model performance benchmarks were drawn from comparisons against both observed CO2 fluxes derived from site-based eddy covariance measurements as well as regional-scale GPP estimates based on satellite remote sensing data. The site-based comparisons show the timing of peak GPP to be well simulated. Modest overestimates in model GPP and ER are also found, which are relatively higher for two boreal forest validation sites than the two tundra sites. Across the suite of model simulations, NEP increases by as little as 0.01 to as much as 0.79 g C m−2 yr−2, equivalent to 3 to 340% of the respective model means, over the analysis period. For the multimodel average the increase is 135% of the mean from the first to last ten years of record (1960–1969 vs 2000–2009, with a weakening CO2 sink over the latter decades. Vegetation net primary productivity increased by 8 to 30% from the first to last ten years, contributing to soil carbon storage gains, while model mean residence time for soil organic carbon decreased by 10% (−5 to −16%. This suggests that inputs to the soil carbon pool exceeded losses, resulting in a net gain amid a decrease in residence time. Our analysis points to improvements in model elements controlling vegetation

  6. Atmospheric sensitivity to roughness length in a regional atmospheric model over the Ohio-Tennessee River Valley

    Science.gov (United States)

    Quintanar, Arturo I.; Mahmood, Rezaul; Suarez, Astrid; Leeper, Ronnie

    2016-06-01

    The response of a regional atmospheric model to small changes in roughness length of two vegetation categories (crops and deciduous broadleaf forest) was analyzed for three synoptic events in June 2006. These were characterized by two convective events (June 11 and 22) and one prefrontal event (June 17). The responses of the model, for precipitation, equivalent potential temperature and wind field were notable in general. However, the response became muted as roughness lengths were increased or decreased. Atmospheric response to these changes varied for different convective events. A small dependence on roughness length was found for the sensible and latent heat fluxes and planetary boundary layer heights during the convective event of June 11. For the June 22 event, the model response was weaker for the crop-only and forest-only roughness length experiments compared to the response when both the crop and forest-only roughness length were changed in combination.

  7. Modelling of microwave sustained capillary plasma columns at atmospheric pressure

    International Nuclear Information System (INIS)

    In this work we present a model of argon microwave sustained discharge at high pressure (1 atm), which includes two self-consistently linked parts - electrodynamic and kinetic ones. The model is based on a steady-state Boltzmann equation in an effective field approximation coupled with a collisional-radiative model for high-pressure argon discharge numerically solved together with Maxwell's equation for an azimuthally symmetric TM surface wave and wave energy balance equation. It is applied for the purpose of theoretical description of the discharge in a stationary state. The phase diagram, the electron energy distribution function as well as the dependences of the electron and heavy particles densities and the mean input power per electron on the electron number density and wave number are presented

  8. A Flexible Atmospheric Modeling Framework for the CESM

    Energy Technology Data Exchange (ETDEWEB)

    Randall, David [Colorado State University; Heikes, Ross [Colorado State University; Konor, Celal [Colorado State University

    2014-11-12

    We have created two global dynamical cores based on the unified system of equations and Z-grid staggering on an icosahedral grid, which are collectively called UZIM (Unified Z-grid Icosahedral Model). The z-coordinate version (UZIM-height) can be run in hydrostatic and nonhydrostatic modes. The sigma-coordinate version (UZIM-sigma) runs in only hydrostatic mode. The super-parameterization has been included as a physics option in both models. The UZIM versions with the super-parameterization are called SUZI. With SUZI-height, we have completed aquaplanet runs. With SUZI-sigma, we are making aquaplanet runs and realistic climate simulations. SUZI-sigma includes realistic topography and a SiB3 model to parameterize the land-surface processes.

  9. Modelling of microwave sustained capillary plasma columns at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Pencheva, M [Faculty of Physics, Sofia University, 5 James Bourchier Blvd., BG-1164 Sofia (Bulgaria); Petrova, Ts [Berkeley Research Associate, Inc., Beltsville MD 20705 (United States); Benova, E [Department of Language Learning, Sofia University, 27 Kosta Loulchev Street, BG-1111 Sofia (Bulgaria); Zhelyazkov, I [Faculty of Physics, Sofia University, 5 James Bourchier Blvd., BG-1164 Sofia (Bulgaria)

    2006-07-15

    In this work we present a model of argon microwave sustained discharge at high pressure (1 atm), which includes two self-consistently linked parts - electrodynamic and kinetic ones. The model is based on a steady-state Boltzmann equation in an effective field approximation coupled with a collisional-radiative model for high-pressure argon discharge numerically solved together with Maxwell's equation for an azimuthally symmetric TM surface wave and wave energy balance equation. It is applied for the purpose of theoretical description of the discharge in a stationary state. The phase diagram, the electron energy distribution function as well as the dependences of the electron and heavy particles densities and the mean input power per electron on the electron number density and wave number are presented.

  10. Modelling of microwave sustained capillary plasma columns at atmospheric pressure

    Science.gov (United States)

    Pencheva, M.; Petrova, Ts; Benova, E.; Zhelyazkov, I.

    2006-07-01

    In this work we present a model of argon microwave sustained discharge at high pressure (1 atm), which includes two self-consistently linked parts - electrodynamic and kinetic ones. The model is based on a steady-state Boltzmann equation in an effective field approximation coupled with a collisional-radiative model for high-pressure argon discharge numerically solved together with Maxwell's equation for an azimuthally symmetric TM surface wave and wave energy balance equation. It is applied for the purpose of theoretical description of the discharge in a stationary state. The phase diagram, the electron energy distribution function as well as the dependences of the electron and heavy particles densities and the mean input power per electron on the electron number density and wave number are presented.

  11. Exploring the Interactions among Beetle-induced Changes in Catchment-scale Ecohydrology, Land Surface Fluxes and the Lower Atmosphere with a Coupled Hydrology-Atmospheric Model.

    Science.gov (United States)

    Forrester, M. M.; Maxwell, R. M.; Bearup, L. A.; Gochis, D.; Porter, A.

    2015-12-01

    The mountain pine beetle has dramatically altered ecohydrologic processes of lodgepole pine forests in western North America, having caused one of the largest insect-driven tree mortalities in recorded history. Documented and modeled responses to forest mortality include cessation of overstory transpiration, local increases in soil moisture, changes in snow accumulation and ablation, differences in groundwater and runoff contributions to streamflow, changes in sensible and latent heat partitioning, and higher surface temperatures and ground evaporation. However, the scale-sensitivity, spatial variability and interdependence of these responses, and the simultaneous process of forest recovery, mean that watershed response to infestation is often inconsistent and damped at large scales, making it difficult to capture individual hydrologic and energy components of disturbance. This study resolves complicated feedbacks from disturbance at the land surface to responses in the atmosphere with the use of the physically-based, integrated hydrologic model ParFlow, coupled to the Weather Research and Forecasting (WRF) atmospheric model. The model domain, constructed at 1-km resolution, encompasses a 25,200 square kilometer region over a Rocky Mountain headwaters catchment in Colorado. Land use and vegetation pa