WorldWideScience

Sample records for atmospheric fluidized-bed combustion

  1. Pulsed atmospheric fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  2. Pulsed atmospheric fluidized bed combustion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    ThermoChem, under contract to the Department of Energy, conducted extensive research, development and demonstration work on a Pulsed Atmospheric Fluidized Bed Combustor (PAFBC) to confirm that advanced technology can meet these performance objectives. The ThermoChem/MTCI PAFBC system integrates a pulse combustor with an atmospheric bubbling-bed type fluidized bed combustor (BFBC) In this modular configuration, the pulse combustor burns the fuel fines (typically less than 30 sieve or 600 microns) and the fluidized bed combusts the coarse fuel particles. Since the ThermoChem/MTCI PAFBC employs both the pulse combustor and the AFBC technologies, it can handle the full-size range of coarse and fines. The oscillating flow field in the pulse combustor provides for high interphase and intraparticle mass transfer rates. Therefore, the fuel fines essentially burn under kinetic control. Due to the reasonably high temperature (>1093 C but less than the temperature for ash fusion to prevent slagging), combustion of fuel fines is substantially complete at the exit of the pulse combustor. The additional residence time of 1 to 2 seconds in the freeboard of the PAFBC unit then ensures high carbon conversion and, in turn, high combustion efficiency. A laboratory unit was successfully designed, constructed and tested for over 600 hours to confirm that the PAFBC technology could meet the performance objectives. Subsequently, a 50,000 lb/hr PAFBC demonstration steam boiler was designed, constructed and tested at Clemson University in Clemson, South Carolina. This Final Report presents the detailed results of this extensive and successful PAFBC research, development and demonstration project.

  3. Pulsed atmospheric fluidized bed combustion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  4. Atmospheric fluidized bed coal combustion research, development and application

    CERN Document Server

    Valk, M

    1994-01-01

    The use of fluidized bed coal combustion technology has been developed in the past decade in The Netherlands with a view to expanding the industrial use of coal as an energy supply. Various research groups from universities, institutes for applied science and from boiler industries participated and contributed to this research area. Comprehensive results of such recent experimentation and development work on atmospheric fluidized bed combustion of coal are covered in this volume. Each chapter, written by an expert, treats one specific subject and gives both the theoretical background as well a

  5. Characterization of fuels for atmospheric fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Daw, C.S. (Oak Ridge National Lab., TN (USA)); Rowley, D.R.; Perna, M.A. (Babcock and Wilcox Co., Alliance, OH (USA). Research Center); Stallings, J.W. (Electric Power Research Inst., Palo Alto, CA (USA)); Divilio, R.J. (Combustion Systems, Inc., Silver Spring, MD (USA))

    1990-01-01

    The Electric Power Research Institute (EPRI) has sponsored a fuels characterization program for the past several years with the intention of assisting utilities and boiler manufacturers in evaluating fuel quality impact on atmospheric fluidized bed combustion (AFBC) performance. The goal has been to provide an improved framework for making fuel switching decisions and consolidating operating experience. Results from this program include a set of bench-scale testing procedures, a fuel characterization data base, and a performance simulation model that links fuel characteristics to combustion performance. This paper reviews the major results of the fuels characterization program. The testing procedures, data base, and performance simulation models are briefly described and their application illustrated with examples. Performance predictions for the B W 1-ft{sup 2} bench-scale AFBC and the Tennessee Valley Authority (TVA) 20 MW(e) AFBC Pilot Plant are compared with actual test data. The relationship of coal rank to combustion is discussed. 11 refs., 12 figs., 5 tabs.

  6. Fluidized bed combustion chamber

    Energy Technology Data Exchange (ETDEWEB)

    Kullendorff, A.; Wikner, J.

    1985-03-25

    The chamber is confined in a pressure vessel. The lower part of the chamber has tilted parallel gutters up to the height of the fluidized bed. The slope of the gutter walls is 5 degrees-15 degrees and the top area of the gutters is 1.3 to 3 times larger than their bottom.

  7. Atmospheric fluidized bed combustion for small scale market sectors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, R.A.; Plessinger, D.A.; Sommer, T.M. [Energy and Environmental Research Corp., Orville, OH (United States); Keener, H.M. [Ohio Agricultural Research and Development Center, OH (United States); Webner, R.L. [Will-Burt Co., Orrville, OH (United States)

    1997-03-31

    The objective of this project was to demonstrate and promote the commercialization of coal-fired atmospheric fluidized bed combustion (AFBC) systems, with limestone addition for SO{sub 2} emissions control and a baghouse for particulate emissions control. This AFBC system was targeted for small scale industrial-commercial-institutional space and process heat applications. A cost effective and environmentally acceptable AFBC technology in this size range would displace a considerable amount of gas/oil with coal while resulting in significant total cost savings to the owner/operators. In the Proof-of-Concept Phase, a 2.2 x 10{sup 6} Btu/hr unit was installed and successfully operated at Cedar Lane Farms (CLF), a commercial nursery in Ohio. The heat from the fluidized bed was used to heat hot water which was recirculated through greenhouses for cool weather heating. The system was designed to be fully automated with minimal operator attention required. The AFBC system installed at CLF was an improved design that incorporated flyash/sorbent reinjection and an underbed feed system to improve limestone utilization. With these additions it was possible to lower the Ca/S ratio from {approximately} 3.0 to 2.0, and still maintain an SO{sub 2} emissions level of 1.2 lb/10{sup 6} Btu when burning the same high sulfur Ohio coal tested at OARDC.

  8. Fluidized bed coal combustion reactor

    Science.gov (United States)

    Moynihan, P. I.; Young, D. L. (Inventor)

    1981-01-01

    A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor.

  9. Atmospheric fluidized-bed combustion (AFBC) co-firing of coal and hospital waste. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1993-02-01

    The proposed project involves co-firing of coal and medical waste (including infectious medical waste) in an atmospheric fluidized-bed combustor (AFBC) to safely dispose of medical waste and produce steam for hospital needs. Combustion at the design temperature and residence time (duration) in the AFBC has been proven to render infectious medical waste free of disease producing organisms. The project would be located at the Veterans Affairs (VA) Medical Center in Lebanon, Pennsylvania. The estimated cost of the proposed AFBC facility is nearly $4 million. It would be jointly funded by DOE, Veterans Affairs, and Donlee Technologies, Inc., of York, Pennsylvania, under a cooperative agreement between DOE and Donlee. Under the terms of this agreement, $3.708 million in cost-shared financial assistance would be jointly provided by DOE and the Veterans Affairs (50/50), with $278,000 provided by Donlee. The purposes of the proposed project are to: (1) provide the VA Medical Center and the Good Samaritan Hospital (GSH), also of Lebanon, Pennsylvania, with a solution for disposal of their medical waste; and (2) demonstrate that a new coal-burning technology can safely incinerate infectious medical waste, produce steam to meet hospital needs, and comply with environmental regulations.

  10. Fluidized bed combustion: mixing and pollutant limitation

    Energy Technology Data Exchange (ETDEWEB)

    Leckner, B. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy Conversion

    1997-10-01

    Fluidized bed combustion (FBC) has been applied commercially during a few decades, and sufficient knowledge is gained to design boilers with sizes of up to several hundreds of megawatt thermal power (MW{sub th}). The knowledge of what goes on inside a large combustion chamber is still limited, however, and this impedes further optimization and efficient solution of problems that might occur. Despite this lack of knowledge the present survey deals with combustion chamber processes and discusses mixing and distribution of fuel and air in the combustion chamber and its importance for sulphur capture and reduction of emissions of nitrogen oxides. It is desirable to present the material in a general way and to cover the entire field of FBC. However, the scarce openly published information deals mostly with coal combustion in atmospheric circulating fluidized bed (CFB) combustors, and therefore this application will receive most attention, but reference is also made to pressurized combustion and to other fuels than coal. In this context the important work made in the LIEKKI project on the analysis of different fuels and on the influence of pressure should be especially pointed out. (orig.)

  11. Technical notes for the conceptual design for an atmospheric fluidized-bed direct combustion power generating plant. [570 MWe plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    The design, arrangement, thermodynamics, and economics of a 578 MW(e) (nominal gross) electric power generating plant equipped with a Foster Wheeler Energy Corporation (FWEC) atmospheric fluidized bed (AFB) boiler are described. Information is included on capital and operating costs, process systems, electrical systems, control and instrumentation, and environmental systems. This document represents a portion of an overall report describing the conceptual designs of two atmospheric fluidized bed boilers and balance of plants for the generation of electric power and the analysis and comparison of these conceptual designs to a conventional pulverized coal-fired electric power generation plant equipped with a wet limestone flue gas desulfurization system.

  12. Technical notes for the conceptual design for an atmospheric fluidized-bed direct combustion power generating plant. [570 MWe plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    The design, arrangement, thermodynamics, and economics of a 592 MW(e) (nominal gross) electric power generating plant equipped with a Babcock and Wilcox Company (B and W) atmospheric fluidized bed (AFB) boiler are described. Information is included on capital and operating costs, process systems, electrical systems, control and instrumentation, and environmental systems. This document represents a portion of an overall report describing the conceptual designs of two atmospheric fluidized bed boilers and balance of plants for the generation of electric power and the analysis and comparison of these conceptual designs to a conventional pulverized coal-fired electric power generation plant equipped with a wet limestone flue gas desulfurization system.

  13. Internal Combustion Engines as Fluidized Bed Reactors

    Science.gov (United States)

    Lavich, Zoe; Taie, Zachary; Menon, Shyam; Beckwith, Walter; Daly, Shane; Halliday, Devin; Hagen, Christopher

    2016-11-01

    Using an internal combustion engine as a chemical reactor could provide high throughput, high chemical conversion efficiency, and reactant/product handling benefits. For processes requiring a solid catalyst, the ability to develop a fluidized bed within the engine cylinder would allow efficient processing of large volumes of fluid. This work examines the fluidization behavior of particles in a cylinder of an internal combustion engine at various engine speeds. For 40 micron silica gel particles in a modified Megatech Mark III transparent combustion engine, calculations indicate that a maximum engine speed of about 60.8 RPM would result in fluidization. At higher speeds, the fluidization behavior is expected to deteriorate. Experiments gave qualitative confirmation of the analytical predictions, as a speed of 48 RPM resulted in fluidized behavior, while a speed of 171 RPM did not. The investigation shows that under certain conditions a fluidized bed can be obtained within an engine cylinder. Corresponding Author.

  14. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

  15. Combustion Model FOr Staged Circulating Fluidized Bed BOiler

    Institute of Scientific and Technical Information of China (English)

    FandJianhua; LuQinggang; 等

    1997-01-01

    A mathematical model for atmospheric staged circulating fluidized bed combustion,which takes fluid dynamics,combustion,heat transfer,pollutants formation and retention,into account was developed in the institute of Engineering Thermophysics(IET)recently.The model of gas solid flow at the bottom of the combustor was treated by the two-phase theory of fluidized bed and in the upper region as a core-annulus flow structure.The chemical species CO,CO2,H2,H2O,CH4,O2 and N2 were considered in the reaction process.The mathematical model consisted of sub-modeles of fluid namics,coal heterogeneous and gas homogeneous chemical reactions.heat transfer,particle fragmentation and attrition,mass and energy balance tec.The developed code was applied to simulate an operating staged circulating fluidized bed combustion boiler of early design and the results were in good agreement with the operating data.The main submodels and simulation results are given in this paoper.

  16. State of the art of pressurized fluidized bed combustion systems

    Energy Technology Data Exchange (ETDEWEB)

    Graves, R.L.

    1980-09-01

    This report was prepared at the request of the Tennessee Valley Authority (TVA) to clarify the development status of the pressurized fluidized bed combustor (PFBC) and to place in perspective the problems which are yet to be solved before commercialization of the concept is practical. This report, in essence, supersedes the interim report published in 1979, Assessment of the State of the Art of Pressurized Fluidized Bed Combustion Systems. A brief overview of the PFBC concept is included citing potential advantages and disadvantages relative to atmospheric fluidized bed combustion (AFBC) and conventional pulverized coal plants. A survey of existing and developing PFBC experimental facilities is presented in some detail which includes the major accomplishments at the respective facilities. Recent data on plant emissions, turbine/gas cleanup systems, and overall efficiency are provided. Findings of several design studies are also discussed. The results of recent gas turbine and cascade tests have been encouraging although the full assessment of the accomplishments have not been made. The delay in construction of the Grimethorpe plant causes further delay in proof-testing full-size, rotating turbomachinery. Several parameters are recommended for further assessment in design studies including: (1) effect of turbine life on cost of power; and (2) effect of reduced gas turbine inlet temperature and pressure on cost of power.

  17. Assessment of an atmospheric fluidized-bed coal-combustion gas-turbine cogeneration system for industrial application

    Energy Technology Data Exchange (ETDEWEB)

    Graves, R. L.; Holcomb, R. S.; Tallackson, J. R.

    1979-10-01

    This study was initiated to provide information on the future potential industrial market for a cogeneration system consisting of a fluidized-bed coal combustor coupled to a gas-turbine (Brayton cycle) power system that uses air as the working fluid. In assessing the potential applications for the system, the process heat energy consumption by industry is identified, with special detail included on the six most energy-intensive industries. The potential impact on the nation's oil and natural gas consumption that would result from wide-spread utilization of coal for process heat is also estimated. The fraction of industrial process heat that the system could feasibly satisfy from a thermodynamic viewpoint is estimated, and the performance (potential fuel efficiency and heat/power ratio) of the atmospheric fluidized-bed gas-turbine system is calculated. Also treated are several specific case studies of industries in which the system could be incorporated. Major parameters are specified, and flow sheets are derived for systems that would satisfy the heat and power requirements of the process or industry. The overall fuel utilization efficiency, thermal power rating, and potential number of installations are specified for these case studies. The findings of the study indicate that there is a sizable potential market for the system, with over 1000 possible installations disclosed after reviewing only 8 specific industries from 6 major Standard Industrial Classification (SIC) groups. The potential displacement of oil and gas by coal in process heating is shown to be about 1.60 m/sup 3//sec (870,000 bbl/d) of oil and 4590 m/sup 3//sec (14.0 billion ft/sup 3//d) of natural gas for all industries combined. Continued development of the fluidized-bed coal combustor and power system is recommended so that this potential may be at least partially realized.

  18. Oxy-combustion of biomass in a circulating fluidized bed

    Science.gov (United States)

    Kosowska-Golachowska, Monika; Kijo-Kleczkowska, Agnieszka; Luckos, Adam; Wolski, Krzysztof; Musiał, Tomasz

    2016-03-01

    The objective of this study was to investigate combustion characteristics of biomass (willow, Salix viminalis) burnt in air and O2/CO2 mixtures in a circulating fluidized bed (CFB). Air and oxy-combustion characteristics of wooden biomass in CFB were supplemented by the thermogravimetric and differential thermal analyses (TGA/DTA). The results of conducted CFB and TGA tests show that the composition of the oxidizing atmosphere strongly influences the combustion process of biomass fuels. Replacing N2 in the combustion environment by CO2 caused slight delay (higher ignition temperature and lower maximum mass loss rate) in the combustion of wooden biomass. The combustion process in O2/CO2 mixtures at 30% and 40% O2 is faster and shorter than that at lower O2 concentrations.

  19. Oxy-combustion of biomass in a circulating fluidized bed

    Directory of Open Access Journals (Sweden)

    Kosowska-Golachowska Monika

    2016-03-01

    Full Text Available The objective of this study was to investigate combustion characteristics of biomass (willow, Salix viminalis burnt in air and O2/CO2 mixtures in a circulating fluidized bed (CFB. Air and oxy-combustion characteristics of wooden biomass in CFB were supplemented by the thermogravimetric and differential thermal analyses (TGA/DTA. The results of conducted CFB and TGA tests show that the composition of the oxidizing atmosphere strongly influences the combustion process of biomass fuels. Replacing N2 in the combustion environment by CO2 caused slight delay (higher ignition temperature and lower maximum mass loss rate in the combustion of wooden biomass. The combustion process in O2/CO2 mixtures at 30% and 40% O2 is faster and shorter than that at lower O2 concentrations.

  20. Fluidized-bed calciner with combustion nozzle and shroud

    Science.gov (United States)

    Wielang, Joseph A.; Palmer, William B.; Kerr, William B.

    1977-01-01

    A nozzle employed as a burner within a fluidized bed is coaxially enclosed within a tubular shroud that extends beyond the nozzle length into the fluidized bed. The open-ended shroud portion beyond the nozzle end provides an antechamber for mixture and combustion of atomized fuel with an oxygen-containing gas. The arrangement provides improved combustion efficiency and excludes bed particles from the high-velocity, high-temperature portions of the flame to reduce particle attrition.

  1. Characteristics of oily sludge combustion in circulating fluidized beds.

    Science.gov (United States)

    Zhou, Lingsheng; Jiang, Xiumin; Liu, Jianguo

    2009-10-15

    Incineration of oily sludge in circulating fluidized beds may be an effective way for its management in some cases. The objective of the present paper is to investigate combustion characteristics of oily sludge, which would be helpful and useful for the design and simulation of a circulating fluidized bed. Firstly, the pyrolysis and combustion of oily sludge were studied through some thermal analyses, which included the thermogravimetric (TG) analysis and the differential thermal analytical (DTA) analysis. It was found that the combustion of oily sludge might be the combustion of its pyrolysis products. Secondly, an experiment for measuring of main components of the volatile from oily sludge pyrolysis was carried out. Some mathematic correlations about the compositions of volatile from oily sludge devolatilization were achieved from the experimental results. Finally, the combustion characteristics of oily sludge was studied in a lab-scale circulating fluidized bed, which could obtain some information about the location of release and combustion of the volatiles.

  2. Combustion in fluidized bed reactors; Verbrennung in Wirbelschichtreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Thome-Kozmiensky, Karl J. [vivis CONSULT GmbH, Nietwerder (Germany)

    2013-03-01

    Since the first application for the coal gasification, the fluidized bed technology has passed an impressive development. Nowadays, the fluidized bed technology is utilized at chemical processes, drying and cooling, gasification, combustion and purification of exhaust gas. In the firing technology, the fluidized technology initially has been proved in the combustion of very high ash coal and sewage sludge. Recently, the fluidized bed technology also is applied in the drying of sewage sludge, combustion of domestic waste - as in Japan and Sweden - as well as in the gasification and combustion of substitute fuels, biomass - wood pellets, wood chips, straw, cocoa shells and so forth - and residues from the paper manufacturing - such as in Germany and Austria. Under this aspect, the author of the contribution under consideration reports on the combustion of sewage sludge, substitute fuels and biomass.

  3. Fluidized bed combustion of pesticide-manufacture liquid wastes

    Directory of Open Access Journals (Sweden)

    SAŠA MILETIĆ

    2010-04-01

    Full Text Available Industrial liquid wastes can be in the form of solutions, suspensions, sludges, scums or waste oil and have organic properties. The objective of this work was to demonstrate the technical feasibility of a fluidized bed as a clean technology for burning liquid waste from a pesticide production plant. The combustion of liquid waste mixtures, obtained from realistic samples, was investigated in a pilot scale fluidized bed with quartz sand particles of 0.63–1.25 mm in diameter and 2610 kg/m3 in density at 800–950 °C. To ensure complete combustion of liquid waste and additional fuel, the combustion chamber was supplied with excess air and the U/UmF (at ambient temperature was in between 1.1 and 2.3. In the fluidized bed chamber, liquid waste, additional liquid fuel and air can be brought into intense contact sufficient to permit combustion in bed without backfire problems. The experimental results show that the fluidized bed furnace offers excellent thermal uniformity and temperature control. The results of the combustion tests showed that degradation of liquid wastes can be successfully realized in a fluidized bed with no harmful gaseous emissions by ensuring that the temperatures of both the bed and the freeboard are not lower than 900 °C.

  4. Modelling of Devolatilization in Fluidized Bed Combustion

    DEFF Research Database (Denmark)

    Stenseng, Mette; Lin, Weigang; Johnsson, Jan Erik

    1997-01-01

    A mathematical model is developed to describe the devolatilization process in a circulating fluidized bed combustor. The model is a combination of two submodels: single particle devolatilization and fluid dynamics. The single particle model includes the influence of both chemical kinetics and hea...

  5. Support studies in fluidized-bed combustion. Quarterly report, April-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, I.; Lenc, J.F.; Shearer, J.A.; Smith, G.W.; Swift, W.M.; Teats, F.G.; Turner, C.B.; Jonke, A.A.

    1979-01-01

    This work supports the development studies for atmospheric and pressurized fluidized-bed coal combustion. Laboratory and process development studies are aimed at providing needed information on limestone utilization, removal of particulates and alkali metal compounds from the flue gas control of SO/sub 2/ and trace pollutant emissions, and other aspects of fluidized-bed coal combustion. This report presents information on: (1) the removal of particulate emissions from pressurized fluidized-bed combustion flue gas using a commercially available high-efficiency cyclone (TAN-JET), and (2) the results of laboratory and process development unit studies to determine the effects of CaCl/sub 2/, Na/sub 2/CO/sub 3/, NaCl, and H/sub 2/O treatments on increasing the utilization of limestone.

  6. Atmospheric fluidized bed combustion advanced system concepts applicable to small industrial and commercial markets. Topical report, Level 2

    Energy Technology Data Exchange (ETDEWEB)

    Ake, T.R.; Dixit, V.B.; Mongeon, R.K.

    1992-09-01

    As part of an overall strategy to promote FBC coal combustion and to improve the marketability of the eastern coals, the US Department of Energy`s Morgantown Energy Research Center awarded a three level contract to Riley Stoker Corporation to develop advanced Multi Solids Fluidized Bed (MSFB) boiler designs. The first level of this contract targeted the small package boiler (10,000--50,000 lb/hr steam) and industrial size boiler (75,000--150,000 lb/hr steam) markets. Two representative sizes, 30,000 lb/hr and 110,000 lb/hr of steam, were selected for the two categories for a detailed technical and economic evaluation. Technically, both the designs showed promise, however, the advanced industrial design was favored on economic considerations. It was thus selected for further study in the second level of the contract. Results of this Level-2 effort, presented in this report, consisted of testing the design concept in Riley`s 4.4 MBtu/hr pilot MSFB facility located at Riley Research Center in Worcester, Mass. The design and economics of the proof of concept facility developed in Level-1 of the contract were then revised in accordance with the findings of the pilot test program. A host site for commercial demonstration in Level-3 of the contract was also secured. It was determined that co-firing coal in combination with paper de-inking sludge will broaden the applicability of the design beyond conventional markets. International Paper (IP), the largest paper company in the world, is willing to participate in this part of the program. IP has offered its Hammermill operation at Lockhaven, Pa, site of a future paper de-inking plant, for the proof of concept installation. This plant will go in operation in 1994. It is recommended that METC proceed to the commercial demonstration of the design developed. The approach necessary to satisfy the needs of the customer while meeting the objectives of this program is presented along with a recommended plan of action.

  7. Pressurized fluidized-bed combustion technology exchange workshop

    Energy Technology Data Exchange (ETDEWEB)

    ,

    1980-04-01

    The pressurized fluidized-bed combustion technology exchange workshop was held June 5 and 6, 1979, at The Meadowlands Hilton Hotel, Secaucus, New Jersey. Eleven papers have been entered individually into EDB and ERA. The papers include reviews of the US DOE and EPRI programs in this area and papers by Swedish, West German, British and American organizations. The British papers concern the joint program of the USA, UK and FRG at Leatherhead. The key factor in several papers is the use of fluidized bed combustors, gas turbines, and steam turbines in combined-cycle power plants. One paper examines several combined-cycle alternatives. (LTN)

  8. Metallic species derived from fluidized bed coal combustion. [59 references

    Energy Technology Data Exchange (ETDEWEB)

    Natusch, D.F.S.; Taylor, D.R.

    1980-01-01

    Samples of fly ash generated by the combustion of Montana Rosebud coal in an experimental 18 inch fluidized bed combustor were collected. The use of a heated cascade impactor permitted collection of size fractionated material that avoided condensation of volatile gases on the particles. Elemental concentration trends were determined as a function of size and temperature and the results compared to published reports for conventional power plants. The behavior of trace metals appears to be substantially different in the two systems due to lower operating temperatures and the addition of limestone to the fluidized bed. Corrosion of the impactor plates was observed at the highest temperature and lowest limestone feed rate sampled during the study. Data from the elemental concentration and leaching studies suggest that corrosion is most likely due to reactions involving sodium sulfate. However, it is concluded that corrosion is less of a potential problem in fluidized-bed systems than in conventional coal-fired systems.

  9. Exploratory and basic fluidized-bed combustion studies. Quarterly report, January-March 1980

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, I.; Myles, K.M.; Swift, W.M.

    1980-12-01

    This work supports development studies for both atmospheric and pressurized fluidized-bed coal combustion. Laboratory and process development studies are aimed at providing needed information on limestone utilization, removal of particulates and alkali metal compounds from the flue gas, control of SO/sub 2/ and trace pollutants emissions, and other aspects of fluidized-bed combustion. This report presents information on: (1) the development of a limestone utilization predictive methodology, (2) studies of particle breakup and elutriation, (3) basic studies on limestone sulfation enhancement by hydration, (4) studies of the kinetics of the hydration process, and (5) an investigation of various hydration process concepts.

  10. DEVELOPMENT POTENTIALS AND RESEARCH NEEDS IN CIRCULATING FLUIDIZED BED COMBUSTION

    Institute of Scientific and Technical Information of China (English)

    Lothar Reh

    2003-01-01

    First a report about present status of circulating fluidized bed reactors for coal and multi-fuel combustion in power plants is given. Thereafter the development potentials and research needs for further improvement of CFB combustors operating with finely grained bed materials are discussed and recommendations for direction of further research and development work are presented.

  11. Carbon Shale Combustion in the Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    Olek Małgorzata

    2014-06-01

    Full Text Available The purpose of this article is to present the possibilities of coal shale combustion in furnaces with bubbling fluidized bed. Coal shale can be autothermally combusted in the fluidized bed, despite the low calorie value and high ash content of fuel. Established concentrations of CO (500 ppm and VOC (30 mg/m3 have indicated a high conversion degree of combustible material during combustion process. Average concentrations of SO2 and NOx in the flue gas were higher than this received from the combustion of high quality hard coal, 600 ppm and 500 ppm, respectively. Optional reduction of SO2 and NOx emission may require the installation of flue gas desulphurization and de-NOx systems.

  12. Combustion and co-combustion of biomass in a bubbling fluidized bed boiler

    NARCIS (Netherlands)

    Khan, A.A.

    2007-01-01

    This PhD dissertation concerns the study of different aspects of biomass (co)-combustion in small-scale fluidized bed boilers for heat generation. The most renowned gaseous emissions from fluidized bed combustion, namely, CO and NO, are investigated with the help of experimental and theoretical stud

  13. Investigation on Agropellet Combustion in the Fluidized Bed

    Science.gov (United States)

    Isemin, R. L.; Konayahin, V. V.; Kuzmin, S. N.; Zorin, A. T.; Mikhalev, A. V.

    Agricultural wastes (straw, sunflower or millet husk, etc.) are difficult to use as fuel because of low bulk density and relatively big ash content with a low melting point. It is possible to produce agropellets of agricultural wastes which are suggested to combust in a fluidized bed of pellets alone, their char particles and ash. The characteristics of the process of fluidization of agropellets are investigated at room temperature. The experiments on agropellet combustion in a fluidized bed are carried out in an experimental set-up. The results of the experiments have shown that in such a bed the pellets produced of straw and millet husk combust with the same rate as those of wood though the latter contain 8.76 - 19.4 times less ash. The duration of combustion of the same portion of straw pellets in a fluidized bed is 3.74 - 7.01 times less than the duration of combustion of cut straw in a fixed bed. Besides, the movement of agropellets prevents agglomeration and slagging of a boiler furnace.

  14. Chemical looping combustion of coal in interconnected fluidized beds

    Institute of Scientific and Technical Information of China (English)

    SHEN LaiHong; ZHENG Min; XIAO Jun; ZHANG Hui; XIAO Rui

    2007-01-01

    Chemical looping combustion is the indirect combustion by use of oxygen carrier.It can be used for CO2 capture in power generating processes. In this paper,chemical looping combustion of coal in interconnected fluidized beds with inherent separation of CO2 is proposed. It consists of a high velocity fluidized bed as an air reactor in which oxygen carrier is oxidized, a cyclone, and a bubbling fluidized bed as a fuel reactor in which oxygen carrier is reduced by direct and indirect reactions with coal. The air reactor is connected to the fuel reactor through the cyclone. To raise the high carbon conversion efficiency and separate oxygen carrier particle from ash, coal slurry instead of coal particle is introduced into the bottom of the bubbling fluidized bed. Coal gasification and the reduction of oxygen carrier with the water gas take place simultaneously in the fuel reactor. The flue gas from the fuel reactor is CO2 and water. Almost pure CO2 could be obtained after the condensation of water. The reduced oxygen carrier is then returned back to the air reactor, where it is oxidized with air. Thermodyanmics analysis indicates that NiO/Ni oxygen carrier is the optimal one for chemical looping combustion of coal.Simulation of the processes for chemical looping combustion of coal, including coal gasification and reduction of oxygen carrier, is carried out with Aspen Plus software. The effects of air reactor temperature, fuel reactor temperature, and ratio of water to coal on the composition of fuel gas, recirculation of oxygen carrier particles, etc., are discussed. Some useful results are achieved. The suitable temperature of air reactor should be between 1050-1150Cand the optimal temperature of the fuel reactor be between 900-950℃.

  15. Chemical looping combustion of coal in interconnected fluidized beds

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Chemical looping combustion is the indirect combustion by use of oxygen carrier. It can be used for CO2 capture in power generating processes. In this paper, chemical looping combustion of coal in interconnected fluidized beds with inherent separation of CO2 is proposed. It consists of a high velocity fluidized bed as an air reactor in which oxygen carrier is oxidized, a cyclone, and a bubbling fluidized bed as a fuel reactor in which oxygen carrier is reduced by direct and indirect reactions with coal. The air reactor is connected to the fuel reactor through the cyclone. To raise the high carbon conversion efficiency and separate oxygen carrier particle from ash, coal slurry instead of coal particle is introduced into the bottom of the bubbling fluidized bed. Coal gasification and the reduction of oxygen carrier with the water gas take place simultaneously in the fuel reactor. The flue gas from the fuel reactor is CO2 and water. Almost pure CO2 could be obtained after the con- densation of water. The reduced oxygen carrier is then returned back to the air reactor, where it is oxidized with air. Thermodyanmics analysis indicates that NiO/Ni oxygen carrier is the optimal one for chemical looping combustion of coal. Simulation of the processes for chemical looping combustion of coal, including coal gasification and reduction of oxygen carrier, is carried out with Aspen Plus software. The effects of air reactor temperature, fuel reactor temperature, and ratio of water to coal on the composition of fuel gas, recirculation of oxygen carrier par- ticles, etc., are discussed. Some useful results are achieved. The suitable tem- perature of air reactor should be between 1050―1150℃and the optimal temperature of the fuel reactor be between 900―950℃.

  16. COMPUTATIONALLY INTELLIGENT MODELLING AND CONTROL OF FLUIDIZED BED COMBUSTION PROCESS

    Directory of Open Access Journals (Sweden)

    Ivan T Ćirić

    2011-01-01

    Full Text Available In this paper modelling and control approaches for fluidized bed combustion process have been considered, that are based on the use of computational intelligence. Proposed adaptive neuro-fuzzy-genetic modelling and intelligent control strategies provide for efficient combining of available expert knowledge with experimental data. Firstly, based on the qualitative information on the desulphurization process, models of the SO2 emission in fluidized bed combustion have been developed, which provides for economical and efficient reduction of SO2 in FBC by estimation of optimal process parameters and by design of intelligent control systems based on defined emission models. Also, efficient fuzzy nonlinear FBC process modelling strategy by combining several linearized combustion models has been presented. Finally, fuzzy and conventional process control systems for fuel flow and primary air flow regulation based on developed models and optimized by genetic algorithms have also been developed. Obtained results indicate that computationally intelligent approach can be successfully applied for modelling and control of complex fluidized bed combustion process.

  17. Nucla circulating atmospheric fluidized bed demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-31

    During the fourth quarter of 1990, steady-state performance testing at the Nucla Circulating Fluidized Bed (CFB) resumed under sponsorship of the US Department of Energy. Co-sponsorship of the Demonstration Test Program by the Electric Power Research Institute (EPRI) was completed on June 15, 1990. From October through December, 1990, Colorado-Ute Electric Association (CUEA) completed a total of 23 steady-state performance tests, 4 dynamic tests, and set operating records during November and December as the result of improved unit operating reliability. Highlight events and achievements during this period of operation are presented.

  18. Staged fluidized-bed combustion and filter system

    Science.gov (United States)

    Mei, Joseph S.; Halow, John S.

    1994-01-01

    A staged fluidized-bed combustion and filter system for substantially reducing the quantity of waste through the complete combustion into ash-type solids and gaseous products. The device has two fluidized-bed portions, the first primarily as a combustor/pyrolyzer bed, and the second as a combustor/filter bed. The two portions each have internal baffles to define stages so that material moving therein as fluidized beds travel in an extended route through those stages. Fluidization and movement is achieved by the introduction of gases into each stage through a directional nozzle. Gases produced in the combustor/pyrolyzer bed are permitted to travel into corresponding stages of the combustor/filter bed through screen filters that permit gas flow but inhibit solids flow. Any catalyst used in the combustor/filter bed is recycled. The two beds share a common wall to minimize total volume of the system. A slightly modified embodiment can be used for hot gas desulfurization and sorbent regeneration. Either side-by-side rectangular beds or concentric beds can be used. The system is particularly suited to the processing of radioactive and chemically hazardous waste.

  19. Combustion en lit fluidisé Fluidized-Bed Combustion

    Directory of Open Access Journals (Sweden)

    Chrysostome G.

    2006-11-01

    Full Text Available Après quelques rappels généraux sur la fluidisation où seront présentés en par-ticulier les avantages qu'elle offre en combustion, on exposera l'état actuel du développement des générateurs à lit fluidisé opérant avec les combustibles suivants : charbon, combustibles pétroliers, résidus divers ; il sera fait mention de la contribution de l'Institut Français du Pétrole (IFP dans les deux derniers domaines.On présentera ensuite les installations les plus récentes en traitement de minerais (grillage des sulfures, calcination de calcaires. En raison de son importance on examinera encore les possibilités de désulfuration au sein de lits fluidisés, de même que seront commentés les travaux de régénération des absorbants.On terminera enfin en mentionnant les développements des lits circulants ou rapides, considérés comme les réacteurs de la seconde génération. After a general review of fluidization including in particular the advantages it offers for combustion, this article describes the present state of the development of fluidized-bed gcnerators operating with the following fuels : cool, petroleum fuels, different residues. Mention is made of Institut Français du Pétrole (IFP contribution in the last two fields. Then the most recent ore-treating installations are described (roasting of sulfides, calcination of limestones. Because of its importance, the possibilities of desulfurizoticn inside fluidized beds is examined, and research on the regeneration of absorbants is commented on. The article ends by mentioning the development of circulating or fast beds which are considered as second generation reactors.

  20. Comprehensive Mathematical Model for Coal Combustion in a Circulating Fluidized Bed Combustor

    Institute of Scientific and Technical Information of China (English)

    金晓钟; 吕俊复; 杨海瑞; 刘青; 岳光溪; 冯俊凯

    2001-01-01

    Char combustion is on a special reducing condition in the dense bed of a circulating fluidized bedcombustor. Experimental findings were used to develop a comprehensive mathematical model to simulate thehydrodynamic and combustion processes in a circulating fluidized bed combustor. In the model, gas-solidinteraction was used to account for the mass transfer between the bubble phase and the emulsion phase in thedense bed, which contributes to the reducing atmosphere in the dense bed. A core-annular structure wasassumed in the dilute area rather than a one-dimensional model. The submodels were combined to build thecomprehensive model to analyze the combustion in a circulating fluidized bed combustor and the effect ofoperating parameters on the coal combustion. The model predictions agree well with experimental results.

  1. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Keith, Raymond E.; Heller, Thomas J.; Bush, Stuart A.

    1991-01-01

    This Annual Report on Colorado-Ute Electric Association's NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

  2. Proceedings of the sixth international conference on fluidized bed combustion. Volume II. Technical sessions

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-08-01

    The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. The papers covered recent developments in atmospheric and pressurized fluidized-bed combustion, especially the design, operation and control of pilot and demonstration plants. The cleanup of combustion products and the erosion, corrosion and fouling of gas turbines was emphasized also. Fifty-five papers from Volume 2 of the proceedings have been entered individually into EDB and ERA; five papers had been entered previously from other sources. (LTN)

  3. Agricultural uses of alkaline fluidized bed combustion ash: case studies

    Energy Technology Data Exchange (ETDEWEB)

    Stout, W.L.; Daily, M.R.; Nickeson, T.L.; Svendson, R.L.; Thompson, G.P. [USDA-ARS, University Park, PA (United States)

    1997-06-01

    Successful programmes were developed by Ahlstrom Development Ash Corporation and Air Products and Chemical for using fluidized bed combustion ash as a substitute for agricultural lime on dairy farms in northern New York state and on fruit and nut crops in the San Joaquin Valley of California. The companies developed these programmes by utilizing the methodology developed through USDA-ARS research and working closely with agricultural consultants and regulatory agencies to ensure that the ash applications were both agronomically and environmentally sound. 1 ref.

  4. Fluidized-bed reactor model with generalized particle balances. Part 2. Coal combustion application

    Energy Technology Data Exchange (ETDEWEB)

    Overturf, B.W.; Reklaitis, G.V.

    1983-09-01

    In the second part, the model is applied to the study of an atmospheric fluidized-bed coal combustor. Case studies are investigated to show the effects of a number of parameters. Proper representation of the grid region and use of actual feed distributions are shown to be essential to the prediction of combustor performance. Better particle elutriation and single-particle combustion sub-models are found to be key requirements for improved combustor modelling.

  5. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. 1990 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

  6. Importance of fragmentation on the steady state combustion of wood char in a bubbling fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Pinho, Carlos [Universidade do Porto (CEFT/FEUP), Porto (Portugal). Faculdade de Engenharia. Centro de Estudos de Fenomenos de Transporte], E-mail: ctp@fe.up.pt

    2010-07-01

    A simple mathematical model for the analysis of the steady state behavior of a bubbling fluidized bed burner is presented, with the main intention of evaluating the importance of the primary fragmentation of fuel particles on the performance of this type of burners. This model has pedagogical advantages because of its simplicity and easiness of application to the analysis of realistic situations. The model is based upon the classical models used for the study of batch combustion processes in fluidized bed reactors. Experimental data from studies of fluidized bed combustion of portuguese vegetable chars are used to support the analysis of the performance of a 1 m diameter fluidized bed combustor. (author)

  7. Technical notes for the conceptual design for an atmospheric fluidized-bed direct combustion power generating plant. [Comparison of AFB plant and pulverized coal plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    The first part of this report presents a comparison of the conceptual designs of a large (570 MW(e)) pulverized coal (PC) steam generator equipped with a wet limestone flue gas desulfurization (FGD) system and two equivalent sized atmospheric fluidized bed (AFB) steam generators including balance of plants for electric-power generation. The reader is cautioned that this portion of the report compares a zero generation AFB technology to pulverized coal technology which has been operationally and economically optimized for the past half-century. This comparison is intended to be indicative of whether further development of the AFB concept as a viable alternative to the PC/FGD concept for electric-power generation is merited. In the second part, the load-following capability of a once-through subcritical atmospheric fluidized bed boiler is analyzed. Digital computer simulation predictions of the plant's response to open loop step changes in firing rate, feedwater flow, governor valve, unit load demand, etc, are made. The predicted response of throttle pressure, steam temperature, unit load, etc, are compared to the response of a conventional coal-fired, once-through, subcritical unit. The load-following capability is assessed through this qualitative comparison. Additional model response predictions are also presented for which no test data are presently available.

  8. Nitrogen Chemistry in Fluidized Bed Combustion of Coal

    DEFF Research Database (Denmark)

    Jensen, Anker Degn

    The present Ph.D thesis describes an experimental and theoretical investigation of the formation and destruction of nitrogen oxides (NOx and N2O) in fluidized bed combustion (FBC) of coal. A review of the current knowledge of nitrogen chemistry in FBC is presented. The review covers both laboratory...... for the emission of NOx from FBC has been developed as part of a JOULE project. The model is based on the two-phase theory of fluidization for the bed with a Kunii-Levenspiel type freeboard model and includes submodels for coal devolatilization, combustion of volatiles and char and a detailed model of NO formation...... plant were used for model verification. The simulations of the NO emission during staged combustion and NH3 injection for NO reduction were in qualitative agreement with the experimental data. A parametric study of the influence of operating conditions on the conversion of fuel-N to NO showed...

  9. Technical evaluation: pressurized fluidized-bed combustion technology

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S A; Vogel, G J; Gehl, S M; Hanway, Jr, J E; Henry, R F; Parker, K M; Smyk, E B; Swift, W M; Podolski, W F

    1982-04-01

    The technology of pressurized fluidized-bed combustion, particularly in its application to a coal-burning combined-cycle plant, is evaluated by examining the technical status of advanced-concept plant components - boiler system (combustor, air-handling and air-injection equipment, and heat exchangers); solids handling, injection, and ejection system; hot-gas cleanup equipment; instrumentation/control system; and the gas turbine - along with materials of plant construction. Environmental performance as well as energy efficiency are examined, and economic considerations are reviewed briefly. The evaluation concludes with a broad survey of the principal related research and development programs in the United States and other countries, a foreview of the most likely technological developments, and a summary of unresolved technical issues and problems.

  10. Development of second-generation pressurized fluidized bed combustion process

    Energy Technology Data Exchange (ETDEWEB)

    Wolowodiuk, W.; Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States); Bonk, D. [Dept. of Energy, Morgantown, WV (United States)

    1995-12-01

    Under the sponsorship of the United States Department of Energy, Foster Wheeler Development Corporation, and its team members, Westinghouse, Gilbert/Commonwealth, and the Institute of Gas Technology are developing second-generation pressurized fluidized bed combustion technology capable of achieving net plant efficiency in excess of 45 percent based on the higher heating value of the coal. A three-phase program entails design and costing of a 500 MWe power plant and identification of developments needed to commercialize this technology (Phase 1), testing of individual components (Phase 2), and finally testing these components in an integrated mode (Phase 3). This paper briefly describes the results of the first two phases as well as the progress on the third phase. Since other projects which use the same technology are in construction or in negotiation stages-namely, the Power System Development Facility and the Four Rivers Energy Modernization Projects-brief descriptions of these are also included.

  11. Hot-gas filtration for pressurized fluidized-bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Chang, R.; Kuby, W.

    1984-03-01

    This topical report discusses the status of the work, conducted under EPRI contract 1336-4, on the evaluation and development of ceramic filter hot gas cleanup technology for pressurized fluidized bed combustion. This topical report represents the status of the work through September 1983. The goal of the effort is to achieve 6000 h of operation on a 13-filter durability test rig. The work includes two parallel tasks. The first is construction of a durability test facility, operation of the facility with an initial candidate filter media installed, and assessment of results. The second task includes a literature survey to identify state-of-the-art ceramic fibers suitable for high-temperature gas filtration applications and filter testing in a single-filter test facility to assess the performance of promising new filter media. The best candidate will be chosen for further evaluation in the durability facility.

  12. Fluidized bed pyrolysis of bitumen-impregnated sandstone at sub-atmospheric conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, J.V.; Deo, M.D.; Hanson, F.V.

    1993-01-01

    A 15.2 cm diameter fluidized bed reactor was designed, built, and operated to study the pyrolysis of oil sands at pressures slightly less than atmospheric. Fluidizing gas flow through the reactor was caused by reducing the pressure above the bed with a gas pump operating in the vacuum mode. Pyrolysis energy was supplied by a propane burner, and the hot propane combustion gases were used for fluidization. The fluidized bed pyrolysis at reduced pressure using combustion gases allowed the reactor to be operated at significantly lower temperatures than previously reported. At 450[degree], over 80% of the bitumen fed was recovered as a liquid product, and the spent sand contained less than 1% coke. The liquid product recovery system, by design, yielded three liquid streams with distinctly different properties.

  13. Fluidized bed pyrolysis of bitumen-impregnated sandstone at sub-atmospheric conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, J.V.; Deo, M.D.; Hanson, F.V.

    1993-03-01

    A 15.2 cm diameter fluidized bed reactor was designed, built, and operated to study the pyrolysis of oil sands at pressures slightly less than atmospheric. Fluidizing gas flow through the reactor was caused by reducing the pressure above the bed with a gas pump operating in the vacuum mode. Pyrolysis energy was supplied by a propane burner, and the hot propane combustion gases were used for fluidization. The fluidized bed pyrolysis at reduced pressure using combustion gases allowed the reactor to be operated at significantly lower temperatures than previously reported. At 450{degree}, over 80% of the bitumen fed was recovered as a liquid product, and the spent sand contained less than 1% coke. The liquid product recovery system, by design, yielded three liquid streams with distinctly different properties.

  14. Combustion of low grade fractions of Lubnica coal in fluidized bed

    Directory of Open Access Journals (Sweden)

    Mladenović Milica R.

    2012-01-01

    Full Text Available In this paper a method of examination of fuel suitability for fluidized bed combustion is presented. The research of combustion characteristics of low grade fractions of Lubnica brown coal in the fluidized bed by the aforementioned methodology has been carried out on a laboratory semi-industrial apparatus of 200 kWt. Description of the experimental fluidized bed combustion facility is given, as well as experimental results, with the focus on furnace temperature distribution, in order to determine the location of the zone of intensive combustion. Based on investigation results, which are focused on combustion quality (combustion completion as well as on satisfying the environmental protection criteria, it can be stated that the investigated coal is suitable for burning in bubbling, as well as in circulating fluidized bed.

  15. Materials performance in the atmospheric fluidized-bed cogeneration air heater experiment

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Podolski, W.; Wang, D.Y.; Teats, F.G. (Argonne National Lab., IL (United States)); Gerritsen, W.; Stewart, A.; Robinson, K. (Rockwell International Corp., Canoga Park, CA (United States))

    1991-02-01

    The Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) sponsored by the US Department of Energy (DOE) was initiated to assess the performance of various heat-exchanger materials to be used in fluidized-bed combustion air heater systems. Westinghouse Electric Corporation, through subcontracts with Babcock Wilcox, Foster Wheeler, and ABB Combustion Engineering Systems, prepared specifications and hardware for the ACAHE tests. Argonne National Laboratory contracted with Rockwell International to conduct tests in the DOE atmospheric fluidized-bed combustion facility. This report presents an overview of the project, a description of the facility and the test hardware, the test operating conditions, a summary of the operation, and the results of analyzing specimens from several uncooled and cooled probes exposed in the facility. Extensive microstructural analyses of the base alloys, claddings, coatings, and weldments were performed on specimens exposed in several probes for different lengths of time. Alloy penetration data were determined for several of the materials as a function of specimen orientation and the exposure location in the combustor. Finally, the data were compared with earlier laboratory test data, and the long-term performance of candidate materials for air-heater applications was assessed.

  16. Olive cake combustion in a circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Topal, H.; Durmaz, A. [Gazi Univ, Ankara (Turkey). Dept. of Mechanical Engineering; Atimtay, A.T. [Middle East Technical Univ., Ankara (Turkey). Dept. of Environmental Engineering

    2002-07-01

    This paper presents the results of a study in which an environmentally sound technology was developed for biomass usage for energy production in Turkey. A circulating fluidized bed of 125 mm diameter and 1,800 mm height was used to determine the combustion characteristics of olive cake (OC) produced in Turkey. Olive cake, an olive oil milling waste product, is available in large amounts at a very low cost. Efficient use of OC in energy production solves the problem of waste management and contributes to meeting targets of the Kyoto Protocol. In this study, olive cake alone and olive cake plus lignite mixtures were burned in separate experiments and in various ratios. A new feeding mechanism was developed to feed the olive cake to the bed. On-line concentrations of oxygen, sulphur dioxide, carbon dioxide, carbon monoxide, nitrogen oxides and total hydrocarbons were measured in the flue gas along with temperature distribution in the bed. Emissions were compared with national standards and combustion efficiency of the olive cake plus lignite coal mixtures and olive cake alone were calculated. The optimum operating parameters were described. OC burned with 94 to 98.5 per cent efficiency. The combustion efficiency increased with increased excess air ratio because volatiles released from the fuel were burned more completely. 3 refs., 5 tabs., 6 figs.

  17. Olive cake combustion in a circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Huseyin Topal; Aysel T. Atimtay; Ali Durmaz [Gazi University, Ankara (Turkey). Department of Mechanical Engineering, Engineering and Architecture Faculty

    2003-06-01

    In this study, a circulating fluidized bed of 125 mm diameter and 1800 mm height was used to find the combustion characteristics of olive cake (OC) produced in Turkey. A lignite coal that is most widely used in Turkey was also burned in the same combustor. The combustion experiments were carried out with various excess air ratios. The excess air ratio, {lambda} has been changed between 1.1 and 2.16. Temperature distribution along the bed was measured with thermocouples. On-line concentrations of O{sub 2}, SO{sub 2}, CO{sub 2}, CO, NOx and total hydrocarbons were measured in the flue gas. Combustion efficiencies of OC and lignite coal are calculated, and the optimum conditions for operating parameters are discussed. The combustion efficiency of OC changes between 82.25 and 98.66% depending on the excess air ratio. There is a sharp decrease observed in the combustion losses due to hydrocarbons and CO as the excess air ratio increases. The minimum emissions are observed at {lambda} = 1.35. Combustion losses due to unburned carbon in the bed material do not exceed 1.4 wt% for OC and 1.85 wt% for coal. The combustion efficiency for coal changes between 82.25 and 98.66% for various excess air ratios used in the study. The ash analysis for OC is carried out to find the suitability of OC ash to be used as fertilizer. The ash does not contain any hazardous metal. 7 refs., 10 figs., 6 tabs.

  18. Fluidized-bed combustion process evaluation and program support. Quarterly report, January-March 1980

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, I.; Podolski, W.F.; Swift, W.M.; Henry, R.F.; Hanway, J.E.; Griggs, K.E.; Herzenberg, C.; Helt, J.E.; Carls, E.L.

    1980-12-01

    Argonne National Laboratory is undertaking several tasks primarily in support of the pressurized fluidized-bed combustion project management team at Morgantown Energy Technology Center. Work is under way to provide fluidized-bed combustion process evaluation and program support to METC, determination of the state of the art of instrumentation for FBC applications, evaluation of the performance capability of cyclones for hot-gas cleaning in PFBC systems, and an initial assessment of methods for the measurement of sodium sulfate dew point.

  19. Modern fluidized bed combustion in Ostrava-Karvina cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Mazac, V. [Energoprojekt Praha, Ostrava (Czechoslovakia); Novacek, A. [Moravskoslezske teplamy, Ostrava (Czechoslovakia); Volny, J. [Templamy Karvina (Czechoslovakia)

    1995-12-01

    The contemporary situation of our environment claims the sensitive approach to solving effective conversion of energy. Limited supplies of noble fuels and their prices evoke the need to use new combustion technologies of accessible fuels in given region without negative ecological influences. Energoproject participates in the preparation of the two projects in Ostrava-Karvin{acute a} black coal field in Czech Republic. The most effective usage of fuel energy is the combined of electricity and heat. If this physical principle is supported by a pressurized fluidized bed combustion (PFBC) one obtains a high electricity/heat ratio integrated steam-gas cycle on the basis of solid fuel. Cogeneration plant Toebovice is the dominant source (600 MW{sub th}) of Ostrava district heating system (1100 MW{sub th}). The high utilization of the installed output and utilization of the clean, compact and efficient of the PFBC technology is the principal but not the single reason for the selection of the Toebovice power plant as the first cogeneration plant for installation of the PFBC in Czech Republic. The boiler will burn black coal from the neighboring coal basin.

  20. Volatiles combustion in fluidized beds. [Quarterly] technical progress report, 4 December 1994--4 March 1995

    Energy Technology Data Exchange (ETDEWEB)

    Pendergrass II, R.A.; Mansker, L.D.; Hesketh, R.P.

    1995-08-01

    The goal of this project is to investigate the conditions in which volatiles will bum within both the dense and freeboard regions of fluidized beds. Experiments using a fluidized bed operated at incipient fluidization are being conducted to characterize the effect of particle surface area, initial fuel concentration, and particle type on the inhibition of volatiles within a fluidized bed. The work conducted during the period 4 December, 1994 through, 3 March 1995 is presented in this technical progress report. The research consists of the application of a detailed chemical kinetics model for propane combustion and planned improvements in the experimental system.

  1. Biomass-Ash-Induced Agglomeration in a Fluidized Bed. Part 1: Experimental Study on the Effects of a Gas Atmosphere

    DEFF Research Database (Denmark)

    Ma, Teng; Fan, Chuigang; Hao, Lifang

    2016-01-01

    Fluidized beds have been widely applied to gasification and combustion of biomass. During gasification, a high temperature is preferable to increase the carbon conversion and to reduce the undesirable tar. However, the high temperature may lead to a severe agglomeration problem in a fluidized bed....... Understanding of the agglomeration in various atmospheres is crucial to optimize the design and operation conditions. This study focuses on the effects of gases on agglomeration tendency with different types of biomass, including corn straw, rice straw, and wheat straw. The biomass ash samples are mixed...

  2. Calcium sulphoaluminate cement made from fluidized bed combustion wastes

    Energy Technology Data Exchange (ETDEWEB)

    Bernards, G.; Marroccoli, M.; Montagnaro, F.; Valenti, G.L.

    2000-07-01

    Wastes generated in a bench-scale atmospheric fluidized bed combustor, using two different coals (one from Poland and one from South Africa) and a high-lime limestone sorbent, were employed as raw materials for the synthesis of calcium sulphoaluminate (4 CaO{sub 3} Al{sub 2}O{sub 3}.SO{sub 3})-based cements, which can be utilized for a wide range of applications. Raw mixes containing the bed material were heated in an electric oven in the temperature range 1000-1200{degree}C. The best results in terms of reactants conversion and selectivity towards 4 CaO{sub 2} Al{sub 2}O{sub 3}.SO{sub 3} were obtained at 1200{degree}C with the addition of an external source of alumina which was required to avoid melting phenomena or integrate the Al{sub 2}O{sub 3} content necessary for the 4CaO{sub 3}.Al{sub 2}O{sub 3}-SO{sub 3} formation. 7 refs., 7 tabs.

  3. Co-combustion of agricultural residues with coal in a fluidized bed combustor.

    Science.gov (United States)

    Ghani, W A W A K; Alias, A B; Savory, R M; Cliffe, K R

    2009-02-01

    Power generation from biomass is an attractive technology that utilizes agricultural residual waste. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from agricultural residues (rice husk and palm kernel) were co-fired with coal in a 0.15m diameter and 2.3m high fluidized bed combustor. The combustion efficiency and carbon monoxide emissions were studied and compared with those for pure coal combustion. Co-combustion of a mixture of biomass with coal in a fluidized bed combustor designed for coal combustion increased combustion efficiency up to 20% depending upon excess air levels. Observed carbon monoxide levels fluctuated between 200 and 900 ppm with the addition of coal. It is evident from this research that efficient co-firing of biomass with coal can be achieved with minimal modifications to existing coal-fired boilers.

  4. Study of instrumentation needs for process control and safety in coal fluidized-bed combustion systems

    Energy Technology Data Exchange (ETDEWEB)

    Herzenberg, C.L.; Griggs, K.E.; Henry, R.F.; Podolski, W.F.

    1981-02-01

    A study was conducted to evaluate the current state of the art of instrumentation for planned and operating fluidized-bed combustion systems. This study is intended to identify instrumentation needs and serve as a data base for projects to develop this instrumentation. A considerable number of needs for measurements for which presently available instrumentation is not suitable were reported by respondents. The identified deficiencies are presented with the associated physical parameter ranges for FBC processes. New techniques and instrumentation under development, as well as some available alternative instruments, are discussed briefly. Also, newly instituted mechanisms for technical information exchange on instrumentation for fossil energy applications are identified. Development of instruments to meet the identified measurement deficiencies is recommended in order to ensure the feasibility of automatic control of large-scale fluidized-bed combustion systems, and to advance the state of the art of fluidized-bed combustion technology.

  5. Utilization of ventilation air methane as a supplementary fuel at a circulating fluidized bed combustion boiler.

    Science.gov (United States)

    You, Changfu; Xu, Xuchang

    2008-04-01

    Ventilation air methane (VAM) accounts for 60-80% of the total emissions from coal mining activities in China, which is of serious greenhouse gas concerns as well as a waste of valuable fuel sources. This contribution evaluates the use of the VAM utilization methods as a supplementary fuel at a circulating fluidized bed combustion boiler. The paper describes the system design and discusses some potential technical challenges such as methane oxidation rate, corrosion, and efficiency. Laboratory experimentation has shown that the VAM can be burnt completely in circulated fluidized bed furnaces, and the VAM oxidation does not obviously affect the boiler operation when the methane concentration is less than 0.6%. The VAM decreased the incomplete combustion loss for the circulating fluidized bed combustion furnace. The economic benefit from the coal saving insures that the proposed system is more economically feasible.

  6. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Andy Wu; John T. Riley

    2004-10-30

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2004 through September 30, 2004. The following tasks have been completed. First, renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have started. Second, the design if the component parts of the CFBC system have been reviewed and finalized so that the drawings may be released to the manufacturers during the next quarter. Third, the experiments for solid waste (chicken litter) incineration have been conducted using a Thermogravimetric Analyzer (TGA). This is in preparation for testing in the simulated fluidized-bed combustor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.

  7. Fluidized bed combustion and its application to refused fuels. Combustion en leche fluido y su aplicacion a combustibles residuales

    Energy Technology Data Exchange (ETDEWEB)

    Euba, J.

    1994-01-01

    As a consequence of the energetic crisis produced in th 70's it was proposed to find new power supplies and it also was the start of the use of traditional energy, which up to that date had not been profitable. At the same time, the worry about the pollutant emissions to the environment was increasing and finally it was approved a new legislation on atmosphere pollution, which is the Directive of the European community Council of 24th November 1988. Under these circumstances there are very important the new technologies for the supply of residual combustion with low values of pollution, where it is very important the combustion in fluidized bed. (Author)

  8. Nitrogen oxides, sulfur trioxide, and mercury emissions during oxy-fuel fluidized bed combustion of Victorian brown coal.

    Science.gov (United States)

    Roy, Bithi; Chen, Luguang; Bhattacharya, Sankar

    2014-12-16

    This study investigates, for the first time, the NOx, N2O, SO3, and Hg emissions from combustion of a Victorian brown coal in a 10 kWth fluidized bed unit under oxy-fuel combustion conditions. Compared to air combustion, lower NOx emissions and higher N2O formation were observed in the oxy-fuel atmosphere. These NOx reduction and N2O formations were further enhanced with steam in the combustion environment. The NOx concentration level in the flue gas was within the permissible limit in coal-fired power plants in Victoria. Therefore, an additional NOx removal system will not be required using this coal. In contrast, both SO3 and gaseous mercury concentrations were considerably higher under oxy-fuel combustion compared to that in the air combustion. Around 83% of total gaseous mercury released was Hg(0), with the rest emitted as Hg(2+). Therefore, to control harmful Hg(0), a mercury removal system may need to be considered to avoid corrosion in the boiler and CO2 separation units during the oxy-fuel fluidized-bed combustion using this coal.

  9. Effects of fluidized bed combustion residue on pecan seedling growth and nutrient content. [Carya illinoensis

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, J.H.; White, A.W. Jr.; Bennett, O.L.

    1985-01-01

    Fluidized bed combustion residue from a calcitic limestone source (FBCRC), a by-product of scrubbing SO/sub 2/ from fossil fuel fired boilers using the FBC technique was evaluated as a source of calcium for pecan (Carya illinoensis (Wang.) K. Koch) seedlings. Fluidized bed combustion residue produced following injection of calcitic limestone into the combustion chamber was more effective in neutralizing soil acidity and increasing extractable soil Ca levels than agricultural calcitic limestone. The Ca concentration in the pecan leaves was increased linearly by Ca rates for both 12- and 24-week growth periods, but stem and petiole Ca concentration was increased linearly for the second 12-week growth period. Macronutrient concentrations were affected by Ca rates for both 12- and 24-week growth periods, but no effect was observed with Ca source. The primary difference was between the control and all other Ca rates.

  10. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Yan Cao; Songgeng Li

    2006-04-01

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2006 through March 31, 2006. Work was performed on the following activities. First, the fabrication and manufacture of the CFBC Facility were completed. The riser, primary cyclone and secondary cyclone of Circulating Fluidized Bed (CFB) Combustor have been erected. Second, the Mercury Control Workshop and the Grand Opening of Institute for Combustion Science and Environmental Technology (ICSET) were successfully held on February 22 and 23, 2006, respectively. Third, effects of hydrogen chlorine (HCl) and sulfur dioxide (SO{sub 2}) on mercury oxidation were studied in a drop tube reactor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  11. Combustion Characteristics of Lignite Char in a Laboratory-scale Pressurized Fluidized Bed Combustor

    Science.gov (United States)

    Murakami, Takahiro; Suzuki, Yoshizo

    In a dual fluidized bed gasifier, the residual char after steam gasification is burnt in riser. The objectives of this work are to clarify the effect of parameters (temperature, pressure, and particle size of lignite char) of char combustion using a laboratory-scale pressurized fluidized bed combustor (PFBC). As a result, the burnout time of lignite char can be improved with increasing operating pressure, and temperature. In addition, the decrease in the particle size of char enhanced the effect on burnout time. The initial combustion rate of the char can be increased with increasing operating pressure. The effect was decreased with increasing operating temperature. However, the effect of operating pressure was slightly changed in small particle size, such as 0.5-1.0 mm. It takes about 20 sec to burn 50% of char in the operating pressure of 0.5 MPa and the particle size of 0.5-1.0 mm.

  12. Proceedings of the Sixth International Conference on Fluidized Bed Combustion. Volume 1. Plenary sessions

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-08-01

    The Sixth International Conference on Fluidized Bed Combustion was held at the Atlanta Hilton, Atlanta, Georgia, April 9-11, 1980. The papers in this volume involved presentation of the research and development programs of the US (US DOE, TVA, EPRI and US EPA), United Kingdom, Federal Republic of Germany and the People's Republic of China. Eight papers from Vol. 1 (Plenary Sessions) of the proceedings have been entered individually into EDB and ERA. (LTN)

  13. Proceedings of the sixth international conference on fluidized bed combustion. Volume III. Technical sessions

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-08-01

    The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. Forty-five papers from Vol. III of the proceedings have been entered individually into EDB and ERA. Two papers had been entered previously from other sources. (LTN)

  14. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. Annual report, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This Annual Report on Colorado-Ute Electric Association`s NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

  15. Development of pressurized internally circulating fluidized bed combustion technology; Kaatsu naibu junkan ryudosho boiler no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, I. [Center for Coal Utilization, Japan, Tokyo (Japan); Nagato, S.; Toyoda, S. [Ebara Corp., Tokyo (Japan)

    1996-09-01

    The paper introduced support research on element technology needed for the design of hot models of the pressurized internally circulating fluidized bed combustion boiler in fiscal 1995 and specifications for testing facilities of 4MWt hot models after finishing the basic plan. The support research was conduced as follows: (a) In the test for analysis of cold model fluidization, it was confirmed that each characteristic value of hot models is higher than the target value. Further, calculation parameters required for computer simulation were measured and data on the design of air diffusion nozzle for 1 chamber wind box were sampled. (b) In the CWP conveyance characteristic survey, it was confirmed that it is possible to produce CWP having favorable properties. It was also confirmed that favorable conveyability can be maintained even if the piping size was reduced down to 25A. (c) In the gas pressure reducing test, basic data required for the design of gas pressure reducing equipment were sampled. Specifications for the fluidized bed combustion boiler of hot models are as follows: evaporation amount: 3070kg/h, steam pressure: 1.77MPa, fuel supply amount: 600kg-coal/h, boiler body: cylinder shape water tube internally circulating fluidized bed combustion boiler. 4 refs., 4 figs.

  16. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Andy Wu; John T. Riley

    2005-07-30

    This purpose of this report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period April 1, 2005 through June 30, 2005. The following tasks have been completed. First, the new Combustion Laboratory was occupied on June 15, 2005, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final painting stage. Second, the fabrication and manufacturing contract for the CFBC Facility was awarded to Sterling Boiler & Mechanical, Inc. of Evansville, Indiana. Sterling is manufacturing the assembly and component parts of the CFBC system. The erection of the CFBC system is expected to start September 1, 2005. Third, mercury emissions from the cofiring of coal and chicken waste was studied experimentally in the laboratory-scale simulated fluidized-bed combustion facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described.

  17. A Novel Atmospheric Pressure Plasma Fluidized Bed and Its Application in Mutation of Plant Seeds

    Institute of Scientific and Technical Information of China (English)

    CHEN Guang-Liang; WANG Zhen-Quan; HAN Er-Li; FU Ya-Bo; YANG Si-Ze; FAN Song-Hua; LI Chun-Ling; GU Wei-Chao; FENG Wen-Ran; ZHANG Gu-Ling; WANG Jiu-Li; Latif K.; ZHANG Shu-Gen

    2005-01-01

    @@ An atmospheric pressure plasma fluidized bed (APPFB) is designed to generate plasma using a dielectric barrier discharge (DBD) with one liquid electrode. In the APPFB system, the physical properties of DBD discharge and its application in plant-seed mutating are studied fundamentally. The results show that the generated plasma is a typical glow discharge free from filament and arc plasma, and the macro-temperature of the plasma fluidized bed is nearly at room temperature. There are no obvious changes in the pimientos when their seeds are treated by APPFB, but great changes are found for coxcombs.

  18. Ash and heavy metals in fluidized bed-combustion; Tuhka ja raskasmetallit puuperaeisen jaetteen kerrosleijupoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Kaessi, T.; Aittoniemi, P. [IVO International, Vantaa (Finland)

    1996-12-01

    Combustion ashes and submicron fly ash particles were characterized in two industrial boilers (bubbling vs. circulating fluidized bed) burning paper mill deinking sludge and bark or wood as support fuel. Bulk samples from fly ash, circulating ash and bottom ash were analyzed. Fine particles in fly ash were monitored and sampled for microscopic studies. The mass size distribution of fly ash was measured and the chemical composition according to particle size was analyzed. The results showed that ash consists of large and friable clusters formed by sintering of small mineral particles originating from paper fillers. Very few ash particles were fused and they were found only among the smallest particles. No agglomerates of fused particles were found. If the residence time in furnace is long enough sintering may proceed further and ash structure grows more dense. No indication of ash vaporization was detected. These results were similar for bubbling and circulating fluidized bed boilers. (author)

  19. Carbon attrition during the circulating fluidized bed combustion of a waste-derived fuel

    Energy Technology Data Exchange (ETDEWEB)

    Arena, U. [Consiglio Nazionale delle Ricerche, Naples (Italy). Inst. for Combustion Research; Naples Univ. (Italy). Dept. of Environmental Sciences; Mastellone, M.L. [Naples Univ. Federico II (Italy). Dept. of Chemical Engineering

    1999-07-01

    A biomass obtained as residue from food manufacturing of pine nuts was batchwise fed in a laboratory scale circulating fluidized bed combustor. The apparatus was operated under both inert and oxidizing conditions in order to establish the relative importance of purely mechanical attrition and combustion-assisted attrition in generating carbon fines. For each run, carbon load and carbon particle size distribution in the riser and rates of attrited carbon fines escaping from the combustor were determined as a function of time. A parallel investigation was carried out with a bubbling fluidized bed combustor in order to point out peculiarities of attrition in the two apparatus. Results were compared with those obtained by burning in the same combustor a bituminous coal and a packaging-derived fuel, obtained from monomaterial collections of polyethylene terephtalate bottles. A different attrition phenomenology was found for each fuel and its peculiar features were taken into account. (orig.)

  20. State of the art and the future fuel portfolio of fluidized bed combustion systems; Status und kuenftiges Brennstoffportfolio bei Wirbelschichtfeuerungen

    Energy Technology Data Exchange (ETDEWEB)

    Szentannai, Pal; Friebert, Arpad; Winter, Franz [Technische Univ. Wien (Austria). Inst. fuer Verfahrens-, Umwelttechnik und technische Biowissenschaften

    2008-07-01

    Coal, biomass and substitute fuels energetically can be used efficiently and with low pollution in fluidized bed plants. In comparison to biomass there are significant differences between the circulating and stationary fluidized bed technology. The stationary fluidised bed is fed predominantly with biomasses and residual substances. Coal usually is the basis fuel in the circulating fluidised bed. Biomass and residual substances frequently are course-fired. The state of the art is the employment of a broad fuel mixture in small and large fluidized-bed combustion systems. Future developments present an increased use of sewage sludge, fluidized bed combustion systems with wood as a basis fuel, utilization of household waste and the gas production.

  1. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Andy Wu; John T. Riley

    2005-04-30

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2005 through March 31, 2005. The following tasks have been completed. First, the renovation of the new Combustion Laboratory is nearly complete, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final stages. Second, the fabrication and manufacture of the CFBC Facility is being discussed with a potential contractor. Discussions with potential contactor regarding the availability of materials and current machining capabilities have resulted in the modification of the original designs. The selection of the fabrication contractor for the CFBC Facility is expected during the next quarter. Third, co-firing experiments conducted with coal and chicken waste have been initiated in the laboratory-scale simulated fluidized-bed facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  2. Feasibility of Combustion of Petroleum Coke in 230t/h Circulating Fluidized Bed Boiler

    Institute of Scientific and Technical Information of China (English)

    HAN Dong-tai; SONG Zheng-chang; XU Tao

    2003-01-01

    In order to reuse the high sulfur petroleum coke, the waste in chemical industry, as fuel of power plant for energy recovery, the combustion property of petroleum coke was researched experimentally in circulating fluidized bed (CFB) boiler. The performance of the boiler in burning mixed fuel with different ratios of coal to petroleum coke is obtained. Based on the experimental data, Factors influencing the stability of combustion,thermal efficiency of boiler, and emissions and desulphurisation are discussed. This study demonstrates that the combustion of petroleum coke in CFB boiler is applicable, and has great significance on the design and operation of CFB boiler to burn petroleum coke.

  3. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Yan Cao; John Smith

    2008-05-31

    On February 14, 2002, President Bush announced the Clear Skies Initiative, a legislative proposal to control the emissions of nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), and mercury from power plants. In response to this initiative, the National Energy Technology Laboratory organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified multi-pollutant control; improved sorbents and catalysts; mercury monitoring and capture; and improved understanding of the underlying reaction chemistry occurring during combustion as the most pressing research needs related to controlling environmental emissions from fossil-fueled power plants. The Environmental Control Technology Laboratory will help meet these challenges and offer solutions for problems associated with emissions from fossil-fueled power plants. The goal of this project was to develop the capability and technology database needed to support municipal, regional, and national electric power generating facilities to improve the efficiency of operation and solve operational and environmental problems. In order to effectively provide the scientific data and the methodologies required to address these issues, the project included the following aspects: (1) Establishing an Environmental Control Technology Laboratory using a laboratory-scale, simulated fluidized-bed combustion (FBC) system; (2) Designing, constructing, and operating a bench-scale (0.6 MW{sub th}), circulating fluidized-bed combustion (CFBC) system as the main component of the Environmental Control Technology Laboratory; (3) Developing a combustion technology for co-firing municipal solid waste (MSW), agricultural waste, and refuse-derived fuel (RDF) with high sulfur coals; (4) Developing a control strategy for gaseous emissions, including NO{sub x}, SO{sub 2}, organic compounds, and heavy metals; and (5) Developing new mercury capturing sorbents and new

  4. Effects of NH3 on N2O Formation and Destruction in Fluidized Bed Coal Combustion

    Institute of Scientific and Technical Information of China (English)

    JianWeiYuan; BoFeng; 等

    1994-01-01

    The NH3 oxidation and reduction process are experimentally and kinetically studied in this paper,It is found that NH3 has contributions not only to N2O formation,but also to N2O destruction in certain conditions.The main product of homogeneous NH3 oxidation is found to be NO rather than N2O,but some bed materials and suplhur sorbents have catalytic contributions to N2O formation from NH3 oxidation.In reduction atmosphere,NH3 can promote the KC destruction.It is deduced that the ammonia injection into fluidized bed coal combustion flue gas can decrease both NOx and N2O emissions.The ammonia injection process is kinetically simulated in this study,and the reduction.rates of NOx and N2O are found to depend on temperature,O2 concentration,initial NOx and N2O concentrations,and amount of injected ammonia.

  5. A novel vortex-fluidized bed combustor with two combustion chambers for rice-husk fuel

    Directory of Open Access Journals (Sweden)

    Madhiyanon, T.

    2004-11-01

    Full Text Available A novel vortexing-fluidized bed combustor (VFBC using rice-husk as fuel was developed and presented. The combined characteristics of vortex combustion and fluidized bed combustion are the main features of the VFBC, which was designed to achieve high thermal capacity (MWth m-3, high thermal efficiency and low diameter to height ratio. The VFBC comprises a vertical cylinder chamber and a conical base, which provides a bed for incompletely combusted fuel. The overall dimensions are 1.10 m in height and 0.40 m in diameter. To evaluate combustor performance, the specific feed rate of fuel and mass flow rates of the primary, secondary, and tertiary air were varied independently of one another. The combustion appeared into two zones characterized by different combustion behaviors, i.e. 1 vortext combustion above the vortex ring and 2 fluidized bed combustion below the vortex ring. The fluidized bed zone has uniform temperature distributions across the cross-section of the combustor. The swirling of air above the vortex ringand the vortex ring itself played important roles in preventing the escape of combustion particulates. Bottomash appeared as fine black and grey particles of ash, which ranged in size from 200 to 600 µm. Fluidizationcould be initiated without the assistance of any inert material mixed into the bed. The experimental resultsindicated that thermal efficiency did not depend on the secondary or tertiary airflows, but was significantlyinfluenced by the excess air resulting from the combined total of the three airflows. The introduction of thetertiary airflow helped maintaining the temperature inside the combustor within acceptable levels. According to experimental conditions, i.e. a specific feed rate of 240 kg h-1m-3 and excess air (157%, it was found that the VFBC could achieve an exit gas temperature of 1060ºC, thermal efficiency of 95%, and thermal capacity of 0.91 MWth m-3. The amounts of CO2, CO, and O2 gases emitted were directly

  6. Combustion characteristics and emissions of Seyitomer lignite-olive cake mixture in a fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Devrim B. Kaymak; Husnu Atakul; Ekrem Ekinci [Istanbul Technical University, Istanbul (Turkey). Department of Chemical Engineering

    2007-07-01

    The low quality Turkish lignites cause acute pollution problems. Therefore, energy production from biomass, which has lower polluting potential due to its consumption of CO{sub 2} in the atmosphere and its low sulphur content, could be considered as an alternative solution. In this study, lignite-olive cake mixtures were burned in a fluidized bed combustor of 10 cm diameter. Temperature profiles, mechanisms of mixing and segregation, and gas emissions were investigated in the course of cocombustion. The lignite-olive cake mixture ratio and the coal particle size were selected as the experimental parameters. Temperature profiles of the fluidized bed show a lignite-olive cake flotsam rich behaviour and the effective parameter on segregation is the density difference between particles. The increase of the olive cake ratio in the mixture results in an important SO{sub 2} emissions decrease. The results also demonstrate that the NOx emissions remain at low values for all operating conditions.

  7. Combustion of coked sand in a two-stage fluidized bed system

    Energy Technology Data Exchange (ETDEWEB)

    Coronella, C.J.; Seader, J.D. (University of Utah, Salt Lake City, UT (USA). Dept. of Chemical Engineering)

    1992-02-01

    An advanced multiple-stage fluidized bed reactor system has been devised for the energy-efficient extraction and conversion, from tar sand, of bitumen into synthetic crude oil. The reactor consists of four fluidized beds arranged as stages in series with respect to flow of sand. In the first stage, tar sands are heated, causing the bitumen to pyrolyse into coke, which is deposited on the sand, and gas, which is mostly condensed into oil. The coke is partially combusted with air or enriched oxygen in the second stage, which is thermally coupled to the first stage by multiple vertical heat pipes. Combustion is completed adiabatically in the third stage and heat recovery from the sand is carried out in the fourth stage. By conducting the coke combustion in two stages in this manner, the overall reactor residence time to produce clean sand is greatly reduced from that for a single combustion stage. Laboratory experimental studies have confirmed the ability to operate and control the two thermally coupled stages. The two-phase bubbling bed model of Grace, amended to account for bubble growth in the axial direction, has been adopted to model the mass transfer and fluid mechanics of the fluidized beds. The model for the first and second combustion stages is complete. Predictions for exit reactor conditions at various operating conditions are in reasonable agreement with experimental observations. The operating parameters have been found to exert a much greater influence on the predictions of the model than do the values of the physical parameters, indicating a desirable degree of reactor stability. Extension of the model to the pyrolysis and heat recovery stages will permit the optimization of the reactor configuration and operating conditions. 26 refs., 6 figs.

  8. Research into Biomass and Waste Gasification in Atmospheric Fluidized Bed

    Energy Technology Data Exchange (ETDEWEB)

    Skala, Zdenek; Ochrana, Ladislav; Lisy, Martin; Balas, Marek; Kohout, Premysl; Skoblja, Sergej

    2007-07-01

    Considerable attention is paid in the Czech Republic to renewable energy sources. The largest potential, out of them all, have biomass and waste. The aim therefore is to use them in CHP in smaller units (up to 5MWel). These are the subject of the research summarized in our article. The paper presents results of experimental research into gasification in a 100 kW AFB gasifier situated in Energy Institute, Faculty of Mechanical Engineering, Brno University of Technology, and fitted with gas cleaning equipment. Within the research, study was carried out into gas cleaning taking primary measures in the fluidized bed and using hot filter, metal-based catalytic filter, and wet scrubber. Descriptions and diagrams are given of the gasifier and new ways of cleaning. Results include: Impact of various fuels (farming and forest wastes and fast-growing woods and culm plants) on fuel gas quality. Individual kinds of biomass have very different thermal and physical properties; Efficiency of a variety of cleaning methods on content of dust and tars and comparison of these methods; and, Impact of gasifier process parameters on resultant gas quality. (auth)

  9. SPECIFIC FEATURES OF THE OXYFUEL COMBUSTION CONDITIONS IN A BUBBLING FLUIDIZED BED

    Directory of Open Access Journals (Sweden)

    Pavel Skopec

    2016-08-01

    Full Text Available Oxyfuel combustion is a promising approach for capturing CO2 from power plants. This technology produces a flue gas with a high concentration of CO2. Our paper presents a verification of the oxyfuel combustion conditions in a bubbling fluidized bed combustor. It presents a theoretical analysis of oxyfuel combustion and makes a comparison with combustion using air. It is important to establish a proper methodology for stoichiometric calculations and for computing the basic characteristic fluidization properties. The methodology presented here has been developed for general purposes, and can be applied to calculations for combustion with air and with oxygen-enriched air, and also for full oxyfuel conditions. With this methodology, we can include any water vapour condensation during recirculation of the flue gas when dry flue gas recirculation is used. The paper contains calculations for a lignite coal, which is taken as a reference fuel for future research and for the experiments.

  10. Modelling of NOx emissions from pressurized fluidized bed combustion - A parameter study

    DEFF Research Database (Denmark)

    Jensen, Anker; Johnsson, Jan Erik

    1997-01-01

    Simulations with a mathematical model of a pressurized bubbling fluidized-bed combustor (PFBC) combined with a kinetic model for NO formation and reduction are reported. The kinetic model for NO formation and reduction considers NO and NH3 as the fixed nitrogen species, and includes homogeneous....... The sensitivity of the simulated NO emission with respect to hydrodynamic and combustion parameters in the model is investigated and the mechanisms by which the parameters influence the emission of NO is explained. The analysis shows that the most important hydrodynamic parameters are the minimum fluidization...

  11. Effect of bed particles to combustion of gases in fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Raiko, R.; Wallen, V.; Etelaeaho, R.; Correia, S. [Tampere Univ. of Technology (Finland). Energy and Process Engineering

    1997-10-01

    The objective of this project was to obtain experimental data on effects of sand particles to the combustion of gases. The effect of the surface area of the particles was tested using different sized particles. The fluidized bed reactor used in these experiments was a stainless-steel tube with an internal diameter of 42 mm surrounded by an electric heater. The test rig was built in the Laboratory of Energy and Process Engineering at Tampere University of Technology. In order to elucidate the possible changes of particle surface, microscopic and porosimetric studies were conducted with both fresh bed particles and used bed particles. These measurements indicate that carbon monoxide significantly reacts with oxygen in the particulate or emulsion phase of a fluidized bed, if the residence time is long enough. The reaction rate depends mainly on temperature, air coefficient, residence time and particle size of the solids. It seems that the combustion enhances if the average particle size increases. Whether this is caused by increased free path length or reduced specific surface area of the bed is yet unknown. The first might be more probable cause because the majority of reactions often took place in the freeboard right above the bed. It was clear that the bed hindered proper combustion in several cases. (orig.)

  12. The Simulation of Influence of Different Coals on the Circulating Fluidized Bed Boiler's Combustion Performance

    Institute of Scientific and Technical Information of China (English)

    Yumei Yong; Qinggang Lu

    2003-01-01

    The combustion performance of the boiler largely depends on the coal type. Lots of experimental research shows that different fuels have different combustion characteristics. It is obvious that fuel will change the whole operating performance of Circulating Fluidized Bed Combustion (CFBC). We know even in a pilot-scale running boiler, the measurement of some parameters is difficult and costly. Therefore, we developed the way of simulation to evaluate the combustion performance of Chinese coals in CFB. The simulation results show that,different coals will result in different coal particle diameter and comminution depending on their mineral component and the change will affect the distribution of ash in CFBC system. In a word, the computational results are in accordance with experimental results qualitatively but there are some differences quantitatively.

  13. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Yan Cao; John Smith

    2007-03-31

    This report is to present the progress made on the project entitled ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2007 through March 31, 2007. The effort in this quarter has concentrated on installing the CFBC Facility and for conducting cold fluidization operations tests in the CFBC facility. The assembly of the ash recirculation pipe duct from the cyclones back to the bed area of the combustor, including the upper and lower loop seals was completed. The electric bed pre-heater was installed to heat the fluidizing air as it enters the wind box. The induced draft fan along with its machine base and power supply was received and installed. The flue gas duct from secondary cyclone outlet to induced draft fan inlet was received and installed, as well as the induced fan flue gas discharge duct. Pressure testing from the forced draft fan to the outlet of the induced fan was completed. In related research a pilot-scale halogen addition test was conducted in the empty slipstream reactor (without (Selective Catalytic Reduction) SCR catalyst loading) and the SCR slipstream reactor with two commercial SCR catalysts. The greatest benefits of conducting slipstream tests can be flexible control and isolation of specific factors. This facility is currently used in full-scale utility and will be combined into 0.6MW CFBC in the future. This work attempts to first investigate performance of the SCR catalyst in the flue gas atmosphere when burning Powder River Basin (PRB), including the impact of PRB coal flue gas composition on the reduction of nitrogen oxides (NOx) and the oxidation of elemental mercury (Hg(0)) under SCR conditions. Secondly, the impacts of hydrogen halogens (Hydrogen fluoride (HF), Hydrogen chloride (HCl), Hydrogen Bromide (HBr) and Hydrogen Iodine (HI)) on Hg(0) oxidation and their mechanisms can be explored.

  14. Release of alkali salts and coal volatiles affecting internal components in fluidized bed combustion systems

    Directory of Open Access Journals (Sweden)

    Arias del Campo, E.

    2003-12-01

    Full Text Available In spite of the potential advantages of atmospheric fluidized bed systems, experience has proved that, under certain environments and operating conditions, a given material employed for internal components could lead to catastrophic events. In this study, an attempt is made to establish material selection and operational criteria that optimize performance and availability based on theoretical considerations of the bed hydrodynamics, thermodynamics and combustion process. The theoretical results may indicate that, for high-volatile coals with particle diameters (dc of 1-3 mm and sand particle size (ds of 0.674 mm, a considerable proportion of alkali chlorides may be transferred into the freeboard region of fluidized bed combustors as vapor phase, at bed temperatures (Tb < 840 °C, excess air (XSA ≤ 20 %, static bed height (Hs ≤ 0.2 m and fluidizing velocity (Uo < 1 m/s. Under these operating conditions, a high alkali deposition may be expected to occur in heat exchange tubes located above the bed. Conversely, when the combustors operate at Tb > 890 °C and XSA > 30 %, a high oxidation rate of the in-bed tubes may be present. Nevertheless, for these higher Tb values and XSA < 10 %, corrosion attack of metallic components, via sulfidation, would occur since the excessive gas-phase combustion within the bed induced a local oxygen depletion.

    A pesar de las ventajas potenciales de los sistemas atmosféricos de lecho fluidizado, la experiencia ha demostrado que, bajo ciertas atmósferas y condiciones de operación, un material que se emplea como componente interno podría experimentar una falla y conducir a eventos catastróficos. En este estudio, se intenta establecer un criterio tanto operativo como de selección del material que permita optimizar su disponibilidad y funcionalidad basados en consideraciones teóricas de la hidrodinámica del lecho, la termodin

  15. Thermal valorization of footwear leather wastes in bubbling fluidized bed combustion.

    Science.gov (United States)

    Bahillo, A; Armesto, L; Cabanillas, A; Otero, J

    2004-01-01

    Transformation of hide (animal skins) into leather is a complicated process during which significant amounts of wastes are generated. Footwear is the sector that consumes the major part of leather (60%). Logically, this industry is producing the largest quantity of leather wastes. The objective of this work was to demonstrate the technical feasibility of fluidized bed technology to recover the energy from burning footwear leather wastes. Considering the characteristics of leather waste, especially the heating value (12.5-21 MJ/kg), it can be considered a fairly good fuel. Moreover, leather waste has suitable characteristics for combustion, e.g., high volatile matter (76.5%) and low ash content (5.2%). Two factors deserve special attention: N3O and NOx emissions as a consequence of its unusual high nitrogen content (14.1%) and the chromium speciation because chromium is the main element of ash (3.2%) due to its use in leather tanning. A series of experiments has been carried out in a 0.1 MWt bubbling fluidized bed pilot plant. The combustion efficiency, flue gas composition and chromium speciation were investigated. Despite having high nitrogen content, a low conversion rate of fuel-N to NOx and N2O was attained. Chromium was concentrated in the solid streams and it was consistently found as Cr(III+); no presence of Cr(VI+) was detected.

  16. Thermal decomposition of selected chlorinated hydrocarbons during gas combustion in fluidized bed

    Directory of Open Access Journals (Sweden)

    Olek Malgorzata

    2013-01-01

    Full Text Available Abstract Background The process of thermal decomposition of dichloromethane (DCM and chlorobenzene (MCB during the combustion in an inert, bubbling fluidized bed, supported by LPG as auxiliary fuel, have been studied. The concentration profiles of C6H5CI, CH2Cl2, CO2, CO, NOx, COCl2, CHCl3, CH3Cl, C2H2, C6H6, CH4 in the flue gases were specified versus mean bed temperature. Results The role of preheating of gaseous mixture in fluidized bed prior to its ignition inside bubbles was identified as important factor for increase the degree of conversion of DCM and MCB in low bed temperature, in comparison to similar process in the tubular reactor. Conclusions Taking into account possible combustion mechanisms, it was identified that autoignition in bubbles rather than flame propagation between bubbles is needed to achieve complete destruction of DCM and MCB. These condition occurs above 900°C causing the degree of conversion of chlorine compounds of 92-100%.

  17. Meat and bone meal as secondary fuel in fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    L. Fryda; K. Panopoulos; P. Vourliotis; E. Kakaras; E. Pavlidou [National Technical University of Athens, Athens (Greece). Laboratory of Steam Boilers and Thermal Plants, School of Mechanical Engineering

    2007-07-01

    Meat and Bone Meal (MBM) was co-fired in a laboratory scale fluidized bed combustion (FBC) apparatus with two coals. Several fuel blends were combusted under different conditions to study how primary fuel substitution by MBM affects flue gas emissions as well as fluidized bed (FB) agglomeration tendency. MBM, being a highly volatile fuel, caused significant increase of CO emissions and secondary air should be used in industrial scale applications to conform to regulations. The high N-content of MBM is moderately reflected on the increase of nitrogen oxides emissions which are reduced by MBM derived volatiles. The MBM ash, mainly containing bone material rich in Ca, did not create any noteworthy desulphurization effect. The observed slight decrease in SO{sub 2} emissions is predominantly attributed to the lower sulphur content in the coal/MBM fuel mixtures. The SEM/EDS analysis of bed material samples from the coal/MBM tests revealed the formation of agglomerates of bed material debris and ash with sizes that do not greatly exceed the original bed inventory and thus not problematic. 37 refs., 9 figs., 3 tabs.

  18. Co-combustion of tannery sludge in a commercial circulating fluidized bed boiler.

    Science.gov (United States)

    Dong, Hao; Jiang, Xuguang; Lv, Guojun; Chi, Yong; Yan, Jianhua

    2015-12-01

    Co-combusting hazardous wastes in existing fluidized bed combustors is an alternative to hazardous waste treatment facilities, in shortage in China. Tannery sludge is a kind of hazardous waste, considered fit for co-combusting with coal in fluidized bedboilers. In this work, co-combustion tests of tannery sludge and bituminous coal were conducted in a power plant in Jiaxing, Zhejiang province. Before that, the combustion behavior of tannery sludge and bituminous were studied by thermogravimetric analysis. Tannery sludge presented higher reactivity than bituminous coal. During the co-combustion tests, the emissions of harmful gases were monitored. The results showed that the pollutant emissions met the Chinese standard except for NOx. The Concentrations of seven trace elements (As, Cr, Cd, Ni, Cu, Pb, Mn) in three exit ash flows (bottom ash in bed, fly ash in filter, and submicrometer aerosol in flue gas) were analyzed. The results of mono-combustion of bituminous coal were compared with those of co-combustion with tannery sludge. It was found that chromium enriched in fly ash. At last, the leachability of fly ash and bottom ash was analyzed. The results showed that most species were almost equal to or below the limits except for As in bottom ashes and Cr in the fly ash of co-combustion test. The concentrations of Cr in leachates of co-combustion ashes are markedly higher than that of coal mono-combustion ashes.

  19. Characteristics modeling for supercritical circulating fluidized bed boiler working in oxy-combustion technology

    Science.gov (United States)

    Balicki, Adrian; Bartela, Łukasz

    2014-06-01

    Among the technologies which allow to reduce greenhouse gas emission, mainly carbon dioxide, special attention deserves the idea of `zeroemission' technology based on boilers working in oxy-combustion technology. In the paper the results of analyses of the influence of changing two quantities, namely oxygen share in oxidant produced in the air separation unit, and oxygen share in oxidant supplied to the furnace chamber on the selected characteristics of a steam boiler including the degree of exhaust gas recirculation, boiler efficiency and adiabatic flame temperature, was examined. Due to the possibility of the integration of boiler model with carbon dioxide capture, separation and storage installation, the subject of the analysis was also to determine composition of the flue gas at the outlet of a moisture condensation installation. Required calculations were made using a model of a supercritical circulating fluidized bed boiler working in oxy-combustion technology, which was built in a commercial software and in-house codes.

  20. Combined-cycle power stations using ``clean-coal-technologies``: Thermodynamic analysis of full gasification vs. fluidized bed combustion with partial gasification

    Energy Technology Data Exchange (ETDEWEB)

    Lozza, G.; Chiesa, P. [Politecnico di Milano, Milan (Italy). Dept. of Energetics; DeVita, L. [Eniricerche, Milan (Italy)

    1994-12-31

    A novel class of power plants for clean conversion of coal into power has been recently proposed, based on the concept of partial coal gasification and fluidized-bed combustion of unconverted char from gasification. This paper focuses on the thermodynamic aspects of these plants, in comparison with full gasification cycles, assessing their performance on the basis of a common advanced power plant technology level. Several plant configurations are considered, including pressurized or atmospheric fluidized-bed, air- or steam-cooled, with different carbon conversion in the gasifier. The calculation method, used for reproducing plant energy balances and for performance prediction, is described in the paper. A complete second-law analysis is carried out, pointing out the efficiency loss breakdown for both technologies. Results show that partial gasification plants can achieve efficiencies consistently higher than IGCC, depending on plant configuration and carbon conversion, making this solution a viable and attractive option for efficient coal utilization.

  1. Combined-cycle power stations using clean-coal technologies: Thermodynamic analysis of full gasification versus fluidized bed combustion with partial gasification

    Energy Technology Data Exchange (ETDEWEB)

    Lozza, G.; Chiesa, P. [Politecnico di Milano, Milan (Italy). Dept. of Energetics; DeVita, L. [Eniricerche, Milan (Italy)

    1996-10-01

    A novel class of power plants for clean conversion of coal into power has been recently proposed, based on the concept of partial coal gasification and fluidized-bed combustion of unconverted char from gasification. This paper focuses on the thermodynamic aspects of these plants, in comparison with full gasification cycles, assessing their performance on the basis of a common advanced power plant technology level. Several plant configurations are considered, including pressurized or atmospheric fluidized-bed, air- or steam-cooled, with different carbon conversion in the gasifier. The calculation method, used for reproducing plant energy balances and for performance prediction, is described in the paper. A complete second-law analysis is carried out, pointing out the efficiency loss breakdown for both technologies. Results show that partial gasification plants can achieve efficiencies consistently higher than IGCC, depending on plant configuration and carbon conversion, making this solution a viable and attractive option for efficient coal utilization.

  2. Temporal measurements and kinetics of selenium release during coal combustion and gasification in a fluidized bed.

    Science.gov (United States)

    Shen, Fenghua; Liu, Jing; Zhang, Zhen; Yang, Yingju

    2016-06-05

    The temporal release of selenium from coal during combustion and gasification in a fluidized bed was measured in situ by an on-line analysis system of trace elements in flue gas. The on-line analysis system is based on an inductively coupled plasma optical emission spectroscopy (ICP-OES), and can measure concentrations of trace elements in flue gas quantitatively and continuously. The results of on-line analysis suggest that the concentration of selenium in flue gas during coal gasification is higher than that during coal combustion. Based on the results of on-line analysis, a second-order kinetic law r(x)=0.94e(-26.58/RT)(-0.56 x(2) -0.51 x+1.05) was determined for selenium release during coal combustion, and r(x)=11.96e(-45.03/RT)(-0.53 x(2) -0.56 x+1.09) for selenium release during coal gasification. These two kinetic laws can predict respectively the temporal release of selenium during coal combustion and gasification with an acceptable accuracy. Thermodynamic calculations were conducted to predict selenium species during coal combustion and gasification. The speciation of selenium in flue gas during coal combustion differs from that during coal gasification, indicating that selenium volatilization is different. The gaseous selenium species can react with CaO during coal combustion, but it is not likely to interact with mineral during coal gasification.

  3. Tennessee Valley Authority atmospheric fluidized-bed combustor simulation interim annual report, January 1-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Wells, J.W.; Krishnan, R.P.

    1980-10-01

    This report contains a detailed description of the work performed during 1979 for the Tennessee Valley Authority in support of the TVA Fluidized-Bed Combustor (FBC) Demonstration Plant Program. The work was carried out under task 4, modeling and simulation of atmospheric fluidized-bed combustor (AFBC) systems. The overall objective of this task is to develop a steady-state mathematical model with the capability of predicting trends in bed performance under various feed and operating conditions. As part of this effort, three predictive subprograms (subcodes) were developed during 1979: (1) bubble-growth subcode, (2) sorbent-coal ash elutriation and attrition subcode, and (3) coal combustion subcode. These codes, which are currently being tested with experimental data, are capable of predicting how some of the important operating variables in the AFBC affect its performance. After testing against field data, these subcodes will be incorporated into an overall AFBC system code, which was developed earlier at ORNL for analysis of the Department of Energy (DOE) Component Test and Integration Unit (CTIU) at Morgantown, West Virginia. In addition to these predictive subcodes, the overall system code previously developed for the CTIU is described. The material balance is closed, based on vendor-supplied data. This balance is then used to predict the heat transfer characteristics of the surfaces (submerged and freeboard) in the AFBC. Existing correlations for heat transfer in AFBC are used in the code along with thermophysical properties of the various streams.

  4. Evaluation of dust cake filtration at high temperature with effluence from an atmospheric fluidized-bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, R.A.

    1990-08-01

    In the spring of 1989, two separate test series were simultaneously conducted at the US Department of Energy's (DOE's) Morgantown Energy Technology Center (METC) to examine applied and fundamental behavior of dust cake filtration under high temperature and high pressure (HTHP) conditions. The purpose was to provide information on dust-cake filtration properties to gas stream cleanup researchers associated with the Tidd 70 megawatt (MW) pressurized fluidized-bed combustor (PFBC). The two test facilities included (1) a high-pressure natural-gas combustor with injected particulate, which was fed to two full-size candle filters; and (2) an atmospheric fluidized-bed combustor (AFBC) with coal and limestone sorbent to generate a particulate-laden combustion exhaust gas, which was sent to a single full-size candle filter and a small-scale disc filter. Several major conclusions from these studies are noted below. On average reducing the mean particulate size by 33% and the associated loading carried in the filtrate will increase the dust cake specific flow resistance (K{sub 2}) by 498%. High-temperature and high-pressure filtration can be successfully performed with ceramic candle filters at moderate filtration face velocities and reasonable system pressure drops. Off-line filter cleaning can produce a filter system with a higher apparent permeability than that produced from on-line filter cleaning at the same face velocity. 19 refs., 89 figs., 13 tabs.

  5. Modified graphical autocatalytic set model of combustion process in circulating fluidized bed boiler

    Science.gov (United States)

    Yusof, Nurul Syazwani; Bakar, Sumarni Abu; Ismail, Razidah

    2014-07-01

    Circulating Fluidized Bed Boiler (CFB) is a device for generating steam by burning fossil fuels in a furnace operating under a special hydrodynamic condition. Autocatalytic Set has provided a graphical model of chemical reactions that occurred during combustion process in CFB. Eight important chemical substances known as species were represented as nodes and catalytic relationships between nodes are represented by the edges in the graph. In this paper, the model is extended and modified by considering other relevant chemical reactions that also exist during the process. Catalytic relationship among the species in the model is discussed. The result reveals that the modified model is able to gives more explanation of the relationship among the species during the process at initial time t.

  6. Strength and thermal behavior of low weight foam geopolymer using circulating fluidized bed combustion fly ash

    Institute of Scientific and Technical Information of China (English)

    刘泽; 邵宁宁; 秦俊峰; 孔凡龙; 王春雪; 王栋民

    2015-01-01

    A comparative study of the influence of elevated temperature on foam geopolymer using circulating fluidized bed combustion fly ash (CFA) was reported. Foam geopoymers were prepared with different amounts of foam agent and different SiO2/Al2O3 molar ratios of 3.1, 3.4, and 3.8. The mechanical, thermo-physical properties and microstructure of the foam geopolymers before and after exposure to elevated temperature of 800, 1000, and 1200 °C were investigated. The specimen with SiO2/Al2O3 molar ratio of 3.8 exhibits the highest compressive strength, better microstructure and dimension stability before and after firing. Carnegeite, nepheline, and zeolite crystalline phases appearing after exposure may contribute to the good post-exposure strength. Low weight foam geopolymer using CFA can increase strength and maintain higher stability as high as 1000 °C.

  7. Fabrication and properties of foam geopolymer using circulating fluidized bed combustion fly ash

    Science.gov (United States)

    Liu, Ze; Shao, Ning-ning; Wang, Dong-min; Qin, Jun-feng; Huang, Tian-yong; Song, Wei; Lin, Mu-xi; Yuan, Jin-sha; Wang, Zhen

    2014-01-01

    In recent years, circulating fluidized bed combustion fly ash (CFA) is used as a raw material for geopolymer synthesis. Hydrogen peroxide was employed as a foaming agent to prepare CFA-based foam geopolymer. The particle distribution, mineral composition, and chemical composition of CFA were examined firstly. Geopolymerization products were characterized by mechanical testing, scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray fluorescence (XRF). The CFA-based foam geopolymer was successfully fabricated with different contents of hydrogen peroxide and exhibited uncompleted alkali reaction and reasonable strength with relative low atomic ratios of Si/Al and Si/Na. Type-C CFA in this research could be recycled as an alternative source material for geopolymer production.

  8. Study on Reactivity of Circulating Fluidized Bed Combustion Fly Ashes in the Presence of Water

    Directory of Open Access Journals (Sweden)

    Salain I.M.A.K.

    2010-01-01

    Full Text Available A study on reactivity of four different Circulating Fluidized Bed Combustion (CFBC fly ashes has been realized in the presence of water. Paste of each ash was prepared and analyzed for its setting time, expansion and strength. The products of hydration, and their evolutions over a period of time were identified by X-ray diffraction and differential thermal analysis. The results of this study show that the reactivity of the CFBC fly ashes is strongly related to their chemical composition, essentially to their quantity of silica, alumina, lime and sulfate, which promote principally the formation of ettringite, gypsum and C-S-H. It is further noted that the intensity and the proportion of these phases determine the hydration behavior of the CFBC fly ashes.

  9. Analysis of microalgae pellets combustion in a circulating fluidized-bed

    Directory of Open Access Journals (Sweden)

    Kosowska-Golachowska Monika

    2017-01-01

    Full Text Available Microalgae are expected to become an important source of highvalue products with several applications in a large number of areas of biotechnology and, especially, in biofuels production. The increasing interest in microalgae as a source of biofuel (so-called third generation biofuel is due to the several advantages. The objective of this study was to investigate combustion characteristics of microalgae (Oscillatoria sp. pellets burnt in a circulating fluidized-bed (CFB in terms of sample temperature profiles, ignition time, ignition temperature, devolatilization time and the burnout time. Spherical 10-mm microalgae pellets were tested at temperature of 850°C in a 12-kW bench-scale CFB combustor.

  10. Fabrication and properties of foam geopolymer using circulating fluidized bed combustion fly ash

    Institute of Scientific and Technical Information of China (English)

    Ze Liu; Ning-ning Shao; Dong-min Wang; Jun-feng Qin; Tian-yong Huang; Wei Song; Mu-xi Lin; Jin-sha Yuan; Zhen Wang

    2014-01-01

    In recent years, circulating fluidized bed combustion fly ash (CFA) is used as a raw material for geopolymer synthesis. Hydrogen peroxide was employed as a foaming agent to prepare CFA-based foam geopolymer. The particle distribution, mineral composition, and chemical composition of CFA were examined firstly. Geopolymerization products were characterized by mechanical testing, scanning elec-tron microscopy (SEM), X-ray diffraction (XRD), and X-ray fluorescence (XRF). The CFA-based foam geopolymer was successfully fabri-cated with different contents of hydrogen peroxide and exhibited uncompleted alkali reaction and reasonable strength with relative low atomic ratios of Si/Al and Si/Na. Type-C CFA in this research could be recycled as an alternative source material for geopolymer production.

  11. Combustion of bark and wood waste in the fluidized bed boiler

    Science.gov (United States)

    Pleshanov, K. A.; Ionkin, I. L.; Roslyakov, P. V.; Maslov, R. S.; Ragutkin, A. V.; Kondrat'eva, O. E.

    2016-11-01

    In the Energy Development Strategy of Russia for the Period until 2035, special attention is paid to increased use of local fuel kinds—one of which is biofuel, in particular, bark and wood waste (BWW)— whose application at thermal power plants in Russia has been not developed due to the lack of appropriate technologies mastered by domestic energy mechanical engineering. The article describes the experience of BWW combustion in fluidized bed boilers installed on the energy objects of northern European countries. Based on this, reference points were defined (it is the section of boiler air-gas path where initially the approximate temperatures are set), making it possible to carry out a thermal design of a boiler and ensure its operation reliability. Permissible gas temperature at the furnace outlet at BWW combustion amounted to 950-1000°C. Exit gas temperature, depending on the implementation of special measures on protection of air heater from corrosion, amounted to 140-190°C. Recommended hot air temperature is within the range of 200-250°C. Recommendations for determining the boiler furnace dimensions are presented. Based on the presented reference temperatures in the main reference points, the thermal design of hot water boiler of KV-F-116-150 type with 116 MW capacity was carried out. The analysis of the results and comparison of designed boiler characteristics with operating energy boilers, in which a fuel is burned in a fluidized bed, were carried out. It is shown that, with increasing the boiler capacity, the ratio of its heating power Q to the crosssectional area of furnace chamber F rises. For power-generating boiler of thermal capacity of 100 MW, the ratio is within 1.8-2.2MW/m2. The boiler efficiency exceeds 90% in the range of changes of exit gas temperature typical for such equipment.

  12. Combustion of olive cake and coal in a bubbling fluidized bed with secondary air injection

    Energy Technology Data Exchange (ETDEWEB)

    Murat Varol; Aysel T. Atimtay [Middle East Technical University, Ankara (Turkey). Department of Environmental Engineering

    2007-07-15

    Combustion performances and emission characteristics of olive cake and coal are investigated in a bubbling fluidized bed. Flue gas concentrations of O{sub 2}, CO, SO{sub 2}, NOx, and total hydrocarbons (C{sub m}H{sub n}) were measured during combustion experiments. Operational parameters (excess air ratio {lambda}, secondary air injection) were changed and variation of pollutant concentrations and combustion efficiency with these operational parameters were studied. The temperature profiles measured along the combustor column was found higher in the freeboard for olive cake than coal due to combustion of hydrocarbons mostly in the freeboard. Combustion efficiencies in the range of 83.6-90.1% were obtained for olive cake with {lambda} of 1.12-2.30. For the setup used in this study, the optimum operating conditions with respect to NOx and SO{sub 2} emissions were found as 1.2 for {lambda}, and 50 L/min for secondary air flowrate for the combustion of olive cake. 10 refs., 8 figs., 3 tabs.

  13. Combustion characteristics of spent catalyst and paper sludge in an internally circulating fluidized-bed combustor.

    Science.gov (United States)

    Roh, Seon Ah; Jung, Dae Sung; Kim, Sang Done; Guy, Christophe

    2005-09-01

    Combustion of spent vacuum residue hydrodesulfurization catalyst and incineration of paper sludge were carried out in thermo-gravimetric analyzer and an internally circulating fluidized-bed (ICFB) reactor. From the thermo-gravimetric analyzer-differential thermo-gravimetric curves, the pre-exponential factors and activation energies are determined at the divided temperature regions, and the thermo-gravimetric analysis patterns can be predicted by the kinetic equations. The effects of bed temperature, gas velocity in the draft tube and annulus, solid circulation rate, and waste feed rate on combustion efficiency of the wastes have been determined in an ICFB from the experiments and the model studies. The ICFB combustor exhibits uniform temperature distribution along the bed height with high combustion efficiency (>90%). The combustion efficiency increases with increasing reaction temperature, gas velocity in the annulus region, and solid circulation rate and decreases with increasing waste feed rate and gas velocity in the draft tube. The simulated data from the kinetic equation and the hydrodynamic models predict the experimental data reasonably well.

  14. Modeling the temperature in coal char particle during fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Vasilije Manovic; Mirko Komatina; Simeon Oka [University of Belgrade, Belgrade (Serbia)

    2008-05-15

    The temperatures of a coal char particle in hot bubbling fluidized bed (FB) were analyzed by a model of combustion. The unsteady model includes phenomena of heat and mass transfer through a porous char particle, as well as heterogeneous reaction at the interior char surface and homogeneous reaction in the pores. The parametric analysis of the model has shown that above 550{sup o}C combustion occurs under the regime limited by diffusion. The experimental results of temperature measurements by thermocouple in the particle center during FB combustion at temperatures in the range 590-710{sup o}C were compared with the model predictions. Two coals of different rank were used: lignite and brown coal, with particle size in the range 5-10 mm. The comparisons have shown that the model can adequately predict the histories of temperatures in char particles during combustion in FB. In the first order, the model predicts the influence of the particle size, coal rank (via porosity), and oxygen concentration in its surroundings. 53 refs., 6 figs., 2 tabs.

  15. Combustion of agro-waste with coal in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Atimtay, Aysel T. [Middle East Technical University, Department of Environmental Engineering, Ankara (Turkey)

    2010-02-15

    In this study, a review of the studies done on the co-combustion of some agro-waste in a bubbling fluidized bed combustor (BFBC) having an inside diameter of 102 mm and a height of 900 mm is given. The agro-waste used to investigate the co-combustion characteristics were peach and apricot stones produced as a waste from the fruit juice industry, and olive cake produced as a waste from the olive oil industry. These are typical wastes for a Mediterranean country. A lignite coal was used for co-combustion. On-line concentrations of O{sub 2}, CO, CO{sub 2}, SO{sub 2}, NO{sub x} and total hydrocarbons (C{sub m} H{sub n}) were measured in the flue gas during combustion experiments. Variations of emissions of various pollutants were studied by changing the operating parameters (excess air ratio, fluidization velocity and fuel feed rate). Temperature distribution along the bed was measured with thermocouples. Emissions were also monitored from the exhaust. Various combinations of coal and biomass mixtures were tested. During the combustion tests, it was observed that the volatile matter from the biomass quickly volatilizes and mostly burns in the freeboard. The temperature profiles along the bed and the freeboard also confirmed this phenomenon. It was found that as the volatile matter of the biomass increases, combustion takes place more in the freeboard region. Better combustion conditions occur at higher excess air ratios. The results showed that co-combustion with these three proposed biomasses lowers the SO{sub 2} and NO{sub x} emissions considerably. CO and hydrocarbon emissions are lower at the higher excess air ratios. (orig.)

  16. Design and construction of a circulating fluidized bed combustion facility for use in studying the thermal remediation of wastes

    Science.gov (United States)

    Rink, Karl K.; Kozinski, Janusz A.; Lighty, JoAnn S.; Lu, Quing

    1994-08-01

    Fluidized bed combustion systems have been widely applied in the combustion of solid fossil fuels, particularly by the power generation industry. Recently, attention has shifted from the conventional bubbling fluidized bed (BFB) to circulating fluidized bed (CFB) combustion systems. Inherent advantages of CFB combustion such as uniform temperatures, excellent mixing, high combustion efficiencies, and greater fuel flexibility have generated interest in the feasibility of CFB combustion systems applied to the thermal remediation of contaminated soils and sludges. Because it is often difficult to monitor and analyze the combustion phenomena that occurs within a full scale fluidized bed system, the need exists for smaller scale research facilities which permit detailed measurements of temperature, pressure, and chemical specie profiles. This article describes the design, construction, and operation of a pilot-scale fluidized bed facility developed to investigate the thermal remediation characteristics of contaminated soils and sludges. The refractory-lined reactor measures 8 m in height and has an external diameter of 0.6 m. The facility can be operated as a BFB or CFB using a variety of solid fuels including low calorific or high moisture content materials supplemented by natural gas introduced into the fluidized bed through auxiliary fuel injectors. Maximum firing rate of the fluidized bed is approximately 300 kW. Under normal operating conditions, internal wall temperatures are maintained between 1150 and 1350 K over superficial velocities ranging from 0.5 to 4 m/s. Contaminated material can be continuously fed into the fluidized bed or introduced as a single charge at three different locations. The facility is fully instrumented to allow time-resolved measurements of gaseous pollutant species, gas phase temperatures, and internal pressures. The facility has produced reproducible fluidization results which agree well with the work of other researchers. Minimum

  17. Data summary of municipal solid waste management alternatives. Volume 5, Appendix C, Fluidized-bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    This appendix provides information on fluidized-bed combustion (FBC) technology as it has been applied to municipal waste combustion (MWC). A review of the literature was conducted to determine: (1) to what extent FBC technology has been applied to MWC, in terms of number and size of units was well as technology configuration; (2) the operating history of facilities employing FBC technology; and (3) the cost of these facilities as compared to conventional MSW installations. Where available in the literature, data on operating and performance characteristics are presented. Tabular comparisons of facility operating/cost data and emissions data have been complied and are presented. The literature review shows that FBC technology shows considerable promise in terms of providing improvements over conventional technology in areas such as NOx and acid gas control, and ash leachability. In addition, the most likely configuration to be applied to the first large scale FBC dedicated to municipal solid waste (MSW) will employ circulating bed (CFB) technology. Projected capital costs for the Robbins, Illinois 1600 ton per day CFB-based waste-to-energy facility are competitive with conventional systems, in the range of $125,000 per ton per day of MSW receiving capacity.

  18. Characteristics modeling for supercritical circulating fluidized bed boiler working in oxy-combustion technology

    Directory of Open Access Journals (Sweden)

    Balicki Adrian

    2014-06-01

    Full Text Available Among the technologies which allow to reduce greenhouse gas emission, mainly carbon dioxide, special attention deserves the idea of ‘zeroemission’ technology based on boilers working in oxy-combustion technology. In the paper the results of analyses of the influence of changing two quantities, namely oxygen share in oxidant produced in the air separation unit, and oxygen share in oxidant supplied to the furnace chamber on the selected characteristics of a steam boiler including the degree of exhaust gas recirculation, boiler efficiency and adiabatic flame temperature, was examined. Due to the possibility of the integration of boiler model with carbon dioxide capture, separation and storage installation, the subject of the analysis was also to determine composition of the flue gas at the outlet of a moisture condensation installation. Required calculations were made using a model of a supercritical circulating fluidized bed boiler working in oxy-combustion technology, which was built in a commercial software and in-house codes.

  19. JV Task 108 - Circulating Fluidized-Bed Combustion and Combustion Testing of Turkish Tufanbeyli Coal

    Energy Technology Data Exchange (ETDEWEB)

    Douglas Hajicek; Jay Gunderson; Ann Henderson; Stephen Sollom; Joshua Stanislowski

    2007-08-15

    Two combustion tests were performed at the Energy & Environmental Research Center (EERC) using Tufanbeyli coal from Turkey. The tests were performed in a circulating fluidized-bed combustor (CFBC) and a pulverized coal-fired furnace, referred to as the combustion test facility (CTF). One of the goals of the project was to determine the type of furnace best suited to this coal. The coal is high in moisture, ash, and sulfur and has a low heating value. Both the moisture and the sulfur proved problematic for the CTF tests. The fuel had to be dried to less than 37% moisture before it could be pulverized and further dried to about 25% moisture to allow more uniform feeding into the combustor. During some tests, water was injected into the furnace to simulate the level of flue gas moisture had the fuel been fed without drying. A spray dryer was used downstream of the baghouse to remove sufficient sulfur to meet the EERC emission standards permitted by the North Dakota Department of Health. In addition to a test matrix varying excess air, burner swirl, and load, two longer-term tests were performed to evaluate the fouling potential of the coal at two different temperatures. At the lower temperature (1051 C), very little ash was deposited on the probes, but deposition did occur on the walls upstream of the probe bank, forcing an early end to the test after 2 hours and 40 minutes of testing. At the higher temperature (1116 C), ash deposition on the probes was significant, resulting in termination of the test after only 40 minutes. The same coal was burned in the CFBC, but because the CFBC uses a larger size of material, it was able to feed this coal at a higher moisture content (average of 40.1%) compared to the CTF (ranging from 24.2% to 26.9%). Sulfur control was achieved with the addition of limestone to the bed, although the high calcium-to-sulfur rate required to reduce SO{sub 2} emissions resulted in heat loss (through limestone calcination) and additional ash

  20. Co-combustion of olive cake with lignite coal in a circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Aysel T. Atimtay; Huseyin Topal [Middle East Technical University, Ankara (Turkey). Department of Environmental Engineering

    2004-05-01

    In this study, olive cake (OC) was co-fired with coal in a circulating fluidized bed of 125 mm diameter and 1800 mm height. Olive cake is a waste from olive oil production. A lignite coal that is most widely used in Turkey (Tuncbilek lignite) was used together with OC and the combustion characteristics of olive cake (OC)+coal mixture were investigated. The combustion experiments were carried out with various excess air ratios. The excess air ratio, {lambda} has been changed between 1.1 and 2.16. Temperature distribution along the bed was measured with thermocouples. On-line concentrations of O{sub 2}, SO{sub 2}, CO{sub 2}, CO, NOx and total hydrocarbons were measured in the flue gas. Various runs were conducted with each mixture of OC and lignite, namely 25, 50 and 75 wt% OC mixed with lignite. These mixtures were burned with various excess air ratios. Combustion efficiencies of olive cake and lignite coal mixtures are calculated, and the optimum conditions for operating parameters are discussed. There is a sharp decrease observed in the combustion losses due to hydrocarbons and CO as the excess air ratio increases. The minimum emissions are observed at about {lambda} = 1.5. The combustion efficiency for lignite coal changes between 82 and 98% for various excess air ratios used in the study. The results suggest that OC is good fuel that can be mixed with lignite coal for cleaner energy production in small-scale industries by using CFB. Less than 50 wt% OC concentration in the fuel mixture is suggested in order to be within the EU limits for emissions. 11 refs., 12 figs., 7 tabs.

  1. Considerations on valorization of biomass origin materials in co-combustion with coal in fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    I. Gulyurtlu; P. Abelha; H. Lopes; A. Crujeira; I. Cabrita [DEECA-INETI, Lisbon (Portugal)

    2007-07-01

    Co-combustion of biomass materials with coal is currently gaining increasing importance, in order to meet the targets on greenhouse gas emissions, defined in the Kyoto protocol. Co-firing of coal with biomass materials could be the short-term solution in reducing CO{sub 2} emissions from power stations. The work undertaken studied co-firing of meat and bone meal (MBM), olive cake and straw pellets with bituminous coals from Colombia (CC) and Poland (PC), which are commonly used in European power stations. The co-combustion studies were carried out on the pilot fluidized bed installation of INETI. Gaseous pollutants and solid concentration in flue gases and ashes from different locations were monitored. Results obtained indicate that the co-feeding of biomass materials did not present any problem and ensured stable combustion conditions and high efficiency. However, for temperatures above 800{sup o}C, bed agglomeration could be observed for all biomass species studied. Most of the combustion of biomass material, contrary to that of coal, was observed to take place in the riser where the temperature was as high as 150-250{sup o}C above that of the bed. SO{sub 2} and NOx levels were found to be lower. The emissions of dioxins could be considerable with fuels with high Cl as is the case with straw. However, mixing of fuels with high S content could lead to a strong reduction in dioxin emissions. Ashes produced from biomass combustion may be considered for further reutilization or landfilling. Other options depend on their characteristics, chemical composition and leaching behaviour. This was evaluated in this study.

  2. Effect of char preparation temperature on the evolution of nitrogen-containing species during char oxidation at fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ren, W.; Lu, J.; Yue, G. [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Beer, J.M. [Massachusetts Inst. of Technology, Boston, MA (United States). Dept. of Chemical and Fuel Engineering; Molina, A.; Sarofim, A.F. [Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical and Fuels Engineering

    2002-07-01

    Fluidized bed combustion is gaining popularity as a means to burn coal and waste fuels because the low temperatures of fluidized bed combustors generally result in low thermal nitric oxide (NO) production. However, nitrous oxide (N{sub 2}O) emissions can be relativity high and strategies must be developed to reduce emissions of this greenhouse gas. This paper presents the results of a laboratory study that examined the effect of pyrolysis temperature on the conversion of char-N to N{sub 2}O, NO and hydrogen cyanide (HCN) in fluidized bed combustion. When anthracite coal was used, an increase in the pyrolysis temperature resulted in reduced conversion of char-N to N{sub 2}O and HCN. However, the conversion to NO increased. This observation may be due to the lower hydrogen content of the chars produced at higher temperature and their lower reactivity. Other possibilities may be that the lower char reactivity for chars produced at high pyrolysis temperature may affect the reactions occurring in the boundary layer. Chars of lower reactivity in particular, may react at lower particle temperature and under high transient oxygen concentrations. A simplified char combustion representation was used to examine the effect of temperature and equivalence ratio on HCN oxidation. A reduction of equivalence ratio could explain some of the observed variations in product distribution with increased pyrolysis temperature. 19 refs., 1 tab., 5 figs.

  3. Limestone fragmentation and attrition during fluidized bed oxyfiring

    Energy Technology Data Exchange (ETDEWEB)

    Fabrizio Scala; Piero Salatino [Istituto di Ricerche sulla Combustione - CNR, Napoli (Italy)

    2010-04-15

    Attrition/fragmentation of limestone under simulated fluidized bed oxyfiring conditions was investigated by means of an experimental protocol that had been previously developed for characterization of attrition/fragmentation of sorbents in air-blown atmospheric fluidized bed combustors. The protocol was based on the use of different and mutually complementary techniques. The extent and pattern of attrition by surface wear in the dense phase of a fluidized bed were assessed in experiments carried out with a bench scale fluidized bed combustor under simulated oxyfiring conditions. Sorbent samples generated during simulated oxyfiring tests were further characterized from the standpoint of fragmentation upon high velocity impact by means of a purposely designed particle impactor. Results showed that under calcination-hindered conditions attrition and fragmentation patterns are much different from those occurring under air-blown atmospheric combustion conditions. Noteworthy, attrition/fragmentation enhanced particle sulfation by continuously regenerating the exposed particle surface. 13 refs., 8 figs.

  4. Pressurized fluidized-bed power stations. Combined cycle power plants with fluidized-bed combustion, with particular regard to emissions; Druckwirbelschicht-Kraftwerke. Kombikraftwerke mit Druckwirbelschichtfeuerung - Entwicklung fuer Braunkohle unter besonderer Beruecksichtigung des Emissionsverhaltens

    Energy Technology Data Exchange (ETDEWEB)

    Chalupnik, R.W.

    1999-07-01

    Investigations were carried out to find whether this technology is suited for lignite. The state of the art of the pressurized fluidized bed technology for coal is presented. The planning of the experimental programme is explained, including unresolved problems of thermal calculation, raw lignite transport characteristics, and emissions. Emissions of atmospheric and pressurized fluidized bed combustion of coal and lignite are compared, and the results of a theoretical investigation of the potential performance are presented. Recommendations are made for further studies, and an outlook is given to future 'second generation' concepts with higher efficiencies resulting from higher gas turbine inlet temperatures. [German] Die vorliegende Arbeit berichtet ueber die Entwicklung der Kombikraftwerkstechnik mit Druckwirbelschichttechnik. Nachdem die bisherigen Aktivitaeten weltweit fast ausschliesslich fuer den Einsatz von Steinkohle betrieben wurden, bestand die Aufgabenstellung in der Erarbeitung von ersten grundlegenden Ergebnissen, aufgrund derer zu beurteilen war, ob die Druckwirbelschichttechnik fuer den Einsatz von Braunkohle geeignet ist. Kapitel 2 stellt den Stand der Technik der Druckwirbelschichtverbrennung fuer Steinkohle dar. In Kapitel 3 wird die Planung des Versuchsprogramms erlaeutert, die sich an den offenen Fragestellungen zu den waermetechnischen Rechnungen, zum Foerderverhalten von Rohbraunkohle und zum Emissionsverhalten orientierte. In der Diskussion der Ergebnisse in Kapitel 4 erfolgt eine Einordnung und Bewertung der ermittelten Emissionswerte im Vergleich zur Wirbelschichtverbrennung unter atmosphaerischen und druckaufgeladenen Bedingungen von Stein- und Braunkohle. In Kapitel 5 schliesslich werden die Ergebnisse einer durchgefuehrten theoretischen Untersuchung zur Ermittlung des Wirkungsgradpotentials dargestellt. Ferner werden Empfehlungen fuer ergaenzende, weiterfuehrende Untersuchungen gegeben. Fuer die langfristige potentielle

  5. Synthesis of thermostable geopolymer from circulating fluidized bed combustion (CFBC) bottom ashes.

    Science.gov (United States)

    Xu, Hui; Li, Qin; Shen, Lifeng; Wang, Wei; Zhai, Jianping

    2010-03-15

    Circulating fluidized bed combustion (CFBC) bottom ashes (CBAs) are a class of calcined aluminosilicate wastes with a unique thermal history. While landfill disposal of hazardous element-containing CBAs poses serious challenge, these wastes have long been neglected as source materials for geopolymer production. In this paper, geopolymerization of ground CBAs was investigated. Reactivity of the CBAs was analyzed by respective dissolution of the ashes in 2, 5, and 10N NaOH and KOH solutions. Geopolymer pastes were prepared by activating the CBAs by a series of alkalis hydroxides and/or sodium silicate solutions. Samples were cured at 40 degrees C for 168 h, giving a highest compressive strength of 52.9 MPa. Of the optimal specimen, characterization was conducted by TG-DTA, SEM, XRD, as well as FTIR analyses, and thermal stability was determined in terms of compressive strength evolution via exposure to 800 or 1050 degrees C followed by three cooling regimes, i.e. cooling in air, cooling in the furnace, and immerging in water. The results show that CBAs could serve as favorable source materials for thermostable geopolymers, which hold a promise to replace ordinary Portland cement (OPC) and organic polymers in a variety of applications, especially where fire hazards are of great concern.

  6. Feasibility of manufacturing geopolymer bricks using circulating fluidized bed combustion bottom ash.

    Science.gov (United States)

    Chen, Chen; Li, Qin; Shen, Lifeng; Zhai, Jianping

    2012-06-01

    This paper presents a study on geopolymer bricks manufactured using bottom ash from circulating fluidized bed combustion (CFBC). The alkali activators used for synthesis were sodium silicate, sodium hydroxide, and potassium hydroxide and lithium hydroxide solutions. The study included the impact of alkali activator on compressive strength. The reaction products were analysed by XRD, FT-IR and SEM/EDS. The compressive strength of bricks was dependent on the modulus of the sodium silicate activator and the type and concentration of alkali activator. The highest compressive strength could be gained when the modulus was 1.5, and the value could reach 16.1 MPa (7 d after manufacture) and 21.9 MPa (28 d after manufacture). Under pure alkaline systems, the compressive strength was in the order of 10 M KOH > 10 M NaOH > 5 M LiOH > 5 M KOH > 5 M NaOH. Quartz was the only crystalline phase in the original bottom ash, and no new crystalline phase was found after the reaction. The main product of reaction was amorphous alkali aluminosilicate gel and a small amount of crystalline phase was also found by SEM.

  7. Low-reactive circulating fluidized bed combustion (CFBC) fly ashes as source material for geopolymer synthesis.

    Science.gov (United States)

    Xu, Hui; Li, Qin; Shen, Lifeng; Zhang, Mengqun; Zhai, Jianping

    2010-01-01

    In this contribution, low-reactive circulating fluidized bed combustion (CFBC) fly ashes (CFAs) have firstly been utilized as a source material for geopolymer synthesis. An alkali fusion process was employed to promote the dissolution of Si and Al species from the CFAs, and thus to enhance the reactivity of the ashes. A high-reactive metakaolin (MK) was also used to consume the excess alkali needed for the fusion. Reactivities of the CFAs and MK were examined by a series of dissolution tests in sodium hydroxide solutions. Geopolymer samples were prepared by alkali activation of the source materials using a sodium silicate solution as the activator. The synthesized products were characterized by mechanical testing, scanning electron microscopy (SEM), X-ray diffractography (XRD), as well as Fourier transform infrared spectroscopy (FTIR). The results of this study indicate that, via enhancing the reactivity by alkali fusion and balancing the Na/Al ratio by additional aluminosilicate source, low-reactive CFAs could also be recycled as an alternative source material for geopolymer production.

  8. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Zhongxian Cheng; Yan Cao; John Smith

    2006-09-30

    This report is to present the progress made on the project entitled ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2006 through September 30, 2006. The following activities have been completed: the steel floor grating around the riser in all levels and the three-phase power supply for CFBC System was installed. Erection of downcomers, loop seals, ash bunker, thermal expansion joints, fuel and bed material bunkers with load cells, rotary air-lock valves and fuel flow monitors is underway. Pilot-scale slipstream tests conducted with bromine compound addition were performed for two typical types of coal. The purposes of the tests were to study the effect of bromine addition on mercury oxidization. From the test results, it was observed that there was a strong oxidization effect for Powder River Basin (PRB) coal. The proposed work for next quarter and project schedule are also described.

  9. Pollutant emission characteristics of rice husk combustion in a vortexing fluidized bed incinerator

    Institute of Scientific and Technical Information of China (English)

    Feng Duan; Chiensong Chyang; Yucheng Chin; Jim Tso

    2013-01-01

    Rice husk with high volatile content was burned in a pilot scale vortexing fiuidized bed incinerator.The fluidized bed incinerator was constructed of 6 mm stainless steel with 0.45 m in diameter and 5 m in height.The emission characteristics of CO,NO,and SO2 were studied.The effects of operating parameters,such as primary air flow rate,secondary air flow rate,and excess air ratio on the pollutant emissions were also investigated.The results show that a large proportion of combustion occurs at the bed surface and the freeboard zone.The SO2 concentration in the flue gas decreases with increasing excess air ratio,while the NOx concentration shows reverse trend.The flow rate of secondary air has a significant impact on the CO emission.For a fixed primary air flowrate,CO emission decreases with the secondary air flowrate.For a fixed excess air ratio,CO emission decreases with the ratio of secondary to primary air flow.The minimum CO emission of 72 ppm is attained at the operating condition of 40% excess air ratio and 0.6 partition air ratio.The NOx and SO2 concentrations in the flue gas at this condition are 159 and 36 ppm,which conform to the EPA regulation of Taiwan.

  10. Co-combustion of peach and apricot stone with coal in a bubbling fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Atimtay, Aysel T.; Kaynak, Burcak [Department of Environmental Engineering, Middle East Technical University, Ankara 06531 (Turkey)

    2008-02-15

    In this study a bubbling fluidized bed combustor (BFBC) having an inside diameter of 102 mm and a height of 900 mm was used to investigate the co-combustion characteristics of peach and apricot stones produced as a waste from the fruit juice industry with coal. A lignite coal was used for co-combustion. On-line concentrations of O{sub 2}, CO, CO{sub 2}, SO{sub 2}, NO{sub X} and total hydrocarbons (C{sub m}H{sub n}) were measured in the flue gas during combustion experiments. Variations of emissions of various pollutants were studied by changing the operating parameters (excess air ratio, fluidization velocity, and fuel feed rate). Temperature distribution along the bed was measured with thermocouples. For co-combustion of apricot and peach fruit stones with a lignite coal, various ratios of biomass to coal ranging from 0 to 100 wt.% were tested. For the peach stone co-combustion tests, efficiencies are about 98% and for the apricot stone co-combustion tests, efficiencies ranged between 94.7% and 96.9% for 25%, 50% and 75% of apricot stone in the fuel mixture. The results of this study have shown that as the biomass ratio in the fuel mixture increases, the combustion takes place at the upper regions of the main column. This causes higher temperatures in the freeboard than the bed. Also the CO and hydrocarbon (C{sub m}H{sub n}) emissions increase as the biomass percentage increases in the fuel mixture. This causes decrease in the combustion efficiency. These results suggest that peach and apricot stones are potential fuels that can be utilized for clean energy production in small-scale fruit juice industries by using BFBC. The percentage of peach stones or apricot stones in the fuel mixture is suggested to be below 50 wt.% in order to obtain the emission limits of EU. During the design of the BFBC, one has to be careful about the volatile matter (VM) content of the biomass. For the complete combustion of the VM, longer freeboard or secondary air addition should be

  11. A pilot-plant study for destruction of PCBs in contaminated soils using fluidized bed combustion technology.

    Science.gov (United States)

    Desai, Dilip L; Anthony, Edward J; Wang, Jinsheng

    2007-08-01

    Destruction of polychlorinated biphenyls (PCBs) in contaminated soils and wastes using circulating fluidized bed combustion (CFBC) technology was studied using a pilot plant and simulated waste material. The results show that the technology is effective and particularly promising for treatment of PCB-containing materials like the toxic sludge from a large contaminated site. Destruction of the toxics in the gas phase appears to be very fast, and over 99.9999% destruction and removal efficiency can be achieved in the temperature range 875-880 degrees C. Heat transfer in the fluidized bed also appears adequate. Toxic residues in treated soil can be reduced to very low levels. Rate-controlling factors of the decontamination process are analyzed, and key issues for determination of the process conditions are discussed.

  12. Nitric oxide reduction over biomass and coal chars under fluidized bed combustion conditions: the role of thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Piero Salatino; Anna Di Somma; Roberto Solimene; Riccardo Chirone [Universita degli Studi di Napoli Federico II, Napoli (Italy). Dipartimento di Ingegneria Chimica

    2008-07-01

    The de-NOx potential of biomass-and waste-derived fuels candidate for cofiring with coal is assessed. The experimental procedure is based on operation of a bench scale fluidized bed reactor where NO-doped nitrogen is contacted with batches of the fuel. A second type of experiment has been purposely designed to assess the extent of thermodeactivation of biogenous fuels, i.e. the loss of reactivity toward the NOx-char reaction as char is annealed for pre-set times at temperatures typical of fluidized bed combustion. A simple phenomenological model is developed to shed light on the basic features of the interaction between heterogeneous char-NOx reaction and thermal annealing of the char. Results are discussed in the light of the potential exploitation of synergistic effects on NOx emission associated with cofiring with coal. 21 refs., 8 figs., 1 tab.

  13. Three phase Eulerian-granular model applied on numerical simulation of non-conventional liquid fuels combustion in a bubbling fluidized bed

    Directory of Open Access Journals (Sweden)

    Nemoda Stevan Đ.

    2016-01-01

    Full Text Available The paper presents a two-dimensional CFD model of liquid fuel combustion in bubbling fluidized bed. The numerical procedure is based on the two-fluid Euler-Euler approach, where the velocity field of the gas and particles are modeled in analogy to the kinetic gas theory. The model is taking into account also the third - liquid phase, as well as its interaction with the solid and gas phase. The proposed numerical model comprise energy equations for all three phases, as well as the transport equations of chemical components with source terms originated from the component conversion. In the frame of the proposed model, user sub-models were developed for heterogenic fluidized bed combustion of liquid fuels, with or without water. The results of the calculation were compared with experiments on a pilot-facility (power up to 100 kW, combusting, among other fuels, oil. The temperature profiles along the combustion chamber were compared for the two basic cases: combustion with or without water. On the basis of numerical experiments, influence of the fluid-dynamic characteristics of the fluidized bed on the combustion efficiency was analyzed, as well as the influence of the fuel characteristics (reactivity, water content on the intensive combustion zone. [Projekat Ministarstva nauke Republike Srbije, br. TR33042: Improvement of the industrial fluidized bed facility, in scope of technology for energy efficient and environmentally feasible combustion of various waste materials in fluidized bed

  14. Coal slurry solids/coal fluidized bed combustion by-product mixtures as plant growth media

    Science.gov (United States)

    Darmody, R.G.; Green, W.P.; Dreher, G.B.

    1998-01-01

    Fine-textured, pyritic waste produced by coal cleaning is stored in slurry settling ponds that eventually require reclamation. Conventionally, reclamation involves covering the dewatered coal slurry solids (CSS) with 1.3 m of soil to allow plant growth and prevent acid generation by pyrite oxidation. This study was conducted to determine the feasiblity of a less costly reclamation approach that would eliminate the soil cover and allow direct seeding of plants into amended CSS materials. Potential acidity of the CSS would be neutralized by additions of fluidized-bed combustion by-product (FBCB), an alkaline by-product of coal combustion. The experiment involved two sources of CSS and FBCB materials from Illinois. Birdsfoot trefoil (Lotus corniculatus L.), tall fescue (Festuca arundinacea Schreb.), and sweet clover (Melilotus officinalis (L.) Lam.) were seeded in the greenhouse into pots containing mixtures of the materials. CSS-1 had a high CaCO3:FeS2 ratio and needed no FBCB added to compensate for its potential acidity. CSS-2 was mixed with the FBCB materials to neutralize potential acidity (labeled Mix A and B). Initial pH was 5.6, 8.8, and 9.2 for the CSS-1, Mix A, and Mix B materials, respectively. At the end of the 70-day experiment, pH was 5.9 for all mixtures. Tall fescue and sweet clover grew well in all the treatments, but birdsfoot trefoil had poor emergence and survival. Elevated tissue levels of B, Cd, and Se were found in some plants. Salinity, low moisture holding capacity, and potentially phytotoxic B may limit the efficacy of this reclamation method.

  15. The influence of fine char particles burnout on bed agglomeration during the fluidized bed combustion of a biomass fuel

    Energy Technology Data Exchange (ETDEWEB)

    Scala, Fabrizio; Chirone, Riccardo [Istituto di Ricerche sulla Combustione, CNR, P.le V. Tecchio, 80-80125 Naples (Italy); Salatino, Piero [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli Federico II, P.le V. Tecchio, 80-80125 Naples (Italy)

    2003-11-15

    The combustion of biomass char in a bubbling fluidized bed is hereby addressed, with specific reference to the influence that the combustion of fine char particles may exert on ash deposition and bed agglomeration phenomena. Experiments of steady fluidized bed combustion (FBC) of powdered biomass were carried out with the aim of mimicking the postcombustion of attrited char fines generated in the fluidized bed combustion of coarse char. Experimental results showed that the char elutriation rate is much smaller than expected on the basis of the average size of the biomass powder and of the carbon loading in the combustor. Samples of bed material collected after prolonged operation of the combustor were characterized by scanning electron microscopy (SEM)-EDX analysis and revealed the formation of relatively coarse sand-ash-carbon aggregates. The phenomenology is consistent with the establishment of a char phase attached to the bed material as a consequence of adhesion of char fines onto the sand particles. Combustion under sound-assisted fluidization conditions was also tested. As expected, enhancement of fines adhesion on bed material and further reduction of the elutriation rate were observed. Experimental results are interpreted in the light of a simple model which accounts for elutriation of free fines, adhesion of free fines onto bed material and detachment of attached fines by attrition of char-sand aggregates. Combustion of both free and attached char fines is considered. The parameters of the model are assessed on the basis of the measured carbon loadings and elutriation rates. Model computations are directed to estimate the effective size and the peak temperature of char-sand aggregates. The theoretical estimates of the effective aggregate size match fairly well those observed in the experiments.

  16. Use of fluidized bed combustion by-products for liners and alkali substitutes. Technical report, March 1--May 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Paul, B.C.; Esling, S. [Southern Illinois Univ., Carbondale, IL (United States); Pisani, F. [Illinois Abandoned Mined Lands reclamation Council (United States); Wells, T. [Archer-Daniels-Midland Co., Minneapolis, MN (United States)

    1995-12-31

    Fluidized Bed Combustion of coal eliminates most emissions of S and N oxides but produces sizable volumes of a solid residue that EPA may require to be placed in capped and lined landfills. Fluidized Bed Combustors are one of the most promising growth markets for Illinois coal and imposing cap and liner requirements may make the technology uneconomic. Fluidized Bed residues are cementlike and when mixed with soil, produce a material as impermeable as the clay liners used at landfills. This project will demonstrate that the residues can be mixed with soils by regular construction equipment and used in place of clays as liner material. The demonstration cap will cover an area of 7 acres and will prevent water infiltration into acid producing material. Baseline studies of Briar Creek indicate that the water is now highly degraded by acid drainage. Construction delays have enhanced the data collected on Briar Creek by allowing monitoring to continue through major seasonal changes without any effects attributable to the FBC ash. Materials needed to place the wells and lysimeters have been obtained. A contractor will build and deliver a mobile foam generator and spray to the field to demonstrate fugitive dust control from FBC fly ash (dust problem is one key barrier to more widespread use of FBC ash).

  17. Kinetics of gasification and combustion of residues, biomass and coal in a bubbling fluidized bed; Die Kinetik der Vergasung und Verbrennung unterschiedlicher Abfaelle, Biomassen und Kohlen in der blasenbildenden Wirbelschicht

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, S.; Krumm, W. [Siegen Univ. (Gesamthochschule) (Germany). Lehrstuhl fuer Energie- und Umweltverfahrenstechnik

    1998-09-01

    The combustion and gasification characteristics of Rhenish brown coal, domestic waste, waste plastics, wood and sewage sludge were investigated in a bubbling atmospheric fluidized bed in the laboratory scale. The materials were pyrolyzed in the fluidized bed in a nitrogen atmosphere. The residual coke was combuted in the presence of oxygen with varying operating parameters or else gasified in the presence of carbon dioxide. The different materials were characterized by global combustion rates, and kinetic parameters were determined for residual coke combustion. (orig.) [Deutsch] Das Verbrennungs- und Vergasungsverhalten von Rheinischer Braunkohle, Hausmuell, Restkunststoff, Holz und Klaerschlamm wurde in einer blasenbildenden, atmosphaerischen Laborwirbelschicht untersucht. Die Einsatzstoffe wurden in der mit Stickstoff fluidisierten Wirbelschicht pyrolysiert. Der verbleibende Restkoks wurde anschliessend unter Variation der Betriebsparameter mit Sauerstoff verbrannt oder mit Kohlendioxid vergast. Die unterschiedlichen Einsatzstoffe wurden durch globale Vebrennungsraten charakterisiert. Fuer die Restkoksverbrennung wurden kinetische Parameter ermittelt. (orig.)

  18. Characterization of ashes from a 100 kWth pilot-scale circulating fluidized bed with oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.H.; Wang, C.B.; Tan, Y.W.; Jia, L.F.; Anthony, E.J. [Natural Resources Canada, Ottawa, ON (Canada)

    2011-09-15

    Oxy-fuel combustion experiments have been carried out on an oxygen-fired 100 kW(th) mini-circulating fluidized bed combustion (CFBC) facility. Coal and petroleum coke were used as fuel together with different limestones (and fixed Ca:S molar ratios) premixed with the fuel, for in situ SO{sub 2} capture. The bed ash (BA) and fly ash (FA) samples produced from this unit were collected and characterized to obtain physical and chemical properties of the ash samples. The characterization methods used included X-ray fluorescence (XRF), X-ray diffraction (XRD), char carbon and free lime analysis, thermogravimetric analysis (TGA), and surface analysis. The main purpose of this work is to characterize the CFBC ashes from oxy-fuel firing to obtain a better understanding of the combustion process, and to identify any significant differences from the ash generated by a conventional air-fired CFBC. The primary difference in the sulfur capture mechanism between atmospheric air-fired and oxy-fuel FBC, at typical FBC temperatures (similar to 850{sup o}C), is that, in the air-fired case the limestone sorbents calcine, whereas the partial pressure of CO{sub 2} in oxy-fuel FBC is high enough to prevent calcination, and hence the sulfation process should mimic that seen in pressurized FBC (PFBC). Here, the char carbon content in the fly ash was much higher than that in the bed ash, and was also high by comparison with ash obtained from conventional commercial air-firing CFBC units. In addition, measurements of the free lime content in the bed and fly ash showed that the unreacted Ca sorbent was present primarily as CaCO{sub 3}, indicating that sulfur capture in the oxy-fuel combustor occurred via direct sulfation.

  19. Combustion behaviours of tobacco stem in a thermogravimetric analyser and a pilot-scale fluidized bed reactor.

    Science.gov (United States)

    Yang, Zixu; Zhang, Shihong; Liu, Lei; Li, Xiangpeng; Chen, Hanping; Yang, Haiping; Wang, Xianhua

    2012-04-01

    Despite its abundant supply, tobacco stem has not been exploited as an energy source in large scale. This study investigates the combustion behaviours of tobacco stem in a thermogravimetric analyser (TGA) and a pilot-scale fluidized bed (FB). Combustion characteristics, including ignition and burnout index, and combustion reaction kinetics were studied. Experiments in the FB investigated the effects of different operating conditions, such as primary air flow, secondary air flow and feeding rates, on the bed temperature profiles and combustion efficiency. Two kinds of bed materials cinder and silica sand were used in FB and the effect of bed materials on agglomeration was studied. The results indicated that tobacco stem combustion worked well in the FB. When operation condition was properly set, the tobacco stem combustion efficiency reached 94%. In addition, compared to silica sand, cinder could inhibit agglomeration during combustion because of its high aluminium content.

  20. Fluidized-bed-combustion ash for the solidification and stabilization of a metal-hydroxide sludge.

    Science.gov (United States)

    Knoll, K L; Behr-Andres, C

    1998-01-01

    Fluidized-bed-combustion (FBC) ash is a by-product from a developing technology for coal-fired power plants that will economically reduce air emissions to meet requirements of the Clean Air Act. FBC ash has physical and chemical properties similar to Portland cement, but only has moderate success as a pozzolan in concrete applications due to low compressive strengths. However, FBC ash has proven effective for use as a binder for the solidification and stabilization (S/S) of metal-bearing sludges. Physical and chemical characterization procedures were used to analyze FBC ash and a metal-bearing sludge obtained from a hazardous waste treatment facility to develop 12 different S/S mix designs. The mix designs consist of four binder designs to evaluate sludge-to-binder ratios of approximately 0, 0.5, and 1. Portland cement is used as a control binder to compare unconfined compressive strengths and Toxicity Characteristic Leaching Procedure (TCLP) analyses from different ratios of the FBC ash streams: fly ash, char, and spent bed material (SBM). Compressive strengths ranging from 84 lbs per square inch (psi) to 298 psi were obtained from various mix designs containing different sludge-to-ash ratios cured for 28 days. All the mix designs passed the TCLP. Recoveries from leaching for each metal were less than 5% for most mix designs. Results of unconfined compressive strengths, TCLP, and percent recovery calculations indicate that the mix design containing approximately a 1:1 ratio of fly ash to char-and-sludge is the best mix design for the S/S of the metal-bearing sludge.

  1. Characterization of a fluidized-bed combustion ash to determine potential for environmental impact. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hassett, D.J.; Henderson, A.K.; Pflughoeft-Hassett, D.F.; Mann, M.D.; Eylands, K.E.

    1997-10-01

    A 440-megawatt, circulating fluidized-bed combustion (CFBC), lignite-fired power plant is planned for construction in Choctaw County north of Ackerman, Mississippi. This power plant will utilize Mississippi lignite from the first lignite mine in that state. Malcolm Pirnie, Inc., is working with the power plant developer in the current planning and permitting efforts for this proposed construction project. In order to accommodate Mississippi state regulatory agencies and meet appropriate permit requirements, Malcolm Pirnie needed to provide an indication of the characteristics of the by-products anticipated to be produced at the proposed plant. Since the Mississippi lignite is from a newly tapped mine and the CFBC technology is relatively new, Malcolm Pirnie contacted with the Energy and Environmental Research Center (EERC) to develop and perform a test plan for the production and characterization of ash similar to ash that will be eventually produced at the proposed power plant. The work performed at the EERC included two primary phases: production of by-products in a bench-scale CFBC unit using lignite provided by Malcolm Pirnie with test conditions delineated by Malcolm Pirnie to represent expected operating conditions for the full-scale plant; and an extensive characterization of the by-products produced, focusing on Mississippi regulatory requirements for leachability, with the understanding that return of the by-product to the mine site was an anticipated by-product management plan. The overall focus of this project was the environmental assessment of the by-product expected to be produced at the proposed power plant. Emphasis was placed on the leachability of potentially problematic trace elements in the by-products. The leaching research documented in this report was performed to determine trends of leachability of trace elements under leaching conditions appropriate for evaluating land disposal in monofills, such as returning the by-products to the mine

  2. Electrodialytic treatment for metal removal from sewage sludge ash from fluidized bed combustion

    DEFF Research Database (Denmark)

    Pazos, Marta; Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.

    2010-01-01

    Sewage sludge contains several potentially hazardous compounds such as heavy metals, PCBs, PAHs, etc. However, elements with high agricultural value (P, K or Ca) are also present. During the last years, the fluidized bed sludge combustor (FBSC) is considered an effective and novel alternative...

  3. Reactivity of iron oxide with methane in a laboratory fluidized bed : application of chemical-looping combustion

    Energy Technology Data Exchange (ETDEWEB)

    Cho, P. [Chalmers Univ. of Technology, Goteborg (Sweden). Dept. of Inorganic and Environmental Chemistry; Mattisson, T.; Lyngfelt, A. [Chalmers Univ. of Technology, Goteborg (Sweden). Dept. of Energy Conversion

    2002-07-01

    Chemical looping combustion (CLC) is a promising method for separating carbon dioxide from flue gases during combustion. A study was conducted in which cyclic reduction-oxidation experiments were conducted with synthetic oxygen carrier particles under fluidized conditions. Two interconnected fluidized beds were used as reactors in which a metal oxide was used as an oxygen carrier providing oxygen from the combustion air to the fuel. In particular, this study examined the feasibility of using iron oxide as an oxygen carrier in repeated cycles of methane and air at 950 degrees C. The advantage of CLC compared to normal combustion is that carbon dioxide can be separated from the other components of the flue gas, nitrogen and unreacted oxygen. This avoids efficiency losses and the need for costly equipment for carbon dioxide separation. The reduction rates measured in this experiment were lower than in previous tests with fixed beds due to less efficient contact between gas and particles under fluidized bed conditions. High reactivities were still observed, suggesting that the particles should have sufficient reactivity for use in the proposed CLC system. 10 refs., 1 tab., 5 figs.

  4. Experimental Study of Stabilized Soil Utilizing Circulating Fluidized Bed Combustion Desulfurization Ash with Carbide Slag and Desulfurization Gypsum

    OpenAIRE

    2015-01-01

    This paper discusses the feasibility of preparing soil stabilizer which is circulating fluidized bed combustion ash-based, supplemented with carbide slag and desulfurization gypsum, composed entirely of complete industrial wastes. The results show that CFBC ash has better pozzolanic activity than fly ash. When stabilizer total content is 10% and the ratio of CFBC ash : carbide slag : desulfurization gypsum is 7.2 : 1.8 : 1, compressive strength of stabilized soil can reach the maximum of 2.12...

  5. Combustion of gases released from peat or biomass in fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Raiko, R. [Tampere Univ. of Technology (Finland). Energy and Process Engineering

    1996-12-01

    Temperature and gas concentration experiments have been conducted to determine at what temperature carbon monoxide, methane and propane begin to react within the particulate phase of a bubbling fluidized bed. The fluidized bed reactor used in these experiments was a stainless-steel tube with an internal diameter of 50 mm surrounded by an electric heater. Two different natural quartz sands were used (d{sub p} =0.35 mm and 0.6 mm). The bed height used varied between 100 and 260 mm (in unfluidized state). A porous plate distributor, made of kaowool, was used to avoid jets appearing at the distributor. The bed was operated at incipient fluidization (u = 5.9-9 cm/s). The bed temperatures used ranged from 600 deg C to 850 deg C. It was found that carbon monoxide, methane and propane react inside a fluidized bed, but often other conditions than temperature have a considerable effect on the rate of the reaction. The critical temperature was found to be 650 deg C for propane and carbon monoxide and 700 deg C for methane. With under-stoichiometric mixture of carbon monoxide and air the heat release can be over 2.5 MW/m{sup 3} when bed temperature is 650 deg C. According to these experiments it is obvious that the reaction mechanism for carbon monoxide oxidation inside a fluidized bed differs greatly from that of gas phase only. The results of our more than 1300 test runs show clearly the varying effects of the different bed materials. Even with the same bed material totally different results can be obtained. In order to elucidate the possible changes of particle surface, microscopic and porosimetric studies was conducted with both fresh bed particles and used bed particles. Also the effect of commonly used ingredients, like limestone and dolomite, was tested. A global model for carbon monoxide oxidation inside a fluidized bed was introduced. The model was tested against measured data from the laboratory-scale fluidized bed test rig. (Abstract Truncated)

  6. Comparisons of Fly Ash and Deposition Between Air and Oxy-Fuel Combustion in Bench-Scale Fluidized Bed with Limestone Addition

    Institute of Scientific and Technical Information of China (English)

    Zhimin Zheng; Hui Wang∗; Yongjun Guo; Li Yang; Shuai Guo; Shaohua Wu

    2015-01-01

    In Oxy⁃fuel circulating fluidized bed, the residual CaO particles may react with high concentration of CO2 in flue gas to form bonded deposit on heat transfer surfaces in backpass when limestone is used as a sorbent to capture SO2 .In this paper, experiments were designed on ash deposition in a bench⁃scale fluidized bed under oxy⁃fuel and air atmosphere. A novel ash deposit sampling probe was used to simulate the tubes of tail surfaces. The chemical composition of fly ash and ash deposit from both air⁃firing and oxy⁃fuel firing cases were analyzed by Inductively Coupled Plasma⁃Atomic Emission Spectrometry ( ICP⁃AES ) and Scanning Electron Microscopy ( SEM) , respectively. The degrees of carbonation reaction of ash deposits were measured by Thermo Gravimetric Analysis. The results showed that there are distinct differences in fly ash deposition rate between oxy⁃fuel and air firing cases, and oxy⁃fuel combustion with limestone addition can affect chemical composition of fly ash and ash deposit, especially for elements of Ca, Na, K, and S. However, the carbonation reaction degree of ash deposits is found weak, which is due to the relatively low CaO content in ash deposit or not long enough of the sampling time.

  7. Characterization of Combustion and Emission of Several Kinds of Herbaceous Biomass Pellets in a Circulating Fluidized Bed Combustor

    Science.gov (United States)

    Li, S. Y.; Teng, H. P.; Jiao, W. H.; Shang, L. L.; Lu, Q. G.

    Characterizations of combustion and emission of four kinds of herbaceous biomass pellets were investigated in a 0.15 MWt circulating fluidized bed. Corn stalk, wheat stalk, cotton stalk and king grass, which are typical herbaceous biomass in China, were chosen for this study. Temperature profile, emission in flue gas and agglomeration were studied by changing the combustion temperature between 750°C and 880°C. The combustion efficiencies are in the range from 97.4% to 99.4%, which are relatively high due to the homogeneous temperature profiles and good circulating fluidization of bed material. Suitable combustion temperatures for the different herbaceous biomass are mainly depended on the emission and bed agglomeration. SO2 and HCl concentrations in flue gas are in direct proportion to the sulfur and chlorine contents of the herbaceous biomass. Agglomeration at the cyclone leg and the loop seal is the main reason for defluidization in the CFB combustor.

  8. A particulate model of solid waste incineration in a fluidized bed combining combustion and heavy metal vaporization

    Energy Technology Data Exchange (ETDEWEB)

    Mazza, G. [Facultad de Ingenieria, Departamento de Quimica, Universidad Nacional del Comahue, UE Neuquen (CONICET - UNCo), Buenos Aires 1400, 8300 Neuquen (Argentina); Falcoz, Q.; Gauthier, D.; Flamant, G. [Laboratoire Procedes Materiaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France)

    2009-11-15

    This study aims to develop a particulate model combining solid waste particle combustion and heavy metal vaporization from burning particles during MSW incineration in a fluidized bed. The original approach for this model combines an asymptotic combustion model for the carbonaceous solid combustion and a shrinking core model to describe the heavy metal vaporization. A parametric study is presented. The global metal vaporization process is strongly influenced by temperature. Internal mass transfer controls the metal vaporization rate at low temperatures. At high temperatures, the chemical reactions associated with particle combustion control the metal vaporization rate. A comparison between the simulation results and experimental data obtained with a laboratory-scale fluid bed incinerator and Cd-spiked particles shows that the heavy metal vaporization is correctly predicted by the model. The predictions are better at higher temperatures because of the temperature gradient inside the particle. Future development of the model will take this into account. (author)

  9. Fluidized bed combustion research and development in Sweden: A historical survey

    Directory of Open Access Journals (Sweden)

    Leckner Bo.

    2003-01-01

    Full Text Available A survey is made on research and development related to fluidized bed boilers in Sweden during the past two decades, where several Swedish enterprises took part: Generator, Götaverken, Stal Laval (ABB Carbon and Studsvik. Chalmers University of Technology contributed in the field of research related to emissions, heat transfer and fluid dynamics, and some results from this activity are briefly summarized.

  10. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer.

    Science.gov (United States)

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-01

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na(2)SiO(3)) and 10M sodium hydroxide (NaOH) solutions at mass ratio of Na(2)SiO(3)/NaOH of 1.5 and curing temperature of 65 degrees C for 48h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

  11. Fluidized bed gasification of the fuel fraction of municipal solid wastes; Gasificacion en lecho fluidizado de la fraccion combustible de los residuos solidos urbanos

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J.; Baldasano, J. M.; Gasso, S. [Universidad Politecnica de Cataluna. Barcelona (Spain)

    1998-12-31

    In this paper, the results obtained in the application of the fluidized-bed gasification to the treatment of solid waste with high heating value. These wastes could be valuable materials in thermo conversion processes such as gasification. The combustible fraction of municipal solid waste (MSW) composed of paper, cardboard, plastics (PET,PVC), referred as refuse derived fuel (RDF), has been considered in this work. The experimental facility consists of an air-blown gasifier operating at atmospheric pressure with a capacity of 50 kg/h. The results obtained show that the gasification of RDF allows to produce a gas with a high heating value (HHV) of 7.8 Mj/Mn3 and recovering more than 80% of the initial HHV of the waste in the cold gas. Solid residue produced in the gasification process is lower than 10% of the initial waste. (Author)

  12. Effect of freeboard extension on co-combustion of coal and olive cake in a fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Akpulat, O.; Varol, M.; Atimtay, A.T. [Middle East Technical University, Ankara (Turkey). Dept. of Environmental Engineering

    2010-08-15

    In this study, flue gas emissions and combustion efficiencies during combustion and co-combustion of olive cake and coal were investigated in a bubbling fluidized bed. Temperature distributions along the combustion column and flue gas concentrations of O{sub 2}, CO, SO{sub 2} and NOx were measured during combustion experiments. Two sets of experiments were performed to examine the effect of fuel composition, excess air ratio and freeboard extension on flue gas emissions and combustion efficiency. The results of the experiments showed that coal combustion occurs at lower parts of the combustion column whereas olive cake combustion takes place more in the freeboard region. As olive cake percentage in the fuel mixture increased, CO emissions increased, SO{sub 2} and NOx emissions decreased. Additionally, flue gas emissions could be lowered with the freeboard extension while burning biomass or biomass/coal mixtures. Noticeable decrease in CO emissions and slight increase in combustion efficiencies were observed with a column height of 1900 mm instead of 900 mm.

  13. Effect of freeboard extension on co-combustion of coal and olive cake in a fluidized bed combustor.

    Science.gov (United States)

    Akpulat, Onur; Varol, Murat; Atimtay, Aysel T

    2010-08-01

    In this study, flue gas emissions and combustion efficiencies during combustion and co-combustion of olive cake and coal were investigated in a bubbling fluidized bed. Temperature distributions along the combustion column and flue gas concentrations of O(2), CO, SO(2) and NO(x) were measured during combustion experiments. Two sets of experiments were performed to examine the effect of fuel composition, excess air ratio and freeboard extension on flue gas emissions and combustion efficiency. The results of the experiments showed that coal combustion occurs at lower parts of the combustion column whereas olive cake combustion takes place more in the freeboard region. As olive cake percentage in the fuel mixture increased, CO emissions increased, SO(2) and NO(x) emissions decreased. Additionally, flue gas emissions could be lowered with the freeboard extension while burning biomass or biomass/coal mixtures. Noticeable decrease in CO emissions and slight increase in combustion efficiencies were observed with a column height of 1900 mm instead of 900 mm.

  14. Combined cycle power plant with circulating fluidized bed combustion. Final report; Kombikraftwerk mit zirkulierender Druckwirbelschicht-Feuerung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-05-01

    In the frame of this study the concept of a combined cycle power plant with circulating fluidized bed combustion was investigated for the application of national brown coal. The aims of this study which is subsidised by the FMTR are the following: - evaluation of the experiences which have been made so far in the frame of developing circulating fluidized bed combustion; - reaching of reliable statements about the process technology, about technical risks as well as about the time frame and the costs; - developing a task for a possible realisation of a 150 MW{sub el}-pilot plant in the new Laender. The present study shows that combined cycle power plants which are fuelled by brown coal can be realised according to the principle of circulating fluidized bed combustion with a plant net efficiency of 45% for a power of 150 MW{sub el} (pilot plant) and a plant net efficiency clearly above 47% for a power of 500 MW{sub el} (reference power plant). The combination of this efficient combined cycle power plant technology with a simple brown coal gasification module, that is integrated into a combustion reactor will almost certainly lead to plant net efficiencies of 50% and more, especially for ZDSWF plants of the second generation. (orig./GL) [Deutsch] Im Rahmen dieser Studie ist fuer den Einsatz einheimischer Braunkohle das Konzept eines Kombikraftwerkes auf der Basis der zirkulierenden Druckwirbelschichtfeuerung untersucht worden. Ziele dieser mit BMFT-Mitteln gefoerderten Studie sind: - die Bewertung der bisher im Rahmen der Entwicklung von Druckwirbelschichtfeuerungen gesammelten Erfahrungen, - die Gewinnung belastbarer Aussagen zum verfahrenstechnischen Konzept, zu technischen Risiken sowie zum Zeit- und Kostenrahmen sowie - die Ausarbeitung einer Aufgabenstellung fuer die moegliche Realisierung einer 150-MW{sub el}-Pilotanlage in den neuen Bundeslaendern. Die vorliegende Studie zeigt, dass mit Braunkohle befeuerte Kombikraftwerksanlagen nach dem Prinzip der

  15. Investigation of co-combustion of coal and olive cake in a bubbling fluidized bed with secondary air injection

    Energy Technology Data Exchange (ETDEWEB)

    Aysel T. Atimtay; Murat Varol [Middle East Technical University, Ankara (Turkey). Department of Environmental Engineering

    2009-06-15

    In this study, a bubbling fluidized bed of 102 mm inside diameter and 900 mm height was used to burn olive cake and coal mixtures. Tuncbilek lignite coal was used together with olive cake for the co-combustion tests. Combustion performances and emission characteristics of olive cake and coal mixtures were investigated. Various co-combustion tests of coal with olive cake were conducted with mixing ratios of 25%, 50%, and 75% of olive cake by weight in the mixture. Operational parameters (excess air ratio, secondary air injection) were changed and variation of pollutant concentrations and combustion efficiency with these operational parameters were studied. The results were compared with that of the combustion of olive cake and coal. Flue gas concentrations of O{sub 2}, CO, SO{sub 2}, NOx, and total hydrocarbons (CmHn) were measured during combustion tests. For the setup used in this study, the optimum operating conditions with respect to NOx and SO{sub 2} emissions were found to be 1.35 for excess air ratio, and 30 L/min for secondary air flowrate for the combustion of 75 wt% olive cake and 25 wt% coal mixture. The highest combustion efficiency of 99.8% was obtained with an excess air ratio of 1.7, secondary air flow rate of 40 L/min for the combustion of 25 wt% olive cake and 75 wt% coal mixture. 11 refs., 8 figs., 3 tabs.

  16. Flow visualizing study of fluidized bed for incineration and/or coal combustion technology

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa, Mamoru [Kansai Univ., Suita, Osaka (Japan). Faculty of Engineering

    1997-02-01

    A simulated fluidized-bed heat exchanger was visualized using a neutron radiography system. The void fraction distribution and its fluctuation were obtained by means of an image processing technique. On the basis of the processed image, the mechanism of a large particle movement and the flow pattern in the tube bank immersed in the bed were investigated. Observed flow pattern in the tube bank indicated an importance of the tube arrangement on the void fraction fluctuation and thus the heat transfer around tubes. (author)

  17. Dual Fluidized Bed Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-30

    The dual fluidized bed reactor is a recirculating system in which one half of the unit operates as a steam pyrolysis device for biomass. The pyrolysis occurs by introducing biomass and steam to a hot fluidized bed of inert material such as coarse sand. Syngas is produced during the pyrolysis and exits the top of the reactor with the steam. A crossover arm, fed by gravity, moves sand and char from the pyrolyzer to the second fluidized bed. This sand bed uses blown air to combust the char. The exit stream from this side of the reactor is carbon dioxide, water and ash. There is a second gravity fed crossover arm to return sand to the pyrolysis side. The recirculating action of the sand and the char is the key to the operation of the dual fluidized bed reactor. The objective of the project was to design and construct a dual fluidized bed prototype reactor from literature information and in discussion with established experts in the field. That would be appropriate in scale and operation to measure the relative performance of the gasification of biomass and low ranked coals to produce a high quality synthesis gas with no dilution from nitrogen or combustion products.

  18. Materials problems in fluidized-bed combustion systems: effect of process variables on in-bed corrosion. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Minchener, A.J.; Rogers, E.A.; LaNauze, R.D.

    1980-08-01

    The influence of operating conditions in a coal fired fluidized bed combustor on the rate of fireside corrosion of air cooled heat exchanger tubes, with metal temperatures in the range 540/sup 0/C to 900/sup 0/C, has been investigated. Four 250 hour tests were carried out on a 0.3 m square atmospheric pressure fluidized bed combustor operating with a fluidizing velocity of 0.9 ms/sup -1/, 10 to 20% excess air and bed temperatures of 850/sup 0/C and 900/sup 0/C. The feed coal was Illinois No. 6 which was used both with and without the addition of limestones to suppress the emission of sulfur oxides. A test without the addition of limestone showed very little corrosive attack of any metal components. Tests with the addition of limestone showed a range of corrosive attack. In general, where different alloy types were exposed at the same metal temperature, the iron based austenitic steels showed a better corrosion resistance than the nickel based alloys. This result strongly supports the model for the corrosion which has been developed as a result of the earlier investigations. This model postulates that local regions of low oxygen activity exist in the system, and, in the presence of calcium sulfate, these result in the generation of high local sulfur activities. The combination of low oxygen and high sulfur activities leads to sulfidation of sensitive alloys.

  19. Experimental study on fuel oil combustion in circulating fluidized bed; Estudio experimental sobre la combustion de combustoleo en lecho fluidizado circulante

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Rangel, Ricardo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    The Instituto de Investigaciones Electricas (IIE) developed a circulating fluidized bed combustor of 0.5 thermal MW unique in its type in Latin America. The Bachelor`s thesis entitled ``Experimental Study on Fuel Oil Combustion in Circulating Fluidized Bed`` was performed operating this combustor with the purpose of determining the feasibility of burning heavy fuel oil in a stable and sustained form, as well as the effect of the addition of calcium carbonate to the combustor. The results of the experimental trials showed heavy fuel oil can be burned in a circulating fluidized bed, with low sulfur dioxide emissions. During the conduction of the experiments a sulfur retention of 43% was achieved with a Ca/S relationship of 4.5. [Espanol] El Instituto de Investigaciones Electricas (IIE) desarrollo un combustor de lecho fluidizado circulante de 0.5 MW termicos de potencia, unico en su tipo en Latinoamerica. La tesis de licenciatura titulada Estudio Experimental sobre la Combustion de Combustoleo en Lecho Fluidizado Circulante se realizo operando dicho combustor, con el proposito de determinar la factibilidad de quemar combustoleo pesado en forma estable y autosostenida, asi como la influencia que tiene la adicion de carbonato de calcio al lecho. Los resultados de los ensayos experimentales mostraron que se puede quemar combustoleo pesado en un lecho fluidizado circulante, con bajas emisiones de bioxido de azufre. Durante la experimentacion se logro una retencion de azufre del 43%, con una relacion Ca/S de 4.5.

  20. Development and application of a high-temperature sampling probe for burning chamber conditions of fluidized-bed combustion; Korkean laempoetilan naeytteenottosondin kehittaeminen ja soveltaminen leijukerrospolton tulipesaeolosuhteisiin

    Energy Technology Data Exchange (ETDEWEB)

    Larjava, K.; Paerkkae, M.; Jormanainen, P.; Roine, J.; Paakkinen, K. [VTT Chemistry, Espoo (Finland); Linna, V. [VTT Energy, Jyvaeskylae (Finland)

    1996-12-01

    A sampling probe for the burning chamber conditions of fluidized-bed combustion will be developed in this project. The probe will be suitable for sampling vaporous heavy and alkali metals and other condensing compounds (e.g. chlorides) as well combustion gases and alternatively also flue gas particles at high temperatures. The knowledge gained with the probe will help understanding, developing and modeling combustion processes and will thus aid the manufacturers of the boilers. (author)

  1. Experimental Study of Stabilized Soil Utilizing Circulating Fluidized Bed Combustion Desulfurization Ash with Carbide Slag and Desulfurization Gypsum

    Directory of Open Access Journals (Sweden)

    Dezhi Shao

    2015-01-01

    Full Text Available This paper discusses the feasibility of preparing soil stabilizer which is circulating fluidized bed combustion ash-based, supplemented with carbide slag and desulfurization gypsum, composed entirely of complete industrial wastes. The results show that CFBC ash has better pozzolanic activity than fly ash. When stabilizer total content is 10% and the ratio of CFBC ash : carbide slag : desulfurization gypsum is 7.2 : 1.8 : 1, compressive strength of stabilized soil can reach the maximum of 2.12 MPa at the age of 28 d of curing. Stabilizer can meet the strength requirements of cement-soil mixing pile composite foundation and cement-soil mixing pile waterproof curtain.

  2. Combustion characteristics of paper mill sludge in a lab-scale combustor with internally cycloned circulating fluidized bed.

    Science.gov (United States)

    Shin, D; Jang, S; Hwang, J

    2005-01-01

    After performing a series of batch type experiments using a lab-scale combustor, consideration was given to the use of an internally cycloned circulating fluidized bed combustor (ICCFBC) for a paper mill sludge. Operation parameters including water content, feeding mass of the sludge, and secondary air injection ratio were varied to understand their effects on combustion performance, which was examined in terms of carbon conversion rate (CCR) and the emission rates of CO, C(x)H(y) and NO(x). The combustion of paper mill sludge in the ICCFBC was compared to the reaction mechanisms of a conventional solid fuel combustion, characterized by kinetics limited reaction zone, diffusion limited reaction zone, and transition zone. The results of the parametric study showed that a 35% water content and 60 g feeding mass generated the best condition for combustion. Meanwhile, areal mass burning rate, which is an important design and operation parameter at an industrial scale plant, was estimated by a conceptual equation. The areal mass burning rate corresponding to the best combustion condition was approximately 400 kg/hm(2) for 35% water content. The secondary air injection generating swirling flow enhanced the mixing between the gas phase components as well as the solid phase components, and improved the combustion efficiency by increasing the carbon conversion rate and reducing pollutant emissions.

  3. Ash and heavy metals in fluidized-bed combustion of wood wastes; Tuhka ja raskasmetallit puuperaeisen jaetteen kerrosleijupoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Kaessi, T.; Aittoniemi, P. [IVO Power Engineering, Vantaa (Finland); Kauppinen, E.; Latva-Somppi, J.; Kurkela, J. [VTT Chemical Technology, Espoo (Finland); Partanen, J. [IVO Technology Centre, Vantaa (Finland)

    1997-10-01

    Ash formation and deposition mechanisms during co-combustion of pulp mill sludge and bark in industrial bubbling fluidized bed (BFB) combustor have been studied. Similar fuels were used in a bench-scale BFB for co-combustion of sludge and bark pellets and comparative studies with separate combustion of these fuels. Results indicated that in industrial scale unit significant fraction of ash had vaporization. About 14 mass-% of the total fly ash was found in the particle size below 0.2 {mu}m. The vaporized species consisted of potassium (K), sulfur (S), chlorine (Cl) and also of minor quantities of sodium (Na). In the benchscale similar vaporization fractions during co-combustion were measured, about 11 mass-%. During the combustion of bark this ratio, about 20 mass-%, was higher than during sludge combustion. The vaporized ash fraction was in the case of dried sludge combustion about 7 mass-%, but with wet sludge the vaporization rate was remarkably lower, about 1-2 mass-%. An increase in the bed temperature increased also ash vaporization. Test run period without combustion at elevated temperatures produced very low quantities of vaporized ash. The vaporized species in bench-scale test during bark pellet combustion were K, S and Cl, for sludge combustion also Na was clearly detected. No condensation of the vaporized species in bed area or furnace walls was observed. Bed defluidization was studied in the bench-scale unit. During bark pellet combustion the bed-agglomeration proceeded via small ash particle, below 2 {mu}m, coating on sand particle surface and consequent bonding between the ash layers. In the case of sludge combustion the accumulation of large ash particles and sintering of these porous agglomerates was observed to cause bed coarsening and defluidization. (orig.)

  4. NO{sub x} formation and destruction in circulating fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Munts, V.A.; Lecomtseva, U.G.; Baskakov, A.P.; Putrick, S.B. [Ural State Technical Univ., Ekaterinburg (Russian Federation)

    2002-07-01

    In general, nitrogen oxides are formed in circulating fluidized bed combustors (CFBC) because of fuels that contain nitrogen. This paper describes how nitrogen oxide (NO{sub x}) is formed during the coal burning process. Two consecutive reactions occur. The first is the homogeneous oxidation of nitrogen-containing volatiles followed by the heterogeneous oxidation of char-bound nitrogen on the char surface. Kinetic constants of the oxidation reaction for nitrogen-containing volatile species were also determined for nitrogen contained in a coke residue. The rate of NO{sub x} reduction on the surface of char particles was also measured to calculate NO{sub x} concentrations in CFBC. It was determined that the estimated fraction of char-bound nitrogen converted into NO{sub x}, depends on the nitrogen content of the fuel and on the ratio of rate constants of nitrogen and carbon oxidation. 10 refs., 1 tab., 4 figs.

  5. Use of fluidized bed combustion by-products for liners and alkali substitutes. Technical report, December 1, 1994--February 28, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Paul, B.C.; Esling, S. [Southern Illinois Univ., Carbondale, IL (United States); Pisani, F. [Illinois Abandoned Mined Lands Reclamation Council, IL (United States); Wells, T. [Archer-Daniels-Midland Co., Minneapolis, MN (United States)

    1996-03-01

    Fluidized Bed Combustion (FBC) of coal eliminates most emissions of sulfur and nitrogen oxides, but produces sizable volumes of a solid residue that EPA may require to be placed in capped and lined landfills. Fluidized Bed Combustors are one of the most promising growth markets for Illinois coal and imposing cap and liner requirements would render the technology economically inviable. Fluidized Bed residues are cement-like and when mixed with soil produce a material as impermeable as the clay liners used at landfills. This project will demonstrate that Fluidized Bed Combustion Residues can be mixed with soils by regular construction equipment and used in place of clays as a liner material. The demonstration cap will cover an area of seven acres, and will prevent water infiltration into acid producing material. Baseline studies of Briar Creek indicate that the water is now highly degraded by acid drainage. Construction delays have enhanced the data collected on Briar Creek by allowing monitoring to continue through major seasonal changes without any effects attributable to the FBC ash. The materials needed to place the wells and lysimeters as soon as the weather improves this spring have been purchased and delivered. Also experiments suggest that it may be possible to control dust by foam conditioning the FBC ash at the power station.

  6. A circulating fluidized bed combustor system with inherent CO{sub 2} separation : application of chemical looping combustion

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, E.; Lyngfelt, A.; Mattisson, T.; Johnsson, F. [Chalmers Univ. of Technology, Goteborg (Sweden). Dept. of Energy Conversion

    2002-07-01

    This paper presents a method to achieve carbon dioxide-free combustion while still using fossil fuels as the energy source. The method is based on separation and disposal of carbon dioxide from combustion. Chemical looping combustion (CLC) uses metal oxide particles to transfer oxygen from air to a gaseous fuel. The gaseous fuel is combusted with inherent separation of carbon dioxide (a greenhouse gas) from the flue gas. A bubbling bed below the downcomer in the circulating fluidized bed acts as a fuel reactor where oxygen is transferred from the metal oxide to the fuel. The riser acts as the air reactor where the oxygen from the air oxidizes the previously reduced metal oxide. The fuel and combustion air are not in direct contact. The conceptual design of the pressurized CLC system was examined in order to map suitable conditions for the riser and to achieve sufficient net solids flux between the reactors and the bed mass in the riser. A range of possible operating conditions were suggested. The operating conditions depend on the reaction properties of the oxygen carriers. 16 refs., 1 tab., 8 figs.

  7. Functionalization of polymers using an atmospheric plasma jet in a fluidized bed reactor and the impact on SLM-processes

    Energy Technology Data Exchange (ETDEWEB)

    Sachs, M., E-mail: karl-ernst.wirth@fau.de; Schmitt, A., E-mail: karl-ernst.wirth@fau.de; Schmidt, J., E-mail: karl-ernst.wirth@fau.de; Peukert, W., E-mail: karl-ernst.wirth@fau.de; Wirth, K-E, E-mail: karl-ernst.wirth@fau.de [Institute of Particle Technology, University of Erlangen-Nuremberg (Germany)

    2014-05-15

    In order to improve thermoplastics (e.g. Polyamide, Polypropylene and Polyethylene) for Selective Laser Beam Melting (SLM) processes a new approach to functionalize temperature sensitive polymer powders in a large scale is investigated. This is achieved by combining an atmospheric pressure plasma jet and a fluidized bed reactor. Using pressurized air as the plasma gas, radicals like OH* are created. The functionalization leads to an increase of the hydrophilicity of the treated polymer powder without changing the bulk properties. Using the polymers in a SLM process to build single layers of melted material leads to an improvement of the melted layers.

  8. Modeling of fluidized-bed combustion of coal: Phase II, final reports. Volume 1. Model evolution and development

    Energy Technology Data Exchange (ETDEWEB)

    Louis, J.F.; Tung, S.E.

    1980-10-01

    The Energy Laboratory of the Massachusetts Institute of Technology (M.I.T.), under Department of Energy (DOE) sponsorship, has been engaged in the development of a comprehensive mechanistic model of Fluidized Bed Combustors (FBC). The primary aims of this modeling effort are the generation and to the extent possible, validation of an analytical framework for the design and scale-up of fluidized bed combustors. In parallel with this modeling effort, M.I.T. also embarked upon the development of an FBC-Data Base Management System (FBC-DBMS) aimed at facilitating the coordination, interpretation and utilization of the experimental data that are or will become available from diverse sources, as well as in the identification of areas of large uncertainty or having a paucity of experimental results. The synergistic operation of the FBC-Model and FBC-Data Base promises to offer a powerful tool for the design and optimization of FBC's and represents the ultimate goal of the M.I.T. effort. The modeling effort was initially focused upon evaluation and application of state-of-the-art models. The initial system model was divided into five basic components: fluid dynamics, combustion, sulfur capture, heat transfer and emissions. Due to the technical complexity of modeling FBC operation and the initial primitive nature of models for these components, it was deemed necessary to be able to incorporate evolutionary improvements in understanding and correlating FBC phenomena: the M.I.T. system model is, therefore, modular in nature, i.e., each sub-model can be replaced by an updated or equivalent sub-model without necessitating reprogramming of the entire system model.

  9. Co-firing of pine chips with Turkish lignites in 750kWth circulating fluidized bed combustion system.

    Science.gov (United States)

    Atimtay, Aysel T; Kayahan, Ufuk; Unlu, Alper; Engin, Berrin; Varol, Murat; Olgun, Hayati; Atakul, Husnu

    2017-01-01

    Two Turkish lignites which have different sulfur levels (2-2.9% dry) and ash levels (17-25% dry) were combusted with a Turkish forest red pine chips in a 750kW-thermal capacity circulating fluidized bed combustor (CFBC) system. The combustion temperature was held at 850±50°C. Flue gas emissions were measured by Gasmet DX-4000 flue gas analyzer. Two lignites were combusted alone, and then limestone was added to lignites to reduce SO2 emissions. Ca/S=3 was used. 30% percent of red pine chips were added to the lignites for co-firing experiments without limestone in order to see the biomass effects. The results showed that with limestone addition SO2 concentration was reduced below the limit values for all lignites. CO emissions are high at low excess air ratios, gets lower as the excess air ratio increases. During co-firing experiments the temperature in the freeboard was 100-150°C higher as compared to coal combustion experiments.

  10. Engineering systems analysis of pressurized fluidized-bed-combustion power systems

    Energy Technology Data Exchange (ETDEWEB)

    Graves, R.L.; Griffin, F.P.; Lackey, M.E.

    1982-04-01

    This effort was conducted to provde supporting data for the research and development program on pressurized fluidized bed combustor (PFBC) systems being continued under the auspices of the Office of Coal Utilization of DOE. This report deals with the first phase of the effort, designated Task 1, which was scoped to be a somewhat broad review of PFBC technology and an analysis to determine its potential and sensitivity to key development needs. Background information pertaining to the application of PFBC to the market for coal-fired technology is included. The status of development is reviewed and the deficiencies in data are identified. Responses to a survey of PFBC developers are reviewed with emphasis on the high risk areas of the PFBC concept. Some of these problems are: uncertainty of life of gas turbine components; lack of demonstration of load following; and hot solids handling. Some high risk areas, such as the gas cleanup or gas turbine systems, can be relieved by reducing the severity of design conditions such as the turbine inlet temperature. Alternate turbine designs or plant configurations are also possible solutions. Analyses were performed to determine whether the advantages held by PFBC systems in cost, efficiency, and emissions would be nullified by measures taken to reduce risk. In general, the results showed that the attractive features of the PFBC could be preserved.

  11. The influence of temperature on limestone sulfation and attrition under fluidized bed combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Montagnaro, Fabio [Dipartimento di Chimica - Universita degli Studi di Napoli Federico II, Complesso Universitario del Monte di Sant' Angelo, 80126 Napoli (Italy); Salatino, Piero [Istituto di Ricerche sulla Combustione - CNR, Piazzale Vincenzo Tecchio 80, 80125 Napoli (Italy); Dipartimento di Ingegneria Chimica - Universita degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio 80, 80125 Napoli (Italy); Scala, Fabrizio [Istituto di Ricerche sulla Combustione - CNR, Piazzale Vincenzo Tecchio 80, 80125 Napoli (Italy)

    2010-04-15

    The influence of temperature on attrition of two limestones during desulfurization in a fluidized bed reactor was investigated. Differences in the microstructure of the two limestones were reflected by a different thickness of the sulfate shell formed upon sulfation and by a different value of the ultimate calcium conversion degree. Particle attrition and fragmentation were fairly small under moderately bubbling fluidization conditions for both limestones. An increase of temperature from 850 C to 900 C led to an increase of the attrition rate, most likely because of a particle weakening effect caused by a faster CO{sub 2} evolution during calcination. This weakening effect, however, was not sufficiently strong to enhance particle fragmentation in the bed. The progress of sulfation, associated to the build-up of a hard sulfate shell around the particles, led in any case to a decrease of the extent of attrition. Sulfation at 900 C was less effective than at 850 C, and this was shown to be related to the porosimetric features of the different samples. (author)

  12. Nucla circulating atmospheric fluidized bed demonstration project. Quarterly technical progress report, October--December 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-31

    During the fourth quarter of 1990, steady-state performance testing at the Nucla Circulating Fluidized Bed (CFB) resumed under sponsorship of the US Department of Energy. Co-sponsorship of the Demonstration Test Program by the Electric Power Research Institute (EPRI) was completed on June 15, 1990. From October through December, 1990, Colorado-Ute Electric Association (CUEA) completed a total of 23 steady-state performance tests, 4 dynamic tests, and set operating records during November and December as the result of improved unit operating reliability. Highlight events and achievements during this period of operation are presented.

  13. Nitrogen evolution during the co-combustion of hydrothermally treated municipal solid waste and coal in a bubbling fluidized bed.

    Science.gov (United States)

    Lu, Liang; Jin, Yuqi; Liu, Hongmei; Ma, Xiaojun; Yoshikawa, Kunio

    2014-01-01

    Nitrogen evolution was studied during the co-combustion of hydrothermally treated municipal solid wastes (HT MSW) and coal in a bubbling fluidized bed (BFB). HT MSW blending ratios as 10%, 20% and 30% (wt.%) were selected and tested at 700, 800, 900 °C. Emissions of NO and N2O from blends were measured and compared with the results of mono-combustion trials. Moreover, concentrations of precursors like NH3 and HCN were also quantified. The results are summarized as follows: NO emissions were predominant in all the cases, which rose with increasing temperature. The blending of HT MSW contributed to the NO reduction. N2O emissions decreased with temperature rising and the blending of HT MSW also presented positive effects. At 30% HT MSW addition, both NO and N2O emissions showed the lowest values (391.85 ppm and 55.33 ppm, respectively at 900 °C). For the precursors, more HCN was detected than NH3 and both played important roles on the gas side nitrogen evolution.

  14. An Experimental Study on Axial Temperature Distribution of Combustion of Dewatered Poultry Sludge in Fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Abbas A.H.

    2016-01-01

    Full Text Available A laboratory scale bubbling fluidized bed combustor was designed and fabricated to study the combustion of dewatered poultry sludge at different operational parameters. This paper present a study on the influence of equivalent ratio, secondary to primary air ratio and the fuel feed rate on the temperature distribution along the combustor. The equivalent ratio has been changed between 0.8 to 1.4% under poultry sludge feed rate of 10 kg/h and from 0.8 to 1 under poultry sludge feed rate of 15 kg/h. The secondary to primary air ratio was varied from 0.1 to 0.5 at 0.65 m injection height and 1.25 equivalent ratio. The results showed that these factors had a significant influence on the combustion characteristics of poultry sludge. The temperature distribution along the combustor was found to be strongly dependent on the fuel feed rate and the equivalent ratio and it increased when these two factors increased. However, the secondary air ratio increased the temperature in the lower region of the combustor while no significant effect was observed at the upper region of the combustor. The results suggested that the poultry sludge can be used as a fuel with high thermal combustor efficiency.

  15. Circulating fluidized bed combustion product addition to acid soil: alfalfa (Medicago sativa L.) composition and environmental quality.

    Science.gov (United States)

    Chen, Liming; Dick, Warren A; Kost, David

    2006-06-28

    To reduce S emissions, petroleum coke with a high concentration of S was combusted with limestone in a circulating fluidized bed (CFB) boiler. The combustion process creates a bed product that has potential for agricultural uses. This CFB product is often alkaline and enriched in S and other essential plant nutrients, but also contains high concentrations of Ni and V. Agricultural land application of CFB product is encouraged, but little information is available related to plant responses and environmental impacts. CFB product and agricultural lime (ag-lime) were applied at rates of 0, 0.5, 1.0, and 2.0 times the soil's lime requirement (LR) to an acidic soil (Wooster silt loam). The 2.0x LR application rate of CFB product was equivalent to 67.2 Mg ha(-1). Alfalfa yield was increased 4.6 times by CFB product and 3.8 times by ag-lime compared to untreated control. Application of CFB product increased the concentration of V in soil and alfalfa tissue, but not in soil water, and increased the concentration of Ni in soil and soil water, but not in alfalfa tissue. However, these concentrations did not reach levels that might cause environmental problems.

  16. Emission characteristics of co-combustion of sewage sludge with olive cake and lignite coal in a circulating fluidized bed.

    Science.gov (United States)

    Toraman, Oner Yusuf; Topal, Hüseyin; Bayat, Oktay; Atimtay, Aysel T

    2004-01-01

    In this study, a circulating fluidized bed (CFB) of 125 mm diameter and 1800mm height was used to find the combustion characteristics of sewage sludge (SS) produced in Turkey. Sludge + olive cake, and sludge + lignite coal mixtures were burned separately. Various sludge-to-lignite coal and sludge-to-olive cake ratios (5/95, 10/90, 15/85, 20/80) were tried. On-line concentrations of major components (O2, SO2, CO2, CO, NOx, CmHn) were measured in the flue gas, as well as temperature and pressure distributions along the bed. Combustion efficiencies of sludge + olive cake and sludge + lignite coal mixtures were calculated, and the optimum conditions for operating parameters were discussed. The results have shown that the combustion mainly takes place in the upper regions of the main column where the temperature reaches 900 degrees C. SS + Coal burn in the CFB with an efficiency of 95.14% to 96.18%, which is considered to be quite good. When burning sludge mixed with olive cake, appreciable amounts of CO and unburned hydrocarbons are formed and the combustion efficiency drops to 92.93%. CO and CmHn emissions are lower when lignite coal is mixed with various amounts of SS than the emissions when the coal is burned alone. As the %SS is increased in the fuel mixture, the SO2 emission decreases. NOx emissions are slightly higher. When burning sludge mixed with olive cake, SO2 and NOx emissions are slightly higher. CO and CmHn emissions decrease sharply when SS is mixed with 5%wt. olive cake. With increasing sludge ratio these emissions increase due to the unburned hydrocarbons. As a result of this study, it is believed that SS can be burned effectively in a CFBC together with other fuels, especially with olive cake (OC). OC will be a good additive fuel for the combustion of lower quality fuels.

  17. Functionalization of polymer powders for SLS-processes using an atmospheric plasma jet in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sachs, Marius; Schmitt, Adeliene; Schmidt, Jochen; Peukert, Wolfgang; Wirth, Karl-Ernst [Institute of Particle Technology, Friedrich-Alexander-University Erlangen-Nuremberg (Germany)

    2015-05-22

    Recently additive manufacturing processes such as selective laser sintering (SLS) of polymers have gained more importance for industrial applications [1]. Tailor-made modification of polymers is essential in order to make these processes more efficient and to cover the industrial demands. The so far used polymer materials show weak performance regarding the mechanical stability of processed parts. To overcome this limitation, a new route to functionalize the surface of commercially available polymer particles (PA12; PE-HD; PP) using an atmospheric plasma jet in combination with a fluidized bed reactor has been investigated. Consequently, an improvement of adhesion and wettability [2] of the polymer surface without restraining the bulk properties of the powder is achieved. The atmospheric plasma jet process can provide reactive species at moderate temperatures which are suitable for polymer material. The functionalization of the polymer powders improves the quality of the devices build in a SLS-process.

  18. Development of Methane and Nitrous Oxide Emission Factors for the Biomass Fired Circulating Fluidized Bed Combustion Power Plant

    Directory of Open Access Journals (Sweden)

    Chang-Sang Cho

    2012-01-01

    Full Text Available This study makes use of this distinction to analyze the exhaust gas concentration and fuel of the circulating fluidized bed (CFB boiler that mainly uses wood biomass, and to develop the emission factors of Methane (CH4, Nitrous oxide (N2O. The fuels used as energy sources in the subject working sites are Wood Chip Fuel (WCF, RDF and Refused Plastic Fuel (RPF of which heating values are 11.9 TJ/Gg, 17.1 TJ/Gg, and 31.2 TJ/Gg, respectively. The average concentrations of CH4 and N2O were measured to be 2.78 ppm and 7.68 ppm, respectively. The analyzed values and data collected from the field survey were used to calculate the emission factor of CH4 and N2O exhausted from the CFB boiler. As a result, the emission factors of CH4 and N2O are 1.4 kg/TJ (0.9–1.9 kg/TJ and 4.0 kg/TJ (2.9–5.3 kg/TJ within a 95% confidence interval. Biomass combined with the combustion technology for the CFB boiler proved to be more effective in reducing the N2O emission, compared to the emission factor of the CFB boiler using fossil fuel.

  19. Feasibility study on solidification of municipal solid waste incinerator fly ash with circulating fluidized bed combustion coal fly ash.

    Science.gov (United States)

    Liu, Wenshi; Hou, Haobo; Zhang, Chuhao; Zhang, Dajie

    2009-05-01

    The objective of this study was to assess the feasibility of solidification of municipal solid waste incinerator (MSWI) fly ash with circulation fluidized bed combustion (CFBC) fly ash, which is unsuitable as a cement replacement due to its high amounts of carbon, lime and anhydrite. The solidification process was conducted on samples prepared from MSWI fly ash, binders (cement clinkers and CFBC fly ash were mixed at two replacement ratios) and water (water/solid weight ratio = 0.4), among which the MSWI fly ash replaced each binder at the ratio of 0, 20, 40, 60 and 80% by dry weight. The samples were subjected to compressive strength tests and Toxicity Characteristic Leaching Procedure and the results showed that all solidified MSWI fly ash can meet the landfill standard imposed by US EPA after 28 days of curing. Micro-analysis (X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectrophotometry) revealed that the main hydrate products were C-S-H gel and ettringite, which have a positive effect on heavy metals retention. Therefore, this method provides a possibility to achieve a cheap and effective solution for MSWI fly ash management and use for CFBC fly ash.

  20. Development of methane and nitrous oxide emission factors for the biomass fired circulating fluidized bed combustion power plant.

    Science.gov (United States)

    Cho, Chang-Sang; Sa, Jae-Hwan; Lim, Ki-Kyo; Youk, Tae-Mi; Kim, Seung-Jin; Lee, Seul-Ki; Jeon, Eui-Chan

    2012-01-01

    This study makes use of this distinction to analyze the exhaust gas concentration and fuel of the circulating fluidized bed (CFB) boiler that mainly uses wood biomass, and to develop the emission factors of Methane (CH(4)), Nitrous oxide (N(2)O). The fuels used as energy sources in the subject working sites are Wood Chip Fuel (WCF), RDF and Refused Plastic Fuel (RPF) of which heating values are 11.9 TJ/Gg, 17.1 TJ/Gg, and 31.2 TJ/Gg, respectively. The average concentrations of CH(4) and N(2)O were measured to be 2.78 ppm and 7.68 ppm, respectively. The analyzed values and data collected from the field survey were used to calculate the emission factor of CH(4) and N(2)O exhausted from the CFB boiler. As a result, the emission factors of CH(4) and N(2)O are 1.4 kg/TJ (0.9-1.9 kg/TJ) and 4.0 kg/TJ (2.9-5.3 kg/TJ) within a 95% confidence interval. Biomass combined with the combustion technology for the CFB boiler proved to be more effective in reducing the N(2)O emission, compared to the emission factor of the CFB boiler using fossil fuel.

  1. Properties of Concrete Incorporating Bed Ash from Circulating Fluidized Bed Combustion and Ground Granulates Blast-furnace Slag

    Institute of Scientific and Technical Information of China (English)

    CHENG An; HSU Hui-Mi; CHAO Sao-Jeng

    2011-01-01

    The properties of concrete incorporating circulating fluidized bed combustion (CFBC) bed ash and ground granulates blast-furnace slag (GGBS) were studied. Compressive strength,drying shrinkage, mercury intrusion porosimetry (MIP), scanning electronic microscopy (SEM), and X-ray diffraction (XRD) of concrete samples containing CFBC bed ash and GGBS were used. This work used initial surface absorption test (ISAT) and rapid chloride penetration test (RCPT) on concrete to measure the absorption and the ability of concrete to resist chloride ion characteristics for different concrete samples containing CFBC bed ash and GGBS. Open circuit potential (OCP), direct current polarization resistance were obtained to evaluate rebar corrosion. The CFBC bed ash was X-ray amorphous and consist of SiO2, A12O3 and CaO compounds. As the replacement of CFBC for sand increases, the rate of initial surface absorption (ISA) increases but compressive strength decreases.When the content of CFBC bed ash replacement for sand maintains constant, the replacement of GGBS for cement increases, compressive strength increases but the rate of ISA decreases. Chloride and corrosion resistance of rebar significantly improve by utilizing a proper amount of CFBC bed ash and GGBS in concrete.

  2. Regenerative Portland cement sorbents for fluidized-bed combustion of coal

    Energy Technology Data Exchange (ETDEWEB)

    Albanese, A S; Sethi, D; Steinberg, M

    1980-01-01

    Portland cements are commercially available construction materials that contain high concentrations of calcium silicates. The silicates are highly reactive towards SO/sub 2/ at temperatures and pressures encountered in atmospheric and pressurized FBC's. Of the Portland cements tested, PC III appears to have the highest sulfation capacity when sulfated by SO/sub 2/ at FBC conditions. A thermodynamic analysis of the sulfation of calcium silicates indicates that they are capable of reducing the concentration of SO/sub 2/ in FBC combustion gases to within the current EPA emission limits. The optimum temperature for sulfation of 16/20 mesh PC III pellets is about 1000/sup 0/C in comparison to about 875/sup 0/ for natural limestones. The higher observed optimum temperature is an advantage because combustion and power cycle efficiencies tend to increase as bed temperature increases. The reactions for regenerating sulfated calcium silicates are similar to those for regenerating calcium sulfate. However, the equilibrium partial pressures of SO/sub 2/ in the reductive decomposition of sulfated silicates are much higher than for sulfate lime. This implies that higher SO/sub 2/ concentrations will be attainable in the regenerator off-gas which will result in more economical conversion of SO/sub 2/ to sulfur or sulfuric acid. The sulfation capacity and regeneration efficiency of PC III pellets do not deteriorate with repeated sulfation/regeneration cycling. This indicates that PC III pellets are suitable for use in regenerative systems. The sulfation capacity of PC III is independent of pressure up to at least 10 atm.

  3. Chemical and toxicological characterization of organic constituents in fluidized-bed and pulverized coal combustion: a topical report

    Energy Technology Data Exchange (ETDEWEB)

    Chess, E.K.; Later, D.W.; Wilson, B.W.; Harris, W.R.; Remsen, J.F.

    1984-04-01

    Coal combustion fly ash from both conventional pulverized coal combustion (PCC) and fluidized-bed combustion (FBC) have been characterized as to their organic constituents and microbial mutagenic activity. The PCC fly ash was collected from a commercial utility generating plant using a low sulfur coal. The FBC fly ash was from a bench-scale developmental unit at the Grand Forks Energy Technology Center. Bulk samples of each fly ash were extracted using benzene/methanol and further separated using high performance liquid chromatography (HPLC). Subfractions from the HPLC separation were analyzed by gas chromatography using both element-specific nitrogen-phosphorus detectors and flame ionization detectors. Microbial mutagenicity assay results indicated that the crude organic extracts were mutagenic, and that both the specific activity and the overall activity of the PCC material was greater than that of the FBC material. Comparison of results from assays using S. typhimurium, TA1538NR indicated that nitrated polycyclic aromatic compounds (PAC) were responsible for much of the mutagenic activity of the PCC material. Similar results were obtained for assays of the FBC organic extract with standard and nitroreductase-deficient strains of S. typhimurium, TA100 and TA1538. Mutagenically active HPLC fractions were analyzed using high resolution gas chromatography (HRGC) and GC mass spectrometry (GC/MS), as well as probe inlet low and high resolutions MS. The discovery and identification of nitrated, oxygenated PAC are important because the presence of both nitro and/or keto functionalities on certain PAC has been shown to confer or enhance mutagenic activity.

  4. Characterization of limestone reactivity with SO{sub 2} and sulfur capture modelling under fluidized bed combustion conditions; Bestaemning av kalkstensreaktivitet med avseende paa SO{sub 2} och modellering av avsvavling foer foerbraenning i fluidiserad baedd

    Energy Technology Data Exchange (ETDEWEB)

    Mattisson, T. [Chalmers Univ. of Technology and Univ. of Goeteborg, Goeteborg (Sweden). Dept. of Inorganic Chemistry; Lyngfelt, A. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy Conversion

    1996-12-01

    During combustion of fossil fuels, SO{sub 2} is released to the atmosphere. Because of environmental concern with acid rain, the capture of SO{sub 2} is a very important process. Fluidized bed combustion (FBC) is a combustion method where limestone may be added to the furnace chamber to capture SO{sub 2} as the stable product CaSO{sub 4}. In the present work a relatively simple laboratory method has been developed for characterizing limestone reactivity with SO{sub 2}. The reactivity data from such investigations are used, together with residence time and particle size distribution, in a sulfur capture model for fluidized bed boilers that predicts the sulfur capture as a function of the Ca/S molar ratio. In addition, the model predicts the conversion of CaO to CaSO{sub 4} for all particle sizes present in a boiler. The model was developed and verified using data from two boilers, a 12 and a 40 MW circulating fluidized bed boiler, and showed reasonable agreement for both boilers. In addition to the development of a sulfur capture model, the effects of SO{sub 2} and CO{sub 2} concentrations, particle size, temperature variations, and reducing conditions on the sulfation reaction was studied using a fixed-bed quartz reactor. The sulfation reaction was also studied for long periods of time, up to 60 hours. This was done because of the long residence times of certain particle sizes that may exist in a fluidized bed boiler. From the parameter study it was found that particle size and variations between oxidizing and reducing conditions had a large effect on the sulfation behaviour. The investigation of long sulfation times showed that the reaction continued even at high degrees of conversion, although at a very slow rate. CO{sub 2} concentration had a moderate effect on the sulfation reaction while temperature variations showed no effect on the final conversion between CaO and CaSO{sub 4}. 29 refs, 25 figs, 4 tabs

  5. Emission characteristics of co-combustion of sewage sludge with olive cake and lignite coal in a circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Toraman, O.Y.; Topal, H.; Bayat, O.; Atimtay, A.T. [Middle East Technical University, Ankara (Turkey). Dept. of Environmental Engineering

    2004-07-01

    In this study, a circulating fluidized bed (CFB) of 125 mm diameter and 1800 trim height was used to find the combustion characteristics of sewage sludge (SS) produced in Turkey. Sludge + olive cake, and Sludge + lignite coal mixtures were burned separately. Various sludge-to-lignite coal and sludge-to-olive cake ratios (5/95, 10/90. 15/85, 20/80) were tried. On-line concentrations of major components (O{sub 2}, SO{sub 2}, CO{sub 2}, CO, NOx, C{sub m}H{sub n}) were measured in the flue gas, as well as temperature and pressure distributions along the bed. Combustion efficiencies of sludge + olive cake and sludge + lignite coal mixtures were calculated, and the optimum conditions for operating parameters were discussed. The results have shown that the combustion mainly takes place in the upper regions of the main column where the temperature reaches 900 C. SS + coal burn in the CFB with an efficiency of 95.14% to 96.18%, which is considered to be quite good. When burning sludge mixed with olive cake, appreciable amounts of CO and unburned hydrocarbons are formed and the combustion efficiency drops to 92.93%. CO and C{sub m}H{sub n} emissions are lower when lignite coal is mixed with various amounts of SS than the. emissions when the coal is burned alone. As the %SS is increased in the fuel mixture, the SO{sub 2} emission decreases. NOx emissions are slightly higher. When burning sludge mixed with olive cake, SO{sub 2} and NOx emissions are slightly higher. CO and C{sub m}H{sub n} emissions decrease sharply when SS is mixed with 5%wt. olive cake. With increasing sludge ratio these emissions increase due to the unburned hydrocarbons. As a result of this study, it is believed that SS can be burned effectively in a CFBC together with other fuels, especially with olive cake (OC). OC will be a good additive fuel for the combustion of lower quality fuels.

  6. Simulation of emission performance and combustion efficiency in biomass fired circulating fluidized bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    Gungor, Afsin [Nigde University, Faculty of Engineering and Architecture, Department of Mechanical Engineering, 51100 Nigde (Turkey)

    2010-04-15

    In this study, the combustion efficiency and the emission performance of biomass fired CFBs are tested via a previously published 2D model [Gungor A. Two-dimensional biomass combustion modeling of CFB. Fuel 2008; 87: 1453-1468.] against two published comprehensive data sets. The model efficiently simulates the outcome with respect to the excess air values, which is the main parameter that is verified. The combustion efficiency of OC changes between 82.25 and 98.66% as the excess air increases from 10 to 116% with the maximum error of about 8.59%. The rice husk combustion efficiency changes between 98.05 and 97.56% as the bed operational velocity increases from 1.2 to 1.5 m s{sup -1} with the maximum error of about 7.60%. CO and NO{sub x} emissions increase with increasing bed operational velocity. Increasing excess air results in slightly higher levels of NO{sub x} emission. A significant amount of combustion occurs in the upper zone due to the high volatile content of the biomass fuels. (author)

  7. Experimental Study on Coal Multi-generation in Dual Fluidized Beds

    Institute of Scientific and Technical Information of China (English)

    Fan Xiaoxu; Lu Qinggang; Na Yongjie; Liu Qi

    2007-01-01

    An atmospheric test system of dual fluidized beds for coal multi-generation was built. One bubbling fluidized bed is for gasification and a circulating fluidized bed for combustion. The two beds are combined with two valves:one valve to send high temperature ash from combustion bed to the gasification bed and another valve to send char and ash from gasification bed to combustion bed. Experiments on Shenhua coal multi-generation were made at temperatures from 1112 K to 1191 K in the dual fluidized beds. The temperatures of the combustor are stable and the char combustion efficiency is about 98%. Increasing air/coal ratio to the fluidized bed leads to the increase of temperature and gasification efficiency. The maximum gasification efficiency is 36.7% and the calorific value of fuel gas is 10.7 MJ/Nm3. The tar yield in this work is 1.5%, much lower than that of pyrolysis.Carbon conversion efficiency to fuel gas and flue gas is about 90%.

  8. Advanced air staging techniques to improve fuel flexibility, reliability and emissions in fluidized bed co-combustion

    Energy Technology Data Exchange (ETDEWEB)

    Aamand, Lars-Erik; Leckner, Bo [Chalmers Technical Univ., Goeteborg (Sweden); Luecke, Karsten; Werther, Joachim [Technical Univ. of Hamburg-Harburg (Germany)

    2001-12-01

    A joint research project between the Technical University of Hamburg-Harburg and Chalmers Technical University. For operation under co-combustion the following results should be considered: The high ash content of the sewage sludge results in significantly increased ash flows. Although high alkali metal concentrations are found in the sewage sludge ash, no critical concentrations were reached and tendencies to fouling were not observed. The trace metal input rises with increased sludge fraction. However, emissions of metal compounds were well below legal limits. The trace metals tend to accumulate on the fly ash. In general, very low fuel nitrogen conversions to NO and N{sub 2}O of 2 - 4 % are achievable. With coal as a base fuel alternative air staging with secondary air supply after solids separation attains even lower NO emissions than normal staging without strongly affecting CO and SO{sub 2} emissions. Alternative staging also reduces N{sub 2}O emissions. An optimum for the excess air ratio in the riser of 1.05 was found for a total excess air ratio of 1.2. The higher the volatile content of the fuel is, the less effective the NO reduction due to air staging becomes. The measurements suggest that the optimum gas residence time regarding the emissions in CFB combustors is around 6 to 7 s. These times are achieved in commercial scale plants due to their large cyclones that perhaps partly can replace a large afterburner chamber. The circulating fluidized bed boiler can be operated in a very flexible way with various fuel mixtures up to an energy fraction of sludge of 25% without exceeding legal emission limits.

  9. Formation of chlorinated organic compounds in fluidized bed combustion of recycled fuels; Kloorattujen orgaanisten yhdisteiden muodostuminen kierraetyspolttoaineiden leijukerrospoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Vesterinen, R.; Kallio, M.; Kirjalainen, T.; Kolsi, A.; Merta, M. [VTT Energy, Jyvaeskylae (Finland)

    1997-10-01

    Four tests of co-combustion of recycled fuels (REP) with peat and coal in the 15 kW fluidized bed reactor were performed. The recycled fuel was so-called dry fraction in four vessels sampling at Keltinmaeki. In three tests a part of peat energy was replaced with coal. The mixtures were prepared so that in all mixtures 25 % of energy was recycled fuel and 75 % was either peat or the mixture of peat and coal. The concentrations of polyaromatic hydrocarbons (PAH), polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) and chlorophenols decreased with increasing part of coal due to the increasing sulphur/chlorine ratio. Principal Component Analysis (PCA) and Partial Least Square regression analysis (PLS) showed that the chlorine, copper and sulphur contents of the fuel effected most on the concentrations of chlorophenols, chlorobenzenes, PCBs and PCDDs/PCDFs. Other variables influencing on a model were the lead concentration and the sulphur/chlorine ratio in fuel and the hydrogen chloride concentration of the flue gas. The concentrations of chlorophenols and chlorobenzenes were also significant for PCDD/PCDF concentrations in flue gas. The sulphur, chlorine, copper and chromium contents in fly ash and the temperature of the reactor influenced on the chlorophenol, chlorobenzene, PCB and PCDD/PCDF concentrations in fly ash. The chlorophenol and chlorobenzene contents in fly ash, the sulphur/chlorine ratio and the lead content in fuel, the sulphur dioxide, hydrogen chloride and carbon monoxide concentrations in flue gas had also influence on PCDD/PCDF concentrations in fly ash

  10. Fluidized bed calciner apparatus

    Science.gov (United States)

    Owen, Thomas J.; Klem, Jr., Michael J.; Cash, Robert J.

    1988-01-01

    An apparatus for remotely calcining a slurry or solution feed stream of toxic or hazardous material, such as ammonium diurante slurry or uranyl nitrate solution, is disclosed. The calcining apparatus includes a vertical substantially cylindrical inner shell disposed in a vertical substantially cylindrical outer shell, in which inner shell is disposed a fluidized bed comprising the feed stream material to be calcined and spherical beads to aid in heat transfer. Extending through the outer and inner shells is a feed nozzle for delivering feed material or a cleaning chemical to the beads. Disposed in and extending across the lower portion of the inner shell and upstream of the fluidized bed is a support member for supporting the fluidized bed, the support member having uniform slots for directing uniform gas flow to the fluidized bed from a fluidizing gas orifice disposed upstream of the support member. Disposed in the lower portion of the inner shell are a plurality of internal electric resistance heaters for heating the fluidized bed. Disposed circumferentially about the outside length of the inner shell are a plurality of external heaters for heating the inner shell thereby heating the fluidized bed. Further, connected to the internal and external heaters is a means for maintaining the fluidized bed temperature to within plus or minus approximately 25.degree. C. of a predetermined bed temperature. Disposed about the external heaters is the outer shell for providing radiative heat reflection back to the inner shell.

  11. Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres.

    Science.gov (United States)

    Zhang, Huiyan; Xiao, Rui; Wang, Denghui; He, Guangying; Shao, Shanshan; Zhang, Jubing; Zhong, Zhaoping

    2011-03-01

    Biomass fast pyrolysis is one of the most promising technologies for biomass utilization. In order to increase its economic potential, pyrolysis gas is usually recycled to serve as carrier gas. In this study, biomass fast pyrolysis was carried out in a fluidized bed reactor using various main pyrolysis gas components, namely N(2), CO(2), CO, CH(4) and H(2), as carrier gases. The atmosphere effects on product yields and oil fraction compositions were investigated. Results show that CO atmosphere gave the lowest liquid yield (49.6%) compared to highest 58.7% obtained with CH(4). CO and H(2) atmospheres converted more oxygen into CO(2) and H(2)O, respectively. GC/MS analysis of the liquid products shows that CO and CO(2) atmospheres produced less methoxy-containing compounds and more monofunctional phenols. The higher heating value of the obtained bio-oil under N(2) atmosphere is only 17.8 MJ/kg, while that under CO and H(2) atmospheres increased to 23.7 and 24.4 MJ/kg, respectively.

  12. Development and application of a high-temperature sampling probe for burning chamber conditions in fluidized-bed combustion; Korkean laempoetilan naeytteenottosondin kehittaeminen ja soveltaminen leijukerrospolton tulipesaeolosuhteisiin

    Energy Technology Data Exchange (ETDEWEB)

    Larjava, K.; Paerkkae, M. [VTT Chemical Technology, Espoo (Finland); Linna, V. [VTT Energy, Jyvaeskylae (Finland). Environmental Technology

    1997-10-01

    Determination of heavy and alkali metals and other condensing compounds (e.g. chlorides) in combustion chamber conditions is limited by the poor suitability of traditional methods for sampling at high temperatures. IFRF has developed a high-temperature sampling probe for sampling HCN and NH{sub 3}, which has been tested for sampling of NH{sub 3} by Chalmers University of Technology in Sweden. VTT Chemical Technology and Chalmers University of Technology have in their preliminary experiments determined contents of vaporous heavy metals in the combustion chamber of a 12 MW circulating fluidized-bed boiler using this probe. According to the results, the modified probe is suitable for heavy metal determination in combustion chamber. Based on this series of experiments, modification of the probe has been started on the own financing of VTT Chemical Technology and a field measurement was performed in November 1994 to test the present version of the probe. Based on the results of that measurement, the probe has been modified further on as a part of this LIEKKI 2 project. Similar kind of a principle has been applied in the probe which has been developed by VTT Energy during 1994. The probe is built for determination of gas composition of fluidized bed in full-scale boilers. The purpose of this project is to develop and test a sampling probe for fluidized bed combustion. The main advantage of the probe is that condensation losses in sampling due to high temperature gradients can be avoided. Thus, the probe is very suitable for sampling vaporous heavy and alkali metals and other condensing species as well as burning gases and alternatively also solids at high temperatures

  13. Fast Pyrolysis of Biomass in a Spout-fluidized Bed Reactor--Analysis of Composition and Combustion Characteristics of Liquid Product from Biomass

    Institute of Scientific and Technical Information of China (English)

    陈明强; 王君; 王新运; 张学才; 张素平; 任铮伟; 颜涌捷

    2006-01-01

    In order to gain insight into the fast pyrolysis mechanism of biomass and the relationship between bio-oil composition and pyrolysis reaction conditions, to assess the possibility for the raw bio-oil to be used as fuel, and to evaluate the concept of spout-fluidized bed reactor as the reactor for fast pyrolysis of biomass to prepare fuel oil, the composition and combustion characteristics of bio-oil prepared in a spout-fluidized bed reactor with a designed maximum capacity 5 kg/h of sawdust as feeding material, were investigated by GC-MS and thermogravimetry. 14 aromatic series chemicals were identified. The thermogravimetric analysis indicated that the bio-oil was liable to combustion, the combustion temperature increased with the heating rate, and only minute ash was generated when it burned. The kinetics of the combustion reaction was studied and the kinetic parameters were calculated by both Ozawa-Flynn-Wall and Popsecu methods. The results agree well with each other. The most probable combustion mechanism functions determined by Popescu method are f(α)=k(1-α)2(400~406 ℃), f(α)=1/2k(1-α)3 (406~416 ℃) and f( α)=2k(1-α)3/2 (416~430 ℃) respectively.

  14. Experimental Study and Modelling of Char Combustion under Fluidized Bed Conditions

    Institute of Scientific and Technical Information of China (English)

    ZhangYongzhe; ManfredC.Wirsum; 等

    1998-01-01

    The combustion behavior of chars from two Chinese coals has been investigated in a laboratory scale bubbling fludized bed system in Siegen University,Germany,Experimental equipment and method are introduced.The shrinking-core model and the “shrinking-particl” model were employed to evaluate the kinetic parameters.The results indicated that the char conversion process of these two coals can be well described by the two models.

  15. Study on Concrete Pavement Materials Using Fluidized Bed Combustion Coal Ashes%燃煤固硫灰渣混凝土路面材料研究

    Institute of Scientific and Technical Information of China (English)

    黄煜镔; 钱觉时; 张建业; 党玉栋

    2011-01-01

    Using local industrial solid waste to reduce the building cost of rural road is very important. With the experimental study on cementitious system mixed with fluidized bed combustion coal ashes, the results show that; fluidized bed combustion coal ashes have a significant pozzolanic activity due to the characteristic of porous surface and low degree of anionic polymerization, and these ashes can be organized a cementitious systems with alkali and sulfate activator,in which the fluidized bed combustion coal ashes could be up to 70%. Mixing cement and increasing the amount of sulfate-activating agent can improve the early performance of the system significantly. Especially,the dosage of sodium sulfate must be more than 1. 5%. The properties of concrete mixed with fluidized bed combustion coal ashes are suitable in terms of strength and brittleness which make it be used in the rural road successfully.%降低农村公路造价具有重要的现实意义,利用地方工业固体废弃物是一种途径.通过对燃煤固硫灰渣胶凝系统的试验研究,结果表明:燃煤固硫灰渣表面疏松和阴离子聚合度低的特征,使其具有显著的火山灰效应,可与碱、硫酸盐激发剂组成胶凝系统,其中固硫灰渣占70%以上;掺加水泥和增大硫酸盐激发剂掺量能显著改善系统早期性能,硫酸盐掺量宜大于1.5%;燃煤固硫灰渣混凝土具有较好的强度性能和材料韧性,在农村公路中应用具有现实可行性.

  16. Plasma-Augmented Fluidized Bed Gasification of Sub-bituminous Coal in CO2-O2 Atmospheres

    Science.gov (United States)

    Lelievre, C.; Pickles, C. A.; Hultgren, S.

    2016-01-01

    The gasification of a sub-bituminous coal using CO2-O2 gas mixtures was studied in a plasma-augmented fluidized bed gasifier. Firstly, the coal was chemically characterized and the gasification process was examined using Thermogravimetric and Differential Thermal Analysis (TGA/DTA) in CO2, O2 and at a CO2 to O2 ratio of 3 to 1. Secondly, the equilibrium gas compositions were obtained using the Gibbs free energy minimization method (HSC Chemistry®7). Thirdly, gasification tests were performed in a plasma-augmented fluidized bed and the off-gas temperatures and compositions were determined. Finally, for comparison purposes, control tests were conducted using a conventional fluidized bed coal gasifier and these results were compared to those achieved in the plasma-augmented fluidized bed gasifier. The effects of bed temperature and CO2 to O2 ratio were studied. For both gasifiers, at a given bed temperature, the off-gas compositions were in general agreement with the equilibrium values. Also, for both gasifiers, an experimental CO2 to O2 ratio of about 3 to 1 resulted in the highest syngas grade (%CO + %H2). Both higher off-gas temperatures and syngas grades could be achieved in the plasma-augmented gasifier, in comparison to the conventional gasifier. These differences were attributed to the higher bed temperatures in the plasma-augmented fluidized bed gasifier.

  17. Decontamination of Aspergillus flavus and Aspergillus parasiticus spores on hazelnuts via atmospheric pressure fluidized bed plasma reactor.

    Science.gov (United States)

    Dasan, Beyhan Gunaydin; Mutlu, Mehmet; Boyaci, Ismail Hakki

    2016-01-04

    In this study, an atmospheric pressure fluidized bed plasma (APFBP) system was designed and its decontamination effect on aflatoxigenic fungi (Aspergillus flavus and Aspergillus parasiticus) on the surface of hazelnuts was investigated. Hazelnuts were artificially contaminated with A. flavus and A. parasiticus and then were treated with dry air plasma for up to 5min in the APFBP system at various plasma parameters. Significant reductions of 4.50 log (cfu/g) in A. flavus and 4.19 log (cfu/g) in A. parasiticus were achieved after 5min treatments at 100% V - 25kHz (655W) by using dry air as the plasma forming gas. The decontamination effect of APFBP on A. flavus and A. parasiticus spores inoculated on hazelnuts was increased with the applied reference voltage and the frequency. No change or slight reductions were observed in A. flavus and A. parasiticus load during the storage of plasma treated hazelnuts whereas on the control samples fungi continued to grow under storage conditions (30days at 25°C). Temperature change on hazelnut surfaces in the range between 35 and 90°C was monitored with a thermal camera, and it was demonstrated that the temperature increase taking place during plasma treatment did not have a lethal effect on A. flavus and A. parasiticus spores. The damage caused by APFBP treatment on Aspergillus spp. spores was also observed by scanning electron microscopy.

  18. Assessment of the status of fluidized-bed combustion based on the papers of the Fifth International Conference: methodology and results

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    This report constitutes a status assessment of fluidized-bed combustion power-generation technology undertaken as part of an ongoing program sponsored by the US Department of Energy's Division of Environmental Control Technology under the Assistant Secretary for Environment. The study, based on the papers presented at the Fifth International Conference on Fluidized-Bed Combustion in 1977, was prepared by the MITRE Corporation, with support from Argonne National Laboratory. Information abstracted from the papers was categorized according to various technical considerations and summarized. Issues and problems associated with the technology were identified from these summaries. These issues and problems, with any associated information gaps, were ranked in terms of their significance, taking into account the needs of potential users of the technology. The resulting data base is presented in a series of matrices showing concentrations of activity, reported information, issues and problems, and relative significance. Areas in which further investigation is required, as indicated using this methodology, include selection, preparation, feeding, and utilization of fuel and sorbent; disposal of solid wastes; heat transfer; emissions control; optimization of operating parameters and control procedures; corrosion and erosion of construction materials, and equipment configuration.

  19. Oxygen Carrier Aided Combustion (OCAC of Wood Chips in a Semi-Commercial Circulating Fluidized Bed Boiler Using Manganese Ore as Bed Material

    Directory of Open Access Journals (Sweden)

    Magnus Rydén

    2016-11-01

    Full Text Available Oxygen Carrier Aided Combustion (OCAC is realized by using an active oxygen-carrying bed material in fluidized bed boilers. The active material is reduced in fuel rich parts of the boiler and oxidized in air rich parts. Advantages could be achieved such as new mechanisms for oxygen transport in space and time. Here calcined manganese ore has been used as active bed material in a 12 MWth circulating fluidized bed boiler. The fuel was wood chips and the campaign lasted more than two weeks. From an operational point of view, manganese ore worked excellently. From the temperature profile of the boiler it can be concluded that fuel conversion was facilitated, especially in the dense bottom bed. The effect did not always translate to reduced emissions, which suggests that final combustion in the cyclone outlet was also influenced. Substituting 10% of the sand bed with manganese ore made it possible to reduce the air to fuel ratio without generating large amounts of CO. The use of 100% manganese ore resulted in higher emissions of CO than the sand reference, but, when combined sulphur feeding, dramatic reductions in CO emissions, up to 90% compared to sand reference, was achieved.

  20. Experimental findings on thermal use of residues and biofuels in circulating fluidized bed combustion systems; Experimentelle Ergebnisse zur thermischen Nutzung von Rest- und Biobrennstoffen in zirkulierenden Wirbelschichtfeuerungen

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, W.; Brunne, T.; Girndt, H. [Technische Univ. Dresden (Germany); Albrecht, J. [Lurgi Lentjes Babcock, Frankfurt am Main (Germany); Youssef, M. [Minia Univ. (Egypt)

    1996-12-31

    The energy Engineering Institute of Dresden Technical University investigated the combustion and emission characteristics of a number of combustion systems, including a circulating fluidized bed system with a capacity of 0.3 MW{sub th}. Egypt`s sugar cane industry produces large volumes of bagasse. The conbustion and emission characteristics of this biofuel in a circulating fludized bed combustion systems were investigated in a joint research project of the University of Minia and Dresden Technical University. (orig.) [Deutsch] Am Institut fuer Energietechnik der TU Dresden wird das Verbrennungs- und Emissionsverhalten verschiedenster Brennstoffe in unterschiedlichen Feuerungssystemen untersucht. Neben anderen Pilotanlagen steht eine zirkulierende Wirbelschichtfeuerung (ZWFS) mit einer Leistung von 0.3 MW{sub th} zur Verfuegung. In der Zuckerrohrindustrie Aegyptens fallen grosse Mengen von Bagasse an. In einer gemeinsamen Forschungsarbeit zwischen der Universitaet Minia und der TU Dresden sollte das Verbrennungs- und Emissionsverhalten dieses Biobrennstoffes in einer ZWSF untersucht werden. (orig)

  1. Sulfur removal in advanced two stage pressurized fluidized bed combustion. Technical report, 1 March--31 May 1994

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Chowdiah, P.; Hill, A.H.; Rue, D.M. [Inst. of Gas Technology, Chicago, IL (United States)

    1994-09-01

    The objective of this study is to obtain data on the rates of reaction between hydrogen sulfide (H{sub 2}S) and uncalcined calcium-based sorbents under operating conditions relevant to first stage (carbonizer) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure in the first stage generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, removal of sulfur compounds takes place through the reaction between H{sub 2}S and calcium carbonate. To achieve this objective, the rates of reaction between hydrogen sulfide and uncalcined calcium-based sorbents will be determined by conducting tests in pressurized thermogravimetric analyzer (TGA) and high-pressure/high-temperature fluidized-bed reactor (HPTR) units. The effects of sorbent type, sorbent particle size, reactor temperature and pressure, and CO{sub 2} and H{sub 2}S partial pressures on the sulfidation reaction rate will be determined. During this quarter a series of sulfidation tests were conducted in the high-pressure/high-temperature fluidized-bed reactor (HPTR) units. The effects of sorbent type, sorbent particle size, reactor temperature and pressure, and CO{sub 2} and H{sub 2}S partial pressures on the sulfidation reaction rate will be determined. During this quarter a series of sulfidation tests were conducted in the high-pressure high-temperature thermogravimetric analyzer (HPTGA unit) using limestone and dolomite. The results suggest that half-calcined dolomite is much more reactive than uncalcined limestone. Also, temperature in the range of 800 to 950 C did not significantly affect the sulfidation reaction rates for both limestone and dolomite.

  2. MULTISTAGE FLUIDIZED BED REACTOR

    Science.gov (United States)

    Jonke, A.A.; Graae, J.E.A.; Levitz, N.M.

    1959-11-01

    A multistage fluidized bed reactor is described in which each of a number of stages is arranged with respect to an associated baffle so that a fluidizing gas flows upward and a granular solid downward through the stages and baffles, whereas the granular solid stopsflowing downward when the flow of fluidizing gas is shut off.

  3. Sulfur removal in advanced two stage pressurized fluidized bed combustion. Technical report, December 1, 1994--February 28, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.

    1996-03-01

    The objective of this study is to obtain data on the rates and the extent of sulfation reactions involving partially sulfided calcium-based sorbents, and oxygen as well as sulfur dioxide, at operating conditions closely simulating those prevailing in the second stage (combustor) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, calcium sulfate is produced through the reactions between SO{sub 2} and calcium carbonate as well as the reaction between calcium sulfide and oxygen. To achieve this objective, the rates of reaction involving SO{sub 2} and oxygen (gaseous reactant); and calcium sulfide and calcium carbonate (solid reactants), will be determined by conducting tests in a pressurized thermogravimetric analyzer (HPTGA) unit. The effects of sorbent type, sorbent particle size, reactor temperature and pressure; and O{sub 2} as well as SO{sub 2} partial pressures on the sulfation reactions rate will be determined. During this quarter, samples of the selected limestone and dolomite, sulfided in the fluidized-bed reactor during last quarter, were analyzed. The extent of sulfidation in these samples was in the range of 20 to 50%, which represent carbonizer discharge material at different operating conditions. The high pressure thermogravimetric analyzer (BPTGA) unit has been modified and a new pressure control system was installed to eliminate pressure fluctuation during the sulfation tests.

  4. Sulfur removal in advanced two-staged pressurized fluidized-bed combustion; [Quarterly] report, September 1--November 1993

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Hill, A.H.; Wangerow, J.R.; Rue, D.M.

    1994-03-01

    The objective of this study is to obtain data on the rates of reaction between hydrogen sulfide (H{sub 2}S) and uncalcined calcium-based sorbents under operating conditions relevant to first stage (carbonizer) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure in the first stage generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, removal of sulfur compounds takes place through the reaction between H{sub 2}S and calcium carbonate. To achieve this objective, the rates of reaction between hydrogen sulfide and uncalcined calcium-based sorbents will be determined by conducting tests in pressurized thermogravimetric analyzer (TGA) and high-pressure/high-temperature fluidized-bed reactor (HPTR) units. The effects of sorbent type, sorbent particle size, reactor temperature and pressure, and CO{sub 2} and H{sub 2}S partial pressures on the sulfidation reaction rate will be determined. A pressurized TGA unit has been purchased by IGT for use in this project.

  5. Sulfur removal in advanced two-stage fluidized-bed combustion. [Quarterly] technical report, December 1, 1993--February 28, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Hill, A.H.; Wangerow, J.R.; Rue, D.M. [Inst. of Gas Technology, Chicago, IL (United States)

    1994-06-01

    The objective of this study is to obtain data on the rates of reaction between, hydrogen sulfide (H{sub 2}S) and uncalcined calcium-based sorbents under operating conditions relevant to first stage (carbonizer) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure in the first stage generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, removal of sulfur compounds takes place through the reaction between H{sub 2}S and calcium carbonate. To achieve this objective the rates of reaction between hydrogen sulfide and uncalcined calcium-based sorbents will be determined by conducting tests in pressurized thermogravimetric analyzer (TGA) and high-pressure/high-temperature fluidized-bed reactor (HPTR) units. The effects of sorbent type, sorbent particle size, reactor temperature and pressure, and CO{sub 2} and H{sub 2}S partial pressures on the sulfidation reaction rate will be determined. During this quarter, the high-pressure thermogravimetric analyzer (HPTGA) unit was installed and the shakedown process was completed. Several tests were conducted in the HPTGA unit to establish the operating procedure and the repeatability of the experimental results. Sulfidation by conducting the baseline sulfidation tests. The results are currently being analyzed.

  6. Sulfur removal in advanced two stage pressurized fluidized bed combustion. Technical report, September 1--November 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Hill, A.; Wangerow, J.R. [Inst. of Gas Technology, Chicago, IL (United States)

    1994-12-31

    The objective of this study is to obtain data on the rates and the extent of sulfation reactions involving partially sulfided calcium-based sorbents, and oxygen as well as sulfur dioxide, at operating conditions closely simulating those prevailing in the second stage (combustor) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, calcium sulfate is produced through the reactions between SO{sub 2} and calcium carbonate as well as the reaction between calcium sulfide and oxygen. To achieve this objective, the rates of reaction involving SO{sub 2} and oxygen (gaseous reactant); and calcium sulfide and calcium carbonate (solid reactants), will be determined by conducting tests in a pressurized thermogravimetric analyzer (HPTGA) unit. The effects of sorbent type, sorbent particle size, reactor temperature and pressure; and O{sub 2} as well as SO{sub 2} partial pressures on the sulfation reactions rate will be determined. During this quarter, samples of the selected limestone and dolomite were sulfided in the fluidized-bed reactor. These tests were conducted in both calcining and non-calcining operating conditions to produce partially-sulfided sorbents containing calcium oxide and calcium carbonate, respectively. These samples which represent the carbonizer discharge material, will be used as the feed material in the sulfation tests to be conducted in the HPTGA unit during the next quarter.

  7. Three-zonal engineering method of heat calculation for fluidized bed furnaces based on data on commercial investigations of heat generation distribution during biomass combustion

    Science.gov (United States)

    Litun, D. S.; Ryabov, G. A.

    2016-02-01

    A three-zonal method of heat calculation of furnaces for combustion of biomass and low-caloric fuel in the fluidized bed is described. The method is based on equations of thermal and material balances that account for heat generation by fuel in the zone, heat-and-mass transfer heat exchange between the furnace media and surfaces that bound the zone, and heat-and-mass transfer between furnace zones. The calculation procedure for heat generation by fuel in the fluidized bed (FB) using the heat generation portion by the fuel is proposed. Based on commercial investigations, the main factors that affect the average temperature in the FB and the portion of fuel heat that is released in the FB are determined. Results of commercial investigations showed that the airflow coefficient in the FB should be recognized as the main operation parameter that affects the average temperature in the FB and, consequently, heat generation in the FB. The gas flow rate in the FB can be marked out as the second factor that affects the consumption degree of oxidizer supplied in the FB. Commercial investigations revealed that mixing is affected by the gas flow rate in the FB and the bed material particle size, which may be changed during the boiler operation because of the agglomeration of particles of sand and ash. The calculation processing of commercial investigations on a KM-75-40M boiler of a CHP-3 of an Arkhangelsk Pulp and Paper Mill (APPM), which was carried out using the inverse problem procedure by means of a developed computer program, determined the range of the fuel heat release share in the FB, which was 0.26-0.45 at an excess air factor of 0.59-0.93 in the bed, and the heat release share in the maximum temperature zone in the total heat release in the superbed space. The heat release share in the bed is determined as an approximating function of the excess air factor in the bed and the fluidization number. The research results can be used during designing boilers with the

  8. Agglomeration of ash during combustion of peat and biomass in fluidized-bed reactors. Development of image analysis technique based on scanning electron microscopy; Tuhkan muuntuminen leijukerroskaasutuksessa ja -poltossa. Haitallisten hivenmetallien vapautuminen ja alkalien kaeyttaeytyminen

    Energy Technology Data Exchange (ETDEWEB)

    Kauppinen, E. [VTT Chemistry, Espoo (Finland); Arpiainen, V.; Jokiniemi, J. [VTT Energy, Espoo (Finland)] [and others

    1996-12-01

    The objective of the project is to study the behaviour of alkali metals (Na and K) and hazardous trace elements (Sb, As, Be, Cd, Cr, Co, Pb, Mn, Ni, Se and Zn) during fluidized bed combustion and gasification of solid fuels. The areas of interest are the release of elements studied from the bed and the behaviour of gaseous and particle-phase species after the release from the bed. During 1995 combustion and gasification experiments of Polish coal in bubbling bed were carried out with a laboratory scale fluidized bed gasifier in atmospheric pressure. Flue gas samples were drawn from the freeboard of the reactor and cooled quickly using a dilution probe. Ash particle size distributions were determined using low pressure impactors and differential mobility analyser. The morphology of the ash particles was studied with a scanning electron microscope (SEM) and will be further studied with transmission electron microscopy (TEM). The ash matrix elements (Si, Al, Fe, Ca and Mg) and the alkali metals (Na and K) were not significantly vaporized during the combustion process. More than 99 % of each of these elements was found in ash particles larger than 0.4 {mu}m. In Polish coal the alkali metals are bound mainly in silicates. The alkali metals were not released from the silicate minerals during the combustion process. A significant fraction of As, Cd and Pb was vaporized, released as gaseous species from the fuel particle and condensed mainly on the fine ash particles. 20 - 34 % of cadmium was present in fly ash particles smaller than 0.6 {mu}m (during combustion in 950 deg C), whereas only 1 % of the total ash was in this size fraction. All of the hazardous trace elements studied (As, Be, Cd, Co, Cr, Mn and Zn) were enriched in ash size fraction 0.6 - 5 {mu}m. The enrichment of Co, Cr, Mn, Ni, Pb and Sb was more significant during combustion in 950 deg C than in lower temperature (850 deg C)

  9. Evaluation of PCDD/Fs and metals emission from a circulating fluidized bed incinerator co-combusting sewage sludge with coal.

    Science.gov (United States)

    Zhang, Gang; Hai, Jing; Cheng, Jiang; Cai, Zhiqi; Ren, Mingzhong; Zhang, Sukun; Zhang, Jieru

    2013-01-01

    The emission characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and heavy metals were evaluated during co-combustion of sewage sludge with coal from a circulating fluidized bed incinerator. The stack gas, slag and fly ash samples were sampled and analyzed. The gas-cleaning system consisted of electrostatic precipitators and a semi-dry scrubber. Results showed that the stack gas and fly ash exhibited mean dioxin levels of 9.4 pg I-TEQ/Nm3 and 11.65 pg I-TEQ/g, respectively, and showed great similarities in congener profiles. By contrast, the slag presented a mean dioxin level of 0.15 pg I-TEQ/g and a remarkable difference in congener profiles compared with those of the stack gas and fly ash. Co-combusting sewage sludge with coal was able to reduce PCDD/Fs emissions significantly in comparison with sewage sludge mono-combustion. The leaching levels of Hg, Pb, Cd, Ni, Cr, Cu, and As in the fly ash and slag were much lower than the limits of the environmental protection standard in China. These suggest that the co-combustion of sewage sludge and coal is an advisable treatment method from an environmental perspective.

  10. IHI-FW circulating fluidized bed boiler

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, S.; Omata, K.; Ishimoto, R.; Asai, M. (Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan))

    1993-07-01

    The technology and application of the circulating fluidized bed boiler (IHI-FW) are outlined. Circulating fluidized bed boilers have various features as compared with bubbling fluidized bed boilers as follows; a high combustion efficiency, efficient use of limestone for desulfurization, low NOx emission, adaptability to various fuels and capability to cope with load change. The IHI-FW boiler is furthermore featured by water-wall furnace of all-welded structure, water-cooled/steam cooled cyclone, and simple circulating system. The 30 t/h circulating fluidized bed boiler was introduced into the Tsu Works, Omikenshi Co., Ltd., Japan for private power generation. The boiler equipped with a backup heavy oil burner mainly uses semi-anthracite coal, and besides sulfur capture and NOx reduction functions of a bed, a bag filter with a high dust collecting efficiency is installed in an exhaust gas system. The installation period was reduced to 2.5 months, a half of conventional ones, by more assembly in a factory followed by less field works. 7 figs., 2 tabs.

  11. Investigations into the effects of the hybrid concepts on the performance of a pressurized fluidized bed combustion system; Untersuchungen zum Einfluss des Hybridkonzeptes auf den Betrieb einer Druckwirbelschichtfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, H.; Spliethoff, H.; Hein, K.R.G.

    1998-12-31

    Pressurized fluidized bed combustion has particular advantages as compared to conventional firing systems e.g. in-situ pollutant removal, high thermal efficiencies even in intermediate power ranges, and small reactor sizes. The widespread use of PFBC depends on rising the gasturbine inlet temperature in order to increase efficiencies. In a staged combustion process, which is a kind of a hybrid system, coal is burned substoichometrically in a pressuried fluidized bed producing a low calorific value gas. After hot gas cleanup (<700 C) the gas is afterburned allowing for gasturbine inlet temperatures of more than 1 200 C. At the IVD-PFBC test facility experiments were carried out with regard to composition of the produced gas, carbon-conversion and sulphur capture at various temperatures, pressures and air ratios. The results were compared to chemical equilibrium calculations. Based on experimental data the increase of thermal efficiency through staged combustion was studied using a process simulation program. In comparison with a standard combined cycle with a lignite fired PFBC, staged combustion led to an increase in thermal efficiency of up to 4,5% at equivalent operation conditions (thermal capacity, steam quality). (orig.) [Deutsch] Druckwirbelschichtfeuerungen (DWSF) weisen gegenueber konventionellen Feuerungen einige Vorteile auf wie z.B. in situ Schadstoffminderung, hohe thermische Wirkungsgrade auch im mittleren Leistungsbereich und geringes Bauvolumen. Die weitere Verbreitung der DWSF wird jedoch massgeblich davon abhaengen, inwieweit sich durch Erhoehung der Gasturbinen-Eintrittstemperatur ein weiteres Wirkungsgradpotential erschliessen laesst. Bei der gestuften Verbrennung, einem sog. Hybridprozess, wird Kohle in der Wirbelbrennkammer teiloxidiert. Das entstehende Schwachgas wird anschliessend gereinigt und in einer Nachbrennkammer vollstaendig umgesetzt, so dass Gasturbinen-Eintrittstemperaturen ueber 1 200 C erreicht werden koennen. An der IVD

  12. Sulfur removal in advanced two stage pressurized fluidized bed combustion. Technical report, March 1--May 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.

    1995-12-31

    The objective of this study is to obtain data on the rates and the extent of sulfation reactions involving partially sulfided calcium-based sorbents, and oxygen as well as sulfur dioxide, at operating conditions closely simulating those prevailing in the second stage (combustor) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors. In these systems the CO{sub 2} partial pressure generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, calcium sulfate is produced through the reactions between SO{sub 2} and calcium carbonate as well as the reaction between calcium sulfide and oxygen. To achieve this objective, the rates of reaction involving SO{sub 2} and oxygen, calcium sulfide and calcium carbonate will be determined by conducting tests in a pressurized thermogravimetric analyzer unit. The sulfate tests conducted during this quarter, focused on the determination of the rate of sulfation reaction involving partially sulfided half-calcined dolomite and oxygen. The test parameters included CO{sub 2} and O{sub 2} concentrations, reaction temperature and pressure, as well as the sorbent particle size. The results obtained during this quarter suggest that the rate of sulfation reaction involving partially sulfided half-calcined dolomite and oxygen is very fast at temperatures above 850 C which rapidly increases with increasing temperature, achieving more than 85% conversion in less than a few minutes. The reaction appears to continue to completion, however, above 85% conversion, the rate of reaction appears to be low, requiring long residence time to reach complete conversion.

  13. Biparticle fluidized bed reactor

    Science.gov (United States)

    Scott, C.D.

    1993-12-14

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

  14. Application of noncatalytic gas-solid reactions for a single pellet of changing size to the modeling of fluidized-bed combustion of coal char containing sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Rehmat, A.; Saxena, S.C.; Land, R.H.

    1980-09-01

    A mechanistic model is developed for coal char combustion, with sulfur retention by limestone or dolomite sorbent, in a gas fluidized bed employing noncatalytic single pellet gas-solid reactions. The shrinking core model is employed to describe the kinetics of chemical reactions taking place on a single pellet; changes in pellet size as the reaction proceeds are considered. The solids are assumed to be in back-mix condition whereas the gas flow is regarded to be in plug flow. Most char combustion occurs near the gas distributor plate (at the bottom of the bed), where the bubbles are small and consequently the mass transfer rate is high. For such a case, the analysis is considerably simplified by ignoring the bubble phase since it plays an insignificant role in the overall rate of carbon conversion. Bubble-free operation is also encounterd in the turbulent regime, where the gas flow is quite high and classical bubbles do not exist. Formulation of the model includes setting up heat and mass balance equations pertaining to a single particle (1) exposed to a varying reactant concentration along the height of the bed and (2) whose size changes during reaction. These equations are then solved numerically to account for particles of all sizes in the bed in obtaining the overall carbon conversion efficiency and resultant sulfur retention. In particular, the influence on sorbent requirement of several fluid-bed variables such as oxygen concentration profile, particle size, reaction rate for sulfation reaction, and suflur adsorption efficiency are examined.

  15. Phase-Plane Invariant Analysis of Pressure Fluctuations in Fluidized Beds

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaoliang; HE Rong; Toshiyuki Suda; Junichi Sato

    2007-01-01

    Partial agglomeration is a major problem in fluidized beds. A chaotic analytical method based on the phase-plane invariant of the pressure fluctuations in the fluidized beds has been used to warn of agglomeration at an early stage. Cold tests (no combustion) and hot tests (combustion) in fluidized beds show that the phase-plane invariant of the pressure fluctuations can distinguish the dynamic behavior of fluidized beds with different flow rates in cold tests. With combustion, when the flow rate was kept constant, agglomeration was detected very early by looking at the phase-plane invariant. The phase-plane invariant can be used to distinguish changes in fluidized beds due to changes in the flow rate, agglomeration, or various other factors. Therefore, this reliable agglomeration early warning system can be used for better control of circulating fluidized beds.

  16. Combustion and adjustmen of North pot GB-75/5.29-M type circulating fluidized bed boiler%北锅GB-75/5.29-M型循环流化床锅炉的燃烧和调整

    Institute of Scientific and Technical Information of China (English)

    赵解放

    2012-01-01

      In the article, design parameters、the combustion adjustment and so on, on circulating fluidized bed boiler were introduced, the corresponding measures were taken, the performance of the boiler were effectively improved.%  介绍循环流化床锅炉的设计参数、燃烧调整等,采取的相应措施,有效改进了锅炉的运行性能。

  17. Circulating fluidized bed boilers design and operations

    CERN Document Server

    Basu, Prabir

    1991-01-01

    This book provides practicing engineers and students with insight into the design and operation of circulating fluidized bed (CFB) boilers. Through a combination of theoretical concepts and practical experience, this book gives the reader a basic understanding of the many aspects of this subject.Important environmental considerations, including solid waste disposal and predicted emissions, are addressed individually in separate chapters. This book places an emphasis on combustion, hydrodynamics, heat transfer, and material issues, and illustrates these concepts with numerous examples of pres

  18. Prevention of Bed Agglomeration Problems in a Fluidized Bed Boiler by Finding the Trigging Value of Sewage Sludge Dosage Added to Combustion of Biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Kajsa; Gervind, Pernilla

    2009-07-01

    Agglomeration of bed sand is a common problem during combustion of biofuels with high ash content in fluidized bed boilers. Former studies have shown that co-combustion of biofuels with sewage sludge increases the agglomeration temperature. Sewage sludge has a low heating value and high ash content. It would therefore be better to use sludge as an additive to the combustion than as a co-combusted biofuel. In this study the trigging value of sludge addition to the combustion of some biofuel was investigated. The effect of adding sludge with different precipitation chemicals, iron sulphate and aluminium sulphate, was investigated. The biofuels used for the experiments were bark, refused derived fuel (RDF) and a mixture of wood and straw, 75/25 % on energy basis. All experiments were carried out in a laboratory scale fluidized bed reactor. Analyses of chemical composition of bed sand and SEM/EDX analyses were performed after the combustion. Eventually agglomeration tests were performed in order to find the agglomeration temperature of the samples. Some of the samples sintered during the combustion and were not tested for the agglomeration temperature. SEM/EDX showed that all samples of bed sand contained sand particles with more or less coatings. In some cases the coatings seemed to consist of one dense inner layer and one more porous outer layer. From SEM/EDX and chemical composition analyses it was found that the total amount of phosphorous in the bed sand samples was increased with an increased addition of sludge in all experiments. The concentration of phosphorous was especially higher in the outer layers/coatings. It was also found that elements from the sludge seem to get caught by a sticky layer at the bed sand surface and form a non-sticky or less sticky layer that prevents agglomeration. The total amount of aluminium was increased with an increased addition of sludge for the wood/straw samples, while it increased with an increased amount of combusted fuel for

  19. Kinetics of Reduction Reaction in Micro-Fluidized Bed

    Institute of Scientific and Technical Information of China (English)

    LINYin-he; GUOZhan—cheng; TANGHui—qing; REN Shan; LIJing—wei

    2012-01-01

    Micro-fluidized bed reactor is a new research method for the reduction of iron ore fines. The reactor is op- erated as a differential reactor to ensure a constant gas concentration and temperature within the reactor volume. In order to understand the dynamic process of the reduction reaction in micro-fluidized bed, a series of kinetic experi- ments were designed. In the micro fluidized bed, the use of shrinking core model describes the dynamic behavior of reduction of iron ore. And the apparent activation energy is calculated in the range of 700--850 ~C while the initial atmosphere is 100% content of CO.

  20. Analysis of sewage sludge ashes from air and oxy-fuel combustion in a circulating fluidized-bed

    Directory of Open Access Journals (Sweden)

    Magdziarz Aneta

    2016-01-01

    Full Text Available The ashes from sewage sludge combustion in air versus O2/CO2 atmospheres with oxygen concentrations in the range of 21–40% vol. at temperature of 850°C in a 12 kW bench-scale CFB combustor were characterised. The chemical and phase composition of ashes were studied by XRF and XRD. The morphology of studied ashes were examined by SEM method. The slagging and fouling indices were calculated to study the deposition tendencies of ash. The thermal behaviour of ashes was studied by TG-DSC techniques, focusing on the mass loss and thermic effects with the increasing of temperature up to 1200°C.

  1. Properties of circulating fluidized bed combustion ashes road base materials%固硫灰路面基层材料的性能

    Institute of Scientific and Technical Information of China (English)

    尹元坤; 卢忠远; 李军; 牛云辉

    2012-01-01

    Circulating fluidized bed combustion ashes (FBCF) were used as road base materials. The properties of original and pretreated FBCF road base materials were studied. And the influence of heavy metal of FBCF on the soil was also researched through leaching experiments. Results show that high volume stability, low inflation rates and the better road performance were obtained when pretreated FBCF was used. In addition, FBCF road base materials have lower heavy metal leaching rate, which in line with environmental protection require- ments.%以固硫灰作为路面基层材料,研究了固硫灰原灰和经预处理固硫灰路面基层材料的最佳含水量、最大干密度、体积安定性、膨胀率和强度等性能。同时,通过重金属浸出实验评估了固硫灰对土壤环境的影响。结果表明,经预处理固硫灰路面基层材料体积安定性好,膨胀率低,性能良好;此外,固硫灰重金属浸出率低,符合环保要求。

  2. Utilization of coal ash from fluidized-bed combustion boilers as road base material. Ryudosho boiler sekitan nenshobai no robanzai eno riyo

    Energy Technology Data Exchange (ETDEWEB)

    Ito, H.; Shibata, Y.; Takada, T.; Yamamuro, H. (Kawasaki Heavy Industries, Ltd., Tokyo (Japan))

    1994-07-20

    The present report reports the technological development to utilize coal ash from the fluidized-bed combustion boiler as a road base material. In case of mass production by low pressure press forming, the following hardening conditions are reported to be appropriate for kneading the ash only with water, curing it with steam and obtaining the higher compressive strength of thus hardened ash than 150kgf/cm[sup 2]: the boiler operational condition is to be adjusted so that the CaO content and char content may exceed 10% and fall bellow 20%, respectively of the coal ash. The kneading water rate is to be set around the plastic limit of coal ash. The duration of precuring and main precuring is to be 6 to 10h, at 30[degree]C and 10 to 15h at 60[degree]C, respectively. Explained is the result of mass production test with kneader, plastic former and crusher of the same structure as the presumed actual ones, and assessment test (laboratory test and field test on the road pavement) on the hardened and crushed ash with the compressive strength of 170kgf/cm[sup 2] as a pavement material. The present report also reports the operational start of a demonstration plant for the base material production. 5 refs., 11 figs., 2 tabs.

  3. Pore Structure Analysis of Seaweed Particles After Fluidized Bed Combustion%海藻颗粒流化床燃烧后灰孔隙结构分析

    Institute of Scientific and Technical Information of China (English)

    徐姗楠; 王爽; 王谦; 姜秀民; 吉恒松

    2015-01-01

    In this work , the combustion of two kinds of seaweed(Enteromorpha clathrata and Sargassum natans)particles was studied on a bench scale fluidized bed. Enteromorpha clathrata particles burred continuously and stably at 770,℃ and no slagging was found. But a serious slagging phenomenon was found during the combustion of Sargassum natans,which showed that Sargassum natans particles were not suited for the fluidized bed combustion. Enteromorpha clathrata and its bottom ash were collected for pore structure analysis. The pore structure of seaweed and its ash samples was analyzed by applying mercury intrusion method and N2 adsorption-desorption method. The experimental result of applying mercury intrusion showed that the pore size distribution of original sample mostly ranged from 2.56,μm to 3.61,μm,and that of ash mainly ranged from 11.89,μm to 12.8,μm. The number of porosity,pore volume and specific surface area increased after combustion. The porosity increased from 21.01%to 49.74%. The nitrogen adsorption experiment was conducted to analyze both the original sample and the ash so as to understand the change of nano-scale pore structure in the combustion process. The specific surface area of sample was abtained by applying the BET(Brunauer-Emmett-Teller)equation using the linear part(0.05

    combustion. The original sample of Enteromorpha clathrata is relatively smoother than that of EN ash due to its biological materials. The ash with porous structure can be used for

  4. The effect of working parameters and the properties of coal on emission in pressurized fluidized bed combustion; Der Einfluss von Betriebsparametern und Kohleeigenschaften auf die Emissionen bei der Druckwirbelschichtfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, M.; Bonn, B.; Baumann, H.

    1993-12-31

    The aim of a research project at the Deutsche Monta Technologie-Research and Testing Company (DMT-FP) is, among others, to determine the effects of working conditions on the emission of harmful substances of a pressurized fluidized bed combustion by experimental investigations. The investigations described here were carried out on a stationary pressurized fluidized bed reactor on the technical scale. A first comparison of the results achieved in this reactor with those on a pressurized fluidized bed pilot plant show that the level of emission differs only slightly, taking into account the somewhat different combustion conditions. (orig./IHL) [Deutsch] Das Ziel eines Forschungsprojektes bei der Deutschen Monta Technologie - Gesellschaft fuer Forschung und Pruefung mbH (DMT-FP), ist unter anderem, durch experimentelle Untersuchungen die Wirkungen von Betriebsbedingungen auf die Schadstoffemissionen einer Druckwirbelschichtfeuerung zu ermitteln. Die im folgenden beschriebenen Untersuchungen wurden in einem stationaeren Druckwirbelschichtreaktor im Technikums-Massstab durchgefuehrt. Ein erster Vergleich der in diesem Reaktor erzielten Ergebnisse mit denen einer Druckwirbelschicht-Pilotanlage zeigte, dass die Hoehe der Emissionen - unter Beruecksichtigung der etwas unterschiedlichen Feuerungsbedingungen - nur wenig voneinander abwichen. (orig./IHL)

  5. Disposal of fluidized bed combustion ash in an underground mine to control acid mine drainage and subsidence. Quarterly report, December 1, 1996--February 28, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion-FBC ash). Success will be measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). During Phase 3 the majority of the activity involves completing two full scale demonstration projects. The eleven acre Longridge mine in Preston County will be filled with 53,000 cubic yards of grout during the summer of 1997 and monitored for the following year. The second demonstration involves stowing 2,000 tons of ash into an abandoned mine to demonstrate the newly redesigned Burnett Ejector. This demonstration is anticipated to take place during Summer 1997, as well. This document will report on progress made during Phase 3. The report will be divided into four major sections. The first will be the Hydraulic Injection component. This section of the report will report on progress and milestones associated with the grouting activities of the project. The Phase 3 tasks of Economic Analysis and Regulatory Analysis is covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The Water Quality component involves background monitoring of water quality and precipitation at the Phase 3 (Longridge) mine site. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine. The Gantt Chart on the following page details progress by task.

  6. Disposal of fluidized bed combustion ash in an underground mine to control acid mine drainage and subsidence. Quarterly report, December 1, 1996--February 28, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion -- FBC ash). Success will be measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). During Phase 3 the majority of the activity involves completing two full scale demonstration projects. The eleven acre Longridge mine in Preston County will be filled with 53,000 cubic yards of grout during the summer of 1997 and monitored for the following year. The second demonstration involves stowing 2,000 tons of ash into an abandoned mine to demonstrate the newly redesigned Burnett Ejector. This demonstration is anticipated to take place during Summer 1997, as well. This document will report on progress made during Phase 3. The report will be divided into four major sections. The first will be the Hydraulic Injection component. This section of the report will report on progress and milestones associated with the grouting activities of the project. The Phase 3 tasks of Economic Analysis and Regulatory Analysis will be covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The Water Quality component involves background monitoring of water quality and precipitation at the Phase 3 (Longridge) mine site. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine.

  7. Modelling and simulation of a circulating fluidized-bed steam generator as an aid for process analysis and automation. Modellierung und Simulation eines ZWS-Dampferzeugers als Hilfsmittel zur Prozessanalyse und -automatisierung

    Energy Technology Data Exchange (ETDEWEB)

    Karbach, A.; Peters, R.; Schaub, G. (Lurgi GmbH, Frankfurt am Main (Germany, F.R.))

    1990-04-01

    This book deals with the development and application of mathematical model for the simulation of a steam generator with fluidized-bed combustion (coal combustion in the circulating fluidized-bed combustion). (orig./EF).

  8. Studies in an atmospheric bubbling fluidized-bed combustor of 10 MW power plant based on rice husk

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ravi Inder [Department of Mechanical Engineering, Guru Nanak Dev Engineering College, Ludhiana, Punjab 141 006 (India); Mohapatra, S.K. [Department of Mechanical Engineering, Thapar University, Patiala, Punjab (India); Gangacharyulu, D. [Department of Chemical Engineering, Thapar University, Patiala, Punjab (India)

    2008-11-15

    In this paper an experience, environmental assessment, a model for exit gas composition, agglomeration problem and a model for solid population balance of 10 MW power plant at Jalkheri, Distt. Fatehgarh Sahib, Punjab, India based on rice husk has been discussed. Three phase multistage mathematical model for exit gas composition of rice husk in fluidized bed has been derived. The model is based on three-phase theory of fluidization and material balance for shrinking rice husk particles and it is similar to model developed by Kunii and Levenspiel. The burning of rice husk is assumed to take place according to single film theory. The model has been used to predict the exit gas composition particularly O{sub 2}, CO{sub 2} and N{sub 2}. The agglomeration problem of above plant which is main reason for defluidization of bed has also been discussed. SEM of ash agglomerates has been done. Ash samples taken from the above 10 MW power plant at Jalkheri has been quantitatively analyzed. Finally solid population model has been formed to calculate bed carbon load and carbon utilization efficiency. Above two models are experimentally correlated with the data collected from the above 10 MW power plant at Jalkheri, Distt. Fatehgarh Sahib, Punjab, India which uses rice husk as a fuel input (at the time of study). All the results from the model for rice husk are coming with in permissible limits. (author)

  9. Status of the fluidized bed unit

    Energy Technology Data Exchange (ETDEWEB)

    Williams, P.M.; Wade, J.F.

    1994-06-01

    Rocky Flats has a serious mixed waste problem. No technology or company has a license and available facilities to remedy this dilemma. One solution under study is to use a catalytic fluidized bed unit to destroy the combustible portion of the mixed waste. The fluidized bed thermal treatment program at Rocky Flats is building on knowledge gained over twenty years of successful development activity. The FBU has numerous technical advantages over other thermal technologies to treat Rocky Flats` mixed waste, the largest being the lower temperature (700{degrees}C versus 1000{degrees}C) which reduces acid corrosion and mechanical failures and obviates the need for ceramic lining. Successful demonstrations have taken place on bench, pilot, and full-scale tests using radioactive mixed wastes. The program is approaching implementation and licensing of a production-scale fluidized bed system for the safe treatment of mixed waste. The measure for success on this project is the ability to work closely with the community to jointly solve problems and respond to concerns of mixed waste treatment at Rocky Flats.

  10. Development of a pilot fluidized bed combustion to NOx reduction using natural gas: characterization and dimensioning; Desenvolvimento de um combustor piloto a leito fluidizado para reducao de NOx usando gas natural: caracterizacao e dimensionamento

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Douglas A.; Lucena, Sergio [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2004-07-01

    At the present time, the operation of combustion systems and the design of combustors continue being important problems in the Engineering, and don't involve just the size increase of combustors, but also changes of characteristics in the details of projects. The combustors applications are directly related to the needs, like: material transformation for heating, drying or incineration; and all have the inconvenience of emanating of pollutant gaseous (such like NOx). In combustion systems of gases, NOx is basically created in the reaction between nitrogen and oxygen to high temperatures ({approx} 1200 deg C). Below such conditions, the contribution of thermal NOx is recognisably small. The efficient reduction, safe control and economical elimination of pollutant emissions in the systems of burning are the main focuses of environmental legislation and concern to several industrialized countries, besides Brazil. Furthermore, in appeal at the Environmental Laws and at the rising consumption of combustible gases (Natural Gas), new technologies more attractive and economically viable have been studied, for example the combustion systems in fluidized bed. In this kind of system is possible to obtain high combustion efficiency at low temperatures ({approx} 900 deg C) with NOx reduction. In this work is intended of characterizing and dimensioning an industrial fluidized bed combustor that uses Natural Gas like feedstock in the combustion system, with smaller amounts of emitted NOx. (author)

  11. Developments in fluidized bed conversion of solid fuels

    Directory of Open Access Journals (Sweden)

    Leckner Bo

    2016-01-01

    Full Text Available A summary is given on the development of fluidized bed conversion (combustion and gasification of solid fuels. First, gasification is mentioned, following the line of development from the Winkler gasifier to recent designs. The combustors were initially bubbling beds, which were found unsuitable for combustion of coal because of various drawbacks, but they proved more useful for biomass where these drawbacks were absent. Instead, circulating fluidized bed boilers became the most important coal converters, whose design now is quite mature, and presently the increments in size and efficiency are the most important development tasks. The new modifications of these conversion devices are related to CO2 capture. Proposed methods with this purpose, involving fluidized bed, are single-reactor systems like oxy-fuel combustion, and dual-reactor systems, including also indirect biomass gasifiers.

  12. Study on high belite cement clinker calcination with ashes from circulating fluidized bed combustion%固硫灰制备高贝利特水泥

    Institute of Scientific and Technical Information of China (English)

    吕淑珍; 陈雪梅; 卢忠远; 彭艳华

    2011-01-01

    In order to explore new utilizing approach of ashes from circulating fluidized bed combustion(CFBC ashes for short), high belite cement is prepared by using CFBC ashes to substitute partial raw materials. Calcining temperature and mineral composition of clinker are analyzed by thermogravimetric-differential thermal analysis (TG-DTA) and X-ray diffraction (XRD) respectively, and the physical mechanical properties of clinker are tested. The results show that the main minerals of high belite cement clinker are C2S,C4A3S,G2AF and CaSO4;compression strength of 3 days is more than 30 Mpa.and that of 28 days is more than 80 Mpa while incorporation of proper amount of gypsum.%为了探索固硫灰新的利用途径,利用固硫灰替代部分原料制备高贝利特水泥,采用TG-DTA综合热分析法、XRD射线衍射等方法分别确定了生料的煅烧温度和熟料的矿物组成,并对水泥的物理力学性能进行了检测.研究表明,制备的高贝利特水泥主要矿物组成是C2S、C4A3(S)、C2AF和CaSO4;掺入适量的石膏后,其3d抗压强度达到30 MPa以上,28 d抗压强度达到80 MPa以上.

  13. Circulating fluidized bed combustion fly ash based mineraladmixturesused in concrete%固硫灰作矿物掺和料制备混凝土研究

    Institute of Scientific and Technical Information of China (English)

    莫兆庭

    2015-01-01

    Circulating fluidized bed combustion (CFBC) fly ash was the waste that discharged by circulating fluidized bed boiler, which contained certain amount of chainotte minerals. The chemical compositions and physical properties of CFBC fly ashwere distinct with ordinary fly ash, which were suited to be used in construction materials.However, CFBC fly ash has its own special nature, such as self-hardening, pozzolanic activity and expansion characteristics, which restrict the utilization in building materials. In this paper,the physical and chemical properties of CFBC fly ash were characterized by SEM, particle size analysis,etc. And the activity index of CFBCand composite system contained CFBC fly ash, ordinary fly ash and slag were measured. The utilization of CFBC fly ash in concrete has also been discussed. Results showed that the activity index of CFBC fly ash increased with decreasing of the particle size of CFBC fly ash. The activity index would be decreased when ordinary fly ash and slag were mixed. The CFBC fly ash could be used to prepare concrete. And the properties of the prepared concrete would be improved with addition of CFBC fly ash in certain content range.%固硫灰是循环流化床烧煤技术所产生的废弃物,含有部分烧粘土质矿物,与普通粉煤灰相比其化学组成和性质有一定差异,经过一定加工和配料可以做建筑材料的原材料。但因为固硫灰有其自身特殊性质,如自硬性、火山灰活性和膨胀性等特点,因此在建筑材料领域应用受到一定限制。本文利用SEM微观分析、粒径分析等手段研究了固硫灰的物化特性,同时对固硫灰、粉煤灰、矿粉的活性指数进行分析,并将固硫灰作为矿物掺合料制备混凝土。实验结果表明:固硫灰活性随着粒径减小而增加,与粉煤灰和矿粉复掺会降低体系的活性指数;可以利用固硫灰做矿物掺合料制备混凝土,且其掺量在一定范围内对改善

  14. Air Distributor Designs for Fluidized Bed Combustors: A Review

    Directory of Open Access Journals (Sweden)

    A. Shukrie

    2016-06-01

    Full Text Available Fluidized bed combustion (FBC has been recognized as one of the suitable technologies for converting a wide variety of biomass fuels into energy. One of the key factors affecting the successful operation of fluidized bed combustion is its distributor plate design. Therefore, the main purpose of this article is to provide a critical overview of the published studies that are relevant to the characteristics of different fluidized bed air distributor designs. The review of available works display that the type of distributor design significantly affects the operation of the fluidized bed i.e., performance characteristics, fluidization quality, air flow dynamics, solid pattern and mixing caused by the direction of air flow through the distributors. Overall it is observed that high pressure drop across the distributor is one of the major draw backs of the current distributor designs. However, fluidization was stable in a fluidized bed operated at a low perforation ratio distributor due to the pressure drop across the distributor, adequate to provide uniform gas distribution. The swirling motion produced by the inclined injection of gas promotes lateral dispersion and significantly improves fluidization quality. Lastly, the research gaps are highlighted for future improvement consideration on the development of efficient distributor designs.

  15. Study on mercury migration in a circulating fluidized bed combustion boiler%循环流化床燃煤锅炉中的汞迁移研究

    Institute of Scientific and Technical Information of China (English)

    武成利; 曹晏; 李寒旭; 潘伟平

    2012-01-01

    采用美国环保署颁布的吸附剂吸附汞采样方法30B(USEPA 40 CFR Part 60 30B)采集燃煤烟气中汞.选择一循环流化床燃煤机组进行现场采样,吸附剂吸附烟囱处烟气中的汞、入炉煤样、锅炉底灰、静电除尘器飞灰等样品同时采集.对该机组中汞质量平衡率进行衡算,通过汞质量平衡率说明了汞采样方法的准确性和有效性.评价了汞在飞灰、底灰和烟气中的分布,循环流化床锅炉底灰中对脱汞的贡献率仅0.55%,飞灰脱除汞的效率高达83.37%,剩余的16.08%的汞排放入大气环境,表明循环流化床机组是有效控制汞的清洁煤燃烧技术.%Mercury concentrations in the flue gas at the stack were measured using a sorbent trap method as per United States Environmental Protection Agency Method 30B (I. E. , USEPA 40 CFR Part 60 30B), and the sampling method has merits of convenient setup, simply operation and fast analysis. Field tests were conducted at a unit of the Circulating Fluidized Bed Combustion (CFBC). During the course of sampling the mercury in the flue gas, coal samples, bottom ash and fly ash were collected and analyzed. Rates of mercury material balance though the unit were calculated, and correctness and validity of mercury sampling method were certified. Mercury distributions in fly ash, bottom ash and flue gas were evaluated, and the results showed that firstly bottom ash of CFBC removed only 0. 55% of total mercury, secondly removal efficiency of fly ash reaching 83. 37% , in the end 16.08% of total mercury was emitted to the air. The determined data of mercury emissions show that the CFBC is a clean coal combustion technology of effectively removing mercury.

  16. Materials problems in fluidized-bed combustion systems. Appendix 2. Test specimen preparation, handling, and posttest evaluation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, E.A.; Holder, J.C.; Minchener, A.J.; Page, A.J.; La Nauze, R.D.

    1980-05-01

    Appendix 2 presents the metallographic data compiled by the National Coal Board, Coal Research Establishment, on materials tested for the Electric Power Research Institute Contract R P 388-1 with Combustion Systems Ltd., UK. Two 1000 h tests were carried out to investigate the corrosion performance of boiler and gas turbine alloys exposed in and above a fluidised bed coal combustor. Details are given of the preparation, handling, and examination procedures. Results of metallographic examination and chemical analyses on the samples examined by CRE are provided. This appendix does not attempt to draw any conclusions from the data: such conclusions appear in the main report. Description of the tests and plant performance data are given in Appendix 1 of this report.

  17. Viability study for application of combined reheater cycle (CRC) to fluidized bed combustion plants; Estudio de Viabilidad para la Aplicacion del Ciclo de Recalentamiento Combinado (CRC) a Plantas de Combustion de Lecho Fuido Atmosferico

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Basically, the project try to analyze the application viability of a first reheating in steam cycles of little power plants, useful mainly for biomass and wastes, in our case with coal blends; and a second reheating of the steam in conventional and fluidized bed combustion plants. Using in both cases the thermic energy of the exhaust gases from one gas turbine. The advantages of the CRC cycle are: (1) Reduction of the moisture in the turbine, increasing the energy efficiency and blade protection. (2) To take advantage of the waste gas energy from the gas turbine in optimum way. (3) Great operation flexibility under good efficiency results. In general, the system can use the synergy between gas, coal and waste energies with the highest global efficiency. (Author)

  18. Study on the influence of electromagnetic field on the property of coal combustion burnout in circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Y. [Ruiping Coal and Electric Power Ltd. Co., Ruzhou (China)

    2008-08-15

    To study the influences of electromagnetism field pretreatment of pulverized Coal (EFPPC) on the properties of its combustion, thermogravimetric analysis, a Muffle furnace experiment and an X-ray diffraction experiment were carried out for three Coal banks. It was shown that EFPPC will induce the molecular structure of Coal to change into amorphous carbon, which causes an increase in the rate of oxygen absorption during the initial stages of Coal burning and reaction activity. It is also shown that the residual carbon of bituminous Coal would be increased by about 0.33% - 0.41%, i.e, the loss of standard Coal is about 3,000 t/a for double 480 t/h boilers, when applying EFPPC for 1 min at a temperature of 800 - 1,000 {sup o}C. When the temperature increases 200 {sup o}C, the residual carbon increases by about 2.07% but the effect of EFPPC is less than 0.21% for bituminous Coal and residual carbon is about 1.47% and the effect of EFPPC is less than 0.05% for lean Coal. Therefore the effect of increasing the temperature of EFPPC on residual carbon is less than that of increasing the time of EFPPC. 9 refs., 4 figs., 2 tabs.

  19. 300 MW circulating fluidized bed boiler combustion control algorithms%300MW循环流化床锅炉燃烧控制算法研究

    Institute of Scientific and Technical Information of China (English)

    熊彬; 潘维加

    2013-01-01

      Circulating fluidized bed boiler is a distribution parameters,nonlinear,time varying delay, multivariate tight coupling of the controlled object,the conventional control method,it is hard to obtain the ideal control effect..Combined with a domestic 300 Mw circulating fluidized bed boiler,analysis of the circulating fluidized bed boiler control characteristics and control methods,combined with circulating fluidized bed boiler dynamic mathematical model,and puts forward some self-organizing fuzzy neural network of CFB system control method,and the adaptive particle swarm algorithm to optimize the simulation results. The control system can effectively solve the circulating fluidized bed boiler control of the difficulties, has obtained the satisfactory control effect.Finally,the development direction of circulating fluidized bed boiler is discussed and forecast.%  循环流化床锅炉是一个分布参数、非线性、时变、大滞后、多变量紧密耦合的被控对象,常规控制方法难以取得理想的控制效果。结合国内某300 Mw循环流化床锅炉,分析循环流化床锅炉的控制特点和控制方法,结合循环流化床锅炉动态数学模型,提出自组织模糊神经网络的CFB系统控制方法,并用自适应粒子群算法对仿真结果进行优化。该控制系统有效地解决了循环流化床锅炉控制中的难点问题,取得了满意的控制效果。最后对循环流化床锅炉的发展方向进行了探讨和预测。

  20. Refractory experience in circulating fluidized bed combustors, Task 7

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, R.Q.

    1989-11-01

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE's Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  1. Disposal of fluidized bed combustion ash in an underground mine to control acid mine drainage and subsidence - phase II - small scale field demonstration. Topical report, December 1, 1996--February 28, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Ziemkiewicz, P.F.; Head, W.J.; Gray, D.D.; Siriwardane, H.J.; Sack, W.A.

    1998-01-01

    It has been proposed that a mix made from fly and bottom ash from atmospheric pressure fluidized bed coal combusters (FBC ash), water, and stabilizers be injected from the surface into abandoned room and pillar coal mines through boreholes. Besides ash disposal, this process would prevent subsidence and acid mine drainage. Such a mix (called `grout`) needs to be an adequately stable and flowable suspension for it to spread and cover large areas in the mine. This is necessary as the drilling of the boreholes will be an expensive operation and the number such holes should be minimized. Addition of bentonite was found to be needed for this purpose. A suitable grout mix was tested rheologically to determine its fluid flow properties. Finding little published information on such materials, tests were performed using a commercial rotational viscometer with a T-bar rotor and a stand which produced a helical rotor path. Existing mixer viscometer test methods were modified and adapted to convert the measurements of torque vs. angular speed to the material properties appearing in several non-Newtonian constitutive equations. Yield stress was measured by an independent test called the vane method. The rheological behavior was a close fit to the Bingham fluid model. Bleed tests were conducted to ascertain the stability of the mixtures. Spread tests were conducted to compare the flowability of various mixes. Using the flow parameters determined in the laboratory, numerical simulations of grout flow were performed and compared with the results of scale model and field tests. A field injection of this grout was performed at the Fairfax mines in Preston county, W.V.. The observations there proved that this FBC ash grout flows as desired, is a very economical way of disposing the environmentally menacing ash, while also preventing the subsidence and acid mine drainage of the mines.

  2. Study on solidification and stabilization technique by steam treatment of the coal ash from fluidized-bed combustion boilers; Ryudoso sekitanbai no joki shori ni yoru koka / anteika gijutsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Y. [Kawasaki Heavy Industries Ltd., Kobe (Japan)

    1998-08-20

    In fluidized-bed coal combustion boiler supporting one end of boilers for power generation and process heating, coal ash comprised of the products of ash of coal and lime stone used for desulfurizer was used for raw material. The fluidized-bed combustion boiler really working at present is of normal pressure (AFBC) type due to bubbling or cycling system, and pressure type of the bubbling system (PFBC) due to high pressure of about 1.0 MPa is promoted development for a next generation type power generation. Then, by using the coal ash obtained from the AFBC boiler with different kind of coal, volume of boiler, and so on (AFBC ash) and the coal ash obtained from the PFBC boiler under actual proof operation, a study on properties of coal, lime stone and solids after steam treatment of mixture with water (kind/volume, strength and elution of hazard heavy metals of hydrates) were conducted to investigate to use for civil engineering materials such as road materials, filling back materials, and so forth. 16 refs., 13 figs., 2 tabs.

  3. 循环流化床高浓度富氧燃烧试验研究%Experimental Study on Oxy-fuel Combustion With High Oxygen Concentration in a Circulating Fluidized Bed

    Institute of Scientific and Technical Information of China (English)

    谭力; 李诗媛; 李伟; 寿恩广; 吕清刚

    2014-01-01

    In order to investigate the effects of combustion temperature and atmosphere on the combustion stability, CO2 concentration and gaseous pollutants emissions in flue gas, in a 0.1 MW circulating fluidized bed (CFB) oxy-fuel combustion facility, oxy-combustion experiments with Datong coal were carried out at O2/CO2 and O2/ recycled flue gas (RFG) atmosphere with high oxygen concentration. The test results show that when the oxygen concentration of the primary air ranges from 49.6%to 55.2%and that of the secondary air is in the range from 45.3%to 51.7%, the CFB oxy-fuel combustion facility maintains stably at O2/RFG atmosphere. In flue gas, CO2 concentration can reach above 90%, SO2 concentration is 87 to 197 mg/MJ, N2O concentration is 48 to 78 mg/MJ, and NO concentration is only 19 to 44 mg/MJ. Compared with the result of O2/CO2 combustion, the concentration of CO and SO2 increases to a certain degree, while N2O concentration decreases obviously, and NO concentration basically remains the same.%#在0.1 MW循环流化床富氧燃烧试验系统上,进行了大同烟煤在O2/再循环烟气(RFG)和O2/CO2配气下的高浓度富氧燃烧试验,研究燃烧温度和气氛对燃烧稳定性、烟气中CO2浓度和气体污染物排放的影响。研究结果表明,O2/RFG气氛下,在一次风氧气浓度为49.6%~55.2%、二次风氧气浓度为45.3%~51.7%范围内,循环流化床能够稳定运行,烟气中CO2浓度达到90%以上,SO2浓度为87~197 mg/MJ,N2O浓度为48~78 mg/MJ,NO仅为19~44 mg/MJ。与O2/CO2配气燃烧相比,O2/RFG燃烧时除NO浓度基本不变外,CO与SO2浓度均有一定程度的增加,而N2O浓度则明显降低。

  4. The Imaginary Plane Mothod of Radiation Heat Transfer in The Freeboard of Atmospheric Bubbling Fluidized Bed Boiler

    Institute of Scientific and Technical Information of China (English)

    LuHuilin; BaoYiling; 等

    1993-01-01

    An imaginary plane method for calcuation of radiative heat transfer and its application in the freeboard of AFBC boiler is presented in this paper,The combustion reaction and particle concentration are taken into account in this method.With is method,one-dimensional freeboard model for radiative heat transfer has been made.Results from this model have been compared with the experimental results of a 130t/h AFBC boiler.The distribution of flue gas temperature and heat flux at the waterwall are obtained .It is shown that this model has the advantage of good accuracy and requiring less computation time.The applicability of the predicted results in the AFBC boiler design and operation was also discussed.

  5. Utilization of coal ash from fluidized-bed combustion boilers as road base material; Sekitandaki ryudoso boiler kara no sekitanbai no robanzai to shite no riyo

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Y. [Kawasaki Heavy Industries, Ltd., Kobe (Japan); Kozasa, K. [Center for Coal Utilization, Japan, Tokyo (Japan); Tsuzura, K. [Naruto Salt Mfg. Co. Ltd., Tokushima (Japan); Izumi, H. [Nippon Hodo Co. Ltd., Tokyo (Japan)

    1998-03-01

    Coal ash from the fluidized bed boiler is evaluated for its properties as is, as solidified or granulated, and as the roadbed material. The coal ash tested in the experiment is a mixture of ash from the fluidized bed boiler bottom, ash from the cyclone separator, and ash from the bag filter. In the manufacture of solid or granulated bodies, coal ashes are kneaded in water whose amount puts the mixture near the plasticization limit, are pressed in a low-pressure press and made into solid bodies by a 15-hour curing in 60degC saturated steam, and the solid bodies are crushed into solid granules. A content release test is conducted about the release of dangerous substances, and road paving experiments are conducted to learn the workability and serviceability of the granulated material as a road paving material. A study of the experimental results discloses what is mentioned below. Coal ash containing 10-20vol% of CaO and 15vol% or less of unburnt carbon turns into a high-strength solid after curing in saturated steam whose temperature is not higher than 60degC. The granulated solid satisfies the standards that an upper subbase material is expected to satisfy. It also meets the environmental standards in a release content test for soil set forth by Environment Agency notification No.46. 8 refs., 8 figs., 4 tabs.

  6. Second generation pressurized fluidized-bed combustion (PFBC) research and development, Phase 2 --- Task 4, carbonizer testing. Volume 2, Data reconciliation

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, R.; Robertson, A.; Vanhook, J.; Goyal, A.; Rehmat, A.; Newby, R.

    1994-11-01

    During the period beginning November 1991 and ending September 1992, a series of tests were conducted at Foster Wheeler Development Corporation in a fluidized-bed coal carbonizer to determine its performance characteristics. The carbonizer was operated for 533 hours in a jetting fluidized-bed configuration during which 36 set points (steady-state periods) were achieved. Extensive data were collected on the feed and product stream compositions, heating values, temperatures, and flow rates. With these data, elemental and energy balances were computed to evaluate and confirm accuracy of the data. The carbonizer data were not as self-consistent as could be desired (balance closure imperfection). A software package developed by Science Ventures, Inc., of California, called BALAID, was used to reconcile the carbonizer data; the details of the reconciliation have been given in Volume 1 of this report. The reconciled data for the carbonizer were rigorously analyzed, correlations were developed, and the model was updated accordingly. The model was then used in simulating each of the 36 steady-state periods achieved in the pilot plant. The details are given in this Volume one. This Volume 2 provides details of the carbonizer data reconciliation.

  7. Novel designs of fluidized bed combustors for low pollutant emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lin, W.; Bleek, C.M. van den [Delft Univ. of Technology (Netherlands). Dept. of Chemical Engineering; Dam-Johansen, K. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemical Engineering

    1995-12-31

    It is known that NH{sub 3}, released during the devolatilization of fuel, is an important precursor for NO formation in fluidized bed combustors. On the other hand, NH{sub 3} may be used as a reducing agent in the thermal DeNO{sub x} process to reduce NO{sub x} emission levels. In this paper, a new concept of fluidized bed combustors is proposed based on the idea of in situ reduction of NO{sub x} by self-produced NH{sub 3} from fuel without lowering the sulfur capture level. This design is intended to separate the NH{sub 3} release process under reducing conditions from the char combustion process under oxidizing conditions; this self-released NH{sub 3}, together with some combustibles, is mixed with gaseous combustion products in the upper part of the combustor for a further reduction of the NO{sub x} formed during combustion. Furthermore, the combustion of the combustibles may cause the temperature to rise in this upper zone and thereby reduce the emission of N{sub 2}O. The applications of this design to bubbling and circulating fluidized bed combustors are described and the mechanisms of the main reactions involved discussed.

  8. Second-generation pressurized fluidized-bed combustion plant: Conceptual design and optimization of a second-generation PFB combustion plant. Phase 2, Annual report, October 1991--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, A.; Domeracki, W.; Newby, R.; Rehmat, A.; Horazak, D.

    1992-10-01

    After many years of experimental testing and development work, coal-fired pressurized fluidized bed (PFB) combustion combined-cycle power plants are moving toward reality. Under the US Department of Energy`s Clean Coal Technology Program, a 70-MWe PFB combustion retrofit, utilizing a 1525{degrees}F gas turbine inlet temperature, has been built and operated as a demonstration plant at the American Electric Power Company`s Tidd Plant in Brilliant, Ohio. As PFB combustion technology moves closer and closer to commercialization, interest is turning toward the development of an even more efficient and more cost-effective PFB combustion plant. The targeted goals of this ``second-generation`` plant are a 45-percent efficiency and a cost of electricity (COE) that is at least 20 percent lower than the COE of a conventional pulverized-coal (PC)-fired plant with stack gas scrubbing. In addition, plant emissions should be within New Source Performance Standards (NSPS) and the plant should have high availability, be able to burn different ranks of coal, and incorporate modular construction technologies. In response to this need, a team of companies led by Foster Wheeler Development Corporation (FWDC). The key components in the proposed second-generation plant are the carbonizer, CPFBC, ceramic cross-flow filter, and topping combustor. Unfortunately, none of these components has been operated at proposed plant operating conditions, and experimental tests must be conducted to explore/determine their performance throughout the proposed plant operating envelope. The major thrust of Phase 2 is to design, construct, test, and evaluate the performance of the key components of the proposed plant.

  9. Agglomeration-Free Distributor for Fluidized Beds

    Science.gov (United States)

    Ouyang, F.; Sinica, A.; Levenspiel, O.

    1986-01-01

    New gas distributor for fluidized beds prevents hot particles from reacting on it and forming hard crust. In reduction of iron ore in fluidized bed, ore particles do not sinter on distributor and perhaps clog it or otherwise interfere with gas flow. Distributor also relatively cool. In fluidized-bed production of silicon, inflowing silane does not decompose until within bed of hot silicon particles and deposits on them. Plates of spiral distributor arranged to direct incoming gas into spiral flow. Turbulence in flow reduces frequency of contact between fluidized-bed particles and distributor.

  10. Biomass fast pyrolysis for bio-oil production in a fluidized bed reactor under hot flue atmosphere.

    Science.gov (United States)

    Li, Ning; Wang, Xiang; Bai, Xueyuan; Li, Zhihe; Zhang, Ying

    2015-10-01

    Fast pyrolysis experiments of corn stalk were performed to investigate the optimal pyrolysis conditions of temperature and bed material for maximum bio-oil production under flue gas atmosphere. Under the optimized pyrolysis conditions, furfural residue, xylose residue and kelp seaweed were pyrolyzed to examine their yield distributions of products, and the physical characteristics of bio-oil were studied. The best flow rate of the flue gas at selected temperature is obtained, and the pyrolysis temperature at 500 degrees C and dolomite as bed material could give a maximum bio-oil yield. The highest bio-oil yield of 43.3% (W/W) was achieved from corn stalk under the optimal conditions. Two main fractions were recovered from the stratified bio-oils: light oils and heavy oils. The physical properties of heavy oils from all feedstocks varied little. The calorific values of heavy oils were much higher than that of light oils. The pyrolysis gas could be used as a gaseous fuel due to a relatively high calorific value of 6.5-8.5 MJ/m3.

  11. An Overview of Atmospheric Fluidized Bed Combustion Systems as Applied to Army Scale Central Heat Plants

    Science.gov (United States)

    1992-11-01

    turbulence, offers several advantages: less volatilization of alkali components, reduced chance for hot spots on boiler and shell surfaces, less...properties. Pretreating limestone-based sulfur sorbents to open the pores for sulfur dioxide diffusion can be done by precalcination. Treating the sorbents...Carpet waste Coal washing waste Biomass waste Sulfur-laden waste gases Vegetable compost Paint sludge "• Lower power requirements for fuel

  12. Formation and destruction mechanisms of nitrogen oxides during coal combustion in circulating fluidized beds; Mecanismes de formation et de destruction des oxydes d`azote lors de la combustion du charbon en lit fluidise circulant

    Energy Technology Data Exchange (ETDEWEB)

    Borrel, G.; Lecuyer, I. [Universite du Haut-Rhin, 68 - Mulhouse (France)

    1997-01-01

    Formation and reduction of nitrogen oxides (NO and N{sub 2}O) during coal combustion in a circulating fluidized bed (CFBC) are very complicated and yet badly known. The aim of the present study was to better characterize these phenomena on a small-sized experimental unit (reactor diameter: 5 cm), with the possibility to re-inject the solids in the bottom of the furnace, as in a real industrial unit. This should allow then to develop a numerical set of chemical reactions involving the nitrogen oxides. The experimental results showed that coal ash plays a great role in reducing nitrogen oxides, the determining parameter being the quantity of unburnt carbon remaining in the ash. The study then detailed the interaction between nitrogen oxides and de-volatilized (char) according to the temperature, NO{sub x} concentration and the mass of solid. In the absence of oxygen small quantities of char can very significantly reduce NO as well as N{sub 2}O. It was possible to establish destruction kinetics on these particles, and orders of reaction could be determined versus the NO{sub x} concentration and the char particle mass (heterogeneous phase chemical reactions). Then, the coal pyrolysis study enabled to identify the products released during coal devolatilization and thermogravimetric analyses displayed several successive weight losses due CO, CO{sub 2} and CH{sub 4} releases, during a linear temperature increase. Lastly coal combustion was studied in the small pilot with variable experimental conditions. Using the previous experimental was studied in the small pilot with variable experimental conditions. Using the previous experimental results, a model was developed to calculate NO{sub x} concentrations during the coal combustion and validated. The NO and N{sub 2}O contents calculated are thoroughly correlated with the experimental data whatever the injection carbon/oxygen ratio is. (author) 96 refs.

  13. Numerical Simulation of Physical and Chemical Processes in Fluidized Bed

    Science.gov (United States)

    Baturin, D. A.; Gil, A. V.

    2015-10-01

    The paper presents a numerical simulation of the furnace with a circulating fluidized bed. Numerical study carried out for the bottom of the combustion chamber with the varying heights of volume filling. The results contours of particulate matter concentration and of velocities, as well as a graphical representation of changes in the concentration of particles on the bed height are shown. Simulation performed in Eulerian - Eulerian representation on a 2D model.

  14. 影响循环流化床锅炉燃烧热效率的因素和提高途径%Factors Affecting Combustion Thermal Efficiency of Circulating Fluidized Bed Boiler and Ways to Improve

    Institute of Scientific and Technical Information of China (English)

    李敬珂

    2015-01-01

    In order to find out ways and measures to improve combustion thermal efficiency of boiler,combustion adjustment test for circulating fluidized bed boiler is carried out,factors affecting combustion thermal efficiency of boiler, including oxygen content in flue gases, bed pressure differential,bed temperature,operating load,carbon content in cinder and so on,are analyzed and summed-up.With test data,ways to improve combustion thermal efficiency of boiler,countermeasures and suggestions are proposed.%为找出提高锅炉燃烧热效率的途径和措施,对循环流化床锅炉进行了燃烧调整试验,分析并总结了烟气氧含量、床层压差、床层温度、运行负荷、煤灰中的碳含量等因素对锅炉燃烧热效率的影响。通过试验数据,提出了提高锅炉燃烧热效率的途径、改进措施和建议。

  15. Generation and reduction of nitrogen oxides in firing different kinds of fuel in a circulating fluidized bed

    Science.gov (United States)

    Munts, V. A.; Munts, Yu. G.; Baskakov, A. P.; Proshin, A. S.

    2013-11-01

    The processes through which nitrogen oxides are generated and reduced in the course of firing different kinds of fuel in a circulating fluidized bed are addressed. All experimental studies were carried by the authors on their own laboratory installations. To construct a model simulating the generation of nitrogen oxides, the fuel combustion process in a fluidized bed was subdivided into two stages: combustion of volatiles and combustion of coke residue. The processes through which nitrogen oxides are generated and reduced under the conditions of firing fuel with shortage of oxygen (which is one of efficient methods for reducing nitrogen oxide emissions in firing fuel in a fluidized bed) are considered.

  16. Fluidized-Bed Waste-Heat Recovery System development. Semiannual report, 1 August 1981-31 January 1982

    Energy Technology Data Exchange (ETDEWEB)

    Cole, W. E.; DeSaro, R.; Joshi, C.

    1982-02-01

    The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry.

  17. Effect of biomass-sulfur interaction on ash composition and agglomeration for the co-combustion of high-sulfur lignite coals and olive cake in a circulating fluidized bed combustor.

    Science.gov (United States)

    Varol, Murat; Atimtay, Aysel T

    2015-12-01

    This study aimed to investigate the effect of biomass-sulfur interaction on ash composition and agglomeration for the co-combustion of high-sulfur lignite coals and olive cake in a circulating fluidized bed combustor. The tests included co-combustion of 50-50% by wt. mixtures of Bursa-Orhaneli lignite+olive cake and Denizli-Kale lignite+olive cake, with and without limestone addition. Ash samples were subjected to XRF, XRD and SEM/EDS analyses. While MgO was high in the bottom ash for Bursa-Orhaneli lignite and olive cake mixture, Al2O3 was high for Denizli-Kale lignite and olive cake mixture. Due to high Al2O3 content, Muscovite was the dominant phase in the bottom ash of Denizli Kale. CaO in the bottom ash has increased for both fuel mixtures due to limestone addition. K was in Arcanite phase in the co-combustion test of Bursa/Orhaneli lignite and olive cake, however, it mostly appeared in Potassium Calcium Sulfate phase with limestone addition.

  18. Control and reduction of NOx emissions on light hydrocarbons combustion in fluidized bed combustors: a technological prospection surveys; Controle e reducao de emissoes de NOx durante queima de hidrocarbonetos leves em combustores a leito fluidizado: um estudo de prospeccao tecnologica

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Douglas Alves; Winter, Eduardo [Instituto Nacional da Propriedade Industrial (INPI), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The present paper aims a technological prospecting study of the main technological agents involved in industrial light hydrocarbons combustion process. More specifically, the work approaches technologies applied to nitrogen oxides emissions control and reduction. Nitrogen oxides are typically known as 'NOx' (NO, N{sub 2}O, NO{sub 2}). 'NOx' are byproducts from fuel burning in combustion systems, including also in fluidized bed combustion systems. The technological prospecting study employed 'technology foresight' as tool for evaluating the technological perspectives of the thermal generation, basis on environment protection. Such technological perspectives of the thermal generation were evaluated through invention patent documents. The query methodology for obtaining of patent documents employed a free patent base, known as ESPACENET. Additionally, the documents obtained were evaluated, considering beyond the countries and the publication dates, technological perspectives employed to 'NOx' emissions control and reduction. It is very important to highlight around 70% of the industrial technological information are just found in invention patent documents. (author)

  19. Materials problems in fluidized-bed combustion systems. Appendix 3. Evaluation of boiler alloy specimens at Foster Wheeler Development Corporation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Amoruso, G.V.; Apblett, A.R. Jr.

    1980-05-01

    This report summarizes the results of the Foster Wheeler Development Corporation (FWDC) portion of a metallurgical investigation conducted to assess the corrosion behavior of various ferritic, austenitic, and nickel-base alloys which were exposed in a coal-burning fluidized bed test facility at nominal temperatures of 1000/sup 0/F, 1200/sup 0/F, 1400/sup 0/F, 1550/sup 0/F, and 1650/sup 0/F for 1000 and 2000 hour test exposure periods. The alloys included Corten, 2-1/4Cr-1Mo, 9Cr-1Mo, 405 SS, E-Brite 26-1, 310 SS, 329 SS, 347 SS, 22-13-5, 21-6-9, Incoloy 800, Manaurite 36X, Inconel 690, and RA 333. The investigation included material precharacterization studies and post-test metallurgical evaluations involving deposit/scale thickness measurements, selective chemical/microprobe analyses, specimen surface recession measurements, determination of depths of dealloying and corrosive constituent penetrations, grain-size determinations, hardness surveys, macro and microscopic examinations and study/recording of microstructural changes resulting as a consequence of test exposure.

  20. Hydrodynamique, transfert de chaleur et combustion de gaz naturel en lit fluidisé circulant Hydrodynamics, Heat Transfer and Combustion of Natural Gas in a Circulating Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Feugier A.

    2006-11-01

    Full Text Available L'hydrodynamique, les transferts de chaleur et la combustion du gaz naturel ont été étudiés dans un réacteur à lit circulant de 15 cm de diamètre et de 7 m de haut. Ce réacteur peut opérer avec des vitesses de gaz allant jusqu'à 15 m/s, jusqu'à des températures de 880-900°C et avec des débits de solides compris entre 0 et 15t/h. Les charges utilisées sont des sables de granulométrie allant de 95 à 625 microns. Le profil de concentration en solides dans le réacteur est déterminé à partir du profil de pression. Une corrélation reliant la vitesse de glissement des particules aux principaux paramètres opératoires, rend compte de façon très satisfaisante de l'ensemble des résultats expérimentaux. La mise en place d'un échangeur en paroi dans la partie supérieure du réacteur a permis la détermination de coefficients d'échange thermique. Ces derniers sont essentiellement fonction de la, concentration en particules au droit de l'échangeur et de la granulométrie des particules. Des valeurs allant jusqu'à 200 W/m2 K peuvent, être obtenues. Enfin, la combustion du méthane s'avère très sensible à la présence de particules dans le réacteur. Ces particules ont un effet inhibiteur. Hydrodynamics, heat transfer and combustion of natural gas have been investigated in a circulating-bed reactor 15 cm in diameter and 7 m high. This reactor can operate with gas velocities up to 15 m/s, at temperature up to 880-900°C and with solids flow rates of between 0 and 15 t/h. The solids used are sands with a particle size ranging from 95 to 625 microns. The solids concentration profile in the reactor is determined from the pressure profile. A correlation linking the slippage velocity of particles to the principal operating parameters very satisfactorily takes into consideration the overall experimental results. The installation of a wall heat exchanger in the upper part of the reactor enabled the heat exchange coefficients to be

  1. Performance analysis and pilot plant test results for the Komorany fluidized bed retrofit project

    Energy Technology Data Exchange (ETDEWEB)

    Snow, G.C. [POWER International, Inc., Coeur d`Alene, ID (United States)

    1995-12-01

    Detailed heat and mass balance calculations and emission performance projections are presented for an atmospheric fluidized bed boiler bottom retrofit at the 927 MWt (steam output) Komorany power station and district heating plant in the Czech Republic. Each of the ten existing boilers are traveling grate stoker units firing a local, low-rank brown coal. This fuel, considered to be representative of much of the coal deposits in Central Europe, is characterized by an average gross calorific value of 10.5 MJ/kg (4,530 Btu/lb), an average dry basis ash content of 47 %, and a maximum dry basis sulfur content of 1.8 % (3.4 % on a dry, ash free basis). The same fuel supply, together with limestone supplied from the region will be utilized in the retrofit fluidized bed boilers. The primary objectives of this retrofit program are, (1) reduce emissions to a level at or below the new Czech Clean Air Act, and (2) restore plant capacity to the original specification. As a result of the AFBC retrofit and plant upgrade, the particulate matter emissions will be reduced by over 98 percent, SO{sub 2} emissions will be reduced by 88 percent, and NO{sub x} emissions will be reduced by 38 percent compared to the present grate-fired configuration. The decrease in SO{sub 2} emissions resulting from the fluidized bed retrofit was initially predicted based on fuel sulfur content, including the distribution among organic, pyritic, and sulfate forms; the ash alkalinity; and the estimated limestone calcium utilization efficiency. The methodology and the results of this prediction were confirmed and extended by pilot scale combustion trials at a 1.0 MWt (fuel input), variable configuration test facility in France.

  2. Hydrodynamics of gas-solids downflow fluidized bed (downer) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.

    1999-07-01

    This study presents a semi-empirical model for the hydrodynamic flow structure in a circulating fluidized bed downer reactor. Circulating fluidized bed, or riser reactors are used in the petroleum industry for many applications including catalytic cracking, polyethylene production, calcination operations and combustion of a variety of fuels. The work in this thesis involved the development of a circulating fluidized bed riser and downer system that enables hydrodynamic studies to be carried out. The system was designed to incorporate both a riser and a downer in the same circulating operation, making it possible to conduct experimental studies on the riser and the downer separately or simultaneously. The hydrodynamics of the gas-solids downflow fluidized bed reactor were studied in a 9.3 m tall and 0.1 m i.d. circulating fluidized bed downer reactor using fluidized cracking catalyst (FCC) particles. In order to characterize the gas-solids flow structures, the following three parameters were measured: the radial distributions of the local solids holdups, the local particle velocities, and the pressure gradients along the downer column. The hydrodynamics in the co-current downflow reactor was also studied under a wide range of operating conditions. The gas-solids flow structure under zero superficial gas velocity conditions was characterized by measuring the radial distribution of the local solids holdups and particle velocities along the downer column with the superficial gas velocity set to zero. The results indicate that two basic flow regimes exist in the FCC downer system depending on the superficial gas velocity. The downer reactor was shown to have a more uniform radial flow structure compared to the riser. It also has a more uniform radial distribution of solids holdup and particle velocity as well as solids flux in both the development and fully developed zones. The highly uniform radial flow structure provides a nearly ideal plug flow condition in the

  3. Modeling of fluidized-bed combustion of coal: Phase II, final reports. Volume VII. FBC Data-Base-Management System (FBC-DBMS) users manual

    Energy Technology Data Exchange (ETDEWEB)

    Louis, J.F.; Tung, S.E.

    1980-10-01

    The primary goal of the Fluidized Bed Combustor Data Base (FBCDB) is to establish a data repository for the express use of designers and research personnel involved in FBC development. FBCDB is implemented on MIT's 370/168 computer, using the Model 204 Data Base Management System (DBMS) developed by Computer Corporation of America. DBMS is a software that provides an efficient way of storing, retrieving, updating and manipulating data using an English-like query language. The primary content of FBCDB is a collection of data points defined by the value of a number of specific FBC variables. A user may interactively access the data base from a computer terminal at any location, retrieve, examine, and manipulate the data as well as produce tables or graphs of the results. More than 20 program segments are currently available in M204 User Language to simplify the user interface for the FBC design or research personnel. However, there are still many complex and advanced retrieving as well as applications programs to be written for this purpose. Although there are currently 71 entries, and about 2000 groups reposited in the system, this size of data is only an intermediate portion of our selection. The usefulness of the system at the present time is, therefore, limited. This version of FBCDB will be released on a limited scale to obtain review and comments. The document is intended as a reference guide to the use of FBCDB. It has been structured to introduce the user to the basics of FBCDB, summarize what the available segments in FBCDB can do, and give detailed information on the operation of FBCDB. This document represents a preliminary draft of a Users Manual. The draft will be updated when the data base system becomes fully implemented. Any suggestions as to how this manual may be improved will be appreciated.

  4. Attempts on cardoon gasification in two different circulating fluidized beds

    Directory of Open Access Journals (Sweden)

    Chr. Christodoulou

    2014-11-01

    Full Text Available Few tests have been carried out in order to evaluate the use of cardoon in gasification and combustion applications most of the researchers dealt with agglomeration problems. The aim of this work is to deal with the agglomeration problem and to present a solution for the utilization of this biofuel at a near industrial application scale. For this reason, two experiments were conducted, one in TU Delft and one in Centre for Research and Technology Hellas (CERTH, using fuel cardoon and 50% w/w cardoon blended with 50% w/w giant reed respectively. Both experimental campaigns were carried out in similar atmospheric circulating fluidized bed gasifiers. Apart from the feedstock, the other differences were the gasification medium and the bed material used in each trial. The oxidizing agent at TUD׳s run was O2/steam, whereas CERTH׳s tests used air. When experiments with the cardoon 50% w/w–giant reed 50% w/w blend were performed no agglomeration problems were presented. Consequently, gasification could be achieved in higher temperature than that of pure cardoon which led to the reduction of tar concentration.

  5. 运行参数对粉煤流化床(PC-FB)燃烧效率的影响%The Effect of Operation Parameters on the Combustion Efficiency of a Pulverized-coal Fluidized Bed

    Institute of Scientific and Technical Information of China (English)

    陈鸿伟; 金保升; 徐益谦

    2001-01-01

    With the help of a pulverized-coal fluidized bed (PC-FB) test rig with 0.3 MW heat input test data were obtained of the PC-FB combustion efficiency under various operation parameters. A detailed discussion and study was conducted focusing on the mechanism of influence of these operation parameters on PC-FB combustion efficiency. The study results indicate that the combustion efficiency of the PC-FB can be as high as 98% - 99%, comparable with that of a pulverized-coal furnace. The authors also pointed out for the first time in the present study that under a certain set of conditions it is possible to realize a low-temperature high-efficiency combustion of the pulverized-coal. These conditions include, among others, a rational matching of the following items: combustion temperature, particle residence time, flame turbulence and in-furnace oxygen concentration and particle concentration%在一座0.3 MW热输入的PC-FBC试验台上进行了试验研究,获得了不同操作参数下PC-FB燃烧效率的试验数据,详细讨论了这些参数对PC-FB燃烧效率的影响规律。研究结果表明,粉煤流化床的燃烧效率最高达98%~99%,可与煤粉炉相媲美。本试验研究亦首次提出,只要燃烧温度、颗粒停留时间、火焰湍流度(3T)及炉内氧浓度、颗粒浓度(2C)合理匹配,就能够实现煤粉的低温高效燃烧。

  6. Lignite air-steam gasification in the fluidized bed of iron-containing slag catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, B.N.; Shchipko, M.L.; Golovin, Yu. [Inst. of Chemistry of Natural Organic Materials, Academgorodok, Krasnoyarsk (Russian Federation)

    1995-12-01

    The influence of fluidized bed of iron-containing slag particles on air-steam gasification of powdered Kansk-Achinsk lignite in entrained flow was studied in pilot installation with productivity about 60 kg per hour. Slag of Martin process and boiler slag were used as catalytic active materials until their complete mechanical attrition. Two following methods of catalytic gasification of lignite were compared: the partial gasification in stationary fluidized bed of slag particles with degree of fuel conversion 40-70% and complete gasification in circulating bed of slag particles. In the first case only the most reactive part of fuel is gasified with the simultaneously formation of porous carbon residue with good sorption ability. It was found the catalytic fluidized bed improves heat transfer from combustion to reduction zone of gas-generator and increases the rate of fuel conversion at the temperature range 900-1000{degrees}C. At these temperatures the degree of conversion is depended considerably on the duration time of fuel particles in the catalytic fluidized bed. The influence of catalytic fluidized bed height and velocity of reaction mixture on the temperature profiles in the gas-generator was studied. The optimal relationship was found between the fluidized bed height and velocity of flow which makes possible to produce the gas with higher calorific value at maximum degree of fuel conversion.

  7. Desulfurization in Reducing Atomosphere and Ammonia Injection Denitrification in a Coal—Fired Fluidized Bed COmbustor with FLy—Ash Recycle

    Institute of Scientific and Technical Information of China (English)

    ZhongZhaoping; ZhengHaiyun

    1997-01-01

    With the rising of IGCC and the second generation PFBC-CC,and with the development of tech-nology of staged combustion to lower emission of NOx,the desulfurization efficiency under reducing atmosphere is raised.In this paper,with the application of the fly-ash recycle and two-stage combustion technologies in a fluidized bed combustor,the desulfurization test under reducing atmosphere is described.Meanwhile,ammonia injection test was also conducted.Results show that desulfurization under reducing atmosphere has higher efficiency,and amoonia injection denitrification effect is very perfect.

  8. Development of pressurized fluidized-bed combustion (PFBC) technology for coal-fired combined cycles. Final report; Entwicklung der Druckwirbelschicht-Feuerungstechnik fuer kohlegefeuerte kombinierte Gas-Dampfprozesse. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Terhaag, U.; Verweyen, N.; Goermar, H.; Bu Cheng; Ewes, I.; Braun, A.

    1992-06-01

    Pressurized fluidized combustion is a very essential component for combined cycles with low emissions and high efficiency. The aim of this project was further development of the stationary pressurized fluidized bed combustion technique. In the last two heating periods, a series of experiments was carried out with modifications of the combustion chamber. The results of these runs were compared with numerical simulations. Improved numerical procedures were used to develop a new design of the pressurized combustion chamber. Attention is focused on emission control for the components CO, NO{sub x} and N{sub 2}O. The necessary modifications, however, result in an increase of the prognosted construction costs, so that the project was finished by the end of 1991. (orig.) With 15 refs., 2 tabs., 120 figs. [Deutsch] Im Rahmen fortschrittlicher Kohleumwandlungsprozesse liefert die druckaufgeladene Wirbelschicht einen wesentlichen Beitrag zur Verringerung der Emissionen und zur Erreichung hoher Wirkungsgrade. Die Weiterentwicklung der stationaeren Druckwirbelschicht-Feuerungstechnik war Ziel dieses Forschungsvorhabens. Dazu sind in den Heizperioden 89/90 und 90/91 umfangreiche numerische und experimentelle Untersuchungen durchgefuehrt und ausgewertet worden. Die Auslegungsprogramme sind so modifiziert worden, dass beliebige stationaere Betriebspunkte nachgerechnet werden koennen. Mit Hilfe dieses Werkzeugs ist mit der Auslegung eines Dampferzeugers mit in Hinblick auf Teillastverhalten und Schadstoffemission optimierten Leistungsmerkmalen begonnen worden. Es hat sich dabei gezeigt, dass die notwendigen baulichen Aenderungen an der Anlage der RWTH Aachen zu einer erheblichen Kostensteigerung fuehren wuerden. Aus diesem Grund ist das Projekt vorzeitig zum 31.12.1991 beendet worden. (orig.) With 15 refs., 2 tabs., 120 figs.

  9. CaMn0.875Ti0.125O3 as oxygen carrier for chemical-looping combustion with oxygen uncoupling (CLOU)—Experiments in a continuously operating fluidized-bed reactor system

    KAUST Repository

    Rydén, Magnus

    2011-03-01

    Particles of the perovskite material CaMn0.875Ti0.125O3 has been examined as oxygen carrier for chemical-looping with oxygen uncoupling, and for chemical-looping combustion of natural gas, by 70h of experiments in a circulating fluidized-bed reactor system. For the oxygen uncoupling experiments, it was found that the particles released O2 in gas phase at temperatures above 720°C when the fuel reactor was fluidized with CO2. The effect increased with increased temperature, and with the O2 partial pressure in the air reactor. At 950°C, the O2 concentration in the outlet from the fuel reactor was in the order of 4.0vol%, if the particles were oxidized in air. For the chemical-looping combustion experiments the combustion efficiency with standard process parameters was in the order of 95% at 950°C, using 1000kg oxygen carrier per MW natural gas, of which about 30% was located in the fuel reactor. Reducing the fuel flow so that 1900kg oxygen carrier per MW natural gas was used improved the combustion efficiency to roughly 99.8%. The particles retained their physical properties, reactivity with CH4 and ability to release gas-phase O2 reasonably well throughout the testing period and there were no problems with the fluidization or formation of solid carbon in the reactor. X-ray diffraction showed that the particles underwent changes in their phase composition though. © 2010 Elsevier Ltd.

  10. Experiments on effects of coal particle ash content on ash formation during fluidized bed combustion%流化床燃烧中煤含灰量对灰渣形成特性的影响

    Institute of Scientific and Technical Information of China (English)

    王勤辉; 徐志; 刘彦鹏; 骆仲泱; 倪明江

    2012-01-01

    为了研究煤颗粒灰质量分数对煤在流化床燃烧过程中灰渣形成特性的影响,在一台小型流化床反应炉上进行煤的灰质量分数对灰渣形成特性的实验.按煤颗粒的灰质量分数,把义马烟煤分为6个颗粒组,并选用各颗粒组的3个粒径范围的煤颗粒进行燃烧实验,研究煤颗粒的灰质量分数对底渣质量分数、底渣与飞灰中的碳量质量分数和粒径分布的影响.结果表明,随着煤颗粒灰质量分数的增加,燃烧形成的底渣质量分数增加,而煤颗粒的燃尽率和飞灰中的碳质量分数都降低.在粒径和燃烧时间相同的条件下,随着颗粒灰质量分数的增加,底渣中留在本粒径档的颗粒质量分数明显增加,而细颗粒的质量分数明显减少.而颗粒灰质量分数对飞灰的粒径分布没有明显的影响.%To investigate the influences of coal particle ash content on the ash formation behaviors during fluidized bed combustion, experiments were conducted on a bench-scale fluidized bed combustor. Yima bituminous coal samples were divided into 6 ranks with different ash content. For every rank of coal sample, 3 size ranges were used in the experiments. The results show that the mass fraction of the bottom residue increases with the ash content of the coal particles, while the burnout of coal particles and the carbon content of the fly ash decrease with the ash content of coal particles. The mass fraction of the bottom residues which have the same size range as the initial size range of the coal particles increases with the ash content. While the ash content of coal particles has no obvious influence on the size distribution of the fly ash.

  11. Simulations of a Circulating Fluidized Bed Chemical Looping Combustion System Utilizing Gaseous Fuel Simulation de la combustion en boucle chimique d’une charge gazeuse dans un lit fluidisé circulant

    Directory of Open Access Journals (Sweden)

    Mahalatkar K.

    2011-05-01

    Full Text Available Numerical studies using Computational Fluid Dynamics (CFD have been carried out for a complete circulating fluidized bed chemical looping combustor described in the literature (Abad et al., 2006 Fuel 85, 1174-1185. There have been extensive experimental studies in Chemical Looping Combustion (CLC, however CFD simulations of this concept are quite limited. The CLC experiments that were simulated used methane as fuel. A 2-D continuum model was used to describe both the gas and solid phases. Detailed sub-models to account for fluid-particle and particleparticle interaction forces were included. Global models of fuel and carrier chemistry were utilized. The results obtained from CFD were compared with experimental outlet species concentrations, solid circulation rates, solid mass distribution in the reactors, and leakage and dilution rates. The transient CFD simulations provided a reasonable match with the reported experimental data. Des études numériques de simulation des écoulements (CFD ont été réalisées sur un lit fluidisé circulant opérant en combustion par boucle chimique (CLC décrit dans la littérature (Abad et al., 2006 Fuel 85, 1174-1185. Si de nombreuses études expérimentales ont été conduites pour étudier le procédé CLC, les études concernant la simulation des écoulements par CFD de ce concept sont très limitées. Le système de combustion en boucle chimique simulé dans cette étude concerne la combustion d’une charge gazeuse (méthane. Un modèle 2-D à deux phases continues a été utilisé pour décrire les phases gaz et solide avec des sous-modèles détaillés pour décrire les forces d’interactions entre fluideparticule et particule-particule. Des modèles cinétiques globaux ont été intégrés pour décrire les réactions de combustion et de transformation du matériau transporteur d’oxygène. Les résultats obtenus par CFD ont été comparés aux concentrations expérimentales mesurées des diff

  12. Control of the Bed Temperature of a Circulating Fluidized Bed Boiler by using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    AYGUN, H.

    2012-05-01

    Full Text Available Circulating fluidized bed boilers are increasingly used in the power generation due to their higher combustion efficiency and lower pollutant emissions. Such boilers require an effective control of the bed temperature, because it influences the boiler combustion efficiency and the rate of harmful emissions. A Particle-Swarm-Optimization-Proportional-Integrative-Derivative (PSO-PID controller for the bed temperature of a circulating fluidized bed boiler is presented. In order to prove the capability of the proposed controller, its performances are compared at different boiler loads with those of a Fuzzy Logic (FL controller. The simulation results demonstrate some advantages of the proposed controller.

  13. Model-free adaptive control of supercritical circulating fluidized-bed boilers

    Science.gov (United States)

    Cheng, George Shu-Xing; Mulkey, Steven L

    2014-12-16

    A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  14. Experimental investigation and mathematical modelling of the combustion of brown coal, refuse and mixed fuels in a circulating fluidized bed combustor; Experimentelle Untersuchung und mathematische Modellierung der Verbrennung von Braunkohle, Abfallstoffen und Mischbrennstoffen in einer zirkulierenden Wirbelschichtfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, W.; Brunne, T.; Hiller, A. [Technische Univ. Dresden (Germany). Inst. fuer Energietechnik; Albrecht, J. [Lurgi Umwelt GmbH, Frankfurt am Main (Germany); Quang, N. [Polytechnic Inst., Danang (Viet Nam)

    1998-09-01

    Extensive experiments on combustion of biological materials and residues in fluidized bed combustors and dust combustors have been carried out at the Department of Power Plant Engineering of Dresden University since the early nineties. Particular interest was taken in mixing brown coal with sewage sludge, sugar pulp and waste wood. The experiments were supplemented by modelling in a research project funded jointly by the BMBF and Messrs. Lurgi since early 1997. A combustion cell model designed by Siegen University is being modified for the new mixed fuels, and preliminary investigations were carried out on a batch reactor while the modelling work was continued. (orig.) [Deutsch] An dem Lehrstuhl fuer Kraftwerkstechnik der TU Dresden werden seit Anfang der 90-iger Jahre umfangreiche experimentelle Untersuchungen zur Verbrennung von Bio- und Reststoffen in Wirbelschicht- und Staubfeuerungen durchgefuehrt. Dabei war vor allem die Zufeuerung dieser Stoffe in Waermeerzeugeranlagen auf Braunkohlenbasis von besonderem Interesse. Experimentell konnte nachgewiesen werden, dass sowohl Biobrennstoffe als auch Abfaelle in zirkulierenden Wirbelschichtfeuerungen umweltschonend zur Waermeerzeugung eingesetzt werden koennen. Als Beispiel wird das an Hand von Braunkohle-Klaerschlammgemischen sowie Bagasse- und Holz-Braunkohlegemischen gezeigt. Neben den experimentellen Untersuchungen bietet die Modellierung der Verbrennungsvorgaenge ein geeignetes Mittel um Voraussagen zu anderen Mischungsanteilen sowie anderen geometrischen Abmessungen machen zu koennen. Seit Anfang 1997 wird dazu ein vom BMBF und der Firma Lurgi gefoerdertes Forschungsvorhaben bearbeitet. Ein von der Universitaet Gesamthochschule Siegen fuer die Braunkohleverbrennung konzipiertes Zellenmodell wird auf die neuen Brennstoffgemische erweitert. Da grundsaetzlich andere Stoffzusammensetzungen vorliegen, wurden an einem Batch-Reaktor Voruntersuchungen zum Pyrolyseverhalten der Brennstoffe durchgefuehrt. Erste

  15. Wear prediction in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, E.J. [USDOE Morgantown Energy Technology Center, WV (United States); Rogers, W.A. [EG and G Washington Analytical Services Center, Inc., Morgantown, WV (United States)

    1993-06-01

    A procedure to model the wear of surfaces exposed to a fluidized bed is formulated. A stochastic methodology adapting the kinetic theory of gases to granular flows is used to develop an impact wear model. This uses a single-particle wear model to account for impact wear from all possible-particle collisions. An adaptation of a single-particle abrasion model to describe the effects of many abrading particles is used to account for abrasive wear. Parameters describing granular flow within the fluidized bed, necessary for evaluation of the wear expressions, are determined by numerical solution of the fluidized bed hydrodynamic equations. Additional parameters, describing the contact between fluidized particles and the wearing surface, are determined by optimization based on wear measurements. The modeling procedure was used to analyze several bubbling and turbulent fluidized bed experiments with single-tube and tube bundle configurations. Quantitative agreement between the measured and predicted wear rates was found, with some exceptions for local wear predictions. This work demonstrates a methodology for wear predictions in fluidized beds.

  16. Internal circulating fluidized bed incineration system and design algorithm.

    Science.gov (United States)

    Tian, W D; Wei, X L; Li, J; Sheng, H Z

    2001-04-01

    The internal circulating fluidized bed (ICFB) system is characterized with fast combustion, low emission, uniformity of bed temperature and controllability of combustion process. It is a kind of novel clean combustion system, especially for the low-grade fuels, such as municipal solid waste (MSW). The experimental systems of ICFB with and without combustion were designed and set up in this paper. A series of experiments were carried out for further understanding combustion process and characteristics of several design parameters for MSW. Based on the results, a design routine for the ICFB system was suggested for the calculation of energy balance, airflow rate, heat transfer rate, and geometry arrangement. A test system with ICFB combustor has been set up and the test results show that the design of the ICFB system is successful.

  17. Internal circulating fluidized bed system and design algorithm

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The internal circulating fluidized bed (ICFB) system ischaracterized with fast combustion, low emission, uniformity of bed temperature and controllability of combustion process. It is a kind of novel clean combustion system, especially for the low-grade fuels, such as municipal solid waste(MSW). The experimental systems of ICFB with and without combustion were designed and set up in this paper. A series of experiments were carried out for further understanding combustion process and characteristics of several design parameters for MSW. Based on the results, a design routine for the ICFB system was suggested for the calculation of energy balance, airflow rate, heat transfer rate, and geometry arrangement. A test system with ICFB combustor has been set up and the test results show that the design of the ICFB system issuccessful.

  18. Development of a new method for improving load turndown in fluidized bed combustors: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.

    1988-12-01

    The objective of this research was to investigate a new concept in fluidized bed design that improves load turndown capability. This improvement is accomplished by independently controlling heat transfer and combustion in the combustor. The design consists of two fluidized beds, one central and one annular. The central bed serves as the combustion bed. The annular bed is fluidized separately from the combustion bed and its level of fluidization determine the overall heat transfer rate from the combustion bed to the surrounding water jacket. Early theoretical considerations suggested a load turndown exceeding ten was possible for this design. This research consisted of three major phases: development of a computational model to predict heat transfer in the two-bed combustor, heat transfer measurements in hot-and-cold flow models of the combustor, and combustion tests in an optimally designed combustor. The computation model was useful in selecting the design of the combustor. Annular bed width and particle sizes were chosen with the aid of the model. The heat transfer tests were performed to determine if the existing correlations for fluidized bed heat transfer coefficients were sufficiently accurate for high aspect ratio fluidized beds (such as the annular bed in the combustor). Combustion tests were performed in an optimally designed combustor. Three fuel forms were used: double screened, crushed coal, coal-water-limestone mixtures (CWLM), and coal-limestone briquettes. 18 refs., 30 figs., 8 tabs.

  19. Perspectives for Fluidized Bed Nuclear Reactor Technology using Rotating Fluidized Beds in a Static Geometry

    Science.gov (United States)

    Broqueville, Axel De; Wilde, Juray De

    The new concept of a rotating fluidized bed in a static geometry opens perspectives for fluidized bed nuclear reactor technology and is experimentally and numerically investigated. With conventional fluidized bed technology, the maximum attainable power is rather limited and maximum at a certain fluidization gas flow rate. Using a rotating fluidized bed in a static geometry, the fluidization gas drives both the centrifugal force and the counteracting radial gas-solid drag force in a similar way. This allows operating the reactor at any chosen sufficiently high solids loading over a much wider fluidization gas flow rate range and in particular at much higher fluidization gas flow rates than with conventional fluidized bed reactor technology, offering increased flexibility with respect to cooling via the fluidization gas. Furthermore, the centrifugal force can be a multiple of earth gravity, allowing radial gas-solid slip velocities much higher than in conventional fluidized beds. The latter result in gas-solid heat transfer coefficients one or multiple orders of magnitude higher than in conventional fluidized beds. The combination of dense operation and high fluidization gas flow rates allows process intensification and a more compact reactor design.

  20. Operating costs and plant options analysis for the Shamokin fluidized bed boiler

    Energy Technology Data Exchange (ETDEWEB)

    Klett, M.G.; Dowdy, T.E.; Litman, R.

    1984-03-01

    This report presents the results of a study that examined the operating costs and options to improve the Shamokin Atmospheric Fluidized Bed Combustion Demonstration Plant located near Shamokin, Pennsylvania. The purpose of this study was to perform an operating cost analysis and compare the results with projected operating costs. An analysis was also made to identify possible cost savings options. Two base case scenarios were developed for this study: the first scenario assumed that the plant operated in a manner similar to operations during the extended test program; and the second scenario was concerned with two options. One option assumed upgrading the plant to achieve continuous full load operation, restarting, and used revised costs and revenues. The second assumed reconfiguring the plant for cogeneration.

  1. Heat and Mass Transfer Enforcement of Vibrating Fluidized Bed

    Institute of Scientific and Technical Information of China (English)

    ChuZhide; YangJunhong; 等

    1994-01-01

    This paper briefly introduces the development of vibrating fluidized bed at home and abroad,elaborates the vibration properties of vibrating fluidized bed.the fluidizing velocity and pressure drop of the bed layer,it also deduces the non-steady state drying dynamic equations of vibrating fluidized bed,analyzes main factors which influence the drying rate and inquires into drying rules of fixed bed and vibrating fluidized bed.

  2. Flow Pattern Identification of Fluidized Beds Using ECT

    Institute of Scientific and Technical Information of China (English)

    S. Liu; W.Q. Yang; H. Wang; G. Yan; Z. Pan

    2001-01-01

    Electrical capacitance tomography (ECT) was applied in measuring solids distribution in square circulating fluidized beds. The fluidization conditions varied from bubbling fluidized bed to circulating fluidized bed. In the whole range of fluidization conditions, ECT was able to instantaneously provide the solids concentration and voids distributions in the fluidized beds. According to the acquired data from ECT and reconstructed image,different fluidization regimes can also be identified.

  3. Preparation of circulating fluidized bed combustion fly ash-based cementitious materials with carbide slag%利用电石渣改性固硫灰制备胶凝材料的研究

    Institute of Scientific and Technical Information of China (English)

    霍琳; 李军; 卢忠远

    2012-01-01

    基于固硫灰自身的火山灰活性和自硬性,提出用钙质激发剂激发固硫灰活性制备固硫灰基胶凝材料.实验研究表明在激发剂的作用下,掺入偏高岭土后胶凝材料强度提高80%以上.用内掺50%偏高岭土的固硫灰,采用电石渣或熟石灰复合水玻璃作为激发剂制备胶凝材料都在体系的碱含量为30%,水玻璃的模数为2.0,养护温度为60℃时强度达到最大,两种激发剂对强度的影响差异不大,而采用电石渣作为激发剂更节约成本,更具优势.%Based on the pozzolanic activity and self-hardening property of circulating fluidized bed combustion (CFBC) fly ash, this paper proposes to prepare CFBC fly ash-based cementitious materials by stimulating the CFBC fly ash with calcium activator. Experimental studies have shown thai the strength of the cementitious materials mixed with metakaolin in the role of the activator increased by more than 80%.The cementitious material prepared with CFBC fly ash and 50% metakaolin and activated by carbide slag or lime mixed with water glass solution can achieve optimal strength on following conditions: alkali content was 30% , modulus of water glass was 2.0, and curing under 60℃,. The two activators had no significant impact on the strength, while taking carbide slag as activator was more sensible than taking lime since it was industrial waste.

  4. Modeling on the Combustion System of Large-Scale Circulating Fluidized Bed Boiler%大型循环流化床锅炉燃烧系统数学模拟

    Institute of Scientific and Technical Information of China (English)

    徐志; 王勤辉; 骆仲泱; 倪明江

    2011-01-01

    数学模型是研究和发展大型循环流化床锅炉的重要方法.在浙江大学提出的适用于中小型循环流化床锅炉的整体数学模型的基础上,建立了适用于大型循环流化床锅炉的数学模型.模型采用了基于环-核结构的流体动力学模型,并考虑了宽筛分燃料颗粒所经历的破碎、燃烧等过程.模拟了国内一台300MWe循环流化床锅炉,模拟计算结果与锅炉的运行测量值基本吻合.%Mathematical model is an important method in the study and the development of large-scale circulating fluidized bed (CFB) boiler. On the basis of the overall mathematical model for the medium and small scale CFB boiler, a mathematical model for large-scale CFB boiler is developed. In the modeling, the CFB riser is divided in two regions: the bottom zone in turbulent fluidization regime and the upper zone with core-annulus solids flow structure. The model takes into account the fragmentation and combustion process of the widely sized particles. The model results are in good agreement with the operational data of a 300 MWe CFB boiler.

  5. Ash behaviour in fluidized bed gasification and combustion: release of harmful trace elements and the behavior of alkalis; Tuhkan muuntuminen leijukerroskaasutuksessa ja -poltossa: Haitallisten hivenmetallien vapautuminen ja alkalien kaeyttaeytyminen

    Energy Technology Data Exchange (ETDEWEB)

    Kauppinen, E.; Valmari, T. [VTT Chemical Technology, Espoo (Finland)

    1997-10-01

    During 1996 the behaviour of alkaline metals (K and Na) during circulating fluidized bed combustion of forest residue was studied in a real-scale plant using aerosol measurement instruments (filters, impactor, DMA). Prior to heat exchangers (850 deg C) the ash mass-concentration was 1.0 - 1.3 g/Nm{sup 3} with 1 % of ash forming constituents as vapours. At least 98 % of sulphur, over 90 % of sodium and over 80 % of potassium were found in particulate phase prior to heat exchangers. On the other hand, at least 80 % of the chlorine was in vapour phase. 98 % of the ash was in coarse (> 0.3 {mu}m) particles. Coarse ash particles had an irregular surface structure often consisting of fine primary particles. The remaining 2 % was observed in fine particles of about 0.1 {mu}m. Both rounded and cornered (suggesting crystal structure) fine particles were found. The fine particles were composed of alkali chlorides and sulphates, mainly of KCl. About 80 % of the ash on mass basis was deposited onto heat exchanger surfaces when soot-blowing was not carried out. Practically all of the particles larger than 10 {mu}m were deposited. The deposition was less significant for smaller particles. The fine particle concentration before and after the heat exchangers was the same within the experimental inaccuracy. The deposited fraction of potassium, sodium and sulphur was about the same than that of the total ash: However, the deposition of chlorine was much lower since the chlorine content was low in the coarse particles that were deposited most effectively. (orig.)

  6. 21 CFR 890.5160 - Air-fluidized bed.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food... DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed. (a) Identification. An air-fluidized bed is a device employing the circulation of filtered air through...

  7. Refractory experience in circulating fluidized bed combustors, Task 7. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, R.Q.

    1989-11-01

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE`s Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  8. 流化床燃烧超低浓度煤层气的轴向气体分布%Axial Gas Profile During Ultra-Low Concentration Coal Bed Methane Combustion in a Fluidized Bed

    Institute of Scientific and Technical Information of China (English)

    张力; 杨仲卿; 唐强

    2012-01-01

    The ultra-low concentration coal bed methane is difficult to utilize due to its low methane content and fluctuated concentration. The combustion characteristic of ultra-low concentration coal bed methane in a fluidized bed was studied experimentally and numerically. The axial profiles of combustion products were obtained. The effects of inlet methane concentration, bed temperature and fluidized velocity on axial profile were analyzed. The results show that the dimensionless methane concentration decreases with the bed height and reaches a minimum at the bed surface. Then, the value increases abruptly and goes steadily. The CO concentration is less than 20 mL/ma in all experiments. The dimensionless methane concentration at the same bed height decreases with decreasing inlet methane concentration, rising bed temperature and reducing fluidized velocity. Combustion mainly occurred in dense phase, and moved towards lower part of bed with decreasing inlet methane concentration, rising bed temperature and reducing fluidized velocity.%超低浓度煤层气由于甲烷含量低、浓度变化大而较难加以利用。采用实验和数值模拟的方法,研究了超低浓度煤层气在流化床中燃烧特性,得到燃烧产物的轴向分布规律,分析了进气浓度、床层温度、流化风速等因素对甲烷浓度轴向分布的影响。研究结果表明:随着床层高度的增加,无量纲甲烷浓度逐渐减小,在床层表面达到最小值,然后突然增加,随后达到稳定。实验范围内,CO浓度均小于20mL/m3。减小进气浓度、增加床层温度、降低流化风速都会使相同床层高度处的无量纲甲烷浓度减小。燃烧反应主要发生在密相区,随着进气浓度的减小、床层温度的增加、流化风速的降低,反应区域逐渐向床层下部移动。

  9. Experimental and Numerical Study on Ultra-Low Concentration Coal Bed Methane Combustion in a Fluidized Bed%超低浓度煤层气在流化床中燃烧的实验和数值研究

    Institute of Scientific and Technical Information of China (English)

    杨仲卿; 张力; 唐强; 蒲舸

    2011-01-01

    超低浓度煤层气由于甲烷含量低、浓度变化大而较难加以利用。采用实验和数值模拟的方法,研究了超低浓度煤层气在流化床中的燃烧,分析了床层温度、甲烷体积浓度,流化风速对甲烷燃烧效率的影响,并用数学模型预测了甲烷沿床层高度方向的分布。研究表明,数学模型和实验数据吻合较好。床层温度是煤层气燃烧反应的关键因素,甲烷的转化率随着床层温度的升高而增加。燃烧反应主要发生在乳化相,且主要集中在床层的下部。甲烷的转化率随着流化风速和煤层气中甲烷浓度的增加而减少。在床层温度为650℃时,甲烷浓度低于1%的煤层气的甲烷转化率均大于93%。增加床层高度可使甲烷完全转化。%The ultra-low concentration coal bed methane is difficult to utilize due to its low methane content and fluctuated concentration. Coal bed methane combustion in a fluidized bed was studied experimentally and numerically. The effects of bed temperature, methane volumetric concentration and fluidized velocity on methane conversion were analyzed. The methane profile along bed height was predicted with the mathematical model. The results show that the model compares reasonably well with experimental data. Bed temperature is a major factor on combustion. And the methane conversion increases with the rising bed temperature. The combustion reaction is mainly occurred in the emulsion phase and at lower part of the bed. The methane conversion decreases with the increasing fluidized velocity and inlet methane concentration. When the bed temperature is 650℃ and methane concentration is less than 1%, the conversion is greater than 93%. More methane can be consumed when the bed height is increasing.

  10. Combustion gas from biomass - innovative plant concepts on the basis of circulating fluidized bed gasification; Brenngas aus Biomasse - innovative Anlagenkonzepte auf Basis der Zirkulierenden Wirbelschichtvergasung

    Energy Technology Data Exchange (ETDEWEB)

    Greil, C.; Hirschfelder, H. [Lurgi Umwelt GmbH, Frankfurt am Main (Germany)

    1998-09-01

    The contribution describes the applications of the Lurgi-ZWS gas generator. There are three main fields of application: Direct feeding of combustion gas, e.g. into a rotary kiln, as a substitute for coal or oil, without either dust filtering or gas purification. - Feeding of the combustion gas into the steam generator of a coal power plant after dust filtering and, if necessar, filtering of NH{sub 3} or H{sub 2}S. - Combustion in a gas turbine or gas engine after gas purification according to specifications. The applications are described for several exemplary projects. (orig./SR) [Deutsch] Im folgenden wird ueber die Anwendung des Lurgi-ZWS-Gaserzeugers berichtet. Nach heutiger Sicht stehen drei Anwendungsgebiete im Vordergrund: - direkte Einspeisung des Brenngases in z.B. einen Zementdrehrohrofen zur Substitution von Kohle oder Oel, ohne Entstaubung und Gasreinigung. - Einspeisung des Brenngases nach Entstaubung und gegebenenfalls Entfernung weiterer Komponenten wie NH{sub 3} oder H{sub 2}S in den Dampferzeuger eines Kohlekraftwerkes - Einsatz des Brenngases in einer Gasturbine oder Gasmotor nach spezifikationsgerechter Gasreinigung. Die aufgefuehrten Einsatzmoeglichkeiten werden am Beispiel von Projekten beschrieben. (orig./SR)

  11. The dynamics of large particles in a four-compartment interconnected fluidized bed

    NARCIS (Netherlands)

    Snieders, FF; Hoffmann, AC; Cheesman, D; Yates, JG; Stein, M; Seville, JPK

    1999-01-01

    In order to investigate the potential of a four-compartment interconnected fluidized bed for the combustion of biomass, the behaviour of cylindrical pellets in a bed material of glass ballotini was characterized as a function of the operational parameters. This involved (a) studying the distribution

  12. Devolatilization and ignition of coal particles in a two-dimensional fluidized bed

    NARCIS (Netherlands)

    Prins, W.; Siemons, R.; Swaaij, van W.P.M.

    1989-01-01

    In a two-dimensional (15 × 200 × 400 mm) high-temperature fluidized bed, devolatilization ignition and combustion phenomena of single coal particles have been studied. The particles, with diameters of 4–9 mm, were selected from three coal types of widely different rank: brown coal, bituminous coal,

  13. Continuous CO2 capture in a circulating fluidized bed using supported amine sorbents

    NARCIS (Netherlands)

    Veneman, R.; Li, Z.; Hogendoorn, J.A.; Kersten, S.R.A.; Brilman, D.W.F.

    2012-01-01

    In this work, supported amine sorbents were prepared by physical impregnation of silica and polymethylmethacrylate (PMMA) with tetraethylenepentamine (TEPA) and studied for post-combustion CO2 capture purposes in a lab scale circulating fluidized bed (CFB) reactor. Sorbent amine loading and support

  14. Modelling of N2O Reduction in a Circulating Fluidized Bed Boiler

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Åmand, Lars Erik; Dam-Johansen, Kim;

    1996-01-01

    The addition of limestone for sulphur retention in Fluidized Bed Combustion (FBC) has been observed to influence the emission of N2O, and in many cases a lower emission was observed. The catalytic activity of a Danish limestone (Stevns Chalk) for decomposition of N2O in a laboratory fixed bed...

  15. Multiscale modeling of gas-fluidized beds

    NARCIS (Netherlands)

    Hoef, van der M.A.; Sint Annaland, van M.; Andrews, A.T.; Sundaresan, S.; Kuipers, J.A.M.

    2006-01-01

    Numerical models of gas-fluidized beds have become an important tool in the design and scale up of gas-solid chemical reactors. However, a single numerical model which includes the solid-solid and solid-fluid interaction in full detail is not feasible for industrial-scale equipment, and for this rea

  16. Agglomeration in fluidized beds: detection and counteraction

    NARCIS (Netherlands)

    Bartels. M.

    2008-01-01

    Fluidized beds comprise a quantity of solid particles that is suspended by an upward flowing gas. They are used for a variety of processes in the chemical industry, such as catalytic reactions, drying, coating and energy conversion. A major problem in industrial practice is the occurrence of unwante

  17. Control of fluidized bed tea drying

    NARCIS (Netherlands)

    Temple, S.J.

    2000-01-01

    Tea is a product made from the leaf of the tea bush by several processes, including drying. The drying stage is the most energy intensive, and has tight performance criteria. This project investigated the options for the control of a fluidized bed tea dryer. The work included establishing some of th

  18. Fluidization quality analyzer for fluidized beds

    Science.gov (United States)

    Daw, C. Stuart; Hawk, James A.

    1995-01-01

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence.

  19. Particle pressures in fluidized beds. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, C.S.; Rahman, K.; Jin, C.

    1996-09-01

    This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction), they impart to the bed. So rather than directly measure the particle pressure, the authors inferred the values of the elasticity from measurements of instability growth in liquid beds; the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined) and then working backwards to determine the unknown coefficients, including the elasticity.

  20. Particle Pressures in Fluidized Beds. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, C.S.; Rahman, K.; Jin, C.

    1996-09-01

    This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction): they impart to the bed. So rather than directly measure the particle pressure, we inferred the values of the elasticity from measurements of instability growth in liquid beds the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined)and then working backwards to determine the unknown coefficients, including the elasticity.

  1. Gasification of sawdust in pressurised internally circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Maartensson, R.; Lindblom, M. [Lund Univ. (Sweden). Dept. of Chemical Engineering

    1996-12-31

    A test plant for pressurised gasification of biofuels in a internally circulating fluidized bed has been built at the department of Chemical Engineering II at the University of Lund. The design performance is set to maximum 20 bar and 1 050 deg C at a thermal input of 100 kW or a maximum fuel input of 18 kg/in. The primary task is to study pressurised gasification of biofuels in relation to process requirements of the IGCC concept (integrated gasification combined cycle processes), which includes studies in different areas of hot gas clean-up in reducing atmosphere for gas turbine applications. (orig.)

  2. Ash related bed agglomeration during fluidized bed combustion, further development of the classification method based on CCSEM; CCSEM-luokitusmenetelmaen jatkokehittaeminen tuhkan aiheuttaman agglomeroitumisen tutkimisessa leiju- ja kiertopetipoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, R.; Patrikainen, T.; Heikkinen, R.; Tiainen, M.; Virtanen, M. [Oulu Univ. (Finland). Inst. of Chemistry

    1997-10-01

    The scope of this project is to use the information and experience gained from the development of classification method to predict ash related problems like bed agglomeration during fluidised combustion. If boilers have to be shut down due to slagging or agglomeration of the bed material may cause significant economic losses for the entire energy production chain. Mineral classification methods based on the scanning electron microscopy are commonly used for coal ash investigation. In this work different biomass, peat, and peat-wood ash, fluidised-bed materials, and bed agglomerates were analysed with SEM-EDS combined with automatic image analysis software. The properties of ash particles are different depending on the fuel type. If biomass like wood or bark are added to peat the resulting ash has different properties. Due to the low mineral content in the original peat and to the fact that the majority of inorganic material is bound to the organic matrix, the classification has turned out to be less informative than was hoped. However, good results are obtained the by use of quasiternary diagrams. With these diagrams the distribution of particle composition is easily illustrated and thus meaningful prediction can be made of the slagging and agglomerating properties of ash. The content of ten different elements are determined for each particle by SEM-EDS combined with Link AIA software. The composition of the diagram corners can be varied Freely within these ten elements. (orig.)

  3. A Feasibility Study on Low Temperature Thermochemical Treatments of Austenitic Stainless Steel in Fluidized Bed Furnace

    Science.gov (United States)

    Haruman, Esa; Sun, Yong; Triwiyanto, Askar; Manurung, Yupiter H. P.; Adesta, Erry Y.

    2011-04-01

    In this work, the feasibility of using an industrial fluidized bed furnace to perform low temperature thermochemical treatments of austenitic stainless steels has been studied, with the aim to produce expanded austenite layers with combined wear and corrosion resistance, similar to those achievable by plasma and gaseous processes. Several low temperature thermochemical treatments were studied, including nitriding, carburizing, combined nitridingcarburizing (hybrid treatment), and sequential carburizing and nitriding. The results demonstrate that it is feasible to produce expanded austenite layers on the investigated austenitic stainless steel by the fluidized bed heat treatment technique, thus widening the application window for the novel low temperature processes. The results also demonstrate that the fluidized bed furnace is the most effective for performing the hybrid treatment, which involves the simultaneous incorporation of nitrogen and carbon together into the surface region of the component in nitrogen and carbon containing atmospheres. Such hybrid treatment produces a thicker and harder layer than the other three processes investigated.

  4. Synthesis of a nanosilica supported CO2 sorbent in a fluidized bed reactor

    Science.gov (United States)

    Soria-Hoyo, C.; Valverde, J. M.; van Ommen, J. R.; Sánchez-Jiménez, P. E.; Pérez-Maqueda, L. A.; Sayagués, M. J.

    2015-02-01

    CaO has been deposited on a nanosilica powder matrix by a procedure based on atomic layer deposition (ALD) in a fluidized bed reactor at atmospheric pressure following a potentially scalable process. In previous works ALD in gas fluidized bed has been mostly performed under reduced pressure, which hampers scaling-up the production technology. The material synthesized in the present work is tested as CO2 solid sorbent at calcium looping conditions. Multicyclic thermogravimetric analysis (TGA) shows that the nanosilica support stabilizes the capture capacity of CaO. EDX-STEM analysis illustrates the presence of Ca well distributed on the surface of the SiO2 nanoparticles.

  5. 磨细固硫灰渣作为混合材对水泥性能的影响%Performance of Cement Blending Pulverized Ash and Slag from Fluidized Bed Combustion

    Institute of Scientific and Technical Information of China (English)

    牛茂威; 谢小莉; 林洲; 张克; 钱觉时

    2013-01-01

    Fluidized bed combustion (FBC) ash and slag with higher anhydrite and f-CaO may cause poor volume stability used as cement mixing materials. By controlling the dosage of the FBC ash and slag, grinding them to different fineness, the standard consistency requirement, linear expansion rate and mortar strength of the cement blended FBC ash and slag were tested, and compared with the ordinary Portland cement. Results show that increasing the fineness of FBC ash and slag, especially for the ash, could reduce the standard consistency requirement of the cement and delay the setting time. Variation in fineness of FBC ash and slag has no significant influence on the shrinkage in air curing, and higher fineness would accelerate the early expansion in moisture curing, which is within a safe range. The increase of the fineness of FBC ash and slag promotes remarkably the strength of the cement. It is suggested that milling is beneficial to utilization of the FBC ash and slag in cement.%  流化床固硫灰渣含有较高无水石膏和f-CaO,作为水泥混合材利用时会存在体积稳定性问题。在控制固硫灰渣掺量前提下,将固硫灰渣粉磨至不同细度,测试了掺加固硫灰渣的水泥标准稠度需水量、线性膨胀率和胶砂强度,并与普通硅酸盐水泥进行对比。结果表明,提高固硫灰渣细度,特别是固硫灰细度,能使水泥标准稠度需水量减少;固硫灰渣细度提高,水泥凝结时间有所延长;自然养护条件下,固硫灰渣细度变化对水泥收缩没有明显影响,潮湿养护下,磨细固硫灰渣早期能够释放较多膨胀,但处于可控范围;固硫灰渣细度增加,水泥强度明显提高。磨细有利于固硫灰渣作为水泥混合材利用。

  6. Rapid ignition of fluidized bed boiler

    Science.gov (United States)

    Osborn, Liman D.

    1976-12-14

    A fluidized bed boiler is started up by directing into the static bed of inert and carbonaceous granules a downwardly angled burner so that the hot gases cause spouting. Air is introduced into the bed at a rate insufficient to fluidize the entire bed. Three regions are now formed in the bed, a region of lowest gas resistance, a fluidized region and a static region with a mobile region at the interface of the fluidized and static regions. Particles are transferred by the spouting action to form a conical heap with the carbonaceous granules concentrated at the top. The hot burner gases ignite the carbonaceous matter on the top of the bed which becomes distributed in the bed by the spouting action and bed movement. Thereafter the rate of air introduction is increased to fluidize the entire bed, the spouter/burner is shut off, and the entire fluidized bed is ignited.

  7. Biological denitrification in a fluidized bed.

    Science.gov (United States)

    Narjari, N K; Khilar, K C; Mahajan, S P

    1984-12-01

    A fluidized bed biofilm reactor using sand as the carrier particle was employed to study the effects of superficial velocity on the removal of nitrates as well as on the growth of the biofilm. Velocity was found to affect significantly both nitrate removal and biofilm growth. An analysis based on heterogenous catalysis was used to describe the denitrification process. There is good agreement between analysis and experimental measurements for startup and steady-state operating conditions.

  8. Cluster Dynamics in a Circulating Fluidized Bed

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, C.P.; Breault, R.W.

    2006-11-01

    A common hydrodynamic feature in industrial scale circulating fluidized beds is the presence of clusters. The continuous formation and destruction of clusters strongly influences particle hold-up, pressure drop, heat transfer at the wall, and mixing. In this paper fiber optic data is analyzed using discrete wavelet analysis to characterize the dynamic behavior of clusters. Five radial positions at three different axial locations under five different operating were analyzed using discrete wavelets. Results are summarized with respect to cluster size and frequency.

  9. Single-stage fluidized-bed gasification

    Science.gov (United States)

    Lau, F. S.; Rue, D. M.; Weil, S. A.; Punwani, D. V.

    1982-04-01

    The single-stage fluidized-bed gasification process, in addition to being a simple system, maximizes gas production and allows the economic exploitation of small peat deposits. The objective of this gasification project is to conduct experiments in order to obtain data for designing a single-stage fluidized-bed gasifier, and to evaluate the economics of converting peat to synthesis gas and to SNG by this process. An existing high-temperature and high-pressure process development unit (PDU) was modified to permit the direct feeding of peat to the fluidized bed. Peat flows by gravity from the feed hopper through a 6-inch line to the screw-feeder conveyor. From there, it is fed to the bottom tee section of the reactor and transported into the gasification zone. Oxygen and steam are fed through a distributing ring into the reactor. Gasification reactions occur in the annulus formed by the reactor tube and a central standpipe. Peat ash is discharged from the reactor by overflowing into the standpipe and is collected in a solids receiver.

  10. Fluidized Bed Asbestos Sampler Design and Testing

    Energy Technology Data Exchange (ETDEWEB)

    Karen E. Wright; Barry H. O' Brien

    2007-12-01

    A large number of samples are required to characterize a site contaminated with asbestos from previous mine or other industrial operations. Current methods, such as EPA Region 10’s glovebox method, or the Berman Elutriator method are time consuming and costly primarily because the equipment is difficult to decontaminate between samples. EPA desires a shorter and less costly method for characterizing soil samples for asbestos. The objective of this was to design and test a qualitative asbestos sampler that operates as a fluidized bed. The proposed sampler employs a conical spouted bed to vigorously mix the soil and separate fine particulate including asbestos fibers on filters. The filters are then analyzed using transmission electron microscopy for presence of asbestos. During initial testing of a glass prototype using ASTM 20/30 sand and clay fines as asbestos surrogates, fine particulate adhered to the sides of the glass vessel and the tubing to the collection filter – presumably due to static charge on the fine particulate. This limited the fines recovery to ~5% of the amount added to the sand surrogate. A second prototype was constructed of stainless steel, which improved fines recovery to about 10%. Fines recovery was increased to 15% by either humidifying the inlet air or introducing a voltage probe in the air space above the sample. Since this was not a substantial improvement, testing using the steel prototype proceeded without using these techniques. Final testing of the second prototype using asbestos suggests that the fluidized bed is considerably more sensitive than the Berman elutriator method. Using a sand/tremolite mixture with 0.005% tremolite, the Berman elutriator did not segregate any asbestos structures while the fluidized bed segregated an average of 11.7. The fluidized bed was also able to segregate structures in samples containing asbestos at a 0.0001% concentration, while the Berman elutriator method did not detect any fibers at this

  11. Fluidized Bed Sputtering for Particle and Powder Metallization

    Science.gov (United States)

    2013-04-01

    Fluidized Bed Sputtering for Particle and Powder Metallization by Daniel M. Baechle, J. Derek Demaree, James K. Hirvonen, and Eric D...5069 ARL-TR-6435 April 2013 Fluidized Bed Sputtering for Particle and Powder Metallization Daniel M. Baechle, J. Derek Demaree, James K...YYYY) April 2013 2. REPORT TYPE Final 3. DATES COVERED (From - To) June 2008–June 2012 4. TITLE AND SUBTITLE Fluidized Bed Sputtering for

  12. Fluidized-bed reactors processes and operating conditions

    CERN Document Server

    Yates, John G

    2016-01-01

    The fluidized-bed reactor is the centerpiece of industrial fluidization processes. This book focuses on the design and operation of fluidized beds in many different industrial processes, emphasizing the rationale for choosing fluidized beds for each particular process. The book starts with a brief history of fluidization from its inception in the 1940’s. The authors present both the fluid dynamics of gas-solid fluidized beds and the extensive experimental studies of operating systems and they set them in the context of operating processes that use fluid-bed reactors. Chemical engineering students and postdocs as well as practicing engineers will find great interest in this book.

  13. Heat flux distribution on circulating fluidized bed boiler water wall

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The future of circulating fluidized bed (CFB)combustion technology is in raising the steam parameters to supercritical levels.Understanding the heat flux distribution on the water wall is one of the most important issues in the design and operation of supercritical pressure CFB boilers.In the present paper,the finite element analysis (FEA) method is adopted to predict the heat transfer coefficient as well as the heat flux of the membrane wall and the results are validated by direct measurement of the temperature around the tube.Studies on the horizontal heat flux distribution were conducted in three CFB boilers with different furnace size,tube dimension and water temperature.The results are useful in supercritical pressure CFB boiler design.

  14. Devolatilization of wood and wastes in fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Barea, Alberto; Nilsson, Susanna; Vidal Barrero, Fernando; Campoy, Manuel

    2010-11-15

    Experiments were carried out in a laboratory fluidized bed (FB) to characterize the devolatilization behavior of wood and various wastes at temperatures applicable to FB gasification and combustion, i.e. 750-900 C. The fuels tested were pellets made of wood, meat and bone meal, and compost (from municipal solid wastes), as well as dried granulates of sewage sludge (DSS). Determination of yields of char, condensate and light gas, as well as the composition of the gas and the time of devolatilization during the pyrolysis of single fuel batches was made. A simple model was developed to analyze the mode of conversion of a single wood pellet and DSS granulate, giving insight on the controlling mechanisms during devolatilization. The devolatilization kinetics of DSS was determined by tests using fine granulates. The model was successfully applied to simulate the conversion of large DSS granulates and wood pellets under the whole range of temperatures analyzed. (author)

  15. Direct Utilization of Circulating Fluidized Bed Combustion Ash of Distilled Spirits Lees as Fertilizer%白酒糟循环流化床燃烧灰直接肥料化利用

    Institute of Scientific and Technical Information of China (English)

    宋扬; 汪印; 姚常斌; 张玉明; 王昶; 易彬; 杨俊; 许光文

    2011-01-01

    研究了白酒糟循环流化床燃烧灰直接作为肥料的可能性和效果,以其为肥料种植油菜,考察了油菜在5种土壤中发芽和生长情况.结果表明,白酒糟燃烧灰对不同生长阶段的油菜有不同影响,对壤质土中的油菜发芽有抑制作用,但能明显改善粘性土壤中油菜的生长环境,油菜的净增量和产量都有明显增加.白酒糟燃烧灰还能提高酸性土壤pH值,使土壤环境向中性(pH 6.97~7.74)变,有利于腐殖酸分解和植物生长.土壤与白酒糟燃烧灰质量比为5:1时,与原土相比,泸州国窖红土壤、泸州青稞土壤及富阳土壤中油菜净增量分别为80.1%,80.9%,163.6%,表明利用白酒糟燃烧灰作为植物生长肥料是可行的.%The feasibility of utilizing the circulating fluidized bed combustion ash of distilled spirits lees as fertilizer was investigated. The rape culture experiment was carried out in 5 different kinds of soils, and the rape growth states in the germination and growth stages were measured to evaluate the effect of adding ash to the soils as fertilizer. The results show that the ash exhibited different effects on the rape growth in different culture stages. There was an antibiastic effect on the rape growth in the germination stage in a loamy soil, but the rape growth was much improved when adding the ash to a clayey soil. The latter led the mature rape to having obviously increased net height and weight. The ash could change the pH value of acid soil into neutral state, facilitating the humic acid decomposition and plant growth. Comparing the soils at soil:ash=5:l(ω) with original soil, the increased amplitudes of net height of rape in Guojiaohong Turang, Qingke Turang and Fuyang Turang were 80.1%, 80.9% and 163.6%, respectively. As consequence, it was feasible and effective to use directly the combustion ash of distilled spirits lees as fertilizer.

  16. Technical and economic assessment of fluidized bed augmented compressed air energy storage system. Volume III. Preconceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

    1981-09-01

    A technical and economic assessment of fluidized bed combustion augmented compressed air energy storage systems is presented. The results of this assessment effort are presented in three volumes. Volume III - Preconceptual Design contains the system analysis which led to the identification of a preferred component configuration for a fluidized bed combustion augmented compressed air energy storage system, the results of the effort which transformed the preferred configuration into preconceptual power plant design, and an introductory evaluation of the performance of the power plant system during part-load operation and while load following.

  17. Cofiring lignite with hazelnut shell and cotton residue in a pilot-scale fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Zuhal Gogebakan; Nevin Selcuk [Middle East Technical University, Ankara (Turkey). Department of Chemical Engineering

    2008-05-15

    In this study, cofiring of high ash and sulfur content lignite with hazelnut shell and cotton residue was investigated in 0.3 MWt METU Atmospheric Bubbling Fluidized Bed Combustion (ABFBC) Test Rig in terms of combustion and emission performance of different fuel blends. The results reveal that cofiring of hazelnut shell and cotton residue with lignite increases the combustion efficiency and freeboard temperatures compared to those of lignite firing with limestone addition only. CO{sub 2} emission is not found sensitive to increase in hazelnut shell and cotton residue share in fuel blend. Cofiring lowers SO{sub 2} emissions considerably. Cofiring of hazelnut shell reduces NO and N{sub 2}O emissions; on the contrary, cofiring cotton residue results in higher NO and N{sub 2}O emissions. Higher share of biomass in the fuel blend results in coarser cyclone ash particles. Hazelnut shell and cotton residue can be cofired with high ash and sulfur-containing lignite without operational problems. 32 refs., 12 figs., 11 tabs.

  18. Thorium utilization program. Quarterly progress report for the period ending November 30, 1975. [Fuel element crushing, solids handling, fluidized bed combustion, aqueous separations, solvent extraction, systems design and drafting, alternative head-end reprocessing, and fuel recycle systems analysis

    Energy Technology Data Exchange (ETDEWEB)

    1975-12-31

    The development program for HTGR fuel reprocessing continues to emphasize the design and construction of a prototype head-end line. Design work on the multistage crushing system, the primary and secondary fluidized bed burners, the pneumatic transfer systems, and the ancillary fixtures for semiremote assembly and disassembly is essentially complete. Fabrication and receipt of all major components is under way, and auxiliary instrumentation and support systems are being installed. Studies of flow characteristics of granular solids in pneumatic transfer systems are continuing and data are being collected for use in design of systems for solids handling. Experimental work on the 20-cm primary fluidized bed burner verified the fines recycle operating mode in runs of greater than 24 hr. Twelve leaching runs were performed during the quarter using crushed, burned-back TRISO coated ThC/sub 2/ particles and burned-back BISO coated sol gel ThO/sub 2/ particles to examine the effect of varying the Thorex-to-thoria ratio to give product solutions ranging from 0.25M to 1M in thorium. Only minor effects were observed and reference values for facility operations were specified. Two-stage leaching runs with burned-back ThC/sub 2/ indicate there are no measurable differences in total dissolution time as compared to single-stage leaching. Bench-scale tests on oxidation of HTGR fuel boron carbide at 900/sup 0/C indicates that most if not all of the carbide will be converted to boron oxide in the fluidized bed burner. Eight solvent extraction runs were completed during the quarter. These runs represented the first cycle and second uranium cycle of the acid-Thorex flowsheet. A detailed calculation of spent fuel compositions by fuel block and particle type is being performed for better definition of process streams in a fuel reprocessing facility.

  19. Transients in a circulating fluidized bed boiler

    Science.gov (United States)

    Baskakov, A. P.; Munts, V. A.; Pavlyuk, E. Yu.

    2013-11-01

    Transients in a circulating fluidized bed boiler firing biomass are considered. An attempt is made to describe transients with the use of concepts applied in the automatic control theory. The parameters calculated from an analysis of unsteady heat balance equations are compared with the experimental data obtained in the 12-MW boiler of the Chalmers University of Technology. It is demonstrated that these equations describe the transient modes of operation with good accuracy. Dependences for calculating the time constants of unsteady processes are obtained.

  20. CFD study of a fluidized bed

    OpenAIRE

    Lundberg, Joachim

    2008-01-01

    The aim of this thesis is to investigate the momentum exchange between the phases in a bubbling fluidized bed. The momentum exchange can be described by a drag model. Several drag models with different assumptions are developed. The drag models investigated in this work is the Syamlal O’Brien model, the Gidaspow model, Hill Koch Ladd model, the RUC model and an iterative version of the Syamlal O’Brien called the Richardson Zaki model. The models have been derived and studied in de...

  1. Packed fluidized bed blanket for fusion reactor

    Science.gov (United States)

    Chi, John W. H.

    1984-01-01

    A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

  2. Air-based coal gasification in a two-chamber gas reactor with circulating fluidized bed

    Science.gov (United States)

    Dubinin, A. M.; Tuponogov, V. G.; Kagramanov, Y. A.

    2017-01-01

    During the bed gasification of solid fuels, the process temperature in the reaction zone is not high enough for reaching the maximum rate of the chemical efficiency factor of the gasification process. In order to increase the chemical efficiency factor, it is necessary to supply extra heat to the reaction zone to increase the reaction temperature. In this article, coal gasification in a chamber with forced fluidized bed is considered and it is proposed to supply extra heat with a circulating flow of an inert particulate heat transfer agent. Circulating inert particulate material is successively heated by coal combustion in a cone chamber with bubbling fluidized bed and in a combustion chamber with a spherical nozzle that inhibits the forced fluidized bed. After that, the heat transfer agent heated to 930-950°C enters first in a gasification chamber with bubbling bed and then in a chamber with forced fluidized bed, where it transfers the physical heat to the air fuel mixture. The experiments conducted with crushed Borodinsky coal and inert particulate heat transfer agent (electrocorundum) showed the temperature rise in a gasification chamber with from 760 to 870°C and the increase in the combustible component (CO) concentration in the gasification products by 5.5%. Based on the kinetic equations of the fuel combustion reactions and the CO2 reduction to CO and on the thermal balance equations of combustion and gasification chambers, the simulation model for the gas composition and the temperature rate calculated by the height of reaction chambers was developed. The experimental temperature rates and product gas compositions are in good agreement with the simulation results based on the proposed kinetic gasification model.

  3. The Study of Gas-Dynamic Processes in the Current Boiler Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Baturin Dmitry A.

    2015-01-01

    Full Text Available The paper presents a numerical simulation of the furnace with a circulating fluidized bed. Numerical study carried out for the bottom of the combustion chamber with the varying heights of volume filling. The results of the concentration of particulate matter and fields of speeding, as well as a graphical representation of changes in the concentration of particles on the bed height. Simulation performed in Euler - Euler representation on a 2D model.

  4. The Study of Dynamic Processes in the Boiler Furnace with Circulating Fluidized Bed

    OpenAIRE

    Gil A. V.; Baturin D. A.

    2016-01-01

    The paper presents a numerical simulation of the furnace with a circulating fluidized bed. Numerical study carried out on all volume of the combustion chamber. The results contours of particulate matter concentration and of velocities, as well as a graphical representation of changes in the concentration of particles on the bed height are shown. Simulation performed in Eulerian - Eulerian and Lagrange representation on a 3D model.

  5. The Study of Dynamic Processes in the Boiler Furnace with Circulating Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Gil A. V.

    2016-01-01

    Full Text Available The paper presents a numerical simulation of the furnace with a circulating fluidized bed. Numerical study carried out on all volume of the combustion chamber. The results contours of particulate matter concentration and of velocities, as well as a graphical representation of changes in the concentration of particles on the bed height are shown. Simulation performed in Eulerian - Eulerian and Lagrange representation on a 3D model.

  6. Chaotic Study in a Large Jetting Fluidized Bed with a Vertical Nozzle

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@1 INTRODUCTION Jetting fluidized beds have been widely applied in such processes as catalytic and flame reactions, combustion and gasification of coal, treatment of waste, cleaning of dusty gases, coating and granulation[1-3]. The flow characteristics of jetting fiuidized beds are relevant to the stable gas jet and the high rates of heat transfer and mass transfer, and the fast chemical reaction pro cess near the gas distributor.

  7. Modeling biomass gasification in circulating fluidized beds

    Science.gov (United States)

    Miao, Qi

    In this thesis, the modeling of biomass gasification in circulating fluidized beds was studied. The hydrodynamics of a circulating fluidized bed operating on biomass particles were first investigated, both experimentally and numerically. Then a comprehensive mathematical model was presented to predict the overall performance of a 1.2 MWe biomass gasification and power generation plant. A sensitivity analysis was conducted to test its response to several gasifier operating conditions. The model was validated using the experimental results obtained from the plant and two other circulating fluidized bed biomass gasifiers (CFBBGs). Finally, an ASPEN PLUS simulation model of biomass gasification was presented based on minimization of the Gibbs free energy of the reaction system at chemical equilibrium. Hydrodynamics plays a crucial role in defining the performance of gas-solid circulating fluidized beds (CFBs). A 2-dimensional mathematical model was developed considering the hydrodynamic behavior of CFB gasifiers. In the modeling, the CFB riser was divided into two regions: a dense region at the bottom and a dilute region at the top of the riser. Kunii and Levenspiel (1991)'s model was adopted to express the vertical solids distribution with some other assumptions. Radial distributions of bed voidage were taken into account in the upper zone by using Zhang et al. (1991)'s correlation. For model validation purposes, a cold model CFB was employed, in which sawdust was transported with air as the fluidizing agent. A comprehensive mathematical model was developed to predict the overall performance of a 1.2 MWe biomass gasification and power generation demonstration plant in China. Hydrodynamics as well as chemical reaction kinetics were considered. The fluidized bed riser was divided into two distinct sections: (a) a dense region at the bottom of the bed where biomass undergoes mainly heterogeneous reactions and (b) a dilute region at the top where most of homogeneous

  8. Velocity Fluctuations in Gas-Fluidized Beds

    Science.gov (United States)

    Cody, G. D.

    1998-03-01

    Increasing gas flow through a bed of particles produces, above a sharp threshold, a fluidized state which exhibits many of the properties of a liquid. Fluidized beds play a major role in refining, chemicals, and power generation, but the physics of the fluidized state is still uncertain, due to the complexity of the particle/gas interactions, the broad distribution of particle size, and the measurement challenge. One consequence can be the failure of sophisticated computer models to predict performance. Another is the failure to resolve fundamental questions, for example the source of the initial stability/instability of the uniform fluidized state, first addressed by Jackson in 1963(R. Jackson, in Fluidization, edited by J. F. Davidson et al. (Academic Press, New York, 1985), p. 47-72; G. K. Batchelor, J. Fluid Mech. 193, 75-110 (1988); M. Nicolas. J. Chomaz, and E. Guazelli, Phys. Fluids 6, 3936-3944 (1994).). To meet the measurement challenge, we have obtained the first comprehensive data on the mean squared fluctuation velocity, or granular temperature, T*, of monodispersed glass spheres of diameter, D, in a fluidized bed, by a novel acoustic shot noise probe of random particle impact on the wall(G. D. Cody, D. J. Goldfarb, G. V. Storch, Jr., A. N. Norris, Powder Technology 87, 211-232 (1996); G. D. Cody and D. J. Goldfarb, in Dynamics in Small Confining Systems-III, eds. M. Drake et al, (MRS, Pittsburgh, Pa, 1997), 464, p. 325-338.). Applying a dense gas kinetic model(D. Gidaspow, Multiphase Flow and Fluidization (Academic Press, San Diego, 1994).) to this data predicts values of particulate pressure, and viscosity, which are in excellent agreement with recent experiments, and encouraged us to revisit the stability question. We find that the unanticipated seven-fold bifurcation observed in T* for D less than 150 microns is sufficient, using Jackson's model, to account for the accepted empirical boundary of stable initial uniform fluidization for the spheres

  9. Gasification process of refuse derived fuel in circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, S.; Kinoshita, Y.; Lee, C.W.; Itaya, Y.; Mori, S. [Nagoya Univ., Nagoya (Japan). Dept. of Chemical Engineering

    2002-07-01

    This paper presents a fuel gas production system involving gasification of refuse-derived fuel (RDF) in a circulating fluidized bed (CFB). Although RDF is considered to be a viable source of energy, combustion of RDF has not spread widely because of a lack of conventional incinerators, erosion due to hydrogen chloride, and emissions of dioxin. This paper presents the results of an experimental study of the pyrolysis behaviour of 3 kinds of RDF and the particle motion in a cold model CFB. The objective was to clarify operating parameters for optimum control. It was shown that an increase in combustion temperature improves the yield of the combustible gas components and the energy recycling efficiency from the RDF. The highest heating value of pyrolysis gas was obtained at 873 to 973 degrees K. The gas flow rate in the pneumatic valve of the CFB was an important control factor for the circulation flux and solids holdup in the riser. High holdups were observed when minute silica sand particles were used in the CFB. 15 refs., 1 tab., 8 figs.

  10. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The report summarizes unit operating experience and test program progress for 1989 on Colorado-Ute Electric Association's Nucla CFB Demonstration Program. During this period, the objectives of the Nucla Station operating group were to correct problems with refractory durability, resolve primary air fan capacity limitations, complete the high ash and high sulfur coal tests, switch to Salt Creek coal as the operating fuel, and make the unit available for testing without capacity restrictions. Each of these objectives was addressed and accomplished, to varying degrees, except for the completion of the high sulfur coal acceptance tests. (VC)

  11. The formation of impurities in fluidized-bed gasification of biomass, peat and coal; Epaepuhtauksien muodostuminen leijukerroskaasutuksessa

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Laatikainen-Luntama, J.; Kurkela, M.; Leppaelahti, J.; Koljonen, T.; Oesch, P. [VTT Energy, Espoo (Finland); Alen, R. [Jyvaeskylae Univ. (Finland)

    1996-12-01

    The objective of this three-year-long project was to study the effects of different process parameters and bed materials on the formation of impurities in pressurized fluidized-bed gasification. The main emphasis of the project was focused on the formation of tars and nitrogen compounds in wood, peat and coal gasification. The aims of the research were to find out such operating conditions, where the formation of problematic high-molecular-weight tars can be minimised and to create a better understanding on the fate of fuel nitrogen in fluidized-bed gasifiers. Main part of the research was carried out in a bench-scale pressurised fluidized-bed reactor (ID 30 mm), where the effects of pressure, temperature, gas atmosphere and bed material were studied with different feedstocks. Most of the test series were carried out using the same feedstocks as earlier used in the PDU-scale fluidized-bed gasification tests of VTT (pine wood, pine bark, wheat straw, two peats, Rhenish brown coal, Polish and Illinois No.6 bituminous coals). The effects of operating parameters on the product yields (gas components, tars, char) were first studied under inert nitrogen atmosphere. The conversion of fuel nitrogen into ammonia and HCN were also determined for the different feedstocks over the different operating conditions. These studies showed that ammonia is the main fixed nitrogen compound of fluidized-bed pyrolysis with all the feedstocks studied. The conversions of fuel nitrogen into ammonia and HCN was highest with the high volatile fuels and lowest with the two hard coals. Gas atmosphere had a dramatic effect on the conversion of fuel nitrogen; much higher ammonia yields were determined in real gasification gas atmosphere than in inert pyrolysis carried out in N{sub 2} or Argon atmosphere. In addition to the pressurised fluidized-bed pyrolysis tests, laboratory scale pyrolysis research was carried out in order to compare the pyrolysis behaviour of the different feedstocks

  12. Tube erosion in bubbling fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E.K. [Lehigh Univ., Bethlehem, PA (United States). Energy Research Center; Stallings, J.W. [Electric Power Research Inst., Palo Alto, CA (United States)

    1991-12-31

    This paper reports on experimental and theoretical studies that were preformed of the interaction between bubbles and tubes and tube erosion in fluidized beds. The results are applicable to the erosion of horizontal tubes in the bottom row of a tube bundle in a bubbling bed. Cold model experimental data show that erosion is caused by the impact of bubble wakes on the tubes, with the rate of erosion increasing with the velocity of wake impact with the particle size. Wake impacts resulting from the vertical coalescence of pairs of bubbles directly beneath the tube result in particularly high rates of erosion damage. Theoretical results from a computer simulation of bubbling and erosion show very strong effects of the bed geometry and bubbling conditions on computed rates of erosion. These results show, for example, that the rate of erosion can be very sensitive to the vertical location of the bottom row of tubes with respect to the distributor.

  13. Boiling Heat Transfer in Circulating Fluidized Beds

    Institute of Scientific and Technical Information of China (English)

    张利斌; 李修伦

    2001-01-01

    A model is proposed to predict boiling heat transfer coefficient in a three-phase circulating fluidized bed (CFB), which is a new type of evaporation boiling means for enhancing heat transfer and preventing fouling. To verify the model, experiments are conducted in a stainless steel column with 39 mm ID and 2.0 m height, in which the heat transfer coefficient is measured for different superficial velocities, steam pressures, particle concentrations and materials of particle. As the steam pressure and particle concentrations increase, the heat transfer coefficient in the bed increases. The heat transfer coefficient increases with the liquid velocity but it exhibits a local minimum.The heat transfer coefficient is correlated with cluster renewed model and two-mechanism method. The prediction of the model is in good agreement with experimental data.

  14. Boiling Heat Transfer in Circulating Fluidized Beds

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A model is proposed to predict boiling heat transfer coefficient in a three-phase circulating fluidized bed (CFB), which is a new type of evaporation boiling means for enhancing heat transfer and preventing fouling. To verify the model, experiments are conducted in a stainless steel column with 39mm ID and 2.0m height, in which the heat transfer coefficient is measured for different superficial velocities, steam pressures, particle concentrations and materials of particle. As the steam pressure and particle concentrations increase, the heat transfer coefficient in the bed increases. The heat transfer coefficient increases with the liquid velocity but it exhibits a local minimum. The heat transfer coefficient is correlated with cluster renewed model and two-mechanism method. The prediction of the model is in good agreement with experimental data.

  15. INVESTIGATION OF FUEL CHEMISTRY AND BED PERFORMANCE IN A FLUIDIZED BED BLACK LIQUOR STEAM REFORMER

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Whitty

    2003-12-01

    The University of Utah project ''Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer'' (DOE award number DE-FC26-02NT41490) was developed in response to a solicitation for projects to provide technical support for black liquor and biomass gasification. The primary focus of the project is to provide support for a DOE-sponsored demonstration of MTCI's black liquor steam reforming technology at Georgia-Pacific's paper mill in Big Island, Virginia. A more overarching goal is to improve the understanding of phenomena that take place during low temperature black liquor gasification. This is achieved through five complementary technical tasks: (1) construction of a fluidized bed black liquor gasification test system, (2) investigation of bed performance, (3) evaluation of product gas quality, (4) black liquor conversion analysis and modeling and (5) computational modeling of the Big Island gasifier. Four experimental devices have been constructed under this project. The largest facility, which is the heart of the experimental effort, is a pressurized fluidized bed gasification test system. The system is designed to be able to reproduce conditions near the black liquor injectors in the Big Island steam reformer, so the behavior of black liquor pyrolysis and char gasification can be quantified in a representative environment. The gasification test system comprises five subsystems: steam generation and superheating, black liquor feed, fluidized bed reactor, afterburner for syngas combustion and a flue gas cooler/condenser. The three-story system is located at University of Utah's Industrial Combustion and Gasification Research Facility, and all resources there are available to support the research.

  16. Heavy metal characterization of circulating fluidized bed derived biomass ash.

    Science.gov (United States)

    Li, Lianming; Yu, Chunjiang; Bai, Jisong; Wang, Qinhui; Luo, Zhongyang

    2012-09-30

    Although the direct combustion of biomass for energy that applies circulating fluidized bed (CFB) technology is steadily expanding worldwide, only few studies have conducted an environmental assessment of biomass ash thus far. Therefore, this study aims to integrate information on the environmental effects of biomass ash. We investigated the concentration of heavy metal in biomass ash samples (bottom ash, cyclone ash, and filter ash) derived from a CFB boiler that combusted agricultural and forest residues at a biomass power plant (2×12 MW) in China. Ash samples were gathered for the digestion and leaching test. The heavy metal content in the solution and the leachate was studied via an inductively coupled plasma-mass spectrometer and a Malvern Mastersizer 2000 mercury analyzer. Measurements for the chemical composition, particle size distribution, and the surface morphology were carried out. Most of the metals in cyclone ash particles were enriched, whereas Ti and Hg were enriched in filter ash. Residence time contributed most to heavy metal enrichment. Under HJ/T 300 conditions, the heavy metals showed serious leaching characteristics. Under EN 12457-2 conditions, leaching behavior was hardly detected.

  17. Ash problem at wood fired fluidized bed plants; Askproblem vid skogsbraensleeldning i fluidbaedd

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Soeren; Nystroem, Olle; Axby, Fredrik [Sycon Energikonsult AB, Malmoe (Sweden); Andersson, Christer; Kling, Aasa [Vattenfall Utveckling AB, Aelvkarleby (Sweden)

    2001-03-01

    Several ash related problems occurs during conversion from fossil fuels to bio fuels. The most frequent and expensive problem is agglomeration of bed material (in fluidized beds) and fouling on superheating surfaces. The last problem leads to corrosion problem and decreased transfer of heat. This project is the first part of a proposed project focussed on fluidized bed combustion (FB), because FB have become the dominating technology for combustion of biofuels. The project includes this first update of what has been done by different research institutes since 1997 and results of questionnaire on operating problems to owners of fluidized bed plants. A couple of pilot studies and different thermodynamical studies of bed agglomeration with biofuel combustion have been done during the latest years. There are no published reports where the results from agglomeration tests in pilot scale are verified in full scale plants. No project was found which deals with the fouling problem in the cyclone in a circulating fluidized bed. The knowledge of the mechanisms of deposits growth on heat surfaces is incomplete and more research has to be done of what can prevent the deposit growth. Experience from full scale plants shows that the deposits on heat surfaces grows during a period and after that it falls of the heating surface. There is little knowledge of which ash and flue gas conditions that affects these conditions for bio fuel. The operational experience with wood fuels in circulating fluidized beds is that the main problem with bed material is in the inlet and outlet of the cyclone. A total desulfonated of the bed occurs only when there has been other disturbances or because of operator mistakes. There are a number of things which seem to influence on the deposit problems: (1) Boilers with long residence time have less problem than boilers with short residence time. (2) Fuel size. No plant owner have continuos analysis of the fuel size, but combustion with problem have a

  18. Synthesis of a nanosilica supported CO{sub 2} sorbent in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Soria-Hoyo, C., E-mail: cshoyo@us.es [Facultad de Física, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla (Spain); Valverde, J.M. [Facultad de Física, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla (Spain); Ommen, J.R. van [Department of Chemical Engineering, Delft University of Technology, Product and Process Engineering, Julianalaan 136, 2628 BL Delft (Netherlands); Sánchez-Jiménez, P.E.; Pérez-Maqueda, L.A.; Sayagués, M.J. [Instituto de Ciencia de Materiales (CSIC – Universidad de Sevilla), Americo Vespucio 49, 41092 Sevilla (Spain)

    2015-02-15

    Highlights: • CaO coating at atmospheric pressure is applied on silica nanoparticles in a fluidized bed. • Atmospheric pressure would facilitate scaling-up of the process. • The conditions for the coating process at atmospheric pressure are discussed. • The CO{sub 2} sorbent capacity is demonstrated by TGA in carbonation/calcination. • STEM-EDX shows the presence of CaO on the surface of the nanoparticles. - Abstract: CaO has been deposited on a nanosilica powder matrix by a procedure based on atomic layer deposition (ALD) in a fluidized bed reactor at atmospheric pressure following a potentially scalable process. In previous works ALD in gas fluidized bed has been mostly performed under reduced pressure, which hampers scaling-up the production technology. The material synthesized in the present work is tested as CO{sub 2} solid sorbent at calcium looping conditions. Multicyclic thermogravimetric analysis (TGA) shows that the nanosilica support stabilizes the capture capacity of CaO. EDX-STEM analysis illustrates the presence of Ca well distributed on the surface of the SiO{sub 2} nanoparticles.

  19. SIMULATION OF PARTICLE COATING IN THE SUPERCRITICAL FLUIDIZED BED

    Institute of Scientific and Technical Information of China (English)

    Carsten; Vogt; Ernst-Ulrich; Hartge; Joachim; Werther; Gerd; Brunner

    2005-01-01

    Fluidized bed technology using supercritical carbon dioxide both as a fluidizing gas and as a solvent for the coating material makes possible the production of thin, uniform and solvent-free coatings. But operation at low fluidizing velocities, which is favorable to facilitate gas cleaning under the high pressure conditions, may lead to uneven distribution of the coating in the fluidized bed and to unstable operation due to agglomeration. Therefore a model has been developed which describes local fluid dynamics within the high pressure fluidized bed. Based on this model, the coating process is described and the distribution of the coating inside the fluidized bed is calculated. Furthermore a submodel for the calculation of local concentrations of liquid paraffin has been set up, which may be used as a basis for the prediction of agglomeration and thus stability of operation.

  20. RESEARCH ON DENSITY STABILITY OF AIR DENSE MEDIUM FLUIDIZED BED

    Institute of Scientific and Technical Information of China (English)

    骆振福; 陈清如

    1994-01-01

    In this papcr on thc basis of studying the distribution of fine coal in the dense medium fluidized bed, the optimal size range of fine coal, which constitutes a fluidized bed together with the dense medium, has been found. In the separating process the fine coal will continuously accumulate in fluidized bed, thus inevitably reducing the density of the bed. In order to keep bed density stable, the authors adopted such measures as split-flow of used medium and complement of fresh dense medium. The experiment results in both lab and pilot systems of the air-dense medium fluidized bed show that these measures are effective and satisfactory. Then authors also have established some relative dynamic mathematical models for it.

  1. Flow boiling heat transfer in circulating fluidized bed

    Institute of Scientific and Technical Information of China (English)

    Xiaoguang REN; Jiangdong ZHENG; Sefiane KHELLII; Arumemi-Ikhide MICHAEL

    2009-01-01

    In order to enhance heat transfer and mitigate contamination in the boiling processes, a new type of vapor-liquid-solid (3-phase) circulating fluidized bed boil-ing system has been designed, combining a circulating fluidized bed with boiling heat transfer. Experimental results show an enhancement of the boiling curve. Flow visualization studies concerning flow hydrodynamics within the riser column are also conducted whose results are presented and discussed.

  2. Fluidized Bed Air-to-Air Heat Pump Evaporator Evaluation.

    Science.gov (United States)

    1983-07-01

    Frost formation of air-to-air heat pump evaporator surfaces reduces unit efficiency and restricts application. The use of a fluidized bed heat...exchanger as an air-to- heat pump evaporator was investigated to determine if frost accumulation could be eliminated. Experimental investigations were...evaluated, with no practical solution being developed. The use of a fluidized bed heat exchanger for air-to-air heat pump evaporators was determined not feasible. (Author)

  3. Collecting aerosol in airflow with a magnetically stabilized fluidized bed

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A magnetically stabilized fluidized bed (MSB) is a highly efficient filter that takes the advantage of both fluidized beds and fixed beds. This paper presents the research to collect aerosol in airflow with a MSB. The filtering model of MSB is established with its parameters including magnetic field intensity,gas superficial velocity, average grain-size, and bed height on thecollection efficiency of MSB. The model is verified by experiments.

  4. Chebyshev super spectral viscosity method for a fluidized bed model

    CERN Document Server

    Sarra, S A

    2003-01-01

    A Chebyshev super spectral viscosity method and operator splitting are used to solve a hyperbolic system of conservation laws with a source term modeling a fluidized bed. The fluidized bed displays a slugging behavior which corresponds to shocks in the solution. A modified Gegenbauer postprocessing procedure is used to obtain a solution which is free of oscillations caused by the Gibbs-Wilbraham phenomenon in the spectral viscosity solution. Conservation is maintained by working with unphysical negative particle concentrations.

  5. Pilot plant testing of IGT`s two-stage fluidized-bed/cyclonic agglomerating combustor

    Energy Technology Data Exchange (ETDEWEB)

    Rehmat, A.; Mensinger, M.C. [Institute of Gas Technology, Chicago, IL (United States); Richardson, T.L. [Environmental Protection Agency, Cincinnati, OH (United States)

    1993-12-31

    The Institute of Gas Technology (IGT) is conducting a multi-year experimental program to develop and test, through pilot-scale operation, IGT`s two-stage fluidized-bed/cyclonic agglomerating combustor (AGGCOM). The AGGCOM process is based on combining the fluidized-bed agglomeration and gasification technology with the cyclonic combustion technology, both of which have been developed at IGT over many years. AGGCOM is a unique and extremely flexible combustor that can operate over a wide range of conditions in the fluidized-bed first stage from low temperature (desorption) to high temperature (agglomeration), including gasification of high-energy-content wastes. The ACCCOM combustor can easily and efficiently destroy solid, liquid, and gaseous organic wastes, while isolating solid inorganic contaminants within an essentially non-leachable glassy matrix, suitable for disposal in ordinary landfills. Fines elutriated from the first stage are captured by a high-efficiency cyclone and returned to the fluidized bed for ultimate incorporation into the agglomerates. Intense mixing in the second-stage cyclonic combustor ensures high destruction and removal efficiencies (DRE) for organic compounds that may be present in the feed material. This paper presents an overview of the experimental development of the AGGCOM process and progress made to date in designing, constructing, and operating the 6-ton/day AGGCOM pilot plant. Results of the bench-scale tests conducted to determine the operating conditions necessary to agglomerate a soil were presented at the 1991 Incineration Conference. On-site construction of the AGGCOM pilot plant was initiated in August 1992 and completed at the end of March 1993, with shakedown testing following immediately thereafter. The initial tests in the AGGCOM pilot plant will focus on the integrated operation of both stages of the combustor and will be conducted with ``clean`` topsoil.

  6. Numerical simulation of non-conventional liquid fuels feeding in a bubbling fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Mladenović Milica R.

    2013-01-01

    Full Text Available The paper deals with the development of mathematical models for detailed simulation of lateral jet penetration into the fluidized bed (FB, primarily from the aspect of feeding of gaseous and liquid fuels into FB furnaces. For that purpose a series of comparisons has been performed between the results of in-house developed procedure- fluid-porous medium numerical simulation of gaseous jet penetration into the fluidized bed, Fluent’s two-fluid Euler-Euler FB simulation model, and experimental results (from the literature of gaseous jet penetration into the 2D FB. The calculation results, using both models, and experimental data are in good agreement. The developed simulation procedures of jet penetration into the FB are applied to the analysis of the effects, which are registered during the experiments on a fluidized pilot furnace with feeding of liquid waste fuels into the bed, and brief description of the experiments is also presented in the paper. Registered effect suggests that the water in the fuel improved mixing of fuel and oxidizer in the FB furnace, by increasing jet penetration into the FB due to sudden evaporation of water at the entry into the furnace. In order to clarify this effect, numerical simulations of jet penetration into the FB with three-phase systems: gas (fuel, oxidizer, and water vapour, bed particles and water, have been carried out. [Projekat Ministarstva nauke Republike Srbije, br. TR33042: Improvement of the industrial fluidized bed facility, in scope of technology for energy efficient and environmentally feasible combustion of various waste materials in the fluidized bed

  7. Biomass Oxygen Enriched-steam Gasification in an Atmospheric Fluidized Bed for Syngas Production%生物质流化床富氧-水蒸气气化制备合成气研究

    Institute of Scientific and Technical Information of China (English)

    苏德仁; 周肇秋; 谢建军; 朗林; 阴秀丽; 吴创之

    2011-01-01

    Biomass gasification with steam-oxygen enriched air in an atmospheric fluidized bed gasifier was studied. The gasifier was 9 m high with the bed diameter of 0. 5 m. Sawdust with different moisture contents was used as feedstock, and it was fed into the gasifier at flow rates of 180 ~ 270 kg/h. The effects of equivalence ratio, steam to biomass ratio, secondary flow ratio and feedstock moisture on the bed temperature, gas compositions, tar content, lower heating values, gas yield, carbon conversion efficiency and cold gas efficiency were investigated. The results showed under the operating conditions of ER is 0. 25 ~ 0. 27 and S/B = 0. 4, the following syngas was obtained: H2 content of 28. 7% , H2/CO ratio of 0.94, low heating value of 9.9 MJ/m3, cold gas efficiency was more than 75% , carbon conversion efficiency was more than 97% ; a second flow ratio of 25% at the ER of 0. 29 can significantly reduce the tar content to 49 mg/m , but hardly improve the quality of the gas produced; the rise of the feedstock moisture content caused a significant increase in CO2 content and a reduction in H2 and CO contents, and the moisture content is expected not to exceed 20% .%使用不同含水率的木粉为原料,以180~270 kg/h的进料速度在内径0.5 m、高9 m的常压流化床气化炉上进行了富氧-水蒸气气化制备合成气实验.考察了当量比、水蒸气配比、二次风以及原料含水率对气化温度、燃气组分、低位热值、气体产率、气化效率和碳转化率等参数的影响.结果显示:当量比为0.25~0.27之间,水蒸气配比0.4时,H:含量最高可达28.7%,H2/CO为0.94,燃气热值9.9 MJ/m3,气化效率大于75%,碳转化率大于97%;提高二次风比率可明显降低焦油含量,在总当量比0.29、二次风比率25%时焦油含量为49 ms/m3;原料水分增加,气体质量下降,含水率以不超过20%为宜.

  8. Co-firing of paper mill sludge and coal in an industrial circulating fluidized bed boiler.

    Science.gov (United States)

    Tsai, Meng-Yuan; Wu, Keng-Tung; Huang, Chin-Cheng; Lee, Hom-Ti

    2002-01-01

    Co-firing of coal and paper mill sludge was conducted in a 103 MWth circulating fluidized bed boiler to investigate the effect of the sludge feeding rate on emissions of SOx, NOx, and CO. The preliminary results show that emissions of SOx and Nx decrease with increasing sludge feeding rate, but CO shows the reverse tendency due to the decrease in combustion temperature caused by a large amount of moisture in the sludge. All emissions met the local environmental requirements. The combustion ashes could be recycled as feed materials in the cement manufacturing process.

  9. Chemical looping reactor system design double loop circulating fluidized bed (DLCFB)

    Energy Technology Data Exchange (ETDEWEB)

    Bischi, Aldo

    2012-05-15

    Chemical looping combustion (CLC) is continuously gaining more importance among the carbon capture and storage (CCS) technologies. It is an unmixed combustion process which takes place in two steps. An effective way to realize CLC is to use two interconnected fluidized beds and a metallic powder circulating among them, acting as oxygen carrier. The metallic powder oxidizes at high temperature in one of the two reactors, the air reactor (AR). It reacts in a highly exothermic reaction with the oxygen of the injected fluidising air. Afterwards the particles are sent to the other reactor where the fuel is injected, the fuel reactor (FR). There, they transport heat and oxygen necessary for the reaction with the injected fuel to take place. At high temperatures, the particle's oxygen reacts with the fuel producing Co2 and steam, and the particles are ready to start the loop again. The overall reaction, the sum of the enthalpy changes of the oxygen carrier oxidation and reduction reactions, is the same as for the conventional combustion. Two are the key features, which make CLC promising both for costs and capture efficiency. First, the high inherent irreversibility of the conventional combustion is avoided because the energy is utilized stepwise. Second, the Co2 is intrinsically separated within the process; so there is in principle no need either of extra carbon capture devices or of expensive air separation units to produce oxygen for oxy-combustion. A lot of effort is taking place worldwide on the development of new chemical looping oxygen carrier particles, reactor systems and processes. The current work is focused on the reactor system: a new design is presented, for the construction of an atmospheric 150kWth prototype working with gaseous fuel and possibly with inexpensive oxygen carriers derived from industrial by-products or natural minerals. It consists of two circulating fluidized beds capable to operate in fast fluidization regime; this will increase the

  10. Fluidized-bed pyrolysis of waste bamboo

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Bamboo was a popular material substituting for wood, especially for one-off commodity in China. In order to recover energy and materials from waste bamboo, the basic characteristics of bamboo pyrolysis were studied by a thermogravimetric analyzer. It implied that the reaction began at 190~210 ℃, and the percentage of solid product deceased from about 25% to 17% when temperature ranged from 400 ℃ to 700 ℃. A lab-scale fluidized-bed furnace was setup to research the detailed properties of gaseous, liquid and solid products respectively. When temperature increased from 400 ℃ to 700 ℃, the mass percent of solid product decreased from 27% to 17% approximately, while that of syngas rose up from 19% to 35%. When temperature was about 500℃, the percentage of tar reached the top, about 31%. The mass balance of these experiments was about 93%~95%. It indicated that three reactions involved in the process: pyrolysis of exterior bamboo, pyrolysis of interior bamboo and secondary pyrolysis of heavy tar.

  11. Chemical Looping Combustion of Solid Fuels in a Laboratory Fluidized-bed Reactor Combustion de charges solides avec la boucle chimique dans un lit fluidisé de laboratoire

    Directory of Open Access Journals (Sweden)

    Leion H.

    2011-02-01

    Full Text Available When using solid fuel in a chemical looping system, the char fraction of the fuel needs to be gasified before syngas react with the oxygen carrier. This can be done inside the fuel reactor with fuel and oxygen carriers well mixed, and, since this gasification is comparably slow, this will be the time limiting step of such a system. An option is to use an oxygen carrier that is able to release gas-phase oxygen which can react with the fuel by normal combustion giving a significantly faster overall fuel conversion. This last option is generally referred to as Chemical Looping combustion with Oxygen Un-coupling (CLOU. In this work, an overview is given of parameters that affect the fuel conversion in laboratory CLC and CLOU experiments. The main factor determining the fuel conversion, in both CLC and CLOU, is the fuel itself. High-volatile fuels are generally more rapidly converted than low volatile fuels. This difference in fuel conversion rate is more pronounced in CLC than in CLOU. However, the fuel conversion is also, both for CLC and CLOU, increased by increasing temperature. Increased steam and SO2 fraction in the surrounding gas will also enhance the fuel conversion in CLC. CO2 gasification in CLC appears to be very slow in comparison to steam gasification. H2 can inhibit fuel gasification in CLC whereas CO did not seem to have any effect. Possible deactivation of oxygen carriers due to SO2 or ash also has to be considered. Lorsque l’on utilise des combustibles solides dans la boucle chimique (CLC pour Chemical Looping Combustion, il est nécessaire de gazéifier le char avant de faire la combustion du gaz de synthèse au contact du transporteur d’oxygène. Ces réactions peuvent s’effectuer dans le réacteur fuel, dans lequel le combustible et le transporteur d’oxygène sont bien mélangés. Cependant, la gazéification du charbon est lente et reste l’étape limitante du processus de combustion dans ces conditions. Une alternative

  12. Development of a fluidized bed agglomeration modeling methodology to include particle-level heterogeneities in ash chemistry and granular physics

    Science.gov (United States)

    Khadilkar, Aditi B.

    The utility of fluidized bed reactors for combustion and gasification can be enhanced if operational issues such as agglomeration are mitigated. The monetary and efficiency losses could be avoided through a mechanistic understanding of the agglomeration process and prediction of operational conditions that promote agglomeration. Pilot-scale experimentation prior to operation for each specific condition can be cumbersome and expensive. So the development of a mathematical model would aid predictions. With this motivation, the study comprised of the following model development stages- 1) development of an agglomeration modeling methodology based on binary particle collisions, 2) study of heterogeneities in ash chemical composition and gaseous atmosphere, 3) computation of a distribution of particle collision frequencies based on granular physics for a poly-disperse particle size distribution, 4) combining the ash chemistry and granular physics inputs to obtain agglomerate growth probabilities and 5) validation of the modeling methodology. The modeling methodology comprised of testing every binary particle collision in the system for sticking, based on the extent of dissipation of the particles' kinetic energy through viscous dissipation by slag-liquid (molten ash) covering the particles. In the modeling methodology developed in this study, thermodynamic equilibrium calculations are used to estimate the amount of slag-liquid in the system, and the changes in particle collision frequencies are accounted for by continuously tracking the number density of the various particle sizes. In this study, the heterogeneities in chemical composition of fuel ash were studied by separating the bulk fuel into particle classes that are rich in specific minerals. FactSage simulations were performed on two bituminous coals and an anthracite to understand the effect of particle-level heterogeneities on agglomeration. The mineral matter behavior of these constituent classes was studied

  13. An Investigation on Low-Temperature Thermochemical Treatments of Austenitic Stainless Steel in Fluidized Bed Furnace

    Science.gov (United States)

    Haruman, E.; Sun, Y.; Triwiyanto, A.; Manurung, Y. H. P.; Adesta, E. Y.

    2012-03-01

    In this study, the feasibility of using an industrial fluidized bed furnace to perform low-temperature thermochemical treatments of austenitic stainless steels has been studied, with the aim to produce expanded austenite layers with combined wear and corrosion resistance, similar to those achievable by plasma and gaseous processes. Several low-temperature thermochemical treatments were studied, including nitriding, carburizing, combined nitriding-carburizing (hybrid treatment), and sequential carburizing and nitriding. The results demonstrate that it is feasible to produce expanded austenite layers on the investigated austenitic stainless steel by the fluidized bed heat treatment technique, thus widening the application window for the novel low-temperature processes. The results also demonstrate that the fluidized bed furnace is the most effective for performing the hybrid treatment, which involves the simultaneous incorporation of nitrogen and carbon together into the surface region of the component in nitrogen- and carbon-containing atmospheres. Such hybrid treatment produces a thicker and harder layer than the other three processes investigated.

  14. FLUIDIZED BED STEAM REFORMER MONOLITH FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C

    2006-12-22

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or ''mineralized'' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydroceramics. All but one of the nine monoliths tested met the <2g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydroceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form.

  15. Investigation of Gas Solid Fluidized Bed Dynamics with Non-Spherical Particles

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Ahsan

    2013-06-30

    One of the largest challenges for 21st century is to fulfill global energy demand while also reducing detrimental impacts of energy generation and use on the environment. Gasification is a promising technology to meet the requirement of reduced emissions without compromising performance. Coal gasification is not an incinerating process; rather than burning coal completely a partial combustion takes place in the presence of steam and limited amounts of oxygen. In this controlled environment, a chemical reaction takes place to produce a mixture of clean synthetic gas. Gas-solid fluidized bed is one such type of gasification technology. During gasification, the mixing behavior of solid (coal) and gas and their flow patterns can be very complicated to understand. Many attempts have taken place in laboratory scale to understand bed hydrodynamics with spherical particles though in actual applications with coal, the particles are non-spherical. This issue drove the documented attempt presented here to investigate fluidized bed behavior using different ranges of non-spherical particles, as well as spherical. For this investigation, various parameters are controlled that included particle size, bed height, bed diameter and particle shape. Particles ranged from 355 µm to 1180 µm, bed diameter varied from 2 cm to 7 cm, two fluidized beds with diameters of 3.4 cm and 12.4 cm, for the spherical and non-spherical shaped particles that were taken into consideration. Pressure drop was measured with increasing superficial gas velocity. The velocity required in order to start to fluidize the particle is called the minimum fluidization velocity, which is one of the most important parameters to design and optimize within a gas-solid fluidized bed. This minimum fluidization velocity was monitored during investigation while observing variables factors and their effect on this velocity. From our investigation, it has been found that minimum fluidization velocity is independent of bed

  16. Fluidized bed gasification of industrial solid recovered fuels.

    Science.gov (United States)

    Arena, Umberto; Di Gregorio, Fabrizio

    2016-04-01

    The study evaluates the technical feasibility of the fluidized bed gasification of three solid recovered fuels (SRFs), obtained as co-products of a recycling process. The SRFs were pelletized and fed to a pilot scale bubbling fluidized bed reactor, operated in gasification and co-gasification mode. The tests were carried out under conditions of thermal and chemical steady state, with a bed of olivine particles and at different values of equivalence ratio. The results provide a complete syngas characterization, in terms of its heating value and composition (including tars, particulates, and acid/basic pollutants) and of the chemical and physical characterization of bed material and entrained fines collected at the cyclone outlet. The feasibility of the fluidized bed gasification process of the different SRFs was evaluated with the support of a material and substance flow analysis, and a feedstock energy analysis. The results confirm the flexibility of fluidized bed reactor, which makes it one of the preferable technologies for the gasification of different kind of wastes, even in co-gasification mode. The fluidized bed gasification process of the tested SRFs appears technically feasible, yielding a syngas of valuable quality for energy applications in an appropriate plant configuration.

  17. Direct reduction of hematite powders in a fluidized bed reactor

    Institute of Scientific and Technical Information of China (English)

    Qingshan Zhu; Rongfang Wu; Hongzhong Li

    2013-01-01

    Ultrafine hematite powder was reduced to produce ultrafine iron powder in a 50%Ar-50%H2 atmosphere at 450-550 ℃ in a fluidized bed reactor.The ultrafine hematite powder shows the typical agglomerating fluidization behavior with large agglomerates fluidized at the bottom of the bed and small agglomerates fluidized at the upper part of the bed.It was found that defluidization occurred even at the low temperature of 450 ℃ with low metallization rate.Defluidization was attributed mainly to the sintering of the newly formed iron particles.Granuation was employed to improve the fluidization quality and to tackle the defluidization problem,where granules fluidized like a Geldart's group A powder.Granulation was found to effectively reduce defluidization during reduction,without however sacrificing reduction speed.The asreduced iron powders from both the ultrafine and the granulated hematite exhibited excellent sintering activity,that is,fast sintering at temperature of as low as ~580 ℃,which is much superior as compared to that of nano/ultrafine iron powders made by other processes,

  18. Simulation of NOx emission in circulating fluidized beds burning low-grade fuels

    Energy Technology Data Exchange (ETDEWEB)

    Afsin Gungor [Nigde University, Nigde (Turkey). Faculty of Engineering and Architecture

    2009-05-15

    Nitrogen oxides are a major environmental pollutant resulting from combustion. This paper presents a modeling study of pollutant NOx emission resulting from low-grade fuel combustion in a circulating fluidized bed. The simulation model accounts for the axial and radial distribution of NOx emission in a circulating fluidized bed (CFB). The model results are compared with and validated against experimental data both for small-size and industrial-size CFBs that use different types of low-grade fuels given in the literature. The present study proves that CFB combustion demonstrated by both experimental data and model predictions produces low and acceptable levels of NOx emissions resulting from the combustion of low-grade fuels. Developed model can also investigate the effects of different operational parameters on overall NOx emission. As a result of this investigation, both experimental data and model predictions show that NOx emission increases with the bed temperature but decreases with excess air if other parameters are kept unchanged. 37 refs., 5 figs., 5 tabs.

  19. Mechanisms of formation and destruction of nitrogen oxides during polyamide incineration in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Hahnel, F.; Gadiou, R.; Prado, G. [Univ. de Haute Alsace, Mulhouse (France). Lab. de Gestion des Risques et Environnement

    1998-09-01

    In order to study the incineration of nitrogen-containing polymers, a fludized bed has been built. This paper reports the results for polyamide 6-6 incineration. The main nitrogen containing species have been identified, and the axial profiles of concentration of nitrogen oxides, HCN and NH3 have been measured. The main steps of decomposition of the polyamide were identified. We present an experimental investigation of the influence of operating parameters (temperature, excess air) on the formation and reduction of polymer combustion products. The yields of conversion of nitrogen to the different N-species have been calculated as a function of excess air in the fluidized bed. (orig.)

  20. Use of optical probes to characterize bubble behavior in gas-solid fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Mainland, M.E.; Welty, J.R. (Oregon State Univ., Corvallis, OR (United States). Dept. of Mechanical Engineering)

    1995-02-01

    Optical probes are used to study gas-solid fluidized-bed hydrodynamics. The probes each consisting of a light source and photodetector separated by a gap are suitable for use at combustion-level temperatures. The methodology to process the signal for calculation of bubble properties such as bubble frequency, local bubble residence time, bubble velocity, pierced length, bubble size, and visible bubble flow is presented. The signal processing technique is independent of bed operating conditions. The probe signal processing methodology is validated by comparing calculated bubble properties based on the probe signal with properties observed on videotapes of a 2-D bed.

  1. Combustion of spent shales from the Rotem deposit. Pt. 2. Behavior in oxygen-containing atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Zabicky, J. (Ben-Gurion Univ. of the Negev, Beersheba (Israel). Inst. for Applied Research Ben-Gurion Univ. of the Negev, Beersheba (Israel). M.R. Bloch Center for Coal Research); Wohlfarth, A. (Energy Resources Development Ltd., Mishor Rotem, Arava (Israel))

    1991-09-01

    Spent shales prepared by the Fisher method from oils shales of the Rotem deposit were studied in a continuous fluidized bed reactor at 700-900deg C under atmospheric pressure, using mixtures of nitrogen, oxygen and carbon dioxide as the fluidizing gas. Combustion of the organic residue takes place together with other processes, the most important of which are decomposition of calcium carbonate and gasification of the organic residue by carbon dioxide produced by combustion and carbonate decomposition. The extent to which each of these reactions takes place determines wether the particles undergo predominantly pyrolytic or oxidative processes. This depends on temperature, composition of the fluidizing gas, particle size of the spent shales, and mean residence time of the particles in the reactor. (orig.).

  2. Circulating pressurized fluidized bed. Trial operation, phase 1c. Final report; Zirkulierende Druckwirbelschicht. Versuchsbetrieb, Phase 1c. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Krein, J.; Schmitt, J.; Wedel, G. von; Winkler, K.

    1993-09-01

    Since March `89, the Deutsche Babcock Energie und Umwelttechnik AG have been operating a 15 MW{sub th} experimental pressurized fluidized bed facility. The plant was first designed as a stationary pressurized fluidized bed and was optimized and tested in a 2000-h period of trial operation. In view of the good results of the plant and the technical superiority of the circulating fluidized bed technology, the experimental facility was converted into a circulating pressurized fluidized bed system. The reconstruction work was started in February `91, and from October `91 onwards the circulating pressurized fluidized bed system was optimized and tested in a 900-h trial operation period. This report explains the concept of circulating pressurized fluidized bed technology as applied by the Deutsche Babcock Energie und Umwelttechnik AG and presents the results of circulating trial operation. The results of circulating and stationary fluidized bed trial operation are compared. This comparison is particularly significant as all marginal systems of the plant, i.e. for combustion air supply, flue gas discharge, coal supply and ash removal, have remained unmodified during the reconstruction phase. (orig.) [Deutsch] Seit Maerz `89 betreibt die Deutsche Babcock Energie und Umwelttechnik AG eine 15 MW{sub th} Druckwirbelschicht Versuchsanlage. In einer ersten Versuchsphase wurde die Anlage als stationaere Druckwirbelschicht konzipiert und in einem 2000-stuendigen Versuchsbetrieb optimiert und getestet. Ausgehend von den guten Ergebnissen aus dem stationaeren, druckaufgeladenen Versuchsbetrieb und in Anbetracht der aus dem atmosphaerischen Bereich bekannten Vorteile der zirkulierenden gegenueber der stationaeren Wirbelschicht wurde die Versuchsanlage ab Februar `91 in eine zirkulierende Druckwirbelschicht umgebaut. Ab Oktober `91 wurde die zirkulierende Druckwirbelschicht in einem 900-stuendigen Versuchsbetrieb optimiert und getestet. In diesem Bericht wird das von der Deutsche

  3. Understanding and predicting bed humidity in fluidized bed granulation.

    Science.gov (United States)

    Hu, Xinhui; Cunningham, John; Winstead, Denita

    2008-04-01

    Bed humidity is a critical parameter that needs to be controlled in a fluidized bed granulation to ensure reliability. To predict and control the bed humidity during the fluidized bed granulation process, a simple model based on the mass conservation of moisture was developed. The moisture mass balance model quantitatively simulates the effects of spray rate, binder solution concentration, airflow rate, inlet air temperature, and dew point on the bed humidity. The model was validated by a series of granulations performed in different scale granulators including Glatt GPCG-1, GPCG-15, and GPCG-60. Good agreement was observed between the theoretical prediction and the measured loss on drying (LOD). The model developed in the current work enables us to choose the appropriate parameters for the fluidized bed granulation and can be used as a valuable tool in process scaling-up.

  4. MODELING NONLINEAR DYNAMICS OF CIRCULATING FLUIDIZED BEDS USING NEURAL NETWORKS

    Institute of Scientific and Technical Information of China (English)

    Wei; Chen; Atsushi; Tsutsumi; Haiyan; Lin; Kentaro; Otawara

    2005-01-01

    In the present work, artificial neural networks (ANNs) were proposed to model nonlinear dynamic behaviors of local voidage fluctuations induced by highly turbulent interactions between the gas and solid phases in circulating fluidized beds. The fluctuations of local voidage were measured by using an optical transmittance probe at various axial and radial positions in a circulating fluidized bed with a riser of 0.10 m in inner diameter and 10 m in height. The ANNs trained with experimental time series were applied to make short-term and long-term predictions of dynamic characteristics in the circulating fluidized bed. An early stop approach was adopted to enhance the long-term prediction capability of ANNs. The performance of the trained ANN was evaluated in terms of time-averaged characteristics, power spectra, cycle number and short-term predictability analysis of time series measured and predicted by the model.

  5. ELECTROSTATIC PHENOMENA IN GAS-SOLIDS FLUIDIZED BEDS

    Institute of Scientific and Technical Information of China (English)

    Hsiaotao T. Bi

    2005-01-01

    Electrostatic charges are generated by particle-wall, particle-particle and particle-gas contacts in gas-solids transport lines and fluidized bed reactors. High particle charge densities can lead to particle agglomeration,particle segregation, fouling of reactor walls and internals, leading to undesirable by-product and premature shut-down of processing equipment. In this paper, the charge generation, dissipation and segregation mechanisms are examined based on literature data and recent experimental findings in our laboratory. The particle-wall contact charging is found to be the dominant charge generation mechanism for gas-solids pneumatic transport lines, while bipolar charging due to intimate particle-particle contact is believed to be the dominant charge generation mechanism in gas fluidized beds. Such a bipolar charging mechanism is also supported by the segregation patterns of charged particles in fluidized beds in which highly charged particles tend to concentrate in the bubble wake and drift region behind rising bubbles.

  6. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rokkam, Ram [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  7. The standard-design gas turbine for use in pressurized fluidized beds; Die Standard-Gasturbine im Druckwirbelschicht-Einsatz

    Energy Technology Data Exchange (ETDEWEB)

    Stuhlmueller, F. [Siemens AG, Erlangen (Germany). Bereich Energieerzeugung (KWU); Schauenburg, G. [Siemens AG, Muelheim an der Ruhr (Germany). Bereich Energieerzeugung (KWU); Waldinger, D. [Siemens AG, Muelheim an der Ruhr (Germany). Bereich Energieerzeugung (KWU)

    1995-12-01

    Gas turbines are designed for operation with high-calorific, clean fuels. If a competent and reliable hot gas cleaning is available, these machines can be operated also with pressurized fluidized beds as combustion chambers. The necessary modifications for a Siemens V64.3 gasturbine are outlined. The capacity data obtainable with a circulating pressurized fluidized bed as well as important data for part-load operation on combustion of hard coal and brown coal are determined. (orig.) [Deutsch] Gasturbinen sind fuer den Betrieb mit hochkalorigen, sauberen Brennstoffen konzipiert. Ist eine wirksame, zuverlaessige Heissgasreinigung verfuegbar, dann koennen diese Maschinen auch mit Druckwirbelschichten als Brennkammern eingesetzt werden. Fuer eine Siemens V64.3-Gasturbine werden die dazu erforderlichen Modifikationen dargestellt und die mit einer zirkulierenden Druckwirbelschicht erreichbaren Leistungswerte sowie der Verlauf wichtiger Daten im Teillastbetrieb fuer Stein- und Braunkohleverbrennung ermittelt. (orig.)

  8. Computerized simulation of the dynamic response of a coal-fired power plant with pressurized fluidized bed

    Science.gov (United States)

    Plackmeyer, J.

    1982-07-01

    The simple way of desulfurizing, the efficient combustion of coal, and low carbon monoxide flue gas content of a fluidized bed combustion installation were studied. The dynamic response of a pressurized fluidized bed should also be studied before any construction is started. The physical-mathematical models of all single components were developed and combined in a total computer program. Starting point was the planned pilot plant with gas turbine engine. Various modifications of the purely air cooled plant as well as the extension to a combined cycle with additional steam turbine were considered. Operating cases were simulated: starting up, increasing from partial load to full load and vice versa, shut down and breakdowns. Results show that all operating cases could be brought under control as well as breakdowns. The constructive precautions and correct plant practice are described.

  9. Fluidized bed membrane reactor for hydrogen production by steam reforming of higher hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Rakib, M.A.; Grace, J.R.; Lim, C.J. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering; Elnashaie, S.S.E.H. [Pennsylvania State Univ., Harrisburg, PA (United States). Environmental and Sustainable Engineering; Bolkan, Y.G. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering

    2007-07-01

    Hydrogen is an an environment friendly fuel that has many applications such as a carbon-free fuel, and as a fuel for hydrogen fuel cells for automotive and other applications. It can be converted into useful forms of energy in many ways and has been used effectively in a number of internal combustion engine vehicles mixed with natural gas (hythane), and in a growing number of fuel cell vehicles. It can also be combined with oxygen without combustion in an electrochemical reaction to produce direct-current electricity in fuel cells. As the demand of hydrogen is projected to increase, research is being conducted into ways of improving hydrogen production, separation, purification and storage. This paper presented the results of a study that investigated modeling of a fluidized bed membrane reactor for steam reforming of higher hydrocarbons, in order to get the sizing of an experimental reformer setup. In the simulations, n-heptane was used as a model compound to represent steam reforming of naphtha. The reformer was modeled as a bubbling fluidized bed reactor, consisting of two pseudo phases, a dense phase and a bubble phase, both in plug flow. The paper discussed the irreversibility of steam reforming of higher hydrocarbons, kinetic modeling of a fluidized bed membrane reactor, and presented the model assumptions. Model equations for the reaction side and the separator side as well as the interphase mass exchange coefficient were provided. It was concluded that challenges specific to higher hydrocarbons included catalyst deactivation and possible membrane fouling. 26 refs., 1 tab., 9 figs., 1 appendix.

  10. PREDICTION OF FLOW REGIMES IN SPOUT-FLUIDIZED BEDS

    Institute of Scientific and Technical Information of China (English)

    Jiyu Zhang; Fengxiang Tang

    2006-01-01

    Five main flow regimes in spout-fluidized bed were identified in this study, namely, fixed bed, spout with aeration, spout-fluidization, jet in fluidized bed and slugging, together with their corresponding major frequencies translated from pressure signals. The empirical equation A=aBb, in which A=Fr* /(H/Di) and B=(Fr*/(H/D))/(μg/μmf) are respectively the spout-geometry and spout-geometry-fluidization dimensionless numbers, was proposed to distinguish these flow regimes.

  11. DRYING OF GRANULAR MATERIALS IN AGITATED FLUIDIZED BED

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An experimental study of the drying characteristics of an agitated fluidized bed dryer is presented and discussed. In the study, the citric acid particles were used as bed material with the diameters ranging from 0.2mm to 1.3mm. The variables affecting apparently the drying rate were found to be the mass flow rate, the inlet air temperature, the rotary speed of agitating mechanism and the particles feed rate. Comparing with other variables considered, mass flow rate was found to have the least important influence on the drying rate. The agitated fluidized bed dryer is suitable to drying agglomerating or sticky materials.

  12. Research on the Gas Reburning in a Circulating Fluidized Bed (CFB System Integrated with Biomass Gasification

    Directory of Open Access Journals (Sweden)

    Changqing Dong

    2012-08-01

    Full Text Available N2O emissions from coal fired fluidized-bed combustion are approximately 30–360 mg/Nm3, much higher than that from pulverized coal combustion (less than 30 mg/Nm3. One approach to reduce the N2O is to reburn the biomass gasification gas in the coal-fired fluidized bed. In this paper, the effects of gasified biomass reburning on the integrated boiler system were investigated by both simulation and experimental methods. The simulation as well as experimental results revealed that the increase of the reburning ratio would decrease the theoretical air volume and boiler efficiency, while it would increase the fuel gas volume, combustion and exhuast gas temperature. The experimental results also indicated that the N2O removal could reach as high as 99% when the heat ratio of biomass gas to coal is 10.5%.

  13. Sorption-enhanced steam methane reforming in fluidized bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Kim

    2006-10-15

    reformer-calciner system is likely to be rather low, so that only a fraction of the sorbent is utilized, highlighting the importance of the carbonation model at lower conversions. A dual fluidized bed reactor for the SE-SMR system was modeled by using a simple two-phase hydrodynamic model, the experimentally derived carbonation kinetics and literature values for the kinetics of steam reforming and water gas shift reactions. The model delineates important features of the process. Hydrogen concentrations of >98 mole% were predicted for temperatures {approx}600 C and a superficial gas velocity of 0.1 m/s. The reformer temperature should not be lower than 540 C or greater than 630 C for carbon capture efficiencies to exceed 90%. Operating at relatively high solid circulation rates to reduce the need for fresh sorbent, is predicted to give higher system efficiencies than for the case where fresh solid is added. This finding is attributed to the additional energy required to decompose both CaCO{sub 3} and MgCO{sub 3} in fresh dolomite. Moreover, adding fresh sorbent is likely to result in catalyst loss in the purge stream, requiring sorbents with lifetimes comparable to those of the catalyst. Thermo gravimetric analysis (TGA) was used to study the reversible CO{sub 2}-uptake of sorbents. In general, the multi-cycle capacity of the dolomite was found rather poor. Therefore, synthetic sorbents that maintain their capacities upon multiple reforming-calcination cycles were investigated. A low-temperature liquid phase co-precipitation method was used for synthesis of Li{sub 2}ZrO{sub 3} and Na{sub 2}ZrO{sub 3}. Li{sub 2}ZrO{sub 3} showed a superior multi-cycle capacity compared to Arctic dolomite in TGA, but the rate of reaction in diluted CO{sub 2} atmospheres was very slow. The synthesized Na{sub 2}ZrO{sub 3} proved to have both fast carbonation kinetics and stable multi-cycle performance. However, regeneration in the presence of carbon dioxide was not easily accomplished. The

  14. Sorption-enhanced steam methane reforming in fluidized bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Kim

    2006-10-15

    reformer-calciner system is likely to be rather low, so that only a fraction of the sorbent is utilized, highlighting the importance of the carbonation model at lower conversions. A dual fluidized bed reactor for the SE-SMR system was modeled by using a simple two-phase hydrodynamic model, the experimentally derived carbonation kinetics and literature values for the kinetics of steam reforming and water gas shift reactions. The model delineates important features of the process. Hydrogen concentrations of >98 mole% were predicted for temperatures {approx}600 C and a superficial gas velocity of 0.1 m/s. The reformer temperature should not be lower than 540 C or greater than 630 C for carbon capture efficiencies to exceed 90%. Operating at relatively high solid circulation rates to reduce the need for fresh sorbent, is predicted to give higher system efficiencies than for the case where fresh solid is added. This finding is attributed to the additional energy required to decompose both CaCO{sub 3} and MgCO{sub 3} in fresh dolomite. Moreover, adding fresh sorbent is likely to result in catalyst loss in the purge stream, requiring sorbents with lifetimes comparable to those of the catalyst. Thermo gravimetric analysis (TGA) was used to study the reversible CO{sub 2}-uptake of sorbents. In general, the multi-cycle capacity of the dolomite was found rather poor. Therefore, synthetic sorbents that maintain their capacities upon multiple reforming-calcination cycles were investigated. A low-temperature liquid phase co-precipitation method was used for synthesis of Li{sub 2}ZrO{sub 3} and Na{sub 2}ZrO{sub 3}. Li{sub 2}ZrO{sub 3} showed a superior multi-cycle capacity compared to Arctic dolomite in TGA, but the rate of reaction in diluted CO{sub 2} atmospheres was very slow. The synthesized Na{sub 2}ZrO{sub 3} proved to have both fast carbonation kinetics and stable multi-cycle performance. However, regeneration in the presence of carbon dioxide was not easily accomplished. The

  15. Principles of a novel multistage circulating fluidized bed reactor for biomass gasification

    NARCIS (Netherlands)

    Kersten, Sascha R.A.; Prins, Wolter; Drift, van der Bram; Swaaij, van Wim P.M.

    2003-01-01

    In this paper a novel multistage circulating fluidized bed reactor has been introduced. The riser of this multistage circulating fluidized bed consists of several segments (seven in the base-case design) in series each built-up out of two opposite cones. Due to the specific shape, a fluidized bed ar

  16. Results of theoretical and experimental studies of hydrodynamics of circulation loops in circulating fluidized bed reactors and systems with interconnected reactors

    Science.gov (United States)

    Ryabov, G. A.; Folomeev, O. M.; Sankin, D. A.; Melnikov, D. A.

    2015-02-01

    Problems of the calculation of circulation loops in circulating fluidized bed reactors and systems with interconnected reactors (polygeneration systems for the production of electricity, heat, and useful products and chemical cycles of combustion and gasification of solid fuels)are considered. A method has been developed for the calculation of circulation loop of fuel particles with respect to boilers with circulating fluidized bed (CFB) and systems with interconnected reactors with fluidized bed (FB) and CFB. New dependences for the connection between the fluidizing agent flow (air, gas, and steam) and performance of reactors and for the whole system (solids flow rate, furnace and cyclone pressure drops, and bed level in the riser) are important elements of this method. Experimental studies of hydrodynamics of circulation loops on the aerodynamic unit have been conducted. Experimental values of pressure drop of the horizontal part of the L-valve, which satisfy the calculated dependence, have been obtained.

  17. Method for using fast fluidized bed dry bottom coal gasification

    Science.gov (United States)

    Snell, George J.; Kydd, Paul H.

    1983-01-01

    Carbonaceous solid material such as coal is gasified in a fast fluidized bed gasification system utilizing dual fluidized beds of hot char. The coal in particulate form is introduced along with oxygen-containing gas and steam into the fast fluidized bed gasification zone of a gasifier assembly wherein the upward superficial gas velocity exceeds about 5.0 ft/sec and temperature is 1500.degree.-1850.degree. F. The resulting effluent gas and substantial char are passed through a primary cyclone separator, from which char solids are returned to the fluidized bed. Gas from the primary cyclone separator is passed to a secondary cyclone separator, from which remaining fine char solids are returned through an injection nozzle together with additional steam and oxygen-containing gas to an oxidation zone located at the bottom of the gasifier, wherein the upward gas velocity ranges from about 3-15 ft/sec and is maintained at 1600.degree.-200.degree. F. temperature. This gasification arrangement provides for increased utilization of the secondary char material to produce higher overall carbon conversion and product yields in the process.

  18. Fluidization of potato starch in a stirred vibrating fluidized bed

    NARCIS (Netherlands)

    Kuipers, N.J M; Stamhuis, Eize; Beenackers, A.A C M

    1996-01-01

    A novel gas-solid reactor for cohesive C-powders such as potato starch is introduced, designed and characterized, the so-called stirred vibrating fluidized bed. The effects of a sinusoidal vibration of the gas distributor and/or stirring of the bed are investigated. The fluidization index, bed expan

  19. Particle transport in fluidized beds : experiments and stochastic models

    NARCIS (Netherlands)

    Dechsiri, Chutima

    2004-01-01

    Fluidization is a process in which solids are caused to behave like fluid by blowing gas or liquid upwards through the solid-filled reactor. The behavior of a bed of particles within the reactor during the process is very complex and difficult to predict. To make sure that a fluidized bed reactor is

  20. Propylene polymerization in a circulating slugging fluidized bed reactor

    NARCIS (Netherlands)

    Putten, van Inge Cornelia

    2004-01-01

    The work presented in this thesis is concerned with research on the riser of a circulating fluidized bed system for olefin polymerization. In the riser section, fluidization takes place in the transporting slugging mode and polymer particles are produced in the riser in a non-isothermal way. Propert

  1. Agglomeration in a fluidized bed using multiple jet streams

    Energy Technology Data Exchange (ETDEWEB)

    Rehmat, A.; Abbasian, J. (Institute of Gas Technology, Chicago, IL (United States)); Kothari, M.; Hariri, H.; Arastoopour, H. (Illinois Inst. of Tech., Chicago, IL (United States))

    1992-01-01

    Tests were conducted to determine the overall temperature distribution, temperature in the vicinity of the jets, and the rate of agglomeration in a fluidized bed containing multiple jet streams. Agglomeration of ash during coal gasification increases carbon utilization efficiency considerably. The agglomeration requires a fluidized-bed reactor with a specially designed distributor equipped with a jet to yield a hot zone confined within the bed. The rate of agglomeration depends upon the size and the intensity of the zone. This rate, and hence the unit capacity, could be increased by adding multiple jets to the distributor. The purpose of this study was to verify this phenomenon. The temperature distribution inside the agglomerating fluidized-bed reactor with a single jet was studied by Hariri et al. Various parameters were involved in agglomeration phenomena -- bed material, fluidization velocity, bed temperature, jet velocity, jet temperature, bed geometry, and distributor geometry. Controlled agglomerates were produced in the fluidized bed when a sloped gas distributor consisting of a central jet and a porous plate was used. Gas at temperatures above the melting temperature of a bed material was introduced into the jet and gas at temperatures below the softening temperature was introduced into the distributor. The rate of agglomerate formation was significantly influenced by an increase in either jet air or auxiliary (grid) air temperature. The extent of agglomeration also depended strongly upon the volume of the hot zone confined within the isotherms with temperatures higher than the melting point of the bed material.

  2. Agglomeration in a fluidized bed using multiple jet streams

    Energy Technology Data Exchange (ETDEWEB)

    Rehmat, A.; Abbasian, J. [Institute of Gas Technology, Chicago, IL (United States); Kothari, M.; Hariri, H.; Arastoopour, H. [Illinois Inst. of Tech., Chicago, IL (United States)

    1992-12-31

    Tests were conducted to determine the overall temperature distribution, temperature in the vicinity of the jets, and the rate of agglomeration in a fluidized bed containing multiple jet streams. Agglomeration of ash during coal gasification increases carbon utilization efficiency considerably. The agglomeration requires a fluidized-bed reactor with a specially designed distributor equipped with a jet to yield a hot zone confined within the bed. The rate of agglomeration depends upon the size and the intensity of the zone. This rate, and hence the unit capacity, could be increased by adding multiple jets to the distributor. The purpose of this study was to verify this phenomenon. The temperature distribution inside the agglomerating fluidized-bed reactor with a single jet was studied by Hariri et al. Various parameters were involved in agglomeration phenomena -- bed material, fluidization velocity, bed temperature, jet velocity, jet temperature, bed geometry, and distributor geometry. Controlled agglomerates were produced in the fluidized bed when a sloped gas distributor consisting of a central jet and a porous plate was used. Gas at temperatures above the melting temperature of a bed material was introduced into the jet and gas at temperatures below the softening temperature was introduced into the distributor. The rate of agglomerate formation was significantly influenced by an increase in either jet air or auxiliary (grid) air temperature. The extent of agglomeration also depended strongly upon the volume of the hot zone confined within the isotherms with temperatures higher than the melting point of the bed material.

  3. The porosity in a fluidized bed heat transfer model

    NARCIS (Netherlands)

    Visser, G.; Valk, M.

    1993-01-01

    A mathematical model of heat transfer between a fluidized bed and an immersed surface and a model of gas flow and porosity, both recently published, were combined and further modified in the area of low velocities where the particle convective component of heat transfer is low or neglectable. Experi

  4. Acoustic monitoring of a fluidized bed coating process

    DEFF Research Database (Denmark)

    Naelapaa, Kaisa; Veski, Peep; Pedersen, Joan G.;

    2007-01-01

      The aim of the study was to investigate the potential of acoustic monitoring of a production scale fluidized bed coating process. The correlation between sensor signals and the estimated amount of film applied and percentage release, respectively, were investigated in coating potassium chloride...

  5. Single-particle behaviour in circulating fluidized beds

    DEFF Research Database (Denmark)

    Weinell, Claus Erik; Dam-Johansen, Kim; Johnsson, Jan Erik

    1997-01-01

    This paper describes an experimental investigation of single-particle behaviour in a cold pilot-scale model of a circulating fluidized bed combustor (CFBC). In the system, sand is recirculated by means of air. Pressure measurements along the riser are used to determine the suspension density...

  6. Mechanism of film formation during granules capsulation in fluidized bed

    OpenAIRE

    Ostroha, Ruslan; Yukhymenko, Mykola

    2013-01-01

    It is proposed to perform granules capsulation process in the device of fluidized bed. Analysis of different approaches to mathematical description of granules growth kinetics was made. Equation of size determination of received granules in the device is proposed including granules growth rate and changes of density of granules distribution according to sizes in film forming process.

  7. DESIGN AND APPLICATION OF FLUIDIZED BED PHOTOCATALYTIC REACTOR

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Photocatalytic degradation of organic pollutant is a new and potential method to transform it to harmless inorganic material, such as CO2 and H2O. So far, most of photocatalytic reactors were cylinder or tabulate photoreactor. The relevant photocatalyst was TiO2 nanometer powder. Although a few investigators had aimed their research field to fluidized bed reactor, their reaction systems were of biphase, such as solid-liquid or solid-gas. Few people focused their research on the triphasic fluidized bed photocatalytic reactor[1]. Compared with traditional photoreactors, a triphasic fluidized bed photoreactor has more advantages[2]: (1) The solid photocatalyst can be separated easily. (2) Its configuration meets the requirement of higher surface area-to-volume ratio of photocatalytic, which is much lower in a fixed bed or a plate photoreactor. (3) The UV light can be used more efficiently. (4) The mass transfer conditions can be controlled and improved easily. (5) It suited to pilot-scale or large-scale operations. For the UV light penetration and photon efficiency should be considered, the photocatalytic reactor differed greatly from a typical fluidized bed reactor.

  8. Desulfurization of hot coal gas in fluidized bed with regenerable zinc titanate sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Mojtahedi, W.; Salo, K.; Abbasian, J. (Enviropower Inc., Espoo (Finland))

    1994-01-01

    Integrated gasification combined cycle (IGCC) power generation processes are considered to be among the most attractive technologies for the 21st century. In such processes, solid fuels such as coal are gasified at pressure and the fuel gas is cleaned and combusted in the gas turbine. The gas cleanup is necessary not only for the protection of the gas turbine hardware, but also to comply with environmental regulations. In the so-called 'simplified' IGCC process, the fuel gas is cleaned at high temperature and pressure to improve the overall cycle efficiency. The hot gas cleanup system includes a high-temperature, high-pressure desulfurization unit and particulate removal system. The former comprises two fluidized bed reactors utilizing regenerable zinc titanate sorbents capable of removing the sulfur gases (primarily H[sub 2]S) to below 50 ppmv. The latter employs rigid ceramic filter elements operating at up to 700[degree]C and 20 bar and is capable of reducing the 'fines' concentration to an acceptable level for a gas turbine. Novel regenerable zinc titanate sorbents suitable for fluidized-bed application have been tested. The sulfur capture and attrition characteristics of these sorbents have been evaluated in extensive testing in a bench-scale fluidized-bed reactor operating at high pressure and temperature conditions expected in IGCC operation. Two different gas mixtures representing air-blown gasifier exit gas with and without in-situ desulfurization with Ca-based sorbents have been used. H[sub 2]S removal efficiencies of higher than 99% at acceptable levels of sorbent conversion have been achieved in all these experiments with minimal sorbent deterioration. 4 refs., 7 figs., 1 tab.

  9. Description of emission control using fluidized-bed, heat-exchange technology

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, G.J.; Grogan, P.J.

    1980-06-01

    Environmental effects of fluidized-bed, waste-heat recovery technology are identified. The report focuses on a particular configuration of fluidized-bed, heat-exchange technology for a hypothetical industrial application. The application is a lead smelter where a fluidized-bed, waste-heat boiler (FBWHB) is used to control environmental pollutants and to produce steam for process use. Basic thermodynamic and kinetic information for the major sulfur dioxide (SO/sub 2/) and NO/sub x/ removal processes is presented and their application to fluidized-bed, waste heat recovery technology is discussed. Particulate control in fluidized-bed heat exchangers is also discussed.

  10. Investigation of ash deposition in a pilot-scale fluidized bed combustor co-firing biomass with lignite

    Energy Technology Data Exchange (ETDEWEB)

    Gogebakan, Z.; Gogebakan, Y.; Selcuk, N.; Seliuk, E. [Middle East Technical University, Ankara (Turkey). Dept. of Chemical Engineering

    2009-01-15

    This study presents the results from investigation of ash deposition characteristics of a high ash and sulfur content lignite co-fired with three types of biomass (olive residue, 49 wt%; hazelnut shell, 42 wt%; and cotton residue, 41 wt%) in 0.3 MWt Middle East Technical University (METU) Atmospheric Bubbling Fluidized Bed Combustion (ABFBC) Test Rig. Deposit samples were collected on all air-cooled probe at a temperature of 500{degree}C. Samples were analyzed by SEM/EDX and XRD methods. The results reveal that co-firing lignite with olive residue, hazelnut shell and cotton residue show low deposition rates. High concentrations of silicon, calcium, sulfur, iron, and aluminum were found in deposit samples. No chlorine was detected in deposits. Calcium sulfate and potassium sulfate were detected as major and minor components of the deposits, respectively. High sulfur and alumina-silicate content of lignite resulted in formation of alkali sulfates instead of alkali chlorides. Therefore, fuel blends under consideration can be denoted to have low-fouling propensity.

  11. Investigation of ash deposition in a pilot-scale fluidized bed combustor co-firing biomass with lignite.

    Science.gov (United States)

    Gogebakan, Zuhal; Gogebakan, Yusuf; Selçuk, Nevin; Selçuk, Ekrem

    2009-01-01

    This study presents the results from investigation of ash deposition characteristics of a high ash and sulfur content lignite co-fired with three types of biomass (olive residue, 49 wt%; hazelnut shell, 42 wt%; and cotton residue, 41 wt%) in 0.3 MW(t) Middle East Technical University (METU) Atmospheric Bubbling Fluidized Bed Combustion (ABFBC) Test Rig. Deposit samples were collected on an air-cooled probe at a temperature of 500 degrees C. Samples were analyzed by SEM/EDX and XRD methods. The results reveal that co-firing lignite with olive residue, hazelnut shell and cotton residue show low deposition rates. High concentrations of silicon, calcium, sulfur, iron, and aluminum were found in deposit samples. No chlorine was detected in deposits. Calcium sulfate and potassium sulfate were detected as major and minor components of the deposits, respectively. High sulfur and alumina-silicate content of lignite resulted in formation of alkali sulfates instead of alkali chlorides. Therefore, fuel blends under consideration can be denoted to have low-fouling propensity.

  12. Research on coal staged conversion poly-generation system based on fluidized bed

    Institute of Scientific and Technical Information of China (English)

    Mingjiang Ni; Chao Li; Mengxiang Fang; Qinhui Wang; Zhongyang Luo; Kefa Cen

    2014-01-01

    A new coal staged conversion poly-generation system combined coal combustion and pyrolysis has been developed for clean and high efficient utilization of coal. Coal is the first pyrolysed in a fluidized pyrolyzer. The pyrolysis gas is then purified and used for chemical product or liquid fuel production. Tar is collected during purification and can be processed to extract high value product and to make liquid fuels by hydro-refining. Semi-coke from the pyrolysis reactor is burned in a circulating fluidized bed (CFB) combustor for heat or power generation. The system can realize coal multi-product generation and has a great potential to increase coal utilization value. A 1 MW poly-generation system pilot plant and a 12 MW CFB gas, tar, heat and power poly-generation system was erected. The experimental study focused on the two fluidized bed operation and characterization of gas, tar and char yields and compositions. The results showed that the system could operate stable, and produce about 0.12 m3/kg gas with 22 MJ/m3 heating value and about 10 wt%tar when using Huainan bituminous coal under pyrolysis temperature between 500 and 600 ?C. The produced gases were mainly H2, CH4, CO, CO2, C2H4, C2H6, C3H6 and C3H8. The CFB combustor can burn semi-coke steadily. The application prospect of the new system was discussed.

  13. The study of solid circulation rate in a compartmented fluidized bed gasifier (CFBG)

    Science.gov (United States)

    Wee, S. K.; Pok, Y. W.; Law, M. C.; Lee, V. C. C.

    2016-06-01

    Biomass waste has been abundantly available in Malaysia since the booming of palm oil industry. In order to tackle this issue, gasification is seen a promising technology to convert waste into energy. In view of the heat requirement for endothermic gasification reaction as well as the complex design and operation of multiple fluidized beds, compartmented fluidized bed gasifier (CFBG) with the combustor and the gasifier as separate compartments is proposed. As such, solid circulation rate (SCR) is one of the essential parameters for steady gasification and combustion to be realized in their respective compartments. Experimental and numerical studies (CFD) on the effect of static bed height, main bed aeration, riser aeration and v-valve aeration on SCR have been conducted in a cold- flow CFBG model with only river sand as the fluidizing medium. At lower operating range, the numerical simulations under-predict the SCR as compared to that of the experimental results. Also, it predicts slightly different trends over the range. On the other hand, at higher operating range, the numerical simulations are able to capture those trends as observed in the experimental results at the lower operating range. Overall, the numerical results compare reasonably well with that of the experimental works.

  14. Gasification techniques and fluidized-bed gasification of biomass - ways of optimising combustion and energy utilisation. Vergasungstechniken und Wirbelschichtvergasung von Biomasse - Wege zur Optimierung der Verbrennung und der Energienutzung

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, W. (Wamsler Umwelttechnik, Muenchen (Germany))

    1994-01-01

    To date, electricity can only be generated from biomass via steam production. There are no gasification techniques available for generating electricity from biomass at an industrial scale. The paper describes the current stage of development and two possible applications of a gasification technique whose attractivity lies not only in direct electricity production and utilisation of residual heat (block-type thermal power station). The gasification is also a way of compensating the drawbacks of solid fuel combustion compared with gas combustion. (orig./EF)

  15. Performance of a pilot-scale, steam-blown, pressurized fluidized bed biomass gasifier

    Science.gov (United States)

    Sweeney, Daniel Joseph

    With the discovery of vast fossil resources, and the subsequent development of the fossil fuel and petrochemical industry, the role of biomass-based products has declined. However, concerns about the finite and decreasing amount of fossil and mineral resources, in addition to health and climate impacts of fossil resource use, have elevated interest in innovative methods for converting renewable biomass resources into products that fit our modern lifestyle. Thermal conversion through gasification is an appealing method for utilizing biomass due to its operability using a wide variety of feedstocks at a wide range of scales, the product has a variety of uses (e.g., transportation fuel production, electricity production, chemicals synthesis), and in many cases, results in significantly lower greenhouse gas emissions. In spite of the advantages of gasification, several technical hurdles have hindered its commercial development. A number of studies have focused on laboratory-scale and atmospheric biomass gasification. However, few studies have reported on pilot-scale, woody biomass gasification under pressurized conditions. The purpose of this research is an assessment of the performance of a pilot-scale, steam-blown, pressurized fluidized bed biomass gasifier. The 200 kWth fluidized bed gasifier is capable of operation using solid feedstocks at feedrates up to 65 lb/hr, bed temperatures up to 1600°F, and pressures up to 8 atm. Gasifier performance was assessed under various temperatures, pressure, and feedstock (untreated woody biomass, dark and medium torrefied biomass) conditions by measuring product gas yield and composition, residue (e.g., tar and char) production, and mass and energy conversion efficiencies. Elevated temperature and pressure, and feedstock pretreatment were shown to have a significant influence on gasifier operability, tar production, carbon conversion, and process efficiency. High-pressure and temperature gasification of dark torrefied biomass

  16. An assessment of water and steam reactivation of a fluidized bed spent sorbent for enhanced SO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Montagnaro, F.; Salatino, P.; Scala, F.; Chirone, R. [University of Naples Federico 2, Naples (Italy)

    2008-01-15

    Hydration-induced reactivation of spent sorbents from fluidized bed combustion has long been proven as an attractive method to achieve better sorbent exploitation so as to positively affect waste disposal, consumption of natural resources and CO{sub 2} emission issues. The present study addresses the reactivation of the sulphur capture ability of fluidized bed (FB) spent sorbent particles by either water or steam hydration. Sorbent particles are subjected to different treatments including calcination, sulphation, hydration by either water or steam, dehydration and resulphation. Processing of sorbents is accomplished by the combined use of a bench scale (40 mm ID) fluidized bed reactor (calcination, sulphation, steam hydration, dehydration and resulphation) and of a thermostated water hydrator (water hydration). Reactivation of the limestone-based sorbent is characterized in terms of hydration degree and extent/pattern of particle sulphation with a further focus on the analysis of the reactivation-induced modifications of particle microstructural/chemical properties and propensity to undergo attrition and elutriation. The effectiveness of the two processes is analyzed, with consideration on the influence of process parameters on the ultimate degree of sorbent utilization. The feasibility of sorbent reactivation is discussed in the light of the effectiveness of sorbent reactivation and of the likely operational issues associated with either process.

  17. Particle-scale simulation of fluidized bed with immersed tubes

    Institute of Scientific and Technical Information of China (English)

    Yongzhi ZHAO; Maoqiang JIANG; Yi CHENG

    2008-01-01

    In order to simulate gas-solids flows with complex geometry,the boundary element method was incorporated into the implementation of a combined model of computational fluid dynamics and discrete element method.The resulting method was employed to simulate hydrodynamics in a fluidized bed with immersed tubes.The transient simulation results showed particle and bubble dynamics.The bubble coalescence and break-up behavior when passing the immersed tubes was successfully predicted.The gas-solid flow pattern in the fluidized bed is changed greatly because of the immersed tubes.As particles and gas are come in contact with the immersed tubes,the gas bubbles will be deformed.The collisions between particles arid tubes will make the tubes sur-rounded by air pockets most of the time and this is unfavorable for the heat transfer between particles and tubes.

  18. Circulating fluidized bed coal-saving optimization control method

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tengfei; Li, Dewei; Xi, Yugeng; Zhou, Wu [Shanghai Jiao Tong Univ., Shanghai (China). Dept. of Automation; Ministry of Education, Shanghai (China). Key Lab. of System Control and Information Processing; Yin, Debin [Shanghai Xinhua Control Technology (Group) Co., Ltd., Shanghai (China)

    2013-07-01

    The circulating fluidized bed boiler is widely used in thermal power plants. With the proposal of energy-saving emission reduction, how to reduce coal consumption while ensure the output steam quality at the same time has become an important topic. This paper combines the technology of RTO (real-time optimization) and zone control in DMC (dynamic matrix control) to achieve this goal. The proposed method adds the coal consumption into the objective function of DMC controller and the operation point of the boiler is permitted to change within a zone which can be set according to the actual requirements of the circulating fluidized bed boiler. The zone control in DMC provides the freedom to reduce the coal consumption and achieves the economic optimal target. Compared to the simple use of constrained DMC control, the proposed method is verified to be remarkable coal-saving by the case study of a 150 t/h boiler of a power plant in Sichuan.

  19. Torrefaction of sawdust in a fluidized bed reactor.

    Science.gov (United States)

    Li, Hui; Liu, Xinhua; Legros, Robert; Bi, Xiaotao T; Lim, C J; Sokhansanj, Shahab

    2012-01-01

    In the present work, stable fluidization of sawdust was achieved in a bench fluidized bed with an inclined orifice distributor without inert bed materials. A solids circulation pattern was established in the bed without the presence of slugging and channeling. The effects of treatment severity and weight loss on the solid product properties were identified. The decomposition of hemicelluloses was found to be responsible for the significant changes of chemical, physical and mechanical properties of the torrefied sawdust, including energy content, particle size distribution and moisture absorption capacity. The hydrophobicity of the torrefied sawdust was improved over the raw sawdust with a reduction of around 40 wt.% in saturated water uptake rate, and enhanced with increasing the treatment severity due to the decomposition of hemicelluloses which are rich in hydroxyl groups. The results in this study provided the basis for torrefaction in fluidized bed reactors.

  20. PRESSURE FLUCTUATIONS IN GAS-SOLIDS FLUIDIZED BEDS

    Institute of Scientific and Technical Information of China (English)

    Hsiaotao Bi; Aihua Chen

    2003-01-01

    Pressure fluctuation data measured in a series of fluidized beds with diameters of 0.05, 0.1, 0.29, 0.60 and 1.56 m showed that the maximum amplitude or standard deviation increased with increasing the superficial gas velocity and static bed height for relatively shallow beds and became insensitive to the increase in static bed height in relatively deep beds. The amplitude appeared to be less dependent on the measurement location in the dense bed. Predictions based on bubble passage, bubble eruption at the upper bed surface and bed oscillation all failed to explain all observed trends and underestimated the amplitude of pressure fluctuations, suggesting that the global pressure fluctuations in gas-solids bubbling fluidized beds are the superposition of local pressure variations, bed oscillations and pressure waves generated from the bubble formation in the distributor region, bubble coalescence during their rise and bubble eruption at the upper bed surface.

  1. Experiments and Modelling of Coal Pyrolysis under Fluidized Bed Conditions

    Institute of Scientific and Technical Information of China (English)

    ZhangYongzhe; XuXiangdong; 等

    1999-01-01

    The pyrolysis behavior of two Chinese coals has been investigated in a laboratory-scale bubbling fluidized bed system in Siegen University,Germany,Experimental equipment and procedure are introduced.The amounts of pyrolysis species of each coal were measured,calcuated and compared.A new method was presented to determine the needed parameters in FG-DVC model with the experimental results instead of other much more complicated experiments.

  2. Fluidized bed control system based on inverse system method

    Institute of Scientific and Technical Information of China (English)

    SONG Fu-hua; LI Ping

    2005-01-01

    The invertible of the Large Air Dense Medium Fluidized Bed (ADMFB) were studied by introducing the concept of the inverse system theory of nonlinear systems.Then the ADMFB, which was a multivariable, nonlinear and coupled strongly system,was decoupled into independent SISO pseudo-linear subsystems. Linear controllers were designed for each of subsystems based on linear systems theory. The practice output proves that this method improves the stability of the ADMFB obviously.

  3. Gasification of wood in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, L.C. de; Marti, T.; Frankenhaeuser, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    A first series of gasification experiments with our fluidized bed gasifier was performed using clean sawdust as fuel. The installation and the analytical systems were tested in a parametric study in which gasification temperature and equivalence ratio were varied. The data acquired will serve to establish the differences between the gasification of clean wood and the gasification of Altholz (scrapwood) and wood/plastics mixtures. (author) 1 fig., 3 tabs., 5 refs.

  4. Spectral methods applied to fluidized bed combustors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Christofides, N.J.; Junk, K.W.; Raines, T.S.; Thiede, T.D.

    1996-08-01

    The objective of this project was to develop methods for characterizing fuels and sorbents from time-series data obtained during transient operation of fluidized bed boilers. These methods aimed at determining time constants for devolatilization and char burnout using carbon dioxide (CO{sub 2}) profiles and from time constants for the calcination and sulfation processes using CO{sub 2} and sulfur dioxide (SO{sub 2}) profiles.

  5. Anaerobic degradation of linear alkylbenzene sulfonate in fluidized bed reactor

    OpenAIRE

    2010-01-01

    An anaerobic fluidized bed reactor was used to assess the degradation of the surfactant linear alkylbenzene sulfonate (LAS). The reactor was inoculated with sludge from an UASB reactor treating swine wastewater and was fed with a synthetic substrate supplemented with LAS. Sand was used as support material for biomass immobilization. The reactor was kept in a controlled temperature chamber (30±1 ºC) and operated with a hydraulic retention time (HRT) of 18 h. The LAS concentration was gradually...

  6. The Instituto de Investigaciones Electricas fluidized bed combustor; El combustor de lecho fluidizado del Instituto de Investigaciones Electricas

    Energy Technology Data Exchange (ETDEWEB)

    Milan Foressi, Julio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1991-12-31

    After synthesizing the most important aspects of the combustion technology in fluidized bed, the experimental combustor developed at the Instituto de Investigaciones Electricas (IIE) is described, as well as the test results of the experiences carried out with coal from Rio Escondido, Coahuila. [Espanol] Tras sintetizar los aspectos mas importantes de la tecnologia de combustion en lecho fluidizado, se describe el combustor experimental desarrollado en el Instituto de Investigaciones Electricas (IIE), asi como los resultados de las experiencias realizadas con carbon proveniente de Rio Escondido, Coahuila.

  7. The heat transfer mechanisms in fluidized beds; Laemmoensiirtomekanismit leijukerroksessa

    Energy Technology Data Exchange (ETDEWEB)

    Fogelholm, C.J.; Blomster, A.M.; Kojola, H. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Energy Technology and Environmental Protection

    1997-10-01

    The goal of the research project is to improve the accuracy of the heat transfer correlation in circulating fluidized beds and to define how the heat transfer is distributed in radiation and convection in the different parts of the fluidized bed. This will be carried out by studying the behaviour and the heat transfer of the fluidized bed in the boundary layer near the wall. During the project the concentration and the velocity of the sand particles are measured. The particle concentration and the particle velocity are measured by an image analysis system. A video camera and a Super VHS recorder are used to capture live images from the bed. The images are digitized and stored on a PC. The measured particle concentration was at highest slightly over 20 % on the straight wall. As expected, the velocity of the fluidizing gas had the most important role on the particle concentration. The experimental studies of the particle velocity were started last autumn 1996. The velocities of the particles were measured by using a multiple exposure technique. Afterwards the images captured were analyzed by performing a Fourier transform analysis. So far the results have been encouraging and the analyzing work will be ended this spring. (orig.)

  8. Erosion of heat exchanger tubes in fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, E.K.; Flemmer, R.L.C.

    1991-01-01

    This final report describes the activities of the 3-year project entitled Erosion of Heat Exchanger Tubes In Fluidized Beds.'' which was completed at the end of 1990. Project accomplishments include the collection of a substantial body of wear data In a 24in. [times] 24in. fluidized bed, comparative wear results In a 6in. [times] 6in. fluidized bed, the development of a dragometer and the collection of a comprehensive set of drag force data in the 24in. [times] 24in. bed, Fast Fourier Transform (FFT) analysis of bubble probe data to establish dominant bubble frequencies in the 24in. [times] 24in. bed, the use of a heat flux gauge for measurement of heat transfer coefficients in the 24in. [times] 24in. bed and the modeling of the tube wear in the 24in. [times] 24in. bed. Analysis of the wear data from the 24in. square bed indicates that tube wear increases with increase in superficial velocity, and with increase in tube height. The latter effect is a result of the tubes higher up in the bed seeing greater movement of dense phase than tubes lower down In the bed. In addition, tube wear was found to decrease with increase in particle size, for constant superficial velocity. Three models of tube wear were formulated and provided acceptable prediction of wear when compared with the experimental data.

  9. Operation of a fluidized-bed denitrification bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, P.A.

    1978-11-15

    In the fluidized-bed denitrification process developed, bacteria are allowed to grow and attach themselves to 0.25 to 0.60-mm-OD coal particles, and nitrate-containing solution is pumped up through the column at a velocity sufficient to fluidize the bacteria-coated coal particles. The denitrification bacteria convert the nitrate ions to nitrogen gas. A 10-cm-ID column has been operated by Oak Ridge Y-12 Plant personnel to test the scale-up and operational characteristics of the fluidized bed process. The reactor consists of a tapered bottom section for flow distribution, several straight 10-cm-ID cylindrical sections, and a tapered top section for solid/liquid disengaging. Increasing the diameter of the reactor by a factor of two did not cause any decrease in reactor performance. The fluidized-bed reactor is characterized by short-residence-time requirements (about 2 minutes per meter of height), and by high, but variable, denitrification rates (2 to 35 g NO/sub 3//sup -/-N/dm/sup 3//day). The reactor is best suited for relatively low-concentration nitrate wastes (<1 wt% NO/sub 3//sup -/). The economics of using the reactor for high-concentration wastes (>20 wt% NO/sub 3//sup -/) is less favorable, but still may be competitive with other reactor types. 9 figs, 2 tables.

  10. The heat transfer mechanisms in fluidized beds; Laemmoensiirtomekanismit leijukerroksessa

    Energy Technology Data Exchange (ETDEWEB)

    Fogelholm, C.J.; Blomster, A.M.; Kojola, H. [Helsinki Univ. of Technology, Espoo (Finland)

    1996-12-01

    The goal of the research project is to improve the accuracy of the heat transfer correlation in circulating fluidized beds and to define how the heat transfer is distributed in radiation and convection in the different parts of the fluidized bed. This will be carried out by studying the behaviour and heat transfer of the fluidized bed in the boundary layer near the wall. The total and radiative heat transfer as well as the particle concentration will be measured. Based on the data a correlation will be created. Two different measurement systems are used. The particle concentration is measured by a image-analysis system. A video camera and a Super VHS recorder are used to capture live images from the bed. The images are digitized and stored on a PC. The system has been used in previous research projects at our laboratory. In earlier projects all measurements have been carried out in cold environments. In this project the system will be modified for hot environments. The radiative heat transfer is measured by a radiative heat transfer probe connected to a PC via an A/D converter. The probe consists of a heat flow detector which is isolated from the bed by a sapphire window so that only the radiative part of the heat transfer is detected. The probe will be calibrated in a black body oven so that the effect of the conduction and the sapphire window can be separated. (author)

  11. Influence of rolling friction on single spout fluidized bed simulation

    Institute of Scientific and Technical Information of China (English)

    Christoph Goniva; Christoph Kloss; Niels G. Deen; Johannes A. M. Kuipers; Stefan Pirker

    2012-01-01

    In this paper we study the effect of rolling friction on the dynamics in a single spout fluidized bed using Discrete Element Method (DEM) coupled to Computational Fluid Dynamics (CFD).In a first step we neglect rolling friction and show that the results delivered by the open source CFD-DEM framework applied in this study agree with previous simulations documented in literature.In a second step we include a rolling friction sub-model in order to investigate the effect of particle non-sphericity.The influence of particle-particle as well as particle-wall rolling friction on the flow in single spout fluidized bed is studied separately.Adequate rolling friction model parameters are obtained using first principle DEM simulations and data from literature.Finally,we demonstrate the importance of correct modelling of rolling friction for coupled CFD-DEM simulations of spout fluidized beds.We show that simulation results can be improved significantly when applying a rolling friction model,and that experimental data from literature obtained with Positron Emission Particle Tracking (PEPT) technique can be satisfactorily reproduced.

  12. Computational and Experimental Study of Spherocylinder Particles in Fluidized Beds

    Science.gov (United States)

    Mahajan, Vinay; Kuipers, Hans; Padding, Johan; Multiphase Reactors Group, TU Eindhoven Team

    2016-11-01

    Non-spherical particle flows are often encountered in fluidized process equipment. A coupled computational fluid dynamics (CFD) and discrete element method(DEM) approach has been extensively applied in recent years to study these flows at the particle scale. However, most of these studies focus on spherical particles while in reality, the constituent particles are seldom spherical. Particle shape can significantly affect the hydrodynamical response in fluidized beds. The drag force acting on a non-spherical particle can vary considerably with particle shape, orientation of the particle, Reynolds number and packing fraction. In this work, a CFD-DEM approach has been extended to model a lab scale quasi-2D fluidized bed of spherocylinder (rod-like) particles. These particles can be classified as Geldart D particles and have an aspect ratio of 4. Numerical results for the pressure drop, bed height and solid circulation patterns are compared with results from a complementary laboratory experiment. We also present results on particle orientations close to the confining walls, which provides interesting insight regarding the particle alignment. Thus the capability of the CFD-DEM approach to efficiently account for global bed dynamics in fluidized bed of rod-like particle is demonstrated. This research work is funded by ERC Grant.

  13. Water softening by induced crystallization in fluidized bed.

    Science.gov (United States)

    Chen, Yuefang; Fan, Rong; An, Danfeng; Cheng, Yujie; Tan, Hazel

    2016-12-01

    Fluidized bed and induced crystallization technology were combined to design a new type of induced crystallization fluidized bed reactor. The added particulate matter served as crystal nucleus to induce crystallization so that the insoluble material, which was in a saturated state, could precipitate on its surface. In this study, by filling the fluidized bed with quartz sand and by adjusting water pH, precipitation of calcium carbonate was induced on the surface of quartz sand, and the removal of water hardness was achieved. With a reactor influent flow of 60L/hr, a fixed-bed height of 0.5m, pH value of 9.5, quartz sand nuclear diameter of 0.2-0.4mm, and a reflux ratio of 60%, the effluent concentration of calcium hardness was reduced to 60mg/L and 86.6% removal efficiency was achieved. The resulting effluent reached the quality standard set for circulating cooling water. Majority of the material on the surface of quartz sand was calculated to be calcium carbonate based on energy spectrum analysis and moisture content was around 15.994%. With the low moisture content, dewatering treatment is no longer required and this results to cost savings on total water treatment process.

  14. Numerical Study of Pyrolysis of Biomass in Fluidized Beds

    Science.gov (United States)

    Bellan, Josette; Lathouwers, Danny

    2003-01-01

    A report presents a numerical-simulation study of pyrolysis of biomass in fluidized-bed reactors, performed by use of the mathematical model described in Model of Fluidized Bed Containing Reacting Solids and Gases (NPO-30163), which appears elsewhere in this issue of NASA Tech Briefs. The purpose of the study was to investigate the effect of various operating conditions on the efficiency of production of condensable tar from biomass. The numerical results indicate that for a fixed particle size, the fluidizing-gas temperature is the foremost parameter that affects the tar yield. For the range of fluidizing-gas temperatures investigated, and under the assumption that the pyrolysis rate exceeds the feed rate, the optimum steady-state tar collection was found to occur at 750 K. In cases in which the assumption was not valid, the optimum temperature for tar collection was found to be only slightly higher. Scaling up of the reactor was found to exert a small negative effect on tar collection at the optimal operating temperature. It is also found that slightly better scaling is obtained by use of shallower fluidized beds with greater fluidization velocities.

  15. Carbon monoxide formation and emissions during waste incineration in a grate-circulating fluidized bed incinerator.

    Science.gov (United States)

    Yanguo Zhang; Qinghai Li; Aihong Meng; Changhe Chen

    2011-03-01

    This paper presents an experimental study of carbon monoxide (CO) formation and emissions in both grate drying bed incinerators and circulating fluidized bed (CFB) incinerators to simulate the two key parts of a combined grate and circulating fluidized bed (grate-CFB) incinerator in order to investigate pollutant emission control in municipal solid waste (MSW) combustion that occurs in a grate-CFB incinerator utilizing a patented technology. Polyvinyl chloride, polystyrene, kitchen waste, paper, textile, etc. were chosen to simulate the MSW. The effects of temperature, air staging, and moisture on the CO formation and emissions were analysed for both the grate drying bed combustion and the CFB combustion. In the grate drying bed, the low temperatures increased the carbon to CO conversion rate which also increased slightly with the moisture content. Industrial field tests in a commercial grate-CFB incinerator showed that the CO concentration at the grate drying bed exit was very high and decreased along furnace height. The carbon to CO conversion rates were 0-20% for the grate drying bed which exceeded the range of 0.8-16% measured in a grate drying bed exit of the commercial grate-CFB incinerator tests. In the commercial grate-CFB incinerator tests, at excess air ratios ranging from 1.5-2.0 or more, the CO emissions decreased to a low and stable level, whose corresponding carbon to CO conversion rates were far lower than 0-10%. The low CO emission is one of the factors enabling the polychlorinated dibenzodioxin/polychlorinated dibenzofuran emissions to satisfy the Chinese national regulations.

  16. Fluidized-bed bioreactor system for the microbial solubilization of coal

    Science.gov (United States)

    Scott, C.D.; Strandberg, G.W.

    1987-09-14

    A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor. 2 figs.

  17. Fluidized-bed bioreactor process for the microbial solubiliztion of coal

    Science.gov (United States)

    Scott, Charles D.; Strandberg, Gerald W.

    1989-01-01

    A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor.

  18. CuO/Al2O3作为载氧剂的流化床化学链燃烧数值模拟%Numerical Simulation of Fluidized Bed Chemical Looping Combustion Using CuO/Al2O3 as Oxygen Carrier

    Institute of Scientific and Technical Information of China (English)

    李俊; 郭雪岩

    2012-01-01

    Based on the Eulerian-Eulerian bi-fluid model and the kinetic model of the gas-solid heterogeneous chemical reactions,by adding the UDF (user defined function) code into Fluent 6.3 flow solver to integrate the chemical reaction mechanism and heat source term, the gas-solid flow processes and chemical reactions of the chemical looping combustion in the fuel reactor-the spouted fluidized bed were modeled. The influences of methane gas inlet velocities on gas-solid flow feature,heat transfer and chemical reaction rates were analyzed. With an increasing methane inlet velocity, the gas and solids are found to be mixed more intensely and the uneven distribution of gas-solid, lower quality of fluidization,and non-uniform chemical reaction rates and temperature will take place due to the formation,collision and burst of the bubbles. It is also found that there are some spots of higher temperature in local regions, which may lead to particles agglomeration and lower efficiencies of methane combustion.%以欧拉-欧拉双流体模型和气固非均相化学反应动力学为基础,嵌入了气固化学反应速率方程和反应内热源项的UDF(自定义函数)程序,对化学链燃烧燃料反应器——鼓泡流化床内气固两相流动及化学反应过程进行了数值模拟,并分析了甲烷进气速度对床内气固两相流动、传热及化学反应速率的影响.结果表明:随着甲烷进气速度增加,床内气固混合更加剧烈,气泡的产生、碰撞和破碎使得气固分布不均,流化质量下降,导致反应器内化学反应速率以及温度分布不均,床内局部存在的高温区域将使颗粒温度过高而烧结,降低了甲烷燃烧效率.

  19. EFFECT OF VERTICAL BAFFLES ON PARTICLE MIXING AND DRYING IN FLUIDIZED BEDS OF GROUP D PARTICLES

    Institute of Scientific and Technical Information of China (English)

    Chung Lim Law; Siti Masrinda Tasirin; Wan Ramli Wan Daud; Derek Geldart

    2003-01-01

    This study reports the effect of vertical baffles on the group D powder mixing and drying characteristics in a batch fluidized bed dryer. Results obtained in this study showed that operating the fluidized bed dryer with vertical baffles gave better particle mixing. This is due to the fact that the vertical baffles acted to limit the growth of small bubbles into large bubbles and the small bubbles caused more vigorous mixing in the bed of particles before finally erupting at the bed surface. Thus, insertion of vertical baffles is a useful way to process group D particles in a fluidized bed, especially when the fluidized bed is large.

  20. Potential industrial applications for fluidized-bed waste heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D.; Lytton, M.; Rao, C.

    1979-12-01

    Information was developed on potential applications of Fluidized-Bed Waste Heat Recovery Systems (FWHRS) in US industries that will assist the DOE in their decision to plan and participate in a demonstration project of the FWHRS. The study included a review of the literature and personal contacts (via telephone) with industry personnel with the objective to identify a limited number of applications. Technical and economic assessments for specific applications were accomplished by developing generalized design, performance, and cost parameters that could be applied based on selected critical characteristics of each potential application of the FWHR system. Waste energy streams identified included flue gas and off-gas from boilers, furnaces, and kiln. Utilization of the waste energy recovered included electric power generation, preheating combustion air and boiler feedwater, and drying. A course of action is recommended to DOE regarding generic users for demonstration projects.

  1. Second law analysis of heat transfer surfaces in circulating fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Gungor, Afsin [Department of Mechanical Engineering, Faculty of Engineering and Architecture, Nigde University, 51100 Nigde (Turkey)

    2009-07-15

    The correct sizing of the heat transfer surfaces is important to ensure proper operation, load turndown, and optimization of circulating fluidized beds (CFBs). From this point of view, in this study, the thermodynamic second law analysis of heat transfer surfaces in CFBs is investigated theoretically in order to define the parameters that affect the system efficiency. Using a previously developed 2D CFB model which uses the particle-based approach and integrates and simultaneously predicts the hydrodynamics and combustion aspects, second law efficiency and entropy generation values are obtained at different height and volume ratios of the heat transfer surfaces for CFBs. Besides that, the influences of the water flow rates and heat exchanger tube diameters on the second law efficiency are investigated. Through this analysis, the dimensions, arrangement and type of the heat transfer surfaces which achieve maximum efficiency are obtained. (author)

  2. Modeling of reaction kinetics in bubbling fluidized bed biomass gasification reactor

    Energy Technology Data Exchange (ETDEWEB)

    Thapa, R.K.; Halvorsen, B.M. [Telemark University College, Kjolnes ring 56, P.O. Box 203, 3901 Porsgrunn (Norway); Pfeifer, C. [University of Natural Resources and Life Sciences, Vienna (Austria)

    2013-07-01

    Bubbling fluidized beds are widely used as biomass gasification reactors as at the biomass gasification plant in Gussing, Austria. The reactor in the plant is a dual circulating bubbling fluidized bed gasification reactor. The plant produces 2MW electricity and 4.5MW heat from the gasification of biomass. Wood chips as biomass and olivine particles as hot bed materials are fluidized with high temperature steam in the reactor. As a result, biomass undergoes endothermic chemical reaction to produce a mixture of combustible gases in addition to some carbon-dioxide (CO2). The combustible gases are mainly hydrogen (H2), carbon monoxide (CO) and methane (CH4). The gas is used to produce electricity and heat via utilization in a gas engine. Alternatively, the gas is further processed for gaseous or liquid fuels, but still on the process of development level. Composition and quality of the gas determine the efficiency of the reactor. A computational model has been developed for the study of reaction kinetics in the gasification rector. The simulation is performed using commercial software Barracuda virtual reactor, VR15. Eulerian-Lagrangian approach in coupling of gas-solid flow has been implemented. Fluid phase is treated with an Eulerian formulation. Discrete phase is treated with a Lagrangian formulation. Particle-particle and particle-wall interactions and inter-phase heat and mass transfer have been taken into account. Series of simulations have been performed to study model prediction of the gas composition. The composition is compared with data from the gasifier at the CHP plant in Güssing, Austria. The model prediction of the composition of gases has good agreements with the result of the operating plant.

  3. Modeling of reaction kinetics in bubbling fluidized bed biomass gasification reactor

    Directory of Open Access Journals (Sweden)

    R.K. Thapa, C. Pfeifer, B. M. Halvorsen

    2014-01-01

    Full Text Available Bubbling fluidized beds are widely used as biomass gasification reactors as at the biomass gasification plant in Güssing, Austria. The reactor in the plant is a dual circulating bubbling fluidized bed gasification reactor. The plant produces 2MW electricity and 4.5MW heat from the gasification of biomass. Wood chips as biomass and olivine particles as hot bed materials are fluidized with high temperature steam in the reactor. As a result, biomass undergoes endothermic chemical reaction to produce a mixture of combustible gases in addition to some carbon-dioxide (CO2. The combustible gases are mainly hydrogen (H2, carbon monoxide (CO and methane (CH4. The gas is used to produce electricity and heat via utilization in a gas engine. Alternatively, the gas is further processed for gaseous or liquid fuels, but still on the process of development level. Composition and quality of the gas determine the efficiency of the reactor. A computational model has been developed for the study of reaction kinetics in the gasification rector. The simulation is performed using commercial software Barracuda virtual reactor, VR15. Eulerian-Lagrangian approach in coupling of gas-solid flow has been implemented. Fluid phase is treated with an Eulerian formulation. Discrete phase is treated with a Lagrangian formulation. Particle-particle and particle-wall interactions and inter-phase heat and mass transfer have been taken into account. Series of simulations have been performed to study model prediction of the gas composition. The composition is compared with data from the gasifier at the CHP plant in Güssing, Austria. The model prediction of the composition of gases has good agreements with the result of the operating plant.

  4. Chemical looping reactor system design double loop circulating fluidized bed (DLCFB)

    Energy Technology Data Exchange (ETDEWEB)

    Bischi, Aldo

    2012-05-15

    Chemical looping combustion (CLC) is continuously gaining more importance among the carbon capture and storage (CCS) technologies. It is an unmixed combustion process which takes place in two steps. An effective way to realize CLC is to use two interconnected fluidized beds and a metallic powder circulating among them, acting as oxygen carrier. The metallic powder oxidizes at high temperature in one of the two reactors, the air reactor (AR). It reacts in a highly exothermic reaction with the oxygen of the injected fluidising air. Afterwards the particles are sent to the other reactor where the fuel is injected, the fuel reactor (FR). There, they transport heat and oxygen necessary for the reaction with the injected fuel to take place. At high temperatures, the particle's oxygen reacts with the fuel producing Co2 and steam, and the particles are ready to start the loop again. The overall reaction, the sum of the enthalpy changes of the oxygen carrier oxidation and reduction reactions, is the same as for the conventional combustion. Two are the key features, which make CLC promising both for costs and capture efficiency. First, the high inherent irreversibility of the conventional combustion is avoided because the energy is utilized stepwise. Second, the Co2 is intrinsically separated within the process; so there is in principle no need either of extra carbon capture devices or of expensive air separation units to produce oxygen for oxy-combustion. A lot of effort is taking place worldwide on the development of new chemical looping oxygen carrier particles, reactor systems and processes. The current work is focused on the reactor system: a new design is presented, for the construction of an atmospheric 150kWth prototype working with gaseous fuel and possibly with inexpensive oxygen carriers derived from industrial by-products or natural minerals. It consists of two circulating fluidized beds capable to operate in fast fluidization regime; this will increase the

  5. Two-stage combustion of coal in a pressurized fluidized bed combustor for use in gas turbine processes; Zweistufige Verbrennung von Kohlen in einer Druckwirbelschichtanlage fuer den Einsatz in Gasturbinenprozessen

    Energy Technology Data Exchange (ETDEWEB)

    Mieden, M.; Bonn, B.; Baumann, H.

    1996-12-31

    The power raising efficiencies of PFBC-processes depend on the temperature of the flue-gas at the entrance of gas-turbines. In order to rise efficiencies, hybrid combined cycles have been suggested in which the gas temperature increased e.g. by firing natural gas in an afterburner at the entrance of the turbine. Alternatively a fuel gas can be produced by gasifying coal in a carboniser or gasifier. This fuel gas can be used to heat up the flue gas of the PFBC to a temperature that ensures an optimum gas-turbine efficiency. A process has been examined at DMT that provides a fuel gas with high CO concentration by substoichiometric combustion of coal in a PFBC. In order to increase the gas temperature the fuel gas is mixed with oxygen in an afterburner and then burns spontaneously. The experiments showed that it was possible to reach a temperature of about 1300 C in the afterburner. As the laboratory scale PFBC plant is provided with flue gas recirculation, equilibrium calculations have been made to examine the feasibility of the process for operation with air. (orig.) [Deutsch] Fuer die Erhoehung des Wirkungsgrades von druckwirbelschichtgefeuerten Kombiprozessen durch die Temperaturerhoehung im Eingang der Gasturbine wurde ein neuartiges Verfahren mit extrem gestufter Verbrennung der Kohle untersucht. Durch unterstoechiometrische Verbrennung von Kohle in einem Druckwirbelschichtreaktor (p=5 bar; T=900 C) wird zunaechst ein stark CO-haltiges Gas erzeugt, das nach der Entstaubung durch Vermischung mit Sauerstoff in einer zweiten Stufe, die als Nachbrennkammer diente, ausgebrannt wurde. Dabei erhoehte sich die Temperatur des Rauchgases, und es wurden Temperaturen von ueber 1300 C erreicht. Bei Sauerstoffzahlen von minimal {lambda}=0,75 betrugen die CO-Konzentrationen des Schwachgases der ersten Stufe bis zu 14%. Der Sauerstoffmangel fuehrte dazu, dass auch unverbrannter Kohlenstoff aus der Druckwirbelschicht ausgetragen wurde und in die Nachbrennkammer gelangte. Bei den

  6. Experience gained from mastering practical use of the fluidized bed technology in boilers for industrial and municipal power systems

    Science.gov (United States)

    Shemyakin, V. N.; Karapetov, A. E.

    2012-06-01

    Experience gained from mastering practical use of the technology of low-temperature fluidized bed as applied to the firing of combustible shales, milled peat, and various wood wastes is generalized. The design characteristics of boilers and results from their tests are presented. Special attention is paid to formation of agglomerates from particles of bed material and slag deposits on the nonshielded surfaces of a furnace chamber, problems inherent in the given technology. Methods to control the formation of agglomerates and deposits are considered.

  7. Fluidized bed and method and system for gas component capture

    Energy Technology Data Exchange (ETDEWEB)

    Krutka, Holly; Wilson, Cody; Starns, Travis

    2016-05-31

    The present disclosure is directed to a process that allows dry sorbents to remove a target constituent, such as carbon dioxide (CO.sub.2), from a gas stream. A staged fluidized bed separator enables gas and sorbent to move in opposite directions. The sorbent is loaded with target constituent in the separator. It is then transferred to a regenerator where the target constituent is stripped. The temperature of the separator and regenerator are controlled. After it is removed from the regenerator, the sorbent is then transferred back to the separator.

  8. Standby cooling system for a fluidized bed boiler

    Science.gov (United States)

    Crispin, Larry G.; Weitzel, Paul S.

    1990-01-01

    A system for protecting components including the heat exchangers of a fluidized bed boiler against thermal mismatch. The system includes an injection tank containing an emergency supply of heated and pressurized feedwater. A heater is associated with the injection tank to maintain the temperature of the feedwater in the tank at or about the same temperature as that of the feedwater in the heat exchangers. A pressurized gas is supplied to the injection tank to cause feedwater to flow from the injection tank to the heat exchangers during thermal mismatch.

  9. Thermal energy storage systems using fluidized bed heat exchangers

    Science.gov (United States)

    Ramanathan, V.; Weast, T. E.; Ananth, K. P.

    1980-01-01

    The viability of using fluidized bed heat exchangers (FBHX) for thermal energy storage (TES) in applications with potential for waste heat recovery was investigated. Of the candidate applications screened, cement plant rotary kilns and steel plant electric arc furnaces were identified, via the chosen selection criteria, as having the best potential for successful use of FBHX/TES system. A computer model of the FBHX/TES systems was developed and the technical feasibility of the two selected applications was verified. Economic and tradeoff evaluations in progress for final optimization of the systems and selection of the most promising system for further concept validation are described.

  10. Temperature distribution and control in liquefied petroleum gas fluidized beds

    Institute of Scientific and Technical Information of China (English)

    Li Wang; Ping Wu; Yanping Zhang; Jing Yang; Lige Tong

    2004-01-01

    Temperature distribution and control have been investigated in a liquefied petroleum gas (LPG) fluidized bed with hollow corundum spheres (A12O3) of 0.867-1.212 mm in diameter at moderately high temperatures (800-1100℃). Experiments were carried out for the air consumption coefficient α in the range of 0.3 to 1.0 and the fluidization number N in the range of 1.3 to 3.0. Particle properties, initial bed height, α and N all affect temperature distribution in the bed. Bed temperature can be adjusted about 200℃ by combined the adjusting of α and N.

  11. Some hydrodynamic aspects of 3-phase inverse fluidized bed

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Hydrodynamics of 3-phase inverse fluidized bed is studied experimentally using low density particles for different liquid and gas velocities.The hydrodynamic characteristics studied include pressure drop, minimum liquid and gas fluidization velocities and phase holdups. The minimum liquid fluidization velocity determined using the bed pressure gradient, decreases with increase in gas velocity. The axial profiles of phase holdups shows that the liquid holdup increases along the bed height, whereas the solid holdup decreases down the bed. However, the gas holdup is almost uniform in the bed.

  12. Dynamical simulation of fluidized beds - hydrodynamically interacting granular particles

    CERN Document Server

    Ichiki, K; Ichiki, Kengo; Hayakawa, Hisao

    1995-01-01

    A numerical simulation of a gas-fluidized bed is performed without introduction of any empirical parameters. Realistic bubbles and slugs are observed in our simulation. It is found that the convective motion of particles is important for the bubbling phase and there is no convection in the slugging phase. From the simulation results, non-Gaussian distributions are found in the particle velocities and the relation between the deviation from Gaussian and the local density of particles is suggested. It is also shown that the power spectra of particle velocities obey power laws. A brief explanation on the relationship between the simulation results and the Kolmogorov scaling argument is discussed.

  13. HYDRODYNAMIC CHARACTERISTICS OF FLUIDIZED BEDS CONTAINING LARGE POLYDISPERSED PARTICLES

    Directory of Open Access Journals (Sweden)

    K. TANNOUS

    1998-03-01

    Full Text Available This paper presents a hydrodynamic study of fluidized beds containing large polydispersed particles (B and D categories of Geldart’s classification. The experiments have been carried out with particle samples characterized by the Rosin-Rammler-Sperling (RRS size distribution. The parameters analyzed in this study are the dispersion index and the average particle diameter obtained from the RRS size distribution model. Correlations to estimate the initial and complete fluidization velocities and the segregation velocity as a function of these two size distribution parameters have been established.

  14. Modeling of Sulfur Retention in Circulating Fluidized Bed Coal Combustors

    Institute of Scientific and Technical Information of China (English)

    乔锐; 吕俊复; 刘青; 吴学安; 岳光溪

    2001-01-01

    A comprehensive model for predicting the sulfur retention performance in circulating fluidized bedcombustors was developed which involves the different residence times, the wide particle size distribution andthe different forms of sulfur in the coal. In addition, the reductive decomposition of CaSO4 is highlighted. Thesimulation results from the model show that the sulfur contents, the bed temperature, the sorbent particle sizedistribution and the sorbent activity or the maximum conversion rate can significantly influence the sulfuretention performance in circulating fluidized bed (CFB) combustors.``

  15. Discrete element study of granulation in a spout-fluidized bed

    NARCIS (Netherlands)

    Link, J.M.; Godlieb, W.; Deen, N.G.; Kuipers, J.A.M.

    2007-01-01

    In this work a discrete element model (DEM) is presented for the description of the gas–liquid–solid flow in a spout-fluidized bed including all relevant phenomena for the study of granulation. The model is demonstrated for the case of a granulation process in a flat spout-fluidized bed, containing

  16. Grimethorpe experimental pressurized fluidized-bed combustor: in future energy concepts

    Energy Technology Data Exchange (ETDEWEB)

    Broadbent, D.B.

    1979-01-01

    The experimental pressurized fluidized bed combustor project at Grimethorpe, UK, is described. The design of the combustor, which is a pressure vessel containing a furnace, which contains the fluidized bed is discussed. Details of the process, the steam water circuit, the fuel system and method of feeding coal, ash removal during the process, the water treatment plant and plant control are given.

  17. Fluidized beds as turbulence promoters in the concentration of food liquids by reverse osmosis

    NARCIS (Netherlands)

    Boer, de R.; Zomerman, J.J.; Hiddink, J.; Aufderheyde, J.; Swaay, van W.P.M.; Smolders, C.A.

    1980-01-01

    Fluidized beds offer a potential improvement of reverse osmosis processes for food liquids, less fouling of the membrane, and reduced energy consumption. Our experiments were concerned with tubular systems in which fluidized beds of glass, steel, and lead beads were used. Glass beads appeared to be

  18. DETERMINATION OF MARGINALLY STABLE ZONE OF GAS-SOLID MAGNETICALLY FLUIDIZED BEDS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The void fluctuation of magnotically fluidized beds was analyzed and their maginally stable zone was determined. The analysis was based on the two-phase model of magnetically fluidized bed and wave theory. The marginally stable zone determined by this paper matches well with the experimental results.

  19. Measurements of gas velocity in the freeboard of a pressurized fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Verloop, W.C. [Lab. for Thermal Power Engineering, Dept. of Mechanical Engineering and Marine Technology, Univ. of Technology, Delft (Netherlands); Hagen, T.H.J.J. van der [Interfaculty Reactor Inst., Dept. of Reactor Physics, Univ. of Technology, Delft (Netherlands); Boersma, D. [Lab. for Thermal Power Engineering, Dept. of Mechanical Engineering and Marine Technology, Univ. of Technology, Delft (Netherlands); Hein, K.R.G. [Lab. for Thermal Power Engineering, Dept. of Mechanical Engineering and Marine Technology, Univ. of Technology, Delft (Netherlands)

    1992-12-31

    The processes in the freeboard of a fluidized bed combustor have an important impact on both the elutriation of fly ash particles and the emission of noxious gases. The main features have been studied for already several decades. In order to understand the phenomena more thoroughly, the details have to be studied. This paper presents the results of measurements of the gas velocity at different locations in the freeboard. Experiments were performed in the pressurized fluidized bed combustor of the Delft University of Technology, The Netherlands, at 8 bar and a freeboard temperature of 850 C. The measuring method used the temperature flucutations naturally present in the combustion process which were recorded by axially displaced thermocouples. By means of mathematical correlation of the recorded signals, the local gas velocity is calculated. The resulting radial velocity profiles of the upper part of the freeboard are very similar to one-phase turbulent pipe flow profiles. Deviations from the expected axial symmetrical velocity profile which were measured at the lowest level are described to the non-axial symmetrical bed behaviour. (orig.) [Deutsch] Die Vorgaenge im Freiraum ueber Wirbelbettverbrennungssysteme spielen eine bedeutende Rolle bei der Entstehung und der Minimierung von festen und gasfoermigen Emissionen. Obwohl in diesem Zusammenhang schon seit langem wesentlichste Kenngroessen des Freiraums Gegenstand von Untersuchungen sind, beduerfen Einzelheiten der Gas- und Partikelstroemung noch weiterhin detaillierter Erfassung. Hierzu werden Daten der Geschwindigkeitsverteilung benoetigt, deren Ermittlung mit konventionellen Messtechniken, insbesondere in Druckwirbelschichtfeuerungen, technisch problematisch ist. In dem Vortrag wird ueber eine Messmethode zur Geschwindigkeitsbestimmung berichtet, bei der feuerungsseitige Temperaturschwankungen ueber in Stroemungsrichtung versetzte Thermoelemente aufgenommen und mathematisch korreliert werden. Diese Methode wurde

  20. Enhanced Productivity of Chemical Processes Using Dense Fluidized Beds

    Energy Technology Data Exchange (ETDEWEB)

    Sibashis Banerjee; Alvin Chen; Rutton Patel; Dale Snider; Ken Williams; Timothy O' Hern; Paul Tortora

    2008-02-29

    The work detailed in this report addresses Enabling Technologies within Computational Technology by integrating a “breakthrough” particle-fluid computational technology into traditional Process Science and Engineering Technology. The work completed under this DOE project addresses five major development areas 1) gas chemistry in dense fluidized beds 2) thermal cracking of liquid film on solids producing gas products 3) liquid injection in a fluidized bed with particle-to-particle liquid film transport 4) solid-gas chemistry and 5) first level validation of models. Because of the nature of the research using tightly coupled solids and fluid phases with a Lagrangian description of the solids and continuum description of fluid, the work provides ground-breaking advances in reactor prediction capability. This capability has been tested against experimental data where available. The commercial product arising out of this work is called Barracuda and is suitable for a wide (dense-to-dilute) range of industrial scale gas-solid flows with and without reactions. Commercial applications include dense gas-solid beds, gasifiers, riser reactors and cyclones.

  1. Cold-Flow Circulating Fluidized-Bed Identification

    Energy Technology Data Exchange (ETDEWEB)

    Parviz Famouri

    2005-07-01

    In a variety of industrial applications, the use of a circulating fluidized bed (CFB) provides various advantages, such as reducing environmental pollution and increasing process efficiency. The application of circulating fluidized bed technology contributes to the improvement of gas-solid contact, reduction of the cross-sectional area with the use of higher superficial velocities, the use of the solids circulation rate as an additional control variable, and superior radial mixing, Grace et al. [1]. In order to improve raw material usage and utility consumption, optimization and control of CFB is very important, and an accurate, real time model is required to describe and quantify the process. Currently there is no accepted way to construct a reliable model for such a complex CFB system using traditional methods, especially at the pilot or industrial scale. Three major obstacles in characterizing the system are: 1) chaotic nature of the system; 2) non-linearity of the system, and 3) number of immeasurable unknowns internal to the system,[2]. Advanced control theories and methods have the ability to characterize the system, and can overcome all three of these obstacles. These methods will be discussed in this report.

  2. Minimum slugging velocity in fluidized beds containing vertical rods

    Energy Technology Data Exchange (ETDEWEB)

    Coronella, C.J.; Lee, S.Y.; Seader, J.D. (University of Utah, Salt Lake City, UT (United States). Dept. of Chemical Engineering)

    1994-09-01

    A new method for determining the onset of slugging in fluidized beds is presented. Pressure-drop fluctuations, measured from below the distributor to the gas exit line, are transformed to the frequency domain by the power spectral desity function (PSDF). The dominant frequency of the PSDF corresponds to the eruption frequency of bubbles or slugs. A fluidized bed is in the slugging regime when this dominant frequency, f[sub d], remains constant with changing gas velocity. This method is an improvement over previous methods because of the simple nature of the apparatus required, and because it is possible to locate the pressure probes so that they do not interfere with the fluidization or undergo rapid wear from the constant particle movement. This method was used to determine the gas velocity corresponding to the transition from the bubbling to the slugging regime for a 10cm diameter bed of sand fluidized with air and containing three 1.9cm diameter vertical rods at 5.2cm centre-to-centre triangular spacing and extending the length of the bed, and to compare the results with those from the same bed without any internal rods. The presence of the vertical rods inhibited the onset of the slugging regime, and significantly extended the bubbling regime to higher gas velocities. 32 refs., 12 figs.

  3. Suspended solid abatement in a conical fluidized bed flocculator

    Institute of Scientific and Technical Information of China (English)

    Dandan ZHOU; Shuangshi DONG; Keyu LI; Huizhong JIANG; Dandan SHANG

    2013-01-01

    With the random movement of silica gel beads in a conical fluidized bed, micro-vortices resulting from the fluidization promoted the collision and aggregation of suspended fine kaolin powders. The abatement efficiencies of the suspended fine solids under several hydrodynamic conditions were studied, and a suitable control strategy for operating the conical fluidized bed flocculators was identified. The suspended solids abatement efficiency was found to increase with increasing Camp Number and flocculation time (T), but decreased with the increase of velocity gradient (G) within the range studied in this research (165.1-189.6s-1). The abatement efficiencies were all more than 60% at the range of G = 165-180 s 1 and T = 15-33 s at an initial kaolin solid concentration of 150mg·L-1, polymer aluminum chloride dosage of 60 mg· L -1 and sedimentation time of 20 min. However, the formation of flocs was influenced by the liquid back- mixing. Excessive backmixing caused the breakup of ftocs and resulted in difficulty for the fine powders to aggregate and sediment to the reactor bottom. The results of the calculated fractal dimension and measured free sedimenta- tion velocity of flocs obtained at different runs showed similar flocs properties, and indicated an easy control strategy for sedimentation of the flocs.

  4. Biofilm detachment mechanisms in a liquid-fluidized bed.

    Science.gov (United States)

    Chang, H T; Rittmann, B E; Amar, D; Heim, R; Ehlinger, O; Lesty, Y

    1991-08-20

    Bed fluidization offers the possibility of gaining the advantages of fixed-film biological processes without the disadvantage of pore clogging. However, the biofilm detachment rate, due to hydrodynamics and particle-to-particle attrition, is very poorly understood for fluidized-bed biofilm processes. In this work, a two-phase fluidized-bed biofilm was operated under a constant surface loading (0.09 mg total organic carbon/cm(2) day) and with a range of bed height (H), fluid velocities (U), and support-particle concentrations (C(p)). Direct measurements were made for the specific biofilm loss rate coefficient (b(s))and the total biofilm accumulation (X(f)L(f)). A hydrodynamic model allowed independent determination of the biofilm density (X(f)), biofilm thickness (L(f)), liquid shear stress (tau), and Reynolds number (Re). Multiple regression analysis of the results showed that increased particle-to-particle attrition, proportional to C(p) and increased turbulence, described by Re, caused the biofilms to be denser and thinner. The specific detachment rate coefficient (b(s)) increased as C(p) and Re increased. Almost all of the 6, values were larger than predicted by a previous model derived for smooth biofilms on a nonfluidized surface. Therefore, the turbulence and attrition of bed fluidization appear to be dominant detachment mechanisms.

  5. Vibrated fluidized bed air classification of moist raw coal

    Institute of Scientific and Technical Information of China (English)

    杨国华; 赵跃民; 陈清如

    2002-01-01

    Vibrated fluidized bed air classification is completely different from traditional screening in principle. It extracts fine coal from moist raw coal by entrainment of an ascending airflow in a vibrated fluidized bed. Pilot tests showed that air classification efficiencies varied from 74.85% to 93.84% at cut-size 6, 4, 3, 2, 1, and 0.5 mm when free moisture of coal is in the range of 1.7% to 9.5%, and ash contents of fine coal products were 2%~3% lower than those of the same size fractions in feed, and 4%~10% lower than those of feeds for most cases because of the density differences between coal and waste, which is beneficial to producing lower ash fine coal from raw coal as fuel of blast furnaces or pulverized coal firing boilers. A commercial unit of 100 t/h has been in smooth operation, and several 300~400 t/h units are in plan or construction.

  6. Integrated drying and incineration of wet sewage sludge in combined bubbling and circulating fluidized bed units.

    Science.gov (United States)

    Li, Shiyuan; Li, Yunyu; Lu, Qinggang; Zhu, Jianguo; Yao, Yao; Bao, Shaolin

    2014-12-01

    An original integrated drying and incineration technique is proposed to dispose of sewage sludge with moisture content of about 80% in a circulating fluidized bed. This system combines a bubbling fluidized bed dryer with a circulating fluidized bed incinerator. After drying, sewage sludge with moisture less than 20% is transported directly and continuously from the fluidized bed dryer into a circulating fluidized bed incinerator. Pilot plant results showed that integrated drying and incineration is feasible in a unique single system. A 100 t/d Sewage Sludge Incineration Demonstration Project was constructed at the Qige sewage treatment plant in Hangzhou City in China. The operational performance showed that the main operation results conformed to the design values, from which it can be concluded that the scale-up of this technique is deemed both feasible and successful.

  7. Co-gasification of Colombian coal and biomass in fluidized bed: An experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Jhon F. Velez; Farid Chejne; Carlos F. Valdes; Eder J. Emery; Carlos A. Londono [Universidad Nacional de Colombia, Antioquia (Colombia). Grupo de Termodinamica Aplicada y Energias Alternativas

    2009-03-15

    The main results of an experimental work on co-gasification of Colombian biomass/coal blends in a fluidized bed working at atmospheric pressure are reported in this paper. Several samples of blends were prepared by mixing 6-15wt% biomass (sawdust, rice or coffee husk) with coal. Experimental assays were carried out by using mixtures of different steams/blends (Rvc) and air/blend (Rac) ratios showing the feasibility to implement co-gasification as energetic alternative to produce fuel gas to heat and to generate electricity and the possibility of converting clean and efficiently the refuse coal to a low-heating value gas. 29 refs., 5 figs., 4 tabs.

  8. Modeling of NO and N{sub 2}O emissions from biomass circulating fluidized bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.; Gibbs, B.M. [Leeds Univ., Leeds (United Kingdom). Dept. of Fuel and Energy

    2002-07-01

    In order to correctly model biomass combustion in a circulating fluidized bed (CFB) combustor, it is necessary to examine the four main stages in the combustion of biomass particles. These include drying, devolatilization, volatile combustion and char combustion in a CFB combustor. This paper presents a newly developed model for nitric oxide (NO) and nitrous oxide (N{sub 2}O) emissions from biomass-fired CFB combustors. A typical woody biomass of pinewood chips was selected for the model parameters. The drying and devolatilization of biomass particles was modeled with limited rates according to woody biomass fuels. The partition of fuel nitrogen between volatiles and char was chosen for pinewood based on available data from literature. It was assumed that the volatile nitrogen was composed of ammonia (NH{sub 3}), hydrogen cyanide (HCN) and nitrogen (N{sub 2}). The model included 25 chemical reactions, of which 20 belonged to global fuel-nitrogen reaction kinetics. A 12 MW CFB boiler was used to apply the model. Results were compared with experimental values as well as data from literature. The reaction between NO and char was found to be the key reaction that determines NO emissions. The catalytic effect of bed materials on the oxidation of NH{sub 3} and the the homogeneous reaction of NH{sub 3} with nitric oxide was also significant. 25 refs., 2 tabs., 5 figs.

  9. Proceedings of the 7. international conference on circulating fluidized bed technology. 7. vol. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Grace, J.R. (ed.) [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering; Zhu, J.; De Lasa, H. [Western Ontario University, London, ON (Canada). Dept. of Biochemical and Chemical Engineering

    2002-07-01

    This conference brought together all of the major circulating fluidized bed (CFB) research groups from around the world and provided a major source of information on CFB and related topics. These proceedings focus on applications and fundamentals of CFB technology, including fluid catalytic cracking of hydrocarbons, CFB combustion of coal, calcination, gasification, pyrolysis, roasting of ores, and desulphurization. Several papers discussed the application of computational fluid dynamics to CFB, hydrodynamics, heat transfer and combustion. Discussions also focused on the importance of maintaining safety, providing sufficient heat transfer, and minimizing emissions of particulates and gaseous pollutants. The 9 sessions of the conference were entitled as follows: (1) invited overview papers, (2) downers, (3) heat and mass transfer, (4) hydrodynamics and mixing, (5) computational fluid dynamics and other models, (6) liquid fluidization and three-phase systems, (7) solids separation and return systems, (8) combustion and other gas-solid reactions, and (9) fluid catalytic cracking and other reactions. More than 100 papers were presented at the conference, of which 25 have been indexed separately for inclusion in this database. refs., tabs., figs.

  10. Fluidized coal combustion

    Science.gov (United States)

    Moynihan, P. I.; Young, D. L.

    1979-01-01

    Fluidized-bed coal combustion process, in which pulverized coal and limestone are burned in presence of forced air, may lead to efficient, reliable boilers with low sulfur dioxide and nitrogen dioxide emissions.

  11. Continuous fluidized-bed contactor with recycle of sorbent

    Science.gov (United States)

    Scott, Charles D.; Petersen, James N.; Davison, Brian H.

    1996-01-01

    A continuous fluidized-bed contactor containing sorbent particles is used to remove solutes from liquid solvents. As the sorbent particles, for example gel beads, sorb the solute, for example metal ion species, the sorbent particles tend to decrease in diameter. These smaller loaded sorbent particles rise to the top of the contactor, as larger sorbent particles remain at the bottom of the contactor as a result of normal hydraulic forces. The smaller loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. Alternatively, the loaded sorbent particles may also slightly increase in diameter, or exhibit no change in diameter but an increase in density. As a result of normal hydraulic forces the larger loaded sorbent particles fall to the bottom of the contactor. The larger loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor.

  12. Bubbling fluidized bed boiler for Vanaja power plant

    Energy Technology Data Exchange (ETDEWEB)

    Sormunen, R.; Haermae, P.; Vessonen, K.; Ketomaeki, A. [ed.

    1998-07-01

    At the Vanaja Power Plant, on the outskirts of Haemeenlinna, there have been changes which reflect the central goals in IVO`s product development work. At Vanaja, efficiency is combined with environmental friendliness. In the early 1980s, the plant was modernized to produce district heat in addition to electricity. At that time, along with the new gas turbine at the plant, the main fuel, coal, while remaining the fuel for the old boilers, was replaced by natural gas. This year a new type of bubbling fluidized bed boiler enabling continuous use of peat and trial use of biofuels along with coal was introduced at the plant. In addition to the Nordic countries, this kind of technology is required in central eastern Europe, where modernization of ageing power plants is being planned to achieve the best possible solutions in respect of production and the environment. IVO develops a new repair technique for underwater sites

  13. Evaluation of Fluidized Bed Reactor in treating Dyeing effluent

    Directory of Open Access Journals (Sweden)

    S. Poongoth

    2012-07-01

    Full Text Available Textile dyeing industries one of the complicated industries which use many chemicals like dyes, starch, acids, alkalis, surfactants and refractory organics for their process. As it is a wet process it requires more amount of water ranging 65-104 L/Kg of product and it discharges 52-95 L/Kg of product as wastewater. The COD, BOD,TDS, Colour and SS are the major pollutants from these industries to the receiving streams. Biological treatment is employed mostly when compared to the physicochemical treatment. More sludge, toxic bye products and cost for the treatment are the reasons for not employing the physiochemical treatment processes. Biological treatments like aerobic and anaerobic processes overcome the disadvantages of physicochemical treatment. The present study evaluates the Aerobic Fluidized bed Reactor for the treatment of Dyeing effluent. It has been observed through this study that 89% colour removal and 83.3% COD removal were achieved.

  14. Detachment of multi species biofilm in circulating fluidized bed bioreactor.

    Science.gov (United States)

    Patel, Ajay; Nakhla, George; Zhu, Jingxu

    2005-11-20

    In this study, the detachment rates of various microbial species from the aerobic and anoxic biofilms in a circulating fluidized bed bioreactor (CFBB) with two entirely separate aerobic and anoxic beds were investigated. Overall detachment rate coefficients for biomass, determined on the basis of volatile suspended solids (VSS), glucose and protein as well as for specific microbial groups, i.e., for nitrifiers, denitrifiers, and phosphorous accumulating organisms (PAOs), were established. Biomass detachment rates were found to increase with biomass attachment on carrier media in both beds. The detachment rate coefficients based on VSS were significantly affected by shear stress, whereas for protein, glucose and specific microbial groups, no significant effect of shear stress was observed. High detachment rates were observed for the more porous biofilm structure. The presence of nitrifiers in the anoxic biofilm and denitrifiers in the aerobic biofilm was established by the specific activity measurements. Detachment rates of PAOs in aerobic and anoxic biofilms were evaluated.

  15. Mass transfer in three-phase fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Wu, B.W.; Cheng, Y.L.; Perini, J.R.; Roux-Buisson, J.L.

    1978-04-26

    The effects of superficial liquid and gas velocity, particle diameter, liquid viscosity, and column diameter on liquid dispersion (E/sub L) and mass transfer (K/sub L/a) in three-phase fluidized beds were investigated using a water--glycerol/oxygen--nitrogen (or oxygen--argon)/glass-bead system. Overall mass transfer coefficients were calculated based on plug flow, dispersed plug flow, and continuously stirred tank models. k/sub L/a was found to increase with gas velocity and particle diameter, but no correlation of K/sub L/a with liquid velocity was observed. At low liquid velocities, K/sub L/a was lower for the more viscous liquid; the reverse was true at high liquid flow rates. E/sub L/ increased rapidly for liquid flow rates at two to three times the minimum fluidization velocity.

  16. Computational Fluid Dynamics Simulation of Fluidized Bed Polymerization Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Rong [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Fluidized beds (FB) reactors are widely used in the polymerization industry due to their superior heat- and mass-transfer characteristics. Nevertheless, problems associated with local overheating of polymer particles and excessive agglomeration leading to FB reactors defluidization still persist and limit the range of operating temperatures that can be safely achieved in plant-scale reactors. Many people have been worked on the modeling of FB polymerization reactors, and quite a few models are available in the open literature, such as the well-mixed model developed by McAuley, Talbot, and Harris (1994), the constant bubble size model (Choi and Ray, 1985) and the heterogeneous three phase model (Fernandes and Lona, 2002). Most these research works focus on the kinetic aspects, but from industrial viewpoint, the behavior of FB reactors should be modeled by considering the particle and fluid dynamics in the reactor. Computational fluid dynamics (CFD) is a powerful tool for understanding the effect of fluid dynamics on chemical reactor performance. For single-phase flows, CFD models for turbulent reacting flows are now well understood and routinely applied to investigate complex flows with detailed chemistry. For multiphase flows, the state-of-the-art in CFD models is changing rapidly and it is now possible to predict reasonably well the flow characteristics of gas-solid FB reactors with mono-dispersed, non-cohesive solids. This thesis is organized into seven chapters. In Chapter 2, an overview of fluidized bed polymerization reactors is given, and a simplified two-site kinetic mechanism are discussed. Some basic theories used in our work are given in detail in Chapter 3. First, the governing equations and other constitutive equations for the multi-fluid model are summarized, and the kinetic theory for describing the solid stress tensor is discussed. The detailed derivation of DQMOM for the population balance equation is given as the second section. In this section

  17. Pyrolysis of Softwood Carbohydrates in a Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    Dmitry Yu. Murzin

    2008-09-01

    Full Text Available In the present work pyrolysis of pure pine wood and softwood carbohydrates, namely cellulose and galactoglucomannan (the major hemicellulose in coniferous wood, was conducted in a batch mode operated fluidized bed reactor. Temperature ramping (5°C/min was applied to the heating until a reactor temperature of 460 °C was reached. Thereafter the temperature was kept until the release of non-condensable gases stopped. The different raw materials gave significantly different bio-oils. Levoglucosan was the dominant product in the cellulose pyrolysis oil. Acetic acid was found in the highest concentrations in both the galactoglucomannan and in the pine wood pyrolysis oils. Acetic acid is most likely formed by removal of O-acetyl groups from mannose units present in GGM structure.

  18. Performance of a bench-scale fast fluidized bed carbonator

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Lin, Weigang; Illerup, Jytte Boll

    2014-01-01

    The carbonate looping process is a promising technology for CO2 capture from flue gas. In this process, the CO2 capture efficiency depends on the performance of a carbonator that may be operated as a circulating fluidized bed (CFB). In this paper, the carbonator performance is investigated...... by applying a new experimental method with accurate control of the particle recirculation rate. The experimental results show that the inlet calcium to carbon molar ratio is the main factor on the CO2 capture efficiency in the carbonator, that is, increasing the inlet Ca/C from 4 to 13 results in increasing...... the CO2 capture efficiency from 40 to 85% with limestone having a maximum CO2 capture capacity of only 11.5%. Furthermore, a reactor model for a carbonator is developed based on the Kunii-Levenspiels model. A key parameter in the model is the particle distribution along the height of the reactor, which...

  19. Heat transfer characteristics of the fluidized bed through the annulus

    Science.gov (United States)

    Shedid, Mohamed H.; Hassan, M. A. M.

    2016-09-01

    The annular fluidized bed can be regarded as a promising technique for waste heat recovery applications. This study investigates on the determination of steady state values of the average heat transfer on the surface of the inner tube under different operating conditions that include: (1) input heat flux ranging from 557 to 1671 W/m2, (2) superficial air velocity ranging between 0.12 and 0.36 m/s, (3) initial bed height ranging from 25 to 55 cm, (4) ratio of the inner to the outer diameters ranging from 1/6 to 1/2 and Kaolin particle diameters ranging between 282 and 550 µm. The average values of the heat transfer coefficient along the inner tube (consisting of the fluidized and free board sections) are also deduced. An empirical correlation for calculating the Nusselt number is obtained for the given parameters and ranges.

  20. Anaerobic degradation of linear alkylbenzene sulfonate in fluidized bed reactor

    Directory of Open Access Journals (Sweden)

    L. L. Oliveira

    2010-12-01

    Full Text Available An anaerobic fluidized bed reactor was used to assess the degradation of the surfactant linear alkylbenzene sulfonate (LAS. The reactor was inoculated with sludge from an UASB reactor treating swine wastewater and was fed with a synthetic substrate supplemented with LAS. Sand was used as support material for biomass immobilization. The reactor was kept in a controlled temperature chamber (30±1 ºC and operated with a hydraulic retention time (HRT of 18 h. The LAS concentration was gradually increased from 8.2±1.3 to 45.8±5.4 mg.L-1. The COD removal was 91%, on average, when the influent COD was 645±49 mg.L-1. The results obtained by chromatographic analysis showed that the reactor removed 93% of the LAS after 270 days of operation.

  1. Thermofluid effect on energy storage in fluidized bed reactor

    Science.gov (United States)

    Mahfoudi, Nadjiba; El Ganaoui, Mohammed; Moummi, Abdelhafid

    2016-05-01

    The development of innovative systems of heat storage is imperative to improve the efficiency of the existing systems used in the thermal solar energy applications. Several techniques were developed and realized in this context. The technology of the sand fluidized bed (sandTES) offers a promising alternative to the current state-of-the-art of the heat storage systems, such as fixed bed using a storage materials, as sand, ceramic, and stones, etc. Indeed, the use of the fluidization technique allows an effective heat transfer to the solid particles. With the sand, an important capacity of storage is obtained by an economic and ecological material [N. Mahfoudi, A. Moummi, M. El Ganaoui, Appl. Mech. Mater. 621, 214 (2014); N. Mahfoudi, A. Khachkouch, A. Moummi B. Benhaoua, M. El Ganaoui, Mech. Ind. 16, 411 (2015); N. Mahfoudi, A. Moummi, M. El Ganaoui, F. Mnasri, K.M. Aboudou, 3e Colloque internationale Francophone d"énergétique et mécanique, Comores, 2014, p. 91]. This paper presents a CFD simulation of the hydrodynamics and the thermal transient behavior of a fluidized bed reactor of sand, to determine the characteristics of storage. The simulation shows a symmetry breaking that occurs and gave way to chaotic transient generation of bubble formation after 3 s. Furthermore, the predicted average temperature of the solid phase (sand) increases gradually versus the time with a gain of 1 °C in an interval of 10 s. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  2. Linear system identification of a cold flow circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Panday, R [West Virginia Univ., Morgantown, WV (United States); Woerner, B D [West Virginia Univ., Morgantown, WV (United States); Ludlow, J C [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Shadle, L J [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Boyle, E J [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2009-02-01

    Knowledge of the solids circulation rate (SCR) is essential to the control and improved performance of a circulating fluidized bed system. In the present work, the noise model is derived using the prediction error method considering process and measurement noises acting on the cold flow circulating fluidized bed (CFCFB) with a cork particulate material. The outputs of the initial model are the total pressure drop across the riser, the pressure drop across the crossover, the pressure drop across the primary cyclone, the total pressure drop across the stand-pipe, the pressure drop across the loop seal, and the SCR. The stochastic estimate of SCR is determined from the noise model using the stochastic pressure drop estimates. The deterministic estimate is obtained through the inputs taken as move air flow, riser aeration, and loop seal fluidization air that are all independent variables of the given setup and under the control of the user. The theory has been developed to convert a complete blackbox model to a grey box model through the output-to-state transformation such that both the models of the CFCFB consists of all these output variables as the states of the system, and only pressure drops across the system as the output measurements. Thus, the final models do not include any fictitious terms and they are defined only in terms of physical parameters of the given system. Both components of SCR are separately analysed. The combined SCR response of both the noise model and deterministic model is compared with the validation data set of this state variable in terms of modelfit, and the results are shown.

  3. Fluidized bed spray granulation: analysis of heat and mass transfers and dynamic particle populations

    Directory of Open Access Journals (Sweden)

    S. Heinrich

    2005-06-01

    Full Text Available A model was developed taking into consideration the heat and mass transfer processes in liquid-sprayed fluidized beds. Such fluidized beds (FB are used for granulation, coating and agglomeration. Conclusions are drawn on the relevance of particle dispersion, spraying and drying to temperature and concentrations distributions. In extension, the model was coupled with a population balance model to describe the particle size distribution and the seeds formation for continuous external FBSG (fluidized bed spray granulation with non-classifying product discharge and a screening and milling unit in the seeds recycle. The effects of seeds formation on the stability of the process is discussed.

  4. Motion analysis of waste rock in gas-solids fluidized bed in coal dry beneficiation

    Institute of Scientific and Technical Information of China (English)

    郭迎福; 陈安华; 张永忠; 邓志鹏; 毛树楷

    2002-01-01

    Through the analysis of forces acting on the waste rock in the gas-solid fluidized bed, the waste rock velocity equations and displacement equations in the gas-solids fluidized bed were achieved and the influential factors of the waste rock motion in the fluidized bed were studied in this paper. The conclusions show that the primary factors influencing the waste rock motion are the waste rock grain size and the scraper velocity according to the computer simulation. This has provided the theoretical foundation both for improving the separating effect and ascertaining the length of the separating cell.

  5. Artificial neural network models for biomass gasification in fluidized bed gasifiers

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Hernández, J. Alfredo; Bruno, Joan Carles

    2013-01-01

    bed gasifier can be successfully predicted by applying neural networks. ANNs models use in the input layer the biomass composition and few operating parameters, two neurons in the hidden layer and the backpropagation algorithm. The results obtained by these ANNs show high agreement with published......Artificial neural networks (ANNs) have been applied for modeling biomass gasification process in fluidized bed reactors. Two architectures of ANNs models are presented; one for circulating fluidized bed gasifiers (CFB) and the other for bubbling fluidized bed gasifiers (BFB). Both models determine...

  6. Bioreactors with Light-Beads Fluidized Bed: The Voidage Function and its Expression

    Directory of Open Access Journals (Sweden)

    Iliev Vasil

    2014-12-01

    Full Text Available Light-beads fluidized bed bioreactors with gel particles are an attractive alternative for the implementation of a system with immobilized cells. They have a number of advantages: soft operating conditions, ability to work in an ideal mixing regime, intensification of heat- and mass transfer processes in the fermentation system. The expansion characteristics of the fluidized bed were investigated in the present work. The fluidized bed expansion was described using the voidage function. It was found that the voidage can be described by nonlinear regression relationships and the regression coefficients were a function of the particles parameters.

  7. Heat transfer to immersed horizontal tubes in gas fluidized bed dryers

    Energy Technology Data Exchange (ETDEWEB)

    Jonassen, Ola

    1999-07-01

    The main objective of this study was to construct heat pump fluidized bed dryers of the FHT type with improved dewatering capacity for a given size of the dryer. The use of heat exchangers immersed in the fluidized bed drying chambers is an important part of the FHT (Fluidized Bed High Temperature Heat Pump Dryer) concept. A pilot plant FHT dryer was built and successfully tested on fish meal raw material and seaweed. The plant included two fluidized bed drying chambers with immersed heat exchangers. The gain in water vapor of the drying air through the chambers was increased up to four times that of adiabatic drying. The energy saving concept was retained as a SMER ratio of 3.5 to 4.7 was measured in the same tests. Therefore optimization of the immersed heat exchangers was considered the most important single objective for this work. The optimization study of the heat exchangers was confined to the actual operating conditions for the dryers using: (1) Bubbling gas fluidized beds were used, (2) air as the only type of fluidizing gas,(3) beds at atmospheric pressure, (4) bed temperatures below 100 {sup o}C, (5) fluidized particles of Geldart classes B and D, (6) horizontal tube banks for the immersed heat exchanger and the influence of radiation heat transfer was ignored. The heat transfer study was confined to the fluidized bed side of the heat exchanger surface. It was concluded early in this work that the bubbles play a major role in generating the particle circulation inside the bed and hence also in heat transfer. Publications describing the most important bubble induced mechanisms contributing to high rates of heat transfer were found to be limited. Therefore the first part of this study was aimed at establishing a method for locating and measuring the size and rise velocity of bubbles inside the bed. The method established through this work using differential pressure measurements from two static pressure probes was used later in the study of heat transfer

  8. Heat transfer to immersed horizontal tubes in gas fluidized bed dryers

    Energy Technology Data Exchange (ETDEWEB)

    Jonassen, Ola

    1999-10-01

    The main objective of this study was to construct heat pump fluidized bed dryers of the FHT type with improved dewatering capacity for a given size of the dryer. The use of heat exchangers immersed in the fluidized bed drying chambers is an important part of the FHT (Fluidized Bed High Temperature Heat Pump Dryer) concept. A pilot plant FHT dryer was built and successfully tested on fish meal raw material and seaweed. The plant included two fluidized bed drying chambers with immersed heat exchangers. The gain in water vapor of the drying air through the chambers was increased up to four times that of adiabatic drying. The energy saving concept was retained as a SMER ratio of 3.5 to 4.7 was measured in the same tests. Therefore optimization of the immersed heat exchangers was considered the most important single objective for this work. The optimization study of the heat exchangers was confined to the actual operating conditions for the dryers using: (1) Bubbling gas fluidized beds were used, (2) air as the only type of fluidising gas, (3) beds at atmospheric pressure, (4) bed temperatures below 100 {sup o}C, (5) fluidized particles of Geldart classes B and D, (6) horizontal tube banks for the immersed heat exchanger, and the influence of radiation heat transfer was ignored. The heat transfer study was confined to the fluidized bed side of the heat exchanger surface. It was concluded early in this work that the bubbles play a major role in generating the particle circulation inside the bed and hence also in heat transfer. Publications describing the most important bubble induced mechanisms contributing to high rates of heat transfer were found to be limited. Therefore the first part of this study was aimed at establishing a method for locating and measuring the size and rise velocity of bubbles inside the bed. The method established through this work using differential pressure measurements from two static pressure probes was used later in the study of heat transfer

  9. Gasification of rice straw in a fluidized-bed gasifier for syngas application in close-coupled boiler-gasifier systems.

    Science.gov (United States)

    Calvo, L F; Gil, M V; Otero, M; Morán, A; García, A I

    2012-04-01

    The feasibility and operation performance of the gasification of rice straw in an atmospheric fluidized-bed gasifier was studied. The gasification was carried out between 700 and 850 °C. The stoichiometric air-fuel ratio (A/F) for rice straw was 4.28 and air supplied was 7-25% of that necessary for stoichiometric combustion. Mass and power balances, tar concentration, produced gas composition, gas phase ammonia, chloride and potassium concentrations, agglomeration tendencies and gas efficiencies were assessed. Agglomeration was avoided by replacing the normal alumina-silicate bed by a mixture of alumina-silicate sand and MgO. It was shown that it is possible to produce high quality syngas from the gasification of rice straw. Under the experimental conditions used, the higher heating value (HHV) of the produced gas reached 5.1 MJ Nm(-3), the hot gas efficiency 61% and the cold gas efficiency 52%. The obtained results prove that rice straw may be used as fuel for close-coupled boiler-gasifier systems.

  10. Utilization of desulfurization gypsum to producing SO{sub 2} and CaO in multi-stage fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Zhu; Wang, Tao; Yang, Hairui; Zhang, Hai; Zhang, Zuyi [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Ministry of Education, Beijing (China). Key Lab. for Thermal Science and Power Engineering

    2013-07-01

    With emission control becomes more and more stringent, flue gas desulphurization (FGD) is commonly employed for desulfurization. However, the product of FGD, gypsum, causes the unexpected environmental problems. How to utilize the byproduct of FGD effectively and economically is a challenging task. This paper proposed the new technical process to produce SO{sub 2} and CaO by reducing the gypsum in multi-stage fluidized bed reactor with different atmosphere. In addition, some preliminary experiments were carried out in PTGA. The results show that CO concentration has little effect on the initial decomposing temperature, but affect the decomposing rate of phosphogypsum obviously. The decomposing product composed of CaS and CaO simultaneously. The ratio of the two products was determined by CO concentration. Lower CO content benefits to produce more CO product and more SO{sub 2}. The decomposition reaction of phosphogypsum in reducing atmosphere is parallel competition reaction. Therefore, it is necessary to eliminate the effect of CaS and other byproduct efficiently by the new technology, which utilize multi-atmosphere in multistage fluidized bed reactors.

  11. Atmospheric emission characterization of a novel sludge drying and co-combustion system.

    Science.gov (United States)

    Lu, Shengyong; Yang, Liqin; Zhou, Fa; Wang, Fei; Yan, Jianhua; Li, Xiaodong; Chi, Yong; Cen, Kefa

    2013-10-01

    A novel system combining sludge drying and co-combustion with coal was applied in disposing sludge and its atmospheric emission characteristics were tested. The system was composed of a hollow blade paddle dryer, a thermal drying exhaust gas control system, a 75 tons/hr circulating fluidized bed and a flue gas cleaning system. The emissions of NH3, SO2, CH4 and some other pollutants released from thermal drying, and pollutants such as NOx, SO2 etc. discharged by the incinerator, were all tested. Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in the flue gas from the incinerator were investigated as well. The results indicated that the concentrations of NOx and SO2 in the flue gas from the incinerator were 145 and 16 mg/m3, respectively. and the I-TEQ concentration of 2,3,7,8-substitued PCDD/Fs was 0.023 ng I-TEQ/Nm3. All these values were greatly lower than the emission standards of China. In addition, there was no obvious odor in the air around the sludge dryer. The results demonstrated that this drying and co-combustion system is efficient in controlling pollutants and is a feasible way for large-scale treatment of industrial sludge and sewage sludge.

  12. Potential approaches to improve gasification of high water content biomass rich in cellulose in dual fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Li; Xu, Guangwen [State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing (China); Suda, Toshiyuki [Research Laboratory, IHI Corporation, Ltd., Yokohama (Japan); Murakami, Takahiro [National Institute of Advanced Science and Technology, Tsukuba (Japan)

    2010-08-15

    Biomass containing water of 30-65 wt.% and rich in cellulose, such as various grounds of drinking materials and the lees of spirit and vinegar, is not suitable for biological digestion, and the thermal conversion approach has to be applied to its conversion into bioenergy. The authors have recently worked on converting such biomass into middle heating-value gas via dual fluidized bed gasification (DFBG) integrated with various process intensification technologies. This article is devoted to highlighting those technical ways, including the choice of the superior technical deployment for a DFBG system, the impregnation of Ca onto fuel in fuel drying, the integration of gas cleaning with fuel gasification via two-stage DFBG (T-DFBG), and the decoupling of fuel drying/pyrolysis and char gasification via the decoupled DFBG (D-DFBG). The attained results demonstrated that the superior deployment of bed combination for the DFBG should be a bubbling/turbulent fluidized bed gasifier integrated with a pneumatic riser combustor. In terms of improving efficiency of fuel conversion into combustible gas and suppressing tar generation during gasification, the impregnation of Ca onto fuel exhibited distinctively high upgrading effect, while both the T-DFBG and D-DFBG were also demonstrated to be effective to a certain degree. (author)

  13. Fluidized-bed reactor model with generalized particle balances. Part 1. Formulation and solution

    Energy Technology Data Exchange (ETDEWEB)

    Overturf, B.W.; Reklaitis, G.V.

    1983-09-01

    In this first part, a particle balance model is developed for a fluidized-bed gas-solid reactor which accommodates particle distributions dependent on both size and density, as well as populations consisting of multiple solids.

  14. Design and simulation of a circulating fluidized bed to clean the products of biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Uchoa Neto, Moises; Carvalho, Yuri de Araujo [Dept. de Engenharia Mecanica. Faculdade de Tecnologia. Universidade de Brasilia, DF (Brazil); Oliveira, Taygoara Felamingo de; Barcelos, Manuel [Faculdade do Gama. Universidade de Brasilia, Gama, DF (Brazil)], e-mail: taygoara@unb.br

    2010-07-01

    The main goal of this work is to design a workbench circulating fluidized bed to study the cracking of tar in gases from the processes of biomass gasification. For this, a design methodology based on analytical results and empirical correlations for fluidized beds was employed. In parallel, a numerical code of open source technology (MFIX) for the solution of the transport equations of the multiphase flow in the column of a fluidized bed was used to give support to the choice of the design elements. The whole project of the workbench fluidized bed was completely developed, whose operation parameters such as bed geometry, gas velocity, circulating ratio and void fraction characterize a fast fluidization process. A preliminary mesh convergence study was executed with the numerical tool, that was validated comparing with analytical results. Among the most important results, the code computed the predicted value for the minimum fluidization. (author)

  15. Use of a gas-solid fluidized bed bioreactor for bioaugmentation

    Energy Technology Data Exchange (ETDEWEB)

    Behns, W.; Friedrich, K.; Haida, H. [Magdeburg Univ. (Germany). Inst. fuer Apparate- und Umwelttechnik

    1998-04-01

    Experimental research has shown that microbiological degradation in soils really contaminated with mineral oil hydrocarbons and hexachlorocyclohexane respectively can be accelerated and even intensified by a combined treatment in a fluidized bed bioreactor and subsequently in a remediation heap. (orig.)

  16. Mechanistic modelling of fluidized bed drying processes of wet porous granules

    DEFF Research Database (Denmark)

    Mortier, Séverine Thérèse F.C.; De Beer, Thomas; Gernaey, Krist;

    2011-01-01

    Fluidized bed dryers are frequently used in industrial applications and also in the pharmaceutical industry. The general incentives to develop mechanistic models for pharmaceutical processes are listed, and our vision on how this can particularly be done for fluidized bed drying processes of wet...... will reside in a certain interval. Population Balance Model (ling) (PBM) offers a tool to describe the distribution of particle properties which can be of interest for the application. PBM formulation and solution methods are therefore reviewed. In a fluidized bed, the granules show a fluidization pattern...... Eddy Simulation (LES). Another important aspect of CFD is the choice between the Eulerian–Lagrangian and the Eulerian–Eulerian approach. Finally, the PBM and CFD frameworks can be integrated, to describe the evolution of the moisture content of granules during fluidized bed drying....

  17. Effects of Immersed Surfaces on the Combustor Efficiency of Small-Scale Fluidized Beds

    OpenAIRE

    Nurdil Eskin; Afsin Gungor

    2005-01-01

    In this study, effects of the different types of heat exchanger surfaces on the second law efficiency of a small-scale circulating fluidized bed (CFB) combustor are analyzed and the results are compared with the bubbling fluidized bed coal combustor effectiveness values. Using a previously developed simulation program, combustor efficiency and entropy generation values are obtained at different operation velocities at different height and volume ratios of the immersed surfaces, both for circu...

  18. An Experimental and Numerical Investigation of Fluidized Bed Gasification of Solid Waste

    OpenAIRE

    Sharmina Begum; Mohammad G. Rasul; Delwar Akbar; David Cork

    2013-01-01

    Gasification is a thermo-chemical process to convert carbon-based products such as biomass and coal into a gas mixture known as synthetic gas or syngas. Various types of gasification methods exist, and fluidized bed gasification is one of them which is considered more efficient than others as fuel is fluidized in oxygen, steam or air. This paper presents an experimental and numerical investigation of fluidized bed gasification of solid waste (SW) (wood). The experimental measurement of syngas...

  19. Non-intrusive measurement and hydrodynamics characterization of gas–solid fluidized beds: a review

    OpenAIRE

    Sun, Jingyuan; Yan, Yong

    2016-01-01

    Gas-solid fluidization is a well-established technique to suspend or transport particles and has been applied in a variety of industrial processes. Nevertheless, our knowledge of fluidization hydrodynamics is still limited for the design, scale-up and operation optimization of fluidized bed reactors. It is therefore essential to characterize the two-phase flow behaviours in gas-solid fluidized beds and monitor the fluidization processes for control and optimization. A range of non-intrusive t...

  20. Dimensional similitude and the hydrodynamics of three- phase fluidized beds

    Science.gov (United States)

    Safoniuk, Michael

    It is proposed that scaling of three-phase fluidized bed hydrodynamics can be carried out based on geometric similarity and matching of a set of five dimensionless groups: (i)the M-group, M = g.Δρ.μ L4/(ρL2.σ 3); (ii)an Eötvös number, Eo = g.Δρ.d p2/σ (iii)the liquid Reynolds number, Re L = ρL.dp.UL/μ L; (iv)a density ratio, βd = ρp/ρ L; and (v)a superficial velocity ratio, βu = U g/UL. These were varied in an experimental study where four dimensionless hydrodynamic parameters were measured: (i)gas hold-up, ɛ g; (ii)bed expansion ratio, βbe (iii)the ratio of mean bubble diameter to particle diameter, db/dp ; and (iv)the ratio of mean bubble rise velocity to gas superficial velocity, Ub/Ug. This approach was validated experimentally by matching the dimensionless operating conditions from a kerosene-nitrogen-ceramic three-phase system with those in an aqueous magnesium sulphate solution-air-aluminum particle fluidized bed. There was good agreement between the gas hold-ups and bed expansion ratios in the two systems. A pilot-plant scale cold-flow co-current upwards-flowing three-phase fluidized bed column of inside diameter 292 mm was built and operated using three different liquids (tap water, an aqueous 44 mass % glycerol solution, and an aqueous 60 mass % glycerol solution), air, and cylindrical aluminum particles of diameter 4 mm and length 10 mm. The fluids and solids were carefully selected to result in dimensionless group values in the range of those of an industrial hydroprocessor. Specially built conductivity probes and pressure transducers were used to measure the hydrodynamic properties for different gas and liquid superficial velocities. Special attention was required to provide for drift and calibration when recording and analyzing data from the conductivity probes. Gas hold-ups were in the range of 5 to 20% by volume and were correlated as a function of liquid-phase Reynolds number and superficial velocity ratio. The gas hold-ups were a

  1. Theoretical investigations of the operating characteristics of circulating pressurized fluidized bed combustors; Theoretische Untersuchungen zum Betriebsverhalten zirkulierender Druckwirbelschichtfeuerungen

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, M.; Krumm, W.

    1999-07-01

    The combination of gas turbine and water-/steam cycle is a proper alternative to increase the efficiency of power plants. Coal fired power plants can be designed as reactors with pressurized coal gasification, pressurized coal dust combustion or a pressurized fluidized bed combustion to realize these plant design. Mathematical modeling and simulation are used to support the development of new power plant concepts, e.g. pressurized fluidized bed combustion. In this paper a one-dimensional model for a pressurized fluidized circulating bed combustion power plant is presented. The modeling structure allows to vary different parameters to identify the particular influence on the overall plant behavior. The model is enlarged by a more detailed balance for limestone. After describing the theoretical background of the influence of added limestone rate on the emissions of sulfurdioxide is shown. (orig.) [German] Ausgehend vom Prinzip eines Dampfkraftwerks mit atmosphaerischer Wirbelschichtfeuerung werden der Dampf- und Gasturbinenprozess bei den druckaufgeladenen Konzepten quasi parallel betrieben und die Gasturbine mit dem Rauchgas aus der Kohlenfeuerung beaufschlagt. Die wesentlichen Unterschiede zu erdgas- oder oelbefeuerten Kombianlagen sind bei den Druckwirbelschichtkonzepten, durch den in Zusammensetzung und Feuchtegehalt stark variierenden Brennstoff Kohle und durch die Auskopplung grosser Waermemengen bei der integrierten Dampferzeugung, gegeben. Der Hauptanteil der erzeugten elektrischen Leistung entfaellt auf den Dampfturbinenprozess. Druckwirbelschichtanlagen mit blasenbildender Wirbelschicht sind seit Anfang der 90er Jahre in Betrieb. Entsprechend der Entwicklung bei der atmopshaerischen Wirbelschichtfeuerung zeichnet sich als naechste Generation dieses Kraftwerkstyps die zirkulierende Druckwirbelschicht mit Heissgasfilter ab. Die mathematische Modellbildung hat sich zu einem anerkannten Werkzeug zur Unterstuetzung der Auslegung und der Untersuchung der Wirkung

  2. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Nsakala ya Nsakala; Gregory N. Liljedahl

    2003-05-15

    Department of Energy National Energy Technology Laboratory (DOE) in 2001 to carry out a project entitled ''Greenhouse Gas Emissions Control by Oxygen Firing in Circulating Fluidized Bed Boilers.'' This two-phased project is in effect from September 28, 2001, to October 27, 2004. (U.S. DOE NETL Cooperative Agreement No. DE-FC26-01NT41146). Phase I consisted of an evaluation of the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants, and supporting bench-scale testing. And Phase II consists of pilot-scale testing, supporting a refined performance and economic evaluation of the oxygen-fired AFC concept. Phase I, detailed in this report, entails a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen separate but related cases (listed below), representing various levels of technology development, were evaluated as described herein. The first seven cases represent coal combustion cases in CFB type equipment. The next four cases represent Integrated Gasification Combined Cycle (IGCC) systems. The last two cases represent advanced Chemical Looping systems, which were completely paid for by ALSTOM and included herein for completeness.

  3. Explosion protection in fluidized beds; Explosionsschutz an Wirbelschichtanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Siwek, R. [FireEx Consultant GmbH, Giebenach (Switzerland)

    2002-09-01

    Measures for preventive and constructive explosion protection of fluidized bed systems were first published in 'Sicherheitsregeln fuer den Explosionsschutz bei der Konstruktion und Errichtung von Wirbelschicht-sprueh-granulatoren, Wirbelschichttrocknern, Wirbelschicht-Coatinganlagen' by Hauptverband der gewerblichen Berufsgenossenschaften. The authors stressed the importance of constant updating. In 1997, the VDI Kommission Reinhaltung der Luft started to work on the update of VDI 2263 No.5. This guideline 'Staubbraende und Staubexplosionen Gefahren - Beurteilung - Schutzmassnahmen, Explosionsschutz bei Wirbelschichtanlagen' was published as a draft version in March 2002. A supplement, No. 5.1, was published as a draft version in October 2002; it presents examples of risk assessments and protective measures and requires knowledge of VDI 2263 No. 5. This contribution summarizes specifications of hazards in fluidized beds when working withe burnable dust/air mixtures, vapour/air mixtures, or hybrid mixtures. Further, improvements of constructive explosion protection measures are pointed out, and the limits of application of the two VDI regulations are compared. [German] In den 'Sicherheitsregeln fuer den Explosionsschutz bei der Konstruktion und Errichtung von Wirbelschicht - Sprueh - Granulatoren, Wirbelschichttrocknern, Wirbelschicht - Coatinganlagen' des Hauptverbandes der gewerblichen Berufsgenossenschaften [1] wurden erstmalig Massnahmen des vorbeugenden und konstruktiven Explosionsschutzes an Wirbelschichtanlagen entsprechend dem damaligen Wissenstand zusammenfassend dargestellt. Die Verfasser wiesen aber bereits damals darauf hin, dass die Wirkung solcher Sicherheitsregeln auf Dauer nur dann gewaehrleistet sind, wenn sie durch weitere Erkenntnisse aus der fortschreitenden Entwicklung immer wieder ergaenzt werden. Im Jahre 1997 wurde durch die VDI-Kommission Reinhaltung der Luft die erste Sitzung zur Novellierung der Richtlinie VDI

  4. Effect of flue gas recirculation on heat transfer in a supercritical circulating fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Błaszczuk Artur

    2015-09-01

    Full Text Available This paper focuses on assessment of the effect of flue gas recirculation (FGR on heat transfer behavior in 1296t/h supercritical coal-fired circulating fluidized bed (CFB combustor. The performance test in supercritical CFB combustor with capacity 966 MWth was performed with the low level of flue gas recirculation rate 6.9% into furnace chamber, for 80% unit load at the bed pressure of 7.7 kPa and the ratio of secondary air to the primary air SA/PA = 0.33. Heat transfer behavior in a supercritical CFB furnace between the active heat transfer surfaces (membrane wall and superheater and bed material has been analyzed for Geldart B particle with Sauter mean diameters of 0.219 and 0.246 mm. Bed material used in the heat transfer experiments had particle density of 2700 kg/m3. A mechanistic heat transfer model based on cluster renewal approach was used in this work. A heat transfer analysis of CFB combustion system with detailed consideration of bed-to-wall heat transfer coefficient distributions along furnace height is investigated. Heat transfer data for FGR test were compared with the data obtained for representative conditions without recycled flue gases back to the furnace through star-up burners.

  5. Study on the flow in the pipelines of the support system of circulating fluidized bed

    Science.gov (United States)

    Meng, L.; Yang, J.; Zhou, L. J.; Wang, Z. W.; Zhuang, X. H.

    2013-12-01

    In the support system of Circulating Fluidized Bed (Below referred to as CFB) of thermal power plant, the pipelines of primary wind are used for transporting the cold air to the boiler, which is important in controlling and combustion effect. The pipeline design will greatly affect the energy loss of the system, and accordingly affect the thermal power plant economic benefits and production environment. Three-dimensional numerical simulation is carried out for the pipeline internal flow field of a thermal power plant in this paper. Firstly three turbulence models were compared and the results showed that the SST k-ω model converged better and the energy losses predicted were closer to the experimental results. The influence of the pipeline design form on the flow characteristics are analysed, then the optimization designs of the pipeline are proposed according to the energy loss distribution of the flow field, in order to reduce energy loss and improve the efficiency of tunnel. The optimization plan turned out to be efficacious; about 36% of the pressure loss is reduced.

  6. Effect of flue gas recirculation on heat transfer in a supercritical circulating fluidized bed combustor

    Science.gov (United States)

    Błaszczuk, Artur

    2015-09-01

    This paper focuses on assessment of the effect of flue gas recirculation (FGR) on heat transfer behavior in 1296t/h supercritical coal-fired circulating fluidized bed (CFB) combustor. The performance test in supercritical CFB combustor with capacity 966 MWth was performed with the low level of flue gas recirculation rate 6.9% into furnace chamber, for 80% unit load at the bed pressure of 7.7 kPa and the ratio of secondary air to the primary air SA/PA = 0.33. Heat transfer behavior in a supercritical CFB furnace between the active heat transfer surfaces (membrane wall and superheater) and bed material has been analyzed for Geldart B particle with Sauter mean diameters of 0.219 and 0.246 mm. Bed material used in the heat transfer experiments had particle density of 2700 kg/m3. A mechanistic heat transfer model based on cluster renewal approach was used in this work. A heat transfer analysis of CFB combustion system with detailed consideration of bed-to-wall heat transfer coefficient distributions along furnace height is investigated. Heat transfer data for FGR test were compared with the data obtained for representative conditions without recycled flue gases back to the furnace through star-up burners.

  7. 双流化床生物质气化炉研究进展%Research progress of dual fluidized bed biomass gasifier

    Institute of Scientific and Technical Information of China (English)

    王晓明; 肖显斌; 刘吉; 陈旭娇; 覃吴; 董长青; 李文艳

    2015-01-01

    生物质是重要的清洁可再生能源,双流化床生物质气化技术是将低品位的生物质能转化成高品位氢能的重要途径。本文阐明了双流化床气化过程的基本原理,从燃气中氢气浓度、焦油含量和装置热效率等角度,介绍了双流化床生物质气化技术的早期探索和发展现状,对目前几种典型双流化床生物质气化炉的炉型设计及相关试验研究进行了分析和总结。指出内循环双流化床气化炉结构虽然简单紧凑,但是难以避免气化室和燃烧室之间的气体串混问题;而外循环流化床通过外置返料器很好地解决了气体串混问题。分析了不同气化室优化设计方案对提升燃气品质的理论依据及其优缺点。最后对双流化床生物质气化技术的发展进行了总结和展望,指出双流化床生物质气化制氢具有非常广阔的工业化应用和发展前景。%Biomass is an important part of clean and renewable energy sources. Dual fluidized bed biomass gasification is an important technology that transforms low-quality biomass into high-quality hydrogen. This paper illustrates the basic principles of the dual fluidized bed gasification process,and summarizes the early exploration and development status of the dual fluidized bed biomass gasification technology from the perspective of hydrogen concentration,tar content and device thermal efficiency. The furnace design and related experimental studies of several typical dual fluidized bed biomass gasifiers are analyzed and summarized. Internal circulating dual fluidized bed gasification furnace has simple and compact structure,but it is difficult to prevent gas leakage between gasification chamber and combustion chamber. External circulating dual fluidized bed with external recycle device resolves the problem of gas leakage. The theoretical basis,advantages and disadvantages of different optimized gasification chamber designs are analyzed. The

  8. Operation of a fluidized-bed bioreactor for denitrification

    Energy Technology Data Exchange (ETDEWEB)

    Hancher, C W; Taylor, P A; Napier, J M

    1978-01-01

    Two denitrification fluidized-bed bioreactors of the same length (i.e., 5 m) but with different inside diameters (i.e., 5 and 10 cm) have been operated on feed ranging in nitrate concentration from 200 to 2000 g/m/sup 3/; thus far, good agreement has been obtained. Two 10-cm-ID bioreactors operating in series have also been tested; the results are in accordance with predicted results based on the performance of a 5-cm-ID bioreactor. The overall denitrification rate in the dual 10-cm-ID bioreactor system was found to be 23 kg N(NO/sub 3//sup -/)/day-m/sup 3/ using feed with a nitrate concentration of 1800 g/m/sup 3/. Data obtained in operating-temperature tests indicate that the maximum denitrification rate is achieved between 22 and 30/sup 0/C. These data will form the basis of the design of our mobile pilot plant which consists of dual 20-cm-ID by 7.3-m-long bioreactors.

  9. The Physical Models of Cyclone Diplegs in Fluidized Beds

    Institute of Scientific and Technical Information of China (English)

    K.Smolders; D.Geldart; J.Baeyens

    2001-01-01

    In most industrial fluidization units, two- or three-stage cyclone systems are used to clean the product gases. To return the solids to the bed, these cyclones are fitted with diplegs. By pass of gas from the bed through the dipleg is partially overcome by the back pressure build-up in the dipleg and by adding a trickle valve at the bottom of the dipleg. Diplegs of primary cyclones, operating at a high solid loading behave differently from diplegs of secondary and tertiary cyclones which operate at low solid loading. Both types have been investigated by pressure drop measurements, visual observation and by measurements of the air flow rate flowing up the riser. The primary dipleg was also studied using electrical capacitance tomography. The results are reported hereafter and will give a first indication towards the right design of the dipleg and the selection of the trickle valve. The influence of gas flow in the dipleg on the conversion in a catalytic fluidized bed reactor is found to be negligible.

  10. FLUIDIZED BED STEAM REFORMING ENABLING ORGANIC HIGH LEVEL WASTE DISPOSAL

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M

    2008-05-09

    Waste streams planned for generation by the Global Nuclear Energy Partnership (GNEP) and existing radioactive High Level Waste (HLW) streams containing organic compounds such as the Tank 48H waste stream at Savannah River Site have completed simulant and radioactive testing, respectfully, by Savannah River National Laboratory (SRNL). GNEP waste streams will include up to 53 wt% organic compounds and nitrates up to 56 wt%. Decomposition of high nitrate streams requires reducing conditions, e.g. provided by organic additives such as sugar or coal, to reduce NOX in the off-gas to N2 to meet Clean Air Act (CAA) standards during processing. Thus, organics will be present during the waste form stabilization process regardless of the GNEP processes utilized and exists in some of the high level radioactive waste tanks at Savannah River Site and Hanford Tank Farms, e.g. organics in the feed or organics used for nitrate destruction. Waste streams containing high organic concentrations cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by pretreatment. The alternative waste stabilization pretreatment process of Fluidized Bed Steam Reforming (FBSR) operates at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). The FBSR process has been demonstrated on GNEP simulated waste and radioactive waste containing high organics from Tank 48H to convert organics to CAA compliant gases, create no secondary liquid waste streams and create a stable mineral waste form.

  11. Bubbles trapped in a fluidized bed: Trajectories and contact area

    Science.gov (United States)

    Poryles, Raphaël; Vidal, Valérie; Varas, Germán

    2016-03-01

    This work investigates the dynamics of bubbles in a confined, immersed granular layer submitted to an ascending gas flow. In the stationary regime, a central fluidized zone of parabolic shape is observed, and the bubbles follow different dynamics: either the bubbles are initially formed outside the fluidized zone and do not exhibit any significant motion over the experimental time or they are located inside the fluidized bed, where they are entrained downwards and are, finally, captured by the central air channel. The dependence of the air volume trapped inside the fluidized zone, the bubble size, and the three-phase contact area on the gas injection flow rate and grain diameter are quantified. We find that the volume fraction of air trapped inside the fluidized region is roughly constant and of the order of 2%-3% when the gas flow rate and the grain size are varied. Contrary to intuition, the gas-liquid-solid contact area, normalized by the air injected into the system, decreases when the flow rate is increased, which may have significant importance in industrial applications.

  12. Feasibility study on pliant media drying using fluidized bed dryer

    Science.gov (United States)

    Zakaria, J. H.; Zaid, M. H. H. M.; Batcha, M. F. M.; Asmuin, N.

    2015-09-01

    The usage of pliant media for blasting in surface preparation has gained substantial interest in various industries, particularly oil and gas. Being a clean technology, this relatively new method of surface preparation has become an alternative to conventional abrasive blasting technique which lowers fugitive emissions from blasting process and hence lowering risk to workers in the industry. Despite proven to be effective and cost efficient, the usage of pliant media in tropical climate poses a new challenge due to the torrential rain in the monsoon season. During rainy and wet conditions, the pliant media was literally soaked and the recovery rate of the pliant media for a continuous blasting becomes retarded. A viable technique for drying of this pliant media has then become imperative. The present study proposes to dry water laden pliant media in a Swirling Fluidized Bed Dryer (SFBD). In this preliminary study, three bed loadings of 1.7, 2.0 and 2.3 kg of pliant media was dried in the SfBd at 80°C, 90°C and 100°C. The experimental works revealed that the SFBD has shown excellent potential to dry the pliant media with a relatively short drying time. The behaviour of moisture ratio and drying rate against time are discussed. The findings conclude that the SFBD is a feasible technique for wet pliant media drying and can be extended for continuous processing system.

  13. Sulfide oxidation in fluidized bed bioreactor using nylon support material

    Institute of Scientific and Technical Information of China (English)

    Varsha Midha; M K Jha; Apurba Dey

    2012-01-01

    A continuous fluidized bed bioreactor(FBBR)with nylon support particles was used to treat synthetic sulfide wastewater at different hydraulic retention time of 25,50 and 75 min and upflow velocity of 14,17 and 20 m/hr.The effects of upflow velocity,hydraulic retention time and reactor operation time on sulfide oxidation rate were studied using statistical model.Mixed culture obtained from the activated sludge,taken from tannery effluent treatment plant,was used as a source for microorganisms.The diameter and density of the nylon particles were 2-3 mm and 1140 kg/m3,respectively.Experiments were carried out in the reactor at a temperature of(30± 2)℃,at a fixed bed height of 16 cm after the formation of biofilm on the surface of support particles.Biofilm thickness reached(42±3)μm after 15 days from reactor start-up.The sulfide oxidation,sulfate and sulfur formation is examined at all hydraulic retention times and upflow velocities.The results indicated that almost 90%-92% sulfide oxidation was achieved at all hydraulic retention times.Statistical model could explain 94% of the variability and analysis of variance showed that upflow velocity and hydraulic retention time slightly affected the sulfide oxidation rate.The highest sulfide oxidation of 92% with 70% sulfur was obtained at hydraulic retention time of 75 min and upflow velocity of 14 m/hr.

  14. Sulfide oxidation in fluidized bed bioreactor using nylon support material.

    Science.gov (United States)

    Midha, Varsha; Jha, M K; Dey, Apurba

    2012-01-01

    A continuous fluidized bed bioreactor (FBBR) with nylon support particles was used to treat synthetic sulfide wastewater at different hydraulic retention time of 25, 50 and 75 min and upflow velocity of 14, 17 and 20 m/hr. The effects of upflow velocity, hydraulic retention time and reactor operation time on sulfide oxidation rate were studied using statistical model. Mixed culture obtained from the activated sludge, taken from tannery effluent treatment plant, was used as a source for microorganisms. The diameter and density of the nylon particles were 2-3 mm and 1140 kg/m3, respectively. Experiments were carried out in the reactor at a temperature of (30 +/- 2) degrees C, at a fixed bed height of 16 cm after the formation of biofilm on the surface of support particles. Biofilm thickness reached (42 +/- 3) microm after 15 days from reactor start-up. The sulfide oxidation, sulfate and sulfur formation is examined at all hydraulic retention times and upflow velocities. The results indicated that almost 90%-92% sulfide oxidation was achieved at all hydraulic retention times. Statistical model could explain 94% of the variability and analysis of variance showed that upflow velocity and hydraulic retention time slightly affected the sulfide oxidation rate. The highest sulfide oxidation of 92% with 70% sulfur was obtained at hydraulic retention time of 75 min and upflow velocity of 14 m/hr.

  15. Pneumatic jet-control valve for dual circulating fluidized beds

    Science.gov (United States)

    Jiang, Haibo; Dong, Pengfei; Zhu, Zhiping; Wang, Kun; Zhang, Yukui; Lu, Qinggang

    2015-11-01

    With the rapid development of circulating fluidized bed (CFB) technology in different fields, the disadvantages of conventional non-mechanical valves are becoming more apparent, and they are not suitable to be used in complex CFB systems. In this paper, a novel non-mechanical valve named the jet-control valve is presented which can avoid the fluidization of solid particles. The feasibility and performance characteristics of the new valve are investigated with a cold-model dual CFB. The results show that compared with the conventional non-mechanical valve, the jet-control valve can transfer solid particles steadily over a larger range, prevent artesian flow, and improve the leakage characteristics. The effects of the operating parameters and structural parameters on the minimum aeration velocity, solid flow rate, and maximum solid flow rate are studied. A two-valve model is proposed to explain the transport capacity of the valve for one jet pipe. A semi-theoretical expression is obtained based on the experimental data with a maximum deviation of 30% providing useful guide for scaling-up the design.

  16. Estuarine nitrification: A naturally occurring fluidized bed reaction?

    Science.gov (United States)

    Owens, N. J. P.

    1986-01-01

    The rates of nitrification in the water column of the Tamar river estuary, southwest England have been measured using the incorporation of H 14CO 3 in samples with and without the inhibitor of nitrification, 2-chloro-6-(trichloromethyl) pyridine ( N-Serve). N-Serve proved successful in totally inhibiting NH 4-oxidizing bacteria but the activity of NO 2-oxidizing bacteria was inhibited by only 30%; other organisms were only slightly affected. Measurements of the nitrification rate made over the entire salinity range of the estuary (0-30‰) showed that maximum nitrification always coincided with the turbidity maximum. The field data suggest that the organisms responsible for nitrification were associated with periodically resuspended particulate material and that the turbidity maximum acts in a manner similar to a fluidized bed reactor. A dispersion model has been used to demonstrate that nitrification in the water column can account for 100% of the NO 2 maximum which is apparent down estuary from the turbidity maximum.

  17. Circulating fluidized bed biological reactor for nutrients removal

    Institute of Scientific and Technical Information of China (English)

    Yubo CUI; Hongbo LIU; Chunxue BAI

    2008-01-01

    A new biological nitrogen removal process, which is named herein "The circulating fluidized bed bio-reactor (CFBBR)", was developed for simultaneous removal of nitrogen and organic matter. This process was composed of an anaerobic bed (Riser), aerobic bed (Downer) and connecting device. Influent and nitrified liquid from the aerobic bed enters the anaerobic bed from the bottom of the anaerobic bed, completing the removal of nitrogen and organic matter. The system performance under the conditions of different inflow loadings and nitrified liquid recirculation rates ranging from 200% to 600% was examined. From a technical and economic point of view, the optimum nitrified liquid recirculation rate was 400%. With a shortest total retention time of 2.5 h (0.8 h in the anaerobic bed and 1.5 h in the aerobic bed) and a nitrified liquid recir-culation rate of 400% based on the intluent flow rate, the average removal efficiencies of total nitrogen (TN) and sol-uble chemical oxygen demand (SCOD) were found to be 88% and 95%, respectively. The average effluent concentra-tions of TN and SCOD were 3.5 mg/L and 16 mg/L, respectively. The volatile suspended solid (VSS) concentra-tion, nitrification rate and denitrification rate in the system were less than 1.0 g/L, 0.026-0.1 g NH4+-N/g VSS.d, and 0.016-0.074 g NOx--N/g VSS.d, respectively.

  18. Treating exhaust gas from a pressurized fluidized bed reaction system

    Science.gov (United States)

    Isaksson, Juhani; Koskinen, Jari

    1995-01-01

    Hot gases from a pressurized