WorldWideScience

Sample records for atmospheric energy redistribution

  1. Solar Atmospheric Magnetic Energy Coupling: Radiative Redistribution Efficiency

    Science.gov (United States)

    Orange, N. Brice; Gendre, Bruce; Morris, David C.; Chesny, David

    2016-07-01

    Essential to many outstanding solar and stellar physics problems is elucidating the dynamic magnetic to radiative energy coupling of their atmospheres. Using three years of Solar Dynamics Observatory's Atmospheric Imaging Assembly and Heliosemic Magnetic Imager data of gross atmospheric feature classes, an investigation of magnetic and radiative energy redistribution is detailed. Self-consistent radiative to temperature distributions, that include magnetic weighting, of each feature class is revealed via utilizing the upper limit of thermodynamic atmospheric conditions provided by Active Region Cores (ARCs). Distinctly interesting is that our radiative energy distributions, though indicative to a linearly coupling with temperature, highlight the manifestation of diffuse ``unorganized" emission at upper transition region -- lower coronal regimes. Results we emphasize as correlating remarkably with emerging evidence for similar dependencies of magnetic energy redistribution efficiency with temperature, i.e., linearly with an embedded diffuse emitting region. We present evidence that our magnetic and radiative energy coupling descriptions are consistent with established universal scaling laws for large solar atmospheric temperature gradients and descriptions to the unresolved emission, as well as their insight to a potential origin of large variability in their previous reports. Finally, our work casts new light on the utility of narrowband observations as ad hoc tools for detailing solar atmospheric thermodynamic profiles, thus, presenting significant provisions to the field of solar and stellar physics, i.e., nature of coronae heating.

  2. The Effects of Irradiation on Hot Jovian Atmospheres: Heat Redistribution and Energy Dissipation

    CERN Document Server

    Perna, Rosalba; Pont, Frederic

    2012-01-01

    Hot Jupiters, due to the proximity to their parent stars, are subjected to a strong irradiating flux which governs their radiative and dynamical properties. We compute a suite of 3D circulation models with dual-band radiative transfer, exploring a relevant range of irradiation temperatures (770K <~ Tirr <~ 3000K), both with and without temperature inversions. We find that, for irradiation temperatures Tirr <~ 2000K, heat redistribution is very efficient, producing comparable day- and night-side fluxes. For Tirr ~ 2200-2400K, redistribution starts to break down, resulting in a high day-night flux contrast. Our simulations support the physical intuition that the efficiency of heat transfer is primarily governed by the ratio of advective to radiative timescales. For the same Tirr, models with temperature inversions display a higher day-night contrast, but we find this opacity-driven effect to be secondary to irradiation. The hotspot offset from the substellar point is large when insolation is weak and r...

  3. On the Absorption and Redistribution of Energy in Irradiated Planets

    CERN Document Server

    Hansen, Brad

    2008-01-01

    We present a sequence of toy models for irradiated planet atmospheres, in which the effects of geometry and energy redistribution are modelled self-consistently. We use separate but coupled grey atmosphere models to treat the ingoing stellar irradiation and outgoing planetary reradiation. We investigate how observed quantities such as full phase secondary eclipses and orbital phase curves depend on various important parameters, such as the depth at which irradiation is absorbed and the depth at which energy is redistributed. We also compare our results to the more detailed radiative transfer models in the literature, in order to understand how those map onto the toy model parameter space. Such an approach can prove complementary to more detailed calculations, in that they demonstrate, in a simple way, how the solutions change depending on where, and how, energy redistribution occurs. As an example of the value of such models, we demonstrate how energy redistribution and temperature equilibration at moderate o...

  4. Atmospheric heat redistribution and collapse on tidally locked rocky planets

    CERN Document Server

    Wordsworth, Robin

    2014-01-01

    Atmospheric collapse is likely to be of fundamental importance to tidally locked rocky exoplanets but remains understudied. Here, general results on the heat transport and stability of tidally locked terrestrial-type atmospheres are reported. First, the problem is modeled with an idealized 3D general circulation model (GCM) with gray gas radiative transfer. It is shown that over a wide range of parameters the atmospheric boundary layer, rather than the large-scale circulation, is the key to understanding the planetary energy balance. Through a scaling analysis of the interhemispheric energy transfer, theoretical expressions for the day-night temperature difference and surface wind speed are created that reproduce the GCM results without tuning. Next, the GCM is used with correlated-k radiative transfer to study heat transport for two real gases (CO2 and CO). For CO2, empirical formulae for the collapse pressure as a function of planetary mass and stellar flux are produced, and critical pressures for atmospher...

  5. Partial redistribution in 3D non-LTE radiative transfer in solar atmosphere models

    CERN Document Server

    Sukhorukov, Andrii V

    2016-01-01

    Resonance spectral lines such as H I Ly {\\alpha}, Mg II h&k, and Ca II H&K that form in the solar chromosphere are influenced by the effects of 3D radiative transfer as well as partial redistribution (PRD). So far no one has modeled these lines including both effects simultaneously owing to the high computing demands of existing algorithms. Such modeling is however indispensable for accurate diagnostics of the chromosphere. We present a computationally tractable method to treat PRD scattering in 3D model atmospheres using a 3D non-LTE radiative transfer code. To make the method memory-friendly, we use the hybrid approximation of Leenaarts et al. (2012) for the redistribution integral. To make it fast, we use linear interpolation on equidistant frequency grids. We verify our algorithm against computations with the RH code and analyze it for stability, convergence, and usefulness of acceleration using model atoms of Mg II with the h&k lines and H I with the Ly {\\alpha} line treated in PRD. A typical...

  6. Symmetry, vibrational energy redistribution and vibronic coupling: The internal conversion processes of cycloketones

    DEFF Research Database (Denmark)

    Kuhlman, Thomas Scheby; Sauer, Stephan P.A.; Sølling, Theis I.

    2012-01-01

    In this paper, we discern two basic mechanisms of internal conversion processes; one direct, where immediate activation of coupling modes leads to fast population transfer and one indirect, where internal vibrational energy redistribution leads to equidistribution of energy, i.e., ergodicity...

  7. Biomass burning drives atmospheric nutrient redistribution within forested peatlands in Borneo

    Science.gov (United States)

    Ponette-González, Alexandra G.; Curran, Lisa M.; Pittman, Alice M.; Carlson, Kimberly M.; Steele, Bethel G.; Ratnasari, Dessy; Mujiman; Weathers, Kathleen C.

    2016-08-01

    Biomass burning plays a critical role not only in atmospheric emissions, but also in the deposition and redistribution of biologically important nutrients within tropical landscapes. We quantified the influence of fire on biogeochemical fluxes of nitrogen (N), phosphorus (P), and sulfur (S) in a 12 ha forested peatland in West Kalimantan, Indonesia. Total (inorganic + organic) N, {{{{NO}}}3}- -N, {{{{NH}}}4}+ -N, total P, {{{{PO}}}4}3- -P, and {{{{SO}}}4}2- -S fluxes were measured in throughfall and bulk rainfall weekly from July 2013 to September 2014. To identify fire events, we used concentrations of particulate matter (PM10) and MODIS Active Fire Product counts within 20 and 100 km radius buffers surrounding the site. Dominant sources of throughfall nutrient deposition were explored using cluster and back-trajectory analysis. Our findings show that this Bornean peatland receives some of the highest P (7.9 kg {{{{PO}}}4}3- -P ha-1yr-1) and S (42 kg {{{{SO}}}4}2- -S ha-1yr-1) deposition reported globally, and that N deposition (8.7 kg inorganic N ha-1yr-1) exceeds critical load limits suggested for tropical forests. Six major dry periods and associated fire events occurred during the study. Seventy-eight percent of fires within 20 km and 40% within 100 km of the site were detected within oil palm plantation leases (industrial agriculture) on peatlands. These fires had a disproportionate impact on below-canopy nutrient fluxes. Post-fire throughfall events contributed >30% of the total inorganic N ({{{{NO}}}3}- -N + {{{{NH}}}4}+ -N) and {{{{PO}}}4}3- -P flux to peatland soils during the study period. Our results indicate that biomass burning associated with agricultural peat fires is a major source of N, P, and S in throughfall and could rival industrial pollution as an input to these systems during major fire years. Given the sheer magnitude of fluxes reported here, fire-related redistribution of nutrients may have significant fertilizing or acidifying effects on

  8. Channels of energy redistribution in short-pulse laser interactions with metal targets

    Science.gov (United States)

    Zhigilei, Leonid V.; Ivanov, Dmitriy S.

    2005-07-01

    The kinetics and channels of laser energy redistribution in a target irradiated by a short, 1 ps, laser pulse is investigated in computer simulations performed with a model that combines molecular dynamics (MD) simulations with a continuum description of the laser excitation and relaxation of the conduction band electrons, based on the two-temperature model (TTM). The energy transferred from the excited electrons to the lattice splits into several parts, namely the energy of the thermal motion of the atoms, the energy of collective atomic motions associated with the relaxation of laser-induced stresses, the energy carried away from the surface region of the target by a stress wave, the energy of quasi-static anisotropic stresses, and, at laser fluences above the melting threshold, the energy transferred to the latent heat of melting and then released upon recrystallization. The presence of the non-thermal channels of energy redistribution (stress wave and quasi-static stresses), not accounted for in the conventional TTM model, can have important implications for interpretation of experimental results on the kinetics of thermal and mechanical relaxation of a target irradiated by a short laser pulse as well as on the characteristics of laser-induced phase transformations. The fraction of the non-thermal energy in the total laser energy partitioning increases with increasing laser fluence.

  9. Phonon Excitation and Energy Redistribution in Phonon Space for Energy Dissipation and Transport in Lattice Structure with Nonlinear Dispersion

    Science.gov (United States)

    Xu, Zhi-Jie

    2015-01-01

    We first propose fundamental solutions of wave propagation in dispersive chain subject to a localized initial perturbation in the displacement. Analytical solutions are obtained for both second order nonlinear dispersive chain and homogenous harmonic chain using stationary phase approximation. Solution is also compared with numerical results from molecular dynamics (MD) simulations. Locally dominant phonon modes (k-space) are introduced based on these solutions. These locally defined spatially and temporally varying phonon modes k(x, t) are critical to the concept of the local thermodynamic equilibrium (LTE). Wave propagation accompanying with the nonequilibrium dynamics leads to the excitation of these locally defined phonon modes. It is found that the system energy is gradually redistributed among these excited phonons modes (k-space). This redistribution process is only possible with nonlinear dispersion and requires a finite amount of time to achieve a steady state distribution. This time scale is dependent on the spatial distribution (or frequency content) of the initial perturbation and the dispersion relation. Sharper and more concentrated perturbation leads to a faster energy redistribution and dissipation. This energy redistribution generates localized phonons with various frequencies that can be important for phonon-phonon interaction and energy dissipation in nonlinear systems. Depending on the initial perturbation and temperature, the time scale associated with this energy distribution can be critical for energy dissipation compared to the Umklapp scattering process. Ballistic type of heat transport along the harmonic chain reveals that at any given position, the lowest mode (k = 0) is excited first and gradually expanding to the highest mode (kmax(x,t)), where kmax(x,t) can only asymptotically approach the maximum mode kB of the first Brillouin zone (kmax(x,t) → kB). No energy distributed into modes with kmax(x,t) proportional to the sound speed

  10. The anisotropic redistribution of free energy for gyrokinetic plasma turbulence in a Z-pinch

    CERN Document Server

    Navarro, Alejandro Banon; Jenko, Frank

    2015-01-01

    For a Z-pinch geometry, we report on the nonlinear redistribution of free energy across scales perpendicular to the magnetic guide field, for a turbulent plasma described in the framework of gyrokinetics. The analysis is performed using a local flux-surface approximation, in a regime dominated by electrostatic fluctuations driven by the entropy mode, with both ion and electron species being treated kinetically. To explore the anisotropic nature of the free energy redistribution caused by the emergence of zonal flows, we use a polar coordinate representation for the field-perpendicular directions and define an angular density for the scale flux. Positive values for the classically defined (angle integrated) scale flux, which denote a direct energy cascade, are shown to be also composed of negative angular sections, a fact that impacts our understanding of the backscatter of energy and the way in which it enters the modeling of sub-grid scales for turbulence. A definition for the flux of free energy across each...

  11. Twin boundary energy and characterization of charge redistribution near the twin boundaries of cupperate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Mahnaz [Faculty of Physics, University of Kashan, Kashan (Iran, Islamic Republic of); Khoshnevisan, Bahram, E-mail: m.mohammadi_2@grad.kashanu.ac.ir [Faculty of Physics, University of Kashan, Kashan (Iran, Islamic Republic of); Javad Hashemifar, S. [Department of Physics, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)

    2014-12-15

    Highlights: • Ab initio simulation for twin boundary energy in YBCO system for the 1st time. • Study of the twin boundary energy variation versus the inserted strain. • Proportionality of twin lamella width by the inserted strain. • Local charge transfer and charge redistribution on the twin planes. • Total DOSs for the twined system at Fermi level is higher than the untwined one. • This explain the effect of twin boundaries in agreement with experimental data. - Abstract: Ab-initio calculations under general gradient approximation have been employed for the first time to find out twin boundary energy, γ, in twined YBCO systems. Despite a vast discrepancy in reported experimental values, our results show that the γ value falls in the range of 40–85 mJ/m{sup 2}. On the other hand, functional form of γ versus inserted strains shows that the mean value for the twin width lamella would tend to approach zero as the strain goes to zero. We have also investigated the local charge transfer and the modification of the electronic states of the basal and twin planes in YBCO, because the charge redistribution at interfaces can modify transport across the grains considerably and determine the applicability of high-T{sub c} superconductors in the electronic applications. The total density of electronic states at the Fermi level for the twined system is enhanced in comparison with the untwined one. Our results explain the influence of twin boundaries in superconductive properties of YBCO, in experimental situations.

  12. Polarized scattering with Paschen-Back effect, hyperfine structure, and partial frequency redistribution in magnetized stellar atmospheres

    CERN Document Server

    Sowmya, K; Stenflo, J O; Sampoorna, M

    2015-01-01

    $F$-state interference significantly modifies the polarization produced by scattering processes in the solar atmosphere. Its signature in the emergent Stokes spectrum in the absence of magnetic fields is depolarization in the line core. In the present paper, we derive the partial frequency redistribution (PRD) matrix that includes interference between the upper hyperfine structure states of a two-level atom in the presence of magnetic fields of arbitrary strengths. The theory is applied to the Na I D$_2$ line that is produced by the transition between the lower $J=1/2$ and upper $J=3/2$ states which split into $F$ states because of the coupling with the nuclear spin $I_s=3/2$. The properties of the PRD matrix for the single-scattering case is explored, in particular, the effects of the magnetic field in the Paschen--Back regime and their usefulness as a tool for the diagnostics of solar magnetic fields.

  13. Polarized Scattering with Paschen-Back Effect, Hyperfine Structure, and Partial Frequency Redistribution in Magnetized Stellar Atmospheres

    Science.gov (United States)

    Sowmya, K.; Nagendra, K. N.; Stenflo, J. O.; Sampoorna, M.

    2014-05-01

    F-state interference significantly modifies the polarization produced by scattering processes in the solar atmosphere. Its signature in the emergent Stokes spectrum in the absence of magnetic fields is depolarization in the line core. In the present paper, we derive the partial frequency redistribution (PRD) matrix that includes interference between the upper hyperfine structure states of a two-level atom in the presence of magnetic fields of arbitrary strengths. The theory is applied to the Na I D2 line that is produced by the transition between the lower J = 1/2 and upper J = 3/2 states which split into F states because of the coupling with the nuclear spin Is = 3/2. The properties of the PRD matrix for the single-scattering case is explored, in particular, the effects of the magnetic field in the Paschen-Back regime and their usefulness as a tool for the diagnostics of solar magnetic fields.

  14. Quantum dynamics simulations of energy redistribution in HO-SO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Stewart K., E-mail: S.K.Reed@physics.org [School of Chemistry, University of Leeds, Leeds LS2 9JT (United Kingdom); Glowacki, David R., E-mail: drglowacki@yahoo.com [School of Chemistry, University of Leeds, Leeds LS2 9JT (United Kingdom); Shalashilin, Dmitrii V., E-mail: D.Shalashilin@leeds.ac.uk [School of Chemistry, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2010-05-12

    Graphical abstract: This paper presents quantum dynamics simulations using the coupled coherent states method of the dissociation of HO-SO{sub 2} and compares the results to those from classical dynamics calculations. The pictogram illustrates the time dependence of the energy in the HO-SO{sub 2} stretch mode and a typical square modulus of a morse wave function in phase space. - Abstract: Quantum dynamics simulations of HO-SO{sub 2} using the coupled coherent state methodology are described in detail. Motivated by the assumption of fast intramolecular vibrational energy redistribution (IVR) within the nascent collision complex in measurements of the association rate coefficients using the 'proxy' method, we examine IVR within HO-SO{sub 2}. Like our earlier classical dynamics calculations [D.R. Glowacki, S.K. Reed, M.J. Pilling, D.V. Shalashilin, E. Martinez-Nunez, Phys. Chem. Chem. Phys. 11 (2009) 963], the quantum dynamics results suggest that OH vibrational excitation is deactivated within HO-SO{sub 2} prior to its dissociation, although the quantum IVR rates are greater than those in the classical simulations. The ubiquitous question of zero point energy in classical dynamics calculations is also considered. Reducing the quantity of zero point energy included in classical dynamics calculations decreases the HO-SO{sub 2} dissociation rate and increases the deactivation of the OH stretch thereby producing vibrational energy distributions for the dissociated OH that more closely resemble those from the quantum dynamics calculations.

  15. A Budyko framework for estimating how spatial heterogeneity and lateral moisture redistribution affect average evapotranspiration rates as seen from the atmosphere

    Science.gov (United States)

    Rouholahnejad Freund, Elham; Kirchner, James W.

    2017-01-01

    Most Earth system models are based on grid-averaged soil columns that do not communicate with one another, and that average over considerable sub-grid heterogeneity in land surface properties, precipitation (P), and potential evapotranspiration (PET). These models also typically ignore topographically driven lateral redistribution of water (either as groundwater or surface flows), both within and between model grid cells. Here, we present a first attempt to quantify the effects of spatial heterogeneity and lateral redistribution on grid-cell-averaged evapotranspiration (ET) as seen from the atmosphere over heterogeneous landscapes. Our approach uses Budyko curves, as a simple model of ET as a function of atmospheric forcing by P and PET. From these Budyko curves, we derive a simple sub-grid closure relation that quantifies how spatial heterogeneity affects average ET as seen from the atmosphere. We show that averaging over sub-grid heterogeneity in P and PET, as typical Earth system models do, leads to overestimations of average ET. For a sample high-relief grid cell in the Himalayas, this overestimation bias is shown to be roughly 12 %; for adjacent lower-relief grid cells, it is substantially smaller. We use a similar approach to derive sub-grid closure relations that quantify how lateral redistribution of water could alter average ET as seen from the atmosphere. We derive expressions for the maximum possible effect of lateral redistribution on average ET, and the amount of lateral redistribution required to achieve this effect, using only estimates of P and PET in possible source and recipient locations as inputs. We show that where the aridity index P/PET increases with altitude, gravitationally driven lateral redistribution will increase average ET (and models that overlook lateral redistribution will underestimate average ET). Conversely, where the aridity index P/PET decreases with altitude, gravitationally driven lateral redistribution will decrease average

  16. Energy spectra of high energy atmospheric neutrinos

    Science.gov (United States)

    Mitsui, K.; Minorikawa, Y.

    1985-01-01

    Focusing on high energy neutrinos ( or = 1 TeV), a new calculation of atmospheric neutrino intensities was carried out taking into account EMC effects observed in P-A collisions by accelerator, recent measurement of primary cosmic ray spectrum and results of cosmic ray muon spectrum and charge ratio. Other features of the present calculation are (1) taking into account kinematics of three body decays of kaons and charm particles in diffusion equations and (2) taking into account energy dependence of kaon production.

  17. High-energy atmospheric neutrinos

    CERN Document Server

    Sinegovsky, S I; Sinegovskaya, T S

    2010-01-01

    High-energy neutrinos, arising from decays of mesons that were produced through the cosmic rays collisions with air nuclei, form unavoidable background noise in the astrophysical neutrino detection problem. The atmospheric neutrino flux above 1 PeV should be supposedly dominated by the contribution of charmed particle decays. These (prompt) neutrinos originated from decays of massive and shortlived particles, $D^\\pm$, $D^0$, $\\bar{D}{}^0$, $D_s^\\pm$, $\\Lambda^+_c$, form the most uncertain fraction of the high-energy atmospheric neutrino flux because of poor explored processes of the charm production. Besides, an ambiguity in high-energy behavior of pion and especially kaon production cross sections for nucleon-nucleus collisions may affect essentially the calculated neutrino flux. There is the energy region where above flux uncertainties superimpose. A new calculation presented here reveals sizable differences, up to the factor of 1.8 above 1 TeV, in muon neutrino flux predictions obtained with usage of known...

  18. Polarized scattering with Paschen-Back effect, hyperfine structure, and partial frequency redistribution in magnetized stellar atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Sowmya, K.; Nagendra, K. N.; Sampoorna, M. [Indian Institute of Astrophysics, Koramangala, Bengaluru (India); Stenflo, J. O., E-mail: ksowmya@iiap.res.in, E-mail: knn@iiap.res.in, E-mail: sampoorna@iiap.res.in, E-mail: stenflo@astro.phys.ethz.ch [Institute of Astronomy, ETH Zurich, CH-8093 Zurich (Switzerland)

    2014-05-10

    F-state interference significantly modifies the polarization produced by scattering processes in the solar atmosphere. Its signature in the emergent Stokes spectrum in the absence of magnetic fields is depolarization in the line core. In the present paper, we derive the partial frequency redistribution (PRD) matrix that includes interference between the upper hyperfine structure states of a two-level atom in the presence of magnetic fields of arbitrary strengths. The theory is applied to the Na I D{sub 2} line that is produced by the transition between the lower J = 1/2 and upper J = 3/2 states which split into F states because of the coupling with the nuclear spin I{sub s} = 3/2. The properties of the PRD matrix for the single-scattering case is explored, in particular, the effects of the magnetic field in the Paschen-Back regime and their usefulness as a tool for the diagnostics of solar magnetic fields.

  19. Spectral redistribution of energy and the origin of inverse cascade for gyrokinetics in the sub-Larmor range

    CERN Document Server

    Plunk, G G

    2010-01-01

    It is known that an inverse cascade of energy occurs in two-dimensional neutral fluid turbulence and also, under certain conditions, in magnetized plasma turbulence. The reason for this phenomenon in both cases is due to the existence of two quadratic invariants. The crucial feature of these invariants is that they are {\\em mutually-constraining} in the sense that the spectral redistribution of one is constrained by the other. The gyrokinetic equation, a kinetic equation for magnetized plasma dynamics, has two collisionless quadratic invariants when restricted to two dimensions (in position-space). In this paper, we consider the consequences of this fact for scales smaller than the thermal Larmor radius, where turbulent fluctuations exist, with equal importance, in the position and velocity space dependence of the kinetic distribution function. Using a spectral formalism for position and velocity space, we find that the gyrokinetic invariants are mutually constraining with respect to spectral redistribution o...

  20. Relaxation dynamics in quantum dissipative systems: the microscopic effect of intramolecular vibrational energy redistribution.

    Science.gov (United States)

    Uranga-Piña, L; Tremblay, J C

    2014-08-21

    We investigate the effect of inter-mode coupling on the vibrational relaxation dynamics of molecules in weak dissipative environments. The simulations are performed within the reduced density matrix formalism in the Markovian regime, assuming a Lindblad form for the system-bath interaction. The prototypical two-dimensional model system representing two CO molecules approaching a Cu(100) surface is adapted from an ab initio potential, while the diatom-diatom vibrational coupling strength is systematically varied. In the weak system-bath coupling limit and at low temperatures, only first order non-adiabatic uni-modal coupling terms contribute to surface-mediated vibrational relaxation. Since dissipative dynamics is non-unitary, the choice of representation will affect the evolution of the reduced density matrix. Two alternative representations for computing the relaxation rates and the associated operators are thus compared: the fully coupled spectral basis, and a factorizable ansatz. The former is well-established and serves as a benchmark for the solution of Liouville-von Neumann equation. In the latter, a contracted grid basis of potential-optimized discrete variable representation is tailored to incorporate most of the inter-mode coupling, while the Lindblad operators are represented as tensor products of one-dimensional operators, for consistency. This procedure results in a marked reduction of the grid size and in a much more advantageous scaling of the computational cost with respect to the increase of the dimensionality of the system. The factorizable method is found to provide an accurate description of the dissipative quantum dynamics of the model system, specifically of the time evolution of the state populations and of the probability density distribution of the molecular wave packet. The influence of intra-molecular vibrational energy redistribution appears to be properly taken into account by the new model on the whole range of coupling strengths. It

  1. The low energy atmospheric antiproton albedo

    Science.gov (United States)

    Cole, J. B.; Ormes, J. F.

    1989-01-01

    The flux of albedo antiprotons in the 100-1000 MeV kinetic energy range produced by the cosmic ray primaries in the atmosphere is calculated. It is shown that this is not a significant background to measurements of the low energy anti-proton cosmic ray flux.

  2. Atmospheric energy for subsurface life on Mars?

    Science.gov (United States)

    Weiss, B. P.; Yung, Y. L.; Nealson, K. H.

    2000-01-01

    The location and density of biologically useful energy sources on Mars will limit the biomass, spatial distribution, and organism size of any biota. Subsurface Martian organisms could be supplied with a large energy flux from the oxidation of photochemically produced atmospheric H(2) and CO diffusing into the regolith. However, surface abundance measurements of these gases demonstrate that no more than a few percent of this available flux is actually being consumed, suggesting that biological activity driven by atmospheric H(2) and CO is limited in the top few hundred meters of the subsurface. This is significant because the available but unused energy is extremely large: for organisms at 30-m depth, it is 2,000 times previous estimates of hydrothermal and chemical weathering energy and far exceeds the energy derivable from other atmospheric gases. This also implies that the apparent scarcity of life on Mars is not attributable to lack of energy. Instead, the availability of liquid water may be a more important factor limiting biological activity because the photochemical energy flux can only penetrate to 100- to 1,000-m depth, where most H(2)O is probably frozen. Because both atmospheric and Viking lander soil data provide little evidence for biological activity, the detection of short-lived trace gases will probably be a better indicator of any extant Martian life.

  3. Ultrafast energy redistribution in C(60) fullerenes: a real time study by two-color femtosecond spectroscopy.

    Science.gov (United States)

    Shchatsinin, Ihar; Laarmann, Tim; Zhavoronkov, Nick; Schulz, Claus Peter; Hertel, Ingolf V

    2008-11-28

    Strong-field excitation and energy redistribution dynamics of C(60) fullerenes are studied by means of time-resolved mass spectrometry in a two-color femtosecond pump-probe setup. Resonant pre-excitation of the electronic system via the first dipole-allowed HOMO-->LUMO+1(t(1g)) (HOMO denotes highest occupied molecular orbital and LUMO denotes lowest unoccupied molecular orbital) transition with ultrashort 25 fs pulses at 399 nm of some 10(12) W cm(-2) results in a highly nonequilibrium distribution of excited electrons and vibrational modes in the neutral species. The subsequent coupling among the electronic and nuclear degrees of freedom is monitored by probing the system with time-delayed 27 fs pulses at 797 nm of some 10(13) W cm(-2). Direct information on the characteristic relaxation time is derived from the analysis of transient singly and multiply charged parent and fragment ion signals as a function of pump-probe delay and laser pulse intensity. The observed relaxation times tau(el) approximately 60-400 fs are attributed to different microcanonical ensembles prepared in the pre-excitation process and correspond to different total energy contents and energy sharing between electronic and vibrational degrees. The characteristic differences and trends allow one to extract a consistent picture for the formation dynamics of ions in different charge states and their fullerenelike fragments and give evidence to collective effects in multiple ionization such as plasmon-enhanced energy deposition.

  4. Electron Inertial Effects on Rapid Energy Redistribution at Magnetic X-points

    CERN Document Server

    McClements, K G; Ayed, M B; Fletcher, L

    2004-01-01

    The evolution of non-potential perturbations to a current-free magnetic X-point configuration is studied, taking into account electron inertial effects as well as resistivity. Electron inertia is shown to have a negligible effect on the evolution of the system whenever the collisionless skin depth is less than the resistive scale length. Non-potential magnetic field energy in this resistive MHD limit initially reaches equipartition with flow energy, in accordance with ideal MHD, and is then dissipated extremely rapidly, on an Alfvenic timescale that is essentially independent of Lundquist number. In agreement with resistive MHD results obtained by previous authors, the magnetic field energy and kinetic energy are then observed to decay on a longer timescale and exhibit oscillatory behavior, reflecting the existence of discrete normal modes with finite real frequency. When the collisionless skin depth exceeds the resistive scale length, the system again evolves initially according to ideal MHD. At the end of t...

  5. Solar Atmospheric Magnetic Energy Coupling: Broad Plasma Conditions and Spectrum Regimes

    Science.gov (United States)

    Orange, N. Brice; Chesny, David L.; Gendre, Bruce; Morris, David C.; Oluseyi, Hakeem M.

    2016-12-01

    Solar variability investigations that include magnetic energy coupling are paramount to solving many key solar/stellar physics problems, particularly for understanding the temporal variability of magnetic energy redistribution and heating processes. Using three years of observations from the Solar Dynamics Observatory’s Atmospheric Imaging Assembly and Heliosemic Magnetic Imager, we measured radiative and magnetic fluxes from gross features and at full-disk scales, respectively. Magnetic energy coupling analyses support radiative flux descriptions via the plasma heating connectivity of dominant (magnetic) and diffuse components, specifically of the predominantly closed-field corona. Our work shows that this relationship favors an energetic redistribution efficiency across large temperature gradients, and potentially sheds light on the long-standing issue of diffuse unresolved low corona emission. The close connection between magnetic energy redistribution and plasma conditions revealed by this work lends significant insight into the field of stellar physics, as we have provided possible means for probing distant sources in currently limited and/or undetectable radiation distributions.

  6. Energy Deposition Processes in Titan's Upper Atmosphere

    Science.gov (United States)

    Sittler, Edward C., Jr.; Bertucci, Cesar; Coates, Andrew; Cravens, Tom; Dandouras, Iannis; Shemansky, Don

    2008-01-01

    Most of Titan's atmospheric organic and nitrogen chemistry, aerosol formation, and atmospheric loss are driven from external energy sources such as Solar UV, Saturn's magnetosphere, solar wind and galactic cosmic rays. The Solar UV tends to dominate the energy input at lower altitudes of approximately 1100 km but which can extend down to approximately 400 km, while the plasma interaction from Saturn's magnetosphere, Saturn's magnetosheath or solar wind are more important at higher altitudes of approximately 1400 km, but the heavy ion plasma [O(+)] of approximately 2 keV and energetic ions [H(+)] of approximately 30 keV or higher from Saturn's magnetosphere can penetrate below 950km. Cosmic rays with energies of greater than 1 GeV can penetrate much deeper into Titan's atmosphere with most of its energy deposited at approximately 100 km altitude. The haze layer tends to dominate between 100 km and 300 km. The induced magnetic field from Titan's interaction with the external plasma can be very complex and will tend to channel the flow of energy into Titan's upper atmosphere. Cassini observations combined with advanced hybrid simulations of the plasma interaction with Titan's upper atmosphere show significant changes in the character of the interaction with Saturn local time at Titan's orbit where the magnetosphere displays large and systematic changes with local time. The external solar wind can also drive sub-storms within the magnetosphere which can then modify the magnetospheric interaction with Titan. Another important parameter is solar zenith angle (SZA) with respect to the co-rotation direction of the magnetospheric flow. Titan's interaction can contribute to atmospheric loss via pickup ion loss, scavenging of Titan's ionospheric plasma, loss of ionospheric plasma down its induced magnetotail via an ionospheric wind, and non-thermal loss of the atmosphere via heating and sputtering induced by the bombardment of magnetospheric keV ions and electrons. This

  7. A new global approach using a network of piezoelectric elements and energy redistribution for enhanced vibration damping of smart structure

    Science.gov (United States)

    Wu, Dan; Guyomar, Daniel; Richard, Claude

    2013-04-01

    A new global approach for improved vibration damping of smart structure, based on global energy redistribution by means of a network of piezoelectric elements is proposed. It is basically using semi-active Synchronized Switch Damping technique. SSD technique relies on a cumulative build-up of the voltage resulting from the continuous switching and it was shown that the performance is strongly related to this voltage. The increase of the piezoelectric voltage results in improvement of the damping performance. External voltage sources or improved switching sequences were previously designed to increase this voltage in the case of single piezoelectric element structure configurations. This paper deals with extended structure with many embedded piezoelectric elements. The proposed strategy consist of using an electric network made with non-linear component and switches in order to set up and control a low-loss energy transfer from source piezoelements extracting the vibration energy of the structure and oriented toward a given piezoelement in order to increase its operative energy for improving a given mode damping. This paper presents simulation of a clamped plate with four piezoelectric elements implemented in the Matlab/SimulinkTM environment and SimscapeTM library. The various simulation cases show the relationship between the damping performance on a given targeted mode and the established power flow. SSDD and SSDT are two proposed original networks. Performances are compared to the SSDI baseline. A damping increase of 18dB can be obtained even with a weakly coupled piezoelectric element in the multi-sine excitation case. This result proves the importance of new global non-linear multi-actuator strategies for improved vibration damping of extended smart structure.

  8. Consistent post-reaction vibrational energy redistribution in DSMC simulations using TCE model

    Science.gov (United States)

    Borges Sebastião, Israel; Alexeenko, Alina

    2016-10-01

    The direct simulation Monte Carlo (DSMC) method has been widely applied to study shockwaves, hypersonic reentry flows, and other nonequilibrium flow phenomena. Although there is currently active research on high-fidelity models based on ab initio data, the total collision energy (TCE) and Larsen-Borgnakke (LB) models remain the most often used chemistry and relaxation models in DSMC simulations, respectively. The conventional implementation of the discrete LB model, however, may not satisfy detailed balance when recombination and exchange reactions play an important role in the flow energy balance. This issue can become even more critical in reacting mixtures involving polyatomic molecules, such as in combustion. In this work, this important shortcoming is addressed and an empirical approach to consistently specify the post-reaction vibrational states close to thermochemical equilibrium conditions is proposed within the TCE framework. Following Bird's quantum-kinetic (QK) methodology for populating post-reaction states, the new TCE-based approach involves two main steps. The state-specific TCE reaction probabilities for a forward reaction are first pre-computed from equilibrium 0-D simulations. These probabilities are then employed to populate the post-reaction vibrational states of the corresponding reverse reaction. The new approach is illustrated by application to exchange and recombination reactions relevant to H2-O2 combustion processes.

  9. Pacific Northwest Laboratory annual report for 1989 to the DOE (Department of Energy) Office of Energy Research - Part 3: Atmospheric Sciences

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This 1989 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment, safety, and health conducted during fiscal year 1989. The report again consists of five parts, each in a separate volume. This volume contains research in the atmospheric sciences. Currently, the broad goals of atmospheric research at PNL are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, continental, and global scales in the air, in clouds, and on the surface. The redistribution and long-range transport of transformed contaminants passing through clouds is recognized as a necessary extension of our research to even larger scales in the future. Eventually, large-scale experiments on cloud processing and redistribution of contaminants will be integrated into the national program on global change, investigating how energy pollutants affect aerosols and clouds and the transfer of radiant energy through them. As the significance of this effect becomes clear, its global impact on climate will be studied through experimental and modeling research. The description of ongoing atmospheric research at PNL is organized in terms of the following study areas: atmospheric studies in complex terrain, large-scale atmospheric transport and processing of emissions, and climate change. This report describes the progress in FY 1989 in each of these areas. A divider page summarizes the goals of each area and lists project titles that support research activities. 9 refs., 2 figs., 3 tabs.

  10. Renewable energy and the atmospheric sciences

    Science.gov (United States)

    Nakajima, T. Y.; Takenaka, H.; Watanabe, T.; Nakajima, T.; Takamura, T.; Kurino, T.

    2013-12-01

    The demand for renewable energy in social energy systems has grown in recent years. In the atmospheric sciences, the energy balances and dynamics in the atmosphere are studied on both local and global scales, and thus estimation of renewable energy is an important practical application. For instance, shortwave solar radiation that reaches Earth's surface is an essential quantity for evaluating the photovoltaic (PV) power generation. Indeed, shortwave solar radiation can be calculated by a radiative transfer solver and an accurate electromagnetic wave scattering theory. A beneficial application of atmospheric sciences is obtaining of solar radiation on the basis of geostationary satellite measurements. Such satellites provide data covering most parts of the Earth every 30 min to 1 h. Geo-parameters such as cloud and aerosol properties are needed for calculating the amount of solar radiation that reaches Earth's surface. Multispectral images acquired by geostationary satellites allow for such geo-parameters to be evaluated. Additionally, polar-orbiting Earth observation satellites are also needed for improving data analysis techniques. For instance, multispectral imagers (e.g., MODIS) and cloud radars (e.g., CloudSat) aboard polar-orbiting satellites can be used to reveal the relationship between multispectral imaging results and the vertical structure of clouds. The EarthCARE (JAXA, ESA, NICT) and the GCOM-C (JAXA) satellites that will be launched in the middle of 2010-era are also used for improving cloud and aerosol process. This paper presents a method using satellite data to evaluate the optical and microphysical parameters of clouds that affect solar radiation. Also presented is a method for evaluating solar radiation that reaches Earth's surface. A new research project in Japan, JST-CREST-EMS (Energy Management System)-TEEDDA (Terrestrial Energy Estimation by Diurnal Data Analyses), which was started in October 2012, is also introduced.

  11. High-energy fluxes of atmospheric neutrinos

    CERN Document Server

    Sinegovskaya, T S; Sinegovsky, S I

    2013-01-01

    High-energy neutrinos from decays of mesons, produced in collisions of cosmic ray particles with air nuclei, form unavoidable background for detection of astrophysical neutrinos. More precise calculations of the high-energy neutrino spectrum are required since measurements in the IceCube experiment reach the intriguing energy region where a contribution of the prompt neutrinos and/or astrophysical ones should be discovered. Basing on the referent hadronic models QGSJET II-03, SIBYLL 2.1, we calculate high-energy spectra, both of the muon and electron atmospheric neutrinos, averaged over zenith-angles. The computation is made using three parameterizations of cosmic ray spectra which include the knee region. All calculations are compared with the atmospheric neutrino measurements by Frejus and IceCube. The prompt neutrino flux predictions obtained with thequark-gluon string model (QGSM) for the charm production by Kaidalov & Piskunova do not contradict to the IceCube measurements and upper limit on the astr...

  12. Solar Atmospheric Magnetic Energy Coupling: Broad Plasma Conditions and Temperature Scales

    CERN Document Server

    Orange, N Brice; Gendre, Bruce; Morris, David C; Oluseyi, Hakeem M

    2016-01-01

    Solar variability investigations that include its magnetic energy coupling are paramount to solving many key solar/stellar physics problems. Particularly understanding the temporal variability of magnetic energy redistribution and heating processes. Using three years of observations from the {\\it Solar Dynamics Observatory's} Atmospheric Imaging Assembly and Heliosemic Magnetic Imager, radiative and magnetic fluxes were measured from coronal hole, quiet Sun, active regions, active region cores (i.e., inter moss), and at full-disk scales, respectively. We present, and mathematically describe, their coupling of radiative fluxes, across broad temperature gradients, to the available photospheric magnetic energy. A comparison of the common linear relationship of radiative to magnetic coupling is performed against our extended broken power-law description, which reveals a potential entanglement of thermodynamic and magnetic energy contributions in existing literature. As such, our work provides an improved approach...

  13. Redistributed Regional Ventilation after the Administration of a Bronchodilator Demonstrated on Xenon-Inhaled Dual-Energy CT in a Patient with Asthma

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo; Yu, Jin Ho [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2011-06-15

    We report here on the redistributed regional ventilation abnormalities after the administration of a bronchodilator and as seen on xenon-inhaled dual-energy CT in a patient with asthma. The improved ventilation seen in the right lower lobe and the decreased ventilation seen in the right middle lobe after the administration of a bronchodilator on xenon-inhaled dual-energy CT could explain a positive bronchodilator response on a pulmonary function test. These changes may reflect the heterogeneity of the airway responsiveness to a bronchodilator in patients with asthma.

  14. A Fuzzy Rule-based Key Re-Distribution Decision Scheme of Dynamic Filtering for Energy Saving in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Dongjin Park

    2017-04-01

    Full Text Available A wireless sensor network’s sensor nodes have scarce resources, are exposed to the open environment, and use wireless communication. These features make the network vulnerable to physical capture and security attacks, therefore adversaries attempt various attacks such as false report injection attacks. A false report injection attack generates a false alarm by forwarding a false report to the base station. It confuses a user and lowers the reliability of the system. In addition, it leads to depletion of the node energy in the process of delivering a false report. A dynamic en-route filtering scheme performs detection in the data transfer process, but it incurs unnecessary energy loss in a continuous attack situation. In this paper, in order to solve this problem, a scheme is proposed for determining whether or not to redistribute keys at execution. The proposed scheme saves energy by detecting false reports at an earlier hop than the existing scheme by using fuzzy logic and the feature of a loaded secret key of each node in the key pre-distribution phase. Furthermore, it improves the detection performance with an appropriate re-distribution of the key. Experimental results show up to 52.33% energy savings and an improved detection performance of up to 18.57% compared to the existing scheme.

  15. The role of El Niño in the global energy redistribution: a case study in the mid-Holocene

    Science.gov (United States)

    Saint-Lu, Marion; Braconnot, Pascale; Leloup, Julie; Marti, Olivier

    2016-07-01

    It has been shown that El Niño events contribute to discharge the warm pool excess of energy out of the tropical Pacific. In a different climate, the energetic budget in the tropical Pacific is altered, which might have an effect on the El Niño amplitude and/or occurrence and thereby on the role of El Niño on energy redistribution. The mid-Holocene period (6 ka BP) offers a good example of changes in the distribution of incoming solar energy. In particular, the equator-pole gradient was weaker compared to the modern period. We analyze long stable simulations of the mid-Holocene and the pre-industrial era and discuss the mean- and El Niño-related energy transports in the two climates. We show that the role of global energy pump played by the tropical Pacific is reduced in the mid-Holocene in our simulation, both in long-term mean and during El Niño years. We demonstrate that this is not only a direct response to insolation forcing but this is further amplified by changes in internal processes. We analyze the relative role of El Niño events in the Pacific discharge in the two climates and show that it is reduced in the mid-Holocene, i.e. the fraction of the Pacific discharge that is due to El Niño is reduced. This is mainly due to reduction in the occurrence of El Niño events. This work gives a new approach to address El Niño changes, from the perspective of the role of El Niño in global energy redistribution.

  16. Energy, atmospheric chemistry, and global climate

    Science.gov (United States)

    Levine, Joel S.

    1991-01-01

    Global atmospheric changes due to ozone destruction and the greenhouse effect are discussed. The work of the Intergovernmental Panel on Climate Change is reviewed, including its judgements regarding global warming and its recommendations for improving predictive capability. The chemistry of ozone destruction and the global atmospheric budget of nitrous oxide are reviewed, and the global sources of nitrous oxide are described.

  17. Lookup tables to compute high energy cosmic ray induced atmospheric ionization and changes in atmospheric chemistry

    OpenAIRE

    Atri, Dimitra; Melott, Adrian L.; Thomas, Brian C

    2008-01-01

    A variety of events such as gamma-ray bursts and supernovae may expose the Earth to an increased flux of high-energy cosmic rays, with potentially important effects on the biosphere. Existing atmospheric chemistry software does not have the capability of incorporating the effects of substantial cosmic ray flux above 10 GeV . An atmospheric code, the NASA-Goddard Space Flight Center two-dimensional (latitude, altitude) time-dependent atmospheric model (NGSFC), is used to study atmospheric chem...

  18. The global warming hiatus: Slowdown or redistribution?

    Science.gov (United States)

    Yan, Xiao-Hai; Boyer, Tim; Trenberth, Kevin; Karl, Thomas R.; Xie, Shang-Ping; Nieves, Veronica; Tung, Ka-Kit; Roemmich, Dean

    2016-11-01

    Global mean surface temperatures (GMST) exhibited a smaller rate of warming during 1998-2013, compared to the warming in the latter half of the 20th Century. Although, not a "true" hiatus in the strict definition of the word, this has been termed the "global warming hiatus" by IPCC (2013). There have been other periods that have also been defined as the "hiatus" depending on the analysis. There are a number of uncertainties and knowledge gaps regarding the "hiatus." This report reviews these issues and also posits insights from a collective set of diverse information that helps us understand what we do and do not know. One salient insight is that the GMST phenomenon is a surface characteristic that does not represent a slowdown in warming of the climate system but rather is an energy redistribution within the oceans. Improved understanding of the ocean distribution and redistribution of heat will help better monitor Earth's energy budget and its consequences. A review of recent scientific publications on the "hiatus" shows the difficulty and complexities in pinpointing the oceanic sink of the "missing heat" from the atmosphere and the upper layer of the oceans, which defines the "hiatus." Advances in "hiatus" research and outlooks (recommendations) are given in this report.

  19. The role of physiological elements in the future therapies of rheumatoid arthritis. II. The relevance of energy redistribution in the process of chronic inflammation.

    Science.gov (United States)

    Gajewski, Michał; Rzodkiewicz, Przemysław; Wojtecka-Łukasik, Elżbieta

    2015-01-01

    The reasons for development of chronic inflammation are complex and not fully understood. One of the factors affecting the prolongation of inflammation is changes in cell metabolism, occurring at the center of the inflammatory process. In chronic inflammation there is an imbalance between the processes of storage and consumption of energy reserves. Hypoxia that is a consequence of edema results in transition of white blood cells to anaerobic metabolism. Neutrophils, lymphocytes and macrophages produce active oxygen metabolites which on one hand facilitate the elimination of pathogens, and on the other hand, can cause damage to healthy cells located in the inflamed tissue. In this paper, we discuss the importance of disturbed redistribution of energy as one of the main reasons for transformation of the acute inflammatory process into the chronic one.

  20. Annual progress report 2000. Wind Energy and Atmospheric Physics Department

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S.E.; Skrumsager, B. (eds.)

    2001-05-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory in 2000. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 2000 is shown, including lists of publications, lectures, committees and staff members. (au)

  1. Annual progress report 2000. Wind Energy and Atmospheric Physics Dept.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S.E.; Skrumsager, B. [eds.

    2001-05-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory in 2000. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 2000 is shown, including lists of publications, lectures, committees and staff members. (au)

  2. Annual report 1997. Wind Energy and Atmospheric Physics Department

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, P.H.; Dannemand Andersen, P.; Skrumsager, B. [eds.

    1998-08-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory during 1997. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. (au)

  3. A note on the maintenance of the atmospheric kinetic energy

    Science.gov (United States)

    Chen, T.-C.; Lee, Y.-H.

    1982-01-01

    The winter simulations of the GLAS climate model and the NCAR community climate model are used to examine the maintenance of the atmospheric kinetic energy. It is found that the kinetic energy is generated in the lower latitudes south of the maximum westerlies, transported northward and then, destroyed in the midlatitudes north of the maximum westerlies. Therefore, the atmospheric kinetic energy is maintained by the counterbalance between the divergence (convergence) of kinetic energy flux and generation (destruction) of kinetic energy in lower (middle) latitudes.

  4. Extraction of Freshwater and Energy from Atmosphere

    CERN Document Server

    Bolonkin, Alexander

    2007-01-01

    Author offers and researches a new, cheap method for the extraction of freshwater from the Earth atmosphere. The suggected method is fundamentally dictinct from all existing methods that extract freshwater from air. All other industrial methods extract water from a saline water source (in most cases from seawater). This new method may be used at any point in the Earth except Polar Zones. It does not require long-distance freshwater transportation. If seawater is not utilized for increasing its productivity, this inexpensive new method is very environment-friendly. The author method has two working versions: (1) the first variant the warm (hot) atmospheric air is lifted by the inflatable tube in a high altitude and atmospheric steam is condenced into freswater: (2) in the second version, the warm air is pumped 20-30 meters under the sea-surface. In the first version, wind and solar heating of air are used for causing air flow. In version (2) wind and propeller are used for causing air movment. The first method...

  5. Energy and angular distributions of atmospheric muons at the Earth

    CERN Document Server

    Shukla, Prashant

    2016-01-01

    A fair knowledge of the atmospheric muon distributions at Earth is a prerequisite for the simulations of cosmic ray setups and rare event search detectors. A modified power law is proposed for atmospheric muon energy distribution which gives good description of the cosmic muon data in low as well as high energy regime. Using this distribution, analytical forms for zenith angle ($\\theta$) distribution are obtained. Assuming a flat Earth, it leads to the $\\cos^{n-1}\\theta$ form where it is shown that the parameter $n$ is nothing but the power of the energy distribution. A new analytical form for zenith angle distribution is obtained without assuming a flat Earth which gives an improved description of the data at all angles even above $70^o$. These distributions are tested with the available atmospheric muon data of energy and angular distributions. The parameters of these distributions can be used to characterize the cosmic muon data as a function of energy, angle and altitude.

  6. Did high energy astrophysical sources contribute to Martian atmospheric loss?

    CERN Document Server

    Atri, Dimitra

    2016-01-01

    Mars is believed to have had a substantial atmosphere in the past. Atmospheric loss led to depressurization and cooling, and is thought to be the primary driving force responsible for the loss of liquid water from its surface. Recently, MAVEN observations have provided new insight into the physics of atmospheric loss induced by ICMEs and solar wind interacting with the Martian atmosphere. In addition to solar radiation, it is likely that its atmosphere has been exposed to radiation bursts from high-energy astrophysical sources which become highly probable on timescales of ~Gy and beyond. These sources are capable of significantly enhancing the rates of photoionization and charged particle-induced ionization in the upper atmosphere. Here, we explore the possibility of damage from Galactic Gamma Ray Bursts, nearby supernovae, encounter with dense interstellar clouds and extreme solar events. We use Monte Carlo simulations to model the interaction of charged particles and photons from astrophysical sources in th...

  7. Three dimensional calculation of flux of low energy atmospheric neutrinos

    Science.gov (United States)

    Lee, H.; Bludman, S. A.

    1985-01-01

    Results of three-dimensional Monte Carlo calculation of low energy flux of atmospheric neutrinos are presented and compared with earlier one-dimensional calculations 1,2 valid at higher neutrino energies. These low energy neutrinos are the atmospheric background in searching for neutrinos from astrophysical sources. Primary cosmic rays produce the neutrino flux peaking at near E sub=40 MeV and neutrino intensity peaking near E sub v=100 MeV. Because such neutrinos typically deviate by 20 approximately 30 from the primary cosmic ray direction, three-dimensional effects are important for the search of atmospheric neutrinos. Nevertheless, the background of these atmospheric neutrinos is negligible for the detection of solar and supernova neutrinos.

  8. Modeling Planetary Atmospheric Energy Deposition By Energetic Ions

    Science.gov (United States)

    Parkinson, Christopher; Bougher, Stephen; Gronoff, Guillaume; Barthelemy, Mathieu

    2016-07-01

    The structure, dynamics, chemistry, and evolution of planetary upper atmospheres are in large part determined by the available sources of energy. In addition to the solar EUV flux, the solar wind and solar energetic particle (SEP) events are also important sources. Both of these particle populations can significantly affect an atmosphere, causing atmospheric loss and driving chemical reactions. Attention has been paid to these sources from the standpoint of the radiation environment for humans and electronics, but little work has been done to evaluate their impact on planetary atmospheres. At unmagnetized planets or those with crustal field anomalies, in particular, the solar wind and SEPs of all energies have direct access to the atmosphere and so provide a more substantial energy source than at planets having protective global magnetic fields. Additionally, solar wind and energetic particle fluxes should be more significant for planets orbiting more active stars, such as is the case in the early history of the solar system for paleo-Venus and Mars. Therefore quantification of the atmospheric energy input from the solar wind and SEP events is an important component of our understanding of the processes that control their state and evolution. We have applied a full Lorentz motion particle transport model to study the effects of particle precipitation in the upper atmospheres of Mars and Venus. Such modeling has been previously done for Earth and Mars using a guiding center precipitation model. Currently, this code is only valid for particles with small gyroradii in strong uniform magnetic fields. There is a clear necessity for a Lorentz formulation, hence, a systematic study of the ionization, excitation, and energy deposition has been conducted, including a comparison of the influence relative to other energy sources (namely EUV photons). The result is a robust examination of the influence of energetic ion transport on the Venus and Mars upper atmosphere which

  9. Aircraft Measurements of Atmospheric Kinetic Energy Spectra

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Lilly, D. K.

    1983-01-01

    Wind velocity data obtained from a jet airliner are used to construct kinetic energy spectra over the range of wavelengths from 2.5 to 2500 km. The spectra exhibit an approximate -5/3 slope for wavelengths of less than about 150 km, steepening to about -2.2 at larger scales. These results support...

  10. Assessment of Global Annual Atmospheric Energy Balance from Satellite Observations

    Science.gov (United States)

    Lin, Bing; Stackhouse, Paul; Minnis, Patrick; Wielicki, Bruce A.; Hu, Yongxiang; Sun, Wenbo; Fan, Tai-Fang (Alice); Hinkelman, Laura

    2008-01-01

    Global atmospheric energy balance is one of the fundamental processes for the earth's climate system. This study uses currently available satellite data sets of radiative energy at the top of atmosphere (TOA) and surface and latent and sensible heat over oceans for the year 2000 to assess the global annual energy budget. Over land, surface radiation data are used to constrain assimilated results and to force the radiation, turbulent heat, and heat storage into balance due to a lack of observation-based turbulent heat flux estimations. Global annual means of the TOA net radiation obtained from both direct measurements and calculations are close to zero. The net radiative energy fluxes into the surface and the surface latent heat transported into the atmosphere are about 113 and 86 Watts per square meter, respectively. The estimated atmospheric and surface heat imbalances are about -8 9 Watts per square meter, values that are within the uncertainties of surface radiation and sea surface turbulent flux estimates and likely systematic biases in the analyzed observations. The potential significant additional absorption of solar radiation within the atmosphere suggested by previous studies does not appear to be required to balance the energy budget the spurious heat imbalances in the current data are much smaller (about half) than those obtained previously and debated at about a decade ago. Progress in surface radiation and oceanic turbulent heat flux estimations from satellite measurements significantly reduces the bias errors in the observed global energy budgets of the climate system.

  11. On the hypothetical utilization of atmospheric potential energy

    Directory of Open Access Journals (Sweden)

    Thomas Frisius

    2014-09-01

    Full Text Available Atmospheric potential energy is typically divided into an available and a nonavailable part. In this article a hypothetical utilization of a fraction of the nonavailable potential energy is described. This part stems from the water vapor that can be converted into the liquid phase. An energy gain results when the potential energy of the condensate relative to a reference height exceeds the energy necessary to condensate the water vapor. It is shown that this can be the case in a saturated atmosphere without convective available potential energy. Finally, simulations with the numerical cloud model HURMOD are performed to estimate the usability of the device in practice. Indeed, a positive energy output results in a simulation with immediate gathering of the condensate. On the contrary, potential energy gained falls significantly short of the necessary energy for forming the condensate when a realistic cloud microphysical scheme allowing re-evaporation of condensate is applied. Taken together it can be concluded that, a utilization of atmospheric potential energy is hypothetically possible but the practical realization is probably not feasible.

  12. High Energy Atmospheric Neutrino Fluxes From a Realistic Primary Spectrum

    Science.gov (United States)

    Campos Penha, Felipe; Dembinski, Hans; Gaisser, Thomas K.; Tilav, Serap

    2016-03-01

    Atmospheric neutrino fluxes depend on the energy spectrum of primary nucleons entering the top of the atmosphere. Before the advent of AMANDA and the IceCube Neutrino Observatory, measurements of the neutrino fluxes were generally below ~ 1TeV , a regime in which a simple energy power law sufficed to describe the primary spectrum. Now, IceCube's muon neutrino data extends beyond 1PeV , including a combination of neutrinos from astrophysical sources with background from atmospheric neutrinos. At such high energies, the steepening at the knee of the primary spectrum must be accounted for. Here, we describe a semi-analytical approach for calculating the atmospheric differential neutrino fluxes at high energies. The input is a realistic primary spectrum consisting of 4 populations with distinct energy cutoffs, each with up to 7 representative nuclei, where the parameters were extracted from a global fit. We show the effect of each component on the atmospheric neutrino spectra, above 10TeV . The resulting features follow directly from recent air shower measurements included in the fit. Felipe Campos Penha gratefully acknowledges financial support from CAPES (Processo BEX 5348/14-5), CNPq (Processo 142180/2012-2), and the Bartol Research Institute.

  13. Atmospheric water on Mars, energy estimates for extraction

    Science.gov (United States)

    Meyer, Tom

    1991-01-01

    The Mars atmosphere is considered as a resource for water to support a human expedition. Information obtained from the Viking mission is used to estimate the near-surface water vapor level. The variability over the diurnal cycle is examined and periods of greatest water abundance are identified. Various methods for extracting atmospheric water are discussed including energy costs and the means for optimizing water extraction techniques.

  14. Optimal design of irradiance redistribution guides for the National Renewable Energy Laboratory's high-flux solar furnace

    Science.gov (United States)

    Bortz, John C.; Shatz, Narkis E.; Lewandowski, Allan

    1995-08-01

    The National Renewable Energy Laboratory (NREL) has developed and operates the high-flux solar furnace (HFSF), a 10-kW solar concentrator used for research in solar energy applications. An application of ongoing interest is the heat-bonding of metallic foils to ceramic substrates, a process requiring a highly uniform irradiance distribution over a 10 by 10-cm target area, as well as a mean irradiance of at least 10 W/cm2, and a working distance of at least 10-cm from the optics. Science Applications International Corporation (SAIC) and NREL have developed designs for two reflective irradiance redistribtuion guides (IRGs) for use in conjunction with the HFSF, which provide significantly enhanced irradiance uniformity while exceeding the mean-irradiance and working-distance requirements. Irradiance- uniformity levels of 7.2% and 3.1% root-mean-square (RMS) deviation over the target area were achieved by the two IRG designs. The designs were generated using SAICs nonimaging concentrator synthesis code, which employs a global optimization procedure. The HFSF was modeled by means of an optical ray set produced by NREL's solar furnace code. The IRG designs are novel in that they feature re-entrant optics combined with the intentional use of ray paths having different nubmers of multiple reflections within a single reflective optical component in order to achieve the desired irradiance distribution.

  15. Weakened atmospheric energy transport feedback in cold glacial climates

    Directory of Open Access Journals (Sweden)

    I. Cvijanovic

    2011-04-01

    Full Text Available The response of atmospheric energy transport during Northern Hemisphere cooling and warming from present day (PD and Last Glacial Maximum (LGM conditions is investigated using sea surface temperature anomalies derived from a freshwater hosing experiment. The present day climate shows enhanced sensitivity of the atmospheric energy transport compared to that of the LGM suggesting an ability of the PD atmosphere to reorganize more easily and thereby dampen temperature anomalies that may arise from changes in the oceanic transport. The increased PD sensitivity relative to that of the LGM is due mainly to a stronger dry static energy transport response which, in turn, is driven chiefly by larger changes in the transient eddy heat flux. In comparison, changes in latent heat transport play a minor role in the overall transport sensitivity.

  16. Wind Energy and Atmospheric Physics Department annual progress report 1999

    DEFF Research Database (Denmark)

    2000-01-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risø National Laboratory in 1999. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviateatmospheric aspects of environmental problems......-mary of the department's activities in 1999 is presented, including lists of publications, lectures, committees and staff members....

  17. Evaluation of Monte Carlo tools for high energy atmospheric physics

    Science.gov (United States)

    Rutjes, Casper; Sarria, David; Broberg Skeltved, Alexander; Luque, Alejandro; Diniz, Gabriel; Østgaard, Nikolai; Ebert, Ute

    2016-11-01

    The emerging field of high energy atmospheric physics (HEAP) includes terrestrial gamma-ray flashes, electron-positron beams and gamma-ray glows from thunderstorms. Similar emissions of high energy particles occur in pulsed high voltage discharges. Understanding these phenomena requires appropriate models for the interaction of electrons, positrons and photons of up to 40 MeV energy with atmospheric air. In this paper, we benchmark the performance of the Monte Carlo codes Geant4, EGS5 and FLUKA developed in other fields of physics and of the custom-made codes GRRR and MC-PEPTITA against each other within the parameter regime relevant for high energy atmospheric physics. We focus on basic tests, namely on the evolution of monoenergetic and directed beams of electrons, positrons and photons with kinetic energies between 100 keV and 40 MeV through homogeneous air in the absence of electric and magnetic fields, using a low energy cutoff of 50 keV. We discuss important differences between the results of the different codes and provide plausible explanations. We also test the computational performance of the codes. The Supplement contains all results, providing a first benchmark for present and future custom-made codes that are more flexible in including electrodynamic interactions.

  18. The potential impact of hydrogen energy use on the atmosphere

    Science.gov (United States)

    van Ruijven, B. J.; Lamarque, J. F.; van Vuuren, D. P.; Kram, T.; Eerens, H.

    2009-04-01

    Energy models show very different trajectories for future energy systems (partly as function of future climate policy). One possible option is a transition towards a hydrogen-based energy system. The potential impact of such hydrogen economy on atmospheric emissions is highly uncertain. On the one hand, application of hydrogen in clean fuel cells reduces emissions of local air pollutants, like SOx and NOx. On the other hand, emissions of hydrogen from system leakages are expected to change the atmospheric concentrations and behaviour (see also Price et al., 2007; Sanderson et al., 2003; Schultz et al., 2003; Tromp et al., 2003). The uncertainty arises from several sources: the expected use of hydrogen, the intensity of leakages and emissions, and the atmospheric chemical behaviour of hydrogen. Existing studies to the potential impacts of a hydrogen economy on the atmosphere mostly use hydrogen emission scenarios that are based on simple assumptions. This research combines two different modelling efforts to explore the range of impacts of hydrogen on atmospheric chemistry. First, the potential role of hydrogen in the global energy system and the related emissions of hydrogen and other air pollutants are derived from the global energy system simulation model TIMER (van Vuuren, 2007). A set of dedicated scenarios on hydrogen technology development explores the most pessimistic and optimistic cases for hydrogen deployment (van Ruijven et al., 2008; van Ruijven et al., 2007). These scenarios are combined with different assumptions on hydrogen emission factors. Second, the emissions from the TIMER model are linked to the NCAR atmospheric model (Lamarque et al., 2005; Lamarque et al., 2008), in order to determine the impacts on atmospheric chemistry. By combining an energy system model and an atmospheric model, we are able to consistently explore the boundaries of both hydrogen use, emissions and impacts on atmospheric chemistry. References: Lamarque, J.-F., Kiehl, J. T

  19. Food Redistribution as Optimization

    CERN Document Server

    Phillips, Caleb; Higbee, Becky

    2011-01-01

    In this paper we study the simultaneous problems of food waste and hunger in the context of the possible solution of food (waste) rescue and redistribution. To this end, we develop an empirical model that can be used in Monte Carlo simulations to study the dynamics of the underlying problem. Our model's parameters are derived from a unique data set provided by a large food bank and food rescue organization in north central Colorado. We find that food supply is a non-parametric heavy-tailed process that is well-modeled with an extreme value peaks-over-threshold model. Although the underlying process is stochastic, the basic approach of food rescue and redistribution appears to be feasible both at small and large scales. The ultimate efficacy of this model is intimately tied to the rate at which food expires and hence the ability to preserve and quickly transport and redistribute food. The cost of the redistribution is tied to the number and density of participating suppliers, and costs can be reduced (and supp...

  20. Difference, Power and, Redistribution

    DEFF Research Database (Denmark)

    Frederiksen, Morten

    perceived as structures of domination and expressions of emancipating modernisation. Welfare states are perceived as both structures of democratic redistribution and as power based resource appropriation. Finally welfare states are perceived as normative structures and institutions. Pierre Bourdieu's theory...... of capital and the establishment of universality as normative standard of evaluation in the field of power as well as in social space as such....

  1. Possible explanation of the atmospheric kinetic and potential energy spectra.

    Science.gov (United States)

    Vallgren, Andreas; Deusebio, Enrico; Lindborg, Erik

    2011-12-23

    We hypothesize that the observed wave number spectra of kinetic and potential energy in the atmosphere can be explained by assuming that there are two related cascade processes emanating from the same large-scale energy source, a downscale cascade of potential enstrophy, giving rise to the k(-3) spectrum at synoptic scales and a downscale energy cascade giving rise to the k(-5/3) spectrum at mesoscales. The amount of energy which is going into the downscale energy cascade is determined by the rate of system rotation, with negligible energy going downscale in the limit of very fast rotation. We present a set of simulations of a system with strong rotation and stratification, supporting these hypotheses and showing good agreement with observations.

  2. Intergenerational redistribution in representative democracies

    NARCIS (Netherlands)

    van de Ven, M.E.A.J.

    1996-01-01

    This thesis deals with political decision making on intergenerational redistributive policies via public debt, public pensions and public investment. Members of different generations have different preferences on these redistributive policies. The resulting intergenerational conflict is resolved in

  3. Studies of influence of energy distribution on the upper atmosphere

    Science.gov (United States)

    Sheng, Cheng

    The energy inputs into the upper atmosphere including both solar irradiation and geomagnetic energy can significantly change the upper atmosphere such as the neutral and plasma densities, velocities and temperatures. Therefore, the precise specification of the energy inputs is critical to estimate the ionosphere/thermosphere variation during both quiet and storm times. In order to improve the understanding of the energy distribution and its influence at high latitudes, specifically, we have conducted the following studies. (1) Estimation of the altitudinal distribution of Joule heating from COSMIC observations. Joule heating is the most significant way to dissipate geomagnetic energy at high latitudes. But the altitudinal distribution of Joule heating has not been studied in detail. Based on the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) observations from 2008 to 2011, the height-integrated Pedersen conductivities in both E (100-150 km) and F (150-600 km) regions and their ratio lambdaP (sumPE/sumPF) have been calculated. The result from data analysis (˜5.5) shows a smaller value than that from model (˜9), which indicates that the energy inputs into the F region may be underestimated in the model. Dependences of the ratio and the conductance in both E and F regions on the solar and geomagnetic activities have been studied as well. (2) The influence of cusp energy on the thermospheric winds has also been studied, through simulating a real event. The Global Ionosphere Thermosphere Model (GITM) has been run in different cases and under different resolutions to investigate the neutral dynamics around the cusp region. The results indicate that the heating added in the cusp causes the change of pressure gradient around the cusp and changes the neutral wind dynamics there. (3) Correlation of Poynting flux and soft particle precipitation in the dayside polar cap boundary regions has been investigated using DMSP satellite measurements

  4. Spectral Gap Energy Transfer in Atmospheric Boundary Layer

    Science.gov (United States)

    Bhushan, S.; Walters, K.; Barros, A. P.; Nogueira, M.

    2012-12-01

    Experimental measurements of atmospheric turbulence energy spectra show E(k) ~ k-3 slopes at synoptic scales (~ 600 km - 2000 km) and k-5/3 slopes at the mesoscales (transfer, energy arrest at macroscales must be introduced. The most commonly used turbulence models developed to mimic the above energy transfer include the energy backscatter model for 2D turbulence in the horizontal plane via Large Eddy Simulation (LES) models, dissipative URANS models in the vertical plane, and Ekman friction for the energy arrest. One of the controversial issues surrounding the atmospheric turbulence spectra is the explanation of the generation of the 2D and 3D spectra and transition between them, for energy injection at the synoptic scales. Lilly (1989) proposed that the existence of 2D and 3D spectra can only be explained by the presence of an additional energy injection in the meso-scale region. A second issue is related to the observations of dual peak spectra with small variance in meso-scale, suggesting that the energy transfer occurs across a spectral gap (Van Der Hoven, 1957). Several studies have confirmed the spectral gap for the meso-scale circulations, and have suggested that they are enhanced by smaller scale vertical convection rather than by the synoptic scales. Further, the widely accepted energy arrest mechanism by boundary layer friction is closely related to the spectral gap transfer. This study proposes an energy transfer mechanism for atmospheric turbulence with synoptic scale injection, wherein the generation of 2D and 3D spectra is explained using spectral gap energy transfer. The existence of the spectral gap energy transfer is validated by performing LES for the interaction of large scale circulation with a wall, and studying the evolution of the energy spectra both near to and far from the wall. Simulations are also performed using the Advanced Weather and Research Forecasting (WRF-ARW) for moist zonal flow over Gaussian ridge, and the energy spectra close

  5. Democracy, Redistribution, and Equality

    Directory of Open Access Journals (Sweden)

    Adam Przeworski

    2012-06-01

    Full Text Available The article argues that economic inequality inevitably generates politicalinequality, which in turn reproduces economic inequality. Basic concepts areintroduced first along with strong caveats concerning the quality of the crossnationaldata on income distributions; historical patterns of income inequalityare summarized next, and with these preliminaries, a distinction is made betweenredistribution of consumption at a particular time and equalization of incomeearning capacities over time. Following this economic considerations, the articlediscussion moves to political factors that may block redistributions.

  6. Dissolution Power and Redistribution

    OpenAIRE

    Becher, Michael

    2015-01-01

    While democracies vary in whether they allow their chief executives to dissolve parliament and call an early election, recent theories of the economic consequences of executive-legislative institutions in comparative politics pay little attention to dissolution power. I develop a model to analyze how chief executives' ability to dissolve the legislature influences the stability and level of redistribution. It shows that dissolution power critically alters the ability of partisan chief executi...

  7. The Energy Budget of the Polar Atmosphere in MERRA

    Science.gov (United States)

    Cullather, Richard I.; Bosilovich, Michael G.

    2010-01-01

    Components of the atmospheric energy budget from the Modern Era Retrospective-analysis for Research and Applications (MERRA) are evaluated in polar regions for the period 1979-2005 and compared with previous estimates, in situ observations, and contemporary reanalyses. Closure of the energy budget is reflected by the analysis increments term, which results from virtual enthalpy and latent heating contributions and averages -11 W/sq m over the north polar cap and -22 W/sq m over the south polar cap. Total energy tendency and energy convergence terms from MERRA agree closely with previous study for northern high latitudes but convergence exceeds previous estimates for the south polar cap by 46 percent. Discrepancies with the Southern Hemisphere transport are largest in autumn and may be related to differences in topography with earlier reanalyses. For the Arctic, differences between MERRA and other sources in TOA and surface radiative fluxes maximize in May. These differences are concurrent with the largest discrepancies between MERRA parameterized and observed surface albedo. For May, in situ observations of the upwelling shortwave flux in the Arctic are 80 W/sq m larger than MERRA, while the MERRA downwelling longwave flux is underestimated by 12 W/sq m throughout the year. Over grounded ice sheets, the annual mean net surface energy flux in MERRA is erroneously non-zero. Contemporary reanalyses from the Climate Forecast Center (CFSR) and the Interim Re-Analyses of the European Centre for Medium Range Weather Forecasts (ERA-I) are found to have better surface parameterizations, however these collections are also found to have significant discrepancies with observed surface and TOA energy fluxes. Discrepancies among available reanalyses underscore the challenge of reproducing credible estimates of the atmospheric energy budget in polar regions.

  8. Asteroid fragmentation approaches for modeling atmospheric energy deposition

    Science.gov (United States)

    Register, Paul J.; Mathias, Donovan L.; Wheeler, Lorien F.

    2017-03-01

    During asteroid entry, energy is deposited in the atmosphere through thermal ablation and momentum-loss due to aerodynamic drag. Analytic models of asteroid entry and breakup physics are used to compute the energy deposition, which can then be compared against measured light curves and used to estimate ground damage due to airburst events. This work assesses and compares energy deposition results from four existing approaches to asteroid breakup modeling, and presents a new model that combines key elements of those approaches. The existing approaches considered include a liquid drop or "pancake" model where the object is treated as a single deforming body, and a set of discrete fragment models where the object breaks progressively into individual fragments. The new model incorporates both independent fragments and aggregate debris clouds to represent a broader range of fragmentation behaviors and reproduce more detailed light curve features. All five models are used to estimate the energy deposition rate versus altitude for the Chelyabinsk meteor impact, and results are compared with an observationally derived energy deposition curve. Comparisons show that four of the five approaches are able to match the overall observed energy deposition profile, but the features of the combined model are needed to better replicate both the primary and secondary peaks of the Chelyabinsk curve.

  9. Atmospheric Renewable-Energy Research. Volume 1 (Background: To BE or Not to BE)

    Science.gov (United States)

    2015-09-01

    Energy , Renewable Energy , solar power , wind power , hydroelectric, SunCast, WFIP, microgrid, atmosphere 16...forecasting, power -system operators will have tools for integrating more solar energy into the grid. The atmospheric R-E research for the US armed... power system operators will have the tools for integrating more solar energy into the grid (Energy.gov 2012). The Advance Solar Power

  10. Atmospheric Energy Limits on Subsurface Life on Mars

    Science.gov (United States)

    Weiss, B. P.; Yung, Y. L.; Nealson, K. H.

    1999-01-01

    It has been suggested that the terrestrial biomass of subterranean organisms may equal or exceed that at the surface. Taken as a group, these organisms can live in heavily saline conditions at temperatures from 115 C to as low as -20 C. Such conditions might exist on Mars beneath the surface oxidant in an aquifer or hydrothermal system, where the surrounding rock would also protect against the solar ultraviolet radiation. The way that such systems could obtain energy and carbon is not completely clear, although it is believed that on Earth, energy flows from the interaction of highly reduced basalt with groundwater produce H2, while carbon is derived from CO2 dissolved in the groundwater. Another potential source is the Martian atmosphere, acting as a photochemical conduit of solar insolation.

  11. Optimal Management and Design of Energy Systems under Atmospheric Uncertainty

    Science.gov (United States)

    Anitescu, M.; Constantinescu, E. M.; Zavala, V.

    2010-12-01

    The generation and distpatch of electricity while maintaining high reliability levels are two of the most daunting engineering problems of the modern era. This was demonstrated by the Northeast blackout of August 2003, which resulted in the loss of 6.2 gigawatts that served more than 50 million people and which resulted in economic losses on the order of $10 billion. In addition, there exist strong socioeconomic pressures to improve the efficiency of the grid. The most prominent solution to this problem is a substantial increase in the use of renewable energy such as wind and solar. In turn, its uncertain availability—which is due to the intrinsic weather variability—will increase the likelihood of disruptions. In this endeavors of current and next-generation power systems, forecasting atmospheric conditions with uncertainty can and will play a central role, at both the demand and the generation ends. User demands are strongly correlated to physical conditions such as temperature, humidity, and solar radiation. The reason is that the ambient temperature and solar radiation dictate the amount of air conditioning and lighting needed in residential and commercial buildings. But these potential benefits would come at the expense of increased variability in the dynamics of both production and demand, which would become even more dependent on weather state and its uncertainty. One of the important challenges for energy in our time is how to harness these benefits while “keeping the lights on”—ensuring that the demand is satisfied at all times and that no blackout occurs while all energy sources are optimally used. If we are to meet this challenge, accounting for uncertainty in the atmospheric conditions is essential, since this will allow minimizing the effects of false positives: committing too little baseline power in anticipation of demand that is underestimated or renewable energy levels that fail to materialize. In this work we describe a framework for the

  12. Response of Atmospheric Energy to Historical Climate Change in CMIP5

    Institute of Scientific and Technical Information of China (English)

    韩博; 吕世华; 高艳红; 奥银焕; 李瑞青

    2015-01-01

    Three forms of atmospheric energy, i.e., internal, potential, and latent, are analyzed based on the histor-ical simulations of 32 Coupled Model Intercomparison Project Phase 5 (CMIP5) models and two reanalysis datasets (NCEP/NCAR and ERA-40). The spatial pattern of climatological mean atmospheric energy is well reproduced by all CMIP5 models. The variation of globally averaged atmospheric energy is similar to that of surface air temperature (SAT) for most models. The atmospheric energy from both simulation and reanalysis decreases following the volcanic eruption in low-latitude zones. Generally, the climatological mean of simulated atmospheric energy from most models is close to that obtained from NCEP/NCAR, while the simulated atmospheric energy trend is close to that obtained from ERA-40. Under a certain variation of SAT, the simulated global latent energy has the largest increase ratio, and the increase ratio of potential energy is the smallest.

  13. High-Energy Atmospheric Reentry Test Aerothermodynamic Analysis

    Science.gov (United States)

    Mazaheri, Alireza

    2013-01-01

    This paper presents an assessment of the aerothermodynamic environment around an 8.3 meter High Energy Atmospheric Reentry Test (HEART) vehicle. This study generated twelve nose shape configurations and compared their responses at the peak heating trajectory point against the baseline nose shape. The heat flux sensitivity to the angle of attack variations are also discussed. The possibility of a two-piece Thermal Protection System (TPS) design at the nose is also considered, as are the surface catalytic affects of the aeroheating environment of such configuration. Based on these analyses, an optimum nose shape is proposed to minimize the surface heating. A recommendation is also made for a two-piece TPS design, for which the surface catalytic uncertainty associated with the jump in heating at the nose-IAD juncture is reduced by a minimum of 93%. In this paper, the aeroshell is assumed to be rigid and the inflatable fluid interaction effect is left for future investigations

  14. Tropical Cyclone Signatures in Atmospheric Convective Available Potential Energy

    Science.gov (United States)

    Studholme, Joshua; Gulev, Sergey

    2016-04-01

    Tropical cyclones play an important role in the climate system providing transports of energy and water vapor, forcing the ocean, and also affecting mid-latitude circulation phenomena. Tropical cyclone tracks experience strong interannual variability and in addition, longer term trend-like changes in all ocean basins. Analysis of recent historical data reveal a poleward shift in the locations of tropical cyclone tracks in both the Northern and Southern Hemispheres (Kossin et al. 2014, Nature, 509, 349-352). The physical consequences of these alterations are largely unconstrained. For example, the increasing encroachment of tropical cyclone activity into the extra-tropical environment presents a novel and still poorly understood paradigm for tropical-extratropical interactions. In this respect, the role that the atmospheric convective available potential energy (CAPE) plays in the dynamics of tropical cyclones is highly interesting. The two characteristic global-scale spatial patterns in CAPE are identified using EOF analysis. The first pattern shows an abundance of CAPE in the centre of the Pacific and corresponds to the El Nino Southern Oscillation. The second one is capturing positive CAPE anomalies in the oceanic tropics and negative anomalies over equatorial Africa. Associated with these buoyancy patterns, alterations in tropical cyclone activity occur in all basins forming both zonal and meridional patterns. Atmospheric buoyancy is the trigger for deep convection, and subsequently cyclone genesis. This is the mechanism of impact upon location at the start of cyclone tracks. It is found to have less impact upon where cyclones subsequently move, whether or not they undergo extratropical transition and when and where they experience lysis. It is shown that CAPE plays a critical role in the general circulation in the tropics which in turn is the larger steering context for embedded systems within the Walker and Hadley cells. So this lack of `latter life' impact

  15. The energy balance of plasmoids in the solar atmosphere

    Science.gov (United States)

    Cargill, P. J.; Pneuman, G. W.

    1986-01-01

    The properties of an isolated magnetized plasmoid in a nonuniform magnetic field such as arises in stellar atmospheres are studied. The work of Pneuman and Cargill (1985) on the so-called melon-seed effect is extended to include an equation describing the energy balance, so giving a unified picture of the shape, motion, and energetics of the plasmoid. Three treatments of plasmoid energy balance are considered: (1) a polytropic law, (P = about N to the gamma); (2) one in which the plasmoid cools radiatively; and (3) one in which a heating function proportional to the local density balances the radiation. For a gamma = 4/3 polytrope the evolution is self-similar, so that the plasmoid maintains its shape as it moves out from the stellar surface. If gamma is less than 4/3, the final shape is a long thin cigar-shaped body, whereas if gamma is greater than or equal to 4/3, it ultimately becomes self-similar. In cases with radiation and also with heating, the ultimate shape of the plasmoid is determined by whether its gas or magnetic pressure dominate. The former is equivalent to the gamma-less-than-4/3 polytrope, and the latter to the gamma-greater-than-4/3 one. If radiation alone is present, the plasmoid cools rapidly and subsequently evolves self-similarly. If heating balances radiation initially, then the plasmoid heats up as it moves out, but, if the ratio of the transit of time of Alfven waves across it is much less than the radiative cooling time, it ultimately evolves as a gamma = 5/3 polytrope. In each case the plasmoid can be ejected to large distances (several radii) in a stellar atmosphere, for a reasonable choice of surface parameters.

  16. The Department of Energy`s Atmospheric Chemistry Program: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    In response to a request from the Department of Energy`s (DOE) Office of Health and Environmental Research (OHER), the Committee on Atmospheric Chemistry has reviewed OHER`s Atmospheric Chemistry Program (ACP). This report contains the committee`s evaluation and critique arising from that review. The review process included a two-day symposium held at the National Academy of Sciences on September 25 and 26, 1990, that focused on presenting the ACP`s current components, recent scientific accomplishments, and scientific plans. Following the symposium, committee members met in a one-day executive session to formulate and outline this report. In undertaking this review, OHER and ACP management requested that the committee attempt to answer several specific questions involving the program`s technical capability and productivity, its leadership and organization, and its future direction. These questions are given in the Appendix. This report represents the committee`s response to the questions posed in the Appendix. Chapter I explores the committee`s view of the role that atmospheric chemistry could and should assume within the DOE and its prospective National Energy Strategy. Chapter 2 assesses the current ACP, Chapter 3 presents recommendations for revising and strengthening it, and Chapter 4 restates the committee`s conclusions and recommendations.

  17. An Estimation of Turbulent Kinetic Energy and Energy Dissipation Rate Based on Atmospheric Boundary Layer Similarity Theory

    Science.gov (United States)

    Han, Jongil; Arya, S. Pal; Shaohua, Shen; Lin, Yuh-Lang; Proctor, Fred H. (Technical Monitor)

    2000-01-01

    Algorithms are developed to extract atmospheric boundary layer profiles for turbulence kinetic energy (TKE) and energy dissipation rate (EDR), with data from a meteorological tower as input. The profiles are based on similarity theory and scalings for the atmospheric boundary layer. The calculated profiles of EDR and TKE are required to match the observed values at 5 and 40 m. The algorithms are coded for operational use and yield plausible profiles over the diurnal variation of the atmospheric boundary layer.

  18. On the heat redistribution of the hot transiting exoplanet WASP-18b

    CERN Document Server

    Iro, Nicolas

    2013-01-01

    The energy deposition and redistribution in hot Jupiter atmospheres is not well understood currently, but is a major factor for their evolution and survival. We present a time dependent radiative transfer model for the atmosphere of WASP-18b which is a massive (10 MJup) hot Jupiter (Teq ~ 2400 K) exoplanet orbiting an F6V star with an orbital period of only 0.94 days. Our model includes a simplified parametrisation of the day-to-night energy redistribution by a modulation of the stellar heating mimicking a solid body rotation of the atmosphere. We present the cases with either no rotation at all with respect to the synchronously rotating reference frame or a fast differential rotation. The results of the model are compared to previous observations of secondary eclipses of Nymeyer et al. (2011) with the Spitzer Space Telescope. Their observed planetary flux suggests that the efficiency of heat distribution from the day-side to the night-side of the planet is extremely inefficient. Our results are consistent wi...

  19. AtmoHEAD 2013 workshop / Atmospheric Monitoring for High-Energy Astroparticle Detectors

    CERN Document Server

    Bernlöhr, K; Blanch, O; Bourgeat, M; Bruno, P; Buscemi, M; Cassardo, C; Chadwick, P M; Chalme-Calvet, R; Chouza, F; Cilmo, M; Coco, M; Colombi, J; Compin, M; Daniel, M K; Reyes, R De Los; Ebr, J; D'Elia, R; Deil, C; Etchegoyen, A; Doro, M; Ferrarese, S; Fiorini, M; Font, LL; Garrido, D; Gast, H; Gaug, M; Gonzales, F; Grillo, A; Guarino, F; Hahn, J; Hrabovsky, M; Kosack, K; Krüger, P; La Rosa, G; Leto, G; Lo, Y T E; López-Oramas, A; Louedec, K; Maccarone, M C; Mandat, D; Marandon, V; Martinetti, E; Martinez, M; de Naurois, M; Neronov, A; Nolan, S J; Otero, L; Palatka, M; Pallotta, J; Pech, M; Puhlhofer, G; Prouza, M; Quel, E; Raul, D; Ristori, P; Frias, M D Rodriguez; Rivoire, S; Rulten, C B; Schovanek, P; Segreto, A; Sottile, G; Stringhetti, L; Tavernet, J -P; Tonachini, A S; Toscano, S; Travnicek, P; Valore, L; Vasileiadis, G; Vincent, S; Wada, S; Wiencke, L; Will, M

    2014-01-01

    A 3-day international workshop on atmospheric monitoring and calibration for high-energy astroparticle detectors, with a view towards next-generation facilities. The atmosphere is an integral component of many high-energy astroparticle detectors. Imaging atmospheric Cherenkov telescopes and cosmic-ray extensive air shower detectors are the two instruments driving the rapidly evolving fields of very-high- and ultra-high-energy astrophysics. In these instruments, the atmosphere is used as a giant calorimeter where cosmic rays and gamma rays deposit their energy and initiate EASs; it is also the medium through which the resulting Cherenkov light propagates. Uncertainties in real-time atmospheric conditions and in the fixed atmospheric models typically dominate all other systematic errors. With the improved sensitivity of upgraded IACTs such as H.E.S.S.-II and MAGIC-II and future facilities like the Cherenkov Telescope Array (CTA) and JEM-EUSO, statistical uncertainties are expected to be significantly reduced, l...

  20. Earth's changing global atmospheric energy cycle in response to climate change.

    Science.gov (United States)

    Pan, Yefeng; Li, Liming; Jiang, Xun; Li, Gan; Zhang, Wentao; Wang, Xinyue; Ingersoll, Andrew P

    2017-01-24

    The Lorenz energy cycle is widely used to investigate atmospheres and climates on planets. However, the long-term temporal variations of such an energy cycle have not yet been explored. Here we use three independent meteorological data sets from the modern satellite era, to examine the temporal characteristics of the Lorenz energy cycle of Earth's global atmosphere in response to climate change. The total mechanical energy of the global atmosphere basically remains constant with time, but the global-average eddy energies show significant positive trends. The spatial investigations suggest that these positive trends are concentrated in the Southern Hemisphere. Significant positive trends are also found in the conversion, generation and dissipation rates of energies. The positive trends in the dissipation rates of kinetic energies suggest that the efficiency of the global atmosphere as a heat engine increased during the modern satellite era.

  1. Hydraulic Redistribution: A Modeling Perspective

    Science.gov (United States)

    Daly, E.; Verma, P.; Loheide, S. P., III

    2014-12-01

    Roots play a key role in the soil water balance. They extract and transport water for transpiration, which usually represents the most important soil water loss in vegetated areas, and can redistribute soil water, thereby increasing transpiration rates and enhancing root nutrient uptake. We present here a two-dimensional model capable of describing two key aspects of root water uptake: root water compensation and hydraulic redistribution. Root water compensation is the ability of root systems to respond to the reduction of water uptake from areas of the soil with low soil water potential by increasing the water uptake from the roots in soil parts with higher water potential. Hydraulic redistribution is a passive transfer of water through the root system from areas of the soil with greater water potential to areas with lower water potential. Both mechanisms are driven by gradients of water potential in the soil and the roots. The inclusion of root water compensation and hydraulic redistribution in models can be achieved by describing root water uptake as a function of the difference in water potential between soil and root xylem. We use a model comprising the Richards equation for the water flow in variably saturated soils and the Darcy's equation for the water flow in the xylem. The two equations are coupled via a sink term, which is assumed to be proportional to the difference between soil and xylem water potentials. The model is applied in two case studies to describe vertical and horizontal hydraulic redistribution and the interaction between vegetation with different root depths. In the case of horizontal redistribution, the model is used to reproduce the fluxes of water across the root system of a tree subjected to uneven irrigation. This example can be extended to situations when only part of the root system has access to water, such as vegetation near creeks, trees at the edge of forests, and street trees in urban areas. The second case is inspired by recent

  2. Population redistribution in optically trapped polar molecules

    CERN Document Server

    Deiglmayr, J; Dulieu, O; Wester, R; Weidemüller, M

    2011-01-01

    We investigate the rovibrational population redistribution of polar molecules in the electronic ground state induced by spontaneous emission and blackbody radiation. As a model system we use optically trapped LiCs molecules formed by photoassociation in an ultracold two-species gas. The population dynamics of vibrational and rotational states is modeled using an ab-initio electric dipole moment function and experimental potential energy curves. Comparison with the evolution of the v"=3 electronic ground state yields good qualitative agreement. The analysis provides important input to assess applications of ultracold LiCs molecules in quantum simulation and ultracold chemistry.

  3. Annual progress report for 1999. Wind Energy and Atmospheric Physics Department

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S.E.; Skrumsager, B. [eds.

    2000-06-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory in 1999. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the departments is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 1999 is presented, including lists of publications, lectures, committees and staff members. (au)

  4. Cloud Effects on Meridional Atmospheric Energy Budget Estimated from Clouds and the Earth's Radiant Energy System (CERES) Data

    Science.gov (United States)

    Kato, Seiji; Rose, Fred G.; Rutan, David A.; Charlock, Thomas P.

    2008-01-01

    The zonal mean atmospheric cloud radiative effect, defined as the difference of the top-of-atmosphere (TOA) and surface cloud radiative effects, is estimated from three years of Clouds and the Earth's Radiant Energy System (CERES) data. The zonal mean shortwave effect is small, though it tends to be positive (warming). This indicates that clouds increase shortwave absorption in the atmosphere, especially in midlatitudes. The zonal mean atmospheric cloud radiative effect is, however, dominated by the longwave effect. The zonal mean longwave effect is positive in the tropics and decreases with latitude to negative values (cooling) in polar regions. The meridional gradient of cloud effect between midlatitude and polar regions exists even when uncertainties in the cloud effect on the surface enthalpy flux and in the modeled irradiances are taken into account. This indicates that clouds increase the rate of generation of mean zonal available potential energy. Because the atmospheric cooling effect in polar regions is predominately caused by low level clouds, which tend to be stationary, we postulate that the meridional and vertical gradients of cloud effect increase the rate of meridional energy transport by dynamics in the atmosphere from midlatitude to polar region, especially in fall and winter. Clouds then warm the surface in polar regions except in the Arctic in summer. Clouds, therefore, contribute in increasing the rate of meridional energy transport from midlatitude to polar regions through the atmosphere.

  5. Applications of tunable high energy/pressure pulsed lasers to atmospheric transmission and remote sensing

    Science.gov (United States)

    Hess, R. V.; Seals, R. K.

    1974-01-01

    Atmospheric transmission of high energy C12 O2(16) lasers were improved by pulsed high pressure operation which, due to pressure broadening of laser lines, permits tuning the laser 'off' atmospheric C12 O2(16) absorption lines. Pronounced improvement is shown for horizontal transmission at altitudes above several kilometers, and for vertical transmission through the entire atmosphere. The atmospheric transmission of tuned C12 O2(16) lasers compares favorably with C12 O2(18) isotope lasers and CO lasers. The advantages of tunable, high energy, high pressure pulsed lasers over tunable diode lasers and waveguide lasers, in combining high energies with a large tuning range, are evaluated for certain applications to remote sensing of atmospheric constituents and pollutants. Pulsed operation considerably increases the signal to noise ratio without seriously affecting the high spectral resolution of signal detection obtained with laser heterodyning.

  6. A Code to Compute High Energy Cosmic Ray Effects on Terrestrial Atmospheric Chemistry

    CERN Document Server

    Krejci, Alex J; Thomas, Brian C

    2008-01-01

    A variety of events such as gamma-ray bursts may expose the Earth to an increased flux of high-energy cosmic rays, with potentially important effects on the biosphere. An atmospheric code, the NASA-Goddard Space Flight Center two-dimensional (latitude, altitude) time-dependent atmospheric model (NGSFC), can be used to study atmospheric chemistry changes. The effect on atmospheric chemistry from astrophysically created high energy cosmic rays can now be studied using the NGSFC code. A table has been created that, with the use of the NGSFC code can be used to simulate the effects of high energy cosmic rays (10 GeV to 1 PeV) ionizing the atmosphere. We discuss the table, its use, weaknesses, and strengths.

  7. Evidence for vertical ozone redistribution since 1967

    Science.gov (United States)

    Furrer, R.; Döhler, W.; Kirsch, H.-J.; Plessing, P.; Görsdorf, U.

    1993-03-01

    Long-term measurements of the ozone concentration in the vicinity of the city of Berlin have been performed with ground based Dobson spectrophotometers and balloon borne systems. The respective experiments cover the past 24 years. All data have been reevaluated and corrected towards uniform calibration standards, leading to the longest European data set of total column density, altitude-dependent ozone partial pressures and the corresponding temperatures. Smoothing algorithms unravel significant long-term trends. The analysis shows an increase of ozone concentration within the middle stratosphere (below 31 km height) as well as in the troposphere over the past 24 years. On the contrary, ongoing ozone depletion in the lower stratosphere has been found. The large scale vertical redistribution of atmospheric ozone in the troposphere and the lower stratosphere seems to be in agreement with model calculations and trend predictions that have their roots in changes of the chemical composition and the ozone photochemistry due to anthropogenically induced trace gas concentrations.

  8. The redistributive consequences of monetary policy

    OpenAIRE

    Nakajima, Makoto

    2015-01-01

    Monetary policy is not intended to benefit one segment of the population at the expense of another by redistributing income and wealth. But as Makoto Nakajima explains, it is probably impossible to avoid such redistributive consequences.

  9. The Role of Atmospheric Cloud Radiative Effect in Net Energy Transport in the Tropical Warm Pool

    Science.gov (United States)

    Harrop, B. E.; Hartmann, D. L.

    2014-12-01

    We use ERA-Interim and CERES data to calculate the energy budget of the tropical atmosphere as a function of sea surface temperature. We emphasize the role of the atmospheric cloud radiative effect (ACRE; the change in the radiative heating rate of the atmosphere due to the presence of clouds), which causes a heating of the atmosphere by trapping radiation that would otherwise be lost to space, and which then increases the requirement for the atmosphere to export energy from convective regions. Over the warm pool (10 S - 10 N, 150 - 180 E), the ACRE is shown to be roughly half the value of the net energy transport (~40 W/m2 ACRE from CERES data compared to ~70 W/m2 net energy transport calculated from ERA-Interim). Additionally, we show that over areas of warm SSTs (> 300 K), both ACRE and the energy transport increase with increasing sea surface temperature (SST). The increase in ACRE mirrors the increase in energy transport, suggesting that the increase in energy transport over warmer SSTs is largely driven by radiative heating from the clouds. The net cloud radiative effect at the top of the atmosphere is remarkably insensitive to SST, however.

  10. Temperature of the thermosphere. [Titan atmospheric model with energy transfer

    Science.gov (United States)

    Strobel, D. L.

    1974-01-01

    The vertical temperature contrast for the thermosphere of Titan is estimated considering heating by absorption of solar energy, energy loss through infrared radiation by polyatomic molecules, and energy transfer by thermal conduction between the regions of energy deposition and loss. Current observational data suggest a CH4/H2 mixing ratio of approximately greater than 1, and a vertical temperature contrast smaller than 10 K. However, it is highly probable that H2 and CH4 are not in equilibrium in the thermosphere if there are large H2 escape rates.

  11. Analytical representation of elastic scattering cross sections of low energy electrons by atmospheric gases

    Science.gov (United States)

    Ivanov, V. Y.; Sipov, N. K.; Shneyder, V. A.

    1977-01-01

    Analytical representations of the elastic scattering cross sections of electrons with energies of 0.01-1 keV in atmospheric gases of N2, O2, O are given. These representations are suitable for the Monte Carlo method.

  12. Mechanical energy input to the world oceans due to atmospheric loading

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; QIAN Chengchun; HUANG Ruixin

    2006-01-01

    Mechanical energy input to the oceans is one of the most important factors controlling the oceanic general circulation. The atmosphere transports mechanical energy to the oceans primarily through wind stress, plus changes of the sea level pressure (the so-called atmospheric loading). The rate of mechanical energy transfer into the ocean due to atmospheric loading is calculated, based on TOPEX/POSEIDON data over ten-year period (1993-2002). The rate of total energy input for the world oceans is estimated at 0.04TW (1TW=1012Watt), and most of this energy input is concentrated in the Southern Oceans and the Storm Tracks in the Northern Hemisphere. This energy input varied greatly with time, and the amplitude of the interannual variability over the past ten years is about 15%.

  13. Bilinear Expansion For Redistribution Functions

    Science.gov (United States)

    Harutyunian, Haik; Alecian, Georges; Khachatryan, Knarik; Vardanyan, Ani

    2016-11-01

    We suggest here a method for construction of a bilinear expansion for an angle-averaged redistribution function. This function describes the elementary act of a photon scattering by a model two-level atom with the upper level broadened due to radiation damping. An eigenvalue and eigenvector determination problem is formulated and the relevant matrices are found analytically. Numerical procedures for their computations are elaborated as well. A simple method for the numerical calculations accuracy evaluation is suggested. It is shown that a family of redistribution functions describing the light scattering process within the spectral line frequencies can be constructed if the eigenvalue problem for the considered function is solved. It becomes possible if the eigenvalues and eigenvectors with the appropriate basic functions are used. The Voigt function and its derivatives used as basic functions are studied in detail as well.

  14. CELESTE an atmospheric Cherenkov telescope for high energy gamma astrophysics

    CERN Document Server

    Paré, E; Bazer-Bachi, R; Bergeret, H; Berny, F; Briand, N; Bruel, P; Cerutti, M; Collon, J; Cordier, A; Cornebise, P; Debiais, G; Dezalay, J P; Dumora, D; Durand, E; Eschstruth, P T; Espigat, P; Fabre, B; Fleury, P; Gilly, J; Gouillaud, J C; Gregory, C; Herault, N; Holder, J; Hrabovsky, M; Incerti, S; Jouenne, A; Kalt, L; Legallou, R; Lott, B; Lodygensky, O; Manigot, P; Manseri, H; Manitaz, H; Martin, M; Morano, R; Morineaud, G; Muenz, F; Musquere, A; Naurois, M D; Neveu, J; Noppe, J M; Olive, J F; Palatka, M; Pérez, A; Quebert, J; Rebii, A; Reposeur, T; Rob, L; Roy, P; Sans, J L; Sako, T; Schovanek, P; Smith, D A; Snabre, P; Villard, G

    2002-01-01

    CELESTE is an atmospheric Cherenkov telescope based on the sampling method which makes use of the de-commissioned THEMIS solar electrical plant in the French Pyrenees. A large (2000 m sup 2) mirror surface area from 40 independent heliostats followed by a secondary optic, a trigger system using analog summing techniques and signal digitization with 1 GHz flash ADCs make possible the detection of cosmic gamma-rays down to 30 GeV. This paper provides a detailed technical description of the CELESTE installation.

  15. Return currents and energy transport in the solar flaring atmosphere

    CERN Document Server

    Codispoti, Anna; Piana, Michele; Pinamonti, Nicola

    2013-01-01

    According to a standard ohmic perspective, the injection of accelerated electrons into the flaring region violates local charge equilibrium and therefore, in response, return currents are driven by an electric field to equilibrate such charge violation. In this framework, the energy loss rate associated to these local currents has an ohmic nature and significantly shortens the acceleration electron path. In the present paper we adopt a different viewpoint and, specifically, we study the impact of the background drift velocity on the energy loss rate of accelerated electrons in solar flares. We first utilize the Rutherford cross-section to derive the formula of the energy loss rate when the collisional target has a finite temperature and the background instantaneously and coherently moves up to equilibrate the electron injection. We then use the continuity equation for electrons and imaging spectroscopy data provided by RHESSI to validate this model. Specifically, we show that this new formula for the energy l...

  16. Spatial distributions of the energy and energy flux density of partially coherent electromagnetic beams in atmospheric turbulence.

    Science.gov (United States)

    Li, Jianlong; Lü, Baida; Zhu, Shifu

    2009-07-06

    The formulas of the energy and energy flux density of partially coherent electromagnetic beams in atmospheric turbulence are derived by using Maxwell's equations. Expressions expressed by elements of electric cross spectral density matrixes of the magnetic and the mutual cross spectral density matrix are obtained for the partially coherent electromagnetic beams. Taken the partially coherent Cosh-Gaussian (ChG) electromagnetic beam as a typical example, the spatial distributions of the energy and energy flux density in atmospheric turbulence are numerically calculated. It is found that the turbulence shows a broadening effect on the spatial distributions of the energy and energy flux density. Some interesting results are obtained and explained with regard to their physical nature.

  17. Studies of the Atmospheric Chemsitry of Energy-Related Volatile Organic Compounds and of their Atmospheric Reaction Products

    Energy Technology Data Exchange (ETDEWEB)

    Roger Atkinson; Janet Arey

    2007-04-14

    The focus of this contract was to investigate selected aspects of the atmospheric chemistry of volatile organic compounds (VOCs) emitted into the atmosphere from energy-related sources as well as from biogenic sources. The classes of VOCs studied were polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs, the biogenic VOCs isoprene, 2-methyl-3-buten-2-ol and cis-3-hexen-1-ol, alkenes (including alkenes emitted from vegetation) and their oxygenated atmospheric reaction products, and a series of oxygenated carbonyl and hydroxycarbonyl compounds formed as atmospheric reaction products of aromatic hydrocarbons and other VOCs. Large volume reaction chambers were used to investigate the kinetics and/or products of photolysis and of the gas-phase reactions of these organic compounds with hydroxyl (OH) radicals, nitrate (NO3) radicals, and ozone (O3), using an array of analytical instrumentation to analyze the reactants and products (including gas chromatography, in situ Fourier transform infrared spectroscopy, and direct air sampling atmospheric pressure ionization tandem mass spectrometry). The following studies were carried out. The photolysis rates of 1- and 2-nitronaphthalene and of eleven isomeric methylnitronaphthalenes were measured indoors using blacklamp irradiation and outdoors using natural sunlight. Rate constants were measured for the gas-phase reactions of OH radicals, Cl atoms and NO3 radicals with naphthalene, 1- and 2-methylnaphthalene, 1- and 2-ethylnaphthalene and the ten dimethylnaphthalene isomers. Rate constants were measured for the gas-phase reactions of OH radicals with four unsaturated carbonyls and with a series of hydroxyaldehydes formed as atmospheric reaction products of other VOCs, and for the gas-phase reactions of O3 with a series of cycloalkenes. Products of the gas-phase reactions of OH radicals and O3 with a series of biogenically emitted VOCs were identified and quantified. Ambient atmospheric measurements of the concentrations of a

  18. Energy, Atmosphere, and Climate. Teacher's Guide to World Resources. Comprehensive Coursework on the Global Environment.

    Science.gov (United States)

    Snyder, Sarah A.

    This teacher's guide presents teaching suggestions and presentation materials about how daily human activities, such as energy use, add pollutants to the atmosphere. The lesson is divided into seven parts and can be taught in two or more class periods. Student handouts include: (1) "Total Energy Use by Fuel Type, 1991"; (2) "Facts…

  19. Wind Energy and Atmospheric Physics Department annual progress report for 2000

    DEFF Research Database (Denmark)

    2001-01-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risø National Laboratory in 2000. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviateatmospheric aspects of environmental problems...... of the department's activities in 2000 is shown, including lists of publications, lectures, committees and staff members....

  20. Magnetospheric energy inputs into the upper atmospheres of the giant planets

    Directory of Open Access Journals (Sweden)

    C. G. A. Smith

    2005-07-01

    Full Text Available We revisit the effects of Joule heating upon the upper atmospheres of Jupiter and Saturn. We show that in addition to direct Joule heating there is an additional input of kinetic energy – ion drag energy – which we quantify relative to the Joule heating. We also show that fluctuations about the mean electric field, as observed in the Earth's ionosphere, may significantly increase the Joule heating itself. For physically plausible parameters these effects may increase previous estimates of the upper atmospheric energy input at Saturn from ~10 TW to ~20 TW.

    Keywords. Ionosphere (Electric fields and currents; Planetary ionosphere – Magnetospheric physics (Auroral phenomena

  1. Strategic campaigns and redistributive politics

    DEFF Research Database (Denmark)

    Schultz, Christian

    2007-01-01

    The article investigates strategic, informative campaigning by two parties when politics concern redistribution. Voters are uncertain about whether parties favour special groups. Parties will target campaigns on groups where most votes are gained by informing about policies. In equilibrium......, campaigning will be most intensive in groups where the uncertainty is largest and where voters are most mobile, most likely to vote, most receptive to campaigns and relatively uninformed initially. These groups will become more informed about policy. Parties will therefore gain more votes by treating...

  2. Wind energy meteorology atmospheric physics for wind power generation

    CERN Document Server

    Emeis, Stefan

    2012-01-01

    This book is intended to give an introduction into the meteorological boundary conditions for power generation from the wind, onshore and offshore. It aims to provide reliable meteorological information for the planning and running of this important kind of renewable energy. This includes the derivation of wind laws and wind profile descriptions, especially those above the logarithmic surface layer. Winds over complex terrain and nocturnal low-level jets are considered as well. A special chapter is devoted to the efficiency of large wind parks and their wakes.

  3. Fluid mechanics simulation of fog formation associated with polluted atmosphere produced by energy related fuel combustion

    Science.gov (United States)

    Hung, R. J.; Liaw, G. S.

    1980-01-01

    It is noted that large quantities of atmospheric aerosols with composition SO4(-2), NO3(-1), and NH4(+1) have been detected in highly industrialized areas. Most aerosol products come from energy-related fuel combustion. Fluid mechanics simulation of both microphysical and macrophysical processes is considered in studying the time dependent evolution of the saturation spectra of condensation nuclei associated with polluted and clean atmospheres during the time periods of advection fog formation. The results demonstrate that the condensation nuclei associated with a polluted atmosphere provide more favorable conditions than condensation nuclei associated with a clean atmosphere to produce dense advection fog, and that attaining a certain degree of supersaturation is not necessarily required for the formation of advection fog having condensation nuclei associated with a polluted atmosphere.

  4. Energy Sources of the Dominant Frequency Dependent 3-dimensional Atmospheric Modes

    Science.gov (United States)

    Schubert, S.

    1985-01-01

    The energy sources and sinks associated with the zonally asymmetric winter mean flow are investigated as part of an on-going study of atmospheric variability. Distinctly different horizontal structures for the long, intermediate and short time scale atmospheric variations were noted. In previous observations, the 3-dimensional structure of the fluctuations is investigated and the relative roles of barotropic and baroclinic terms are assessed.

  5. Charge Redistribution from Anomalous Magnetovorticity Coupling

    Science.gov (United States)

    Hattori, Koichi; Yin, Yi

    2016-10-01

    We investigate novel transport phenomena in a chiral fluid originated from an interplay between a vorticity and strong magnetic field, which induces a redistribution of vector charges in the system and an axial current along the magnetic field. The corresponding transport coefficients are obtained from an energy-shift argument for the chiral fermions in the lowest Landau level due to a spin-vorticity coupling and also from diagrammatic computations on the basis of the linear response theory. Based on consistent results from both methods, we observe that the transport coefficients are proportional to the anomaly coefficient and are independent of temperature and chemical potential. We therefore speculate that these transport phenomena are connected to quantum anomaly.

  6. Wave-mean flow interaction and its relationship with the atmospheric energy cycle with diabatic heating

    Institute of Scientific and Technical Information of China (English)

    DUAN Anmin; WU Guoxiong

    2005-01-01

    Based on the traditional theory of wave mean flow interaction, an improved quasi-geostrophic Eliassen-Palm flux with diabatic heating included is deduced. It is shown that there exists an intrinsic relation between the atmospheric energy cycle derived by Lorenz and the wave energy transfer derived by Eliassen and Palm. From this relation it becomes clear that the energy propagation process of large-scale stationary wave is indeed a part of Lorenz energy cycle, and the energy transform from mean flow to wave equals the global mass integral of the divergence of local wave energy flux or the global integral of local wave energy. The diagnostic results by using NCEP/NCAR reanalysis data suggest that the classical adiabatic Eliassen-Palm flux relation can present only the wintertime wave energy transformation. For other seasons, however, the diabatic effect must be taken into account.

  7. Co-variability of poleward propagating atmospheric energy with tropical and higher-latitude climate oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wan-Ru [Iowa State University, Department of Geological and Atmospheric Sciences, Ames, IA (United States); City University of Hong Kong, Guy Carpenter Asia-Pacific Climate Impact Centre, School of Energy and Environment, Kowloon, Hong Kong (China); Chen, Tsing-Chang [Iowa State University, Department of Geological and Atmospheric Sciences, Ames, IA (United States); Wang, Shih-Yu [Utah State University, Utah Climate Center and Department of Plants, Soils and Climate, Logan, UT (United States)

    2012-10-15

    One may infer from the poleward propagation of angular momentum that energy change in tropical regions may be manifested in polar regions through a poleward propagation. This idea does not seem to be extensively addressed in the literature. It has been found that the poleward propagation of total atmospheric energy appears to connect the tropics and the polar regions on the interannual timescale. The present study explores how this poleward propagation may be linked to prominent climate oscillations such as ENSO, PNA, NAO, AO, AAO, and PSA. Analysis suggests that the poleward propagation of energy is likely a result of the atmospheric circulation change modulated by the climate patterns of ENSO, PNA, NAO, AO from tropical to Arctic regions and by the climate patterns of ENSO, PSA, AAO from tropical to Antarctic regions. The existence of the poleward energy propagation may shed light on studies exploring the linkage between topical climate and polar climate. (orig.)

  8. Atmospheric proton and deuterium energy spectra determination with the MASS2 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Grimani, C.; Brunetti, M.T.; Codino, A.; Finetti, N. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); Papini, P.; Massimo Brancaccio, F. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Basini, G.; Bongiorno, F. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Golden, R.L. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Hof, M. [Siegen Univ. (Germany). Fachbereich Physik

    1995-09-01

    The energy spectra of atmospheric-secondary protons and deuterium nuclei have been measured during the September 23, 1991, balloon flight of the NMSU/Wizard - MASS2 instrument. The apparatus was launched from Fort Sumner, New Mexico. The geomagnetic cutoff at the launch site is about 4.5 GV/c. The instrument was flown for 9.8 hours at an altitude of over 100,000 feet. Particles detected below the geomagnetic cutoff have been produced mainly by the interactions of the primary cosmic rays with the atmosphere. The measurement of cosmic ray energy spectra below the geomagnetic cutoff provide direct insights into the particle production mechanism and allows comparison to atmospheric cascade calculations.

  9. Cloud-radiative effects on implied oceanic energy transport as simulated by atmospheric general circulation models

    Science.gov (United States)

    Gleckler, P. J.; Randall, D. A.; Boer, G.; Colman, R.; Dix, M.; Galin, V.; Helfand, M.; Kiehl, J.; Kitoh, A.; Lau, W.

    1995-01-01

    This paper summarizes the ocean surface net energy flux simulated by fifteen atmospheric general circulation models constrained by realistically-varying sea surface temperatures and sea ice as part of the Atmospheric Model Intercomparison Project. In general, the simulated energy fluxes are within the very large observational uncertainties. However, the annual mean oceanic meridional heat transport that would be required to balance the simulated surface fluxes is shown to be critically sensitive to the radiative effects of clouds, to the extent that even the sign of the Southern Hemisphere ocean heat transport can be affected by the errors in simulated cloud-radiation interactions. It is suggested that improved treatment of cloud radiative effects should help in the development of coupled atmosphere-ocean general circulation models.

  10. High-energy cosmic ray fluxes in the Earth atmosphere: calculations vs experiments

    CERN Document Server

    Kochanov, A A; Sinegovsky, S I

    2008-01-01

    A new calculation of the atmospheric fluxes of cosmic-ray hadrons and muons in the energy range 10-10^5 GeV has been performed for the set of hadron production models, EPOS 1.6, QGSJET II-03, SIBYLL 2.1, and others that are of interest to cosmic ray physicists. The fluxes of secondary cosmic rays at several levels in the atmosphere are computed using directly data of the ATIC-2, GAMMA experiments, and the model proposed recently by Zatsepin and Sokolskaya as well as the parameterization of the primary cosmic ray spectrum by Gaisser and Honda. The calculated energy spectra of the hadrons and muon flux as a function of zenith angle are compared with measurements as well as other calculations. The effect of uncertainties both in the primary cosmic ray flux and hadronic model predictions on the spectra of atmospheric hadrons and muons is considered.

  11. Liquid-Desiccant Vapor Separation Reduces the Energy Requirements of Atmospheric Moisture Harvesting.

    Science.gov (United States)

    Gido, Ben; Friedler, Eran; Broday, David M

    2016-08-02

    An innovative atmospheric moisture harvesting system is proposed, where water vapor is separated from the air prior to cooling and condensation. The system was studied using a model that simulates its three interconnected cycles (air, desiccant, and water) over a range of ambient conditions, and optimal configurations are reported for different operation conditions. Model results were compared to specifications of commercial atmospheric moisture harvesting systems and found to represent saving of 5-65% of the electrical energy requirements due to the vapor separation process. We show that the liquid desiccant separation stage that is integrated into atmospheric moisture harvesting systems can work under a wide range of environmental conditions using low grade or solar heating as a supplementary energy source, and that the performance of the combined system is superior.

  12. Aerosol influence on energy balance of the middle atmosphere of Jupiter.

    Science.gov (United States)

    Zhang, Xi; West, Robert A; Irwin, Patrick G J; Nixon, Conor A; Yung, Yuk L

    2015-12-22

    Aerosols are ubiquitous in planetary atmospheres in the Solar System. However, radiative forcing on Jupiter has traditionally been attributed to solar heating and infrared cooling of gaseous constituents only, while the significance of aerosol radiative effects has been a long-standing controversy. Here we show, based on observations from the NASA spacecraft Voyager and Cassini, that gases alone cannot maintain the global energy balance in the middle atmosphere of Jupiter. Instead, a thick aerosol layer consisting of fluffy, fractal aggregate particles produced by photochemistry and auroral chemistry dominates the stratospheric radiative heating at middle and high latitudes, exceeding the local gas heating rate by a factor of 5-10. On a global average, aerosol heating is comparable to the gas contribution and aerosol cooling is more important than previously thought. We argue that fractal aggregate particles may also have a significant role in controlling the atmospheric radiative energy balance on other planets, as on Jupiter.

  13. Atmospheric radiative flux divergence from Clouds and Earth Radiant Energy System (CERES)

    Science.gov (United States)

    Smith, Louis G.; Charlock, Thomas P.; Crommelynk, D.; Rutan, David; Gupta, Shashi

    1990-01-01

    A major objective of the Clouds and Earth Radiant Energy System (CERES) is the computation of vertical profiles through the atmosphere of the divergence of radiation flux, with global coverage. This paper discusses the need for radiation divergence and presents some options for its inference from CERES measurements and other data from the Earth Observating System.

  14. Summary of atmospheric wind design criteria for wind energy conversion system development

    Science.gov (United States)

    Frost, W.; Turner, R. E.

    1979-01-01

    Basic design values are presented of significant wind criteria, in graphical format, for use in the design and development of wind turbine generators for energy research. It is a condensed version of portions of the Engineering Handbook on the Atmospheric Environmental Guidelines for Use in Wind Turbine Generator Development.

  15. Beamed-Energy Propulsion (BEP): Considerations for Beaming High Energy-Density Electromagnetic Waves Through the Atmosphere

    Science.gov (United States)

    Manning, Robert M.

    2015-01-01

    A study to determine the feasibility of employing beamed electromagnetic energy for vehicle propulsion within and outside the Earth's atmosphere was co-funded by NASA and the Defense Advanced Research Projects Agency that began in June 2010 and culminated in a Summary Presentation in April 2011. A detailed report entitled "Beamed-Energy Propulsion (BEP) Study" appeared in February 2012 as NASA/TM-2012-217014. Of the very many nuances of this subject that were addressed in this report, the effects of transferring the required high energy-density electromagnetic fields through the atmosphere were discussed. However, due to the limitations of the length of the report, only a summary of the results of the detailed analyses were able to be included. It is the intent of the present work to make available the complete analytical modeling work that was done for the BEP project with regard to electromagnetic wave propagation issues. In particular, the present technical memorandum contains two documents that were prepared in 2011. The first one, entitled "Effects of Beaming Energy Through the Atmosphere" contains an overview of the analysis of the nonlinear problem inherent with the transfer of large amounts of energy through the atmosphere that gives rise to thermally-induced changes in the refractive index; application is then made to specific beamed propulsion scenarios. A brief portion of this report appeared as Appendix G of the 2012 Technical Memorandum. The second report, entitled "An Analytical Assessment of the Thermal Blooming Effects on the Propagation of Optical and Millimeter- Wave Focused Beam Waves For Power Beaming Applications" was written in October 2010 (not previously published), provides a more detailed treatment of the propagation problem and its effect on the overall characteristics of the beam such as its deflection as well as its radius. Comparisons are then made for power beaming using the disparate electromagnetic wavelengths of 1.06 microns and 2

  16. Climate warming due to increasing atmospheric CO2 - Simulations with a multilayer coupled atmosphere-ocean seasonal energy balance model

    Science.gov (United States)

    Li, Peng; Chou, Ming-Dah; Arking, Albert

    1987-01-01

    The transient response of the climate to increasing CO2 is studied using a modified version of the multilayer energy balance model of Peng et al. (1982). The main characteristics of the model are described. Latitudinal and seasonal distributions of planetary albedo, latitude-time distributions of zonal mean temperatures, and latitudinal distributions of evaporation, water vapor transport, and snow cover generated from the model and derived from actual observations are analyzed and compared. It is observed that in response to an atmospheric doubling of CO2, the model reaches within 1/e of the equilibrium response of global mean surface temperature in 9-35 years for the probable range of vertical heat diffusivity in the ocean. For CO2 increases projected by the National Research Council (1983), the model's transient response in annually and globally averaged surface temperatures is 60-75 percent of the corresponding equilibrium response, and the disequilibrium increases with increasing heat diffusivity of the ocean.

  17. Pacific Northwest Laboratory annual report for 1987 to the DOE Office of Energy Research: Part 3, Atmospheric sciences

    Energy Technology Data Exchange (ETDEWEB)

    Elderkin, C.E.

    1988-08-01

    Currently, the broad goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, and continental scales in the air, in clouds, and on the surface. For several years, studies of transport and diffusion have been extended to mesoscale areas of complex terrain. Atmospheric cleansing research has expanded to a regional scale, multilaboratory investigation of precipitation scavenging processes involving the transformation and wet deposition of chemicals composing ''acid rain.'' In addition, the redistribution and long-range transport of transformed contaminants passing through clouds is recognized as a necessary extension of our research to even larger scales in the future. A few long-range tracer experiments conducted in recent years and the special opportunity for measuring the transport and removal of radioactivity following the Chernobyl reactor accident of April 1986 offer important initial data bases for studying atmospheric processes at these super-regional scales.

  18. LOW-FREQUENCY RADIO OBSERVATIONS OF PICOFLARE CATEGORY ENERGY RELEASES IN THE SOLAR ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, R.; Sasikumar Raja, K.; Kathiravan, C.; Satya Narayanan, A., E-mail: ramesh@iiap.res.in [Indian Institute of Astrophysics, Bangalore 560 034 (India)

    2013-01-10

    We report low-frequency (80 MHz) radio observations of circularly polarized non-thermal type I radio bursts ({sup n}oise storms{sup )} in the solar corona whose estimated energy is {approx}10{sup 21} erg. These are the weakest energy release events reported to date in the solar atmosphere. The plot of the distribution of the number of bursts (dN) versus their corresponding peak flux density in the range S to S+dS shows a power-law behavior, i.e., dN {proportional_to} S {sup {gamma}} dS. The power-law index {gamma} is in the range -2.2 to -2.7 for the events reported in the present work. The present results provide independent observational evidence for the existence of picoflare category energy releases in the solar atmosphere which are yet to be explored.

  19. Intercomparison and interpretation of surface energy fluxes in atmospheric general circulation models

    Science.gov (United States)

    Randall, D. A.; Cess, R. D.; Blanchet, J. P.; Boer, G. J.; Dazlich, D. A.; Del Genio, A. D.; Deque, M.; Dymnikov, V.; Galin, V.; Ghan, S. J.

    1992-01-01

    Responses of the surface energy budgets and hydrologic cycles of 19 atmospheric general circulation models to an imposed, globally uniform sea surface temperature perturbation of 4 K were analyzed. The responses of the simulated surface energy budgets are extremely diverse and are closely linked to the responses of the simulated hydrologic cycles. The response of the net surface energy flux is not controlled by cloud effects; instead, it is determined primarily by the response of the latent heat flux. The prescribed warming of the oceans leads to major increases in the atmospheric water vapor content and the rates of evaporation and precipitation. The increased water vapor amount drastically increases the downwelling IR radiation at the earth's surface, but the amount of the change varies dramatically from one model to another.

  20. Wind Energy and the Turbulent Nature of the Atmospheric Boundary Layer

    CERN Document Server

    Wächter, Matthias; Hölling, Michael; Morales, Allan; Milan, Patrick; Mücke, Tanja; Peinke, Joachim; Reinke, Nico; Rinn, Philip

    2012-01-01

    The challenge of developing a sustainable and renewable energy supply within the next decades requires collaborative efforts as well as new concepts in the fields of science and engineering. Here we give an overview on the impact of small-scale properties of atmospheric turbulence on the wind energy conversion process. Special emphasis is given to the noisy and intermittent structure of turbulence and its outcome for wind energy conversion and utilization. Experimental, theoretical, analytical, and numerical concepts and methods are presented. In particular we report on new aspects resulting from the combination of basic research, especially in the field of turbulence and complex stochastic systems, with engineering applications.

  1. Towards an energy-conserving quasi-hydrostatic deep-atmosphere dynamical core

    Science.gov (United States)

    Tort, Marine; Dubos, Thomas

    2014-05-01

    Towards an energy-conserving quasi-hydrostatic deep-atmosphere dynamical core Marine Tort1 & Thomas Dubos1 1 Laboratoire Météorologique Dynamique, Ecole Polytechnique, Palaiseau, FRANCE Atmosphere dynamics of our planet is quite well described by traditional primitive equations based on the so-called shallow-atmosphere approximation. Thus, the model is dynamically consistent (in the sense that it possesses conservation principles for mass, energy, potential vorticity and angular momentum) when certain metric terms and the cosφ Coriolis terms are neglected (Phillips, 1966). Nevertheless, to simulate planetary atmospheres, the shallow-atmosphere approximation should be relaxed because of the low planet radius (such as Titan) or the depth of their atmospheres (such as Jupiter or Saturne). Non-traditional terms have some dynamical effects (Gerkema and al., 2008) but they are little-known and rarely integrated into general circulation dynamical cores (Wood and Staniforth, 2002). As an example, the french GCM of the Laboratoire Météorologique Dynamique (LMD-Z) integrates the traditional primitive equations discretized from their curl (vector-invariant) form based on a finite different scheme whose conserves exactly potential vorticity (Sadourny, 1975a,b). We considered an orthogonal curvilinear system and we first derived a curl form of global, deep-atmosphere quasi-hydrostatic model in which prognostic variable is absolute axial momentum instead of relative velocity vector. Given the close relationship between the curl form and Hamiltonian formulation of the previous equations, we generalized Sadourny's energy-conserving formulation by discretizing the Poisson bracket and the energy themselves (Salmon, 1983; Gassmann, 2013). The substantial computing infrastructure of the dynamical core is the same but the modification of the hydrostatic balance requires a mass-based vertical coordinate (Wood and Staniforth, 2003). The new discretization has been implemented into

  2. Tailoring electron energy distribution functions through energy confinement in dual radio-frequency driven atmospheric pressure plasmas

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, C.; Waskoenig, J. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Gans, T. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom)

    2012-10-08

    A multi-scale numerical model based on hydrodynamic equations with semi-kinetic treatment of electrons is used to investigate the influence of dual frequency excitation on the effective electron energy distribution function (EEDF) in a radio-frequency driven atmospheric pressure plasma. It is found that variations of power density, voltage ratio, and phase relationship provide separate control over the electron density and the mean electron energy. This is exploited to directly influence both the phase dependent and time averaged effective EEDF. This enables tailoring the EEDF for enhanced control of non-equilibrium plasma chemical kinetics at ambient pressure and temperature.

  3. Enhancing the prediction of turbulent kinetic energy in the marine atmospheric boundary layer

    Science.gov (United States)

    Foreman, R. J.; Emeis, S.

    2010-09-01

    A recent study by Shaikh and Siddiqui (2010) has shown definitively that the turbulent structure of boundary layer flows over water is fundamentally different compared with that over a smooth surface and with that over a solid wavy surface whose wave amplitude is similar to that of dynamically wind-generated waves. In light of this new information, the constants of the Mellor-Yamada boundary layer model, which are based on laboratory data over solid walls, are re-evaluated to suit the turbulent dynamics of a dynamic, wavy surface. The constants are based on the principal that the enhanced turbulent production in the vicinity of waves is redistributed among the normal stress components by virtue of the enhanced pressure-velocity covariances also found in the vicinity of waves. There is then a feedback mechanism whereby enhanced normal stresses modify the dynamic surface. The net effect of this is that in the marine boundary layer, one can expect an enhancement of turbulent kinetic energy due to the enhancement of normal stresses at the expense of shear stresses. The constants in the Mellor-Yamada-Janjic planetary boundary layer scheme within the Weather Research and Forecasting (WRF) model are changed to fit this principal. Simulations are then performed and compared with data (wind speed and turbulent kinetic energy) from the FINO1 platform in the North Sea. It is found that while predictions of the wind speed are barely changed, the magnitude of the tke error (RMS) is reduced by up to 50%. This is expected to be practically relevant for the estimation of blade fatigue of wind energy converters, where the tke is an important parameter in this assessment. It could also be relevant for pollution dispersion in marine boundary layers.

  4. Measurements of the atmospheric neutrino flux by Super-Kamiokande: energy spectra, geomagnetic effects, and solar modulation

    CERN Document Server

    Richard, E; Abe, K; Haga, Y; Hayato, Y; Ikeda, M; Iyogi, K; Kameda, J; Kishimoto, Y; Miura, M; Moriyama, S; Nakahata, M; Nakajima, T; Nakano, Y; Nakayama, S; Orii, A; Sekiya, H; Shiozawa, M; Takeda, A; Tanaka, H; Tomura, T; Wendell, R A; Akutsu, R; Irvine, T; Kajita, T; Kaneyuki, K; Nishimura, Y; Labarga, L; Fernandez, P; Gustafson, J; Kachulis, C; Kearns, E; Raaf, J L; Stone, J L; Sulak, L R; Berkman, S; Nantais, C M; Tanaka, H A; Tobayama, S; Goldhaber, M; Kropp, W R; Mine, S; Weatherly, P; Smy, M B; Sobel, H W; Takhistov, V; Ganezer, K S; Hartfiel, B L; Hill, J; Hong, N; Kim, J Y; Lim, I T; Park, R G; Himmel, A; Li, Z; OSullivan, E; Scholberg, K; Walter, C W; Wongjirad, T; Ishizuka, T; Tasaka, S; Jang, J S; Learned, J G; Matsuno, S; Smith, S N; Friend, M; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Suzuki, A T; Takeuchi, Y; Yano, T; Cao, S V; Hiraki, T; Hirota, S; Huang, K; Kikawa, T; Minamino, A; Nakaya, T; Suzuki, K; Fukuda, Y; Choi, K; Itow, Y; Suzuki, T; Mijakowski, P; Frankiewicz, K; Hignight, J; Imber, J; Jung, C K; Li, X; Palomino, J L; Wilking, M J; Yanagisawa, C; Fukuda, D; Ishino, H; Kayano, T; Kibayashi, A; Koshio, Y; Mori, T; Sakuda, M; Xu, C; Kuno, Y; Tacik, R; Kim, S B; Okazawa, H; Choi, Y; Nishijima, K; Koshiba, M; Totsuka, Y; Suda, Y; Yokoyama, M; Bronner, C; Hartz, M; Martens, K; Marti, Ll; Suzuki, Y; Vagins, M R; Martin, J F; Konaka, A; Chen, S; Zhang, Y; Wilkes, R J

    2015-01-01

    A comprehensive study on the atmospheric neutrino flux in the energy region from sub-GeV up to several TeV using the Super-Kamiokande water Cherenkov detector is presented in this paper. The energy and azimuthal spectra of the atmospheric ${\

  5. Redistributive effects in public health care financing.

    Science.gov (United States)

    Honekamp, Ivonne; Possenriede, Daniel

    2008-11-01

    This article focuses on the redistributive effects of different measures to finance public health insurance. We analyse the implications of different financing options for public health insurance on the redistribution of income from good to bad health risks and from high-income to low-income individuals. The financing options considered are either income-related (namely income taxes, payroll taxes, and indirect taxes), health-related (co-insurance, deductibles, and no-claim), or neither (flat fee). We show that governments who treat access to health care as a basic right for everyone should consider redistributive effects when reforming health care financing.

  6. Effects of atmospheric deposition of energy-related pollutants on water quality: a review and assessment

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.J.

    1981-05-01

    The effects on surface-water quality of atmospheric pollutants that are generated during energy production are reviewed and evaluated. Atmospheric inputs from such sources to the aquatic environment may include trace elements, organic compounds, radionuclides, and acids. Combustion is the largest energy-related source of trace-element emissions to the atmosphere. This report reviews the nature of these emissions from coal-fired power plants and discusses their terrestrial and aquatic effects following deposition. Several simple models for lakes and streams are developed and are applied to assess the potential for adverse effects on surface-water quality of trace-element emissions from coal combustion. The probability of acute impacts on the aquatic environment appears to be low; however, more subtle, chronic effects are possible. The character of acid precipitation is reviewed, with emphasis on aquatic effects, and the nature of existing or potential effects on water quality, aquatic biota, and water supply is considered. The response of the aquatic environment to acid precipitation depends on the type of soils and bedrock in a watershed and the chemical characteristics of the water bodies in question. Methods for identifying regions sensitive to acid inputs are reviewed. The observed impact of acid precipitation ranges from no effects to elimination of fish populations. Coal-fired power plants and various stages of the nuclear fuel cycle release radionuclides to the atmosphere. Radioactive releases to the atmosphere from these sources and the possible aquatic effects of such releases are examined. For the nuclear fuel cycle, the major releases are from reactors and reprocessing. Although aquatic effects of atmospheric releases have not been fully quantified, there seems little reason for concern for man or aquatic biota.

  7. The role of cluster energy nonaccommodation in atmospheric sulfuric acid nucleation.

    Science.gov (United States)

    Kurtén, Theo; Kuang, Chongai; Gómez, Pedro; McMurry, Peter H; Vehkamäki, Hanna; Ortega, Ismael; Noppel, Madis; Kulmala, Markku

    2010-01-14

    We discuss the possible role of energy nonaccommodation (monomer-cluster collisions that do not result in stable product formation due to liberated excess energy) in atmospheric nucleation processes involving sulfuric acid. Qualitative estimates of the role of nonaccommodation are computed using quantum Rice-Ramsberger-Kassel theory together with quantum chemically calculated vibrational frequencies and anharmonic coupling constants for small sulfuric acid-containing clusters. We find that energy nonaccommodation effects may, at most, decrease the net formation rate of sulfuric acid dimers by up to a factor of 10 with respect to the hard-sphere collision rate. A decrease in energy nonaccommodation due to an increasing number of internal degrees of freedom may kinetically slightly favor the participation of amines rather than ammonia as stabilizing agents in sulfuric acid nucleation, though the kinetic enhancement factor is likely to be less than three. However, hydration of the clusters (which always occurs in ambient conditions) is likely to increase the energy accommodation factor, reducing the role that energy nonaccommodation plays in atmospheric nucleation.

  8. Wind Energy Forecasting: A Collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy

    Energy Technology Data Exchange (ETDEWEB)

    Parks, K.; Wan, Y. H.; Wiener, G.; Liu, Y.

    2011-10-01

    The focus of this report is the wind forecasting system developed during this contract period with results of performance through the end of 2010. The report is intentionally high-level, with technical details disseminated at various conferences and academic papers. At the end of 2010, Xcel Energy managed the output of 3372 megawatts of installed wind energy. The wind plants span three operating companies1, serving customers in eight states2, and three market structures3. The great majority of the wind energy is contracted through power purchase agreements (PPAs). The remainder is utility owned, Qualifying Facilities (QF), distributed resources (i.e., 'behind the meter'), or merchant entities within Xcel Energy's Balancing Authority footprints. Regardless of the contractual or ownership arrangements, the output of the wind energy is balanced by Xcel Energy's generation resources that include fossil, nuclear, and hydro based facilities that are owned or contracted via PPAs. These facilities are committed and dispatched or bid into day-ahead and real-time markets by Xcel Energy's Commercial Operations department. Wind energy complicates the short and long-term planning goals of least-cost, reliable operations. Due to the uncertainty of wind energy production, inherent suboptimal commitment and dispatch associated with imperfect wind forecasts drives up costs. For example, a gas combined cycle unit may be turned on, or committed, in anticipation of low winds. The reality is winds stayed high, forcing this unit and others to run, or be dispatched, to sub-optimal loading positions. In addition, commitment decisions are frequently irreversible due to minimum up and down time constraints. That is, a dispatcher lives with inefficient decisions made in prior periods. In general, uncertainty contributes to conservative operations - committing more units and keeping them on longer than may have been necessary for purposes of maintaining reliability

  9. Ultraviolet observations of Titan from OAO-2. [and formation of atmospheric model with energy absorption

    Science.gov (United States)

    Caldwell, J. J.

    1974-01-01

    High altitude deposition of energy in Titan's atmosphere can have a significant effect on the spectral distribution of emitted thermal radiation from the satellite. This reasoning led to the prediction of emission peaks at wavelengths corresponding to allowed bands of CH4 and trace photolysis products such as C2H6. Intermediate resolution infrared spectrophotometry has encouraged this interpretation of the infrared properties of Titan, and provided the basis for initial, detailed model.

  10. Subsurface application enhances benefits of manure redistribution

    Science.gov (United States)

    Sustainable nutrient management requires redistribution of livestock manure from nutrient-excess areas to nutrient-deficit areas. Field experiments were conducted to assess agronomic and environmental effects of different poultry litter application methods (surface vs. subsurface) and timings (fall ...

  11. Scientific Infrastructure to Support Atmospheric Science and Aerosol Science for the Department of Energy's Atmospheric Radiation Measurement Programs at Barrow, Alaska.

    Science.gov (United States)

    Lucero, D. A.; Ivey, M.; Helsel, F.; Hardesty, J.; Dexheimer, D.

    2015-12-01

    Scientific infrastructure to support atmospheric science and aerosol science for the Department of Energy's Atmospheric Radiation Measurement programs at Barrow, Alaska.The Atmospheric Radiation Measurement (ARM) Program's located at Barrow, Alaska is a U.S. Department of Energy (DOE) site. The site provides a scientific infrastructure and data archives for the international Arctic research community. The infrastructure at Barrow has been in place since 1998, with many improvements since then. Barrow instruments include: scanning precipitation Radar-cloud radar, Doppler Lidar, Eddy correlation flux systems, Ceilometer, Manual and state-of-art automatic Balloon sounding systems, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL), Millimeter cloud radar, High Spectral Resolution Lidar (HSRL) along with all the standard metrological measurements. Data from these instruments is placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments are at Barrow and the challenges of maintaining these instruments in an Arctic site.

  12. A new correlation between solar energy radiation and some atmospheric parameters

    CERN Document Server

    Dumas, Antonio; Bonnici, Maurizio; Madonia, Mauro; Trancossi, Michele

    2014-01-01

    The energy balance for an atmospheric layer near the soil is evaluated. By integrating it over the whole day period a linear relationship between the global daily solar radiation incident on a horizontal surface and the product of the sunshine hours at clear sky with the maximum temperature variation in the day is achieved. The results show a comparable accuracy with some well recognized solar energy models such as the \\ang-Prescott one, at least for Mediterranean climatic area. Validation of the result has been performed using old dataset which are almost contemporary and relative to the same sites with the ones used for comparison.

  13. Test of developing long-term forecasts of world energy impact on the earth's atmosphere

    Science.gov (United States)

    Klimenko, V. V.; Klimenko, A. V.; Tereshin, A. G.

    2015-03-01

    It has been established that the historical approach to world energy forecasting can yield useful results at time horizons with a depth of several decades. The genetic forecast supposes reaching a plateau of global energy consumption at the level of 30 billion tons of coal equivalent and an increase in the carbon dioxide concentration almost to 500 parts per million by the end of the century against the background of a continuing decrease in sulfur dioxide emission. From the historical point of view, the implementation of the most aggressive scenarios of human impact on the atmosphere and climate seems very unlikely.

  14. Rapid Atmospheric-Pressure-Plasma-Jet Processed Porous Materials for Energy Harvesting and Storage Devices

    Directory of Open Access Journals (Sweden)

    Jian-Zhang Chen

    2015-01-01

    Full Text Available Atmospheric pressure plasma jet (APPJ technology is a versatile technology that has been applied in many energy harvesting and storage devices. This feature article provides an overview of the advances in APPJ technology and its application to solar cells and batteries. The ultrafast APPJ sintering of nanoporous oxides and 3D reduced graphene oxide nanosheets with accompanying optical emission spectroscopy analyses are described in detail. The applications of these nanoporous materials to photoanodes and counter electrodes of dye-sensitized solar cells are described. An ultrashort treatment (1 min on graphite felt electrodes of flow batteries also significantly improves the energy efficiency.

  15. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 3. Atmospheric sciences

    Energy Technology Data Exchange (ETDEWEB)

    Elderkin, C.E.

    1984-02-01

    The goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to assess, describe and predict the nature and fate of atmospheric contaminants and to study the impacts of contaminants on local, regional and global climates. The contaminants being investigated are those resulting from the development and use of conventional energy resources (coal, gas, oil, and nuclear power) as well as alternative energy resources. The description of atmospheric research at PNL is organized in terms of generic studies including Contaminant Characterizations and Transformation; Boundary Layer Meteorology; and Dispersion, Deposition and Resupension of Atmospheric Contaminants.

  16. Model thermal response to minor radiative energy sources and sinks in the middle atmosphere

    Science.gov (United States)

    Fomichev, V. I.; Fu, C.; de Grandpré, J.; Beagley, S. R.; Ogibalov, V. P.; McConnell, J. C.

    2004-10-01

    This paper presents the thermal response of the Canadian middle atmosphere model (CMAM) to minor radiative energy sources and sinks. These include chemical heating, infrared (IR) H2O cooling, sphericity effect in solar heating, and solar heating in the near-IR CO2 bands. All of these energy sources/sinks can be considered as minor ones either in terms of their magnitude or in terms of the limited height region where they are of importance or both. To examine the thermal response of the middle atmosphere, a version of the CMAM with an interactive gas phase chemistry scheme has been used in a series of multiyear experiments for conditions of perpetual July. Each of the analyzed mechanisms may provide a noticeable contribution into the model energy balance that results in a statistically significant model response. Various forcing terms due to minor energy sources/sinks have different spatial and temporal distributions. Their magnitudes vary from tenths K d-1 for the sphericity effect up to ˜10 K d-1 for chemical heating that provides corresponding thermal responses of a few to about 20 K in the middle atmosphere. The model thermal response depends on the magnitude of the applied forcing but is not always local and can be spread beyond the regions where the forcing terms are initially applied. On a globally averaged basis the local strength of the model response is nearly proportional to the magnitude of the small forcing terms but shows nonlinearity when forcing due to chemical heating exceeds ˜1 K d-1 in the mesosphere. Accounting for the combined effects of the minor energy sources and sinks leads to a better agreement between the model temperature field and observations.

  17. Atmospheric CO2 enrichment alters energy assimilation, investment and allocation in Xanthium strumarium.

    Science.gov (United States)

    Nagel, Jennifer M; Wang, Xianzhong; Lewis, James D; Fung, Howard A; Tissue, David T; Griffin, Kevin L

    2005-05-01

    Energy-use efficiency and energy assimilation, investment and allocation patterns are likely to influence plant growth responses to increasing atmospheric CO2 concentration ([CO2]). Here, we describe the influence of elevated [CO2] on energetic properties as a mechanism of growth responses in Xanthium strumarium. Individuals of X. strumarium were grown at ambient or elevated [CO2] and harvested. Total biomass and energetic construction costs (CC) of leaves, stems, roots and fruits and percentage of total biomass and energy allocated to these components were determined. Photosynthetic energy-use efficiency (PEUE) was calculated as the ratio of total energy gained via photosynthetic activity (Atotal) to leaf CC. Elevated [CO2] increased leaf Atotal, but decreased CC per unit mass of leaves and roots. Consequently, X. strumarium individuals produced more leaf and root biomass at elevated [CO2] without increasing total energy investment in these structures (CCtotal). Whole-plant biomass was associated positively with PEUE. Whole-plant construction required 16.1% less energy than modeled whole-plant energy investment had CC not responded to increased [CO2]. As a physiological mechanism affecting growth, altered energetic properties could positively influence productivity of X. strumarium, and potentially other species, at elevated [CO2].

  18. Differential flux measurement of atmospheric pion, muon, electron and positron energy spectra at balloon altitudes

    Energy Technology Data Exchange (ETDEWEB)

    Grimani, C.; Brunetti, M.T.; Codino, A. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); Papini, P.; Massimo Brancaccio, F.; Finetti, N. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Stephens, S.A. [Tata Institute of Fundamental Researc, Bombay (International Commission on Radiation Units and Measurements); Basini, G.; Bongiorno, F. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Golden, R.L. [New Mexico State Univ. Las Cruces, NM (United States). Particle Astrophysics Lab.

    1995-09-01

    The fluxes of atmospheric electrons, positrons, positive and negative muons and negative pions have been determined using the NMSU Wizard-MASS2 balloons-borne instrument. The instrument was launched from Fort Sumner, New Mexico, (geomagnetic cut-off about 4.5 GV/c) on september 23, 1991. The flight lasted 9.8 hours and remained above 100.000 ft. Muons and negative pions were observed and their momenta were determined. Since these particles are not a part of the primary component, the measurement of their fluxes provides information regarding production and propagation of secondary particles in the atmosphere. Similarly, observations of electrons and positrons well below the geomagnetic cut-off provides insight into electromagnetic cascade processes in the upper atmosphere. In addition, the determination of the energy spectra of rare particles such as positrons can be used for background subtraction for cosmic ray experiments gathering data below a few g/cm{sup 2} of overlying atmosphere.

  19. Mesoscale atmosphere ocean coupling enhances the transfer of wind energy into the ocean.

    Science.gov (United States)

    Byrne, D; Münnich, M; Frenger, I; Gruber, N

    2016-06-13

    Although it is well established that the large-scale wind drives much of the world's ocean circulation, the contribution of the wind energy input at mesoscales (10-200 km) remains poorly known. Here we use regional simulations with a coupled high-resolution atmosphere-ocean model of the South Atlantic, to show that mesoscale ocean features and, in particular, eddies can be energized by their thermodynamic interactions with the atmosphere. Owing to their sea-surface temperature anomalies affecting the wind field above them, the oceanic eddies in the presence of a large-scale wind gradient provide a mesoscale conduit for the transfer of energy into the ocean. Our simulations show that this pathway is responsible for up to 10% of the kinetic energy of the oceanic mesoscale eddy field in the South Atlantic. The conditions for this pathway to inject energy directly into the mesoscale prevail over much of the Southern Ocean north of the Polar Front.

  20. [Spatial distribution of electrons with high energy in atmospheric pressure glow discharge excited by DC voltage].

    Science.gov (United States)

    Liu, Zhi-qiang; Jia, Peng-ying; Liu, Tie

    2013-09-01

    Atmospheric pressure glow discharge excited by a DC voltage was realized in a 6 mm air gap by using a needle-water electrode discharge device. The atompheric pressure glow discharge has characteristic regions such as a cathode fall, a negative glow, a Faraday dark space, a positive column and an anode glow. The discharge is a normal glow through analyzing its voltage-current curve. The emission intensity of 337.1 nm spectral line from the second positive system of N2 was investigated because it can indicate the electron density with high energy. Results show that the maxima of high energy electrons appears in the vicinity of the needle tip, and it almost remains constant at other locations. The density of high energy electrons decreases with increasing the voltage. Similarly, it decreases with increasing the value of the ballast resistor. Oxygen atom is important for the sterilization and disinfection. The distribution of oxygen atom was also investigated by optical emission spectroscopy. It was found that the oxygen distribution is similar with the distribution of high energy electrons. These results are important for the application of atmospheric pressure glow discharge in environmental protection and biological treatment.

  1. Global atmospheric energy deposition by energetic electrons - Quantitative spatial and temporal characteristics inferred from the Atmospheric X-ray Imaging Spectrometer (PEM/AXIS) on UARS

    Science.gov (United States)

    Chenette, D. L.; Datlowe, D. W.; Robinson, R. M.; Schumaker, T. L.; Vondrak, R. R.; Frahm, R. A.; Sharber, J. R.; Winningham, J. D.

    1993-01-01

    The primary purpose of PEM/AXIS is to provide a global monitor of the energy input to the upper atmosphere due to energetic electrons. The design, development, and calibration of AXIS are described and an assessment of its excellent on-orbit performance is presented. The unique capabilities of X-ray imaging spectrometers to monitor the global patterns of electron energy deposition in the atmosphere are shown through an analysis of some specific cases during the first year of the UARS mission.

  2. Sampling of ions at atmospheric pressure: ion transmission and ion energy studied by simulation and experiment

    Science.gov (United States)

    Große-Kreul, Simon; Hübner, Simon; Benedikt, Jan; von Keudell, Achim

    2016-04-01

    Mass spectrometry of ions from atmospheric pressure plasmas is a challenging diagnostic method that has been applied to a large variety of cold plasma sources in the past. However, absolute densities can usually not be obtained, moreover, the process of sampling of ions and neutrals from such a plasma inherently influences the measured composition. These issues are studied in this contribution by a combination of experimental and numerical methods. Different numerical domains are sequentially coupled to calculate the ion transmission from the source to the mass analyzer. It is found that the energy of the sampled ions created by a radio-frequency microplasma operated in a He-N2 mixture at atmospheric pressure is of the order of 0.1 eV and that it depends linearly on the ion mass in good agreement with the expectation for seeded particles accelerated in a supersonic expansion. Moreover, the measured ion energy distribution from an afterglow of an atmospheric pressure plasma can be reproduced on basis of the particle trajectories in the sampling system. Eventually, an estimation of the absolute flux of ions to the detector is deduced.

  3. Non-standard interactions with high-energy atmospheric neutrinos at IceCube

    Science.gov (United States)

    Salvado, Jordi; Mena, Olga; Palomares-Ruiz, Sergio; Rius, Nuria

    2017-01-01

    Non-standard interactions in the propagation of neutrinos in matter can lead to significant deviations from expectations within the standard neutrino oscillation framework and atmospheric neutrino detectors have been considered to set constraints. However, most previous works have focused on relatively low-energy atmospheric neutrino data. Here, we consider the one-year high-energy through-going muon data in IceCube, which has been already used to search for light sterile neutrinos, to constrain new interactions in the μτ-sector. In our analysis we include several systematic uncertainties on both, the atmospheric neutrino flux and on the detector properties, which are accounted for via nuisance parameters. After considering different primary cosmic-ray spectra and hadronic interaction models, we improve over previous analysis by using the latest data and showing that systematics currently affect very little the bound on the off-diagonal ɛ μτ , with the 90% credible interval given by -6 .0 × 10-3 data in IceCube and study the precision at which non-standard parameters could be determined for the case of ɛ μτ near its current bound.

  4. Non-standard interactions with high-energy atmospheric neutrinos at IceCube

    CERN Document Server

    Salvado, Jordi; Palomares-Ruiz, Sergio; Rius, Nuria

    2016-01-01

    Non-standard interactions in the propagation of neutrinos in matter can lead to significant deviations from expectations within the standard neutrino oscillation framework and atmospheric neutrino detectors have been considered to set constraints. However, most previous works have focused on relatively low-energy atmospheric neutrino data. Here, we consider the one-year high-energy through-going muon data in IceCube, which has been already used to search for light sterile neutrinos, to constrain new interactions in the $\\mu\\tau$-sector. In our analysis we include several systematic uncertainties on both, the atmospheric neutrino flux and on the detector properties, which are accounted for via nuisance parameters. After considering different primary cosmic-ray spectra and hadronic interation models, we obtain the most stringent bound on the off-diagonal $\\varepsilon_{\\mu \\tau}$ parameter to date, with the 90\\% credible interval given by $-6.0 \\times 10^{-3} < \\varepsilon_{\\mu \\tau} < 5.4 \\times 10^{-3}$....

  5. The Department of Energy's Atmospheric Chemistry Program: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    In response to a request from the Department of Energy's (DOE) Office of Health and Environmental Research (OHER), the Committee on Atmospheric Chemistry has reviewed OHER's Atmospheric Chemistry Program (ACP). This report contains the committee's evaluation and critique arising from that review. The review process included a two-day symposium held at the National Academy of Sciences on September 25 and 26, 1990, that focused on presenting the ACP's current components, recent scientific accomplishments, and scientific plans. Following the symposium, committee members met in a one-day executive session to formulate and outline this report. In undertaking this review, OHER and ACP management requested that the committee attempt to answer several specific questions involving the program's technical capability and productivity, its leadership and organization, and its future direction. These questions are given in the Appendix. This report represents the committee's response to the questions posed in the Appendix. Chapter I explores the committee's view of the role that atmospheric chemistry could and should assume within the DOE and its prospective National Energy Strategy. Chapter 2 assesses the current ACP, Chapter 3 presents recommendations for revising and strengthening it, and Chapter 4 restates the committee's conclusions and recommendations.

  6. Strengthening of the hydrological cycle in future scenarios: atmospheric energy and water balance perspective

    Directory of Open Access Journals (Sweden)

    A. Alessandri

    2012-07-01

    Full Text Available Future climate scenarios experiencing global warming are expected to strengthen hydrological cycle during 21st century by comparison with the last decades of 20th century. We analyze strengthening of the global-scale increase in precipitation from the perspective of changes in whole atmospheric water and energy balances. Furthermore, by combining energy and water equations for the whole atmosphere we profitably obtain constraints for the changes in surface fluxes and for the partitioning at the surface between sensible and latent components.

    Above approach is applied to investigate difference in strengthening of hydrological cycle in two scenario centennial simulations performed with an Earth System model forced with specified atmospheric concentration pathways. Alongside the medium-high non-mitigation scenario SRES A1B, we considered a new aggressive-mitigation scenario (E1 with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2 K. Quite unexpectedly, mitigation scenario is shown to strengthen hydrological cycle more than SRES A1B till around 2070. Our analysis shows that this is mostly a consequence of the larger increase in the negative radiative imbalance of atmosphere in E1 compared to A1B. This appears to be primarily related to the abated aerosol concentration in E1, which considerably reduces atmospheric absorption of solar radiation compared to A1B.

    In contrast, last decades of 21st century (21C show marked increase of global precipitation in A1B compared to E1, despite the fact that the two scenarios display almost same overall increase of radiative imbalance with respect to 20th century. Our results show that radiative cooling is weakly effective in A1B throughout all 21C, so that two distinct mechanisms characterize the diverse strengthening of hydrological cycle in mid and end 21C. It is only through a very large perturbation of surface fluxes that A1B achieves larger increase

  7. Contributions from the Department of Wind Energy and Atmospheric Physics to EWEC `99 in Nice, France

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Gunner C.; Westermann, Kirsten; Noergaard, Per [eds.

    1999-03-01

    The first conference following the merger of the series of European Union Wind Energy Conference and the European Wind Energy Conferences - EWEC`99 - was held in Nice, France during the period 1-5 March 1999. About 600 delegates, mainly from Europe but also from other parts of the world, attended the conference. The conference contributions included 96 oral presentations and 305 posters. The Department of Wind Energy and Atmospheric Physics contributed with 29 oral presentations and 36 posters with members of the department as authors or co-authors. The present report contains the set of these papers available at the deadline 19 March 1999. The contributions cover a wide spectrum of subjects including wind resources, aerodynamics, reliability and load assessment, grid connection, measurement methods, innovative wind turbines and market aspects. (au)

  8. Spectral energy distribution of M-subdwarfs: A study of their atmospheric properties

    Science.gov (United States)

    Rajpurohit, A. S.; Reylé, C.; Allard, F.; Homeier, D.; Bayo, A.; Mousis, O.; Rajpurohit, S.; Fernández-Trincado, J. G.

    2016-11-01

    Context. M-type subdwarfs are metal-poor low-mass stars and are probes for the old populations in our Galaxy. Accurate knowledge of their atmospheric parameters and especially their composition is essential for understanding the chemical history of our Galaxy. Aims: The purpose of this work is to perform a detailed study of M-subdwarf spectra covering the full wavelength range from the optical to the near-infrared. It allows us to perform a more detailed analysis of the atmospheric composition in order to determine the stellar parameters, and to constrain the atmospheric models. The study will allow us to further understand physical and chemical processes such as increasing condensation of gas into dust, to point out the missing continuum opacities, and to see how the main band features are reproduced by the models. The spectral resolution and the large wavelength coverage used is a unique combination that can constrain the processes that occur in a cool atmosphere. Methods: We obtained medium-resolution spectra (R = 5000-7000) over the wavelength range 0.3-2.5 μm of ten M-type subdwarfs with X-shooter at VLT. These data constitute a unique atlas of M-subdwarfs from optical to near-infrared. We performed a spectral synthesis analysis using a full grid of synthetic spectra computed from BT-Settl models and obtained consistent stellar parameters such as effective temperature, surface gravity, and metallicity. Results: We show that state-of the-art atmospheric models correctly represent the overall shape of their spectral energy distribution, as well as atomic and molecular line profiles both in the optical and near-infrared. We find that the actual fitted gravities of almost all our sample are consistent with old objects, except for LHS 73 where it is found to be surprisingly low. Based on observations made with the ESO Very Large Telescope at the Paranal Observatory under programme 092.D-0600(A).

  9. Stellar model atmospheres with magnetic line blanketing

    CERN Document Server

    Kochukhov, O; Shulyak, D

    2004-01-01

    Model atmospheres of A and B stars are computed taking into account magnetic line blanketing. These calculations are based on the new stellar model atmosphere code LLModels which implements direct treatment of the opacities due to the bound-bound transitions and ensures an accurate and detailed description of the line absorption. The anomalous Zeeman effect was calculated for the field strengths between 1 and 40 kG and a field vector perpendicular to the line of sight. The model structure, high-resolution energy distribution, photometric colors, metallic line spectra and the hydrogen Balmer line profiles are computed for magnetic stars with different metallicities and are discussed with respect to those of non-magnetic reference models. The magnetically enhanced line blanketing changes the atmospheric structure and leads to a redistribution of energy in the stellar spectrum. The most noticeable feature in the optical region is the appearance of the 5200 A depression. However, this effect is prominent only in ...

  10. Synthetic oligomer analysis using atmospheric pressure photoionization mass spectrometry at different photon energies

    Energy Technology Data Exchange (ETDEWEB)

    Desmazières, Bernard [Global Bioenergies, 5 rue Henri Desbruyeres, 91030 Evry (France); Legros, Véronique [CNRS, UMR8587, Université d’Evry-Val-d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, F-91025 Evry (France); Giuliani, Alexandre [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, 91192 Gif-sur-Yvette (France); UAR1008, CEPIA, INRA, Rue de la Geraudiere, F-44316 Nantes (France); Buchmann, William, E-mail: william.buchmann@univ-evry.fr [CNRS, UMR8587, Université d’Evry-Val-d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, F-91025 Evry (France)

    2014-01-15

    Graphical abstract: Atmospheric pressure photoIonization mass spectra of synthetic oligomers were recorded in the negative mode by varying the photon energy using synchrotron radiation. Photon energy required for an efficient ionization of the polymer was correlated to ionization potential of the solvent (for example 9.4 eV for tetrahydrofuran). -- Highlights: •Atmospheric pressure photoionization was performed using synchrotron radiation. •Photoionization of oligomers in THF with 10% CH{sub 2}Cl{sub 2} produces intact [M + Cl]{sup −} ions. •The photon energy required corresponds to ionization potential of the solvent. •Polymer distributions depend on source parameters such T °C and applied voltages. •Liquid chromatography was coupled to MS using an APPI interface for polymer analysis. -- Abstract: Atmospheric pressure photoionization (APPI) followed by mass spectrometric detection was used to ionize a variety of polymers: polyethylene glycol, polymethyl methacrylate, polystyrene, and polysiloxane. In most cases, whatever the polymer or the solvent used (dichloromethane, tetrahydrofuran, hexane, acetone or toluene), only negative ion mode produced intact ions such as chlorinated adducts, with no or few fragmentations, in contrast to the positive ion mode that frequently led to important in-source fragmentations. In addition, it was shown that optimal detection of polymer distributions require a fine tuning of other source parameters such as temperature and ion transfer voltage. Series of mass spectra were recorded in the negative mode, in various solvents (dichloromethane, tetrahydrofuran, hexane, toluene, and acetone), by varying the photon energy from 8 eV up to 10.6 eV using synchrotron radiation. To these solvents, addition of a classical APPI dopant (toluene or acetone) was not necessary. Courtesy of the synchrotron radiation, it was demonstrated that the photon energy required for an efficient ionization of the polymer was correlated to the

  11. The model study of water mass and energy exchange between the inland water body and atmosphere

    Institute of Scientific and Technical Information of China (English)

    SUN ShuFen; YAN JinFeng; XIA Nan; LI Qian

    2008-01-01

    Based on a one-dimensional eddy diffusion model, a model to study the water mass and energy exchange between the water body (such as lake and wetland) and the atmosphere is developed, which takes the phase change process due to the seasonal melting and freezing of water and the convection mixing process of en-ergy caused by temperature stratification into consideration. The model uses en-thalpy instead of temperature as predictive variable, which will help to deal with the phase change process and to design an efficient numerical scheme for obtaining the solution more easily. The performance of the model and the rationality of taking convection mixing into the consideration are validated by using observed data of Kinneret Lake in Israel and Lower Two Medicine Lake in Montana State in America. The comparison of model results with observed data indicates that the model pre-sented here is capable of describing the physical process of water mass and en-ergy between the water body (lake and wetland) and atmosphere. Comparison of the result from wetland with shallow and deep lakes under the same forcing condi-tions shows that the evaporation from wetland is much greater than that from lakes,which accords with the real observation fact and physical mechanism.

  12. The model study of water mass and energy exchange between the inland water body and atmosphere

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on a one-dimensional eddy diffusion model,a model to study the water mass and energy exchange between the water body(such as lake and wetland) and the atmosphere is developed,which takes the phase change process due to the seasonal melting and freezing of water and the convection mixing process of energy caused by temperature stratification into consideration. The model uses enthalpy instead of temperature as predictive variable,which will help to deal with the phase change process and to design an efficient numerical scheme for obtaining the solution more easily. The performance of the model and the rationality of taking convection mixing into the consideration are validated by using observed data of Kinneret Lake in Israel and Lower Two Medicine Lake in Montana State in America. The comparison of model results with observed data indicates that the model presented here is capable of describing the physical process of water mass and energy between the water body(lake and wetland) and atmosphere. Comparison of the result from wetland with shallow and deep lakes under the same forcing conditions shows that the evaporation from wetland is much greater than that from lakes,which accords with the real observation fact and physical mechanism.

  13. Bombardment-induced segregation and redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Lam, N.Q.; Wiedersich, H.

    1986-04-01

    During ion bombardment, a number of processes can alter the compositional distribution and microstructure in near-surface regions of alloys. The relative importance of each process depends principally on the target composition, temperature, and ion characteristics. In addition to displacement mixing leading to a randomization of atomic locations, and preferential loss of alloying elements by sputtering, which are dominant at relatively low temperatures, several thermally-activated processes, including radiation-enhanced diffusion, radiation-induced segregation and Gibbsian adsorption, also play important roles. At elevated temperatures, nonequilibrium point defects induced by ion impacts become mobile and tend to anneal out by recombination and diffusion to extended sinks, such as dislocations, grain boundaries and free surfaces. The high defect concentrations, far exceeding the thermodynamic equilbrium values, can enhance diffusion-controlled processes, while persistent defect fluxes, originating from the spatial non-uniformity in defect production and annihilation, give rise to local redistribution of alloy constituents because of radiation-induced segregation. Moreover, when the alloy is maintained at high temperature, Gibbsian adsorption, driven by the reduction in free energy of the system, occurs even without irradiation; it involves a compositional perturbation in a few atom layers near the alloy surface. The combination of these processes leads to the complex development of a compositionally-modified layer in the subsurface region. In the present paper, selected examples of these different phenomena and their synergistic effects on the evolution of the near-surface compositions of alloys during sputtering and ion implantation at elevated temperatures are discussed. 74 refs., 7 figs., 1 tab.

  14. Water savings of redistributing global crop production

    Science.gov (United States)

    Davis, Kyle; Seveso, Antonio; Rulli, Maria Cristina; D'Odorico, Paolo

    2016-04-01

    Human demand for crop production is expected to increase substantially in the coming decades as a result of population growth, richer diets and biofuel use. For food production to keep pace, unprecedented amounts of resources - water, fertilizers, energy - will be required. This has led to calls for 'sustainable intensification' in which yields are increased on existing croplands while seeking to minimize impacts on water and other agricultural resources. Recent studies have quantified aspects of this, showing that there is a large potential to improve crop yields and increase harvest frequencies to better meet human demand. Though promising, both solutions would necessitate large additional inputs of water and fertilizer in order to be achieved under current technologies. However, the question of whether the current distribution of crops is, in fact, the best for realizing maximized production has not been considered to date. To this end, we ask: Is it possible to minimize water demand by simply growing crops where soil and climate conditions are best suited? Here we use maps of agro-ecological suitability - a measure of physical and chemical soil fertility - for 15 major food crops to identify differences between current crop distributions and where they can most suitably be planted. By redistributing crops across currently cultivated lands, we determine what distribution of crops would maintain current calorie production and agricultural value while minimizing the water demand of crop production. In doing this, our study provides a novel tool for policy makers and managers to integrate food security, environmental sustainability, and rural livelihoods by improving the use of freshwater resources without compromising crop calorie production or rural livelihoods.

  15. Sea ice-atmospheric interaction: Application of multispectral satellite data in polar surface energy flux estimates

    Science.gov (United States)

    Steffen, Konrad; Key, J.; Maslanik, J.; Schweiger, A.

    1993-01-01

    This is the third annual report on: Sea Ice-Atmosphere Interaction - Application of Multispectral Satellite Data in Polar Surface Energy Flux Estimates. The main emphasis during the past year was on: radiative flux estimates from satellite data; intercomparison of satellite and ground-based cloud amounts; radiative cloud forcing; calibration of the Advanced Very High Resolution Radiometer (AVHRR) visible channels and comparison of two satellite derived albedo data sets; and on flux modeling for leads. Major topics covered are arctic clouds and radiation; snow and ice albedo, and leads and modeling.

  16. Atmospheric correction of LANDSAT TM thermal band using surface energy balance

    Science.gov (United States)

    Vidal, Alain; Devaux-Ros, Claire; Moran, M. Susan

    1994-01-01

    Thermal infrared data of LANDSAT Thematic Mapper (TM) are hardly used, probably due to the difficulties met when trying to correct them for atmospheric effects. A method for correcting these data was designed, based on surface energy balance estimation of known wet and dry targets included in the TM image to be corrected. This method, only using the image itself and local meteorological data was tested and validated on various surfaces: agricultural, forest and rangeland. The root mean square error on corrected temperatures is on the order of 1C.

  17. Energy distribution of runaway electrons generated by a nanosecond discharge in atmospheric-pressure air

    Science.gov (United States)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Kostyrya, I. D.; Lomaev, M. I.; Petin, V. K.; Rybka, D. V.; Shlyakhtun, S. V.

    2008-12-01

    The spectra of an ultrashort avalanche electron beam generated by a nanosecond discharge in atmospheric-pressure air were investigated. The temporal characteristics of the beam current pulses, gap voltage, and discharge current in a gas diode were measured with a time resolution of ˜0.1 ns. A simple technique was developed for recovering electron spectra from the curves of beam attenuation by aluminum foils. The effect of the cathode design, electrode gap length, and generator parameters on the electron spectra were studied using seven setups. It is shown that generation of electrons with anomalously high energies requires the use of cathodes with increased curvature radius.

  18. Pacific Northwest Laboratory annual report for 1984 to the DOE Office of Energy Research. Part 3. Atmospheric sciences

    Energy Technology Data Exchange (ETDEWEB)

    Elderkin, C.E.

    1985-02-01

    The goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to assess, describe, and predict the nature and fate of atmospheric contaminants and to study the impacts of contaminants on local, regional, and global climates. The contaminants being investigated are those resulting from the development and use of conventional resources (coal, gas, oil, and nuclear power) as well as alternative energy sources. The description of the research is organized into 3 sections: (1) Atmospheric Studies in Complex Terrain (ASCOT); (2) Boundary Layer Meteorology; and (3) Dispersion, Deposition, and Resuspension of Atmospheric Contaminants. Separate analytics have been done for each of the sections and are indexed and contained in the EDB. (MDF)

  19. Solute Redistribution in Directional Melting Process

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@The solute redistribution in directional melting process is theoretically studied. Based on quantitative evaluations, uniform solute distribution in liquid and a quasi-steady solute distribution in solid are supposed. The discussion on the solute balance comes to a simple model for the solute redistribution in directional melting process. As an example, the variation of liquid composition during melting process of carbon steel is quantitatively evaluated using the model. Results show that the melting of an alloy starts at solidus temperature, but approaches the liquidus temperature after a very short transient process.

  20. High-energy spectrum and zenith-angle distribution of atmospheric neutrinos

    CERN Document Server

    Sinegovsky, S I; Sinegovskaya, T S

    2011-01-01

    High-energy neutrinos, arising from decays of mesons produced through the collisions of cosmic ray particles with air nuclei, form the background in the astrophysical neutrino detection problem. An ambiguity in high-energy behavior of pion and especially kaon production cross sections for nucleon-nucleus collisions may affect essentially the calculated neutrino flux. We present results of the calculation of the energy spectrum and zenith-angle distribution of the muon and electron atmospheric neutrinos in the energy range 10 GeV to 10 PeV. The calculation was performed with usage of known hadronic models (QGSJET-II-03, SIBYLL 2.1, Kimel & Mokhov) for two of the primary spectrum parametrizations, by Gaisser & Honda and by Zatsepin & Sokolskaya. The comparison of the calculated muon neutrino spectrum with the IceCube40 experiment data make it clear that even at energies above 100 TeV the prompt neutrino contribution is not so apparent because of tangled uncertainties of the strange (kaons) and charm...

  1. The Energy Spectrum of Atmospheric Neutrinos between 2 and 200 TeV with the AMANDA-II Detector

    Energy Technology Data Exchange (ETDEWEB)

    IceCube Collaboration; Abbasi, R.

    2010-05-11

    The muon and anti-muon neutrino energy spectrum is determined from 2000-2003 AMANDA telescope data using regularised unfolding. This is the first measurement of atmospheric neutrinos in the energy range 2-200 TeV. The result is compared to different atmospheric neutrino models and it is compatible with the atmospheric neutrinos from pion and kaon decays. No significant contribution from charm hadron decays or extraterrestrial neutrinos is detected. The capabilities to improve the measurement of the neutrino spectrum with the successor experiment IceCube are discussed.

  2. Analysis of atmospheric flow over a surface protrusion using the turbulence kinetic energy equation

    Science.gov (United States)

    Frost, W.; Harper, W. L.; Fichtl, G. H.

    1975-01-01

    Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer/Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Mean-flow results are compared with those given in a previous paper where the same problem was attacked using a Prandtl mixing-length hypothesis. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow. They highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient.

  3. Changing surface-atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland

    DEFF Research Database (Denmark)

    Charalampidis, C.; Van As, D.; Box, J. E.;

    2015-01-01

    .78), as meltwater was present at the ice sheet surface. Consequently, during the 2012 melt season, the ice sheet surface absorbed 28 % (213 MJ m-2) more solar radiation than the average of all other years. A surface energy balance model is used to evaluate the seasonal and interannual variability of all surface...... energy fluxes. The model reproduces the observed melt rates as well as the SMB for each season. A sensitivity analysis reveals that 71 % of the additional solar radiation in 2012 was used for melt, corresponding to 36 % (0.64 m) of the 2012 surface lowering. The remaining 64 % (1.14 m) of surface...... lowering resulted from high atmospheric temperatures, up to a +2.6 °C daily average, indicating that 2012 would have been a negative SMB year at this site even without the melt-albedo feedback. Longer time series of SMB, regional temperature, and remotely sensed albedo (MODIS) show that 2012 was the first...

  4. Atmospheric gamma ray angle and energy distributions from 2 to 25 MeV

    Science.gov (United States)

    Ryan, J. M.; Moon, S. H.; Wilson, R. B.; Zych, A. D.; White, R. S.; Dayton, B.

    1977-01-01

    Results are given for gamma ray fluxes in six energy intervals from 2-25 MeV and five zenith angle intervals from 0-50 deg (downward moving) and five from 130-180 deg (upward moving). Observations were obtained with the University of California, Riverside double Compton scatter gamma ray telescope flown on a balloon to a 3.0 g/sq cm residual atmosphere at a geomagnetic cuttoff of 4.5 GV. It was found that the angular distribution of downward moving gamma rays is relatively flat, increasing slowly from 10-40 deg. The angular distribution of the upward moving gamma rays at 4.2 g/sq cm increases with angle from the vertical. Energy distributions of upward and downward moving gamma rays are in good agreement with the results of previous studies.

  5. Resonant energy conversion of 3-minute intensity oscillations into Alfven waves in the solar atmosphere

    CERN Document Server

    Kuridze, D

    2007-01-01

    Nonlinear coupling between 3-minute oscillations and Alfven waves in the solar lower atmosphere is studied. 3-minute oscillations are considered as acoustic waves trapped in a chromospheric cavity and oscillating along transversally inhomogeneous vertical magnetic field. It is shown that under the action of the oscillations the temporal dynamics of Alfven waves is governed by Mathieu equation. Consequently, the harmonics of Alfven waves with twice period and wavelength of 3-minute oscillations grow exponentially in time near the layer where the sound and Alfven speeds equal. Thus the 3-minute oscillations are resonantly absorbed by pure Alfven waves near this resonant layer. The resonant Alfven waves may penetrate into the solar corona taking energy from the chromosphere. Therefore the layer c_s=v_A may play a role of energy channel for otherwise trapped acoustic oscillations.

  6. A multi-layer land surface energy budget model for implicit coupling with global atmospheric simulations

    Directory of Open Access Journals (Sweden)

    J. Ryder

    2014-12-01

    Full Text Available In Earth system modelling, a description of the energy budget of the vegetated surface layer is fundamental as it determines the meteorological conditions in the planetary boundary layer and as such contributes to the atmospheric conditions and its circulation. The energy budget in most Earth system models has long been based on a "big-leaf approach", with averaging schemes that represent in-canopy processes. Such models have difficulties in reproducing consistently the energy balance in field observations. We here outline a newly developed numerical model for energy budget simulation, as a component of the land surface model ORCHIDEE-CAN (Organising Carbon and Hydrology In Dynamic Ecosystems – CANopy. This new model implements techniques from single-site canopy models in a practical way. It includes representation of in-canopy transport, a multilayer longwave radiation budget, height-specific calculation of aerodynamic and stomatal conductance, and interaction with the bare soil flux within the canopy space. Significantly, it avoids iterations over the height of tha canopy and so maintains implicit coupling to the atmospheric model LMDz. As a first test, the model is evaluated against data from both an intensive measurement campaign and longer term eddy covariance measurements for the intensively studied Eucalyptus stand at Tumbarumba, Australia. The model performs well in replicating both diurnal and annual cycles of fluxes, as well as the gradients of sensible heat fluxes. However, the model overestimates sensible heat flux against an underestimate of the radiation budget. Improved performance is expected through the implementation of a more detailed calculation of stand albedo and a more up-to-date stomatal conductance calculation.

  7. Evidence for Energy Supply by Active Region Spicules to the Solar Atmosphere

    CERN Document Server

    Zeighami, S; Tavabi, E; Ajabshirizadeh, A

    2016-01-01

    We investigate the role of active region spicules in the mass balance of the solar wind and energy supply for heating the solar atmosphere. We use high cadence observations from the Solar Optical Telescope (SOT) onboard the Hinode satellite in the Ca II H line filter obtained on 26 January 2007. The observational technique provides the high spatio-temporal resolution required to detect fine structures such as spicules. We apply Fourier power spectrum and wavelet analysis to SOT/Hinode time series of an active region data to explore the existence of coherent intensity oscillations. The presence of coherent waves could be an evidence for energy transport to heat the solar atmosphere. Using time series, we measure the phase difference between two intensity profiles obtained at two different heights, which gives information about the phase difference between oscillations at those heights as a function of frequency. The results of a fast Fourier transform (FFT) show peaks in the power spectrum at frequencies in th...

  8. Transition from geostrophic turbulence to inertia-gravity waves in the atmospheric energy spectrum.

    Science.gov (United States)

    Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver

    2014-12-02

    Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth's rotation and the atmosphere's stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia-gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia-gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia-gravity waves dominate at scales smaller than 500 km.

  9. A land surface scheme for atmospheric and hydrologic models: SEWAB (Surface Energy and Water Balance)

    Energy Technology Data Exchange (ETDEWEB)

    Mengelkamp, H.T.; Warrach, K.; Raschke, E. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    1997-12-31

    A soil-vegetation-atmosphere-transfer scheme is presented here which solves the coupled system of the Surface Energy and Water Balance (SEWAB) equations considering partly vegetated surfaces. It is based on the one-layer concept for vegetation. In the soil the diffusion equations for heat and moisture are solved on a multi-layer grid. SEWAB has been developed to serve as a land-surface scheme for atmospheric circulation models. Being forced with atmospheric data from either simulations or measurements it calculates surface and subsurface runoff that can serve as input to hydrologic models. The model has been validated with field data from the FIFE experiment and has participated in the PILPS project for intercomparison of land-surface parameterization schemes. From these experiments we feel that SEWAB reasonably well partitions the radiation and precipitation into sensible and latent heat fluxes as well as into runoff and soil moisture Storage. (orig.) [Deutsch] Ein Landoberflaechenschema wird vorgestellt, das den Transport von Waerme und Wasser zwischen dem Erdboden, der Vegetation und der Atmosphaere unter Beruecksichtigung von teilweise bewachsenem Boden beschreibt. Im Erdboden werden die Diffusionsgleichungen fuer Waerme und Feuchte auf einem Gitter mit mehreren Schichten geloest. Das Schema SEWAB (Surface Energy and Water Balance) beschreibt die Landoberflaechenprozesse in atmosphaerischen Modellen und berechnet den Oberflaechenabfluss und den Basisabfluss, die als Eingabedaten fuer hydrologische Modelle genutzt werden koennen. Das Modell wurde mit Daten des FIFE-Experiments kalibriert und hat an Vergleichsexperimenten fuer Landoberflaechen-Schemata im Rahmen des PILPS-Projektes teilgenommen. Dabei hat sich gezeigt, dass die Aufteilung der einfallenden Strahlung und des Niederschlages in den sensiblen und latenten Waermefluss und auch in Abfluss und Speicherung der Bodenfeuchte in SEWAB den beobachteten Daten recht gut entspricht. (orig.)

  10. Future monitoring of charged particle energy deposition into the upper atmosphere and comments on possible relationships between atmospheric phenomena and solar and/or geomagnetic activity

    Science.gov (United States)

    Williams, D. J.; Grubb, R. N.; Evans, D. S.; Sauer, H. H.

    1975-01-01

    Monitoring of earth's atmosphere was conducted for several years utilizing the ITOS series of low-altitude, polar-orbiting weather satellites. A space environment monitoring package was included in these satellites to perform measurements of a portion of earth's charged particle environment. The charged particle observations proposed for the low-altitude weather satellite TIROS N, are described which will provide the capability of routine monitoring of the instantaneous total energy deposition into the upper atmosphere by the precipitation of charged particles from higher altitudes. Such observations may be of use in future studies of the relationships between geomagnetic activity and atmospheric weather pattern developments. Estimates are given to assess the potential importance of this type of energy deposition. Discussion and examples are presented illustrating the importance of distinguishing between solar and geomagnetic activity as possible causative sources. Such differentiation is necessary because of the widely different spatial and time scales involved in the atmospheric energy input resulting from these various sources of activity.

  11. Inequality, redistribution and growth : Theory and evidence

    NARCIS (Netherlands)

    Haile, D.

    2005-01-01

    From a macro-perspective, the thesis provides a political economic model that analyses the joint determination of inequality, corruption, taxation, education and economic growth in a dynamic environment. It demonstrates how redistributive taxation is affected by the distribution of wealth and limite

  12. Personal use, social supply or redistribution?

    DEFF Research Database (Denmark)

    Demant, Jakob Johan; Munksgaard, Rasmus; Houborg, Esben

    2017-01-01

    In 2011, Silk Road became the first black market, or "cryptomarket", for illicit drugs. This study examines two of the largest cryptomarkets which have operated, Silk Road 2.0 and Agora Marketplace. We hypothesize that cryptomarkets cater to buyers who intend to resell or redistribute the product...

  13. Cognitive ability and the demand for redistribution.

    Directory of Open Access Journals (Sweden)

    Johanna Mollerstrom

    Full Text Available Empirical research suggests that the cognitively able are politically more influential than the less able, by being more likely to vote and to assume leadership positions. This study asks whether this pattern matters for public policy by investigating what role a person's cognitive ability plays in determining his preferences for redistribution of income among citizens in society. To answer this question, we use a unique Swedish data set that matches responses to a tailor-made questionnaire to administrative tax records and to military enlistment records for men, with the latter containing a measure of cognitive ability. On a scale of 0 to 100 percent redistribution, a one-standard-deviation increase in cognitive ability reduces the willingness to redistribute by 5 percentage points, or by the same amount as a $35,000 increase in mean annual income. We find support for two channels mediating this economically strong and statistically significant relation. First, higher ability is associated with higher income. Second, ability is positively correlated with the view that economic success is the result of effort, rather than luck. Both these factors are, in turn, related to lower demand for redistribution.

  14. Universal Service Policies as Wealth Redistribution.

    Science.gov (United States)

    Mueller, Milton

    1999-01-01

    Offers a critical reassessment of the underlying rationale for universal service policies and argues that public policies designed to promote universal telecommunications access are simply a form of wealth redistribution. Considers economic and political issues and discusses how telecommunications can help ameliorate inequalities but not eliminate…

  15. High-energy neutrino fluxes and flavor ratio in the Earth atmosphere

    CERN Document Server

    Sinegovskaya, T S; Sinegovsky, S I

    2014-01-01

    High-energy neutrinos from decays of mesons, produced in collisions of cosmic-ray particles with air nuclei, form unavoidable background for detection of astrophysical neutrinos. More precise calculations of the high-energy neutrino spectrum are required since measurements in the IceCube experiment reach the intriguing energy range where a contribution of the prompt neutrinos and/or astrophysical ones should be uncovered. The calculation of muon and electron neutrino fluxes in the energy range 100 GeV - 10 PeV is performed for three hadronic models, QGSJET II, SIBYll 2.1 and Kimel & Mokhov, taking into consideration the "knee" of the cosmic-ray spectrum. All calculations are compared with the atmospheric neutrino measurements by Frejus, AMANDA, IceCube and ANTARES. The prompt neutrino flux predictions obtained with the quark-gluon string model (QGSM) for the charm production by Kaidalov & Piskunova do not contradict to the measurements and upper limits on the astrophysical muon neutrino flux obtained ...

  16. Mesoscale atmosphere ocean coupling enhances the transfer of wind energy into the ocean

    Science.gov (United States)

    Byrne, D.; Münnich, M.; Frenger, I.; Gruber, N.

    2016-01-01

    Although it is well established that the large-scale wind drives much of the world's ocean circulation, the contribution of the wind energy input at mesoscales (10–200 km) remains poorly known. Here we use regional simulations with a coupled high-resolution atmosphere–ocean model of the South Atlantic, to show that mesoscale ocean features and, in particular, eddies can be energized by their thermodynamic interactions with the atmosphere. Owing to their sea-surface temperature anomalies affecting the wind field above them, the oceanic eddies in the presence of a large-scale wind gradient provide a mesoscale conduit for the transfer of energy into the ocean. Our simulations show that this pathway is responsible for up to 10% of the kinetic energy of the oceanic mesoscale eddy field in the South Atlantic. The conditions for this pathway to inject energy directly into the mesoscale prevail over much of the Southern Ocean north of the Polar Front. PMID:27292447

  17. Strengthening of the hydrological cycle in future scenarios: atmospheric energy and water balance perspective

    Directory of Open Access Journals (Sweden)

    A. Alessandri

    2012-11-01

    Full Text Available Future climate scenarios experiencing global warming are expected to strengthen the hydrological cycle during the 21st century (21C. We analyze the strengthening of the global-scale increase in precipitation from the perspective of changes in whole atmospheric water and energy balances. By combining energy and water equations for the whole atmosphere, we obtain constraints for the changes in surface fluxes and partitioning at the surface between sensible and latent components. We investigate the differences in the strengthening of the hydrological cycle in two centennial simulations performed with an Earth system model forced with specified atmospheric concentration pathways. Alongside the Special Report on Emissions Scenario (SRES A1B, which is a medium-high non-mitigation scenario, we consider a new aggressive-mitigation scenario (E1 with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2 K.

    Our results show that the mitigation scenario effectively constrains the global warming with a stabilization below 2 K with respect to the 1950–2000 historical period. On the other hand, the E1 precipitation does not follow the temperature field toward a stabilization path but continues to increase over the mitigation period. Quite unexpectedly, the mitigation scenario is shown to strengthen the hydrological cycle even more than SRES A1B till around 2070. We show that this is mostly a consequence of the larger increase in the negative radiative imbalance of atmosphere in E1 compared to A1B. This appears to be primarily related to decreased sulfate aerosol concentration in E1, which considerably reduces atmospheric absorption of solar radiation compared to A1B.

    The last decades of the 21C show a marked increase in global precipitation in A1B compared to E1, despite the fact that the two scenarios display almost the same overall increase of radiative imbalance with respect to the 20th century. Our

  18. Effect of the shrinking dipole on solar-terrestrial energy input to the Earth's atmosphere

    Science.gov (United States)

    McPherron, R. L.

    2011-12-01

    The global average temperature of the Earth is rising rapidly. This rise is primarily attributed to the release of greenhouse gases as a result of human activity. However, it has been argued that changes in radiation from the Sun might play a role. Most energy input to the Earth is light in the visible spectrum. Our best measurements suggest this power input has been constant for the last 40 years (the space age) apart from a small 11-year variation due to the solar cycle of sunspot activity. Another possible energy input from the Sun is the solar wind. The supersonic solar wind carries the magnetic field of the Sun into the solar system. As it passes the Earth it can connect to the Earth's magnetic field whenever it is antiparallel t the Earth's field. This connection allows mass, momentum, and energy from the solar wind to enter the magnetosphere producing geomagnetic activity. Ultimately much of this energy is deposited at high latitudes in the form of particle precipitation (aurora) and heating by electrical currents. Although the energy input by this process is miniscule compared to that from visible radiation it might alter the absorption of visible radiation. Two other processes affected by the solar cycle are atmospheric entry of galactic cosmic rays (GCR) and solar energetic protons (SEP). A weak solar magnetic field at sunspot minimum facilitates GCR entry which has been implicated in creation of clouds. Large coronal mass ejections and solar flares create SEP at solar maximum. All of these alternative energy inputs and their effects depend on the strength of the Earth's magnetic field. Currently the Earth's field is decreasing rapidly and conceivably might reverse polarity in 1000 years. In this paper we describe the changes in the Earth's magnetic field and how this might affect GCR, SEP, electrical heating, aurora, and radio propagation. Whether these effects are important in global climate change can only be determined by detailed physical models.

  19. Lightning driven inner radiation belt energy deposition into the atmosphere: regional and global estimates

    Directory of Open Access Journals (Sweden)

    C. J. Rodger

    2005-12-01

    Full Text Available In this study we examine energetic electron precipitation fluxes driven by lightning, in order to determine the global distribution of energy deposited into the middle atmosphere. Previous studies using lightning-driven precipitation burst rates have estimated losses from the inner radiation belts. In order to confirm the reliability of those rates and the validity of the conclusions drawn from those studies, we have analyzed New Zealand data to test our global understanding of troposphere to magnetosphere coupling. We examine about 10000h of AbsPAL recordings made from 17 April 2003 through to 26 June 2004, and analyze subionospheric very-low frequency (VLF perturbations observed on transmissions from VLF transmitters in Hawaii (NPM and western Australia (NWC. These observations are compared with those previously reported from the Antarctic Peninsula. The perturbation rates observed in the New Zealand data are consistent with those predicted from the global distribution of the lightning sources, once the different experimental configurations are taken into account. Using lightning current distributions rather than VLF perturbation observations we revise previous estimates of typical precipitation bursts at L~2.3 to a mean precipitation energy flux of ~1×10-3 ergs cm-2s-1. The precipitation of energetic electrons by these bursts in the range L=1.9-3.5 will lead to a mean rate of energy deposited into the atmosphere of 3×10-4 ergs cm-2min-1, spatially varying from a low of zero above some ocean regions to highs of ~3-6×10-3 ergs cm-2min-1 above North America and its conjugate region.

  20. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 3: Atmospheric and climate research

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The US Department of Energy`s (DOE`s) Office of Health and Environmental Research (OHER) atmospheric sciences and carbon dioxide research programs provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. PNL has had a long history of technical leadership in the atmospheric sciences research programs within OHER. Within the Environmental Sciences Division of OHER, the Atmospheric Chemistry Program continues DOE`s long-term commitment to understanding the local, regional, and global effects of energy-related air pollutants. Research through direct measurement, numerical modeling, and analytical studies in the Atmospheric Chemistry Program emphasizes the long-range transport, chemical transformation, and removal of emitted pollutants, photochemically produced oxidant species, nitrogen-reservoir species, and aerosols. The atmospheric studies in Complex Terrain Program applies basic research on atmospheric boundary layer structure and evolution over inhomogeneous terrain to DOE`s site-specific and generic mission needs in site safety, air quality, and climate change. Research at PNL provides basic scientific underpinnings to DOE`s program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements, the Computer Hardware, Advanced Mathematics and Model Physics, and Quantitative Links program to form DOE`s contribution to the US Global Change Research Program. The description of ongoing atmospheric and climate research at PNL is organized in two broad research areas: atmospheric research; and climate research. This report describes the progress in fiscal year 1993 in each of these areas. Individual papers have been processed separately for inclusion in the appropriate data bases.

  1. Radiative energy balance of Venus based on improved models of the middle and lower atmosphere

    Science.gov (United States)

    Haus, R.; Kappel, D.; Tellmann, S.; Arnold, G.; Piccioni, G.; Drossart, P.; Häusler, B.

    2016-07-01

    The distribution of sources and sinks of radiative energy forces the atmospheric dynamics. The radiative transfer simulation model described by Haus et al. (2015b) is applied to calculate fluxes and temperature change rates in the middle and lower atmosphere of Venus (0-100 km) covering the energetic significant spectral range 0.125-1000 μm. The calculations rely on improved models of atmospheric parameters (temperature profiles, cloud parameters, trace gas abundances) retrieved from Venus Express (VEX) data (mainly VIRTIS-M-IR, but also VeRa and SPICAV/SOIR with respect to temperature results). The earlier observed pronounced sensitivity of the radiative energy balance of Venus to atmospheric parameter variations is confirmed, but present detailed comparative analyses of possible influence quantities ensure unprecedented insights into radiative forcing on Venus by contrast with former studies. Thermal radiation induced atmospheric cooling rates strongly depend on temperature structure and cloud composition, while heating rates are mainly sensitive to insolation conditions and UV absorber distribution. Cooling and heating rate responses to trace gas variations and cloud mode 1 abundance changes are small, but observed variations of cloud mode 2 abundances and altitude profiles reduce cooling at altitudes 65-80 km poleward of 50°S by up to 30% compared to the neglect of cloud parameter changes. Cooling rate variations with local time below 80 km are in the same order of magnitude. Radiative effects of the unknown UV absorber are modeled considering a proxy that is based on a suitable parameterization of optical properties, not on a specific chemical composition, and that is independent of the used cloud model. The UV absorber doubles equatorial heating near 68 km. Global average radiative equilibrium at the top of atmosphere (TOA) is characterized by the net flux balance of 156 W/m2, the Bond albedo of 0.76, and the effective planetary emission temperature of 228

  2. Carbon Dioxide Extraction from the Atmosphere Through Engineered Chemical Sinkage: Enabling Energy and Environmental Security

    Science.gov (United States)

    Dubey, M. K.; Ziock, H.; Rueff, G.; Smith, W. S.; Colman, J.; Elliott, S.; Lackner, K.; Johnston, N. A.

    2002-05-01

    We present the case for carbon dioxide (CO2) extraction from air using engineered chemical sinks as a means of sustaining fossil energy use by avoiding climate change. Existing carbon sequestration strategies such as CO2 injection into geologic formations or the deep ocean and mineral carbonation, require a pure stream of concentrated CO2 to be viable. Furthermore, current emphasis on reducing the global CO2 emissions is on large centralized power plants. However, more than half of all emissions are from the transportation sector and small, distributed sources such as home heating, etc. Most solutions for dealing with these sources explicitly or implicitly entail completely overhauling the existing infrastructure. To solve these problems, Los Alamos National Laboratory has conceived a novel approach for directly extracting CO2 from the atmosphere. Direct extraction converts the dilute CO2 (370 parts per million) in the atmosphere into a pure CO2 stream ready for permanent sequestration. It provides the following advantages: (1) Preserves our existing energy use and fuel distribution systems, which represent a large investment, (2) Indirectly captures CO2 from the myriad of small, distributed, and mobile sources that otherwise are not accessible to sequestration, (3) Allows atmospheric CO2 levels to be restored to their pre-industrial age value, (4) Provides free transport of CO2 to suitable sequestration sites by using natural atmospheric circulation, and (5) Is relatively compact and therefore inexpensive when compared to renewable concepts. Our concept harnesses atmospheric circulation to transport CO2 to sites where the CO2 is extracted by binding it to an adsorbent. The bound CO2 is then recovered as pure gas by heating together with the solid adsorbent that is recycled. As a proof of concept, we show that an aqueous Ca(OH)2 solution efficiently converts CO2 to a CaCO3 solid that can be heated to obtain pure CO2 and recover the CaO. Even with recycling costs

  3. Energy Transport Effects in Flaring Atmospheres Heated by Mixed Particle Beams

    Science.gov (United States)

    Zharkova, Valentina; Zharkov, Sergei; Macrae, Connor; Druett, Malcolm; Scullion, Eamon

    2016-07-01

    We investigate energy and particle transport in the whole flaring atmosphere from the corona to the photosphere and interior for the flaring events on the 1st July 2012, 6 and 7 September 2011 by using the RHESSI and SDO instruments as well as high-resolution observations from the Swedish 1-metre Solar Telescope (SST3) CRISP4 (CRisp Imaging Spectro-polarimeter). The observations include hard and soft X-ray emission, chromospheric emission in both H-alpha 656.3 nm core and continuum, as well as, in the near infra-red triplet Ca II 854.2 nm core and continuum channels and local helioseismic responses (sunquakes). The observations are compared with the simulations of hard X-ray emission and tested by hydrodynamic simulations of flaring atmospheres of the Sun heated by mixed particle beams. The temperature, density and macro-velocity variations of the ambient atmospheres are calculated for heating by mixed beams and the seismic response of the solar interior to generation of supersonic shocks moving into the solar interior. We investigate the termination depths of these shocks beneath the quiet photosphere levels and compare them with the parameters of seismic responses in the interior, or sunquakes (Zharkova and Zharkov, 2015). We also present an investigation of radiative conditions modelled in a full non-LTE approach for hydrogen during flare onsets with particular focus on Balmer and Paschen emission in the visible, near UV and near IR ranges and compare them with observations. The links between different observational features derived from HXR, optical and seismic emission are interpreted by different particle transport models that will allow independent evaluation of the particle transport scenarios.

  4. Surface Energy in Nanocrystalline Carbon Thin Films: Effect of Size Dependence and Atmospheric Exposure.

    Science.gov (United States)

    Kumar, Manish; Javid, Amjed; Han, Jeon Geon

    2017-03-14

    Surface energy (SE) is the most sensitive and fundamental parameter for governing the interfacial interactions in nanoscale carbon materials. However, on account of the complexities involved of hybridization states and surface bonds, achieved SE values are often less in comparison with their theoretical counterparts and strongly influenced by stability aspects. Here, an advanced facing-target pulsed dc unbalanced magnetron-sputtering process is presented for the synthesis of undoped and H/N-doped nanocrystalline carbon thin films. The time-dependent surface properties of the undoped and H/N-doped nanocrystalline carbon thin films are systematically studied. The advanced plasma process induced the dominant deposition of high-energy neutral carbon species, consequently controlling the intercolumnar spacing of nanodomain morphology and surface anisotropy of electron density. As a result, significantly higher SE values (maximum = 79.24 mJ/m(2)) are achieved, with a possible window of 79.24-66.5 mJ/m(2) by controlling the experimental conditions. The intrinsic (size effects and functionality) and extrinsic factors (atmospheric exposure) are resolved and explained on the basis of size-dependent cohesive energy model and long-range van der Waals interactions between hydrocarbon molecules and the carbon surface. The findings anticipate the enhanced functionality of nanocrystalline carbon thin films in terms of selectivity, sensitivity, and stability.

  5. Observational Investigation of Energy Release in the Lower Solar Atmosphere of a Solar Flare

    CERN Document Server

    Sharykin, I N; Kosovichev, A G; Vargas-Dominguez, S; Zimovets, I V

    2016-01-01

    We study flare processes in the lower solar atmosphere using observational data for a M1-class flare of June 12, 2014, obtained by New Solar Telescope (NST/BBSO) and Helioseismic Magnetic Imager (HMI/SDO). The main goal is to understand triggers and manifestations of the flare energy release in the lower layers of the solar atmosphere (the photosphere and chromosphere) using high-resolution optical observations and magnetic field measurements. We analyze optical images, HMI Dopplergrams and vector magnetograms, and use Non-Linear Force-Free Field (NLFFF) extrapolations for reconstruction of the magnetic topology. The NLFFF modelling reveals interaction of oppositely directed magnetic flux-tubes in the PIL. These two interacting magnetic flux tubes are observed as a compact sheared arcade along the PIL in the high-resolution broad-band continuum images from NST. In the vicinity of the PIL, the NST H alpha observations reveal formation of a thin three-ribbon structure corresponding to the small-scale photospher...

  6. The influence of Middle Range Energy Electrons on atmospheric chemistry and regional climate

    Science.gov (United States)

    Arsenovic, P.; Rozanov, E.; Stenke, A.; Funke, B.; Wissing, J. M.; Mursula, K.; Tummon, F.; Peter, T.

    2016-11-01

    We investigate the influence of Middle Range Energy Electrons (MEE; typically 30-300 keV) precipitation on the atmosphere using the SOCOL3-MPIOM chemistry-climate model with coupled ocean. Model simulations cover the 2002-2010 period for which ionization rates from the AIMOS dataset and atmospheric composition observations from MIPAS are available. Results show that during geomagnetically active periods MEE significantly increase the amount of NOy and HOx in the polar winter mesosphere, in addition to other particles and sources, resulting in local ozone decreases of up to 35%. These changes are followed by an intensification of the polar night jet, as well as mesospheric warming and stratospheric cooling. The contribution of MEE also substantially enhances the difference in the ozone anomalies between geomagnetically active and quiet periods. Comparison with MIPAS NOy observations indicates that the additional source of NOy from MEE improves the model results, however substantial underestimation above 50 km remains and requires better treatment of the NOy source from the thermosphere. A surface air temperature response is detected in several regions, with the most pronounced warming occurring in the Antarctic during austral winter. Surface warming of up to 2 K is also seen over continental Asia during boreal winter.

  7. Modeling the atmospheric and terrestrial water and energy cycles in the ScaleX experiment through a fully-coupled atmosphere-hydrology model

    Science.gov (United States)

    Senatore, Alfonso; Benjamin, Fersch; Thomas, Rummler; Caroline, Brosy; Christian, Chwala; Junkermann, Wolfgang; Ingo, Völksch; Harald, Kunstmann

    2016-04-01

    The TERENO preAlpine Observatory, comprising a series of observatory sites along an altitudinal gradient within the Ammer catchment (southern Bavaria, Germany), has been designed as an international research platform, open for participation and integration, and has been provided with comprehensive technical infrastructure to allow joint analyses of water-, energy- and nutrient fluxes. In June and July 2015 the operational monitoring has been complemented by the ScaleX intensive measurement campaign, where additional precipitation and soil moisture measurements, remote sensing measurements of atmospheric wind, humidity and temperature profiles have been performed, complemented by micro-light aircraft- and UAV-based remote sensing for three-dimensional pattern information. The comprehensive observations serve as validation and evaluation basis for compartment-crossing modeling systems. Specifically, the fully two-way dynamically coupled atmosphere-hydrology modeling system WRF-Hydro has been used to investigate the interplay of energy and water cycles at the regional scale and across the compartments atmosphere, stream, vadose zone and groundwater during the ScaleX campaign and to assess the closure of the budgets involved. Here, several high-resolution modeled hydro-meteorological variables, such as precipitation, soil moisture, river discharge and air moisture and temperature along vertical profiles are compared with observations from multiple sources, such as rain gauges and soil moisture networks, rain radars, stream gauges, UAV and a micro-light aircraft. Results achieved contribute to the objective of addressing questions on energy- and water-cycling within the TERENO-Ammer region at a very high scale and degree of integration, and provides hints on how well can observations constrain uncertainties associated with the modeling of atmospheric and terrestrial water and energy balances.

  8. Atmospheric energy input and ionization by energetic electrons during the geomagnetic storm of 8-9 November 1991

    Science.gov (United States)

    Chenette, D. L.; Datlowe, D. W.; Robinson, R. M.; Schumaker, T. L.; Vondrak, R. R.; Winningham, J. D.

    1993-01-01

    The Atmospheric X-ray Imaging Spectrometer (AXIS) of the Particle Environment Monitor investigation aboard the Upper Atmosphere Research Satellite monitors energy input to the upper atmosphere due to energetic electrons. Analysis of the AXIS data from the major geomagnetic storm of 8-9 November 1991 is presented. During the November storm, electrons above a few keV flowing into a substantially expanded auroral zone provided the bulk of the ionizing power to the upper atmosphere. At the peak of the disturbance the total AXIS-observed power reached 40 GW. On 9 November the whole day average atmospheric ionization rate in the auroral zone at 80 km altitude exceeded the rate due to solar UV and solar X-rays by a factor of over 10 to 100.

  9. Heterogeneity and scaling land-atmospheric water and energy fluxes in climate systems

    Science.gov (United States)

    Wood, Eric F.

    1993-01-01

    The effects of small-scale heterogeneity in land surface characteristics on the large-scale fluxes of water and energy in land-atmosphere system has become a central focus of many of the climatology research experiments. The acquisition of high resolution land surface data through remote sensing and intensive land-climatology field experiments (like HAPEX and FIFE) has provided data to investigate the interactions between microscale land-atmosphere interactions and macroscale models. One essential research question is how to account for the small scale heterogeneities and whether 'effective' parameters can be used in the macroscale models. To address this question of scaling, three modeling experiments were performed and are reviewed in the paper. The first is concerned with the aggregation of parameters and inputs for a terrestrial water and energy balance model. The second experiment analyzed the scaling behavior of hydrologic responses during rain events and between rain events. The third experiment compared the hydrologic responses from distributed models with a lumped model that uses spatially constant inputs and parameters. The results show that the patterns of small scale variations can be represented statistically if the scale is larger than a representative elementary area scale, which appears to be about 2 - 3 times the correlation length of the process. For natural catchments this appears to be about 1 - 2 sq km. The results concerning distributed versus lumped representations are more complicated. For conditions when the processes are nonlinear, then lumping results in biases; otherwise a one-dimensional model based on 'equivalent' parameters provides quite good results. Further research is needed to fully understand these conditions.

  10. Effects of zonal flows on correlation between energy balance and energy conservation associated with nonlinear nonviscous atmospheric dynamics in a thin rotating spherical shell

    Science.gov (United States)

    Ibragimov, Ranis N.

    2016-12-01

    The nonlinear Euler equations are used to model two-dimensional atmosphere dynamics in a thin rotating spherical shell. The energy balance is deduced on the basis of two classes of functorially independent invariant solutions associated with the model. It it shown that the energy balance is exactly the conservation law for one class of the solutions whereas the second class of invariant solutions provides and asymptotic convergence of the energy balance to the conservation law.

  11. Pacific Northwest Laboratory annual report for 1992 to the DOE Office of Energy Research. Part 3, Atmospheric and climate research

    Energy Technology Data Exchange (ETDEWEB)

    Schrempf, R.E. [ed.

    1993-04-01

    Within the US Department of Energy`s (DOE`s) Office of Health and Environmental Research (OHER), the atmospheric sciences and carbon dioxide research programs are part of the Environmental Sciences Division (ESD). One of the central missions of the division is to provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. This information is vital to the definition and implementation of a sound national energy strategy. This volume reports on the progress and status of all OHER atmospheric science and climate research projects at the Pacific Northwest Laboratory (PNL). PNL has had a long history of technical leadership in the atmospheric sciences research programs within OHER. Within the ESD, the Atmospheric Chemistry Program (ACP) continues DOE`s long-term commitment to study the continental and oceanic fates of energy-related air pollutants. Research through direct measurement, numerical modeling, and laboratory studies in the ACP emphasizes the long-range transport, chemical transformation, and removal of emitted pollutants, oxidant species, nitrogen-reservoir species, and aerosols. The Atmospheric Studies in Complex Terrain (ASCOT) program continues to apply basic research on density-driven circulations and on turbulent mixing and dispersion in the atmospheric boundary layer to the micro- to mesoscale meteorological processes that affect air-surface exchange and to emergency preparedness at DOE and other facilities. Research at PNL provides basic scientific underpinnings to DOE`s program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements (ARM), the Computer Hardware, Advanced Mathematics and Model Physics (CHAMMP), and Quantitative Links programs to form DOE`s contribution to the US Global Change Research Program.

  12. Synthetic oligomer analysis using atmospheric pressure photoionization mass spectrometry at different photon energies.

    Science.gov (United States)

    Desmazières, Bernard; Legros, Véronique; Giuliani, Alexandre; Buchmann, William

    2014-01-15

    Atmospheric pressure photoionization (APPI) followed by mass spectrometric detection was used to ionize a variety of polymers: polyethylene glycol, polymethyl methacrylate, polystyrene, and polysiloxane. In most cases, whatever the polymer or the solvent used (dichloromethane, tetrahydrofuran, hexane, acetone or toluene), only negative ion mode produced intact ions such as chlorinated adducts, with no or few fragmentations, in contrast to the positive ion mode that frequently led to important in-source fragmentations. In addition, it was shown that optimal detection of polymer distributions require a fine tuning of other source parameters such as temperature and ion transfer voltage. Series of mass spectra were recorded in the negative mode, in various solvents (dichloromethane, tetrahydrofuran, hexane, toluene, and acetone), by varying the photon energy from 8eV up to 10.6eV using synchrotron radiation. To these solvents, addition of a classical APPI dopant (toluene or acetone) was not necessary. Courtesy of the synchrotron radiation, it was demonstrated that the photon energy required for an efficient ionization of the polymer was correlated to the ionization energy of the solvent. As commercial APPI sources typically use krypton lamps with energy fixed at 10eV and 10.6eV, the study of the ionization of polymers over a wavelength range allowed to confirm and refine the previously proposed ionization mechanisms. Moreover, the APPI source can efficiently be used as an interface between size exclusion chromatography or reverse phase liquid chromatography and MS for the study of synthetic oligomers. However, the photoionization at fixed wavelength of polymer standards with different molecular weights showed that it was difficult to obtain intact ionized oligomers with molecular weights above a few thousands.

  13. Characteristics of land-atmosphere energy and turbulentfluxes over the plateau steppe in central Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    The land-atmosphere energy and turbulence exchange is key to understanding land surface processes on the TibetanPlateau (TP). Using observed data for Aug. 4 to Dec. 3, 2012 from the Bujiao observation point (BJ) of the Nagqu PlateauClimate and Environment Station (NPCE-BJ), different characteristics of the energy flux during the Asian summermonsoon (ASM) season and post-monsoon period were analyzed. This study outlines the impact of the ASM on energyfluxes in the central TP. It also demonstrates that the surface energy closure rate during the ASM season is higher than thatof the post-monsoon period. Footprint modeling shows the distribution of data quality assessments (QA) and qualitycontrols (QC) surrounding the observation point. The measured turbulent flux data at the NPCE-BJ site were highly representativeof the target land-use type. The target surface contributed more to the fluxes under unstable conditions thanunder stable conditions. The main wind directions (180° and 210°) with the highest data density showed flux contributionsreaching 100%, even under stable conditions. The lowest flux contributions were found in sectors with low data density,e.g., 90.4% in the 360° sector under stable conditions during the ASM season. Lastly, a surface energy water balance(SEWAB) model was used to gap-fill any absent or corrected turbulence data. The potential simulation error was alsoexplored in this study. The Nash-Sutcliffe model efficiency coefficients (NSEs) of the observed fluxes with the SEWABmodel runs were 0.78 for sensible heat flux and 0.63 for latent heat flux during the ASM season, but unrealistic values of?0.9 for latent heat flux during the post-monsoon period.

  14. Redistributive effects of Swedish health care finance.

    Science.gov (United States)

    Gerdtham, U G; Sundberg, G

    1998-01-01

    This paper investigates the redistributive effects of the Swedish health care financing system in 1980 and 1990 for four different financial sources: county council taxes, payroll taxes, direct payments and state grants. The redistributive effects are decomposed into vertical, horizontal and 'reranking' segments for each of the four financial sources. The data used are based on probability samples of the Swedish population, from the Level of Living Survey (LNU) from 1981 and 1991. The paper concludes that the Swedish health care financing system is weakly progressive, although direct payments are regressive. There is some horizontal inequity and 'reranking', which mainly comes from the county council taxes, since those tax rates vary for each county council. The implication is that, to some extent, people with equal incomes are treated unequally.

  15. Moisture redistribution in screeded concrete slabs

    OpenAIRE

    Åhs, Magnus

    2007-01-01

    The principal objective for this licentiate thesis is to develop a methodology and evaluation model in order to make the future relative humidity in a screeded concrete slab predictable. Residual moisture in screeded concrete slabs may redistribute to the top screed surface under semi-permeable flooring, thus elevating the relative humidity, RH, and possibly exceed the critical humidity level. Passing the critical humidity level may result in material damages on the flooring and adhesive. ...

  16. Study of natural energy system and downward atmospheric radiation. Part 1. Outline on measurement and result on downward atmospheric radiation; Shizen energy system to tenku hosharyo no kansoku kenkyu. 1. Kisho kansoku gaiyo to tenku hosharyo no kansoku kekka

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, K. [Kogakuin University, Tokyo (Japan); Masuoka, Y. [Yokogawa Architects and Engineers, Inc., Tokyo (Japan)

    1996-10-27

    For the study of a natural energy system taking advantage of radiation cooling, a simplified method for estimating downward atmospheric radiation quantities was examined, using observation records supplied from Hachioji City, Aerological Observatory in Tsukuba City, and four other locations. Downward atmospheric radiation quantities are closely related to partial vapor pressure in the atmosphere. Because partial vapor pressure changes according to the season, it was classified into two, for summer and for winter, and was referred to downward atmospheric radiation quantities for the establishment of their correlationships. Downward atmospheric radiation quantities were predicted on the basis of meteorological factors such as partial vapor pressure and free air temperature. Accuracy was examined of the simplified estimation equation for downward atmospheric radiation that had been proposed. A multiple regression analysis was carried out for calculating constants for the estimation equation, using partial vapor pressure, Stefan-Boltzmann constant, and free air dry-bulb absolute temperature, all closely correlated with atmospheric downward radiation quantities. Accuracy improved by time-based classification. At night, use of SAT (equivalent free air temperature) produced more accurate estimation. Though dependent upon local characteristics of the observation spot, the estimation equation works effectively. 10 refs., 10 figs., 3 tabs.

  17. A Standardized Based Approach to Managing Atmosphere Studies For Wind Energy Research

    Science.gov (United States)

    Stephan, E.; Sivaraman, C.

    2015-12-01

    Atmosphere to Electrons (A2e) is a multi-year U.S. Department of Energy (DOE) research initiative targeting significant reductions in the cost of wind energy through an improved understanding of the complex physics governing wind flow into and through wind farms. Better insight into the flow physics has the potential to reduce wind farm energy losses by up to 20%, to reduce annual operational costs by hundreds of millions of dollars, and to improve project financing terms to more closely resemble traditional capital projects. The Data Archive and Portal (DAP) is a key capability of the A2e initiative. The DAP is a cloud-based distributed system known as the 'Wind Cloud' that functions as a repository for all A2e data. This data includes numerous historic and on-going field studies involving in situ and remote sensing instruments, simulations, and scientific analysis. Significantly it is the integration and sharing of these diverse data sets through the DAP that is key to meeting the goals of A2e. This cloud will be accessible via an open and easy-to navigate user interface that facilitates community data access, interaction, and collaboration. DAP management is working with the community, industry, and international standards bodies to develop standards for wind data and to capture important characteristics of all data in the Wind Cloud. Security will be provided to facilitate storage of proprietary data alongside publicly accessible data in the Wind Cloud, and the capability to generate anonymized data will be provided to facilitate using private data by non-privileged users (when appropriate). Finally, limited computing capabilities will be provided to facilitate co-located data analysis, validation, and generation of derived products in support of A2e science.

  18. ATLAS Versus NextGen Model Atmospheres: A Combined Analysis of Synthetic Spectral Energy Distributions

    Science.gov (United States)

    Bertone, E.; Buzzoni, A.; Chávez, M.; Rodríguez-Merino, L. H.

    2004-08-01

    We carried out a critical appraisal of the two theoretical models, Kurucz' ATLAS9 and PHOENIX/NextGen, for stellar atmosphere synthesis. Our tests relied on the theoretical fit of spectral energy distributions (SEDs) for a sample of 334 target stars along the whole spectral-type sequence, from the classical optical catalogs of Gunn & Stryker and Jacoby et al. The best-fitting physical parameters (Teff, logg) of stars allowed an independent calibration of the temperature and bolometric scale versus empirical classification parameters (i.e., spectral type and MK luminosity class); in addition, the comparison of the synthetic templates from the ATLAS and NextGen grids allowed us to probe the capability of the models to match spectrophotometric properties of real stars and assess the impact of the different input physics. We can sketch the following main conclusions of our analysis: (1) Fitting accuracy of both theoretical libraries drastically degrades at low Teff at which both ATLAS and NextGen models still fail to properly account for the contribution of molecular features in the observed SED of K-M stars. (2) Compared with empirical calibrations, both ATLAS and NextGen fits tend, on average, to predict slightly warmer (by 4%-8%) Teff for both giant and dwarf stars of fixed spectral type, but ATLAS provides, in general, a sensibly better fit (a factor of 2 lower σ of flux residuals) than NextGen. (3) There is a striking tendency of NextGen to label target stars with an effective temperature and surface gravity higher than that of ATLAS. The effect is especially evident for MK I-III objects for which about one in four stars is clearly misclassified by NextGen in logg. This is a consequence of some ``degeneracy'' in the solution space, partly induced by the different input physics and geometry constraints in the computation of the integrated emerging flux (ATLAS model atmospheres assume standard plane-parallel layers, while NextGen adopts, for low-gravity stars, a

  19. Heat Redistribution and Misaligned Orbit Models in PHOEBE

    Science.gov (United States)

    Horvat, Martin; Prsa, Andrej; Conroy, Kyle E.

    2017-01-01

    Reflection and aligned Roche geometry have been long supported in modeling codes that synthesize light and radial velocity curves of eclipsing binary stars. However, recent advances in observational data, mostly in terms of precision and temporal baseline, demonstrated that the assumptions of these two effects are frequently violated. Reflection treatment neglected the energy absorbed by the irradiated star, and Roche geometry assumed aligned vectors of spin and orbital angular momentum. Observations of night- and day-side brightness variation of cooler stellar and substellar companions point to a clear deficiency in treating heat redistribution, and the break in symmetry of the Rossiter-McLaughlin effect points to misaligned stellar spins w.r.t. orbital plane. The framework of existing codes did not allow for revising these effects while keeping the rest of the logic intact, which prompted a complete rewrite of the modeling code PHOEBE (PHysics Of Eclipsing BinariEs). Here we present the basic considerations and proof-of-concept examples of the revised reflection effect and misaligned spin-orbit support. Reflection has been extended with heat absorption and consequent redistribution, which can be local, longitudinal or global. Misaligned spin-orbit vectors are supported by deriving the equation of the Roche potential that allows misaligned rotational axes and are provided by the corresponding Euler angles. This research is supported by the NSF grant #1517474.

  20. New Planetary Energy Balance, Ocean-Atmosphere Interaction and their Effects on Extreme Events in North Atlantic

    Science.gov (United States)

    Karrouk, Mohammed-Said

    2016-04-01

    Global warming has now reached the energetic phase of H2O's return to the ground after the saturation of the atmosphere in evaporation since the 80s and 90s of the last century, which were characterized by severe droughts, mainly in Africa. This phase is the result of the accumulation of thermal energy exchanges in the Earth-Ocean-Atmosphere system that resulted in the thrust reversal of the energy balance toward the poles. This situation is characterized by a new thermal distribution: above the ocean, the situation is more in surplus compared to the mainland, or even opposite when the balance is negative on the land, and in the atmosphere, warm thermal advection easily reach the North Pole (planetary crests), as well as cold advection push deep into North Africa and the Gulf of Mexico (planetary valleys). This "New Ground Energy Balance" establishes a "New Meridian Atmospheric Circulation (MAC)" with an undulating character throughout the year, including the winter characterized by intense latitudinal very active energy exchanges between the surplus areas (tropical) and the deficit (polar) on the one hand, and the atmosphere, the ocean and the continent on the other. The excess radiation balance increases the potential evaporation of the atmosphere and provides a new geographical distribution of H2O worldwide: the excess water vapor is easily converted by cold advection (polar vortex) to heavy rains that cause floods or snow storms that paralyze the normal functioning of human activities, which creates many difficulties for users and leaves damage and casualties, but ensures water availability missing since a long time in many parts of the world, in Africa, Europe and America. The new thermal distribution reorganizes the geography of atmospheric pressure: the ocean energy concentration is transmitted directly to the atmosphere, and the excess torque is pushed northward. The Azores anticyclone is strengthened and is a global lock by the Atlantic ridge at Greenland

  1. Skymap for atmospheric muons at TeV energies measured in deep-sea neutrino telescope ANTARES

    CERN Document Server

    Mangano, Salvatore

    2009-01-01

    Recently different experiments mention to have observed a large scale cosmic-ray anisotropy at TeV energies, e.g. Milagro, Tibet and Super-Kamiokande. For these energies the cosmic-rays are expected to be nearly isotropic. Any measurements of cosmic-rays anisotropy could bring some information about propagation and origin of cosmic-rays. Though the primary aim of the ANTARES neutrino telescope is the detection of high energy cosmic neutrinos, the detector measures mainly down-doing muons, which are decay products of cosmic-rays collisions in the Earth's atmosphere. This proceeding describes an anlaysis method for the first year measurement of down-going atmospheric muons at TeV energies in the ANTARES experiment, when five out of the final number of twelve lines were taking data.

  2. Numerical study of the electron and muon lateral distribution in atmospheric showers of high energy cosmic rays

    Science.gov (United States)

    Georgios, Atreidis

    2017-03-01

    The lateral distribution of an atmospheric shower depends on the characteristics of the high energy interactions and the type of the primary particle. The influence of the primary particle in the secondary development of the shower into the atmosphere, is studied by analyzing the lateral distribution of electron and muon showers having as primary particle, proton, photon or iron nucleus. This study of the lateral distribution can provide useful conclusions for the mass and energy of the primary particle. This paper compares the data that we get from simulations with CORSIKA program with experimental data and the theoretical NKG function expressing lateral electron and muon distribution. Then we modify the original NKG function to fit better to the simulation data and propose a method for determining the mass of the original particle started the atmospheric shower.

  3. Fixing atmospheric CO2 by environment adaptive sorbent and renewable energy

    Science.gov (United States)

    Wang, T.; Liu, J.; Ge, K.; Fang, M.

    2014-12-01

    Fixing atmospheric CO2, followed by geologic storage in remote areas is considered an environmentally secure approach to climate mitigation. A moisture swing sorbent was investigated in the laboratory for CO2 capture at a remote area with humid and windy conditions. The energy requirement of moisture swing absorption could be greatly reduced compared to that of traditional high-temperature thermal swing, by assuming that the sorbent can be naturally dried and regenerated at ambient conditions. However, for currently developed moisture swing materials, the CO2 capacity would drop significantly at high relative humidity. The CO2 capture amount can be reduced by the poor thermodynamics and kinetics at high relative humidity or low temperature. Similar challenges also exist for thermal or vacuum swing sorbents. Developing sorbent materials which adapt to specific environments, such as high humidity or low temperature, can ensure sufficient capture capacity on the one hand, and realize better economics on the other hand (Figure 1) .An environment adaptive sorbent should have the abilities of tunable capacity and fast kinetics at extreme conditions, such as high humidity or low temperature. In this presentation, the possibility of tuning CO2 absorption capacity of a polymerized ionic liquid material is discussed. The energy requirement evaluation shows that tuning the CO2 binding energy of sorbent, rather than increasing the temperature or reducing the humidity of air, could be much more economic. By determining whether the absorption process is controlled by physical diffusion controlled or chemical reaction, an effective approach to fast kinetics at extreme conditions is proposed. A shrinking core model for mass transfer kinetics is modified to cope with the relatively poor kinetics of air capture. For the studied sample which has a heterogeneous structure, the kinetic analysis indicates a preference of sorbent particle size optimization, rather than support layer

  4. Updated cloud physics in a regional atmospheric climate model improves the modelled surface energy balance of Antarctica

    NARCIS (Netherlands)

    van Wessem, J.M.; Reijmer, C.H.; Lenaerts, J.T.M.; van de Berg, W.J.; van den Broeke, M.R.; van Meijgaard, E.

    2014-01-01

    In this study the effects of changes in the physics package of the regional atmospheric climate model RACMO2 on the modelled surface energy balance, nearsurface temperature and wind speed of Antarctica are presented. The physics package update primarily consists of an improved turbulent and radiativ

  5. A comparison between energy transfer and atmospheric turbulent exchanges over alpine meadow and banana plantation

    Science.gov (United States)

    Ding, Zhangwei; Ma, Yaoming; Wen, Zhiping; Ma, Weiqiang

    2016-04-01

    Banana plantation and alpine meadow ecosystems in southern China and the Tibetan Plateau are unique in the underlying surfaces they exhibit. In this study, we used eddy covariance and a micrometeorological tower to examine the characteristics of land surface energy exchanges over a banana plantation in southern China and an alpine meadow in the Tibetan Plateau from May 2010 to August 2012. The results showed that the diurnal and seasonal variations in upward shortwave radiation flux and surface soil heat flux were larger over the alpine meadow than over the banana plantation surface. Dominant energy partitioning varied with season. Latent heat flux was the main consumer of net radiation flux in the growing season, whereas sensible heat flux was the main consumer during other periods. The Monin-Obukhov similarity theory was employed for comparative purposes, using sonic anemometer observations of flow over the surfaces of banana plantations in the humid southern China monsoon region and the semi-arid areas of the TP, and was found to be applicable. Over banana plantation and alpine meadow areas, the average surface albedo and surface aerodynamic roughness lengths under neutral atmospheric conditions were ~0.128 and 0.47m, and ~0.223 and 0.01m, respectively. During the measuring period, the mean annual bulk transfer coefficients for momentum and sensible heat were 1.47×10-2 and 7.13×10-3, and 2.91×10-3 and 1.96×10-3, for banana plantation and alpine meadow areas, respectively. This is the first time in Asia that long-term open field measurements have been taken with the specific aim of making comparisons between banana plantation and alpine meadow surfaces.

  6. Changing surface–atmosphere energy exchange and refreezing capacity of the lower accumulation area, west Greenland

    Directory of Open Access Journals (Sweden)

    C. Charalampidis

    2015-05-01

    Full Text Available We present five years (2009–2013 of automatic weather station measurements from the lower accumulation area (1840 m a.s.l. of the ice sheet in the Kangerlussuaq region, western Greenland. Here, the summers of 2010 and 2012 were both exceptionally warm, but only 2012 resulted in a strongly negative surface mass budget (SMB and surface meltwater runoff. The observed runoff was due to a large ice fraction in the upper 10 m of firn that prevented meltwater from percolating to available pore volume below. Analysis reveals a relatively low 2012 summer albedo of ~0.7 as meltwater was present at the surface. Consequently, during the 2012 melt season the surface absorbed 29% (213 MJ m-2 more solar radiation than the average of all other years. A surface energy balance model is used to evaluate the seasonal and interannual variability of all surface energy fluxes. The model reproduces the observed melt rates as well as the SMB for each season. A sensitivity test reveals that 71% of the additional solar radiation in 2012 was used for melt, corresponding to 36% (0.64 m of the 2012 surface lowering. The remaining 1.14 m was primarily due to the high atmospheric temperatures up to +2.6 °C daily average, indicating that 2012 would have been a negative SMB year at this site even without the melt-albedo feedback. Longer time series of SMB, regional temperature and remotely sensed albedo (MODIS show that 2012 was the first strongly negative SMB year with the lowest albedo at this elevation on record. The warm conditions of the last years resulted in enhanced melt and reduction of the refreezing capacity at the lower accumulation area. If high temperatures continue the current lower accumulation area will turn into a region with superimposed ice in coming years.

  7. Changing surface-atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland

    Science.gov (United States)

    Charalampidis, C.; van As, D.; Box, J. E.; van den Broeke, M. R.; Colgan, W. T.; Doyle, S. H.; Hubbard, A. L.; MacFerrin, M.; Machguth, H.; Smeets, C. J. P. P.

    2015-11-01

    We present 5 years (2009-2013) of automatic weather station measurements from the lower accumulation area (1840 m a.s.l. - above sea level) of the Greenland ice sheet in the Kangerlussuaq region. Here, the summers of 2010 and 2012 were both exceptionally warm, but only 2012 resulted in a strongly negative surface mass budget (SMB) and surface meltwater run-off. The observed run-off was due to a large ice fraction in the upper 10 m of firn that prevented meltwater from percolating to available pore volume below. Analysis reveals an anomalously low 2012 summer-averaged albedo of 0.71 (typically ~ 0.78), as meltwater was present at the ice sheet surface. Consequently, during the 2012 melt season, the ice sheet surface absorbed 28 % (213 MJ m-2) more solar radiation than the average of all other years. A surface energy balance model is used to evaluate the seasonal and interannual variability of all surface energy fluxes. The model reproduces the observed melt rates as well as the SMB for each season. A sensitivity analysis reveals that 71 % of the additional solar radiation in 2012 was used for melt, corresponding to 36 % (0.64 m) of the 2012 surface lowering. The remaining 64 % (1.14 m) of surface lowering resulted from high atmospheric temperatures, up to a +2.6 °C daily average, indicating that 2012 would have been a negative SMB year at this site even without the melt-albedo feedback. Longer time series of SMB, regional temperature, and remotely sensed albedo (MODIS) show that 2012 was the first strongly negative SMB year, with the lowest albedo, at this elevation on record. The warm conditions of recent years have resulted in enhanced melt and reduction of the refreezing capacity in the lower accumulation area. If high temperatures continue, the current lower accumulation area will turn into a region with superimposed ice in coming years.

  8. Very high-energy gamma ray astronomy. [using the atmospheric cerenkov technique

    Science.gov (United States)

    Grindlay, J. E.

    1977-01-01

    Recent results in ground-based very high-energy (less than 10 to the eleventh power eV) gamma-ray astronomy are reviewed. The various modes of the atmospheric Cerenkov technique are described, and the importance of cosmic ray rejection methods is stressed. The positive detections (at approximately less than 10 to the 12th power eV) of the Crab pulsar that suggest a very flat spectrum and time-variable pulse phase are discussed. Observations of other pulsars (particularly Vela) suggest that these features may be general. The steady flux upper limits for the Crab Nebula are thus reconsidered, and a new value of the implied (Compton-synchrotron) magnetic field in the Nebula is reported. Evidence that a 4.8-hour modulated effect was detected at E sub gamma is less than 10 to the 12th power eV from Cyg X-3 is strengthened in that the exact period originally proposed agrees well with a recent determination of the X-ray period. The southern sky observations are reviewed, and the significance of the detection of an active galaxy (NGC 5128) is considered for source models and future observations.

  9. A conceptual, distributed snow redistribution model

    Science.gov (United States)

    Frey, S.; Holzmann, H.

    2015-11-01

    When applying conceptual hydrological models using a temperature index approach for snowmelt to high alpine areas often accumulation of snow during several years can be observed. Some of the reasons why these "snow towers" do not exist in nature are vertical and lateral transport processes. While snow transport models have been developed using grid cell sizes of tens to hundreds of square metres and have been applied in several catchments, no model exists using coarser cell sizes of 1 km2, which is a common resolution for meso- and large-scale hydrologic modelling (hundreds to thousands of square kilometres). In this paper we present an approach that uses only gravity and snow density as a proxy for the age of the snow cover and land-use information to redistribute snow in alpine basins. The results are based on the hydrological modelling of the Austrian Inn Basin in Tyrol, Austria, more specifically the Ötztaler Ache catchment, but the findings hold for other tributaries of the river Inn. This transport model is implemented in the distributed rainfall-runoff model COSERO (Continuous Semi-distributed Runoff). The results of both model concepts with and without consideration of lateral snow redistribution are compared against observed discharge and snow-covered areas derived from MODIS satellite images. By means of the snow redistribution concept, snow accumulation over several years can be prevented and the snow depletion curve compared with MODIS (Moderate Resolution Imaging Spectroradiometer) data could be improved, too. In a 7-year period the standard model would lead to snow accumulation of approximately 2900 mm SWE (snow water equivalent) in high elevated regions whereas the updated version of the model does not show accumulation and does also predict discharge with more accuracy leading to a Kling-Gupta efficiency of 0.93 instead of 0.9. A further improvement can be shown in the comparison of MODIS snow cover data and the calculated depletion curve, where

  10. A splitting-free vorticity redistribution method

    Science.gov (United States)

    Kirchhart, M.; Obi, S.

    2017-02-01

    We present a splitting-free variant of the vorticity redistribution method. Spatial consistency and stability when combined with a time-stepping scheme are proven. We propose a new strategy preventing excessive growth in the number of particles while retaining the order of consistency. The novel concept of small neighbourhoods significantly reduces the method's computational cost. In numerical experiments the method showed second order convergence, one order higher than predicted by the analysis. Compared to the fast multipole code used in the velocity computation, the method is about three times faster.

  11. Landform Erosion and Volatile Redistribution on Ganymede and Callisto

    Science.gov (United States)

    Moore, Jeffrey Morgan; Howard, Alan D.; McKinnon, William B.; Schenk, Paul M.; Wood, Stephen E.

    2009-01-01

    We have been modeling landscape evolution on the Galilean satellites driven by volatile transport. Our work directly addresses some of the most fundamental issues pertinent to deciphering icy Galilean satellite geologic histories by employing techniques currently at the forefront of terrestrial, martian, and icy satellite landscape evolution studies [e.g., 1-6], including modeling of surface and subsurface energy and volatile exchanges, and computer simulation of long-term landform evolution by a variety of processes. A quantitative understanding of the expression and rates of landform erosion, and of volatile redistribution on landforms, is especially essential in interpreting endogenic landforms that have, in many cases, been significantly modified by erosion [e.g., 7-9].

  12. Charge redistribution from anomalous magneto-vorticity coupling

    CERN Document Server

    Hattori, Koichi

    2016-01-01

    We investigate novel transport phenomena in a chiral fluid originated from an interplay between a vorticity and strong magnetic field, which induces a redistribution of vector charges in the system and an axial current along the magnetic field. The corresponding transport coefficients are obtained from an energy-shift argument for the chiral fermions in the lowest Landau level (LLL) due to a spin-vorticity coupling and also from diagrammatic computations on the basis of the linear response theory. Based on consistent results from the both methods, we observe that the transport coefficients are proportional to the anomaly coefficient and are independence of temperature and chemical potential. We therefore speculate that these transport phenomena are connected to quantum anomaly.

  13. Damage induced to DNA by low-energy (0-30 eV) electrons under vacuum and atmospheric conditions.

    Science.gov (United States)

    Brun, Emilie; Cloutier, Pierre; Sicard-Roselli, Cécile; Fromm, Michel; Sanche, Léon

    2009-07-23

    In this study, we show that it is possible to obtain data on DNA damage induced by low-energy (0-30 eV) electrons under atmospheric conditions. Five monolayer films of plasmid DNA (3197 base pairs) deposited on glass and gold substrates are irradiated with 1.5 keV X-rays in ultrahigh vacuum and under atmospheric conditions. The total damage is analyzed by agarose gel electrophoresis. The damage produced on the glass substrate is attributed to energy absorption from X-rays, whereas that produced on the gold substrate arises from energy absorption from both the X-ray beam and secondary electrons emitted from the gold surface. By analysis of the energy of these secondary electrons, 96% are found to have energies below 30 eV with a distribution peaking at 1.4 eV. The differences in damage yields recorded with the gold and glass substrates is therefore essentially attributed to the interaction of low-energy electrons with DNA under vacuum and hydrated conditions. From these results, the G values for low-energy electrons are determined to be four and six strand breaks per 100 eV, respectively.

  14. Measurement of the atmospheric nu (mu) energy spectrum from 100 GeV to 200 TeV with the ANTARES telescope

    NARCIS (Netherlands)

    Adrian-Martinez, S.; Albert, A.; Al Samarai, I.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Astraatmadja, T.; Aubert, J. -J.; Baret, B.; Barrios-Marti, J.; Basa, S.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bogazzi, C.; Bouhou, B.; Bouwhuis, M.C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carloganu, C.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Classen, F.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; Curtil, C.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Decowski, M. P.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Dumas, A.; Eberl, T.; Emanuele, U.; Enzenhoefer, A.; Ernenwein, J. -P.; Escoffier, S.; Fehn, K.; Fermani, P.; Flaminio, V.; Folger, F.; Fritsch, U.; Fusco, L. A.; Galata, S.; Gay, P.; Geisselsoeder, S.; Geyer, K.; Giacomelli, G.; Giordano, V.; Gleixner, A.; Gomez-Gonzalez, J. P.; Graf, K.; Guillard, G.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernandez-Rey, J. J.; Herold, B.; Hoessl, J.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, E.; Lambard, G.; Larosa, G.; Lattuada, D.; Lefevre, D.; Leonora, E.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Martini, S.; Michael, T.; Montaruli, T.; Morganti, M.; Motz, H.; Mueller, C.; Neff, M.; Nezri, E.; Palioselitis, D.; Pavalas, G. E.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Richter, R.; Riviere, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schulte, S.; Schuessler, F.; Seitz, T.; Shanidze, R.; Sieger, C.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sanchez-Losa, A.; Taiuti, M.; Tamburini, C.; Tayalati, Y.; Trovato, A.; Vallage, B.; Vallee, C.; Van Elewyck, V.; Vernin, P.; Visser, E.; Wagner, S.; Wilms, J.; de Wolf, E.; Yatkin, K.; Yepes, H.; Zornoza, J. D.; Zuniga, J.

    2013-01-01

    Atmospheric neutrinos are produced during cascades initiated by the interaction of primary cosmic rays with air nuclei. In this paper, a measurement of the atmospheric energy spectrum in the energy range 0.1-200 TeV is presented, using data collected by the ANTARES underwater neutrino telescope from

  15. Lightning-driven inner radiation belt energy deposition into the atmosphere: implications for ionisation-levels and neutral chemistry

    Directory of Open Access Journals (Sweden)

    C. J. Rodger

    2007-08-01

    Full Text Available Lightning-generated whistlers lead to coupling between the troposphere, the Van Allen radiation belts and the lower-ionosphere through Whistler-induced electron precipitation (WEP. Lightning produced whistlers interact with cyclotron resonant radiation belt electrons, leading to pitch-angle scattering into the bounce loss cone and precipitation into the atmosphere. Here we consider the relative significance of WEP to the lower ionosphere and atmosphere by contrasting WEP produced ionisation rate changes with those from Galactic Cosmic Radiation (GCR and solar photoionisation. During the day, WEP is never a significant source of ionisation in the lower ionosphere for any location or altitude. At nighttime, GCR is more significant than WEP at altitudes <68 km for all locations, above which WEP starts to dominate in North America and Central Europe. Between 75 and 80 km altitude WEP becomes more significant than GCR for the majority of spatial locations at which WEP deposits energy. The size of the regions in which WEP is the most important nighttime ionisation source peaks at ~80 km, depending on the relative contributions of WEP and nighttime solar Lyman-α. We also used the Sodankylä Ion Chemistry (SIC model to consider the atmospheric consequences of WEP, focusing on a case-study period. Previous studies have also shown that energetic particle precipitation can lead to large-scale changes in the chemical makeup of the neutral atmosphere by enhancing minor chemical species that play a key role in the ozone balance of the middle atmosphere. However, SIC modelling indicates that the neutral atmospheric changes driven by WEP are insignificant due to the short timescale of the WEP bursts. Overall we find that WEP is a significant energy input into some parts of the lower ionosphere, depending on the latitude/longitude and altitude, but does not play a significant role in the neutral chemistry of the mesosphere.

  16. THE INFLUENCE OF THE EXTREME ULTRAVIOLET SPECTRAL ENERGY DISTRIBUTION ON THE STRUCTURE AND COMPOSITION OF THE UPPER ATMOSPHERE OF EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Guo, J. H. [Yunnan Observatories, Chinese Academy of Sciences, P.O. Box 110, Kunming 650011 (China); Ben-Jaffel, Lotfi, E-mail: guojh@ynao.ac.cn, E-mail: bjaffel@iap.fr [Sorbonne Universités, UPMC Univ. Paris 6 et CNRS, UMR 7095, Institut Astrophysique de Paris, F-75014 Paris (France)

    2016-02-20

    By varying the profiles of stellar extreme ultraviolet (EUV) spectral energy distributions (SEDs), we tested the influences of stellar EUV SEDs on the physical and chemical properties of an escaping atmosphere. We apply our model to study four exoplanets: HD 189733b, HD 209458b, GJ 436b, and Kepler-11b. We find that the total mass loss rates of an exoplanet, which are determined mainly by the integrated fluxes, are moderately affected by the profiles of the EUV SED, but the composition and species distributions in the atmosphere can be dramatically modified by the different profiles of the EUV SED. For exoplanets with a high hydrodynamic escape parameter (λ), the amount of atomic hydrogen produced by photoionization at different altitudes can vary by one to two orders of magnitude with the variation of stellar EUV SEDs. The effect of photoionization of H is prominent when the EUV SED is dominated by the low-energy spectral region (400–900 Å), which pushes the transition of H/H{sup +} to low altitudes. In contrast, the transition of H/H{sup +} moves to higher altitudes when most photons are concentrated in the high-energy spectral region (50–400 Å). For exoplanets with a low λ, the lower temperatures of the atmosphere make many chemical reactions so important that photoionization alone can no longer determine the composition of the escaping atmosphere. For HD 189733b, it is possible to explain the time variability of Lyα between 2010 and 2011 by a change in the EUV SED of the host K-type star, yet invoking only thermal H i in the atmosphere.

  17. Cheap Artificial AB-Mountains, Extraction of Water and Energy from Atmosphere and Change of Regional Climate

    CERN Document Server

    Bolonkin, Alexander

    2008-01-01

    Author suggests and researches a new revolutionary method for changing the climates of entire countries or portions thereof, obtaining huge amounts of cheap water and energy from the atmosphere. In this paper is presented the idea of cheap artificial inflatable mountains, which may cardinally change the climate of a large region or country. Additional benefits: The potential of tapping large amounts of fresh water and energy. The mountains are inflatable semi-cylindrical constructions from thin film (gas bags) having heights of up to 3 - 5 km. They are located perpendicular to the main wind direction. Encountering these artificial mountains, humid air (wind) rises to crest altitude, is cooled and produces rain (or rain clouds). Many natural mountains are sources of rivers, and other forms of water and power production - and artificial mountains may provide these services for entire nations in the future. The film of these gasbags is supported at altitude by small additional atmospheric overpressure and may be...

  18. Atmospheric radiative transfer parametrization for solar energy yield calculations on buildings

    CERN Document Server

    Wagner, Jochen E

    2015-01-01

    In this paper the practical approach to evaluate the incoming solar radiation on buildings based on atmospheric composition and cloud cover is presented. The effects of absorption and scattering due to atmospheric composition is taken into account to calculate, using radiative transfer models, the net incoming solar radiation at surface level. A specific validation of the Alpine Region in Europe is presented with a special focus on the region of South Tyrol.

  19. Measurements of the atmospheric neutrino flux by Super-Kamiokande: Energy spectra, geomagnetic effects, and solar modulation

    Science.gov (United States)

    Richard, E.; Okumura, K.; Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakajima, T.; Nakano, Y.; Nakayama, S.; Orii, A.; Sekiya, H.; Shiozawa, M.; Takeda, A.; Tanaka, H.; Tomura, T.; Wendell, R. A.; Akutsu, R.; Irvine, T.; Kajita, T.; Kaneyuki, K.; Nishimura, Y.; Labarga, L.; Fernandez, P.; Gustafson, J.; Kachulis, C.; Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Berkman, S.; Nantais, C. M.; Tanaka, H. A.; Tobayama, S.; Goldhaber, M.; Kropp, W. R.; Mine, S.; Weatherly, P.; Smy, M. B.; Sobel, H. W.; Takhistov, V.; Ganezer, K. S.; Hartfiel, B. L.; Hill, J.; Hong, N.; Kim, J. Y.; Lim, I. T.; Park, R. G.; Himmel, A.; Li, Z.; O'Sullivan, E.; Scholberg, K.; Walter, C. W.; Wongjirad, T.; Ishizuka, T.; Tasaka, S.; Jang, J. S.; Learned, J. G.; Matsuno, S.; Smith, S. N.; Friend, M.; Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.; Suzuki, A. T.; Takeuchi, Y.; Yano, T.; Cao, S. V.; Hiraki, T.; Hirota, S.; Huang, K.; Kikawa, T.; Minamino, A.; Nakaya, T.; Suzuki, K.; Fukuda, Y.; Choi, K.; Itow, Y.; Suzuki, T.; Mijakowski, P.; Frankiewicz, K.; Hignight, J.; Imber, J.; Jung, C. K.; Li, X.; Palomino, J. L.; Wilking, M. J.; Yanagisawa, C.; Fukuda, D.; Ishino, H.; Kayano, T.; Kibayashi, A.; Koshio, Y.; Mori, T.; Sakuda, M.; Xu, C.; Kuno, Y.; Tacik, R.; Kim, S. B.; Okazawa, H.; Choi, Y.; Nishijima, K.; Koshiba, M.; Totsuka, Y.; Suda, Y.; Yokoyama, M.; Bronner, C.; Hartz, M.; Martens, K.; Marti, Ll.; Suzuki, Y.; Vagins, M. R.; Martin, J. F.; Konaka, A.; Chen, S.; Zhang, Y.; Wilkes, R. J.; Super-Kamiokande Collaboration

    2016-09-01

    A comprehensive study of the atmospheric neutrino flux in the energy region from sub-GeV up to several TeV using the Super-Kamiokande (SK) water Cherenkov detector is presented in this paper. The energy and azimuthal spectra, and variation over time, of the atmospheric νe+ν¯ e and νμ+ν¯μ fluxes are measured. The energy spectra are obtained using an iterative unfolding method by combining various event topologies with differing energy responses. The azimuthal spectra depending on energy and zenith angle, and their modulation by geomagnetic effects, are also studied. A predicted east-west asymmetry is observed in both the νe and νμ samples at 8.0 σ and 6.0 σ significance, respectively, and an indication that the asymmetry dipole angle changes depending on the zenith angle was seen at the 2.2 σ level. The measured energy and azimuthal spectra are consistent with the current flux models within the estimated systematic uncertainties. A study of the long-term correlation between the atmospheric neutrino flux and the solar magnetic activity cycle is performed, and a weak preference for a correlation was seen at the 1.1 σ level, using SK-I-SK-IV data spanning a 20-year period. For several particularly strong solar activity periods, corresponding to Forbush decrease events, no theoretical prediction is available but a deviation below the typical neutrino event rate is seen at the 2.4 σ level. The seasonal modulation of the neutrino flux is also examined, but the change in flux at the SK site is predicted to be negligible, and, as expected, no evidence for a seasonal correlation is seen.

  20. Relative Influence of Initial Surface and Atmospheric Conditions on Seasonal Water and Energy Balances

    Science.gov (United States)

    Oglesby, Robert J.; Marshall, Susan; Roads, John O.; Robertson, Franklin R.; Goodman, H. Michael (Technical Monitor)

    2001-01-01

    We constructed and analyzed wet and dry soil moisture composites for the mid-latitude GCIP region of the central US using long climate model simulations made with the NCAR CCM3 and reanalysis products from NCEP. Using the diagnostic composites as a guide, we have completed a series of predictability experiments in which we imposed soil water initial conditions in CCM3 for the GCIP region for June 1 from anomalously wet and dry years, with atmospheric initial conditions taken from June 1 of a year with 'near-normal' soil water, and initial soil water from the near-normal year and atmospheric initial conditions from the wet and dry years. Preliminary results indicate that the initial state of the atmosphere is more important than the initial state of soil water determining the subsequent late spring and summer evolution of sod water over the GCIP region. Surprisingly, neither the composites or the predictability experiments yielded a strong influence of soil moisture on the atmosphere. To explore this further, we have made runs with extreme dry soil moisture initial anomalies imposed over the GCIP region (the soil close to being completely dry). These runs did yield a very strong effect on the atmosphere that persisted for at least three months. We conclude that the magnitude of the initial soil moisture anomaly is crucial, at least in CCM3, and are currently investigating whether a threshold exists, below which little impact is seen. In a complementary study, we compared the impact of the initial condition of snow cover versus the initial atmospheric state over the western US (corresponding to the westward extension of the GAPP program follow-on to GCIP). In this case, the initial prescription of snow cover is far more important than the initial atmospheric state in determining the subsequent evolution of snow cover. We are currently working to understand the very different soil water and snow cover results.

  1. Energy distribution of cosmic rays in the Earth’s atmosphere and avionic area using Monte Carlo codes

    Indian Academy of Sciences (India)

    MOHAMED M OULD; DIB A S A; BELBACHIR A H

    2016-07-01

    Cosmic rays cause significant damage to the electronic equipments of the aircrafts. In this paper, we have investigated the accumulation of the deposited energy of cosmic rays on the Earth’s atmosphere, especially in the aircraft area. In fact, if a high-energy neutron or proton interacts with a nanodevice having only a few atoms, this neutron or proton particle can change the nature of this device and destroy it. Our simulation based on Monte Carlo using Geant4 code shows that the deposited energy of neutron particles ranging between 200MeV and 5 GeV are strongly concentrated in the region between 10 and 15 km from the sea level which is exactly the avionic area. However, the Bragg peak energy of proton particle is slightly localized above the avionic area.

  2. Terrestrial vegetation redistribution and carbon balance under climate change

    Directory of Open Access Journals (Sweden)

    Erbrecht Tim

    2006-07-01

    Full Text Available Abstract Background Dynamic Global Vegetation Models (DGVMs compute the terrestrial carbon balance as well as the transient spatial distribution of vegetation. We study two scenarios of moderate and strong climate change (2.9 K and 5.3 K temperature increase over present to investigate the spatial redistribution of major vegetation types and their carbon balance in the year 2100. Results The world's land vegetation will be more deciduous than at present, and contain about 125 billion tons of additional carbon. While a recession of the boreal forest is simulated in some areas, along with a general expansion to the north, we do not observe a reported collapse of the central Amazonian rain forest. Rather, a decrease of biomass and a change of vegetation type occurs in its northeastern part. The ability of the terrestrial biosphere to sequester carbon from the atmosphere declines strongly in the second half of the 21st century. Conclusion Climate change will cause widespread shifts in the distribution of major vegetation functional types on all continents by the year 2100.

  3. Immigration, integration and support for redistribution in Europe

    NARCIS (Netherlands)

    Burgoon, B.

    2011-01-01

    Immigration can be expected to have offsetting implications for public support for redistribution. On the one hand, immigration poses individual or collective economic risks that might make citizens more likely to support government redistribution, but on the other it can generate fiscal pressure or

  4. Pure Redistribution and the Provision of Public Goods

    DEFF Research Database (Denmark)

    Sausgruber, Rupert; Tyran, Jean-Robert

    We study pure redistribution as a device to increase cooperation and efficiency in the provision of public goods. Experimental subjects play a two-stage game. The first stage is the standard linear public goods game. In the second stage, subjects can redistribute payoffs among other subjects...... cooperation in the provision of public goods...

  5. Pure redistribution and the provision of public goods

    DEFF Research Database (Denmark)

    Sausgruber, Rupert; Tyran, Jean-Robert

    2007-01-01

    We show that a simple redistribution scheme can increase the provision of public goods and that the scheme is popular. This suggests that imposed redistribution as in the mechanism by Falkinger [Falkinger, J., 1996. Efficient private provision of public goods when deviations from average...

  6. Migration by soaring or flapping: numerical atmospheric simulations reveal that turbulence kinetic energy dictates bee-eater flight mode.

    Science.gov (United States)

    Sapir, Nir; Horvitz, Nir; Wikelski, Martin; Avissar, Roni; Mahrer, Yitzhak; Nathan, Ran

    2011-11-22

    Aerial migrants commonly face atmospheric dynamics that may affect their movement and behaviour. Specifically, bird flight mode has been suggested to depend on convective updraught availability and tailwind assistance. However, this has not been tested thus far since both bird tracks and meteorological conditions are difficult to measure in detail throughout extended migratory flyways. Here, we applied, to our knowledge, the first comprehensive numerical atmospheric simulations by mean of the Regional Atmospheric Modeling System (RAMS) to study how meteorological processes affect the flight behaviour of migrating birds. We followed European bee-eaters (Merops apiaster) over southern Israel using radio telemetry and contrasted bird flight mode (flapping, soaring-gliding or mixed flight) against explanatory meteorological variables estimated by RAMS simulations at a spatial grid resolution of 250 × 250 m(2). We found that temperature and especially turbulence kinetic energy (TKE) determine bee-eater flight mode, whereas, unexpectedly, no effect of tailwind assistance was found. TKE during soaring-gliding was significantly higher and distinct from TKE during flapping. We propose that applying detailed atmospheric simulations over extended migratory flyways can elucidate the highly dynamic behaviour of air-borne organisms, help predict the abundance and distribution of migrating birds, and aid in mitigating hazardous implications of bird migration.

  7. Toward an Improved Understanding of the Tropical Energy Budget Using TRMM-based Atmospheric Radiative Heating Products

    Science.gov (United States)

    L'Ecuyer, T.; McGarragh, G.; Ellis, T.; Stephens, G.; Olson, W.; Grecu, M.; Shie, C.; Jiang, X.; Waliser, D.; Li, J.; Tian, B.

    2008-05-01

    It is widely recognized that clouds and precipitation exert a profound influence on the propagation of radiation through the Earth's atmosphere. In fact, feedbacks between clouds, radiation, and precipitation represent one of the most important unresolved factors inhibiting our ability to predict the consequences of global climate change. Since its launch in late 1997, the Tropical Rainfall Measuring Mission (TRMM) has collected more than a decade of rainfall measurements that now form the gold standard of satellite-based precipitation estimates. Although not as widely advertised, the instruments aboard TRMM are also well-suited to the problem of characterizing the distribution of atmospheric heating in the tropics and a series of algorithms have recently been developed for estimating profiles of radiative and latent heating from these measurements. This presentation will describe a new multi-sensor tropical radiative heating product derived primarily from TRMM observations. Extensive evaluation of the products using a combination of ground and satellite-based observations is used to place the dataset in the context of existing techniques for quantifying atmospheric radiative heating. Highlights of several recent applications of the dataset will be presented that illustrate its utility for observation-based analysis of energy and water cycle variability on seasonal to inter-annual timescales and evaluating the representation of these processes in numerical models. Emphasis will be placed on the problem of understanding the impacts of clouds and precipitation on atmospheric heating on large spatial scales, one of the primary benefits of satellite observations like those provided by TRMM.

  8. Pilot study of ultra-high energy Cosmic rays through their Space – Atmospheric interactions – COSAT

    Directory of Open Access Journals (Sweden)

    Isar Paula Gina

    2015-01-01

    Full Text Available One hundred years after the discovery of cosmic rays, the study of charged ultra-high energy cosmic rays remains a vital activity in fundamental physics. While primary cosmic rays could not be measured directly until it was possible to get the detectors high in the atmosphere using balloons or spacecraft, nowadays very energetic cosmic rays are detected indirectly by ground-based experiments measuring their Extensive Air Showers (EAS induced Cherenkov and fluorescent light, or radio waves. Moreover, all cosmic ray measurements (performed either from space or ground rely on accurate understandings of atmospheric phenomena. The concept of the COSAT project is the inter-link between Astroparticle Physics, Remote Sensing and Atmospheric Environment, willing to investigate the energetic cosmic rays physical processes using the atmosphere as a detector in order to identify potential scientific niches in the field of space sciences. A short introduction on the current status and perspectives of the national partnership COSAT project will be given.

  9. Migration by soaring or flapping: numerical atmospheric simulations reveal that turbulence kinetic energy dictates bee-eater flight mode

    Science.gov (United States)

    Sapir, Nir; Horvitz, Nir; Wikelski, Martin; Avissar, Roni; Mahrer, Yitzhak; Nathan, Ran

    2011-01-01

    Aerial migrants commonly face atmospheric dynamics that may affect their movement and behaviour. Specifically, bird flight mode has been suggested to depend on convective updraught availability and tailwind assistance. However, this has not been tested thus far since both bird tracks and meteorological conditions are difficult to measure in detail throughout extended migratory flyways. Here, we applied, to our knowledge, the first comprehensive numerical atmospheric simulations by mean of the Regional Atmospheric Modeling System (RAMS) to study how meteorological processes affect the flight behaviour of migrating birds. We followed European bee-eaters (Merops apiaster) over southern Israel using radio telemetry and contrasted bird flight mode (flapping, soaring–gliding or mixed flight) against explanatory meteorological variables estimated by RAMS simulations at a spatial grid resolution of 250 × 250 m2. We found that temperature and especially turbulence kinetic energy (TKE) determine bee-eater flight mode, whereas, unexpectedly, no effect of tailwind assistance was found. TKE during soaring–gliding was significantly higher and distinct from TKE during flapping. We propose that applying detailed atmospheric simulations over extended migratory flyways can elucidate the highly dynamic behaviour of air-borne organisms, help predict the abundance and distribution of migrating birds, and aid in mitigating hazardous implications of bird migration. PMID:21471116

  10. High Energy Gamma-Ray Observations of the Crab Nebula and Pulsar with the Solar Tower Atmospheric Cherenkov Effect Experiment

    CERN Document Server

    Oser, S; Boone, L M; Chantell, M C; Conner, Z; Covault, C E; Dragovan, M; Fortin, P; Gregorich, D T; Hanna, D S; Mukherjee, R; Ong, R A; Ragan, K; Scalzo, R A; Schuette, D R; Theoret, C G; Tumer, T O; Williams, D A; Zweerink, J A

    2015-01-01

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is a new ground-based atmospheric Cherenkov telescope for gamma-ray astronomy. STACEE uses the large mirror area of a solar heliostat facility to achieve a low energy threshold. A prototype experiment which uses 32 heliostat mirrors with a total mirror area of ~ 1200\\unit{m^2} has been constructed. This prototype, called STACEE-32, was used to search for high energy gamma-ray emission from the Crab Nebula and Pulsar. Observations taken between November 1998 and February 1999 yield a strong statistical excess of gamma-like events from the Crab, with a significance of $+6.75\\sigma$ in 43 hours of on-source observing time. No evidence for pulsed emission from the Crab Pulsar was found, and the upper limit on the pulsed fraction of the observed excess was E_{th}) = (2.2 \\pm 0.6 \\pm 0.2) \\times 10^{-10}\\unit{photons cm^{-2} s^{-1}}. The observed flux is in agreement with a continuation to lower energies of the power law spectrum seen at TeV energies...

  11. Assessment of Density Functional Theory in Predicting Structures and Free Energies of Reaction of Atmospheric Prenucleation Clusters.

    Science.gov (United States)

    Elm, Jonas; Bilde, Merete; Mikkelsen, Kurt V

    2012-06-12

    This work assesses different computational strategies for predicting structures and Gibb's free energies of reaction of atmospheric prenucleation clusters. The performance of 22 Density Functional Theory functionals in predicting equilibrium structures of molecules and water prenucleation clusters of atmospheric relevance is evaluated against experimental data using a test set of eight molecules and prenucleation clusters: SO2, H2SO4, CO2·H2O, CS2·H2O, OCS·H2O, SO2·H2O, SO3·H2O, and H2SO4·H2O. Furthermore, the functionals are tested and compared for their ability to predict the free energy of reaction for the formation of five benchmark atmospheric prenucleation clusters: H2SO4·H2O, H2SO4·(H2O)2, H2SO4·NH3, HSO4(-)·H2O, and HSO4(-)·(H2O)2. The performance is evaluated against experimental data, coupled cluster, and complete basis set extrapolation procedure methods. Our investigation shows that the utilization of the M06-2X functional with the 6-311++G(3df,3pd) basis set represents an improved approach compared to the conventionally used PW91 functional, yielding mean absolute errors of 0.48 kcal/mol and maximum errors of 0.67 kcal/mol compared to experimental results.

  12. Spectral energy distribution of M-subdwarfs: A study of their atmospheric properties

    CERN Document Server

    Rajpurohit, A S; Allard, F; Homeier, D; Bayo, A; Mousis, O; Rajpurohit, S; Fernandez-Trincado, J G

    2016-01-01

    Context. M-type subdwarfs are metal-poor low-mass stars and probe for the old populations in our Galaxy. Accurate knowledge of their atmospheric parameters and especially the composition is essential for understanding the chemical history of our Galaxy. Aims. The purpose of this work is to perform a detailed study of M-subdwarf spectra covering the full wavelength range from the optical to the near-infrared. It allows to do a more detailed analysis of the atmospheric composition in order to determine the stellar parameters, and to constrain the atmospheric models. The study will allow us to further understand physical and chemical processes such as increasing condensation of gas into dust, to point out the missing continuum opacities and see how the main band features are reproduced by the models. The spectral resolution and the large wavelength coverage used is a unique combination to constrain the process that occur in cool atmosphere. Methods. We obtained medium-resolution (R = 5000-7000) spectra over the ...

  13. Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-Thermal Plasma Treatment in Atmospheric Air%Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-Thermal Plasma Treatment in Atmospheric Air

    Institute of Scientific and Technical Information of China (English)

    杨国清; 张冠军; 张文元

    2011-01-01

    Improvement of polytetrafluoroethylene surface energy by non-thermal plasma treatment is presented, using a nanosecond-positive-edge repetitive pulsed dielectric barrier discharge generator in atmospheric air. The electrical parameters including discharging power, peak and density of micro-discharge current were calculated, and the electron energy was estimated. Surface treatment experiments of polytetrafluoroethylene films were conducted for both different applied voltages and different treating durations. Results show that the surface energy of polytetrafluoroethylene film could be improved to 40 mJ/m2 or more by plasma treatment. Surface roughness measurement and surface X-ray photoelectron spectroscopy analysis indicate that there are chemical etching and implantation of polar oxygen groups in the sample surface treating process, resulting in the improvement of the sample surface energy. Compared with an AC source of 50 Hz, the dielectric barrier discharges generated by a repetitive pulsed source could provide higher peak power, lower mean power, larger micro-discharge current density and higher electron energy. Therefore, with the same applied peak voltage and treating duration, the improvement of polytetrafluoroethylene surface energy using repetitive pulsed plasma is more effective, and the plasma treatment process based on repetitive pulsed dielectric barrier discharges in air is thus feasible and applicable.

  14. Analysis of CHO cells metabolic redistribution in a glutamate-based defined medium in continuous culture.

    Science.gov (United States)

    Altamirano, C; Illanes, A; Casablancas, A; Gámez, X; Cairó, J J; Gòdia, C

    2001-01-01

    The effect of glutamine replacement by glutamate and the balance between glutamate and glucose metabolism on the redistribution of t-PA-producing recombinant CHO cells metabolism is studied in a series of glucose shift down and shift up experiments in continuous culture. These experiments reveal the existence of multiple steady states, and experimental data are used to perform metabolic flux analysis to gain a better insight into cellular metabolism and its redistribution. Regulation of glucose feed rate promotes a higher efficiency of glucose and nitrogen source utilization, with lower production of metabolic byproducts, but this reduces t-PA specific production rate. This reduction under glucose limitation can be attributed to the fact that the cells are forced to efficiently utilize the carbon and energy source for growth, impairing the production of dispensable metabolites. It is, therefore, the combination of growth rate and carbon and energy source availability that determines the level of t-PA production in continuous culture.

  15. Inflation Game Redistributions and Economic Crisis Path

    Directory of Open Access Journals (Sweden)

    Dorel AILENEI

    2012-03-01

    Full Text Available Starting from the effects of the socially redistribution of wealth generated by inflation, the authors aim to identify the system of interests that supports this process, namely the connections with the economic crisis. In this aim, this work launches the hypothesis that the contagious disease of the market imbalances represents the basis for the manifestation of the inflationary process. By analyzing the assumptions and the causes of the market imbalances manifestation, the authors reveal a system of interest alliances that added to the complicit attitude of the consumers supports the manifestation of the inflationary process. The confrontation between this hypothesis and the inflationary trends in developed countries over the last four decades, respectively the recent lesson of the global economic crisis, leads to the confirmation of a common root of the inflationary phenomenon and the economic crises. The authors think that in order to avoid the emergence of new global economic crises and the negative effects of inflation, a radical behavioural change is required from both consumers and other economic agents.

  16. Atmospheric Neutrinos

    OpenAIRE

    Takaaki Kajita

    1994-01-01

    Atmospheric neutrinos are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith angle and energy-dependent deficit of muon-neutrino events. It was found that neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. This paper discusses...

  17. Influence of hadronic interaction models and the cosmic ray spectrum on the high-energy atmospheric muon and neutrino flux

    Directory of Open Access Journals (Sweden)

    Desiati Paolo

    2013-06-01

    Full Text Available The recent observations of muon charge ratio up to about 10 TeV and of atmospheric neutrinos up to energies of about 400 TeV has triggered a renewed interest into the high-energy interaction models and cosmic ray primary composition. A reviewed calculation of lepton spectra produced in cosmic ray induced extensive air showers is carried out with a primary cosmic ray spectrum that fits the latest direct measurements below the knee. In order to achieve this, we used a full Monte Carlo method to derive the inclusive differential spectra (yields of muons, muon neutrinos and electron neutrinos at the surface for energies between 80 GeV and hundreds of PeV. Using these results the differential flux and the flavor ratios of leptons were calculated. The air shower simulator CORSIKA 6.990 was used for showering and propagation of the secondary particles through the atmosphere, employing the established high energy hadronic interaction models SIBYLL 2.1, QGSJet-01 and QGSJet-II-03. We show that the performance of the interaction models allows makes it possible to predict the spectra within experimental uncertainties, while SIBYLL generally yields a higher flux at the surface than the QGSJet models. The calculation of the flavor and charge ratios has lead to inconsistent results, mainly influenced by the different representations of the K/π ratio within the models. The influence of the knee of cosmic rays is reflected in the secondary spectra at energies between 100 and 200 TeV. Furthermore, we could quantify systematic uncertainties of atmospheric muon- and neutrino fluxes, associated to the models of the primary cosmic ray spectrum and the interaction models. For most recent parametrizations of the cosmic ray primary spectrum, atmospheric muons can be determined with an uncertainty smaller than +15/-13% of the average flux. Uncertainties of the muon and electron neutrino fluxes can be calculated within an average error of +32/-22% and +25

  18. Design, Analysis and Implementation of an Experimental System to Harvest Energy From Atmospheric Temperature Variations Using Ethyl Chloride Filled Bellows

    Science.gov (United States)

    Ali, Gibran

    The increase in global warming and the dwindling supplies of fossil fuels have shifted the focus from traditional to alternate sources of energy. This has resulted in a concerted effort towards finding new energy sources as well as better understanding traditional renewable energy sources such as wind and solar power. In addition to the shift in focus towards alternate energy, the last two decades have offered a dramatic rise in the use of digital technologies such as wireless sensor networks that require small but isolated power supplies. Energy harvesting, a method to gather energy from ambient sources including sunlight, vibrations, heat, etc., has provided some success in powering these systems. One of the unexplored areas of energy harvesting is the use of atmospheric temperature variations to obtain usable energy. This thesis investigates an innovative mechanism to extract energy from atmospheric variations using ethyl chloride filled mechanical bellows. The energy harvesting process was divided into two parts. The first part consisted of extracting energy from the temperature variations and converting it into the potential energy stored in a linear coil spring. This was achieved by designing and fabricating an apparatus that consisted of an ethyl chloride filled bellows working against a mechanical spring in a closed and controlled environment. The bellows expanded/contracted depending upon the ambient temperature and the energy harvested was calculated as a function of the bellows' length. The experiments showed that 6 J of potential energy may be harvested for a 23°C change in temperature. The numerical results closely correlated to the experimental data with an error magnitude of 1%. In regions with high diurnal temperature variation, such an apparatus may yield approximately 250 microwatts depending on the diurnal temperature range. The second part of the energy harvesting process consisted of transforming linear expansion of the bellows into electric

  19. Who Supports Redistribution? Subjective Income Inequality in Japan and China

    Institute of Scientific and Technical Information of China (English)

    STEPHEN; TAY

    2015-01-01

    Governments reduce income inequality with redistribution policies. These policies are often contentious because people who live in the same country have different preferences for redistribution. Some prefer the government to do more while others prefer the government to do less. Hence what explains the difference in preferences? Using the methodologically suitable cases of Japan and China, this paper contributes to the redistributive preference literature by proposing an alternative theory of how a person’s subjective evaluation of and experiences with income inequality—subjective income inequality—affect his/her redistributive preferences. Specifically, a person who feels that his/her country’s level of income inequality is too high is more likely to support government redistribution. But contrary to extant studies, this paper finds that a spatial locality’s level of objective income inequality does not systematically affect its citizens’ preference for redistribution. This finding has implications for redistribution policies because government policies in Japan and China—as with other countries—narrowly frame income inequality in the objective dimensions by pegging it to "objective" income inequality indices(e.g., Gini ratio), thereby ignoring the more important subjective dimensions of income inequality.

  20. Science on Spacelab. [astronomy, high energy astrophysics, life sciences, and solar, atmospheric and space physics

    Science.gov (United States)

    Schmerling, E. R.

    1977-01-01

    Spacelab was developed by the European Space Agency for the conduction of scientific and technological experiments in space. Spacelab can be taken into earth orbit by the Space Shuttle and returned to earth after a period of 1-3 weeks. The Spacelab modular system of pallets, pressurized modules, and racks can contain large payloads with high power and telemetry requirements. A working group has defined the 'Atmospheres, Magnetospheres, and Plasmas-in-Space' project. The project objectives include the absolute measurement of solar flux in a number of carefully selected bands at the same time at which atmospheric measurements are made. NASA is committed to the concept that the scientist is to play a key role in its scientific programs.

  1. High Energy Laser Propagation in Various Atmospheric Conditions Utilizing a New Accelerated Scaling Code

    Science.gov (United States)

    2014-06-01

    littoral combat ship MIRACL mid-infrared advanced chemical laser MLD maritime laser demonstrator MODTRAN moderate resolution atmospheric...Advanced Chemical Laser ( MIRACL ), the Laser Weapon System (LAWS), and the Maritime Laser Demonstrator (MLD). The MIRACL system, first made...Equation (72) as 3reqD meltP Q    sec. (81) Of course , the actual dwell times depend upon the specifics of the target. The following studies

  2. Experimental Evaluation of the Atmospheric Energy Input to Sea Surface Waves

    Science.gov (United States)

    2011-09-30

    with sonic anemometers , cups , vanes, measuring airflow velocity, sensitive barometers. Instruments for GPS and inertial navigation were positioned...constant, Ω is the Instruments Quantity measured Height/Location 7 Sonic Anemometers Wind velocity, Air temperature On the mast 5 RMY Prop... Anemometers Wind speed & direction At 5 levels on the mast 8 Pressure Instruments Atmospheric pressure On the mast 2 Wave Wires Sea surface elevation At

  3. Influence of the atmosphere on the space detection of ultra-high energy cosmic rays; Influence de l'atmosphere sur la detection spatiale des rayons cosmiques d'ultra-haute energie

    Energy Technology Data Exchange (ETDEWEB)

    Moreggia, S

    2007-06-15

    EUSO (Extreme Universe Space Observatory) is a project of ultra-high energy (> 10{sup 20} eV) cosmic rays detection from space. Its concept relies on the observation of fluorescence and Cerenkov photons emitted by extensive air showers from a telescope located on the International Space Station. A simulation software has been developed to study the characteristics of this innovative concept of detection. It deals with the different steps of the detection chain: extensive air shower development, emission of fluorescence and Cerenkov light, and radiative transfer to the telescope. A Monte-Carlo code has been implemented to simulate the propagation of photons through the atmosphere, dealing with multiple scattering in clear sky conditions as well as in presence of aerosols and clouds. With this simulation program, the impact of atmospheric conditions on the performance of a space-located detector has been studied. The precise treatment of photons propagation through the atmosphere has permitted to quantify the scattered light contribution to the detected signal. (author)

  4. Measurement of bonding energy in an anhydrous nitrogen atmosphere and its application to silicon direct bonding technology

    Science.gov (United States)

    Fournel, F.; Continni, L.; Morales, C.; Da Fonseca, J.; Moriceau, H.; Rieutord, F.; Barthelemy, A.; Radu, I.

    2012-05-01

    Bonding energy represents an important parameter for direct bonding applications as well as for the elaboration of physical mechanisms at bonding interfaces. Measurement of bonding energy using double cantilever beam (DCB) under prescribed displacement is the most used technique thanks to its simplicity. The measurements are typically done in standard atmosphere with relative humidity above 30%. Therefore, the obtained bonding energies are strongly impacted by the water stress corrosion at the bonding interfaces. This paper presents measurements of bonding energies of directly bonded silicon wafers under anhydrous nitrogen conditions in order to prevent the water stress corrosion effect. It is shown that the measurements under anhydrous nitrogen conditions (less than 0.2 ppm of water in nitrogen) lead to high stable debonding lengths under static load and to higher bonding energies compared to the values measured under standard ambient conditions. Moreover, the bonding energies of Si/SiO2 or SiO2/SiO2 bonding interfaces are measured overall the classical post bond annealing temperature range. These new results allow to revisit the reported bonding mechanisms and to highlight physical and chemical phenomena in the absence of stress corrosion effect.

  5. Benzylammonium Thermometer Ions: Internal Energies of Ions Formed by Low Temperature Plasma and Atmospheric Pressure Chemical Ionization.

    Science.gov (United States)

    Stephens, Edward R; Dumlao, Morphy; Xiao, Dan; Zhang, Daming; Donald, William A

    2015-12-01

    The extent of internal energy deposition upon ion formation by low temperature plasma and atmospheric pressure chemical ionization was investigated using novel benzylammonium thermometer ions. C-N heterolytic bond dissociation enthalpies of nine 4-substituted benzylammoniums were calculated using CAM-B3LYP/6-311++G(d,p), which was significantly more accurate than B3LYP/6-311++G(d,p), MP2/6-311++G(d,p), and CBS-QB3 for calculating the enthalpies of 20 heterolytic dissociation reactions that were used to benchmark theory. All 4-substituted benzylammonium thermometer ions fragmented by a single pathway with comparable dissociation entropies, except 4-nitrobenzylammonium. Overall, the extent of energy deposition into ions formed by low temperature plasma was significantly lower than those formed by atmospheric pressure chemical ionization under these conditions. Because benzylamines are volatile, this new suite of thermometer ions should be useful for investigating the extent of internal energy deposition during ion formation for a wide range of ionization methods, including plasma, spray and laser desorption-based techniques. Graphical Abstract ᅟ.

  6. Influence of the Atmospheric Mass on the High Energy Cosmic Ray Muons during a Solar Cycle

    Directory of Open Access Journals (Sweden)

    A. H. Maghrabi

    2015-01-01

    Full Text Available The rate of the detected cosmic ray muons depends on the atmospheric mass, height of pion production level, and temperature. Corrections for the changes in these parameters are importance to know the properties of the primary cosmic rays. In this paper, the effect of atmospheric mass, represented here by the atmospheric pressure, on the cosmic ray was studied using data from the KACST muon detector during the 2002–2012 period. The analysis was conducted by calculating the barometric coefficient (α using regression analysis between the two parameters. The variation of α over different time scales was investigated. The results revealed a seasonal cycle of α with a maximum in September and a minimum in March. Data from Adelaide muon detector were used, and different monthly variation was found. The barometric coefficient displays considerable variability at the interannual scale. Study of the annual variations of α indicated cyclic variation with maximums between 2008 and 2009 and minimums between 2002 and 2003. This variable tendency is found to be anticorrelated with the solar activity, represented by the sunspot number. This finding was compared with the annual trend of α for the Adelaide muon detector for the same period of time, and a similar trend was found.

  7. Perancangan dan Analisis Redistribution Routing Protocol OSPF dan EIGRP

    Directory of Open Access Journals (Sweden)

    DWI ARYANTA

    2016-02-01

    Full Text Available Abstrak OSPF (Open Shortest Path First dan EIGRP (Enhanced Interior Gateway Routing Protocol adalah dua routing protokol yang banyak digunakan dalam jaringan komputer. Perbedaan karakteristik antar routing protokol menimbulkan masalah dalam pengiriman paket data. Teknik redistribution adalah solusi untuk melakukan komunikasi antar routing protokol. Dengan menggunakan software Cisco Packet Tracer 5.3 pada penelitian ini dibuat simulasi OSPF dan EIGRP yang dihubungkan oleh teknik redistribution, kemudian dibandingkan kualitasnya dengan single routing protokol EIGRP dan OSPF. Parameter pengujian dalam penelitian ini adalah nilai time delay dan trace route. Nilai trace route berdasarkan perhitungan langsung cost dan metric dibandingkan dengan hasil simulasi. Hasilnya dapat dilakukan proses redistribution OSPF dan EIGRP. Nilai delay redistribution lebih baik 1% dibanding OSPF dan 2-3% di bawah EIGRP tergantung kepadatan traffic. Dalam perhitungan trace route redistribution dilakukan 2 perhitungan, yaitu cost untuk area OSPF dan metric pada area EIGRP. Pengambilan jalur utama dan alternatif pengiriman paket berdasarkan nilai cost dan metric yang terkecil, hal ini terbukti berdasarkan perhitungan dan simulasi. Kata kunci: OSPF, EIGRP, Redistribution, Delay, Cost, Metric. Abstract OSPF (Open Shortest Path First and EIGRP (Enhanced Interior Gateway Routing Protocol are two routing protocols are widely used in computer networks. Differences between the characteristics of routing protocols pose a problem in the delivery of data packets. Redistribution technique is the solution for communication between routing protocols. By using the software Cisco Packet Tracer 5.3 in this study were made simulating OSPF and EIGRP redistribution linked by technique, then compared its quality with a single EIGRP and OSPF routing protocols. Testing parameters in this study is the value of the time delay and trace route. Value trace route based on direct calculation of cost

  8. Modeling of constituent redistribution in U Pu Zr metallic fuel

    Science.gov (United States)

    Kim, Yeon Soo; Hayes, S. L.; Hofman, G. L.; Yacout, A. M.

    2006-12-01

    A computer model was developed to analyze constituent redistribution in U-Pu-Zr metallic nuclear fuels. Diffusion and thermochemical properties were parametrically determined to fit the postirradiation data from a fuel test performed in the Experimental Breeder Reactor II (EBR-II). The computer model was used to estimate redistribution profiles of fuels proposed for the conceptual designs of small modular fast reactors. The model results showed that the level of redistribution of the fuel constituents of the designs was similar to the measured data from EBR-II.

  9. Analytical Solutions to the Near-Neutral Atmospheric Surface Energy Balance with and without Heat Storage for Urban Climatological Studies.

    Science.gov (United States)

    Tso, C. P.; Chan, B. K.; Hashim, M. A.

    1991-04-01

    Analytical solutions are presented to the near-neutral atmospheric surface energy balance with the new approach of including the participation of heat storage in the building substrate. Analytical solutions are also presented for the first time for the case without heat storage effect. By a linearization process, the governing equations are simplified to a set of time-dependent, linear, first-order equations from which explicit solutions are readily obtainable. The results compare well with those obtained by numerical solutions upon the set without linearization when applied to the tropical city of Kuala Lumpur, Malaysia.

  10. Atmospheric Neutrinos

    Directory of Open Access Journals (Sweden)

    Takaaki Kajita

    2012-01-01

    Full Text Available Atmospheric neutrinos are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith angle and energy-dependent deficit of muon-neutrino events. It was found that neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. This paper discusses atmospheric neutrino experiments and the neutrino oscillation studies with these neutrinos.

  11. Wave energy in white dwarf atmospheres. I - Magnetohydrodynamic energy spectra for homogeneous DB and layered DA stars

    Science.gov (United States)

    Musielak, Zdzislaw E.

    1987-01-01

    The radiative damping of acoustic and MHD waves that propagate through white dwarf photospheric layers is studied, and other damping processes that may be important for the propagation of the MHD waves are calculated. The amount of energy remaining after the damping processes have occurred in different types of waves is estimated. The results show that lower acoustic fluxes should be expected in layered DA and homogeneous DB white dwarfs than had previously been estimated. Acoustic emission manifests itself in an enhancement of the quadrupole term, but this term may become comparable to or even lower than the dipole term for cool white dwarfs. Energy carried by the acoustic waves is significantly dissipated in deep photospheric layers, mainly because of radiative damping. Acoustically heated corona cannot exist around DA and DB white dwarfs in a range T(eff) = 10,000-30,000 K and for log g = 7 and 8. However, relatively hot and massive white dwarfs could be exceptions.

  12. Global Redistributive Obligations in the Face of Severe Poverty

    DEFF Research Database (Denmark)

    Axelsen, David Vestergaard

    This dissertation concerns global poverty. More specifically, it concerns the question of, which redistributive obligations we have towards foreigners and how these obligations are affected by the existence of severe and widespread poverty. Most people (both theorists and ordinary citizens) agree...... as a matter of justice. This moral discrepancy is reflected in our current levels of redistribution, by which we redistribute up to 50 % of our income on the domestic level and less than 1% to poor foreigners through development aid. But can this overwhelming redistributive partiality be justified...... to poor foreigners. Further, the social facts on which they rely are created and upheld in a problematic (and potentially unjust) manner, which makes them a problematic foundation for grounding principles of justice. Second, I argue that anti-cosmopolitans do not succeed in showing that we cannot meet...

  13. Analysis of atmospheric flow over a surface protrusion using the turbulence kinetic energy equation with reference to aeronautical operating systems

    Science.gov (United States)

    Frost, W.; Harper, W. L.

    1975-01-01

    Flow over surface obstructions can produce significantly large wind shears such that adverse flying conditions can occur for aeronautical systems (helicopters, STOL vehicles, etc.). Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer/Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow and highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient. Discussion of the effects of the disturbed wind field in CTOL and STOL aircraft flight path and obstruction clearance standards is given. The results indicate that closer inspection of these presently recommended standards as influenced by wind over irregular terrains is required.

  14. High Temperature Energy Storage for In Situ Planetary Atmospheric Measurement Technologies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of energy storage capable of operational temperatures of 380:C and 486oC with a specific capacity 200 Wh/kg for use as a power source on the Venusian...

  15. ATLAS vs. NextGen model atmospheres: a combined analysis of synthetic spectral energy distributions

    CERN Document Server

    Bertone, E; Chavez, M; Rodríguez-Merino, L H

    2004-01-01

    We carried out a critical appraisal of the two theoretical models, Kurucz' ATLAS9 and PHOENIX/NextGen, for stellar atmosphere synthesis. Our tests relied on the theoretical fit of SEDs for a sample of 334 target stars along the whole spectral-type sequence. The best-fitting physical parameters of stars allowed a calibration of the temperature and bolometric scale. The main conclusions of our analysis are: i) the fitting accuracy of both theoretical libraries drastically degrades at low Teff; ii) comparing with empirical calibrations, both ATLAS and NextGen fits tend to predict slightly warmer Teff, but ATLAS provides in general a sensibly better fit; iii) there is a striking tendency of NextGen to label target stars with an effective temperature and surface gravity in excess with respect to ATLAS. This is a consequence of some ``degeneracy'' in the solution space, partly induced by the different input physics and geometry constraints. A different T(\\tau) vertical structure of stellar atmosphere seems also req...

  16. Wave energy budget analysis in the Earth's radiation belts uncovers a missing energy.

    Science.gov (United States)

    Artemyev, A V; Agapitov, O V; Mourenas, D; Krasnoselskikh, V V; Mozer, F S

    2015-05-15

    Whistler-mode emissions are important electromagnetic waves pervasive in the Earth's magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth's magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave-particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth's radiation belts, controlled by solar activity.

  17. Effects of atmospheric variability on energy utilization and conservation. Final report, 1 November 1976--31 October 1977

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, E.R.; Dreiseitl, E.; Johnson, G.R.; Leong, H.H.; Macdonald, B.C.; Somervell, W.L. Jr.; Starr, A.M.; Timbre, K.O.

    1978-02-01

    A space-heating energy-consumption model for Greeley, Colorado for the winter of 1976-77 was within 98.9 percent of actual natural gas consumption for that city. Modeling of Cheyenne, Wyoming, including the testing of a new statistical scheme to develop the building census required by the energy consumption model, has progressed to the point where reliable natural gas consumption estimates can be made with the model for that community. A detailed study of temperature and surface wind patterns in and near the city of Greeley, Colorado revealed that, at times, an urban heat island effect is present, in spite of the relatively small size of that town. Various feedback mechanisms between the oceans and the atmosphere were examined. Several of these mechanisms appear to be the cause of the interannual variability of the atmosphere's general circulation and of climatic changes on a time scale of several tens of years. A recent cooling trend in the North Pacific north of 40/sup 0/N, and sea-surface temperature fluctuations with an irregular periodicity of 2 to 4 years superimposed upon this trend were studied. To advance regional long-range forecasting skills January temperature anomalies over the eastern United States were correlated with flow patterns over the U.S. and Canada.

  18. Ecosystem-Atmosphere Exchange of Carbon, Water and Energy over a Mixed Deciduous Forest in the Midwest

    Energy Technology Data Exchange (ETDEWEB)

    Danilo Dragoni; Hans Peter Schmid; C.S.B. Grimmond; J.C. Randolph; J.R. White

    2012-12-17

    During the project period we continued to conduct long-term (multi-year) measurements, analysis, and modeling of energy and mass exchange in and over a deciduous forest in the Midwestern United States, to enhance the understanding of soil-vegetation-atmosphere exchange of carbon. At the time when this report was prepared, results from nine years of measurements (1998 - 2006) of above canopy CO2 and energy fluxes at the AmeriFlux site in the Morgan-Monroe State Forest, Indiana, USA (see Table 1), were available on the Fluxnet database, and the hourly CO2 fluxes for 2007 are presented here (see Figure 1). The annual sequestration of atmospheric carbon by the forest is determined to be between 240 and 420 g C m-2 a-1 for the first ten years. These estimates are based on eddy covariance measurements above the forest, with a gap-filling scheme based on soil temperature and photosynthetically active radiation. Data gaps result from missing data or measurements that were rejected in qua)lity control (e.g., during calm nights). Complementary measurements of ecological variables (i.e. inventory method), provided an alternative method to quantify net carbon uptake by the forest, partition carbon allocation in each ecosystem components, and reduce uncertainty on annual net ecosystem productivity (NEP). Biometric datasets are available on the Fluxnext database since 1998 (with the exclusion of 2006). Analysis for year 2007 is under completion.

  19. The influence of the Extreme Ultraviolet spectral energy distribution on the structure and composition of the upper atmosphere of exoplanets

    CERN Document Server

    Guo, J H

    2015-01-01

    By varying the profiles of stellar extreme ultraviolet (EUV) spectral energy distribution (SED), we tested the influences of stellar EUV SEDs on the physical and chemical properties of the escaping atmosphere. We apply our model to study four exoplanets, HD\\,189733b, HD\\,209458b, GJ \\,436b, and Kepler-11b. We found that the total mass loss rates of an exoplanet, which are determined mainly by the integrated fluxes, are moderately affected by the profiles of the EUV SED, but the composition and species distributions in the atmosphere can be dramatically modified by the different profiles of the EUV SED. For exoplanets with a high hydrodynamic escape parameter ($\\lambda$), the amount of atomic hydrogen produced by photoionization at different altitudes can vary by one to two orders of magnitude with the variation of stellar EUV SEDs. The effect of photoionization of H is prominent when the EUV SED is dominated by the low-energy spectral region (400-900${\\AA}$), which pushes the transition of H/H$^{+}$ to low al...

  20. Three-dimensional parameterizations of the synoptic scale kinetic energy and momentum flux in the Earth's atmosphere

    Directory of Open Access Journals (Sweden)

    D. Coumou

    2011-11-01

    Full Text Available We present a new set of statistical-dynamical equations (SDEs which can accurately reproduce the three-dimensional atmospheric fields of synoptic scale kinetic energy and momentum flux. The set of equations is closed by finding proper parameterizations for the vertical macro-turbulent diffusion coefficient and ageostrophic terms. The equations have been implemented in a new SD atmosphere model, named Aeolus. We show that the synoptic scale kinetic energy and momentum fluxes generated by the model are in good agreement with empirical data, which were derived from bandpass-filtered ERA-40 data. In addition to present-day climate, the model is tested for substantially colder (last glacial maximum and warmer (2×CO2 climates, and shown to be in agreement with general circulation model (GCM results. With the derived equations, one can efficiently study the position and strength of storm tracks under different climate scenarios with calculation time a fraction of those of GCMs. This work prepares ground for the development of a new generation of fast Earth System Models of Intermediate Complexity which are able to perform multi-millennia simulations in a reasonable time frame while appropriately accounting for the climatic effect of storm tracks.

  1. Direct observation of charge re-distribution in a MgB2 superconductor

    Science.gov (United States)

    Wu, Sheng Yun; Shih, Po-Hsun; Ji, Jhong-Yi; Chan, Ting-Shan; Yang, Chun Chuen

    2016-04-01

    To study the origin of negative thermal expansion effects near the superconducting transition temperature TC in MgB2, low-temperature high-energy synchrotron radiation x-ray diffraction was used to probe the charge redistribution near the boron atoms. Our results reveal that the in-plane hole-distribution of B- hops through the direct orbital overlap of Mg2+ along the c-axis at 50 K and is re-distributed out-of-plane. This study shows that the out-of-plane π-hole distribution plays a dominant role in the possible origin of superconductivity and negative thermal effects in MgB2.

  2. Measurement of the Atmospheric Muon Charge Ratio at TeV Energies with MINOS

    CERN Document Server

    Adamson, P; Arms, K E; Armstrong, R; Auty, D J; Avvakumov, S; Ayres, D S; Baller, B; Barish, B; Barnes, P D; Barr, G; Barrett, W L; Beall, E; Becker, B R; Belias, A; Bergfeld, T; Bernstein, R H; Bhattacharya, D; Bishai, M; Blake, A; Bock, B; Bock, G J; Böhm, J; Böhnlein, D J; Bogert, D; Border, P M; Bower, C; Buckley-Geer, E; Bungau, C; Cabrera, A; Chapman, J D; Cherdack, D; Childress, S; Choudhary, B C; Cobb, J H; Culling, A J; De Jong, J K; De Santo, A; Dierckxsens, M; Diwan, M V; Dorman, M; Drakoulakos, D; Durkin, T; Erwin, A R; Escobar, C O; Evans, J J; Falk-Harris, E; Feldman, G J; Fields, T H; Ford, R; Frohne, M V; Gallagher, H R; Giurgiu, G A; Godley, A; Gogos, J; Goodman, M C; Gouffon, P; Gran, R; Grashorn, E W; Grossman, N; Grzelak, K; Habig, A; Harris, D; Harris, P G; Hartnell, J; Hartouni, E P; Hatcher, R; Heller, K; Holin, A; Howcroft, C; Hylen, J; Indurthy, D; Irwin, G M; Ishitsuka, M; Jaffe, D E; James, C; Jenner, L; Jensen, D; Joffe-Minor, T; Kafka, T; Kang, H J; Kasahara, S M S; Kim, M S; Koizumi, G; Kopp, S; Kordosky, M; Koskinen, D J; Kotelnikov, S K; Kreymer, A; Kumaratunga, S; Lang, K; Lebedev, A; Lee, R; Ling, J; Liu, J; Litchfield, P J; Litchfield, R P; Lucas, P; Mann, W A; Marchionni, A; Marino, A D; Marshak, M L; Marshall, J S; Mayer, N; McGowan, A M; Meier, J R; Merzon, G I; Messier, M D; Michael, D G; Milburn, R H; Miller, J L; Miller, W H; Mishra, S R; Mislivec, A; Miyagawa, P S; Moore, C D; Morfin, J; Mualem, L; Mufson, S; Murgia, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nicholls, T C; Ochoa-Ricoux, J P; Oliver, W P; Osiecki, T; Ospanov, R; Paley, J; Paolone, V; Para, A; Patzak, T; Pavlovic, Z; Pearce, G F; Peck, C W; Peterson, E A; Petyt, D A; Ping, H; Piteira, R; Pittam, R; Plunkett, R K; Rahman, D; Rameika, R A; Raufer, T M; Rebel, B; Reichenbacher, J; Reyna, D E; Rosenfeld, C; Rubin, H A; Ruddick, K; Ryabov, V A; Saakyan, R; Sanchez, M C; Saoulidou, N; Schneps, J; Schreiner, P; Semenov, V K; Seun, S M; Shanahan, P; Smart, W; Smirnitsky, V; Smith, C; Sousa, A; Speakman, B; Stamoulis, P; Symes, P A; Tagg, N; Talaga, R L; Tetteh-Lartey, E; Thomas, J; Thompson, J; Thomson, M A; Thron, J L; Tinti, G; Trostin, I; Tsarev, V A; Tzanakos, G; Urheim, J; Vahle, P; Velissaris, C; Verebryusov, V; Viren, B; Ward, C P; Ward, D R; Watabe, M; Weber, A; Webb, R C; Wehmann, A; West, N; White, C; Wojcicki, S G; Wright, D M; Wu, Q K; Yang, T; Yumiceva, F X; Zheng, H; Zois, M; Zwaska, R

    2007-01-01

    The 5.4 kton MINOS far detector has been taking charge-separated cosmic ray muon data since the beginning of August, 2003 at a depth of 2070 meters-water-equivalent in the Soudan Underground Laboratory, Minnesota, USA. The data with both forward and reversed magnetic field running configurations were combined to minimize systematic errors in the determination of the underground muon charge ratio. When averaged, two independent analyses find the charge ratio underground to be 1.374 +/- 0.004 (stat.) +0.012 -0.010(sys.). Using the map of the Soudan rock overburden, the muon momenta as measured underground were projected to the corresponding values at the surface in the energy range 1-7 TeV. Within this range of energies at the surface, the MINOS data are consistent with the charge ratio being energy independent at the two standard deviation level. When the MINOS results are compared with measurements at lower energies, a clear rise in the charge ratio in the energy range 0.3 -- 1.0 TeV is apparent. A qualitativ...

  3. Momentum and energy transport by waves in the solar atmosphere and solar wind

    Science.gov (United States)

    Jacques, S. A.

    1977-01-01

    The fluid equations for the solar wind are presented in a form which includes the momentum and energy flux of waves in a general and consistent way. The concept of conservation of wave action is introduced and is used to derive expressions for the wave energy density as a function of heliocentric distance. The explicit form of the terms due to waves in both the momentum and energy equations are given for radially propagating acoustic, Alfven, and fast mode waves. The effect of waves as a source of momentum is explored by examining the critical points of the momentum equation for isothermal spherically symmetric flow. We find that the principal effect of waves on the solutions is to bring the critical point closer to the sun's surface and to increase the Mach number at the critical point. When a simple model of dissipation is included for acoustic waves, in some cases there are multiple critical points.

  4. The effect of soil redistribution on soil organic carbon: an experimental study

    Directory of Open Access Journals (Sweden)

    H. Van Hemelryck

    2010-12-01

    Full Text Available Soil erosion, transport and deposition by water drastically affect the distribution of soil organic carbon (SOC within a landscape. Furthermore, soil redistribution is assumed to have a large impact on the exchange of carbon (C between the pedosphere and the atmosphere. There is, however, significant scientific disagreement concerning the relative importance of the key-mechanisms at play. One of the major uncertainties concerns the fraction of SOC that is mineralized when soil is eroded by water, from the moment when detachment takes place until the moment when the SOC becomes protected by burial. In this study, the changes in C-exchange between soil and atmosphere as affected by soil redistribution processes were experimentally quantified. During a laboratory experiment, three types of erosional events were simulated, each of which was designed to produce a different amount of eroded soil material with a different degree of aggregation. During a 98-day period, CO2-efflux was measured in-situ and under field conditions on undisturbed soils with a layer of deposited soil material. Depending on the initial conditions of the soil and the intensity of the erosion process, a significant fraction of eroded SOC was mineralized after deposition. However, results also suggest that deposition produces a dense stratified layer of sediment that caps the soil surface, leading to a decrease in SOC decomposition in deeper soil layers. As a result, the net effect of erosion on SOC can be smaller, depending on the functioning of the whole soil system. In this study, soil redistribution processes contributed an additional emission of 2 to 12% of total C contained in eroded sediment.

  5. The effect of soil redistribution on soil organic carbon: an experimental study

    Directory of Open Access Journals (Sweden)

    H. Van Hemelryck

    2009-05-01

    Full Text Available Soil erosion, transport and deposition by water drastically affect the distribution of soil organic carbon (SOC within a landscape. Furthermore, soil redistribution is assumed to have a large impact on the exchange of carbon (C between the pedosphere and the atmosphere. There is, however, significant scientific disagreement concerning the relative importance of the key-mechanisms at play. One of the major uncertainties concerns the fraction of SOC that is mineralized when soil is eroded by water, from the moment when detachment takes place until the moment when the SOC becomes protected by burial. In this study, the changes in C-exchange between soil and atmosphere as affected by soil redistribution processes were experimentally quantified. During a laboratory experiment, three types of erosional events were simulated, each of which was designed to produce a different amount of eroded soil material with a different degree of aggregation. During a 98-day period, CO2-efflux was measured in-situ and under field conditions on undisturbed soils with a layer of deposited soil material. Depending on the initial conditions of the soil and the intensity of the erosion process, a significant fraction of eroded SOC was mineralized after deposition (between 14 and 22%. However, results also suggest that deposition produces a dense stratified layer of sediment that caps the soil surface, leading to a decrease in SOC decomposition in deeper soil layers. As a result, the net effect of erosion on SOC can be smaller, depending on the functioning of the whole soil system. In this study, soil redistribution processes contributed an additional emission of 2 to 12% of total C contained in eroded sediment.

  6. Energy-heading transients in atmospheric flight guidance for airbreathing hypersonic vehicles

    Science.gov (United States)

    Cliff, Eugene M.; Well, KLAUS-H.

    1991-01-01

    A time-range-fuel optimization problem is formulated for an airbreathing, hypersonic vehicle. Singular perturbation theory is used to decompose the problem into simpler subproblems. Analysis of the cruise-dash problem shows the importance of a Mach-limit. Energy-heading transients are studied and a family of trajectories, fairing asymptotically to a cruise condition, are generated.

  7. Stochastic homogenization for an energy conserving multi-scale toy model of the atmosphere

    NARCIS (Netherlands)

    Frank, J.E.; Gottwald, G.A.

    2013-01-01

    We study a Hamiltonian toy model for a Lagrangian fluid parcel in the semi-geostrophic limit which exhibits slow and fast dynamics. We first reinject unresolved fast dynamics into the deterministic equation through a stochastic parametrization that respects the conservation of the energy of the dete

  8. Analytical solutions for reactive transport under an infiltration-redistribution cycle.

    Science.gov (United States)

    Severino, Gerardo; Indelman, Peter

    2004-05-01

    penetration for equilibrium transport and for irreversible desorption, respectively. This feature of solute penetration explains the unusual phenomena of plume contraction after an initial period of spreading [Lessoff, S.C., Indelman, P., Dagan, G., 2002. Solute transport in infiltration-redistribution cycles in heterogeneous soils. In Raats, P.A.C., Smiles, D.,Warrick, A.W. (Eds), Environmental Mechanics: Water, Mass and Energy Transport in the Biosphere. American Geophysical Union, pp. 133-144]. Unlike transport under equilibrium conditions, when the solute is completely concentrated at the front, the solute under nonequilibrium conditions is spread out behind the front. Heterogeneity leads to additional spreading of the plume.

  9. High-energy spectral complexity from thermal gradients in black hole atmospheres

    CERN Document Server

    Skibo, J G

    1995-01-01

    We show that Compton scattering of soft photons with energies near 100 eV in thermally stratified black-hole accretion plasmas with temperatures in the range 100 keV - 1 MeV can give rise to an X-ray spectral hardening near 10 keV. This could produce the hardening observed in the X-ray spectra of black holes, which is generally attributed to reflection or partial covering of the incident continuum source by cold optically thick matter. In addition, we show that the presence of very hot (kT=1 MeV) cores in plasmas leads to spectra exibiting high energy tails similar to those observed from Galactic black-hole candidates.

  10. Effect of an energy reservoir on the atmospheric propagation of laser-plasma filaments.

    Science.gov (United States)

    Eisenmann, Shmuel; Peñano, Joseph; Sprangle, Phillip; Zigler, Arie

    2008-04-18

    The ability to select and stabilize a single filament during propagation of an ultrashort, high-intensity laser pulse in air makes it possible to examine the longitudinal structure of the plasma channel left in its wake. We present the first detailed measurements and numerical 3-D simulations of the longitudinal plasma density variation in a laser-plasma filament after it passes through an iris that blocks the surrounding energy reservoir. Since no compensation is available from the surrounding background energy, filament propagation is terminated after a few centimeters. For this experiment, simulations indicate that filament propagation is terminated by plasma defocusing and ionization loss, which reduces the pulse power below the effective self-focusing power. With no blockage, a plasma filament length of over a few meters was observed.

  11. Pulsars at the Highest Energies: Questions for AGILE, Fermi (GLAST) and Atmospheric Cherenkov Telescopes

    Science.gov (United States)

    Thompson, D.J.

    2008-01-01

    Observational studies of gamma-ray pulsars languished in recent years, while theoretical studies made significant strides. Now, with new and improved gamma-ray telescopes coming online, opportunities present themselves for dramatic improvements in our understanding of these objects. The new facilities and better modeling of processes at work in high-energy pulsars should address a number of important open questions, some of which are summarized.

  12. Two-fluid Atmosphere from Decelerating to Accelerating FRW Dark Energy Models

    CERN Document Server

    Pradhan, Anirudh

    2012-01-01

    The evolution of the dark energy parameter within the scope of a spatially homogeneous and isotropic Friedmann-Robertson-Walker (FRW) model filled with perfect fluid and dark energy components is studied by revisiting the recent results (Amirhashchi et al. in Int. J. Theor. Phys. 50: 3529, 2011). The two sources are claimed to interact minimally so that their energy momentum tensors are conserved separately. To prevail the deterministic solution we consider a time dependent deceleration parameter (DP) i.e. $q = -\\frac{a\\ddot{a}}{\\dot{a}^{2}} = b(a(t))$, which yields a scale factor $a = [\\sinh (\\alpha t)]^{\\frac{1}{n}}$, where $\\alpha$ and $n$ are arbitrary constants. This provides for a model which generates a transition of the universe from the early decelerating phase to the recent accelerating phase. It is observed that the transition red shift ($z_{t}$) for our derived model with $q_{0} = -0.73$ is $\\cong 0.32$. This is in good agreement with the cosmological observations in the literature. The physical a...

  13. Extinction of radiant energy by large atmospheric crystals with different shapes

    Science.gov (United States)

    Shefer, Olga

    2016-07-01

    The calculated results of extinction characteristics of visible and infrared radiation for large semi-transparent crystals are obtained by hybrid technique, which is a combination of the geometric optics method and the physical optics method. Energy and polarization characteristics of the radiation extinction in terms of the elements of the extinction matrix for individual large crystals and ensemble of crystals are discussed. Influences of particle shapes, aspect ratios, parameters of size distribution, complex refractive index, orientation of crystals, wavelength, and the polarization state of an incident radiation on the extinction are illustrated. It is shown that the most expressive and stable features of energy and polarization characteristics of the extinction are observed in the midinfrared region, despite the fact that the ice particles significantly absorb the radiant energy of this spectrum. It is demonstrated that the polarized extinction characteristics can reach several tens of percent at IR wavelengths. For the large crystals, the conditions of occurrence of the spectral behavior of the extinction coefficient in the visible, near-IR, and mid-IR wavelength ranges are determined.

  14. On the Sensitivity of Atmospheric Model Implied Ocean Heat Transport to the Dominant Terms of the Surface Energy Balance

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, P J

    2004-11-03

    The oceanic meridional heat transport (T{sub o}) implied by an atmospheric General Circulation Model (GCM) can help evaluate a model's readiness for coupling with an ocean GCM. In this study we examine the T{sub o} from benchmark experiments of the Atmospheric Model Intercomparison Project, and evaluate the sensitivity of T{sub o} to the dominant terms of the surface energy balance. The implied global ocean TO in the Southern Hemisphere of many models is equatorward, contrary to most observationally-based estimates. By constructing a hybrid (model corrected by observations) T{sub o}, an earlier study demonstrated that the implied heat transport is critically sensitive to the simulated shortwave cloud radiative effects, which have been argued to be principally responsible for the Southern Hemisphere problem. Systematic evaluation of one model in a later study suggested that the implied T{sub o} could be equally as sensitive to a model's ocean surface latent heat flux. In this study we revisit the problem with more recent simulations, making use of estimates of ocean surface fluxes to construct two additional hybrid calculations. The results of the present study demonstrate that indeed the implied T{sub o} of an atmospheric model is very sensitive to problems in not only the surface net shortwave, but the latent heat flux as well. Many models underestimate the shortwave radiation reaching the surface in the low latitudes, and overestimate the latent heat flux in the same region. The additional hybrid transport calculations introduced here could become useful model diagnostic tests as estimates of implied ocean surface fluxes are improved.

  15. Characteristics of land-atmosphere energy and turbulent fluxes over the plateau steppe in central Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    MaoShan Li; ZhongBo Su; YaoMing Ma; XueLong Chen; Lang Zhang; ZeYong Hu

    2016-01-01

    The land-atmosphere energy and turbulence exchange is key to understanding land surface processes on the Tibetan Plateau (TP). Using observed data for Aug. 4 to Dec. 3, 2012 from the Bujiao observation point (BJ) of the Nagqu Plateau Climate and Environment Station (NPCE-BJ), different characteristics of the energy flux during the Asian summer monsoon (ASM) season and post-monsoon period were analyzed. This study outlines the impact of the ASM on energy fluxes in the central TP. It also demonstrates that the surface energy closure rate during the ASM season is higher than that of the post-monsoon period. Footprint modeling shows the distribution of data quality assessments (QA) and quality controls (QC) surrounding the observation point. The measured turbulent flux data at the NPCE-BJ site were highly rep-resentative of the target land-use type. The target surface contributed more to the fluxes under unstable conditions than under stable conditions. The main wind directions (180° and 210°) with the highest data density showed flux contributions reaching 100%, even under stable conditions. The lowest flux contributions were found in sectors with low data density, e.g., 90.4% in the 360° sector under stable conditions during the ASM season. Lastly, a surface energy water balance (SEWAB) model was used to gap-fill any absent or corrected turbulence data. The potential simulation error was also explored in this study. The Nash-Sutcliffe model efficiency coefficients (NSEs) of the observed fluxes with the SEWAB model runs were 0.78 for sensible heat flux and 0.63 for latent heat flux during the ASM season, but unrealistic values of−0.9 for latent heat flux during the post-monsoon period.

  16. The aurora as a source of planetary-scale waves in the middle atmosphere. [atmospheric turbulence caused by auroral energy absorption

    Science.gov (United States)

    Chiu, Y. T.; Straus, J. M.

    1974-01-01

    Photographs of global scale auroral forms taken by scanning radiometers onboard weather satellites in 1972 show that auroral bands exhibit well organized wave motion with typical zonal wave number of 5 or so. The scale size of these waves is in agreement with that of well organized neutral wind fields in the 150- to 200-km region during the geomagnetic storm of May 27, 1967. Further, the horizontal scale size revealed by these observations are in agreement with that of high altitude traveling ionospheric disturbances. It is conjectured that the geomagnetic storm is a source of planetary and synoptic scale neutral atmospheric waves in the middle atmosphere. Although there is, at present, no observation of substorm related waves of this scale size at mesospheric and stratospheric altitudes, the possible existence of a new source of waves of the proper scale size to trigger instabilities in middle atmospheric circulation systems may be significant in the study of lower atmospheric response to geomagnetic activity.

  17. Mate and Dart: An Instrument Package for Characterizing Solar Energy and Atmospheric Dust on Mars

    Science.gov (United States)

    Landis, Geoffrey A.; Jenkins, Phillip; Scheiman, David; Baraona, Cosmo

    2000-01-01

    The MATE (Mars Array Technology Experiment) and DART (Dust Accumulation and Removal Test) instruments were developed to fly as part of the Mars ISPP Precursor (MIP) experiment on the (now postponed) Mars-2001 Surveyor Lander. MATE characterizes the solar energy reaching the surface of Mars, and measures the performance and degradation of solar cells under Martian conditions. DART characterizes the dust environment of Mars, measures the effect of settled dust on solar arrays, and investigates methods to mitigate power loss due to dust accumulation.

  18. An energy and potential enstrophy conserving scheme for the shallow water equations. [orography effects on atmospheric circulation

    Science.gov (United States)

    Arakawa, A.; Lamb, V. R.

    1979-01-01

    A three-dimensional finite difference scheme for the solution of the shallow water momentum equations which accounts for the conservation of potential enstrophy in the flow of a homogeneous incompressible shallow atmosphere over steep topography as well as for total energy conservation is presented. The scheme is derived to be consistent with a reasonable scheme for potential vorticity advection in a long-term integration for a general flow with divergent mass flux. Numerical comparisons of the characteristics of the present potential enstrophy-conserving scheme with those of a scheme that conserves potential enstrophy only for purely horizontal nondivergent flow are presented which demonstrate the reduction of computational noise in the wind field with the enstrophy-conserving scheme and its convergence even in relatively coarse grids.

  19. Measurement of the atmospheric neutrino energy spectrum from 100 GeV to 400 TeV with IceCube

    CERN Document Server

    Abbasi, R; Abu-Zayyad, T; Adams, J; Aguilar, J A; Ahlers, M; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Bay, R; Alba, J L Bazo; Beattie, K; Beatty, J J; Bechet, S; Becker, J K; Becker, K -H; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Braun, J; Buitink, S; Carson, M; Chirkin, D; Christy, B; Clem, J; Clevermann, F; Cohen, S; Colnard, C; Cowen, D F; D'Agostino, M V; Danninger, M; Davis, J C; De Clercq, C; Demirörs, L; Depaepe, O; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Díaz-Vélez, J C; Dierckxsens, M; Dreyer, J; Dumm, J P; Duvoort, M R; Ehrlich, R; Eisch, J; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feusels, T; Filimonov, K; Finley, C; Foerster, M M; Fox, B D; Franckowiak, A; Franke, R; Gaisser, T K; Gallagher, J; Geisler, M; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Grant, D; Griesel, T; Groß, A; Grullon, S; Gurtner, M; Ha, C; Hallgren, A; Halzen, F; Han, K; Hanson, K; Helbing, K; Herquet, P; Hickford, S; Hill, G C; Hoffman, K D; Homeier, A; Hoshina, K; Hubert, D; Huelsnitz, W; Hülß, J -P; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobsen, J; Japaridze, G S; Johansson, H; Joseph, J M; Kampert, K -H; Karg, T; Karle, A; Kelley, J L; Kemming, N; Kenny, P; Kiryluk, J; Kislat, F; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Koskinen, D J; Kowalski, M; Kowarik, T; Krasberg, M; Krings, T; Kroll, G; Kuehn, K; Kuwabara, T; Labare, M; Lafebre, S; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lehmann, R; Lünemann, J; Madsen, J; Majumdar, P; Marotta, A; Maruyama, R; Mase, K; Matis, H S; Matusik, M; Meagher, K; Merck, M; Mészáros, P; Meures, T; Middell, E; Milke, N; Miller, J; Montaruli, T; Morse, A R; Movit, S M; Nahnhauer, R; Nam, J W; Naumann, U; Nießen, P; Nygren, D R; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Ono, M; Panknin, S; Paul, L; Heros, C Pérez de los; Petrovic, J; Piegsa, A; Pieloth, D; Porrata, R; Posselt, J; Price, P B; Prikockis, M; Przybylski, G T; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Rizzo, A; Rodrigues, J P; Roth, P; Rothmaier, F; Rott, C; Ruhe, T; Rutledge, D; Ruzybayev, B; Ryckbosch, D; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Schlenstedt, S; Schmidt, T; Schukraft, A; Schultes, A; Schulz, O; Schunck, M; Seckel, D; Semburg, B; Seo, S H; Sestayo, Y; Seunarine, S; Silvestri, A; Singh, K; Slipak, A; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, B T; Stephens, G; Stezelberger, T; Stokstad, R G; Stoyanov, S; Strahler, E A; Straszheim, T; Sullivan, G W; Swillens, Q; Taavola, H; Taboada, I; Tamburro, A; Tarasova, O; Tepe, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Tosi, D; Turčan, D; van Eijndhoven, N; Vandenbroucke, J; Van Overloop, A; van Santen, J; Voge, M; Voigt, B; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Wikström, G; Williams, D R; Wischnewski, R; Wissing, H; Wolf, M; Woschnagg, K; Xu, C; Xu, X W; Yodh, G; Yoshida, S; Zarzhitsky, P

    2010-01-01

    A measurement of the atmospheric muon neutrino energy spectrum from 100 GeV to 400 TeV was performed using a data sample of about 18,000 up-going atmospheric muon neutrino events in IceCube. Boosted decision trees were used for event selection to reject mis-reconstructed atmospheric muons and obtain a sample of up-going muon neutrino events. Background contamination in the final event sample is less than one percent. This is the first measurement of atmospheric neutrinos up to 400 TeV, and is fundamental to understanding the impact of this neutrino background on astrophysical neutrino observations with IceCube. The measured spectrum is consistent with predictions for the atmospheric muon neutrino plus muon antineutrino flux.

  20. Energy spectrum of secondary protons above the atmosphere measured by the instruments NINA and NINA-2

    Science.gov (United States)

    Bidoli, V.; Casolino, M.; de Pascale, M.; Furano, G.; Iannucci, A.; Morselli, A.; Picozza, P.; Sparvoli, R.; Bakaldin, A.; Galper, A.; Koldashov, S.; Korotkov, M.; Leonov, A.; Mikhailov, V.; Voronov, S.; Boezio, M.; Bonvicini, V.; Vacchi, A.; Zampa, G.; Zampa, N.; Ambriola, M.; Cafagna, F.; Circella, M.; de Marzo, C.; Adriani, O.; Papini, P.; Spillantini, P.; Straulino, S.; Vannuccini, E.; Ricci, M.; Castellini, G.

    2002-10-01

    In this paper we report on the energy spectrum of protons of albedo origin measured by the instruments NINA and NINA-2 at different geomagnetic locations, and the behaviour of the proton flux as a function of altitude out of the South Atlantic Anomaly. The instrument NINA was used on board the satellite Resurs-01-N4 between 1998 and 1999, at an altitude of about 830 km. The NINA-2 apparatus, on board the satellite MITA, was put into orbit in July 2000, at an altitude of about 450 km. A detailed understanding of the fluxes of charged particles in near Earth orbit is important to reach an accurate theoretical description of the Earth’s magnetic field, but also as input for the calculation of the back-ground for scientific instruments aboard satellites, like the future AGILE and GLAST g

  1. Control technology for radioactive emissions to the atmosphere at US Department of Energy facilities

    Energy Technology Data Exchange (ETDEWEB)

    Moore, E.B.

    1984-10-01

    The purpose of this report is to provide information to the US Environmental Protection agency (EPA) on existing technology for the control of radionuclide emissions into the air from US Department of Energy (DOE) facilities, and to provide EPA with information on possible additional control technologies that could be used to further reduce these emissions. Included in this report are generic discussions of emission control technologies for particulates, iodine, rare gases, and tritium. Also included are specific discussions of existing emission control technologies at 25 DOE facilities. Potential additional emission control technologies are discussed for 14 of these facilities. The facilities discussed were selected by EPA on the basis of preliminary radiation pathway analyses. 170 references, 131 figures, 104 tables.

  2. Dietary intervention causes redistribution of zinc in obese adolescents.

    Science.gov (United States)

    Freire, Simone Cardoso; Fisberg, Mauro; Cozzolino, Silvia Maria Franciscato

    2013-08-01

    Obese people tend to have low zinc circulation levels; this is not always related to zinc intake but can reflect the distribution of zinc in relation to the proportion of body fat and factors related to the inflammatory processes that cause obesity. The purpose of this study was to assess zinc distribution in 15 obese adolescent girls before and after a nutritional orientation program. Participants ranged from 14 to 18 years old (postpubescent) and had a body fat percent (BF%) of >35 %. Zinc nutritional status and other zinc-dependent parameters, such as superoxide dismutase (SOD) and insulin levels, were assessed by biochemical analysis of plasma and erythrocytes, salivary sediment, and urine. Samples were collected before and after 4 months of dietary intervention. Dual energy X-ray absorptiometry (DXA) was used to verify BF% both at the beginning and at the end of the study. Food consumption was assessed in ten individual food questionnaires throughout the study; food groups were separated on the questionnaires in the same way as suggested by some authors to develop the Healthy Eating Index (HEI) but with the addition of zinc. After 4 months of nutritional orientation, 78 % of the participants showed a decrease in BF%. Intraerythrocytic zinc increased over the study period, while salivary sediment zinc, SOD, insulin, and Zn urinary24 h/creatinine all decreased (p zinc intake throughout the study but participants did increase their consumption of fruits, dairy, and meats during the study (p zinc and decreased levels of SOD. There was also a statistically significant correlation between BF% and Zn urinary 24h/creatinine, and SOD. All these parameters were diminished at the end of the study. The dietary intervention for obese adolescent girls is effective with decrease of BF that led to the redistribution of zinc in the body as shown by the changes in erythrocytes, plasma, salivary, urine zinc, as well as the complementary parameters of insulin and SOD. These

  3. Thermally driven moisture redistribution in partially saturated porous media

    Energy Technology Data Exchange (ETDEWEB)

    Green, R.T.; Dodge, F.T.; Svedeman, S.J.; Manteufel, R.D.; Meyer, K.A.; Baca, R.G. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses; Rice, G. [George Rice and Associates, San Antonio, TX (United States)

    1995-12-01

    It is widely recognized that the decay heat produced by high-level radioactive waste (HLW) will likely have a significant impact on both the pre- and post-closure performance of the proposed repository at Yucca Mountain (YM), in southwest Nevada. The task of delineating which aspects of that impact are favorable to isolation performance and which are adverse is an extremely challenging technical undertaking because of such factors as the hydrothermal regimes involved, heterogeneity of the geologic media, and the time and space scales involved. This difficulty has motivated both the US Department of Energy (DOE) and the US Nuclear Regulatory Commission (NRC) to undertake multi-year thermohydrology research programs to examine the effects of decay heat on pre- and post-closure performance of the repository. Both of these organizations are currently pursuing laboratory and field experiments, as well as numerical modeling studies, to advance the state of knowledge of the thermohydrologic phenomena relevant to the proposed geologic repository. The NRC-sponsored Thermohydrology Research Project, which was initiated in mid-1989 at the Center for Nuclear Waste Regulatory Analyses (CNWRA), began with the intent of addressing a broad spectrum of generic thermohydrologic questions. While some of these questions were answered in the conduct of the study, other new and challenging ones were encountered. Subsequent to that report, laboratory-scale experiments were designed to address four fundamental questions regarding thermohydrologic phenomena: what are the principal mechanisms controlling the redistribution of moisture; under what hydrothermal conditions and time frames do individual mechanisms predominate; what driving mechanism is associated with a particular hydrothermal regime; what is the temporal and spatial scale of each hydrothermal regime? This report presents the research results and findings obtained since issuance of the first progress report. 85 refs.

  4. Ultrafast charge redistribution in small iodine containing molecules

    CERN Document Server

    Hollstein, Maximilian; Gerken, Nils; Klumpp, Stephan; Palutke, Steffen; Baev, Ivan; Brenner, Günter; Dziarzhytski, Siarhei; Wurth, Wilfried; Pfannkuche, Daniela

    2016-01-01

    The competition between intra molecular charge redistribution and fragmentation has been studied in small molecules containing iodine by using intense ultrashort pulses in the extreme ultraviolet regime (XUV). We show that after an element specific inner-shell photoionization of diiodomethane (CH$_2$I$_2$) and iodomethane (CH$_3$I), the induced positive charge is redistributed with a significantly different efficiency. Therefore, we analyze ion time-of-flight data obtained from XUV-pump XUV-probe experiments at the Free Electron Laser in Hamburg (FLASH). Theoretical considerations on the basis of ab initio electronic structure calculations including correlations relate this effect to a strongly molecule specific, purely electronic charge redistribution process that takes place directly after photoionization causing a distribution of the induced positive charge predominantly on the atoms which exhibit the lowest atomic ionization potential, i.e, in the molecules considered, the iodine atom(s). As a result of t...

  5. Efficient Multidimensional Data Redistribution for Resizable Parallel Computations

    CERN Document Server

    Sudarsan, Rajesh

    2007-01-01

    Traditional parallel schedulers running on cluster supercomputers support only static scheduling, where the number of processors allocated to an application remains fixed throughout the execution of the job. This results in under-utilization of idle system resources thereby decreasing overall system throughput. In our research, we have developed a prototype framework called ReSHAPE, which supports dynamic resizing of parallel MPI applications executing on distributed memory platforms. The resizing library in ReSHAPE includes support for releasing and acquiring processors and efficiently redistributing application state to a new set of processors. In this paper, we derive an algorithm for redistributing two-dimensional block-cyclic arrays from $P$ to $Q$ processors, organized as 2-D processor grids. The algorithm ensures a contention-free communication schedule for data redistribution if $P_r \\leq Q_r$ and $P_c \\leq Q_c$. In other cases, the algorithm implements circular row and column shifts on the communicat...

  6. Characteristics of Zonal Propagation of Atmospheric Kinetic Energy at Equatorial Region in Asia

    Institute of Scientific and Technical Information of China (English)

    GAO Hui; CHEN Longxun; HE Jinhai; TAO Shiyan; JIN Zuhui

    2006-01-01

    Based on the daily NCEP/NCAR reanalysis dataset from 1980 to 1997, the zonal propagations of 850 hPa kinetic energy (KE) and meridional wind (v) at equatorial region are examined respectively. Results show that the strongest center of KE in the tropical Asian monsoon region is located at 75°-90°E, with the secondary over the Somalia low-level jet channel, i.e., about 50°E. East to 90°E, disturbances of both KE and v observed are mainly coming from the western Pacific Ocean and propagating westward to the Bay of Bengal (BOB) passing through the South China Sea. But the propagation directions of both KE and v are rather disorderly between the BOB and the Somalia jet channel. Therefore, the East Asian summer monsoon and the Indian summer monsoon are different in the propagating features of the disturbances of KE and v. Above facts indicate that East Asian monsoon system exists undoubtedly even at the equatorial region, and quite distinct from the Indian monsoon system, it is mainly affected by the disturbances coming from the tropical western Pacific rather than from the Indian monsoon region. The boundary of the two monsoon systems is around 95°-100°E, which is more westward than the counterpart as proposed in earlier studies by 5-10 degrees in longitude.

  7. Climate stability for a Sellers-type model. [atmospheric diffusive energy balance model

    Science.gov (United States)

    Ghil, M.

    1976-01-01

    We study a diffusive energy-balance climate model governed by a nonlinear parabolic partial differential equation. Three positive steady-state solutions of this equation are found; they correspond to three possible climates of our planet: an interglacial (nearly identical to the present climate), a glacial, and a completely ice-covered earth. We consider also models similar to the main one studied, and determine the number of their steady states. All the models have albedo continuously varying with latitude and temperature, and entirely diffusive horizontal heat transfer. The diffusion is taken to be nonlinear as well as linear. We investigate the stability under small perturbations of the main model's climates. A stability criterion is derived, and its application shows that the 'present climate' and the 'deep freeze' are stable, whereas the model's glacial is unstable. A variational principle is introduced to confirm the results of this stability analysis. For a sufficient decrease in solar radiation (about 2%) the glacial and interglacial solutions disappear, leaving the ice-covered earth as the only possible climate.

  8. MACHETE: A transit Imaging Atmospheric Cherenkov Telescope to survey half of the Very High Energy $\\gamma$-ray sky

    CERN Document Server

    Cortina, J; Moralejo, A

    2015-01-01

    Current Imaging Atmospheric Cherenkov Telescopes for Very High Energy $\\gamma$-ray astrophysics are pointing instruments with a Field of View up to a few tens of sq deg. We propose to build an array of two non-steerable (drift) telescopes. Each of the telescopes would have a camera with a FOV of 5$\\times$60 sq deg oriented along the meridian. About half of the sky drifts through this FOV in a year. We have performed a Montecarlo simulation to estimate the performance of this instrument. We expect it to survey this half of the sky with an integral flux sensitivity of $\\sim$0.77\\% of the steady flux of the Crab Nebula in 5 years, an analysis energy threshold of $\\sim$150 GeV and an angular resolution of $\\sim$0.1$^{\\circ}$. For astronomical objects that transit over the telescope for a specific night, we can achieve an integral sensitivity of 12\\% of the Crab Nebula flux in a night, making it a very powerful tool to trigger further observations of variable sources using steerable IACTs or instruments at other w...

  9. MACHETE: A transit imaging atmospheric Cherenkov telescope to survey half of the very high energy γ-ray sky

    Science.gov (United States)

    Cortina, J.; López-Coto, R.; Moralejo, A.

    2016-01-01

    Current imaging atmospheric Cherenkov telescopes for very high energy γ-ray astrophysics are pointing instruments with a field of view up to a few tens of sq deg. We propose to build an array of two non-steerable (drift) telescopes. Each of the telescopes would have a camera with a FOV of 5 × 60 sq deg oriented along the meridian. About half of the sky drifts through this FOV in a year. We have performed a Monte Carlo simulation to estimate the performance of this instrument. We expect it to survey this half of the sky with an integral flux sensitivity of ˜0.77% of the steady flux of the Crab Nebula in 5 years, an analysis energy threshold of ˜150 GeV and an angular resolution of ˜0.1°. For astronomical objects that transit over the telescope for a specific night, we can achieve an integral sensitivity of 12% of the Crab Nebula flux in a night, making it a very powerful tool to trigger further observations of variable sources using steerable IACTs or instruments at other wavelengths.

  10. Particle-in-Cell Simulation for the Control of Electron Energy Distribution of Dielectric Barrier Discharges at Atmospheric Pressure

    Science.gov (United States)

    Bae, Hyo Won; Yel Lee, Jung; Lee, Ho-Jun; Lee, Hae June

    2011-10-01

    Recently, atmospheric pressure plasmas attract lots of interests for the useful applications such as surface modification and bio-medical treatment. In this study, a particle-in-cell Monte Carlo collision (PIC-MCC) simulation was adopted to investigate the discharge characteristics of a planar micro dielectric barrier discharge (DBD) with a driving frequency from 1 MHz to 50 MHz and with a gap distance from 60 to 500 micrometers. The variation of control parameters such as the gap distance, the driving wave form, and the applied voltage results in the change in the electron energy distribution function (EEDF). Through the relation between the ionization mean free path and the gap size, a significant change of EEDFs is achievable with the decrease of gap distance. Therefore, it is possible to categorize the operation range of DBDs for its applications by controlling the interactions between plasmas and neutral gas for the generation of preferable radicals. This work was supported by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 20104010100670).

  11. Energy Loss of Solar p Modes due to the Excitation of Magnetic Sausage Tube Waves: Importance of Coupling the Upper Atmosphere

    Science.gov (United States)

    Gascoyne, A.; Jain, R.; Hindman, B. W.

    2014-07-01

    We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation of Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = -z 0).

  12. Energy loss of solar p modes due to the excitation of magnetic sausage tube waves: Importance of coupling the upper atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gascoyne, A.; Jain, R. [Applied Mathematics Department, University of Sheffield, Sheffield S3 7RH (United Kingdom); Hindman, B. W., E-mail: a.d.gascoyne@sheffield.ac.uk, E-mail: r.jain@sheffield.ac.uk [JILA and Department of Astrophysical and Planetary Sciences, University of Colorado at Boulder, Boulder, CO 80309-0440 (United States)

    2014-07-10

    We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation of Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = –z{sub 0}).

  13. Pacific Northwest Laboratory annual report for 1982 to the DOE Office of Energy Research. Part 3. Atmospheric sciences

    Energy Technology Data Exchange (ETDEWEB)

    Elderkin, C.E.

    1983-02-01

    This report is organized in terms of generic studies: theoretical studies of atmospheric processes; pollutant characterizations and transformation; boundary layer meteorology; and dispersion, deposition and resuspension of atmospheric pollutants.

  14. The role of quantum interference and partial redistribution in the solar Ba II D2 4554 A line

    CERN Document Server

    Smitha, H N; Stenflo, J O; Sampoorna, M

    2014-01-01

    The Ba II D2 line at 4554 A is a good example, where the F-state interference effects due to the odd isotopes produce polarization profiles, which are very different from those of the even isotopes that do not exhibit F-state interference. It is therefore necessary to account for the contributions from the different isotopes to understand the observed linear polarization profiles of this line. In this paper we present radiative transfer modeling with partial frequency redistribution (PRD), which is shown to be essential to model this line. This is because complete frequency redistribution (CRD) cannot reproduce the observed wing polarization. We present the observed and computed Q/I profiles at different limb distances. The theoretical profiles strongly depend on limb distance (\\mu) and the model atmosphere which fits the limb observations fails at other \\mu\\ positions.

  15. Redistribution, Recognition and Representation: Working against Pedagogies of Indifference

    Science.gov (United States)

    Lingard, Bob; Keddie, Amanda

    2013-01-01

    This paper reports on an Australian government-commissioned research study that documented classroom pedagogies in 24 Queensland schools. The research created the model of "productive pedagogies", which conjoined what Nancy Fraser calls a politics of redistribution, recognition and representation. In this model pedagogies are…

  16. 45 CFR 98.64 - Reallotment and redistribution of funds.

    Science.gov (United States)

    2010-10-01

    ... DEVELOPMENT FUND Financial Management § 98.64 Reallotment and redistribution of funds. (a) According to the... paragraph the term “State” means the 50 States and the District of Columbia. Territorial and tribal grantees... will be based on the State's financial report to ACF for the Child Care and Development Fund...

  17. Fast Ion Redistribution and Implications for the Hybrid Regime

    Energy Technology Data Exchange (ETDEWEB)

    Nazikian, R; Austin, M E; Budny, R V; Chu, M S; Heidbrink, W W; Makowski, M A; Petty, C C; Politzer, P A; Solomon, W M; Van Zeeland, M A

    2007-06-26

    Time dependent TRANSP analysis indicates that radial redistribution of fast ions is unlikely to affect the central current density in hybrid plasmas sufficient to raise q(0) above unity. The results suggest that some other mechanism other than fast ion transport must be involved in raising q(0) and preventing sawteeth in hybrid plasmas.

  18. Support for redistribution and the paradox of immigration

    NARCIS (Netherlands)

    Burgoon, B.; Koster, F.; van Egmond, M.

    2012-01-01

    This paper argues that immigration has varying implications for attitudes about government redistribution depending on the level at which immigration is experienced. Working in occupations with higher shares of foreign-born employees can raise individual economic insecurities in ways that might over

  19. Democracy, redistributive taxation and the private provision of public goods

    DEFF Research Database (Denmark)

    Markussen, Thomas

    2011-01-01

    The paper studies in a simple, Downsian model of political competition the private provision of public goods embedded in a system of democracy and redistributive taxation. Results show that the positive effect of inequality on production of public goods, to which Olson (1965) pointed, is weakened...

  20. Democracy, Redistributive Taxation and the Private Provision of Public Goods

    DEFF Research Database (Denmark)

    Markussen, Thomas

    The paper studies in a simple, Downsian model of political competition how the private provision of public goods is affected when it is embedded in a system of democracy and redistributive taxation. Results show that the positive effect of inequality on public goods production, which Olson (1965...

  1. Canonical transfer and multiscale energetics for primitive and quasi-geostrophic atmospheres

    CERN Document Server

    Liang, X San

    2016-01-01

    The past years have seen the success of a novel multiscale energetic formalism in a variety of ocean and engineering fluid applications. In a self-contained way, this study introduces it to the atmospheric dynamical diagnostics, with important theoretical updates. Multiscale energy equations are derived using a new analysis apparatus, namely, multiscale window transform, with respect to both the primitive equation and quasi-geostrophic models. A reconstruction of the "atomic" energy fluxes on the multiple scale windows allows for a natural and unique separation of the in-scale transports and cross-scale transfers from the intertwined nonlinear processes. The resulting energy transfers bear a Lie bracket form, reminiscent of the Poisson bracket in Hamiltonian mechanics, we hence would call them "canonical". A canonical transfer process is a mere redistribution of energy among scale windows, without generating or destroying energy as a whole. By classification, a multiscale energetic cycle comprises of availabl...

  2. Pacific Northwest Laboratory annual report for 1985 to the DOE Office of Energy Research. Part 3. Atmospheric sciences

    Energy Technology Data Exchange (ETDEWEB)

    Elderkin, C.E.

    1986-02-01

    The goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, and continental scales. In 1985, this research has examined the transport and diffusion of atmospheric contaminants in areas of complex terrain, summarized the field studies and analyses of dry deposition and resuspension conducted in past years, and begun participation in a large, multilaboratory program to assess the precipitation scavenging processes important to the transformation and wet deposition of chemicals composing ''acid rain.'' The description of atmospheric research at PNL is organized in terms of the following study areas: Atmospheric Studies in Complex Terrain; Dispersion, Deposition, and Resuspension of Atmospheric Contaminants; and Processing of Emissions by Clouds and Precipitation (PRECP).

  3. Impact of atmospheric effects on the energy reconstruction of air showers observed by the surface detectors of the Pierre Auger Observatory

    Science.gov (United States)

    Aab, A.; Abreu, P.; Aglietta, M.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barreira Luz, R. J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fick, B.; Figueira, J. M.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaior, R.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Lauscher, M.; Lebrun, P.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariš, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlín, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rogozin, D.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento, C. A.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Tapia, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Torres Machado, D.; Torri, M.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yelos, D.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.

    2017-02-01

    Atmospheric conditions, such as the pressure (P), temperature (T) or air density (ρ propto P/T), affect the development of extended air showers initiated by energetic cosmic rays. We study the impact of the atmospheric variations on the reconstruction of air showers with data from the arrays of surface detectors of the Pierre Auger Observatory, considering separately the one with detector spacings of 1500 m and the one with 750 m spacing. We observe modulations in the event rates that are due to the influence of the air density and pressure variations on the measured signals, from which the energy estimators are obtained. We show how the energy assignment can be corrected to account for such atmospheric effects.

  4. The ecohydrologic significance of hydraulic redistribution in a semiarid savanna

    Science.gov (United States)

    Scott, Russell L.; Cable, William L.; Hultine, Kevin R.

    2008-02-01

    Recent studies have illuminated the process of hydraulic redistribution, defined as the translocation of soil moisture via plant root systems, but the long-term ecohydrologic significance of this process is poorly understood. We investigated hydraulic redistribution (HR) by Prosopis velutina Woot. (velvet mesquite) in an upland savanna ecosystem over a two-year period. Our goal was to quantify patterns of HR by mesquite roots and assess how this affects tree water use and productivity. We used the heat ratio method to monitor bi-directional sap flow, an analog of HR, in both lateral and tap roots. Additionally, we monitored soil water content and used the eddy covariance technique to quantify ecosystem carbon dioxide and water exchange. Mesquite roots redistributed large amounts of water throughout the year, even during periods of canopy dormancy. Dormant season precipitation (November-March) was often taken up by shallow lateral roots and transferred downward in the soil profile by deeper lateral and tap roots. Such a transfer was also apparent when the trees were active and moisture from summer rainfall was plant available in the upper soil layers. As the upper soil layers dried, sap flow moving toward the canopy in the lateral roots diminished and water use from deeper soils increased via the taproots. The relationship between root sap flow and above-canopy fluxes suggested that deeper "stored" water from HR allowed the trees to transpire more in the spring that followed a winter with significant downward redistribution. Patterns of lateral and tap root sap flow also implied that redistribution may extend the growing season of the trees after summer rains have ended and surface soils are dry, thus allowing the trees to photosynthesize through periods of seasonal drought. The large hydrologic magnitude and the ecological effects of HR we studied, along with mounting evidence of this process occurring in many other ecosystems, indicates that HR should be accounted

  5. Intrahepatic Flow Redistribution in Patients Treated with Radioembolization

    Energy Technology Data Exchange (ETDEWEB)

    Spreafico, Carlo, E-mail: carlo.spreafico@istitutotumori.mi.it; Morosi, Carlo, E-mail: carlo.morosi@istitutotumori.mi.it [Fondazione Istituto Tumori, Department of Radiology (Italy); Maccauro, Marco, E-mail: marco.maccauro@istitutotumori.mi.it [Fondazione Istituto Tumori, Department of Nuclear Medicine (Italy); Romito, Raffaele, E-mail: raffaele.romito@istitutotumori.mi.it [Fondazione Istituto Tumori, Department of Liver Surgery and Transplant (Italy); Lanocita, Rodolfo, E-mail: rodolfo.lanocita@istitutotumori.mi.it; Civelli, Enrico M., E-mail: enrico.civelli@istitutotumori.mi.it [Fondazione Istituto Tumori, Department of Radiology (Italy); Sposito, Carlo, E-mail: carlo.sposito@istitutotumori.mi.it; Bhoori, Sherrie, E-mail: sherrie.bhoori@istitutotumori.mi.it [Fondazione Istituto Tumori, Department of Liver Surgery and Transplant (Italy); Chiesa, Carlo, E-mail: carlo.chiesa@istitutotumori.mi.it [Fondazione Istituto Tumori, Department of Nuclear Medicine (Italy); Frigerio, Laura F., E-mail: laura.frigerio@istitutotumori.mi.it [Fondazione Istituto Tumori, Department of Radiology (Italy); Lorenzoni, Alice, E-mail: alice.lorenzoni@istitutotumori.mi.it [Fondazione Istituto Tumori, Department of Nuclear Medicine (Italy); Cascella, Tommaso, E-mail: tommaso.cascella@istitutotumori.mi.it; Marchianò, Alfonso, E-mail: alfonso.marchiano@istitutotumori.mi.it [Fondazione Istituto Tumori, Department of Radiology (Italy); Mazzaferro, Vincenzo, E-mail: vincenzo.mazzaferro@istitutotumori.mi.it [Fondazione Istituto Tumori, Department of Liver Surgery and Transplant (Italy)

    2015-04-15

    IntroductionIn planning Yttrium-90 ({sup 90}Y)-radioembolizations, strategy problems arise in tumours with multiple arterial supplies. We aim to demonstrate that tumours can be treated via one main feeding artery achieving flow redistribution by embolizing accessory vessels.MethodsOne hundred {sup 90}Y-radioembolizations were performed on 90 patients using glass microspheres. In 19 lesions/17 patients, accessory branches were found feeding a minor tumour portion and embolized. In all 17 patients, the assessment of the complete perfusion was obtained by angiography and single photon emission computerized tomography–computerized tomography (SPECT–CT). Dosimetry, toxicity, and tumor response rate of the patients treated after flow redistribution were compared with the 83 standard-treated patients. Seventeen lesions in 15 patients with flow redistribution were chosen as target lesions and evaluated according to mRECIST criteria.ResultsIn all patients, the complete tumor perfusion was assessed immediately before radioembolization by angiography in all patients and after the {sup 90}Y-infusion by SPECT–CT in 15 of 17 patients. In the 15 assessable patients, the response rate in their 17 lesions was 3 CR, 8 PR, and 6 SD. Dosimetric and toxicity data, as well tumour response rate, were comparable with the 83 patients with regular vasculature.ConclusionsAll embolization procedures were performed successfully with no complications, and the flow redistribution was obtained in all cases. Results in term of toxicity, median dose administered, and radiological response were comparable with standard radioembolizations. Our findings confirmed the intratumoral flow redistribution after embolizing the accessory arteries, which makes it possible to treat the tumour through its single main feeding artery.

  6. Simulation of Water Movement through Unsaturated Infiltration- Redistribution System

    Directory of Open Access Journals (Sweden)

    T Bunsri

    2009-01-01

    Full Text Available This paper deals with the movement of water in a natural unsaturated zone, focusing on infiltration-redistribution system. Infiltration refers to the downward movement of water due to the gravitational force and redistribution defines the upward movement of water due to the capillary rise. Under natural conditions, the movement of water through an infiltrationredistribution depended upon the relations among water content, hydraulic conductivity and tension of soil pore. Various combinations of water balance concepts, Richards’ equation, soil-physics theory and capillary height concepts were applied to mathematically model the movement of water through infiltration-redistribution system. The accuracy and computational efficiency of the developed model were evaluated for the case study. Besides the laboratory scale sand/soil columns with the inner diameter of 10.4 cm were investigated in order to provide the supporting data for model calibration. Sand/soil layers were packed with a bulk density of 1.80 and 1.25 g/cm3, respectively. The infiltration was sprayed uniformly at the soil surface with the constant rate of 66.1 and 7.18 cm3/h for sand and soil columns, respectively. The redistribution process was developed by which water arriving at the column base enter to the sand/soil column due to capillary rise. The laboratory observations were simulated using the developed model. The results indicate that the developed model could well estimate the movement of water in the infiltration-redistribution system that observed in the case study and the experiments.

  7. Atmospheric Neutrinos

    CERN Document Server

    Gaisser, Thomas K

    2016-01-01

    In view of the observation by IceCube of high-energy astrophysical neutrinos, it is important to quantify the uncertainty in the background of atmospheric neutrinos. There are two sources of uncertainty, the imperfect knowledge of the spectrum and composition of the primary cosmic rays that produce the neutrinos and the limited understanding of hadron production, including charm, at high energy. This paper is an overview of both aspects.

  8. Mechanism of Radial Redistribution of Energetic Trapped Ions Due to m=2/n=1 Internal Reconnection in Joint European Torus Shear Optimized Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    N.N. Gorelenkov; A. Gondhalekar; A.A. Korotkov; S.E. Sharapov; D. Testa; and Contributors to the EFDA-JET Workprogramme

    2002-01-18

    Internal radial redistribution of MeV energy ICRF-driven hydrogen minority ions was inferred from neutral particle analyzer measurements during large amplitude MHD activity leading to internal reconnection in Shear Optimized plasmas in the Joint European Torus (JET). A theory is developed for energetic ion redistribution during a reconnection driven by an m=2/n=1 internal kink mode. Plasma motion during reconnection generates an electric field which can change the energy and radial position of the energetic ions. The magnitude of ion energy change depends on the value of the safety factor at the plasma core from which the energetic ions are redistributed. A relation is found for corresponding change in canonical momentum. P(subscript phi), which leads to radial displacement of the ions. The model yields distinctive new features of energetic ion redistribution under such conditions. Predicted characteristics of ion redistribution are compared with the NPA measurements, and good correlation is found. Sometimes fast ions were transported to the plasma edge due to interaction with a long-lived magnetic island which developed after the reconnection and had chirping frequency in the laboratory frame. Convection of resonant ions trapped in a radially moving phase-space island is modeled to understand the physics of such events.

  9. Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: observations of midwinter SHEBA conditions

    Science.gov (United States)

    Persson, P. Ola G.; Shupe, Matthew D.; Perovich, Don; Solomon, Amy

    2016-10-01

    Observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) project are used to describe a sequence of events linking midwinter long-range advection of atmospheric heat and moisture into the Arctic Basin, formation of supercooled liquid water clouds, enhancement of net surface energy fluxes through increased downwelling longwave radiation, and reduction in near-surface conductive heat flux loss due to a warming of the surface, thereby leading to a reduction in sea-ice bottom growth. The analyses provide details of two events during Jan. 1-12, 1998, one entering the Arctic through Fram Strait and the other from northeast Siberia; winter statistics extend the results. Both deep, precipitating frontal clouds and post-frontal stratocumulus clouds impact the surface radiation and energy budget. Cloud liquid water, occurring preferentially in stratocumulus clouds extending into the base of the inversion, provides the strongest impact on surface radiation and hence modulates the surface forcing, as found previously. The observations suggest a minimum water vapor threshold, likely case dependent, for producing liquid water clouds. Through responses to the radiative forcing and surface warming, this cloud liquid water also modulates the turbulent and conductive heat fluxes, and produces a thermal wave penetrating into the sea ice. About 20-33 % of the observed variations of bottom ice growth can be directly linked to variations in surface conductive heat flux, with retarded ice growth occurring several days after these moisture plumes reduce the surface conductive heat flux. This sequence of events modulate pack-ice wintertime environmental conditions and total ice growth, and has implications for the annual sea-ice evolution, especially for the current conditions of extensive thinner ice.

  10. New molecular species of potential interest to atmospheric chemistry: isomers on the [H, S2, Br] potential energy surface.

    Science.gov (United States)

    de Oliveira-Filho, Antonio Gustavo S; Aoto, Yuri Alexandre; Ornellas, Fernando R

    2009-02-19

    This work reports a state-of-the-art theoretical characterization of four new sulfur-bromine species and five transition states on the [H, S(2), Br] potential energy surface. Our highest level theoretical approach employed the method coupled cluster singles and doubles with perturbative contributions of connected triples, CCSD(T), along with the series of correlation-consistent basis sets and with extrapolation to the complete basis set (CBS) limit in the optimization of the geometrical parameters and to quantify the energetic quantities. The structural and vibrational frequencies here reported are unique and represent the most accurate investigation to date of these species. The global minimum corresponds to a skewed structure HSSBr with a disulfide bond; this is followed by a pyramidal-like structure, SSHBr, 18.85 kcal/mol above the minimum. Much higher in energy, we found another skewed structure, HSBrS (50.29 kcal/mol), with one S-Br dative-type bond, and another pyramidal-like one, HBrSS (109.80 kcal/mol), with two S-Br dative-type bonds. The interconversion of HSSBr into SSHBr can occur via a transfer of either the hydrogen or the bromine atom but involves a very high barrier of about 43 kcal/mol. These molecules are potentially a new route of coupling the sulfur and bromine chemistry in the atmosphere, and conditions of high concentration of H(2)S like in volcanic eruptions might contribute to their formation. We note that HSSBr can act as a reservoir molecule for the reaction between the radicals HSS and Br. Also, an assessment of the methods DFT/B3LYP/CBS and MP2/CBS relative to CCSD(T)/CBS provides insights on the expected performance of these methods on the characterization of polysulfides and also of more complex systems containing disulfide bridges.

  11. Analysis of climate change impacts on surface energy balance of Lake Huron (estimation of surface energy balance components: Remote sensing approach for water -- atmosphere parameterization)

    Science.gov (United States)

    Petchprayoon, Pakorn

    The purpose of this thesis was to investigate the physical processes of energy exchange between the water surface and atmosphere of Lake Huron in order to explain the processes behind such changes in long-term water levels and to monitor their spatial and temporal fluctuations. The lake surface water temperature and the four components of surface energy balance, including net radiation, latent heat, sensible heat, and heat storage, as well as evaporation rate, were estimated using the daily remotely sensed data from eleven years (2002--2012) with a multi-spatial resolution of 1 km to 5 km using the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Terra satellite, together with in-situ measurements. The regression analysis of the entire lake daily mean water surface temperature revealed a positive trend of 0.1 °C per year, indicating that the lake surface temperature increased by 1.1°C during the period 2002-2012. The warming rate was found to be greatest in the deepest areas of the lake, with a statistically-significant correlation between warming rate and depth. The four components of surface energy balance showed temporal and spatial heterogeneities. There were strong seasonal patterns for all of the components, which were very high in summer and low in winter for net radiation and heat storage. In contrast, the latent heat and sensible heat were very high in the winter and very low in the summer. Approximately 70% of the annual mean 30 min evaporation occurred during the fall and winter seasons, whereas the lowest evaporation rate occurred in March, which was only 3% of the annual mean of 30 min evaporation. There was an increase in the evaporation rate of approximately 1.4 mm m-2 over the 2005--2012 observation period, the water level decreased by 0.04 m during the period 2002--2012, and there was a decrease in total water storage by 1.18 cm during the entire study period (2004--2012). There was obviously a negative correlation between lake

  12. Development of a General Analysis and Unfolding Scheme and its Application to Measure the Energy Spectrum of Atmospheric Neutrinos with IceCube

    CERN Document Server

    Aartsen, M G; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Barwick, S W; Baum, V; Beatty, J J; Tjus, J Becker; Becker, K -H; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bos, F; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H P; Brown, A M; Casey, J; Casier, M; Cheung, E; Chirkin, D; Christov, A; Christy, B; Clark, K; Classen, L; Clevermann, F; Coenders, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; Day, M; deAndré, J P A M; De Clercq, C; De Ridder, S; Desiati, P; de Vries, K D; de With, M; DeYoung, T; Díaz-Vélez, J C; Dunkman, M; Eagan, R; Eberhardt, B; Eichmann, B; Eisch, J; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Felde, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Frantzen, K; Fuchs, T; Gaisser, T K; Gaior, R; Gallagher, J; Gerhardt, L; Gier, D; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grant, D; Gretskov, P; Groh, J C; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Hebecker, D; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hellwig, D; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huang, F; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Jagielski, K; Japaridze, G S; Jero, K; Jlelati, O; Jurkovic, M; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kauer, M; Keivani, A; Kelley, J L; Kheirandish, A; Kiryluk, J; Kläs, J; Klein, S R; Köhne, J H; Kohnen, G; Kolanoski, H; Koob, A; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Kriesten, A; Krings, K; Kroll, G; Kroll, M; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Larsen, D T; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leute, J; Lünemann, J; Madsen, J; Maggi, G; Maruyama, R; Mase, K; Matis, H S; Maunu, R; McNally, F; Meagher, K; Medici, M; Meli, A; Meures, T; Miarecki, S; Middell, E; Middlemas, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Paul, L; Penek, Ö; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Pütz, J; Quinnan, M; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Rees, I; Reimann, R; Relich, M; Resconi, E; Rhode, W; Richman, M; Riedel, B; Robertson, S; Rodrigues, J P; Rongen, M; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Sander, H G; Sandroos, J; Santander, M; Sarkar, S; Schatto, K; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Shanidze, R; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stanisha, N A; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Strotjohann, N L; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Terliuk, A; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Tosi, D; Tselengidou, M; Unger, E; Usner, M; Vallecorsa, S; van Eijndhoven, N; Vandenbroucke, J; van Santen, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallraff, M; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whelan, B J; Whitehorn, N; Wichary, C; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zoll, M; Morik, K

    2014-01-01

    We present the development and application of a generic analysis scheme for the measurement of neutrino spectra with the IceCube detector. This scheme is based on regularized unfolding, preceded by an event selection which uses a Minimum Redundancy Maximum Relevance algorithm to select the relevant variables and a Random Forest as a classifier. The analysis has been developed using IceCube data from the 59-string configuration of the detector. 27,771 neutrino candidates were detected in 346 days of livetime. A rejection of 99.9999 % of the atmospheric muon background is achieved. The energy spectrum of the atmospheric neutrino flux is obtained using the TRUEE unfolding program. The unfolded spectrum of atmospheric muon neutrinos covers an energy range from 100 GeV to 1 PeV. Compared to the previous measurement using the detector in the 40-string configuration, the analysis presented here, extends the upper end of the atmospheric neutrino spectrum by more than a factor of two, reaching an energy region that ha...

  13. Development of a general analysis and unfolding scheme and its application to measure the energy spectrum of atmospheric neutrinos with IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G. [Adelaide Univ., SA (Australia). School of Chemistry and Physics; Ackermann, M. [DESY, Zeuthen (Germany); Adams, J. [Canterbury Univ., Christchurch (New Zealand). Dept. of Physics and Astronomy; Collaboration: IceCube Collaboration; and others

    2015-03-01

    We present the development and application of a generic analysis scheme for the measurement of neutrino spectra with the IceCube detector. This scheme is based on regularized unfolding, preceded by an event selection which uses a Minimum Redundancy Maximum Relevance algorithm to select the relevant variables and a random forest for the classification of events. The analysis has been developed using IceCube data from the 59-string configuration of the detector. 27,771 neutrino candidates were detected in 346 days of livetime. A rejection of 99.9999 % of the atmospheric muon background is achieved. The energy spectrum of the atmospheric neutrino flux is obtained using the TRUEE unfolding program. The unfolded spectrum of atmospheric muon neutrinos covers an energy range from 100 GeV to 1 PeV. Compared to the previous measurement using the detector in the 40-string configuration, the analysis presented here, extends the upper end of the atmospheric neutrino spectrum by more than a factor of two, reaching an energy region that has not been previously accessed by spectral measurements. (orig.)

  14. Energy transfer upon collision of selectively excited CO{sub 2} molecules: State-to-state cross sections and probabilities for modeling of atmospheres and gaseous flows

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, A., E-mail: ebiu2005@gmail.com; Faginas-Lago, N.; Pacifici, L.; Grossi, G. [Dipartimento di Chimica, Università di Perugia, via Elce di Sotto 8, 06123 Perugia (Italy)

    2015-07-21

    Carbon dioxide molecules can store and release tens of kcal/mol upon collisions, and such an energy transfer strongly influences the energy disposal and the chemical processes in gases under the extreme conditions typical of plasmas and hypersonic flows. Moreover, the energy transfer involving CO{sub 2} characterizes the global dynamics of the Earth-atmosphere system and the energy balance of other planetary atmospheres. Contemporary developments in kinetic modeling of gaseous mixtures are connected to progress in the description of the energy transfer, and, in particular, the attempts to include non-equilibrium effects require to consider state-specific energy exchanges. A systematic study of the state-to-state vibrational energy transfer in CO{sub 2} + CO{sub 2} collisions is the focus of the present work, aided by a theoretical and computational tool based on quasiclassical trajectory simulations and an accurate full-dimension model of the intermolecular interactions. In this model, the accuracy of the description of the intermolecular forces (that determine the probability of energy transfer in molecular collisions) is enhanced by explicit account of the specific effects of the distortion of the CO{sub 2} structure due to vibrations. Results show that these effects are important for the energy transfer probabilities. Moreover, the role of rotational and vibrational degrees of freedom is found to be dominant in the energy exchange, while the average contribution of translations, under the temperature and energy conditions considered, is negligible. Remarkable is the fact that the intramolecular energy transfer only involves stretching and bending, unless one of the colliding molecules has an initial symmetric stretching quantum number greater than a threshold value estimated to be equal to 7.

  15. Energy transfer upon collision of selectively excited CO2 molecules: State-to-state cross sections and probabilities for modeling of atmospheres and gaseous flows.

    Science.gov (United States)

    Lombardi, A; Faginas-Lago, N; Pacifici, L; Grossi, G

    2015-07-21

    Carbon dioxide molecules can store and release tens of kcal/mol upon collisions, and such an energy transfer strongly influences the energy disposal and the chemical processes in gases under the extreme conditions typical of plasmas and hypersonic flows. Moreover, the energy transfer involving CO2 characterizes the global dynamics of the Earth-atmosphere system and the energy balance of other planetary atmospheres. Contemporary developments in kinetic modeling of gaseous mixtures are connected to progress in the description of the energy transfer, and, in particular, the attempts to include non-equilibrium effects require to consider state-specific energy exchanges. A systematic study of the state-to-state vibrational energy transfer in CO2 + CO2 collisions is the focus of the present work, aided by a theoretical and computational tool based on quasiclassical trajectory simulations and an accurate full-dimension model of the intermolecular interactions. In this model, the accuracy of the description of the intermolecular forces (that determine the probability of energy transfer in molecular collisions) is enhanced by explicit account of the specific effects of the distortion of the CO2 structure due to vibrations. Results show that these effects are important for the energy transfer probabilities. Moreover, the role of rotational and vibrational degrees of freedom is found to be dominant in the energy exchange, while the average contribution of translations, under the temperature and energy conditions considered, is negligible. Remarkable is the fact that the intramolecular energy transfer only involves stretching and bending, unless one of the colliding molecules has an initial symmetric stretching quantum number greater than a threshold value estimated to be equal to 7.

  16. An evaluation and parameterization of stably stratified turbulence: Insights on the atmospheric boundary layer and implications for wind energy

    Science.gov (United States)

    Wilson, Jordan M.

    This research focuses on the dynamics of turbulent mixing under stably stratified flow conditions. Velocity fluctuations and instabilities are suppressed by buoyancy forces limiting mixing as stability increases and turbulence decreases until the flow relaminarizes. Theories that ubiquitously assume turbulence collapse above a critical value of the gradient Richardson number (e.g. Ri > Ric) are common in meteorological and oceanographic communities. However, most theories were developed from results of small-scale laboratory and numerical experiments with energetic levels several orders of magnitude less than geophysical flows. Geophysical flows exhibit strong turbulence that enhances the transport of momentum and scalars. The mixing length for the turbulent momentum field, L M, serves as a key parameter in assessing large-scale, energy-containing motions. For a stably stratified turbulent shear flow, the shear production of turbulent kinetic energy, P, is here considered to be of greater relevance than the dissipation rate of turbulent kinetic energy, epsilon. Thus, the turbulent Reynolds number can be recast as Re ≡ k2/(nuP) where k is the turbulent kinetic energy, allowing for a new perspective on flow energetics. Using an ensemble data set of high quality direct numerical simulation (DNS) results, large-eddy simulation (LES) results, laboratory experiments, and observational field data of the stable atmospheric boundary layer (SABL), the dichotomy of data becomes apparent. High mixing rates persist to strong stability (e.g. Ri ≈ 10) in the SABL whereas numerical and laboratory results confirm turbulence collapse for Ri ˜ O(1). While this behavior has been alluded to in literature, this direct comparison of data elucidates the disparity in universal theories of stably stratified turbulence. From this theoretical perspective, a Reynolds-averaged framework is employed to develop and evaluate parameterizations of turbulent mixing based on the competing forces

  17. 47 CFR 73.9001 - Redistribution control of digital television broadcasts.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Redistribution control of digital television... RADIO SERVICES RADIO BROADCAST SERVICES Digital Broadcast Television Redistribution Control § 73.9001 Redistribution control of digital television broadcasts. Licensees of TV broadcast stations may utilize...

  18. Business groups and profit redistribution: a boon or bane for firms?

    NARCIS (Netherlands)

    George, Rejie; Kabir, Rezaul

    2008-01-01

    This article examines the phenomenon of profit redistribution in Indian business groups and relates redistribution with the underperformance of group-affiliated firms relative to unaffiliated firms. The study also documents that profit redistribution is more pronounced in groups of large sizes and h

  19. Analysis of pressure buildup data influenced by wellbore phase redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, L.G.; Jones, J.R.; Reynolds, A.C.

    1986-10-01

    This work considers the influence of wellbore phase redistribution effects on the analysis of pressure buildup data. First, the authors show that the pressure responses observed when phase redistribution effects exist consist of three distinct types and delineate the conditions under which each type exists. Second, they investigate the reliability of Fair's type curves for analyzing pressure data. Third, for each type of pressure response, they provide rules for determining when the conventional semilog straight line will begin on a semilog plot of pressure data vs. time. They also consider general procedures that are based on Duhamel's principle for analyzing pressure data when sandface flow rates are also available. They discuss the application of these methods to analyze pressure data influenced by wellbore storage effects and investigate the effect that errors in the measured sandface rate have on the analysis.

  20. The redistribution of granulocytes following E. coli endotoxin induced sepsis

    DEFF Research Database (Denmark)

    Toft, P; Lillevang, S T; Tønnesen, Else Kirstine

    1994-01-01

    Infusion of endotoxin elicits granulocytopenia followed by increased numbers of granulocytes in peripheral blood. The purpose of this study was to investigate the redistribution and sequestration of granulocytes in the tissues following E. coli endotoxin induced sepsis. From 16 rabbits granulocytes...... were isolated, labelled with Indium and reinjected intravenously. Eight rabbits received an infusion of E. coli endotoxin 2 micrograms kg-1 while eight received isotonic saline. The redistribution of granulocytes was imaged with a gamma camera and calculated with a connected computer before and 2 and 6...... hours after infusion of endotoxin or saline. Serum cortisol and interleukin-1 beta were measured. In another seven rabbits, respiratory burst activity and degranulation of granulocytes were measured prior to and from 5 min to 6 hours after infusion of E. coli endotoxin 2 micrograms kg-1 BW. Following...

  1. Pacific Northwest Laboratory: Annual report for 1986 to the DOE Office of Energy Research: Part 3, Atmospheric sciences

    Energy Technology Data Exchange (ETDEWEB)

    Elderkin, C.E.

    1987-06-01

    The goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, and continental scales. In 1986, atmospheric research examined the transport and diffusion of atmospheric contaminants in areas of complex terrain and participated in a large, multilaboratory program to assess the precipitation scavenging processes important to the transformation and wet deposition of chemicals composing ''acid rain.'' In addition, during 1986, a special opportunity for measuring the transport and removal of radioactivity occurred after the Chernobyl reactor accident in April 1986. Separate abstracts were prepared for individual projects.

  2. Federal transfers, interregional inequality and redistribution in Latin America

    Directory of Open Access Journals (Sweden)

    Lucas GONZÁLEZ

    2014-08-01

    Full Text Available This work analyzes the impact of federal transfers and subnational expenditure in human development and interregional equity. Data on federal transfers and subnational spending in Argentina, Brazil, Mexico, Chile, and Colombia, between 1983 and 2011, indicate that the redistributive power of the central government is statistically associated with improvements in interregional equity but not with better values in the human development index. Exactly the opposite results are found for subnational social spending.

  3. Redistributive properties of the vesicular stomatitis virus polymerase

    Energy Technology Data Exchange (ETDEWEB)

    Helfman, W.B.; Perrault, J. (San Diego State Univ., CA (USA))

    1989-08-01

    The template for transcription of the vesicular stomatitis virus (VSV) genome consists of a negative-strand RNA (approximately 11 kb) tightly associated with approximately 1250 copies of the nucleocapsid or N protein (N-RNA template). The interaction between the virion-associated polymerase and this template was probed with a novel assay using purified N-RNA complexes added to detergent-disrupted uv-irradiated standard virions or unirradiated defective interfering (DI) particles. In contrast to the well-known stability of assembled cellular transcription complexes, the VSV polymerase copied exogenously added templates efficiently and yielded products indistinguishable from control virus transcription. Addition of uv-irradiated N-RNA templates to unirradiated virus effectively competed for transcription of endogenous template indicating that most or all of the polymerase can freely redistribute. Furthermore preincubation of virus and added templates at high ionic strength to solubilize L and NS polymerase proteins did not release additional active enzyme for redistribution. Pretranscription of virus also had little or no effect on redistributed activity indicating that polymerase complexes are capable of multiple rounds of synthesis beginning at the 3' end promoter. Unexpectedly, titration with saturating amounts of added N-RNA showed that active polymerase complexes are only in slight excess relative to template in standard or DI particles despite the large surplus of packaged L and NS polypeptides. Moreover, added standard virus templates competed equally well for the redistributing polymerase from DI particles or standard virus indicating no significant polymerase-binding preference for interfering templates. These findings bear important implications regarding mechanisms of VSV transcription and replication.

  4. Land Policy Changes and Land Redistribution in Ecuador

    Directory of Open Access Journals (Sweden)

    María Belén Albornoz Barriga

    2016-12-01

    Full Text Available This paper examines three distinct periods of policy change and land redistribution in Ecuador through the agrarian reform laws of 1964, 1973 and 2010. A comparative case study of each moment of the law reforms was based on the instruments and policy network approach. In order to explain public policy process design, the high incidence of collective domains led by agribusiness on government management, and the incidence of indigenous organizations and farmers over the state action.

  5. Spectroscopy of reactive species produced by low-energy atmospheric-pressure plasma on conductive target material surface

    Science.gov (United States)

    Yamada, Hiromasa; Sakakita, Hajime; Kato, Susumu; Kim, Jaeho; Kiyama, Satoru; Fujiwara, Masanori; Itagaki, Hirotomo; Okazaki, Toshiya; Ikehara, Sanae; Nakanishi, Hayao; Shimizu, Nobuyuki; Ikehara, Yuzuru

    2016-10-01

    A method for blood coagulation using low-energy atmospheric-pressure plasma (LEAPP) is confirmed as an alternative procedure to reduce tissue damage caused by heat. Blood coagulation using LEAPP behaves differently depending on working gas species; helium is more effective than argon in promoting fast coagulation. To analyse the difference in reactive species produced by helium and argon plasma, spectroscopic measurements were conducted without and with a target material. To compare emissions, blood coagulation experiments using LEAPP for both plasmas were performed under almost identical conditions. Although many kinds of reactive species such as hydroxyl radicals and excited nitrogen molecules were observed with similar intensity in both plasmas, intensities of nitrogen ion molecules and nitric oxide molecules were extremely strong in the helium plasma. It is considered that nitrogen ion molecules were mainly produced by penning ionization by helium metastable. Near the target, a significant increase in the emissions of reactive species is observed. There is a possibility that electron acceleration was induced in a local electric field formed on the surface. However, in argon plasma, emissions from nitrogen ion were not measured even near the target surface. These differences between the two plasmas may be producing the difference in blood coagulation behaviour. To control the surrounding gas of the plasma, a gas-component-controllable chamber was assembled. Filling the chamber with O2/He or N2/He gas mixtures selectively produces either reactive oxygen species or reactive nitrogen species. Through selective treatments, this chamber would be useful in studying the effects of specific reactive species on blood coagulation.

  6. The balance of kinetic and total energy simulated by the OSU two-level atmospheric general circulation model for January and July

    Science.gov (United States)

    Wang, J.-T.; Gates, W. L.; Kim, J.-W.

    1984-01-01

    A three-year simulation which prescribes seasonally varying solar radiation and sea surface temperature is the basis of the present study of the horizontal structure of the balances of kinetic and total energy simulated by Oregon State University's two-level atmospheric general circulation model. Mechanisms responsible for the local energy changes are identified, and the energy balance requirement's fulfilment is examined. In January, the vertical integral of the total energy shows large amounts of external heating over the North Pacific and Atlantic, together with cooling over most of the land area of the Northern Hemisphere. In July, an overall seasonal reversal is found. Both seasons are also characterized by strong energy flux divergence in the tropics, in association with the poleward transport of heat and momentum.

  7. Development and analysis of prognostic equations for mesoscale kinetic energy and mesoscale (subgrid scale) fluxes for large-scale atmospheric models

    Science.gov (United States)

    Avissar, Roni; Chen, Fei

    1993-01-01

    Generated by landscape discontinuities (e.g., sea breezes) mesoscale circulation processes are not represented in large-scale atmospheric models (e.g., general circulation models), which have an inappropiate grid-scale resolution. With the assumption that atmospheric variables can be separated into large scale, mesoscale, and turbulent scale, a set of prognostic equations applicable in large-scale atmospheric models for momentum, temperature, moisture, and any other gaseous or aerosol material, which includes both mesoscale and turbulent fluxes is developed. Prognostic equations are also developed for these mesoscale fluxes, which indicate a closure problem and, therefore, require a parameterization. For this purpose, the mean mesoscale kinetic energy (MKE) per unit of mass is used, defined as E-tilde = 0.5 (the mean value of u'(sub i exp 2), where u'(sub i) represents the three Cartesian components of a mesoscale circulation (the angle bracket symbol is the grid-scale, horizontal averaging operator in the large-scale model, and a tilde indicates a corresponding large-scale mean value). A prognostic equation is developed for E-tilde, and an analysis of the different terms of this equation indicates that the mesoscale vertical heat flux, the mesoscale pressure correlation, and the interaction between turbulence and mesoscale perturbations are the major terms that affect the time tendency of E-tilde. A-state-of-the-art mesoscale atmospheric model is used to investigate the relationship between MKE, landscape discontinuities (as characterized by the spatial distribution of heat fluxes at the earth's surface), and mesoscale sensible and latent heat fluxes in the atmosphere. MKE is compared with turbulence kinetic energy to illustrate the importance of mesoscale processes as compared to turbulent processes. This analysis emphasizes the potential use of MKE to bridge between landscape discontinuities and mesoscale fluxes and, therefore, to parameterize mesoscale fluxes

  8. Current Redistribution in Resistor Networks: Fat-Tail Statistics in Regular and Small-World Networks

    CERN Document Server

    Lehmann, Jörg

    2016-01-01

    The redistribution of electrical currents in resistor networks after single-bond failures is analyzed in terms of current-redistribution factors that are shown to depend only on the topology of the network and on the values of the bond resistances. We investigate the properties of these current-redistribution factors for regular network topologies (e.g. $d$-dimensional hypercubic lattices) as well as for small-world networks. In particular, we find that the statistics of the current redistribution factors exhibits a fat-tail behavior, which reflects the long-range nature of the current redistribution as determined by Kirchhoff's circuit laws.

  9. Atmospheric gamma ray angle and energy distributions from sea level to 3.5 g/sq cm and 2 to 25 MeV

    Science.gov (United States)

    Ryan, J. M.; Jennings, M. C.; Radwin, M. D.; Zych, A. D.; White, R. S.

    1979-01-01

    Differential fluxes of gamma rays were calculated for energies of 2-25 MeV, zenith angles of 0-50 deg and 180-130 deg, and atmospheric depths from nominal sea level, 1000 g/sq cm, to float altitude, 3.5 g/sq cm residual atmosphere. Above 100 g/sq cm growth curves were constructed to estimate the contribution of the extraterrestrial gamma ray flux to the total downward-moving flux, while the upward-moving gamma rays were taken to be strictly of atmospheric origin. Below 100 g/sq cm, all gamma rays originate in the atmosphere. The downward atmospheric flux increases by almost two orders of magnitude between float altitude and the Pfotzer maximum, while the extraterrestrial flux is attenuated exponentially. Gamma rays produced by neutron interactions with the carbon in the scintillator liquid are eliminated by constructing growth curves for downward-moving gamma rays at high altitudes and are negligible compared with downward-moving gamma rays at lower altitudes and upward-moving gamma rays at all altitudes.

  10. Role of solar influences on geomagnetosphere and upper atmosphere

    Science.gov (United States)

    Kumar Tripathi, Arvind

    The Earth's magnetosphere and upper atmosphere can be greatly perturbed by variations in the solar luminosity caused by disturbances on the solar surface. The state of near-Earth space environment is governed by the Sun and is very dynamic on all spatial and temporal scale. The geomagnetic field which protects the Earth from solar wind and cosmic rays is also essential to the evolution of life; its variations can have either direct or indirect effect on human physiology and health state even if the magnitude of the disturbance is small. Geomagnetic disturbances are seen at the surface of the Earth as perturbations in the components of the geomagnetic field, caused by electric currents flowing in the magnetosphere and upper atmosphere. Ionospheric and thermospheric storms also result from the redistribution of particles and fields. Global thermospheric storm winds and composition changes are driven by energy injection at high latitudes. These storm effects may penetrate downwards to the lower thermosphere and may even perturb the mesosphere. Many of the ionospheric changes at mid-latitude can be understood as a response to thermospheric perturbations. The transient bursts of solar energetic particles, often associated with large solar transients, have been observed to have effects on the Earth's middle and lower atmosphere, including the large-scale destruction of polar stratospheric and tropospheric ozone. In the present, we have discussed effect of solar influences on earth's magnetosphere and upper atmosphere that are useful to space weather and global warming, on the basis of various latest studies.

  11. Global atmospheric teleconnections during Dansgaard-Oeschger events

    Science.gov (United States)

    Markle, Bradley R.; Steig, Eric J.; Buizert, Christo; Schoenemann, Spruce W.; Bitz, Cecilia M.; Fudge, T. J.; Pedro, Joel B.; Ding, Qinghua; Jones, Tyler R.; White, James W. C.; Sowers, Todd

    2017-01-01

    During the last glacial period, the North Atlantic region experienced a series of Dansgaard-Oeschger cycles in which climate abruptly alternated between warm and cold periods. Corresponding variations in Antarctic surface temperature were out of phase with their Northern Hemisphere counterparts. The temperature relationship between the hemispheres is commonly attributed to an interhemispheric redistribution of heat by the ocean overturning circulation. Changes in ocean heat transport should be accompanied by changes in atmospheric circulation to satisfy global energy budget constraints. Although changes in tropical atmospheric circulation linked to abrupt events in the Northern Hemisphere are well documented, evidence for predicted changes in the Southern Hemisphere’s atmospheric circulation during Dansgaard-Oeschger cycles is lacking. Here we use a high-resolution deuterium-excess record from West Antarctica to show that the latitude of the mean moisture source for Antarctic precipitation changed in phase with abrupt shifts in Northern Hemisphere climate, and significantly before Antarctic temperature change. This provides direct evidence that Southern Hemisphere mid-latitude storm tracks shifted within decades of abrupt changes in the North Atlantic, in parallel with meridional migrations of the intertropical convergence zone. We conclude that both oceanic and atmospheric processes, operating on different timescales, link the hemispheres during abrupt climate change.

  12. Large Abundances of Polycyclic Aromatic Hydrocarbons in Titan's Upper Atmosphere

    Science.gov (United States)

    Lopez-Puertas, M.; Dinelli, B. M.; Adriani, A.; Funke, B.; Garcia-Comas, M.; Moriconi, M. L.; D'Aversa, E.; Boersma, C.; Allamandola, L. J.

    2013-01-01

    In this paper, we analyze the strong unidentified emission near 3.28 micron in Titan's upper daytime atmosphere recently discovered by Dinelli et al.We have studied it by using the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbons (PAHs), after absorbing UV solar radiation, are able to emit strongly near 3.3 micron. By using current models for the redistribution of the absorbed UV energy, we have explained the observed spectral feature and have derived the vertical distribution of PAH abundances in Titan's upper atmosphere. PAHs have been found to be present in large concentrations, about (2-3) × 10(exp 4) particles / cubic cm. The identified PAHs have 9-96 carbons, with a concentration-weighted average of 34 carbons. The mean mass is approx 430 u; the mean area is about 0.53 sq. nm; they are formed by 10-11 rings on average, and about one-third of them contain nitrogen atoms. Recently, benzene together with light aromatic species as well as small concentrations of heavy positive and negative ions have been detected in Titan's upper atmosphere. We suggest that the large concentrations of PAHs found here are the neutral counterpart of those positive and negative ions, which hence supports the theory that the origin of Titan main haze layer is located in the upper atmosphere.

  13. Towards Direct Numerical Simulation of mass and energy fluxes at the soil-atmospheric interface with advanced Lattice Boltzmann methods

    Science.gov (United States)

    Wang, Ying; Krafczyk, Manfred; Geier, Martin; Schönherr, Martin

    2014-05-01

    The quantification of soil evaporation and of soil water content dynamics near the soil surface are critical in the physics of land-surface processes on many scales and are dominated by multi-component and multi-phase mass and energy fluxes between the ground and the atmosphere. Although it is widely recognized that both liquid and gaseous water movement are fundamental factors in the quantification of soil heat flux and surface evaporation, their computation has only started to be taken into account using simplified macroscopic models. As the flow field over the soil can be safely considered as turbulent, it would be natural to study the detailed transient flow dynamics by means of Large Eddy Simulation (LES [1]) where the three-dimensional flow field is resolved down to the laminar sub-layer. Yet this requires very fine resolved meshes allowing a grid resolution of at least one order of magnitude below the typical grain diameter of the soil under consideration. In order to gain reliable turbulence statistics, up to several hundred eddy turnover times have to be simulated which adds up to several seconds of real time. Yet, the time scale of the receding saturated water front dynamics in the soil is on the order of hours. Thus we are faced with the task of solving a transient turbulent flow problem including the advection-diffusion of water vapour over the soil-atmospheric interface represented by a realistic tomographic reconstruction of a real porous medium taken from laboratory probes. Our flow solver is based on the Lattice Boltzmann method (LBM) [2] which has been extended by a Cumulant approach similar to the one described in [3,4] to minimize the spurious coupling between the degrees of freedom in previous LBM approaches and can be used as an implicit LES turbulence model due to its low numerical dissipation and increased stability at high Reynolds numbers. The kernel has been integrated into the research code Virtualfluids [5] and delivers up to 30% of the

  14. Study of diffuse cosmic and atmospheric gamma radiation using a spark chamber in the energy range 4 MeV--100 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Lavigne, J.M.; Niel, M.; Vedrenne, G.; Agrinier, B.; Bonfand, E.; Parlier, B.; Rao, K.R.

    1982-10-15

    The Agathe Balloon experiment performed by the Commissariat a l'Energie Atomique (C.E.A.) of Saclay and the Centre d'Etude Spatiale des Rayonnements (C.E.S.R.) of Toulouse was launched in 1976 November and 1977 February in Brazil during a campaign organized by the Centre National d'Etudes Spatials (C.N.E.S.) and the Instituto de Pesquisas Espacias (I.N.P.E.). The total atmospheric and cosmic ..gamma..-ray flux for various energy ranges was found using flux measurements during the balloon's ascent. In each case, it was possible to deduce the flux values of the diffuse and atmospheric components.

  15. Measurement of the atmospheric {nu}{sub {mu}} energy spectrum from 100 GeV to 200 TeV with the ANTARES telescope

    Energy Technology Data Exchange (ETDEWEB)

    Adrian-Martinez, S.; Ardid, M.; Larosa, G.; Martinez-Mora, J.A. [Universitat Politecnica de Valencia, Institut d' Investigacio per a la Gestio Integrada de les Zones Costaneres (IGIC), Gandia (Spain); Albert, A.; Drouhin, D.; Racca, C. [GRPHE - Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit, BP 50568, Colmar (France); Al Samarai, I.; Aubert, J.J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Charif, Z.; Core, L.; Costantini, H.; Coyle, P.; Curtil, C.; Dornic, D.; Ernenwein, J.P.; Escoffier, S.; Lambard, E.; Riviere, C.; Vallee, C.; Yatkin, K. [Aix-Marseille Universite, CPPM, CNRS/IN2P3, Marseille (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Vilanova i la Geltru, Barcelona (Spain); Anghinolfi, M.; Sanguineti, M. [INFN - Sezione di Genova, Genova (Italy); Anton, G.; Classen, F.; Eberl, T.; Enzenhoefer, A.; Fehn, K.; Folger, F.; Fritsch, U.; Geisselsoeder, S.; Geyer, K.; Gleixner, A.; Graf, K.; Herold, B.; Hoessl, J.; James, C.W.; Kalekin, O.; Kappes, A.; Katz, U.; Lahmann, R.; Motz, H.; Neff, M.; Richter, R.; Roensch, K.; Schmid, J.; Schnabel, J.; Seitz, T.; Shanidze, R.; Sieger, C.; Spies, A.; Wagner, S. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Anvar, S.; Louis, F. [CEA Saclay, Direction des Sciences de la Matiere - Institut de recherche sur les lois fondamentales de l' Univers - Service d' Electronique des Detecteurs et d' Informatique, Gif-sur-Yvette Cedex (France); Astraatmadja, T.; Bogazzi, C.; Bouwhuis, M.C.; Heijboer, A.J.; Jong, M. de; Michael, T.; Palioselitis, D.; Schulte, S.; Steijger, J.J.M.; Visser, E. [Nikhef, Amsterdam (Netherlands); Baret, B.; Bouhou, B.; Creusot, A.; Galata, S.; Kouchner, A.; Elewyck, V. van [Universite Paris Diderot, APC, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Paris (France); Barrios-Marti, J.; Bigongiari, C.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Sanchez-Losa, A.; Yepes, H.; Zornoza, J.D.; Zuniga, J. [CSIC - Universitat de Valencia, IFIC - Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, Valencia (Spain); Basa, S.; Marcelin, M.; Nezri, E. [Pole de l' Etoile Site de Chateau-Gombert, LAM - Laboratoire d' Astrophysique de Marseille, Marseille Cedex 13 (France); Biagi, S.; Fusco, L.A.; Giacomelli, G.; Margiotta, A.; Spurio, M. [INFN - Sezione di Bologna, Bologna (Italy); Dipartimento di Fisica dell' Universita, Bologna (Italy); Bruijn, R.; Decowski, M.P.; Wolf, E. de [Nikhef, Amsterdam (Netherlands); Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, XG Amsterdam (Netherlands); Capone, A.; De Bonis, G.; Fermani, P.; Perrina, C.; Simeone, F. [INFN - Sezione di Roma, Roma (Italy); Dipartimento di Fisica dell' Universita La Sapienza, Roma (Italy); Caramete, L.; Pavalas, G.E.; Popa, V. [Institute for Space Sciences, Bucharest (Romania); Carloganu, C.; Dumas, A.; Gay, P.; Guillard, G. [Clermont Universite, Universite Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, Clermont-Ferrand (France); Cecchini, S.; Chiarusi, T. [INFN - Sezione di Bologna, Bologna (Italy); Charvis, P.; Deschamps, A.; Hello, Y. [Universite Nice Sophia-Antipolis, Geoazur, CNRS/INSU, IRD, Observatoire de la Cote d' Azur, Sophia Antipolis (France); Circella, M. [INFN - Sezione di Bari, Bari (Italy); Dekeyser, I.; Lefevre, D.; Martini, S.; Robert, A.; Tamburini, C. [Aix-Marseille University, Mediterranean Institute of Oceanography (MIO), Marseille Cedex 9 (France); Universite du Sud Toulon-Var, CNRS-INSU/IRD UM 110, La Garde Cedex (France); Distefano, C.; Lattuada, D.; Piattelli, P.; Sapienza, P.; Trovato, A. [INFN - Laboratori Nazionali del Sud (LNS), Catania (Italy); Donzaud, C. [Universite Paris Diderot, APC, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Paris (France); Univ Paris-Sud, Orsay Cedex (France); Dorosti, Q.; Loehner, H. [University of Groningen, Kernfysisch Versneller Instituut (KVI), Groningen (Netherlands); Flaminio, V. [INFN - Sezione di Pisa, Pisa (Italy); Dipartimento di Fisica dell' Universita, Pisa (Italy); Giordano, V. [INFN - Sezione di Catania, Catania (Italy); Haren, H. van [Royal Netherlands Institute for Sea Research (NIOZ), ' t Horntje (Texel) (Netherlands); Kadler, M. [Universitaet Wuerzburg, Institut fuer Theoretische Physik und Astrophysik, Wuerzburg (Germany); Kooijman, P. [Nikhef, Amsterdam (Netherlands); Universiteit Utrecht, Faculteit Betawetenschappen, Utrecht (Netherlands); Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, XG Amsterdam (Netherlands); Kreykenbohm, I.; Mueller, C.; Wilms, J. [Universitaet Erlangen-Nuernberg, Dr. Remeis-Sternwarte and ECAP, Bamberg (Germany); Kulikovskiy, V. [INFN - Sezione di Genova, Genova (Italy); Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Leonora, E.; Lo Presti, D. [INFN - Sezione di Catania, Catania (Italy); Dipartimento di Fisica ed Astronomia dell' Universita, Catania (IT); Loucatos, S.; Schuessler, F.; Stolarczyk, T.; Vallage, B.; Vernin, P. [CEA Saclay, Direction des Sciences de la Matiere, Institut de recherche sur les lois fondamentales de l' Univers, Service de Physique des Particules, Gif-sur-Yvette Cedex (FR); Montaruli, T. [INFN - Sezione di Bari, Bari (IT); Universite de Geneve, Departement de Physique Nucleaire et Corpusculaire, Geneva (CH); Morganti, M. [INFN - Sezione di Pisa, Pisa (IT); Pradier, T. [Universite de Strasbourg et CNRS/IN2P3, IPHC-Institut Pluridisciplinaire Hubert Curien, 23 rue du Loess, BP 28, Strasbourg Cedex 2 (FR); Rostovtsev, A. [ITEP - Institute for Theoretical and Experimental Physics, Moscow (RU); Samtleben, D.F.E. [Nikhef, Amsterdam (NL); Universiteit Leiden, Leids Instituut voor Onderzoek in Natuurkunde, Leiden (NL); Taiuti, M. [INFN - Sezione di Genova, Genova (IT); Dipartimento di Fisica dell' Universita, Genova (IT); Tayalati, Y. [University Mohammed I, Laboratory of Physics of Matter and Radiations, B.P. 717, Oujda (MA)

    2013-10-15

    Atmospheric neutrinos are produced during cascades initiated by the interaction of primary cosmic rays with air nuclei. In this paper, a measurement of the atmospheric {nu}{sub {mu}} + anti {nu}{sub {mu}} energy spectrum in the energy range 0.1-200 TeV is presented, using data collected by the ANTARES underwater neutrino telescope from 2008 to 2011. Overall, the measured flux is {proportional_to}25 % higher than predicted by the conventional neutrino flux, and compatible with the measurements reported in ice. The flux is compatible with a single power-law dependence with spectral index {gamma}{sub meas}=3.58{+-}0.12. With the present statistics the contribution of prompt neutrinos cannot be established. (orig.)

  16. The. beta. -heating redistribution of DT (deuterium-tritium) solid fuel in glass shells

    Energy Technology Data Exchange (ETDEWEB)

    Musinski, D.L.; Mruzek, M.T.; Felmlee, W.J.; Mehler, R.D.

    1988-01-01

    Recent laboratory observations have confirmed that the energy from ..beta..-heating is sufficient to redistribution DT fuel in Inertial Confinement Fusion, ICF, shells when the shell is held within an isothermal container. There are several steps that now must be taken in the development of this technology. We know that the presence of He/sup 3/ within the interior of the shell will impede the redistribution of the DT. Therefore, the rates at which a DT fuel layer becomes uniform must be experimentally established. To allow target designers to evaluate various options, we need to experimentally determine the limits on the fuel layers uniformity. In addition, to consider realistic hardware systems that can produce these targets, we need to establish the effects that a non-isothermal environment will have on the fuel layer uniformity. To address some of these questions, KMS Fusion has designed and constructed an experimental system that provides an isothermal environment from the shell, and allows the fuel layer uniformity to be documented. Preliminary experiments using this system demonstrate that there are several options for using ..beta..-decay heat to produce a uniform solid fuel layer. These experiments indicate that slowly cooling the shell through the triple points of the DT fuel mixture results in a significant increase in the uniformity of the initial solid layer. 8 refs., 7 figs.

  17. Spectral re-distribution and surface loss effects in Swift XRT (XMM-Newton EPIC) MOS CCDs

    CERN Document Server

    Short, A D; Turner, M J L

    2002-01-01

    In the course of testing and selecting the EPIC MOS CCDs for the XMM-Newton observatory, the developed a Monte-Carlo model of the CCD response. Among other things, this model was used to investigate surface loss effects evident at low energies. By fitting laboratory data, these losses were characterised as a simple function of X-ray interaction depth and this result enabled the spectral re-distribution itself to be modelled as a simple analytical function. Subsequently, this analytical function has been used to generate the response matrix for the EPIC MOS instruments and will now be employed to model the spectral re-distribution for the Swift XRT CCD.

  18. A Case Study of the Impacts of Dust Aerosols on Surface Atmospheric Variables and Energy Budgets in a Semi-Arid Region of China

    Institute of Scientific and Technical Information of China (English)

    LING Xiao-Lu; GUO Wei-Dong; ZHANG Le; ZHANG Ren-Jian

    2010-01-01

    The authors present a case study investigatingthe impacts of dust aerosols on surface atmospheric variables and energy budgets in a semi-arid region of China.Enhanced observational meteorological data, radiative fluxes, near-surface heat fluxes, and concentrations of dust aerosols were collected from Tongyu station, one of the reference sites of the International Coordinated Energy and Water Cycle Observations Project (CEOP), during a typical dust storm event in June 2006. A comprehensive analysis of these data show that in this semi-arid area, higher wind velocities and a continuously reduced air pressure were identified during the dust storm period.Dust storm events are usually associated with low relative humidity weather conditions, which result in low latent heat flux values. Dust aerosols suspended in the air decrease the net radiation, mainly by reducing the direct solar radiation reaching the land surface. This reduction in net radiation results in a decrease in soil temperatures at a depth of 2 cm. The combination of increased air temperature and decreased soil temperature strengthens the energy exchange of the atmosphere-earth system, increasing the surface sensible heat flux. After the dust storm event,the atmosphere was dominated by higher pressures and was relatively wet and cold. Net radiation and latent heat flux show an evident increase, while the surface sensible heat flux shows a clear decrease.

  19. Photoionization of atmospheric aerosol constituents and precursors in the 7-15 eV energy region: experimental and theoretical study.

    Science.gov (United States)

    Gaie-Levrel, François; Gutlé, Claudine; Jochims, Hans-Werner; Rühl, Eckart; Schwell, Martin

    2008-06-12

    Photoionization mass spectrometry (PIMS) has been used to study the dissociative ionization of three anthropogenic atmospheric aerosol precursors (o-xylene, 2-methylstyrene, indene) and five of their main atmospheric degradation products (o-tolualdehyde, 2-methylphenol, o-toluic acid, phthalic acid, and phthaldialdehyde). Ionization and fragment appearance energies have been experimentally determined in the 7-15 eV photon energy regime. Moreover, intensive ab inito quantum chemical calculations have been performed to compute the first ionization energies and heats of formation of these compounds (including also phthalic anhydride). Several methods have been used, and the theoretical results are compared to the experimental values with the aim to find the best method to predict thermochemical data for similar molecules. The vacuum-UV fragmentation pathways following photoionization are discussed. The results of this work are important with respect to the analytical chemistry of these compounds since their basic gas phase ion energetics data are mostly unknown. They will help in interpreting real-time mass spectrometric measurements used for the study of organic aerosol formation in smog chambers and in the real atmosphere.

  20. Suprathermal electron energy spectrum and nonlocally affected plasma-wall interaction in helium/air micro-plasma at atmospheric pressure

    Science.gov (United States)

    Demidov, V. I.; Adams, S. F.; Miles, J. A.; Koepke, M. E.; Kurlyandskaya, I. P.

    2016-10-01

    Details of ground-state and excited-state neutral atoms and molecules in an atmospheric-pressure micro-discharge plasma may be obtained by plasma electron spectroscopy (PLES), based on a wall probe. The presence and transport of energetic (suprathermal) electrons, having a nonlocal origin, are responsible for electrostatic charging of the plasma boundary surfaces to potentials many times that associated with the ambient electron kinetic energy. The energy-flux distribution function is shown to be controllable for applications involving analysis of composition and processes taking place in a multiphase (plasma-gas-solid), chemically reactive, interaction region.

  1. Pacific Northwest Laboratory annual report for 1994 to the DOE Office of Energy Research. Part 2: Atmospheric and climate research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    Atmospheric research at Pacific Northwest Laboratory (PNL) occurs in conjunction with the Atmospheric Chemistry Program (ACP) and with the Atmospheric Studies in Complex Terrain (ASCOT) Program. Solicitations for proposals and peer review were used to select research projects for funding in FY 1995. Nearly all ongoing projects were brought to a close in FY 1994. Therefore, the articles in this volume include a summary of the long-term accomplishments as well as the FY 1994 progress made on these projects. The following articles present summaries of the progress in FY 1994 under these research tasks: continental and oceanic fate of pollutants; research aircraft operations; ASCOT program management; coupling/decoupling of synoptic and valley circulations; interactions between surface exchange processes and atmospheric circulations; and direct simulations of atmospheric turbulence. Climate change research at PNL is aimed at reducing uncertainties in the fundamental processes that control climate systems that currently prevent accurate predictions of climate change and its effects. PNL is responsible for coordinating and integrating the field and laboratory measurement programs, modeling studies, and data analysis activities of the Atmospheric Radiation Measurements (ARM) program. In FY 1994, PNL scientists conducted 3 research projects under the ARM program. In the first project, the sensitivity of GCM grid-ad meteorological properties to subgrid-scale variations in surface fluxes and subgrid-scale circulation patterns is being tested in a single column model. In the second project, a new and computationally efficient scheme has been developed for parameterizing stratus cloud microphysics in general circulation models. In the last project, a balloon-borne instrument package is being developed for making research-quality measurements of radiative flux divergence profiles in the lowest 1,500 meters of the Earth`s atmosphere.

  2. Constraints on the energy spectra of charged particles predicted in some model interactions of hadrons with help of the atmospheric muon flux

    CERN Document Server

    Dedenko, L G; Roganova, T M

    2015-01-01

    It has been shown that muon flux intensities calculated in terms of the EPOS LHC and EPOS 1.99 models at the energy of 10^4 GeV exceed the data of the classical experiments L3+Cosmic, MACRO and LVD on the spectra of atmospheric muons by a factor of 1.9 and below these data at the same energy by a factor of 1.8 in case of the QGSJET II-03 model. It has been concluded that these tested models overestimate (underestimate in case of QGSJET II-03 model) the production of secondary particles with the highest energies in interactions of hadrons by a factor of ~1.5. The LHCf and TOTEM accelerator experiments show also this type of disagreements with these model predictions at highest energies of secondary particles.

  3. Carrying away and redistribution of radioisotopes on the Peyne catchment basin. Preliminary report; Entrainement et redistribution des radionucleides sur le bassin versant de la Peyne. Rapport preliminaire

    Energy Technology Data Exchange (ETDEWEB)

    Duffa, C.; Danic, F

    2006-07-01

    The transfers of radioisotopes present in soils and sediments are essentially conditioned by the mobilities of the physical vectors which constitute their supports. The water is the main vector of natural transfer, radioisotopes being associated with it under dissolved or particulate shape. The rainout and the hydrous erosion are responsible in particular for the carrying away and for the redistribution of contaminants following an atmospheric deposit on a catchment basin. However their effect is not the same in any point of the catchment basin. The work begun here aims at elaborating a classification of the grounds sensitivity towards this phenomenon of radioisotopes carrying away. The different factors of sensitivity have been identified: pluviometry, slope, soils occupation and soils nature. The Peyne catchment basin, that presents an important variability of these four parameters, constitutes the experimental site for this study. On this catchment basin, we search to identify the areas the most sensitive to the carrying away of radioisotopes, by combining a theoretical predictive approach based on the cartography and a descriptive approach basing on the sampling and the analysis of soils samples. (N.C.)

  4. Redistribution of paclobutrazol-14C in soil and plant

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Maria Aparecida; Tornisielo, Valdemar Luiz; Regitano, Jussara Borges [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Ecotoxicologia]. E-mail: macosta@cena.usp.br; vltorrnis@cena.usp.br; regitano@cena.usp.br

    2007-07-01

    Paclobutrazol (PBZ) is important to the mango culture since it works as a growth regulator that inhibits gibberellins synthesis controlling the growth of the trees and thus reducing pruning and manipulation during cultivation. Although PBZ has been used for years in mango in Brazil, there are no studies evaluating its environmental fate under Brazilian conditions. Therefore, the objective of the present work is to evaluate the redistribution of PBZ and its metabolites in soil and plant. For this experiment, radiolabeled ({sup 14}C-PBZ) was used once this technique allows detention of minimum amounts of residues in both soil and plant. In addition, plants were cultivated in vessels (100 L and 1 plant /vessel) and the PBZ were applied to the soils at the recommended rate of 1,0 kg ha{sup -1}, having radioactive concentration of 2,0 MBq/vessel. In order to evaluate PBZ redistribution, the volumes of water percolated with rainfall and senescent leaves were collected to monitor their {sup 14}C-residue concentration by liquid scintillation spectrometry (LSS). In parallel, the sorption and leaching potential of PBZ was determined in order to support the previous study. The results showed that PBZ presented relatively low mobility (0.12 % of the applied amount) and high sorption (91.9 % of the applied amount) in the studied soil, being minimal its leached amount; and that majority of the soil applied radioactivity were redistributed in the plant leaves (1.08% of the applied amount). Needing more inquiries in relation to the contamination of the soil and rain water percolated in period of September, 2nd, 2006 to January, 8th, 2007 was of the 0.06% in relation applied radioactivity being very next the radioactivity to deep, indicating that the product still is not being leached during rains. (author)

  5. Remote Sensing of Icy Galilean Moon Surface and Atmospheric Composition Using Low Energy (1 eV-4 keV) Neutral Atom Imaging

    Science.gov (United States)

    Collier, M. R.; Sittler, E.; Chornay, D.; Cooper, J. F.; Coplan, M.; Johnson, R. E.

    2004-01-01

    We describe a low energy neutral atom imager suitable for composition measurements Europa and other icy Galilean moons in the Jovian magnetosphere. This instrument employs conversion surface technology and is sensitive to either neutrals converted to negative ions, neutrals converted to positive ions and the positive ions themselves depending on the power supply. On a mission such as the Jupiter Icy Moons Orbiter (JIMO), two back-to-back sensors would be flown with separate power supplies fitted to the neutral atom and iodneutral atom sides. This will allow both remote imaging of 1 eV atmospheres, and in situ measurements of ions at similar energies in the moon ionospheres and Jovian magnetospheric plasma. The instrument provides composition measurements of the neutrals and ions that enter the spectrometer with a mass resolution dependent on the time-of-flight subsystem and capable of resolving molecules. The lower energy neutrals, up to tens of eV, arise from atoms and molecules sputtered off the moon surfaces and out of the moon atmospheres by impacts of more energetic (keV to MeV) ions from the magnetosphere. Direct Simulation Monte Carlo (DSMC) models are used to convert measured neutral abundances to compositional distributions of primary and trace species in the sputtered surfaces and atmospheres. The escaping neutrals can also be detected as ions after photo- or plasma-ionization and pickup. Higher energy, keV neutrals come from charge exchange of magnetospheric ions in the moon atmospheres and provide information on atmospheric structure. At the jovicentric orbits of the icy moons the presence of toroidal gas clouds, as detected at Europa's orbit, provide M e r opportunities to analyze both the composition of neutrals and ions originating from the moon surfaces, and the characteristics of magnetospheric ions interacting with neutral cloud material. Charge exchange of low energy ions near the moons, and directional distributions of the resultant neutrals

  6. Carbon redistribution by erosion processes in an intensively disturbed catchment

    Science.gov (United States)

    Boix-Fayos, Carolina; Martínez-Mena, María; Pérez Cutillas, Pedro; de Vente, Joris; Barberá, Gonzalo G.; Mosch, Wouter; Navarro Cano, Jose Antonio; Gaspar, Leticia; Navas, Ana

    2016-04-01

    Understanding how organic carbon moves with sediments along the fluvial system is crucial to close catchment scale carbon budgets. Especially challenging is the analysis of organic carbon dynamics during fluvial transport in heterogeneous, fragile and disturbed environments with ephemeral and intense hydrological pulses, typical of Mediterranean conditions. This paper explores the catchment scale organic carbon redistribution by lateral flows in extreme Mediterranean environmental conditions from a geomorphological perspective. The study area is a catchment (Cárcavo) in SE Spain with a semiarid climate, erodible lithologies, shallow soils, and highly disturbed by agricultural terraces, land levelling, reforestations and construction of check-dams. To increase understanding of erosion induced catchment scale organic carbon redistribution, we studied the subcatchments of 8 check-dams distributed along the catchment main channel in detail. We determined 137Cs, physicochemical characteristics and organic carbon pools of soils and sediments deposited behind each check-dam, performed spatial analysis of properties of the catchment and buffer areas around check-dams, and carried out geomorphological analysis of the slope-channel connections. Soils showed very low Total Organic Carbon (TOC) values oscillating between 15.2 and 4.4 g Kg-1 for forest and agricultural soils, respectively. Sediments mobilized by erosion were poor in TOC compared to the eroded (forest) soils (6.6±0.7 g Kg-1), and the redistribution of organic carbon through the catchment, especially of the Mineral Associated Organic Carbon (MAC) pool, showed the same pattern as clay particles and 137Cs. The TOC erosion rates (0.031±0.03 Mg ha-1 y-1) were comparable to others reported for subhumid Mediterranean catchments and to those modelled worldwide for pasture land. Those lateral fluxes were equivalent to 10.4 % of the TOC stock from the topsoil at the moment of the check-dam construction and

  7. Frequency redistribution function for the polarized two-term atom

    Energy Technology Data Exchange (ETDEWEB)

    Casini, R. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Landi Degl' Innocenti, M. [Istituto Nazionale di Astrofisica, Largo E. Fermi 5, I-50125 Firenze (Italy); Manso Sainz, R. [Instituto de Astrofísica de Canarias, c/Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Landi Degl' Innocenti, E. [Dipartimento di Astronomia e Scienze dello Spazio, Università di Firenze, Largo E. Fermi 2, I-50125 Firenze (Italy); Landolfi, M. [Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy)

    2014-08-20

    We present a generalized frequency redistribution function for the polarized two-term atom in an arbitrary magnetic field. This result is derived within a new formulation of the quantum problem of coherent scattering of polarized radiation by atoms in the collisionless regime. The general theory, which is based on a diagrammatic treatment of the atom-photon interaction, is still a work in progress. However, the results anticipated here are relevant enough for the study of the magnetism of the solar chromosphere and of interest for astrophysics in general.

  8. Internal Transport Barrier Driven by Redistribution of Energetic Ions

    Energy Technology Data Exchange (ETDEWEB)

    K.L. Wong; W.W. Heidbrink; E. Ruskov; C.C. Petty; C.M. Greenfield; R. Nazikian; R. Budny

    2004-11-12

    Alfven instabilities excited by energetic ions are used as a means to reduce the central magnetic shear in a tokamak via redistribution of energetic ions. When the central magnetic shear is low enough, ballooning modes become stable for any plasma pressure gradient and an internal transport barrier (ITB) with a steep pressure gradient can exist. This mechanism can sustain a steady-state ITB as demonstrated by experimental data from the DIII-D tokamak. It can also produce a shear in toroidal and poloidal plasma rotation. Possible application of this technique to use the energetic alpha particles for improvement of burning plasma performance is discussed.

  9. Emission redistribution from a quantum dot-bowtie nanoantenna

    OpenAIRE

    Regler, A.; Schraml, K.; Lyamkina, A.; Spiegl, M; Müller, K.; Vuckovic, J.; Finley, J. J.; Kaniber, M.

    2016-01-01

    We present a combined experimental and simulation study of a single self-assembled InGaAs quantum dot coupled to a nearby ($\\sim 25nm$) plasmonic antenna. Micro-photoluminescence spectroscopy shows a $\\sim 2.4\\times$ increase of intensity, which is attributed to spatial far-field redistribution of the emission from the quantum dot-antenna system. Power-dependent studies show similar saturation powers of $2.5\\mu W$ for both coupled and uncoupled quantum dot emission in polarization-resolved me...

  10. Improved SIRT correction factors and redistribution in geotomography

    Science.gov (United States)

    Balanis, C. A.; Hill, H. W.; Freeland, K. A.

    In this paper revised correction factors are introduced which improve the profile of a geophysical environment reconstructed using the Simultaneous Iterative Reconstruction Technique (SIRT). These factors are based not only on the distances a given ray passes through the cells, as was assumed in the past, but also on the existing values (from a previous iteration) of the electrical properties of the cells through which a ray traverses. In addition, redistribution of the correction factors is utilized whenever the updated value of the electrical parameter of a given cell falls below a physically realizable or an a priori minimum value.

  11. Democracy, Redistributive Taxation and the Private Provision of Public Goods

    DEFF Research Database (Denmark)

    Markussen, Thomas

    The paper studies in a simple, Downsian model of political competition how the private provision of public goods is affected when it is embedded in a system of democracy and redistributive taxation. Results show that the positive effect of inequality on public goods production, which Olson (1965......) pointed to, is weakened and might even be reversed in this context. Also, the median voter may choose a negative tax rate, even if he is poorer than the mean, in order to stimulate public goods production. The relevance of the model is illustrated with an application to the finance of higher education....

  12. Intergenerational redistribution and risk sharing with changing longevity

    DEFF Research Database (Denmark)

    Andersen, Torben M.

    2014-01-01

    retirement and cohort-specific longevity to address intergenerational redistribution and risk sharing. While it is well known that a utilitarian planner strives for consumption smoothing, it is shown that healthy ageing calls for work smoothing in the sense that retirement ages increase with longevity. Hence......, cohorts with higher longevity should contribute to their larger consumption needs via later retirement, although it is shown that the planner still front-loads some financing (pre-saving). Stochastic longevity raises the issue of intergenerational risk sharing, which implies that cohorts turning out...

  13. Energy Loss of Solar $p$ Modes due to the excitation of Magnetic Sausage Tube Waves: Importance of Coupling the Upper Atmosphere

    CERN Document Server

    Gascoyne, Andrew; Hindman, Bradley

    2014-01-01

    We consider damping and absorption of solar $p$ modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of $p$ modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by $p$ modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux-tube. The deficit of $p$-mode energy is quantified through the damping rate, $\\Gamma$ and absorption coefficient, $\\alpha$. The variation of $\\Gamma$ and $\\alpha$ as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modelled as a polytrope that has been truncated at the photosphere (Bogdan et al. (1996), Hindman & Jain 2008, Gascoyne et al. (2011)). Such studies have found that the resulting energy loss by the $p$ modes is very sensitiv...

  14. Charge-state and element-resolved ion energies in the cathodic arc plasma from composite AlCr cathodes in argon, nitrogen and oxygen atmospheres

    CERN Document Server

    Franz, Robert; Anders, André

    2014-01-01

    The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al$^{+}$ regardless of the background gas species, whereas Cr$^{2+}$ ions were dominating in Ar and N$_2$ and Cr$^{+}$ in O$_2$ atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ions that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were mainly thermalised. In addition to the positively charged metal and gas ions, negatively charged oxygen an...

  15. The transfer of resonance line polarization with partial frequency redistribution in the general Hanle-Zeeman regime

    CERN Document Server

    Ballester, Ernest Alsina; Bueno, Javier Trujillo

    2016-01-01

    The spectral line polarization encodes a wealth of information about the thermal and magnetic properties of the solar atmosphere. Modeling the Stokes profiles of strong resonance lines is, however, a complex problem both from the theoretical and computational point of view, especially when partial frequency redistribution (PRD) effects need to be taken into account. In this work, we consider a two-level atom in the presence of magnetic fields of arbitrary intensity (Hanle-Zeeman regime) and orientation, both deterministic and micro-structured. Working within the framework of a rigorous PRD theoretical approach, we have developed a numerical code which solves the full non-LTE radiative transfer problem for polarized radiation, in one-dimensional models of the solar atmosphere, accounting for the combined action of the Hanle and Zeeman effects, as well as for PRD phenomena. After briefly discussing the relevant equations, we describe the iterative method of solution of the problem and the numerical tools that w...

  16. Observations of Recent Arctic Sea Ice Volume Loss and Its Impact on Ocean-Atmosphere Energy Exchange and Ice Production

    Science.gov (United States)

    Kurtz, N. T.; Markus, T.; Farrell, S. L.; Worthen, D. L.; Boisvert, L. N.

    2011-01-01

    Using recently developed techniques we estimate snow and sea ice thickness distributions for the Arctic basin through the combination of freeboard data from the Ice, Cloud, and land Elevation Satellite (ICESat) and a snow depth model. These data are used with meteorological data and a thermodynamic sea ice model to calculate ocean-atmosphere heat exchange and ice volume production during the 2003-2008 fall and winter seasons. The calculated heat fluxes and ice growth rates are in agreement with previous observations over multiyear ice. In this study, we calculate heat fluxes and ice growth rates for the full distribution of ice thicknesses covering the Arctic basin and determine the impact of ice thickness change on the calculated values. Thinning of the sea ice is observed which greatly increases the 2005-2007 fall period ocean-atmosphere heat fluxes compared to those observed in 2003. Although there was also a decline in sea ice thickness for the winter periods, the winter time heat flux was found to be less impacted by the observed changes in ice thickness. A large increase in the net Arctic ocean-atmosphere heat output is also observed in the fall periods due to changes in the areal coverage of sea ice. The anomalously low sea ice coverage in 2007 led to a net ocean-atmosphere heat output approximately 3 times greater than was observed in previous years and suggests that sea ice losses are now playing a role in increasing surface air temperatures in the Arctic.

  17. Membrane Phospholipid Redistribution in Cytokinesis: A Theoretical Model

    Institute of Scientific and Technical Information of China (English)

    Mei-Wen AN; Wen-Zhou WU; Wei-Yi CHEN

    2005-01-01

    In cell mitosis, cytokinesis is a major deformation process, during which the site of the contractile ring is determined by the biochemical stimulus from asters of the mitotic apparatus, actin and myosin assembly is related to the motion of membrane phospholipids, and local distribution and arrangement of the microfilament cytoskeleton are different at different cytokinesis stages. Based on the Zinemanas-Nir model, a new model is proposed in this study to simulate the entire process by coupling the biochemical stimulus with the mechanical actions. There were three assumptions in this model: the movements of phospholipid proteins are driven by gradients of biochemical stimulus on the membrane surface; the local assembly of actin and myosin filament depends on the amount of phospholipid proteins at the same location;and the surface tension includes membrane tensions due to both the passive deformation of the membrane and the active contraction of actin filament, which is determined by microfilament redistribution and rearrangement. This model could explain the dynamic movement of microfilaments during cytokinesis and predict cell deformation. The calculated results from this model demonstrated that the reorientation of phospholipid proteins and the redistribution and reorientation of microfilaments may play a crucial role in cell division. This model may better represent the cytokinesis process by the introduction of biochemical stimulus.

  18. The Sheath Transport Observer for the Redistribution of Mass (STORM) Image

    Science.gov (United States)

    Kuntz, Kip; Collier, Michael; Sibeck, David G.; Porter, F. Scott; Carter, J. A.; Cravens, Thomas; Omidi, N.; Robertson, Ina; Sembay, S.; Snowden, Steven L.

    2008-01-01

    All of the solar wind energy that powers magnetospheric processes passes through the magnetosheath and magnetopause. Global images of the magnetosheath and magnetopause boundary layers will resolve longstanding controversy surrounding fundamental phenomena that occur at the magnetopause and provide information needed to improve operational space weather models. Recent developments showing that soft X-rays (0.15-1 keV) result from high charge state solar wind ions undergoing charge exchange recombination through collisions with exospheric neutral atoms has led to the realization that soft X-ray imaging can provide global maps of the high-density shocked solar wind within the magnetosheath and cusps, regions lying between the lower density solar wind and magnetosphere. We discuss an instrument concept called the Sheath Transport Observer for the Redistribution of Mass (STORM), an X-ray imager suitable for simultaneously imaging the dayside magnetosheath, the magnetopause boundary layers, and the cusps.

  19. The Sheath Transport Observer for the Redistribution of Mass (STORM) Imager

    Science.gov (United States)

    Collier, Michael R.; Sibeck, David G.; Porter, F. Scott; Burch, J.; Carter, J. A.; Cravens, Thomas; Kuntz, Kip; Omidi, N.; Read, A.; Robertson, Ina; Sembay, S.; Snowden, Steven L.

    2010-01-01

    All of the solar wind energy that powers magnetospheric processes passes through the magnetosheath and magnetopause. Global images of the magnetosheath and magnetopause boundary layers will resolve longstanding controversies surrounding fundamental phenomena that occur at the magnetopause and provide information needed to improve operational space weather models. Recent developments showing that soft X-rays (0.15-1 keV) result from high charge state solar wind ions undergoing charge exchange recombination through collisions with exospheric neutral atoms has led to the realization that soft X-ray imaging can provide global maps of the high-density shocked solar wind within the magnetosheath and cusps, regions lying between the lower density solar wind and magnetosphere. We discuss an instrument concept called the Sheath Transport Observer for the Redistribution of Mass (STORM), an X-ray imager suitable for simultaneously imaging the dayside magnetosheath, the magnetopause boundary layers, and the cusps.

  20. Landscape evolution by soil redistribution in a Mediterranean agricultural context

    Science.gov (United States)

    Ciampalini, Rossano; Follain, Stéphane; Le Bissonnais, Yves

    2010-05-01

    Soils and landscapes are frequently subjected to rapid evolutions induced by climate changes and humans disturbances. Early, soil scientists had already sought to identify the dynamic interactions between soils and landscapes. Soil redistribution modelling is an appropriate analyse methodology widely utilized (Kirkby, 1985; Van Oost et al., 2000; Van Rompaey et al., 2001; Minasny and McBratney, 1999; Van Oost et al., 2005; Govers et al., 2006) to understand space time evolution in soil and landscape processes at short and medium term. The aims of this research is to develop a model able to simulate soil evolution as affected by soil redistribution processes (e.g. water-erosion processes and mechanical erosion) and to use pedological knowledge acquired from a field study coupled with the present research. The LandSoil model, here proposed, is an event based model, dimensioned for fine spatial [1 m] and medium [10 -100 years] temporal scales, taking into account a detailed representation of the agricultural landscape structure. It is composed of three modules for soil erosion/redistribution: rill erosion (Souchère et al., 2003); interrill erosion (Cerdan et al., 2002); and tillage erosion based on the mechanistic rules developed by Govers et al., 1994. After each rain and tillage event a new topography is evaluated as well as all the geometric landscape parameters. Specificities of the model are: i) long-term landscape analysis and topography balance after each rainfall; ii) evaluation of water erosion and soil mechanistic redistribution (tillage erosion); iii) taking in consideration of the landscape geometry, especially connectivity, as a significant information in describing the landscape and useful in modelling (Landscape structure management and landscape design); and iv) utilisation of various and different climate scenarios thanks to the event based model. Subsequently we apply this model to study the effect of different scenarios of land management and

  1. Therapeutic redistribution of metal ions to treat Alzheimer's disease.

    Science.gov (United States)

    Crouch, Peter J; Barnham, Kevin J

    2012-09-18

    Currently, therapeutics that modify Alzheimer's disease (AD)are not available. Increasing age is the primary risk factor for AD and due to an aging global population the urgent need for effective therapeutics increases every year. This Account presents the development of an AD treatment strategy that incorporates diverse compounds with a common characteristic: the ability to redistribute metal ions within the brain. Central to cognitive decline in AD is the amyloid-β peptide (Aβ) that accumulates in the AD brain. A range of therapeutic strategies have been developed based on the premise that decreasing the brain Aβ burden will attenuate the severity of the disease symptoms. Unfortunately these treatments have failed to show any positive outcomes in large-scale clinical trials, raising many questions regarding whether therapeutics for AD can rely solely on decreasing Aβ levels. An alternate strategy is to target the interaction between Aβ and metal ions using compounds with the potential to redistribute metal ions within the brain. The original rationale for this strategy came from studies showing that metal ions promote Aβ toxicity and aggregation. In initial studies using the prototype metal-chelating compound clioquinol (CQ), CQ prevented Aβ toxicity in vitro, out-competed Aβ for metal ions without affecting the activity of metal-dependent enzymes, and attenuated the rate of cognitive decline in AD subjects in a small phase II clinical trial. All these outcomes were consistent with the original hypothesized mechanism of action for CQ where prevention or reversal of the extracellular Aβ-metal interactions could prevent Aβ toxicity. Soon after the completion of these studies, a new body of work began to suggest that this hypothesized mechanism of action for CQ was simplistic and that other factors were also important for the positive therapeutic outcomes. Perhaps most significantly, it was shown that after CQ sequesters metal ions the neutral CQ

  2. Atmospheric sciences transfer between research advances and energy-policy assessments (ASTRAEA). Final report, 1 April 1996--31 December 1997

    Energy Technology Data Exchange (ETDEWEB)

    Slinn, W.G.N.

    1997-12-10

    Consistent with the prime goal of the ASTRAEA project, as given in its peer-reviewed proposal, this final report is an informal report to DOE managers about a perceived DOE management problem, specifically, lack of vision in DOE`s Atmospheric Chemistry Program (ACP). After presenting a review of relevant, current literature, the author suggests a framework for conceiving new visions for ACP, namely, multidisciplinary research for energy policy, tackling tough (e.g., nonlinear) problems as a team, ahead of political curves. Two example visions for ACP are then described, called herein the CITIES Project (the Comprehensive Inventory of Trace Inhalants from Energy Sources Project) and the OCEAN Project (the Ocean-Circulation Energy-Aerosol Nonlinearities Project). Finally, the author suggests methods for DOE to provide ACP with needed vision.

  3. Inferring heat recirculation and albedo for exoplanetary atmospheres: Comparing optical phase curves and secondary eclipse data

    CERN Document Server

    von Paris, P; Bordé, P; Selsis, F

    2015-01-01

    Basic atmospheric properties such as albedo and heat redistribution between day and nightside have been inferred for a number of planets using observations of secondary eclipses and thermal phase curves. Optical phase curves have not yet been used to constrain these atmospheric properties consistently. We re-model previously published phase curves of CoRoT-1b, TrES-2b and HAT-P-7b and infer albedos and recirculation efficiencies. These are then compared to previous estimates based on secondary eclipse data. We use a physically consistent model to construct optical phase curves. This model takes Lambertian reflection, thermal emission, ellipsoidal variations and Doppler boosting into account. CoRoT-1b shows a non-negligible scattering albedo (0.11re-distribution of energy between dayside and nightside. These values are contrary to previous secondary eclipse and phase curve analyses. In the case of ...

  4. Effects of income redistribution on the evolution of cooperation in spatial public goods games

    CERN Document Server

    Pei, Zhenhua; Du, Jinming

    2016-01-01

    Income redistribution is the transfer of income from some individuals to others directly or indirectly by means of social mechanisms, such as taxation, public services and so on. Employing a spatial public goods game, we study the influence of income redistribution on the evolution of cooperation. Two kinds of evolutionary models are constructed, which describe local and global redistribution of income respectively. In the local model, players have to pay part of their income after each PGG and the accumulated income is redistributed to the members. While in the global model, all the players pay part of their income after engaging in all the local PGGs, which are centered on himself and his nearest neighbours, and the accumulated income is redistributed to the whole population. We show that the cooperation prospers significantly with increasing income expenditure proportion in the local redistribution of income, while in the global model the situation is opposite. Furthermore, the cooperation drops dramatical...

  5. TREATMENT OF METALS, POLYMER FILMS, AND FABRICS WITH A ONE ATMOSPHERE UNIFORM GLOW DISCHARGE PLASMA (OAUGDP) FOR INCREASED SURFACE ENERGY AND DIRECTIONAL ETCHING

    Institute of Scientific and Technical Information of China (English)

    J. Reece Roth; Z.Y. Chen; Peter P.- Y. Tsai

    2001-01-01

    Direct exposure of samples to the active species of air generated by a One AtmosphereUniform Glow Discharge Plasma (OA UGDP) has been used to etch and to increasethe surface energy of metallic surfaces, photoresist, polymer films, and nonwoven fab-rics. The OAUGDP is a non-thermal plasma with the classical characteristics of aDC normal glow discharge that operates in air (and other gases) at atmospheric pres-sure. Neither a vacuum system nor batch processing is necessary. A wide range ofapplications to metals, photoresist, films, fabrics, and polymeric webs can be accom-modated by direct exposure of the workpiece to the plasma in parallel-plate reactors.This technology is simple, it produces effects that can be obtained in no other way atone atmosphere; it generates minimal pollutants or unwanted by-products; and it issuitable for individual sample or online treatment of metallic surfaces, wafers, films.and fabrics.``Early exposures of solid materials to the OA UGDP required minutes to produce rela-tively small increases of surface energy. These durations appeared too long for com-mercial application to fast-moving webs. Recent improvements in OA UGDP gas com-position, power density, plasma quality, recirculating gas flow, and impedance match-ing of the power supply to the parallel plate plasma reactor have made it possible toraise the surface energy ofa variety of polymeric webs (PP, PET, PE, etc.) to levels of60 to 70 dynes/crn with one second of exposure. In air plasmas, the high surface ener-gies are not durable, and fall to 50 dynes/em after periods of weeks to months. Here.we report the exposure of metallic surfaces, photoresist, polymeric films, and nonwo-ven fabrics made of PP and PET to an impedance matched parallel plate OA UGDPfor durations ranging from one second to several tens of seconds. Data will be re-ported on the surface energy, wettability, wickability, and aging effect of polymericfilms and fabrics as functions of time of exposure, and time

  6. Studying the Atmospheres of the Most Intriguing WASP Hot Jupiters

    Science.gov (United States)

    Lendl, M.; Delrez, L.; Gillon, M.; Queloz, D.

    2013-09-01

    Among the over 300 transiting planets confirmed to date, approximately 130 have been found by groundbased wide angle transit surveys such asWASP. While these surveys are not sensitive enough to detect lowmass planets, they excel at picking out rare hot- Jupiters orbiting reasonably bright stars (V mag = 9 - 11) across the sky. These planets occupy a favorable region in parameter space, as they show frequent and deep transits. Due to the proximity to their host stars these gas giants possess hot extended atmospheres making them ideal targets for the study of their atmospheres via transmission and occultation spectrophotometry. During occultation, the flux emerging from the planetary dayside is eliminated. By comparing the flux in- and out-of occultation, the planet-to-star brightness ratio can be measured. Observations in different passbands yield a measure of the planetary spectral energy distribution and thereby allow to determine the atmospheric temperature structure, heat redistribution efficiency, albedo, and to place constraints on the atmospheric composition. From the spectro-photometric observation of transits, we can measure wavelength dependencies in the effective planetary radius that are sensitive to signatures of chemical elements in the planetary atmosphere. We present results of ongoing observing campaigns employing these methods to study the atmospheres of hot Jupiters discovered by the WASP survey. In particular we show results for the very short-period planet WASP-19b based on data from the 1m-class Euler-Swiss and TRAPPIST telescopes, as well as a transmission spectrum of the low-density hot Saturn WASP-49b obtained from FORS2 at the VLT/UT1.

  7. Energetic particle precipitation in ECHAM5/MESSy1 – Part 1: Downward transport of upper atmospheric NOx produced by low energy electrons

    Directory of Open Access Journals (Sweden)

    C. Brühl

    2008-12-01

    Full Text Available The atmospheric chemistry general circulation model ECHAM5/MESSy1 has been extended by processes that parameterize particle precipitation. Several types of particle precipitation that directly affect NOy and HOx concentrations in the middle atmosphere are accounted for and discussed in a series of papers. In the companion paper, the ECHAM5/MESSy1 solar proton event parameterization is discussed, while in the current paper we focus on low energy electrons (LEE that produce NOx in the upper atmosphere. For the flux of LEE NOx into the top of the model domain a novel technique which can be applied to most atmospheric chemistry general circulation models has been developed and is presented here. The technique is particularly useful for models with an upper boundary between the stratopause and mesopause and therefore cannot directly incorporate upper atmospheric NOx production. The additional NOx source parametrization is based on a measure of geomagnetic activity, the Ap index, which has been shown to be a good proxy for LEE NOx interannual variations. HALOE measurements of LEE NOx that has been transported into the stratosphere are used to develop a scaling function which yields a flux of NOx that is applied to the model top. We describe the implementation of the parameterization as the submodel SPACENOX in ECHAM5/MESSy1 and discuss the results from test simulations. The NOx enhancements and associated effects on ozone are shown to be in good agreement with independent measurements. Ap index data is available for almost one century, thus the parameterization is suitable for simulations of the recent climate.

  8. Energetic particle precipitation in ECHAM5/MESSy1 – Part 1: Downward transport of upper atmospheric NOx produced by low energy electrons

    Directory of Open Access Journals (Sweden)

    C. Brühl

    2009-04-01

    Full Text Available The atmospheric chemistry general circulation model ECHAM5/MESSy1 has been extended by processes that parameterise particle precipitation. Several types of particle precipitation that directly affect NOy and HOx concentrations in the middle atmosphere are accounted for and discussed in a series of papers. In the companion paper, the ECHAM5/MESSy1 solar proton event parametrisation is discussed, while in the current paper we focus on low energy electrons (LEE that produce NOx in the upper atmosphere. For the flux of LEE NOx into the top of the model domain a novel technique which can be applied to most atmospheric chemistry general circulation models has been developed and is presented here. The technique is particularly useful for models with an upper boundary between the stratopause and mesopause and therefore cannot directly incorporate upper atmospheric NOx production. The additional NOx source parametrisation is based on a measure of geomagnetic activity, the Ap index, which has been shown to be a good proxy for LEE NOx interannual variations. HALOE measurements of LEE NOx that has been transported into the stratosphere are used to develop a scaling function which yields a flux of NOx that is applied to the model top. We describe the implementation of the parametrisation as the submodel SPACENOX in ECHAM5/MESSy1 and discuss the results from test simulations. The NOx enhancements are shown to be in good agreement with independent measurements. Ap index data is available for almost one century, thus the parametrisation is suitable for simulations of the recent climate.

  9. Measurement of the Atmospheric $\

    CERN Document Server

    Aartsen, M G; Abdou, Y; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beattie, K; Beatty, J J; Bechet, S; Tjus, J Becker; Becker, K -H; Bell, M; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohaichuk, S; Bohm, C; Bose1, D; Boser, S; Botner, O; Brayeur, L; Brown, A M; Bruijn, R; Brunner, J; Buitink, S; Carson, M; Casey, J; Casier, M; Chirkin, D; Christy, B; Clark, K; Clevermann, F; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; De Ridder, S; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Diaz-Velez, J C; Dreyer, J; Dumm, J P; Dunkman, M; Eagan, R; Eberhardt, B; Eisch, J; Ellsworth, R W; Engdegard, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glusenkamp, T; Goldschmidt, A; Golup, G; Goodman, J A; Gora, D; Grant, D; Gross, A; Grullon, S; Gurtner, M; Ha, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heimann, P; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jlelati, O; Kappes, A; Karg, T; Karle, A; Kiryluk, J; Kislat, F; Klas, J; Klein, S R; Kohne, J -H; Kohnen, G; Kolanoski, H; Kopke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lauer, R; Lesiak-Bzdak, M; Lunemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Meszaros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Panknin, S; Paul, L; Pepper, J A; Heros, C Perez de los; Pieloth, D; Pirk, N; Posselt, J; Price, P B; Przybylski, G T; Radel, L; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Salameh, T; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Scheel, M; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schoneberg, S; Schonherr, L; Schonwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Seo, S H; Sestayo, Y; Seunarine, S; Sheremata, C; Smith, M W E; Soiron, M; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stoss, A; Strahler, E A; Strom, R; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Usner, M; van der Drift, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge1, M; Vraeghe, M; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Wasserman, R; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zilles, A; Zoll, M

    2012-01-01

    We report the first observation in a high energy neutrino telescope of cascades induced by atmospheric electron neutrinos and by neutral current interactions of atmospheric neutrinos of all flavors. Using data recorded during the first year of operation of IceCube's DeepCore low energy extension, a sample of 1029 events is observed in 281 days of data. The number of observed cascades is $N_{\\rm cascade} = 496 \\pm 66 (stat.) \\pm 88(syst.)$ and the rest of the sample consists of residual backgrounds due to atmospheric muons and charged current interactions of atmospheric muon neutrinos. The flux of the atmospheric electron neutrinos is determined in the energy range between approximately 80 GeV and 6 TeV and is consistent with models of atmospheric neutrinos.

  10. [Effects of nitrogen application and elevated atmospheric CO2 on electron transport and energy partitioning in flag leaf photosynthesis of wheat].

    Science.gov (United States)

    Zhang, Xu-cheng; Yu, Xian-feng; Ma, Yi-fan

    2011-03-01

    Wheat (Triticum aestivum) plants were pot-cultured in open top chambers at the nitrogen application rate of 0 and 200 mg x kg(-1) soil and the atmospheric CO2 concentration of 400 and 760 micromol x mol(-1). Through the determination of flag leaf nitrogen and chlorophyll contents, photosynthetic rate (Pn)-intercellar CO2 concentration (Ci) response curve, and chlorophyll fluorescence parameters at heading stage, the photosynthetic electron transport rate and others were calculated, aimed to investigate the effects of nitrogen application and elevated atmospheric CO2 concentration on the photosynthetic energy partitioning in wheat flag leaves. Elevated atmospheric CO2 concentration decreased the leaf nitrogen and chlorophyll contents, compared with the ambient one, and the chlorophyll a/b ratio increased at the nitrogen application rate of 200 mg x kg(-1). With the application of nitrogen, no evident variations were observed in the maximal photochemical efficiency (Fv/Fm), maximal quantum yield under irradiance (Fv'/Fm') of PS II reaction center, photochemical fluorescence quenching coefficient (q(p)), and actual PS II efficiency under irradiance (phi(PS II) at elevated atmospheric CO2 concentration, and the total photosynthetic electron transport rate (J(F)) of PS II reaction center had no evident increase, though the non-photochemical fluorescence quenching coefficient (NPQ) decreased significantly. With no nitrogen application, the Fv'/Fm', psi(PS II), and NPQ at elevated atmospheric CO2 concentration decreased significantly, and the J(F) had a significant decrease though the Fv/Fm and q(p) did not vary remarkably. Nitrogen application increased the J(F) and photochemical electron transport rate (Jc); while elevated atmospheric CO2 concentration decreased the photorespiration electron transport rate (J0), Rubisco oxidation rate (V0), ratio of photorespiration to photochemical electron transport rate (J0/Jc) , and Rubisco oxidation/carboxylation rate (Vo/Vc), but

  11. High Energy Laser Beam Propagation in the Atmosphere: The Integral Invariants of the Nonlinear Parabolic Equation and the Method of Moments

    Science.gov (United States)

    Manning, Robert M.

    2012-01-01

    The method of moments is used to define and derive expressions for laser beam deflection and beam radius broadening for high-energy propagation through the Earth s atmosphere. These expressions are augmented with the integral invariants of the corresponding nonlinear parabolic equation that describes the electric field of high-energy laser beam to propagation to yield universal equations for the aforementioned quantities; the beam deflection is a linear function of the propagation distance whereas the beam broadening is a quadratic function of distance. The coefficients of these expressions are then derived from a thin screen approximation solution of the nonlinear parabolic equation to give corresponding analytical expressions for a target located outside the Earth s atmospheric layer. These equations, which are graphically presented for a host of propagation scenarios, as well as the thin screen model, are easily amenable to the phase expansions of the wave front for the specification and design of adaptive optics algorithms to correct for the inherent phase aberrations. This work finds application in, for example, the analysis of beamed energy propulsion for space-based vehicles.

  12. Quantitative energy-dispersive electron probe X-ray microanalysis for single-particle analysis and its application for characterizing atmospheric aerosol particles

    Indian Academy of Sciences (India)

    Shila Maskey; Chul-Un Ro

    2011-02-01

    An energy-dispersive electron probe X-ray microanalysis (ED-EPMA) technique using an energy-dispersive X-ray detector with an ultra-thin window, designated as low-Z particle EPMA, has been developed. The low-Z particle EPMA allows the quantitative determination of concentrations of low-Z elements such as C, N and O, as well as higher-Z elements that can be analysed by conventional ED-EPMA. The quantitative determination of low-Z elements (using full Monte Carlo simulations, from the electron impact to the X-ray detection) in individual particles has improved the applicability of single-particle analysis, especially in atmospheric environmental aerosol research; many environmentally important atmospheric particles, e.g. sulphates, nitrates, ammonium and carbonaceous particles, contain low-Z elements. To demonstrate its practical applicability, the application of the low-Z particle EPMA for the characterization of Asian Dust, urban and subway aerosol particles is shown herein. In addition, it is demonstrated that the Monte Carlo calculation can also be applied in a quantitative single-particle analysis using transmission electron microscopy (TEM) coupled with energy-dispersive X-ray spectrometry (EDX), showing that the technique is useful and reliable for the characterization of submicron aerosol particles

  13. Observations of the high-energy peaked BL Lac object H 1426+428 with the solar tower atmospheric Cherenkov effect experiment

    Science.gov (United States)

    Mueller, Carsten

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) was an atmospheric Cherenkov telescope operational until June 2007, which detected cosmic gamma rays by means of the wavefront-sampling technique. Using 64 of the large heliostats available at the National Solar Thermal Test Facility (NSTTF) near Albuquerque, New Mexico, its total mirror area of 2378 m 2 allowed it to achieve energy thresholds between 150 and 200 GeV. Following a review of the field of gamma-ray astrophysics and Active Galactic Nuclei, this work provides a detailed description of the detector, along with an introduction to simulation and data analysis techniques. During the springs of 2003 and 2004, STACEE observed the High-Energy-Peaked BL Lac object H 1426+428, an established emitter of gamma rays in the TeV energy range. A full analysis of these data reveals that STACEE did not detect a statistically significant gamma-ray excess from H 1426+428 in either data set. With the help of detailed detector simulations, upper limits on the integrated gamma ray fluxes, phi int, at the 95% confidence level are obtained for both observing seasons: phi int(E > 163 GeV) 165 GeV) < 0.78·10-6 m-2 s-1 for 2003 and 2004, respectively. The derived upper limits are discussed in the context of the results obtained by other gamma-ray observatories.

  14. Sensitivity of the Tropical Atmosphere Energy Balance to ENSO-Related SST Changes: How Well Can We Quantify Hydrologic and Radiative Responses?

    Science.gov (United States)

    Robertson, Franklin R.; Fitzjarrald, Dan; Sohn, Byung-Ju; Arnold, James E. (Technical Monitor)

    2001-01-01

    The continuing debate over feedback mechanisms governing tropical sea surface temperatures (SSTs) and tropical climate in general has highlighted the diversity of potential checks and balances within the climate system. Competing feedbacks due to changes in surface evaporation, water vapor, and cloud long- and shortwave radiative properties each may serve critical roles in stabilizing or destabilizing the climate system. It is also intriguing that even those climate variations having origins internal to the climate system-- changes in ocean heat transport for example, apparently require complementary equilibrating effects by changes in atmospheric energy fluxes. Perhaps the best observational evidence of this is the relatively invariant nature of tropically averaged net radiation exiting the top-of-atmosphere (TOA) as measured by broadband satellite sensors over the past two decades. Thus, analyzing how these feedback mechanisms are operating within the context of current interannual variability may offer considerable insight for anticipating future climate change. In this paper we focus on how fresh water and radiative fluxes over the tropical oceans change during ENSO warm and cold events and how these changes affect the tropical energy balance. At present, ENSO remains the most prominent known mode of natural variability at interannual time scales. Although great advances have been made in understanding this phenomenon and realizing prediction skill over the past decade, our ability to document the coupled water and energy changes observationally and to represent them in climate models seems far from settled (Soden, 2000 J Climate). Our analysis makes use a number of data bases, principally those derived from space-based measurements, to explore systematic changes in rainfall, evaporation, and surface and top-of-atmosphere (TOA) radiative fluxes, A reexamination of the Langley 8-Year Surface Radiation Budget data set reveals errors in the surface longwave

  15. Low temperature carrier redistribution dynamics in InGaN/GaN quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Badcock, T. J., E-mail: Thomas.badcock@crl.toshiba.co.uk; Dawson, P.; Davies, M. J. [School of Physics and Astronomy, Photon Science Institute, Alan Turing Building, University of Manchester, Manchester M13 9PL (United Kingdom); Kappers, M. J.; Massabuau, F. C.-P.; Oehler, F.; Oliver, R. A.; Humphreys, C. J. [Department of Materials Science and Metallurgy, 27 Charles Babbage Road, University of Cambridge, Cambridge CB3 0FS (United Kingdom)

    2014-03-21

    We have studied the carrier recombination dynamics in an InGaN/GaN multiple quantum well structure as a function of emission energy and excitation density between temperatures of 10 K and 100 K. Under relatively low levels of excitation, the photoluminescence (PL) intensity and decay time of emission on the high energy side of the luminescence spectrum decrease strongly between 10 K and 50 K. In contrast, for emission detected on the low energy side of the spectrum, the PL intensity and decay time increase over the same temperature range. These results are consistent with a thermally activated carrier redistribution process in which the (temperature dependent) average timescale for carrier transfer into or out of a localised state depends on the energy of the given state. Thus, the transfer time out of shallow, weakly localised states is considerably shorter than the arrival time into more deeply localised states. This picture is consistent with carriers hopping between localisation sites in an uncorrelated disorder potential where the density of localised states decreases with increasing localisation depth, e.g., a exponential or Gaussian distribution resulting from random alloy disorder. Under significantly higher levels of excitation, the increased occupation fraction of the localised states results in a greater average separation distance between unoccupied localised states, causing a suppression of the spectral and dynamic signatures of the hopping transfer of carriers.

  16. Horizontal flow and capillarity-driven redistribution in porous media.

    Science.gov (United States)

    Doster, F; Hönig, O; Hilfer, R

    2012-07-01

    A recent macroscopic mixture theory for two-phase immiscible displacement in porous media has introduced percolating and nonpercolating phases. Quasi-analytic solutions are computed and compared to the traditional theory. The solutions illustrate physical insights and effects due to spatiotemporal changes of nonpercolating phases, and they highlight the differences from traditional theory. Two initial and boundary value problems are solved in one spatial dimension. In the first problem a fluid is displaced by another fluid in a horizontal homogeneous porous medium. The displacing fluid is injected with a flow rate that keeps the saturation constant at the injection point. In the second problem a horizontal homogeneous porous medium is considered which is divided into two subdomains with different but constant initial saturations. Capillary forces lead to a redistribution of the fluids. Errors in the literature are reported and corrected.

  17. From microscopic taxation and redistribution models to macroscopic income distributions

    Science.gov (United States)

    Bertotti, Maria Letizia; Modanese, Giovanni

    2011-10-01

    We present here a general framework, expressed by a system of nonlinear differential equations, suitable for the modeling of taxation and redistribution in a closed society. This framework allows one to describe the evolution of income distribution over the population and to explain the emergence of collective features based on knowledge of the individual interactions. By making different choices of the framework parameters, we construct different models, whose long-time behavior is then investigated. Asymptotic stationary distributions are found, which enjoy similar properties as those observed in empirical distributions. In particular, they exhibit power law tails of Pareto type and their Lorenz curves and Gini indices are consistent with some real world ones.

  18. From microscopic taxation and redistribution models to macroscopic income distributions

    CERN Document Server

    Bertotti, Maria Letizia; 10.1016/j.physa.2011.06.008

    2011-01-01

    We present here a general framework, expressed by a system of nonlinear differential equations, suitable for the modelling of taxation and redistribution in a closed (trading market) society. This framework allows to describe the evolution of the income distribution over the population and to explain the emergence of collective features based on the knowledge of the individual interactions. By making different choices of the framework parameters, we construct different models, whose long-time behavior is then investigated. Asymptotic stationary distributions are found, which enjoy similar properties as those observed in empirical distributions. In particular, they exhibit power law tails of Pareto type and their Lorenz curves and Gini indices are consistent with some real world ones.

  19. Measurement and control of the fast ion redistribution on MAST

    CERN Document Server

    Turnyanskiy, M; Akers, R J; Cecconello, M; Keeling, D L; Kirk, A; Lake, R; Pinches, S D; Sangaroon, S; Wodniak, I

    2013-01-01

    Previous experiments on MAST and other tokamaks have indicated that the level of fast ion redistribution can exceed that expected from classical diffusion and that this level increases with beam power. In this paper we present a quantification of this effect in MAST plasmas using a recently commissioned scanning neutron camera. The observed fast ion diffusivity correlates with the amplitude of n=1 energetic particle modes, indicating that they are the probable cause of the non-classical fast ion diffusion in MAST. Finally, it will be shown that broadening the fast ion pressure profile by the application of neutral beam injection at an off-axis location can mitigate the growth of these modes and result in the classical fast ion behaviour

  20. Load redistribution considerations in the fracture of ceramic matrix composites

    Science.gov (United States)

    Thomas, David J.; Wetherhold, Robert C.

    1992-01-01

    Using a macroscopic viewpoint, composite laminae are homogeneous orthotropic solids whose directional strengths are random variables. Incorporation of these random variable strengths into failure models, either interactive or noninteractive, allows for the evaluation of the lamina reliability under a given stress state. Using a noninteractive criterion for demonstration purposes, laminate reliabilities are calculated assuming previously established load sharing rules for the redistribution of load as the failure of laminae occur. The matrix cracking predicted by ACK theory is modeled to allow a loss of stiffness in the fiber direction. The subsequent failure in the fiber direction is controlled by a modified bundle theory. Results are compared with previous models which did not permit separate consideration of matrix cracking, as well as to results obtained from experimental data. The effects of variations from the ideal physical geometry which is normally used to depict the matrix cracking are also studied.

  1. Geographical redistribution of radionuclides in forest and wetland

    Energy Technology Data Exchange (ETDEWEB)

    Tjaernhage, Aasa; Plamboeck, Agnetha; Nylen, Torbjoern; Lidstroem, Kenneth; Aagren, Goeran; Lindgren, Jonas

    2000-12-01

    This report summarizes the results from a survey concerning the presence of caesium-137 in soil in two different areas, Verkmyraan in Gaestrikland and Nyaenget in Vaesterbotten. This has been done with a portable NaI gamma spectrometer connected to a GPS, called back pack. Soil samples have also been taken in the two areas to compare the results from these with the back pack measurements. The results from a survey of Cesium-137 1989 in Nyaenget has also been included to see if there has been a redistribution of Cs-137 in the area in the last ten years. At Verkmyraan there is an increase in Cs-137 deposition at the lower part of the catchment which probably depends on a transport of Cs-137 to the outflow. In Nyaenget the results show a possible levelling of the Cs-137 activity between the different soil types, but to verify that, more soil samples must be taken and analysed.

  2. Distributed Human Resource Redistribution System Based on Agent and Ontology

    Institute of Scientific and Technical Information of China (English)

    Li Xiangquan; Wang Ningsheng; Long Wen

    2006-01-01

    A computer system for human resource (HR) redistribution system is presented to solve the balance problem of the "surplus resources" and "surplus tasks" among a group of project units. The system architecture is designed in a compositional manner using the elements of agent technology and knowledge technology. A combination of generic agent models, ontology and knowledge provides an effective approach to address the dynamic, distributed and knowledge-intensive characters of the HR management. In the system, the broker agent acting as intermediary provides matchmaking services to the domain agents, and the individual domain agents communicate directly with each other. The HR ontology provides the semantic match of the surplus task and the surplus resource. Finally, an application example is presented to illustrate the achieved solution for a concrete scenario. This novel way offers a comprehensive HR exchange solution and is suitable for both intra-organizational and inter-organizational HR management.

  3. Kinetic equations modelling wealth redistribution: a comparison of approaches.

    Science.gov (United States)

    Düring, Bertram; Matthes, Daniel; Toscani, Giuseppe

    2008-11-01

    Kinetic equations modelling the redistribution of wealth in simple market economies is one of the major topics in the field of econophysics. We present a unifying approach to the qualitative study for a large variety of such models, which is based on a moment analysis in the related homogeneous Boltzmann equation, and on the use of suitable metrics for probability measures. In consequence, we are able to classify the most important feature of the steady wealth distribution, namely the fatness of the Pareto tail, and the dynamical stability of the latter in terms of the model parameters. Our results apply, e.g., to the market model with risky investments [S. Cordier, L. Pareschi, and G. Toscani, J. Stat. Phys. 120, 253 (2005)], and to the model with quenched saving propensities [A. Chatterjee, B. K. Chakrabarti, and S. S. Manna, Physica A 335, 155 (2004)]. Also, we present results from numerical experiments that confirm the theoretical predictions.

  4. Observations, measurements and best practices for monitoring hydraulic redistribution

    Science.gov (United States)

    Davis, T. W.; Liang, X.

    2011-12-01

    Hydraulic redistribution (HR) is a biogeophysical phenomenon where plant roots move water through the soil column from areas of high soil moisture content to areas of low soil moisture content. The impacts of this process on the hydrologic cycle at the regional scale are beginning to be studied through the use of numerical modeling. The extent of plant species which exhibit HR, the magnitude of water redistributed and the conditions under which it occurs are still unknown. Therefore models must rely on some general assumptions to account for this process. More information is needed to understand how to correctly account for HR in land surface models. The ideal method is through direct measurement and observation. HR has been studied through a variety of mediums, e.g. deuterium footprints, soil moisture patterns and sap flow measurements. All three methods capture the moisture fluctuations within the soil layers via measurements of deuterium concentration, volumetric soil moisture content and root sap flow direction. The problem with deuterium labeling is that it does not allow for the persistent long term measurements over natural wetting and drying periods without additional irrigation. Sap flow measurements, despite having the ability to measure specific plant individuals' water dynamics, requires difficult access to the plant's root system which can be complex and difficult to sample. Soil moisture measurements can be made on a variety of sensor types and the installation is much less intensive. This study examines soil moisture measurements as a means for monitoring HR. Field observations in different regions of the United States utilizing different soil moisture sensor types (capacitance and reflectometer) are shown to exhibit similar diurnal soil moisture patterns common to the HR phenomenon. These observations are then compared and contrasted to model simulation results.

  5. A modelling study of moisture redistribution by thin cirrus clouds

    Directory of Open Access Journals (Sweden)

    T. Dinh

    2014-05-01

    Full Text Available A high resolution 2-dimensional numerical model is used to study the moisture redistribution following homogeneous ice nucleation induced by Kelvin waves in the tropical tropopause layer (TTL. We compare results for dry/moist initial conditions, and three levels of complexity for the representation of cloud processes: full bin microphysics and radiative effects of the ice, ditto but without radiative effects, and instantaneous removal of moisture in excess of saturation upon nucleation. Cloud evolution and the profiles of moisture redistribution are found to be sensitive to initial conditions and cloud processes. Ice sedimentation leads to a downward flux of water. On the other hand, the cloud radiative heating induces upward advection of the cloudy air. This results in an upward flux of water vapour if the cloudy air is moister (or drier than the environment, which is typically when the environment is subsaturated (or supersaturated. The numerical results show that only a small fraction (less than 25% of the cloud experiences nucleation. Sedimentation and reevaporation are important, and hydrated layers in observation may be as good an indicator as dehydrated layers for the occurrence of thin cirrus clouds. The calculation with instantaneous removal of condensates misses the hydration by construction, but also underestimates dehydration due to lack of moisture removal from sedimenting particles below the nucleation level, and due to nucleation before reaching the minimum saturation mixing ratio. The sensitivity to initial conditions and cloud processes suggests that it is difficult to reach generic, quantitative conclusions regarding the role of thin cirrus clouds for the moisture distribution in the TTL and stratosphere.

  6. Energy transferred to the substrate surface during reactive magnetron sputtering of aluminum in Ar/O{sub 2} atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Thomann, A.L., E-mail: anne-lise.thomann@univ-orleans.fr [GREMI, UMR 7344 du CNRS et de l' Université d' Orléans, 14 rue d' Issoudun, B.P. 6744, 45067 Orléans Cedex 2 (France); Cormier, P.A. [GREMI, UMR 7344 du CNRS et de l' Université d' Orléans, 14 rue d' Issoudun, B.P. 6744, 45067 Orléans Cedex 2 (France); Dolique, V. [LMA, Université Claude Bernard Lyon I, Campus de la DOUA, Bâtiment Virgo 7 Avenue Pierre de Coubertin, 69622 Villeurbanne Cedex (France); Semmar, N.; Dussart, R.; Lecas, T. [GREMI, UMR 7344 du CNRS et de l' Université d' Orléans, 14 rue d' Issoudun, B.P. 6744, 45067 Orléans Cedex 2 (France); Courtois, B. [CEMHTI, UPR3079 du CNRS, 1D Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2 (France); Brault, P. [GREMI, UMR 7344 du CNRS et de l' Université d' Orléans, 14 rue d' Issoudun, B.P. 6744, 45067 Orléans Cedex 2 (France)

    2013-07-31

    A study of the reactive sputtering of aluminum was carried out by coupling energy flux measurements at the substrate location with conventional diagnostics of the gas phase and analyses of the deposited films. The main purpose was to get some insight into the elementary mechanisms involved at the substrate surface during the film growth in the well known metal and oxide regimes and at the transitions from one to another. Measurements were carried out in front of a 10 cm Al target at a power of 400 W (i.e. 5 W/cm{sup 2}) and a total pressure of 0.6 Pa. The flow rate ratio (O{sub 2}/O{sub 2} + Ar) was varied in the range 0 to 50%. Different kinetics and values of energy transfer, denoting different involved mechanisms, were evidenced at metal-oxide (increasing flow rate) and oxide-metal (decreasing flow rate) transitions. The metal-oxide transition was found to be a progressive process, in agreement with optical emission spectroscopy and deposit analysis, characterized by an increase of the energy flux that could be due to the oxidation of the growing metal film. On the contrary, oxide-metal transition is abrupt, and a high energy is released at the beginning that could not be attributed to a chemical reaction. The possible effect of O{sup −} ions at this step was discussed. - Highlights: • We use real-time energy flux measurements to study reactive magnetron sputtering. • At transitions rise of the energy flux transferred to the substrate is observed. • At the metal-oxide transition energy is released by oxidation of the Al growing film. • At the oxide-metal transition the energy transfer may be due to O{sup −} born at the target. • Energy flux study gives some insight into mechanisms involved in the film growth.

  7. Estimating Temporal Redistribution of Surface Melt Water into Upper Stratigraphy of the Juneau Icefield, Alaska

    Science.gov (United States)

    Wilner, J.; Smith, B.; Moore, T.; Campbell, S. W.; Slavin, B. V.; Hollander, J.; Wolf, J.

    2015-12-01

    The redistribution of winter accumulation from surface melt into firn or deeper layers (i.e. internal accumulation) remains a poorly understood component of glacier mass balance. Winter accumulation is usually quantified prior to summer melt, however the time window between accumulation and the onset of melt is minimal so this is not always possible. Studies which are initiated following the onset of summer melt either neglect sources of internal accumulation or attempt to estimate melt (and therefore winter accumulation uncertainty) through a variety of modeling methods. Here, we used ground-penetrating radar (GPR) repeat common midpoint (CMP) surveys with supporting common offset surveys, mass balance snow pits, and probing to estimate temporal changes in water content within the winter accumulation and firn layers of the southern Juneau Icefield, Alaska. In temperate glaciers, radio-wave velocity is primarily dependent on water content and snow or firn density. We assume density changes are temporally slow relative to water flow through the snow and firn pack, and therefore infer that changing radio-wave velocities measured by successive CMP surveys result from flux in surface melt through deeper layers. Preliminary CMP data yield radio-wave velocities of 0.15 to 0.2 m/ns in snowpack densities averaging 0.56 g cm-3, indicating partially to fully saturated snowpack (4-9% water content). Further spatial-temporal analysis of CMP surveys is being conducted. We recommend that repeat CMP surveys be conducted over a longer time frame to estimate stratigraphic water redistribution between the end of winter accumulation and maximum melt season. This information could be incorporated into surface energy balance models to further understanding of the influence of internal accumulation on glacier mass balance.

  8. Effect of muon-nuclear inelastic scattering on high-energy atmospheric muon spectrum at large depth underwater

    CERN Document Server

    Sinegovsky, S I; Lokhtin, K S; Takahashi, N

    2007-01-01

    The energy spectra of hadron cascade showers produced by the cosmic ray muons travelling through water as well as the muon energy spectra underwater at the depth up to 4 km are calculated with two models of muon inelastic scattering on nuclei, the recent hybrid model (two-component, 2C) and the well-known generalized ector-meson-dominance model for the comparison. The 2C model involves photonuclear interactions at low and moderate virtualities as well as the hard scattering including the weak neutral current processes. For the muon scattering off nuclei substantial uclear effects, shadowing, nuclear binding and Fermi motion of nucleons are taken into account. It is shown that deep nderwater muon energy spectrum calculated with the 2C model are noticeably distorted at energies above 100 TeV as compared to that obtained with the GVMD model.

  9. The sensitivity of the Durham Mk6 ground-based Atmospheric Cherenkov Telescope to Very High Energy gamma-ray sources

    CERN Document Server

    Lyons, K

    2001-01-01

    The subject of this thesis is a determination of the sensitivity of the Durham Mk6 ground based Imaging Atmospheric Cherenkov Telescope (IACT), an instrument which uses the imaging atmospheric Cherenkov technique to detect Very High Energy (VHE) gamma-rays. The first three chapters are introductory: Chapter I describes the basics of Very High Energy (VHE) gamma ray astronomy. Chapter 2 describes the properties of Extensive Air Showers (EAS). Chapter 3 describes the detection of these EAS on the ground by lACTs, Chapter 4 details the Durham Mk6 IACT and includes a description of the Cherenkov imaging technique for background discrimination. Chapter 5 describes the MOCCA and SOLMK simulation codes. Chapter 6 contains a description of the details of the simulations produced for this thesis. This chapter continues to its logical conclusion and presents a revised VHE gamma-ray flux of 2.5 +- 0.7 sub s sub t sub a sub t [+0.5 or -1.6] sub s sub y sub s sub t x 10 sup - sup 7 photons m sup - sup 2 s sup - sup 1 for ...

  10. An aqueous chemistry module for a three-dimensional cloud resolving model: Sulfate redistribution

    Directory of Open Access Journals (Sweden)

    Vujović Dragana

    2012-01-01

    Full Text Available An aqueous chemistry module is created and included into a complex 3D cloud-resolving mesoscale ARPS model to examine the characteristics of in-cloud sulfate. The complex orography of Serbia is included in the model. The chemical species included in the module are sulfur dioxide, sulfate ion, ammonium ion, hydrogen peroxide and ozone. Six water categories are considered: water vapor, cloud water, rain, cloud ice, snow and hail. Each chemical species in each microphysical category is represented by a differential equation of mass continuity. This paper gives a detailed description of the chemistry module and demonstrates the utility of an atmospheric model coupled with the chemistry module in forecasting the redistribution of chemical species in all water categories. The main mean microphysical and chemical conversion rates of sulfate averaged over a 2 h simulation period for a base run are for the oxidation of S(IV in rain water and cloud water, SO4 2− scavenging by Brownian diffusion in cloud droplets and cloud ice as well as the impact scavenging of SO4 2− by rain. The calculated values of sulfates in all water categories and the shape of sulfate profiles depend on radar reflectivity.

  11. Modelling of Current Density Redistribution in Hollow Needle to Plate Electrical Discharge Designed for Ozone Generation

    Science.gov (United States)

    Kriha, Vitezslav

    2003-10-01

    Non-thermal plasma of atmospheric pressure electrical discharges in flowing air can be used to generation of ozone. We have been observed two modes of discharge burning in a hollow needle to plane electrodes configuration studied in the ozone generation experiments: A low current diffuse mode is characterized by increasing of the ozone production with the discharge current; a high current filamentary mode is disadvantageous for the ozone generation(the ozone production decreases when the discharge current increases). A possible interpretation of this effect is following: The filamentary mode discharge current density is redistributed and high current densities in filaments cores lead to degradation of the ozone generation. Local fields in the discharge can be modified by charged metallic and/or dielectric components (passive modulators) in the discharge space. An interactive numerical model has been developed for this purpose. This model is based on Ferguson's polynomial objects for both the discharge chamber scene modelling and the discharge fields analyzing. This approach allows intuitive modifications of modulators shapes and positions in 3D scene followed by quantitative comparison of the current density distribution with previous configurations.

  12. A little fairness may induce a lot of redistribution in democracy

    DEFF Research Database (Denmark)

    Tyran, Jean-Robert; Sausgruber, Rupert

    2006-01-01

    We use a model of self-centered inequality aversion suggested by Fehr and Schmidt (Quart. J. Econom. 114 (3) (1999) 817) to study voting on redistribution. We theoretically identify two classes of conditions when an empirically plausible amount of fairness preferences induces redistribution through...

  13. 41 CFR 101-25.104-1 - Redistribution, repair, or rehabilitation.

    Science.gov (United States)

    2010-07-01

    ..., or rehabilitation. 101-25.104-1 Section 101-25.104-1 Public Contracts and Property Management Federal...-GENERAL 25.1-General Policies § 101-25.104-1 Redistribution, repair, or rehabilitation. Prior to the... through redistribution, repair, or rehabilitation of already owned furniture and office machines....

  14. Business Groups and Profit Redistribution : A Boon or Bane for Firms

    NARCIS (Netherlands)

    George, R.; Kabir, M.R.; Douma, S.W.

    2004-01-01

    This study investigates how profit redistribution affects the performance of firms affiliated to business groups.It shows that inefficient profit redistribution causes group-affiliated firms to perform poorly relative to independent firms.This underperformance persists even after controlling for oth

  15. Internal energy deposition and ion fragmentation in atmospheric-pressure mid-infrared laser ablation electrospray ionization.

    Science.gov (United States)

    Nemes, Peter; Huang, Hehua; Vertes, Akos

    2012-02-21

    Mid-infrared laser ablation of water-rich targets at the maximum of the 2.94 μm absorption band is a two-step process initiated by phase explosion followed by recoil pressure induced material ejection. Particulates and/or droplets ejected by this high temperature high pressure process can be ionized for mass spectrometry by charged droplets from an electrospray. In order to gauge the internal energy introduced in this laser ablation electrospray ionization (LAESI®) process, we apply the survival yield method and compare the results with electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI). The results indicate that LAESI yields ions with internal energies indistinguishable from those produced by ESI. This finding is consistent with the recoil pressure induced ejection of low micrometre droplets that does not significantly change the internal energy of solute molecules.

  16. Effects of atmospheric variability on energy utilization and conservation. Final report, 1 January 1979-31 December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, E.R.; Burns, C.C.; Cochrane, H.; Johnson, G.R.; Leong, H.; McKean, J.; Sheaffer, J.D.; Starr, A.M.; Webber, J.

    1980-04-01

    An interdisciplinary approach towards a detailed assessment of energy consumption in urban space-heating and cooling is presented in terms of measurement and modeling results. Modeling efforts concentrated on the city of Minneapolis, MN, using data from the winter seasons 1977/78 and 1978/79. Further developments of a reference model also fall back on data from Cheyenne, WY, and Greeley, CO. Mean absolute daily errors of gas consumption estimated by the physical model applied to Minneapolis are 6.26% when compared to actual energy usage for the period 12/1/77 to 2/28/78. The mean daily absolute errors for the statistical reference model for the same time period were 5.54%. Modeling of the energy consumption required detailed input of meteorological parameters from a special network of stations. As a spin-off an assessment was obtained of the effects of anthropogenic heat on urban heat-island generation under various synoptic conditions. A detailed building census, comprised of 105.722 heated structures, was obtained. A field survey in Greeley indicated that investment returns from insulating houses might not be as high as hoped for; possibly a considerable amount of insulating material is applied wastefully. Misinformation seems to be the primary cause of misguided energy conservation. Progress in conservation could be achieved if utility costs were considered in mortgage-loan applications, together with principal, interests, taxes, and insurance. Detailed energy-consumption modeling would be a premise for such fiscal-management approaches. Another extensive field survey yielded data for a local input-output model applied to the city of Greeley. Economic multipliers for dollars of output, space heating, energy use, and employment were developed and used for growth projections to the year 2003 under varying scenarios.

  17. On the relationship of the earth radiation budget to the variability of atmospheric available potential and kinetic energies

    Science.gov (United States)

    Randel, David L.; Vonder Haar, Thomas H.

    1990-01-01

    The zonal and eddy kinetics energies and available potential energies are examined for both the Northern and the Southern Hemispheres, using a data set produced by 8 years of continuous simultaneous observations of the circulation parameters and measurements of the earth radiation budget (ERB) from the Nimbus-7 ERB experiment. The relationships between the seasonal cycles in ERB and those of the energetics are obtained, showing that the solar annual cycle accounts for most of the seasonal variability. It was found that the ERB midlatitude gradients of the net balance and the outgoing radiation lead the annual cycle of the energetics by 2-3 weeks.

  18. Mitigation of atmospheric carbon emissions through increased energy efficiency versus increased non-carbon energy sources: A trade study using a simplified {open_quotes}market-free{close_quotes} exogenously driven model

    Energy Technology Data Exchange (ETDEWEB)

    Krakowski, R.A.

    1997-08-24

    A simplified model of global, long-term energy use is described and used to make a `top-level` comparison of two generic approaches for mitigating atmospheric carbon emissions: (a) those based on increased energy efficiency; and (b) those based on increased use of reduced- or non-carbon fuels. As approximate as is the model, first-order estimates of and trade offs between increasing non-carbon generation capacities (e.g., supply-side solutions) versus energy-use efficiency (e.g., demand-side solutions) to stem atmospheric carbon accumulations can be useful in guiding more elaborate models. At the level of this analysis, both the costs of abatement and the costs of damage can be large, with the formation of benefit-to-cost ratios as a means of assessment being limited by uncertainties associated with relating given climatic responses to greenhouse warming to aggregate damage cost, as well as uncertainties associated with procedures used for multi-generation discounting of both abatement and damage costs. In view of uncertainties associated with both supply-side and demand-side approaches, as well as the estimation of greenhouse-warming responses per se, a combination of solutions seems prudent. Key findings are: (a) the relative insensitivity of the benefit-to-cost ratio adopted in this study to supply-side versus demand-side approaches to abating atmospheric carbon-dioxide emissions; (b) the extreme sensitivity of damage costs, abatement costs, and the related benefit-to-cost ratios to the combination of discounting procedure and the (time) concavity of the function used to relate global temperature rise to damage costs; and (c) no matter the discounting procedure and/or functional relationship between average temperature rise and a damage cost, a goal of increased per-capita gross world product at minimum damage suggests action now rather than delay.

  19. The effects of blue energy on future emissions of greenhouse gases and other atmospheric pollutants in China

    NARCIS (Netherlands)

    Gao, X.; Kroeze, C.

    2012-01-01

    Blue energy is the electricity generated from salinity gradients in rivers. About half of the global electricity demand could be satisfied if the technical potential was implemented. However, the technique is not yet implemented in full-scale operational plants. We estimate the potential effects of

  20. Impact of variations of gravitational acceleration on the general circulation of the planetary atmosphere

    Science.gov (United States)

    Kilic, Cevahir; Raible, Christoph C.; Stocker, Thomas F.; Kirk, Edilbert

    2017-01-01

    Fundamental to the redistribution of energy in a planetary atmosphere is the general circulation and its meridional structure. We use a general circulation model of the atmosphere in an aquaplanet configuration with prescribed sea surface temperature and investigate the influence of the gravitational acceleration g on the structure of the circulation. For g =g0 = 9.81 ms-2 , three meridional cells exist in each hemisphere. Up to about g /g0 = 1.4 all cells increase in strength. Further increasing this ratio results in a weakening of the thermally indirect cell, such that a two- and finally a one-cell structure of the meridional circulation develops in each hemisphere. This transition is explained by the primary driver of the thermally direct Hadley cell: the diabatic heating at the equator which is proportional to g. The analysis of the energetics of the atmospheric circulation based on the Lorenz energy cycle supports this finding. For Earth-like gravitational accelerations transient eddies are primarily responsible for the meridional heat flux. For large gravitational accelerations, the direct zonal mean conversion of energy dominates the meridional heat flux.

  1. Diurnal and annual exchanges of mass and energy between an aspen-hazelnut forest and the atmosphere: Testing the mathematical model Ecosys with data from the BOREAS experiment

    Science.gov (United States)

    Grant, R. F.; Black, T. A.; den Hartog, G.; Berry, J. A.; Neumann, H. H.; Blanken, P. D.; Yang, P. C.; Russell, C.; Nalder, I. A.

    1999-11-01

    There is much uncertainty about the net carbon (C) exchange of boreal forest ecosystems, although this exchange may be an important part of global C dynamics. To resolve this uncertainty, net C exchange has been measured at several sites in the boreal forest of Canada as part of the Boreal Ecosystem-Atmosphere Study (BOREAS). One of these sites is the Southern Old Aspen site at which diurnal CO2 and energy (radiation, latent, and sensible heat) fluxes were measured during 1994 using eddy correlation techniques at different positions within a mixed 70 year old aspen-hazelnut forest. These measurements were used to test a complex ecosystem model "ecosys" in which mass and energy exchanges between terrestrial ecosystems and the atmosphere are simulated hourly under diverse conditions of soil, management, and climate. These simulations explained between 70% and 80% of diurnal variation in ecosystem CO2 and energy fluxes measured during three 1 week intervals in late April, early June, and mid-July. Total annual CO2 fluxes indicated that during 1994, aspen was a net sink of 540 (modeled) versus 670 (measured) g C m-2 yr-1, while hazelnut plus soil were a net source of 472 (modeled) versus 540 (measured) g C m-2 yr-1. The aspen-hazelnut forest at the BOREAS site was therefore estimated to be a net sink of about 68 (modeled) versus 130 (measured) g C m-2 yr-1 during 1994. Long-term simulations indicated that this sink may be larger during cooler years and smaller during warmer years because C fixation in the model was less sensitive to temperature than respiration. These simulations also indicated that the magnitude of this sink declines with forest age because respiration increases with respect to fixation as standing phytomass grows. Confidence in the predictive capabilities of ecosystem models at decadal or centennial timescales is improved by well-constrained tests of these models at hourly timescales.

  2. Atmospheric muons: experimental aspects

    OpenAIRE

    Cecchini, S.; Spurio, M.

    2012-01-01

    We present a review of atmospheric muon flux and energy spectrum measurements over almost six decades of muon momentum. Sea-level and underground/water/ice experiments are considered. Possible sources of systematic errors in the measurements are examinated. The characteristics of underground/water muons (muons in bundle, lateral distribution, energy spectrum) are discussed. The connection between the atmospheric muon and neutrino measurements are also reported.

  3. Atmospheric muons: experimental aspects

    Directory of Open Access Journals (Sweden)

    S. Cecchini

    2012-11-01

    Full Text Available We present a review of atmospheric muon flux and energy spectrum measurements over almost six decades of muon momentum. Sea level and underground/water/ice experiments are considered. Possible sources of systematic errors in the measurements are examined. The characteristics of underground/water muons (muons in bundle, lateral distribution, energy spectrum are discussed. The connection between the atmospheric muon and neutrino measurements are also reported.

  4. Competing Atmospheric and Surface-Driven Impacts of Absorbing Aerosols on the East Asian Summer Monsoon

    Science.gov (United States)

    Persad, G.; Paynter, D.; Ming, Y.; Ramaswamy, V.

    2015-12-01

    Absorbing aerosols, by attenuating shortwave radiation within the atmosphere and reemitting it as longwave radiation, redistribute energy both vertically within the surface-atmosphere column and horizontally between polluted and unpolluted regions. East Asia has the largest concentrations of anthropogenic absorbing aerosols globally, and these, along with the region's scattering aerosols, have both reduced the amount of solar radiation reaching the Earth's surface regionally ("solar dimming") and increased shortwave absorption within the atmosphere, particularly during the peak months of the East Asian Summer Monsoon (EASM). We here analyze how atmospheric absorption and surface solar dimming compete in driving the response of EASM circulation to anthropogenic absorbing aerosols, which dominates, and why—issues of particular importance for predicting how the EASM will respond to projected changes in absorbing and scattering aerosol emissions in the future. We probe these questions in a state-of-the-art general circulation model (GCM) using a combination of realistic and idealized aerosol perturbations that allow us to analyze the relative influence of absorbing aerosols' atmospheric and surface-driven impacts on EASM circulation. In combination, our results make clear that, although absorption-driven dimming has a less detrimental effect on EASM circulation than purely scattering-driven dimming, aerosol absorption is still a net impairment to EASM strength when both its atmospheric and surface effects are considered. Because atmospheric heating is not efficiently conveyed to the surface, the surface dimming and associated cooling from even a pure absorber is sufficient to counteract its atmospheric heating, resulting in a net reduction in EASM strength. These findings elevate the current understanding of the impacts of aerosol absorption on the EASM, improving our ability to diagnose EASM responses to current and future regional changes in aerosol emissions.

  5. Managing fleet capacity effectively under second-hand market redistribution.

    Science.gov (United States)

    Quillérou, Emmanuelle; Roudaut, Nolwenn; Guyader, Olivier

    2013-09-01

    Fishing capacity management policies have been traditionally implemented at national level with national targets for capacity reduction. More recently, capacity management policies have increasingly targeted specific fisheries. French fisheries spatially vary along the French coastline and are associated to specific regions. Capacity management policies, however, ignore the capital mobility associated with second-hand vessel trade between regions. This is not an issue for national policies but could limit the effectiveness of regional capacity management policies. A gravity model and a random-effect Poisson regression model are used to analyze the determinants and spatial extent of the second-hand market in France. This study is based on panel data from the French Atlantic Ocean between 1992 and 2009. The trade flows between trading partners is found to increase with their sizes and to be spatially concentrated. Despite the low trade flows between regions, a net impact analysis shows that fishing capacity is redistributed by the second-hand market to regions on the Channel and Aquitaine from central regions. National capacity management policies (constructions/destructions) have induced a net decrease in regional fleet capacity with varying magnitude across regions. Unless there is a change of policy instruments or their scale of implementation, the operation of the second-hand market decreases the effectiveness of regional capacity management policies in regions on the Channel and Aquitaine.

  6. Emission redistribution from a quantum dot-bowtie nanoantenna

    Science.gov (United States)

    Regler, Armin; Schraml, Konrad; Lyamkina, Anna A.; Spiegl, Matthias; Müller, Kai; Vuckovic, Jelena; Finley, Jonathan J.; Kaniber, Michael

    2016-07-01

    We present a combined experimental and simulation study of a single self-assembled InGaAs quantum dot coupled to a nearby (˜25 nm) plasmonic antenna. Microphotoluminescence spectroscopy shows a ˜2.4× increase of intensity, which is attributed to spatial far-field redistribution of the emission from the quantum dot-antenna system. Power-dependent studies show similar saturation powers of 2.5 μW for both coupled and uncoupled quantum dot emission in polarization-resolved measurements. Moreover, time-resolved spectroscopy reveals the absence of Purcell enhancement of the quantum dot coupled to the antenna as compared with an uncoupled dot, yielding comparable exciton lifetimes of τ˜0.5 ns. This observation is supported by numerical simulations, suggesting only minor Purcell-effects of antenna separations >25 nm. The observed increased emission from a coupled quantum dot-plasmonic antenna system is found to be in good qualitative agreement with numerical simulations and will lead to a better understanding of light-matter coupling in such semiconductor-plasmonic hybrid systems.

  7. Emission redistribution from a quantum dot-bowtie nanoantenna

    CERN Document Server

    Regler, A; Lyamkina, A; Spiegl, M; Müller, K; Vuckovic, J; Finley, J J; Kaniber, M

    2016-01-01

    We present a combined experimental and simulation study of a single self-assembled InGaAs quantum dot coupled to a nearby ($\\sim 25nm$) plasmonic antenna. Micro-photoluminescence spectroscopy shows a $\\sim 2.4\\times$ increase of intensity, which is attributed to spatial far-field redistribution of the emission from the quantum dot-antenna system. Power-dependent studies show similar saturation powers of $2.5\\mu W$ for both coupled and uncoupled quantum dot emission in polarization-resolved measurements. Moreover, time-resolved spectroscopy reveals the absence of Purcell-enhancement of the quantum dot coupled to the antenna as compared to an uncoupled dot, yielding comparable exciton lifetimes of $\\tau\\sim0.5ns$. This observation is supported by numerical simulations, suggesting only minor Purcell-effects of $25nm$. The observed increased emission from a coupled quantum dot-plasmonic antenna system is found to be in good qualitative agreement with numerical simulations and will lead to a better understanding o...

  8. "Redistribution" Effect of Lumpy Zone for Gas Flow in BF

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The gas flow from tuyere to raceway zone by blasting involves three distributional zones, such as dripping,cohesive, and lumpy zone. The gas flow distribution in lumpy zone directly affects the gas utilization ration and smooth operation in the blast furnace. However, the furnace closeness brings about great difficulty in the study of high-temperature gas flow. The charging and blasting system affecting the gas flow and whether the top gas flow distribution could reflect its inner condition as well as the furnace state, such as hanging or scaffolding, which have become the main problems for the research on gas flow. Recently, several researches overseas studied gas flow distribution using the numerical simulation method; however, such a research was rare amongst the natives. In this study, the flow model of gas in cohesive and lumpy zone was established using the numerical simulation software and the gas flow distributions with uniform distribution of burden permeability, scaffolding of wall, and nonuniform charge level were analyzed. As a result, the effects of cohesive zone and lower parts on the gas flow are very limited and the charge level largely affects the distribution of top gas flow. Therefore, it was found that the distribution of top gas flow could hardly reflect the inner gas flow. The process is called "redistribution" effect, which means that the gas flow after passing through the raceway, dripping, and cohesive zone is distributed when it flows into the lumpy zone.

  9. NK cell subset redistribution during the course of viral infections

    Directory of Open Access Journals (Sweden)

    Enrico eLugli

    2014-08-01

    Full Text Available Natural killer (NK cells are important effectors of innate immunity that play a critical role in the control of human viral infections. Indeed, given their capability to directly recognize virally infected cells without the need of specific antigen presentation, NK cells are on the first line of defense against these invading pathogens. By establishing cellular networks with a variety of cell types such as dendritic cells, NK cells can also amplify anti-viral adaptive immune responses. In turn, viruses evolved and developed several mechanisms to evade NK cell-mediated immune activity. It has been reported that certain viral diseases, including human immunodeficiency virus-1 (HIV-1 as well as cytomegalovirus (CMV infections, are associated with a pathologic redistribution of NK cell subsets in the peripheral blood. In particular, it has been observed the expansion of unconventional CD56neg NK cells, whose effector functions are significantly impaired as compared to that of conventional CD56pos NK cells. In this review, we address the impact of chronic viral infections on the functional and phenotypic perturbations of human NK cell compartment.

  10. Climate velocity and the future global redistribution of marine biodiversity

    Science.gov (United States)

    García Molinos, Jorge; Halpern, Benjamin S.; Schoeman, David S.; Brown, Christopher J.; Kiessling, Wolfgang; Moore, Pippa J.; Pandolfi, John M.; Poloczanska, Elvira S.; Richardson, Anthony J.; Burrows, Michael T.

    2016-01-01

    Anticipating the effect of climate change on biodiversity, in particular on changes in community composition, is crucial for adaptive ecosystem management but remains a critical knowledge gap. Here, we use climate velocity trajectories, together with information on thermal tolerances and habitat preferences, to project changes in global patterns of marine species richness and community composition under IPCC Representative Concentration Pathways (RCPs) 4.5 and 8.5. Our simple, intuitive approach emphasizes climate connectivity, and enables us to model over 12 times as many species as previous studies. We find that range expansions prevail over contractions for both RCPs up to 2100, producing a net local increase in richness globally, and temporal changes in composition, driven by the redistribution rather than the loss of diversity. Conversely, widespread invasions homogenize present-day communities across multiple regions. High extirpation rates are expected regionally (for example, Indo-Pacific), particularly under RCP8.5, leading to strong decreases in richness and the anticipated formation of no-analogue communities where invasions are common. The spatial congruence of these patterns with contemporary human impacts highlights potential areas of future conservation concern. These results strongly suggest that the millennial stability of current global marine diversity patterns, against which conservation plans are assessed, will change rapidly over the course of the century in response to ocean warming.

  11. Fragmentation energy index for universalization of fragmentation energy in ion trap mass spectrometers for the analysis of chemical weapon convention related chemicals by atmospheric pressure ionization-tandem mass spectrometry analysis.

    Science.gov (United States)

    Palit, Meehir; Mallard, Gary

    2009-04-01

    The use of mass spectra generated at 70 eV in electron ionization (EI) as a universal standard for EI has helped in the generation of searchable library databases and had a profound influence on the analytical applications of gas chromatography/mass spectrometry (GC/MS), similarly for liquid chromatography tandem mass spectrometry (LC-MS/MS), suggesting a novel method to normalize the collisional energy for the universalization of fragmentation energy for the analysis of Chemical Weapon Convention (CWC)-related chemicals by atmospheric pressure ionization-tandem mass spectrometry (API-MS(n)) using three-dimensional (3D) ion trap instruments. For normalizing fragmentation energy a "fragmentation energy index" (FEI) is proposed which is an arbitrary scale based on the fact of specific MS/MS fragmentation obtained at different collisional energies for the reference chemicals which are not CWC scheduled compounds. FEI 6 for the generation of an MS(n) library-searchable mass spectral database is recommended.

  12. Collision cascades enhanced hydrogen redistribution in cobalt implanted hydrogenated diamond-like carbon films

    Science.gov (United States)

    Gupta, P.; Becker, H.-W.; Williams, G. V. M.; Hübner, R.; Heinig, K.-H.; Markwitz, A.

    2017-03-01

    Hydrogenated diamond-like carbon films produced by C3H6 deposition at 5 kV and implanted at room temperature with 30 keV Co atoms to 12 at.% show not only a bimodal distribution of Co atoms but also a massive redistribution of hydrogen in the films. Resonant nuclear reaction analysis was used to measure the hydrogen depth profiles (15N-method). Depletion of hydrogen near the surface was measured to be as low as 7 at.% followed by hydrogen accumulation from 27 to 35 at.%. A model is proposed considering the thermal energy deposited by collision cascade for thermal insulators. In this model, sufficient energy is provided for dissociated hydrogen to diffuse out of the sample from the surface and diffuse into the sample towards the interface which is however limited by the range of the incoming Co ions. At a hydrogen concentration of ∼35 at.%, the concentration gradient of the mobile unbounded hydrogen atoms is neutralised effectively stopping diffusion towards the interface. The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications.

  13. Electron field emission from wide bandgap semiconductors under intervalley carrier redistribution

    Science.gov (United States)

    Litovchenko, V.; Grygoriev, A.; Evtukh, A.; Yilmazoglu, O.; Hartnagel, H. L.; Pavlidis, D.

    2009-11-01

    Electron field emission phenomena from semiconductors (and, in particular, wide band gap materials) are analyzed theoretically for the general case, i.e., by taking into consideration aspects that have not been considered earlier such as two (or more) valleys of the energy band structure, nondegenerated statistics for the free electrons, heating of conduction band electrons, intervalley carrier redistribution under applied electrical fields, size quantization of electron band spectra, and change in the field emission characteristics. Comparisons with experiments performed on the highly structured (micro- and nano) surfaces of the GaN wide bandgap semiconductor have been made. The influence of the above factors on the current-voltage Fowler-Nordheim characteristics was demonstrated by theory and experiment. From theoretical and experimental results the intervalley energy difference (ΔE) for GaN quantum-sized cathodes was estimated to be 0.8 eV, which is considerably less than that predicted for bulk semiconductor (ΔE =1.2-1.5 eV). Furthermore the field emission currents were several orders higher than for bulk material. This is in good agreement with the prediction of the proposed theoretical model.

  14. Applying quantitative structure-activity relationship (QSAR) methodology for modeling postmortem redistribution of benzodiazepines and tricyclic antidepressants.

    Science.gov (United States)

    Giaginis, Constantinos; Tsantili-Kakoulidou, Anna; Theocharis, Stamatios

    2014-06-01

    Postmortem redistribution (PMR) constitutes a multifaceted process, which complicates the interpretation of drug concentrations by forensic toxicologists. The present study aimed to apply quantitative structure-activity relationship (QSAR) analysis for modeling PMR data of structurally related drugs, 10 benzodiazepines and 10 tricyclic antidepressants. For benzodiazepines, an adequate QSAR model was obtained (R(2) = 0.98, Q(2) = 0.88, RMSEE = 0.12), in which energy, ionization and molecular size exerted significant impact. For tricyclic antidepressants, an adequate QSAR model with slightly inferior statistics (R(2) = 0.95, Q(2) = 0.87, RMSEE = 0.29) was established after exclusion of maprotiline, in which energy parameters, basicity character and lipophilicity exerted significant contribution. Thus, QSAR analysis could be used as a complementary tool to provide an informative illustration of the contributing molecular, physicochemical and structural properties in PMR process. However, the complexity, non-static and time-dependent nature of PMR endpoints raises serious concerns whether QSAR methodology could predict the degree of redistribution, highlighting the need for animal-derived PMR data.

  15. Redistribution of mobile surface charges of an oil droplet in water in applied electric field.

    Science.gov (United States)

    Li, Mengqi; Li, Dongqing

    2016-10-01

    Most researches on oil droplets immersed in aqueous solutions assume that the surface charges of oil droplets are, similar to that of solid particles, immobile and distributed uniformly under external electric field. However, the surface charges at the liquid-liquid interface are mobile and will redistribute under external electric field. This paper studies the redistribution of surface charges on an oil droplet under the influence of the external electrical field. Analytical expressions of the local zeta potential on the surface of an oil droplet after the charge redistribution in a uniform electrical field were derived. The effects of the initial zeta potential, droplet radius and strength of applied electric field on the surface charge redistribution were studied. In analogy to the mobile surface charges, the redistribution of Al2O3-passivated aluminum nanoparticles on the oil droplet surface was observed under applied electrical field. Experimental results showed that these nanoparticles moved and accumulated towards one side of the oil droplet under electric field. The redistribution of the nanoparticles is in qualitative agreement with the redistribution model of the mobile surface charges developed in this work.

  16. Sensitivity of the Tropical Atmospheric Energy Balance to ENSO-Related SST Changes: Comparison of Climate Model Simulations to Observed Responses

    Science.gov (United States)

    Robertson, Franklin R.; Fitzjarrald, Dan; Marshall, Susan; Oglesby, Robert; Roads, John; Arnold, James E. (Technical Monitor)

    2001-01-01

    This paper focuses on how fresh water and radiative fluxes over the tropical oceans change during ENSO warm and cold events and how these changes affect the tropical energy balance. At present, ENSO remains the most prominent known mode of natural variability at interannual time scales. While this natural perturbation to climate is quite distinct from possible anthropogenic changes in climate, adjustments in the tropical water and energy budgets during ENSO may give insight into feedback processes involving water vapor and cloud feedbacks. Although great advances have been made in understanding this phenomenon and realizing prediction skill over the past decade, our ability to document the coupled water and energy changes observationally and to represent them in climate models seems far from settled (Soden, 2000 J Climate). In a companion paper we have presented observational analyses, based principally on space-based measurements which document systematic changes in rainfall, evaporation, and surface and top-of-atmosphere (TOA) radiative fluxes. Here we analyze several contemporary climate models run with observed SSTs over recent decades and compare SST-induced changes in radiation, precipitation, evaporation, and energy transport to observational results. Among these are the NASA / NCAR Finite Volume Model, the NCAR Community Climate Model, the NCEP Global Spectral Model, and the NASA NSIPP Model. Key disagreements between model and observational results noted in the recent literature are shown to be due predominantly to observational shortcomings. A reexamination of the Langley 8-Year Surface Radiation Budget data reveals errors in the SST surface longwave emission due to biased SSTs. Subsequent correction allows use of this data set along with ERBE TOA fluxes to infer net atmospheric radiative heating. Further analysis of recent rainfall algorithms provides new estimates for precipitation variability in line with interannual evaporation changes inferred from

  17. The Transfer of Resonance Line Polarization with Partial Frequency Redistribution in the General Hanle–Zeeman Regime

    Science.gov (United States)

    Alsina Ballester, E.; Belluzzi, L.; Trujillo Bueno, J.

    2017-02-01

    The spectral line polarization encodes a wealth of information about the thermal and magnetic properties of the solar atmosphere. Modeling the Stokes profiles of strong resonance lines is, however, a complex problem both from a theoretical and computational point of view, especially when partial frequency redistribution (PRD) effects need to be taken into account. In this work, we consider a two-level atom in the presence of magnetic fields of arbitrary intensity (Hanle–Zeeman regime) and orientation, both deterministic and micro-structured. Working within the framework of a rigorous PRD theoretical approach, we have developed a numerical code that solves the full non-LTE radiative transfer problem for polarized radiation, in one-dimensional models of the solar atmosphere, accounting for the combined action of the Hanle and Zeeman effects, as well as for PRD phenomena. After briefly discussing the relevant equations, we describe the iterative method of solution of the problem and the numerical tools that we have developed and implemented. We finally present some illustrative applications to two resonance lines that form at different heights in the solar atmosphere, and provide a detailed physical interpretation of the calculated Stokes profiles. We find that magneto-optical effects have a strong impact on the linear polarization signals that PRD effects produce in the wings of strong resonance lines. We also show that the weak-field approximation has to be used with caution when PRD effects are considered.

  18. Derivation of turbulent energy dissipation rate with the Middle Atmosphere Alomar Radar System (MAARSY) and radiosondes at Andøya, Norway

    Science.gov (United States)

    Li, Qiang; Rapp, Markus; Schrön, Anne; Schneider, Andreas; Stober, Gunter

    2016-12-01

    We present the derivation of turbulent energy dissipation rate ɛ from a total of 522 days of observations with the Middle Atmosphere Alomar Radar SYstem (MAARSY) mesosphere-stratosphere-troposphere (MST) radar running tropospheric experiments during the period of 2010-2013 as well as with balloon-borne radiosondes based on a campaign in the summer 2013. Spectral widths are converted to ɛ after the removal of the broadening effects due to the finite beam width of the radar. With the simultaneous in situ measurements of ɛ with balloon-borne radiosondes at the MAARSY radar site, we compare the ɛ values derived from both techniques and reach an encouraging agreement between them. Using all the radar data available, we present a preliminary climatology of atmospheric turbulence in the UTLS (upper troposphere and lower stratosphere) region above the MAARSY site showing a variability of more than 5 orders of magnitude inherent in turbulent energy dissipation rates. The derived ɛ values reveal a log-normal distribution with a negative skewness, and the ɛ profiles show an increase with height which is also the case for each individual month. Atmospheric turbulence based on our radar measurements reveals a seasonal variation but no clear diurnal variation in the UTLS region. Comparison of ɛ with the gradient Richardson number Ri shows that only 1.7 % of all the data with turbulence occur under the condition of Ri 1. Further, there is a roughly negative correlation between ɛ and Ri that is independent of the scale dependence of Ri. Turbulence under active dynamical conditions (velocity of horizontal wind U > 10 m s-1) is significantly stronger than under quiet conditions (U < 10 m s-1). Last but not least, the derived ɛ values are compared with the corresponding vertical shears of background wind velocity showing a linear relation with a corresponding correlation coefficient r = 58 % well above the 99.9 % significance level. This implies that wind shears play an

  19. Observations of a free-energy source for intense electrostatic waves. [in upper atmosphere near upper hybrid resonance frequency

    Science.gov (United States)

    Kurth, W. S.; Frank, L. A.; Gurnett, D. A.; Burek, B. G.; Ashour-Abdalla, M.

    1980-01-01

    Significant progress has been made in understanding intense electrostatic waves near the upper hybrid resonance frequency in terms of the theory of multiharmonic cyclotron emission using a classical loss-cone distribution function as a model. Recent observations by Hawkeye 1 and GEOS 1 have verified the existence of loss-cone distributions in association with the intense electrostatic wave events, however, other observations by Hawkeye and ISEE have indicated that loss cones are not always observable during the wave events, and in fact other forms of free energy may also be responsible for the instability. Now, for the first time, a positively sloped feature in the perpendicular distribution function has been uniquely identified with intense electrostatic wave activity. Correspondingly, we suggest that the theory is flexible under substantial modifications of the model distribution function.

  20. The exchange of energy, water and carbon dioxide between wet arctic tundra and the atmosphere at the Lena River Delta, Northern Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Kutzbach, L.

    2006-07-01

    The ecosystem-scale exchange fluxes of energy, water and carbon dioxide between wet arctic tundra and the atmosphere were investigated by the micrometeorological eddy covariance method. The investigation site was the centre of the Lena River Delta in Northern Siberia characterised by a polar and distinctly continental climate, very cold and ice-rich permafrost and its position at the interface between the Eurasian continent and the Arctic Ocean. The measurements were performed on the surface of a Holocene river terrace characterised by wet polygonal tundra. The soils at the site are characterised by high organic matter content, low nutrient availability and pronounced water logging. The vegetation is dominated by sedges and mosses. The fluctuations of the H{sub 2}O and CO{sub 2} concentrations were measured with a closed-path infrared gas analyser. The fast-response eddy covariance measurements were supplemented by a set of slow-response meteorological and soil-meteorological measurements. The combined datasets of the two campaigns 2003 and 2004 were used to characterise the seasonal course of the energy, water and CO{sub 2} fluxes and the underlying processes for the synthetic measurement period May 28..October 21 2004/2003 including the period of snow and soil thawing as well as the beginning of refreezing. The synthetic measurement period 2004/2003 was characterised by a long snow ablation period and a late start of the growing season. On the other hand, the growing season ended also late due to high temperatures and snow-free conditions in September. The cumulative summer energy partitioning was characterised by low net radiation, large ground heat flux, low latent heat flux and very low sensible heat flux compared to other tundra sites. These findings point out the major importance of the very cold permafrost for the summer energy budget of the tundra in Northern Siberia. (orig./SR)

  1. Seasonal response of photosynthetic electron transport and energy dissipation in the eighth year of exposure to elevated atmospheric CO{sub 2} (FACE) in Pinus taeda (loblolly pine)

    Energy Technology Data Exchange (ETDEWEB)

    Logan, B.A.; Combs, A.; Kent, R.; Stanley, L. [Bowdoin College, Brunswick, ME (United States). Dept. of Biology; Myers, K. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Biological Sciences; Tissue, D.T. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Biological Sciences; Western Sydney Univ., Richmond, NSW (Australia). Centre for Plant and Food Science

    2009-06-15

    This study investigated the biological adaptation of loblolly pine following long-term seasonal exposure to elevated carbon dioxide (CO{sub 2}) partial pressures (pCO{sub 2}). Exposure to elevated atmospheric CO{sub 2} (pCO{sub 2}) usually results in significant stimulation in light-saturated rates of photosynthetic CO{sub 2} assimilation. Plants are protected against photoinhibition by biochemical processes known as photoprotection, including energy dissipation, which converts excess absorbed light energy into heat. This study was conducted in the eighth year of exposure to elevated pCO{sub 2} at the Duke FACE site. The effect of elevated pCO{sub 2} on electron transport and energy dissipation in the pine trees was examined by coupling the analyses of the capacity for photosynthetic oxygen (O{sub 2}) evolution, chlorophyll fluorescence emission and photosynthetic pigment composition with measurements of net photosynthetic CO{sub 2} assimilation (Asat). During the summer growing season, Asat was 50 per cent higher in current-year needles and 24 per cent higher in year-old needles in elevated pCO{sub 2} in comparison with needles of the same age cohort in ambient pCO{sub 2}. Thus, older needles exhibited greater photosynthetic down-regulation than younger needles in elevated pCO{sub 2}. In the winter, Asat was not significantly affected by growth pCO{sub 2}. Asat was lower in winter than in summer. Growth at elevated pCO{sub 2} had no significant effect on the capacity for photosynthetic oxygen evolution, photosystem 2 efficiencies, chlorophyll content or the size and conversion state of the xanthophyll cycle, regardless of season or needle age. There was no evidence that photosynthetic electron transport or photoprotective energy dissipation responded to compensate for the effects of elevated pCO{sub 2} on Calvin cycle activity. 73 refs., 4 figs.

  2. Novel approaches to understanding carbon redistribution at multiple scales

    Science.gov (United States)

    Dungait, Jennifer; Beniston, Joshua; Lal, Rattan; Horrocks, Claire; Collins, Adrian; Mariappen, Sankar; Quine, Timothy

    2014-05-01

    Established biogeochemical techniques are used to trace organic inputs typically derived directly or indirectly from plants into soils, sediments and water using lipid biomarkers. Recently, advances in bulk and compound specific stable 13C isotope analyses have provided novel ways of exploring the source and residence times of organic matter in soils using the natural abundance stable 13C isotope signature of C3 and C4 plant end member values. However, the application of biogeochemical source tracing technologies at the molecular level at field to catchment scales has been slow to develop because of perceived problems with dilution of molecular-scale signals. This paper describes the results of recent experiments in natural and agricultural environments in the UK (Collins et al., 2013; Dungait et al., 2013) and United States (Beniston et al., submitted) that have successfully applied new tracing techniques using stable 13C isotope and complementary approaches to explore the transport of sediment-bound organic carbon at a range of scales from the small plot (m2) to field (ha) and small catchment (10's ha). References Beniston et al (submitted) The effects of crop residue removal on soil erosion and macronutrient dynamics on soils under no till for 42 years. Biogeosciences Collins et al (2013) Catchment source contributions to the sediment-bound organic matter degrading salmonid spawning gravels in a lowland river, southern England. Science of the Total Environment 456-457, 181-195. Dungait et al (2013) Microbial responses to the erosional redistribution of soil organic carbon in arable fields. Soil Biology and Biochemistry 60, 195-201. Puttock et al (2012) Stable carbon isotope analysis of fluvial sediment fluxes over two contrasting C4-C3 semi-arid vegetation transitions. Rapid Communications in Mass Spectrometry 26, 2386-2392.

  3. Signaling flux redistribution at toll-like receptor pathway junctions.

    Directory of Open Access Journals (Sweden)

    Kumar Selvarajoo

    Full Text Available Various receptors on cell surface recognize specific extracellular molecules and trigger signal transduction altering gene expression in the nucleus. Gain or loss-of-function mutations of one molecule have shown to affect alternative signaling pathways with a poorly understood mechanism. In Toll-like receptor (TLR 4 signaling, which branches into MyD88- and TRAM-dependent pathways upon lipopolysaccharide (LPS stimulation, we investigated the gain or loss-of-function mutations of MyD88. We predict, using a computational model built on the perturbation-response approach and the law of mass conservation, that removal and addition of MyD88 in TLR4 activation, enhances and impairs, respectively, the alternative TRAM-dependent pathway through signaling flux redistribution (SFR at pathway branches. To verify SFR, we treated MyD88-deficient macrophages with LPS and observed enhancement of TRAM-dependent pathway based on increased IRF3 phosphorylation and induction of Cxcl10 and Ifit2. Furthermore, increasing the amount of MyD88 in cultured cells showed decreased TRAM binding to TLR4. Investigating another TLR4 pathway junction, from TRIF to TRAF6, RIP1 and TBK1, the removal of MyD88-dependent TRAF6 increased expression of TRAM-dependent Cxcl10 and Ifit2. Thus, we demonstrate that SFR is a novel mechanism for enhanced activation of alternative pathways when molecules at pathway junctions are removed. Our data suggest that SFR may enlighten hitherto unexplainable intracellular signaling alterations in genetic diseases where gain or loss-of-function mutations are observed.

  4. Stellar model atmospheres with magnetic line blanketing. II. Introduction of polarized radiative transfer

    CERN Document Server

    Khan, S A

    2006-01-01

    The technique of model atmosphere calculation for magnetic Ap and Bp stars with polarized radiative transfer and magnetic line blanketing is presented. A grid of model atmospheres of A and B stars are computed. These calculations are based on direct treatment of the opacities due to the bound-bound transitions that ensures an accurate and detailed description of the line absorption and anomalous Zeeman splitting. The set of model atmospheres was calculated for the field strengths between 1 and 40 kG. The high-resolution energy distribution, photometric colors and the hydrogen Balmer line profiles are computed for magnetic stars with different metallicities and are compared to those of non-magnetic reference models and to the previous paper of this series. The results of modelling confirmed the main outcomes of the previous study: energy redistribution from UV to the visual region and flux depression at 5200A. However, we found that effects of enhanced line blanketing when transfer for polarized radiation take...

  5. The effect on Arctic climate of atmospheric meridional energy-transport changes studied based on the CESM climate model

    Science.gov (United States)

    Grand Graversen, Rune

    2016-04-01

    The Arctic amplification of global warming and the pronounced Arctic sea-ice retreat constitute some of the most alarming signs of global climate change. These Arctic changes are likely a consequence of a combination of several processes, for instance enhanced uptake of solar radiation in the Arctic due to a lowering of the planetary albedo, and increase in the local Arctic greenhouse effect due to enhanced moister flux from lower latitudes. Many of the proposed processes appear to be dependent on each other, for instance an increase in water-vapour advection to the Arctic enhances the greenhouse effect in the Arctic and the longwave radiation to the surface which melts the sea ice and causes an increase in absorption of solar radiation. The effects of albedo changes have been investigated in earlier studies based on model experiments designed to examine these effects specifically. Here we instead focus on the effects of meridional transport changes into the Arctic, both of water vapour and dry-static energy. Hence we here present results of model experiments with the CESM climate model designed specifically to extract the effects of the changes of the two transport components.

  6. Evolution of the Solar Activity over Time and Effects on Planetary Atmospheres: I. High-energy Irradiances (1-1700 A)

    CERN Document Server

    Ribas, I; Güdel, M; Audard, M

    2004-01-01

    We report on the results of the Sun in Time multi-wavelength program (X-rays to the UV) of solar analogs with ages covering ~0.1-7 Gyr. The chief science goals are to study the solar magnetic dynamo and to determine the radiative and magnetic properties of the Sun during its evolution across the main sequence. The present paper focuses on the latter goal, which has the ultimate purpose of providing the spectral irradiance evolution of solar-type stars to be used in the study and modeling of planetary atmospheres. The results from the Sun in Time program suggest that the coronal X-ray-EUV emissions of the young main-sequence Sun were ~100-1000 times stronger than those of the present Sun. Similarly, the transition region and chromospheric FUV-UV emissions of the young Sun are expected to be 20-60 and 10-20 times stronger, respectively, than at present. When considering the integrated high-energy emission from 1 to 1200 A, the resulting relationship indicates that the solar high-energy flux was about 2.5 times ...

  7. Measuring Atomic and Molecular Species in the Upper Atmosphere up to 1000 km with the Free-Fall Mass Spectrometer and the Small Deflection Energy Analyzer

    Science.gov (United States)

    Herrero, F.; Nicholas, A.

    2007-05-01

    Atomic oxygen (O), the major constituent of the Earth's thermosphere above 200 km altitude is both a driver and a tracer of atmospheric motions in the thermosphere and plays a pivotal role in interactions with the ionosphere through ion-drag and chemical reactions. At altitudes above 400 to 500 km, the energies and composition may reveal interactions with the magnetosphere. In addition, satellites in low-Earth orbit require knowledge of O densities to address engineering issues in low-Earth-orbit missions. The major difficulties in O measurements involve ambiguities due to the recombination of O in the sensor surfaces to yield O2 which is then measured with a mass spectrometer; similar difficulties exist for atomic hydrogen H and nitrogen N. In this paper we describe the use of our new charged particle spectrometers to measure relative densities and energies of the neutral and ion constituents in the upper atmosphere and into the exosphere to about 1000 km altitude. Neutral atoms are ionized before striking internal surfaces and surface-accommodated atoms and molecules are discriminated from incident ones according to their energies. Our ion source sensitivity is about 1.3x10-4/s per microAmp electron beam current for a number density of 1/cm3. Thus, operating with 1 mA emission (about 0.2W cathode power), signals of 100/s with integration period of 1 second correspond to a neutral atom density of about 103/cm3 with 10% variance. At very high altitudes, the lowest densities occur with the coldest thermopause - a 750K thermopause having an O density of about 150/cm3 at 1000 km, much higher densities for H and He, and much lower for O2 and N2. Total power for the spectrometer suite is less than 0.5 W with a mass of about 0.5 kg, based on our current versions. We plan to propose development of the sensor suite for two missions; one at 400 km and one at 830 km.

  8. Betwixt and between?: the European Union’s redistributive management of globalization

    NARCIS (Netherlands)

    B. Burgoon

    2010-01-01

    The European Union's (EU) management of globalization includes redistributing or compensating for distributional consequences of globalization, using policies at different levels of governance (national, regional-European and supra-European). This contribution analyzes the extent and politics of suc

  9. Using 137 Cs measurements to investigate the influence of erosion and soil redistribution on soil properties.

    Science.gov (United States)

    Du, P; Walling, D E

    2011-05-01

    Information on the interaction between soil erosion and soil properties is an important requirement for sustainable management of the soil resource. The relationship between soil properties and the soil redistribution rate, reflecting both erosion and deposition, is an important indicator of this interaction. This relationship is difficult to investigate using traditional approaches to documenting soil redistribution rates involving erosion plots and predictive models. However, the use of the fallout radionuclide (137)Cs to document medium-term soil redistribution rates offers a means of overcoming many of the limitations associated with traditional approaches. The study reported sought to demonstrate the potential for using (137)Cs measurements to assess the influence of soil erosion and redistribution on soil properties (particle size composition, total C, macronutrients N, P, K and Mg, micronutrients Mn, Mo, Fe, Cu and Zn and other elements, including Ti and As). (137)Cs measurements undertaken on 52 soil cores collected within a 7 ha cultivated field located near Colebrooke in Devon, UK were used to establish the magnitude and spatial pattern of medium-term soil redistribution rates within the field. The soil redistribution rates documented for the individual sampling points within the field ranged from an erosion rate of -12.9 t ha(-1) yr(-1) to a deposition rate of 19.2 t ha(-1) yr(-1). Composite samples of surface soil (0-5 cm) were collected immediately adjacent to each coring point and these samples were analysed for a range of soil properties. Individual soil properties associated with these samples showed significant variability, with CV values generally lying in the range 10-30%. The relationships between the surface soil properties and the soil redistribution rate were analysed. This analysis demonstrated statistically significant relationships between some soil properties (total phosphorus, % clay, Ti and As) and the soil redistribution rate, but for

  10. Solute redistribution during phase separation of ternary Fe-Cu-Si alloy

    Science.gov (United States)

    Luo, S. B.; Wang, W. L.; Xia, Z. C.; Wu, Y. H.; Wei, B.

    2015-06-01

    Ternary Fe48Cu48Si4 immiscible alloy was rapidly solidified under the containerless microgravity condition inside a drop tube. Liquid phase separation took place in the alloy melt and led to the formation of various segregated structures. The core-shell structure consisting of Fe-rich and Cu-rich zones and the homogenously dispersed structure were the major structural morphologies. Phase field simulation results revealed that the two-layer core-shell was the final structure of liquid phase separation. The solute redistribution of liquid Fe48Cu48Si4 alloy experienced the macroscopic solute distribution induced by liquid phase separation, the secondary phase separation within the separated liquid phases and the solute trapping during rapid solidification. Energy dispersive spectroscopy analysis showed that the solute Si was enriched in the Fe-rich zone whereas depleted in the Cu-rich zone. In addition, both αFe and (Cu) phases in the Fe-rich zone exhibited a conspicuous solute trapping effect. As compared with (Cu) phase, αFe phase had a stronger affinity with solute Si.

  11. Thermally induced cation redistribution in Fe-bearing oxy-dravite and potential geothermometric implications

    Science.gov (United States)

    Bosi, Ferdinando; Skogby, Henrik; Hålenius, Ulf

    2016-05-01

    Iron-bearing oxy-dravite was thermally treated in air and hydrogen atmosphere at 800 °C to study potential changes in Fe, Mg and Al ordering over the octahedrally coordinated Y and Z sites and to explore possible applications to intersite geothermometry based on tourmaline. Overall, the experimental data (structural refinement, Mössbauer, infrared and optical absorption spectroscopy) show that heating Fe-bearing tourmalines results in disordering of Fe over Y and Z balanced by ordering of Mg at Y, whereas Al does not change appreciably. The Fe disorder depends on temperature, but less on redox conditions. The degree of Fe3+-Fe2+ reduction is limited despite strongly reducing conditions, indicating that the f O2 conditions do not exclusively control the Fe oxidation state at the present experimental conditions. Untreated and treated samples have similar short- and long-range crystal structures, which are explained by stable Al-extended clusters around the O1 and O3 sites. In contrast to the stable Al clusters that preclude any temperature-dependent Mg-Al order-disorder, there occurs Mg diffusion linked to temperature-dependent exchange with Fe. Ferric iron mainly resides around O2- at O1 rather than (OH)-, but its intersite disorder induced by thermal treatment indicates that Fe redistribution is the driving force for Mg-Fe exchange and that its diffusion rates are significant at these temperatures. With increasing temperature, Fe progressively disorders over Y and Z, whereas Mg orders at Y according to the order-disorder reaction: YFe + ZMg → ZFe + YMg. The presented findings are important for interpretation of the post-crystallization history of both tourmaline and tourmaline host rocks and imply that successful tourmaline geothermometers may be developed by thermal calibration of the Mg-Fe order-disorder reaction, whereas any thermometers based on Mg-Al disorder will be insensitive and involve large uncertainties.

  12. Refined Monte Carlo method for simulating angle-dependent partial frequency redistributions

    Science.gov (United States)

    Lee, J.-S.

    1982-01-01

    A refined algorithm for generating emission frequencies from angle-dependent partial frequency redistribution functions R sub II and R sub III is described. The improved algorithm has as its basis a 'rejection' technique that, for absorption frequencies x less than 5, involves no approximations. The resulting procedure is found to be essential for effective studies of radiative transfer in optically thick or temperature varying media involving angle-dependent partial frequency redistributions.

  13. Energy

    CERN Document Server

    Foland, Andrew Dean

    2007-01-01

    Energy is the central concept of physics. Unable to be created or destroyed but transformable from one form to another, energy ultimately determines what is and isn''t possible in our universe. This book gives readers an appreciation for the limits of energy and the quantities of energy in the world around them. This fascinating book explores the major forms of energy: kinetic, potential, electrical, chemical, thermal, and nuclear.

  14. National Centers for Environmental Prediction-Department of Energy (NCEP-DOE) Atmospheric Model Intercomparison Project (AMIP)-II Reanalysis (Reanalysis-2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NCEP-DOE Atmospheric Model Intercomparison Project (AMIP-II) reanalysis is a follow-on project to the "50-year" (1948-present) NCEP-NCAR Reanalysis Project....

  15. Effects of income redistribution on the evolution of cooperation in spatial public goods games

    Science.gov (United States)

    Pei, Zhenhua; Wang, Baokui; Du, Jinming

    2017-01-01

    Income redistribution is the transfer of income from some individuals to others directly or indirectly by means of social mechanisms, such as taxation, public services and so on. Employing a spatial public goods game, we study the influence of income redistribution on the evolution of cooperation. Two kinds of evolutionary models are constructed, which describe local and global redistribution of income respectively. In the local model, players have to pay part of their income after each PGG and the accumulated income is redistributed to the members. While in the global model, all the players pay part of their income after engaging in all the local PGGs, which are centred on himself and his nearest neighbours, and the accumulated income is redistributed to the whole population. We show that the cooperation prospers significantly with increasing income expenditure proportion in the local redistribution of income, while in the global model the situation is opposite. Furthermore, the cooperation drops dramatically from the maximum curvature point of income expenditure proportion. In particular, the intermediate critical points are closely related to the renormalized enhancement factors.

  16. Laser cooling of dense atomic gases by collisional redistribution of radiation and spectroscopy of molecular dimers in a dense buffer gas environment

    CERN Document Server

    Saß, Anne; Christopoulos, Stavros; Knicker, Katharina; Moroshkin, Peter; Weitz, Martin

    2014-01-01

    We study laser cooling of atomic gases by collisional redistribution of fluorescence. In a high pressure buffer gas regime, frequent collisions perturb the energy levels of alkali atoms, which allows for the absorption of a far red detuned irradiated laser beam. Subsequent spontaneous decay occurs close to the unperturbed resonance frequency, leading to a cooling of the dense gas mixture by redistribution of fluorescence. Thermal deflection spectroscopy indicates large relative temperature changes down to and even below room temperature starting from an initial cell temperature near 700 K. We are currently performing a detailed analysis of the temperature distribution in the cell. As we expect this cooling technique to work also for molecular-noble gas mixtures, we also present initial spectroscopic experiments on alkali-dimers in a dense buffer gas surrounding.

  17. Energy saving avoiding the centrifugal motor-compressors air vents discharge to the surrounding atmosphere; Ahorro de energia evitando venteo de aire a la atmosfera en motocompresores centrifugos

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Alex [Compressor Controls Corporation, Houston, TX (United States)

    1996-12-31

    The motor-compressors are a key part of the industrial processes. The reliability and efficient operation of a compressor is critical. The surge phenomenon is a threat in the reliability of a compressor and therefore for the process. Surge, in a centrifugal compressor is defined as a dramatic flow and pressure drop, including back-flow. This is always a significant process disturbance. Continuous surge results into costly process shutdowns and mechanical damages. To prevent surge, and control the discharge pressure with simple or obsolete controls it is needed to vent air to the surrounding atmosphere. This form of control is very inefficient and costly. An advanced control with leading technology, besides providing an economical value preventing surge damages, offers substantial energy saving reducing or eliminating the venting of air to the atmosphere. [Espanol] Los motocompresores son un aparte clave de los procesos industriales. La confiable y eficiente operacion de un compresor es critica. El fenomeno de surge es una amenaza a la confiabilidad de un compresor y por lo tanto del proceso. El surge en un compresor centrifugo es definido como una dramatica caida de flujo y presion, incluyendo flujo inverso. Esto es siempre un significante disturbio del proceso. El surge continuo resulta en costosos paros de proceso y danos mecanicos. Para prevenir el surge y controlar la presion de descarga con controles simples u obsoletos, es necesario ventear aire a la atmosfera. Esta forma de control es muy ineficiente y costosa. Un control avanzado con tecnologia de punta ademas de proveer valor economico previniendo danos por surge, provee sustanciales ahorros de energia reduciendo o eliminando el venteo de aire a la atmosfera.

  18. External costs of atmospheric lead emissions from a waste-to-energy plant: a follow-up assessment of indirect exposure via topsoil ingestion.

    Science.gov (United States)

    Pizzol, Massimo; Møller, Flemming; Thomsen, Marianne

    2013-05-30

    In this study the Impact Pathway Approach (IPA) was used to calculate the external costs associated with indirect exposure, via topsoil ingestion, to atmospheric emissions of lead (Pb) from a waste-to-energy plant in Denmark. Three metal-specific models were combined to quantify the atmospheric dispersion of lead, its deposition and accumulation in topsoil, and the increase in blood lead concentration for children resulting from lead intake via topsoil ingestion. The neurotoxic impact of lead on children was estimated using a lead-specific concentration-response function that measures impaired cognitive development in terms of IQ points lost per each incremental μg/dl of lead in blood. Since IQ loss during childhood can be associated with a percent decrease in expected lifetime earnings, the monetary value of such an impact can be quantified and the external costs per kg of lead emitted from the plant were then calculated. The costs of indirect exposure calculated over a time horizon of 100 years, for the sub-population of children of 0-3 years, and discounted at 3%, were in the range of 15-30 €/kg. Despite the continued accumulation of lead in topsoil resulting in increasing future indirect exposure, the results indicate that costs associated with this exposure pathway are of the same order of magnitude as costs associated with direct exposure via inhalation, calculated at 45-91 €/kg. Moreover, when the monetary value of future impacts is discounted to the present, the differences between the two exposure pathways are diminished. Finally, setting a short time horizon reduces the uncertainties but excludes part of the costs of indirect exposure from the assessment.

  19. Measurement of the atmospheric v

    NARCIS (Netherlands)

    Adrián-Martínez, S.; van Haren, H.; ANTARES collaboration

    2013-01-01

    Atmospheric neutrinos are produced during cascades initiated by the interaction of primary cosmic rays with air nuclei. In this paper, a measurement of the atmospheric ?µ+?¯µ energy spectrum in the energy range 0.1–200 TeV is presented, using data collected by the ANTARES underwater neutrino telesc

  20. Effects of landcover, water redistribution, and temperature on ecosystem processes in the South Plate Basin

    Science.gov (United States)

    Baron, J. S.; Hartman, M.D.; Kittel, T. G. F.; Band, L.E.; Ojima, D. S.; Lammers, R.B.

    1998-01-01

    Over one-third of the land area in the South Platte Basin of Colorado, Nebraska, and Wyoming, has been converted to croplands. Irrigated cropland now comprises 8% of the basin, while dry croplands make up 31%. We used the RHESSys model to compare the changes in plant productivity and vegetation-related hydrological processes that occurred as a result of either land cover alteration or directional temperature changes (−2°C, +4°C). Land cover change exerted more control over annual plant productivity and water fluxes for converted grasslands, while the effect of temperature changes on productivity and water fluxes was stronger in the mountain vegetation. Throughout the basin, land cover change increased the annual loss of water to the atmosphere by 114 mm via evaporation and transpiration, an increase of 37%. Both irrigated and nonirrigated grains became active earlier in the year than shortgrass steppe, leading to a seasonal shift in water losses to the atmosphere. Basin-wide photosynthesis increased by 80% due to grain production. In contrast, a 4°C warming scenario caused annual transpiration to increase by only 3% and annual evaporation to increase by 28%, for a total increase of 71 mm. Warming decreased basin-wide photosynthesis by 16%. There is a large elevational range from east to west in the South Platte Basin, which encompasses the western edge of the Great Plains and the eastern front of the Rocky Mountains. This elevational gain is accompanied by great changes in topographic complexity, vegetation type, and climate. Shortgrass steppe and crops found at elevations between 850 and 1800 m give way to coniferous forests and tundra between 1800 and 4000 m. Climate is increasingly dominated by winter snow precipitation with increasing elevation, and the timing of snowmelt influences tundra and forest ecosystem productivity, soil moisture, and downstream discharge. Mean annual precipitation of <500 mm on the plains below 1800 m is far less than potential

  1. Staging atmospheres

    DEFF Research Database (Denmark)

    Bille, Mikkel; Bjerregaard, Peter; Sørensen, Tim Flohr

    2015-01-01

    The article introduces the special issue on staging atmospheres by surveying the philosophical, political and anthropological literature on atmosphere, and explores the relationship between atmosphere, material culture, subjectivity and affect. Atmosphere seems to occupy one of the classic...... localities of tensions between matter and the immaterial, the practical and the ideal, and subject and object. In the colloquial language there can, moreover, often seem to be something authentic or genuine about atmosphere, juxtaposing it to staging, which is implied to be something simulated or artificial....... This introduction seeks to outline how a number of scholars have addressed the relationship between staged atmospheres and experience, and thus highlight both the philosophical, social and political aspects of atmospheres...

  2. CO2在与高振动激发NaH碰撞中的量子态分辨能量再分配%Quantum State-Resolved Energy Redistribution of CO2 from Collisions with Highly Vibrationally Excited NaH

    Institute of Scientific and Technical Information of China (English)

    阿拜·艾力哈孜; 刘静; 戴康; 沈异凡

    2016-01-01

    )K.The cooler distribution accounted for 79% of the scattered population and resulted from elas-tic or weakly inelastic collisions that induced very little rotational excitation in CO2 .The hotter distribution involved large chan-ges in CO2 rotational energy and accounted for 21% of collision.Nascent translational energy profiles for scattered CO2 (000 0,J=60~80)were measured using high resolution transient overtone fluorescence.The relative translational energy of the scattered molecules increased as a function of final CO2 rotational state with〈ΔErel〉=582 cm-1 for J=60,and 2 973 cm-1 for J=80.En-ergy transfer rates were determined for the full J-state distribution by monitoring the change of the nascent population.The total rate constant for appearance of scattered CO2 (000 0)was kapp=(7.2±1.8)×10-10 cm3 ·mol-1 ·s-1 .The depletion for the low-J CO2 states was involved in the collisional energy transfer of the initial distribution.For J=2~38,the average rate constant for depletion of scattered CO2 (000 0)is 〈kdep〉=(6.9±1.7)×10-10 cm3 ·mol-1 ·s-1 .

  3. Energy

    CERN Document Server

    Robertson, William C

    2002-01-01

    Confounded by kinetic energy? Suspect that teaching about simple machines isn t really so simple? Exasperated by electricity? If you fear the study of energy is beyond you, this entertaining book will do more than introduce you to the topic. It will help you actually understand it. At the book s heart are easy-to-grasp explanations of energy basics work, kinetic energy, potential energy, and the transformation of energy and energy as it relates to simple machines, heat energy, temperature, and heat transfer. Irreverent author Bill Robertson suggests activities that bring the basic concepts of energy to life with common household objects. Each chapter ends with a summary and an applications section that uses practical examples such as roller coasters and home heating systems to explain energy transformations and convection cells. The final chapter brings together key concepts in an easy-to-grasp explanation of how electricity is generated. Energy is the second book in the Stop Faking It! series published by NS...

  4. High Data Rates for AubieSat-2 A & B, Two CubeSats Performing High Energy Science in the Upper Atmosphere

    Science.gov (United States)

    Sims, William H.

    2015-01-01

    This paper will discuss a proposed CubeSat size (3 Units / 6 Units) telemetry system concept being developed at Marshall Space Flight Center (MSFC) in cooperation with Auburn University. The telemetry system incorporates efficient, high-bandwidth communications by developing flight-ready, low-cost, PROTOFLIGHT software defined radio (SDR) payload for use on CubeSats. The current telemetry system is slightly larger in dimension of footprint than required to fit within a 0.75 Unit CubeSat volume. Extensible and modular communications for CubeSat technologies will provide high data rates for science experiments performed by two CubeSats flying in formation in Low Earth Orbit. The project is a collaboration between the University of Alabama in Huntsville and Auburn University to study high energy phenomena in the upper atmosphere. Higher bandwidth capacity will enable high-volume, low error-rate data transfer to and from the CubeSats, while also providing additional bandwidth and error correction margin to accommodate more complex encryption algorithms and higher user volume.

  5. Phenomenology of atmospheric neutrinos

    Directory of Open Access Journals (Sweden)

    Fedynitch Anatoli

    2016-01-01

    Full Text Available The detection of astrophysical neutrinos, certainly a break-through result, introduced new experimental challenges and fundamental questions about acceleration mechanisms of cosmic rays. On one hand IceCube succeeded in finding an unambiguous proof for the existence of a diffuse astrophysical neutrino flux, on the other hand the precise determination of its spectral index and normalization requires a better knowledge about the atmospheric background at hundreds of TeV and PeV energies. Atmospheric neutrinos in this energy range originate mostly from decays of heavy-flavor mesons, which production in the phase space relevant for prompt leptons is uncertain. Current accelerator-based experiments are limited by detector acceptance and not so much by the collision energy. This paper recaps phenomenological aspects of atmospheric leptons and calculation methods, linking recent progress in flux predictions with particle physics at colliders, in particular the Large Hadron Collider.

  6. Exoplanet Atmospheres

    CERN Document Server

    Seager, S

    2010-01-01

    At the dawn of the first discovery of exoplanets orbiting sun-like stars in the mid-1990s, few believed that observations of exoplanet atmospheres would ever be possible. After the 2002 Hubble Space Telescope detection of a transiting exoplanet atmosphere, many skeptics discounted it as a one-object, one-method success. Nevertheless, the field is now firmly established, with over two dozen exoplanet atmospheres observed today. Hot Jupiters are the type of exoplanet currently most amenable to study. Highlights include: detection of molecular spectral features; observation of day-night temperature gradients; and constraints on vertical atmospheric structure. Atmospheres of giant planets far from their host stars are also being studied with direct imaging. The ultimate exoplanet goal is to answer the enigmatic and ancient question, "Are we alone?" via detection of atmospheric biosignatures. Two exciting prospects are the immediate focus on transiting super Earths orbiting in the habitable zone of M-dwarfs, and u...

  7. Articulating Atmospheres

    DEFF Research Database (Denmark)

    Kinch, Sofie

    2011-01-01

    This paper presents an architectural approach to designing computational interfaces by articulating the notion of atmosphere in the field of interaction design. It draws upon the concept of kinesthetic interaction and a philosophical notion on atmosphere emphasizing the importance of bodily...... experience in space, presented as middle ground experience. In the field of HCI, middle ground experiences complete the unarticulated spectrum between designing for foreground of attention or background awareness. When “Articulating Atmospheres through Middle Ground Experiences in Interaction Design...

  8. Spatial and Temporal Variability of Soil Redistribution in a Heterogeneous Shrub Dominated Landscape

    Science.gov (United States)

    Van Pelt, R. S.; Zobeck, T. M.

    2015-12-01

    Redistribution of soil by wind results when the erosive force of the wind impacts bare, susceptible soil surfaces. In semi-arid and arid environments, many grasslands with protected surfaces are being replaced by heterogeneous shrub communities with bare, susceptible soil surfaces between the individual shrubs. The development of nutrient islands and the increases of fugitive dust in these areas is indicative of increases of soil redistribution, but few quantitative measurements have been made to date. We fenced three 1 ha areas in an approximately 100 ha coppice dune area of southeast New Mexico dominated by shinnery oak, sand sage, and mesquite and installed a 4 X 4 grid of MWAC sampler masts spaced at 20 m from each other. Weather data were collected at an automated weather station in each of the fenced areas. We found the patterns of soil redistribution to be highly variable in space and time. Differences in vegetation patterns and wind fields were noted among the plots for the same discrete time period that could explain some of the spatial variability. We also noted seasonality of wind fields that accounted for the temporally variable spatial patterns of soil redistribution. We conclude that accurate measurement of soil redistribution patterns in a heterogeneous shrub community requires a very large number of samplers and a long period of study and we believe that net soil loss from an area is limited to fine dust emissions.

  9. Atmospheric electricity

    CERN Document Server

    Chalmers, J Alan

    1957-01-01

    Atmospheric Electricity brings together numerous studies on various aspects of atmospheric electricity. This book is composed of 13 chapters that cover the main problems in the field, including the maintenance of the negative charge on the earth and the origin of the charges in thunderstorms. After a brief overview of the historical developments of atmospheric electricity, this book goes on dealing with the general principles, results, methods, and the MKS system of the field. The succeeding chapters are devoted to some aspects of electricity in the atmosphere, such as the occurrence and d

  10. Jerks as Guiding Influences on the Global Environment: Effects on the Solid Earth, Its Angular Momentum and Lithospheric Plate Motions, the Atmosphere, Weather, and Climate

    Science.gov (United States)

    Quinn, J. M.; Leybourne, B. A.

    2010-12-01

    Jerks are thought to be the result of torques applied at the core-mantle boundary (CMB) caused by either of two possible processes, working together or separately: 1) Electromagnetic Induction and 2) Mechanical Slippage. In the first case, it is thought that electromagnetic energy slowly builds-up at the CMB, reaches some critical level, and is then suddenly released, causing a geomagneticly induced torque at the CMB due to the differential electrical conductivity between the lower mantle and the surface of the outer core. The second case is driven by stress and strain increases that buildup mechanical potential energy, which is released when a critical level is reached, thereby generating a torque at the CMB. Generally, a trigger is required to start the Jerk process in motion. In the electromagnetic case, it is suggested that energy from the Sun may supply the requisite energy buildup that is subsequently released by a magnetic storm trigger, for instance. In the case of mechanical slippage, bari-center motion among the Earth, Moon, and Sun, as well as tidal forces and mass redistributions through Earth's wobbles combine to provide the accumulated stress/strain buildup and subsequent trigger. The resulting fluid flow changes at the CMB result in geomagnetic field changes and Joule heating throughout the solid Earth, its oceans, and atmosphere. It is shown that the Global Temperature Anomaly (GTA), which is measured at Earth's surface, correlates with changes in the geomagnetic non-dipole moment, and thus with core fluid motions. This links Global Warming and weather with core processes, important examples being the 1930's Dust Bowl Era and the 1947 Impulse. The CMB torque also affects Earth's angular momentum. But it appears that magnetic storms can as well. As a consequence, the Jet Stream, atmospheric circulation patterns, and the Global Oscillation System (i.e., El-Nino/Southern-Oscillation, North Atlantic Oscillation, the Pacific Decade Oscillation, etc.) are

  11. Rapid redistribution and inhibition of renal sodium transporters during acute pressure natriuresis

    DEFF Research Database (Denmark)

    Zhang, Y; Mircheff, A K; Hensley, C B

    1996-01-01

    Acute arterial hypertension provokes a rapid decrease in proximal tubule (PT) Na+ reabsorption, increasing flow to the macula densa, the signal for tubuloglomerular feedback. We tested the hypothesis, in rats, that Na+ transport is decreased due to rapid redistribution of apical Na+/H+ exchangers...... natriuretic stimuli, cortex was removed, and membranes were fractionated by density gradient centrifugation. Urine output and endogenous lithium clearance increased threefold in response to either stimuli. Acute hypertension provoked a redistribution of apical Na+/H+ exchanger NHE3, alkaline phosphatase...... is attributed to decreased activity of the transporters. Benzolamide did not alter Na+ transporter activity or distribution, implying that decreasing apical Na+ uptake does not initiate redistribution or inhibition of basolateral Na(+)-K(+)-ATPase. We conclude that PT natriuresis provoked by acute arterial...

  12. Strain redistribution around holes and notches in fiber-reinforced cross-woven brittle matrix composites

    DEFF Research Database (Denmark)

    Jacobsen, Torben Krogsdal; Brøndsted, Povl

    1997-01-01

    A study of the strain redistribution around holes in two different cross-woven ceramic matrix composites is presented. The strain redistribution around holes in C-f/SiCm and SiCf/SiCm has been measured experimentally under plane stress conditions. Using micro-mechanics and Continuum Damage...... Mechanics, and an identification procedure based on a uni-axial tensile test and a shear test the strain redistribution around a hole or a notch due to matrix cracking can be predicted. Damage due to fiber breakage is not included in the model. Initial matrix damage in the C-f/SiCm material has...... to be implemented to provide better agreement between experiments and modelling. The cross-woven structure is modelled as a laminate....

  13. In-situ neutron diffraction measurement of stress redistribution in a dissimilar joint during heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Dodge, M.F., E-mail: michael.dodge@twi.co.uk [TWI Ltd., Great Abington, Cambridge CB21 6AL (United Kingdom); Gittos, M.F. [TWI Ltd., Great Abington, Cambridge CB21 6AL (United Kingdom); Dong, H. [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Zhang, S.Y.; Kabra, S.; Kelleher, J.F. [ISIS, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2015-03-11

    Neutron diffraction is routinely used to monitor stress redistribution before and after heat treatment in dissimilar joints. However there remains a paucity of information concerning the evolution of strain throughout the process of heat treatment itself. Due to different mechanical properties between opposing sides, a competitive strain redistribution process occurs. Consequently, a novel in-situ measurement approach has been developed: strains at multiple points in a dissimilar joint have been measured during heat treatment. Thus, the described work elucidates areas within the thermal cycle in which competitive strain redistribution occurs, and where high residual stresses remain, following PWHT. The method may be used to characterise comparable material combinations, with a view to optimising the thermal cycles, and ultimately, the structural integrity of dissimilar joints.

  14. Photonic superdiffusive motion in resonance line radiation trapping - partial frequency redistribution effects

    CERN Document Server

    Alves-Pereira, A R; Martinho, J M G; Berberan-Santos, M N

    2007-01-01

    The relation between the jump length probability distribution function and the spectral line profile in resonance atomic radiation trapping is considered for Partial Frequency Redistribution (PFR) between absorbed and reemitted radiation. The single line Opacity Distribution Function [M.N. Berberan-Santos et.al. J.Chem.Phys. 125, 174308 (2006)] is generalized for PFR and used to discuss several possible redistribution mechanisms (pure Doppler broadening, combined natural and Doppler broadening and combined Doppler, natural and collisional broadening). It is shown that there are two coexisting scales with a different behavior: the small scale is controlled by the intricate PFR details while the large scale is essentially given by the atom rest frame redistribution asymptotic. The pure Doppler and combined natural, Doppler and collisional broadening are characterized by both small and large scale superdiffusive Levy flight behaviors while the combined natural and Doppler case has an anomalous small scale behavi...

  15. Mobile energy sharing futures

    DEFF Research Database (Denmark)

    Worgan, Paul; Knibbe, Jarrod; Plasencia, Diego Martinez

    2016-01-01

    We foresee a future where energy in our mobile devices can be shared and redistributed to suit our current task needs. Many of us are beginning to carry multiple mobile devices and we seek to re-evaluate the traditional view of a mobile device as only accepting energy. In our vision, we can...... leverage the energy stored in our devices to wirelessly distribute energy between our friends, family, colleagues and strangers devices. In this paper we explore the opportunities and interactions presented by such spontaneous energy transfer interactions and present some envisaged collaborative energy...

  16. Ecosystem carbon balance in a drier future: land-atmosphere exchanges of CO2, water and energy across semiarid southwestern North America

    Science.gov (United States)

    Biederman, J. A.; Scott, R. L.; Goulden, M.; Litvak, M. E.; Kolb, T.; Yépez, E. A.; Oechel, W. C.; Meyers, T. P.; Papuga, S. A.; Ponce-Campos, G.; Krofcheck, D. J.; Maurer, G. E.; Dore, S.; Garatuza, J.; Bell, T. W.; Krishnan, P.

    2015-12-01

    The southwest US and northwest Mexico are predicted to become warmer and drier, increasing disturbance, shifting ecosystem composition, and altering global CO2 cycling. However, direct measurements of ecosystem land-atmosphere carbon and water exchange in this region have lagged behind those in wetter regions. In this presentation we present a synthesis of CO2, water, and energy exchanges made at 25 Southwest eddy covariance sites (3-10 years each, n = 174 years). This regional gradient includes desert shrublands, grasslands, savannas, and forests and spans ranges of 200 - 800 mm in mean annual precipitation and 2 - 24 ⁰C mean annual temperature, a climate space that has been underrepresented in flux databases and publications. We compare measured fluxes against state-of-the-art remote sensing and modeling products representing current best regional estimates. We find that 65% of annual net ecosystem production of CO2 (NEP) is explained by water availability. Meanwhile, most of the unexplained NEP variability is related to site-specific differences persisting over the observation years, suggesting slow-changing controls such as demography (plant type, age, structure) and legacies of disturbance. Disturbances that kill plants without removing biomass, such as drought, tend to decrease productivity and increase respiration, shifting sites from carbon sinks to sources. However, following disturbances that removed biomass, such as fire, both productivity and respiration decline, with minimal impacts on NEP. Remote sensing and modeling match mean CO2 uptake measurements across spatial gradients in climate and plant functional type. However, measured uptake reveals 200-400% greater interannual variability than model estimates. High variability and sensitivity to water help us understand why semiarid ecosystems dominate the interannual variability of the terrestrial carbon sink in global accounting studies.

  17. Ice-Atmosphere Interactions on the Devon Ice Cap, Canada: The Effects of Climate Warming on Surface Energy Balance, Melting, and Firn Stratigraphy

    Science.gov (United States)

    Gascon, Gabrielle

    In order to better constrain the magnitude of projected sea-level rise from Canadian Arctic glaciers during the 21st century warming, it is critical to understand the environmental mechanisms that enhance surface warming and melt, and how the projected increase in surface melt will translate into increased runoff. Between 2004 and 2010, a 4 °C increase in mean air summer temperature, and a 6.1 day yr-1 increase in melt season duration were observed on the Devon Ice Cap, Nunavut. At the same time, a combination of strengthening of the 500 hPa ridge over the Arctic in June-July, and more frequent south-westerly low-pressure systems in August after 2005 created atmospheric conditions that contributed to an increase in the surface energy balance of the ice cap. At 1400m elevation, these changes led to a doubling of the available melt energy and surface melt between 2007 and 2010. Currently, refreezing of meltwater in firn buffers the relationship between increased surface melt and runoff. Between 2007 and 2012, increased meltwater percolation and infiltration ice formation associated with high surface melt rates modified the stratigraphy of firn in the ice cap's accumulation area very substantially. Growth of a 0.5-4.5 m thick ice layer that filled much of the pore volume of the upper part of the firn reduced vertical percolation of meltwater into deeper parts of the firn. This progressively limited the water storage potential of the firn reservoir, and likely caused a significant increase in surface runoff. An evaluation of the snowpack model Crocus against ground observations for the period 2004-2012 showed that, although the model simulated observed density/depth profiles relatively well at all sites, its representation of heterogeneous percolation as a homogeneous process created conditions that favoured excessive near-surface freezing. At the same time, Crocus's parameterization of the permeability of ice layers forced meltwater to percolate through them

  18. Deformation-induced silica redistribution in banded iron formation, Hamersley Province, Australia

    Science.gov (United States)

    Egglseder, Mathias S.; Cruden, Alexander R.; Tomkins, Andrew G.; Wilson, Christopher J. L.

    2016-12-01

    The formation of banded iron formations (BIF) remains controversial despite their potential to provide key information on Precambrian atmospheres and hydrospheres. It is widely agreed that BIF are chemical sedimentary rocks comprising alternating layers of iron oxides and chert formed from poorly known precursor phases. Many models address the chemical transformation of such precursor iron oxide phases into BIF during compaction and diagenesis. However, the formation of chert and the influence of physical forces in this process have received less attention. Microstructural analysis of BIF from the Hamersley Province (Western Australia) reveals that significant amounts of silica were redistributed by dissolution-precipitation creep during both diagenesis and regional-scale deformation. This physicochemical process led to silica remobilisation and volume loss by stress-induced dissolution of microcrystalline quartz in an aqueous fluid. The dissolved solid phase was transported by diffusion and fluid flow along grain boundaries or within available porosity and then reprecipitated in low-pressure zones, leading to local volume increase. These processes were further enhanced by rheological contrasts between different minerals, resulting in significant variations of chert band thickness. Microstructural observations combined with quantitative microfabric analysis reveal domains of crystallographic preferred orientations (CPO) in quartz grains within chert layers. The CPO fabrics record strain regimes (e.g., pure and simple shear, extension and shortening) that modified quartz aggregates by dissolution-precipitation creep, providing new insights into the metamorphic and deformation history of BIF. We document microstructures that indicate that non-coaxial deformation was active during diagenesis and subsequent deformation of the Hamersley Province BIF. Further, relatively undeformed chert layers may have been similarly affected by significant amounts of dissolution

  19. Energy

    Science.gov (United States)

    2003-01-01

    Canada, Britain, and Spain. We found that the energy industry is not in crisis ; however, U.S. government policies, laws, dollars, and even public...CEIMAT (Centro de Investagaciones Energeticas , Medioambeintales y Tecnologicas) Research and development Page 3 of 28ENERGY 8/10/04http://www.ndu.edu...meet an emerging national crisis (war), emergency (natural disaster), or major impact event (Y2K). Certain resources are generally critical to the

  20. INFLUENCE OF CARBON CONTENT OF MARTENSITE STEELS ON HARDNESS RE-DISTRIBUTION NEAR WORN SURFACE

    Institute of Scientific and Technical Information of China (English)

    Y.P. Ma

    2002-01-01

    After three-body abrasion, the hardness re-distribution near the worn surface has aclose relationship with the carbon content of martensite steel. It is considered thatthere is a competition between the work-hardening and the temper softening, whichresults from deformation and friction heat of material. When the carbon content ofmartensite steel is below about 0.6%, the subsurface hardness distribution of materialis a softened layer sandwiched between two hardened layers, but above 0.6%C, nosoftened region appears on the hardness re-distribution curve.

  1. Household perceptions towards a redistributive policy across health insurance funds in Tanzania

    DEFF Research Database (Denmark)

    Chomi, Eunice; Mujinja, Phares; Hansen, Kristian Schultz

    2015-01-01

    Background The Tanzanian health insurance system comprises multiple health insurance funds targeting different population groups but which operate in parallel, with no mechanisms for redistribution across the funds. Establishing such redistributive mechanisms requires public support, which...... to identify factors associated with support for cross-subsidisation of the poor. Results Compared to CHF and NHIF households, non-member households expressed the highest support for subsidised CHF membership for the poor. The odds of expressing support for subsidised CHF membership are higher for NHIF...

  2. A new generalization of the proportional conflict redistribution rule stable in terms of decision

    CERN Document Server

    Martin, Arnaud

    2008-01-01

    In this chapter, we present and discuss a new generalized proportional conflict redistribution rule. The Dezert-Smarandache extension of the Demster-Shafer theory has relaunched the studies on the combination rules especially for the management of the conflict. Many combination rules have been proposed in the last few years. We study here different combination rules and compare them in terms of decision on didactic example and on generated data. Indeed, in real applications, we need a reliable decision and it is the final results that matter. This chapter shows that a fine proportional conflict redistribution rule must be preferred for the combination in the belief function theory.

  3. A Generalized Kawasaki-Type Dynamics with Spin-Pair Redistribution Mechanism

    Institute of Scientific and Technical Information of China (English)

    朱建阳; 朱涵

    2002-01-01

    We generalize Kawasaki's dynamics, spin-pair exchange mechanism, to a spin-pair redistribution mechanism,and we present a normalized redistribution probability. As an application, we treat the one-dimensional kinetic Gaussian model and obtain the exact diffusion equation and the temperature-dependent diffusion coefficient. We find that the diffusion process can slow down infinitely near the critical point and obtain the critical dynamic exponent z = 2 that is independent of the assumed mechanism, either Glauber-type or Kawasaki-type.

  4. Extensions to decomposition of the redistributive effect of health care finance.

    Science.gov (United States)

    Zhong, Hai

    2009-10-01

    The total redistributive effect (RE) of health-care finance has been decomposed into vertical, horizontal and reranking effects. The vertical effect has been further decomposed into tax rate and tax structure effects. We extend this latter decomposition to the horizontal and reranking components of the RE. We also show how to measure the vertical, horizontal and reranking effects of each component of the redistributive system, allowing analysis of the RE of health-care finance in the context of that system. The methods are illustrated with application to the RE of health-care financing in Canada.

  5. Redistribution of phase fluctuations in a periodically driven cuprate superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Hoeppner, Robert; Zhu, Beilei; Rexin, Tobias [Zentrum fuer Optische Quantentechnologien und Institut fuer Laserphysik, Hamburg (Germany); Mathey, Ludwig [Zentrum fuer Optische Quantentechnologien und Institut fuer Laserphysik, Hamburg (Germany); The Hamburg Centre for Ultrafast Imaging, Hamburg (Germany); Cavalleri, Andrea [Max Planck Institute for the Structure and Dynamics of Matter, Hamburg (Germany); Department of Physics, Oxford University, Clarendon Laboratory, Parks Road, Oxford (United Kingdom)

    2015-07-01

    We study the thermally fluctuating state of a bi-layer cuprate superconductor under the periodic action of a staggered field oscillating at optical frequencies. This analysis distills essential elements of the recently discovered phenomenon of light enhanced coherence in YBCO, which was achieved by periodically driving infrared active apical oxygen distortions. The effect of a staggered periodic perturbation is studied using a Langevin description of driven, coupled Josephson junctions, which represent two neighboring pairs of layers and their two plasmons. We demonstrate that the external driving leads to a suppression of phase fluctuations of the low-energy plasmon, an effect which is amplified via the resonance of the high energy plasmon, with a striking suppression of the low-energy fluctuations, as visible in the power spectrum. We also find that this effect acts onto the in-plane fluctuations, which are reduced on long length scales and we discuss the behavior of vortices in the ab-planes and across the weakly coupled junctions.

  6. 60 keV Ar{sup +}-ion induced pattern formation on Si surface: Roles of sputter erosion and atomic redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Garg, S.K., E-mail: sandeep@iopb.res.in [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Datta, D.P.; Kumar, M. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Kanjilal, D. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Som, T., E-mail: tsom@iopb.res.in [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India)

    2014-08-15

    Highlights: • AFM study of morphological evolution on Si surface under 60 keV Ar{sup +} ions irradiation as a function of angle of incidence and fluence. • Construction of parametric phase diagram of medium energy ion induced ripple formation on Si. • Observation of sticking similarities between medium and low energy ion-induced pattern. • Numerical estimation shows that simultaneous contribution of curvature dependent sputtering and ion induced atomic redistribution. - Abstract: We study the evolution of surface morphology on Si(1 0 0) surface due to 60 keV Ar{sup +}-ion irradiation at room temperature for a wide range of ion fluences (2–80 × 10{sup 17} ions cm{sup −2}) and angles of incidence (0°–75°). We have clearly distinguished linear and nonlinear regimes for the observed ripple patterns in our experiment. From our experimental results and those available in the literature, we have created a parametric phase diagram which summarizes an overview of pattern formation on silicon surface under medium energy ion irradiation. On the basis of this phase diagram, we demonstrate some striking similarities between medium and low energy ion-induced ripple patterns and infer that similar mechanisms may be responsible for pattern formation at both regimes. Comparison of our experimental results with numerical estimations reveals that both curvature dependent sputter erosion and ion induced atomic redistribution are responsible for the observed evolution of surface morphology.

  7. Atmospheric materiality

    DEFF Research Database (Denmark)

    Wieczorek, Izabela

    2016-01-01

    experience and, consequently, to the conceptual and methodological shifts in the production of space, and hence in the way we think about materiality. In this context, architectural space is understood as a contingent construction – a space of engagement that appears to us as a result of continuous...... characteristics of atmosphere as a spatial phenomenon, the aim of this text is to illustrate these associations and draw out design protocols, focusing on ways in which atmosphere can be conditioned architecturally. In other words, the objective is to trace the conceptual contours of ‘atmospheric materiality’....

  8. Organic carbon redistribution due to erosion at various spatial scales

    Science.gov (United States)

    Jakab, Gergely; Szabó, Judit; Szalai, Zoltán; Mészáros, Erzsébet; Szabó, Boglárka; Centeri, Csaba

    2016-04-01

    Soil organic carbon (SOC) has a crucial role both in terms of crop production and climate change mitigation. Soil could be an effective sink of atmospheric carbon since in agricultural areas the carbon content of the soil is much lower than its capacity. The main obstacle against carbon charge of the soils is cultivation and erosion. Soil detachment, delivery and deposition are rather scale dependent processes that is why it is difficult to compare or extrapolate results among scales. Present case study aims to compare the SOC content and soil organic matter (SOM) compound of the detached soil particles on the ridge to those that are deposited at the bottom of the catena in order to clarify the role of delivery in soil erosion. Initial soil erosion was modelled using a laboratory rainfall simulator at the point scale. Deposition was surveyed and analysed by 3D sampling from drillings on the sedimentary parts at the field scale. At the detachment phase carbon enrichment (50-100%) and C/N ratio increase were found in each aggregate size class of the detached soil particles. Variations in SOM compounds suggested that a very intensive SOM exchange took place during initial erosion processes and delivery. In addition to the selective erosion selective SOC deposition were also found at the field scale. Two topographical hotspots were identified as the place of SOC surplus deposition. In these patches SOM compounds were deposited separately due to different geomorphologic positions. The lower patch next to the end of an ephemeral gully was dominated by less polymerized more aromatic SOM, while the upper one was ruled by high molecular weighted aliphatic SOM. Difference in SOM compound was manifested also in different sediment morphology. The topographically higher deposition patch were covered by aggregates while the lower one was found to be sealed by individual soil particles. Present study was supported by the National Hungarian Research Found K100180, G. Jakab was

  9. Atmospheric impacts of black carbon emission reductions through the strategic use of biodiesel in California.

    Science.gov (United States)

    Zhang, Hongliang; Magara-Gomez, Kento T; Olson, Michael R; Okuda, Tomoaki; Walz, Kenneth A; Schauer, James J; Kleeman, Michael J

    2015-12-15

    The use of biodiesel as a replacement for petroleum-based diesel fuel has gained interest as a strategy for greenhouse gas emission reductions, energy security, and economic advantage. Biodiesel adoption may also reduce particulate elemental carbon (EC) emissions from conventional diesel engines that are not equipped with after-treatment devices. This study examines the impact of biodiesel blends on EC emissions from a commercial off-road diesel engine and simulates the potential public health benefits and climate benefits. EC emissions from the commercial off-road engine decreased by 76% when ultra-low sulfur commercial diesel (ULSD) fuel was replaced by biodiesel. Model calculations predict that reduced EC emissions translate directly into reduced EC concentrations in the atmosphere, but the concentration of secondary particulate matter was not directly affected by this fuel change. Redistribution of secondary particulate matter components to particles emitted from other sources did change the size distribution and therefore deposition rates of those components. Modification of meteorological variables such as water content and temperature influenced secondary particulate matter formation. Simulations with a source-oriented WRF/Chem model (SOWC) for a severe air pollution episode in California that adopted 75% biodiesel blended with ULSD in all non-road diesel engines reduced surface EC concentrations by up to 50% but changed nitrate and total PM2.5 mass concentrations by less than ±5%. These changes in concentrations will have public health benefits but did not significantly affect radiative forcing at the top of the atmosphere. The removal of EC due to the adoption of biodiesel produced larger coatings of secondary particulate matter on other atmospheric particles containing residual EC leading to enhanced absorption associated with those particles. The net effect was a minor change in atmospheric optical properties despite a large change in atmospheric EC

  10. The Atmospheric Energy Budget and Large-Scale Precipitation Efficiency of Convective Systems during TOGA COARE, GATE, SCSMEX, and ARM: Cloud-Resolving Model Simulations.

    Science.gov (United States)

    Tao, W.-K.; Johnson, D.; Shie, C.-L.; Simpson, J.

    2004-10-01

    A two-dimensional version of the Goddard Cumulus Ensemble (GCE) model is used to simulate convective systems that developed in various geographic locations (east Atlantic, west Pacific, South China Sea, and Great Plains in the United States). Observed large-scale advective tendencies for potential temperature, water vapor mixing ratio, and horizontal momentum derived from field campaigns are used as the main forcing. The atmospheric temperature and water vapor budgets from the model results show that the two largest terms are net condensation (heating/drying) and imposed large-scale forcing (cooling/moistening) for tropical oceanic cases though not for midlatitude continental cases. These two terms are opposite in sign, however, and are not the dominant terms in the moist static energy budget.The balance between net radiation, surface latent heat flux, and net condensational heating vary in these tropical cases, however. For cloud systems that developed over the South China Sea and eastern Atlantic, net radiation (cooling) is not negligible in the temperature budget; it is as large as 20% of the net condensation. However, shortwave heating and longwave cooling are in balance with each other for cloud systems over the west Pacific region such that the net radiation is very small. This is due to the thick anvil clouds simulated in the cloud systems over the Pacific region. The large-scale advection of moist static energy is negative, as a result of a larger absolute value of large-scale advection of sensible heat (cooling) compared to large-scale latent heat (moistening) advection in the Pacific and Atlantic cases. For three cloud systems that developed over a midlatitude continent, the net radiation and sensible and latent heat fluxes play a much more important role. This means that the accurate measurement of surface fluxes and radiation is crucial for simulating these midlatitude cases.The results showed that large-scale mean (multiday) precipitation efficiency

  11. Atmospheric Dispositifs

    DEFF Research Database (Denmark)

    Wieczorek, Izabela

    2015-01-01

    , the conceptual foundations and protocols for the production of atmosphere in architecture might be found beneath the surface of contemporary debates. In this context, the notion of atmospheric dispositif – illustrated through an oeuvre of the German architect Werner Ruhnau and its theoretical and historical...... as a spatial phenomenon, exploring a multiplicity of conditions that constitute their resonant origins – i.e. the production sites from and within they have emerged. The intention is also to argue that despite the fact that atmosphere as an aesthetic category has crystallised over the last few decades...... contextualisation – provides a platform for revealing productive entanglements between heterogeneous elements, disciplines and processes. It also allows rendering atmosphere as a site of co-production open to contingencies and affective interplay on multiples levels: at the moment of its conceptualisation...

  12. Atmospheric composition

    Science.gov (United States)

    Daniels, G. E.

    1973-01-01

    The earth's atmosphere is made up of a number of gases in different relative amounts. Near sea level and up to about 90 km, the amount of these atmospheric gases in clean, relatively dry air is practically constant. Four of these gases, nitrogen, oxygen, argon, and carbon dioxide, make up 99.99 percent by volume of the atmosphere. Two gases, ozone and water vapor, change in relative amounts, but the total amount of these two is very small compared to the amount of the other gases. The atmospheric composition shown in a table can be considered valid up to 90 km geometric altitude. Above 90 km, mainly because of molecular dissociation and diffusive separation, the composition changes.

  13. Interference and the Law of Energy Conservation

    Science.gov (United States)

    Drosd, Robert; Minkin, Leonid; Shapovalov, Alexander S.

    2014-01-01

    Introductory physics textbooks consider interference to be a process of redistribution of energy from the wave sources in the surrounding space resulting in constructive and destructive interferences. As one can expect, the total energy flux is conserved. However, one case of apparent non-conservation energy attracts great attention. Imagine that…

  14. Charge transfer and redistribution at interfaces between metals and 2D materials

    NARCIS (Netherlands)

    Bokdam, Menno

    2013-01-01

    Large potential steps are observed at the interfaces between metals and novel 2D materials. They can lower the work function by more than 1 eV, even when the two parts are only weakly interacting. In this thesis the transfer and redistribution of electrons in metal|2D material heterostructures are s

  15. Studying DAC capacitor-array degradation in charge-redistribution SAR ADCs

    NARCIS (Netherlands)

    Khan, Muhammad Aamir; Kerkhoff, Hans G.

    2014-01-01

    In this paper, system-level behavioural models are used to simulate the aging-related degradation effects in the DAC capacitor array of a charge-redistribution successive approximation register (SAR) ADC because of the large calculation time of transistor-level aging simulators. A performance-analys

  16. Constituent Redistribution in U-Zr Metallic Fuel Using the Advanced Fuel Performance Code BISON

    Energy Technology Data Exchange (ETDEWEB)

    Galloway, Jack D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Unal, Cetin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Matthews, Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-30

    Previous work done by Galloway, et. al. on EBR-II ternary (U-Pu-Zr) fuel constituent redistribution yielded accurate simulation data for the limited data sets of Zr redistribution. The data sets included EPMA scans of two different irradiated rods. First, T179, which was irradiated to 1.9 at% burnup, was analyzed. Second, DP16, which was irradiated to 11 at% burnup, was analyzed. One set of parameters that most accurately represented the zirconium profiles for both experiments was determined. Since the binary fuel (U-Zr) has previously been used as the driver fuel for sodium fast reactors (SFR) as well as being the likely driver fuel if a new SFR is constructed, this same process has been initiated on the binary fuel form. From limited binary EPMA scans as well as other fuel characterization techniques, it has been observed that zirconium redistribution also occurs in the binary fuel, albeit at a reduced rate compared to observation in the ternary fuel, as noted by Kim et. al. While the rate of redistribution has been observed to be slower, numerous metallographs of U-Zr fuel show distinct zone formations.

  17. A glimpse through the veil of ignorance: Equality of opportunity and support for redistribution

    NARCIS (Netherlands)

    M.W. Krawczyk

    2010-01-01

    This study is an experimental investigation into preference for redistribution of income. It had been hypothesized that (belief in) equality of opportunity in a society diminishes support for the welfare state. This could potentially explain the low taxes and social benefits in the United States vis

  18. A glimpse through the veil of ignorance: equality of opportunity and support for redistribution

    NARCIS (Netherlands)

    M.W. Krawczyk

    2007-01-01

    This study is an experimental investigation into preference for redistribution of income. It had been hypothesized that (belief in) equality of opportunity in a society diminishes support for the welfare state. This could potentially explain the low taxes and social benefits in the United States vis

  19. The hydrostatic pressure indifference point underestimates orthostatic redistribution of blood in humans

    DEFF Research Database (Denmark)

    Petersen, L G; Carlsen, Jonathan F.; Nielsen, Michael Bachmann

    2014-01-01

    The hydrostatic indifference point (HIP; where venous pressure is unaffected by posture) is located at the level of the diaphragm and is believed to indicate the orthostatic redistribution of blood, but it remains unknown whether HIP coincides with the indifference point for blood volume (VIP). D...

  20. DEM resolution effects on shallow landslide hazard and soil redistribution modelling

    NARCIS (Netherlands)

    Claessens, L.F.G.; Heuvelink, G.B.M.; Schoorl, J.M.; Veldkamp, A.

    2005-01-01

    In this paper we analyse the effects of digital elevation model (DEM) resolution on the results of a model that simulates spatially explicit relative shallow landslide hazard and soil redistribution patterns and quantities. We analyse distributions of slope, specific catchment area and relative haza

  1. CONTAMINANT REDISTRIBUTION CAN CONFOUND INTERPRETATION OF OIL-SPILL BIOREMEDIATION STUDIES

    Science.gov (United States)

    The physical redistribution of oil between the inside and outside of experimental plots can affect the results of bioremediation field studies that are conducted on shorelines contaminated by real oil spills. Because untreated oil from the surrounding beach will enter the plot, ...

  2. Redistribution spurs growth by using a portfolio effect on risky human capital.

    Science.gov (United States)

    Lorenz, Jan; Paetzel, Fabian; Schweitzer, Frank

    2013-01-01

    We demonstrate by mathematical analysis and systematic computer simulations that redistribution can lead to sustainable growth in a society. In accordance with economic models of risky human capital, we assume that dynamics of human capital is modeled as a multiplicative stochastic process which, in the long run, leads to the destruction of individual human capital. When agents are linked by fully redistributive taxation the situation might turn to individual growth in the long run. We consider that a government collects a proportion of income and reduces it by a fraction as costs for administration (efficiency losses). The remaining public good is equally redistributed to all agents. Sustainable growth is induced by redistribution despite the losses from the random growth process and despite administrative costs. Growth results from a portfolio effect. The findings are verified for three different tax schemes: proportional tax, taking proportionally more from the rich, and proportionally more from the poor. We discuss which of these tax schemes performs better with respect to maximize growth under a fixed rate of administrative costs, and the governmental income. This leads us to general conclusions about governmental decisions, the relation to public good games with free riding, and the function of taxation in a risk-taking society.

  3. Preferences on Redistribution in Fragmented Labor Markets in Latin America and the Caribbean

    Directory of Open Access Journals (Sweden)

    Sarah Berens

    2015-01-01

    Full Text Available This study investigates the extent to which labor market dualization polarizes preferences on redistribution between formal and informal sector workers in Latin America and the Caribbean. Differences in welfare state costs and benefits for these labor market groups are likely to fuel diverging incentives regarding welfare consumption. The article tests whether or not informal workers are driven mainly by economic self-interest to increase gains from public welfare goods. The study employed a hierarchical model on pooled survey data from the Latin American Public Opinion Project (LAPOP 2008 and 2010 to analyze the risk exposure of formal and informal workers and, subsequently, their preferences on redistribution. The analysis reveals that while economic self-interest is an influential factor for formal workers, it is (unexpectedly much less so for informal workers. Also, an increased economically insecure environment, reflected by high unemployment rates, does not motivate informal workers to an exceptional degree to turn towards the state for redistribution, despite greater exposure to economic risk. Labor market dualization does not translate into polarization at the individual level regarding redistributive preferences in Latin America and the Caribbean.

  4. Mass Redistribution in the Core and Time-varying Gravity at the Earth's Surface

    Science.gov (United States)

    Kuang, Wei-Jia; Chao, Benjamin F.; Fang, Ming

    2003-01-01

    The Earth's liquid outer core is in convection, as suggested by the existence of the geomagnetic field in much of the Earth's history. One consequence of the convection is the redistribution of mass resulting from relative motion among fluid parcels with slightly different densities. This time dependent mass redistribution inside the core produces a small perturbation on the gravity field of the Earth. With our numerical dynamo solutions, we find that the mass redistribution (and the resultant gravity field) symmetric about the equator is much stronger than that anti-symmetric about the equator. In particular, J(sub 2) component is the strongest. In addition, the gravity field variation increases with the Rayleigh number that measures the driving force for the geodynamo in the core. With reasonable scaling from the current dynamo solutions, we could expect that at the surface of the Earth, the J(sub 2) variation from the core is on the order of l0(exp -16)/year relative to the mean (i.e. spherically symmetric) gravity field of the Earth. The possible shielding effect due to core-mantle boundary pressure variation loading is likely much smaller and is therefore negligible. Our results suggest that time-varying gravity field perturbation due to core mass redistribution may be measured with modem space geodetic observations, which will result a new means of detecting dynamical processes in the Earth's deep interior.

  5. Rainfall intensity switches ecohydrological runoff/runon redistribution patterns in dryland vegetation patches.

    Science.gov (United States)

    Magliano, Patricio N; Breshears, David D; Fernández, Roberto J; Jobbágy, Esteban G

    2015-12-01

    Effectively managing net primary productivity in drylands for grazing and other uses depends on understanding how limited rainfall input is redistributed by runoff and runon among vegetation patches, particularly for patches that contrast between lesser and greater amounts of vegetation cover. Due in part to data limitations, ecohydrologists generally have focused on rainfall event size to characterize water redistribution processes. Here we use soil moisture data from a semiarid woodland to highlight how, when event size is controlled and runoff and interception are negligible at the stand scale, rainfall intensity drives the relationship between water redistribution and canopy and soil patch attributes. Horizontal water redistribution variability increased with rainfall intensity and differed between patches with contrasting vegetation cover. Sparsely vegetated patches gained relatively more water during lower intensity events, whereas densely vegetated ones gained relatively more water during higher intensity events. Consequently, range managers need to account for the distribution of rainfall event intensity, as well as event size, to assess the consequences of climate variability and change on net primary productivity. More generally, our results suggest that rainfall intensity needs to be considered in addition to event size to understand vegetation patch dynamics in drylands.

  6. Barker's Ecology of Disadvantage and Educational Equity: Issues of Redistribution and Recognition

    Science.gov (United States)

    Raffo, Carlo

    2011-01-01

    As Barker notes, the link between disadvantage and poor educational attainments is an enduring one. Educational policy over the last 40 years or so has tended to respond to educational inequality in predominately one of two ways--attempts to raise standards across the system as a whole and attempts to redistribute resources to families, schools…

  7. Elemental redistribution in a nanocrystalline Ni-Fe alloy induced by high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Ni, S. [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW 2006 (Australia); Sha, G., E-mail: gang.sha@sydney.edu.au [Australian Centre for Microscopy and Microanalysis, University of Sydney, Sydney, NSW 2006 (Australia); Wang, Y.B. [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Liao, X.Z., E-mail: xiaozhou.liao@sydney.edu.au [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW 2006 (Australia); Alhajeri, S.N. [Department of Manufacturing Engineering, College of Technological Studies, PAAET, Shuwaikh 70654 (Kuwait); Li, H.Q. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Zhu, Y.T. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27659-7919 (United States); Langdon, T.G. [Materials Research Group, School of Engineering Sciences, University of Southampton, Southampton SO17 1BJ (United Kingdom); Departments of Aerospace and Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States); Ringer, S.P. [Australian Centre for Microscopy and Microanalysis, University of Sydney, Sydney, NSW 2006 (Australia)

    2011-09-25

    Highlights: {center_dot} Elemental distribution of a nc Ni-Fe alloy before and after high-pressure torsion. {center_dot} The supersaturated Ni-Fe solid solution was stable under HPT. {center_dot} C and S atoms further segregated to the remaining GBs during grain growth. {center_dot} GB diffusion and the motion of defects facilitate the elemental redistribution. - Abstract: An electrochemically deposited nanocrystalline supersaturated face-centred-cubic Ni-21 at.% Fe alloy with an initial average grain size of {approx}21 nm was processed using high-pressure torsion (HPT) that resulted in grain growth via grain rotation and coalescence to an average grain size of {approx}53 nm. Atom probe tomography investigations revealed that the supersaturated Ni-Fe solid solution was stable under HPT and that C and S atoms, which are the major impurities in the material and segregated to the grain boundaries (GBs) of the as-deposited material, migrated from disappearing GBs to the remaining GBs during HPT. We propose that the elemental redistribution was facilitated by GB diffusion and the motion of a large volume of HPT-induced defects at the GB regions during the grain growth process. This elemental redistribution process is different from other HPT-induced elemental redistribution processes reported in the literature.

  8. Local temperature redistribution and structural transition during joule-heating-driven conductance switching in VO2.

    Science.gov (United States)

    Kumar, Suhas; Pickett, Matthew D; Strachan, John Paul; Gibson, Gary; Nishi, Yoshio; Williams, R Stanley

    2013-11-13

    Joule-heating induced conductance-switching is studied in VO2 , a Mott insulator. Complementary in situ techniques including optical characterization, blackbody microscopy, scanning transmission X-ray microscopy (STXM) and numerical simulations are used. Abrupt redistribution in local temperature is shown to occur upon conductance-switching along with a structural phase transition, at the same current.

  9. Mandatory Pension System and Redistribution: The Comparative Analysis of Institutions in Baltic States

    Directory of Open Access Journals (Sweden)

    Dunajevas Eugenijus

    2016-12-01

    Full Text Available Mandatory pension systems occupy a central role in the system of social security because of the share of social expenditure in national economies. One of the goals of pension system is to redistribute incomes among individuals. However, it is not clear how the intentions to redistribute incomes coincide with the outcomes. In this paper, we will study the difference between the intentions as they are articulated within institutions, with the outcomes that are generated by them. We use the method of comparative institutional analysis in order to find out the differences. Our comparative institutional analysis is based on the grammar of institutions that is proposed by Crawford and Ostrom. Also, in order to understand the differences, we will compare the institutions in relatively similar cases – the Baltic States. The results show that there is a gap between the intentions and outcomes to redistribute incomes among individuals. The findings from the comparative institutional analysis suggest that the most redistributive old age pension system is in Estonia. However, according to the factual information from Eurostat, the greatest distributive effect is produced by the mandatory pension system of Lithuania.

  10. Rock Outcrops Redistribute Organic Carbon and Nutrients to Nearby Soil Patches in Three Karst Ecosystems in SW China.

    Science.gov (United States)

    Wang, Dianjie; Shen, Youxin; Li, Yuhui; Huang, Jin

    2016-01-01

    Emergent rock outcrops are common in terrestrial ecosystems. However, little research has been conducted regarding their surface function in redistributing organic carbon and nutrient fluxes to soils nearby. Water that fell on and ran off 10 individual rock outcrops was collected in three 100 × 100 m plots within a rock desertification ecosystem, an anthropogenic forest ecosystem, and a secondary forest ecosystem between June 2013 and June 2014 in Shilin, SW China. The concentrations of total organic carbon (TOC), total nitrogen (N), total phosphorus (P), and potassium (K) in the water samples were determined during three seasons, and the total amounts received by and flowing out from the outcrops were calculated. In all three ecosystems, TOC and N, P, and K were found throughout the year in both the water received by and delivered to nearby soil patches. Their concentrations and amounts were generally greater in forested ecosystems than in the rock desertification ecosystem. When rock outcrops constituted a high percentage (≥ 30%) of the ground surface, the annual export of rock outcrop runoff contributed a large amount of organic carbon and N, P, and K nutrients to soil patches nearby by comparison to the amount soil patches received via atmospheric deposition. These contributions may increase the spatial heterogeneity of soil fertility within patches, as rock outcrops of different sizes, morphologies, and emergence ratios may surround each soil patch.

  11. Modeling the early-phase redistribution of radiocesium fallouts in an evergreen coniferous forest after Chernobyl and Fukushima accidents.

    Science.gov (United States)

    Calmon, P; Gonze, M-A; Mourlon, Ch

    2015-10-01

    Following the Chernobyl accident, the scientific community gained numerous data on the transfer of radiocesium in European forest ecosystems, including information regarding the short-term redistribution of atmospheric fallout onto forest canopies. In the course of international programs, the French Institute for Radiological Protection and Nuclear Safety (IRSN) developed a forest model, named TREE4 (Transfer of Radionuclides and External Exposure in FORest systems), 15 years ago. Recently published papers on a Japanese evergreen coniferous forest contaminated by Fukushima radiocesium fallout provide interesting and quantitative data on radioactive mass fluxes measured within the forest in the months following the accident. The present study determined whether the approach adopted in the TREE4 model provides satisfactory results for Japanese forests or whether it requires adjustments. This study focused on the interception of airborne radiocesium by forest canopy, and the subsequent transfer to the forest floor through processes such as litterfall, throughfall, and stemflow, in the months following the accident. We demonstrated that TREE4 quite satisfactorily predicted the interception fraction (20%) and the canopy-to-soil transfer (70% of the total deposit in 5 months) in the Tochigi forest. This dynamics was similar to that observed in the Höglwald spruce forest. However, the unexpectedly high contribution of litterfall (31% in 5 months) in the Tochigi forest could not be reproduced in our simulations (2.5%). Possible reasons for this discrepancy are discussed; and sensitivity of the results to uncertainty in deposition conditions was analyzed.

  12. Atmospheric lepton fluxes

    Directory of Open Access Journals (Sweden)

    Gaisser Thomas K.

    2015-01-01

    Full Text Available This review of atmospheric muons and neutrinos emphasizes the high energy range relevant for backgrounds to high-energy neutrinos of astrophysical origin. After a brief historical introduction, the main distinguishing features of atmospheric νμ and νe are discussed, along with the implications of the muon charge ratio for the νµ / ν̅µ ratio. Methods to account for effects of the knee in the primary cosmic-ray spectrum and the energy-dependence of hadronic interactions on the neutrino fluxes are discussed and illustrated in the context of recent results from IceCube. A simple numerical/analytic method is proposed for systematic investigation of uncertainties in neutrino fluxes arising from uncertainties in the primary cosmic-ray spectrum/composition and hadronic interactions.

  13. Drug-driven AMPA receptor redistribution mimicked by selective dopamine neuron stimulation.

    Directory of Open Access Journals (Sweden)

    Matthew T C Brown

    Full Text Available BACKGROUND: Addictive drugs have in common that they cause surges in dopamine (DA concentration in the mesolimbic reward system and elicit synaptic plasticity in DA neurons of the ventral tegmental area (VTA. Cocaine for example drives insertion of GluA2-lacking AMPA receptors (AMPARs at glutamatergic synapes in DA neurons. However it remains elusive which molecular target of cocaine drives such AMPAR redistribution and whether other addictive drugs (morphine and nicotine cause similar changes through their effects on the mesolimbic DA system. METHODOLOGY/PRINCIPAL FINDINGS: We used in vitro electrophysiological techniques in wild-type and transgenic mice to observe the modulation of excitatory inputs onto DA neurons by addictive drugs. To observe AMPAR redistribution, post-embedding immunohistochemistry for GluA2 AMPAR subunit was combined with electron microscopy. We also used a double-floxed AAV virus expressing channelrhodopsin together with a DAT Cre mouse line to selectively express ChR2 in VTA DA neurons. We find that in mice where the effect of cocaine on the dopamine transporter (DAT is specifically blocked, AMPAR redistribution was absent following administration of the drug. Furthermore, addictive drugs known to increase dopamine levels cause a similar AMPAR redistribution. Finally, activating DA VTA neurons optogenetically is sufficient to drive insertion of GluA2-lacking AMPARs, mimicking the changes observed after a single injection of morphine, nicotine or cocaine. CONCLUSIONS/SIGNIFICANCE: We propose the mesolimbic dopamine system as a point of convergence at which addictive drugs can alter neural circuits. We also show that direct activation of DA neurons is sufficient to drive AMPAR redistribution, which may be a mechanism associated with early steps of non-substance related addictions.

  14. A model for hydraulic redistribution incorporating coupled soil-root moisture transport

    Directory of Open Access Journals (Sweden)

    G. G. Amenu

    2007-10-01

    Full Text Available One of the adaptive strategies of vegetation, particularly in water limited ecosystems, is the development of deep roots and the use of hydraulic redistribution which enables them to make optimal use of resources available throughout the soil column. Hydraulic redistribution refers to roots acting as a preferential pathway for the movement of water from wet to dry soil layers driven by the moisture gradient – be it from the shallow to deep layers or vice versa. This occurs during the nighttime while during the daytime moisture movement is driven to fulfill the transpiration demand at the canopy. In this study, we develop a model to investigate the effect of hydraulic redistribution by deep roots on the terrestrial climatology. Sierra Nevada eco-region is chosen as the study site which has wet winters and dry summers. Hydraulic redistribution enables the movement of moisture from the upper soil layers to deeper zones during the wet months and this moisture is then available to meet the transpiration demand during the late dry season. It results in significant alteration of the profiles of soil moisture and water uptake as well as increase in the canopy transpiration, carbon assimilation, and the associated water-use-efficiency during the dry summer season. This also makes the presence of roots in deeper soil layers much more important than their proportional abundance would otherwise dictate. Comparison with observations of latent heat from a flux tower demonstrates improved predictability and provides validation of the model results. Hydraulic redistribution serves as a mechanism for the interaction between the variability of deep layer soil-moisture and the land-surface climatology and could have significant implications for seasonal and sub-seasonal climate prediction.

  15. A model for hydraulic redistribution incorporating coupled soil-root moisture transport

    Directory of Open Access Journals (Sweden)

    G. G. Amenu

    2008-01-01

    Full Text Available One of the adaptive strategies of vegetation, particularly in water limited ecosystems, is the development of deep roots and the use of hydraulic redistribution which enables them to make optimal use of resources available throughout the soil column. Hydraulic redistribution refers to roots acting as a preferential pathway for the movement of water from wet to dry soil layers driven by the moisture gradient – be it from the shallow to deep layers or vice versa. This occurs during the nighttime while during the daytime moisture movement is driven to fulfill the transpiration demand at the canopy. In this study, we develop a model to investigate the effect of hydraulic redistribution by deep roots on the terrestrial climatology. Sierra Nevada eco-region is chosen as the study site which has wet winters and dry summers. Hydraulic redistribution enables the movement of moisture from the upper soil layers to deeper zones during the wet months and this moisture is then available to meet the transpiration demand during the late dry season. It results in significant alteration of the profiles of soil moisture and water uptake as well as increase in the canopy transpiration, carbon assimilation, and the associated water-use-efficiency during the dry summer season. This also makes the presence of roots in deeper soil layers much more important than their proportional abundance would otherwise dictate. Comparison with observations of latent heat from a flux t