WorldWideScience

Sample records for atmospheric explosions

  1. Instrument safety in explosive atmospheres.

    Science.gov (United States)

    Bossert, J A

    1975-01-01

    The current "Energy Crisis" has dramatically increased our potential need for coal, the worlds most abundant fossil fuel. This will probably lead to a greater use of automation and instrumentation in the coal mining industry. The presence of methane in coal mines and in the coal itself plus the presence of coal dust, both of which can form an explosive atmosphere in air, means that the possibility of a gas or coal dust ignition must be considered when designing, purchasing and installing new equipment in this industry. In addition, many metallurgical processes involve the use of potentially explosive substances against which similar safety precautions must be taken. This paper outlines the various methods of protection currently in use and proposed for electrical instruments in explosive atmospheres, with particular emphasis on the work of the International Electrotechnical Commission.

  2. "Explosively growing" vortices of unstably stratified atmosphere

    Science.gov (United States)

    Onishchenko, O. G.; Horton, W.; Pokhotelov, O. A.; Fedun, V.

    2016-10-01

    A new type of "explosively growing" vortex structure is investigated theoretically in the framework of ideal fluid hydrodynamics. It is shown that vortex structures may arise in convectively unstable atmospheric layers containing background vorticity. From an exact analytical vortex solution the vertical vorticity structure and toroidal speed are derived and analyzed. The assumption that vorticity is constant with height leads to a solution that grows explosively when the flow is inviscid. The results shown are in agreement with observations and laboratory experiments

  3. Explosion characteristics of flammable organic vapors in nitrous oxide atmosphere.

    Science.gov (United States)

    Koshiba, Yusuke; Takigawa, Tomihisa; Matsuoka, Yusaku; Ohtani, Hideo

    2010-11-15

    Despite unexpected explosion accidents caused by nitrous oxide have occurred, few systematic studies have been reported on explosion characteristics of flammable gases in nitrous oxide atmosphere compared to those in air or oxygen. The objective of this paper is to characterize explosion properties of mixtures of n-pentane, diethyl ether, diethylamine, or n-butyraldehyde with nitrous oxide and nitrogen using three parameters: explosion limit, peak explosion pressure, and time to the peak explosion pressure. Then, similar mixtures of n-pentane, diethyl ether, diethylamine, or n-butyraldehyde with oxygen and nitrogen were prepared to compare their explosion characteristics with the mixtures containing nitrous oxide. The explosion experiments were performed in a cylindrical vessel at atmospheric pressure and room temperature. The measurements showed that explosion ranges of the mixtures containing nitrous oxide were narrow compared to those of the mixtures containing oxygen. On the other hand, the maximum explosion pressures of the mixtures containing nitrous oxide were higher than those of the mixtures containing oxygen. Moreover, our experiments revealed that these mixtures differed in equivalence ratios at which the maximum explosion pressures were observed: the pressures of the mixtures containing nitrous oxide were observed at stoichiometry; in contrast, those of the mixtures containing oxygen were found at fuel-rich area. Chemical equilibrium calculations confirmed these behaviors.

  4. ATEX explosive atmospheres : risk assessment, control and compliance

    CERN Document Server

    Jespen, Torben

    2016-01-01

    This book details how safety (i.e. the absence of unacceptable risks) is ensured in areas where potentially explosive atmospheres (ATEX) can arise. The book also offers readers essential information on how to comply with the newest (April 2016) EU legislation when the presence of ATEX cannot be avoided. By presenting general guidance on issues arising out of the EU ATEX legislation – especially on zone classification, explosion risk assessment, equipment categorization, Ex-marking and related technical/chemical aspects – the book provides equipment manufacturers, responsible employers, and others with the essential knowledge they need to be able to understand the different – and often complicated – aspects of ATEX and to implement the necessary safety precautions. As such, it represents a valuable resource for all those concerned with maintaining high levels of safety in ATEX environments.

  5. North Atlantic explosive cyclones and large scale atmospheric variability modes

    Science.gov (United States)

    Liberato, Margarida L. R.

    2015-04-01

    Extreme windstorms are one of the major natural catastrophes in the extratropics, one of the most costly natural hazards in Europe and are responsible for substantial economic damages and even fatalities. During the last decades Europe witnessed major damage from winter storms such as Lothar (December 1999), Kyrill (January 2007), Klaus (January 2009), Xynthia (February 2010), Gong (January 2013) and Stephanie (February 2014) which exhibited uncommon characteristics. In fact, most of these storms crossed the Atlantic in direction of Europe experiencing an explosive development at unusual lower latitudes along the edge of the dominant North Atlantic storm track and reaching Iberia with an uncommon intensity (Liberato et al., 2011; 2013; Liberato 2014). Results show that the explosive cyclogenesis process of most of these storms at such low latitudes is driven by: (i) the southerly displacement of a very strong polar jet stream; and (ii) the presence of an atmospheric river (AR), that is, by a (sub)tropical moisture export over the western and central (sub)tropical Atlantic which converges into the cyclogenesis region and then moves along with the storm towards Iberia. Previous studies have pointed to a link between the North Atlantic Oscillation (NAO) and intense European windstorms. On the other hand, the NAO exerts a decisive control on the average latitudinal location of the jet stream over the North Atlantic basin (Woollings et al. 2010). In this work the link between North Atlantic explosive cyclogenesis, atmospheric rivers and large scale atmospheric variability modes is reviewed and discussed. Liberato MLR (2014) The 19 January 2013 windstorm over the north Atlantic: Large-scale dynamics and impacts on Iberia. Weather and Climate Extremes, 5-6, 16-28. doi: 10.1016/j.wace.2014.06.002 Liberato MRL, Pinto JG, Trigo IF, Trigo RM. (2011) Klaus - an exceptional winter storm over Northern Iberia and Southern France. Weather 66:330-334. doi:10.1002/wea.755 Liberato

  6. EXPLOSIVE ABSORPTION EFFECT OF POWER CO2 LASER BEAM IN ATMOSPHERE

    OpenAIRE

    Zakharov, V.; Shmelev, V.; Nesterenko, A.

    1991-01-01

    The interaction of a wide beam of intense 10.6 µm and 9.4 µm laser radiation with atmospheric CO2 is studied. The threshold spectroscopic effect of explosive absorption have been obtained. In this effect the absorption coefficient of the atmosphere increases sharply owing to strong self-heating ([MATH] 700-1000 K) of the beam channel.

  7. Safety of atmospheric storage tanks during accidental explosions

    OpenAIRE

    Noret, E.; Prod'Homme, Gaëtan; Yalamas, Thierry; Reimeringer, Mathieu; Hanus, Jean-Luc; Duong, Duy-Hung

    2012-01-01

    International audience; The occurrence of a chain reaction from blast on atmospheric storage tanks in oil and chemical facilities is hard to predict. The current French practice for SEVESO facilities ignores projectiles and assumes a critical peak overpressure value observed from accident data. This method could lead to conservative or dangerous assessments. This study presents various simple mechanical models to facilitate quick effective assessment of risk analysis, the results of which are...

  8. Explosion-protected blowers for removing explosive atmospheres from zone 0; Explosionsgeschuetzte Ventilatoren fuer die Foerderung von explosionsfaehiger Atmosphaere aus Zone 0

    Energy Technology Data Exchange (ETDEWEB)

    Frobese, D.H. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany)

    2006-09-15

    Blowers for use in areas with high explosion hazards and/or for removal of explosive fluids are subject to directive 94/9/EG and must be explosion-protected according to Appendix II of that directive. So far, Germany only had VDMA specification leaflet 24169, which lists requirements on blowers for use in zones 1, 2, or 11. In the meantime, prEN 14986 has been elaborated which lists speciications for construction and testing of explosion-protected blowers. It applies to blower categories 1G, 2G or 3G, i.e. blowers for zones 0, 1, 2 or for explosive atmospheres in zones 1 or 2. It also applies to blowers of categories 2D and 3D, i.e. for transport of and/or use in areas with explosive dust/air mixtures of zones 21 and 22 but not air/dust mixtures of zone 20. The standard enables producers to assess the ignition hazard of an explosion-protected lower and lists constructional requirements and testing requirements. This enables the producer to construct explosion-proof blowers. The standard was intended for publication in the first half of 2006. (orig.)

  9. Atmospheric pressure chemical ionization of explosives using alternating current corona discharge ion source.

    Science.gov (United States)

    Usmanov, D T; Chen, L C; Yu, Z; Yamabe, S; Sakaki, S; Hiraoka, K

    2015-04-01

    The high-sensitive detection of explosives is of great importance for social security and safety. In this work, the ion source for atmospheric pressure chemical ionization/mass spectrometry using alternating current corona discharge was newly designed for the analysis of explosives. An electromolded fine capillary with 115 µm inner diameter and 12 mm long was used for the inlet of the mass spectrometer. The flow rate of air through this capillary was 41 ml/min. Stable corona discharge could be maintained with the position of the discharge needle tip as close as 1 mm to the inlet capillary without causing the arc discharge. Explosives dissolved in 0.5 µl methanol were injected to the ion source. The limits of detection for five explosives with 50 pg or lower were achieved. In the ion/molecule reactions of trinitrotoluene (TNT), the discharge products of NOx (-) (x = 2,3), O3 and HNO3 originating from plasma-excited air were suggested to contribute to the formation of [TNT - H](-) (m/z 226), [TNT - NO](-) (m/z 197) and [TNT - NO + HNO3 ](-) (m/z 260), respectively. Formation processes of these ions were traced by density functional theory calculations. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Inhomogeneous cloud coverage through the Coulomb explosion of dust in substellar atmospheres

    CERN Document Server

    Stark, Craig R; Diver, Declan A

    2015-01-01

    Recent observations of brown dwarf spectroscopic variability in the infrared infer the presence of patchy cloud cover. This paper proposes a mechanism for producing inhomogeneous cloud coverage due to the depletion of cloud particles through the Coulomb explosion of dust in atmospheric plasma regions. Charged dust grains Coulomb-explode when the electrostatic stress of the grain exceeds its mechanical tensile stress, which results in grains below a critical radius $aexplosion of dust clouds in substellar atmospheres, the effect on the dust particle size distribution function, and the resulting radiative properties of the atmospheric regions. Our results show that for an atmospheric plasma region with an electron temperature of $T_{e}=10$~eV ($\\approx10^{5}$~K), the critical grain radius varies from $10^{-7}$ to $10^{-4}$~cm, depending on the grains' tensile strength. Higher critical radii up to $10^{-3}$~cm ...

  11. Gas blower for use in potentially explosive atmosphere; Ventilatoren fuer den Einsatz in explosionsgefaehrdeten Bereichen

    Energy Technology Data Exchange (ETDEWEB)

    Frobese, D.-H.; Waldmann, R.

    1996-12-31

    The extension of emission control requirements during the last years lead to an increasing demand for blowers suited for the transport of explosive waste gas. Concerning hazardous explosive atmosphere which is classified as zone 1 or zone 2, the ``VDMA-Einheitsblaetter`` give guidance to appropriate constructional requirements for blowers. However, for zone 0-applications, there do not exist fixed construction requirements up til now. In the range of validity of the ``Verordnung fuer brennbare Fluessigkeiten - VbF`` a type approval is requested for blowers to be used for zone 0. Equipment intended for use in potentially explosive atmospheres will fall under the new Directive 94/9/EC (explosion protection directive) in future; equipment to be used for zone 0 will need an EC-type-examination certificate which shall be issued by a notified body in accordance to the Directive. (orig.) [Deutsch] Die zunehmende Erfassung von Anlagen durch emissionsrechtliche Anforderungen hat in den letzten Jahren zu einem immer groesseren Bedarf an Ventilatoren zur Foerderung von explosionsfaehiger Abluft gefuehrt. Fuer den Einsatz in explosionsgefaehrdeten Bereichen der Zonen 1 und 2 gelten VDMA-Einheitsblaetter, nach denen Ventilatoren konstruiert werden koennen; fuer den Einsatz im Bereich der Zone 0 hingegen existieren bislang keine festgelegten Konstruktionsanforderungen. Im Geltungsbereich der Verordnung ueber brennbare Fluessigkeiten (VbF) wird fuer den Einsatz in Zone 0 eine Bauartzulassung gefordert. Zukuenftig unterliegen Geraete, die in explosionsgefaehrdeten Bereichen eingesetzt werden, der neuen EG-Richtlinie 94/9/EG (Explosionsschutzrichtlinie), wonach fuer Geraete, die in Zone 0 eingesetzt werden, eine Baumusterpruefbescheinigung einer benannten Zertifizierstelle erforderlich ist. (orig.)

  12. Categorisation of nuclear explosions from legitimate radioxenon sources with atmospheric transport modelling

    Science.gov (United States)

    Schoeppner, M.; Postelt, F.; Kalinowski, M.; Plastino, W.

    2012-04-01

    Radioxenon is produced during nuclear explosions and due to its high fission ratio during the reaction and its noble gas character the isotopes can be detected remote from the location of the explosion. Therefore it is used by the Comprehensive Nuclear-Test-Ban Organization (CTBTO) as an indicator for the nuclear character of an explosion and is monitored with the International Monitoring System (IMS). The concentration of radioxenon in the air is continuously measured by multiple stations worldwide and is in need of an automatic categorization scheme in order to highlight signals of interest and to sort out signals that can be explained by legitimate sources. The dispersion and transport of radioxenon emissions through the atmosphere can be simulated with atmospheric transport modelling. Many legitimate sources of radioxenon exist: Nuclear power plants and isotope production facilities are mainly responsible for the worldwide background. The characterisation of this background is an important prerequisite to discriminate nuclear explosion signals against the background. It has been discovered that the few existing isotope production facilities are the major contributors to the background, each with emission strengths in the order of magnitude or more than all nuclear power plants together. Therefore, especially the characterization of these few, but strong, emitters can improve the quality of the signal prediction. Since the location of such an emitter is usually known the source-receptor sensitivity matrices can be utilized together with measured radioxenon concentrations from IMS stations in order to deduct information about the time dependent emissions from the strong emitter. An automatic method to determine an approximated, time dependent source term of an emitter with known location has been developed and is presented. This is a potentially valid tool for the categorization of radioxenon samples, because it can be used to assess whether the measured

  13. Study Of The Fundamental Physical Principles in Atmospheric Modeling Based On Identification Of Atmosphere - Climate Control Factors: Bromine Explosion At The Polar Arctic Sunrise

    OpenAIRE

    Iudin, M.

    2007-01-01

    We attempt is to provide accumulated evidence and qualitative understanding of the associated atmospheric phenomena of the Arctic bromine explosion and their role in the functioning of the biotic Earth. We rationalize the empirical expression of the bromine influx into atmospheric boundary layer and calculate total amounts of the tropospheric BrO and Bry of the Arctic origin. Based on the quantities and partitioning of the reactive bromine species, we estimate the biogeochemical parametric co...

  14. Model for ground motion and atmospheric overpressure due to underground nuclear explosion

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.; Walker, J.J.

    1980-10-01

    A physical model is proposed to describe the ground motion pattern resulting from an underground nulear explosion in an idealized homogeneous medium. Irregular behaviors in the observed ground motion are assumed to be perturbations caused by the local inhomogeneity of the ground medium. Our model correlates the ground motions at any point in the spalled zone to the initial acceleration pulse at the ground zero. Interestingly, the model predicts that the ground motion first comes to a stop at a definite radius about the ground zero, and the region expands both outward and inward as time goes on. We believe that this result is closely related to a phenomenon observed at NTS. In the far field approximation, we also calculate the overpressure in the lower atmosphere generated by the ground motion. We demonstrate that the irregular component of the ground motion does not affect the overpressure history in any significant way. Consequently the model ground motion can be used as a good approximation in generating the atmospheric overpressure.

  15. Atmospheric Pressure Chemical Ionization Sources Used in The Detection of Explosives by Ion Mobility Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Waltman, Melanie J. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    2010-05-01

    Explosives detection is a necessary and wide spread field of research. From large shipping containers to airline luggage, numerous items are tested for explosives every day. In the area of trace explosives detection, ion mobility spectrometry (IMS) is the technique employed most often because it is a quick, simple, and accurate way to test many items in a short amount of time. Detection by IMS is based on the difference in drift times of product ions through the drift region of an IMS instrument. The product ions are created when the explosive compounds, introduced to the instrument, are chemically ionized through interactions with the reactant ions. The identity of the reactant ions determines the outcomes of the ionization process. This research investigated the reactant ions created by various ionization sources and looked into ways to manipulate the chemistry occurring in the sources.

  16. Hand-held portable desorption atmospheric pressure chemical ionization ion source for in situ analysis of nitroaromatic explosives.

    Science.gov (United States)

    Jjunju, Fred P M; Maher, Simon; Li, Anyin; Syed, Sarfaraz U; Smith, Barry; Heeren, Ron M A; Taylor, Stephen; Cooks, R Graham

    2015-10-06

    A novel, lightweight (0.6 kg), solvent- and gas-cylinder-free, hand-held ion source based on desorption atmospheric pressure chemical ionization has been developed and deployed for the analysis of nitroaromatic explosives on surfaces in open air, offering portability for in-field analysis. A small, inexpensive, rechargeable lithium polymer battery was used to power the custom-designed circuitry within the device, which generates up to ±5 kV dc voltage to ignite a corona discharge plasma in air for up to 12 h of continuous operation, and allowing positive- and negative-ion mass spectrometry. The generated plasma is pneumatically transported to the surface to be interrogated by ambient air at a rate of 1-3.5 L/min, compressed using a small on-board diaphragm pump. The plasma source allows liquid or solid samples to be examined almost instantaneously without any sample preparation in the open environment. The advantages of low carrier gas and low power consumption (<6 W), as well as zero solvent usage, have aided in developing the field-ready, hand-held device for trigger-based, "near-real-time" sampling/ionization. Individual nitroaromatic explosives (such as 2,4,6-trinitrotoluene) can be easily detected in amounts as low as 5.8 pg with a linear dynamic range of at least 10 (10-100 pg), a relative standard deviation of ca. 7%, and an R(2) value of 0.9986. Direct detection of several nitroaromatic compounds in a complex mixture without prior sample preparation is demonstrated, and their identities are confirmed by tandem mass spectrometry fragmentation patterns.

  17. Application of Explosion-proof Electric Resistance Heating Device in Explosive Atmosphere%浅谈防爆电阻加热装置的应用

    Institute of Scientific and Technical Information of China (English)

    殷红

    2014-01-01

    从防爆电阻加热装置的防爆原理出发,简要介绍了隔爆型和增安型电阻加热装置的应用。%It gives a brief introduction of the application of Exd and Exe resistance heating de-vice based on the explosion -proof theories .

  18. Observations of the smoke plume from the December 2005 explosions and prolonged oil fire at Buncefield oil depot, southern UK and associated atmospheric changes

    Science.gov (United States)

    Mather, T. A.; Harrison, R. G.; Tsanev, V. I.; Pyle, D. M.; Karumudi, M. L.; Bennett, A. J.; Sawyer, G. M.; Highwood, E. J.

    2006-12-01

    The explosions and subsequent fire at the Buncefield oil depot in December 2005 afforded a rare opportunity to study the atmospheric consequences of a major oil fire at close range, using ground-based remote sensing instruments. The fire burned 5.6 × 107kg of refined fuel (unleaded petrol, aviation fuel and diesel) over 3 days and produced a plume of smoke that extended over much of southern England. Near-source measurements suggest that plume particles were ~50% black carbon (BC) with refractive index 1.73-0.42i, effective radius (Reff) 0.45-0.85μm and mass loading ~2000μg.m-3. About 50km downwind, particles were ~60-75% BC with refractive index between 1.80-0.52i and 1.89-0.69i, Reff ~1.0μm and mass loadings 320-780μg.m-3. Number distributions were almost all monomodal with peak at rgas concentrations of SO2 (70ppb), NO2 (140ppb), HONO (20ppb), HCHO (160ppb) and CS2 (40ppb). We estimate that the Buncefield event emitted totals of ~6.3, 7.2 and 5.5Mg of SO2, HCHO and CS2 respectively; along with ~5500Mg of BC. Our measurements are consistent with others of the Buncefield plume, and with studies of the 1991 Kuwaiti oil-fire plumes; differences from the latter reflecting in part a contrast in source composition (refined fuels vs. crude oils) leading to important potential differences in atmospheric impacts. Measurements made as the plume passed overhead ~50km downwind showed a reduced solar flux reaching the surface but little effect on the atmospheric potential gradient. The wind speed data from the day of the explosion hints at a possible explosion signature.

  19. Estimates of total ash content from 2006 and 2009 explosion events at Bezymianny volcano with use of a regional atmospheric modeling system

    Science.gov (United States)

    Moiseenko, K. B.; Malik, N. A.

    2014-01-01

    The December 24, 2006, and December 16, 2009, strong explosion events at Bezymianny Volcano (Kamchatka Peninsula) were accompanied by extensive ash-falls in proximal and medium-distal area (events and quantify effects of atmospheric dispersal, gravitational settling, and particle aggregation on the observed ash-fall deposit patterns. It was found that the orography-induced atmospheric disturbances provided first-order influence on ash dispersal regime in the events owing to enhanced turbulence rates in a free troposphere above mountains and low-level airflows generated by mesoscale pressure perturbations. A total mass of ash from these eruptions is inverted based on grain-size sample data and model-calculated Green's function for atmospheric transport with use of a multiple regression approach. We demonstrate that in the absence of precise data on individual and collective settling rates the proposed inversion technique, which explicitly constrains fall velocity spectrum within individual sieve classes and aggregated modes, provides more reliable estimate for total erupted mass compared to procedures employing constant shape factor or prescribed settling rates within the framework of a simple linear regression model.

  20. Integration of measurements with atmospheric dispersion models: Source term estimation for dispersal of (239)Pu due to non-nuclear detonation of high explosive

    Science.gov (United States)

    Edwards, L. L.; Harvey, T. F.; Freis, R. P.; Pitovranov, S. E.; Chernokozhin, E. V.

    1992-10-01

    The accuracy associated with assessing the environmental consequences of an accidental release of radioactivity is highly dependent on our knowledge of the source term characteristics and, in the case when the radioactivity is condensed on particles, the particle size distribution, all of which are generally poorly known. This paper reports on the development of a numerical technique that integrates the radiological measurements with atmospheric dispersion modeling. This results in a more accurate particle-size distribution and particle injection height estimation when compared with measurements of high explosive dispersal of (239)Pu. The estimation model is based on a non-linear least squares regression scheme coupled with the ARAC three-dimensional atmospheric dispersion models. The viability of the approach is evaluated by estimation of ADPIC model input parameters such as the ADPIC particle size mean aerodynamic diameter, the geometric standard deviation, and largest size. Additionally we estimate an optimal 'coupling coefficient' between the particles and an explosive cloud rise model. The experimental data are taken from the Clean Slate 1 field experiment conducted during 1963 at the Tonopah Test Range in Nevada. The regression technique optimizes the agreement between the measured and model predicted concentrations of (239)Pu by varying the model input parameters within their respective ranges of uncertainties. The technique generally estimated the measured concentrations within a factor of 1.5, with the worst estimate being within a factor of 5, very good in view of the complexity of the concentration measurements, the uncertainties associated with the meteorological data, and the limitations of the models. The best fit also suggest a smaller mean diameter and a smaller geometric standard deviation on the particle size as well as a slightly weaker particle to cloud coupling than previously reported.

  1. 不同气氛对TATB基含铝炸药爆热的影响%Detonation Heat of TATB-based Aluminized Explosive in Different Atmospheres

    Institute of Scientific and Technical Information of China (English)

    曹威; 郭向利; 段英良; 昝继超; 韩勇; 刘世俊

    2016-01-01

    [ ABSTRACT] To measure the heat generation of triaminotrinitrobenzene( TATB)-based aluminized explosive in different atmospheres, the exotherm of pressed charge in vacuum, 0. 1 MPa nitrogen, 0. 1 MPa air, 0. 1 MPa oxygen and 1. 5 MPa oxygen were measured by adiabatic calorimetric bomb and the energy release rule was studied. Then the solid explosion products were detected by X-ray diffraction ( XRD) . Results show that the heat output of TATB-based aluminized explosive increased gradually in the sequence of vacuum, 0. 1 MPa nitrogen, 0. 1 MPa air, 0. 1 MPa oxygen and 1. 5 MPa oxygen;the increase of atmospheric pressure results in the increase of heat output, which is shown that the heat output in 0. 1 MPa nitrogen increased by 15. 7% than that in vacuum; and the heat output increases with the increase of oxygen amount in atmosphere, which is verified by the conclusion that the heat output in 0. 1 MPa air was 7. 8% larger than that in 0. 1 MPa nitrogen, the heat output in 0. 1 MPa oxygen was 49. 7% higher than that in 0. 1 MPa nitrogen, and the heat output in 1. 5 MPa oxygen was 146. 1% higher than that in 0. 1 MPa nitrogen. In the case that the heat output of TATB-based aluminized explosive was measured in oxygen-rich atmosphere, the measured heat output was close to the combustion heat, and the XRD of the explosion products verified that the aluminum powders were almost completely oxidized. Meanwhile, AlN was not detected in 0. 1MPa nitrogen. It provides a method to measure the heat output of aluminized explosives and analyze the existing form of aluminum element in explosion products.%为了测定三氨基三硝基苯( TATB)基含铝炸药在不同气氛中的爆热,使用绝热式量热弹对其压装药在真空、0.1 MPa氮气、0.1 MPa空气、0.1 MPa氧气和1.5 MPa氧气条件下的爆热进行了测量,研究了其能量释放规律,并使用X射线衍射(XRD)对固相产物成分进行了分析。结果表明:TATB基含铝炸药在真空、0.1 MPa

  2. Gas Explosions Mitigation by Ducted Venting

    OpenAIRE

    2007-01-01

    The mitigation of effects of gas and dust explosions within industrial equipment is effective if venting the combustion products to safe location. The presence of relief duct is however likely to increase the severity of the explosion with respect to equipment vented to open atmosphere, due to secondary explosions occurring in the initial sections of duct, frictional drag and inertia of the gas column, acoustic and Helmholtz oscillations. The weights of these phenomena on explosion e...

  3. Underground Explosions

    Science.gov (United States)

    2015-09-09

    continuous media including, thermal effects, electromagnetic and nuclear radiation, as well as the formation of different types of waves (shock...front’, sometimes called “hydrodynamic separation” together with reconstruction of the hydrodynamic flow due to formation of thermal boundary layer...of the charge; or pre-explosion excavation; or some other techniques. For loosening, dilatant , or retarc-producing explosions, the height of the

  4. Explosive Start

    Institute of Scientific and Technical Information of China (English)

    FRANCISCO; LITTLE

    2006-01-01

    I ducked involuntarily as the first set of explosions went off and made my way in double time to the street corner, where I had spotted an arcade that could be used for shelter. Running quickly in a crouched, military maneuver while inhaling gunpowder fumes, I was totally oblivious to the laughter and head-shaking coming

  5. Niche explosion.

    Science.gov (United States)

    Normark, Benjamin B; Johnson, Norman A

    2011-05-01

    The following syndrome of features occurs in several groups of phytophagous insects: (1) wingless females, (2) dispersal by larvae, (3) woody hosts, (4) extreme polyphagy, (5) high abundance, resulting in status as economic pests, (6) invasiveness, and (7) obligate parthenogenesis in some populations. If extreme polyphagy is defined as feeding on 20 or more families of hostplants, this syndrome is found convergently in several species of bagworm moths, tussock moths, root weevils, and 5 families of scale insects. We hypothesize that extreme polyphagy in these taxa results from "niche explosion", a positive feedback loop connecting large population size to broad host range. The niche explosion has a demographic component (sometimes called the "amplification effect" in studies of pathogens) as well as a population-genetic component, due mainly to the increased effectiveness of natural selection in larger populations. The frequent origins of parthenogenesis in extreme polyphages are, in our interpretation, a consequence of this increased effectiveness of natural selection and consequent reduced importance of sexuality. The niche explosion hypothesis makes detailed predictions about the comparative genomics and population genetics of extreme polyphages and related specialists. It has a number of potentially important implications, including an explanation for the lack of observed trade-offs between generalists and specialists, a re-interpretation of the ecological correlates of parthenogenesis, and a general expectation that Malthusian population explosions may be amplified by Darwinian effects.

  6. 30 CFR 77.304 - Explosion release vents.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosion release vents. 77.304 Section 77.304... Dryers § 77.304 Explosion release vents. Drying chambers, dry-dust collectors, ductwork connecting dryers... explosion release vents which open directly to the outside atmosphere, and all such vents shall be:...

  7. Numerical computations of explosions in gases

    Science.gov (United States)

    Chushkin, P. I.; Shurshalov, L. V.

    The development and the present-day state of the problem on numerical computations of explosions in gases are reviewed. In the first part, different one-dimensional cases are discussed: point explosion with counterpressure, blast-like expansion of volumes filled with a compressed hot gas, blast of charges of condensed explosive, explosion processes in real high-temperature air, in combustible detonating media and under action of other physical-chemical factors. In the second part devoted to two-dimensional flows, we consider explosion in the non-homogeneous atmosphere, blast of asymmetric charges, detonation in gas, explosion modelling of some cosmic phenomena (solar flares, the Tunguska meteorite). The survey includes about 110 works beginning with the first publications on the subject.

  8. Explosive Pleuritis

    Directory of Open Access Journals (Sweden)

    Jasdeep K Sharma

    2001-01-01

    Full Text Available The objective of the present paper is to describe the clinical and computed tomography features of 'explosive pleuritis', an entity first named by Braman and Donat in 1986, and to propose a case definition. A case report of a previously healthy, 45-year-old man admitted to hospital with acute onset pleuritic chest pain is presented. The patient arrived at the emergency room at 15:00 in mild respiratory distress; the initial chest x-ray revealed a small right lower lobe effusion. The subsequent clinical course in hospital was dramatic. Within 18 h of admission, he developed severe respiratory distress with oxygen desaturation to 83% on room air and dullness of the right lung field. A repeat chest x-ray, taken the morning after admission, revealed complete opacification of the right hemithorax. A computed tomography scan of the thorax demonstrated a massive pleural effusion with compression of pulmonary tissue and mediastinal shift. Pleural fluid biochemical analysis revealed the following concentrations: glucose 3.5 mmol/L, lactate dehydrogenase 1550 U/L, protein 56.98 g/L, amylase 68 U/L and white blood cell count 600 cells/mL. The pleural fluid cultures demonstrated light growth of coagulase-negative staphylococcus and viridans streptococcus, and very light growth of Candida albicans. Cytology was negative for malignant cells. Thoracotomy was performed, which demonstrated a loculated parapneumonic effusion that required decortication. The patient responded favourably to the empirical administration of intravenous levofloxacin and ceftriaxone, and conservative surgical methods in the management of the empyema. This report also discusses the patient's rapidly progressing pleural effusion and offers a potential case definition for explosive pleuritis. Explosive pleuritis is a medical emergency defined by the rapid development of a pleural effusion involving more than 90% of the hemithorax over 24 h, which causes compression of pulmonary tissue and

  9. Explosive Pleuritis

    Directory of Open Access Journals (Sweden)

    Satish Kumar

    2012-01-01

    Full Text Available Pleural effusions associated with pneumonia (parapneumonic effusions are one of the most common causes of exudative pleural effusions in the world. Approximately 20 to 40% of patients hospitalized with pneumonia will have an accompanying pleural effusion. The term 'Explosive pleuritis' was originally described by Braman and Donat in 1986 as pleural effusions developing within hours of admission. We report a 38 years old male patient with minimal pleural effusion which progressed rapidly within one day to involve almost whole of the hemithorax. There were multiple loculations on ultrasonography of thorax. Pleural fluid was sero-sanguinous and revealed gram positive diplococcic. The patient improved with antibiotics and pigtail catheter drainage.

  10. Intravesical explosion during transurethral electrosurgery.

    Science.gov (United States)

    Georgios, Kallinikas; Evangelos, Boulinakis; Helai, Habib; Ioannis, Gerzelis

    2015-05-01

    Intravesical explosion is a very rare complication of transurethral resection of prostate and transurethral resection of bladder tumour operations. In vitro studies have shown that the gases produced during the procedure could result in a blast once they are mixed with air from the atmosphere. A 79-year-old male experienced an explosion in his bladder while undergoing a transurethral resection of bladder tumour. The case is presented as well as the way that it was treated as an emergency. Precautions of such events are finally suggested.

  11. Leidenfrost explosions

    CERN Document Server

    Moreau, F; Dorbolo, S

    2012-01-01

    We present a fluid dynamics video showing the behavior of Leidenfrost droplets composed by a mixture of water and surfactant (SDS, Sodium Dodecyl sulfate). When a droplet is released on a plate heated above a given temperature a thin layer of vapor isolates the droplet from the plate. The droplet levitates over the plate. This is called the Leidenfrost effect. In this work we study the influence of the addition of a surfactant on the Leidenfrost phenomenon. As the droplet evaporates the concentration of SDS rises up to two orders of magnitude over the Critical Micelle Concentration (CMC). An unexpected and violent explosive behavior is observed. The video presents several explosions taken with a high speed camera (IDT-N4 at 30000 fps). All the presented experiments were performed on a plate heated at 300{\\deg}C. On the other hand, the initial quantity of SDS was tuned in two ways: (i) by varying the initial concentration of SDS and (ii) by varying the initial size of the droplet. By measuring the volume of th...

  12. Explosive Formulation Pilot Plant

    Data.gov (United States)

    Federal Laboratory Consortium — The Pilot Plant for Explosive Formulation supports the development of new explosives that are comprised of several components. This system is particularly beneficial...

  13. Chaotic Explosions

    CERN Document Server

    Altmann, Eduardo G; Tél, Tamás

    2015-01-01

    We investigate chaotic dynamical systems for which the intensity of trajectories might grow unlimited in time. We show that (i) the intensity grows exponentially in time and is distributed spatially according to a fractal measure with an information dimension smaller than that of the phase space,(ii) such exploding cases can be described by an operator formalism similar to the one applied to chaotic systems with absorption (decaying intensities), but (iii) the invariant quantities characterizing explosion and absorption are typically not directly related to each other, e.g., the decay rate and fractal dimensions of absorbing maps typically differ from the ones computed in the corresponding inverse (exploding) maps. We illustrate our general results through numerical simulation in the cardioid billiard mimicking a lasing optical cavity, and through analytical calculations in the baker map.

  14. Understanding vented gas explosions

    Energy Technology Data Exchange (ETDEWEB)

    Lautkaski, R. [VTT Energy, Espoo (Finland). Energy Systems

    1997-12-31

    The report is an introduction to vented gas explosions for nonspecialists, particularly designers of plants for flammable gases and liquids. The phenomena leading to pressure generation in vented gas explosions in empty and congested rooms are reviewed. The four peak model of vented gas explosions is presented with simple methods to predict the values of the individual peaks. Experimental data on the external explosion of dust and gas explosions is discussed. The empirical equation relating the internal and external peak pressures in vented dust explosions is shown to be valid for gas explosion tests in 30 m{sup 3} and 550 m{sup 3} chambers. However, the difficulty of predicting the internal peak pressure in large chambers remains. Methods of explosion relief panel design and principles of vent and equipment layout to reduce explosion overpressures are reviewed. (orig.) 65 refs.

  15. 寒武纪早期大气-海洋氧含量与生命大爆发%Atmosphere-Ocean Oxygen Levels and Biotic Explosion in the Early Cambrian

    Institute of Scientific and Technical Information of China (English)

    李超; 金承胜

    2015-01-01

    The relationship between the Earth environment and the biotic explosion in early Cambrian (ca.541 -5 10,Ma) is one top geobiological issue.Here,we systematically summarized three major hypotheses for the relationship between the atmosphere-ocean oxygen level and the biotic evolution in early Cambrian,including that (1)increasing oxygenation of at-mosphere and ocean caused the Cambrian explosion,(2)the emergence and evolution of lives resulted in oxygenation of atmosphere and ocean,(3)the atmosphere-ocean oxygen level and the evolution of lives are not interrelated.Although each hypothesis is supported by specific evidences,these hypotheses show significantly inconsistent with partial ocean chemistry records in early Cambrian and investigations of lives in modern ocean analogues.In addition,the spatiotemporal heterogeneity of early Cambrian life evolution is not considered in these hypotheses.By synthesizing these major hypotheses with available data on Cambrian tectonic activities,terrestrial fluxes,ocean chemistry and life evolution patterns,we dis-cussed the possible relationship between the Earth environment and the biotic radiation in early Cambrian.We found that an interactions and co-evolution relationship instead of those simple unidirectional relationships emphasized by above three hypotheses should exist between the Earth environment and the biotic radiation in early Cambrian.%寒武纪早期(541~510,Ma)地球环境与这一时期生命大爆发之间的关系一直是地球生物学研究的热点问题之一。本文系统总结了目前寒武纪早期大气-海洋氧含量与这一时期生命辐射之间关系的3种假说:大气-海洋的氧含量增加导致了寒武纪生命大爆发;寒武纪生命大爆发导致了大气-海洋氧化以及二者之间没有因果关系。3种假说均有相应的支持证据,但也存在与寒武纪早期海洋化学记录、与现代海洋观察不符和上述假说均未考虑寒武纪早期生命

  16. 78 FR 64246 - Commerce in Explosives; List of Explosives Materials

    Science.gov (United States)

    2013-10-28

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF JUSTICE Bureau of Alcohol, Tobacco, Firearms, and Explosives Commerce in Explosives; List of Explosives Materials AGENCY: Bureau of Alcohol, Tobacco, Firearms, and Explosives (ATF); Department of Justice. ACTION:...

  17. 75 FR 5545 - Explosives

    Science.gov (United States)

    2010-02-03

    ... storage of explosives incidental to that movement (49 CFR parts 171 to 180 and 397). The Bureau of Alcohol... transporting blasting agents; mixing water gel explosives; storing ammonium nitrate; and storing small...

  18. Cell phone explosion.

    Science.gov (United States)

    Atreya, Alok; Kanchan, Tanuj; Nepal, Samata; Pandey, Bhuwan Raj

    2016-03-01

    Cell phone explosions and resultant burn injuries are rarely reported in the scientific literature. We report a case of cell phone explosion that occurred when a young male was listening to music while the mobile was plugged in for charging.

  19. Burst conditions of explosive volcanic eruptions recorded on microbarographs

    Science.gov (United States)

    Morrissey, M.M.; Chouet, B.A.

    1997-01-01

    Explosive volcanic eruptions generate pressure disturbances in the atmosphere that propagate away either as acoustic or as shock waves, depending on the explosivity of the eruption. Both types of waves are recorded on microbarographs as 1- to 0.1-hertz N-shaped signals followed by a longer period coda. These waveforms can be used to estimate burst pressures end gas concentrations in explosive volcanic eruptions and provide estimates of eruption magnitudes.

  20. Photoacoustic Sensing of Explosives

    Science.gov (United States)

    2013-11-01

    NOV 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Photoacoustic Sensing of Explosives 5a. CONTRACT NUMBER...2013www.ll.mit.edu Photoacoustic Sensing of Explosives (PHASE) is a promising new technology that detects trace explosive residues from significant... photoacoustic phenomena resulting from ultraviolet laser excitation. Exposed explosives are excited up to 100 meters away by using PHASE’s

  1. Explosive Instability of Prominence Flux Ropes

    Energy Technology Data Exchange (ETDEWEB)

    Hurricane, O; Fong, R H L; Cowley, S C

    2002-09-04

    The rapid, Alfvenic, time scale of erupting solar-prominences has been an enigma ever since they where first identified. Investigators have proposed a variety of different mechanisms in an effort to account for the abrupt reconfiguration observed. No one mechanism clearly stands out as the single cause of these explosive events. Recent analysis has demonstrated that field lines in the solar atmosphere are metastable to ballooning type instabilities. It has been found previously that in ideal MHD plasmas marginally unstable ballooning modes inevitably become ''explosive'' evolving towards a finite time singularity via a nonlinear 3D instability called ''Nonlinear Magnetohydrodynamic Detonation.'' Thus, this mechanism is a good candidate to explain explosive events observed in the solar atmosphere of our star or in others.

  2. Explosive Technology Group

    Data.gov (United States)

    Federal Laboratory Consortium — The Explosive Technology Group (ETG) provides diverse technical expertise and an agile, integrated approach to solve complex challenges for all classes of energetic...

  3. Double pulse laser-induced breakdown spectroscopy of explosives: Initial study towards improved discrimination

    Energy Technology Data Exchange (ETDEWEB)

    De Lucia, Frank C. [U.S. Army Research Laboratory, AMSRD-ARL-WM-BD, Aberdeen Proving Ground, MD, 21005-5069 (United States)], E-mail: fdelucia@arl.army.mil; Gottfried, Jennifer L.; Munson, Chase A.; Miziolek, Andrzej W. [U.S. Army Research Laboratory, AMSRD-ARL-WM-BD, Aberdeen Proving Ground, MD, 21005-5069 (United States)

    2007-12-15

    Detecting trace explosive residues at standoff distances in real-time is a difficult problem. One method ideally suited for real-time standoff detection is laser-induced breakdown spectroscopy (LIBS). However, atmospheric oxygen and nitrogen contributes to the LIBS signal from the oxygen- and nitrogen-containing explosive compounds, complicating the discrimination of explosives from other organic materials. While bathing the sample in an inert gas will remove atmospheric oxygen and nitrogen interference, it cannot practically be applied for standoff LIBS. Alternatively, we have investigated the potential of double pulse LIBS to improve the discrimination of explosives by diminishing the contribution of atmospheric oxygen and nitrogen to the LIBS signal. These initial studies compare the close-contact (< 1 m) LIBS spectra of explosives using single pulse LIBS in argon with double pulse LIBS in atmosphere. We have demonstrated improved discrimination of an explosive and an organic interferent using double pulse LIBS to reduce the air entrained in the analytical plasma.

  4. Explosions and static electricity

    DEFF Research Database (Denmark)

    Jonassen, Niels M

    1995-01-01

    The paper deals with the problem of electrostatic discharges as causes of ignition of vapor/gas and dust/gas mixtures. A series of examples of static-caused explosions will be discussed. The concepts of explosion limits, the incendiveness of various discharge types and safe voltages are explained...

  5. Intermittent Explosive Disorder

    Directory of Open Access Journals (Sweden)

    Lut Tamam

    2011-09-01

    Full Text Available Intermittent explosive disorder is an impulse control disorder characterized by the occurrence of discrete episodes of failure to resist aggressive impulses that result in violent assault or destruction of property. Though the prevalence intermittent explosive disorder has been reported to be relatively rare in frontier studies on the field, it is now common opinion that intermittent explosive disorder is far more common than previously thought especially in clinical psychiatry settings. Etiological studies displayed the role of both psychosocial factors like childhood traumas and biological factors like dysfunctional neurotransmitter systems and genetics. In differential diagnosis of the disorder, disorders involving agression as a symptom such as alcohol and drug intoxication, antisocial and borderline personality disorders, personality changes due to general medical conditions and behavioral disorder should be considered. A combination of pharmacological and psychotherapeutic approaches are suggested in the treatment of the disorder. This article briefly reviews the historical background, diagnostic criteria, epidemiology, etiology and treatment of intermittent explosive disorder.

  6. Explosive Components Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 98,000 square foot Explosive Components Facility (ECF) is a state-of-the-art facility that provides a full-range of chemical, material, and performance analysis...

  7. Shock waves & explosions

    CERN Document Server

    Sachdev, PL

    2004-01-01

    Understanding the causes and effects of explosions is important to experts in a broad range of disciplines, including the military, industrial and environmental research, aeronautic engineering, and applied mathematics. Offering an introductory review of historic research, Shock Waves and Explosions brings analytic and computational methods to a wide audience in a clear and thorough way. Beginning with an overview of the research on combustion and gas dynamics in the 1970s and 1980s, the author brings you up to date by covering modeling techniques and asymptotic and perturbative methods and ending with a chapter on computational methods.Most of the book deals with the mathematical analysis of explosions, but computational results are also included wherever they are available. Historical perspectives are provided on the advent of nonlinear science, as well as on the mathematical study of the blast wave phenomenon, both when visualized as a point explosion and when simulated as the expansion of a high-pressure ...

  8. Explosion suppression system

    Science.gov (United States)

    Sapko, Michael J.; Cortese, Robert A.

    1992-01-01

    An explosion suppression system and triggering apparatus therefor are provided for quenching gas and dust explosions. An electrically actuated suppression mechanism which dispenses an extinguishing agent into the path ahead of the propagating flame is actuated by a triggering device which is light powered. This triggering device is located upstream of the propagating flame and converts light from the flame to an electrical actuation signal. A pressure arming device electrically connects the triggering device to the suppression device only when the explosion is sensed by a further characteristic thereof beside the flame such as the pioneer pressure wave. The light powered triggering device includes a solar panel which is disposed in the path of the explosion and oriented between horizontally downward and vertical. Testing mechanisms are also preferably provided to test the operation of the solar panel and detonator as well as the pressure arming mechanism.

  9. Generation of low-frequency electric and magnetic fields during large- scale chemical and nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Adushkin, V.V. [Academy of Sciences, Moscow (Russian Federation). Inst. for Dynamics of the Geospheres; Dubinya, V.A.; Karaseva, V.A.; Soloviev, S.P.; Surkov, V.V. [Lawrence Livermore National Lab., CA (United States)

    1995-06-01

    We discuss the main parameters of the electric field in the surface layer of the atmosphere and the results of the investigations of the natural electric field variations. Experimental investigations of the electromagnetic field for explosions in air are presented. Electromagnetic signals generated by underground nuclear and chemical explosions are discussed and explosions for 1976--1991 are listed. Long term anomalies of the earth`s electromagnetic field in the vicinity of underground explosions were also investigated. Study of the phenomenon of the irreversible shock magnetization showed that in the zone nearest to the explosion the quasistatic magnetic field decreases in inverse proportion to the distance.

  10. Optimum performance of explosives in a quasistatic detonation cycle

    Science.gov (United States)

    Baker, Ernest L.; Stiel, Leonard I.

    2017-01-01

    Analyses were conducted on the behavior of explosives in a quasistatic detonation cycle. This type of cycle has been proposed for the determination of the maximum work that can be performed by the explosive. The Jaguar thermochemical equilibrium program enabled the direct analyses of explosive performance at the various steps in the detonation cycle. In all cases the explosive is initially detonated to a point on the Hugoniot curve for the reaction products. The maximum useful work that can be obtained from the explosive is equal to the P-V work on the isentrope for expansion after detonation to atmospheric pressure, minus one-half the square of the particle velocity at the detonation point. This quantity is calculated form the internal energy of the explosive at the initial and final atmospheric temperatures. Cycle efficiencies (net work/ heat added) are also calculated with these procedures. For several explosives including TNT, RDX, and aluminized compositions, maximum work effects were established through the Jaguar calculations for Hugoniot points corresponding to C-J, overdriven, underdriven and constant volume detonations. Detonation to the C-J point is found to result in the maximum net work in all cases.

  11. Mass extinctions and supernova explosions

    CERN Document Server

    Korschinek, Gunther

    2016-01-01

    A nearby supernova (SN) explosion could have negatively influenced life on Earth, maybe even been responsible for mass extinctions. Mass extinction poses a significant extinction of numerous species on Earth, as recorded in the paleontologic, paleoclimatic, and geological record of our planet. Depending on the distance between the Sun and the SN, different types of threats have to be considered, such as ozone depletion on Earth, causing increased exposure to the Sun's ultraviolet radiation, or the direct exposure of lethal x-rays. Another indirect effect is cloud formation, induced by cosmic rays in the atmosphere which result in a drop in the Earth's temperature, causing major glaciations of the Earth. The discovery of highly intensive gamma ray bursts (GRBs), which could be connected to SNe, initiated further discussions on possible life-threatening events in Earth's history. The probability that GRBs hit the Earth is very low. Nevertheless, a past interaction of Earth with GRBs and/or SNe cannot be exclude...

  12. Explosion containment device

    Science.gov (United States)

    Benedick, William B.; Daniel, Charles J.

    1977-01-01

    The disclosure relates to an explosives storage container for absorbing and containing the blast, fragments and detonation products from a possible detonation of a contained explosive. The container comprises a layer of distended material having sufficient thickness to convert a portion of the kinetic energy of the explosion into thermal energy therein. A continuous wall of steel sufficiently thick to absorb most of the remaining kinetic energy by stretching and expanding, thereby reducing the momentum of detonation products and high velocity fragments, surrounds the layer of distended material. A crushable layer surrounds the continuous steel wall and accommodates the stretching and expanding thereof, transmitting a moderate load to the outer enclosure. These layers reduce the forces of the explosion and the momentum of the products thereof to zero. The outer enclosure comprises a continuous pressure wall enclosing all of the layers. In one embodiment, detonation of the contained explosive causes the outer enclosure to expand which indicates to a visual observer that a detonation has occurred.

  13. A real explosion: the requirement of steam explosion pretreatment.

    Science.gov (United States)

    Yu, Zhengdao; Zhang, Bailiang; Yu, Fuqiang; Xu, Guizhuan; Song, Andong

    2012-10-01

    The severity factor is a common term used in steam explosion (SE) pretreatment that describes the combined effects of the temperature and duration of the pretreatment. However, it ignores the duration of the explosion process. This paper describes a new parameter, the explosion power density (EPD), which is independent of the severity factor. Furthermore, we present the adoption of a 5m(3) SE model for a catapult explosion mode, which completes the explosion within 0.0875 s. The explosion duration ratio of this model to a conventional model of the same volume is 1:123. The comparison between the two modes revealed a qualitative change by explosion speed, demonstrating that this real explosion satisfied the two requirements of consistency, and suggested a guiding mechanism for the design of SE devices.

  14. NUMERICAL MODEL FOR THE KRAKATOA HYDROVOLCANIC EXPLOSION AND TSUNAMI

    Directory of Open Access Journals (Sweden)

    Charles L. Mader

    2006-01-01

    Full Text Available Krakatoa exploded August 27, 1883 obliterating 5 square miles of land and leaving a crater 3.5 miles across and 200-300 meters deep. Thirty three feet high tsunami waves hit Anjer and Merak demolishing the towns and killing over 10,000 people. In Merak the wave rose to 135 feet above sea level and moved 100 ton coral blocks up on the shore.Tsunami waves swept over 300 coastal towns and villages killing 40,000 people. The sea withdrew at Bombay, India and killed one person in Sri Lanka.The tsunami was produced by a hydrovolcanic explosion and the associated shock wave and pyroclastic flows.A hydrovolcanic explosion is generated by the interaction of hot magma with ground water. It is called Surtseyan after the 1963 explosive eruption off Iceland. The water flashes to steam and expands explosively. Liquid water becoming water gas at constant volume generates a pressure of 30,000 atmospheres.The Krakatoa hydrovolcanic explosion was modeled using the full Navier-Stokes AMREulerian compressible hydrodynamic code called SAGE which includes the high pressure physics of explosions.The water in the hydrovolcanic explosion was described as liquid water heated by the magma to 1100 degree Kelvin or 19 kcal/mole. The high temperature water is an explosive with the hot liquid water going to a water gas. The BKW steady state detonation state has a peak pressure of 89 kilobars, a propagation velocity of 5900 meters/second and the water is compressed to 1.33 grams/cc.The observed Krakatoa tsunami had a period of less than 5 minutes and wavelength of less than 7 kilometers and thus rapidly decayed. The far field tsunami wave was negligible. The air shock generated by the hydrovolcanic explosion propagated around the world and coupled to the ocean resulting in the explosion being recorded on tide gauges around the world.

  15. Explosives Safety Competency Study

    Science.gov (United States)

    2010-07-13

    Munitions Systems Journeyman CDC—AFSC 2W051 Combat Ammunition Planning and Production—AFCOMAC Munitions Systems Craftsman Course—AFSC 2W071 Combat...Ammunition Planning and Production—AFCOMAC Munitions Systems Craftsman Course—AFSC 2W071 Navy Basics of Naval Explosives Hazard Control—AMMO-18 b

  16. Explosions during galaxy formation

    Directory of Open Access Journals (Sweden)

    Hugo Martel

    2001-01-01

    Full Text Available As an idealized model of the e ects of energy release by supernovae during galaxy formation, we consider an explosion at the center of a halo which forms at the intersection of laments in the plane of a cosmological pancake by gravitational instability during pancake collapse. Such halos resemble the virialized objects found in N{body simulations in a CDM universe and, therefore, serve as a convenient, scale{free test{bed model for galaxy formation. ASPH=P3M simulations reveal that such explosions are anisotropic. The energy and metals are channeled into the low density regions, away from the pancake plane. The pancake remains essentially undisturbed, even if the explosion is strong enough to blow away all the gas lo- cated inside the halo at the onset of the explosion and reheat the IGM surrounding the pancake. Infall quickly replenishes this ejected gas and gradually restores the gas fraction as the halo mass continues to grow. Estimates of the collapse epoch and SN energy{release for galaxies of di erent mass in the CDM model can re- late these results to scale{dependent questions of blow{out and blow{away and their implication for early IGM heating and metal enrichment and the creation of dark{matter{dominated dwarf galaxies.

  17. Conventional Weapons Underwater Explosions

    Science.gov (United States)

    1988-12-01

    te that the heat of detonation (the energy available per mass of explosive) is an increasing function of the aluminum content. As shown in Table 2...the heat of detonation of RDX is 6.15 MJ/kg; addition of 30 wt % Al increases this to 10.12 - a factor of 1.64. Fig. 12 indicates a bubble energy

  18. The Information Explosion.

    Science.gov (United States)

    Kuhns, William

    Three facets of the media--events, myths, and sales pitches--constitute the most important lines of force taken by the information bombardment which all of us encounter and are influenced by every day. The focus of this book is on the changes created and hastened by this information explosion of the media bombardment: how we can live with them,…

  19. Portable raman explosives detection

    Energy Technology Data Exchange (ETDEWEB)

    Moore, David Steven [Los Alamos National Laboratory; Scharff, Robert J [Los Alamos National Laboratory

    2008-01-01

    Recent advances in portable Raman instruments have dramatically increased their application to emergency response and forensics, as well as homeland defense. This paper reviews the relevant attributes and disadvantages of portable Raman spectroscopy, both essentially and instrumentally, to the task of explosives detection in the field.

  20. Characteristic Research on Evaporated Explosive Film

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The evaporation source of evaporated explosive was designed and improved based on the inherent specialties of explosive. The compatibility of explosives and addition agent with evaporation vessels was analyzed. The influence of substrate temperature on explosive was analyzed, the control method of substrate temperature was suggested. The influences of evaporation rate on formation of explosive film and mixed explosive film were confirmed. Optimum evaporation rate for evaporation explosive and the better method for evaporating mixed explosive were presented. The necessary characteristics of the evaporated explosive film were obtained by the research of the differences between the evaporated explosive and other materials.

  1. Explosive bulk charge

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Jacob Lee

    2015-04-21

    An explosive bulk charge, including: a first contact surface configured to be selectively disposed substantially adjacent to a structure or material; a second end surface configured to selectively receive a detonator; and a curvilinear side surface joining the first contact surface and the second end surface. The first contact surface, the second end surface, and the curvilinear side surface form a bi-truncated hemispherical structure. The first contact surface, the second end surface, and the curvilinear side surface are formed from an explosive material. Optionally, the first contact surface and the second end surface each have a substantially circular shape. Optionally, the first contact surface and the second end surface consist of planar structures that are aligned substantially parallel or slightly tilted with respect to one another. The curvilinear side surface has one of a smooth curved geometry, an elliptical geometry, and a parabolic geometry.

  2. Imaging Detonations of Explosives

    Science.gov (United States)

    2016-04-01

    of a high- pressure helium tank , a dump valve that exhausts the high- pressure gas to the gun breech, and a 25-mm-diameter, unrifled, 4.9-m-long gun...14. ABSTRACT The techniques and instrumentation presented in this report allow for mapping of temperature, pressure , chemical species, and...measurement in the explosive near- to far-field (0–500 charge diameters) of surface temperatures, peak air-shock pressures , some chemical species

  3. Overview of Explosive Initiators

    Science.gov (United States)

    2015-11-01

    Primary Explosives Lead Azide Lead azide came to prominence around the 1920’s, owing largely to its unique blend of performance and...as its basic nature does not encourage lead azide’s tendency UNCLASSIFIED Approved for public release; distribution is unlimited. 5 toward...fig. 4, top). This fuse is usually a long, flexible plastic or rubber tube filled with a pyrotechnic composition such as black powder, allowing

  4. Explosive Turbulent Magnetic Reconnection

    OpenAIRE

    Higashimori, Katsuaki; Yokoi, Nobumitsu; Hoshino, Masahiro

    2013-01-01

    We report simulation results for turbulent magnetic reconnection obtained using a newly developed Reynolds-averaged magnetohydrodynamics model. We find that the initial Harris current sheet develops in three ways, depending on the strength of turbulence: laminar reconnection, turbulent reconnection, and turbulent diffusion. The turbulent reconnection explosively converts the magnetic field energy into both kinetic and thermal energy of plasmas, and generates open fast reconnection jets. This ...

  5. Explosion protection of fuel supply systems.; Explosionsschutz im Bereich der Brennstoffversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Hoetger, Jens; Klose, Stephanie [DMT GmbH und Co. KG, Dortmund (Germany). Zentrum fuer Brand- und Explosionsschutz

    2013-10-01

    Due to the flammability of the substances used, the risk of explosions cannot be excluded in the fuel supply system of power plants. In contrast to flammable gases and liquids, solid combustibles are normally handled in the presence of air. The fine portion of these combustibles is able to form explosive atmospheres. The use of imported coals requires reviewing the risk assessment of explosion protection. The use of biomass also requires detailed assessment of explosion risks based on the properties of the substances. (orig.)

  6. Nanosensors for trace explosive detection

    OpenAIRE

    2008-01-01

    Selective and sensitive detection of explosives is very important in countering terrorist threats. Detecting trace explosives has become a very complex and expensive endeavor because of a number of factors, such as the wide variety of materials that can be used as explosives, the lack of easily detectable signatures, the vast number of avenues by which these weapons can be deployed, and the lack of inexpensive sensors with high sensitivity and selectivity. High sensitivity and selectivity, co...

  7. Shock Initiated Reactions of Reactive Multiphase Blast Explosives

    Science.gov (United States)

    Wilson, Dennis; Granier, John; Johnson, Richard; Littrell, Donald

    2015-06-01

    This paper describes a new class of reactive multiphase blast explosives (RMBX) and characterization of their blast characteristics. These RMBXs are non-ideal explosive compositions of perfluoropolyether (PFPE), nano aluminum, and a micron-size high-density reactive metal - Tantalum, Zirconium, or Zinc in mass loadings of 66 to 83 percent. Unlike high explosives, these PFPE-metal compositions release energy via a fast self-oxidized combustion wave (rather than a true self-sustaining detonation) that is shock dependent, and can be overdriven to control energy release rate. The term ``reactive multiphase blast'' refers to the post-dispersion blast behavior: multiphase in that there are a gas phase that imparts pressure and a solid (particulate) phase that imparts momentum; and reactive in that the hot metal particles react with atmospheric oxygen and the explosive gas products to give an extended pressure pulse. The RMBX formulations were tested in two spherical core-shell geometries - an RMBX shell exploded by a high explosive core, and an RMBX core imploded by a high explosive shell. The fireball and blast characteristics were compared to a C-4 baseline charge.

  8. Explosive turbulent magnetic reconnection.

    Science.gov (United States)

    Higashimori, K; Yokoi, N; Hoshino, M

    2013-06-21

    We report simulation results for turbulent magnetic reconnection obtained using a newly developed Reynolds-averaged magnetohydrodynamics model. We find that the initial Harris current sheet develops in three ways, depending on the strength of turbulence: laminar reconnection, turbulent reconnection, and turbulent diffusion. The turbulent reconnection explosively converts the magnetic field energy into both kinetic and thermal energy of plasmas, and generates open fast reconnection jets. This fast turbulent reconnection is achieved by the localization of turbulent diffusion. Additionally, localized structure forms through the interaction of the mean field and turbulence.

  9. Determining the explosion risk level and the explosion hazard area for a group of natural gas wells

    Science.gov (United States)

    Gligor, A.; Petrescu, V.; Deac, C.; Bibu, M.

    2016-11-01

    Starting from the fact that the natural gas engineering profession is generally associated with a high occupational risk, the current paper aims to help increase the safety of natural gas wells and reduce the risk of work-related accidents, as well as the occurrence of professional illnesses, by applying an assessment method that has proven its efficiency in other industrial areas in combination with a computer-aided design software. More specifically, the paper focuses on two main research directions: assessing the explosion risk for employees working at natural gas wells and indicating areas with a higher explosion hazard by using a modern software that allows their presentation in 3D. The appropriate zoning of industrial areas allows to group the various functional areas function of the probability of the occurrence of a dangerous element, such as an explosive atmosphere and subsequently it allows also to correctly select the electrical and mechanical equipment that will be used in that area, since electrical apparatuses that are otherwise found in normal work environments cannot generally be used in areas with explosion hazard, because of the risk that an electric spark, an electrostatic discharge etc. ignites the explosive atmosphere.

  10. Laser machining of explosives

    Science.gov (United States)

    Perry, Michael D.; Stuart, Brent C.; Banks, Paul S.; Myers, Booth R.; Sefcik, Joseph A.

    2000-01-01

    The invention consists of a method for machining (cutting, drilling, sculpting) of explosives (e.g., TNT, TATB, PETN, RDX, etc.). By using pulses of a duration in the range of 5 femtoseconds to 50 picoseconds, extremely precise and rapid machining can be achieved with essentially no heat or shock affected zone. In this method, material is removed by a nonthermal mechanism. A combination of multiphoton and collisional ionization creates a critical density plasma in a time scale much shorter than electron kinetic energy is transferred to the lattice. The resulting plasma is far from thermal equilibrium. The material is in essence converted from its initial solid-state directly into a fully ionized plasma on a time scale too short for thermal equilibrium to be established with the lattice. As a result, there is negligible heat conduction beyond the region removed resulting in negligible thermal stress or shock to the material beyond a few microns from the laser machined surface. Hydrodynamic expansion of the plasma eliminates the need for any ancillary techniques to remove material and produces extremely high quality machined surfaces. There is no detonation or deflagration of the explosive in the process and the material which is removed is rendered inert.

  11. Controlled by Distant Explosions

    Science.gov (United States)

    2007-03-01

    VLT Automatically Takes Detailed Spectra of Gamma-Ray Burst Afterglows Only Minutes After Discovery A time-series of high-resolution spectra in the optical and ultraviolet has twice been obtained just a few minutes after the detection of a gamma-ray bust explosion in a distant galaxy. The international team of astronomers responsible for these observations derived new conclusive evidence about the nature of the surroundings of these powerful explosions linked to the death of massive stars. At 11:08 pm on 17 April 2006, an alarm rang in the Control Room of ESO's Very Large Telescope on Paranal, Chile. Fortunately, it did not announce any catastrophe on the mountain, nor with one of the world's largest telescopes. Instead, it signalled the doom of a massive star, 9.3 billion light-years away, whose final scream of agony - a powerful burst of gamma rays - had been recorded by the Swift satellite only two minutes earlier. The alarm was triggered by the activation of the VLT Rapid Response Mode, a novel system that allows for robotic observations without any human intervention, except for the alignment of the spectrograph slit. ESO PR Photo 17a/07 ESO PR Photo 17a/07 Triggered by an Explosion Starting less than 10 minutes after the Swift detection, a series of spectra of increasing integration times (3, 5, 10, 20, 40 and 80 minutes) were taken with the Ultraviolet and Visual Echelle Spectrograph (UVES), mounted on Kueyen, the second Unit Telescope of the VLT. "With the Rapid Response Mode, the VLT is directly controlled by a distant explosion," said ESO astronomer Paul Vreeswijk, who requested the observations and is lead-author of the paper reporting the results. "All I really had to do, once I was informed of the gamma-ray burst detection, was to phone the staff astronomers at the Paranal Observatory, Stefano Bagnulo and Stan Stefl, to check that everything was fine." The first spectrum of this time series was the quickest ever taken of a gamma-ray burst afterglow

  12. Active Water Explosion Suppression System

    Science.gov (United States)

    2002-06-01

    efficient in eliminating the heat of detonation , thereby eliminating the heat of combustion and the associated burning of explosive by-products in the...efficiency in eliminating the heat of detonation . In any case, the net effect of the water absorbing the detonation energy of the explosive is a major

  13. Introduction to High Explosives Science

    Energy Technology Data Exchange (ETDEWEB)

    Skidmore, Cary Bradford [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Daniel N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-17

    These are a set of slides for educational outreach to children on high explosives science. It gives an introduction to the elements involved in this science: carbon, hydrogen, nitrogen, and oxygen. Combined, these form the molecule HMX. Many pictures are also included to illustrate explosions.

  14. The Scaled Thermal Explosion Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wardell, J F; Maienschein, J L

    2002-07-05

    We have developed the Scaled Thermal Explosion Experiment (STEX) to provide a database of reaction violence from thermal explosion for explosives of interest. Such data are needed to develop, calibrate, and validate predictive capability for thermal explosions using simulation computer codes. A cylinder of explosive 25, 50 or 100 mm in diameter, is confined in a steel cylinder with heavy end caps, and heated under controlled conditions until reaction. Reaction violence is quantified through non-contact micropower impulse radar measurements of the cylinder wall velocity and by strain gauge data at reaction onset. Here we describe the test concept, design and diagnostic recording, and report results with HMX- and RDX-based energetic materials.

  15. The interaction of explosively generated plasma with explosives

    Science.gov (United States)

    Tasker, Douglas G.; Whitley, Von H.; Johnson, Carl E.

    2017-01-01

    It has been shown that the temperature of explosively generated plasma (EGP) is of the order of 1 eV and plasma ejecta can be focused to achieve velocities as high as 25 km/s. Proof-of-principle tests were performed to determine if EGP could be used for explosive ordnance demolition and other applications. The goals were: to benignly disable ordnance containing relatively sensitive high performance explosives (PBX-9501); and to investigate the possibility of interrupting an ongoing detonation in a powerful high explosive (again PBX-9501) with EGP. Experiments were performed to establish the optimum sizes of plasma generators for the benign deactivation of high explosives, i.e., the destruction of the ordnance without initiating a detonation or comparable violent event. These experiments were followed by attempts to interrupt an ongoing detonation by the benign disruption of the unreacted explosive in its path. The results were encouraging. First, it was demonstrated that high explosives could be destroyed without the initiation of a detonation or high order reaction. Second, ongoing detonations were successfully interrupted with EGP. [LA-UR-15-25350

  16. Explosion risks from nanomaterials

    Science.gov (United States)

    Bouillard, Jacques; Vignes, Alexis; Dufaud, Olivier; Perrin, Laurent; Thomas, Dominique

    2009-05-01

    Emerging nanomanufactured products are being incorporated in a variety of consumer products ranging from closer body contact products (i.e. cosmetics, sunscreens, toothpastes, pharmaceuticals, clothing) to more remote body-contact products (electronics, plastics, tires, automotive and aeronautical), hence posing potential health and environmental risks. The new field of nanosafety has emerged and needs to be explored now rather than after problems becomes so ubiquitous and difficult to treat that their trend become irreversible. Such endeavour necessitates a transdisciplinary approach. A commonly forgotten and/or misunderstood risk is that of explosion/detonation of nanopowders, due to their high specific active surface areas. Such risk is emphasized and illustrated with the present development of an appropriate risk analysis. For this particular risk, a review of characterization methods and their limitations with regard to nanopowders is presented and illustrated for a few organic and metallic nanopowders.

  17. Mixing in explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A.L.

    1993-12-01

    Explosions always contain embedded turbulent mixing regions, for example: boundary layers, shear layers, wall jets, and unstable interfaces. Described here is one particular example of the latter, namely, the turbulent mixing occurring in the fireball of an HE-driven blast wave. The evolution of the turbulent mixing was studied via two-dimensional numerical simulations of the convective mixing processes on an adaptive mesh. Vorticity was generated on the fireball interface by baroclinic effects. The interface was unstable, and rapidly evolved into a turbulent mixing layer. Four phases of mixing were observed: (1) a strong blast wave phase; (2) and implosion phase; (3) a reshocking phase; and (4) an asymptotic mixing phase. The flowfield was azimuthally averaged to evaluate the mean and r.m.s. fluctuation profiles across the mixing layer. The vorticity decayed due to a cascade process. This caused the corresponding enstrophy parameter to increase linearly with time -- in agreement with homogeneous turbulence calculations of G.K. Batchelor.

  18. Direct imaging of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, E.A.; Moler, R.B.; Saunders, A.W.; Trower, W.P. E-mail: trower@naxs.net

    2000-11-15

    Any technique that can detect nitrogen concentrations can screen for concealed explosives. However, such a technique would have to be insensitive to metal, both encasing and incidental. If images of the nitrogen concentrations could be captured, then, since form follows function, a robust screening technology could be developed. However these images would have to be sensitive to the surface densities at or below that of the nitrogen contained in buried anti-personnel mines or of the SEMTEX that brought down Pan Am 103, {approx}200 g. Although the ability to image in three-dimensions would somewhat reduce false positives, capturing collateral images of carbon and oxygen would virtually assure that nitrogenous non-explosive material like fertilizer, Melmac[reg] dinnerware, and salami could be eliminated. We are developing such an instrument, the Nitrogen Camera, which has met experimentally these criteria with the exception of providing oxygen images, which awaits the availability of a sufficiently energetic light source. Our Nitrogen Camera technique uses an electron accelerator to produce photonuclear reactions whose unique decays it registers. Clearly if our Nitrogen Camera is made mobile, it could be effective in detecting buried mines, either in an active battlefield situation or in the clearing of abandoned military munitions. Combat operations require that a swathe the width of an armored vehicle, 5 miles deep, be screened in an hour, which is within our camera's scanning speed. Detecting abandoned munitions is technically easier as it is free from the onerous speed requirement. We describe here our Nitrogen Camera and show its 180 pixel intensity images of elemental nitrogen in a 200 g mine simulant and in a 125 g stick of SEMTEX. We also report on our progress in creating a lorry transportable 70 MeV electron racetrack microtron, the principal enabling technology that will allow our Nitrogen Camera to be deployed in the field.

  19. Direct imaging of explosives.

    Science.gov (United States)

    Knapp, E A; Moler, R B; Saunders, A W; Trower, W P

    2000-01-01

    Any technique that can detect nitrogen concentrations can screen for concealed explosives. However, such a technique would have to be insensitive to metal, both encasing and incidental. If images of the nitrogen concentrations could be captured, then, since form follows function, a robust screening technology could be developed. However these images would have to be sensitive to the surface densities at or below that of the nitrogen contained in buried anti-personnel mines or of the SEMTEX that brought down Pan Am 103, approximately 200 g. Although the ability to image in three-dimensions would somewhat reduce false positives, capturing collateral images of carbon and oxygen would virtually assure that nitrogenous non-explosive material like fertilizer, Melmac dinnerware, and salami could be eliminated. We are developing such an instrument, the Nitrogen Camera, which has met experimentally these criteria with the exception of providing oxygen images, which awaits the availability of a sufficiently energetic light source. Our Nitrogen Camera technique uses an electron accelerator to produce photonuclear reactions whose unique decays it registers. Clearly if our Nitrogen Camera is made mobile, it could be effective in detecting buried mines, either in an active battlefield situation or in the clearing of abandoned military munitions. Combat operations require that a swathe the width of an armored vehicle, 5 miles deep, be screened in an hour, which is within our camera's scanning speed. Detecting abandoned munitions is technically easier as it is free from the onerous speed requirement. We describe here our Nitrogen Camera and show its 180 pixel intensity images of elemental nitrogen in a 200 g mine simulant and in a 125 g stick of SEMTEX. We also report on our progress in creating a lorry transportable 70 MeV electron racetrack microtron, the principal enabling technology that will allow our Nitrogen Camera to be deployed in the field.

  20. Shock desensitizing of solid explosive

    Energy Technology Data Exchange (ETDEWEB)

    Davis, William C [Los Alamos National Laboratory

    2010-01-01

    Solid explosive can be desensitized by a shock wave too weak to initiate it promptly, and desensitized explosive does not react although its chemical composition is almost unchanged. A strong second shock does not cause reaction until it overtakes the first shock. The first shock, if it is strong enough, accelerates very slowly at first, and then more rapidly as detonation approaches. These facts suggest that there are two competing reactions. One is the usual explosive goes to products with the release of energy, and the other is explosive goes to dead explosive with no chemical change and no energy release. The first reaction rate is very sensitive to the local state, and the second is only weakly so. At low pressure very little energy is released and the change to dead explosive dominates. At high pressure, quite the other way, most of the explosive goes to products. Numerous experiments in both the initiation and the full detonation regimes are discussed and compared in testing these ideas.

  1. Shock initiated reactions of reactive multi-phase blast explosives

    Science.gov (United States)

    Wilson, Dennis; Granier, John; Johnson, Richard; Littrell, Donald

    2017-01-01

    This paper describes a new class of non-ideal explosive compositions made of perfluoropolyether (PFPE), nanoaluminum, and a micron-size, high mass density, reactive metal. Unlike high explosives, these compositions release energy via a fast self-oxidized combustion wave rather than a true self-sustaining detonation. Their reaction rates are shock dependent and they can be overdriven to change their energy release rate. These compositions are fuel rich and have an extended aerobic energy release phase. The term "reactive multiphase blast" refers to the post-dispersion blast behavior: multiphase in that there are a gas phase that imparts pressure and a solid (particulate) phase that imparts energy and momentum [1]; and reactive in that the hot metal particles react with atmospheric oxygen and the explosive gas products to give an extended pressure pulse. Tantalum-based RMBX formulations were tested in two spherical core-shell configurations - an RMBX shell exploded by a high explosive core, and an RMBX core imploded by a high explosive shell. The fireball and blast characteristics were compared to a C-4 baseline charge.

  2. Our Explosive Sun

    Science.gov (United States)

    Brown, D. S.

    2009-01-01

    The Sun's atmosphere is a highly structured but dynamic place, dominated by the solar magnetic field. Hot charged gas (plasma) is trapped on lines of magnetic force that can snap like an elastic band, propelling giant clouds of material out into space. A range of ground-based and space-based solar telescopes observe these eruptions, particularly…

  3. Active explosion barrier performance against methane and coal dust explosions

    Institute of Scientific and Technical Information of China (English)

    J J L du Plessis

    2015-01-01

    Preventing the propagation of methane or coal dust explosions through the use of active explosion-suppression systems remains one of the most underutilised explosion controls in underground coal mines. As part of the effort to develop better technologies to safeguard mines, the use of active barrier systems was investigated at Kloppersbos in South Africa. The system is designed to meet the requirements of the European Standard (EN 14591-4 2007) as well as the Mine Safety Standardisation in the Ministry of Coal Industry, Coal Industrial l Standard of the Peoples Republic of China (MT 694-1997). From the tests conducted, it can be concluded that the ExploSpot System was successful in stopping flame propagation for both methane and methane and coal dust hybrid explosions when ammonium phosphate powder was used as the suppression material. The use of this barrier will provide coal mine management with an additional explosion control close to the point of ignition and may find application within longwall faces further protecting mines against the risk of an explosion propagating throughout a mine.

  4. [Causation, prevention and treatment of dust explosion].

    Science.gov (United States)

    Dong, Maolong; Jia, Wenbin; Wang, Hongtao; Han, Fei; Li, Xiao-Qiang; Hu, Dahai

    2014-10-01

    With the development of industrial technology, dust explosion accidents have increased, causing serious losses of people's lives and property. With the development of economy, we should lay further emphasis on causation, prevention, and treatment of dust explosion. This article summarizes the background, mechanism, prevention, and treatment of dust explosion, which may provide some professional knowledge and reference for the treatment of dust explosion.

  5. Explosion of lithium-thionyl-chloride battery due to presence of lithium nitride

    DEFF Research Database (Denmark)

    Hennesø, E.; Hedlund, Frank Huess

    2015-01-01

    An explosion of a lithium–thionyl-chloride (Li–SOCl2) battery during production (assembly) leads to serious worker injury. The accident cell batch had been in a dry-air intermediate storage room for months before being readied with thionyl chloride electrolyte. Metallic lithium can react...... with atmospheric nitrogen to produce lithium nitride. Nodules of lithium nitride were found to be present on the lithium foil in other cells of the accident batch. The investigation attributed the explosion to the formation of porous lithium nitride during intermediate storage and a violent exothermal...... decomposition with the SOCl2–LiAlCl4 electrolyte triggered by welding. The literature is silent on hazards of explosion of Li–SOCl2 cells associated with the presence of lithium nitride. The silence is intriguing. Possible causes may be that such explosions are very rare, that explosions go unpublished...

  6. Optical spectroscopy to study confined and semi-closed explosions of homogeneous and composite charges

    Science.gov (United States)

    Maiz, Lotfi; Trzciński, Waldemar A.; Paszula, Józef

    2017-01-01

    Confined and semi-closed explosions of new class of energetic composites as well as TNT and RDX charges were investigated using optical spectroscopy. These composites are considered as thermobarics when used in layered charges or enhanced blast explosives when pressed. Two methods to estimate fireball temperature histories of both homogeneous and metallized explosives from the spectroscopic data are also presented, compared and analyzed. Fireball temperature results of the charges detonated in a small explosion chamber under air and argon atmospheres, and detonated in a semi-closed bunker are presented and compared with theoretical ones calculated by a thermochemical code. Important conclusions about the fireball temperatures and the physical and chemical phenomena occurring after the detonation of homogeneous explosives and composite formulations are deduced.

  7. Suppression of stratified explosive interactions

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, M.K.; Shamoun, B.I.; Bonazza, R.; Corradini, M.L. [Wisconsin Univ., Madison, WI (United States). Dept. of Nuclear Engineering and Engineering Physics

    1998-01-01

    Stratified Fuel-Coolant Interaction (FCI) experiments with Refrigerant-134a and water were performed in a large-scale system. Air was uniformly injected into the coolant pool to establish a pre-existing void which could suppress the explosion. Two competing effects due to the variation of the air flow rate seem to influence the intensity of the explosion in this geometrical configuration. At low flow rates, although the injected air increases the void fraction, the concurrent agitation and mixing increases the intensity of the interaction. At higher flow rates, the increase in void fraction tends to attenuate the propagated pressure wave generated by the explosion. Experimental results show a complete suppression of the vapor explosion at high rates of air injection, corresponding to an average void fraction of larger than 30%. (author)

  8. Detonation probabilities of high explosives

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhawer, S.W.; Bott, T.F.; Bement, T.R.

    1995-07-01

    The probability of a high explosive violent reaction (HEVR) following various events is an extremely important aspect of estimating accident-sequence frequency for nuclear weapons dismantlement. In this paper, we describe the development of response curves for insults to PBX 9404, a conventional high-performance explosive used in US weapons. The insults during dismantlement include drops of high explosive (HE), strikes of tools and components on HE, and abrasion of the explosive. In the case of drops, we combine available test data on HEVRs and the results of flooring certification tests to estimate the HEVR probability. For other insults, it was necessary to use expert opinion. We describe the expert solicitation process and the methods used to consolidate the responses. The HEVR probabilities obtained from both approaches are compared.

  9. Explosive Blast Neuropathology and Seizures

    Directory of Open Access Journals (Sweden)

    S. Krisztian eKovacs

    2014-04-01

    Full Text Available Traumatic brain injury (TBI due to explosive blast exposure is a leading combat casualty. It is also implicated as a key contributor to war related mental health diseases. A clinically important consequence of all types of TBI is a high risk for development of seizures and epilepsy. Seizures have been reported in patients who have suffered blast injuries in the Global War on Terror but the exact prevalence is unknown. The occurrence of seizures supports the contention that explosive blast leads to both cellular and structural brain pathology. Unfortunately, the exact mechanism by which explosions cause brain injury is unclear, which complicates development of meaningful therapies and mitigation strategies. To help improve understanding, detailed neuropathological analysis is needed. For this, histopathological techniques are extremely valuable and indispensable. In the following we will review the pathological results, including those from immunohistochemical and special staining approaches, from recent preclinical explosive blast studies.

  10. Simulation Analysis of Indoor Gas Explosion Damage

    Institute of Scientific and Technical Information of China (English)

    钱新明; 陈林顺; 冯长根

    2003-01-01

    The influence factors and process of indoor gas explosion are studied with AutoReaGas explosion simulator. The result shows that venting pressure has great influence on the indoor gas explosion damage. The higher the venting pressure is, the more serious the hazard consequence will be. The ignition location has also evident effect on the gas explosion damage. The explosion static overpressure would not cause major injury to person and serious damage to structure in the case of low venting pressure (lower than 2 kPa). The high temperature combustion after the explosion is the major factor to person injury in indoor gas explosion accidents.

  11. Furball Explosive Breakout Test

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Joshua David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-05

    For more than 30 years the Onionskin test has been the primary way to study the surface breakout of a detonation wave. Currently the Onionskin test allows for only a small, one dimensional, slice of the explosive in question to be observed. Asymmetrical features are not observable with the Onionskin test and its one dimensional view. As a result, in 2011, preliminary designs for the Hairball and Furball were developed then tested. The Hairball used shorting pins connected to an oscilloscope to determine the arrival time at 24 discrete points. This limited number of data points, caused by the limited number of oscilloscope channels, ultimately led to the Hairball’s demise. Following this, the Furball was developed to increase the number of data points collected. Instead of shorting pins the Furball uses fiber optics imaged by a streak camera to determine the detonation wave arrival time for each point. The original design was able to capture the detonation wave’s arrival time at 205 discrete points with the ability to increase the number of data points if necessary.

  12. Disaster management following explosion.

    Science.gov (United States)

    Sharma, B R

    2008-01-01

    Explosions and bombings remain the most common deliberate cause of disasters involving large numbers of casualties, especially as instruments of terrorism. These attacks are virtually always directed against the untrained and unsuspecting civilian population. Unlike the military, civilians are poorly equipped or prepared to handle the severe emotional, logistical, and medical burdens of a sudden large casualty load, and thus are completely vulnerable to terrorist aims. To address the problem to the maximum benefit of mass disaster victims, we must develop collective forethought and a broad-based consensus on triage and these decisions must reach beyond the hospital emergency department. It needs to be realized that physicians should never be placed in a position of individually deciding to deny treatment to patients without the guidance of a policy or protocol. Emergency physicians, however, may easily find themselves in a situation in which the demand for resources clearly exceeds supply and for this reason, emergency care providers, personnel, hospital administrators, religious leaders, and medical ethics committees need to engage in bioethical decision-making.

  13. Numerical simulation of gas explosions

    Energy Technology Data Exchange (ETDEWEB)

    Van den Berg, A.C.; Van Wingerden, J.M.; Verhagen, T.L.

    1989-08-01

    Recent developments in numerical fluid dynamics and computer technology enable detailed simulation of gas explosions. Prins Maurits Laboratory TNO of the Netherlands Organization for Applied Scientific Research developed the necessary software. This software is a useful tool to develop and evaluate explosion safe installations. One of the possible applications is the design of save offshore rigs. (f.i. to prevent Piper Alpha disasters). The two-dimensional blast model is described and an example is given. 4 figs., 6 refs.

  14. Intraperitoneal explosion following gastric perforation.

    Science.gov (United States)

    Mansfield, Scott K; Borrowdale, Roderick

    2014-04-01

    The object of this study is to report a rare case of explosion during laparotomy where diathermy ignited intraperitoneal gas from a spontaneous stomach perforation. Fortunately, the patient survived but the surgeon experienced a finger burn. A literature review demonstrates other examples of intraoperative explosion where gastrointestinal gases were the fuel source. Lessons learned from these cases provide recommendations to prevent this potentially lethal event from occurring.

  15. Atmospheric pressure chemical ionization of explosives induced by soft X-radiation in ion mobility spectrometry: mass spectrometric investigation of the ionization reactions of drift gasses, dopants and alkyl nitrates.

    Science.gov (United States)

    Riebe, Daniel; Erler, Alexander; Ritschel, Thomas; Beitz, Toralf; Löhmannsröben, Hans-Gerd; Beil, Andreas; Blaschke, Michael; Ludwig, Thomas

    2016-08-01

    A promising replacement for the radioactive sources commonly encountered in ion mobility spectrometers is a miniaturized, energy-efficient photoionization source that produce the reactant ions via soft X-radiation (2.8 keV). In order to successfully apply the photoionization source, it is imperative to know the spectrum of reactant ions and the subsequent ionization reactions leading to the detection of analytes. To that end, an ionization chamber based on the photoionization source that reproduces the ionization processes in the ion mobility spectrometer and facilitates efficient transfer of the product ions into a mass spectrometer was developed. Photoionization of pure gasses and gas mixtures containing air, N2 , CO2 and N2 O and the dopant CH2 Cl2 is discussed. The main product ions of photoionization are identified and compared with the spectrum of reactant ions formed by radioactive and corona discharge sources on the basis of literature data. The results suggest that photoionization by soft X-radiation in the negative mode is more selective than the other sources. In air, adduct ions of O2(-) with H2 O and CO2 were exclusively detected. Traces of CO2 impact the formation of adduct ions of O2(-) and Cl(-) (upon addition of dopant) and are capable of suppressing them almost completely at high CO2 concentrations. Additionally, the ionization products of four alkyl nitrates (ethylene glycol dinitrate, nitroglycerin, erythritol tetranitrate and pentaerythritol tetranitrate) formed by atmospheric pressure chemical ionization induced by X-ray photoionization in different gasses (air, N2 and N2 O) and dopants (CH2 Cl2 , C2 H5 Br and CH3 I) are investigated. The experimental studies are complemented by density functional theory calculations of the most important adduct ions of the alkyl nitrates (M) used for their spectrometric identification. In addition to the adduct ions [M + NO3 ](-) and [M + Cl](-) , adduct ions such as [M + N2 O2 ](-) , [M

  16. Generation and propagation of infrasonic airwaves from volcanic explosions

    Science.gov (United States)

    Johnson, J. B.

    2003-02-01

    Analysis of infrasonic pressure waves generated by active volcanoes is essential to the understanding of volcanic explosion dynamics. Unlike seismic waves propagating in the earth, infrasonic airwaves offer a relatively unfiltered representation of source motions at the vent during an eruption. Time-varying acoustic propagation filters caused by changeable atmospheric conditions are minimal for microphones deployed at intermediate distances (article [ Johnson et al., J. Volcanol. Geotherm. Res., in press].

  17. Explosion of lithium-thionyl-chloride battery due to presence of lithium nitride

    OpenAIRE

    Hennesø, E.; Hedlund, Frank Huess

    2015-01-01

    An explosion of a lithium–thionyl-chloride (Li–SOCl2) battery during production (assembly) leads to serious worker injury. The accident cell batch had been in a dry-air intermediate storage room for months before being readied with thionyl chloride electrolyte. Metallic lithium can react with atmospheric nitrogen to produce lithium nitride. Nodules of lithium nitride were found to be present on the lithium foil in other cells of the accident batch. The investigation attributed the explosion t...

  18. Molecular Outflows: Explosive versus Protostellar

    Science.gov (United States)

    Zapata, Luis A.; Schmid-Burgk, Johannes; Rodríguez, Luis F.; Palau, Aina; Loinard, Laurent

    2017-02-01

    With the recent recognition of a second, distinctive class of molecular outflows, namely the explosive ones not directly connected to the accretion–ejection process in star formation, a juxtaposition of the morphological and kinematic properties of both classes is warranted. By applying the same method used in Zapata et al., and using 12CO(J = 2-1) archival data from the Submillimeter Array, we contrast two well-known explosive objects, Orion KL and DR21, to HH 211 and DG Tau B, two flows representative of classical low-mass protostellar outflows. At the moment, there are only two well-established cases of explosive outflows, but with the full availability of ALMA we expect that more examples will be found in the near future. The main results are the largely different spatial distributions of the explosive flows, consisting of numerous narrow straight filament-like ejections with different orientations and in almost an isotropic configuration, the redshifted with respect to the blueshifted components of the flows (maximally separated in protostellar, largely overlapping in explosive outflows), the very-well-defined Hubble flow-like increase of velocity with distance from the origin in the explosive filaments versus the mostly non-organized CO velocity field in protostellar objects, and huge inequalities in mass, momentum, and energy of the two classes, at least for the case of low-mass flows. Finally, all the molecular filaments in the explosive outflows point back to approximately a central position (i.e., the place where its “exciting source” was located), contrary to the bulk of the molecular material within the protostellar outflows.

  19. THE INFLUENCE OF BARRIERS ON FLAME AND EXPLOSION WAVE IN GAS EXPLOSION

    Institute of Scientific and Technical Information of China (English)

    林柏泉; 周世宁; 张仁贵

    1998-01-01

    This paper researches into the influence of barriers on flame and explosion wave in gasexplosion on the basis of experiment. The result shows that the barrier is very important to thetransmission of flame and explosion wave in gas explosion. When there are barriers, the speed oftransmission would be very fast and shock wave will appear in gas explosion, which would in-crease gas explosion power. The result of research is very important to prevent gas explosion anddecrease the power of it.

  20. Hydrolysis of Miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pre-treatment and enzymatic treatment

    DEFF Research Database (Denmark)

    Sørensen, Annette; Teller, Philip Johan; Hilstrøm, Troels

    2008-01-01

    xylose prior to wet explosion. The acid presoaking extracted 63.2% xylose and 5.2% glucose. Direct enzymatic hydrolysis of the presoaked biomass was found to give only low sugar yields of 24-26% glucose. Wet explosion is a pre-treatment method that combines wet-oxidation and steam explosion. The effect......Miscanthus is a high yielding bioenergy crop. In this study we used acid presoaking, wet explosion, and enzymatic hydrolysis to evaluate the combination of the different pre-treatment methods for bioethanol production with Miscanthus. Acid presoaking is primarily carried out in order to remove...... of wet explosion on non-presoaked and presoaked Miscanthus was investigated using both atmospheric air and hydrogen peroxide as the oxidizing agent. All wet explosion pre-treatments showed to have a disrupting effect on the lignocellulosic biomass, making the sugars accessible for enzymatic hydrolysis...

  1. Explosion limits for combustible gases

    Institute of Scientific and Technical Information of China (English)

    TONG Min-ming; WU Guo-qing; HAO Ji-fei; DAI Xin-lian

    2009-01-01

    Combustible gases in coal mines are composed of methane, hydrogen, some multi-carbon alkane gases and other gases. Based on a numerical calculation, the explosion limits of combustible gases were studied, showing that these limits are related to the concentrations of different components in the mixture. With an increase of C4H10 and C6H14, the Lower ExplosionLimit (LEL) and Upper Explosion-Limit (UEL) of a combustible gas mixture will decrease clearly. For every 0.1% increase in C4H10 and C6H14, the LEL decreases by about 0.19% and the UEL by about 0.3%. The results also prove that, by increasing the amount of H2, the UEL of a combustible gas mixture will increase considerably. If the level of H2 increases by 0.1%, the UEL will increase by about 0.3%. However, H2 has only a small effect on the LEL of the combustible gas mixture. Our study provides a theoretical foundation for judging the explosion risk of an explosive gas mixture in mines.

  2. Thermodynamic States in Explosion Fields

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A L

    2009-10-16

    Here we investigate the thermodynamic states occurring in explosion fields from the detonation of condensed explosives in air. In typical applications, the pressure of expanded detonation products gases is modeled by a Jones-Wilkins-Lee (JWL) function: P{sub JWL} = f(v,s{sub CJ}); constants in that function are fit to cylinder test data. This function provides a specification of pressure as a function of specific volume, v, along the expansion isentrope (s = constant = s{sub CJ}) starting at the Chapman-Jouguet (CJ) state. However, the JWL function is not a fundamental equation of thermodynamics, and therefore gives an incomplete specification of states. For example, explosions inherently involve shock reflections from surfaces; this changes the entropy of the products, and in such situations the JWL function provides no information on the products states. In addition, most explosives are not oxygen balanced, so if hot detonation products mix with air, they after-burn, releasing the heat of reaction via a turbulent combustion process. This raises the temperature of explosion products cloud to the adiabatic flame temperature ({approx}3,000K). Again, the JWL function provides no information on the combustion products states.

  3. Explosion and explosives. Volume 32, Number 5, 1971

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    The following topics are discussed: CMDB propellants with high pressure exponent; the thermal decomposition of phenylnitromethane in 2-propanol; double exposed flash x-ray photographic observation on detonation of coal mining explosions; detonation of condensed multiple components about detonation characteristics of three liquid explosives; synthesis of N,N'-bis (2,4,6-trinitro-3-glycidoxyphenyl)-ethylene dinitramine; resistance characteristics of electric primer containing conductive particles; and formation of Meisenheimer's complex by adding an aqueous sodium hydroxide to the reaction product of epoxy compound with picric acid.

  4. The Quiet Explosion

    Science.gov (United States)

    2008-07-01

    A European-led team of astronomers are providing hints that a recent supernova may not be as normal as initially thought. Instead, the star that exploded is now understood to have collapsed into a black hole, producing a weak jet, typical of much more violent events, the so-called gamma-ray bursts. The object, SN 2008D, is thus probably among the weakest explosions that produce very fast moving jets. This discovery represents a crucial milestone in the understanding of the most violent phenomena observed in the Universe. Black Hole ESO PR Photo 23a/08 A Galaxy and two Supernovae These striking results, partly based on observations with ESO's Very Large Telescope, will appear tomorrow in Science Express, the online version of Science. Stars that were at birth more massive than about 8 times the mass of our Sun end their relatively short life in a cosmic, cataclysmic firework lighting up the Universe. The outcome is the formation of the densest objects that exist, neutron stars and black holes. When exploding, some of the most massive stars emit a short cry of agony, in the form of a burst of very energetic light, X- or gamma-rays. In the early afternoon (in Europe) of 9 January 2008, the NASA/STFC/ASI Swift telescope discovered serendipitously a 5-minute long burst of X-rays coming from within the spiral galaxy NGC 2770, located 90 million light-years away towards the Lynx constellation. The Swift satellite was studying a supernova that had exploded the previous year in the same galaxy, but the burst of X-rays came from another location, and was soon shown to arise from a different supernova, named SN 2008D. Researchers at the Italian National Institute for Astrophysics (INAF), the Max-Planck Institute for Astrophysics (MPA), ESO, and at various other institutions have observed the supernova at great length. The team is led by Paolo Mazzali of INAF's Padova Observatory and MPA. "What made this event very interesting," says Mazzali, "is that the X-ray signal was very

  5. Optimal dynamic detection of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Moore, David Steven [Los Alamos National Laboratory; Mcgrane, Shawn D [Los Alamos National Laboratory; Greenfield, Margo T [Los Alamos National Laboratory; Scharff, R J [Los Alamos National Laboratory; Rabitz, Herschel A [PRINCETON UNIV; Roslund, J [PRINCETON UNIV

    2009-01-01

    The detection of explosives is a notoriously difficult problem, especially at stand-off distances, due to their (generally) low vapor pressure, environmental and matrix interferences, and packaging. We are exploring optimal dynamic detection to exploit the best capabilities of recent advances in laser technology and recent discoveries in optimal shaping of laser pulses for control of molecular processes to significantly enhance the standoff detection of explosives. The core of the ODD-Ex technique is the introduction of optimally shaped laser pulses to simultaneously enhance sensitivity of explosives signatures while reducing the influence of noise and the signals from background interferents in the field (increase selectivity). These goals are being addressed by operating in an optimal nonlinear fashion, typically with a single shaped laser pulse inherently containing within it coherently locked control and probe sub-pulses. With sufficient bandwidth, the technique is capable of intrinsically providing orthogonal broad spectral information for data fusion, all from a single optimal pulse.

  6. Coulomb explosion of "hot spot"

    CERN Document Server

    Oreshkin, V I; Chaikovsky, S A; Artyomov, A P

    2016-01-01

    The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed and estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.

  7. Evidence for Nearby Supernova Explosions

    CERN Document Server

    Benítez, N; Canelles, M; Benitez, Narciso; Maiz-Apellaniz, Jesus; Canelles, Matilde

    2002-01-01

    Supernova explosions are one of the most energetic--and potentially lethal--phenomena in the Universe. Scientists have speculated for decades about the possible consequences for life on Earth of a nearby supernova, but plausible candidates for such an event were lacking. Here we show that the Scorpius-Centaurus OB association, a group of young stars currently located at~130 parsecs from the Sun, has generated 20 SN explosions during the last 11 Myr, some of them probably as close as 40 pc to our planet. We find that the deposition on Earth of 60Fe atoms produced by these explosions can explain the recent measurements of an excess of this isotope in deep ocean crust samples. We propose that ~2 Myr ago, one of the SNe exploded close enough to Earth to seriously damage the ozone layer, provoking or contributing to the Pliocene-Pleistocene boundary marine extinction.

  8. Explosively Joining Dissimilar Metal Tubes.

    Science.gov (United States)

    1979-11-01

    both steel, photograph (7), and the Ni-Cu specimen, photograph (8) , showed considerable pitting corrosion in the aluminum . 4. The paint was then...for 6061 -T6 aluminum and are: collision angle 5 - 200, collision velocity 270 - 350 m/sec, with an impact pressure of at least 27 Kbar (391 Kpsi...Welded Aluminum Alloy 1 .. 5 rn-i (P0 -I Op. 2si 11 6W TABLE I Explosive2 Cladder Metal Base Metal Explosive Loading (gins/in2 6061 -T6 Al 304 SS TSE- 1004

  9. 46 CFR 188.10-25 - Explosive.

    Science.gov (United States)

    2010-10-01

    ... mixture, the primary purpose of which is to function by explosion; i.e., with substantially instantaneous release of gas and heat. Explosives are discussed in more detail in 49 CFR parts 171-179....

  10. New Source Model for Chemical Explosions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoning [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-03

    With sophisticated inversion scheme, we recover characteristics of SPE explosions such as corner frequency fc and moment M0, which are used to develop a new source model for chemical explosions.

  11. Statistical estimation of loads from gas explosions

    OpenAIRE

    Høiset, Stian

    1998-01-01

    In the design of structures in the offshore and process industries, the possibility of a gas explosion must always be considered. This is usually incorporated by performing explosion simulations. However, estimations based on such calculations introduce uncertainties in the design process. The main uncertainties in explosion simulations are the assumption of the gas cloud,the location of the ignition point and the properties of the explosion simulator itself. In this thesis, we try to investi...

  12. The behavior limestone under explosive load

    Science.gov (United States)

    Orlov, M. Yu; Orlova, Yu N.; Bogomolov, G. N.

    2016-11-01

    Limestone behavior under explosive loading was investigated. The behavior of the limestone by the action of the three types of explosives, including granular, ammonite and emulsion explosives was studied in detail. The shape and diameter of the explosion craters were obtained. The observed fragments after the blast have been classified as large, medium and small fragments. Three full-scale experiments were carried out. The research results can be used as a qualitative test for the approbation of numerical methods.

  13. 75 FR 70291 - Commerce in Explosives; List of Explosive Materials (2010R-27T)

    Science.gov (United States)

    2010-11-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Bureau of Alcohol, Tobacco, Firearms and Explosives Commerce in Explosives; List of Explosive Materials (2010R-27T) AGENCY: Bureau of Alcohol, Tobacco, Firearms and Explosives (ATF), Department of...

  14. 77 FR 58410 - Commerce in Explosives; List of Explosive Materials (2012R-10T)

    Science.gov (United States)

    2012-09-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Bureau of Alcohol, Tobacco, Firearms, and Explosives Commerce in Explosives; List of Explosive Materials (2012R-10T) AGENCY: Bureau of Alcohol, Tobacco, Firearms, and Explosives (ATF), Department of...

  15. 76 FR 64974 - Commerce in Explosives; List of Explosive Materials (2011R-18T)

    Science.gov (United States)

    2011-10-19

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF JUSTICE Bureau of Alcohol, Tobacco, Firearms and Explosives Commerce in Explosives; List of Explosive Materials (2011R-18T) AGENCY: Bureau of Alcohol, Tobacco, Firearms and Explosives (ATF), Department of...

  16. Lead-free primary explosives

    Science.gov (United States)

    Huynh, My Hang V.

    2010-06-22

    Lead-free primary explosives of the formula (cat).sub.Y[M.sup.II(T).sub.X(H.sub.2O).sub.6-X].sub.Z, where T is 5-nitrotetrazolate, and syntheses thereof are described. Substantially stoichiometric equivalents of the reactants lead to high yields of pure compositions thereby avoiding dangerous purification steps.

  17. Turbulent Combustion in SDF Explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A L; Bell, J B; Beckner, V E

    2009-11-12

    A heterogeneous continuum model is proposed to describe the dispersion and combustion of an aluminum particle cloud in an explosion. It combines the gas-dynamic conservation laws for the gas phase with a continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models. It incorporates a combustion model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gasdynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes into account both the afterburning of the detonation products of the C-4 booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Numerical simulations of the explosion fields from 1.5-g Shock-Dispersed-Fuel (SDF) charge in a 6.6 liter calorimeter were used to validate the combustion model. Then the model was applied to 10-kg Al-SDF explosions in a an unconfined height-of-burst explosion. Computed pressure histories are compared with measured waveforms. Differences are caused by physical-chemical kinetic effects of particle combustion which induce ignition delays in the initial reactive blast wave and quenching of reactions at late times. Current simulations give initial insights into such modeling issues.

  18. Optical Pressure Measurements of Explosions

    Science.gov (United States)

    2013-09-01

    Explosive Shocks in Air, 2nd ed.; Springer-Verlag: Berlin , Germany, 1985. 7. Anderson, J. D. Hypersonic and High Temperature Gas Dynamics, 2nd Ed...PDF) RDRL CIO LA T LANDFRIED RDRL WML M ZOLTOSKI RDRL WML A F DE LUCIA W OBERLE RDRL WML B J GOTTFRIED J CIEZAK

  19. Explosive micro-bubble actuator

    NARCIS (Netherlands)

    Broek, van den D.M.; Elwenspoek, M.

    2008-01-01

    Explosive evaporation occurs when a liquid is exposed to extremely high heat-fluxes. Within a few microseconds a bubble in the form vapour film is generated, followed by rapid growth due to the pressure impulse and finally the bubbles collapse. This effect, which already has proven its use in curren

  20. Explosive micro-bubble actuator

    NARCIS (Netherlands)

    Broek, van den D.M.; Elwenspoek, M.C.

    2007-01-01

    Explosive evaporation occurs when a thin layer of liquid reaches a very high temperature in a very short time. At these temperatures homogeneous nucleation takes place. The nucleated bubbles almost instantly coalesce forming a vapour film followed by rapid growth due to the pressure impulse and fina

  1. Merging Infrasound and Electromagnetic Signals as a Means for Nuclear Explosion Detection

    Science.gov (United States)

    Ashkenazy, Joseph; Lipshtat, Azi; Kesar, Amit S.; Pistinner, Shlomo; Ben Horin, Yochai

    2016-04-01

    The infrasound monitoring network of the CTBT consists of 60 stations. These stations are capable of detecting atmospheric events, and may provide approximate location within time scale of a few hours. However, the nature of these events cannot be deduced from the infrasound signal. More than two decades ago it was proposed to use the electromagnetic pulse (EMP) as a means of discriminating nuclear explosion from other atmospheric events. An EMP is a unique signature of nuclear explosion and is not detected from chemical ones. Nevertheless, it was decided to exclude the EMP technology from the official CTBT verification regime, mainly because of the risk of high false alarm rate, due to lightning electromagnetic pulses [1]. Here we present a method of integrating the information retrieved from the infrasound system with the EMP signal which enables us to discriminate between lightning discharges and nuclear explosions. Furthermore, we show how spectral and other characteristics of the electromagnetic signal emitted from a nuclear explosion are distinguished from those of lightning discharge. We estimate the false alarm probability of detecting a lightning discharge from a given area of the infrasound event, and identifying it as a signature of a nuclear explosion. We show that this probability is very low and conclude that the combination of infrasound monitoring and EMP spectral analysis may produce a reliable method for identifying nuclear explosions. [1] R. Johnson, Unfinished Business: The Negotiation of the CTBT and the End of Nuclear Testing, United Nations Institute for Disarmament Research, 2009.

  2. Scientific Support for NQR Explosive Detection Development

    Science.gov (United States)

    2006-07-01

    Final 3. DATES COVERED (From - To) 8 March 2004 - 7 March 2006 4. TITLE AND SUBTITLE Scientific Support for NQR Explosive Detection Development...Laboratory (NRL) to improve explosive detection using nuclear quadrupole resonance ( NQR ) is summarized. The work includes studies of the effects...superconducting coils for explosive detection. Additional studies involving slowly rotating NQR measurements were also pursued. 15. SUBJECT TERMS Nuclear

  3. 30 CFR 77.1301 - Explosives; magazines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosives; magazines. 77.1301 Section 77.1301... and Blasting § 77.1301 Explosives; magazines. (a) Detonators and explosives other than blasting agents shall be stored in magazines. (b) Detonators shall not be stored in the same magazine with...

  4. Portable SERS Instrument for Explosives Monitoring

    Science.gov (United States)

    2008-01-01

    groundwater monitoring from a cone penetrometer (CPT) platform (5) Demonstrate improved capability for discriminating explosives versus colorimetry ...interference, and better discrimination of individual explosives compared to colorimetry • Applicability to virtually any environmental water...chemicals such as nitroaromatics or nitramines. While this makes colorimetry more generally applicable at explosive sites, it also limits the ability to

  5. 14 CFR 420.63 - Explosive siting.

    Science.gov (United States)

    2010-01-01

    ... Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... site plan shall include: (1) A scaled map that shows the location of all proposed explosive hazard... explosive hazard facility and all other explosive hazard facilities and each public area, including...

  6. Explosion Power and Pressure Desensitization Resisting Property of Emulsion Explosives Sensitized by MgH2

    Science.gov (United States)

    Cheng, Yangfan; Ma, Honghao; Liu, Rong; Shen, Zhaowu

    2014-07-01

    Due to low detonation power and pressure desensitization problems that traditional emulsion explosives encounter in utilization, a hydrogen-based emulsion explosives was devised. This type of emulsion explosives is sensitized by hydrogen-containing material MgH2, and MgH2 plays a double role as a sensitizer and an energetic material in emulsion explosives. Underwater explosion experiments and shock wave desensitization experiments show that an MgH2 emulsion explosives has excellent detonation characteristics and is resistant to pressure desensitization. The pressure desensitization-resistant mechanism of MgH2 emulsion explosives was investigated using scanning electron microscopy.

  7. Cosmic Explosions, Life in the Universe, and the Cosmological Constant.

    Science.gov (United States)

    Piran, Tsvi; Jimenez, Raul; Cuesta, Antonio J; Simpson, Fergus; Verde, Licia

    2016-02-26

    Gamma-ray bursts (GRBs) are copious sources of gamma rays whose interaction with a planetary atmosphere can pose a threat to complex life. Using recent determinations of their rate and probability of causing massive extinction, we explore what types of universes are most likely to harbor advanced forms of life. We use cosmological N-body simulations to determine at what time and for what value of the cosmological constant (Λ) the chances of life being unaffected by cosmic explosions are maximized. Life survival to GRBs favors Lambda-dominated universes. Within a cold dark matter model with a cosmological constant, the likelihood of life survival to GRBs is governed by the value of Λ and the age of the Universe. We find that we seem to live in a favorable point in this parameter space that minimizes the exposure to cosmic explosions, yet maximizes the number of main sequence (hydrogen-burning) stars around which advanced life forms can exist.

  8. Numerical computation algorithm of explosion equations and thermodynamics parameters of mine explosives

    Institute of Scientific and Technical Information of China (English)

    李守巨; 刘迎曦; 何翔; 周圆π

    2001-01-01

    A new numerical algorithm is presented to simulate the explosion reaction process of mine explosives based on the equation of state, the equation of mass conservation and thermodynamics balance equation of explosion products. With the affection of reversible reaction of explosion products to explosion reaction equations and thermodynamics parameters considered, the computer program has been developed. The computation values show that computer simulation results are identical with the testinq ones.

  9. Numerical computation algorithm of explosion equations and thermodynamics parameters of mine explosives

    Institute of Scientific and Technical Information of China (English)

    LI Shou-ju; LIU Ying-xi; HE Xiang; ZHOU Y uan-pai

    2001-01-01

    A new numerical algorithm is presented to simulate the explosion reacti on process of mine explosives based on the equation of state, the equation of ma ss conservation and thermodynamics balance equation of explosion products. With the affection of reversible reaction of explosion products to explosion reaction equations and thermodynamics parameters considered, the computer program has be en developed. The computation values show that computer simulation results are i dentical with the testing ones.

  10. Seeing a Stellar Explosion in 3D

    Science.gov (United States)

    2010-08-01

    faster in some directions than others, leading to an irregular shape with some parts stretching out further into space. The first material to be ejected from the explosion travelled at an incredible 100 million km per hour, which is about a tenth of the speed of light or around 100 000 times faster than a passenger jet. Even at this breakneck speed it has taken 10 years to reach a previously existing ring of gas and dust puffed out from the dying star. The images also demonstrate that another wave of material is travelling ten times more slowly and is being heated by radioactive elements created in the explosion. "We have established the velocity distribution of the inner ejecta of Supernova 1987A," says lead author Karina Kjær. "Just how a supernova explodes is not very well understood, but the way the star exploded is imprinted on this inner material. We can see that this material was not ejected symmetrically in all directions, but rather seems to have had a preferred direction. Besides, this direction is different to what was expected from the position of the ring." Such asymmetric behaviour was predicted by some of the most recent computer models of supernovae, which found that large-scale instabilities take place during the explosion. The new observations are thus the first direct confirmation of such models. SINFONI is the leading instrument of its kind, and only the level of detail it affords allowed the team to draw their conclusions. Advanced adaptive optics systems counteracted the blurring effects of the Earth's atmosphere while a technique called integral field spectroscopy allowed the astronomers to study several parts of the supernova's chaotic core simultaneously, leading to the build-up of the 3D image. "Integral field spectroscopy is a special technique where for each pixel we get information about the nature and velocity of the gas," says Kjær. "This means that besides the normal picture we also have the velocity along the line of sight. Because we

  11. Requirements for estimation of doses from contaminants dispersed by a 'dirty bomb' explosion in an urban area

    DEFF Research Database (Denmark)

    Andersson, Kasper Grann; Mikkelsen, Torben; Astrup, Poul

    2009-01-01

    contributions from contaminants dispersed in the atmosphere after a ‘dirty bomb’ explosion. Conceptual methodologies are presented which describe the various dose components on the basis of knowledge of time-integrated contaminant air concentrations. Also the aerosolisation and atmospheric dispersion in a city...

  12. Gas explosions - an elementary account; Eksplosiv fare

    Energy Technology Data Exchange (ETDEWEB)

    Seehusen, Joachim

    2002-07-01

    Although in a typical gas explosion the flame front propagates at sub-sonic speed, it still moves fast. Safety people often believe they can run away from a gas explosion. While gas explosions are well understood in the major companies, this is not true in many small ones, and people often do not realise how small the difference may be between a small puff and a dangerous explosion. Of special interest in a ''hydrogen society'' is the fact that hydrogen is dangerous and must be handled with care. The article discusses in an elementary way some of the basic concepts from the physics of gas explosions.

  13. Damage Effects of Shelled Explosive Explosion in Concrete

    Directory of Open Access Journals (Sweden)

    Liu Yan

    2010-10-01

    Full Text Available The damage of concrete subjected to explosion loading is an important issue in defense engineering. The damage degree of concrete is related to many factors, such as the type of explosive charge, the depth of burial and the parameters of concrete. In this paper, three factors are considered for experiments of shelled explosives in concrete targets, which are the filling coefficient, length-to-diameter ratio and the depth of burial. The filling coefficient is from 0.1 to 1 by changing thickness of shell, and length-to-diameter ratio is from 2.5 to 10. The unconfined compressive strength of concrete target for test is 35MPa. The experimental results showed that the sizes of craters of concretes are varied as the filling coefficient, length-to-diameter ratio and the depth of burial. The optimal values of filling coefficient, length-to-diameter ratio and the depth of burial of shelled charges were obtained to get largest damage regions of concrete targets. This work provides a base for evaluating the damage of concrete and designing the penetrating warhead.Defence Science Journal, 2010, 60(6, pp.672-677, DOI:http://dx.doi.org/10.14429/dsj.60.434

  14. MMSReefish Study Databases from 1993-1999 field collections (SEC7-95-11 Fish Mortalities From Explosive Removal of Petroleum Platforms)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Impacts of the Explosive Removal of Offshore Oil and Gas Structureson Fish Stocks in the Gulf of MexicoOffshore oil and gas platforms in the Gulf of Mexico (GOM)...

  15. RANCHERO explosive pulsed power experiments

    CERN Document Server

    Goforth, J H; Armijo, E V; Atchison, W L; Bartos, Yu; Clark, D A; Day, R D; Deninger, W J; Faehl, R J; Fowler, C M; García, F P; García, O F; Herrera, D H; Herrera, T J; Keinigs, R K; King, J C; Lindemuth, I R; López, E; Martínez, E C; Martínez, D; McGuire, J A; Morgan, D; Oona, H; Oro, D M; Parker, J V; Randolph, R B; Reinovsky, R E; Rodríguez, G; Stokes, J L; Sena, F C; Tabaka, L J; Tasker, D G; Taylor, A J; Torres, D T; Anderson, H D; Broste, W B; Johnson, J B; Kirbie, H C

    1999-01-01

    The authors are developing the RANCHERO high explosive pulsed power (HEPP) system to power cylindrically imploding solid-density liners for hydrodynamics experiments. Their near-term goal is to conduct experiments in the regime pertinent to the Atlas capacitor bank. That is, they will attempt to implode liners of ~50 g mass at velocities approaching 15 km/sec. The basic building block of the HEPP system is a coaxial generator with a 304.8 mm diameter stator, and an initial armature diameter of 152 mm. The armature is expanded by a high explosive (HE) charge detonated simultaneously along its axis. The authors have reported a variety of experiments conducted with generator modules 43 cm long and have presented an initial design for hydrodynamic liner experiments. In this paper, they give a synopsis of their first system test, and a status report on the development of a generator module that is 1.4 m long. (6 refs).

  16. Determination of Nanogram Microparticles from Explosives after Real Open-Air Explosions by Confocal Raman Microscopy.

    Science.gov (United States)

    Zapata, Félix; García-Ruiz, Carmen

    2016-07-05

    Explosives are increasingly being used for terrorist attacks to cause devastating explosions. The detection of their postblast residues after an explosion is a high challenge, which has been barely investigated, particularly using spectroscopic techniques. In this research, a novel methodology using confocal Raman microscopy has been developed for the analysis of postblast residues from 10 open-air explosions caused by 10 different explosives (TNT, RDX, PETN, TATP, HMTD, dynamite, black powder, ANFO, chloratite, and ammonal) commonly used in improvised explosive devices. The methodology for the determination of postblast particles from explosives consisted of examining the samples surfaces with both the naked eye, first, and microscopically (10× and 50×), immediately afterward; and finally, analyzing the selected residues by confocal Raman spectroscopy in order to identify the postblast particles from explosives. Interestingly, confocal Raman microscopy has demonstrated to be highly suitable to rapidly, selectively, and noninvasively analyze postblast microscopic particles from explosives up to the nanogram range.

  17. Trace Explosives Detection by Photoluminescence

    OpenAIRE

    2004-01-01

    Some field tests in counter-terrorism efforts to detect explosive traces employ chemistries that yield colored products. We have examined a test kit of this kind, ETKPlus, based on widely used chemistries and employed extensively by the Israel Police. Our investigation focuses on the prospect of gaining sensitivity by replacing the normal colorimetric modality with photoluminescence detection, which, to our knowledge, has not been explored to date. We find two or more orders of magnitude sens...

  18. LX-10 Explosive Damage Studies

    Science.gov (United States)

    2015-03-03

    Suite NAWCWD TM 8757 6 where P = System pressure Vs = System volume n = Covolume we = Weight of explosive burned F = Impetus, f...simultaneously ignited and regress uniformly, and the regression rate depends only on pressure and propellant temperature. 2. Heat losses from the bomb are...and fired in a manometric closed vessel. The pressure -time history was recorded, and an analysis of the data was performed to evaluate both the

  19. EXPLOSION RISK ASSESSMENTS FOR FACILITIES

    Directory of Open Access Journals (Sweden)

    Martin KULICH

    2015-12-01

    Full Text Available In the first part of the article we discuss the possibilities and analytical tools that can deal with the classification of space into zones with danger of explosion for devices with the presence of compressed flammable gases. Then we continue with specifications of possibilities for practical utilization linked to variables such as ventilation degree, hypothetical volume etc., including the examples. At the end we also give a brief overview of software for modelling gas leak, including examples of an outcome.

  20. Shell and explosive hydrogen burning

    CERN Document Server

    Boeltzig, A; Cavanna, F; Cristallo, S; Davinson, T; Depalo, R; deBoer, R J; Di Leva, A; Ferraro, F; Imbriani, G; Marigo, P; Terrasi, F; Wiescher, M

    2016-01-01

    The nucleosynthesis of light elements, from helium up to silicon, mainly occurs in Red Giant and Asymptotic Giant Branch stars and Novae. The relative abundances of the synthesized nuclides critically depend on the rates of the nuclear processes involved, often through non-trivial reaction chains, combined with complex mixing mechanisms. In this review, we summarize the contributions made by LUNA experiments in furthering our understanding of nuclear reaction rates necessary for modeling nucleosynthesis in AGB stars and Novae explosions.

  1. Fuze for explosive magnetohydrodynamic generator

    Energy Technology Data Exchange (ETDEWEB)

    Webb, G.

    1976-12-23

    An apparatus is examined by which high explosive charges are propelled into and detonated at the center of an MHD-X generator. The high explosive charge units are engaged and propelled by a reciprocating ram device. Detonating in each instance is achieved by striking with a firing pin a detonator charge that is in register with a booster charge, the booster charge being in detonating communication with the high explosive charge. Various safety requirements are satisfied by a spring loaded slider operating in a channel transverse and adjacent to the booster charge. The slide retains the detonator charge out of register with the booster charge until a safety pin that holds the slider in place is pulled by a lanyard attached between the reciprocating ram and the safety pin. Removal of the safety pin permits the detonator charge to slide into alignment with the booster charge. Firing pin actuation is initiated by the slider at the instant the detonator charge and the booster charge come into register.

  2. Nuclear Explosions 1945-1998

    Energy Technology Data Exchange (ETDEWEB)

    Bergkvist, Nils-Olov; Ferm, Ragnhild

    2000-07-01

    The main part of this report is a list of nuclear explosions conducted by the United States, the Soviet Union, the United Kingdom, France, China, India and Pakistan in 1945-98. The list includes all known nuclear test explosions and is compiled from a variety of sources including officially published information from the USA, Russia and France. The details given for each explosion (date, origin time, location, yield, type, etc.) are often compiled from more than one source because the individual sources do not give complete information. The report includes a short background to nuclear testing and provides brief information on the Comprehensive Nuclear-Test-Ban Treaty and the verification regime now being established to verify compliance with the treaty. It also summarizes nuclear testing country by country. The list should be used with some caution because its compilation from a variety of sources means that some of the data could be incorrect. This report is the result of cooperation between the Defence Research Establishment (FOA) and the Stockholm International Peace Research Institute (SIPRI)

  3. Thermodynamic States in Explosion Fields

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A L

    2010-03-12

    We investigate the thermodynamic states occurring in explosion fields from condensed explosive charges. These states are often modeled with a Jones-Wilkins-Lee (JWL) function. However, the JWL function is not a Fundamental Equation of Thermodynamics, and therefore cannot give a complete specification of such states. We use the Cheetah code of Fried to study the loci of states of the expanded detonation products gases from C-4 charges, and their combustion products air. In the Le Chatelier Plane of specific-internal-energy versus temperature, these loci are fit with a Quadratic Model function u(T), which has been shown to be valid for T < 3,000 K and p < 1k-bar. This model is used to derive a Fundamental Equation u(v,s) for C-4. Given u(v,s), one can use Maxwell's Relations to derive all other thermodynamic functions, such as temperature: T(v,s), pressure: p(v,s), enthalpy: h(v,s), Gibbs free energy: g(v,s) and Helmholz free energy: f(v,s); these loci are displayed in figures for C-4. Such complete equations of state are needed for numerical simulations of blast waves from explosive charges, and their reflections from surfaces.

  4. Thermodynamic and Gasdynamic Aspects of a Boiling Liquid Expanding Vapour Explosion

    NARCIS (Netherlands)

    Xie, M.

    2013-01-01

    The risk of explosion due to rupture of a tank filled with pressurized liquefied gas (PLG) is one of the risks to be considered in the context of studies on tunnel safety. When a vessel containing liquid well above its boiling point at normal atmospheric pressure fails catastrophically a Boiling Liq

  5. Simultaneous observation of a hot explosion by NST and IRIS

    Science.gov (United States)

    Kim, Yeon-Han; Yurchyshyn, Vasyl; Bong, Su-Chan; Cho, Il-Hyun; Cho, Kyung-Suk; Lee, Jaejin; Lim, Eun-Kyung; Park, Young-Deuk; Yang, Heesu; Ahn, Kwangsu; Goode, Philip R.; Jang, Bi-Ho

    2015-09-01

    We present the first simultaneous observations of so-called “hot explosions” in the cool atmosphere of the Sun made by the New Solar Telescope (NST) of Big Bear Solar Observatory and the Interface Region Imaging Spectrograph (IRIS) in space. The data were obtained during the joint IRIS-NST observations on 2014 July 30. The explosion of interest started around 19:20 UT and lasted for about 10 minutes. Our findings are as follows: (1) the IRIS brightening was observed in three channels of slit-jaw images, which cover the temperature range from 4000 to 80,000 K; (2) during the brightening, the Si iv emission profile showed a double-peaked shape with highly blue and redshifted components (-40 and 80 km s-1) (3) wing brightening occurred in Hα and Ca ii 8542 Å bands and related surges were observed in both bands of the NST Fast Imaging Solar Spectrograph (FISS) instrument; (4) the elongated granule, seen in NST TiO data, is clear evidence of the emergence of positive flux to trigger the hot explosion; (5) the brightening in Solar Dynamics Observatory/Atmospheric Imaging Assembly 1600 Å images is quite consistent with the IRIS brightening. These observations suggest that our event is a hot explosion that occurred in the cool atmosphere of the Sun. In addition, our event appeared as an Ellerman bomb (EB) in the wing of Hα, although its intensity is weak and the vertical extent of the brightening seems to be relatively high compared with the typical EBs.

  6. Modelling of an explosive event observed by SUMER & TRACE

    Science.gov (United States)

    Price, Daniel; Taroyan, Youra; Ishak, Bebe

    2016-07-01

    To fully understand coronal heating, we must first understand the different solar processes that move energy throughout the solar atmosphere. TRACE observations have revealed a short cold loop evolving over a small timescale, seemingly with multiple explosive events occurring along its length. An adaptive hydrodynamic radiation code was used to simulate the loop under non-equilibrium ionization. Footpoint heating and cold plasma injection were considered as possible scenarios to reproduce the observations. The simulation results were converted into synthetic observations through forward modelling, for comparison to SOHO/SUMER spectral observations of the loop.

  7. Thermal explosion in oscillating ambient conditions

    Science.gov (United States)

    Novozhilov, Vasily

    2016-07-01

    Thermal explosion problem for a medium with oscillating ambient temperature at its boundaries is considered. This is a new problem in thermal explosion theory, not previously considered in a distributed system formulation, but important for combustion and fire science. It describes autoignition of wide range of fires (such as but not limited to piles of biosolids and other organic matter; storages of munitions, explosives, propellants) subjected to temperature variations, such as seasonal or day/night variation. The problem is considered in formulation adopted in classical studies of thermal explosion. Critical conditions are determined by frequency and amplitude of ambient temperature oscillations, as well as by a number of other parameters. Effects of all the parameters on critical conditions are quantified. Results are presented for the case of planar symmetry. Development of thermal explosion in time is also considered, and a new type of unsteady thermal explosion development is discovered where thermal runaway occurs after several periods of temperature oscillations within the medium.

  8. Explosively Bonded Gun Tube Liner Development

    Science.gov (United States)

    2015-04-01

    FOR OFFICIAL USE ONYLFGFF ARL-CR-0771 ● APR 2015 US Army Research Laboratory Explosively Bonded Gun Tube Liner Development...return it to the originator. ARL-CR-0771 ● APR 2015 US Army Research Laboratory Explosively Bonded Gun Tube Liner Development...COVERED (From - To) 12 January 2014–1 January 2015 4. TITLE AND SUBTITLE Explosively Bonded Gun Tube Liner Development 5a. CONTRACT NUMBER ORISE 1120

  9. Explosive Field Visualization Based on Image Fusion

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen-yao; JIANG Ling-shuang

    2009-01-01

    m the composite sequence. Experimental results show that the new images integrate the advantages of sources, effectively improve the visualization, and disclose more information about explosive field.

  10. Momentum transfer in indirect explosive drive

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, J.E.; Warnes, R.H. [Los Alamos National Lab., NM (United States); Cherry, C.R.; Cherry, C.R. Jr.; Fischer, S.H. [Sandia National Labs., Albuquerque, NM (United States)

    1996-07-01

    Material which is not in direct contact with detonating explosives may still be driven by the explosion through impact by driven material or by attachment to driven material. In such circumstances the assumption of inelastic collision permits estimation of the final velocity of an assemblage. Examples of the utility of this assumption are demonstrated through use of Gurney equations. The inelastic collision calculation may also be used for metal parts which are driven by explosives partially covering the metal. We offer a new discounting angle to account for side energy losses from laterally unconfined explosive charges in cases where the detonation wave travels parallel to the surface which is driven.

  11. High Explosives Research and Development (HERD) Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to provide high explosive formulation, chemical analysis, safety and performance testing, processing, X-ray, quality control and loading support for...

  12. General phenomenology of underground nuclear explosions; Phenomenologie generale des explosions nucleaires souterraines

    Energy Technology Data Exchange (ETDEWEB)

    Derlich, S.; Supiot, F. [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1969-07-01

    An essentially qualitatively description is given of the phenomena related to underground nuclear explosions (explosion of a single unit, of several units in line, and simultaneous explosions). In the first chapter are described the phenomena which are common to contained explosions and to explosions forming craters (formation and propagation of a shock-wave causing the vaporization, the fusion and the fracturing of the medium). The second chapter describes the phenomena related to contained explosions (formation of a cavity with a chimney). The third chapter is devoted to the phenomenology of test explosions which form a crater; it describes in particular the mechanism of formation and the different types of craters as a function of the depth of the explosion and of the nature of the ground. The aerial phenomena connected with explosions which form a crater: shock wave in the air and focussing at a large distance, and dust clouds, are also dealt with. (authors) [French] On donne une description essentiellement qualitative des phenomenes lies aux explosions nucleaires souterraines (explosion d'un seul engin, d'engins en ligne et explosions simultanees). Dans un premier chapitre sont decrits les phenomenes communs aux explosions contenues et aux explosions formant un cratere (formation et propagation d'une onde de choc provoquant la vaporisation, la fusion et la fracturation du milieu). Le deuxieme chapitre decrit les phenomenes lies aux tirs contenus (formation d'une cavite et d'une cheminee). Le troisieme chapitre est consacre a la phenomenologie des tirs formant un cratere et decrit notamment le mecanisme de formation et les differents types de crateres en fonction de la profondeur d'explosion et de la nature du terrain. Les phenomenes aeriens lies aux explosions formant un cratere: onde de pression aerienne et focalisation a grande distance, nuages de poussieres, sont egalement abordes. (auteurs)

  13. 27 CFR 70.445 - Commerce in explosives.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Commerce in explosives. 70... Cartridges, and Explosives § 70.445 Commerce in explosives. Part 55 of title 27 CFR contains the regulations..., explosives, (b) Permits for users who buy or transport explosives in interstate or foreign commerce,...

  14. 27 CFR 555.181 - Reporting of plastic explosives.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Reporting of plastic..., FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Marking of Plastic Explosives § 555.181 Reporting of plastic explosives. All persons, other than an agency of the United...

  15. 30 CFR 75.1310 - Explosives and blasting equipment.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosives and blasting equipment. 75.1310... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1310 Explosives and blasting equipment. (a) Only permissible explosives, approved sheathed explosive units,...

  16. The gas dynamics of explosions

    CERN Document Server

    Lee,\tJohn H S

    2016-01-01

    Explosions, and the non-steady shock propagation associated with them, continue to interest researchers working in different fields of physics and engineering (such as astrophysics and fusion). Based on the author's course in shock dynamics, this book describes the various analytical methods developed to determine non-steady shock propagation. These methods offer a simple alternative to the direct numerical integration of the Euler equations and offer a better insight into the physics of the problem. Professor Lee presents the subject systematically and in a style that is accessible to graduate students and researchers working in shock dynamics, combustion, high-speed aerodynamics, propulsion and related topics.

  17. Static Charge Development on Explosives .

    Directory of Open Access Journals (Sweden)

    K. Raha

    1991-01-01

    Full Text Available Static charge development character of some of the important explosive crystals have been predicted on the basis of their crystal class and symmetry. Among the important mechanism of charge development, the piezoelectric and pyroelectric characters have been considered. Ammonium trinitrate, ammonium nitrate, m-dinitro-benzene, trinitro-toluene, styphnic acid, beeta-lead styphnate, 4,4'dinitro-dipheny1, a-hexamethylenetetranitramine, nitroguanidine, picric acid, dimethylnitramine, a-lead azide and beeta-lead azide are pyroelectric in nature, whereas pentaerythritol tetranitrate, picryliodide, hexamethylenetranitramine, tetranitromethane and trinitroethane are piezoelectric in nature.

  18. Staging atmospheres

    DEFF Research Database (Denmark)

    Bille, Mikkel; Bjerregaard, Peter; Sørensen, Tim Flohr

    2015-01-01

    The article introduces the special issue on staging atmospheres by surveying the philosophical, political and anthropological literature on atmosphere, and explores the relationship between atmosphere, material culture, subjectivity and affect. Atmosphere seems to occupy one of the classic...... localities of tensions between matter and the immaterial, the practical and the ideal, and subject and object. In the colloquial language there can, moreover, often seem to be something authentic or genuine about atmosphere, juxtaposing it to staging, which is implied to be something simulated or artificial....... This introduction seeks to outline how a number of scholars have addressed the relationship between staged atmospheres and experience, and thus highlight both the philosophical, social and political aspects of atmospheres...

  19. 75 FR 1085 - Commerce in Explosives; List of Explosive Materials (2009R-18T)

    Science.gov (United States)

    2010-01-08

    ... [Federal Register Volume 75, Number 5 (Friday, January 8, 2010)] [Notices] [Pages 1085-1087] [FR Doc No: 2010-45] DEPARTMENT OF JUSTICE Bureau of Alcohol, Tobacco, Firearms and Explosives [Docket No. ATF 34N] Commerce in Explosives; List of Explosive Materials (2009R-18T) AGENCY: Bureau of...

  20. A structured approach to forensic study of explosions: The TNO Inverse Explosion Analysis tool

    NARCIS (Netherlands)

    Voort, M.M. van der; Wees, R.M.M. van; Brouwer, S.D.; Jagt-Deutekom, M.J. van der; Verreault, J.

    2015-01-01

    Forensic analysis of explosions consists of determining the point of origin, the explosive substance involved, and the charge mass. Within the EU FP7 project Hyperion, TNO developed the Inverse Explosion Analysis (TNO-IEA) tool to estimate the charge mass and point of origin based on observed damage

  1. Thermal properties of explosives. Quarterly report, January, February, March 1964

    Energy Technology Data Exchange (ETDEWEB)

    Myers, L.C.

    1997-09-01

    Henkin`s test data are reported for comparisons of the following: dry-to-moist samples, PBX 9404 in brass and gold-plated blasting caps, Holston HMX with Bridgewater HMX, LX-04-1 and LX-04-1 + Ucon oil, and PETN, LX-04-1 and Extex. The time-to-explosion curves for HMX and PBX 9404 are also given. A description of the pyrolysis apparatus and the method of calibrating the sample temperature to the response of the thermal conductivity detector are reported. The pyrolytic decomposition curves of several standard explosives and six specially prepared HMX samples (LRL raw material No. A-311 through A-316) are included. A controlled atmosphere D.T.A. is described and the thermograms of PETN with an atmosphere of air at 85 psi, nitrogen at 85 psi and 200 psi are given. The thermograms indicate that PETN becomes more sensitive as the pressure increases. Chemical reactivity data are reported for Comp B, Comp B-3, Comp C-4, HMX, PBX 9011, PBX 9205, Tetryl and TNT. Also, test results are reported for LX-01-1 and Comp B-3 heated at 150{degrees}C for 22 hours, LX-02-1 heated at 100{degrees}C for 22 hours, and pressed pellets of PBX 9404 and PBX 9404 + powdered lead.

  2. Exoplanet Atmospheres

    CERN Document Server

    Seager, S

    2010-01-01

    At the dawn of the first discovery of exoplanets orbiting sun-like stars in the mid-1990s, few believed that observations of exoplanet atmospheres would ever be possible. After the 2002 Hubble Space Telescope detection of a transiting exoplanet atmosphere, many skeptics discounted it as a one-object, one-method success. Nevertheless, the field is now firmly established, with over two dozen exoplanet atmospheres observed today. Hot Jupiters are the type of exoplanet currently most amenable to study. Highlights include: detection of molecular spectral features; observation of day-night temperature gradients; and constraints on vertical atmospheric structure. Atmospheres of giant planets far from their host stars are also being studied with direct imaging. The ultimate exoplanet goal is to answer the enigmatic and ancient question, "Are we alone?" via detection of atmospheric biosignatures. Two exciting prospects are the immediate focus on transiting super Earths orbiting in the habitable zone of M-dwarfs, and u...

  3. Fire and explosion hazards of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

  4. Gas explosion prediction using CFD models

    Energy Technology Data Exchange (ETDEWEB)

    Niemann-Delius, C.; Okafor, E. [RWTH Aachen Univ. (Germany); Buhrow, C. [TU Bergakademie Freiberg Univ. (Germany)

    2006-07-15

    A number of CFD models are currently available to model gaseous explosions in complex geometries. Some of these tools allow the representation of complex environments within hydrocarbon production plants. In certain explosion scenarios, a correction is usually made for the presence of buildings and other complexities by using crude approximations to obtain realistic estimates of explosion behaviour as can be found when predicting the strength of blast waves resulting from initial explosions. With the advance of computational technology, and greater availability of computing power, computational fluid dynamics (CFD) tools are becoming increasingly available for solving such a wide range of explosion problems. A CFD-based explosion code - FLACS can, for instance, be confidently used to understand the impact of blast overpressures in a plant environment consisting of obstacles such as buildings, structures, and pipes. With its porosity concept representing geometry details smaller than the grid, FLACS can represent geometry well, even when using coarse grid resolutions. The performance of FLACS has been evaluated using a wide range of field data. In the present paper, the concept of computational fluid dynamics (CFD) and its application to gas explosion prediction is presented. Furthermore, the predictive capabilities of CFD-based gaseous explosion simulators are demonstrated using FLACS. Details about the FLACS-code, some extensions made to FLACS, model validation exercises, application, and some results from blast load prediction within an industrial facility are presented. (orig.)

  5. 77 FR 55108 - Explosive Siting Requirements

    Science.gov (United States)

    2012-09-07

    ... trinitrotoluene (TNT) equivalents of less than or equal to 450 pounds. Although decreased, the revised separation... required separation distances for division 1.1 explosives and liquid propellants with TNT equivalents that... separation from a given net explosive weight (NEW) is one percent, which is an equivalent level of safety...

  6. Explosions inside Ejecta and Most Luminous Supernovae

    CERN Document Server

    Blinnikov, S I

    2008-01-01

    The extremely luminous supernova SN2006gy is explained in the same way as other SNIIn events: light is produced by a radiative shock propagating in a dense circumstellar envelope formed by a previous weak explosion. The problems in the theory and observations of multiple-explosion SNe IIn are briefly reviewed.

  7. Some analytical methods for explosives: Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Selig, W.

    1965-12-08

    This report is the second compilation of methods for analyzing explosives. All the methods were developed for routine performance by techniques, and an attempt has therefore been made to keep them as simple as possible. Methods are presented for analyzing plastic-bonded explosives based on sym-cyclomethylenetetra-nitramine (HMX), based on viton in addition to HMX, and based on pentraerythritol tetranitrate (PETN).

  8. Explosion risks and consequences for tunnels

    NARCIS (Netherlands)

    Weerheijm, J.; Berg, A.C. van den

    2014-01-01

    Tunnel accidents with transports of dangerous goods may lead to explosions. Risk assessment for these accidents is complicated because of the low probability and the unknown, but disastrous effects expected. Especially the lack of knowledge on the strength of the explosion and the consequences for t

  9. 30 CFR 7.100 - Explosion tests.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosion tests. 7.100 Section 7.100 Mineral... Underground Coal Mines Where Permissible Electric Equipment is Required § 7.100 Explosion tests. (a) Test... agree. (ii) Remove all parts that do not contribute to the operation or ensure the...

  10. Atmospheric Neutrinos

    OpenAIRE

    Takaaki Kajita

    1994-01-01

    Atmospheric neutrinos are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith angle and energy-dependent deficit of muon-neutrino events. It was found that neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. This paper discusses...

  11. Articulating Atmospheres

    DEFF Research Database (Denmark)

    Kinch, Sofie

    2011-01-01

    This paper presents an architectural approach to designing computational interfaces by articulating the notion of atmosphere in the field of interaction design. It draws upon the concept of kinesthetic interaction and a philosophical notion on atmosphere emphasizing the importance of bodily...... experience in space, presented as middle ground experience. In the field of HCI, middle ground experiences complete the unarticulated spectrum between designing for foreground of attention or background awareness. When “Articulating Atmospheres through Middle Ground Experiences in Interaction Design...

  12. Atmospheres around Neutron Stars

    Science.gov (United States)

    Fryer, Chris L.; Benz, Willy

    1994-12-01

    Interest in the behavior of atmospheres around neutron stars has grown astronomically in the past few years. Some of this interest arrived in the wake of the explosion of Supernova 1987A and its elusive remnant; spawning renewed interest in a method to insure material ``fall-back'' onto the adolescent neutron star in an effort to transform it into a silent black hole. However, the bulk of the activity with atmospheres around neutron stars is concentrated in stellar models with neutron star, rather than white dwarf, cores; otherwise known as Thorne-Zytkow objects. First a mere seed in the imagination of theorists, Thorne-Zytkow objects have grown into an observational reality with an ever-increasing list of formation scenarios and observational prospects. Unfortunately, the analytic work of Chevalier on supernova fall-back implies that, except for a few cases, the stellar simulations of Thorne-Zytkow objects are missing an important aspect of physics: neutrinos. Neutrino cooling removes the pressure support of these atmospheres, allowing accretion beyond the canonical Eddington rate for these objects. We present here the results of detailed hydrodynamical simulations in one and two dimensions with the additional physical effects of neutrinos, advanced equations of state, and relativity over a range of parameters for our atmosphere including entropy and chemical composition as well as a range in the neutron star size. In agreement with Chevalier, we find, under the current list of formation scenarios, that the creature envisioned by Thorne and Zytkow will not survive the enormous appetite of a neutron star. However, neutrino heating (a physical effect not considered in Chevalier's analysis) can play an important role in creating instabilities in some formation schemes, leading to an expulsion of matter rather than rapid accretion. By placing scrutiny upon the formation methods, we can determine the observational prospects for each.

  13. Atmospheric Neutrinos

    Directory of Open Access Journals (Sweden)

    Takaaki Kajita

    2012-01-01

    Full Text Available Atmospheric neutrinos are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith angle and energy-dependent deficit of muon-neutrino events. It was found that neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. This paper discusses atmospheric neutrino experiments and the neutrino oscillation studies with these neutrinos.

  14. Atmospheric electricity

    CERN Document Server

    Chalmers, J Alan

    1957-01-01

    Atmospheric Electricity brings together numerous studies on various aspects of atmospheric electricity. This book is composed of 13 chapters that cover the main problems in the field, including the maintenance of the negative charge on the earth and the origin of the charges in thunderstorms. After a brief overview of the historical developments of atmospheric electricity, this book goes on dealing with the general principles, results, methods, and the MKS system of the field. The succeeding chapters are devoted to some aspects of electricity in the atmosphere, such as the occurrence and d

  15. Hydrodynamics of Explosion Experiments and Models

    CERN Document Server

    Kedrinskii, Valery K

    2005-01-01

    Hydronamics of Explosion presents the research results for the problems of underwater explosions and contains a detailed analysis of the structure and the parameters of the wave fields generated by explosions of cord and spiral charges, a description of the formation mechanisms for a wide range of cumulative flows at underwater explosions near the free surface, and the relevant mathematical models. Shock-wave transformation in bubbly liquids, shock-wave amplification due to collision and focusing, and the formation of bubble detonation waves in reactive bubbly liquids are studied in detail. Particular emphasis is placed on the investigation of wave processes in cavitating liquids, which incorporates the concepts of the strength of real liquids containing natural microinhomogeneities, the relaxation of tensile stress, and the cavitation fracture of a liquid as the inversion of its two-phase state under impulsive (explosive) loading. The problems are classed among essentially nonlinear processes that occur unde...

  16. Morphomechanical Innovation Drives Explosive Seed Dispersal.

    Science.gov (United States)

    Hofhuis, Hugo; Moulton, Derek; Lessinnes, Thomas; Routier-Kierzkowska, Anne-Lise; Bomphrey, Richard J; Mosca, Gabriella; Reinhardt, Hagen; Sarchet, Penny; Gan, Xiangchao; Tsiantis, Miltos; Ventikos, Yiannis; Walker, Simon; Goriely, Alain; Smith, Richard; Hay, Angela

    2016-06-30

    How mechanical and biological processes are coordinated across cells, tissues, and organs to produce complex traits is a key question in biology. Cardamine hirsuta, a relative of Arabidopsis thaliana, uses an explosive mechanism to disperse its seeds. We show that this trait evolved through morphomechanical innovations at different spatial scales. At the organ scale, tension within the fruit wall generates the elastic energy required for explosion. This tension is produced by differential contraction of fruit wall tissues through an active mechanism involving turgor pressure, cell geometry, and wall properties of the epidermis. Explosive release of this tension is controlled at the cellular scale by asymmetric lignin deposition within endocarp b cells-a striking pattern that is strictly associated with explosive pod shatter across the Brassicaceae plant family. By bridging these different scales, we present an integrated mechanism for explosive seed dispersal that links evolutionary novelty with complex trait innovation. VIDEO ABSTRACT.

  17. [Explosion injuries - prehospital care and management].

    Science.gov (United States)

    Holsträter, Thorsten; Holsträter, Susanne; Rein, Daniela; Helm, Matthias; Hossfeld, Björn

    2013-11-01

    Explosion injuries are not restricted to war-like military conflicts or terrorist attacks. The emergency physician may also encounter such injuries in the private or industrial fields, injuries caused by fireworks or gas explosions. In such cases the injury patterns are especially complex and may consist of blunt and penetrating injuries as well as thermal damage. Emergency medical personnel must be prepared to cope with explosion trauma not only in individual cases but also in major casualty incidents (MCI). This necessitates a sound knowledge about the mechanisms and processes of an explosion as well as the particular pathophysiological relationships of explosion injuries in order to be able to initiate the best possible, guideline-conform trauma therapy.

  18. Design specifications for explosion protection blowers. Effects of the geometry of a radial blower on its dimensionless characteristics; Entwurfsanforderungen fuer Explosionsschutzventilatoren. Einfluss der geometrischen Konstruktionsgestaltungen eines Radialventilators auf seine dimensionslosen Kennzahlen

    Energy Technology Data Exchange (ETDEWEB)

    Prysok, E. [Forschungs- und Entwicklungszentrum Barowent, Katowice (Poland)

    2003-08-01

    Blowers transporting explosive mixtures of gases and vapours and/or explosive atmospheric dust require special safety measures. The contribution discusses general design principles for explosion protection blowers. [German] Ventilatoren, die zur Foerderung von explosionsfaehigen Gemischen brennbarer Gase und Daempfe sowie explosionsfaehiger Staeube in der Atmosphaere bestimmt sind, benoetigen die Anwendung entsprechender Sicherung fuer ihre Konstruktion. Im folgenden Beitrag werden allgemeine, Explosionsschutzventilatoren betreffende Konstruktionsprinzipien dargestellt. (orig.)

  19. Explosion probability of unexploded ordnance: expert beliefs.

    Science.gov (United States)

    MacDonald, Jacqueline Anne; Small, Mitchell J; Morgan, M G

    2008-08-01

    This article reports on a study to quantify expert beliefs about the explosion probability of unexploded ordnance (UXO). Some 1,976 sites at closed military bases in the United States are contaminated with UXO and are slated for cleanup, at an estimated cost of $15-140 billion. Because no available technology can guarantee 100% removal of UXO, information about explosion probability is needed to assess the residual risks of civilian reuse of closed military bases and to make decisions about how much to invest in cleanup. This study elicited probability distributions for the chance of UXO explosion from 25 experts in explosive ordnance disposal, all of whom have had field experience in UXO identification and deactivation. The study considered six different scenarios: three different types of UXO handled in two different ways (one involving children and the other involving construction workers). We also asked the experts to rank by sensitivity to explosion 20 different kinds of UXO found at a case study site at Fort Ord, California. We found that the experts do not agree about the probability of UXO explosion, with significant differences among experts in their mean estimates of explosion probabilities and in the amount of uncertainty that they express in their estimates. In three of the six scenarios, the divergence was so great that the average of all the expert probability distributions was statistically indistinguishable from a uniform (0, 1) distribution-suggesting that the sum of expert opinion provides no information at all about the explosion risk. The experts' opinions on the relative sensitivity to explosion of the 20 UXO items also diverged. The average correlation between rankings of any pair of experts was 0.41, which, statistically, is barely significant (p= 0.049) at the 95% confidence level. Thus, one expert's rankings provide little predictive information about another's rankings. The lack of consensus among experts suggests that empirical studies

  20. Nuclear explosives testing readiness evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Valk, T.C.

    1993-09-01

    This readiness evaluation considers hole selection and characterization, verification, containment issues, nuclear explosive safety studies, test authorities, event operations planning, canister-rack preparation, site preparation, diagnostic equipment setup, device assembly facilities and processes, device delivery and insertion, emplacement, stemming, control room activities, readiness briefing, arming and firing, test execution, emergency response and reentry, and post event analysis to include device diagnostics, nuclear chemistry, and containment. This survey concludes that the LLNL program and its supporting contractors could execute an event within six months of notification, and a second event within the following six months, given the NET group`s evaluation and the following three restraints: (1) FY94 (and subsequent year) funding is essentially constant with FY93, (2) Preliminary work for the initial event is completed to the historical sic months status, (3) Critical personnel, currently working in dual use technologies, would be recallable as needed.

  1. Generation and characterization of nano aluminium powder obtained through wire explosion process

    Indian Academy of Sciences (India)

    T K Sindhu; R Sarathi; S R Chakravarthy

    2007-04-01

    In the present study, nano aluminium particles were produced by wire explosion process (WEP) in nitrogen, argon and helium atmospheres. Thus produced nano particles were characterized through certain physico-chemical diagnostic studies using wide angle X-ray diffraction (WAXD) and by energy dispersive analysis by X-rays (EDAX). The size and shape of the powder were analysed by using transmission electron microscopic (TEM) studies. The particle size distribution studies were performed by adopting log-normal probability distribution. The relationship between size of the particle generated in the explosion process and the type of inert gas/pressure was analysed. The mechanisms of nano particle formation, the factors which can aid the process of formation of nano particle in the wire explosion process were analysed. It is realized that energy deposited to the conductor and duration of current flow have major impact on particles produced by this process.

  2. Generation and characterization of nano-tungsten carbide particles by wire explosion process

    Energy Technology Data Exchange (ETDEWEB)

    Debalina, B.; Kamaraj, M.; Murthy, B.S. [Dept. of Metallurgical and Materials Engg., IIT Madras, Chennai 600036 (India); Chakravarthi, S.R. [Dept. of Aerospace Engg, IIT Madras, Chennai 600036 (India); Sarathi, R., E-mail: rsarathi@iitm.ac.i [Dept. of Electrical Engineering, IIT Madras, Chennai 600036, Tamilnadu (India)

    2010-04-30

    The nano-tungsten carbide particles were produced by exploding tungsten conductor in different carburizing medium viz. carbon dioxide and methane atmosphere. The influence of gas pressure in explosion chamber on the size of the particles formed was analyzed. Methane gas was found to be a conducive medium to form tungsten carbide particles. Certain physico-chemical diagnostic studies such as wide angle X-ray diffraction (WAXD) and Fourier transform infra-red (FTIR) spectroscopy studies were carried out to characterize the nano-tungsten carbide powder produced by the wire explosion process. The size of the particles was measured by using transmission electron microscope (TEM) and its size distribution was analyzed by adopting log-normal distribution. Thermal conductivity of the gas plays a major role on the size of the particle formed by wire explosion process as observed in the present work.

  3. DEVELOPMENT OF THE TEST METHODS OF THE CONVEYOR BELTS USED IN ENVIRONMENTS ENDANGERED BY EXPLOSION HAZARDS

    Directory of Open Access Journals (Sweden)

    Florin Adrian PĂUN

    2012-05-01

    Full Text Available Conveyor belts are used for a long period of time in the industry branches where potentially explosive atmospheres could occur. Dangerous phenomena which can be in direct connection with the use of conveyor belts are the ones regarding: - sparks influence over the coating layer and/or resistance internal structure of the stopped conveyor belt; - propagation of a flame along the length of a conveyor belt that was exposed to a energy source relative high like a fire or due to blockage of a conveyor belt as a result of the driving mechanism still operating, that generate a local heating of the conveyor belt in contact with the driving drum, rollers or any other heating source generated by friction. Determining the safety parameters characteristic of the conveyor belts by employing test methods allows assessment of the safety level as well as certification of their explosion protection quality when used in environments with explosion danger.

  4. Explosive-driven shock wave and vortex ring interaction with a propane flame

    Science.gov (United States)

    Giannuzzi, P. M.; Hargather, M. J.; Doig, G. C.

    2016-11-01

    Experiments were performed to analyze the interaction of an explosively driven shock wave and a propane flame. A 30 g explosive charge was detonated at one end of a 3-m-long, 0.6-m-diameter shock tube to produce a shock wave which propagated into the atmosphere. A propane flame source was positioned at various locations outside of the shock tube to investigate the effect of different strength shock waves. High-speed retroreflective shadowgraph imaging visualized the shock wave motion and flame response, while a synchronized color camera imaged the flame directly. The explosively driven shock tube was shown to produce a repeatable shock wave and vortex ring. Digital streak images show the shock wave and vortex ring propagation and expansion. The shadowgrams show that the shock wave extinguishes the propane flame by pushing it off of the fuel source. Even a weak shock wave was found to be capable of extinguishing the flame.

  5. Seismo-acoustic analysis of the Buncefield oil depot explosion in the UK, 2005 December 11

    Science.gov (United States)

    Ottemöller, L.; Evers, L. G.

    2008-03-01

    A massive vapour cloud explosion occurred at the Buncefield fuel depot near Hemel Hempstead, UK, in the morning of 2005 December 11. The explosion was the result of an overflow from one of the storage tanks with the release of over 300 tons of petrol and generating a vapour cloud that spread over an area of 80000 m2, before being ignited. Considerable damage was caused in the vicinity of the explosion and a total of 43 people were injured. The explosion was detected by seismograph stations in the UK and the Netherlands and by infrasound arrays in the Netherlands. We analysed the seismic recordings to determine the origin time of 06:01:31.45 +/-0.5 s (UTC) from P-wave arrival times. Uncertainties in determination of origin time from acoustic arrival times alone were less than 10 s. Amplitudes of P-, Lg and primary acoustic waves were measured to derive decay relationships as function of distance. From the seismic amplitudes we estimated a yield of 2-10 tons equivalent to a buried explosion. Most seismic stations recorded primary and secondary acoustic waves. We used atmospheric ray tracing to identify the various travel paths, which depend on temperature and wind speed as function of altitude, leading to directional variation. Refracted waves were observed from the troposphere, stratosphere and thermosphere with a good match between observed and calculated traveltimes. The various wave types were also identified through array processing, which provides backazimuth and slowness, of recordings from an infrasound array in the Netherlands. The amplitude of stratospheric refracted acoustic waves recorded by the array microbarometers was used to estimate a yield of 21.6 (+/-5) tons TNT equivalent. We have demonstrated through joint seismo-acoustic analysis of the explosion that both the seismic velocity model and the atmospheric model are sufficient to explain the observed traveltimes.

  6. Study on Property of Desensitized Explosive Film

    Institute of Scientific and Technical Information of China (English)

    李国新; 王晓丽; 焦清介; 刘淑珍

    2004-01-01

    The mechanical sensitivity, the critical thickness of detonation wave propagation and detonation velocity of desensitized PETN film were studied by experiments. The relationship between the mass of desensitizer paraffin wax and the friction sensitivity of desensitized PETN film was tested. According to the microstructure of film, the function of desensitizer was explained. It was proved that the explosive film could make explosive element micromation and kept its inherence properties by the result of testing the propagating critical dimension of the desensitized PETN film detonation wave. The explosive velocity of confined desensitized PETN film was tested by the multiplex optical fibre.

  7. Thermodynamic Model of Afterburning in Explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A L; Howard, M; Fried, L

    2003-04-23

    Thermodynamic states encountered during afterburning of explosion products gases in air were analyzed with the Cheetah code. Results are displayed in the form of Le Chatelier diagrams: the locus of states of specific internal energy versus temperature, for six different condensed explosives charges. Accuracy of the results was confirmed by comparing the fuel and products curves with the heats of detonation and combustion, and species composition as measured in bomb calorimeter experiments. Results were fit with analytic functions u = f ( T ) suitable for specifying the thermodynamic properties required for gas-dynamic models of afterburning in explosions.

  8. Explosive Detection and Identification by PGNAA

    Energy Technology Data Exchange (ETDEWEB)

    E.H. Seabury; A.J. Caffrey

    2004-11-01

    The goal of this project was to determine the feasibility of using field-portable prompt gamma-ray neutron activation analysis (PGNAA) to detect and identify explosives in improvised nuclear devices (INDs). The studies were carried out using the Monte Carlo N-Particle (MCNP) code developed at Los Alamos National Laboratory. The model results were tested experimentally using explosive simulants and the PINS PGNAA system developed at Idaho National Engineering and Environmental Laboratory (INEEL). The results of the MCNP calculations and PINS measurements are presented in this report. The calculations and measurements were in good agreement and indicate that most explosives are readily distinguishable from one another.

  9. On the Violence of High Explosive Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Tarver, C M; Chidester, S K

    2004-02-09

    High explosive reactions can be caused by three general energy deposition processes: impact ignition by frictional and/or shear heating; bulk thermal heating; and shock compression. The violence of the subsequent reaction varies from benign slow combustion to catastrophic detonation of the entire charge. The degree of violence depends on many variables, including the rate of energy delivery, the physical and chemical properties of the explosive, and the strength of the confinement surrounding the explosive charge. The current state of experimental and computer modeling research on the violence of impact, thermal, and shock-induced reactions is reviewed.

  10. Water waves generated by underwater explosion

    CERN Document Server

    Mehaute, Bernard Le

    1996-01-01

    This is the first book on explosion-generated water waves. It presents the theoretical foundations and experimental results of the generation and propagation of impulsively generated waves resulting from underwater explosions. Many of the theories and concepts presented herein are applicable to other types of water waves, in particular, tsunamis and waves generated by the fall of a meteorite. Linear and nonlinear theories, as well as experimental calibrations, are presented for cases of deep and shallow water explosions. Propagation of transient waves on dissipative, nonuniform bathymetries to

  11. Mechanical constraints on the triggering of vulcanian explosions at Santiaguito volcano, Guatemala

    Science.gov (United States)

    Hornby, Adrian; Lavallée, Yan; Collinson, Amy; Neuberg, Jurgen; De Angelis, Silvio; Kendrick, Jackie; Lamur, Anthony

    2016-04-01

    Gas- and ash explosions at Santiaguito volcano occur at regular 20-200 minute intervals, exiting through arcuate fractures in the summit dome of the Caliente vent. Infrasound, ground deformation and seismic monitoring collected during a long term monitoring survey conducted by the University of Liverpool have constrained a stable, repeatable source for these explosions. The explosions maintain similar magnitudes and (low) erupted mass throughout examined period. Ground deformation reveals stable ~25 minute inflation-deflation cycles, which culminate in either explosions or passive outgassing. Inversion of infrasound sources has revealed that faster inflation rates during the final minutes before peak inflation lead to explosions. These explosions fragment a consistently small-volume pressurized, gas-rich domain within magma located below a denser, lower permeability magma plug. Rapid decompression of this gas-rich domain occurs through fracturing and faulting, creating a highly permeable connection with atmospheric pressures near to the dome surface. We surmise that the dominant fracture mode at these shallow depths is tensile due to the volumetric strain exerted by a pressurising source below the magma plug, however a component of shear is also detected during explosive events. Fractures may either propagate downwards from the dome surface (due to greater magma stiffness and lower confining pressure) or upwards from the gas-rich domain (due to higher strain rates at the deformation source in the case of viscous deformation). In order to constrain the origin and evolution of these fractures we have conducted Brazilian tensile stress tests on lavas from the Caliente vent at strain rates from 10-3-10-5, porosities 3-30% and temperatures 20-800 °C. Across the expected conduit temperature range (750-800 °C) the dome material becomes highly sensitive to strain rate, showing a range of response from elastic failure to viscous flow. The total strain accommodated prior

  12. Ionospheric response to the entry and explosion of the South Ural superbolide

    Science.gov (United States)

    Ruzhin, Yu. Ya.; Kuznetsov, V. D.; Smirnov, V. M.

    2014-09-01

    The South Ural meteoroid (February 15, 2013; near the city of Chelyabinsk) is undoubtedly the best documented meteoroid in history. Its passage through the atmosphere has been recorded on videos and photographs, visually by observers, with ground-based infrasound microphones and seismographs, and by satellites in orbit. In this work, the results are presented of an analysis of the transionospheric GPS sounding data collected in the vicinity of the South Ural meteoroid site, which show a weak ionospheric effect. The ionospheric disturbances are found to be asymmetric about the explosion epicenter. The received signals are compared, both in shape and amplitude, with the reported ionospheric effects of ground level explosions with radio diagnostics. It is shown that the confident registration of ionospheric effects as acoustic gravity waves (AGWs) by means of vertical sounding and GPS technologies for ground explosions in the range of 0.26-0.6 kt casts doubt on the existing TNT equivalent estimates (up to 500 kt) for the Chelyabinsk event. The absence of effects in the magnetic field and in the ionosphere far zone at distances of 1500-2000 km from the superbolide explosion epicenter also raises a question about the possibility of an overestimated TNT equivalent. An alternative explanation is to consider the superposition of a cylindrical ballistic wave (due to the hypersonic motion of the meteoroid) with spherical shock waves caused by the multiple time points of fragmentation (multiple explosions) of the superbolide as a resulting source of the AGW impact on ionospheric layers.

  13. Atmospheric materiality

    DEFF Research Database (Denmark)

    Wieczorek, Izabela

    2016-01-01

    experience and, consequently, to the conceptual and methodological shifts in the production of space, and hence in the way we think about materiality. In this context, architectural space is understood as a contingent construction – a space of engagement that appears to us as a result of continuous...... characteristics of atmosphere as a spatial phenomenon, the aim of this text is to illustrate these associations and draw out design protocols, focusing on ways in which atmosphere can be conditioned architecturally. In other words, the objective is to trace the conceptual contours of ‘atmospheric materiality’....

  14. A COMPUTER MODEL OF THE CONSEQUENCES OF AIR-FUEL MIXTURE EMERGENCY EXPLOSIONS

    Directory of Open Access Journals (Sweden)

    Orishenko I. V.

    2015-02-01

    Full Text Available In this article the basic principles of air-fuel mixture explosions and striking factors, such as air-striking wave, gas streams, splinters, flame heat, light radiation and sharp sounds are observed. The calculation technique of the emergency emission consequences which is for a quantitative estimation of air-striking wave parameters at air-fuel mixture explosions forming in the atmosphere at industrial failures is given. The basic structural elements of calculation algorithm are listed. It is supposed partial depressurization or full destruction of the equipment containing combustible substance in a gaseous or liquid phase, the emission of this substance in the atmosphere, the air-fuel mixture cloud formation, the air-fuel mixture initiation (ignition and the explosive transformation (deflagration or detonation in the air-fuel mixture cloud. The technique allows making the approached estimation of air-striking wave various parameters and defining the probable degrees of men defeat and building damage at failures with air-fuel mixture cloud explosions. The given technique is developed in C# language in the integrated environment of software Microsoft VisualStudio 2010 working out. The program fragment in which the calculation of dimensionless Px pressure and dimensionless Ix impulse is given

  15. Analyzing the Energetics of Explosive Events Observed by SUMER on SOHO

    Science.gov (United States)

    Winebarger, Amy R.; Emslie, A. Gordon; Mariska, John T.; Warren, Harry P.

    1999-11-01

    The SUMER spectrometer on SOHO has obtained numerous observations of optically thin chromosphere-corona transition-region line profiles with high spatial, spectral, and temporal resolution. Many of these profiles exhibit asymmetries and broadenings associated with impulsive mass motions (explosive events) in the solar atmosphere. We present here a new method of analyzing non-Gaussian line profiles to calculate the distribution of fluid velocities and hence the associated energy flux. We illustrate this method through a preliminary analysis of explosive event line profiles observed by SUMER. We derive the magnitudes of the energy fluxes directed both toward and away from the observer, and their (``net flux'') differences. We also identify and quantify the various components of each (i.e., kinetic, thermal and nonthermal enthalpy, and the high-energy component associated with the skewed tail of the distribution). The global energy contribution of explosive events to the solar atmosphere is then estimated under two different ``grouping'' assumptions. This preliminary analysis reveals an average net upward energy flux over the entire Sun of 104-105 ergs cm-2 s-1, up to an order of magnitude larger than previous estimates based on characteristic velocities of the fluid. Furthermore, the global estimate for the separate upward- and downward-directed energy fluxes is 105-106 ergs cm-2 s-1, which is comparable to the energy flux required for heating of the quiet corona and indicates that explosive events may indeed have significant implications for the energy balance of the chromosphere and corona.

  16. Rotationally resolved infrared spectra of the explosive bouquet compounds associated with C-4 explosives

    Science.gov (United States)

    Clasp, Trocia N.; Johnson, Tiffani; Sullivan, Michael N.; Reeve, Scott W.

    2011-05-01

    The explosive material known as Composition C4, or simply C4, is an RDX based military grade explosive. RDX itself possesses a negligible vapor pressure at room temperature suggesting it is not a good target for conventional instruments designed to detect vapor phase chemical compounds. Recent research with canines has indicated that a better approach for detecting explosive vapors such as C4 is to focus on a characteristic mixture of impurities associated with the material. These characteristic mixtures of impurity vapors are referred to by canine researchers as the explosive bouquet and are fairly unique to the specific energetic material. In this paper, we will examine and report rotationally resolved infrared spectral signatures for the known compounds comprising the explosive bouquet for C4 based explosives including isobutylene, 2-ethyl-1-hexanol and cyclohexanone.

  17. Atmospheric Dispositifs

    DEFF Research Database (Denmark)

    Wieczorek, Izabela

    2015-01-01

    , the conceptual foundations and protocols for the production of atmosphere in architecture might be found beneath the surface of contemporary debates. In this context, the notion of atmospheric dispositif – illustrated through an oeuvre of the German architect Werner Ruhnau and its theoretical and historical...... as a spatial phenomenon, exploring a multiplicity of conditions that constitute their resonant origins – i.e. the production sites from and within they have emerged. The intention is also to argue that despite the fact that atmosphere as an aesthetic category has crystallised over the last few decades...... contextualisation – provides a platform for revealing productive entanglements between heterogeneous elements, disciplines and processes. It also allows rendering atmosphere as a site of co-production open to contingencies and affective interplay on multiples levels: at the moment of its conceptualisation...

  18. Atmospheric composition

    Science.gov (United States)

    Daniels, G. E.

    1973-01-01

    The earth's atmosphere is made up of a number of gases in different relative amounts. Near sea level and up to about 90 km, the amount of these atmospheric gases in clean, relatively dry air is practically constant. Four of these gases, nitrogen, oxygen, argon, and carbon dioxide, make up 99.99 percent by volume of the atmosphere. Two gases, ozone and water vapor, change in relative amounts, but the total amount of these two is very small compared to the amount of the other gases. The atmospheric composition shown in a table can be considered valid up to 90 km geometric altitude. Above 90 km, mainly because of molecular dissociation and diffusive separation, the composition changes.

  19. Steam explosion pretreatment of softwood: the effect of the explosive decompression on enzymatic digestibility

    OpenAIRE

    Pielhop, Thomas; Amgarten, Janick; von Rohr, Philipp Rudolf; Studer, Michael H.

    2016-01-01

    Background Steam explosion pretreatment has been examined in many studies for enhancing the enzymatic digestibility of lignocellulosic biomass and is currently the most common pretreatment method in commercial biorefineries. The information available about the effect of the explosive decompression on the biochemical conversion is, however, very limited, and no studies prove that the latter is actually enhanced by the explosion. Hence, it is of great value to discern between the effect of the ...

  20. 30 CFR 77.1300 - Explosives and blasting.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosives and blasting. 77.1300 Section 77... Explosives and Blasting § 77.1300 Explosives and blasting. (a) No explosives, blasting agent, detonator, or any other related blasting device or material shall be stored, transported, carried, handled,...

  1. Isolator fragmentation and explosive initiation tests

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, Peter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rae, Philip John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Foley, Timothy J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Novak, Alan M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Armstrong, Christopher Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baca, Eva V. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gunderson, Jake Alfred [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-19

    Three tests were conducted to evaluate the effects of firing an isolator in proximity to a barrier or explosive charge. The tests with explosive were conducted without a barrier, on the basis that since any barrier will reduce the shock transmitted to the explosive, bare explosive represents the worst-case from an inadvertent initiation perspective. No reaction was observed. The shock caused by the impact of a representative plastic material on both bare and cased PBX 9501 is calculated in the worst-case, 1-D limit, and the known shock response of the HE is used to estimate minimum run-to-detonation lengths. The estimates demonstrate that even 1-D impacts would not be of concern and that, accordingly, the divergent shocks due to isolator fragment impact are of no concern as initiating stimuli.

  2. NQR Stimulation Technique for Explosives Detection System

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A method of customization stimulation signal based on direct digital frequency synthesis (DDS) for Nuclear Quadrapole Resonance Explosives Detection System is presented. DDS has many advantages, such as high frequency resolution, high convert speed,

  3. Isolator fragmentation and explosive initiation tests

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, Peter [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Rae, Philip John [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Foley, Timothy J. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Novak, Alan M. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Armstrong, Christopher Lee [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Baca, Eva V. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Gunderson, Jake Alfred [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2015-09-30

    Three tests were conducted to evaluate the effects of firing an isolator in proximity to a barrier or explosive charge. The tests with explosive were conducted without barrier, on the basis that since any barrier will reduce the shock transmitted to the explosive, bare explosive represents the worst-case from an inadvertent initiation perspective. No reaction was observed. The shock caused by the impact of a representative plastic material on both bare and cased PBX9501 is calculated in the worst-case, 1-D limit, and the known shock response of the HE is used to estimate minimum run-to-detonation lengths. The estimates demonstrate that even 1-D impacts would not be of concern and that, accordingly, the divergent shocks due to isolator fragment impact are of no concern as initiating stimuli.

  4. Highly explosive nanosilicon-based composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Clement, D.; Diener, J.; Gross, E.; Kuenzner, N.; Kovalev, D. [Technical University of Munich, Physics Department, James-Franck-Str., 85747 Garching (Germany); Timoshenko, V.Yu. [Moscow State M.V. Lomonosov University, Physics Department, 119899 Moscow (Russian Federation)

    2005-06-01

    We present a highly explosive binary system based on porous silicon layers with their pores filled with solid oxidizers. The porous layers are produced by a standard electrochemical etching process and exhibit properties that are different from other energetic materials. Its production is completely compatible with the standard silicon technology and full bulk silicon wafers can be processed and therefore a large number of explosive elements can be produced simultaneously. The application-relevant parameters: the efficiency and the long-term stability of various porous silicon/oxidizer systems have been studied in details. Structural properties of porous silicon, its surface termination, the atomic ratio of silicon to oxygen and the chosen oxidizers were optimized to achieve the highest efficiency of the explosive reaction. This explosive system reveals various possible applications in different industrial fields, e.g. as a novel, very fast airbag igniter. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Numerical Simulation of Underwater Explosion Loads

    Institute of Scientific and Technical Information of China (English)

    XIN Chunliang; XU Gengguang; LIU Kezhong

    2008-01-01

    Numerical simulation of TNT underwater explosion was carried out with AUTODYN software.Influences of artificial viscosity and mesh density on simulation results were discussed.Detonation waves in explosive and shock wave in water during early time of explosion are high frequency waves.Fine meshes (less than 1 mm) in explosive and water nearby,and small linear viscosity coefficients and quadratic viscosity coefficients (0.02 and 0.1 respectively,1/10 of default values) are needed in numerical simulation model.According to these rules,numerical computing pressure profiles can match well with those calculated by Zamyshlyayev empirical formula.Otherwise peak pressure would be smeared off and upstream relative errors would be cumulated downstream to make downstream peak pressure lower.

  6. Rabbit lung injury induced by explosive decompression

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To study the mechanism of rabbit lunginjury caused by explosive decompression. Methods: A total of 42 rabbits and 10 rats were served as the experimental animals. A slow recompressiondecompression test and an explosive decompression test were applied to the animals, respectively. And the effects of the given tests on the animals were discussed. Results: The slow recompression-decompression did not cause an obvious lung injury, but the explosive decompression did cause lung injuries in different degrees. The greater the decompression range was, the shorter the decompression duration was, and the heavier the lung injuries were. Conclusions: Explosive decompression can cause a similar lung injury as shock wave does. The primary mechanical causes of the lung injury might be a tensile strain or stress in the alveolar wall and the pulmonary surface's impacts on the inside wall of the chest.

  7. Pretreatment of Corn Stalk by Steam Explosion

    Institute of Scientific and Technical Information of China (English)

    邵自强; 田永生; 谭惠民

    2003-01-01

    A steam explosion pretreatment, which is one of the best ways of pretreating plant stalk, is applied at various severities to corn stalk. It could effectively modify the super-molecular structure of corn stalk and defibrating corn stalk into individual components. The relationship between yield of reducing sugar and the operating conditions, including temperature, pressure of steam explosion pretreatment and acidity, is also established. Experimental results prove that the steam explosion substantially increases the yield of reducing sugar, and the optimal condition for steam explosion is as follows: the pressure is 2.0 MPa, the pressure-retaining time 300 s, the initial acid concentration 1% and the acid treatment time 24 h.

  8. Shunting effect in explosive electron emission

    Science.gov (United States)

    Mesyats, G. A.; Parkevich, E. V.; Pikuz, S. A.; Yalandin, M. I.

    2016-10-01

    An explanation is given to the results of an experiment on studying the explosive electron emission in a wire-cathode diode where a strongly nonuniform energy deposition into the wire material was observed using an X pinch as a radiation source for projection x-ray imaging. The specific input energy, contrary to the well-known observations, was not a maximum at the wire end, i.e., in the region of the strongest electric field, and the wire explosion occurred in the bulk, distant from the end. This is accounted for by the contribution of the wire side surface to explosive electron emission and by the gas desorption from the wire intensely heated by a current of density 108 A/cm2. Thus, the space between anode and cathode (wire end) is bridged by two plasmas: one generated due to the explosive electron emission from the wire side surface and the other produced from the desorbed gas.

  9. Explosives Detection and Identification by PGNAA

    Energy Technology Data Exchange (ETDEWEB)

    E. H. Seabury; A. J. Caffrey

    2006-04-01

    The feasibility of using field-portable prompt gamma-ray neutron activation analysis (PGNAA) to detect and identify explosives in improvised nuclear devices has been studied computationally, using the Monte Carlo N-Particle (MCNP) code developed at Los Alamos National Laboratory. The Monte Carlo results, in turn were tested experimentally using explosive simulants and the PINS PGNAA system developed at Idaho National Laboratory (INL). The results of the MCNP calculations and PINS measurements have been previously reported. In this report we describe measurements performed on actual explosives and compare the results with calculations. The calculations and measurements were in good agreement and indicate that most explosives are readily distinguishable from one another by PGNAA

  10. Magnetorotational Explosive Instability in Keplerian Disks

    CERN Document Server

    Shtemler, Yuri; Mond, Michael

    2015-01-01

    In this paper it is shown that deferentially rotating disks that are in the presence of weak axial magnetic field are prone to a new nonlinear explosive instability. The latter occurs due to the near-resonance three-wave interactions of a magnetorotational instability with stable Alfven-Coriolis and magnetosonic modes. The dynamical equations that govern the temporal evolution of the amplitudes of the three interacting modes are derived. Numerical solutions of the dynamical equations indicate that small frequency mismatch gives rise to two types of behavior: 1. explosive instability which leads to infinite values of the three amplitudes within a finite time, and 2. bounded irregular oscillations of all three amplitudes. Asymptotic solutions of the dynamical equations are obtained for the explosive instability regimes and are shown to match the numerical solutions near the explosion time.

  11. Evaluation of sulfur dioxide emissions from explosive volcanism: the 1982-1983 eruptions of Galunggung, Java, Indonesia

    Science.gov (United States)

    Bluth, G.J.S.; Casadevall, T.J.; Schnetzler, C.C.; Doiron, S.D.; Walter, Louis S.; Krueger, A.J.; Badruddin, M.

    1994-01-01

    Galunggung volcano, Java, awoke from a 63-year quiescence in April 1982, and erupted sporadically through January 1983. During its most violent period from April to October, the Cikasasah Volcano Observatory reported 32 large and 56 moderate to small eruptions. From April 5 through September 19 the Total Ozone Mapping Spectrometer (TOMS), carried on NASA's Nimbus-7 satellite, detected and measured 24 different sulfur dioxide clouds; an estimated 1730 kilotons (kt) of SO2 were outgassed by these explosive eruptions. The trajectories, and rapid dispersion rates, of the SO2 clouds were consistent with injection altitudes below the tropopause. An additional 300 kt of SO2 were estimated to have come from 64 smaller explosive eruptions, based on the detection limit of the TOMS instrument. For the first time, an extended period of volcanic activity was monitored by remote sensing techniques which enabled observations of both the entire SO2 clouds produced by large explosive eruptions (using TOMS), and the relatively lower levels of SO2 emissions during non-explosive outgassing (using the Correlation Spectrometer, or COSPEC). Based on COSPEC measurements from August 1982 to January 1983, and on the relationship between explosive and non-explosive degassing, approximately 400 kt of SO2 were emitted during non-explosive activity. The total sulfur dioxide outgassed from Galunggung volcano from April 1982 to January 1983 is calculated to be 2500 kt (?? 30%) from both explosive and non-explosive activity. While Galunggung added large quantities of sulfur dioxide to the atmosphere, its sporadic emissions occurred in relatively small events distributed over several months, and reached relatively low altitudes, and are unlikely to have significantly affected aerosol loading of the stratosphere in 1982 by volcanic activity. ?? 1994.

  12. Effect of Explosive Sources on the Elastic Wave Field of Explosions in Soils

    Directory of Open Access Journals (Sweden)

    Chun Hua Bai

    2013-07-01

    Full Text Available A seismic wave is essentially an elastic wave, which propagates in the soil medium, with the strength of initial elastic wave being created by an explosion source that has a significant effect on seismic wave energy. In order to explore the explosive energy effect on output characteristics of the elastic wave field, four explosives with different work capacity (i.e., TNT, 8701, composition B and THL were used to study the effects of elastic wave pressure and rise time of stress wave to the peak value of explosions in soils. All the experimental data was measured under the same geological conditions using a self-designed pressure measuring system. This study was based on the analysis of the initial pressure of elastic waves from the energy output characteristics of the explosives. The results show that this system is feasible for underground pressure tests, and the addition of aluminum powder increases the pressure of elastic waves and energy release of explosions in soils. The explosive used as a seismic energy source in petroleum and gas exploration should have properties of high explosion heat and low volume of explosion gas products.Defence Science Journal, 2013, 63(4, pp.376-380, DOI:http://dx.doi.org/10.14429/dsj.63.2770

  13. Effect of Explosive Sources on the Elastic Wave Field of Explosions in Soils

    Directory of Open Access Journals (Sweden)

    Chun-Hua Bai

    2013-07-01

    Full Text Available A seismic wave is essentially an elastic wave, which propagates in the soil medium, with the strength of initial elastic wave being created by an explosion source that has a significant effect on seismic wave energy. In order to explore the explosive energy effect on output characteristics of the elastic wave field, four explosives with different work capacity (i.e., TNT, 8701, composition B and THL were used to study the effects of elastic wave pressure and rise time of stress wave to the peak value of explosions in soils. All the experimental data was measured under the same geological conditions using a self-designed pressure measuring system. This study was based on the analysis of the initial pressure of elastic waves from the energy output characteristics of the explosives. The results show that this system is feasible for underground pressure tests, and the addition of aluminum powder increases the pressure of elastic waves and energy release of explosions in soils. The explosive used as a seismic energy source in petroleum and gas exploration should have properties of high explosion heat and low volume of explosion gas products.

  14. Asymmetric Explosions of Thermonuclear Supernovae

    CERN Document Server

    Ghezzi, C R; Horváth, J E

    2004-01-01

    A type Ia supernova explosion starts in a white dwarf as a laminar deflagration at the center of the star and soon several hydrodynamic instabilities (in particular, the Rayleigh-Taylor (R-T) instability) begin to act. In previous work (Ghezzi, de Gouveia Dal Pino, & Horvath 2001), we addressed the propagation of an initially laminar thermonuclear flame in presence of a magnetic field assumed to be dipolar. We were able to show that, within the framework of a fractal model for the flame velocity, the front is affected by the field through the quenching of the R-T instability growth in the direction perpendicular to the field lines. As a consequence, an asymmetry develops between the magnetic polar and the equatorial axis that gives a prolate shape to the burning front. We have here computed numerically the total integrated asymmetry as the flame front propagates outward through the expanding shells of decreasing density of the magnetized white dwarf progenitor, for several chemical compositions, and found...

  15. Supernova neutrinos and explosive nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J.; Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Mathews, G. J. [Center for Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Nakamura, K. [Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Suzuki, T. [Department of Physics, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-05-09

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and θ{sub 13}, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements {sup 11}B and {sup 7}Li encapsulated in the presolar grains. Combining the recent experimental constraints on θ{sub 13}, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  16. Managing traumatic brain injury secondary to explosions

    Directory of Open Access Journals (Sweden)

    Burgess Paula

    2010-01-01

    Full Text Available Explosions and bombings are the most common deliberate cause of disasters with large numbers of casualties. Despite this fact, disaster medical response training has traditionally focused on the management of injuries following natural disasters and terrorist attacks with biological, chemical, and nuclear agents. The following article is a clinical primer for physicians regarding traumatic brain injury (TBI caused by explosions and bombings. The history, physics, and treatment of TBI are outlined.

  17. Weapons Experiments Division Explosives Operations Overview

    Energy Technology Data Exchange (ETDEWEB)

    Laintz, Kenneth E. [Los Alamos National Laboratory

    2012-06-19

    Presentation covers WX Division programmatic operations with a focus on JOWOG-9 interests. A brief look at DARHT is followed by a high level overview of explosives research activities currently being conducted within in the experimental groups of WX-Division. Presentation covers more emphasis of activities and facilities at TA-9 as these efforts have been more traditionally aligned with ongoing collaborative explosive exchanges covered under JOWOG-9.

  18. On thermal explosion in porous media

    Science.gov (United States)

    Gordon, Peter

    2010-06-01

    We consider a model of thermal explosion in porous media which is a natural generalization of the well-known problem of self-ignition introduced by (Gelfand 1963 Am. Math. Soc. Trans. 29 295-381). We rigorously prove that, similar to the Gelfand-Barenblatt problem, the thermal explosion (finite time blow-up of all solutions for the problem with non-negative initial data) occurs exclusively due to the absence of a weak solution of the corresponding stationary problem.

  19. [Pulmonary contusion and hemothorax due to explosion].

    Science.gov (United States)

    Baeza-Herrera, Carlos; Sanjuán-Fabián, Héctor; Medellín-Sierra, Ulises Darío; Nájera-Garduño, Heladio; García-Cabello, Luis Manuel

    2006-01-01

    Folklore and "uses and customs" in countries such as Mexico, under certain circumstances, have direct influences on risks for traumatic injuries. Such is the case of gunpowder explosive objects used during celebration holidays. We present a 14-year-old male who suffered a pulmonary contusion as a consequence of an explosion of "huevo de codorniz." A pleurostomy tube was required to resolve symptomatic hemothorax. The patient was discharged 5 days after admission.

  20. Risk Assessment Study for Storage Explosive

    Directory of Open Access Journals (Sweden)

    S. S. Azhar

    2006-01-01

    Full Text Available In Malaysia, there has been rapidly increasing usage in amount of explosives due to widely expansion in quarrying and mining industries. The explosives are usually stored in the storage where the safety precaution had given high attention. As the storage of large quantity of explosive can be hazardous to workers and nearby residents in the events of accidental denotation of explosives, a risk assessment study for storage explosive (magazine had been carried out. Risk assessment study had been conducted in Kimanis Quarry Sdn. Bhd, located in Sabah. Risk assessment study had been carried out with the identification of hazards and failure scenarios and estimation of the failure frequency of occurrence. Analysis of possible consequences of failure and the effects of blast waves due to the explosion was evaluated. The risk had been estimated in term of fatalities and eardrum rupture to the workers and public. The average individual voluntary risk for fatality to the workers at the quarry is calculated to be 5.75 x 10-6 per person per year, which is much lower than the acceptable level. Eardrum rupture risk calculated to be 3.15 x 10-6 per person per year for voluntary risk. There is no involuntary risk found for fatality but for eardrum rupture it was calculated to be 6.98 x 10-8 per person per year, as given by Asian Development Bank.

  1. What factors control superficial lava dome explosivity?

    Science.gov (United States)

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît; Morgan, Daniel J.

    2015-09-01

    Dome-forming eruption is a frequent eruptive style and a major hazard on numerous volcanoes worldwide. Lava domes are built by slow extrusion of degassed, viscous magma and may be destroyed by gravitational collapse or explosion. The triggering of lava dome explosions is poorly understood: here we propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The relative thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Explosive activity is thus more likely to occur at the onset of lava dome extrusion, in agreement with observations, as the likelihood of superficial lava dome explosions depends inversely on lava dome volume. This new result is of interest for the whole volcanological community and for risk management.

  2. Explosive compaction of CuCr alloys

    Institute of Scientific and Technical Information of China (English)

    李金平; 罗守靖; 龚朝晖; 牛玮; 纪松

    2002-01-01

    The production of CuCr alloys utilizing explosive compaction was studied. Mixture powders of CuCr alloys placed in tubes with a dimension of d14.0mm×21.4mm can be compacted using explosive pads of 16.5mm or 22.5mm. Thicker pads of explosive make the compacts more porous. The effects of the ratio of me/mp, ratio of me/(mp+mt) and impact energy on the density of compacts were similar, they were chosen to control explosive compaction, respectively. When adequate value of the parameters me/mp, me/(mt+mp) and impact energy of unit area of tube was chosen, high density(7.858g/cm3), high hardness(HB189) and low conductance (13.6MS/m) of CuCr alloys could be made by explosive compaction. The general properties of CuCr alloys by explosive compaction are similar to those of CuCr alloys by traditional process.

  3. Statistical estimation of loads from gas explosions

    Energy Technology Data Exchange (ETDEWEB)

    Hoeiset, Stian

    1998-12-31

    In the design of structures in the offshore and process industries, the possibility of a gas explosion must always be considered. The main uncertainties in computerized simulation of gas explosions are the assumptions of the gas cloud, the location of the ignition point and the properties of the simulator itself. This thesis quantifies the levels of these uncertainties by performing a large number of simulations on three offshore modules and one onshore plant. It is found that (1) there is an approximate linear relation between pressure and gas volume, (2) it may be possible to find a linear relation between pressure and impulse, (3) there is an inverse relation between pressure and duration, (4) the response of offshore structures exposed to gas explosions are rarely in the impulsive regime, (5) loading rates vary widely in magnitude, (6) an assumption of a triangular explosion pulse is often correct, (7) louvres increase pressure, impulse and duration of an explosion. The effect of ignition point location is studied in detail. It is possible to derive an ignition point uncertainty load factor that shows predictable behaviour by generalizing the non-parametric properties of the explosion pressure. A model for taking into account the uncertainties regarding gas volume, ignition point location and simulator imperfectness is proposed. The model is intended to produce a characteristic load for structural design. 68 refs., 51 figs., 36 tabs.

  4. Experimental Study on Unconfined Vapor Cloud Explosion

    Institute of Scientific and Technical Information of China (English)

    毕明树; ABULITI; Abudula

    2003-01-01

    An experimental system was setup to study the pressure field of unconfined vapor cloud explosions.The semi-spherical vapor clouds were formed by slotted 0.02mm polyethylene film.In the Center of the cloud was an ignition electrode that met ISO6164"Explosion protection System" and NFPA68 "Guide for Venting of Deflagrations". A data-acquisition system,with dymame responding time less than 0.001s with 0.5% accuracy,recorded the pressure-time diagram of acetylene-air mixture explosion with stoichiometrical ratio.The initial cloud diameters varied from 60cm to 300cm.Based on the analysis of experimental data,the quantitative relationship is obtained for the cloud explosion pressure,the cloud radius and the distance from ignition point .Present results provide a useful way to evaluate the building damage caused by unconfined vapor cloud explosions and to determine the indispensable explosion grade in the application of multi-energy model.

  5. Explosive vapor detection payload for small robots

    Science.gov (United States)

    Stimac, Phil J.; Pettit, Michael; Wetzel, John P.; Haas, John W.

    2013-05-01

    Detection of explosive hazards is a critical component of enabling and improving operational mobility and protection of US Forces. The Autonomous Mine Detection System (AMDS) developed by the US Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD) is addressing this challenge for dismounted soldiers. Under the AMDS program, ARA has developed a vapor sampling system that enhances the detection of explosive residues using commercial-off-the-shelf (COTS) sensors. The Explosives Hazard Trace Detection (EHTD) payload is designed for plug-and-play installation and operation on small robotic platforms, addressing critical Army needs for more safely detecting concealed or exposed explosives in areas such as culverts, walls and vehicles. In this paper, we describe the development, robotic integration and performance of the explosive vapor sampling system, which consists of a sampling "head," a vapor transport tube and an extendable "boom." The sampling head and transport tube are integrated with the boom, allowing samples to be collected from targeted surfaces up to 7-ft away from the robotic platform. During sample collection, an IR lamp in the sampling head is used to heat a suspected object/surface and the vapors are drawn through the heated vapor transport tube to an ion mobility spectrometer (IMS) for detection. The EHTD payload is capable of quickly (less than 30 seconds) detecting explosives such as TNT, PETN, and RDX at nanogram levels on common surfaces (brick, concrete, wood, glass, etc.).

  6. Solid Rocket Launch Vehicle Explosion Environments

    Science.gov (United States)

    Richardson, E. H.; Blackwood, J. M.; Hays, M. J.; Skinner, T.

    2014-01-01

    Empirical explosion data from full scale solid rocket launch vehicle accidents and tests were collected from all available literature from the 1950s to the present. In general data included peak blast overpressure, blast impulse, fragment size, fragment speed, and fragment dispersion. Most propellants were 1.1 explosives but a few were 1.3. Oftentimes the data from a single accident was disjointed and/or missing key aspects. Despite this fact, once the data as a whole was digitized, categorized, and plotted clear trends appeared. Particular emphasis was placed on tests or accidents that would be applicable to scenarios from which a crew might need to escape. Therefore, such tests where a large quantity of high explosive was used to initiate the solid rocket explosion were differentiated. Also, high speed ground impacts or tests used to simulate such were also culled. It was found that the explosions from all accidents and applicable tests could be described using only the pressurized gas energy stored in the chamber at the time of failure. Additionally, fragmentation trends were produced. Only one accident mentioned the elusive "small" propellant fragments, but upon further analysis it was found that these were most likely produced as secondary fragments when larger primary fragments impacted the ground. Finally, a brief discussion of how this data is used in a new launch vehicle explosion model for improving crew/payload survival is presented.

  7. Green primary explosives: 5-Nitrotetrazolato-N2-ferrate hierarchies

    OpenAIRE

    Huynh, My Hang V.; Coburn, Michael D.; Thomas J. Meyer; Wetzler, Modi

    2006-01-01

    The sensitive explosives used in initiating devices like primers and detonators are called primary explosives. Successful detonations of secondary explosives are accomplished by suitable sources of initiation energy that is transmitted directly from the primaries or through secondary explosive boosters. Reliable initiating mechanisms are available in numerous forms of primers and detonators depending upon the nature of the secondary explosives. The technology of initiation devices used for mi...

  8. Minutes of the 23rd Explosives Safety Seminar, volume 1

    Science.gov (United States)

    1988-08-01

    Some topics of the conference include: Fragment hazards; Airblast interactions; Explosives risk assessment; Structural damage from blast; Demilitarization, disposal, decontamination; Quantity distance application; Fire protection - deluge systems; Debris hazards testing and analysis; Far field airblast effects and mitigation designs consideration; Electrostatic discharge (ESD); Underground explosion effects - large scale tests; Wall and window response to blast loads; Explosives facility design considerations, Accident/explosion effects; and Shock sensitivity of explosives.

  9. Atmospheric Photochemistry

    Science.gov (United States)

    Massey, Harrie; Potter, A. E.

    1961-01-01

    The upper atmosphere offers a vast photochemical laboratory free from solid surfaces, so all reactions take place in the gaseous phase. At 30 km altitude the pressure has fallen to about one-hundredth of that at ground level, and we shall, rather arbitrarily, regard the upper atmosphere as beginning at that height. By a little less than 100 km the pressure has fallen to 10(exp -3) mm Hg and is decreasing by a power of ten for every 15 km increase in altitude. Essentially we are concerned then with the photochemistry of a nitrogen-oxygen mixture under low-pressure conditions in which photo-ionization, as well as photodissociation, plays an important part. Account must also be taken of the presence of rare constituents, such as water vapour and its decomposition products, including particularly hydroxyl, oxides of carbon, methane and, strangely enough, sodium, lithium and calcium. Many curious and unfamiliar reactions occur in the upper atmosphere. Some of them are luminescent, causing the atmosphere to emit a dim light called the airglow. Others, between gaseous ions and neutral molecules, are almost a complete mystery at this time. Similar interesting phenomena must occur in other planetary atmospheres, and they might be predicted if sufficient chemical information were available.

  10. Tracing the differences between Vulcanian and Strombolian explosions using infrasonic and thermal radiation energy

    Science.gov (United States)

    Marchetti, E.; Ripepe, M.; Harris, A. J. L.; Delle Donne, D.

    2009-03-01

    Eruptive plume dynamics is a direct expression of explosive style, where duration and altitude of eruptive clouds and dispersion of erupted products is proportional to the degree of fragmentation. We present an analysis of infrasonic and thermal records for explosions at Villarrica (Chile), Stromboli (Italy), Santiaguito and Fuego (Guatemala) volcanoes. Across these four systems magma composition spans from basaltic to dacitic and explosive activity is typically described as ranging from Strombolian to Vulcanian. We use this analysis to provide a quantitative, geophysically-based description of, and discrimination between, the different explosive styles that characterize the four volcanoes. While infrasound is directly related to the emission of over-pressurized gas, and thus solely reflects the plume emission, both plume emission and ascent are detected thermally. Thus, the two data sets together provide a complete description of the plume dynamics. In particular, while infrasound solely reflects the gas-thrust phase driving plume emission, thermal radiation energy is also affected by buoyancy during plume ascent. Thermal radiation energy estimated for explosions at Stromboli and Villarrica (10 4-10 7 J) is lower than that for events at Santiaguito and Fuego (10 8-10 9 J), but infrasonic energies overlap. This suggests a greater contribution of buoyancy for eruptive clouds at Santiaguito and Fuego when compared with Stromboli and Villarrica. We further investigated the plume dynamics by comparing infrasonic energy, which reflects gas-thrust ( EGT), with the difference between thermal radiation and infrasonic energies, which mostly reflects buoyancy ( EB). Our data distribution reveals two separate clusters. Explosions at Stromboli and Villarrica share low values of buoyancy, pointing to a gas-thrust dominated emission, efficient coupling of the infrasonic source to the atmosphere, and a Strombolian-type source process to generate a plume rich in coarse fragments

  11. Atmospheric thermodynamics

    CERN Document Server

    Iribarne, J V

    1973-01-01

    The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the literature related to atmospheric sciences. Our aim has been to provide students of meteorology with a book that can playa role similar to the textbooks on chemical thermodynamics for the chemists. This implies a previous knowledge of general thermodynamics, such as students acquire in general physics courses; therefore, although the basic principles are reviewed (in the first four chapters), they are only briefly discussed, and emphasis is laid on those topics that will be useful in later chapters, through their application to atmospheric problems. No attempt has been made to introduce the thermodynamics of irreversible processes; on the other hand, consideration of heterogeneous and open homogeneous systems permits a...

  12. Specific heat and thermal conductivity of explosives, mixtures, and plastic-bonded explosives determined experimentally

    Energy Technology Data Exchange (ETDEWEB)

    Baytos, J.F.

    1979-09-01

    The specific heat and thermal conductivity of explosives and plastic-bonded explosives of interest to WX operations, determined experimentally, are reported in three tables. Specific heat was determined by differential scanning calorimetry against sapphire standards. Thermal conductivity was determined by two means: the guarded hot-plate method or the differential scanning calorimeter comparative method on miniature samples.

  13. Studies of the laser-induced fluorescence of explosives and explosive compositions.

    Energy Technology Data Exchange (ETDEWEB)

    Hargis, Philip Joseph, Jr. (,; .); Thorne, Lawrence R.; Phifer, Carol Celeste; Parmeter, John Ethan; Schmitt, Randal L.

    2006-10-01

    Continuing use of explosives by terrorists throughout the world has led to great interest in explosives detection technology, especially in technologies that have potential for standoff detection. This LDRD was undertaken in order to investigate the possible detection of explosive particulates at safe standoff distances in an attempt to identify vehicles that might contain large vehicle bombs (LVBs). The explosives investigated have included the common homogeneous or molecular explosives, 2,4,6-trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), cyclonite or hexogen (RDX), octogen (HMX), and the heterogeneous explosive, ammonium nitrate/fuel oil (ANFO), and its components. We have investigated standard excited/dispersed fluorescence, laser-excited prompt and delayed dispersed fluorescence using excitation wavelengths of 266 and 355 nm, the effects of polarization of the laser excitation light, and fluorescence imaging microscopy using 365- and 470-nm excitation. The four nitro-based, homogeneous explosives (TNT, PETN, RDX, and HMX) exhibit virtually no native fluorescence, but do exhibit quenching effects of varying magnitude when adsorbed on fluorescing surfaces. Ammonium nitrate and fuel oil mixtures fluoresce primarily due to the fuel oil, and, in some cases, due to the presence of hydrophobic coatings on ammonium nitrate prill or impurities in the ammonium nitrate itself. Pure ammonium nitrate shows no detectable fluorescence. These results are of scientific interest, but they provide little hope for the use of UV-excited fluorescence as a technique to perform safe standoff detection of adsorbed explosive particulates under real-world conditions with a useful degree of reliability.

  14. Explosion characteristics of methane for CFD modeling and simulation of turbulent gas flow behavior during explosion

    Science.gov (United States)

    Skřínský, Jan; Vereš, Ján; Peer, Václav; Friedel, Pavel

    2016-06-01

    The effect of initial concentration on the explosion behavior of a stoichiometric CH4/O2/N2 mixture under air-combustion conditions was studied. Two mathematical models were used with the aim at simulating the gas explosion in the middle scale explosion vessel, and the associated effects of the temperature for different gas/air concentrations. Peak pressure, maximum rate of pressure rise and laminar burning velocity were measured from pressure time records of explosions occurring in a 1 m3 closed cylindrical vessel. The results of the models were validated considering a set of data (pressure time histories and root mean square velocity). The obtained results are relevant to the practice of gas explosion testing and the interpretation of test results and, they should be taken as the input data for CFD simulation to improve the conditions for standard tests.

  15. Small-scale explosive seam welding. [using ribbon explosive encased in lead sheath

    Science.gov (United States)

    Bement, L. J.

    1972-01-01

    A unique small scale explosive seam welding technique is reported that has successfully joined a variety of aluminum alloys and alloy combinations in thicknesses to 0.125 inch, as well as titanium in thicknesses to 0.056 inch. The explosively welded joints are less than one-half inch in width and apparently have no long length limitation. The ribbon explosive developed in this study contains very small quantities of explosive encased in a flexible thin lead sheath. The evaluation and demonstration of this welding technique was accomplished in three phases: evaluation and optimization of ten major explosive welding variables, the development of four weld joints, and an applicational analysis which included photomicrographs, pressure integrity tests, vacuum effects, and fabrication of some potentially useful structures in aluminum and titanium.

  16. Report on the treatability study for inerting small quantities of radioactive explosives and explosive components

    Energy Technology Data Exchange (ETDEWEB)

    Loyola, V.M.; Reber, S.D.

    1996-02-01

    As a result of Sandia`s radiation hardening testing on a variety of its explosive components, radioactive waste streams were generated and have to be disposed of as radioactive waste. Due to the combined hazards of explosives and radioactivity, Sandia`s Radioactive and Mixed Waste Management organization did not have a mechanism for disposal of these waste streams. This report documents the study done to provide a method for the removal of the explosive hazard from those waste streams. The report includes the design of the equipment used, procedures followed, results from waste stream analog tests and the results from the actual explosive inerting tests on radioactive samples. As a result of the inerting treatment, the waste streams were rendered non-explosive and, thus, manageable through normal radioactive waste disposal channels.

  17. Abrupt transitions in the NAO control of explosive North Atlantic cyclone development

    Science.gov (United States)

    Gómara, Iñigo; Rodríguez-Fonseca, Belén; Zurita-Gotor, Pablo; Ulbrich, Sven; Pinto, Joaquim G.

    2016-11-01

    Explosive cyclones are intense extra-tropical low pressure systems featuring large deepening rates. In the Euro-Atlantic sector, they are a major source of life-threatening weather impacts due to their associated strong wind gusts, heavy precipitation and storm surges. The wintertime variability of the North Atlantic cyclonic activity is primarily modulated by the North Atlantic Oscillation (NAO). In this study, we investigate the interannual and multi-decadal variability of explosive North Atlantic cyclones using track density data from two reanalysis datasets (NCEP and ERA-40) and a control simulation of an atmosphere/ocean coupled General Circulation Model (GCM—ECHAM5/MPIOM1). The leading interannual and multi-decadal modes of variability of explosive cyclone track density are characterized by a strengthening/weakening pattern between Newfoundland and Iceland, which is mainly modulated by the NAO at both timescales. However, the NAO control of interannual cyclone variability is not stationary in time and abruptly fluctuates during periods of 20-25 years long both in NCEP and ECHAM5/MPIOM1. These transitions are accompanied by structural changes in the leading mode of explosive cyclone variability, and by decreased/enhanced baroclinicity over the sub-polar/sub-tropical North Atlantic. The influence of the ocean is apparently important for both the occurrence and persistence of such anomalous periods. In the GCM, the Atlantic Meridional Overturning Circulation appears to influence the large-scale baroclinicity and explosive cyclone development over the North Atlantic. These results permit a better understanding of explosive cyclogenesis variability at different climatic timescales and might help to improve predictions of these hazardous events.

  18. Simulating thermal explosion of cyclotrimethylenetrinitramine-based explosives: Model comparison with experiment

    Science.gov (United States)

    Yoh, Jack J.; McClelland, Matthew A.; Maienschein, Jon L.; Wardell, Jeffrey F.; Tarver, Craig M.

    2005-04-01

    We compare two-dimensional model results with measurements for the thermal, chemical, and mechanical behavior in a thermal explosion experiment. Confined high explosives (HEs) are heated at a rate of 1°C/h until an explosion is observed. The heating, ignition, and deflagration phases are modeled using an Arbitrarily Lagrangian-Eulerian code (ALE3D) that can handle a wide range of time scales that vary from a structural to a dynamic hydrotime scale. During the preignition phase, quasistatic mechanics and diffusive thermal transfer from a heat source to the HE are coupled with the finite chemical reactions that include both endothermic and exothermic processes. Once the HE ignites, a hydrodynamic calculation is performed as a burn front propagates through the HE. Two cyclotrimethylenetrinitramine-based explosives, C-4 and PBXN-109, are considered, whose chemical-thermal-mechanical models are constructed based on measurements of thermal and mechanical properties along with small scale thermal explosion measurements. The simulated dynamic response of HE confinement during the explosive phase is compared to measurements in larger scale thermal explosion tests. The explosion temperatures for both HEs are predicted to within 5°C. Calculated and measured wall strains provide an indication of vessel pressurization during the heating phase and violence during the explosive phase. During the heating phase, simulated wall strains provide only an approximate representation of measured values indicating a better numerical treatment is needed to provide accurate results. The results also show that more numerical accuracy is needed for vessels with lesser confinement strength. For PBXN-109, the measured wall strains during the explosion are well represented by the ALE3D calculations.

  19. Simulating thermal explosion of RDX-based explosives: Model comparison with experiment

    Energy Technology Data Exchange (ETDEWEB)

    Yoh, J J; McClelland, M A; Maienschein, J L; Wardell, J F; Tarver, C M

    2004-10-11

    We compare two-dimensional model results with measurements for the thermal, chemical and mechanical behavior in a thermal explosion experiment. Confined high explosives are heated at a rate of 1 C per hour until an explosion is observed. The heating, ignition, and deflagration phases are modeled using an Arbitrarily Lagrangian-Eulerian code (ALE3D) that can handle a wide range of time scales that vary from a structural to a dynamic hydro time scale. During the pre-ignition phase, quasi-static mechanics and diffusive thermal transfer from a heat source to the HE are coupled with the finite chemical reactions that include both endothermic and exothermic processes. Once the HE ignites, a hydro dynamic calculation is performed as a burn front propagates through the HE. Two RDX-based explosives, C-4 and PBXN-109, are considered, whose chemical-thermal-mechanical models are constructed based on measurements of thermal and mechanical properties along with small scale thermal explosion measurements. The simulated dynamic response of HE confinement during the explosive phase is compared to measurements in large scale thermal explosion tests. The explosion temperatures for both HE's are predicted to within 5 C. Calculated and measured wall strains provide an indication of vessel pressurization during the heating phase and violence during the explosive phase. During the heating phase, simulated wall strains provide only an approximate representation of measured values indicating a better numerical treatment is needed to provide accurate results. The results also show that more numerical accuracy is needed for vessels with lesser confinement strength. For PBXN-109, the measured wall strains during the explosion are well represented by the ALE3D calculations.

  20. Atmospheric Refraction

    CERN Document Server

    Nauenberg, Michael

    2016-01-01

    Calculations of atmospheric refraction are generally based on a simplified model of atmospheric density in the troposphere which assumes that the temperature decreases at a constant lapse rate from sea level up to a height equal to eleven km, and that afterwards it remains constant. In this model, the temperature divided by the lapse rate determines the length scale in the calculations for altitudes less than this height. But daily balloon measurements across the U.S.A. reveal that in some cases the air temperature actually increases from sea level up to a height of about one km, and only after reaching a plateau, it decreases at an approximately constant lapse rate. Moreover, in three examples considered here, the temperature does not remain constant at eleven km , but continues to decreases to a minimum at about sixteen kilometers , and then increases at higher altitudes at a lower rate. Calculations of atmospheric refraction based on this atmospheric data is compared with the results of simplified models.

  1. Airport testing an explosives detection portal

    Energy Technology Data Exchange (ETDEWEB)

    Rhykerd, C.; Linker, K.; Hannum, D.; Bouchier, F.; Parmeter, J.

    1998-08-01

    At the direction of the US Congress, following the Pan Am 103 and TWA 800 crashes, the Federal Aviation Administration funded development of non-invasive techniques to screen airline passengers for explosives. Such an explosives detection portal, developed at Sandia National Laboratories, was field tested at the Albuquerque International airport in September 1997. During the 2-week field trial, 2,400 passengers were screened and 500 surveyed. Throughput, reliability, maintenance and sensitivity were studied. Follow-up testing at Sandia and at Idaho National Engineering and Environmental Laboratory was conducted. A passenger stands in the portal for five seconds while overhead fans blow air over his body. Any explosive vapors or dislodged particles are collected in vents at the feet. Explosives are removed from the air in a preconcentrator and subsequently directed into an ion mobility spectrometer for detection. Throughput measured 300 passengers per hour. The non-invasive portal can detect subfingerprint levels of explosives residue on clothing. A survey of 500 passengers showed a 97% approval rating, with 99% stating that such portals, if effective, should be installed in airports to improve security. Results of the airport test, as well as operational issues, are discussed.

  2. Explosion Calculations of SN1087

    Science.gov (United States)

    Wooden, Diane H.; Morrison, David (Technical Monitor)

    1994-01-01

    Explosion calculations of SNT1987A generate pictures of Rayleigh-Taylor fingers of radioactive Ni-56 which are boosted to velocities of several thousand km/s. From the KAO observations of the mid-IR iron lines, a picture of the iron in the ejecta emerges which is consistent with the "frothy iron fingers" having expanded to fill about 50% of the metal-rich volume of the ejecta. The ratio of the nickel line intensities yields a high ionization fraction of greater than or equal to 0.9 in the volume associated with the iron-group elements at day 415, before dust condenses in the ejecta. From the KAO observations of the dust's thermal emission, it is deduced that when the grains condense their infrared radiation is trapped, their apparent opacity is gray, and they have a surface area filling factor of about 50%. The dust emission from SN1987A is featureless: no 9.7 micrometer silicate feature, nor PAH features, nor dust emission features of any kind are seen at any time. The total dust opacity increases with time even though the surface area filling factor and the dust/gas ratio remain constant. This suggests that the dust forms along coherent structures which can maintain their radial line-of-sight opacities, i.e., along fat fingers. The coincidence of the filling factor of the dust and the filling factor of the iron strongly suggests that the dust condenses within the iron, and therefore the dust is iron-rich. It only takes approximately 4 x 10(exp -4) solar mass of dust for the ejecta to be optically thick out to approximately 100 micrometers; a lower limit of 4 x 10(exp -4) solar mass of condensed grains exists in the metal-rich volume, but much more dust could be present. The episode of dust formation started at about 530 days and proceeded rapidly, so that by 600 days 45% of the bolometric luminosity was being emitted in the IR; by 775 days, 86% of the bolometric luminosity was being reradiated by the dust. Measurements of the bolometric luminosity of SN1987A from

  3. GT0 Explosion Sources for IMS Infrasound Calibration: Charge Design and Yield Estimation from Near-source Observations

    Science.gov (United States)

    Gitterman, Y.; Hofstetter, R.

    2014-03-01

    Three large-scale on-surface explosions were conducted by the Geophysical Institute of Israel (GII) at the Sayarim Military Range, Negev desert, Israel: about 82 tons of strong high explosives in August 2009, and two explosions of about 10 and 100 tons of ANFO explosives in January 2011. It was a collaborative effort between Israel, CTBTO, USA and several European countries, with the main goal to provide fully controlled ground truth (GT0) infrasound sources, monitored by extensive observations, for calibration of International Monitoring System (IMS) infrasound stations in Europe, Middle East and Asia. In all shots, the explosives were assembled like a pyramid/hemisphere on dry desert alluvium, with a complicated explosion design, different from the ideal homogenous hemisphere used in similar experiments in the past. Strong boosters and an upward charge detonation scheme were applied to provide more energy radiated to the atmosphere. Under these conditions the evaluation of the actual explosion yield, an important source parameter, is crucial for the GT0 calibration experiment. Audio-visual, air-shock and acoustic records were utilized for interpretation of observed unique blast effects, and for determination of blast wave parameters suited for yield estimation and the associated relationships. High-pressure gauges were deployed at 100-600 m to record air-blast properties, evaluate the efficiency of the charge design and energy generation, and provide a reliable estimation of the charge yield. The yield estimators, based on empirical scaled relations for well-known basic air-blast parameters—the peak pressure, impulse and positive phase duration, as well as on the crater dimensions and seismic magnitudes, were analyzed. A novel empirical scaled relationship for the little-known secondary shock delay was developed, consistent for broad ranges of ANFO charges and distances, which facilitates using this stable and reliable air-blast parameter as a new potential

  4. Phases of a Type Ia supernova explosion

    CERN Document Server

    Niemeyer, J C

    1998-01-01

    In the framework of the Chandrasekhar mass white dwarf model for Type Ia supernovae, various stages of the explosion are described in terms of the burning regimes of the thermonuclear flame front. In the early flamelet regime following the ``smoldering'' phase prior to the explosion, the flame is sufficiently thin and fast to remain laminar on small scales. As the white dwarf density declines, the thermal flame structure becomes subject to penetration by turbulent eddies, and it enters the ``distributed burning'' regime. A specific control parameter for this transition is proposed. Furthermore, we outline an argument for the coincidence of the transition between burning regimes with the onset of a deflagration-detonation-transition (DDT) in the late phase of the explosion.

  5. Type Ia Supernova Explosion: Gravitationally Confined Detonation

    CERN Document Server

    Plewa, T; Lamb, D

    2004-01-01

    We present a new mechanism for Type Ia supernova explosions in massive white dwarfs. The proposed scenario follows from relaxing the assumption of symmetry in the model and involves a detonation created in an unconfined environment. The explosion begins with an essentially central ignition of stellar material initiating a deflagration. This deflagration results in the formation of a buoyantly-driven bubble of hot material that reaches the stellar surface at supersonic speeds. The bubble breakout forms a strong pressure wave that laterally accelerates fuel-rich outer stellar layers. This material, confined by gravity to the white dwarf, races along the stellar surface and is focused at the location opposite to the point of the bubble breakout. These streams of nuclear fuel carry enough mass and energy to trigger a detonation just above the stellar surface. The flow conditions at that moment support a detonation that will incinerate the white dwarf and result in an energetic explosion. The stellar expansion fol...

  6. Viscoelastic models for explosive binder materials

    Energy Technology Data Exchange (ETDEWEB)

    Bardenhagen, S.G.; Harstad, E.N.; Maudlin, P.J.; Gray, G.T. [Los Alamos National Lab., NM (United States); Foster, J.C. Jr. [Wright Lab., Eglin AFB, FL (United States)

    1997-07-01

    An improved model of the mechanical properties of the explosive contained in conventional munitions is needed to accurately simulate performance and accident scenarios in weapons storage facilities. A specific class of explosives can he idealized as a mixture of two components: energetic crystals randomly suspended in a polymeric matrix (binder). Strength characteristics of each component material are important in the macroscopic behavior of the composite (explosive). Of interest here is the determination of an appropriate constitutive law for a polyurethane binder material. This paper is a continuation of previous work in modeling polyurethane at moderately high strain rates and for large deformations. Simulation of a large deformation (strains in excess of 100%) Taylor Anvil experiment revealed numerical difficulties which have been addressed. Additional experimental data have been obtained including improved resolution Taylor Anvil data, and stress relaxation data at various strain rates. A thorough evaluation of the candidate viscoelastic constitutive model is made and possible improvements discussed.

  7. Local magnitudes of small contained explosions.

    Energy Technology Data Exchange (ETDEWEB)

    Chael, Eric Paul

    2009-12-01

    The relationship between explosive yield and seismic magnitude has been extensively studied for underground nuclear tests larger than about 1 kt. For monitoring smaller tests over local ranges (within 200 km), we need to know whether the available formulas can be extrapolated to much lower yields. Here, we review published information on amplitude decay with distance, and on the seismic magnitudes of industrial blasts and refraction explosions in the western U. S. Next we measure the magnitudes of some similar shots in the northeast. We find that local magnitudes ML of small, contained explosions are reasonably consistent with the magnitude-yield formulas developed for nuclear tests. These results are useful for estimating the detection performance of proposed local seismic networks.

  8. Criticality safety in high explosives dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Troyer, S.D.

    1997-06-01

    In 1992, an incident occurred at the Pantex Plant in which the cladding around a fissile material component (pit) cracked during dismantlement of the high explosives portion of a nuclear weapon. Although the event did not result in any significant contamination or personnel exposures, concerns about the incident led to the conclusion that the current dismantlement process was unacceptable. Options considered for redesign, dissolution tooling design considerations, dissolution tooling design features, and the analysis of the new dissolution tooling are summarized. The final tooling design developed incorporated a number of safety features and provides a simple, self-contained, low-maintenance method of high explosives removal for nuclear explosive dismantlement. Analyses demonstrate that the tooling design will remain subcritical under normal, abnormal, and credible accident scenarios. 1 fig.

  9. Securing Infrastructure from High Explosive Threats

    Energy Technology Data Exchange (ETDEWEB)

    Glascoe, L; Noble, C; Reynolds, J; Kuhl, A; Morris, J

    2009-03-20

    Lawrence Livermore National Laboratory (LLNL) is working with the Department of Homeland Security's Science and Technology Directorate, the Transportation Security Administration, and several infrastructure partners to characterize and help mitigate principal structural vulnerabilities to explosive threats. Given the importance of infrastructure to the nation's security and economy, there is a clear need for applied research and analyses (1) to improve understanding of the vulnerabilities of these systems to explosive threats and (2) to provide decision makers with time-critical technical assistance concerning countermeasure and mitigation options. Fully-coupled high performance calculations of structural response to ideal and non-ideal explosives help bound and quantify specific critical vulnerabilities, and help identify possible corrective schemes. Experimental validation of modeling approaches and methodologies builds confidence in the prediction, while advanced stochastic techniques allow for optimal use of scarce computational resources to efficiently provide infrastructure owners and decision makers with timely analyses.

  10. Tailoring the sensitivity of initiating explosives

    Science.gov (United States)

    Manner, Virginia W.; Preston, Daniel N.; Snyder, Christopher J.; Dattelbaum, Dana M.; Tappan, Bryce C.

    2017-01-01

    Pentaerythritol tetranitrate (PETN) is a very common nitrate ester explosive that has been widely studied due to its use in military and commercial explosives. Recent experimental work and calculations have shown that substituting the central carbon atom of PETN with a silicon atom results in an extremely sensitive contact explosive. We have attempted to develop PETN derivatives which are less sensitive, by attaching hydrogen, amino, and methyl groups to the central carbon atom, and substituting the central carbon atom (and one -CH2ONO2 group) with phosphorous oxide. We relate the handling sensitivity properties of each PETN derivative to its structure, and discuss the role of the central atom, oxygen balance, thermal stability, and inter- and intramolecular hydrogen bonding on impact sensitivity.

  11. [First aid to persons with explosion trauma].

    Science.gov (United States)

    Shapovalov, V M; Samokhvalov, I M

    2012-10-01

    Modern organization providing medical aid to victims of explosion trauma in peace time, the success of which largely depends on the timely and professional interaction among the structures involeved into emergency relief operation is represented in the article. Content and sequence of events providing emergency medical and first medical aid to victims of the explosions, and the appropriateness of allocation affected groups, based on the predicted effectiveness of medical care is analyzed. The algorithm, currently used by ambulance crews, of assistance to victims with explosion and order evacuations is analyzed. The content of therapeutic measures in receipt of the wounded on the steps of skilled and specialized surgical care in accordance with the idea of a separation surgery on three stages (damage control). The content of the main levels of damage control orthopedics is introduced.

  12. Deformation and Failure of Polymer Bonded Explosives

    Institute of Scientific and Technical Information of China (English)

    陈鹏万; 黄风雷; 丁雁生

    2004-01-01

    The deformation and failure of pressed polymer bonded explosives under different types of loads including tension, compression and low velocity impact are presented. Brazilian test is used to study the tensile properties. The microstructure of polymer bonded explosives and its evolution are studied by use of scanning electronic microscopy and polarized light microscopy. Polishing techniques have been developed to prepare samples for microscopic examination. The failure mechanisms of polymer bonded explosives under different loads are analyzed. The results show that interfacial debonding is the predominant failure mode in quasi-static tension, while extensive crystal fractures are induced in compression. With the increase of strain rate, more crystal fractures occur. Low velocity impact also induces extensive crystal fractures.

  13. Explosive fragmentation of liquids in spherical geometry

    Science.gov (United States)

    Milne, A.; Longbottom, A.; Frost, D. L.; Loiseau, J.; Goroshin, S.; Petel, O.

    2016-07-01

    Rapid acceleration of a spherical shell of liquid following central detonation of a high explosive causes the liquid to form fine jets that are similar in appearance to the particle jets that are formed during explosive dispersal of a packed layer of solid particles. Of particular interest is determining the dependence of the scale of the jet-like structures on the physical parameters of the system, including the fluid properties (e.g., density, viscosity, and surface tension) and the ratio of the mass of the liquid to that of the explosive. The present paper presents computational results from a multi-material hydrocode describing the dynamics of the explosive dispersal process. The computations are used to track the overall features of the early stages of dispersal of the liquid layer, including the wave dynamics, and motion of the spall and accretion layers. The results are compared with new experimental results of spherical charges surrounded by a variety of different fluids, including water, glycerol, ethanol, and vegetable oil, which together encompass a significant range of fluid properties. The results show that the number of jet structures is not sensitive to the fluid properties, but primarily dependent on the mass ratio. Above a certain mass ratio of liquid fill-to-explosive burster (F / B), the number of jets is approximately constant and consistent with an empirical model based on the maximum thickness of the accretion layer. For small values of F / B, the number of liquid jets is reduced, in contrast with explosive powder dispersal, where small F / B yields a larger number of particle jets. A hypothetical explanation of these features based on the nucleation of cavitation is explored numerically.

  14. Venting of gas explosion through relief ducts: interaction between internal and external explosions.

    Science.gov (United States)

    Ferrara, G; Willacy, S K; Phylaktou, H N; Andrews, G E; Di Benedetto, A; Salzano, E; Russo, G

    2008-06-30

    Relief ducts fitted to venting openings is a widespread configuration in the industrial practice. The presence of a duct has been reported to severely increase the violence of the vented explosion posing a problem for the proper design of the venting device. Several studies have reported the leading importance--in the whole complex explosion phenomenology--of a secondary explosion in the duct. Modern approaches in the study of simply vented explosions (without ducts) have focused on the study of the interaction between internal and external explosion as a key issue in the mechanisms of pressure generation. The issue is even more relevant when a duct is fitted to the vent due the confined nature of the external explosion. In this work the interaction between internal and external events is experimentally investigated for gas explosions vented through a relief duct. The work has aimed at studying mechanisms underlying the pressure rise of this venting configuration. The study has put the emphasis on the mutual nature of the interaction. A larger scale than laboratory has been investigated allowing drawing results with a greater degree of generality with respect to data so far presented in literature.

  15. Potential explosion hazard of carbonaceous nanoparticles: Explosion parameters of selected materials.

    Science.gov (United States)

    Turkevich, Leonid A; Dastidar, Ashok G; Hachmeister, Zachary; Lim, Michael

    2015-09-15

    Following a previous explosion screening study, we have conducted concentration and ignition energy scans on several carbonaceous nanopowders: fullerene, SWCNT, carbon black, MWCNT, graphene, CNF, and graphite. We have measured minimum explosive concentration (MEC), minimum ignition energy (MIE), and minimum ignition temperature (MITcloud) for these materials. The nanocarbons exhibit MEC ~10(1)-10(2) g/m(3), comparable to the MEC for coals and for fine particle carbon blacks and graphites. The nanocarbons are confirmed mainly to be in the St-1 explosion class, with fullerene, at K(St) ~200 bar-m/s, borderline St-1/St-2. We estimate MIE ~ 10(2)-10(3) J, an order of magnitude higher than the MIE for coals but an order of magnitude lower than the MIE for fine particle graphites. While the explosion severity of the nanocarbons is comparable to that of the coals, their explosion susceptibility (ease of ignition) is significantly less (i.e., the nanocarbons have higher MIEs than do the coals); by contrast, the nanocarbons exhibit similar explosion severity to the graphites but enhanced explosion susceptibility (i.e., the nanocarbons have lower MIEs than do the graphites). MIT(cloud) > 550 °C, comparable to that of the coals and carbon blacks.

  16. THEORIES OF ROCK BREAKAGE WITH EXPLOSIVES

    Directory of Open Access Journals (Sweden)

    Vinko Škrlec

    2014-12-01

    Full Text Available The prediction and observation of the nature and dimensions of damaged zones in the surrounding rock mass and understanding the mechanisms of fracturing and crushing of the rock mass with explosives is one of the most important parameters in blasting design in order to obtain preferred granulation and reduce damaging effects of blasting on the environment. An overview of existing rock breakage theories with the energy released by the detonation of explosives is given in this paper (the paper is published in Croatian.

  17. Equation of state of insensitive high explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ree, F H; Van Thiel, M; Viecelli, J A

    1998-08-12

    Detonation of an insensitive high explosive formulated with a fluorine containing binder produces a large amount of condensed carbon and gaseous HF product, which transforms into CF{sub 4} as the pressure is increased. The former (carbon condensation) is characterized by slow energy release, while the latter (HF) has no shockwave data. We have identified that these two items are the key factors, which make reliable prediction of the performance of an insensitive high explosive very difficult. This paper describes physical models to address these issues and apply the models to analyze experimental data of LX-17.

  18. Differential thermal analysis microsystem for explosive detection

    DEFF Research Database (Denmark)

    Olsen, Jesper Kenneth; Greve, Anders; Senesac, L.

    2011-01-01

    A micro differential thermal analysis (DTA) system is used for detection of trace explosive particles. The DTA system consists of two silicon micro chips with integrated heaters and temperature sensors. One chip is used for reference and one for the measurement sample. The sensor is constructed...... as a small silicon nitride membrane incorporating heater elements and a temperature measurement resistor. In this manuscript the DTA system is described and tested by measuring calorimetric response of 3 different kinds of explosives (TNT, RDX and PETN). This project is carried out under the framework...

  19. Expansion of Metallic Cylinders under Explosive Loading

    Directory of Open Access Journals (Sweden)

    M.S. Bola

    1992-07-01

    Full Text Available The behaviour of expanding metallic cylinders under explosive loading was studied. Using ultra high speed photography, the expansion characteristics of aluminium and copper metallic cylinders have been evaluated with different c/m ratio, and by changing the nature of high explosive. The results obtained are comparable to those predicted by the Gurney's energy and momentum balance equations. A cylinder test has been established for comparative to the metal by octol, TNT, PEK-1, baratol and composition B are calculated. The results are in close agreement with those calculated by Kury et al.

  20. Spherical Solutions of an Underwater Explosion Bubble

    Directory of Open Access Journals (Sweden)

    Andrew B. Wardlaw

    1998-01-01

    Full Text Available The evolution of the 1D explosion bubble flow field out to the first bubble minimum is examined in detail using four different models. The most detailed is based on the Euler equations and accounts for the internal bubble fluid motion, while the simplest links a potential water solution to a stationary, Isentropic bubble model. Comparison of the different models with experimental data provides insight into the influence of compressibility and internal bubble dynamics on the behavior of the explosion bubble.

  1. Atmospheric Neutrinos

    CERN Document Server

    Gaisser, Thomas K

    2016-01-01

    In view of the observation by IceCube of high-energy astrophysical neutrinos, it is important to quantify the uncertainty in the background of atmospheric neutrinos. There are two sources of uncertainty, the imperfect knowledge of the spectrum and composition of the primary cosmic rays that produce the neutrinos and the limited understanding of hadron production, including charm, at high energy. This paper is an overview of both aspects.

  2. Landmine Detection Technologies to TraceExplosive Vapour Detection Techniques

    OpenAIRE

    2007-01-01

    Large quantity of explosive is manufactured worldwide for use in various types of ammunition,arms, and mines, and used in armed conflicts. During manufacturing and usage of the explosiveequipment, some of the explosive residues are released into the environment in the form ofcontaminated effluents, unburnt explosives fumes and vapours. Limited but uncontrolledcontinuous release of trace vapours also takes place when explosive-laden landmines are deployedin the field. One of the major technolo...

  3. INFLUENCE OF STEAM EXPLOSION ON THECRYSTALLINITY OF CELLULOSE FIBER

    OpenAIRE

    Jacquet, Nicolas; Vanderghem, Caroline; Danthine, Sabine; Blecker, Christophe; Richel, Aurore

    2014-01-01

    The aim of the present study is to compare the effect of different steam explosion treatments on crystallinity properties of a pure bleached cellulose. Steam explosion process is composed of two distinct stages: vapocracking and explosive decompression. The treatment intensities is determined by a severity factor, established by a correlation between temperature process and retention time. The results show that steam explosion treatment has an impact on the crystallinity properties of pure ce...

  4. DOD Ammunition and Explosives Safety Standards

    Science.gov (United States)

    2008-02-29

    operations include, but are not limited to: power screening equipment, power rakes, and shredders . C12.5.8.3.5.1. Nonessential Personnel...present an explosive hazard. C15.8.4.2. The use of remotely operated equipment (e.g., excavators, sifters, and shredders ) or other standoff

  5. Java: An Explosion on the Internet.

    Science.gov (United States)

    Read, Tim; Hall, Hazel

    Summer 1995 saw the release, with considerable media attention, of draft versions of Sun Microsystems' Java computer programming language and the HotJava browser. Java has been heralded as the latest "killer" technology in the Internet explosion. Sun Microsystems and numerous companies including Microsoft, IBM, and Netscape have agreed upon…

  6. Continuous wave laser irradiation of explosives

    Energy Technology Data Exchange (ETDEWEB)

    McGrane, Shawn D.; Moore, David S.

    2010-12-01

    Quantitative measurements of the levels of continuous wave (CW) laser light that can be safely applied to bare explosives during contact operations were obtained at 532 nm, 785 nm, and 1550 nm wavelengths. A thermal camera was used to record the temperature of explosive pressed pellets and single crystals while they were irradiated using a measured laser power and laser spot size. A visible light image of the sample surface was obtained before and after the laser irradiation. Laser irradiation thresholds were obtained for the onset of any visible change to the explosive sample and for the onset of any visible chemical reaction. Deflagration to detonation transitions were not observed using any of these CW laser wavelengths on single crystals or pressed pellets in the unconfined geometry tested. Except for the photochemistry of DAAF, TATB and PBX 9502, all reactions appeared to be thermal using a 532 nm wavelength laser. For a 1550 nm wavelength laser, no photochemistry was evident, but the laser power thresholds for thermal damage in some of the materials were significantly lower than for the 532 nm laser wavelength. No reactions were observed in any of the studied explosives using the available 300 mW laser at 785 nm wavelength. Tables of laser irradiance damage and reaction thresholds are presented for pressed pellets of PBX9501, PBX9502, Composition B, HMX, TATB, RDX, DAAF, PETN, and TNT and single crystals of RDX, HMX, and PETN for each of the laser wavelengths.

  7. Photoluminescent Detection of Dissolved Underwater Trace Explosives

    OpenAIRE

    2010-01-01

    A portable, rapid, and economical method for in situ trace explosive detection in aqueous solutions was demonstrated using photoluminescence. Using europium/thenoyltrifluoroacetone as the reagent, dissolved nitroglycerin was fluorescently tagged and detected in seawater solutions without sample preparation, drying, or preconcentration. The chemical method was developed in a laboratory setting and demonstrated in a flow-through configuration using lightweight, inexpensive, commercial component...

  8. Explosives safety research in the Netherlands

    NARCIS (Netherlands)

    Voort, M.M. van der; Weerheijm, J.; Wees, R.M.M. van; Dongen. P. van

    2013-01-01

    The handling of explosives and ammunition introduces a safety risk for personnel and third parties. Accidents related to storage, transport and transhipment may result in severe injury and material damage. TNO has developed a number of tools to quantify the consequences and risks of accidental explo

  9. The double explosive layer cylindrical compaction method

    NARCIS (Netherlands)

    Stuivinga, M.E.C.; Verbeek, H.J.; Carton, E.P.

    1999-01-01

    The standard cylindrical configuration for shock compaction is useful for the compaction of composite materials which have some plastic behavior. It can also be used to densify hard ceramics up to about 85% of the theoretical density (TMD), when low detonation velocity explosives (2-4 km s-1) are us

  10. Magic nuclei at explosive dynamo activity

    Directory of Open Access Journals (Sweden)

    Kondratyev V. N.

    2016-01-01

    Full Text Available Explosive nucleosynthesis at conditions of magnetorotational instabilities is considered for iron group nuclides by employing arguments of nuclear statistical equilibrium. Effects of ultra-strong nuclear magnetization are demonstrated to enhance the portion of titanium product. The results are corroborated with an excess of 44Ti revealed from the Integral mission data.

  11. 76 FR 8923 - Explosive Siting Requirements

    Science.gov (United States)

    2011-02-16

    ... ``energetic liquids'' to mean a liquid, slurry, or gel, consisting of, or containing an explosive, oxidizer... liquid oxygen, kerosene, and isopropyl alcohol. In 2004, the FAA waived EKAD's compliance with Sec. 420... FAA stated that, for the storage of liquid oxygen, kerosene and isopropyl alcohol, EKAD had to...

  12. Effects of Particle Beams on Explosives

    Science.gov (United States)

    1991-12-01

    the primary explosives do not demonstrate an ignition energy dependance on confinement. The threshold energies are: Lead azide, 24 cal/gm; Lead...This result demonstrates the strong dependance of ignition threshold on confinement. The chemical and physical changes resulting from irradiation can

  13. Toward Improved Fidelity of Thermal Explosion Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, A L; Becker, R; Howard, W M; Wemhoff, A

    2009-07-17

    We will present results of an effort to improve the thermal/chemical/mechanical modeling of HMX based explosive like LX04 and LX10 for thermal cook-off. The original HMX model and analysis scheme were developed by Yoh et.al. for use in the ALE3D modeling framework. The current results were built to remedy the deficiencies of that original model. We concentrated our efforts in four areas. The first area was addition of porosity to the chemical material model framework in ALE3D that is used to model the HMX explosive formulation. This is needed to handle the roughly 2% porosity in solid explosives. The second area was the improvement of the HMX reaction network, which included the inclusion of a reactive phase change model base on work by Henson et.al. The third area required adding early decomposition gas species to the CHEETAH material database to develop more accurate equations of state for gaseous intermediates and products. Finally, it was necessary to improve the implicit mechanics module in ALE3D to more naturally handle the long time scales associated with thermal cook-off. The application of the resulting framework to the analysis of the Scaled Thermal Explosion (STEX) experiments will be discussed.

  14. RDX/Sylgard extrudable explosive development

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, A.G.; Schmitz, G.T.; Stallings, T.L.; West, G.T.; Ashcraft, R.W.

    1977-10-01

    Formulation procedures for X-0208, an 80 percent RDX/20 percent Sylgard extrudable, have been developed. The extrudable explosive, made from a mixture of micronized RDX and Class E RDX, will sustain detonation in a 1.65 mm channel and can be mechanically extruded into ribbon-type configurations.

  15. Explosion of Ultrahigh Pressure Minerals in Mantle

    Institute of Scientific and Technical Information of China (English)

    BAI Wenji; YANG Jingsui; FANG Qingsong; YAN Binggang; ZHANG Zhongming

    2001-01-01

    @@ The microexplosion stucture of ultrahigh pressure minerals was found for the first time in podform chromitites within the mantle peridotite facies of Luobusa ophiolite along the Yarlung Zangbo suture zone.The explosion stuctures of high-energy silicate inclusions are commonly seen in thin sections (see figure).

  16. Incremental Pressing Technique in Explosive Charge

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A pressing technique has become available that might be useful for compressing granular explosives. If the height-diameter ratio of the charge is unfavorable,the high quality charge can not be obtained with the common single-action pressing. This paper presents incremental pressing technique, which can obtain the charge with higher overall density and more uniform density.

  17. Developments in vapour cloud explosion blast modeling

    NARCIS (Netherlands)

    Mercx, W.P.M.; Berg, A.C. van den; Hayhurst, C.J.; Robertson, N.J.; Moran, K.C.

    2000-01-01

    TNT Equivalency methods are widely used for vapour cloud explosion blast modeling. Presently, however, other types of models are available which do not have the fundamental objections TNT Equivalency models have. TNO Multi-Energy method is increasingly accepted as a more reasonable alternative to be

  18. Explosion proof vehicle for tank inspection

    Science.gov (United States)

    Zollinger, William T [Idaho Falls, ID; Klingler, Kerry M [Idaho Falls, ID; Bauer, Scott G [Idaho Falls, ID

    2012-02-28

    An Explosion Proof Vehicle (EPV) having an interior substantially filled with an inert fluid creating an interior pressure greater than the exterior pressure. One or more flexible tubes provide the inert fluid and one or more electrical conductors from a control system to the vehicle. The vehicle is preferably used in subsurface tank inspection, whereby the vehicle is submerged in a volatile fluid.

  19. Energetic nanocomposites for detonation initiation in high explosives without primary explosives

    Science.gov (United States)

    Comet, Marc; Martin, Cédric; Klaumünzer, Martin; Schnell, Fabien; Spitzer, Denis

    2015-12-01

    The mixing of aluminum nanoparticles with a metal containing oxidizer (here, WO3 or Bi2(SO4)3) gives reactive materials called nanothermites. In this research, nanothermites were combined with high explosive nanoparticles (RDX) to prepare energetic nanocomposites. These smart nanomaterials have higher performances and are much less hazardous than primary explosives. Their flame propagation velocity can be tuned from 0.2 to 3.5 km/s, through their explosive content. They were used to initiate the detonation of a high explosive, the pentaerythritol tetranitrate. The pyrotechnic transduction of combustion into detonation was achieved with short length systems (<2 cm) and small amounts of energetic nanocomposites (˜100 mg) in semi-confined systems.

  20. Expediency of application of explosion-relief constructions to ensure explosion resistance of production buildings

    Directory of Open Access Journals (Sweden)

    Lyapin Anton

    2016-01-01

    Full Text Available The article presents a model of economic evaluation and selection of explosion-relief constructions (ERC, as well as determination of explosion protection efficiency of buildings and structures provided on a stage of construction. It has been shown that definition of economic efficiency of ERС is the evaluation of its application for buildings with remote or automatically controlled production. It has been determined that an important role in design of explosive industrial facilities is played by selection of the economically feasible and effective materials for ERC. When selecting materials it is necessary to consider probability and yield of explosions. Necessity to create the methods allow considering such probability has been revealed.

  1. Alarming atmospheres

    DEFF Research Database (Denmark)

    Højlund, Marie; Kinch, Sofie

    2014-01-01

    . As a response to this situation, our design artefact, the interactive furniture Kidkit, invites children to become accustomed to the alarming sounds sampled from the ward while they are waiting in the waiting room. Our design acknowledges how atmospheres emerge as temporal negotiations between the rhythms......, a familiar relationship with the alarming sounds in the ward, enabling her to focus later more on the visit with the relative. The article discusses the proposed design strategy behind this solution and the potentiality for its use in hospital environments in general....

  2. Increase of water resistance of ammonium nitrate explosives

    Directory of Open Access Journals (Sweden)

    Zulkhair Mansurov

    2012-03-01

    Full Text Available Developed a method of kapsulating of ammonium nitrate with liquid paraffin increase finding explosives in water for 60 minutes. Placing explosives in the plastic shell, the explosive was, as in standing or running water during the day. When conducting field tests failures were absent.

  3. 46 CFR 109.559 - Explosives and radioactive materials.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Explosives and radioactive materials. 109.559 Section... UNITS OPERATIONS Miscellaneous § 109.559 Explosives and radioactive materials. Except as authorized by the master or person in charge, no person may use explosives or radioactive materials and equipment...

  4. Colorimetric chemical analysis sampler for the presence of explosives

    Science.gov (United States)

    Nunes, Peter J.; Eckels, Joel Del; Reynolds, John G.; Pagoria, Philip F.; Simpson, Randall L.

    2014-07-01

    A tester for testing for explosives comprising a body, a lateral flow swab unit operably connected to the body, a explosives detecting reagent contained in the body, and a dispenser operatively connected to the body and the lateral flow swab unit. The dispenser selectively allows the explosives detecting reagent to be delivered to the lateral flow swab unit.

  5. 44 CFR 15.15 - Weapons and explosives.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Weapons and explosives. 15.15... EMERGENCY TRAINING CENTER § 15.15 Weapons and explosives. No person entering or while at Mt. Weather or the NETC will carry or possess firearms, other dangerous or deadly weapons, explosives or items intended...

  6. 31 CFR 0.215 - Possession of weapons and explosives.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Possession of weapons and explosives... OF THE TREASURY EMPLOYEE RULES OF CONDUCT Rules of Conduct § 0.215 Possession of weapons and explosives. (a) Employees shall not possess firearms, explosives, or other dangerous or deadly...

  7. 36 CFR 504.14 - Weapons and explosives.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Weapons and explosives. 504... GOVERNING SMITHSONIAN INSTITUTION BUILDINGS AND GROUNDS § 504.14 Weapons and explosives. No person while on the premises shall carry firearms, other dangerous or deadly weapons, or explosives, either openly...

  8. 31 CFR 407.13 - Weapons and explosives.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Weapons and explosives. 407.13... TREASURY ANNEX § 407.13 Weapons and explosives. No person while on the property shall carry firearms, other dangerous or deadly weapons, or explosives, either openly or concealed, except for official purposes....

  9. 46 CFR 386.23 - Weapons and explosives.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Weapons and explosives. 386.23 Section 386.23 Shipping... AND GROUNDS AT THE UNITED STATES MERCHANT MARINE ACADEMY § 386.23 Weapons and explosives. No person shall carry or possess firearms, other dangerous or deadly weapons or parts thereof, explosives or...

  10. 32 CFR 228.7 - Prohibition on weapons and explosives.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Prohibition on weapons and explosives. 228.7... (CONTINUED) MISCELLANEOUS SECURITY PROTECTIVE FORCE § 228.7 Prohibition on weapons and explosives. No persons... illegal or legally controlled weapon (e.g., throwing stars, switchblades), explosives, or items...

  11. 36 CFR 702.7 - Weapons and explosives.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Weapons and explosives. 702.7... Weapons and explosives. Except where duly authorized by law, and in the performance of law enforcement functions, no person shall carry firearms, other dangerous or deadly weapons, or explosives, either...

  12. 7 CFR 502.13 - Weapons and explosives.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Weapons and explosives. 502.13 Section 502.13....13 Weapons and explosives. No person while in or on BARC property shall carry firearms, other dangerous or deadly weapons, or explosives, either openly or concealed, except as officially authorized...

  13. 4 CFR 25.14 - Weapons and explosives.

    Science.gov (United States)

    2010-01-01

    ... 4 Accounts 1 2010-01-01 2010-01-01 false Weapons and explosives. 25.14 Section 25.14 Accounts... AND ON ITS GROUNDS § 25.14 Weapons and explosives. No person while entering or in the GAO Building or on its grounds shall carry or possess firearms, other dangerous or deadly weapons, explosives...

  14. 36 CFR 520.15 - Weapons and explosives.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Weapons and explosives. 520... Weapons and explosives. No person while on the premises shall carry firearms, other dangerous or deadly weapons, or explosives, either openly or concealed, except for official purposes, nor shall any...

  15. 31 CFR 91.13 - Weapons and explosives.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Weapons and explosives. 91.13 Section... CONDUCT IN OR ON THE BUREAU OF THE MINT BUILDINGS AND GROUNDS § 91.13 Weapons and explosives. No person while on the property shall carry firearms, other dangerous or deadly weapons, or explosives,...

  16. Forensic analysis of explosions: Inverse calculation of the charge mass

    NARCIS (Netherlands)

    Voort, M.M. van der; Wees, R.M.M. van; Brouwer, S.D.; Jagt-Deutekom, M.J. van der; Verreault, J.

    2015-01-01

    Forensic analysis of explosions consists of determining the point of origin, the explosive substance involved, and the charge mass. Within the EU fP7 project Hyperion, TNO developed the Inverse Explosion Analysis (TNO-IEA) tool to estïmate the charge mass and point of origin based on observed damage

  17. 49 CFR 173.59 - Description of terms for explosives.

    Science.gov (United States)

    2010-10-01

    ... detonating explosive without means of initiation, used for explosive welding, joining, forming, and other..., detonating, flexible. Articles consisting of a core of detonating explosive enclosed in spun fabric with... flexible protective covering, or consisting of a core of black powder surrounded by a flexible woven...

  18. Recent Advances in the Synthesis of High Explosive Materials

    OpenAIRE

    Jesse J. Sabatini; Karl D. Oyler

    2015-01-01

    This review discusses the recent advances in the syntheses of high explosive energetic materials. Syntheses of some relevant modern primary explosives and secondary high explosives, and the sensitivities and properties of these molecules are provided. In addition to the synthesis of such materials, processing improvement and formulating aspects using these ingredients, where applicable, are discussed in detail.

  19. Recent Advances in the Synthesis of High Explosive Materials

    Directory of Open Access Journals (Sweden)

    Jesse J. Sabatini

    2015-12-01

    Full Text Available This review discusses the recent advances in the syntheses of high explosive energetic materials. Syntheses of some relevant modern primary explosives and secondary high explosives, and the sensitivities and properties of these molecules are provided. In addition to the synthesis of such materials, processing improvement and formulating aspects using these ingredients, where applicable, are discussed in detail.

  20. 30 CFR 19.7 - Protection against explosion hazard.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection against explosion hazard. 19.7..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC CAP LAMPS § 19.7 Protection against explosion hazard. Unless properly designed, electric cap lamps may present two sources of probable explosion...

  1. A model to assess dust explosion occurrence probability.

    Science.gov (United States)

    Hassan, Junaid; Khan, Faisal; Amyotte, Paul; Ferdous, Refaul

    2014-03-15

    Dust handling poses a potential explosion hazard in many industrial facilities. The consequences of a dust explosion are often severe and similar to a gas explosion; however, its occurrence is conditional to the presence of five elements: combustible dust, ignition source, oxidant, mixing and confinement. Dust explosion researchers have conducted experiments to study the characteristics of these elements and generate data on explosibility. These experiments are often costly but the generated data has a significant scope in estimating the probability of a dust explosion occurrence. This paper attempts to use existing information (experimental data) to develop a predictive model to assess the probability of a dust explosion occurrence in a given environment. The pro-posed model considers six key parameters of a dust explosion: dust particle diameter (PD), minimum ignition energy (MIE), minimum explosible concentration (MEC), minimum ignition temperature (MIT), limiting oxygen concentration (LOC) and explosion pressure (Pmax). A conditional probabilistic approach has been developed and embedded in the proposed model to generate a nomograph for assessing dust explosion occurrence. The generated nomograph provides a quick assessment technique to map the occurrence probability of a dust explosion for a given environment defined with the six parameters.

  2. The dispersal of ash during explosive eruptions from central volcanoes and calderas: an underestimated hazard for the central Mediterranean area

    Energy Technology Data Exchange (ETDEWEB)

    Sulpizio, Roberto [CIRISIVU, c/o Dipartimento Geomineralogico, via Orabona 4, 70125, Bari (Italy); Caron, Benoit; Zanchetta, Giovanni; Santacroce, Roberto [Dipartimento di Scienze della Terra, via S. Maria 53, 56126, Pisa (Italy); Giaccio, Biagio [Istituto di Geologia Ambientale e Geoingegneria, CNR, Via Bolognola 7, 00138 Rome (Italy); Paterne, Martine [LSCE, Laboratoire Mixte CEA-CNRS-UVSQ, Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex (France); Siani, Giuseppe [IDES-UMR 8148, Universite Paris-XI, 91405 Orsay Cedex (France)], E-mail: r.sulpizio@geomin.uniba.it

    2008-10-01

    The central Mediterranean area comprises some of the most active volcanoes of the northern hemisphere. Some of their names recall myths or events in human history: Somma-Vesuvius, Etna, Stromboli, Vulcano, Ischia and Campi Flegrei. These volcanoes are still active today, and produce both effusive and explosive eruptions. In particular, explosive eruptions can produce and disperse large amount of volcanic ash, which pose a threat to environment, economy and human health over a large part of the Mediterranean area. We present and discuss data of ash dispersal from some explosive eruptions of southern Italy volcanoes, which dispersed centimetre -thick ash blankets hundred of kilometres from the source, irrespective of the more limited dispersal of the respective coarse grained fallout and PDC deposits. The collected data also highlight the major role played by lower atmosphere winds in dispersal of ash from weak plumes and ash clouds that accompany PDC emplacement.

  3. The Effect of Nano-Aluminumpowder on the Characteristic of RDX based Aluminized Explosives Underwater Close-Filed Explosion

    Directory of Open Access Journals (Sweden)

    Junting Yin

    2017-01-01

    Full Text Available In order to investigate the effect of nano-aluminum powder on the characteristic of RDX based aluminized explosives underwater closed-filed explosions, the scanning photographs along the radial of the charges were gained by a high speed scanning camera. The photographs of two different aluminized explosives underwater explosion have been analyzed, the shock wave curves and expand curves of detonation products were obtained, furthermore the change rules of shock waves propagation velocity, shock front pressure and expansion of detonation products of two aluminized explosives were investigated, and also the parameters of two aluminized explosives were contrasted. The results show that the aluminized explosive which with nano-aluminum whose initial shock waves pressure propagation velocity, shock front pressure are smaller than the aluminized explosive without nano-aluminum and has lower decrease rate attenuation of energy.

  4. Explosive limits and its container factors of polybasic explosive mixture gas containing H2, CH4 and CO

    Institute of Scientific and Technical Information of China (English)

    胡耀元; 李勇; 朱凯汉; 周邦智; 杨元法

    2002-01-01

    Explosive characteristics of polybasic explosive mixture gas are systematically researched. Over 28000 experimental data have been obtained from 1278 effective experiments. The paper probes into the concentration explosive limits and the container factors of polybasic explosive mixture gas which contains H2, CH4 and CO. It has worked out the sufficient and necessary condition for branch-chain explosion and the unified expression of the probability of the heterogeneous chain termination. Experiments indicate that the concentration explosive limits of polybasic explosive mixture gas (H2, CH4, CO) relate to many factors. They enlarge with the augmentability of the container (linear size, geometric shape, and flame spread direction). This will be of great significance to guiding the revision of related industrial safety targets, reclaiming and reusing related industrial tail gas and waste gas, taking precautions against the explosion hazard of mixture gas in correlated industry and mines, and applying the br

  5. Phreatic and Hydrothermal Explosions: A Laboratory Approach

    Science.gov (United States)

    Scheu, B.; Dingwell, D. B.

    2010-12-01

    Phreatic eruptions are amongst the most common eruption types on earth. They might be precursory to another type of volcanic eruption but often they stand on their one. Despite being the most common eruption type, they also are one of the most diverse eruptions, in appearance as well as on eruption mechanism. Yet steam is the common fuel behind all phreatic eruptions. The steam-driven explosions occur when water beneath the ground or on the surface is heated by magma, lava, hot rocks, or fresh volcanic deposits (such as ignimbrites, tephra and pyroclastic-flow deposits) and result in crater, tuff rings and debris avalanches. The intense heat of such material may cause water to boil and flash to steam, thereby generating an explosion of steam, water, ash, blocks, and bombs. Another wide and important field affected by phreatic explosions are hydrothermal areas; here phreatic explosions occur every few months creating explosion craters and resemble a significant hazard to hydrothermal power plants. Despite of their hazard potential, phreatic explosions have so far been overlooked by the field of experimental volcanology. A part of their hazard potential in owned by the fact that phreatic explosions are hardly predictable in occurrence time and size as they have manifold triggers (variances in groundwater and heat systems, earthquakes, material fatigue, water level, etc..) A new set of experiments has been designed to focus on this phreatic type of steam explosion, whereas classical phreatomagmatic experiments use molten fuel-coolant interaction (e.g., Zimanowski, et al., 1991). The violent transition of the superheated water to vapour adds another degree of explosivity to the dry magmatic fragmentation, driven mostly by vesicle bursting due to internal gas overpressure. At low water fractions the fragmentation is strongly enforced by the mixture of these two effects and a large fraction of fine pyroclasts are produced, whereas at high water fraction in the sample the

  6. Calculating Contained Firing Facility (CFF) explosive

    Energy Technology Data Exchange (ETDEWEB)

    Lyle, J W.

    1998-10-20

    The University of California awarded LLNL contract No. B345381 for the design of the facility to Parsons Infrastructure Technology, Inc., of Pasadena, California. The Laboratory specified that the firing chamber be able to withstand repeated fxings of 60 Kg of explosive located in the center of the chamber, 4 feet above the floor, and repeated firings of 35 Kg of explosive at the same height and located anywhere within 2 feet of the edge of a region on the floor called the anvil. Other requirements were that the chamber be able to accommodate the penetrations of the existing bullnose of the Bunker 801 flash X-ray machine and the roof of the underground camera room. These requirements and provisions for blast-resistant doors formed the essential basis for the design. The design efforts resulted in a steel-reinforced concrete snucture measuring (on the inside) 55 x 5 1 feet by 30 feet high. The walls and ceiling are to be approximately 6 feet thick. Because the 60-Kg charge is not located in the geometric center of the volume and a 35-K:: charge could be located anywhere in a prescribed area, there will be different dynamic pressures and impulses on the various walls floor, and ceiling, depending upon the weights and locations of the charges. The detailed calculations and specifications to achieve the design criteria were performed by Parsons and are included in Reference 1. Reference 2, Structures to Resist the E xts of Accidental L%plosions (TMS- 1300>, is the primary design manual for structures of this type. It includes an analysis technique for the calculation of blast loadings within a cubicle or containment-type structure. Parsons used the TM5- 1300 methods to calculate the loadings on the various fling chamber surfaces for the design criteria explosive weights and locations. At LLNL the same methods were then used to determine the firing zones for other weights and elevations that would give the same or lesser loadings. Although very laborious, a hand

  7. Analyzed potential vorticity fields for explosive and non-explosive cyclogenesis events during FGGE.

    OpenAIRE

    Kirchoffer, Peter J.

    1986-01-01

    Approved for public release; distribution is unlimited Potential vorticity and jet streak properties associated with 23 explosive and non-explosive cyclones from the western North Atlantic and western North Pacific Oceans are analyzed for the period 17 January to 23 February 1979. ECMWF analyses with FGGE data are used to represent the 300 mb wind fields over these ocean areas. Relative maxima in potential vorticity are present upstream of all cyclones. Storm tracks with res...

  8. Plutonium explosive dispersal modeling using the MACCS2 computer code

    Energy Technology Data Exchange (ETDEWEB)

    Steele, C.M.; Wald, T.L.; Chanin, D.I.

    1998-11-01

    The purpose of this paper is to derive the necessary parameters to be used to establish a defensible methodology to perform explosive dispersal modeling of respirable plutonium using Gaussian methods. A particular code, MACCS2, has been chosen for this modeling effort due to its application of sophisticated meteorological statistical sampling in accordance with the philosophy of Nuclear Regulatory Commission (NRC) Regulatory Guide 1.145, ``Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants``. A second advantage supporting the selection of the MACCS2 code for modeling purposes is that meteorological data sets are readily available at most Department of Energy (DOE) and NRC sites. This particular MACCS2 modeling effort focuses on the calculation of respirable doses and not ground deposition. Once the necessary parameters for the MACCS2 modeling are developed and presented, the model is benchmarked against empirical test data from the Double Tracks shot of project Roller Coaster (Shreve 1965) and applied to a hypothetical plutonium explosive dispersal scenario. Further modeling with the MACCS2 code is performed to determine a defensible method of treating the effects of building structure interaction on the respirable fraction distribution as a function of height. These results are related to the Clean Slate 2 and Clean Slate 3 bunkered shots of Project Roller Coaster. Lastly a method is presented to determine the peak 99.5% sector doses on an irregular site boundary in the manner specified in NRC Regulatory Guide 1.145 (1983). Parametric analyses are performed on the major analytic assumptions in the MACCS2 model to define the potential errors that are possible in using this methodology.

  9. 30 CFR 77.1909 - Explosives and blasting; use of permissible explosives and shot-firing units.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosives and blasting; use of permissible explosives and shot-firing units. 77.1909 Section 77.1909 Mineral Resources MINE SAFETY AND HEALTH... blasting; use of permissible explosives and shot-firing units. Except as provided in § 77.1909-1,...

  10. Analysis of the accidental explosion at Pepcon, Henderson, Nevada, May 4, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Reed, J.W.

    1988-11-01

    Several hours of fire and numerous explosions destroyed the Pacific Engineering Company plant in Henderson, Nevada, that manufactured ammonium perchlorate (AP) for rocket fuel. This incident began about 1130 PDT on May 4, 1988, with a fire in their Batch House that grew out of control and caused a first large explosion at about 1153 PDT. The final and largest explosion occurred about 1157 PDT. Damages to the surrounding community were surveyed and interpreted as airblast overpressures versus distances, which allowed an estimate of 1-kiloton nuclear free-air-burst for the equivalent explosion yield. This could be reproduced by 250-tons TNT burst on the ground surface. Weather reports were obtained from the National Weather Services which indicated somewhat enhanced airblast propagation downwind toward northerly directions and attenuated airblast propagations upwind in southerly directions. It was impossible, for lack of winds aloft information below about 500 m above ground, to determine whether there was any atmospheric acoustic airblast focusing. Several seismic recordings in Las Vegas showed the greatest ground motion resulted from the airblast wave passage, traveling at near acoustic speed. Ground wave arrival times were not sufficiently precise to allow seismic speed interpretations. Of the 4000 tons of AP apparently stored in and around the plant, it appears that about 1500 tons detonated in the largest explosion. This leads to a conclusion that the TNT airblast equivalence factor for AP is near 1/6. An independent estimate, based on analysis of more ideal close-in structural deformations, suggested an equivalence factor of 1/3. 25 refs., 12 figs., 14 tabs.

  11. Numerical analysis of welded joint treated by explosion shock waves

    Institute of Scientific and Technical Information of China (English)

    GUAN Jianjun; CHEN Huaining

    2007-01-01

    This paper focuses on the simulation of welding residual stresses and the action of explosion shock waves on welding residual stresses. Firstly, the distributions of welding temperature field and residual stress on a butt joint were numerically simulated with the sequentially coupled method. Secondly, the effect of explosion shock waves, produced by plastic strip-like explosive, on welding residual stress distri-bution was predicted with coupled Lagrange-ALE algorithm.It was implicated that explosion treatment could effectively reduce welding residual stresses. The simulation work lays a foundation for the further research on the rule of explosion treatment's effect on welding residual stresses and the factors that may influence it.

  12. The effect of duct surface character on methane explosion propagation

    Institute of Scientific and Technical Information of China (English)

    LIN Bai-quan; YE Qing; JIAN Cong-guang; WU Hai-jin

    2007-01-01

    The effect of duct surface character on methane explosion propagation was experimentally studied and theoretically analyzed. The roughness has effect on methane explosion propagation. The flame propagation velocity and the peak value pressure of methane explosion in rough duct are larger than the parameters in smooth duct. The heat exchange of the surface has effect on methane explosion propagation. The propagation velocity of flame and strength of explosion wave in the duct covered by heat insulation material are larger than those in duct with good heat transmittability.

  13. Planar blast scaling with condensed-phase explosives in a shock tube

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Scott L [Los Alamos National Laboratory

    2011-01-25

    Blast waves are strong shock waves that result from large power density deposition into a fluid. The rapid energy release of high-explosive (HE) detonation provides sufficiently high power density for blast wave generation. Often it is desirable to quantify the energy released by such an event and to determine that energy relative to other reference explosives to derive an explosive-equivalence value. In this study, we use condensed-phase explosives to drive a blast wave in a shock tube. The explosive material and quantity were varied to produce blast waves of differing strengths. Pressure transducers at varying lengths measured the post-shock pressure, shock-wave arrival time and sidewall impulse associated with each test. Blast-scaling concepts in a one-dimensional geometry were then used to both determine the energy release associated with each test and to verify the scaling of the shock position versus time, overpressure versus distance, and impulse. Most blast scaling measurements to-date have been performed in a three-dimensional geometry such as a blast arena. Testing in a three-dimensional geometry can be challenging, however, as spherical shock-wave symmetry is required for good measurements. Additionally, the spherical wave strength decays rapidly with distance and it can be necessary to utilize larger (several kg) quantities of explosive to prevent significant decay from occurring before an idealized blast wave has formed. Such a mode of testing can be expensive, require large quantities of explosive, and be limited by both atmospheric conditions (such as rain) and by noise complaints from the population density near the test arena. Testing is possible in more compact geometries, however. Non-planar blast waves can be formed into a quasi-planar shape by confining the shock diffraction with the walls of a shock tube. Regardless of the initial form, the wave shape will begin to approximate a planar front after successive wave reflections from the tube

  14. Joint analysis of infrasound and seismic signals by cross wavelet transform: detection of Mt. Etna explosive activity

    Directory of Open Access Journals (Sweden)

    A. Cannata

    2013-06-01

    Full Text Available The prompt detection of explosive volcanic activity is crucial since this kind of activity can release copious amounts of volcanic ash and gases into the atmosphere, causing severe dangers to aviation. In this work, we show how the joint analysis of seismic and infrasonic data by wavelet transform coherence (WTC can be useful to detect explosive activity, significantly enhancing its recognition that is normally done by video cameras and thermal sensors. Indeed, the efficiency of these sensors can be reduced (or inhibited in the case of poor visibility due to clouds or gas plumes. In particular, we calculated the root mean square (RMS of seismic and infrasonic signals recorded at Mt. Etna during 2011. This interval was characterised by several episodes of lava fountains, accompanied by lava effusion, and minor strombolian activities. WTC analysis showed significantly high values of coherence between seismic and infrasonic RMS during explosive activity, with infrasonic and seismic series in phase with each other, hence proving to be sensitive to both weak and strong explosive activity. The WTC capability of automatically detecting explosive activity was compared with the potential of detection methods based on fixed thresholds of seismic and infrasonic RMS. Finally, we also calculated the cross correlation function between seismic and infrasonic signals, which showed that the wave types causing such seismo-acoustic relationship are mainly incident seismic and infrasonic waves, likely with a common source.

  15. One-Dimensional Time to Explosion (Thermal Sensitivity) of ANPZ

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hust, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McClelland, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gresshoff, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-11-12

    Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. This report summarizes the recent ODTX experimental data and modeling results for 2,6-diamino-3,5-dintropyrazine (ANPZ).

  16. Determination of JWL Parameters for Non-Ideal Explosive

    Science.gov (United States)

    Hamashima, H.; Kato, Y.; Itoh, S.

    2004-07-01

    JWL equation of state is widely used in numerical simulation of detonation phenomena. JWL parameters are determined by cylinder test. Detonation characteristics of non-ideal explosive depend strongly on confinement, and JWL parameters determined by cylinder test do not represent the state of detonation products in many applications. We developed a method to determine JWL parameters from the underwater explosion test. JWL parameters were determined through a method of characteristics applied to the configuration of the underwater shock waves of cylindrical explosives. The numerical results obtained using JWL parameters determined by the underwater explosion test and those obtained using JWL parameters determined by cylinder test were compared with experimental results for typical non-ideal explosive; emulsion explosive. Good agreement was confirmed between the results obtained using JWL parameters determined by the underwater explosion test and experimental results.

  17. Detection of explosive events by monitoring acoustically-induced geomagnetic perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, J P; Rock, D R; Shaeffer, D L; Warshaw, S I

    1999-10-07

    The Black Thunder Coal Mine (BTCM) near Gillette, Wyoming was used as a test bed to determine the feasibility of detecting explosion-induced geomagnetic disturbances with ground-based induction magnetometers. Two magnetic observatories were fielded at distances of 50 km and 64 km geomagnetically north from the northernmost edge of BTCM. Each observatory consisted of three separate but mutually orthogonal magnetometers, Global Positioning System (GPS) timing, battery and solar power, a data acquisition and storage system, and a three-axis seismometer. Explosions with yields of 1 to 3 kT of TNT equivalent occur approximately every three weeks at BTCM. We hypothesize that explosion-induced acoustic waves propagate upward and interact collisionally with the ionosphere to produce ionospheric electron density (and concomitant current density) perturbations which act as sources for geomagnetic disturbances. These disturbances propagate through an ionospheric Alfven waveguide that we postulate to be leaky (due to the imperfectly conducting lower ionospheric boundary). Consequently, wave energy may be observed on the ground. We observed transient pulses, known as Q-bursts, with pulse widths about 0.5 s and with spectral energy dominated by the Schumann resonances. These resonances appear to be excited in the earth-ionosphere cavity by Alfven solitons that may have been generated by the explosion-induced acoustic waves reaching the ionospheric E and F regions and that subsequently propagate down through the ionosphere to the atmosphere. In addition, we observe late time (> 800 s) ultra low frequency (ULF) geomagnetic perturbations that appear to originate in the upper F region ({approximately}300 km) and appear to be caused by the explosion-induced acoustic wave interacting with that part of the ionosphere. We suggest that explosion-induced Q-bursts may be discriminated from naturally occurring Q-bursts by association of the former with the late time explosion-induced ULF

  18. Acoustic waves in the atmosphere and ground generated by volcanic activity

    Energy Technology Data Exchange (ETDEWEB)

    Ichihara, Mie; Lyons, John; Oikawa, Jun; Takeo, Minoru [Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Instituto Geofisico, Escuela Politecnica Nacional, Ladron de Guevara E11-253, Aptdo 2759, Quito (Ecuador); Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)

    2012-09-04

    This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted also to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.

  19. Modeling of atmospheric-coupled Rayleigh waves on planets with atmosphere: From Earth observation to Mars and Venus perspectives.

    Science.gov (United States)

    Lognonné, Philippe; Karakostas, Foivos; Rolland, Lucie; Nishikawa, Yasuhiro

    2016-08-01

    Acoustic coupling between solid Earth and atmosphere has been observed since the 1960s, first from ground-based seismic, pressure, and ionospheric sensors and since 20 years with various satellite measurements, including with global positioning system (GPS) satellites. This coupling leads to the excitation of the Rayleigh surface waves by local atmospheric sources such as large natural explosions from volcanoes, meteor atmospheric air-bursts, or artificial explosions. It contributes also in the continuous excitation of Rayleigh waves and associated normal modes by atmospheric winds and pressure fluctuations. The same coupling allows the observation of Rayleigh waves in the thermosphere most of the time through ionospheric monitoring with Doppler sounders or GPS. The authors review briefly in this paper observations made on Earth and describe the general frame of the theory enabling the computation of Rayleigh waves for models of telluric planets with atmosphere. The authors then focus on Mars and Venus and give in both cases the atmospheric properties of the Rayleigh normal modes and associated surface waves compared to Earth. The authors then conclude on the observation perspectives especially for Rayleigh waves excited by atmospheric sources on Mars and for remote ionospheric observations of Rayleigh waves excited by quakes on Venus.

  20. Improved methodology for generating controlled test atmospheres.

    Science.gov (United States)

    Miller, R R; Letts, R L; Potts, W J; McKenna, M J

    1980-11-01

    Improved methodology has been developed for generating controlled test atmospheres. Vaporization of volatile liquids is accomplished in a 28 mm (O.D.) glass J-tube in conjunction with a compressed air flameless heat torch, a pressure-sensitive switch, and a positive displacement piston pump. The vaporization system has been very reliable with a variety of test materials in studies ranging from a few days to several months. The J-tube vaporization assembly minimizes the possibility of thermal decomposition of the test material and affords a better margin of safety when vaporizing potentially explosive materials.

  1. Explosive magnetorotational instability in Keplerian disks

    Science.gov (United States)

    Shtemler, Yu.; Liverts, E.; Mond, M.

    2016-06-01

    Differentially rotating disks under the effect of axial magnetic field are prone to a nonlinear explosive magnetorotational instability (EMRI). The dynamic equations that govern the temporal evolution of the amplitudes of three weakly detuned resonantly interacting modes are derived. As distinct from exponential growth in the strict resonance triads, EMRI occurs due to the resonant interactions of an MRI mode with stable Alfvén-Coriolis and magnetosonic modes. Numerical solutions of the dynamic equations for amplitudes of a triad indicate that two types of perturbations behavior can be excited for resonance conditions: (i) EMRI which leads to infinite values of the three amplitudes within a finite time, and (ii) bounded irregular oscillations of all three amplitudes. Asymptotic explicit solutions of the dynamic equations are obtained for EMRI regimes and are shown to match the numerical solutions near the explosion time.

  2. Sub-photospheric shocks in relativistic explosions

    CERN Document Server

    Beloborodov, Andrei M

    2016-01-01

    This paper examines the mechanism of shocks in opaque outflows from astrophysical explosions, in particular in cosmological gamma-ray bursts. Sub-photospheric shocks can produce neutrino emission and affect the observed photospheric radiation from the explosion. Shocks develop from internal compressive waves and can be of different types depending on the composition of the flow: (1) Shocks in `photon gas' with small plasma inertial mass have a unique structure determined by the `force-free' condition -- zero radiation flux in the plasma rest frame. Radiation dominance over plasma inertia suppresses formation of collisionless shocks mediated by collective electromagnetic fields. (2) Strong collisionless subshocks develop in the opaque flow if it is sufficiently magnetized. We evaluate the critical magnetization for this to happen. The collisionless subshock is embedded in a thicker radiation-mediated shock structure. (3) Shocks in outflows carrying a free neutron component involve dissipation through nuclear c...

  3. Towards quantum controlled initiation of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Greenfield, Marge T [Los Alamos National Laboratory; Mc Grane, Shawn D [Los Alamos National Laboratory; Scharff, R Jason [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory

    2010-01-01

    As a first step toward understanding and controlling excited state dynamics in explosives, transient absorption spectra of Hexanitroazobenzene (HNAB) in acetone, Trinitroaniline (TNA) in acetone and Diaminoazoxyfurazan (DAAF) in dimethylsulfoxide (DMSO) were investigated in an ultrafast shaped pump/supercontinuum probe experiment for their dependence on single parameter control schemes. Two single parameter control methods, second order spectral phase (linear chirp) and the effect of pump energy on the amount of transmitted pump light were investigated. Novel transient absorption spectra were obtained for the three explosives. The spectral features found in the HNAB and TNA solutions had evidence of more complex control possibilities, while the spectral features of DAAF were dominated by intensity control.

  4. Explosive magnetorotational instability in Keplerian disks

    CERN Document Server

    Shtemler, Yu; Mond, M

    2016-01-01

    Differentially rotating disks under the effect of axial magnetic field are prone to a nonlinear explosive magnetorotational instability (EMRI). The dynamic equations that govern the temporal evolution of the amplitudes of three weakly-detuned resonantly interacting modes are derived. As distinct from exponential growth in the strict resonance triads EMRI occurs due to the resonant interactions of a MRI mode with stable Alfv\\'en-Coriolis and magnetosonic modes. Numerical solutions of the dynamic equations for amplitudes of a triad indicate that two types of perturbations behavior can be excited for resonance conditions: (i) EMRI which leads to infinite values of the three amplitudes within a finite time, and (ii) bounded irregular oscillations of all three amplitudes. Asymptotic explicit solutions of the dynamic equations are obtained for EMRI regimes and are shown to match the numerical solutions near the explosion time.

  5. Earthquake-explosion discrimination using diffusion maps

    Science.gov (United States)

    Rabin, N.; Bregman, Y.; Lindenbaum, O.; Ben-Horin, Y.; Averbuch, A.

    2016-12-01

    Discrimination between earthquakes and explosions is an essential component of nuclear test monitoring and it is also important for maintaining the quality of earthquake catalogues. Currently used discrimination methods provide a partial solution to the problem. In this work, we apply advanced machine learning methods and in particular diffusion maps for modelling and discriminating between seismic signals. Diffusion maps enable us to construct a geometric representation that capture the intrinsic structure of the seismograms. The diffusion maps are applied after a pre-processing step, in which seismograms are converted to normalized sonograms. The constructed low-dimensional model is used for automatic earthquake-explosion discrimination of data that are collected in single seismic stations. We demonstrate our approach on a data set comprising seismic events from the Dead Sea area. The diffusion-based algorithm provides correct discrimination rate that is higher than 90 per cent.

  6. Lower head integrity under steam explosion loads

    Energy Technology Data Exchange (ETDEWEB)

    Theofanous, T.G.; Yuen, W.W.; Angelini, S.; Freeman, K.; Chen, X.; Salmassi, T. [Center for Risk Studies and Safety, Univ. of California, Santa Barbara, CA (United States); Sienicki, J.J.

    1998-01-01

    Lower head integrity under steam explosion loads in an AP600-like reactor design is considered. The assessment is the second part of an evaluation of the in-vessel retention idea as a severe accident management concept, the first part (DOE/ID-10460) dealing with thermal loads. The assessment is conducted in terms of the Risk Oriented Accident Analysis Methodology (ROAAM), and includes the comprehensive evaluation of all relevant severe accident scenarios, melt conditions and timing of release from the core region, fully 3D mixing and explosion wave dynamics, and lower head fragility under local, dynamic loading. All of these factors and brought together in a ROAAM Probabilistic Framework to evaluate failure likelihood. The conclusion is that failure is `physically unreasonable`. (author)

  7. Detecting underwater improvised explosive threats (DUIET)

    Science.gov (United States)

    Feeley, Terry

    2010-04-01

    Improvised Explosive Devices (IEDs) have presented a major threat in the wars in Afghanistan and Iraq. These devices are powerful homemade land mines that can be small and easily hidden near roadsides. They are then remotely detonated when Coalition Forces pass by either singly or in convoys. Their rapid detection, classification and destruction is key to the safety of troops in the area. These land based bombs will have an analogue in the underwater theater especially in ports, lakes, rivers and streams. These devices may be used against Americans on American soil as an element of the global war on terrorism (GWOT) Rapid detection and classification of underwater improvised explosive devices (UIED) is critical to protecting innocent lives and maintaining the day to day flow of commerce. This paper will discuss a strategy and tool set to deal with this potential threat.

  8. Treatment of Explosives Residues from Range Activities

    Science.gov (United States)

    2009-09-01

    1948. The bacteriostatic effects of methylene blue on the BOD test. Water Sewage Works 95:424. Sawyer, C. N., P. Callejas, N. Moore & A. Q. Y. Tom...according to a modified EPA Method 8330 using HPLC . -Water flux through the soil plots. Soil volumetric moisture content was measured using...breakdown products according to a modified EPA Method 8330 using HPLC . -Total explosives in the PMSO material. The topmost 2.5 cm of the PMSO was

  9. Dynamic Fracture Simulations of Explosively Loaded Cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Carly W. [Univ. of California, Davis, CA (United States). Dept. of Civil and Environmental Engineering; Goto, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-11-30

    This report documents the modeling results of high explosive experiments investigating dynamic fracture of steel (AerMet® 100 alloy) cylinders. The experiments were conducted at Lawrence Livermore National Laboratory (LLNL) during 2007 to 2008 [10]. A principal objective of this study was to gain an understanding of dynamic material failure through the analysis of hydrodynamic computer code simulations. Two-dimensional and three-dimensional computational cylinder models were analyzed using the ALE3D multi-physics computer code.

  10. High Voltage Applications of Explosively Formed Fuses

    Science.gov (United States)

    Tasker, D. G.; Goforth, J. H.; Fowler, C. M.; Herrera, D. H.; King, J. C.; Lopez, E. A.; Martinez, E. C.; Oona, H.; Marsh, S. P.; Reinovsky, R. E.; Stokes, J.; Tabaka, L. J.; Torres, D. T.; Sena, F. C.; Kiuttu, G.; Degnan, J.

    2004-11-01

    At Los Alamos, we have primarily applied Explosively Formed Fuse (EFF) techniques to high current systems. In these systems, the EFF has interrupted currents from 19-25 MA, thus diverting the current to low inductance loads. The transferred current magnitude is determined by the ratio of storage inductance to load inductance and, with dynamic loads, the current has ranged from 12-20 MA. In a system with 18 MJ stored energy, the switch operates at a power of up to 6 TW. We are now investigating the use of the EFF technique to apply high voltages to high impedance loads in systems that are more compact. In these systems we are exploring circuits with EFF lengths from 43-100 cm, which have storage inductances large enough to apply 300-500 kV across high impedance loads. Experimental results and design considerations are presented. Using cylindrical EFF switches of 10 cm diameter and 43 cm length, currents of approximately 3 MA were interrupted producing ~200 kV. This indicates the switch had an effective resistance of ~100 mΩ where 150-200 mΩ was expected. To understand the lower performance, several parameters were studied including electrical conduction through the explosive products; current density; explosive initiation; insulator type and conductor thickness. The results show a number of interesting features, most notably that the primary mechanism of switch operation is mechanical and not electrical fusing of the conductor. Switches opening on a 1-10 μs time scale with resistances starting at 50 μΩ and increasing to perhaps 1 Ω now seem possible to construct using explosive charges as small as a few pounds.

  11. Youngest Stellar Explosion in Our Galaxy Discovered

    Science.gov (United States)

    2008-05-01

    Astronomers have found the remains of the youngest supernova, or exploded star, in our Galaxy. The supernova remnant, hidden behind a thick veil of gas and dust, was revealed by the National Science Foundation's Very Large Array (VLA) and NASA's Chandra X-Ray Observatory, which could see through the murk. The object is the first example of a "missing population" of young supernova remnants. 1985 and 2008 VLA Images Move cursor over image to blink. VLA Images of G1.9+0.3 in 1985 and 2008: Circle for size comparison. CREDIT: Green, et al., NRAO/AUI/NSF From observing supernovae in other galaxies, astronomers have estimated that about three such stellar explosions should occur in our Milky Way every century. However, the most recent one known until now occurred around 1680, creating the remnant called Cassiopeia A. The newly-discovered object is the remnant of an explosion only about 140 years ago. "If the supernova rate estimates are correct, there should be the remnants of about 10 supernova explosions in the Milky Way that are younger than Cassiopeia A," said David Green of the University of Cambridge in the UK, who led the VLA study. "It's great to finally track one of them down." Supernova explosions, which mark the violent death of a star, release tremendous amounts of energy and spew heavy elements such as calcium and iron into interstellar space. They thus seed the clouds of gas and dust from which new stars and planets are formed and, through their blast shocks, can even trigger such formation. The lack of evidence for young supernova remnants in the Milky Way had caused astronomers to wonder if our Galaxy, which appears otherwise normal, differed in some unknown way from others. Alternatively, scientists thought that the "missing" Milky Way supernovae perhaps indicated that their understanding of the relationship between supernovae and other galactic processes was in error. The astronomers made their discovery by measuring the expansion of the debris from

  12. The Full Function Test Explosive Generator

    Energy Technology Data Exchange (ETDEWEB)

    Reisman, D B; Javedani, J B; Griffith, L V; Ellsworth, G F; Kuklo, R M; Goerz, D A; White, A D; Tallerico, L J; Gidding, D A; Murphy, M J; Chase, J B

    2009-12-13

    We have conducted three tests of a new pulsed power device called the Full Function Test (FFT). These tests represented the culmination of an effort to establish a high energy pulsed power capability based on high explosive pulsed power (HEPP) technology. This involved an extensive computational modeling, engineering, fabrication, and fielding effort. The experiments were highly successful and a new US record for magnetic energy was obtained.

  13. Waveforms Measured in Confined Thermobaric Explosion

    Energy Technology Data Exchange (ETDEWEB)

    Reichenbach, H; Neuwald, P; Kuhl, A L

    2007-05-04

    Experiments with 1.5-g Shock-Dispersed-Fuel (SDF) charges have been conducted in six different chambers. Both flake Aluminum and TNT were used as the fuel. Static pressure gauges on the chamber wall were the main diagnostic. Waveforms for explosions in air were significantly larger than those in nitrogen - thereby demonstrating a strong thermobaric (combustion) effect. This effect increases as the confinement volume decreases and the mixture richness approaches 1.

  14. Investigation of Research Needs for Underwater Explosions

    Science.gov (United States)

    1990-12-31

    energy to the water shock. First, there are the well known properties that the Chapman-Jouget pressure of the detonation increases as the heat of detonation and...the explosive density, heat of detonation , number of moles of bubble gas, and molecular weight of the bubble gas are given. These numbers will be of...shock energy, the heat of detonation is increased, leaving a more energetic bubble. There is a continLal nonlinear interaction between the bubble and

  15. Explosive Infrasonic Events: Sensor Comparison Experiment (SCE)

    Energy Technology Data Exchange (ETDEWEB)

    Schnurr, J. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Garces, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rodgers, A. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-06

    SCE (sensor comparison experiment) 1 through 4 consists of a series of four controlled above-ground explosions designed to provide new data for overpressure propagation. Infrasound data were collected by LLNL iPhones and other sensors. Origin times, locations HOB, and yields are not being released at this time and are therefore not included in this report. This preliminary report will be updated as access to additional data changes, or instrument responses are determined.

  16. DOE explosives safety manual. Revision 7

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This manual prescribes the Department of Energy (DOE) safety rules used to implement the DOE safety policy for operations involving explosives. This manual is applicable to all DOE facilities engaged in operations of development, manufacturing, handling, storage, transportation, processing, or testing of explosives, pyrotechnics and propellants, or assemblies containing these materials. The standards of this manual deal with the operations involving explosives, pyrotechnics and propellants, and the safe management of such operations. The design of all new explosives facilities shall conform to the requirements established in this manual and implemented in DOE 6430.1A, ``General Design Criteria Manual.`` It is not intended that existing physical facilities be changed arbitrarily to comply with these provisions, except as required by law. Existing facilities that do not comply with these standards may continue to be used for the balance of their functional life, as long as the current operation presents no significantly greater risk than that assumed when the facility was originally designed and it can be demonstrated clearly that a modification to bring the facility into compliance is not feasible. However, in the case of a major renovation, the facility must be brought into compliance with current standards. The standards are presented as either mandatory or advisory. Mandatory standards, denoted by the words ``shall,`` ``must,`` or ``will,`` are requirements that must be followed unless written authority for deviation is granted as an exemption by the DOE. Advisory standards denoted by ``should`` or ``may`` are standards that may be deviated from with a waiver granted by facility management.

  17. Neutrino oscillations in magnetically driven supernova explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoe, Shio; Kotake, Kei [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Takiwaki, Tomoya, E-mail: shio.k@nao.ac.jp, E-mail: takiwaki.tomoya@nao.ac.jp, E-mail: kkotake@th.nao.ac.jp [Center for Computational Astrophysics, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2009-09-01

    We investigate neutrino oscillations from core-collapse supernovae that produce magnetohydrodynamic (MHD) explosions. By calculating numerically the flavor conversion of neutrinos in the highly non-spherical envelope, we study how the explosion anisotropy has impacts on the emergent neutrino spectra through the Mikheyev-Smirnov-Wolfenstein effect. In the case of the inverted mass hierarchy with a relatively large θ{sub 13} (sin{sup 2} 2θ{sub 13} ∼> 10{sup −3}), we show that survival probabilities of ν-bar {sub e} and ν{sub e} seen from the rotational axis of the MHD supernovae (i.e., polar direction), can be significantly different from those along the equatorial direction. The event numbers of ν-bar {sub e} observed from the polar direction are predicted to show steepest decrease, reflecting the passage of the magneto-driven shock to the so-called high-resonance regions. Furthermore we point out that such a shock effect, depending on the original neutrino spectra, appears also for the low-resonance regions, which could lead to a noticeable decrease in the ν{sub e} signals. This reflects a unique nature of the magnetic explosion featuring a very early shock-arrival to the resonance regions, which is in sharp contrast to the neutrino-driven delayed supernova models. Our results suggest that the two features in the ν-bar {sub e} and ν{sub e} signals, if visible to the Super-Kamiokande for a Galactic supernova, could mark an observational signature of the magnetically driven explosions, presumably linked to the formation of magnetars and/or long-duration gamma-ray bursts.

  18. Explosive Target balances of the German Bundesbank

    OpenAIRE

    Potrafke, Niklas; Reischmann, Markus

    2014-01-01

    Using the recursive unit root test by Phillips et al. (2011) we show that the Target balances of the German Bundesbank have been explosive from the beginning of 2009 to the beginning of 2013. By implementing a full-allotment policy and reducing the required minimum quality of collaterals in October 2008, the European Central Bank (ECB) refinanced credits in the GIIPS countries (Greece, Ireland, Italy, Portugal and Spain) to a large extent. Private capital flowed out of the GIIPS countries, an...

  19. Explosion propagation in inert porous media.

    Science.gov (United States)

    Ciccarelli, G

    2012-02-13

    Porous media are often used in flame arresters because of the high surface area to volume ratio that is required for flame quenching. However, if the flame is not quenched, the flow obstruction within the porous media can promote explosion escalation, which is a well-known phenomenon in obstacle-laden channels. There are many parallels between explosion propagation through porous media and obstacle-laden channels. In both cases, the obstructions play a duel role. On the one hand, the obstruction enhances explosion propagation through an early shear-driven turbulence production mechanism and then later by shock-flame interactions that occur from lead shock reflections. On the other hand, the presence of an obstruction can suppress explosion propagation through momentum and heat losses, which both impede the unburned gas flow and extract energy from the expanding combustion products. In obstacle-laden channels, there are well-defined propagation regimes that are easily distinguished by abrupt changes in velocity. In porous media, the propagation regimes are not as distinguishable. In porous media the entire flamefront is affected, and the effects of heat loss, turbulence and compressibility are smoothly blended over most of the propagation velocity range. At low subsonic propagation speeds, heat loss to the porous media dominates, whereas at higher supersonic speeds turbulence and compressibility are important. This blending of the important phenomena results in no clear transition in propagation mechanism that is characterized by an abrupt change in propagation velocity. This is especially true for propagation velocities above the speed of sound where many experiments performed with fuel-air mixtures show a smooth increase in the propagation velocity with mixture reactivity up to the theoretical detonation wave velocity.

  20. Near-Source Scattering of Explosion-Generated Rg: Insight From Difference Spectrograms of NTS Explosions

    Science.gov (United States)

    Gupta, I.; Chan, W.; Wagner, R.

    2005-12-01

    Several recent studies of the generation of low-frequency Lg from explosions indicate that the Lg wavetrain from explosions contains significant contributions from (1) the scattering of explosion-generated Rg into S and (2) direct S waves from the non-spherical spall source associated with a buried explosion. The pronounced spectral nulls observed in Lg spectra of Yucca Flats (NTS) and Semipalatinsk explosions (Patton and Taylor, 1995; Gupta et al., 1997) are related to Rg excitation caused by spall-related block motions in a conical volume over the shot point, which may be approximately represented by a compensated linear vector dipole (CLVD) source (Patton et al., 2005). Frequency-dependent excitation of Rg waves should be imprinted on all scattered P, S and Lg waves. A spectrogram may be considered as a three-dimensional matrix of numbers providing amplitude and frequency information for each point in the time series. We found difference spectrograms, derived from a normal explosion and a closely located over-buried shot recorded at the same common station, to be remarkably useful for an understanding of the origin and spectral contents of various regional phases. This technique allows isolation of source characteristics, essentially free from path and recording site effects, since the overburied shot acts as the empirical Green's function. Application of this methodology to several pairs of closely located explosions shows that the scattering of explosion-generated Rg makes significant contribution to not only Lg and its coda but also to the two other regional phases Pg (presumably by the scattering of Rg into P) and Sn. The scattered energy, identified by the presence of a spectral null at the appropriate frequency, generally appears to be more prominent in the somewhat later-arriving sections of Pg, Sn, and Lg than in the initial part. Difference spectrograms appear to provide a powerful new technique for understanding the mechanism of near-source scattering

  1. A new type of stellar explosion

    CERN Document Server

    Perets, H B; Mazzali, P; Arnett, D; Kagan, D; Filippenko, A V; Li, W; Cenko, S B; Fox, D B; Leonard, D C; Moon, D -S; Sand, D J; Soderberg, A M; Foley, R J; Ganeshalingam, M; Anderson, J P; James, P A; Ofek, E O; Bildsten, L; Nelemans, G; Shen, K J; Weinberg, N N; Metzger, B D; Piro, A L; Quataert, E; Kiewe, M; Poznanski, D

    2009-01-01

    The explosive deaths of stars (supernovae; SNe) are generally explained by two physical processes. Young massive stars (more than eight solar masses, M_Sun) undergo gravitational core-collapse and appear as type Ib/c and II SNe. Type Ia SNe result from thermonuclear explosions of older, Chandrasekhar-mass carbon-oxygen white dwarfs (WDs). Even the most underluminous SNe Ia eject ~1 M_Sun of C/O burning products. Here we report our discovery of the faint type Ib SN 2005E in the halo of the nearby isolated galaxy, NGC 1032. The lack of any trace of recent star formation near the SN location, and the very low ejected mass we find (~0.3 M_Sun) argues strongly against a core-collapse origin of this event. Our spectroscopic observations and the derived nucleosynthetic output show that the SN ejecta is dominated by helium-burning products, indicating that SN 2005E was neither a subluminous nor a regular SNe Ia. We have therefore found a new type of stellar explosion, arising from a low-mass, old stellar system. The ...

  2. High pressure-resistant nonincendive emulsion explosive

    Science.gov (United States)

    Ruhe, Thomas C.; Rao, Pilaka P.

    1994-01-01

    An improved emulsion explosive composition including hollow microspheres/bulking agents having high density and high strength. The hollow microspheres/bulking agents have true particle densities of about 0.2 grams per cubic centimeter or greater and include glass, siliceous, ceramic and synthetic resin microspheres, expanded minerals, and mixtures thereof. The preferred weight percentage of hollow microspheres/bulking agents in the composition ranges from 3.0 to 10.0 A chlorinated paraffin oil, also present in the improved emulsion explosive composition, imparts a higher film strength to the oil phase in the emulsion. The emulsion is rendered nonincendive by the production of sodium chloride in situ via the decomposition of sodium nitrate, a chlorinated paraffin oil, and sodium perchlorate. The air-gap sensitivity is improved by the in situ formation of monomethylamine perchlorate from dissolved monomethylamine nitrate and sodium perchlorate. The emulsion explosive composition can withstand static pressures to 139 bars and dynamic pressure loads on the order of 567 bars.

  3. Explosive Materials Combustion by Heated Wires

    Directory of Open Access Journals (Sweden)

    I. V. Kondakov

    1999-07-01

    Full Text Available The knowledge of ignition parameters of explosive materials (EM presents both the definite scientific interest for developing the ignition kinetics models and the practical interest from the point of view of their danger assessment. The present investigations, as opposed to the known technique for EMs ignition temperature determination, have been performed by using the model explosive material samples of high density which have been produced on the basis of HMX and TATB. Applying the technique of firing ballistic powders by a heated wire, the EM ignition temperature depending on the time (rate of heating has been investigated. The technique makes it possible to calculate heat pulses and heat flows leading to ignition. By decreasing the heat flow, the time for the EM heating up to ignition increases and temperature falls thereby approaching the critical value, characterising the danger limit under accidents associated with heating. The ignition of EM based on HMX and TATB takes place in a different manner. With the EM on the basis of HMX and with great heat flows. The ignition beginning from the surface in the form of flash is typical but when achieving the critical parameters, the heated layer flash takes place that increases the probability of the explosion realisation. EM based on TATH always ignite in the form of combustion from the surface, independent of the heat flow that points to the higher extent of its safety. These data correlate well with the higher parameters of its ignition.

  4. The Biggest Explosions in the Universe. II

    CERN Document Server

    Whalen, Daniel J; Smidt, Joseph; Heger, Alexander; Even, Wesley; Fryer, Chris L

    2013-01-01

    One of the leading contenders for the origin of supermassive black holes at $z \\gtrsim$ 7 is catastrophic baryon collapse in atomically-cooled halos at $z \\sim$ 15. In this scenario, a few protogalaxies form in the presence of strong Lyman-Werner UV backgrounds that quench H$_2$ formation in their constituent halos, preventing them from forming stars or blowing heavy elements into the intergalactic medium prior to formation. At masses of 10$^ 8$ \\Ms\\ and virial temperatures of 10$^4$ K, gas in these halos rapidly cools by H lines, in some cases forming 10$^4$ - 10$^6$ \\Ms\\ Pop III stars and, a short time later, the seeds of supermassive black holes. Instead of collapsing directly to black holes some of these stars died in the most energetic thermonuclear explosions in the universe. We have modeled the explosions of such stars in the dense cores of line-cooled protogalaxies in the presence of cosmological flows. In stark contrast to the explosions in diffuse regions in previous simulations, these SNe briefly e...

  5. Nitroaromatic explosives detection using electrochemically exfoliated graphene

    Science.gov (United States)

    Yew, Ying Teng; Ambrosi, Adriano; Pumera, Martin

    2016-09-01

    Detection of nitroaromatic explosives is of paramount importance from security point of view. Graphene sheets obtained from the electrochemical anodic exfoliation of graphite foil in different electrolytes (LiClO4 and Na2SO4) were compared and tested as electrode material for the electrochemical detection of 2,4-dinitrotoluene (DNT) and 2,4,6-trinitrotoluene (TNT) in seawater. Voltammetry analysis demonstrated the superior electrochemical performance of graphene produced in LiClO4, resulting in higher sensitivity and linearity for the explosives detection and lower limit of detection (LOD) compared to the graphene obtained in Na2SO4. We attribute this to the presence of oxygen functionalities onto the graphene material obtained in LiClO4 which enable charge electrostatic interactions with the –NO2 groups of the analyte, in addition to π-π stacking interactions with the aromatic moiety. Research findings obtained from this study would assist in the development of portable devices for the on-site detection of nitroaromatic explosives.

  6. Neutrino oscillations in MHD supernova explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoe, S; Kotake, K [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Takiwaki, T, E-mail: shio.k@nao.ac.j [Center for Computational Astrophysics, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2010-01-01

    We calculate the neutrino oscillations numerically in magnetohydrodynamic (MHD) explosion models to see how asphericity has impacts on neutrino spectra. Magneto-driven explosions are one of the most attracting scenarios for producing large scale departures from spherical symmetric geometry, that are reported by many observational data. We find that the event rates at Super-Kamiokande (SK) seen from the polar direction (e.g., the rotational axis of the supernovae) decrease when the shock wave is propagating through H-resonance. In addition, we find that L-resonance in this situation becomes non-adiabatic, and the effect of L-resonance appears in the neutrino signal, because the MHD shock can propagate to the stellar surface without shock-stall after core bounce, and the shock reaches the L-resonance at earlier stage than the conventional spherical supernova explosion models. Our results suggest that we may obtain the observational signatures of the two resonances in SK for Galactic supernova.

  7. Explosion approach for external safety assessment: a case study

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D. Michael; Halford, Ann [Germanischer Lloyd, Loughborough (United Kingdom); Mendes, Renato F. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Several questions related to the potential for explosions are explored as this became an important subject during an enterprise risk analysis. The understanding of explosions underwent a substantial evolution in the final 20 years of the 20{sup th} century following international research projects in Europe involving several research institutes, as well gas and oil companies. This led to the development of techniques that could be used to assess the potential consequences of explosions on oil, gas and petrochemical facilities. This paper presents an overview of the potential for explosions in communities close to industrial sites or pipelines right of way (RoW), where the standard explosion assessment methods cannot be applied. With reference to experimental studies, the potential for confined explosions in buildings and Vapor Cloud Explosions is explored. Vapor Cloud Explosion incidents in rural or urban areas are also discussed. The method used for incorporating possible explosion and fire events in risk studies is also described using a case study. Standard explosion assessment methodologies and a revised approach are compared as part of an on going evaluation of risk (author)

  8. Degassing Processes at Persistently Active Explosive Volcanoes

    Science.gov (United States)

    Smekens, Jean-Francois

    Among volcanic gases, sulfur dioxide (SO2) is by far the most commonly measured. More than a monitoring proxy for volcanic degassing, SO 2 has the potential to alter climate patterns. Persistently active explosive volcanoes are characterized by short explosive bursts, which often occur at periodic intervals numerous times per day, spanning years to decades. SO 2 emissions at those volcanoes are poorly constrained, in large part because the current satellite monitoring techniques are unable to detect or quantify plumes of low concentration in the troposphere. Eruption plumes also often show high concentrations of ash and/or aerosols, which further inhibit the detection methods. In this work I focus on quantifying volcanic gas emissions at persistently active explosive volcanoes and their variations over short timescales (minutes to hours), in order to document their contribution to natural SO2 flux as well as investigate the physical processes that control their behavior. In order to make these measurements, I first develop and assemble a UV ground-based instrument, and validate it against an independently measured source of SO2 at a coal-burning power plant in Arizona. I establish a measurement protocol and demonstrate that the instrument measures SO 2 fluxes with explosions with periods of minutes to hours for the past several decades. Semeru produces an average of 21-71 tons of SO2 per day, amounting to a yearly output of 8-26 Mt. Using the Semeru data, along with a 1-D transient numerical model of magma ascent, I test the validity of a model in which a viscous plug at the top of the conduit produces cycles of eruption and gas release. I find that it can be a valid hypothesis to explain the observed patterns of degassing at Semeru. Periodic behavior in such a system occurs for a very narrow range of conditions, for which the mass balance between magma flux and open-system gas escape repeatedly generates a viscous plug, pressurizes the magma beneath the plug, and

  9. Numerical modelling of the effect of using multi-explosives on the explosive forming of steel cones

    Science.gov (United States)

    De Vuyst, T.; Kong, K.; Djordjevic, N.; Vignjevic, R.; Campbell, JC; Hughes, K.

    2016-08-01

    Modelling and analysis of underwater explosive forming process by using FEM and SPH formulation is presented in this work. The explosive forming of a steel cone is studied. The model setup includes a low carbon steel plate, plate holder, forming die as well as water and C4 explosive. The effect of multiple explosives on rate of targets deformation has been studied. Four different multi-explosives models have been developed and compared to the single explosive model. The formability of the steel plate based on forming limit failure criteria has been investigated. Aspects such as shape of plates deformation and thickness of the plate during the forming process have been examined. The model results indicate that a multi-explosives model does not always guarantee a faster rate of target deformation without central explosive. On the other hand the model results indicate that the multi-explosives setup is capable of preventing crack failure of the steel plate during the forming process which would occur if a single explosive model was used.

  10. Thermal Explosion Violence of HMX-Based and RDX-Based Explosives - Effects of Composition, Confinement, and Solid Phase Using the Scaled Thermal Explosion Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Maienschein, J L; Wardell, J F

    2002-08-26

    The Scaled Thermal Explosion Experiment (STEX) has been developed to quantify the violence of thermal explosion under well defined and carefully controlled initial and boundary conditions. Here we present results with HMX-based explosives (LX-04 and PBX-9501) and with Composition B. Samples are 2 inches (50 mm) in diameter and 8 inches (200 mm) in length, under confinement of 7,500-30,000 psi (50-200 MPa), with heating rates of 1-3 C/hr. We quantify reaction violence by measuring the wall velocity in the ensuing thermal explosion, and relate the measured velocity to that expected from a detonation. Results with HMX-based explosives (LX-04 and PBX-9501) have shown the importance of confinement and HMX solid phase, with reaction violence ranging from mild pressure bursts to near detonations. By contrast, Composition B has shown very violent reactions over a wide range of conditions.

  11. Thermal Explosion Violence of HMX-Based and RDX-Based Explosives - Effects of Composition, Confinement, and Solid Phase Using the Scaled Thermal Explosion Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Maienschein, J L; Wardell, J F

    2002-03-14

    The Scaled Thermal Explosion Experiment (STEX) has been developed to quantify the violence of thermal explosion under well defined and carefully controlled initial and boundary conditions. Here we present results with HMX-based explosives (LX-04 and PBX-9501) and with Composition B. Samples are 2 inches (50 mm) in diameter and 8 inches (200 mm) in length, under confinement of 7,500-30,000 psi (50-200 MPa), with heating rates of 1-3 C/hr. We quantify reaction violence by measuring the wall velocity in the ensuing thermal explosion, and relate the measured velocity to that expected from a detonation. Results with HMX-based explosives (LX-04 and PBX-9501) have shown the importance of confinement and HMX solid phase, with reaction violence ranging from mild pressure bursts to near detonations. By contrast, Composition B has shown very violent reactions over a wide range of conditions.

  12. A diagnosis of the explosive development of two extratropical cyclones

    Science.gov (United States)

    Lupo, Anthony R.; Smith, Phillip J.; Zwack, Peter

    1992-01-01

    This paper examines the 24-h explosive development periods of two extratropical cyclones, the first occurring over the Gulf Stream off the coast of New England from 18 to 19 January 1979 and the second occurring over the southeastern United States from 20 to 21 January 1979. The data used in this study are the First GARP (Global Atmospheric Research Program) Global Experiment (FGGE) level IIIb (SOP I) global analyses on a 4 deg latitude x 5 deg longitude grid. The parameter used to diagnose development is the geostrophic relative vorticity tendency calculated using an extended form of the Zwack-Okossi development equation. This development equation is similar to the Petterssen-Sutcliffe development equation, but is shown to be more complete by explicitly coupling surface development with forcing at all levels above the surface. Cyclonic-vorticity advection, warm-air advection, and latent heat release act to develop the two cyclones, while adiabatic cooling in the ascending air opposes development. Further, vertical profiles of the development quantities for these two cases reveal that vorticity and temperature advection maximize in the 200-300-mb layer, while the latent heat release maximum is typically below 500 mb.

  13. Explosive eruption of coal and basalt and the end-Permian mass extinction.

    Science.gov (United States)

    Ogden, Darcy E; Sleep, Norman H

    2012-01-03

    The end-Permian extinction decimated up to 95% of carbonate shell-bearing marine species and 80% of land animals. Isotopic excursions, dissolution of shallow marine carbonates, and the demise of carbonate shell-bearing organisms suggest global warming and ocean acidification. The temporal association of the extinction with the Siberia flood basalts at approximately 250 Ma is well known, and recent evidence suggests these flood basalts may have mobilized carbon in thick deposits of organic-rich sediments. Large isotopic excursions recorded in this period are potentially explained by rapid venting of coal-derived methane, which has primarily been attributed to metamorphism of coal by basaltic intrusion. However, recently discovered contemporaneous deposits of fly ash in northern Canada suggest large-scale combustion of coal as an additional mechanism for rapid release of carbon. This massive coal combustion may have resulted from explosive interaction with basalt sills of the Siberian Traps. Here we present physical analysis of explosive eruption of coal and basalt, demonstrating that it is a viable mechanism for global extinction. We describe and constrain the physics of this process including necessary magnitudes of basaltic intrusion, mixing and mobilization of coal and basalt, ascent to the surface, explosive combustion, and the atmospheric rise necessary for global distribution.

  14. Influence of Accelerated Aging on Detonation Performance of Explosives

    Institute of Scientific and Technical Information of China (English)

    GAO Da-yuan; HUA Cheng; WANG Xiang; HAN Yong

    2010-01-01

    To understand the aging effects on detonation performances of explosives, an accelerated aging mechanism and effect of explosives were analyzed. Based on the thermo-gravimetric (TG) curves of explosives under the heat rate of 5, 10 and 20 K·min-1, the thermal decomposition activation energy, pre-exponential factor, mechanism function and kinetic equation of the explosives were calculated by Ozawa's equation and decomposition extents. Then, according to the derived kinetic equation, the density, composition and heat of formation of GI-1, PBX-1 and PBX-2 explosive in different decompo-sition extents were calculated at accelerated aging temperatures of 70 ℃ and 75 ℃, respectively. Furthermore, the detona-tion parameters of GI-1, PBX-1 and PBX-2 explosives were found out by means of VLWR code. The results show that after accelerated aging, the density are decrease, the detonation velocity and pressure are all decreased slightly.

  15. Models of wave duration and event frequency of explosion aftershocks

    Institute of Scientific and Technical Information of China (English)

    李学政; 刘文学; 沈旭峰

    2004-01-01

    The contained underground explosion (CUE) usually generates huge number of aftershocks. This kind of aftershocks induced by three CUEs was investigated in the paper. The conclusions show that the duration of aftershock waveforms are rather short, 70 percent of them range from 2 to 7; the occurrences of the aftershocks conform to negative power function, which has the power of-1.6. The aftershock sequence attenuates a little bit faster, with power of-1.0, within two weeks of post-explosions. During the early stage of post-explosions the aftershocks show up in a cluster, however, they usually show up individually during the late stage of post-explosions. The number of aftershocks generated by the compatible explosions differs by several times because of different medium and geological structure; within one month after an explosion with Richater magnitude of 5.5, the number of aftershocks attenuates to the background. Hereafter there are still tiny numbers of aftershocks.

  16. PINS Measurements of Explosive Simulants for Cargo Screening

    Energy Technology Data Exchange (ETDEWEB)

    E.H. Seabury

    2008-06-01

    As part of its efforts to prevent the introduction of explosive threats on commercial flights, the Transportation Security Administration (TSL) is evaluating new explosives detection systems (EDSs) for use in air cargo inspection. The TSL has contracted Battelle to develop a new type of explosives simulant to assist in this development. These are designed to mimic the elemental profile (C, H, N, O, etc.) of explosives as well as their densities. Several “neutron in—gamma out” (n,?) techniques have been considered to quantify the elemental profile in these new simulants and the respective explosives. The method chosen by Battelle is Portable Isotopic Neutron Spectroscopy (PINS), developed by Idaho National Laboratory (INL). Battelle wishes to validate that the simulants behave like the explosive threats with this technology. The results of the validation measurements are presented in this report.

  17. Characterization of explosives processing waste decomposition due to composting

    Energy Technology Data Exchange (ETDEWEB)

    Griest, W.H.; Tyndall, R.L.; Stewart, A.J.; Ho, C.H.; Ironside, K.S.; Caton, J.E.; Caldwell, W.M.; Tan, E.

    1991-11-01

    Static pile and mechanically stirred composts generated at the Umatilla Army Depot Activity in a field composting optimization study were chemically and toxicologically characterized to provide data for the evaluation of composting efficiency to decontaminate and detoxify explosives-contaminated soil. Characterization included determination of explosives and 2,4,6,-trinitrotoluene metabolites in composts and their EPA Synthetic Precipitation Leaching Procedure Leachates, leachate toxicity to Ceriodaphnia Dubia and mutagenicity of the leachates and organic solvent extracts of the composts to Ames bacterial strains TA-98 and TA-100. The main conclusion from this study is that composting can effectively reduce the concentrations of explosives and bacterial mutagenicity in explosives -- contaminated soil, and can reduce the aquatic toxicity of leachable compounds. Small levels of explosive and metabolites, bacterial mutagenicity, and leachable aquatic toxicity remain after composting. The ultimate fate of the biotransformed explosives, and the source(s) of residual toxicity and mutagenicity remain unknown.

  18. Blast overpressure after tire explosion: a fatal case.

    Science.gov (United States)

    Pomara, Cristoforo; D'Errico, Stefano; Riezzo, Irene; Perilli, Gabriela; Volpe, Umberto; Fineschi, Vittorio

    2013-12-01

    Fatal blast injuries are generally reported in literature as a consequence of the detonation of explosives in war settings. The pattern of lesion depends on the position of the victim in relation to the explosion, on whether the blast tracks through air or water, and whether it happens in the open air or within an enclosed space and the distance from the explosion. Tire explosion-related injuries are rarely reported in literature. This study presents a fatal case of blast overpressure due to the accidental explosion of a truck tire occurring in a tire repair shop. A multidisciplinary approach to the fatality involving forensic pathologists and engineers revealed that the accidental explosion, which caused a series of primary and tertiary blast wave injuries, was due to tire deterioration.

  19. Eruptions on the fast track: application of Particle Tracking Velocimetry algorithms to visual and thermal high-speed videos of Strombolian explosions

    Science.gov (United States)

    Gaudin, Damien; Monica, Moroni; Jacopo, Taddeucci; Luca, Shindler; Piergiorgio, Scarlato

    2013-04-01

    Strombolian eruptions are characterized by mild, frequent explosions that eject gas and ash- to bomb-sized pyroclasts into the atmosphere. Studying these explosions is crucial, both for direct hazard assessment and for understanding eruption dynamics. Conventional thermal and optical imaging already allows characterizing several eruptive processes, but the quantification of key parameters linked to magma properties and conduit processes requires acquiring images at higher frequency. For example, high speed imaging already demonstrated how the size and the pressure of the gas bubble are linked to the decay of the ejection velocity of the particles, and the origin of the bombs, either fresh or recycled material, could be linked to their thermal evolution. However, the manual processing of the images is time consuming. Consequently, it does not allows neither the routine monitoring nor averaged statistics, since only a few relevant particles - usually the fastest - of a few explosions can be taken into account. In order to understand the dynamics of strombolian eruption, and particularly their cyclic behavior, the quantification of the total mass, heat and energy discharge are a crucial point. In this study, we use a Particle Tracking Velocimetry (PTV) algorithm jointly to traditional images processing to automatically extract the above parameters from visible and thermal high-speed videos of individual Strombolian explosions. PTV is an analysis technique where each single particle is detected and tracked during a series of images. Velocity, acceleration, and temperature can then be deduced and time averaged to get an extensive overview of each explosion. The suitability of PTV and its potential limitations in term of detection and representativity is investigated in various explosions of Stromboli (Italy), Yasur (Vanuatu) and Fuego (Guatemala) volcanoes. On most event, multiple sub-explosion are visible. In each sub-explosion, trends are noticeable : (1) the ejection

  20. Enforced Development Of The Earth's Atmosphere

    CERN Document Server

    Iudin, M

    2010-01-01

    We review some basic issues of the life-prescribed development of the Earth's system and the Earth's atmosphere and discourse the unity of Earth's type of life in physical and transcendental divisions. In physical division, we exemplify and substantiate the origin of atmospheric phenomena in the metabolic pathways acquired by the Earth's life forms. We are especially concerned with emergence of pro-life superficial environments under elaboration of the energy transformations. Analysis of the coupling phenomena of elaborated ozone-oxygen transformation and Arctic bromine explosion is provided. Sensing is a foundation of life and the Earth's life. We offer our explanation of human-like perception, reasoning and creativity. We suggest a number of propositions about association of transcendental and physical divisions and the purpose of existence. The study relates to the tradition of natural philosophy which it follows. The paper is suitable for the popular reading.

  1. Digitization of Nuclear Explosion Seismograms from the Former Soviet Union

    Science.gov (United States)

    2015-03-30

    AFRL-RV-PS- AFRL-RV-PS- TR-2015-0089 TR-2015-0089 DIGITIZATION OF NUCLEAR EXPLOSION SEISMOGRAMS FROM THE FORMER SOVIET UNION Paul G. Richards...2014 4. TITLE AND SUBTITLE Digitization of Nuclear Explosion Seismograms from the Former Soviet Union 5a. CONTRACT NUMBER FA9453-12-C-0206 5b...These signals, including thousands recorded at regional distances from nuclear explosions in Eurasia, have been scanned, digitized , and

  2. Method of Testing the Flyer Sensitivity of Explosives

    Institute of Scientific and Technical Information of China (English)

    王桂吉; 赵剑衡

    2004-01-01

    By means of Mylar flyer shock explosives driven by electric gun, the method of testing the flyer initiation sensitivity of explosives is studied, and some experiments are done. The experimental results show that the test method established is correct, which is very important and instructive to study and evaluate the safety and reliability of explosives. For the moment, the test should be researched and discussed further.

  3. Nanostructured surface enhanced Raman scattering substrates for explosives detection

    DEFF Research Database (Denmark)

    Schmidt, Michael Stenbaek; Olsen, Jesper Kenneth; Boisen, Anja;

    2010-01-01

    Here we present a method for trace detection of explosives in the gas phase using novel surface enhanced Raman scattering (SERS) spectroscopy substrates. Novel substrates that produce an exceptionally large enhancement of the Raman effect were used to amplify the Raman signal of explosives molecu...... process compared to existing commercial substrates. Therefore it is believed that these novel substrates will be able to make SERS more applicable in mobile explosives detection systems to be deployed in for example landmine clearance actions....

  4. Motivation for a High Explosive Testing Program in South Africa

    Science.gov (United States)

    2015-12-04

    1~7JJ!i 5a. DATE: 6a. DATE: 7a. DATE: 8. TITLE: Motivation for a High Explosive Testing Program in South Africa 9. CONTRACT NUMBER: 10...00-00-2015 4. TITLE AND SUBTITLE Motivation for a High Explosive Testing Program in South Africa 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...600 Raleigh, NC 27605 Contract Number: HDTRA2-11-D-0001 Motivation for a High Explosive Testing Program in South Africa 4

  5. Five-component propagation model for steam explosion analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y.; Moriyama, Kiyofumi; Park, H.S.; Maruyama, Yu; Sugimoto, Jun [Severe Accident Research Laboratory, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    1999-07-01

    A five-field simulation code JASMINE-pro has been developed at JAERI for the calculation of the propagation and explosion phase of steam explosions. The basic equations and the constitutive relationships specifically utilized in the propagation models in the code are introduced in this paper. Some calculations simulating the KROTOS 1D and 2D steam explosion experiments are also stated in the paper to show the present capability of the code. (author)

  6. Explosive treatment of Illinois No.6 coal with a mixed solvent of water and cyclohexanol; Mizu-cyclohexanol kongo yozai ni yoru Illinois tan no bakusai shori

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, T.; Takada, H.; Asami, K.; Yano, M. [Osaka City University, Osaka (Japan). Faculty of Engineering

    1996-10-28

    Coal was treated at high temperature under high pressure in the binary system mixed solvent of water and organic solvent, and the solvent treated coal was liquefied. When the treated coal was treated again by the explosive method in which high temperature and pressure were released immediately, the oil yield was higher than that by the normal method in which high temperature and pressure were reduced gradually to room temperature and atmospheric pressure. In this study, an explosive treatment unit with increased scale of sample amount was newly fabricated. Illinois No.6 coal was treated by the explosive method in a mixed solvent of water and cyclohexanol using this unit. Changes in shape on the surface, specific surface area, and functional groups were analyzed. The explosively treated coal contained more amount of low boiling point components than the normally treated coal. It was suggested that the oil yield of explosively treated coal increased due to the liquefaction of these components during the successive hydrogenation process. For the explosively treated coal, micro pores were fractured by the rapid change in the volume of solvent molecules, and the specific surface area was smaller than that of the normally treated coal. When the treatment temperature was increased from 300{degree}C to 350{degree}C, specific surface areas of both the treated coals increased. 2 refs., 3 figs., 2 tabs.

  7. Air Blasts from Cased and Uncased Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, L. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-04-12

    The problem of a spherical blast in air is solved using the STUN code. For bare charges, the calculations are shown to be in excellent agreement with previous published results. It is demonstrated that, for an unconfined (uncased) chemical explosive, both range and time to effect scale inversely as the cube root of the yield and directly as the cube root of the ambient air density. It is shown that the peak overpressure decays to roughly 1/10 of ambient pressure in a scaled range of roughly 10 m/kg1/3 at sea level. At a height of 30 km, where the ambient density is a factor of 64 less, the range to the same decay increases to 40 m/kg1/3 . As a direct result of the scaling a single calculation suffices for all charge sizes and altitudes. Although the close-in results are sensitive to the nature of the explosive source and the equation of state of the air, this sensitivity is shown to virtually disappear at scaled ranges > 0.5 m/kg1/3 . For cased explosives the case thickness introduces an additional scale factor. Moreover, when the blast wave arrives at the inner case radius the case begins to expand. Fracture occurs when a critical value of the resulting hoop strain is reached, causing the case to shatter into fragments. A model is proposed to describe the size distribution of the fragments and their subsequent motion via drag interaction with the explosion products and ambient air. It is shown that a significant fraction of the charge energy is initially transmitted to the case fragments in the form of kinetic energy; for example, a 1 kg spherical charge with a 5 mm thick steel case has almost 29% of the total charge energy as initial kinetic energy of case fragments. This percentage increases with increasing case thickness and decreases with increasing charge size. The peak overpressure at a given range is 70-85% for cased explosives as compared with uncased and the peak impulse per unit area is 90-95%. The peak overpressure and

  8. Dispersion of Rayleigh waves produced by nuclear explosions. Crustal structure of western Europe

    Directory of Open Access Journals (Sweden)

    G. PAYO

    1964-06-01

    Full Text Available Most of the nuclear explosion fired near Novaya-Zemlya
    island from September 1961 to J a n u a r y 1963 (21 in total have been recorded
    on the seismographs of Toledo Observatory. The study of these records,
    mainly concerning the dispersion of Rayleigh waves, has been the purpose
    of this paper.
    A crust-mantle s t r u c t u r e for t h e Zemlya-Toledo p a t h has been determined
    by means of group velocity curves and especially by the phase velocity
    ones obtained from Rayleigh waves of explosions. This structure supposes
    a crust of about 40 kms thick with an upper sedimentary layer with a
    thickness of about 5,5 kms and a shear velocity of 2,3 km/sec.
    The average shear velocity in the granitic and basaltic layers jointly,
    is about 3,65 km/sec, permitting a small ambiguity at the position of the
    Conrad discontinuity between them.
    A velocity of 4,5 km/sec has been assigned for the underlying crust
    material, but a better agreement with the data recorded is obtained by
    taking 0.28 for the Poisson ratio value.
    Dispersion of Rayleigh waves of these explosions has been compared
    to the Rayleigh dispersion of some earthquakes of Eurasia, three of them
    with epicentral distances similar to those of the explosions and other four
    with the same azimuth in respect to that of Toledo-Zemlya, but more
    distants.
    The results do not show any notable difference either in dispersion
    between explosion and earthquakes or in structure of the path considered.
    The phase velocity between Toledo and Malaga Observatories supports
    t h e same above structure for this short path.
    The velocity of Lg waves, which clearly appears on the record of the
    explosions, confirms this admitted structure, which serves to deduce t h e more
    probable transmission mechanism for these channel waves.
    Also atmospheric pressure waves have been recorded on the three

  9. Detonation of the aluminized explosives with sodium azide

    Energy Technology Data Exchange (ETDEWEB)

    Maranda, A.; Nowaczewski, J.; Trzcinski, W. [Military University of Technology Kaliskiego, Warsaw (Poland)

    1996-12-31

    The velocity of detonation in the aluminized explosives containing sodium azide was measured. he experimental results were compared with those of calculation. Two different explosive components were used in the tests: RDX and ammonium nitrate. The contents of constituents of explosive mixture varied within a wide range. The X-ray analysis of the solid detonation products was also made. The results enable us to predict a behaviour of sodium azide and aluminium during detonation process of the explosive tested and to verify the possibility of reaction between aluminium and nitrogen during that process. (authors) 12 refs.

  10. Preliminary results for explosion bonding of beryllium to copper

    Energy Technology Data Exchange (ETDEWEB)

    Butler, D.J. [Northwest Technical Industries, Inc., Sequim, WA (United States); Dombrowski, D.E. [Brush Wellman, Inc., Cleveland, OH (United States)

    1995-09-01

    This program was undertaken to determine if explosive bonding is a viable technique for joining beryllium to copper substrates. The effort was a cursory attempt at trying to solve some of the problems associated with explosive bonding beryllium and should not be considered a comprehensive research effort. There are two issues that this program addressed. Can beryllium be explosive bonded to copper substrates and can the bonding take place without shattering the beryllium? Thirteen different explosive bonding iterations were completed using various thicknesses of beryllium that were manufactured with three different techniques.

  11. Remote Machining and Evaluation of Explosively Filled Munitions

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is used for remote machining of explosively loaded ammunition. Munition sizes from small arms through 8-inch artillery can be accommodated. Sectioning,...

  12. Estimating Equivalency of Explosives Through A Thermochemical Approach

    Energy Technology Data Exchange (ETDEWEB)

    Maienschein, J L

    2002-07-08

    The Cheetah thermochemical computer code provides an accurate method for estimating the TNT equivalency of any explosive, evaluated either with respect to peak pressure or the quasi-static pressure at long time in a confined volume. Cheetah calculates the detonation energy and heat of combustion for virtually any explosive (pure or formulation). Comparing the detonation energy for an explosive with that of TNT allows estimation of the TNT equivalency with respect to peak pressure, while comparison of the heat of combustion allows estimation of TNT equivalency with respect to quasi-static pressure. We discuss the methodology, present results for many explosives, and show comparisons with equivalency data from other sources.

  13. Automated explosive pellet manufacturing using a PDP-14 programmable controller

    Energy Technology Data Exchange (ETDEWEB)

    Page, D.O.

    1976-10-29

    A Digital Equipment Corporation PDP-14 Industrial Programmable Controller was employed to provide automatic, closed-loop control for an explosive pellet manufacturing system at Mound Laboratory. Programmable controllers allow the application of sophisticated and flexible control, through programming. Advantages of the PDP-14 controller are ease of installation and maintenance, capability for modular expansion, and immunity to electrical noise. Safety requirements were met by using new techniques for adapting electrical equipment to a hazardous environment and by locating the PDP-14 remotely outside the explosive area. Another advantage of the new explosion proofing (EP) methods/equipment was that they produced a minimum of clutter on the controlled explosive pellet manufacturing system.

  14. Surface effects of underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Allen, B.M.; Drellack, S.L. Jr.; Townsend, M.J.

    1997-06-01

    The effects of nuclear explosions have been observed and studied since the first nuclear test (code named Trinity) on July 16, 1945. Since that first detonation, 1,053 nuclear tests have been conducted by the US, most of which were sited underground at the Nevada Test Site (NTS). The effects of underground nuclear explosions (UNEs) on their surroundings have long been the object of much interest and study, especially for containment, engineering, and treaty verification purposes. One aspect of these explosion-induced phenomena is the disruption or alteration of the near-surface environment, also known as surface effects. This report was prepared at the request of the Los Alamos National Laboratory (LANL), to bring together, correlate, and preserve information and techniques used in the recognition and documentation of surface effects of UNEs. This report has several main sections, including pertinent background information (Section 2.0), descriptions of the different types of surface effects (Section 3.0), discussion of their application and limitations (Section 4.0), an extensive bibliography and glossary (Section 6.0 and Appendix A), and procedures used to document geologic surface effects at the NTS (Appendix C). Because a majority of US surface-effects experience is from the NTS, an overview of pertinent NTS-specific information also is provided in Appendix B. It is not within the scope of this report to explore new relationships among test parameters, physiographic setting, and the types or degree of manifestation of surface effects, but rather to compile, summarize, and capture surface-effects observations and interpretations, as well as documentation procedures and the rationale behind them.

  15. Some properties of repeated hits after first explosion for birth and death processes

    Institute of Scientific and Technical Information of China (English)

    杨向群

    1999-01-01

    Of repeated hits and repeated explosions after first explosion for a birth and death process with explosion some properties are investigated. The properties of repeated hits after first explosion may be expressed by the properties of the first hit after the first explosion.

  16. Full Scale Explosive Tests in Woomera, Australia

    Institute of Scientific and Technical Information of China (English)

    GUPTA A; MENDIS P; LUMANTARNA R; NGO T

    2006-01-01

    Two large explosion trials (5 000 kg TNT and 500 kg ANFO) were conducted in Woomera,Australia in April/May 2006.Advance Protective Technologies for Engineering Structures (APTES) group tested 2 large single-storey concrete modules with individual components such as doors,windows and tiled panels.A description of the trial and details of various modules tested in these trials are presented in the paper.Numerical modelling and simulations are performed using computer programs,CONWEP,AIR3D and AUTODYN.A comparison of the pressure time histories obtained using these codes is made along with the concluding remarks.

  17. Explosively-driven magnetohydrodynamic (MHD) generator studies

    Energy Technology Data Exchange (ETDEWEB)

    Agee, F.J.; Lehr, F.M. [Phillips Lab., Kirtland AFB, NM (United States); Vigil, M.; Kaye, R. [Sandia National Labs., Albuquerque, NM (United States); Gaudet, J.; Shiffler, D. [New Mexico Univ., Albuquerque, NM (United States)

    1995-08-01

    Plasma jet generators have been designed and tested which used an explosive driver and shocktube with a rectangular cross section that optimize the flow velocity and electrical conductivity. The latest in a series of designs has been tested using a reactive load to diagnose the electrical properties of the MHD generator/electromagnet combination. The results of these tests indicate that the plasma jet/MHD generator design does generate a flow velocity greater than 25 km/s and produces several gigawatts of pulsed power in a very small package size. A larger, new generator design is also presented.

  18. Underwater Explosion Damage of Ship Hull Panels

    OpenAIRE

    K. Rarnajeyathilagam; Vendhan, C.P.

    2003-01-01

    Underwater explosion is a major threat to ships and submarines in a war environment. The prediction of the mode and the extent of the failure is an essential step in designing for shock loading. The localised failure in a hull panel is severe compared to the global response of the ship. In this study, an attempt has been made to predict the response and failure modes of three types of hull panels (flat, concave, and convex). The shock loading on the hull panel has been estimated based on the ...

  19. Modeling of heat explosion with convection.

    Science.gov (United States)

    Belk, Michael; Volpert, Vitaly

    2004-06-01

    The work is devoted to numerical simulations of the interaction of heat explosion with natural convection. The model consists of the heat equation with a nonlinear source term describing heat production due to an exothermic chemical reaction coupled with the Navier-Stokes equations under the Boussinesq approximation. We show how complex regimes appear through successive bifurcations leading from a stable stationary temperature distribution without convection to a stationary symmetric convective solution, stationary asymmetric convection, periodic in time oscillations, and finally aperiodic oscillations. A simplified model problem is suggested. It describes the main features of solutions of the complete problem.

  20. Electromagnetic effects on explosive reaction and plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tasker, Douglas G [Los Alamos National Laboratory; Whitley, Von H [Los Alamos National Laboratory; Mace, Jonathan L [Los Alamos National Laboratory; Pemberton, Steven J [Los Alamos National Laboratory; Sandoval, Thomas D [Los Alamos National Laboratory; Lee, Richard J [INDIAN HEAD DIVISION

    2010-01-01

    A number of studies have reported that electric fields can have quantifiable effects on the initiation and growth of detonation, yet the mechanisms of these effects are not clear. Candidates include Joule heating of the reaction zone, perturbations to the activation energy for chemical reaction, reduction of the Peierls energy barrier that facilitates dislocation motion, and acceleration of plasma projected from the reaction zone. In this study the possible role of plasma in the initiation and growth of explosive reaction is investigated. The effects of magnetic and electric field effects on reaction growth will be reviewed and recent experiments reported.

  1. Target Loading from a Submerged Explosion

    Directory of Open Access Journals (Sweden)

    Andrew Wardlaw

    2010-01-01

    Full Text Available The pressure on a flat plate suspended over a submerged detonation is measured and simulated. Calculation and experiment are in relatively good agreement, although there is variation in experimental results and simulations are sensitive, near the centerline, to the computational details. This sensitivity is linked to the instability of the accelerating plume, typical of a Richtmyer-Meshkov instability. The plate loading features an initial force at plate center, followed by an expanding circular loading pattern. The initial load is due to plume impact, while the circular load arises from the impact of water transported up the edges of the explosion cavity.

  2. Atmosphere: Power, Critique, Politics

    DEFF Research Database (Denmark)

    Albertsen, Niels

    2016-01-01

    This paper hans three interrelated parts. First, atmosphere is approached through the concept of power. Atmospheres 'grip' us directly or mediate power indirectly by manipulating moods and evoking emotions. How does atmosphere relate to different conceptions of power? Second, atmospheric powers m...... be critiqued. Which conception of critique can be involved? Third, critiquing atmospheric powers can generate political conflict. How does atmospheric disputes relate to conceptions of politics and the political?...

  3. Solid state gas sensors for detection of explosives and explosive precursors

    Science.gov (United States)

    Chu, Yun

    The increased number of terrorist attacks using improvised explosive devices (IEDs) over the past few years has made the trace detection of explosives a priority for the Department of Homeland Security. Considerable advances in early detection of trace explosives employing spectroscopic detection systems and other sensing devices have been made and have demonstrated outstanding performance. However, modern IEDs are not easily detectable by conventional methods and terrorists have adapted to avoid using metallic or nitro groups in the manufacturing of IEDs. Instead, more powerful but smaller compounds, such as TATP are being more frequently used. In addition, conventional detection techniques usually require large capital investment, labor costs and energy input and are incapable of real-time identification, limiting their application. Thus, a low cost detection system which is capable of continuous online monitoring in a passive mode is needed for explosive detection. In this dissertation, a thermodynamic based thin film gas sensor which can reliably detect various explosive compounds was developed and demonstrated. The principle of the sensors is based on measuring the heat effect associated with the catalytic decomposition of explosive compounds present in the vapor phase. The decomposition mechanism is complicated and not well known, but it can be affected by many parameters including catalyst, reaction temperature and humidity. Explosives that have relatively high vapor pressure and readily sublime at room temperature, like TATP and 2, 6-DNT, are ideal candidate for vapor phase detection using the thermodynamic gas sensor. ZnO, W2O 3, V2O5 and SnO2 were employed as catalysts. This sensor exhibited promising sensitivity results for TATP, but poor selectivity among peroxide based compounds. In order to improve the sensitivity and selectivity of the thermodynamic sensor, a Pd:SnO2 nanocomposite was fabricated and tested as part of this dissertation. A

  4. A satellite based study of tropospheric bromine explosion events and their linkages to polar cyclone development

    Science.gov (United States)

    Blechschmidt, Anne-Marlene; Richter, Andreas; Burrows, John P.; Kaleschke, Lars; Strong, Kimberly; Theys, Nicolas; Weber, Mark; Zhao, Xiaoyi; Zien, Achim; Hodges, Kevin I.

    2016-04-01

    Intense, cyclone-like shaped plumes of tropospheric bromine monoxide (BrO) are regularly observed by the UV-vis satellite instruments GOME-2/MetOp-A and SCIAMACHY/Envisat over Arctic and Antarctic sea ice in polar spring. The plumes are associated with an autocatalytic chemical chain reaction involving tropospheric ozone depletion and initiated by the release of bromine from cold brine-covered ice or snow to the atmosphere. This influences atmospheric chemistry as it affects the oxidising capacity of the troposphere through OH production and may also influence the local weather/temperature of the polar atmosphere, as ozone is a major greenhouse gas. Here, we make combined use of satellite retrievals and numerical model simulations to study individual BrO plume cases in the polar atmosphere. In agreement with previous studies, our analysis shows that the plumes are often transported by high latitude cyclones, sometimes over several days despite the short atmospheric lifetime of BrO. Moreover, general characteristics of bromine explosion events linked to transport by polar weather systems, such as frequency, spatial distribution and favourable weather conditions are derived based on a new detection method. Our results show that BrO cyclone transport events are by far more common in the Antarctic than in the Arctic.

  5. Contribution of Neutron Beta Decay to Radiation Belt Pumping from High Altitude Nuclear Explosion

    Energy Technology Data Exchange (ETDEWEB)

    Marrs, R

    2002-11-13

    In 1962, several satellites were lost following high altitude nuclear tests by the United States and the Soviet Union. These satellite failures were caused by energetic electrons injected into the earth's radiation belts from the beta decay of bomb produced fission fragments and neutrons. It has been 40 years since the last high altitude nuclear test; there are now many more satellites in orbit, and it is important to understand their vulnerability to radiation belt pumping from nuclear explosions at high altitude or in space. This report presents the results of a calculation of the contribution of neutron beta decay to artificial belt pumping. For most high altitude nuclear explosions, neutrons are expected to make a smaller contribution than fission products to the total trapped electron inventory, and their contribution is usually neglected. However, the neutron contribution may dominate in cases where the fission product contribution is suppressed due to the altitude or geomagnetic latitude of the nuclear explosion, and for regions of the radiation belts with field lines far from the detonation point. In any case, an accurate model of belt pumping from high altitude nuclear explosions, and a self-consistent explanation of the 1962 data, require inclusion of the neutron contribution. One recent analysis of satellite measurements of electron flux from the 1962 tests found that a better fit to the data is obtained if the neutron contribution to the trapped electron inventory was larger than that of the fission products [l]. Belt pumping from high altitude nuclear explosions is a complicated process. Fission fragments are dispersed as part of the ionized bomb debris, which is constrained and guided by the earth's magnetic field. Those fission products that beta decay before being lost to the earth's atmosphere can contribute trapped energetic electrons to the earth's radiation belts. There has been a large effort to develop computer models for

  6. Radio interferometric detection of a traveling ionospheric disturbance excited by the explosion of Mount St. Helens

    Science.gov (United States)

    Roberts, D. H.; Rogers, A. E. E.; Allen, B. R.; Bennett, C. L.; Burke, B. F.; Greenfield, P. E.; Lawrence, C. R.; Clark, T. A.

    1982-01-01

    A large-amplitude traveling ionospheric disturbance (TID) was detected over Owens Valley, California, on May 18, 1980, by a highly sensitive very long baseline interferometry (VLBI) radio astronomy experiment. This TID is interpreted as the response of the ionosphere to a gravity wave excited in the neutral atmosphere by the explosion of Mount St. Helens that took place at 1532 UT on that day. A model, invoking the point-excitation of internal gravity waves in an isothermal atmosphere, which fits observations of the TID at several other stations, leads to identification of the features observed in the VLBI data. Small-amplitude higher-frequency changes in the ionosphere were detected for several hours after the passage of the large-amplitude Mount St. Helens TID, but it is not clear whether these were excited by the passage of the gravity wave or were background fluctuations.

  7. Finite-difference numerical modelling of gravito-acoustic wave propagation in a windy and attenuating atmosphere

    OpenAIRE

    2016-01-01

    in press; International audience; Acoustic and gravity waves propagating in planetary atmospheres have been studied intensively as markers of specific phenomena such as tectonic events or explosions or as contributors to atmosphere dynamics. To get a better understanding of the physics behind these dynamic processes, both acoustic and gravity waves propagation should be modelled in a 3D attenuating and windy atmosphere extending from the ground to the upper thermosphere. Thus, in order to pro...

  8. Pourability Enhancement of PETN Explosive Powders

    Energy Technology Data Exchange (ETDEWEB)

    Vannet, M.D.; Ball, G.L.

    1987-01-01

    Manufacture of precision detonators requires the pelletizing of very fine, organic, crystalline explosive powders. Production of pellets in automatic machines within critical dimensional and weight tolerances requires that the powders pour uniformly into die cavities. The pellets must be able to be initiated with low energy and have a predictable energy output. Modifications to needle-like crystalline PETN explosive powders to make them pourable were introduced by the application of about 80 A thick polymeric coatings to the individual crystals, followed by a controlled agglomeration into a spherical prill. Microencapsulation techniques provided the key to achieving the result using less than 0.5 wt. % coating (an order of magnitude less coating than in usual PBX systems). These coatings did not appreciably alter the energy required to initiate and significantly increased the strength of the pellets. A key point demonstrated, which may be translated to other applications, was that powders that exhibit performance based on physical characteristics could have their handling and strength properties tailored with little change in their primary function.

  9. Did gamma ray burst induce Cambrian explosion?

    Science.gov (United States)

    Chen, Pisin; Ruffini, R.

    2015-06-01

    One longstanding mystery in bio-evolution since Darwin's time is the origin of the Cambrian explosion that happened around 540 million years ago (Mya), where an extremely rapid increase of species occurred. Here we suggest that a nearby GRB event 500 parsecs away, which should occur about once per 5 Gy, might have triggered the Cambrian explosion. Due to a relatively lower cross section and the conservation of photon number in Compton scattering, a substantial fraction of the GRB photons can reach the sea level and would induce DNA mutations in organisms protected by a shallow layer of water or soil, thus expediting the bio-diversification. This possibility of inducing genetic mutations is unique among all candidate sources for major incidents in the history of bio-evolution. A possible evidence would be the anomalous abundance of certain nuclear isotopes with long half-lives transmuted by the GRB photons in geological records from the Cambrian period. Our notion also imposes constraints on the evolution of exoplanet organisms and the migration of panspermia.

  10. SANFO: The missing link in explosives technology

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.J. [Johnson Hi-Tech Australia Pty Ltd, Queensland (Australia)

    1996-12-01

    The development of SANFO has provided the mining industry with a low cost high gas volume, variable density, blasting agent which can be blended on site in a simple agitator mixing and charging system by mine site employees. During the last decade most major explosives manufacturers have been promoting high density, high shock energy blasting agents. To offset the cost of these products they have relied on expanded borehole patterns. It has since been discovered that lower VOD products are more effective in most overburden geologies due to the longer explosion pressure period and lower shock energy. These characteristics also reduce energy loss consumed in pulverization around the perimeter of borehole. The major advantages of SANFO compared with normal ANFO or heavy ANFO are as listed. Due to problems associated with bulling when blasting soft geologies at BHP`s Riverside Mine in Central Queensland, Australia, the company was invited to develop a low density blasting agent which could be blended as required on the mine site. This paper describes the problems associated with blasting softer geologies and the use of sawdust as a cost-effective bulking agent.

  11. Explosive percolation transitions in growing networks

    Science.gov (United States)

    Oh, S. M.; Son, S.-W.; Kahng, B.

    2016-03-01

    Recent extensive studies of the explosive percolation (EP) model revealed that the EP transition is second order with an extremely small value of the critical exponent β associated with the order parameter. This result was obtained from static networks, in which the number of nodes in the system remains constant during the evolution of the network. However, explosive percolating behavior of the order parameter can be observed in social networks, which are often growing networks, where the number of nodes in the system increases as dynamics proceeds. However, extensive studies of the EP transition in such growing networks are still missing. Here we study the nature of the EP transition in growing networks by extending an existing growing network model to a general case in which m node candidates are picked up in the Achiloptas process. When m =2 , this model reduces to the existing model, which undergoes an infinite-order transition. We show that when m ≥3 , the transition becomes second order due to the suppression effect against the growth of large clusters. Using the rate-equation approach and performing numerical simulations, we also show that the exponent β decreases algebraically with increasing m , whereas it does exponentially in a corresponding static random network model. Finally, we find that the hyperscaling relations hold but in different forms.

  12. Did Gamma Ray Burst Induce Cambrian Explosion?

    CERN Document Server

    Chen, Pisin

    2014-01-01

    One longstanding mystery in bio-evolution since Darwin's time is the origin of the Cambrian explosion that happened around 540 million years ago (Mya), where an extremely rapid increase of species occurred. Here we suggest that a nearby GRB event ~500 parsecs away, which should occur about once per 5 Gy, might have triggered the Cambrian explosion. Due to a relatively lower cross section and the conservation of photon number in Compton scattering, a substantial fraction of the GRB photons can reach the sea level and would induce DNA mutations in organisms protected by a shallow layer of water or soil, thus expediting the bio-diversification. This possibility of inducing genetic mutations is unique among all candidate sources for major incidents in the history of bio-evolution. A possible evidence would be the anomalous abundance of certain nuclear isotopes with long half-lives transmuted by the GRB photons in geological records from the Cambrian period. Our notion also imposes constraints on the evolution of ...

  13. Alfven Wave-Driven Supernova Explosion

    CERN Document Server

    Suzuki, T K; Yamada, S

    2007-01-01

    We investigate the role of Alfven waves in the core-collapse supernova (SN) explosion. We assume that Alfven waves are generated by convections inside a proto-neutron star (PNS) and emitted from its surface. Then these waves propagate outwards and dissipate via nonlinear processes and heat up matter around a stalled prompt shock. To quantitatively assess the importance of this process for revival of the stalled shock, we perform 1D time-dependent hydrodynamical simulations, taking into account the heating via the dissipation of Alfven waves. We show that the shock revival occurs if the surface field strength is larger than ~2x10^{15}G and if the amplitude of velocity fluctuation at the PNS surface is larger than ~ 20% of the local sound speed. Interestingly, the Alfven wave mechanism is self-regulating in the sense that the explosion energy is not very sensitive to the surface field strength and initial amplitude of Alfven waves as long as they are larger than the threshold values given above. It should be em...

  14. Robustness Assessment of Building Structures under Explosion

    Directory of Open Access Journals (Sweden)

    Mark Waggoner

    2012-12-01

    Full Text Available Over the past decade, much research has focused on the behaviour of structures following the failure of a key structural component. Particular attention has been given to sudden column loss, though questions remain as to whether this event-independent scenario is relevant to actual extreme events such as explosion. Few studies have been conducted to assess the performance of floor slabs above a failed column, and the computational tools used have not been validated against experimental results. The research program presented in this paper investigates the adequacy of sudden column loss as an idealisation of local damage caused by realistic explosion events, and extends prior work by combining the development of accurate computational models with large-scale testing of a typical floor system in a prototypical steel-framed structure. The floor system consists of corrugated decking topped by a lightly reinforced concrete slab that is connected to the floor beams through shear studs. The design is consistent with typical building practices in the US. The first test has been completed, and subsequent tests are currently being planned. This paper addresses the importance of robustness design for localized damage and includes a detailed description regarding how the research program advances the current state of knowledge for assessing robustness of compositely constructed steel-framed buildings.

  15. The differing locations of massive stellar explosions

    CERN Document Server

    Fruchter, A S; Burud, I; Castro-Tirado, A J; Cerón, J M C; Conselice, C J; Dahlen, T; Ferguson, H C; Fynbo, J P U; Garnavich, P M; Gibbons, R A; Gorosabel, J; Gull, T R; Hjorth, J; Holland, S T; Kouveliotou, C; Levan, A J; Levay, Z; Livio, M; Metzger, M R; Nugent, P; Petro, L; Pian, E; Rhoads, J E; Riess, A G; Sahu, K C; Smette, A; Strolger, L; Tanvir, N R; Thorsett, S E; Vreeswijk, P M; Wijers, R A M J; Woosley, S E

    2006-01-01

    When massive stars exhaust their fuel they collapse and often produce the extraordinarily bright explosions known as core-collapse supernovae. On occasion, this stellar collapse also powers an even more brilliant relativistic explosion known as a long-duration gamma-ray burst. One would then expect that gamma-ray bursts and supernovae should be found in similar environments. Here we show that this expectation is wrong. Using Hubble Space Telescope imaging of the host galaxies of long-duration gamma-ray bursts and core-collapse supernovae, we find that the gamma-ray bursts are far more concentrated on the very brightest regions of their hosts than are the supernovae. Furthermore, the host galaxies of the gamma-ray bursts are significantly fainter and more irregular than the hosts of the supernovae. Together these results suggest that long-duration gamma-ray bursts are associated with the very most massive stars and may be restricted to galaxies of limited chemical evolution. Our results directly imply that lon...

  16. Autonomous characterization of plastic-bonded explosives

    Science.gov (United States)

    Linder, Kim Dalton; DeRego, Paul; Gomez, Antonio; Baumgart, Chris

    2006-08-01

    Plastic-Bonded Explosives (PBXs) are a newer generation of explosive compositions developed at Los Alamos National Laboratory (LANL). Understanding the micromechanical behavior of these materials is critical. The size of the crystal particles and porosity within the PBX influences their shock sensitivity. Current methods to characterize the prominent structural characteristics include manual examination by scientists and attempts to use commercially available image processing packages. Both methods are time consuming and tedious. LANL personnel, recognizing this as a manually intensive process, have worked with the Kansas City Plant / Kirtland Operations to develop a system which utilizes image processing and pattern recognition techniques to characterize PBX material. System hardware consists of a CCD camera, zoom lens, two-dimensional, motorized stage, and coaxial, cross-polarized light. System integration of this hardware with the custom software is at the core of the machine vision system. Fundamental processing steps involve capturing images from the PBX specimen, and extraction of void, crystal, and binder regions. For crystal extraction, a Quadtree decomposition segmentation technique is employed. Benefits of this system include: (1) reduction of the overall characterization time; (2) a process which is quantifiable and repeatable; (3) utilization of personnel for intelligent review rather than manual processing; and (4) significantly enhanced characterization accuracy.

  17. A link between high-speed solar wind streams and explosive extratropical cyclones

    Science.gov (United States)

    Prikryl, Paul; Iwao, Koki; Muldrew, Donald B.; Rušin, Vojto; Rybanský, Milan; Bruntz, Robert

    2016-11-01

    A link between solar wind magnetic sector boundary (heliospheric current sheet) crossings by the Earth and the upper-level tropospheric vorticity was discovered in the 1970s. These results have been later confirmed but the proposed mechanisms remain controversial. Extratropical-cyclone tracks obtained from two meteorological reanalysis datasets are used in superposed epoch analysis of time series of solar wind plasma parameters and green coronal emission line intensity. The time series are keyed to times of maximum growth of explosively developing extratropical cyclones in the winter season. The new statistical evidence corroborates the previously published results (Prikryl et al., 2009). This evidence shows that explosive extratropical cyclones tend to occur after arrivals of solar wind disturbances such as high-speed solar wind streams from coronal holes when large amplitude magneto-hydrodynamic waves couple to the magnetosphere-ionosphere system. These MHD waves modulate Joule heating and/or Lorentz forcing of the high-latitude thermosphere generating medium-scale atmospheric gravity waves that propagate energy upward and downward from auroral zone through the atmosphere. At the tropospheric level, in spite of significantly reduced amplitudes, these gravity waves can provide a lift of unstable air to release the moist symmetric instability thus initiating slantwise convection and forming cloud/precipitation bands. The release of latent heat is known to provide energy for rapid development and intensification of extratropical cyclones.

  18. Approach for determination of detonation performance and aluminum percentage of aluminized-based explosives by laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Rezaei, Amir Hossein; Keshavarz, Mohammad Hossein; Tehrani, Masoud Kavosh; Reza Darbani, Seyyed Mohammad; Farhadian, Amir Hossein; Mousavi, Seyyed Jabbar; Mousaviazar, Ali

    2016-04-20

    Energetic materials containing aluminum powder are hazardous compounds, which have wide applications as propellants, explosives, and pyrotechnics. This work introduces a new method on the basis of the laser-induced breakdown spectroscopy technique in air and argon atmospheres to investigate determination of aluminum content and detonation performance of 1,3,5-trinitro-1,3,5-triazine (RDX)-based aluminized explosives. Plasma emission of aluminized RDX explosives are recorded where atomic lines of Al, C, H, N, and O, as well as molecular bands of AlO and CN are identified. The formation mechanism of AlO and CN molecular bands is affected by the aluminum percentage and oxygen content present in the composition and plasma. Relative intensity of the Al/O is used to determine detonation velocity and pressure of the RDX/Al samples. The released energy in the laser-induced plasma of aluminized RDX composition is related to the heat of explosion and percentage of aluminum.

  19. 14 CFR Appendix E to Part 420 - Tables for Explosive Site Plan

    Science.gov (United States)

    2010-01-01

    ...,000,000 1,800 310 Table E-7—Distances When Explosive Equivalents Apply TNT equivalent weight of.... Table E-2—Liquid Propellant Explosive Equivalents Propellant combinations Explosive equivalent...

  20. 48 CFR 252.223-7002 - Safety precautions for ammunition and explosives.

    Science.gov (United States)

    2010-10-01

    ... component part of an explosive, an ammunition or explosive end item, or of a weapon system— (i) Inert...) Oxidizers; (v) Powdered metals; or (vi) Other materials having fire or explosive characteristics. (b)...

  1. A dynamic study of explosive cyclogeneses developments over the ocean

    Institute of Scientific and Technical Information of China (English)

    张永刚; 孙成志; 吕美仲; 欧阳子济

    2001-01-01

    A diagnostic analysis of two explosive cyclogeneses and one general cyclone over the Northwest Pacific Ocean in 1979 is presented by potential vorticity and E-P flux. The analysis results demonstrate that main dynamic mechanism of explosive cyclogenesis development is upper-layer forcing action and large condensation latent heatproduced by lower-layer aqueous vapour transportation.

  2. 43 CFR 15.11 - Explosives and dangerous weapons.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Explosives and dangerous weapons. 15.11... § 15.11 Explosives and dangerous weapons. No person shall carry, use or possess within the Preserve... other kind of weapon potentially harmful to the reef structure. The use of such weapons from beyond...

  3. 7 CFR 501.12 - Weapons and explosives.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Weapons and explosives. 501.12 Section 501.12... OF AGRICULTURE CONDUCT ON U.S. MEAT ANIMAL RESEARCH CENTER, CLAY CENTER, NEBRASKA § 501.12 Weapons... arrows, darts, other dangerous or deadly weapons, or explosives, either openly or concealed, except...

  4. 15 CFR 265.39 - Weapons and explosives.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Weapons and explosives. 265.39 Section..., GAITHERSBURG, MARYLAND, AND BOULDER AND FORT COLLINS, COLORADO Buildings and Grounds § 265.39 Weapons and... dangerous or deadly weapons or materials, or explosives, either openly or concealed, without the...

  5. 31 CFR 700.11 - Weapons and explosives.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Weapons and explosives. 700.11... FEDERAL LAW ENFORCEMENT TRAINING CENTER (FLETC) BUILDINGS AND GROUNDS § 700.11 Weapons and explosives. No person, while on the property, shall carry firearms, other dangerous or deadly weapons, or...

  6. 7 CFR 500.12 - Weapons and explosives.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Weapons and explosives. 500.12 Section 500.12... OF AGRICULTURE NATIONAL ARBORETUM Conduct on U.S. National Arboreturm Property § 500.12 Weapons and... weapons, or explosives, either openly or concealed, except for authorized official purposes. (b) No...

  7. 43 CFR 423.30 - Weapons, firearms, explosives, and fireworks.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Weapons, firearms, explosives, and... WATERBODIES Rules of Conduct § 423.30 Weapons, firearms, explosives, and fireworks. (a) You may possess... exceptions: (1) You must not have a weapon in your possession when at or in a Reclamation facility. (2)...

  8. 7 CFR 503.13 - Weapons and explosives.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Weapons and explosives. 503.13 Section 503.13... OF AGRICULTURE CONDUCT ON PLUM ISLAND ANIMAL DISEASE CENTER § 503.13 Weapons and explosives. No person while in or on the PIADC shall carry firearms or other dangerous or deadly weapons or...

  9. Initiation of Detonation in Explosives by Impact of Projectiles

    Directory of Open Access Journals (Sweden)

    H.S. Yadav

    2006-04-01

    Full Text Available This paper presents a study of initiation of detonation in explosives by the impact ofprojectiles. The shock wave produced by the impact of projectiles has been considered as thestimulus for initiation of detonation. Three types of projectiles, namely (i flyer plate, (ii flatendedrod, and (iii round-ended rod or a shaped charge jet, have been considered to impact andproduce a shock wave in the explosives. Deriving relations for the parameters of impact-generatedshock wave in the explosives and projectiles, and the sound velocity in the compressed explosives,it has been shown that the difference of kinetic energy of the flyer plate before and after theimpact, which is equal to the total energy of the shock wave in the explosives, leads to criticalenergy criterion for shock initiation of explosives. In this study, the critical criterion has beenused to derive the relations for initiation of explosives by a shaped charge jet, Vj2 D = K0 , whereV j and D denote the velocity and diameter of the jet, and K0 is a constant of the explosive.

  10. 30 CFR 816.64 - Use of explosives: Blasting schedule.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Use of explosives: Blasting schedule. 816.64... ACTIVITIES § 816.64 Use of explosives: Blasting schedule. (a) General requirements. (1) The operator shall conduct blasting operations at times approved by the regulatory authority and announced in the...

  11. 14 CFR 417.417 - Propellants and explosives.

    Science.gov (United States)

    2010-01-01

    ... determine the vulnerability of its electro-explosive devices and systems to radio frequency radiation and... 417.417 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... explosives. (d) A launch operator must establish and maintain each procedural system control to...

  12. Engineering Design Handbook. Explosions in Air. Part One

    Science.gov (United States)

    1974-07-15

    homologous* times. two types of blast sources instead of explosive weights. Usually, the heat of detonation of 3-2.1.2 EXPERIMENTAL VERIFICATION about 1000...apply over a very wide range of distances and for a wide range of The heat of detonation can be measured explosive source energies. One of the earliest

  13. Calculations of the Performance of Explosive Impulse Generators

    Science.gov (United States)

    1979-08-01

    mass of explosive, m = mass of the plate, c = mass of the explosive charge, /2ir = the "Gurney constant" where E is approximately the heat of detonation of...constant will be some- what below the ideal value given by assuming that E is equal to the heat of detonation . Secondly, considering 2D

  14. Evolution of Approaches to Safe Handling of Explosives

    Institute of Scientific and Technical Information of China (English)

    A.L.Mikhaylov

    2004-01-01

    On definition, nuclear weapons (NW) containing fissile and explosive materials are dangerous in terms of radiation release and explosion. In Russia, the problems of nuclear safety of ammunition during accidents are solved by so-called “one-point safety” with use of physical and design scheme of the primary unit.

  15. Evolution of Approaches to Safe Handling of Explosives

    Institute of Scientific and Technical Information of China (English)

    A.L. Mikhaylov

    2004-01-01

    @@ On definition, nuclear weapons (NW) containing fissile and explosive materials are dangerous in terms of radiation release and explosion. In Russia, the problems of nuclear safety of ammunition during accidents are solved by so-called "one-point safety" with use of physical and design scheme of the primary unit.

  16. A review of United Nations tests for explosivity

    NARCIS (Netherlands)

    Brown, A.K.; Mak, W.A.; Whitmore, M.W.

    2000-01-01

    In attempting to develop a closed pressure vessel test for assessing explosivity, arising from propagation of detonation, deflagration or thermal explosion, some difficulties were encountered in relation to United Nations test methods. This led to a review of these methods and comparisons of their p

  17. A cause of severe thigh injury: Battery explosion

    Directory of Open Access Journals (Sweden)

    Tahsin Görgülü

    2016-02-01

    Discussion: Battery explosion causing lower extremity tissue defect is a type of injury that is rarely seen in the literature. Regardless of battery size and energy level, they should be considered as potential explosive material and protector masks, clothing should be worn during contact with this type of material.

  18. A simple approach to the supernova progenitor-explosion connection

    Science.gov (United States)

    Müller, Bernhard; Heger, Alexander; Liptai, David; Cameron, Joshua B.

    2016-07-01

    We present a new approach to understand the landscape of supernova explosion energies, ejected nickel masses, and neutron star birth masses. In contrast to other recent parametric approaches, our model predicts the properties of neutrino-driven explosions based on the pre-collapse stellar structure without the need for hydrodynamic simulations. The model is based on physically motivated scaling laws and simple differential equations describing the shock propagation, the contraction of the neutron star, the neutrino emission, the heating conditions, and the explosion energetics. Using model parameters compatible with multi-D simulations and a fine grid of thousands of supernova progenitors, we obtain a variegated landscape of neutron star and black hole formation similar to other parametrized approaches and find good agreement with semi-empirical measures for the `explodability' of massive stars. Our predicted explosion properties largely conform to observed correlations between the nickel mass and explosion energy. Accounting for the coexistence of outflows and downflows during the explosion phase, we naturally obtain a positive correlation between explosion energy and ejecta mass. These correlations are relatively robust against parameter variations, but our results suggest that there is considerable leeway in parametric models to widen or narrow the mass ranges for black hole and neutron star formation and to scale explosion energies up or down. Our model is currently limited to an all-or-nothing treatment of fallback and there remain some minor discrepancies between model predictions and observational constraints.

  19. Maritime improvised explosive devices, modelling and large scale trials

    NARCIS (Netherlands)

    Heuvel, W. van den; Trouwborst, W.; Vader, J.A.A.

    2013-01-01

    Maritime Improvised Explosive Devices (MIEDs) such as small boats filled with explosives are likely to be a threat in future combat scenarios. For example the suicide attack against the USS Cole in Yemen (October 2000) has shown how disastrous MIEDs can be. With relatively simple means a complete co

  20. 33 CFR 154.820 - Fire, explosion, and detonation protection.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fire, explosion, and detonation protection. 154.820 Section 154.820 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Systems § 154.820 Fire, explosion, and detonation protection. (a) A vapor control system with a...

  1. 30 CFR 18.42 - Explosion-proof distribution boxes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosion-proof distribution boxes. 18.42 Section 18.42 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING... and Design Requirements § 18.42 Explosion-proof distribution boxes. (a) A cable passing through...

  2. 30 CFR 18.43 - Explosion-proof splice boxes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosion-proof splice boxes. 18.43 Section 18.43 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION... Design Requirements § 18.43 Explosion-proof splice boxes. Internal connections shall be rigidly held...

  3. Effect of Center High Explosive in Dispersion of Fuel

    Institute of Scientific and Technical Information of China (English)

    张奇; 林大超; 白春华; 郭彦懿

    2004-01-01

    The dispersion of the fuel due to the center high explosive, including several different physical stages, is analyzed by means of experimental results observed with a high speed motion analysis system, and the effect of center high explosive charge is suggested. The process of the fuel dispersion process can be divided into three main stages, acceleration, deceleration and turbulence. Within a certain scope, the radius of the final fuel cloud dispersed is independent of the center explosive charge mass in an FAE (fuel air explosive) device, while only dependent both on the duration of acceleration stage and on that of the deceleration. In these two stages, the dispersion of the fuel dust mainly occurs along the radial direction. There is a close relation between the fuel dispersion process and the center explosive charge mass. To describe the motion of fuel for different stages of dispersion, different mechanical models should be applied.

  4. Explosives Detection Using Magnetic and Nuclear Resonance Techniques

    CERN Document Server

    Fraissard, Jacques

    2009-01-01

    Nuclear quadrupole resonance (NQR) a highly promising new technique for bulk explosives detection: relatively inexpensive, more compact than NMR, but with considerable selectivity. Since the NQR frequency is insensitive to long-range variations in composition, mixing explosives with other materials, such as the plasticizers in plastic explosives, makes no difference. The NQR signal strength varies linearly with the amount of explosive, and is independent of its distribution within the volume monitored. NQR spots explosive types in configurations missed by the X-ray imaging method. But if NQR is so good, why it is not used everywhere? Its main limitation is the low signal-to-noise ratio, particularly with the radio-frequency interference that exists in a field environment, NQR polarization being much weaker than that from an external magnetic field. The distinctive signatures are there, but are difficult to extract from the noise. In addition, the high selectivity is partly a disadvantage, as it is hard to bui...

  5. Landmine Detection Technologies to TraceExplosive Vapour Detection Techniques

    Directory of Open Access Journals (Sweden)

    J. C. Kapoor

    2007-11-01

    Full Text Available Large quantity of explosive is manufactured worldwide for use in various types of ammunition,arms, and mines, and used in armed conflicts. During manufacturing and usage of the explosiveequipment, some of the explosive residues are released into the environment in the form ofcontaminated effluents, unburnt explosives fumes and vapours. Limited but uncontrolledcontinuous release of trace vapours also takes place when explosive-laden landmines are deployedin the field. One of the major technological challenges in post-war scenario worldwide is thedetection of landmines using these trace vapour signatures and neutralising them safely.  Differenttypes of explosives are utilised as the main charge in antipersonnel and antitank landmines. Inthis paper, an effort has been made to review the techniques so far available based on explosivevapour detection especially to detect the landmines. A comprehensive compilation of relevantinformation on the techniques is presented, and their maturity levels, shortcomings, and difficultiesfaced are highlighted.

  6. Explosion models, light curves, spectra and H$_{0}$

    CERN Document Server

    Höflich, P; Wheeler, J C; Nomoto, K; Thielemann, F K

    1996-01-01

    From the spectra and light curves it is clear that SNIa are thermonuclear explosions of white dwarfs. However, details of the explosion are highly under debate. Here, we present detailed models which are consistent with respect to the explosion mechanism, the optical and infrared light curves (LC), and the spectral evolution. This leaves the description of the burning front and the structure of the white dwarf as the only free parameters. The explosions are calculated using one-dimensional Lagrangian codes including nuclear networks. Subsequently, optical and IR-LCs are constructed. Detailed NLTE-spectra are computed for several instants of time using the density, chemical and luminosity structure resulting from the LCs. The general methods and critical tests are presented (sect. 2). Different models for the thermonuclear explosion are discussed including detonations deflagrations, delayed detonations, pulsating delayed detonations (PDD) and helium detonations (sect.3). Comparisons between theoretical and obs...

  7. A Simple Approach to the Supernova Progenitor-Explosion Connection

    CERN Document Server

    Müller, B; Liptai, D; Cameron, J B

    2016-01-01

    We present a new approach to understand the landscape of supernova explosion energies, ejected nickel masses, and neutron star birth masses. In contrast to other recent parametric approaches, our model predicts the properties of neutrino-driven explosions based on the pre-collapse stellar structure without the need for hydrodynamic simulations. The model is based on physically motivated scaling laws and simple differential equations describing the shock propagation, the contraction of the neutron star, the neutrino emission, the heating conditions, and the explosion energetics. Using model parameters compatible with multi-D simulations and a fine grid of thousands of supernova progenitors, we obtain a variegated landscape of neutron star and black hole formation similar to other parameterised approaches and find good agreement with semi-empirical measures for the "explodability" of massive stars. Our predicted explosion properties largely conform to observed correlations between the nickel mass and explosion ...

  8. HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R

    2010-05-02

    Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions exist. Pipe ruptures at nuclear facilities were attributed to hydrogen explosions inside pipelines, in nuclear facilities, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents an ignition source for hydrogen was questionable, but these accidents, demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein.

  9. Acoustic Methods for Evaluation of High Energy Explosions

    CERN Document Server

    Lobanovsky, Yury I

    2013-01-01

    Two independent acoustic methods were used to verify the results of earlier explosion energy calculations of Chelyabinsk meteoroid. They are: estimations through a path length of infrasound wave and through maximum concentration of the wave energy. The energy of this explosion turned out the same as in earlier calculations, and it is close to 58 Mt of TNT. The first method, as well as evaluations through seismic signals and barograms, have confirmed the energy of Tunguska meteoroid explosion at 14.0 - 14.5 Mt level. Moreover, there is a good agreement between acoustic estimations and other data for the explosion energy of another meteoroid that was ended its flight over the southern part of Indian Ocean, and for two catastrophic volcanoes explosions - Bezymyanny and Krakatoa.

  10. An Empirical Study of Atmospheric Correction Procedures for Regional Infrasound Amplitudes with Ground Truth.

    Science.gov (United States)

    Howard, J. E.

    2014-12-01

    This study focusses on improving methods of accounting for atmospheric effects on infrasound amplitudes observed on arrays at regional distances in the southwestern United States. Recordings at ranges of 150 to nearly 300 km from a repeating ground truth source of small HE explosions are used. The explosions range in actual weight from approximately 2000-4000 lbs. and are detonated year-round which provides signals for a wide range of atmospheric conditions. Three methods of correcting the observed amplitudes for atmospheric effects are investigated with the data set. The first corrects amplitudes for upper stratospheric wind as developed by Mutschlecner and Whitaker (1999) and uses the average wind speed between 45-55 km altitudes in the direction of propagation to derive an empirical correction formula. This approach was developed using large chemical and nuclear explosions and is tested with the smaller explosions for which shorter wavelengths cause the energy to be scattered by the smaller scale structure of the atmosphere. The second approach isa semi-empirical method using ray tracing to determine wind speed at ray turning heights where the wind estimates replace the wind values in the existing formula. Finally, parabolic equation (PE) modeling is used to predict the amplitudes at the arrays at 1 Hz. The PE amplitudes are compared to the observed amplitudes with a narrow band filter centered at 1 Hz. An analysis is performed of the conditions under which the empirical and semi-empirical methods fail and full wave methods must be used.

  11. Finite-difference numerical modelling of gravitoacoustic wave propagation in a windy and attenuating atmosphere

    Science.gov (United States)

    Brissaud, Quentin; Martin, Roland; Garcia, Raphaël F.; Komatitsch, Dimitri

    2016-07-01

    Acoustic and gravity waves propagating in planetary atmospheres have been studied intensively as markers of specific phenomena such as tectonic events or explosions or as contributors to atmosphere dynamics. To get a better understanding of the physics behind these dynamic processes, both acoustic and gravity waves propagation should be modelled in a 3-D attenuating and windy atmosphere extending from the ground to the upper thermosphere. Thus, in order to provide an efficient numerical tool at the regional or global scale, we introduce a finite difference in the time domain (FDTD) approach that relies on the linearized compressible Navier-Stokes equations with a background flow (wind). One significant benefit of such a method is its versatility because it handles both acoustic and gravity waves in the same simulation, which enables one to observe interactions between them. Simulations can be performed for 2-D or 3-D realistic cases such as tsunamis in a full MSISE-00 atmosphere or gravity-wave generation by atmospheric explosions. We validate the computations by comparing them to analytical solutions based on dispersion relations in specific benchmark cases: an atmospheric explosion, and a ground displacement forcing.

  12. Finite Difference Numerical Modeling of Gravito-Acoustic Wave Propagation in a Windy and Attenuating Atmosphere

    Science.gov (United States)

    Brissaud, Q.; Garcia, R.; Martin, R.; Komatitsch, D.

    2015-12-01

    The acoustic and gravity waves propagating in the planetary atmospheres have been studied intensively as markers of specific phenomena (tectonic events, explosions) or as contributors to the atmosphere dynamics. To get a better understanding of the physic behind these dynamic processes, both acoustic and gravity waves propagation should be modeled in an attenuating and windy 3D atmosphere from the ground to the upper thermosphere. Thus, In order to provide an efficient numerical tool at the regional or the global scale a high order finite difference time domain (FDTD) approach is proposed that relies on the linearized compressible Navier-Stokes equations (Landau 1959) with non constant physical parameters (density, viscosities and speed of sound) and background velocities (wind). One significant benefit from this code is its versatility. Indeed, it handles both acoustic and gravity waves in the same simulation that enables one to observe correlations between the two. Simulations will also be performed on 2D/3D realistic cases such as tsunamis in a full MSISE-00 atmosphere and gravity-wave generation through atmospheric explosions. Computations are validated by comparison to well-known analytical solutions based on dispersion relations in specific benchmark cases (atmospheric explosion and bottom displacement forcing).

  13. High-Explosives Applications Facility (HEAF)

    Science.gov (United States)

    Morse, J. L.; Weingart, R. C.

    1989-03-01

    This Safety Analysis Report (SAR) reviews the safety and environmental aspects of the High Explosives Applications Facility (HEAF). Topics covered include the site selected for the HEAF, safety design criteria, operations planned within the facility, and the safety and environmental analyses performed on this project to date. Provided in the Summary section is a review of hazards and the analyses, conclusions, and operating limits developed in this SAR. Appendices provide supporting documents relating to this SAR. This SAR is required by the LLNL Health and Safety Manual and DOE Order 5481.1B(2) to document the safety analysis efforts. The SAR was assembled by the Hazards Control Department, B-Division, and HEAF project personnel. This document was reviewed by B Division, the Chemistry Department, the Hazards Control Department, the Laboratory Associate Director for Administration and Operations, and the Associate Directors ultimately responsible for HEAF operations.

  14. Study on Coulomb explosions of ion mixtures

    CERN Document Server

    Boella, E; D'Angola, A; Coppa, G; Silva, L O

    2015-01-01

    The paper presents a theoretical work on the dynamics of Coulomb explosion for spherical nanoplasmas composed by two different ion species. Particular attention has been dedicated to study the energy spectra of the ions with the larger charge-to-mass ratio. The connection between the formation of shock shells and the energy spread of the ions has been the object of a detailed analysis, showing that under particular conditions the width of the asymptotic energy spectrum tends to become very narrow, which leads to a multi-valued ion phase-space. The conditions to generate a quasi mono-energetic ion spectrum have been rigorously demonstrated and verifed by numerical simulations, using a technique that, exploiting the spherical symmetry of the problem, allows one to obtain very accurate and precise results.

  15. Impact of Supernova Explosions on Galaxy Formation

    CERN Document Server

    Scannapieco, C; White, S D M; Springel, V

    2006-01-01

    We study the effects of Supernova (SN) feedback on the formation of disc galaxies. For that purpose we run simulations using the extended version of the code GADGET-2 which includes a treatment of chemical and energy feedback by SN explosions. We found that our model succeeds in setting a self-regulated star formation process since an important fraction of the cold gas from the center of the haloes is efficiently heated up and transported outwards. The impact of SN feedback on galactic systems is also found to depend on virial mass: smaller systems are more strongly affected with star formation histories in which several starbursts can develop. Our implementation of SN feedback is also successful in producing violent outflows of chemical enriched material.

  16. Test particle acceleration in explosive magnetohydrodynamic reconnection

    CERN Document Server

    Ripperda, Bart; Xia, Chun; Keppens, Rony

    2016-01-01

    Magnetic reconnection is the mechanism behind many violent phenomena in the universe. We demonstrate that energy released during reconnection can lead to non-thermal particle distribution functions. We use a method in which we combine resistive magnetohydrodynamics (MHD) with relativistic test particle dynamics. Using our open-source grid-adaptive MPI-AMRVAC software, we simulate global MHD evolution combined with test particle treatments in MHD snapshots. This approach is used to evaluate particle acceleration in explosive reconnection. The reconnection is triggered by an ideal tilt instability in two-and-a-half dimensional (2.5D) scenarios and by a combination of ideal tilt and kink instabilities in three-dimensional (3D) scenarios. These instabilities occur in a system with two parallel, adjacent, repelling current channels in an initially force-free equilibrium, as a simplified representation of flux ropes in a stellar magnetosphere. The current channels undergo a rotation and a separation on Alfv\\'enic t...

  17. Underwater Explosion Damage of Ship Hull Panels

    Directory of Open Access Journals (Sweden)

    K. Rarnajeyathilagam

    2003-10-01

    Full Text Available Underwater explosion is a major threat to ships and submarines in a war environment. The prediction of the mode and the extent of the failure is an essential step in designing for shock loading. The localised failure in a hull panel is severe compared to the global response of the ship. In this study, an attempt has been made to predict the response and failure modes of three types of hull panels (flat, concave, and convex. The shock loading on the hull panel has been estimated based on the Taylor's plate theory. The numerical analysis has been carried out using the CSAIGENSA (DYNA3D code that employs nonlinear finite element model.

  18. Burgess shale faunas and the cambrian explosion.

    Science.gov (United States)

    Morris, S C

    1989-10-20

    Soft-bodied marine faunas from the Lower and Middle Cambrian, exemplified by the Burgess Shale of British Columbia, are a key component in understanding the major adaptive radiations at the beginning of the Phanerozoic ("Cambrian explosion"). These faunas have a widespread distribution, and many taxa have pronounced longevity. Among the components appear to be survivors of the preceding Ediacaran assemblages and a suite of bizarre forms that give unexpected insights into morphological diversification. Microevolutionary processes, however, seem adequate to account for this radiation, and the macroevolutionary patterns that set the seal on Phanerozoic life are contingent on random extinctions. They weeded out the morphological spectrum and permitted rediversification among surviving clades. Although the predictability of which clades will play in successive acts of the Phanerozoic theater is low, at least the outlines of the underlying ecological plot are already clear from the opening of the drama.

  19. Strange quark matter in explosive astrophysical systems

    CERN Document Server

    Sagert, I; Hempel, M; Pagliara, G; Schaffner-Bielich, J; Thielemann, F -K; Liebendörfer, M

    2010-01-01

    Explosive astrophysical systems, such as supernovae or compact star binary mergers, provide conditions where strange quark matter can appear. The high degree of isospin asymmetry and temperatures of several MeV in such systems may cause a transition to the quark phase already around saturation density. Observable signals from the appearance of quark matter can be predicted and studied in astrophysical simulations. As input in such simulations, an equation of state with an integrated quark matter phase transition for a large temperature, density and proton fraction range is required. Additionally, restrictions from heavy ion data and pulsar observation must be considered. In this work we present such an approach. We implement a quark matter phase transition in a hadronic equation of state widely used for astrophysical simulations and discuss its compatibility with heavy ion collisions and pulsar data. Furthermore, we review the recently studied implications of the QCD phase transition during the early post-bou...

  20. Seismic explosion sources on an ice cap

    DEFF Research Database (Denmark)

    Shulgin, Alexey; Thybo, Hans

    2015-01-01

    Controlled source seismic investigation of crustal structure below ice covers is an emerging technique. We have recently conducted an explosive refraction/wide-angle reflection seismic experiment on the ice cap in east-central Greenland. The data-quality is high for all shot points and a full...... as a strong ice wave. The ice cap leads to low transmission of energy into the crust such that charges need be larger than in conventional onshore experiments to obtain reliable seismic signals. The strong reflection coefficient at the base of the ice generates strong multiples which may mask for secondary...... phases. This effect may be crucial for acquisition of reflection seismic profiles on ice caps. Our experience shows that it is essential to use optimum depth for the charges and to seal the boreholes carefully....

  1. Resolved Host Studies of Stellar Explosions

    CERN Document Server

    Levesque, Emily M

    2016-01-01

    The host galaxies of nearby (z<0.3) core-collapse supernovae and long-duration gamma-ray bursts offer an excellent means of probing the environments and populations that produce these events' varied massive progenitors. These same young stellar progenitors make LGRBs and SNe valuable and potentially powerful tracers of star formation, metallicity, the IMF, and the end phases of stellar evolution. However, properly utilizing these progenitors as tools requires a thorough understanding of their formation and, consequently, the physical properties of their parent host environments. This review looks at some of the recent work on LGRB and SN hosts with resolved environments that allows us to probe the precise explosion sites and surrounding environments of these events in incredible detail.

  2. Explosive Particle Dispersion in Plasma Turbulence

    CERN Document Server

    Servidio, S; Matthaeus, W H; Burgess, D; Carbone, V; Veltri, P

    2016-01-01

    Particle dynamics are investigated in plasma turbulence, using self-consistent kinetic simulations, in two dimensions. In steady state, the trajectories of single protons and proton-pairs are studied, at different values of plasma "beta" (ratio between kinetic and magnetic pressure). For single-particle displacements, results are consistent with fluids and magnetic field line dynamics, where particles undergo normal diffusion for very long times, with higher "beta" being more diffusive. In an intermediate time range, with separations lying in the inertial range, particles experience an explosive dispersion in time, consistent with the Richardson prediction. These results, obtained for the first time with a self-consistent kinetic model, are relevant for astrophysical and laboratory plasmas, where turbulence is crucial for heating, mixing and acceleration processes.

  3. Hydrodynamic modeling and explosive compaction of ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Hoenig, C.; Holt, A.; Finger, M.; Kuhl, W.

    1977-09-01

    High-density ceramics with high-strength microstructure were achieved by explosive compaction. Well-characterized Al/sub 2/O/sub 3/, AlN, and boron powders were explosively compacted in both cylindrical and flat plate geometries. In cylindrical geometries compacted densities between 91 and 98 percent of theoretical were achieved. Microhardness measurements indicated that the strength and integrity of the microstructure were comparable to conventionally fabricated ceramics, even though all samples with densities greater than 90 percent theoretical contained macrocracks. Fractured surfaces evaluated by SEM showed evidence of boundary melting. Equation of state data for porous Al/sub 2/O/sub 3/ were used to calculate the irreversible work done on the sample as a function of pressure. This was expressed as a percentage of the total sample which could be melted. Calculations show that very little melting can be expected in samples shocked to less than 3 GPa. Significant melting and grain boundary fusion can be expected in samples shocked to pressures greater than 8 GPa. Hydrodynamic modeling of right cylinder compaction with detonation at one end was attempted by using a two-dimensional computer code. The complications of this analysis led to experiments using plane shock waves. Flat-plate compaction assemblies were designed and analyzed by 2-D hydrodynamic codes. The use of porous shock attenuators was evaluated. Experiments were performed on aluminum oxide powders in plane wave geometry. Microstructure evaluations were made as a function of location in the flat plate samples. 11 figures, 1 table.

  4. Effects of charge design features on parameters of acoustic and seismic waves and cratering, for SMR chemical surface explosions

    Science.gov (United States)

    Gitterman, Y.

    2012-04-01

    A series of experimental on-surface shots was designed and conducted by the Geophysical Institute of Israel at Sayarim Military Range (SMR) in Negev desert, including two large calibration explosions: about 82 tons of strong IMI explosives in August 2009, and about 100 tons of ANFO explosives in January 2011. It was a collaborative effort between Israel, CTBTO, USA and several European countries, with the main goal to provide fully controlled ground truth (GT0) infrasound sources in different weather/wind conditions, for calibration of IMS infrasound stations in Europe, Middle East and Asia. Strong boosters and the upward charge detonation scheme were applied to provide a reduced energy release to the ground and an enlarged energy radiation to the atmosphere, producing enhanced infrasound signals, for better observation at far-regional stations. The following observations and results indicate on the required explosives energy partition for this charge design: 1) crater size and local seismic (duration) magnitudes were found smaller than expected for these large surface explosions; 2) small test shots of the same charge (1 ton) conducted at SMR with different detonation directions showed clearly lower seismic amplitudes/energy and smaller crater size for the upward detonation; 3) many infrasound stations at local and regional distances showed higher than expected peak amplitudes, even after application of a wind-correction procedure. For the large-scale explosions, high-pressure gauges were deployed at 100-600 m to record air-blast properties, evaluate the efficiency of the charge design and energy generation, and provide a reliable estimation of the charge yield. Empirical relations for air-blast parameters - peak pressure, impulse and the Secondary Shock (SS) time delay - depending on distance, were developed and analyzed. The parameters, scaled by the cubic root of estimated TNT equivalent charges, were found consistent for all analyzed explosions, except of SS

  5. Atmospheric composition change: Ecosystems-Atmosphere interactions

    NARCIS (Netherlands)

    Fowler, D.; Pilegaard, K.; Sutton, M.A.; Ambus, P.; Raivonen, M.; Duyzer, J.; Simpson, D.; Fagerli, H.; Fuzzi, S.; Schjoerring, J.K.; Granier, C.; Neftel, A.; Isaksen, I.S.A.; Laj, P.; Maione, M.; Monks, P.S.; Burkhardt, J.; Daemmgen, U.; Neirynck, J.; Personne, E.; Wichink Kruit, R.J.; Butterbach-Bahl, K.; Flechard, C.; Tuovinen, J.P.; Coyle, M.; Gerosa, G.; Loubet, B.; Altimir, N.; Gruenhage, L.; Ammann, C.; Cieslik, S.; Paoletti, E.; Mikkelsen, T.N.; Ro-Poulsen, H.; Cellier, P.; Cape, J.N.; Horvath, L.; Loreto, F.; Niinemets, U.; Palmer, P.I.; Rinne, J.; Misztal, P.; Nemitz, E.; Nilsson, D.; Pryor, S.; Gallagher, M.W.; Vesala, T.; Skiba, U.; Brueggemann, N.; Zechmeister-Boltenstern, S.; Williams, J.; O'Dowd, C.; Facchini, M.C.; Leeuw, de G.; Flossman, A.; Chaumerliac, N.; Erisman, J.W.

    2009-01-01

    Ecosystems and the atmosphere: This review describes the state of understanding the processes involved in the exchange of trace gases and aerosols between the earth's surface and the atmosphere. The gases covered include NO, NO2, HONO, HNO3, NH3, SO2, DMS, Biogenic VOC, O-3, CH4, N2O and particles i

  6. The evolution and explosion of massive Stars II: Explosive hydrodynamics and nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Woosley, S.E. [California Univ., Santa Cruz, CA (United States)]|[Lawrence Livermore National Lab., CA (United States); Weaver, T.A. [Lawrence Livermore National Lab., CA (United States)

    1995-08-30

    The nucleosynthetic yield of isotopes lighter than A = 66 (zinc) is determined for a grid of stellar masses and metallicities including stars of 11, 12, 13, 15, 18, 19, 20, 22, 25, 30, 35, and 40 M{sub {circle_dot}} and metallicities Z = 0, 10{sup {minus}4}, 0.01, 0.1, and 1 times solar (a slightly reduced mass grid is employed for non-solar metallicities). Altogether 78 different model supernova explosions are calculated. In each case nucleosynthesis has already been determined for 200 isotopes in each of 600 to 1200 zones of the presupernova star, including the effects of time dependent convection. Here each star is exploded using a piston to give a specified final kinetic energy at infinity (typically 1.2 {times} 10{sup 51} erg), and the explosive modifications to the nucleosynthesis, including the effects of neutrino irradiation, determined. A single value of the critical {sup 12}C({sub {alpha},{gamma}}){sup 16}O reaction rate corresponding to S(300 keV) = 170 keV barns is used in all calculations. The synthesis of each isotope is discussed along with its sensitivity to model parameters. In each case, the final mass of the collapsed remnant is also determined and often found not to correspond to the location of the piston (typically the edge of the iron core), but to a ``mass cut`` farther out. This mass cut is sensitive not only to the explosion energy, but also to the presupernova structure, stellar mass, and the metallicity. Unless the explosion mechanism, for unknown reasons, provides a much larger characteristic energy in more massive stars, it appears likely that stars larger than about 30 M{sub {center_dot}} will experience considerable reimplosion of heavy elements following the initial launch of a successful shock. While such explosions will produce a viable, bright Type II supernova light curve, lacking the radioactive tail, they will have dramatically reduced yields of heavy elements and may leave black hole remnants of up to 10 and more solar masses.

  7. Aluminum-Enhanced Underwater Electrical Discharges for Steam Explosion Triggering

    Energy Technology Data Exchange (ETDEWEB)

    HOGELAND, STEVE R.; NELSON, LLOYD S.; ROTH, THOMAS CHRISTOPHER

    1999-07-01

    For a number of years, we have been initiating steam explosions of single drops of molten materials with pressure and flow (bubble growth) transients generated by discharging a capacitor bank through gold bridgewires placed underwater. Recent experimental and theoretical advances in the field of steam explosions, however, have made it important to substantially increase these relatively mild transients in water without using high explosives, if possible. To do this with the same capacitor bank, we have discharged similar energies through tiny strips of aluminum foil submerged in water. By replacing the gold wires with the aluminum strips, we were able to add the energy of the aluminum-water combustion to that normally deposited electrically by the bridgewire explosion in water. The chemical enhancement of the explosive characteristics of the discharges was substantial: when the same electrical energies were discharged through the aluminum strips, peak pressures increased as much as 12-fold and maximum bubble volumes as much as 5-fold above those generated with the gold wires. For given weights of aluminum, the magnitudes of both parameters appeared to exceed those produced by the underwater explosion of equivalent weights of high explosives.

  8. Modelling and simulation of gas explosions in complex geometries

    Energy Technology Data Exchange (ETDEWEB)

    Saeter, Olav

    1998-12-31

    This thesis presents a three-dimensional Computational Fluid Dynamics (CFD) code (EXSIM94) for modelling and simulation of gas explosions in complex geometries. It gives the theory and validates the following sub-models : (1) the flow resistance and turbulence generation model for densely packed regions, (2) the flow resistance and turbulence generation model for single objects, and (3) the quasi-laminar combustion model. It is found that a simple model for flow resistance and turbulence generation in densely packed beds is able to reproduce the medium and large scale MERGE explosion experiments of the Commission of European Communities (CEC) within a band of factor 2. The model for a single representation is found to predict explosion pressure in better agreement with the experiments with a modified k-{epsilon} model. This modification also gives a slightly improved grid independence for realistic gas explosion approaches. One laminar model is found unsuitable for gas explosion modelling because of strong grid dependence. Another laminar model is found to be relatively grid independent and to work well in harmony with the turbulent combustion model. The code is validated against 40 realistic gas explosion experiments. It is relatively grid independent in predicting explosion pressure in different offshore geometries. It can predict the influence of ignition point location, vent arrangements, different geometries, scaling effects and gas reactivity. The validation study concludes with statistical and uncertainty analyses of the code performance. 98 refs., 96 figs, 12 tabs.

  9. Green primary explosives: 5-nitrotetrazolato-N2-ferrate hierarchies.

    Science.gov (United States)

    Huynh, My Hang V; Coburn, Michael D; Meyer, Thomas J; Wetzler, Modi

    2006-07-05

    The sensitive explosives used in initiating devices like primers and detonators are called primary explosives. Successful detonations of secondary explosives are accomplished by suitable sources of initiation energy that is transmitted directly from the primaries or through secondary explosive boosters. Reliable initiating mechanisms are available in numerous forms of primers and detonators depending upon the nature of the secondary explosives. The technology of initiation devices used for military and civilian purposes continues to expand owing to variations in initiating method, chemical composition, quantity, sensitivity, explosive performance, and other necessary built-in mechanisms. Although the most widely used primaries contain toxic lead azide and lead styphnate, mixtures of thermally unstable primaries, like diazodinitrophenol and tetracene, or poisonous agents, like antimony sulfide and barium nitrate, are also used. Novel environmentally friendly primary explosives are expanded here to include cat[Fe(II)(NT)(3)(H(2)O)(3)], cat(2)[Fe(II)(NT)(4)(H(2)O)(2)], cat(3)[Fe(II)(NT)(5)(H(2)O)], and cat(4)[Fe(II)(NT)(6)] with cat = cation and NT(-) = 5-nitrotetrazolato-N(2). With available alkaline, alkaline earth, and organic cations as partners, four series of 5-nitrotetrazolato-N(2)-ferrate hierarchies have been prepared that provide a plethora of green primaries with diverse initiating sensitivity and explosive performance. They hold great promise for replacing not only toxic lead primaries but also thermally unstable primaries and poisonous agents. Strategies are also described for the systematic preparation of coordination complex green primaries based on appropriate selection of ligands, metals, and synthetic procedures. These strategies allow for maximum versatility in initiating sensitivity and explosive performance while retaining properties required for green primaries.

  10. Preliminary Study of Coupling Electromagnetic Energy to Primasheet-1000 Explosive

    Science.gov (United States)

    2013-05-01

    energy from a 160-kJ (5.5-kV) capacitor bank into the conductive zone behind the detonation front of an explosive reaction. The power supply employs a...6.5-kV, 0.010-F, 200-kJ capacitor bank . The explosive portion of the experimental apparatus consists of two copper plates (2.54 cm wide × 50 cm... capacitor bank , released, and transferred to a storage inductor. Upon initiation of the explosive, energy stored in the storage inductor is rapidly

  11. Sensor Distribution Design of Travel Time Tomography in Explosion

    Directory of Open Access Journals (Sweden)

    Yali Guo

    2014-07-01

    Full Text Available Optimal sensor distribution in explosion testing is important in saving test costs and improving experiment efficiency. Aiming at travel time tomography in an explosion, an optimizing method in sensor distribution is proposed to improve the inversion stability. The influence factors of inversion stability are analyzed and the evaluating function on optimizing sensor distribution is proposed. This paper presents a sub-region and multi-scale cell partition method, according to the characteristics of a shock wave in an explosion. An adaptive escaping particle swarm optimization algorithm is employed to achieve the optimal sensor distribution. The experimental results demonstrate that optimal sensor distribution has improved both indexes and inversion stability.

  12. Protective structure for storage and transport of explosive materials

    Energy Technology Data Exchange (ETDEWEB)

    Elshafey, M.; El Halim, Abd [Carleton Univ., Ottawa, ON (Canada). Dept. of Civil and Environmental Engineering; Contestabile, E. [Natural Resources Canada, CANMET Canadian Explosives Research Laboratory, Ottawa, ON (Canada)

    2007-07-01

    A blast attenuation concept using leaky barriers as suppressive shields was presented. The technology was designed for use in the storage, transport and processing of explosives, and can also be used to protect targets and infrastructure vulnerable to explosive attacks. Experimental studies were conducted in which various configurations of commercially-available steel modules were assembled as barrier walls. A finite element analysis was then conducted to model the blast attenuations from different explosive charges interacting with the barrier walls. Results of the study showed that the barrier walls attenuated blast pressure by 30 per cent.

  13. Experimental study on the explosive boiling in saturated liquid nitrogen

    Institute of Scientific and Technical Information of China (English)

    DONG Zhaoyi; HUAI Xiulan; LIU Dengying

    2005-01-01

    Studies on the heat-transfer characteristics of liquid nitrogen (LN2) have received increasing attention. When there is a transient high heatflux input to the LN2, explosive boiling may take place. In this paper, using the high-power short-duration pulsed laser heating method and the high-speed photography technology, the experimental result of explosive boiling in saturated LN2 is illustrated; and the two exclusive characteristics of explosive boiling in LN2: changeover time and the relative long-time adherence of the bubble cluster to the surface, are investigated.

  14. Smart phones: platform enabling modular, chemical, biological, and explosives sensing

    Science.gov (United States)

    Finch, Amethist S.; Coppock, Matthew; Bickford, Justin R.; Conn, Marvin A.; Proctor, Thomas J.; Stratis-Cullum, Dimitra N.

    2013-05-01

    Reliable, robust, and portable technologies are needed for the rapid identification and detection of chemical, biological, and explosive (CBE) materials. A key to addressing the persistent threat to U.S. troops in the current war on terror is the rapid detection and identification of the precursor materials used in development of improvised explosive devices, homemade explosives, and bio-warfare agents. However, a universal methodology for detection and prevention of CBE materials in the use of these devices has proven difficult. Herein, we discuss our efforts towards the development of a modular, robust, inexpensive, pervasive, archival, and compact platform (android based smart phone) enabling the rapid detection of these materials.

  15. Wet explosion og wheat straw and codigestion with swine manure

    DEFF Research Database (Denmark)

    Wang, Guangtao; Gavala, Hariklia N.; Skiadas, Ioannis V.

    2009-01-01

    with wheat straw in a continuous operated system was investigated, as a method to increase the efficiency of biogas plants that are based on anaerobic digestion of swine manure. Also, the pretreatment of wheat straw with the wet explosion method was studied and the efficiency of the wet explosion process...... was evaluated based on (a) the sugars release and (b) the methane potential of the pretreated wheat straw compared to that of the raw biomass. It was found that, although a high release of soluble sugars was observed after wet explosion, the methane obtained from the wet-exploded wheat straw was slightly lower...

  16. Sensor distribution design of travel time tomography in explosion.

    Science.gov (United States)

    Guo, Yali; Han, Yan; Wang, Liming; Liu, Linmao

    2014-07-15

    Optimal sensor distribution in explosion testing is important in saving test costs and improving experiment efficiency. Aiming at travel time tomography in an explosion, an optimizing method in sensor distribution is proposed to improve the inversion stability. The influence factors of inversion stability are analyzed and the evaluating function on optimizing sensor distribution is proposed. This paper presents a sub-region and multi-scale cell partition method, according to the characteristics of a shock wave in an explosion. An adaptive escaping particle swarm optimization algorithm is employed to achieve the optimal sensor distribution. The experimental results demonstrate that optimal sensor distribution has improved both indexes and inversion stability.

  17. Novel signal-amplifying fluorescent nanofibers for naked-eye-based ultrasensitive detection of buried explosives and explosive vapors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ying; La, Anthony; Ding, Yu; Liu, Yixin; Lei, Yu [Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, Storrs, CT (United States)

    2012-09-11

    A novel electrospun fluorescent nanofiberous membrane with a function like ''molecular wires'' was developed via electrospinning for the detection of ultra-trace nitro explosive vapors and buried explosives by naked eye under UV excitation. The high binding affinity between the electron-deficient nitro explosives and the sensing film results in a rapid, dramatic quenching in its fluorescence emission. A wide spectrum of nitro explosives, in particular, TNT, Tetryl, RDX, PETN and HMX could be ''visually'' detected at their sub-equilibrium vapors (less than 10 ppb, 74 ppt, 5 ppt, 7 ppt and 0.1 ppt, respectively) released from 1 ng explosives residues. Such outstanding sensing performance could be attributed to the proposed ''sandwich-like'' conformation between pyrene and phenyl pendants of PS which may allow efficient long-range energy migration similar to ''molecular wire'', thus achieving amplified fluorescence quenching. Its application for the detection of buried explosives in soil by naked eye was also demonstrated, indicating its potential application for landmine mapping. To the best of our knowledge, this is the first report about the detection of buried explosives without the use of any advanced analytical instrumentation. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Strains and Stresses Near Explosions and Earthquakes.

    Science.gov (United States)

    1986-10-15

    Herrmann Alexandria, VA 22314 Department of Earth and Atmospheric Sciences Saint Louis University Professor Otto W. Nuttli Saint Louis, MO 63156...Turnbull P.O. Box 1663 OSWR/ NED Mail Stop C 335, Group ESS3 Central Intelligence Agency Los Alamos, M 87545 CIA, Room 5G48 Washington, DC 20505 Dr. Peter

  19. Type Ia supernovae: explosions and progenitors

    Science.gov (United States)

    Kerzendorf, Wolfgang Eitel

    2011-08-01

    Supernovae are the brightest explosions in the universe. Supernovae in our Galaxy, rare and happening only every few centuries, have probably been observed since the beginnings of mankind. At first they were interpreted as religious omens but in the last half millennium they have increasingly been used to study the cosmos and our place in it. Tycho Brahe deduced from his observations of the famous supernova in 1572, that the stars, in contrast to the widely believe Aristotelian doctrine, were not immutable. More than 400 years after Tycho made his paradigm changing discovery using SN 1572, and some 60 years after supernovae had been identified as distant dying stars, two teams changed the view of the world again using supernovae. The found that the Universe was accelerating in its expansion, a conclusion that could most easily be explained if more than 70% of the Universe was some previously un-identified form of matter now often referred to as `Dark Energy'. Beyond their prominent role as tools to gauge our place in the Universe, supernovae themselves have been studied well over the past 75 years. We now know that there are two main physical causes of these cataclysmic events. One of these channels is the collapse of the core of a massive star. The observationally motivated classes Type II, Type Ib and Type Ic have been attributed to these events. This thesis, however is dedicated to the second group of supernovae, the thermonuclear explosions of degenerate carbon and oxygen rich material and lacking hydrogen - called Type Ia supernovae (SNe Ia). White dwarf stars are formed at the end of a typical star's life when nuclear burning ceases in the core, the outer envelope is ejected, with the degenerate core typically cooling for eternity. Theory predicts that such stars will self ignite when close to 1.38 Msun (called the Chandrasekhar Mass). Most stars however leave white dwarfs with 0.6 Msun, and no star leaves a remnant as heavy as 1.38 M! sun, which suggests

  20. Explosive Super-eruptions: Problems and Prejudices

    Science.gov (United States)

    Self, S.

    2010-12-01

    A super-eruption is defined as one with a magma yield > 10^15 kg (magnitude (M) 8). The term has mainly been applied to large-scale, caldera and ignimbrite-forming explosive eruptions, but it can be applied to all eruptions that released > 10^15 kg of magma. For effusive volcanism, evidence suggests that individual eruptions of this size ( > ~ 370 km^3 of typical basalt or > 450 km^3 of rhyolite flood lava) arise only during periods of LIP formation. The super-eruption concept raises interesting questions about genesis and storage of magmas that feed these vast events. Deposits of major explosive eruptions are Plinian fallout, ignimbrite sheets, and co-ignimbrite ash fall. Based on earlier suggestions and evidence, widespread outflow ignimbrite (O), co-ignimbrite ash (A), and inter-caldera ignimbrite (I) are all major components of the total super-eruption deposit and may tend towards being subequal. In super-eruption deposits, the reported volume of vent-derived Plinian eruption column fallout is often a minor component of the total volume, yet in several cases (Oruanui, Taupo, 26 ka ago, M 8.1; Bishop Tuff, 760 ka, M 8.2; Bandelier (Otowi) Tuff, 1.6 Ma, M8) it is now recognized that vent-derived columns persisted for most of the eruption. Thus, distally, the ash-fall derived from co-ignimbrite ash clouds may be mixed with contemporaneous fallout from a vertical column. Some major ignimbrites have no reported associated Plinian deposit; the huge Young Toba Tuff (YTT, 74 ka, M 8.8) is a significant example. However, the very widespread Toba ash-fall deposit constitutes ~ 40 % of the total mass of magma erupted and is presumed to be co-ignimbrite. Timing of the onset of column collapse probably controls whether a recognizable Plinian deposit is laid down. All super-eruptions probably produce extensive fallout deposits, and this is generally of vent-derived and pyroclastic-flow-derived origin. Establishing the relationships between large-scale ignimbrites and their

  1. Mirador - Atmospheric Composition

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth Science data access made simple. Atmospheric Composition is focused on the composition of Earth's atmosphere in relation to climate prediction, solar effects,...

  2. Planetary Atmospheric Electricity

    CERN Document Server

    Leblanc, F; Yair, Y; Harrison, R. G; Lebreton, J. P; Blanc, M

    2008-01-01

    This volume presents our contemporary understanding of atmospheric electricity at Earth and in other solar system atmospheres. It is written by experts in terrestrial atmospheric electricity and planetary scientists. Many of the key issues related to planetary atmospheric electricity are discussed. The physics presented in this book includes ionisation processes in planetary atmospheres, charge generation and separation, and a discussion of electromagnetic signatures of atmospheric discharges. The measurement of thunderstorms and lightning, including its effects and hazards, is highlighted by articles on ground and space based instrumentation, and new missions.Theory and modelling of planetary atmospheric electricity complete this review of the research that is undertaken in this exciting field of space science. This book is an essential research tool for space scientists and geoscientists interested in electrical effects in atmospheres and planetary systems. Graduate students and researchers who are new to t...

  3. Our shared atmosphere

    Science.gov (United States)

    Our atmosphere is a precious and fascinating resource, providing air to breath, shielding us from harmful ultraviolet radiation (UV), and maintaining a comfortable climate. Since the industrial revolution, people have significantly altered the composition of the atmosphere throu...

  4. Kamchatka and North Kurile Volcano Explosive Eruptions in 2015 and Danger to Aviation

    Science.gov (United States)

    Girina, Olga; Melnikov, Dmitry; Manevich, Alexander; Demyanchuk, Yury; Nuzhdaev, Anton; Petrova, Elena

    2016-04-01

    There are 36 active volcanoes in the Kamchatka and North Kurile, and several of them are continuously active. In 2015, four of the Kamchatkan volcanoes (Sheveluch, Klyuchevskoy, Karymsky and Zhupanovsky) and two volcanoes of North Kurile (Alaid and Chikurachki) had strong and moderate explosive eruptions. Moderate gas-steam activity was observing of Bezymianny, Kizimen, Avachinsky, Koryaksky, Gorely, Mutnovsky and other volcanoes. Strong explosive eruptions of volcanoes are the most dangerous for aircraft because they can produce in a few hours or days to the atmosphere and the stratosphere till several cubic kilometers of volcanic ash and aerosols. Ash plumes and the clouds, depending on the power of the eruption, the strength and wind speed, can travel thousands of kilometers from the volcano for several days, remaining hazardous to aircraft, as the melting temperature of small particles of ash below the operating temperature of jet engines. The eruptive activity of Sheveluch volcano began since 1980 (growth of the lava dome) and is continuing at present. Strong explosive events of the volcano occurred in 2015: on 07, 12, and 15 January, 01, 17, and 28 February, 04, 08, 16, 21-22, and 26 March, 07 and 12 April: ash plumes rose up to 7-12 km a.s.l. and extended more 900 km to the different directions of the volcano. Ashfalls occurred at Ust'-Kamchatsk on 16 March, and Klyuchi on 30 October. Strong and moderate hot avalanches from the lava dome were observing more often in the second half of the year. Aviation color code of Sheveluch was Orange during the year. Activity of the volcano was dangerous to international and local aviation. Explosive-effusive eruption of Klyuchevskoy volcano lasted from 01 January till 24 March. Strombolian explosive volcanic activity began from 01 January, and on 08-09 January a lava flow was detected at the Apakhonchich chute on the southeastern flank of the volcano. Vulcanian activity of the volcano began from 10 January. Ashfalls

  5. Quantitative risk analysis of gas explosions in tunnels; probability, effects, and consequences

    NARCIS (Netherlands)

    Weerheijm, J.; Voort, M.M. van der; Verreault, J.; Berg, A.C. van den

    2015-01-01

    Tunnel accidents with transports of combustible liquefied gases may lead to explosions. Depending on the substance involved this can be a Boiling Liquid Expanding Vapour Explosion (BLEVE), a Gas Expansion Explosion (GEE) or a gas explosion. Quantification of the risk of these scenarios is important

  6. Measures for the explosion protection for gas systems; Massnahmen des Explosionsschutzes fuer Gasanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Faber, Wolfgang [Thyssengas GmbH, Duisburg (Germany). Anlagentechnik Nord; Seemann, Albert [BG ETEM Berufsgenossenschaft Energie Textil Elektro Medienerzeugnisse, Koeln (Germany)

    2012-04-15

    In order to protect employees, technical and organizational measures for explosion protection have to be provided to gas plants with potentially explosive areas. These measures have to be documented in the explosion protection document in accordance with paragraph 6 section 1 of the regulation of industrial safety. The contribution under consideration presents an overview on the measures for explosion protection for gas systems.

  7. 29 CFR 1926.904 - Storage of explosives and blasting agents.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Storage of explosives and blasting agents. 1926.904 Section..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Blasting and the Use of Explosives § 1926.904 Storage of explosives and blasting agents. (a) Explosives and related materials...

  8. 75 FR 43906 - Hazardous Materials: Requirements for the Storage of Explosives During Transportation

    Science.gov (United States)

    2010-07-27

    ... article that is designed to function by explosion--that is, an extremely rapid release of gas or heat--or... Description of hazard Examples 1.1 Mass explosion hazard....... Instantaneous explosion of grenades, mines... projected outward rockets and mass explosion hazard. at some distance. warheads. 1.3 Fire hazard and...

  9. 30 CFR 18.62 - Tests to determine explosion-proof characteristics.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests to determine explosion-proof... Inspections and Tests § 18.62 Tests to determine explosion-proof characteristics. (a) In testing for explosion... the explosion pressure developed therefrom recorded. The point of ignition within the enclosure...

  10. Atmospheric and accelerator neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoichiro [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo Higashi-Mozumi, Kamioka, Hida-City, Gifu 506-1205 (Japan)

    2006-05-15

    Results from the atmospheric neutrino measurements are presented. Evidence for the {nu}{sub {tau}} appearance in the atmospheric neutrino events was shown by statistical methods. The long baseline oscillation experiment using man-made neutrinos has confirmed the atmospheric neutrino oscillation. The future accelerator experiments are briefly discussed.

  11. Atmospheric refraction : a history

    NARCIS (Netherlands)

    Lehn, WH; van der Werf, S

    2005-01-01

    We trace the history of atmospheric refraction from the ancient Greeks up to the time of Kepler. The concept that the atmosphere could refract light entered Western science in the second century B.C. Ptolemy, 300 years later, produced the first clearly defined atmospheric model, containing air of un

  12. Molecular Dications in Planetary Atmospheric Escape

    Directory of Open Access Journals (Sweden)

    Stefano Falcinelli

    2016-08-01

    Full Text Available Fundamental properties of multiply charged molecular ions, such as energetics, structure, stability, lifetime and fragmentation dynamics, are relevant to understand and model the behavior of gaseous plasmas as well as ionosphere and astrophysical environments. Experimental determinations of the Kinetic Energy Released (KER for ions originating from dissociations reactions, induced by Coulomb explosion of doubly charged molecular ions (molecular dications produced by double photoionization of CO2, N2O and C2H2 molecules of interest in planetary atmospheres, are reported. The KER measurement as a function of the ultraviolet (UV photon energy in the range of 28–65 eV was extracted from the electron-ion-ion coincidence spectra obtained by using tunable synchrotron radiation coupled with ion imaging techniques at the ELETTRA Synchrotron Light Laboratory Trieste, Italy. These experiments, coupled with a computational analysis based on a Monte Carlo trajectory simulation, allow assessing the probability of escape for simple ionic species in the upper atmosphere of Mars, Venus and Titan. The measured KER in the case of H+, C+, CH+, CH2+, N+, O+, CO+, N2+ and NO+ fragment ions range between 1.0 and 5.5 eV, being large enough to allow these ionic species to participate in the atmospheric escape from such planets into space. In the case of Mars, we suggest a possible explanation for the observed behavior of the O+ and CO22+ ion density profiles.

  13. Mandarin peel wastes pretreatment with steam explosion for bioethanol production.

    Science.gov (United States)

    Boluda-Aguilar, María; García-Vidal, Lidia; González-Castañeda, Fayiny Del Pilar; López-Gómez, Antonio

    2010-05-01

    The mandarin (Citrus reticulata L.) citrus peel wastes (MCPW) were studied for bioethanol production, obtaining also as co-products: d-limonene, galacturonic acid, and citrus pulp pellets (CPP). The steam explosion pretreatment was analysed at pilot plant level to decrease the hydrolytic enzymes requirements and to separate and recover the d-limonene. The effect of steam explosion on MCPW lignocellulosic composition was analyzed by means thermogravimetric analysis. The d-limonene contents and their influence on ethanol production have been also studied, while concentration of sugars, galacturonic acid and ethanol have been analysed to measure the saccharification and fermentation (HF and SSF) processes efficiency obtained by MCPW steam explosion pretreatment. Ethanol contents of 50-60L/1000kg raw MCPW can be obtained and CPP yields can be regulated by means the control of enzymes dose and the steam explosion pretreatment which can significantly reduce the enzymes requirements.

  14. Steam refining as an alternative to steam explosion.

    Science.gov (United States)

    Schütt, Fokko; Westereng, Bjørge; Horn, Svein J; Puls, Jürgen; Saake, Bodo

    2012-05-01

    In steam pretreatment the defibration is usually achieved by an explosion at the end of the treatment, but can also be carried out in a subsequent refiner step. A steam explosion and a steam refining unit were compared by using the same raw material and pretreatment conditions, i.e. temperature and time. Smaller particle size was needed for the steam explosion unit to obtain homogenous slurries without considerable amounts of solid chips. A higher amount of volatiles could be condensed from the vapour phase after steam refining. The results from enzymatic hydrolysis showed no significant differences. It could be shown that, beside the chemical changes in the cell wall, the decrease of the particle size is the decisive factor to enhance the enzymatic accessibility while the explosion effect is not required.

  15. EDS V25 containment vessel explosive qualification test report.

    Energy Technology Data Exchange (ETDEWEB)

    Rudolphi, John Joseph

    2012-04-01

    The V25 containment vessel was procured by the Project Manager, Non-Stockpile Chemical Materiel (PMNSCM) as a replacement vessel for use on the P2 Explosive Destruction Systems. It is the first EDS vessel to be fabricated under Code Case 2564 of the ASME Boiler and Pressure Vessel Code, which provides rules for the design of impulsively loaded vessels. The explosive rating for the vessel based on the Code Case is nine (9) pounds TNT-equivalent for up to 637 detonations. This limit is an increase from the 4.8 pounds TNT-equivalency rating for previous vessels. This report describes the explosive qualification tests that were performed in the vessel as part of the process for qualifying the vessel for explosive use. The tests consisted of a 11.25 pound TNT equivalent bare charge detonation followed by a 9 pound TNT equivalent detonation.

  16. Normal Strength Steel Fiber Reinforced Concrete Subjected to Explosive Loading

    Directory of Open Access Journals (Sweden)

    Mohammed Alias Yusof

    2011-07-01

    Full Text Available This paper presents the results of an experimental investigation on the behavior of plain reinforced concrete and Normal strength steel fiber reinforced concrete panels (SFRC subjected to explosive loading. The experiment were performed by the Blast Research Unit Faculty of Engineering, University Pertahanan Nasional Malaysia A total of 8 reinforced concrete panels of 600mm x 600mm x 100mm were tested. The steel fiber reinforced concrete panels incorporated three different volume fraction, 0.5%, 1.0%, and 1.5% of hooked end steel fibers. The panels were subjected to explosive loading generated by the detonation of 1kg of explosive charge located at a 0.6m standoff. This investigation indicates that the steel fiber reinforced concrete panel containing of 1.5% volume fraction gave the best performance under explosive loading.

  17. Benefits of explosive cutting for nuclear-facility applications

    Energy Technology Data Exchange (ETDEWEB)

    Hazelton, R.F.; Lundgren, R.A.; Allen, R.P.

    1981-06-01

    The study discussed in this report was a cost/benefit analysis to determine: (1) whether explosive cutting is cost effective in comparison with alternative metal sectioning methods and (2) whether explosive cutting would reduce radiation exposure or provide other benefits. Two separate approaches were pursued. The first was to qualitatively assess cutting methods and factors involved in typical sectioning cases and then compare the results for the cutting methods. The second was to prepare estimates of work schedules and potential radiation exposures for candidate sectioning methods for two hypothetical, but typical, sectioning tasks. The analysis shows that explosive cutting would be cost effective and would also reduce radiation exposure when used for typical nuclear facility sectioning tasks. These results indicate that explosive cutting should be one of the principal cutting methods considered whenever steel or similar metal structures or equipment in a nuclear facility are to be sectioned for repair or decommissioning. 13 figures, 7 tables. (DLC)

  18. Dynamics of vapor emissions at wire explosion threshold.

    Science.gov (United States)

    Belony, Paul A; Kim, Yong W

    2010-10-01

    X-pinch plasmas have been actively studied in the recent years. Numerical simulation of the ramp-up of metallic vapor emissions from wire specimens shows that under impulsive Ohmic heating the wire core invariably reaches a supercritical state before explosion. The heating rate depends sensitively on the local wire resistance, leading to highly variable vapor emission flux along the wire. To examine the vapor emission process, we have visualized nickel wire explosions by means of shock formation in air. In a single explosion as captured by shadowgraphy, there usually appear several shocks with spherical or cylindrical wave front originating from different parts of the wire. Growth of various shock fronts in time is well characterized by a power-law scaling in one form or another. Continuum emission spectra are obtained and calibrated to measure temperature near the explosion threshold. Shock front structures and vapor plume temperature are examined.

  19. Copper Nanoparticle Synthesis By The Wire Explosion Technique

    Science.gov (United States)

    Lee, Y. S.; Tay, W. H.; Yap, S. L.; Wong, C. S.; Ahmad, Z.

    2009-07-01

    Wire explosion technique is performed by passing a high power pulsed current through a metallic wire to disintegrate it through Joule heating effect. In this work, the production of nanoparticles by the wire explosion technique has been investigated. Copper wires with a diameter of 125 μm and a length of 3.5 cm are exploded in air at two different pressures, namely, 1 bar and 10-2 mbar. Particles produced from the wire explosion are collected for characterization. The characterization of the particles is done by using field emission scanning electron microscope (FE-SEM) and energy dispersive analysis by X-rays (EDAX). The morphology and chemical composition of the particles produced at the two different pressures are compared. Discharge current and optical emission spectra of the wire explosion at the two pressures are also presented.

  20. Modeling violent reaction following low speed impact on confined explosives

    Science.gov (United States)

    Curtis, John Philip; Jones, Andrew; Hughes, Christopher; Reaugh, John

    2012-03-01

    To ensure the safe storage and deployment of explosives it is important to understand the mechanisms that give rise to ignition and reaction growth in low speed impacts. The High Explosive Response to Mechanical Stimulus (HERMES) material model, integrated in the Lagrangian code LSDYNA, has been developed to model the progress of the reaction after such an impact. The low speed impact characteristics of an HMX based formulation have been examined using the AWE Steven Test. Axisymmetric simulations of an HMX explosive in the AWE Steven Test have been performed. A sensitivity study included the influence of friction, mesh resolution, and confinement. By comparing the experimental and calculated results, key model parameters which determine the explosive's response in this configuration have been identified. The model qualitatively predicts the point of ignition within the vehicle. Future refinements are discussed.

  1. Study of Associated α Particle Imaging Technique for Explosives Detection

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The explosive detecting technique about neutron mainly include the thermal neutron analysis (TNA), the fast neutron analysis (FNA), the pulse fast and thermal neutron analysis (PFTNA) and the associated α particle imaging technique about fast neutron (API).

  2. Impulsive Spot Heating and Thermal Explosion of Interstellar Grains Revisited

    CERN Document Server

    Ivlev, A V; Vasyunin, A; Caselli, P

    2015-01-01

    The problem of impulsive heating of dust grains in cold, dense interstellar clouds is revisited theoretically, with the aim to better understand leading mechanisms of the explosive desorption of icy mantles. It is rigorously shown that if the heating of a reactive medium occurs within a sufficiently localized spot (e.g., heating of mantles by cosmic rays), then the subsequent thermal evolution is characterized by a single dimensionless number $\\lambda$. This number identifies a bifurcation between two distinct regimes: When $\\lambda$ exceeds a critical value (threshold), the heat equation exhibits the explosive solution, i.e., the thermal (chemical) explosion is triggered. Otherwise, thermal diffusion causes the deposited heat to spread over the entire grain -- this regime is commonly known as the whole-grain heating. The theory allows us to find a critical combination of the physical parameters that govern the explosion of icy mantles due to impulsive spot heating. In particular, the calculations suggest tha...

  3. Thermal stability assessment of anti-explosive ammonium nitrate

    Institute of Scientific and Technical Information of China (English)

    Lijin Shen; Xuguang Wang

    2005-01-01

    The explosivity experiment of anti-explosive ammonium nitrate (AEAN) shows that the explosive characteristic of AEAN is eliminated. The adiabatic decompositions of ammonium nitrate and AEAN were investigated with an accelerating rate calorimeter (ARC). The curves of thermal decomposition temperature and pressure versus time, self-heating rate and pressure versus temperature for two systems were obtained. The kinetic parameters such as apparent activation energy and pre-exponential factor were calculated.The safety of AEAN was analyzed. It was indicated that AEAN has a higher thermal stability than AN. At the same time, it can be shown that the elimination of its explosive characteristic is due to the improvement on the thermal stability of AEAN.

  4. Research on the Low Detonation Velocity Explosives Containing Nitroesters

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Some explosive mixtures detonating at low velocity were experimentally investigated. Detonation velocity and critical diameter were measured for mixtures,being different in composition and density. An attempt of physical and chemical interpretation of results obtained is also included.

  5. Acoustic Model of the Remnant Bubble Cloud from Underwater Explosion

    Science.gov (United States)

    2012-11-01

    oceanography, Sydney, Academic Press. Underwater Explosion Research 1950, Office of Naval Re- search, Washington, D.C., Vol. 2. Wilcox, DC 1994, Turbulence Modeling for CFD, DCW Industries, Inc., La Canada CA.

  6. 30 CFR 77.1910 - Explosives and blasting; general.

    Science.gov (United States)

    2010-07-01

    ... COAL MINES Slope and Shaft Sinking § 77.1910 Explosives and blasting; general. (a) Light and power... drill holes are being charged and until after all shots have been fired. (h) The sides of the slope...

  7. Quantified Risk Assessment for Plants Producing and Storing Explosives

    Institute of Scientific and Technical Information of China (English)

    Ioannis A. Papazoglou; Panagiotis Saravanos; Ieronymos Giakoumatos; Olga N. Aneziris

    2006-01-01

    This paper presents a methodology for risk assessment of plants producing and storing explosives. The major procedural steps for quantified risk assessment (QRA) in explosive plants are the following: hazard identification, accident sequence modeling, data acquisition, accident sequence quantification, consequence assessment and integration of results.This methodology is demonstrated and applied in an explosive plant consisting of four separate units, which produce detonating cord, nitroglycol, dynamites and ammonium nitrate fuel oil (ANFO). A GIS platform is used for depicting individual risk from explosions in this plant. Total individual risk is equal to 1.0 × 10-4/y in a distance of 340m from the center of the plant, and 1.0 × 10-6/y in a distance of 390m from the center of the plant.

  8. Contributed Review: Quantum cascade laser based photoacoustic detection of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Li, J. S., E-mail: jingsong-li@ahu.edu.cn; Yu, B. [Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, Hefei (China); Fischer, H. [Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz (Germany); Chen, W. [Laboratoire de Physicochimie de l’Atmosphére, Université du Littoral Côte d’Opale, Dunkerque (France); Yalin, A. P. [Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523-1374 (United States)

    2015-03-15

    Detecting trace explosives and explosive-related compounds has recently become a topic of utmost importance for increasing public security around the world. A wide variety of detection methods and an even wider range of physical chemistry issues are involved in this very challenging area. Optical sensing methods, in particular mid-infrared spectrometry techniques, have a great potential to become a more desirable tools for the detection of explosives. The small size, simplicity, high output power, long-term reliability make external cavity quantum cascade lasers (EC-QCLs) the promising spectroscopic sources for developing analytical instrumentation. This work reviews the current technical progress in EC-QCL-based photoacoustic spectroscopy for explosives detection. The potential for both close-contact and standoff configurations using this technique is completely presented over the course of approximately the last one decade.

  9. Homicide by improvised explosive device made out of firecrackers.

    Science.gov (United States)

    Verma, S K

    2001-10-01

    Explosion is a phenomenon resulting from a sudden release of energy dissipated by: (1) blast wave; (2) translocation of objects; and (3) generation of heat. There are different types of explosive devices varying from sophisticated military bombs to simple firecrackers. These are made from various kinds of explosive materials. Sophisticated bombs are used in war and military operations to kill one's enemies, while simple firecrackers are meant for expressing joy and celebration. Here, the author reports an unusual case of homicide by the manufacture of an improvised explosive device from simple firecrackers. In India, these firecrackers are widely and freely available all over the country. The case highlights the fatal hazard resulting from easy access to these potentially dangerous devices, apart from the environmental pollution produced by their large scale use at the time of festivals in this country.

  10. On mechanism of explosive boiling in nanosecond regime

    Science.gov (United States)

    Çelen, Serap

    2016-06-01

    Today laser-based machining is used to manufacture vital parts for biomedical, aviation and aerospace industries. The aim of the paper is to report theoretical, numerical and experimental investigations of explosive boiling under nanosecond pulsed ytterbium fiber laser irradiation. Experiments were performed in an effective peak power density range between 1397 and 1450 MW/cm2 on pure titanium specimens. The threshold laser fluence for phase explosion, the pressure and temperature at the target surface and the velocity of the expulsed material were reported. A narrow transition zone was realized between the normal vaporization and phase explosion fields. The proof of heterogeneous boiling was given with detailed micrographs. A novel thermal model was proposed for laser-induced splashing at high fluences. Packaging factor and scattering arc radius terms were proposed to state the level of the melt ejection process. Results of the present investigation explain the explosive boiling during high-power laser interaction with metal.

  11. Smoothed particle hydrodynamics simulations of evaporation and explosive boiling of liquid drops in microgravity.

    Science.gov (United States)

    Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2015-07-01

    The rapid evaporation and explosive boiling of a van der Waals (vdW) liquid drop in microgravity is simulated numerically in two-space dimensions using the method of smoothed particle hydrodynamics. The numerical approach is fully adaptive and incorporates the effects of surface tension, latent heat, mass transfer across the interface, and liquid-vapor interface dynamics. Thermocapillary forces are modeled by coupling the hydrodynamics to a diffuse-interface description of the liquid-vapor interface. The models start from a nonequilibrium square-shaped liquid of varying density and temperature. For a fixed density, the drop temperature is increased gradually to predict the point separating normal boiling at subcritical heating from explosive boiling at the superheat limit for this vdW fluid. At subcritical heating, spontaneous evaporation produces stable drops floating in a vapor atmosphere, while at near-critical heating, a bubble is nucleated inside the drop, which then collapses upon itself, leaving a smaller equilibrated drop embedded in its own vapor. At the superheat limit, unstable bubble growth leads to either fragmentation or violent disruption of the liquid layer into small secondary drops, depending on the liquid density. At higher superheats, explosive boiling occurs for all densities. The experimentally observed wrinkling of the bubble surface driven by rapid evaporation followed by a Rayleigh-Taylor instability of the thin liquid layer and the linear growth of the bubble radius with time are reproduced by the simulations. The predicted superheat limit (T(s)≈0.96) is close to the theoretically derived value of T(s)=1 at zero ambient pressure for this vdW fluid.

  12. Smoothed particle hydrodynamics simulations of evaporation and explosive boiling of liquid drops in microgravity

    Science.gov (United States)

    Sigalotti, Leonardo Di G.; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2015-07-01

    The rapid evaporation and explosive boiling of a van der Waals (vdW) liquid drop in microgravity is simulated numerically in two-space dimensions using the method of smoothed particle hydrodynamics. The numerical approach is fully adaptive and incorporates the effects of surface tension, latent heat, mass transfer across the interface, and liquid-vapor interface dynamics. Thermocapillary forces are modeled by coupling the hydrodynamics to a diffuse-interface description of the liquid-vapor interface. The models start from a nonequilibrium square-shaped liquid of varying density and temperature. For a fixed density, the drop temperature is increased gradually to predict the point separating normal boiling at subcritical heating from explosive boiling at the superheat limit for this vdW fluid. At subcritical heating, spontaneous evaporation produces stable drops floating in a vapor atmosphere, while at near-critical heating, a bubble is nucleated inside the drop, which then collapses upon itself, leaving a smaller equilibrated drop embedded in its own vapor. At the superheat limit, unstable bubble growth leads to either fragmentation or violent disruption of the liquid layer into small secondary drops, depending on the liquid density. At higher superheats, explosive boiling occurs for all densities. The experimentally observed wrinkling of the bubble surface driven by rapid evaporation followed by a Rayleigh-Taylor instability of the thin liquid layer and the linear growth of the bubble radius with time are reproduced by the simulations. The predicted superheat limit (Ts≈0.96 ) is close to the theoretically derived value of Ts=1 at zero ambient pressure for this vdW fluid.

  13. Retrofitting of RC Slabs Against Explosive Loads

    Institute of Scientific and Technical Information of China (English)

    WU Chengqing; OEHLERS Deric John; XIA Shaohua

    2006-01-01

    With the increase of terrorist bomb attacks on buildings,there is a need to develop advanced retrofitting techniques to strengthen structures against blast loads.Currently,several guidelines including an Australian version for retrofitting reinforced concrete (RC) structures are available for the design of retrofitting systems against seismic and monotonic loads using steel or fibre reinforced polymer (FRP) plates that can be either adhesively bonded to the surface or near surface mounted to the concrete cover.However,none of these guidelines provide advice suitable for retrofitting structures subjected to blast loads.In this paper,numerical models are used to simulate the performance of retrofitted RC slabs subjected to blast loads.Airblast pressure distributions on the surface of the slabs estimated in a previous study are used as input in the analysis.A material damage model developedpreviously for concrete and an elastoplastic model for steel bars are employed in this research for modelling reinforced concrete behaviour due to explosive loads.The material models and blast loading are coded into a finite element computer program LS-DYNA3D to do the analysis.With the numerical model,parametric studies are conducted to investigate RC slabs retrofitted by either externally bonded or near-surface mounted plates or GFRP sheets subjected to blast loads.Discussion is made on the effectiveness of the retrofitting system for RC slabs against blast loads.

  14. Detectability of the First Cosmic Explosions

    CERN Document Server

    de Souza, R S; Johnson, J L; Whalen, D J; Mesinger, A

    2013-01-01

    We present a fully self-consistent simulation of a synthetic survey from the furthermost cosmic explosions. The appearance of the first generation of stars (Pop III) in the Universe represents a critical point during cosmic evolution signaling the end of the dark ages, a period of absence of light sources. Despite their importance, there is no confirmed detection of Pop III stars so far. A fraction of these primordial stars are expected to die as pair-instability supernovae (PISN), and should be bright enough to be observed up to a few hundred million years after the Big Bang. While the quest for Pop III stars continues, detailed theoretical models and computer simulations serve as a testbed for their observability. With the upcoming near-infrared missions, estimates of the feasibility of detecting PISN are not only timely but imperative. To address this problem, we combine state of art cosmological and radiative simulations into a complete and self-consistent framework which includes detailed features of the...

  15. A false explosion for a real intervention

    CERN Multimedia

    2006-01-01

    Together with their French and Swiss counterparts, the CERN Fire Brigade carried out a spectacular exercise in the LHCb cavern. It was designed to test the coordination of the fire and rescue services of the Organization's two Host States. Inside a temporary medical station set up above ground, the emergency teams deliver medical care to the injured before they are taken to hospital.An accident victim in the underground cavern about to be evacuated. 'I was taking a group of visitors on a tour of the LHCb cavern when there was a huge explosion and I suffered serious burns to the thorax. The rescue services arrived on the scene and I was taken to the medical station'. Fortunately, this is not an account of real events but a scenario given to one of 20 volunteer 'victims' who took part in a large-scale safety exercise in the LHCb cavern. On 26 September, the CERN Fire Brigade organised a spectacular exercise in collaboration with the CERN Medical Service, the Fire and Rescue Service (SDIS) of the Department of t...

  16. Color camera pyrometry for high explosive detonations

    Science.gov (United States)

    Densmore, John; Biss, Matthew; Homan, Barrie; McNesby, Kevin

    2011-06-01

    Temperature measurements of high-explosive and combustion processes are difficult because of the speed and environment of the events. We have characterized and calibrated a digital high-speed color camera that may be used as an optical pyrometer to overcome these challenges. The camera provides both high temporal and spatial resolution. The color filter array of the sensor uses three color filters to measure the spectral distribution of the imaged light. A two-color ratio method is used to calculate a temperature using the color filter array raw image data and a gray-body assumption. If the raw image data is not available, temperatures may be calculated from processed images or movies depending on proper analysis of the digital color imaging pipeline. We analyze three transformations within the pipeline (demosaicing, white balance, and gamma-correction) to determine their effect on the calculated temperature. Using this technique with a Vision Research Phantom color camera, we have measured the temperature of exploded C-4 charges. The surface temperature of the resulting fireball rapidly increases after detonation and then decayed to a constant value of approximately 1980 K. Processed images indicates that the temperature remains constant until the light intensity decreased below the background value.

  17. Coherent transport over an explosive percolation lattice

    Science.gov (United States)

    Yalçınkaya, İ.; Gedik, Z.

    2017-04-01

    We investigate coherent transport over a finite square lattice in which the growth of bond percolation clusters are subjected to an Achlioptas type selection process, i.e. whether a bond will be placed or not depends on the sizes of clusters it may potentially connect. Different than the standard percolation where the growth of discrete clusters are completely random, clusters in this case grow in correlation with one another. We show that certain values of correlation strength, if chosen in a way to suppress the growth of the largest cluster which actually results in an explosive growth later on, may lead to more efficient transports than in the case of standard percolation, satisfied that certain fraction of total possible bonds are present in the lattice. In this case transport efficiency increases as a power function of bond fraction in the vicinity of where effective transport begins. It turns out that the higher correlation strengths may also reduce the efficiency as well. We also compare our results with those of the incoherent transport and examine the average spreading of eigenstates for different bond fractions. In this way, we demonstrate that structural differences of discrete clusters due to different correlations result in different localization properties.

  18. How supernova explosions power galactic winds

    CERN Document Server

    Creasey, Peter; Bower, Richard G

    2012-01-01

    Feedback from supernovae is an essential aspect of galaxy formation. In order to improve subgrid models of feedback we perform a series of numerical experiments to investigate how supernova explosions power galactic winds. We use the Flash hydrodynamic code to model a simplified ISM, including gravity, hydrodynamics, radiative cooling above 10,000 K, and star formation that reproduces the Kennicutt-Schmidt relation. By simulating a small patch of the ISM in a tall box perpendicular to the disk, we obtain sub-parsec resolution allowing us to resolve individual supernova events and we investigate how the wind properties depend on those of the ISM and the galaxy. We find that outflows are more efficient in disks with lower surface densities or gas fractions. A simple model in which the warm cloudy medium is the barrier that limits the expansion of blast waves reproduces the scaling of outflow properties with disk parameters at high star formation rates. The scaling we find sets the investigation of galaxy winds ...

  19. Microstructural Characterization of Plastic Bonded Explosives

    Science.gov (United States)

    Yeager, John; Hooks, Daniel; Bahr, David

    2010-03-01

    Plastic bonded explosives (PBX), a mixture of hard, anisotropic grains in a compliant matrix, represent an interesting case for understanding composite mechanical response and failure. PBX 9501 (0.95 cyclotetramethylene tetranitramine [HMX], 0.05 polymer binder) is relatively safe formulation of HMX, which is thought to be due to the high compliance of the binder. Crack formation between the crystals and the binder has been observed in this and many other systems and is usually the failure mechanism of PBX materials under mechanical strain. Thus the properties of the crystal-binder interface are important for development of failure models. The interfacial properties of PBX 9501 as well as an inert simulant have been characterized using several methods. Surface energies of several polymer binders and various crystallographic faces of HMX have been determined with a contact angle measurement technique, allowing for thermodynamic work of adhesion at the interface to be calculated. Surface roughness of the crystal faces has been measured with atomic force microscopy (AFM). PBX formulation methods are suspected to lead to a diffuse interface, but the nature of this interface has not previously been characterized in detail. Here, the coherence of the interface has been studied using tapping mode AFM for modulus contrast, and these findings are correlated with results from diffraction techniques.

  20. Photoluminescent Detection of Dissolved Underwater Trace Explosives

    Directory of Open Access Journals (Sweden)

    Tye Langston

    2010-01-01

    Full Text Available A portable, rapid, and economical method for in situ trace explosive detection in aqueous solutions was demonstrated using photoluminescence. Using europium/thenoyltrifluoroacetone as the reagent, dissolved nitroglycerin was fluorescently tagged and detected in seawater solutions without sample preparation, drying, or preconcentration. The chemical method was developed in a laboratory setting and demonstrated in a flow-through configuration using lightweight, inexpensive, commercial components by directly injecting the reagents into a continually flowing seawater stream using a small amount of organic solvent (approximately 8% of the total solution. Europium's vulnerability to vibrational fluorescence quenching by water provided the mode of detection. Without nitroglycerin in the seawater solution, the reagent's fluorescence was quenched, but when dissolved nitroglycerin was present, it displaced the water molecules from the europium/thenoyltrifluoroacetone compound and restored fluorescence. This effort focused on developing a seawater sensor, but performance comparisons were made to freshwater. The method was found to perform better in freshwater and it was shown that certain seawater constituents (such as calcium have an adverse impact. However, the concentrations of these constituents are not expected to vary significantly from the natural seawater used herein.